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Abstract—For the first time, it is demonstrated on a specific example that the traveling electromagnetic wave is
characterized, generally speaking, not only by the magnitude of the electric and magnetic field vectors, but also
by certain potentials whose existence can be experimentally detected through their action upon electron diffrac-
tion. The structure of the potentials in an electromagnetic wave depends on the emitter type and contains infor-
mation on this type, being, thus, a new species of information media. © 2002 MAIK “Nauka/Interperiodica”.
One of the remarkable consequences of
Schrödinger’s equation is the so-called Aharonov–
Bohm effect (ABE), which has a vector (magnetic) and
a scalar (electric) form [1–5]. Already for more than
40 years, this effect has been investigated and the inves-
tigation results have been discussed (cf., e.g., [6, 7]). By
the 1990s, it was understood that there was a definite
need for extension of the ideas of Aharonov and Bohm
and their followers [1–3] to the case of time-varying
potentials and for the performance of the corresponding
experiments. First attempts in this direction [8, 9],
unfortunately, contained certain mistakes, which
resulted in incorrect findings in the proposed experi-
ments.

The investigations of the ABE in the dynamical
regime undertaken by the present authors [10, 11] dem-
onstrated that, in order to comprehend the ABE nature,
it is extremely helpful to separate the field and zero
components of the vector and scalar potentials:

(1)

where the supercipt f designates electromagnetic-field
components (field potentials) and the superscript 0
relates to the potentials that are necessary to satisfy
Maxwell’s equations with boundary conditions but that
do not directly correspond to any electromagnetic field
(potentials of zero fields or superfluous potentials).

It should be noted that in mathematical physics, an
analog of zero-field potentials has been used for a long
time, although, contrary to our consideration, no phys-
ical sense has been ascribed to it. For example, the vec-
tor potential of a zero field occurs in reconstructing a
vector from its curl and divergence given in a finite
region of space and is defined uniquely [12, 13].

Zero-field potentials can be represented in the form

(2)

A A f A0 and ϕ+ ϕ f ϕ0,+= =

A0 gradχ , ϕ0 1
c
---∂χ

∂t
------,–= =
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where χ is a differentiable, though multivalued func-
tion.

We stress that it is zero-field potentials that are
responsible for the ABE in all theoretical and experi-
mental works published so far. The main problem was
merely to create the conditions under which electrons
would propagate in a region without fields but with
nonzero potentials. For the better investigated magnetic
ABE, such conditions could be obtained in the static
case of electronic optics, which was proposed and put
under consideration in the earliest papers [1–3]. How-
ever, the experimental difficulties encountered in curry-
ing out static-regime experiments should be regarded as
a disadvantage of this approach [14]. As far as techno-
logical applications of ABE are concerned, the static
regime has altogether little prospects.

In the case of the dynamical regime, the main ques-
tion is whether it is possible to create zero-field poten-
tials in certain spatial regions. The question was dis-
cussed in [10, 11] considering the example of an infi-
nitely long hollow continuous cylinder–solenoid with
infinitely thin walls and with an alternating stationary
current flowing along the circumferences in the cylin-
der and irradiating into the outer space. It was shown
that in this case, there are zero-field potentials in the
outer space and, therefore, a priori, one can assume
they influence the electron diffraction pattern.

In the present paper, it is shown theoretically that a
new effect caused by zero-field potentials is possible.
This effect consists in the disappearance of interference
fringes when a relatively weak electromagnetic wave
having both electromagnetic and zero-field potentials is
produced in the path of the de Broglie wave. For the
existence of such an effect, the use of Lorentz’s gauge
is more preferable than Coulomb’s gauge and the
Schrödinger equation is valid.
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Let a cylindrical coordinate system (ρ, α, z) be cho-
sen with the z axis along the solenoid axis. The space
distribution of the current is assumed to be

(3)

where R is the solenoid radius, ω is the cyclic frequency
of the current, and I0 = j/2πR is the current in the wall
per unit length.

Solving the problem, we obtain the following
expressions for the zero-field potentials outside the
solenoid [10, 11]:

(4)

(5)

(6)

where W = 2πI0RJ1(kR)/c and k = ω/c.
Let us consider the influence of these potentials on

de Broglie waves sweeping the solenoid along its cir-
cumference as shown in Fig. 1. Since our interest is
only in the influence of zero-field potentials on electron
interference, we will consider the case when there are
no field potentials in the electron trajectories. Direct
substitution into the Schrödinger equation shows that
the alteration of the wave function reduces to the alter-
nating wave function phase alone:

(7)

where  =  – ; µ0 = ch/|e | is the mag-

netic flux quantum; the function Ψ0 defines the motion
of the electron in the absence of an electromagnetic

field and is equal to Ψ0 = , where ωe is

the cyclic de Broglie frequency for the electron; and I
is a unit vector along an electron’s trajectory.

Applying these solutions to the case of two de Bro-
glie waves with wave functions Ψi(li , t) that propagate

jα ρ α z, ,( ) I0δ ρ R–( ) ωt( ), jρcos jz 0,= = =

Aα
0 W

2
kρ
------ ωt,cos=

ϕ0 2Wα ωt,sin=

χ 2Wcω 1– α ωt,cos=

Ψ l t,( ) Ψ0
2πi
µ0

--------– χd∫ 
  ,exp=

χd∫ A0 ld∫ c ϕ0 td∫

i ωe td∫–( )exp
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Fig. 1. Schematic representation of the experiment with
electron emission at t = 0, its split into two de Broglie waves
(I and II) at t = t0, and the superposition of the waves on the
circumference of radius ρ.
P

along two trajectories i = 1, 2 (Fig. 1), we find the mag-
nitude of the interference effect:

(8)

where ΨΣ = Ψ1 + Ψ2, 2πf = ω; t0 is the instant of elec-
tron splitting, as shown in Fig. 1; v  is the phase velocity
of the electromagnetic wave; and P0 is the magnitude of
the effect at an interference maximum for I0 = 0. We
note that Eq. (8) gives the probability of finding an elec-
tron on the circumference with a given radius ρ if the
electron leaves the emitter at the moment t = 0 and
reaches the splitting point at the moment t0. It is a mat-
ter of direct verification to prove that the displacement
of the positions of interference maxima is entirely due
to one part of the scalar potential, while the other part
of the scalar potential fully compensates the displace-
ment of the fringes caused by the vector potential.

Let us consider some particular cases of Eq. (8). At
ω  0, we have

(9)

where M = 4π2I0R2c–1 is the magnetic flux through the
cross section of the solenoid. Thus, in the static case,
Eq. (8) transforms into the well-known expression for
the magnetic ABE. At ωt0 = (2m + 1)π/2, the electron
reaches the splitting point at the moment when the cur-
rent in the solenoid passes through zero and displace-
ment will take place if ωπρ/v  ≠ mπ. For electrons
which reach the splitting point at the moment when
ωt0 = mπ, i.e., the current in the solenoid passes through
a maximum, displacement will take place if ωπρ/v  ≠
(2m + 1)π.

Averaging the fringe pattern over all values of t0,
we get

(10)

where S = 8π2I0R f –1J1(2πfc–1R).

One can easily verify that the value of S/I0R2 = 8π2 ×
R−1 f –1J1(2πfc–1R) almost does not depend on the
product fR throughout the radio-frequency range for all
reasonable values of the solenoid radius (e.g., from 1
through 1000 µm). Therefore, the frequency in the
experiment can be chosen on the basis of convenience.

In Fig. 2, the dependence of /P0 on ωeτ, given by
Eq. (10), is shown for different values of the current in
the solenoid wall I0. The fringe pattern contrast is
defined by the formula

(11)

Noteworthy is the independence of the fringe pat-
tern contrast from the electron trajectory radius, which

P ΨΣΨΣ* 0.5P0 1{ ω[ eτ 4πWcµ0
1– f 1––cos+= =

× ω t0 πρv 1–+( ) ] } ,cos

P ω 0( ) 0.5P0 1 ωeτ 2πMµ0
1––[ ]cos+{ } ,=

P 0.5P0 1 J0 S( )+ ωeτ[ ]cos{ } ,=

µ0
1–

µ0
1–

P

K
Pmax Pmin–
Pmax Pmin+
--------------------------≡ J0 4πWcµ0

1– f 1–( ).=
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is the consequence of the independence of the scalar
potential from ρ.

As is evident from Eq. (11), the fringe pattern con-
trast is defined by a zero-order Bessel function of the
first kind. Therefore, with increasing amplitude of the
alternating current in the solenoid, the fringe pattern
contrast will decrease. Let us consider the zero-order
Bessel function in Eq. (10). Let the radius of the sole-
noid be, e.g., 10 µm. As indicated above, at the given
radius, the argument of the Bessel function in Eq. (10)
virtually does not depend on the solenoid radiation fre-
quency up to 5 × 1010 Hz and is equal to 2 × 10−6I0. In
order for the fringes to disappear as a result of the alter-
nating current in the solenoid, the argument of the
Bessel function in Eq. (10) has to be approximately
2.45, which is the case if the current in the solenoid
equals 0.4 mA/cm.

Thus we may conclude that, first, the situation radi-
cally changes when one goes over from the static case
to the case where an electromagnetic wave is present:
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Fig. 2. Dependence of the magnitude of the interference effect
 on ωeτ for R = 10–2 cm, f = 105 Hz, and the current I0 equal

to (1) 0, (2) 0.2, (3) 0.3, (4) 0.4, and (5) 0.7 mA/cm.
P
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the fringe pattern contrast changes. Second, the electro-
magnetic wave will be fully described if not only the
fields but also the zero-field potentials are taken into
account. Let us call the electromagnetic field together
with the zero-field potentials the full Maxwell field. If
an electromagnetic wave is generated using a different
method, the structure of the full Maxwell field could
prove different. For instance, the radiation of an infi-
nitely thin metal rod does not produce a zero-field
potential.

Thus, from the analysis of the full Maxwell field,
information on the sources of the field can be obtained;
therefore, zero-field potentials contain some additional
information that is not available from analyzing the
field alone.

Hence, the electromagnetic field is a more complex
formation than a mere combination of an electric and a
magnetic field. Its full description necessarily includes
the electromagnetic potentials. The proposed experi-
ment can substantially change the understanding of the
nature of electromagnetic fields.
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Abstract—Spin excitations and relaxation in a granular structure which contains metallic ferromagnetic nano-
particles in an insulating amorphous matrix are studied in the framework of the s–d exchange model. As the
d system, we consider the granule spins, and the s system is represented by localized electrons in the amorphous
matrix. In the one-loop approximation with respect to the s–d exchange interaction for a diagram expansion of
the spin Green’s function, the spin excitation spectrum is found, which consists of spin-wave excitations in the
granules and of polarized spin excitations. In polarized spin excitations, a change in the granule spin direction
is accompanied by an electron transition with a spin flip between two sublevels of a split localized state in the
matrix. We considered polarized spin relaxation (relaxation of the granule spins occurring by means of polar-
ized spin excitations) determined by localized deep energy states in the matrix and the thermally activated elec-
tronic cloud of the granule. It is found that polarized spin relaxation is efficient over a wide frequency range.
Estimates made for structures with cobalt granules showed that this relaxation could be observed in centimetric,
millimetric, and submillimetric wavelength ranges. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Granular structures containing metallic ferromag-
netic nanoparticles (granules) in an insulating amor-
phous matrix reveal various interesting magnetic prop-
erties, such as giant magnetoresistance, anomalous
behavior of the magnetoresistance as a function of
applied voltage and temperature (associated with the
Coulomb blockade [1]), and the occurrence of addi-
tional modes in the FMR spectrum in a narrow range
near the percolation threshold for which there is no cor-
relation between the wavelength of spin waves and the
film thickness [2–4]. However, the fundamental prob-
lem of magnetic relaxation in granular structures has
not yet been investigated comprehensively.

Considerable broadening ∆H of the FMR spectrum
of granular structures in comparison with bulk single-
crystal samples was first observed in [5, 6]. Colloid
structures which contain Fe, Co, or Ni particles in par-
affin were investigated using the FMR method at wave-
lengths of 3.14 and 1.20 cm in magnetic fields at 3 and
8 kOe, respectively. The particle dimensions were 5–
10 nm. The FMR line widths ∆H were, in effect, inde-
pendent of temperature and frequency, and, for ferro-
magnetic powders prepared using different methods,
they amounted to 500 (Ni), 450–3000 (Co), and 350–
1100 Oe (Fe). After accounting for the anisotropy, ran-
dom orientation of the particles in the ensemble, and
spin–spin relaxation, a relatively large addition to the
∆H remained unexplained. A comparison with single-
crystal samples shows that the FMR line widths for sin-
gle crystals at the same frequencies have significantly
lesser values, 110 (Co) and 32 Oe (Fe) [7].
1063-7834/02/4401- $22.00 © 20102
The FMR investigations of the granular films also
revealed a sharp increase in ∆H with decreasing con-
centration of ferromagnetic nanoparticles [2, 3]. For
Fe–SiO2 structures, with an Fe concentration of 0.4,
∆H ∝  800 Oe at frequencies of 9.4 and 35.4 GHz [3].
At the same time, the FMR line width in pure Fe(100)
sputtered films of the same thickness (16–24 nm)
amounts to approximately 20 Oe at a frequency of
9.5 GHz [8]. The ∆H increase in [3] was explained in
terms of shape anisotropy: the granules acquired a more
elongated ellipsoidal form with decreasing concentration.

The magnetic relaxation in granular films has also
been investigated using the spin-wave spectroscopy
method in Y3Fe5O12 (YIG)/(investigated granular film)
structures at temperatures of 77 to 393 K and frequen-
cies of 2.1 to 4.0 GHz [9–11]. From the changes in the
characteristics of traveling spin waves in a YIG film, the
spin relaxation was judged in the granular structures of
amorphous hydrogenated carbon a-C : H with cobalt
nanoparticles and amorphous SiO2 with Co86Nb12Ta2
nanoparticles. For the a-C : H–Co structures, in which
the spacing ∆ between the Fermi level of a metallic par-
ticle and the mobility edge of the matrix conduction
band is small in comparison with kT, the observed mag-
netic relaxation was characterized by large values and a
strong dependence on temperature. For the structures
with a SiO2 matrix and energy ∆ @ kT, the relaxation
also exhibited large values and was practically indepen-
dent of temperature.

The purpose of the present work is to theoretically
investigate spin excitations and relaxation in granular
002 MAIK “Nauka/Interperiodica”
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structures containing metallic ferromagnetic nanoparti-
cles in an insulating amorphous matrix. The study is
done in the framework of the s–d exchange model in the
one-loop approximation with respect to the s–d
exchange interaction for a diagram expansion of the spin
Green’s function. The d system is represented by granule
spins. As the s system, we consider the localized elec-
trons of the amorphous matrix. It is found that the spin
excitation spectrum consists of spin-wave excitations of
the granules and polarized spin excitations. In polarized
spin excitations, the change in the granule spin direction
is accompanied by an electron transition between the two
sublevels of a split localized state in the matrix. The
polarized spin relaxation, i.e., the relaxation of the gran-
ule spins occurring by means of the polarized spin exci-
tations, depends on the density of the localized states in
the 2kT-wide band near the Fermi level. Estimates of the
density of states obtained from the conductivity temper-
ature dependences of the granular structures [12] show
that the polarized spin relaxation is quite efficient and
that its contribution to the decay of spin excitations in a
granule can significantly exceed the contributions from
the spin–spin relaxation, spin–lattice relaxation, and the
relaxation due to interaction between the spins and elec-
trons of the granule [13]. The polarized spin relaxation
allows one to explain the considerable increase in the
damping observed in [2, 3, 5, 6, 9–11]. The process of
polarized spin relaxation takes place over a wide fre-
quency range. Estimates for structures with cobalt gran-
ules show that the frequency range where polarized spin
relaxation can be observed corresponds to centimetric,
millimetric, and submillimetric wavelength ranges.
Therefore, using granular structures, one can produce
coatings which efficiently absorb over a wide radio-fre-
quency region.

2. DERIVATION OF THE BASIC EQUATION

Let us consider the interaction of the spin of a ferro-
magnetic granule with electrons of the matrix in the
framework of the s–d exchange model [14]. We assume
that the d system is formed by the localized electrons of
the granule and its spin excitations are described in
terms of the Heisenberg model. The granule size is
assumed to be sufficiently large for the granule to be in
a ferromagnetic state. For example, the d system can be
represented by an ensemble of 3d-electron spins of a Co
granule in the case of structures with cobalt nanoparti-
cles with dimensions larger than 1 nm. As the s system,
we consider the localized electrons of the matrix. The s
and d systems are connected to each other through the
exchange interaction J. We assume that J > 0. We
neglect the interaction between electrons of the s sys-
tem. Under these assumptions, the Hamiltonian of the
s–d model is written in the form

* *s
0( ) *d

0( ) *d
int( ) *sd,+ + +=
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where

(1)

is the Hamiltonian of the electrons of the s system not
interacting with one another in the matrix crystal lattice

and  and  are the creation and annihilation
operators, respectively, for an electron at the energy
level λ of the one-particle state p with a spin ν; these

operators obey the commutation relations { , } =
δpp'δλλ 'δνν'. The summation in Eq. (1) is performed over
the one-particle states p, the levels λ, and the electron
spins ν = ↑ , ↓ . The equation from which the wave func-

tions  ≡ |p, λ〉 , λ and the energy spectrum  of the
one-particle states p are found is determined by the one-
particle Hamiltonian *(p) and has the form

(2)

The terms

(3)

(4)

describe the interaction between spins S of the d system
and the external magnetic field H and the exchange
interaction between the granule spins, respectively; g
and µB are the Landé factor and the Bohr magneton,
respectively; the summation in Eqs. (3) and (4) is per-
formed over all sites (l, l') of the crystal lattice of the
granule;

(5)

is the interaction Hamiltonian between the s and d sys-

tems; and ψν(r) = (r)  is the second-
quantized wave function of an electron in the s system.
The summation and integration in Eq. (5) are carried
out over the granule crystal lattice sites l and the elec-
tron positions r in the matrix, respectively.

To calculate the energies and decay constants of the
granule spin excitations, we will find the temperature
Green functions of electrons of the matrix and the gran-
ule spins:

*s
0( ) ελ

p( )aλν
p( )+aλν

p( )

p λ ν, ,
∑=

aλν
p( )+ aλν

p( )

aλν
p( )+ aλ'ν'

p'( )

ϕλ
p( ) ελ

p( )

* p( ) ελ
p( )–( )ϕλ

p( ) 0.=

*d
0( )

gµBH S1
z ,

1

∑–=

*d
int( ) 1

2
--- I 1 1 '–( ) S1

z S1 '
z S1

–S1 '
++( )

1 1 '≠
∑–=

*sd J r 1–( ) ψ↑
+ r( )ψ↓ r( )S1

–{∫
1

∑–=

+ ψ↓
+ r( )ψ↑ r( )S1

+ ψ↑
+ r( )ψ↑ r( ) ψ↓

+ r( )ψ↓ r( )–( )S1
z+ } dr

ϕλ
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p λ,∑ aλν
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Gνν' rτ  r 'τ ';( ) σ β( )〈 〉 0
1– Tψν

+ rτ( )ψν ' r 'τ '( )σ β( )〈 〉 0,=

Kdd
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α ' τ '( )σ β( )〈 〉 0,=
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1–=
2
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where σ(β) = Texp{ (τ) + *sd(τ)]dτ} is the

temperature scattering matrix, β = 1/kT, and all opera-
tors in Eq. (6) are defined in the interaction representa-

tion; i.e., A(τ) = exp[(  + )τ]Aexp[(–  +

)τ]. In the Green’s functions Kds, Ksd, and Kss, sα is
a vector operator whose components are Pauli matrices
and

Here, ν, ν' = {↑ , ↓} are spin indices of electrons of the
matrix and α, α' = {+, –, z} are indices of the spin oper-
ators. The statistical averaging 〈…〉0 is performed over

the states described by the Hamiltonian  + .

The diagram technique for the Green’s functions in
Eq. (6) is described in [14]. We consider the diagram

expansions of the Green’s functions Gνν' and . In
the self-consistent-field approximation in terms of the

eigenfunctions  of the Hamiltonian , the Fou-
rier transform of the electronic Green’s function with
respect to the variables τ – τ' has the form

(7)

where "ωn = (2n +1)π/β, n is an integer,

(8)

and the electron energy  in Eq. (8) is determined
from Eq. (2) (this energy is reckoned from the Fermi
level in the absence of the exchange interaction). The
upper sign corresponds to ν = ↑ ; the lower sign, to ν = ↓ .
The s–d exchange interaction splits an electronic level
into two.

 × TS1
α τ( )ψ+ r 'τ '( )sα 'ψ r 'τ '( )σ β( )〈 〉 0,

Ksd
αα ' rτ 1 'τ ';( ) σ β( )〈 〉 0

1–=
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P

The Fourier transform of the spin Green’s function
with respect to τ – τ' in the self-consistent-field approx-
imation has the form [14]

(9)

where

The quantity y is proportional to the sum of the mag-
netic field and the molecular field that is exerted on a
spin at the site l by other granule spins and electrons of

the matrix, "ωn = 2nπ/β, 〈 〉 0 = SBS(Sy), and BS is the
Brillouin function for the spin S.

Equations (7) and (9) for the self-consistent-field
approximation to the Green’s functions are the zeroth-
order terms in the expansion of these functions in a
power series in the reciprocal radius of the exchange
interaction. These bare Green’s functions are repre-
sented by directed lines in diagrams (Fig. 1a). The next
approximations to the Green’s functions can be found
form the Dyson equation; for the spin Green’s func-
tions (6)

,

this equation has the form

(10)

where

and

is the self-energy, which is described by diagrams that
cannot be divided into two parts through cutting an
interaction line. According to their indices, the dia-

Kdd
0( )–+ 1 1 ' ωn, ,( ) K 0( ) 1 ωn,( )δ11 ' ,=

K 0( ) 1 ωn,( )
2 S1

z〈 〉 0

y iβ"ωn–
------------------------,=

y β gµBH I 1 1 '–( ) S1 '
z〈 〉 0

1 '

∑+=

+ J r 1–( ) ψ↑
+ r( )ψ↑ r( ) ψ↓

+ r( )ψ↓ r( )–( )〈 〉 0 rd∫ .

S1
z

K̂
αα ' Kdd

αα ' Kds
αα '

Ksd
αα ' Kss

αα '
 
 
 
 

=

K̂
αα ' Σ̂αα ' Σ̂αα '

V̂ K̂
αα '

,+=

V̂
Vdd Vds

Vsd Vss 
 
 

β
1
2
--- I 1 1 '–( ) J 1 r–( )

J r 1–( ) 0 
 
 
 

,= =

J 1 r–( ) J r 1–( )=

Σ̂αα ' Σdd
αα ' 1τ  1 'τ ';( ) Σds

αα ' 1τ  r 'τ ';( )

Σsd
αα ' rτ  1 'τ ';( ) Σss

αα ' rτ  r 'τ ';( ) 
 
 
 

=

HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002



SPIN EXCITATIONS IN GRANULAR STRUCTURES 105
grams  have external spin vertices of the d system
or external electron vertices of the s system. In Eq. (10),
summation and integration is performed over the inter-

nal variables l and r of the matrices , , and 
standing side by side.

To calculate  to the first order in the reciprocal
radius of the exchange interaction, it is necessary to
account for diagrams that contain no more than one
loop [14]. We restrict ourselves to diagrams without
loops with respect to the interaction I and to one-loop
diagrams with respect to the exchange interaction J in

. These approximations take into account spin waves
in a granule and collective excitations of the granule
spin and electrons of the matrix (polarized spin excita-
tions). For α = – and α' = +, the corresponding bare
interaction lines and self-energy diagrams are shown in

Figs. 1a and 1b in terms of the eigenfunctions (r)

from Eq. (2). The s–d exchange interaction in (r)
representation is approximated by

Here, we disregard the transitions between the (p, λ)
and (p', λ') levels that can be induced by the s–d

exchange interaction through the terms (r)J(r –

1) (r)dr, with λ ≠ λ' and p ≠ p'.

The Dyson equation (10) for α = – and α' = + in the
chosen approximation is written in the form

(11)

When the interactions Vsd and Vds are nonzero, the
spins of the s system are polarized by the d system and,
vice versa, the electrons of the s system affect the spins
of the d system. From Eq. (11), we obtain an integral
equation for the spin Green’s function describing spin
excitations of the granular structure (Fig. 1c):

(12)
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PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
where

3. SPIN EXCITATIONS IN THE GRANULAR 
STRUCTURE

We will solve Eq. (12) in the case when the exchange
interaction between the spins of a granule is consider-
ably stronger than the exchange interaction between a
granule spin and electrons of the matrix (I @ J). In this
case, the spin excitation spectrum is divided into two
parts: spin-wave excitations in a granule and collective
excitations of a granule spin and electrons of the
matrix, i.e., polarized spin excitations. In polarized spin
excitations, the change in the granule spin direction is

Σdd
0( )–+ 1 2 ωn, ,( ) Kdd

0( )–+ 1 2 ωn, ,( ),=

Σss
1( )–+ p p ' λ λ ' ωn, , , ,( ) δpp 'δλλ '–=

× Gp λ ↓, ,
0( ) ωm( )Gp λ ↑, ,

0( ) ωm ωn–( )
m

∑

=  δpp 'δλλ '

nF ελ ↑,
p( )( ) nF ελ ↓,

p( )( )–

β i"ωn ελ ↓,
p( )– ελ ↑,

p( )+( )
--------------------------------------------------,–

nF x( ) ex 1+( ) 1–
.=

( )

Σ(1)–+
ss (p, p', λ , λ', ωn) =

Σ(0)–+
dd (1, 1', ωn) =

K (1)–+
dd (1, 1', ωn)

+ +

p, λ p', λ'
(c)

(b)

(a)

Κ(0)–+
dd (1, 1', ωn) =

G(0)
p, λ, ↓(↑) (ωn) =

βJ(p, λ, 1) =

1/2βI(1 – 1') =

p, λ

1 1'

1'

1'

1

1

1

Fig. 1. (a) Bare Green’s functions and the interaction lines,
(b) self-energy diagrams corresponding to spin waves and
polarized spin excitations, and (c) the equation describing
spin excitations.
2
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accompanied by changes in the polarization of the
neighboring localized electrons of the matrix.

3.1. Spin-Wave Excitations in Granules

We neglect the interaction J and convert the sum
over the granule crystal lattice sites into an integral.
Then, going over to the Fourier transform of I(r – r')
with respect to the spatial variables, Eq. (12) can be
written in the form of an integral equation:

(13)

where

a(r, r", q, ωn) = βK(0)(r, ωn)I(q)θ(r)θ(r"), and I(q) is

the Fourier transform of the interaction I(r – r'); θ(r) = 1
in the granule bulk and θ(r) = 0 outside the granule.
Since the exchange interaction between the granule
spins is a short-range interaction, we can restrict our-
selves to the Fourier transform calculated to the second
order in q:

In this approximation, the integral operator A in
Eq. (13) is a second-order pseudodifferential operator
[15] and Eq. (13) is reduced to a boundary-value prob-
lem. The spin-wave spectrum is determined by the
poles of the spin Green’s function obtained through
analytic continuation iωn  ω + iδsgnω (δ  +0).
This is equivalent to solving an eigenvalue problem,
i.e., to finding the distribution functions of the spin
oscillations χ(r, q) in the granule:

(14)

Assuming that the average magnetization in the granule

is the same everywhere over the volume, i.e., 〈 〉 0 =
〈Sz 〉0, Eq. (14) in the granule bulk takes the form

The eigenvalues of Eq. (14) define the energy spectrum
of stationary spin waves in the granule:

(15)

where q2 ∝  (πk/d)2, d is the granule diameter, and k =
(k1, k2, k3) is a vector with integer components (ki = 0,
1, 2, …). The spin-wave spectrum given by Eq. (15) is

Kdd
1( )–+ r r ' ωn, ,( ) K 0( ) r ωn,( )δ r r '–( )=

+ AKdd
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2∂

i 1=

3

∑–+ χ r q,( ) 0.=

εsw q( ) gµBH Sz〈 〉 0κq2,+=
P

limited from above by the energy excitation of a Stoner
electron pair in the granule.

3.2. Polarized Spin Excitations

Now, we consider the case where Eq. (12) contains

a term involving  and J; this term describes the
interaction of the granule spins with electrons of the
matrix:

(16)

where

Va is the granule unit-cell volume, and integration is
performed over the granule volume V.

Since the pseudodifferential operator A is elliptic in
the granule volume and J ! I, one can divide Eq. (16)
by A [15] and find the first several terms of the expan-
sion in B/A. Performing the analytic continuation
iωn  ω + iδsgnω and using the eigenfunctions of
Eq. (14), we find that the spin-excitation spectrum in
the first-order approximation in B/A is determined by
the equation

Neglecting the dependence of 〈 〉 0 on the spatial vari-
able, we obtain

(17)

where  = (1/2)[nF( ) – nF( )] is the average
spin of an electron at level λ of the localized state p, J(p,

λ, q) = (p, λ, r)χ(r, q)dr, and  =  –  =

gµBH + 2 (p, λ, 1)〈 〉 0.

If we take into account N levels (p, λ), then Eq. (17)
will have N + 1 roots for a fixed value of εsw(q). The

function  in Eq. (11) acquires N additional poles,
which correspond to collective one-particle excitations
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in the d and s systems. The same poles occur in the

functions , , and . When  ! kT,
the average electron spin is much less than the average

granule spin (  ! 〈 〉 0) and the N roots of Eq. (17)
will be close in value to the splitting values of the (p, λ)
levels:

When ω  (q), a change in the granule spin

directions 〈 〉 0 will be accompanied by the transition
of an electron between the spin sublevels (p, λ, ↑ ) and
(p, λ, ↓ ) in the matrix and by a change in the (p, λ) level
polarization. This gives grounds to refer to these exci-
tations as polarized spin excitations. The upper limit of
the frequency range of polarized spin excitations is
determined by the strength of the s–d exchange interac-
tion between the granule spins and an electron at the
(p, λ) level in the case when the electron in the local-
ized state p is near the granule boundary ∂V:

(18)

4. RELAXATION OF SPIN EXCITATIONS

Now, we study the relaxation of spin excitations in

the granular structure. We write Eq. (16) for (r,
r', ωn) in terms of the granule spin-oscillation functions
χ(r, q). Then, the decay constant of spin excitations γ is
determined by the imaginary part of the pole of the
Green’s function:

which, after analytic continuation iωn  ω + iδsgnω,
is equal to

Substituting the explicit expressions for the A and B
operators, we obtain

(19)

We consider the relaxation of uniform granule spin
excitations, i.e., the relaxation at small q values. In this
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case, due to the condition J ! I, the decay of the gran-
ule spin excitations is determined by polarized spin
excitations, in which the change in the granule spin
direction occurs simultaneously with a spin flip transi-
tion of an electron in the matrix from one sublevel of
the spin-split state (p, λ) to the other. The electronic
states involved in these transitions can be localized
deep energy states in the matrix (Fig. 2a) or states that
are created through thermal excitation of electrons from
the granule to the conduction band of the matrix
(Fig. 2b). We study the decay of spin excitations in both
these cases.

4.1. Relaxation due to Electron Transitions 
between Sublevels of Deep Localized States

in the Matrix

To obtain an explicit expression describing relax-
ation in the granular structure, we make a number of
assumptions.

(1) We assume that the energy distribution and spa-
tial position of the localized states p in the granular
structure can be characterized by the density of states

per unit volume ( , r). The introduction of this
quantity allows one to pass over from relaxation of spin
excitations of a granule [Eq. (19)] to relaxation of spin
excitations in the granular structure and to take an aver-
age over all granules. In this case, the sum over p and λ
in Eq. (19) is converted into an integral over the matrix
volume and the energies of the localized states
weighted by (ε, r). Because of the presence of the fac-

g ελ
p( )

g

∆

ελ
(p)–

(p, λ)R

(a)

(b)

∆

U

d

–

Fig. 2. (a) Position of a localized deep-energy state with
respect to the Fermi level in the granule, and (b) the energy
structure change due to excitation of an electron from the
granule.
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tor  in Eq. (19), the main contribution to the relax-
ation comes from the localized states with energies in a
range 2kT wide near the Fermi level. We assume that
the energy levels are uniformly distributed over this
energy range and that the spatial distribution is also uni-
form; that is, the density (ε, r) =  = const.

(2) The exchange integral in Eq. (19) involves integra-
tion over the granule volume V and the matrix volume:

(20)

If the wave functions  of the localized states are
hydrogen-like [16], then, because of the short-range
character of the interaction J(r – r'), the functions
J(p, λ, q) at q  0 decrease exponentially with dis-
tance:

where  is the reciprocal radius of interaction of the
granule spin with (p, λ) localized state and R is the dis-
tance from the center of the p hydrogen-like state to the
granule boundary. In averaging over all energy levels of
the N localized states, we assume that J(p, λ, q) expo-
nentially decreases with distance and that its decrease is
characterized by an effective reciprocal radius ξ =

N−1 .

(3) We will consider the case when the distance
between the granules is l @ ζ–1. Therefore, we can
neglect the interaction between the granules and extend
the upper limit of integration over the spatial variable in
the matrix to infinity. We assume that the spacing
between the bottom of the conduction band in the
matrix and the Fermi level in the metallic particle is
large, ∆ @ kT (Fig. 2a). Therefore, the upper limit of
integration over the energy of the localized states can be
extended to infinity. In this case, we will refer to the
localized states with energies in a range 2kT wide near
the Fermi level as deep energy states.

Under the above assumptions, the decay constant of
spin excitations in the granular structure in the fre-
quency range 0 < "ω – gωBH < 2J0〈Sz 〉0 is given by

(21)
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----------------------------ln

2
,

P

where E = 2〈Sz 〉0J0exp(–ξr) + gµBH. For "ω < gµBH
and "ω > gµBH + 2〈Sz 〉0J0, the decay constant is equal
to zero. The ratio of the decay constant to the frequency
is maximum at "ω = gµBH + 2exp(–2)〈Sz 〉0J0, with the
maximum being equal to

As can be seen from Eq. (21), the decay constant
determined by electron spin-flip transitions between the
sublevels of the deep localized states in the matrix does
not depend on temperature.

4.2. Relaxation due to Transitions
between the Sublevels of a Thermally Excited Electron 

from the Granule

Let us consider the energy structure of a granule in
the matrix in the case when the Fermi level of the metal-
lic granule is located below the bottom of the conduc-
tion band of the matrix by an energy value ∆. Due to
thermal activation, electrons overcome the energy bar-
rier ∆ and the granule acquires a charge which is equal
to the total charge of the electrons leaving the granule.
We assume that the granule has a spherical form with
diameter d. Then, removing Z electrons from the gran-
ule will result in a decrease in the granule energy by
U = Ze2/2C (Fig. 2b), where e is the electron charge and
C = d/2 is the capacity of the granule in the matrix
with dielectric permittivity . Some of the thermally
activated electrons do not spread over infinitively large
distances from the granule but instead form an electron
cloud around the granule. The wave functions of the
electrons in the cloud are determined by the Coulomb
field of the granule; we will consider them to be hydro-
gen-like. Since the exchange interaction has approxi-
mately a contact character, namely, J(r – 1) ∝  δ(r – 1), we
will allow for only the hydrogen-like s states among all
(p, λ) levels of the cloud [16] whose wave functions are

where ρ = me2|r|/"2, m is the electron mass, F is the
degenerated hypergeometric function, and the index
(p, λ) is reduced to the index n. The function J(p, λ, q) =
J(n, q) in Eqs. (19) and (20) is defined as an integral over
the granule and the matrix volume. For the hydrogen-like
s states, at large values of n and q  0, the main con-
tribution comes from terms that can be written as

(22)

We convert the sum in Eq. (19) into an integral and
take into account Eq. (22) to an accuracy of the order

O(n–4). Substituting  = En = εn, ↓ – εn, ↑ = gµBH +
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ω
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2J(n, 0)〈Sz 〉0 into Eq. (19), we write the decay constant
of spin excitations at "ω > gµBH in the form

(23)

where fn = U – ζ/n2 is the energy of an electron excited
to the state n, reckoned from the conduction band bot-
tom near the granule boundary; ζ = mZ2e4/2"2; and

In deriving Eq. (23), we allowed for n values for
which the energy fn and, hence, f have positive values.
This approximation is equivalent to an indirect account
of the granule size. The condition "ω = gµBH, or f = U
determines the lower limit for the decay constant.
When "ω < gµBH, the decay constant is equal to zero.
The upper limit for the decay constant is determined by
the condition f = 0:

As can be seen from Eq. (23), the decay (relaxation)
constant γ depends heavily on temperature.

5. RESULTS AND DISCUSSION

As can be seen from Eqs. (21) and (23), the decay of
spin excitations in the granular structure is determined
by the spacing ∆between the Fermi level in the granule
and the conduction band bottom in the matrix. Experi-
mental investigations on damping have been carried out
on granular structures of amorphous hydrogenated car-
bon a-C : H with Co nanoparticles and on amorphous
SiO2 with Co86Nb12Ta2 granules [9–11]. Those studies
verified the character of the temperature dependences of
the decay constant determined from Eqs. (21) and (23).
The activation energy ∆ + U for the (a-C : H)1 – xCox

structures with a small Co content x was determined
from the temperature dependences of current in the
geometry where the current was perpendicular to the
plane and was found to be 0.22 eV. Taking into account
that the Co particles were 2.0–2.2 nm in size, we esti-
mated the mean capacity of the particles, the electrical
energy U, and the energy ∆, which turned out to be
small and comparable to the value of kT (∝ 0.02 eV).

"γ ω( )
π "ω gµBH–( )2

2 Sz〈 〉 0

-------------------------------------- 1
β ∆ f n+( )[ ] 1+exp

-----------------------------------------------




n

∑=

–
1

β ∆ f n "ω+ +( )[ ] 1+exp
-------------------------------------------------------------δ "ω En–( )

=  
π2/3J0Z β"ω( )exp 1–[ ]

3 β ∆ f+( )–( ) 1+exp[ ] β ∆ f "ω+ +( )( ) 1+exp[ ]
-------------------------------------------------------------------------------------------------------------------------

×
"ω gµBH–

2J0 Sz〈 〉 0

---------------------------- 
  2/3

,

f U
ζ
Z2
-----

π "ω gµBH–( )
2J0 Sz〈 〉 0

------------------------------------
2/3

.–=

"ω gµBH
U
ζ
---- 

 
3/2Z3J0 Sz〈 〉 0

π
------------------------.+≤
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
For the a-SiO2 structures with Co86Nb12Ta2 granules,
the energy ∆, by contrast, was large, ∆ @ kT.

The decay constant of spin excitations in a granular
structure was determined using the spin-wave spectros-
copy method [9] on the YIG/(investigated granular
film) structures at temperatures 77–393 K. Changes in
the group velocity and in the damping of surface mag-
netostatic spin waves in the YIG film were studied in
the frequency range 2.2–4.0 GHz. The coupling
between a spin wave propagating in the YIG film and
the granular film occurred through magnetic dipole
interaction. The relaxation of spin excitations in the
granular film resulted in a decrease in the group veloc-
ity and in an increase in the spin-wave damping in the
YIG film. From these changes, we estimated the relax-
ation of spin excitations in the granular structure. For
(a-C : H)1 – xCox granular films (250–550 nm thick) at
x  <  0.45, the relaxation drastically increased with
increasing temperature. The temperature dependence
of relaxation was similar to that given by Eq. (23) [9,
11]; this suggests that the relaxation is due to spin-flip
electronic transitions between the sublevels of the ther-
mally activated granule electron cloud. For a-SiO2
granular films with Co86Nb12Ta2 particles (the film
thickness was of 2.7–5.1 µm) with cobalt concentra-
tions of x < 0.45, the relaxation of spin excitations vir-
tually did not depend on temperature [10, 11]. This lead
to the conclusion that the relaxation of spin excitations
in structures with an a-SiO2 matrix is determined by
polarized spin excitations at deeper energy levels of
localized states in the matrix and is described by
Eq. (21). Let us estimate the decay constant given by
Eq. (21). The interatomic exchange interaction for the
nearest neighbors is roughly J0 = 0.05–0.10 eV [17,
18]. The density of localized states  can be estimated
from the conductivity temperature dependences of the
granular structure [12]. The temperature dependence in
the in-plane-current geometry follows a power law. The
index of the power law depends on the number of local-
ized states in the matrix through which the process of
inelastic resonant tunneling occurs between the gran-
ules in the energy range 2kT wide near the Fermi level.
For the (a-C : H)1 – xCox structures, the mean number of
localized states in the matrix varies from 1 (x = 0.46) to
2 (x = 0.24). This makes it possible to estimate  in the
2kT range. Putting  = 1 eV–1 nm–3, J0 = 0.1 eV, 〈Sz 〉0 =
1/2, ξ = 1 nm–1, H = 0, and ω/2π = 10 GHz, we obtain
γ/ω = 0.1. Such high values allow one to explain the
large magnitude of magnetic relaxation reported in [9,
11]. The initiation of polarized spin transitions can be
responsible for the large ∆H values observed in [5, 6]
and high electromagnetic-radiation absorption coeffi-
cients of the granular structures.

In [2, 3], an increase in ∆H with decreasing Fe con-
centration was observed. The model proposed above
allows one to explain this effect. The relaxation
observed in [2, 3] at frequencies of 9.4 and 35.4 GHz is

g

g
g

2
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due to splitting of the levels disposed far away from the
granules. With decreasing granule concentration, the
density of such localized states (with a small amount of
splitting) increases. The magnetic field H produced by
the granules causes an additional increase in the split-
ting of the localized states. With decreasing granule
concentration, the field H decreases. According to
Eq. (21), these two factors cause the damping to
increase.

The damping due to polarized spin excitations [see
Eq. (21)] is characterized by a wide-range spectrum.
The maximum damping is equal to

In real granular structures, the demagnetizing magnetic
field produced by the neighboring granules contributes
to the field H. Taking, as an example, structures with
cobalt granules and accounting for the fact that the
demagnetizing field near the granule is determined by
the magnetization (4πM ∝  17.9 kOe [13]), for H =
4πM, J0 = 0.1 eV, and 〈Sz 〉0 = 1/2, we find that
ωmax/2π = 25 THz. Thus, we can conclude that, using
structures with cobalt granules, one can create films
that absorb electromagnetic radiation in the centimet-
ric, millimetric, and submillimetric wavelength ranges.
Estimates show that a granular structure with Co gran-
ules provides significantly more effective absorption
(per unit volume) than ferrite films.

6. CONCLUSIONS
Our results obtained within the theoretical model

constructed in this paper allow the following conclu-
sions to be drawn:

(1) The spin excitation spectrum of a granular struc-
ture with ferromagnetic metallic nanoparticles embed-
ded in an amorphous matrix consists of granule spin-
wave excitations and polarized spin excitations. In
polarized spin excitations, the change in the granule
spin direction is accompanied by a transition of an elec-
tron between two sublevels of a split localized state in
the matrix and by a change in the polarization of this
localized state.

(2) The localized electron states in the matrix can be
either deep energy levels or thermally activated states
of the granule electron cloud. In the first case, the spin
relaxation process in the granules, which occurs
through polarized spin excitations (polarized spin
relaxation), does not depend on temperature. In the sec-
ond case, a strong temperature dependence is observed.

(3) Polarized spin relaxation can be observed over a
wide frequency range. Estimates for granular structures
with cobalt nanoparticles showed that polarized spin
relaxation can occur in the centimetric, millimetric, and
submillimetric wavelength ranges.

"ωmax gµBH 2J0 Sz〈 〉 0.+=
PH
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Abstract—The conditions for parametric excitation of flexural vibrations of a domain wall (DW) are deter-
mined in the case where the DW moves under the action of a uniform dc magnetic field whose strength exceeds
the Walker critical value (in the spin precession regime). Vibrations are excited when uniform precession caused
by the magnetic field during DW translational motion breaks down. Using numerical methods, it is shown that
steady-state large-amplitude vibrations can occur and that these vibrations significantly affect the average DW
velocity © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear dynamics of a domain wall (DW) in
an external dc uniform magnetic field is characterized
by two fundamentally different regimes. If the strength
of the applied field is lower than a certain critical value,
then the steady-state regime is stable; in this regime, the
DW moves translationally and its internal structure
does not change. As the field strength exceeds the criti-
cal value, the steady-state regime becomes unstable:
spin precession occurs in the DW plane, and transverse
(flexural) distortions and/or other changes are devel-
oped. At the present time, the steady-state regimes are
the best theoretically studied regimes; the spin preces-
sion regimes are more complicated, and they and their
stability have not been well investigated.

Investigation of the latter regimes is not only of aca-
demic interest; in many cases, spin precession occurs in
weak fields, whose strength lies in the field range of
practical importance. For example, for a one-dimen-
sional 180° Bloch wall in a uniaxial ferromagnet, in the
(most extensively studied) case where the DW plane
contains the easy magnetization axis, the correspond-
ing critical field strength HW (Walker field, see [1] and
references therein) is equal to 2πMα (M is the magne-
tization, α is the dimensionless Gilbert damping
parameter), which is equal to a few oersteds. If the DW
plane is perpendicular to the easy axis, the critical field
vanishes altogether and spin precession always occurs
in such a DW [2] (this less well-understood case was
investigated experimentally in [3]). It should also be
mentioned that HW may have greater values for fields in
the basal plane [4] and that there are magnets (prima-
rily, rare-earth orthoferrites) in which the DW motion
remains stationary even in very high fields (a few
kilogauss) [5–7].
1063-7834/02/4401- $22.00 © 20111
In finite samples, the initial DW structure is not one-
dimensional and the DW dynamics is more compli-
cated. As a rule, even the determination of the ground
state of such DWs (to say nothing of the investigation
of its stability) is an intricate numerical problem. In this
case, the DW dynamics is also characterized by the two
regimes mentioned above, but the critical fields can dif-
fer significantly from their values in the one-dimen-
sional case and the spin precession regimes may vary
more widely (for example, chaotic motion can occur [8,
9]). Here, the best understood cases are the twisted DW
[4] and the vortex DW (see, e.g., [10, 11]), which are
formed in perpendicularly and in-plane magnetized
films, respectively.

In this paper, we consider the simple case of a 180°
DW in a uniaxial ferromagnet with a quality factor Q ≡
Ha/4πM > 1 (Ha is the uniaxial-anisotropy field). The
one-dimensional precession regime in a uniform dc
magnetic field H > HW has been well studied for this
type of DW [4, 12]. We investigate the stability of this
DW with respect to transverse small-amplitude distor-
tions localized in the DW plane, i.e., with respect to
flexural vibrations. The one-dimensional regime
becomes unstable if the field strength and the wave-
number of the flexural vibration mode are in the ranges
where parametric excitation occurs. It is shown in this
paper, that these ranges depend critically on the damp-
ing parameter α. Due to the nonlinear mechanism, the
DW spin precession under a dc magnetic field gives rise
to parametric excitation of pairs of surface magnons.
Numerical nonlinear simulations show that the para-
metric amplification can be significant. It should be
noted that, although the parametric resonance of flex-
ural DW vibrations has been being investigated for a
relatively long time (one of the first publications on this
subject is [3]), only ac external magnetic fields have
been used for resonant excitation.
002 MAIK “Nauka/Interperiodica”
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In this paper, we also consider the influence of flex-
ural vibrations excited parametrically by uniform spin
precession on the average DW velocity. This mecha-
nism was proposed in [14, 15], where order-of-magni-
tude estimates of the effect were made. Using numeri-
cal methods, we show in this paper that this mechanism
can be highly efficient in the case of low damping
(α ! 1).

2. LINEARIZED STABILITY EQUATIONS 
AND PARAMETRIC EXCITATION

Flexural vibrations of the 180° DW are a spatial
modification of its lowest energy (translational) mode.
In uniaxial ferromagnets with quality factors Q @ 1, the
corresponding frequencies lie below the ferromagnetic
resonance frequency. In an approximation where terms
of the order of 1/Q are neglected, the coordinate along
the normal to the DW plane can be eliminated and,
therefore, the spatial dimensionality of the problem is
lowered. In this case, the DW dynamics is described by
the Slonczewski equations [4, 12], which take into
account only the translational mode in the nonlinear
approximation. The DW surface q(x, t) and the azimuth
angle of the magnetization vector ψ(x, t) at the DW
center are governed by the nonlinear set of equations

(1a)

(1b)

The superscript dots and primes on the dependent vari-
ables indicate derivatives with respect to time t and the
spatial coordinate x in the DW plane, respectively, and
H > 0 is a dc external drive magnetic field parallel to the
magnetization vector in one of the domains. Equa-
tions (1) involve dimensionless variables

(2)

where Λ = ∆ is the width parameter of a Bloch line

(∆ =  is the DW width; A and K are the exchange-
stiffness and uniaxial anisotropy constants, respec-
tively; Q = Ha/4πM > 1; Ha = 2K/M is the effective
anisotropy field) and γ > 0 is the gyromagnetic ratio.

First, we present some known results [1, 4, 12] for
one-dimensional DW motion which will be used later.
From Eqs. (1), it is seen that if  and H do not exceed
the Walker limiting values  = 1/2 and HW = α/2, then

the translational DW motion is steady:  = H/α and

ψ0 = /2. In higher fields, a periodic spin-
precession regime is established [12]:

(3)

(4)

ψ̇ H– α q̇+ q '',=

q̇ αψ̇– ψ''–= ψ ψ.cossin+

x Λx, t 4πγMt,

H 4πMH , q ∆q,

Q

A/K

q̇
q̇W

q̇0

2q̇0( )arcsin

ψ̇0 t( ) ω ψH/ 1 ψH 2ωtsinsin+( ),cos=

2ψ0 t( )cos
1 α2+( )ψ̇̇0 t( )–

αψ̇0 t( )
------------------------------------

ψH 2ωtcoscos
1 ψH 2ωtsinsin+
------------------------------------------.≡=
P

Here,

(5)

is the fundamental precession frequency, equal to the

time average of the quantity given by Eq. (3);  =
ω; and sinψH = α/2H (0 < ψH < π/2). The time depen-
dence of the DW velocity can be found by substituting
Eq. (3) into Eq. (1a). Averaging Eqs. (1) over time and
using Eqs. (3) and (4), we obtain

(6a)

(6b)

where  = H(1 – cosψH)/α and the average

DW velocity  is

(7)

It is interesting that this velocity has a minimum at

Hm = (1 + α2)/2 ; this minimum equals  =

α /2(1 + α2). In high fields, the DW motion
becomes simpler:

(8)

We are now in a position to investigate the stability
of the various modes of DW motion. Substituting ψ =
ψ0(t) + δψ(x, t) and q = q0(x) + δq(x, t) into Eqs. (1) and
expanding the result in powers of small amplitudes δψ
and δq about the unperturbed solution, we write the
perturbations in the form of plane waves δψ, δq ~
exp(ikx) and obtain the linearized stability equations

(9a)

(9b)

In the steady DW translation regime below the
Walker limit HW, we can put δψ, δq ~ exp(–iωt)
because cos2ψ0 is time-independent. It can be shown
that in this case, Im(ω) < 0; that is, the steady DW
motion is stable. We note that above HW, the spin pre-
cession regime is also stable but with respect to pertur-
bations with k = 0. Indeed, differentiating Eqs. (1) with
respect to time, we find that δψ = C (t) and δq =

−C (t)/α, where C is a constant and (t) is a finite
function, as seen from Eq. (3).

ω H2 α /2( )2–

1 α2+
--------------------------------=

ψ̇0 t( )

ω H– α q̇0+ 0,=

q̇0 αω– ψ0 ψ0cossin ,=

ψ0 ψ0cossin

q̇0

q̇0
H
α
---- 1 ω

H
----– 

  .=

2 α2+ q̇

2 α2+

q0 t( ) αHt

1 α2+
---------------

1
4H
------- 2Ht

1 α2+
---------------,cos–=

ψ0 t( ) Ht

1 α2+
---------------

α
4H
------- 2Ht

1 α2+
---------------.cos+=

δψ̇ aδq̇+ k2δq,–=

δq̇ αδψ̇– k2δψ= 2ψ0δψ.cos+

ψ̇0

ψ̇0 ψ̇0
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In the general case of k ≠ 0, Eqs. (9) with periodic
coefficients are Floquet-type equations and, in the limit
of α  0, they are reduced to the Mathieu equation

(10)

where τ = t/H, a = k4/H2, and b = k2/2H2. It is well
known that in the (a, b) plane, the boundaries of the
regions of parametric instability (specified by index i =
1, 2, …) leave the points with coordinates ai = 12, 22, …
and b = 0 and go to the a < 0 region as b increases. In
the (H, k) plane, these instability regions have the form
shown in Fig. 1, where the corresponding periodic solu-
tions (Mathieu functions) are also indicated on the
boundaries of these regions. Near the boundary points ai,
the Mathieu functions are closely approximated by the
first few harmonics in their expansion into a Fourier
series. In the (H, k) plane, these points go to infinity,
whereas the intersection points of the boundaries and
the b axis go to the origin of coordinates. It is signifi-
cant that if damping is taken into account in Eq. (10),
then the boundary points on the a axis are shifted from
this axis by an amount proportional to α. In this case,
the regions of parametric instability in the (H, k) plane
are limited by maximum values HM and kM, which are
the higher, the smaller the value of α [see Eq. (15)].
Near these maximum values, the Mathieu functions can
be approximated (for small α) by the first few Fourier
harmonics; this property will be used in what follows.

Now, we investigate Eqs. (9). For this purpose, we
first estimate the relative contribution from the first few
harmonics to the expansion of cos2ψ0(t) into a Fourier
series:

(11a)

where

(11b)

At H = α/2, all expansion coefficients vanish. As
H  ∞, all expansion coefficients also vanish except
a2  1, which increases monotonically and tends to
unity. The higher coefficients are not greater than a2 (in
absolute value) and have extrema in the range of low
fields of the order of ~α(!1). Therefore, for α ! 1 and
sufficiently high fields, one can replace cos2ψ0(t) with
a2cos2ωt in Eqs. (9).

From the above discussion, it follows that one can
keep only two Fourier harmonics in the solution to
Eqs. (9) near the boundaries of the first region of para-
metric instability:

(12)

δψ̇̇ a 2b 2τcos–( )δψ+ 0,=

2ψ0 t( )cos a2 2ωtcos= a6 6ωt …+cos+

+ b4 4ωtsin b8 8ωt …,+sin+

a2 2 ψH/ 1 ψHcos+( ) 0,>cos=

a6 16 ψH ψH/2( )/ ψ4
H 0,<sin

6
sincos–=

b4 2 ψH 1 ψHcos–( )2/ ψ3
H 0.<sincos–=

δψ δq,( ) F1 Q1,( ) ωtcos= F2 Q2,( ) ωt,sin+
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
where the amplitudes F1, 2 and Q1, 2 are slowly varying
functions of time. Substituting Eq. (12) into Eqs. (9)
and equating the coefficients of like harmonics on the
left- and right-hand sides, we arrive at a set of four dif-
ferential equations with constant coefficients:

(13)

where the frequency ω is given by Eq. (5) and a2 is
given by Eq. (11b). Solutions to Eq. (13) are propor-
tional to exp(st), and the boundaries of their stability
region are defined by the condition s = 0. The charac-
teristic equation of Eq. (13),

(14)

determines the boundaries of region I. It follows from
Eq. (14) that, for small α, this region is limited above by

(15)

with its middle width (for α = 0) being ∆k ≈ 1/4
(Fig. 2).

The boundaries of region II can be found in a similar
way. However, instead of Eq. (12), one should use the
approximation [16]

(16)

Solution of the corresponding characteristic tenth-
degree equation determines the boundaries of region II

Ḟ1 2, ωF2 1,± α Q̇1 2, ωQ2 1,±( )+ k2Q1 2, ,–=

Q̇1 2, ωQ2 1,± α Ḟ1 2, ωF2 1,±( )– k2Q1 2,
1
2
---a2F1 2, ,±=

k8 2 –1 α2+( )ω2k4 1
4
---a2

2 k4 α2ω2+( )–+

+ 1 α2+( )2ω4 0,=

HM 1/4α , kM 1/2 α ,≈≈

H

δψ δq,( ) F0 Q0,( )= F1 Q1,( ) 2ωtcos+

+ F2 Q2,( ) 2ωtsin

+ F3 Q3,( ) 4ωtcos F4 Q4,( ) 4ωt.sin+

0.4

0.1

a,
 k

b, H
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Fig. 1. Parametric instability regions for solutions to the
Mathieu equation in the (b, a) plane (region I, bounded by
dashed lines) and in the (H, k) plane (regions I and II,
bounded by solid curves).
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1.0

0.5
H/4πM

1.2

1.4

0.8

0.6

kΛ
II (α = 0.1)

α = 0.1

α = 0.2

I

S1

S2 0.6

0.15 1.3

1.0 1.5 2.0 2.5

Fig. 2. Parametric excitation regions I and II for different values of the damping parameter α. The DW velocity reaches its maximum
(Fig. 3) on the dashed curves inside these regions. The dots near the boundaries of the regions are calculated from nonlinear equa-
tions (1). The inset shows the behavior of the solution when passing through the boundary of region I along a horizontal line segment
S1  S2 (k = 1.2): the period of vibrations is doubled; the time dependence of the solution at point S1 outside the region (H =
1.65, T = 1.92) is shown on the upper left and that at point S2 inside the region (H = 1.6, T = 3.98) is shown on the lower left; the
same dependence at a point on the curve corresponding to the maximum values of the DW velocity (H = 1.5, T = 4.27) is shown at
the right of the inset; dashed curves are the oscillatory component of q(x = 0; t), and solid curves are the oscillatory component of
ψ(x = 0, t); the values of the amplitudes are indicated near the vertical bars; the time on the horizontal axes is measured in units of
the period T.

S1 S2
(Fig. 2). This region is limited above by HM ~ 1/  and

kM ~ 1/ . These values are smaller than those in
Eq. (15), and region II is smaller in size, such that in the
case of α = 0.2, this region is beyond the limits of
Fig. 2.

The lower limits of the H and k ranges of parametric
instability in Fig. 2 are due to the fact that, as numerical
integration of the linearized stability equations (9)
shows, higher harmonics in expansion (11a) become
important for smaller values of H and k and the simple
approximations in Eqs. (12) and (16) become inade-
quate. These approximations are the better, the smaller
the damping parameter α and, hence, the higher HM and
kM. In this case, in Eqs. (1), one can take into account
only quadratic exchange dispersion and local magneto-
static contributions proportional to ~cos2ψ0(t). The
contributions from nonlocal magnetostatic interactions
proportional to k (see [17]), when incorporated into

Eqs. (1), will lead to terms of the order of ~1/  for
1/Q ! 1.

3. NONLINEAR EQUATIONS AND NUMERICAL 
CALCULATIONS

In this section, we present a numerical solution to
the Cauchy problem for a nonlinear partial differential
equation (1) with periodic boundary conditions in x.
This problem corresponds to the experimental situation

α
α4

Q

P

where initial periodic perturbations of q(x) and ψ(x)
characterized by a certain wavenumber k are produced
at t = 0 and then, after a constant magnetic field H is
applied, the system response is monitored. The ampli-
tudes of the initial perturbations were taken to be small
enough (~0.1) for the nonlinear effects to be insignifi-
cant at the initial stage. The numerical calculation was
carried out by means of a standard computer code using
the well-known method of lines. The time interval was
taken long enough for a solution to become stationary.
It was assumed that in a stationary regime at the bound-
aries of the instability regions, a solution to Eqs. (1) has
the form

(17)

where q1n(x) and q2n(x) are periodic functions of x; the
function ψ(x, t) had a similar form.

From the calculated stationary functions q(x, t) and
ψ(x, t), we determined the fundamental frequency ω
and the average DW velocity , which are different
from those given by Eqs. (5) and (7), because they are
functions of the wavenumber k dictated by the initial
conditions. However, Eqs. (6) hold in this case, if the
averaging is performed not only over time but also over
a spatial period of vibrations. The self-consistency of

q x t,( ) q̇t=

+ q1n x( ) nωtcos q2n x( ) nωtsin+[ ] ,
n 0 1 2…, ,=

∞

∑

q̇
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solutions was checked independently by averaging
sinψcosψ numerically and substituting the result into
Eq. (6). In some cases, we used another checking tech-
nique, which is based on the energy balance equation
following from Eqs. (1),

(18)

The relation that was directly checked follows from
Eq. (18) and has the form

(19)

where  =  +  ≡ (ω/α) ; ∆q and
∆ψ are the oscillatory components of solutions q(x, t)
and ψ(x, t), respectively; and the overscribed bar
denotes double averaging (over a temporal and a spatial
period).

For H and k lying outside the parametric-excitation
regions, the solutions were found to be very similar to
the one-dimensional solution given by Eq. (4). As the
boundary of one of the regions was approached (see the
typical example of crossing the boundary shown in the
inset to Fig. 2, S1  S2), the amplitude and the spatial
modulation depth of the solution increased. When pass-
ing through the boundary, the period T = 2π/ω doubled
and parametric vibrations arose, their wavenumber k
being dictated by the initial conditions. The boundaries
of the regions were determined as a locus (dots in
Fig. 2) at which the n = 1 harmonics in Eq. (17) became
dominant. For this purpose, the numerical solutions
were expanded in a Fourier series and the Parseval
equality was used.

In the parametric-excitation regions, the system
response increased with distance away from the bound-
ary (the effect being weaker in region II) and became
maximal on the extremum curves (dashed curves in the
regions shown in Fig. 2). On these curves, the average
DW velocity reached its maximum values (dots in
Fig. 3) for fixed values of H; the corresponding values
of k can be found from Fig. 2. The average frequency ω
decreased only slightly; its values can be determined
from Eq. (6a) using the values of the average DW
velocity and the field H presented in Fig. 3. Figure 4
shows the typical oscillatory components of the q(x, t)
and ψ(x, t) functions at a point on the extremum curve.
All effects become more pronounced and greater with
decreasing damping parameter α.

4. DISCUSSION OF RESULTS

In this paper, we have investigated uniaxial ferro-
magnets with Q @ 1; among them are perpendicularly
magnetized rare-earth garnet-ferrite films, which are
believed to be of considerable promise in information
processing. However, even for optimal values of the
parameters of these materials (M = 15 Oe, A =
10−7 erg/cm, α = 10–3), the propagation length of free

∂
∂t
----- ψ'2 q '2 ψ2sin 2Hq–+ +( ) 2α q̇2 ψ̇2+( )+ 0.=

q̇ α ω2 q̇2 ∆Ω2+ +( )/H ,=

∆Ω2 ∆q̇2 ∆ψ̇2 ψ ψcossin
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flexural DW vibrations (approximately equal to ~2Λ/α)
is ≥ 0.025 cm [7].

Therefore, investigation of the possible mechanisms
of excitation and enhancement of localized DW vibra-
tions is of considerable interest. The distinctive feature
of internal parametric excitation [14, 15] investigated in
this paper, in comparison with another more familiar
method (see, e.g., [13]), is that pumping with a dc mag-
netic field is employed. We note that there are also other
parametric mechanisms of flexural DW vibration exci-
tation which involve bulk spin waves [18, 19] and non-
parametric excitation of bulk waves by a dc magnetic
field acting on a DW [15, 20].

The intensity of parametrically excited stationary
DW vibrations in the corresponding regions can be
fairly high: the double amplitude ψ(x, t) can be larger
than the π “power” of an isolated Bloch line (Fig. 4).

0
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w

H/4πM
0.5 1.0 1.5 2.0 2.5

α = 0.1

α = 0.2

0.1

0.2

0.3

0.4

·
·

Fig. 3. Dependence of the maximum DW velocity (dots) on
the external magnetic field in parametric-excitation region I
(dashed curves inside regions I in Fig. 2) for two different
values of α. Solid curves are the DW velocity calculated
from Eq. (7) derived within the one-dimensional approxi-
mation.
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2π/k = 10.9

∆q
, ∆
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Fig. 4. Typical oscillatory components of the DW coordi-
nate ∆q(x, t) and of the azimuth angle ∆ψ(x = 0, t); the
dimensionless period is 4πγMT, α = 0.1, H/4πM = 0.35, and
kΛ = 0.575.
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These vibrations significantly affect the average DW
velocity (Fig. 3). In this connection, it should be noted
that the expression in Eq. (17) is not the most general,
because it does not take into account subharmonics,
vibrations with incommensurate periods, chaotic
regimes, etc. Investigation of the stability of parametric
vibrations and various DW translation regimes is
beyond the scope of this paper. As for the occurrence of
parametric instability of DW spin precession, this phe-
nomenon is fairly universal.

In closing, we point out experimental situations to
which our findings are relevant. It was shown in [21]
that in a perpendicularly magnetized film whose thick-

ness h is such that ∆ < h < ∆ , the DW is twisted only
slightly and its spin precession dynamics is very close
to the one-dimensional DW dynamics investigated in
this paper. Another case is that of films with Q > 1 and
an in-plane easy magnetization axis. In these two cases,
long-range magnetostatic effects characteristic of films
(see [22, 23], respectively) are significant only for small
wavenumbers, hk < 1. The approximations made in this
paper will be adequate for films with low damping and
for the range of wavenumbers k near the maximum
value given by Eq. (15).
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Abstract—An effective-medium method is developed and applied to calculate the effect of dynamic magne-
toelastic interaction on the spin dynamics of a finite magnetic thin-layer superlattice in the long-wavelength
approximation. It is shown that if the intra- and interlayer spin–spin interactions are predominantly due to indi-
rect coupling via the long-range field of quasi-static magnetoelastic strains, then the magnon spectrum of such
a superlattice exhibits anomalies which are absent in the usually considered case where collective spin-wave
excitations are formed through magnetodipole interaction. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many papers have been dedicated to theoretical
investigation of the conditions under which spin waves
can arise and propagate in magnetic superlattices of the
magnet–nonmagnet type. However, in most of those
papers, only the magnetodipole mechanism of both
intra- and interlayer spin–spin interaction was taken
into account [1–3]. Using this approach, it has been
shown that a magnetic superlattice of the magnet–
superconductor type cannot support collective
exchangeless spin waves if the thickness of the super-
conductor layers exceeds the London penetration
depth.

However, in general, a consistent theory of real
magnets (among them magnetic superlattices) should
take into account interaction between the spin and
elastic subsystems. Since the spectrum of collective
spin-wave excitations of an infinite magnet–nonmag-
net superlattice is a result of hybridization of the mag-
non spectra of individual magnetic layers of the super-
lattice, the main manifestations of the influence of the
elastic subsystem on the spin dynamics of the mag-
netic superlattice away from magnetoacoustic reso-
nance are commonly believed to be the same as in the
case of an isolated magnetic layer. These manifesta-
tions are (i) the change in the magnon activation
energy associated with renormalization of the mag-
netic anisotropy energy of the magnet caused by spon-
taneous elastic strains that exist in the crystal in the
ground state [4]; (ii) the appearance of a magnetoelas-
tic energy gap in the spectrum of the soft magnon
mode when the specified magnetic state becomes
unstable [5]; and (iii) the occurrence of an additional
spatially inhomogeneous magnetic-anisotropy field
associated with inhomogeneous elastic strains in the
1063-7834/02/4401- $22.00 © 0117
case where the boundary between a magnetic and a
nonmagnetic medium is not coherent [6].

At the same time, it was first shown in [7–9] that if
the lattice dynamics can be described in terms of the
elastostatics equations [10] (in the corresponding
ranges of frequencies ω and wave vectors k of spin
waves)

(1)

(  is the elastic strain tensor), then a finite magnet can
support a new type of propagating exchangeless mag-
non, namely, elastostatic spin waves. The physical
mechanism responsible for the occurrence of these
exchangeless spin waves in the case where Eq. (1)
holds is the indirect spin–spin coupling via the long-
range field of quasi-static magnetoelastic strains. If
indirect interlayer spin–spin coupling via the magneto-
dipole field is impossible (e.g., in the magnet–super-
conductor superlattices mentioned above, with super-
conductor layer thicknesses larger than the London
penetration depth), only the phonon mechanism of
interlayer interaction can lead to the occurrence of col-
lective exchangeless spin waves in such structures. In
magnetic single crystals, this mechanism of exchange-
less magnon dispersion can also be more efficient than
the magnetodipole mechanism. In particular, the spin-
wave spectra of antiferromagnets simultaneously show
exchange-enhanced magnetoelastic effects and
exchange-weakened magnetodipole effects. The capa-
bility of antiferromagnet–nonmagnet superlattices to
support propagating surface and bulk exchangeless
magnons of this new type through the phonon mecha-
nism of intra- and interlayer spin–spin coupling was
first demonstrated in [11, 12]. In those papers, calcula-
tions were performed using the T-matrix method with-
out regard for magnetodipole and inhomogeneous

∂σik/∂xk 0=

σ̂
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exchange interactions. However, in a real magnetic
metallic superlattice under the condition of Eq. (1), the
above-mentioned intra- and interlayer spin–spin cou-
pling mechanisms all operate simultaneously and the T-
matrix method is not appropriate for analytical calcula-
tion of the magnon spectrum.

In [13, 14], the spectrum of collective magnetostatic
spin waves (MSSW) was considered in a magnet–non-
magnet superlattice and it was shown that analytical
calculation of the exchangeless magnon spectrum
could be significantly simplified if one restricted his or
her consideration to the wavenumber range in which
the dynamics of any of the layers composing the super-
lattice unit cell could be treated in the thin-layer
approximation. A magnetic thin-layer superlattice can
be considered a spatially homogeneous magnetic
medium characterized by an effective magnetic suscep-
tibility tensor. This effective-medium method allows
analytical calculations to be significantly simplified in
some cases of practical importance. In particular, using
this method, the dispersion relation of MSSW traveling
along a finite magnetic superlattice (layered
waveguide) can be reduced to the dispersion relation of
MSSW in a homogeneously magnetized layer of the
corresponding effective medium. One would expect
this method to be highly efficient in analytical calcula-
tion of the magnon spectrum of a finite magnetic metal-
lic superlattice in which the magnetodipole and phonon
mechanisms of intra- and interlayer spin–spin coupling
operate simultaneously. In order to solve this problem,
one should use the results of [13, 14] and adapt the
effective-medium method to describing the exchange-
less magnon spectrum of a superlattice in the case
where the magnons are formed solely through the
phonon mechanism of intra- and interlayer spin–spin
coupling (elastostatic spin waves); this has not yet been
accomplished to date.

In this paper, the effective-medium method is used
to calculate the spectrum of surface and bulk exchange-
less magnons in a finite magnetic superlattice of the
magnet–nonmagnet type. The thicknesses of the mag-
netic and nonmagnetic layers composing a superlattice
unit cell are d1 and d2, respectively. Collective spin-
wave excitations are assumed to be formed solely
through the phonon mechanism of intra- and interlayer
spin–spin coupling.

2. BASIC RELATIONS

As the magnetic medium, we consider a two-sublat-
tice antiferromagnet (AFM) of the easy-axis type in the
collinear phase with l || z and |m | = 0, where l = (M1 –
M2)/2M0 is the antiferromagnetism vector, m = (M1 +
M2)/2M0 is the ferromagnetism vector, M1 and M2 are
the magnetizations of the sublattices (|M1| = |M2| = M0)
[15], and the easy axis is along the z axis. It is assumed
that (i) in a sufficiently weak external magnetic field H,
the electrostatics equations (1) describe the coupling of
P

the elastic and spin subsystems for both branches of the
magnon spectrum of the two-sublattice AFM at hand
and that (ii) the ferromagnetism and antiferromag-
netism vectors are subject to the condition

(2)

As in [12], we restrict our consideration to spin waves
propagating in the plane perpendicular to the easy axis
(z axis) of the AFM and, for the sake of simplicity,
assume that the magnetic and nonmagnetic layers are
isotropic elastic (and magnetoelastic, in the former
case) media (for example, crystals of hexagonal sym-
metry). In this case, the energy density W of the uniax-
ial two-sublattice AFM crystal (medium 1), including
the interaction energy between the elastic and spin sub-
systems, can be written as [5]

(3)

where δ, δ1, b, and B are the uniform and nonuniform
exchange constants and the uniaxial-anisotropy and
magnetoelastic coupling constants, respectively; H is
an external magnetic field; λ1 and µ1 are the Lamé coef-
ficients for the magnetic medium; and uik is the elastic
strain tensor.

Under assumptions (i) and (ii), the set of dynamic
equations describing the coupling between the elastic
and spin subsystems in medium 1 consists of the elas-
tostatics equations (1) for the lattice displacement vec-
tor u and the effective equation of motion for the anti-
ferromagnetism vector l. As for the nonmagnetic
medium (medium 2, with Lamé coefficients λ2, µ2) of
the magnetic superlattice under study, we assume that
its shear modulus is subject to the condition µ2 > µ1 and,
therefore, the elastic dynamics of both the magnetic
and nonmagnetic media can be described by Eq. (1) in
the frequency range under study. The superlattice is
assumed to be acoustically continuous; therefore, at the
interfaces between magnetic and nonmagnetic layers,
we have [16]

(4)

If k ∈  xy, then, without loss of generality, we can
assume that the normal to the interfaces between layers
is n || y, because the magnetic medium is isotropic in the
xy plane.

3. ELASTOSTATIC SPIN WAVES IN AN INFINITE 
AND A SEMI-INFINITE SUPERLATTICE

The description of wave processes in a superlattice
within the effective-medium approximation is adequate
only in the long-wavelength range. Therefore, it is
assumed that in the two unit-cell layers (1, 2), the com-
ponents q1 and q2 of the wave vector k along the normal

m  ! l .

W Wm Wme We,+ +=

Wm 0.5δm2= 0.5δ1 ∇ l( )2 0.5blz
2 mH,––+

Wme Blilkuik, We 0.5λ1uii
2 µ1uik

2 ,+= =

u 1( ) u 2( ), σik
1( )nk

1( ) σik
2( )nk

2( ).= =
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to the interface are much smaller than the inverse thick-
nesses of the respective layers (d1, d2). For the two-
layer (magnet–nonmagnet) superlattice under study,
this condition can be written as

(5)

Thus, we treat the superlattice as a spatially homoge-
neous effective medium. In the case of the phonon
mechanism of intra- and interlayer spin–spin coupling,
this medium is characterized by the averaged compo-
nents (over the superlattice period d = d1 + d2) of elastic
stress tensor 〈σ i 〉  and elastic strain tensor 〈ui 〉 . The rela-
tion between these averaged tensors is determined by
the effective elastic moduli . In terms of the relative
thicknesses of the magnetic and nonmagnetic layers
being expressed as

(6)

the components 〈σ i 〉  and 〈ui 〉  in the geometry under
study (H || u || z, k ∈  xy, l || z, n || y) can be written as

(7)

In deriving Eq. (7), we have taken into account that the
superlattice is acoustically continuous at each interface
between layers, which means that, for n || y, k ∈  xy, and
u || z, the normal component σ4 of the elastic stress ten-
sor and the lattice displacement u are continuous. In
terms of linear elasticity theory, the effective elastic
moduli , , and  (for the geometry under
study) can be written as

(8)

For the isotropic elastic nonmagnetic medium 2,  =

 = µ2 and  =  = 0, while in the magnetic
medium 1, for k ∈  xy, we have

(9)

It follows from Eqs. (7)–(9) that, in the effective-
medium approximation, the magnet–nonmagnet super-
lattice in which the intra- and interlayer spin–spin cou-
pling occurs solely via phonons is characterized by the
following effective elastic moduli depending on layer

q1d1 ! 1, q2d2 ! 1.

cik

f 1

d1
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d2
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----------------,= =
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1( ) f 2σ5

2( ), σ4〈 〉+ σ4
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2( ).+= = =
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thickness (H || u || z, k ∈  xy, l || z, n || y):

(10)

It is easy to verify that in the absence of magnetoelastic
interaction [B  0 in Eqs. (9), (10)], the effective
elastic moduli in Eq. (10) are identical to the corre-
sponding elastic moduli of a nonmagnetic two-layer
superlattice (see, e.g., [17]).

As before, we assume that the spin oscillation fre-
quency ω is such that the dynamics of the elastic sub-
system is described by the elastostatics equations (1).
In this case, using Eqs. (9) and (10), it is easily shown
that, within the effective-medium approximation char-
acterized by Eqs. (5), the spectrum of exchangeless
elastostatic spin waves in the infinite magnetic superlat-
tice under study (H || u || z, k ∈  xy, l || z) is determined
from the equation

(11)

In the effective medium, the component uz is repre-
sented in the form

(12)

and Eq. (11) is reduced to the dispersion relation

(13)

Equation (13) becomes identical to the exact solution
obtained using the T-matrix method given by Eqs. (A1)
and (A2) if the latter equations are written in the thin-
layer approximation (5). Thus, in the ranges of wave
vectors k⊥  and frequencies ω under study, the bulk elas-
tostatic spin waves in the magnetic superlattice can be
described in terms of the effective-medium approxima-
tion.

Now, we will show that the spectrum of elastostatic
surface magnons in the magnetic superlattice is also
adequately described in terms of the effective elastic
moduli (10) if conditions (5) are fulfilled. For this pur-
pose, we compare the spectrum of collective surface
elastostatic spin waves in a semi-infinite magnetic
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superlattice calculated using the T-matrix method given
by Eqs. (A3) and (A4) and the spectrum of the same
waves in the same geometry (H || u || z, k ∈  xy, l || z) in
a semi-infinite (y > 0) spatially homogeneous elastic
medium characterized by the effective elastic moduli
given by Eqs. (9) and (10) and whose dynamics is
described by Eqs. (1). At the y = 0 interface between the
nonmagnetic medium (y < 0) and the effective medium
with the elastic moduli given by Eq. (10), the condition
of acoustic continuity has the form

(14)

An exchangeless elastostatic spin wave will be local-
ized near the y = 0 surface of the magnetic superlattice
if the following conditions are fulfilled in addition to
Eqs. (1), (9), (10), and (14):

(15)

For such exchangeless surface magnons, the dispersion
relation takes the form

(16)

where α2 ≡ / , s ≡ k⊥ / |k⊥ | = ±1, and µa is the shear
modulus of the nonmagnetic medium in the y < 0 half-
space. A comparison of Eq. (16) with the corresponding
exact solution found using the T-matrix method shows
that the spectrum of both bulk and surface long-wave-
length exchangeless elastostatic magnons in the mag-
netic superlattice is adequately described in terms of
the effective elastic moduli if the conditions of Eq. (5)
are fulfilled. The spectrum of these exchangeless sur-
face magnons is dispersionless (in the approximations
described above) and nonreciprocal [ω(k⊥ ) ≠ ω(–k⊥ )]
for Hz ≠ 0. At µa = µ2, this spectrum will not change if
the magnetic superlattice occupying the upper (y > 0)
half-space is replaced by the AFM of the easy-axis type
described by Eq. (3) (H || l, k ∈  xy).

Although the dispersion relation given by Eq. (16)
does not depend on the relationship between the thick-
nesses of the magnetic (d1) and nonmagnetic (d2) lay-
ers, analysis shows that this type of collective
exchangeless surface spin waves is supported by the
superlattice only in the case of d2 < d1.

In the framework of the T-matrix approach, analyti-
cal calculation of the spectrum of collective exchange-
less elastostatic magnons becomes much more compli-
cated if the magnetic superlattice is finite: 0 < y < D,
where D = N(d1 + d2) is the thickness of the acoustically
continuous superlattice (N is the number of unit cells).
However, if the finite number N is large (N @ 1, D @
d = d1 + d2) and, as before, Eqs. (1) and (5) are simulta-
neously true, then the spectrum of exchangeless elasto-
static magnons of the finite magnetic superlattice can
be calculated using the effective-medium method
developed above. The results of these calculations are
presented in the next section. The layers near the sur-

uz uz
a( ), σ4

a( ) σ4〈 〉 , y 0.= = =

uz
a( ) y ∞–( ) 0, uz y ∞( ) 0.

c44α sc45+ µa,=

c55 c44
P

face of the superlattice and those in the bulk of it are
assumed to be identical.

4. ELASTOSTATIC SPIN WAVES IN THE FINITE 
MAGNETIC SUPERLATTICE

The finite superlattice occupies the region 0 < y < D
and the geometry is the same as before: H || u || z, k ∈  xy,
l || z. At the outer surfaces y = 0 and y = D, the superlat-
tice is in acoustic contact with an isotropic nonmag-
netic medium, which is the same above (y > D) and
below (y < 0) the superlattice and whose shear modulus
is µa. The thickness of the y > D overlayer is t, the thick-
ness of the y < 0 overlayer is f, and the surfaces at
y = D + t and y = –f are assumed to be mechanically
free. In this case, using the effective-medium approxi-
mation [Eqs. (7), (8) and the effective elastic moduli in
Eq. (10)], the boundary conditions can be written as

(17)

The dispersion relation for elastostatic magnons with
k ∈  xy for H || u || z and l || y has the form (α2 ≡ / )

(18)

It is easy to verify that, in the particular cases consid-
ered above, Eq. (18) reduced to the expressions derived
using the effective-medium method for the spectrum of
normal vibration modes of an infinite magnetic super-
lattice [Eq. (13)] (µa  0, k⊥ t  0, k⊥ f  0,
k⊥ D  ∞ and for the spectrum of exchangeless sur-
face elastostatic magnons [Eq. (16)] in a semi-infinite
magnetic superlattice in acoustic contact with a non-
magnetic medium with shear modulus µa. Solutions to
Eq. (18) cannot be represented in an explicit form for an
arbitrary value of the wavenumber k⊥  and arbitrary rel-
ative thicknesses of the nonmagnetic overlayers t/D and
f/D. In the specific case of t/D, f/D  ∞, the disper-
sion relation of elastostatic magnons in the finite mag-
netic superlattice can be represented in the form k⊥  =
k⊥ (ω) as

(19)

In the case of t/D = f/D = 0, Eq. (18) takes the form

(20)

If t/D, f/D ≠ 0, k ∈  xy, t ≠ f and Hz ≠ 0 (H || l), then the
spectrum of both surface and bulk exchangeless mag-
nons given by Eq. (18) is nonreciprocal with respect to
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the reversal of the spin-wave propagation direction
(s = ±1), ω(k⊥ ) ≠ ω(–k⊥ ) for any sign of α2. In particu-
lar, at t  ∞ and f = 0, the dispersion relation (18) has
the form

(21)

The function k⊥ (ω, s) described by Eqs. (19)–(21) pos-
sesses the following property. Let us designate k⊥ (ω) in
Eq. (19) as k0(ω) and the functions k⊥ (ω, s = 1) and
k⊥ (ω, s = –1) in Eq. (21) as k+(ω) and k–(ω), respec-
tively. Then, for all values of ω such that α2 > 0, we
have k+(ω) + k–(ω) = k0(ω). It follows from Eqs. (18)–
(21) that, depending on the sign of α2 = α2(ω), the
superlattice can support either bulk (α2 < 0) or surface
(α2 > 0) propagating exchangeless elastostatic spin
waves. The number of bulk exchangeless magnon
modes is finite. For any value of the wavenumber k⊥ ,
these modes form two nondegenerate (higher and
lower) frequency bands, the band widths being inde-
pendent of the wavenumber k⊥  (in the approximation
used here). The positions of the band edges can be
found from Eq. (18) by putting α2 = 0 and α2 = ∞; we
designate the corresponding frequencies as ωi, with
ωi < ωi + 1 for 1 ≤ i ≤ 3. At a given mode index ν and an
arbitrary value of k⊥ , each band has a corresponding
branch of bulk elastostatic magnons. For both bands,
the dispersion curves of elastostatic magnons have a
long-wavelength and a short-wavelength condensation
point. In other words, in each band, for any two modes
ν and ρ characterized by Ων(k⊥ ) and Ωρ(k⊥ ) dispersion
relations, we have |Ων(k⊥ ) – Ωρ(k⊥ )|  0 as k⊥   0
and k⊥   ∞. For the magnetic superlattice and geom-
etry under study, we have Ων(k⊥  0)  ω2 and
Ων(k⊥  ∞)  ω1 in the lower frequency band of
elastostatic magnons and Ων(k⊥  0)  ω3 and
Ων(k⊥  ∞)  ω4 in the higher frequency band for
any mode index ν. For a fixed mutual orientation of the
vectors k⊥ , H, l, and n, the dispersion curves of bulk
elastostatic magnons for each frequency band corre-
spond to waves of the same type, direct (∂Ων /∂k⊥ > 0)
or back (∂Ων /∂k⊥ < 0) waves. For modes of the direct-
wave type, the long-wavelength condensation point of
the frequency spectrum is positioned above the short-
wavelength condensation point; the opposite situation
occurs for modes of the back-wave type.

Taking into account the effect of the thicknesses t
and f on the spectrum of bulk elastostatic magnons in
the superlattice, it is easy to show that, for the bulk spin-
wave modes that have nodes of zero amplitude in the
0 < y < D region, the spectrum virtually does not
depend on the boundary conditions and is nearly iden-
tical to the spectrum given by Eq. (20) for a finite mag-
netic superlattice with mechanically free outer surfaces
(y = D and y = 0).

k ⊥ αD( ) 1– c45
2 c44

2– c45sµa+
c44αµa

----------------------------------------.arccoth=
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The situation is different for a bulk mode that is
quasi-uniform over the thickness of a superlattice with
nonmagnetic overlayers (the spectrum of such a mode
consists of two branches, as is the case with the spec-
trum of all other bulk elastostatic magnons in the geom-
etry H || l || z, k ∈  xy, n || y). Analysis of Eq. (18) reveals
that the dispersion of such a mode depends critically on
whether or not the finite superlattice is covered with
nonmagnetic overlayers. In the long-wavelength limit,
for example, as follows from Eq. (18), for sufficiently
small values of the wavenumber k⊥  (k⊥  ! 1/αD,
k⊥ t  0, k⊥ f  0), the dispersion relation of these
modes has the form

(22)

thus, the long-wavelength limit of these branches
depends crucially on the relative thicknesses of the non-
magnetic overlayers t/D and f/D of the finite magnetic
superlattice. Therefore, this limiting point of the disper-
sion curve of a quasi-uniform mode of bulk exchange-
less magnons in the superlattice under study does not
have to coincide with the long-wavelength condensa-
tion point for the other modes of bulk elastostatic mag-
nons in both the lower and higher frequency bands. Fur-
thermore, comparison of Eqs. (18) and (22) shows that
the presence of nonmagnetic overlayers can drastically
affect the shape of the dispersion curves of the quasi-
uniform bulk spin waves. In particular, in the case of a
finite magnetic superlattice, with both its outer surfaces
(y = 0, D) being mechanically free [µa = 0 in Eq. (17)],
the spectrum of quasi-uniform bulk modes can be
entirely dispersionless.

It follows from Eq. (18) that, at a given value of the
wavenumber k⊥ , the magnon spectrum of the finite
superlattice under study (l ⊥  n, k⊥  ⊥  l) can contain not
only the two-band spectrum of bulk elastostatic spin
waves (α2 < 0) but also, in principle, two branches of
surface elastostatic magnons (α2 > 0). Their dispersion
curves lie in the gap between the higher and lower fre-
quency bands of bulk elastostatic magnons. One of the
conditions that define the positions of the frequency
band edges of bulk magnons for any value of k⊥  is α2 =
0 (which is equivalent to  = 0 for the geometry in
question). It follows from Eq. (18) that, in addition to

 = 0, the following inequality must be satisfied for
exchangeless surface magnons to occur in the magnetic
superlattice in the case of t = f  ∞:

(23)

Thus, at k⊥  ≠ 0, the dispersion curve of a quasi-uniform
mode of bulk spin waves can continuously transform
into that of a surface mode. This transformation will
occur if the corresponding dispersion curve is of the
direct-wave type (∂Ων /∂k⊥ > 0) in the lower frequency
band of bulk magnons or of the back-wave type
(∂Ων /∂k⊥ < 0) in the higher frequency band. For the

c44
2 α2 c44µa t f+( )/D c45

2–+ 0;=

c44

c44

c45 µa.>
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geometry in question (n || y, H || u || l || z), the corre-
sponding wavenumber k∗  ≠ 0 is determined from

Eq. (19), where one puts  = 0. Calculations show that
there is an analogy between the dispersion properties of
collective spin waves under study (which are solely due
to the phonon mechanism of intra- and interlayer
spin−spin coupling in the magnetic superlattice) and
the properties of collective magnetostatic spin waves
[1–3]. In the case of magnetodipole spin waves, a role
similar to that played by a nonmagnetic overlayer of
thickness t in the formation of the spectrum of elasto-
static magnons in a magnetic superlattice is played by a
metallic screen situated at a distance t from the surface
of the magnetic superstructure under study. Calcula-
tions show that if both types of exchangeless spin
waves can occur simultaneously in the magnetic super-
lattice, then the analogy indicated above also takes
place between the magnetic TE polariton and the mag-
netoelastic SH wave propagating along the magnetic
superstructure under study (these statements are true
only for the geometry considered in this paper). Indeed,
the spectrum of magnetostatic spin waves is the quasi-
static limit (ω/ck⊥   0, c is the speed of light) of the
low-frequency branch of the spectrum of electromag-
netic spin vibrations of the superlattice which involve a
TE-type electromagnetic wave. For elastostatic mag-
nons (u ⊥  k⊥ , u ⊥  n), these are the quasi-static limit of
magnetoelastic vibrations of the magnetic superlattice
which involve SH-type acoustic phonons, as follows
from calculations taking into account acoustic retarda-
tion (ω/cphk⊥  < ∞, where cph is the minimum velocity of
elastic waves in an infinite crystal).

5. CONCLUSIONS

In this paper, we developed a version of the effec-
tive-medium method which allows one to significantly
simplify (in comparison with the T-matrix method) ana-
lytical calculations of the long-wavelength magnon
spectrum of a finite magnetic superlattice in the case
where the basic mechanism of formation of collective
spin waves is indirect intra- and interlayer spin–spin
coupling via the long-range field of quasi-static magne-
toelastic strains. By analogy with magnetostatics, these
exchangeless spin waves can be referred to as elasto-
static spin waves. The method developed here was used
to calculate the spectrum of (bulk and surface) magnons
of this type in infinite, semi-infinite, and finite magnetic
superlattices of the antiferromagnet–nonmagnetic-
metal type and to investigate the effect of the following
factors on this spectrum and on the conditions of its for-
mation: (1) nonmagnetic overlayers (elastic substrate),
(2) magnetic growth anisotropy, and (3) an external
magnetic field.

In terms of the effective-medium approximation, the
effect of phonons on the spin dynamics of magnetic
superlattices of the AFM–ideal metal and AFM–non-
magnetic insulator types was considered in this paper

c44
PH
with allowance for the magnetoelastic intralayer spin–
spin coupling alone. However, the calculation method
used here is also appropriate for investigating the spec-
trum of elastostatic magnons in a metallic magnetic
superlattice in which the phonon mechanism of intra-
and interlayer spin–spin coupling operates and, in addi-
tion, in which indirect spin–spin interaction between
adjacent magnetic layers (of thickness d1) occurs
through the conduction electrons of a nonmagnetic
spacer (of thickness d2) separating the layers. Analysis
of the magnon spectrum of a finite metallic superlattice
performed using the effective-medium method, in
which the elastostatic, magnetodipole, and Heisenberg
mechanisms of intra- and interlayer spin–spin coupling
are consistently taken into account, will be published
elsewhere.
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Abstract—The distribution of iron cations in the crystal lattice of the Fe3 – vO4 (v  = 0.153) cation-deficient
spinel produced by mechanical dispersion of α-Fe2O3 hematite in water is investigated using x-ray diffraction
and Mössbauer spectroscopy. Analysis of the Mössbauer data shows that the Fe2.847O4 magnetite prepared by
mechanochemical synthesis is a chemically heterogeneous compound. The crystal structure of Fe2.847O4 is
characterized by local environments of the (Fe2.5+)0 cations at v0 ≤ 0.1, v1 ≅ 0.12, v2 ≅ 0.18, and v3 ≅ 0.26,
which are responsible for a broad distribution of magnetic hyperfine fields with the P(H) probability maxima
near 37.0, 36.0, 34.0, and 30.0 MA m–1. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1939, Verwey [1] assumed that bivalent iron cat-
ions Fe2+ play the decisive role in the mechanism of
electron conduction in magnetite and other compounds
of the general formula Fe3 – vO4 (0 ≤ v  ≤ 1.3). This idea
was confirmed in the 1970s [2–4] and received unex-
pected development in the investigation into the nature
of the instability of α-Fe2O3 hematite under the
mechanical action [5].

It is known [6–8] that iron oxides with a spinel
structure (Fd3m) belong to the subtraction-type com-
pounds. The structure of these oxides is stable over a
wide composition range from the stoichiometric mag-
netite Fe3O4, which contains 8 Fe3+ cations at tetrahe-
dral (8a) or A sites and 16 cations (8Fe3+ + 8Fe2+) at
octahedral (16d) or B sites, to the Fe2.67O4 compound
known as γ-Fe2O3. In a unit cell of the Fe2.67O4 com-
pound, a 1/9 fraction of all the regular lattice sites of
iron atoms is vacant due to a deficit of Fe2+ cations
(8Fe3+ cations occupy the A sites and 131/3Fe3+ cations
are located at the B sites). It is this feature of com-
pounds in the Fe–O system that, at one time, deter-
mined the choice of the physical model advanced in [5,
9–11] for the mechanism of the hematite magnetite
transformation observed in α-Fe2O3 under mechanical
actions.

However, the elucidation of the nature and mecha-
nisms of transformations occurring in solids in the
1063-7834/02/4401- $22.00 © 0124
course of milling calls for detailed consideration of the
interactions between the milling medium, the material
subjected to milling, and the material of the vessel. As
is known [12–14], a deficit of Fe2+ cations in the Fe3 –

 vO4 compounds over the entire range 0 ≤ v  ≤ 1/3 can be
rather easily attained using chemical methods (for
example, redox reactions under the appropriate condi-
tions). In our recent works [15, 16], we investigated the
instability of hematite under mechanical actions and
analyzed, in detail, the correlations between the degree
and type of contamination of the treated material and the
kinetics and direction of the mechanochemical reactions
involved. It was established that the hematite  mag-
netite transformation observed upon milling has a
chemical nature and is associated with the appearance
of iron impurities (formed during attrition of milling fit-
tings) in treated powders.

Moreover, by virtue of the specific features of the
procedure used for preparing magnetite, we cannot rule
out the possibility that the spinels prepared by mecha-
nochemical synthesis will differ in the number of
parameters from their analogs obtained using a chemi-
cal method under equilibrium conditions. In the present
work, we investigated the features in the distribution of
iron cations in the structure of spinels produced under
the mechanical treatment of hematite in water.
2002 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

A powder of chemically pure hematite α-Fe2O3 with
an iron content of 69.0 wt % and a mean particle size of
20 µm was used as the object of investigation. Distilled
water (15–50 ml) served as the milling medium.

Hematite (mp = 2 g) was mechanically treated in a
Pulverisette-5 (Fritisch GMBH) centrifugal planetary
mill in tight vessels (80 ml) fabricated from low-carbon
steel. The diameter db of the milling balls was 10 mm.
The ball-to-powder mass ratio mb/mp was equal to 50.
The rate of rotation Ωp of a carrying platform of the mill
was constant and equal to 47.1 s–1 (Np = 450 rpm), and
the rate of rotation ωv of the vessels was 89 s–1 (nv =
850 rpm).

The content of iron cations in treated α-Fe2O3 was
checked against a chemical analysis. The concentration
of Fe3+ cations in the magnetite synthesized was mea-
sured using volume complexometry with sulfosalicylic
acid as an indicator. Cations Fe2+ were fixed in the form
of iron monooxide, and their content was determined
by titrating with potassium bichromate in phenylatropic
acid. The error in determination of iron cations was
±0.1 wt %. The chemical analysis data for hematite
after milling in water (30 ml) for 30 h are presented in
Table 1.

The structure and the phase state of hematite pow-
ders in different milling stages was studied by x-ray dif-
fraction (filtered CuKα radiation) and 57Fe Mössbauer
spectroscopy in a transmission geometry. The identifi-
cation of the crystalline phases formed in hematite in
the course of mechanochemical reactions and calcula-
tions of the structure parameters were carried out using
the entire set of diffraction lines obtained. The theoret-
ical diffraction patterns and the Ihkl intensities of indi-
vidual reflections hkl were calculated with due regard
for the coordinates of iron cations in the corresponding
positions in the spinel lattice [8].

The 57Fe Mössbauer spectra of the α-Fe2O3 powders
obtained at different stages of mechanical treatment
were recorded at 300 K on a spectrometer with the use
of a 57Co(Cr) source. The gamma-ray radiation was
measured using a resonance scintillation detector. The
model calculations of the experimental spectra and the
reconstruction of the hyperfine-field distribution func-
tions P(H) were performed according to the algorithm
described earlier in [17]. In some cases, the P(H) func-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
tions were calculated using the regularization method
[18].

3. EXPERIMENTAL RESULTS

3.1. Structural investigations. Hematite α-Fe2O3 is
one of the most widespread metal oxides in nature. The
crystal structure of α-Fe2O3 has been thoroughly inves-
tigated and described in the literature [7, 8, 19, 20].

Figure 1 shows fragments of x-ray diffraction pat-
terns that illustrate the evolution of the hematite struc-
ture in the course of mechanical dispersion in water
(30 ml). It can be seen from Fig. 1 that the mechanical
treatment leads to the disappearance of a set of reflec-
tions typical of the α-Fe2O3 compound (Fig. 1a), which
is characterized by the rhombohedral unit cell with the
parameters a = 0.5424 nm and α = 55°17′ [19], and the
formation of a new set of lines (Figs. 1b, 1c) whose
number and location indicate a face-centered cubic
spinel structure (Fd3m) [18]. The lattice parameters a
for hematite powders milled for 10 and 30 h are equal
to 0.838 and 0.837 nm, respectively. These values are
close to the lattice parameters available in the literature
for Fe3O4 [3–8]. Upon annealing of the hematite pow-
ders (Fig. 1d), the a parameter increases to 0.84 nm
(with a simultaneous decrease in the width of diffrac-
tion lines) and coincides with the corresponding param-
eter measured for a magnetite single crystal.

Analysis of the x-ray diffraction data demonstrates
that the lattice parameters of the spinels produced by
mechanochemical synthesis for different times are
close to one another in the given milling experiment
and weakly depend on the experimental conditions. A
decrease in the water volume to 15 ml (all other milling
conditions being the same) results in a change in the lat-
tice parameter of the synthesized magnetite from 0.837
to 0.839 nm for powders subjected to milling for 10 and
30 h. The lattice parameters of the spinels prepared in
water (50 ml) also turn out to be close to the above val-
ues, even though the reduction rate of hematite in this
case decreases considerably.

The last circumstance and the absence of reflections
from the planes characteristic of γ-Fe2O3 in the x-ray
diffraction patterns confirm the assumption that the
mechanical dispersion makes the dominant contribu-
tion to the hematite  magnetite transformation and
the formation of Fe3 – vO4 cation-deficient compounds
Table 1.  Chemical analysis data for the magnetite prepared by mechanochemical synthesis

Sample Fetot, wt % Fe2+, wt % Fe3+, wt % Stoichiometry

Fe3 – vO4 (v  = 0) 72.37 24.12 48.25 Fe3O4

Mechanochemically synthesized 71.31 13.53 57.78 Fe2.847O4

Fe3O4-F [2] 70.60 17.84 – (Fe2O3)(FeO)0.068

γ-Fe2O3 69.90 – 69.90 Fe2.66O4
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Fig. 1. Fragments of the x-ray diffraction patterns of the hematite in (a) the initial state (α-Fe2O3) and after milling in water (30 ml)
for (b) 10 and (c) 30 h and (d) after milling in water (30 ml) for 30 h followed by annealing at 1075 K.
with a vacancy concentration in the range 0.06 < v  <
0.16 [2–4].

The specific features of the occupation of crystal lat-
tice planes in the Fe3 – vO4 compounds synthesized
were determined by comparing the calculated and
experimental ratios of the diffraction line
intensities for the same vacancy concentration v. The
diffraction line intensities were calculated from the
structure amplitudes Fhkl of iron cations at the 8a and
16d positions in the spinel structure. Figure 2 displays
typical dependences of the relative intensity of struc-
ture reflections for the (hkl) planes on the degree of
occupation of the A and B sites with vacancies in the
Fe2.847O4 spinel structure. The solid lines in Fig. 2 cor-
respond to the theoretical dependences of the relative
intensity at the vacancy concentration v  =

Ih1k1l1
/Ih2k2l2

Ih1k1l1
/Ih2k2l2
P

0.153, which were calculated for the case when all the
vacancies occupy either the A sites or the B sites in the
unit cell. The experimental reduced intensities for the
corresponding planes (hkl) in the lattice of Fe2.847O4 are
indicated by arrows in Fig. 2.

As can be seen from Fig. 2, the distribution of
vacancies over the sites allowed in the structure of the
spinels produced by mechanochemical synthesis is not
equally probable. The vacancies predominantly occupy
octahedral sites of the crystal lattice with a probability
of 0.69–0.80 for crystallographic planes differing in
type and degree of occupation with ions. It should be
noted that the accuracy of measuring the intensity in the
x-ray diffraction patterns of the synthesized com-
pounds did not exceed 10–15% due to a considerable
increase in the background intensity Ib and broadening
of the diffraction maxima. Therefore, it can be assumed
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002



DISTRIBUTION OF CATIONS IN MAGNETITE PREPARED 127
that, on the average, 74 ± 12% of the total amount of
vacancies in the structure of the Fe2.847O4 compound are
located at the octahedral sites. For comparison, we note
that, according to the neutron diffraction data obtained
for cation-deficient spinels prepared through low-
power mechanical dispersion of hematite [21, 22],
about 75% of the vacancies in the crystal lattice of the
Fe2.818O4 compound occupy more energetically favor-
able octahedral sites. Unfortunately, the available data
on the distribution of iron cations in the spinels synthe-
sized by chemical methods under equilibrium condi-
tions are rather contradictory. In particular, it was found
that the distribution of vacancies in γ-Fe2O3 samples
prepared through the oxidation of the stoichiometric
magnetite Fe3O4 at low temperatures is similar to a sta-
tistical distribution [1, 4, 6]. However, according to
other authors [14, 23], more than 90% of the vacancies
are located at the octahedral sites of the spinel structure.

The discrepancy in the available data on the location
of iron cations in the spinel lattice can be associated
with different scales of inhomogeneities in the cation
distribution and the possibility of identifying these
inhomogeneities by using a particular technique rather
than with the specific features of the procedure used for
synthesizing the Fe3 – vO4 compounds. Note that the
reliability of the data obtained by diffraction techniques
increases with both a rise in the degree of homogeneity
of the solid solutions under investigation and an
increase in the volume of precipitates in many-phase
materials. Therefore, these techniques, as applied to
analysis of chemical inhomogeneities in dispersed
powders of Fe3 – vO4 cation-deficient spinels, can pro-
vide merely the characteristics averaged over the vol-
ume of the studied sample.

3.2. Mössbauer data. The Mössbauer spectra of the
hematite powders at T = 300 K after treatment in water
(15 ml) for different times are displayed in Fig. 3. For
comparison, Fig. 3 shows the spectra of α-Fe2O3 in the
initial state (Fig. 3a) and after milling for 30 h and sub-
sequent annealing at 1075 K under vacuum for 1 h
(Fig. 3e). The Mössbauer spectrum of α-Fe2O3 in the
initial state is represented by a single sextet that corre-
sponds to Fe3+ cations at the 4a positions in the corun-
dum rhombohedral unit cell [19]. It is seen from Fig. 3
that, in the course of mechanical treatment, this spec-
trum transforms into a spectrum (Fig. 3d) that can be
considered a superposition of at least two Zeeman sex-
tets. However, the least-squares calculations demon-
strate that the experimental spectra of hematite milled
for 30 h are best described by a superposition of the
three sextets A, B, and C with mean magnetic hyperfine
fields 〈Hhf 〉  = 38.61, 36.54, and 33.43 MA m–1, respec-
tively. The hyperfine fields 〈Hhf 〉  for the A and B com-
ponents are independent of both the milling time (up to
30 h) and the annealing temperature and slightly differ
from those for Fe3O4 [2–4]. Moreover, it can be seen
from Figs. 3d and 3e that, unlike the x-ray diffraction
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Fig. 3. Mössbauer spectra of the hematite in (a) the initial
state (α-Fe2O3) and after milling in water (15 ml) for (b) 5,
(c) 10, and (d) 30 h and (e) after milling in water (15 ml) for
30 h followed by annealing at 1075 K. The A, B, and C sex-
tets are components of the 57Fe Mössbauer spectrum. The B
and C sextets correspond to iron cations in the 8a and 16d
positions in the spinel structure. T = 300 K.
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Fig. 4. Mössbauer spectra of the hematite in (a) the initial state (α-Fe2O3) and after milling in water (30 ml) for (b) 5, (c) 10, (d)
15, and (e) 30 h and (f) after milling in water (30 ml) for 30 h followed by annealing at 1075 K. T = 300 K.
patterns (Fig. 1), the spectra of Fe3 – vO4 powders sub-
jected to annealing change considerably owing prima-
rily to the change in the area ratio of the Mössbauer
components. The ratios SB + C/SA for the spectra of
hematite milled for 10 and 30 h are equal to 1.17 and
1.27, respectively. After the annealing, this ratio
increases to 1.63. This indicates that the occupation of
nonequivalent sites becomes similar to an equilibrium
occupation characteristic of cations in the structure of
perfect spinel.

Mössbauer spectra similar in shape to those shown
in Figs. 3c and 3d were observed earlier for Fe3 – vO4
(0 ≤ v  ≤ 0.33) cation-deficient spinels. These spectra
should correspond to either an ordered solid solution of
γ-Fe2O3 in the Fe3O4 matrix [4], a mixture of stoichio-
metric magnetite with the γ-Fe2O3 metastable phase [3],
or a nonstoichiometric magnetite with a deviation in
composition within the range 0.10 < v  < 0.33 [2]. How-
ever, the fact that the (321), (421), and (500) reflections
typical of γ-Fe2O3 [4, 6] are absent in the x-ray diffrac-
P

tion patterns of the hematite powders prepared by
mechanochemical synthesis counts in favor of the last
model.

As in the case of annealing (Fig. 3e), the Mössbauer
spectra of the synthesized Fe3 – vO4 compounds sub-
stantially depend on the mechanical treatment condi-
tions. Figure 4 displays the Mössbauer spectra of hema-
tite powders at T = 300 K after treatment in water
(30 ml) for different times. For comparison, this figure
shows the spectra of α-Fe2O3 in the initial state
(Fig. 4a) and after milling for 30 h followed by anneal-
ing at 1075 K under vacuum for 1 h (Fig. 4f). The calcu-
lations performed demonstrate that the area ratio SB/SA

of the Mössbauer components assigned to iron cations at
the octahedral and tetrahedral sites does not exceed 0.5
for the powder milled for 30 h under the given condi-
tions of mechanical treatment. However, as in the pre-
ceding case (Fig. 3e), the SB/SA ratio also increases upon
annealing and approaches the equilibrium value. It
should be noted that the spectrum shown in Fig. 4e only
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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slightly differs in its parameters from the spectrum of
the Fe2.818O4 compound prepared by low-power milling
over 200 h [22].

4. DISCUSSION

The structure of spinels in the Fe–O system is stable
over a wide range of concentrations [6–8]. This sug-
gests that, although the parameters of the local environ-
ment of iron cations change considerably, the spatial
scale of these changes can appear to be inadequate to
provide all the necessary diffraction conditions of for-
mation of the corresponding structure reflections. It is
quite possible that, owing to the scale limitations on the
degree of resolution of chemical inhomogeneities, the
parameters characterizing the distribution of vacancies
in the Fe3 – vO4 spinels produced by mechanochemical
synthesis can turn out to be close to one another over a
wide range irrespective of the milling conditions and
sizes of microcrystallites [21, 22]. On the other hand,
the discrepancy in the available data on the location of
iron cations in the γ-Fe2O3 compounds synthesized by
chemical methods under equilibrium conditions can
also be associated with the different degrees of disper-
sion of the prepared powders [6, 12, 14].

It should be noted that, in resonance methods, unlike
diffraction methods, the resolution limit of features in
the nearest atomic environment is determined primarily
by the natural width of the absorption line of a resonant
nucleus [24]. However, although the information comes
from a local level, it is averaged over the volume of the
studied sample; consequently, it is impossible to deter-
mine the true scale of the spatial localization of identi-
cal atomic environments.

Reasoning from the results of investigations per-
formed with different compounds in the Fe3O4–γ-Fe2O3
system, which were synthesized using chemical meth-
ods under equilibrium conditions, it is believed that cat-
ions are distributed over both the tetrahedral and octa-
hedral sites allowed in the structure of the Fe3 – vO4
spinels [2–4, 6, 12]. According to the charge neutrality
of the unit cell, the distribution of cations can be for-
mally written in the form

(1)

Here, v  is the total number of vacancies, τ is the frac-
tion of vacancies at the tetrahedral sites of the lattice,
and ω is the fraction of vacancies at the octahedral sites
(v  = τ + ω). This notation implies that each of the biva-
lent Fe2+ cations at the octahedral sites can be involved
in an ideal pair (Fe2+ + Fe3+), which can be considered
a Fe2.5+ cation with a mean valence of 2.5+. The homo-
geneous magnetite is described by the sole distribution
(1). In the general case, the number of distributions is
determined by the number of local environments of iron
cations.

Fe3 v– O4

     Fe1 τ–
3+

hτ[ ] tetr Fe2 1 3v–( )
2.5+( )Fe6v ω–

3+
hω[ ] octO4

2–.
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The description of the hyperfine interactions in the
stoichiometric magnetite Fe3O4 (v  = 0) presents no
problems within the pair-localized model of distribu-
tion of Fe3+ and Fe2.5+ magnetically active cations that
are coupled through negative exchange interaction to
the parameter Tc = 858 K [20, 25, 26]. Qualitatively, the
Mössbauer spectra of Fe3 – vO4 (v  ≠ 0) cation-deficient
compounds can be interpreted rather easily provided
that the deviation of the area ratio of spectral compo-
nents for magnetite from the theoretical value SA/SB =
8/16 (to within the Lamb–Mössbauer factor) is deter-
mined not only by the small occupation of octahedral
sites with iron cations [21] but also by the superposition
of hyperfine fields of (Fe3+)t cations at the tetrahedral
sites and (Fe3+)o octahedral cations unpaired due to the
deficit of Fe2+ cations [2]. The appearance of the com-
ponents with low hyperfine fields in the Mössbauer
spectra indicates a deviation of the magnetite composi-
tion from stoichiometry. The larger the difference
between the SA/SB ratio and 1/2, the greater the devia-
tion from the stoichiometry (Figs. 3d, 4d). The asym-
metry of spectral lines with respect to zero velocity can
also indicate an increase in the number of environments
of Fe2.5+ cations with a small number of Fe2+/Fe3+ pairs
at the octahedral sites or the formation of a continuous
distribution of iron cations over the sites allowed in the
spinel structure.

Since the iron cations in the Fe3 – vO4 structure can
be distributed in different ways, we can argue that the
unimodal distribution in cation-deficient spinels is an
exception rather than the rule and is especially improb-
able in compounds produced by mechanical dispersion.

As was noted above, the spectrum of the Fe2.847O4
spinel (Fig. 4d) only slightly differs in its parameters
from that of the Fe2.818O4 compound synthesized by
low-power milling over 200 h [21]. However, as fol-
lows from the concentration dependence of the hyper-
fine field for iron cations in the B sublattice [4], the
mean field 〈Hhf(Fe2.5+)〉  for the Fe2.818O4 spinel (τ =
0.044 and ω = 0.138) cannot exceed 33.43 MA m–1.
Correspondingly, the v  value should be no more than
0.12 for a field of 36.62 MA m–1.

The required data on the number of vacancies in the
structure of Fe3 – vO4 compounds can be obtained from
the concentration dependence of 〈Hhf(Fe2.5+)〉  [4], cal-
culated from the neutron diffraction data (0.182) [22],
and be determined from chemical analysis (0.153).
Analysis shows that the scatter in the data is not acci-
dental and can be explained in terms of the polymodal
distribution of iron cations in spinels produced by
mechanochemical synthesis. In this case, a consider-
able part of the iron cations corresponds to v i < 0.1 and
cannot be identified by Mössbauer spectroscopy.

Making allowance for the fact that all iron cations
with different local environments contribute to the
spectrum, we attempt to determine the number of dis-
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Fig. 5. Simulation of the Mössbauer spectrum of the Fe2.847O4 magnetite with inclusion of the four Mössbauer components.
tributions and the concentration of environments of a
particular type from the corresponding partial contribu-
tions. It follows from formula (1) that, in the case when
the spinel lattice contains v  vacancies (v  = τ + ω), the
partial Mössbauer components S(Fe3+)t (for tetrahedral
iron cations in the A sublattice), S(Fe3+)o (for unpaired
octahedral cations in the B sublattice), and S(Fe2.5+)o

(for paired octahedral cations in the B sublattice) are
determined by the relationships

(2a)

(2b)

(2c)

Let us now assume that iron cations in the crystal lattice
of the Fe2.847 spinel (Fig. 4e) have a unimodal distribu-
tion with environments (Fe2.5+)o and (Fe3+)t. From rela-

S Fe3+( )t 1 τ–( )/ 3 v–( ),=

S Fe3+( )o 6v ω–( )/ 3 v–( ),=

S Fe2.5+( )o 2 1 3v–( )/ 3 v–( ).=
P

tionship (2c), we obtain S(Fe2.5+)o = 0.327 and the num-
ber of vacancies v  = 0.18. This value coincides with the
above v  value for Fe2.818O4 [21] but exceeds the number
of vacancies v c = 0.153 obtained from the chemical
analysis. The inclusion of three types of cation environ-
ments leads to a decrease in v  to 0.165 (τ = 0.0845 and
ω = 0.0805). Thus, the simulation of the experimental
spectrum with the above parameters results in a uni-
form distribution of vacancies over the A and B sublat-
tices of the spinel prepared by mechanochemical syn-
thesis. Moreover, the fulfillment of the inequality
v /v c > 1 (where v c ~ ΣciVi is the weighted mean number
of vacancies per mole of the analyzed compound and ci

is the partial concentration of vacancies in the volume
Vi) for two and three types of cation environments in the
spinel structure implies that the distribution of vacan-
cies in Fe2.847O4 is not unimodal.
Table 2.  Calculated hyperfine parameters of Fe2.847O4 magnetite for four Mössbauer components

Type and localization
of Fe cations

Hyperfine field 〈Hhf〉 , 
(MA m–1)/kOe Isomer shift IS,* mm/s Linewidth Γ1–6, mm/s Area, %

(Fe2.5+)o1 36.31/456.20 0.67 0.536 24.493

(Fe2.5+)o2 34.11/428.51 0.38 1.122 22.318

(Fe3+)t1 + (Fe3+)t2 39.07/490.87 0.30 0.481 30.386

(Fe3+)o1 + (Fe3+)o2 38.85/488.11 0.40 0.443 22.803

* Relative to α-Fe.
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As was already mentioned, the experimental spec-
trum of the Fe3 – vO4 magnetite prepared by mecha-
nochemical synthesis is best described by the superpo-
sition of three Mössbauer sextets A, B, and C (Fig. 3d).
Analysis of the hyperfine interaction parameters for the
sextets shows that the C component in the spectrum is
associated with the iron cations that occupy the octahe-
dral sites of the lattice and whose environments are
similar to those of paired iron cations in Fe3 – vO4 (v  ≅
0.18) cation-deficient spinels [4]. Since the spectrum of
the Fe2.847O4 compound contains two sextets with effec-
tive magnetic fields 〈Hhf(Fe2.5+)o〉  = 36.31 and
34.11 MA m–1 (Fig. 4d), the distribution of iron cations
over the A and B sites in the spinel structure can be
described by at least two expressions (1) at v 1 ≅  0.12
and v 2 ≅  0.18. Consequently, the experimental spec-
trum of the magnetite prepared through mechanochem-
ical synthesis (v c = 0.153) can be represented by the
superposition of six Mössbauer components for Fe2.5+

and Fe3+ cations at the octahedral and tetrahedral sites
of the crystal lattice. However, simulation of the spec-
trum of Fe2.847O4 demonstrates that the values of τi and
ωi for a particular distribution cannot be determined
from the Si(Fe3+)t and Si(Fe3+)o partial contributions,
because the parameters of the corresponding sextets for
v 1 and v 2 coincide to within the limits of resolution of
the Mössbauer experiment. The decomposition of the
spectrum of the spinel into four components is shown
in Fig. 5. As in the preceding cases, the spectrum was
calculated with freely variable parameters. The param-
eters available in the literature [2–4] were used as the
zeroth approximation. The calculated parameters of the
sextets are listed in Table 2. Note that S(Fe3+)t and
S(Fe3+)o correspond to the sums S1 + S2 of the partial
contributions from tetrahedral and octahedral Fe3+ cat-
ions in the corresponding distributions.

The experimental spectrum of the magnetite pre-
pared by mechanochemical synthesis is quantitatively
described well within the discrete approximation. How-
ever, in the qualitative sense, the results obtained seem
to be insufficiently adequate, because the simulation of
the spectrum ignored the contributions from cations
with the environment characterized by small values
v i < 0.1, whose fraction can appear to be rather large.
The occurrence of local environments of this type most
clearly manifests itself when comparing the magnetic-
hyperfine-field distribution functions P(H) for the
Mössbauer spectra of the cation-deficient spinel
Fe2.847O4 and the stoichiometric magnetite Fe3O4
(Figs. 6b, 6c). As a first approximation, the P(H) func-
tions were reconstructed only for the (Fe3+)t and
(Fe2.5+)o cations that occupy the tetrahedral and octahe-
dral sites in the spinel lattice and are characterized by
substantially different isomer shifts (Table 2). The cor-
relations of the hyperfine parameters were determined
in the following form: δj(A, B) = ajHn + bj and εj(A, B) =
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
cjHh + d, where δj(A, B) and εj(A, B) are the isomer
shifts and the quadrupole splittings for the A and B sub-
lattices, respectively; and a, b, c, and d are the correla-
tion parameters for each kernel of the distribution [17].
As can be seen from Fig. 6, the deficit of Fe2+ cations in
the spinel structure actually leads to a broad distri-
bution of magnetic hyperfine fields with the P(H) prob-
ability maxima near 37.0, 36.0, 34.0, and 30.0 MA m–1,
which correspond to local environments of the (Fe2.5+)o

cations at v 0 < 0.1, v 1 ≅  0.12, v 2 ≅  0.18, and v 3 ≅  0.26.

5. CONCLUSION

It should be noted that, although the problems con-
cerning the distribution of iron cations in the structure
of Fe3 – vO4 spinels are the most interesting problems in
magnetochemistry [2–4, 13, 20], a number of questions
remain open [5, 9, 15, 16, 22, 25]. Analysis of the x-ray
diffraction and Mössbauer data obtained in the present
work has demonstrated that the discrepancies in the
available data on the cation distribution in cation-defi-
cient compounds can be associated with the structural
features of Fe3 – vO4 compounds, on the one hand, and
the failure to resolve chemical inhomogeneities formed
in the spinel lattice under the given conditions of syn-
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thesis, on the other. In this respect, attempts to describe
the iron cation distribution in mechanochemically syn-
thesized Fe3 – vO4 compounds in terms of mean param-
eters are as justified as the parameters characterizing
the homogeneous solid solution are applicable to ade-
quate description of its heterogeneous analog. A more
constructive approach to solving the problems associ-
ated with the characterization of the inhomogeneous
state of material systems should involve (in addition to
improvements in the technical potentialities of the
methods used for investigating short-range atomic
orders) a detailed analysis of experimental data on the
basis of the appropriate mathematical apparatus in
order to obtain information regarding local atomic
environments on a qualitatively higher level, for exam-
ple, on the level of polymodal distribution functions.
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Abstract—Magnetization curves of a ferromagnetic film on an antiferromagnetic substrate are investigated
with allowance for the frustration caused by roughness of the interface. The conditions for unidirectional ani-
sotropy are determined, and its dependence on the degree of roughness of the film–substrate interface is found.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Unidirectional anisotropy is manifested in a bias of
the magnetization curve of a ferromagnetic film depos-
ited on the surface of an antiferromagnet (AFM); exam-
ples are NiFe/FeMn, NiFe/CoO, Ni/NiO, Fe/FeF2, and
Fe/Cr. A great number of papers have been devoted to
studying the unidirectional-anisotropy effect (see, e.g.,
review [1]).

We first consider the case where the spins of the
AFM are not compensated in an atomic plane parallel
to the ferromagnet–AFM interface. In a simple model
where the interface is assumed to be perfectly smooth,
the exchange interaction between spins of the film and
substrate leads to the emergence of a preferential direc-
tion for the magnetization of the film. Magnetization
reversal of the film gives rise to the formation of a
domain wall (DW) in the antiferromagnetic substrate
[2, 3].

Since the formation of a DW requires some energy,
the magnetization curve is biased relative to its sym-
metric position along the magnetic-field axis by the
amount

(1)

where BE is the bias magnetic induction, Aaf is the
exchange stiffness of the AFM, Kaf is the AFM anisot-
ropy constant in a plane parallel to the film–substrate
interface, M is the magnetization of the ferromagnetic
film, and a is the thickness of the film.

A real interface is not, of course, perfectly smooth;
it contains atomic steps, each of which changes the sub-
strate thickness by one atomic layer. The spin orienta-
tion is different on opposite sides of a step in the outer
atomic layer of the AFM. Therefore, the presence of
steps at the interface leads to frustration, irrespective of

BE

Aaf Kaf( )1/2Saf
2

Ma
--------------------------------,∼
1063-7834/02/4401- $22.00 © 20133
the sign of the exchange integral Jf, af between spins of
the film and substrate. We investigated the phase dia-
gram of such a frustrated system in [4] within a contin-
uum model.

Unidirectional anisotropy in an imperfect interface
was considered in [5], where the AFM was assumed to
consist of noninteracting grains.

In [2, 6], the mechanisms of unidirectional anisot-
ropy were investigated in the case where the spins in an
AFM atomic plane parallel to the interface are compen-
sated. In [2], unidirectional anisotropy was assumed to
be due to fluctuations of the exchange field at the inter-
face, which are caused by roughness of the interface
and, in turn, lead to the formation of microdomains
(with dimensions as small as the DW width) in the
interfacial region of the AFM.

In the model proposed in [6], unidirectional anisot-
ropy is associated not with roughness of the interface
but with a phenomenon which is similar to the spin-flop
transition in an AFM and occurs under the action of an
exchange field at the interface.

This paper is devoted to studying the magnetization
process and determining the dependence of the strength
of unidirectional anisotropy on the roughness of the
interface in a frustrated system composed of a ferro-
magnetic film and an antiferromagnetic substrate.

2. MODEL

When studying the spatial distributions of the order
parameters over the film and substrate, it was assumed
that the magnetization and antiferromagnetism vectors
lie in a plane parallel to the interface and are character-
ized by the angles θi (i = f, af) that these vectors make
with the preferential direction in that plane. Minimizing
002 MAIK “Nauka/Interperiodica”
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the exchange energy in the film–substrate system gives
the equations

, (2)

which should be supplemented by the boundary condi-
tions

(3)

at the free surface of the film (  is the two-dimensional

Laplacian in the film plane,  is the derivative in the

direction of the outward normal to the surface of the
layer),

(4)

at the film–substrate interface (Ji is the exchange inte-
gral between spins, Si is the average spin in the ith
layer), and θaf = 0 in the bulk of the substrate, far from
the interface. All distances are measured in units of the
lattice parameter b, which is assumed to be relatively
the same for both materials.

Solving the set of equations (2) with boundary con-
ditions (3) gives the spatial distributions of the order
parameters in the system under study. A solution was
sought using numerical methods for the case where the

∆θi 0=

∆̃θf
∂θf

∂n
--------– 0=

∆̃
∂

∂n
------

∆̃θi

∂θi

∂n
-------–

J f af, Si 1+

JiSi

--------------------± θi θi 1+–( )sin=

5

0
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8
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Fig. 1. Distributions of the order parameters in (a) the vor-
tex phase and (b) the domain wall. The zero ordinate corre-
sponds to the film–substrate interface. All distances are
measured in units of the lattice parameter. The correspon-
dence between the differently hatched regions and the val-
ues of θi (in radians) is indicated in the insets.
P

steps form a set of periodically arranged parallel
straight lines. The x axis of the coordinate frame was
parallel to the film plane and perpendicular to the edges
of the steps, while the z axis was normal to the film
plane (two-dimensional case). The functions θi(x, z)
were subject to periodic boundary conditions in the
region |x | < L and were calculated through expansion in
a Fourier series in x. As the result of computer simula-
tion, a phase diagram in the film thickness–roughness
plane was obtained.

3. PHASE DIAGRAM

The film–substrate interface is partitioned by steps
into regions of two types. In regions of the first type, the
interface energy is a minimum when the ferromagnetic
and antiferromagnetic vector order parameters are par-
allel to each other, while in regions of the second type,
the energy is minimum when these two vectors are anti-
parallel.

If the characteristic distance R between steps on the
interface is smaller than a certain critical value

(5)

where

(6)

then the film remains in a single-domain state but static
spin vortices appear in the substrate near the interface
(Fig. 1a).

A vortex is characterized by two spatial scales.
There is a region around a step within which the angle
θf – θaf at the interface is not equal to its optimum value
that minimizes the interface energy; this angle is zero
on one side of the step and π on the other. The width of
this region is

(7)

where

(8)

In the remainder of the interface (the region of width

R @ ), the angle θf – θaf equals its optimum value. If
the value of θaf is nonzero at the interface, then θaf var-
ies gradually from its interface value to zero over a
characteristic depth R in the substrate.

If the characteristic distance R between steps
exceeds its critical value (R > Rc), then the film is
divided into microdomains, with their boundaries coin-
ciding with the edges of the atomic steps. The magneti-
zation directions in the neighboring domains are oppo-
site and correspond to a minimum interface energy. It is
significant that the domain wall width δf in the case of

Rc δ f= γa,≈

γ
J f S f

2

JafSaf
2

------------- @ 1,=

δ0
af 1 α+( )b

α
---------------------≈ b,∼

α
J f af, Sf

JafSaf
---------------.=

δ0
af
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a ~ 10–100 Å is much smaller than the width of an ordi-
nary DW, because the width δf is dictated by the bal-
ance of the exchange interactions rather than by that of
the exchange and anisotropy energies.

It is seen from Fig. 1b that the DW has a compli-
cated structure: in addition to magnetization rotations,
there are vortex distortions of the antiferromagnetic
order parameter with a characteristic size of δf. As in
the case of R < Rc, the angleθf – θaf at the interface is not
equal to its optimum value in the region of a width of

 around a step.

Next, we consider the magnetization reversal in
each of these two phases.

4. THE SINGLE-DOMAIN PHASE

Let ψ be the angle between the magnetization vector
of the film and the antiferromagnetism vector in the
bulk of the substrate. Then, in the regions of the first
type, far from the steps, we have θaf = ψ at the interface
and the antiferromagnetism vector rotates with distance
away from the interface in the substrate at an angle –ψ.
In the regions of the second type, the angle θaf is equal
to ψ – π at the interface and the antiferromagnetism
vector rotates at an angle π – ψ.

As in the magnetic-proximity model of Slonczewski
[7], the film–substrate interaction energy can be written as

(9)

where

(10)

and σj is the area of the regions of jth type (j = 1, 2). It
should be noted that the estimation of the quantities Cj

in [4, Eq. (13)] is incorrect. The point is that the contri-
bution from the region near the edges of a step to the

vortex energy involves the large parameter ,

which, however, is independent of ψ.

If σ1 = σ2, then the energy is minimal at ψ =  in the

absence of an external magnetic field [4]. The same
conclusion was drawn in [6] for the case of an AFM
with compensated spins at its surface. If an external
magnetic field of induction B0 is applied to the film
plane at an angle ϕ to the preferential direction, then the
total energy of the film–substrate system (per unit area
of the film) is

(11)

The value of ϕ, at which the energy is minimal and,
therefore, the quantities M|| = Mcos(ψ – ϕ) and M⊥  =

δ0
af

W1 C1ψ
2 C2 π ψ–( )2+[ ] /2,=

C j Cσ j≡
JafSaf

2 σ j

Rb
-------------------≈

R

δ0
af

------ 
 ln

π
2
---

w
C
2
---- π ψ–( )2

2
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2
------+= B0aM ψ ϕ–( ).cos–
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Msin(ψ – ϕ), can be found from the equation

(12)

where the dimensionless parameter η is

(13)

If the external magnetic field is perpendicular to the
spontaneous magnetization of the film (ϕ = 0), the mag-
netization curve is symmetric (Fig. 2a) and magnetiza-
tion reversal occurs at a characteristic magnetic induc-
tion (corresponding to η ~ 1)

(14)

It is easy to see that the induction B* depends crucially
on the parameter R characterizing the interface rough-
ness.

In the range of fields B0 @ B*, we have ψ ∝   up
to the value Bsf at which the antiferromagnetic substrate
undergoes the spin-flop transition. What occurs thereaf-
ter is dictated by the sign of Jf, af. If ferromagnetic
exchange takes place between spins of the film and sub-

ψ π
2
--- η ϕ ψ–( ),sin= =

η
B0Ma

C
--------------

B0MaRb

JafSaf
2
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B*
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2
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Fig. 2. Magnetization curves for the single-domain phase in
the cases where the applied magnetic field is (a) perpendic-
ular and (b) parallel to the spontaneous magnetization of the
film. Solid curves are M||/M, and dotted curves are M⊥ /M.



136 LEVCHENKO et al.
strate, then ψ changes its value to zero or π in a jump
(depending on the sign of B0) and the film becomes
magnetized to saturation, while the magnetization of
the system is increased further through the magnetiza-
tion of the substrate. If the exchange integral is of the
opposite sign, two competing effects occur: the
exchange interaction tends to align the magnetization
vector of the film in opposition to that of the substrate,
whereas under the action of the external magnetic field,
both the magnetization vectors are forced to be aligned
with this field. These effects may be the reason for the
positive bias of magnetization curves of FeF2/Fe films
cooled in the presence of high magnetic fields [1]. In
what follows, we restrict our consideration to the range
of fields B0 < Bsf and neglect the magnetization of the
substrate.

If the external magnetic field is parallel to the spon-

taneous magnetization , then, at η ≥ –1, we

have ψ =  and M|| = M. For η < –1 and |η| – 1 ! 1, a

square root singularity takes place:  – ψ = [6(|η| – 1)]1/2.

The magnetization M|| vanishes at η = ; therefore,

the magnetization curve is biased to the range of nega-
tive fields (Fig. 2b). The bias magnetic induction (uni-
directional-anisotropy field) is equal to

(15)

As in the case of ϕ = 0, the magnetization M|| reaches
its saturation value (–M) when |η| @ 1, η < 0 (deviation
from this value decreases as |B0|–1).

The shape of the magnetization curves shown in
Fig. 2b is qualitatively similar to that of experimental
hysteresis loops for CoO/Co [8], permalloy/FeMn [9,
10], and CoNi/FeMn [11] bilayers. Furthermore, it fol-
lows from Eq. (15) that BE ∝  R–1. This dependence
allows one to understand the varying of BE in inverse
proportion to the CoO crystallite size in a permal-
loy/CoO system [12].

In the state which is established after magnetization
reversal, the antiferromagnetism vector rotates with

distance away from the interface through an angle of 

in the regions of one type and through an angle of 

in the regions of the other type. This state is metastable.
In order to pass over to the ground state in the regions

where the rotation angle is , the antiferromagnetism

ϕ π
2
---= 

 

π
2
---

π
2
---

π
2
---–

BE
πC

2Ma
----------- B*.∼=

π
2
---

3π
2

------

3π
2

------
P

vector must be rotated through one complete revolution

(from  and ). However, this rotation involves vir-

tual destruction of the magnetic order in the interface
(which can be called a phase slip plane, by analogy with
superconductors); that is, the system must overcome an
energy barrier in a classical or a quantum-mechanical way.

The difference in energy between the metastable
and stable states at saturation is greater than the energy
of formation of a domain wall. Therefore, a DW paral-
lel to the interface can appear in the AFM, owing to
which the antiferromagnetism vector will rotate
through an angle π near the interface and the vortex
energy will decrease.

The above analysis was performed for the case of
γ @ 1. If γ ! 1, the distribution of the antiferromagnetic
order parameter is virtually uniform over the substrate
and the frustration gives rise to distortions of the order
parameter distribution in the ferromagnetic film [13]. In
this case, a single-domain state occurs for a @ R and
vortices appear near the interface in the film. The mag-
netization curves are similar to those discussed above,
and their characteristic parameters are given by
Eq. (10) with Jf in place of Jaf and Sf replacing Saf.

In contrast to the case of γ @ 1, where the interfacial
energy is independent of the film magnetization, this
energy is proportional to M2 if γ ! 1. At γ ~ 1, crossover
occurs between these two cases and the spin vortex is
displaced from the substrate to the film. We note that
the dependence of the interfacial energy σ ∝  M1/2

observed in a Co–Ni/FeMn bilayer in [11] can be
explained by the fact that γ ~ 1 for that sample.

5. THE POLYDOMAIN PHASE

In this phase, in the absence of an external magnetic
field, distortions occur only in the region of a DW near
a step (Fig. 1b), the width of this region being approxi-
mately δf. In an external magnetic field, the magnetiza-
tion vector of a domain is tilted by an angle β from its
initial direction and the antiferromagnetism vector at
the interface follows it. Thus, a static vortex is formed
in the substrate, with the antiferromagnetism vector
rotating through an angle β in this vortex. The vortex
energy (per unit of film area) equals (with logarithmic
accuracy)

(16)

where R @ δf.

Taking into account that the concentration of DWs is
roughly ~R–1, the DW energy per unit area is found to be

(17)
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where ζ is the rotation angle of magnetization within
a DW.

In an external magnetic field, the angle between the
magnetization vectors in adjacent domains decreases
and the value of ζ tends either to zero (type 1 DW) or to
2π (type 2 DW), depending on the initial sense of mag-
netization rotation in the DW (Fig. 3).

If the magnetic field reverses its direction, the mag-
netization rotation angle tends to 2π in DWs of the first
type and to zero in DWs of the second type.

In general, the shape of a magnetization curve
depends on the type of DWs.

As an example, we consider an array of parallel
equidistant steps on an interface. In this case, domains
of the two types alternate with one another. First, we
will discuss the situation where all DWs are of one
type, which may take place if the ferromagnetic film is
grown in an external magnetic field.

The energy surface density of the system of domains
in an external field B0 is

(18)

where the magnetization rotation angles in domains are
reckoned as shown in Fig. 3b.

Minimizing  with respect to δf gives

(19)

It is seen from Eq. (19) that the DW width decreases as
the magnetization rotation angle in the DW tends to
zero. When the rotation angle tends to 2π, the DW
width increases up to the domain width R. Here, we
assume that the distance R is smaller than the width of
an ordinary DW in the AFM δ* = (Aaf /Kaf)1/2. Other-
wise (at δ * δ*), one has to take into account the anisot-
ropy energy in the film plane. As δf tends to zero, the
DW structure is changed, but this leaves the magnetiza-
tion curve unaffected, because the contribution of the
DW energy to  is insignificant in this case.

The behavior of the system in a magnetic field

depends critically on the field direction. At ϕ = , we
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have β1 = β2 (by symmetry) and the energy density 
takes the form

(20)

where A = R/aγ @ 1.
The β(η) dependence for a fixed value of A can be

easily found by minimizing (β), and it is presented in
Fig. 4. It is easy to verify that there are two phases. In
the range  < η < , where

(21)

(22)

we have β = 0. (A more correct calculation shows that
β increases in proportion to B0 in this range, β ≈ ηb/R ! 1;
there are no vortices in the substrate, but the angle θf –
θaf at the interface is different from its optimum value.)

At η >  and η < , the angle β increases linearly
and then reaches saturation, following the law β(∞) –

β(η) ∝  η–1 ∝   for η @ 1.

Another distinctive feature of the magnetization
curve is that it is asymmetric, because DWs of one type
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Fig. 3. Rotation of the magnetization vector in the domain
wall (a) in the absence and (b, c) in the presence of an exter-
nal magnetic field applied perpendicular to the magnetiza-
tion vectors in the domains.
2
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are dominant. The center of the curve corresponds to
η0 = –4, and the film is magnetized much more easily
for positive values of η than for negative ones, because
in the former case, the DW energy decreases, while in
the latter, it increases.

At ϕ = 0, the magnetization remains unchanged in
the domains where it is parallel to the external field

–0.5
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–40

M
||/

M

η

0.5

1.0

–1.0
–20 0 20 40

A = 30
A = 150
A = 1500

Fig. 4. Magnetization curves for a polydomain phase. The
magnetic field is applied at right angles to the magnetization
vectors in the domains.
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Fig. 5. Magnetization curves for a polydomain phase for
different values of A: 30 (thin solid curves), 150 (dotted
curves), and 1500 (heavy solid curves). The external mag-
netic field is parallel to the magnetization vectors in the
domains.
P

(β1 = 0). This follows from the fact that the energy sur-
face density of domains in Eq. (18) increases with
increasing β1 for a fixed value of β1 + β2. In the domains
where the magnetization is antiparallel to the external
field (β2 = 0), it remains unchanged as η is increased up
to a value ηcr ~ lnA; at η = ηcr, β2 is changed discontin-

uously to a value . The values ηcr and  are found
from the equation

(23)

and from the condition of minimum . At η @ 1,
β2 reaches saturation, with its variation decreasing as

∝ .

The B0 dependences of the magnetization compo-
nents M|| and M⊥  parallel and perpendicular to the field,
respectively, are shown in Fig. 5. After B0 reverses its
sign, β2 remains equal to zero while β1 varies; that is,
the magnetization curves are symmetric.

Thus, unidirectional anisotropy in the polydomain
phase is due to a predominance of DWs of one type. If
DWs of both types occur with equal probabilities, the
magnetization curve presented in Fig. 4 becomes sym-
metric and M⊥  vanishes in the case of ϕ = 0 (Fig. 5b).

In order to calculate the magnetization curve in the
case where DWs of different types alternate at random,
one needs to solve a set of coupled equations for βi in
each domain.

6. THE CASE OF A COMPENSATED 
INTERFACE

Now, we consider the case where the surface of the
AFM is compensated. It was shown in [2] that rough-
ness leads to the occurrence of local random fields con-
jugate to the antiferromagnetic order parameter. In that
paper, a random field ±h0 (h0 ≈ Jf, af) was assumed to
arise in each unit cell at the interface.

However, generally speaking, this assumption is
incorrect. Indeed, let atomic steps on the interface be
arranged along two mutually perpendicular directions
(the x and y axes). In this case, the interface is parti-
tioned by steps into polygons whose angles are all right
angles. By extending one of the two sides (e.g., that par-
allel to the x axis) of each internal angle whose magni-
tude is 3π/2, one can divide a polygon into rectangles.
If the dimensions of such a rectangle (Lx, Ly) are odd
numbers when measured in units of the lattice parame-
ter (that is, the rectangle consists of an odd number of
unit cells), then the fields produced by the spins of the
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atomic surface layer of the film within the rectangle are
not compensated. Therefore, a random field arises only

on the characteristic area S0 =  (and not in
each unit cell), where angular brackets signify averag-
ing over the interface and the factor of 4 occurs under
the assumption that, for R @ b, the length of a step can
measure an even or an odd number of lattice parameters
with equal probabilities. Using the formula [14]

(24)

for the probability that the length of a step is L, we
obtain S0 = R2.

In a region with linear dimensions l, the characteris-
tic field fluctuation per unit cell is equal to

(25)

which is smaller than that assumed in [2] by a factor
of R/b.

It was shown in [2] that the optimum size of
domains into which the surface of a substrate can be
partitioned, in principle, is of the order of δ* (l = δ*). In
this case, the energy (per unit cell) required to produce
the corresponding nonuniform distribution of the
antiferromagnetic order parameter equals [2]

(Aaf Kaf)1/2 b2.

However, even in the case where the gain in the
film–substrate interface energy due to the formation of
domains in the substrate is overestimated by a factor of
R/b, the total energy of the system with Jaf ≈ Jf, af  is
higher than that in the case of uniform distribution of
the ferromagnetic and antiferromagnetic order parame-
ters. In other words, the phase with domains in the sub-
strate is metastable. This conclusion is all the more
valid when drawn from a correct estimate of the gain in
the interface energy.

Thus, in the case where the surface of the AFM is
compensated, the mechanism of unidirectional anisot-
ropy proposed in [2] is inefficient.

7. CONCLUSIONS
Thus, the results of this paper allow the following

conclusions to be made:
(1) Unidirectional anisotropy of a ferromagnetic

single-domain film on the uncompensated surface of an
antiferromagnet is due to spin vortices formed on the
film–substrate rough interface; the strength of this
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anisotropy is inversely proportional to the spacing
between steps on the interface.

(2) If the film is in a polydomain state, unidirec-
tional anisotropy occurs, because the domain walls of
one of the two possible types are dominant; the strength
of this anisotropy is proportional to the difference in the
concentration of DWs of two types; i.e., it is again
inversely proportional to the spacing between the steps.

(3) If the surface of the AFM is compensated, the
partition of the substrate into antiferromagnetic
domains is energetically unfavorable and unidirectional
anisotropy is due to the mechanism proposed in [6].
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Abstract—The effect of thermal fluctuations on the structure of a domain wall (DW) in a fine magnetic wire
is analyzed. It is shown that the polarization of a DW in a magnetic nanowire is changed spontaneously as a
result of thermal and quantum fluctuations. There is a critical diameter of the wire below which a transformation
analogous to the superparamagnetic transition occurs, with the result that the Néel wall is transformed into a
Ginzburg–Bulaevskiœ wall. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A domain wall (DW) in a fine magnetic wire is a
mesoscopic object. Its study is of interest for the fol-
lowing reasons. First, DWs in a nanocontact and a
nanowire significantly affect spin-transport properties,
which depend crucially on the relationship between the
DW size and the wavelength of the conduction elec-
trons [1–5]. Second, a DW in a nanowire is of interest
for use in studying spontaneous magnetization reversal
due to quantum fluctuations. In this connection, the
paper by Bruno [6] should be cited, wherein an attempt
was made to consider the micromagnetic structure of a
DW in a small magnetic bridge between two magne-
tized bars and the effect of the strong spatial inhomoge-
neity in the microbridge cross section on this structure.
The thermal effects were not taken into account in that
paper. However, as the size of a wire is decreased, spin
fluctuations not only blur the DW but also distort its
structure. In this case, fluctuations associated with col-
lective excitations, i.e., macroscopic modes having the
lowest excitation energy, will be of primary impor-
tance. Therefore, one might expect mesoscopic repolar-
ization of DWs to occur under fluctuations. To date,
papers have been published on the effects of thermal
DW creep [7], quantum tunneling through a defect, and
flexural fluctuations of a DW as a macroscopic object
[8, 9]. In this paper, we investigate mesoscopic repolar-
ization of a DW under thermal fluctuations and the
transformation of a polarized DW, having a certain
plane in which the magnetic moments exhibit a screw
rotation, into an unpolarized DW of the Ginzburg–
Bulaevskiœ type [10, 11], in which the magnetization
varies only in magnitude, exhibiting no screw rotation
and passing through zero at the DW midplane between
the adjacent domains.
1063-7834/02/4401- $22.00 © 20140
2. THE ORIGINAL HAMILTONIAN 
AND THE DYNAMIC EQUATIONS

We consider a magnetic wire with weak magnetic
anisotropy in its cross section (K⊥  ! 2πM2); the diam-
eter of the wire is assumed to be less than the exchange

length, D ≤ lex = , where A is the inhomoge-
neous-exchange energy and M is the magnetization. In
such a fine wire, spins are collinear in the cross section.
The Hamiltonian of the system under study has the
form

(1)

where m = M/M = (sinθcosΦ, sinθsinΦ, cosθ) and
Hz(z)is a gradient magnetic field that pins the DW at the
point z = 0.

We employ a zeroth approximation with respect to
the small parameter K⊥ /πM2 ! 1 and a self-similar
approximation in which the DW structure is determined
by the balance of the exchange and demagnetization
energies:

(2)

Then, the Lagrangian of the system, when inte-
grated over the volume of the wire with a cross section
S0, has the form1 

1 The Lagrangian L and the dissipative function R of the system
can be expressed through the angular variables in the form (see,
e.g., [11]) L = (M/γ)(1 – cosθ)∂tΦ – W(θ, Φ); R =

(αM/2γ)[(∂tΦ)2sin2θ + (∂tθ)2], where W(θ, Φ) is the energy of
the system corresponding to its Hamiltonian. In the self-similar
approximation, the Lagrangian and dissipative function of the
DW can be found through averaging over the spatial variables.
The averaging procedure for a self-similar approximation to the
dynamic equations similar to Eq. (2) is described, e.g., in [12].

A/πM2

Ĥ A dm/dz( )2 πM2mz
2 K ⊥ mx

2 Hz z( )Mmz,–––=

Φ const,=

dθ/dz lex
1– θ θsin 2 z ∆–( )/lex( )exp[ ] .arctan= =
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(3)

where v  = S0lex and  and  are the thermal-fluc-
tuation fields corresponding to the variables Φ and ∆,
respectively. The dissipative function of the system has
the form

(4)

By calculating variations of the Lagrangian and dis-
sipative function, we find the dynamic equations

(5)

These equations have the form of nonlinear Langevin
equations with a random right-hand side.

3. THERMAL BLURRING 
AND FLUCTUATIONAL REPOLARIZATION

OF THE DOMAIN WALL

Let us calculate the correlation characteristics of
fluctuations of the deviation angle and the position of
the DW center. By solving the linearized equations (5),
one can find the harmonic variations δΦ, ∆ ~ exp(–iωt)
of the angular variable and of the displacement of the
DW center relative to their equilibrium values Φ = 0
and ∆ = 0:

(6)

where the magnetic susceptibilities χi j are given by

(7)

with ωA = γ2K⊥ /M, ωρ = , and ωD = γ lex.

According to the fluctuation–dissipation theorem
(FDT) [13], we can write

(8)

L̂ v= 2M/γ( )[ dΦ/dt( ) ∆/lex 1–( ) 2K ⊥ Φ2sin–

– Hz' lexM ∆/lex( )2 ] h∆
fluc ∆/lex( ) hΦ

flucΦ,+ +

hΦ
fluc h∆

fluc

R̂ αM/γ( )= lexS0 dΦ/dt( )2 d∆/dt( )/lex
2+[ ] .

d∆/dt( )/lex α dΦ/dt( ) γK ⊥ /M( ) 2Φsin+ +

=  γ/2Mv( )hΦ
fluc,

dΦ/dt( ) α d∆/dt( )lex γ Hz' ∆+ +–

=  γ/2Mv( )h∆
fluc.








δΦ χΦΦhΦω
fluc χΦ∆h∆ω

fluc,+=

∆/lex χ∆ΦhΦω
fluc χ∆∆h∆ω

fluc,+=

χΦΦ
γ

2Mv
------------

ωD iωα–( )
ωρ

2 ω2 1 α2+( )– iαω ωA ωD+( )–[ ]
-------------------------------------------------------------------------------------= ,

χ∆∆
γ

2Mv
------------

ωA iωα–( )
ωρ

2 ω2 1 α2+( )– iαω ωA ωD+( )–[ ]
-------------------------------------------------------------------------------------=

χ∆Φ χΦ∆–=

,

=  
γ

2Mv
------------ iω

ωρ
2 ω2 1 α2+( )– iαω ωA ωD+( )–[ ]

-------------------------------------------------------------------------------------,

ωDωA Hz'

δxiδx j〈 〉 ω "/2π( ) Imχ ij( ) "ω/2kBT( )coth ,=
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where xi, xj = Φ, ∆. If the frequencies are such that
"ω ! kBT, then the spectral density of the square of the
fluctuational angular deviation of the DW magnetiza-
tion rotation plane is found from the above formulas to
be

(9)

The average square of fluctuations of the angle Φ is

(10)

In a similar manner, one can find the average square
of thermal fluctuations of the DW width:

(11)

Putting 〈δΦ2〉 ~ (π/2)2, we find the critical cross-sec-
tional area of the wire at which thermal fluctuations
overcome the anisotropic barrier to delocalization of

the plane of the DW magnetization rotation,  ~
kBT/2π2K⊥ lex. Therefore, the critical radius of the wire
is acr ~ (kBT/2π3K⊥ lex)1/2.

We will make an estimate for a wire of NiFe. Putting
T = 300 K, K⊥  ~ 105 erg/cm3, and lex ~ 5 nm, we obtain
acr ~ 1 nm. The calculations performed above give
rough estimates of the critical parameters for the trans-
formation of a polarized DW into an unpolarized
charged DW of the Ginzburg–Bulaevskiœ type. A more
detailed description of the dynamics of this transforma-
tion can be given using the Fokker–Planck equation for
the probability density P(Φ, ∆) of the DW state charac-
terized by a certain orientation of the DW magnetiza-
tion rotation plane (DW polarization) and the displace-
ment of the DW center.

4. THE FOKKER–PLANCK EQUATION

An equation that describes the evolution of the prob-
ability density of DW states can be derived using the
method developed by Brown [14] for describing ther-
mal fluctuational magnetization reversal of a magnetic
particle. According to the FDT, the spectral density of
the random-field correlation function is given by

(12)

where  are the inverse susceptibilities. Let us calcu-
late the spectral density given by Eq. (12) at the point

δΦ2〈 〉 ω

=  
αγkBT ω2 1 α2+( ) ωD

2+[ ]

4πMlexS0 ω2 1 α2+( ) ωρ
2–( )2 ω2α2 ωA ωD+( )2+[ ]

-------------------------------------------------------------------------------------------------------------------------.
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∞

∫
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ωD
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S0
cr
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4π
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2kBT
------------,coth=
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Φ = 0, ∆ = 0. From the linearized set of equations (5),
we find

(13)

Substituting these expressions into Eq. (12) yields

(14)

In the case of high temperatures, we have kBT @ "ω
and, as follows from Eq. (14), the spectral density of
thermal-fluctuation fields is characterized by a white

noise spectrum,  =  = (αMv /πγ)2kBT. In
this case, when describing the evolution of the proba-
bility density P(Φ, ∆) of the DW states, one can employ
a well-known method for deriving the Fokker–Planck
equation from the nonlinear Langevin equations [12].
The common procedure for averaging the correlation
moments Ai = /dt and Bij = /dt

χΦΦ
1– 2Mv
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Fig. 1. Evolution of the probability density of the polariza-
tion state of a DW in a fine magnetic wire of diameter D =
(a) 60 nm (ν = 9.9) and (b) 10 nm (ν = 0.275).
P

yields the Fokker–Planck equation

(15)

In our case, this equation takes the form

(16)

For the one-dimensional distribution P(Φ) =

, the equation is simplified:

(17)

This equation has an obvious steady-state solution
P(Φ)|t  = +∞ = Aexp(–2K⊥ sin2Φ/kBT), where the normal-
ization factor is given by

I0(x) is a Bessel function of imaginary argument. Any
originally localized state P(Φ) = δ(Φ – Φ0) relaxes to
this equilibrium distribution. The relaxation time char-
acterizing the diffusive broadening of this distribution
is determined by the parameter ν = kBT/4K⊥ v. The time
scale that is associated with the Fokker–Planck equa-
tion (17) depends on the magnetic parameters and the
expected angular broadening ∆Φ: [t] ~ ((1 +
α2)/αωA)(1 + kBT/4K⊥ v∆Φ2). It can be seen that, if the
parameter ν is large, the time of diffusive broadening
varies in inverse proportion to the temperature: [t] ~
vM/γkBT. The evolution of the initially localized distri-
bution is exemplified in Fig. 1 for two cases, ν ! 1
(Fig. 1a) and ν @ 1 (Fig. 1b). The calculations are per-
formed for the following parameters of the wire: M =
1500 G, K⊥  = 104 erg/cm3, α = 0.1, T = 300 K, and
diameter D = 60 (Fig. 1a) and 10 nm (Fig. 1b).

At low temperatures kBT ! "ωp, a quantum-fluctua-
tion limit is realized in which thermal fluctuations can-
not be classified as white noise and the method
employed above is inadequate. In the low-temperature
limit, we have ν  0; however, the evolution of the
initial DW state can be considered in the framework of
the macroscopic quantum tunneling theory based on
path integrals [15].
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5. QUANTUM REPOLARIZATION 
OF THE DOMAIN WALL

AT LOW TEMPERATURES

At T = 0, the DW is predominantly in the polariza-
tion states Φ = 0 and π. For the sake of definiteness, we
consider the case where the initial state of the DW is
Ω(t = –∞) = (Φ = 0, ∆ = 0). The conditional-probability
amplitude of the transition to the state W(t = +∞) =
(Φ = ±π, ∆ = 0)is expressed as an integral over instan-
ton paths W(τ)in imaginary time τ = it according to the

formula KΩ(–∞) → Ω(+∞) = [–SE(W(τ))/"]dW , where

the action SE is defined as an integral over imaginary

time, SE = . In the Lagrangian in Eq. (3), we dis-

card the terms that involve random thermal-fluctuation
fields; in addition, we include the field term 2MH∆,
which is responsible for the DW displacement, with an
eye to treating quantum interference effects associated
with the topological properties of instanton paths. The
quadratic form in the variable ∆ in the Lagrangian
describes the DW motion and can be excluded by car-
rying out the integration over this variable in the
expression for the tunneling probability amplitude. As
a result, we obtain an effective Lagrangian of the sys-
tem which depends on the angular variable Φ alone and
has the form

(18)

A similar Lagrangian is often used in the magnetic-
instanton theory (see, e.g., [16, 17]); therefore, we drop
the details of the mathematical treatment and present
only the main formulas for the tunneling probability.
The tunneling rate Γ is the sum of the transition proba-
bility amplitudes from the initial state Φ = 0 to the final
states Φ = ±π along two topologically different instan-
ton paths Φ = ±2 , which correspond
to clockwise and counterclockwise rotations of the DW
polarization plane:

(19)

where  = /")d(W – W±) is the pre-

exponential factor of the corresponding probability
amplitude and Scl = 8vK⊥ /ωρ is the classical part of the
action along the instanton path W±.

It follows from Eq. (19) that the tunneling rate can
oscillate under the magnetic field of the displaced DW
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L τd∫
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because of the macroscopic quantum interference of
the two tunneling amplitudes along the two topologi-
cally different paths. This effect is very sensitive to the
interaction of the spins with the dissipative environ-
ment (phonons and nuclear spins [18, 19]); this interac-
tion destroys the phase coherence of tunneling instan-
tons and smooths out the field oscillations.

An analysis of Eq. (19) shows that, in order to
observe quantum DW repolarization experimentally,
one has to meet rather stringent requirements, because
the pinning magnetic field gradient has to be very
strong. For example, if M = 1500 G, K⊥  = 103 erg/cm3,
γ = 2 × 107 Oe–1 s–1, and A = 10–6 erg/cm, then, in a wire
a nanometer in diameter, the tunneling rate has an
observable value of Γ ~ 1 s–1 when the natural DW
oscillation frequency is ωρ = 109 s–1. Natural DW oscil-
lations of such a high frequency can occur in the case
of artificial DW pinning at an exchange defect in the
magnetic channel.

6. CONCLUSIONS

The analysis performed in this paper shows that the
DW in the magnetic nanowire is subjected to strong
thermal structural distortions at room temperature due
to thermal fluctuations being in the orientation of the
DW magnetization rotation plane and in the position of
the DW center. There is a critical temperature (related
to the height of the energy barrier to DW repolariza-
tion) above which the DW becomes unpolarized. The
transition of the DW from the polarized to the unpolar-
ized state, which occurs when the diameter of the mag-
netic wire decreases, is similar to the thermal deblock-
ing effect observed in magnetic nanoparticles when the
threshold for the Néel–Brown superparamagnetism is
reached.

In essence, the DW in the nanowire is a magnetic
vortex. In [20], quantum repolarization of a Bloch line
in a thin film was considered; this effect is similar to the
behavior of a DW in a magnetic nanowire. However, in
our case, the mesoscopic volume involved in the tun-
neling process is smaller due to the smallness of the
diameter of the nanowire and, therefore, the probability
of quantum repolarization of the vortex is greater. An
analysis of the macroscopic tunneling of the DW polar-
ization plane reveals that, at zero temperature, the DW
polarization can persist for a fairly long time and the
quantum repolarization of the DW can be observed if
the DW pinning in the magnetic channel is sufficiently
strong.

The strong spatial inhomogeneity in the cross sec-
tion of the magnetic bridge and near the exchange
defect (the region of smaller exchange energy in the
DW) causes the quantum DW repolarization rate to
increase, because this inhomogeneity leads to a
decrease in the DW width (see [6]) and strengthens the
DW pinning.
2
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The results obtained in this paper and, in particular,
the features of the fluctuational transition of the DW to
an unpolarized state should be taken into account when
analyzing the spin transport in magnetic nanocontacts
and nanowires controlled by an external magnetic field.
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Abstract—This paper reports on the nonlinear magnetoelectric effect (MEE) in the orthorhombic ferroelectric
ferroelastic β' phase of samarium molybdate Sm2(MoO4)3 observed in magnetic fields up to 20 T and temper-
atures from 4.4 to 0.43 K. The magnetic-field-induced electric polarization in Sm2(MoO4)3 is an order of mag-
nitude larger than that in isomorphic Gd2(MoO4)3. This provides support for the magnetostriction mechanism
proposed by us for the MEE in rare-earth molybdates. The polarization in Sm2(MoO4)3 was found to fall off
with time. The relaxation time constant τ increases with decreasing temperature from τ = 102 s at T = 4.4 K to
τ ≈ 103 s at T = 0.43 K. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The metastable orthorhombic ferroelectric fer-
roelastic phase of samarium molybdate, β'-
Sm2(MoO4)3, exists at temperatures below 197°C [1].
The magnetoelectric effect (MEE) in Tb2(MoO4)3 and
Gd2(MoO4)3 compounds isomorphic to samarium
molybdate was studied experimentally in [2–5]. At liq-
uid-helium temperatures, the magnetoinduced electric
polarization (MEP) in Tb2(MoO4)3 is two orders of
magnitude larger than that in Gd2(MoO4)3. This result
provides supportive evidence for the magnetostriction
mechanism of the MEE in rare-earth molybdates,
which is described in [2–5]. It seemed important to
check whether this mechanism of the MEE operates in
other rare-earth molybdates. This stimulated the
present experimental study of the MEE in Sm2(MoO4)3.
The measurements were carried out at temperatures
varying from 4.4 to 0.43 K and magnetic fields of up to
20 T for two magnetic field orientations, along the
[010] and [100] axes.

2. SAMPLES AND EXPERIMENT

An Sm2(MoO4)3 single crystal was grown in accor-
dance with the Czochralski method [6]. The larger face
of a single-domain sample measuring 7 × 7 × 1 mm was
oriented parallel to the (001) plane. The technique
employed to prepare single-domain samples was
described in [7–9]; the measurement technique, in [10].
The MEP was measured along the [001] axis. The
potential difference between the (001) sample faces
was measured with a Keithley-617 electrometer. The
input capacitance of the electrometer was Cem =
435.5 pF, and the capacitance of the sample was
Csample = 3.93 pF. A capacitor with Cadd = 291 pF was
connected in parallel with the sample. The electrometer
1063-7834/02/4401- $22.00 © 20145
input time constant was τem > 104 s. The measurement
error was ~5%.

3. RESULTS

Figure 1 presents a cycle of the MEP variation
(ABCD) observed in a single-domain Sm2(MoO4)3

sample at T = 1.4 K in a [010]-oriented magnetic field.
The arrows indicate the direction followed in the ABCD
cycle in the measurements. The magnetic field was
increased at a rate dH/dt = 0.0755 T s–1. The magnetic
field dependence of the MEP, Pe↑(H), obtained with the
field increasing from 0 to 20 T is represented graphi-
cally in Fig. 1 as the AB curve. This curve was
measured in 265 s. At the B point, the MEP is 5.46 ×
10−9 C cm–2. At point B (H = 20 T), the magnetic field
was fixed and remained constant for 232 s. During
this time, the MEP changed to –3.01 × 10–9 C cm–2

(point C). At C, the magnetic field started to decrease at
a rate dH/dt = –0.0755 T s–1. Curve CD in Fig. 1 depicts
the dependence of the MEP on the magnetic field,
Pe↓(H), measured with the field reduced from 20 T to
zero. At point D, the magnetic field reached zero and
was fixed. The MEP was found to be 3.12 × 10–9 C cm–2

at this point. After fixing the magnetic field at zero, the
MEP was measured for 338 s. During this time, it
decreased to 1.4 × 10–9 C cm–2. This variation of the
MEP is plotted as the DE section in Fig. 1. Thus, the
MEP in samarium molybdate relaxes in a fixed mag-
netic field. This relaxation is not due to charge leakage
through the electrometer input circuit, because the mea-
surement times at a fixed field, 232 and 338 s, are two
orders of magnitude shorter than τem > 104 s. Similar
MEP measurement cycles were performed for other
magnetic field orientations and temperatures.
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Figure 2 displays the time evolution of the MEP,
Pe(H = const, t), at T = 1.4 K and fixed values of the
magnetic field. The symbols identify the experimental
values of the MEP, and the solid curves are plots calcu-
lated using Eq. (1) (see below). Curve 1 was obtained
in a magnetic field H = 20 T directed along the [010]
axis. This curve corresponds to section BC in Fig. 1.
Curve 2 in Fig. 2 was measured in a zero magnetic field;
it corresponds to section DE in Fig. 1 and was obtained
immediately after the curves AB, BC, and CD in Fig. 1
were measured. Similar MEP dependences on time,
Pe(H = const, t), were obtained in the fields H = 20 T
and H = 0 at all other temperatures and magnetic field
orientations used. As seen from Fig. 2, the Pe(H = const,
t) relations are fitted well by the expression

(1)

The remanent polarization PR depends only weakly on
the magnetic field and is always small compared to P0
(PR < 0.1P0). The magnitude of PR apparently depends
on the sample prehistory. To determine the exact form
of this relationship, one should measure the time evolu-
tion of MEP until its complete relaxation at constant
fields H = 20 T and H = 0 in each ABCD-type cycle.
Such measurements would be time-consuming and,
therefore, are difficult to realize. The MEP relaxation

Pe H cons= t,( ) P0
t
τ
--– 

  PR.+exp=
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 c
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Fig. 1. Field dependences of MEP in Sm2(MoO4)3. T =
1.4 K, field along [010]. Curves AB and CD are experimen-
tal Pe↑↓ (H) dependences obtained in an increasing and a
decreasing field, respectively. Curves BC and DE are the
variations of MEP with time at H = 20 T and 0, respectively.
Curves AF and FA are P↑↓ (H) relations calculated from
curves AB and CD using Eqs. (2) and (3), accordingly.
PH
time constant τ also depends on the magnetic field only
weakly. The table presents the values of τ obtained at
different temperatures and orientations of the 20-T
magnetic field. We readily see that the MEP relaxation
time increases by an order of magnitude with a temper-
ature decrease from 4.4 to 0.43 K. MEP relaxation
noticeably affects the MEP field dependence, because
the measurement time 265 s is comparable to τ. As a
result of the relaxation, the measured Pe(H) dependence
contains a time-dependent contribution and differs
markedly from the true P(H) relation. As follows from
our measurements, the relation connecting P0 with PR

can be approximately described by the expression PR =
βP0, where β ! 1 is a constant. In this case, the time-
dependent contribution can be eliminated using the
relations

(2)

(3)

Here, P↑↓ (H) does not depend on time. The ↑  and ↓
arrows denote the values obtained under increasing and

P↑ H( ) Pe↑ H( )=
Pe↑ H( )

aτ 1 β+( )
----------------------- H ,d

0

H

∫+

P↓ H( ) Pe↓ H( )= Pe↓ H( ) Hd
aτ 1 β+( )
-----------------------

Hm

H

∫–

+ P↑ Hm( ) Pe↓ Hm( ).–

–4

0 100

P
, 1

0–
9  C

 c
m
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t, s
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1
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2

Fig. 2. Time evolution of MEP in Sm2(MoO4)3 at T = 1.4 K.
Curve 1 corresponds to section BC in Fig. 1 and H = 20 T
along the [010] axis; curve 2 corresponds to section DE in
Fig. 1 and H = 0 (after the ABCD cycle in Fig. 1; the field in
the cycle was [010]-oriented).
YSICS OF THE SOLID STATE      Vol. 44      No. 1      2002



MAGNETOELECTRIC EFFECT IN SAMARIUM MOLYBDATE 147
decreasing field, respectively; Hm is the maximum field
reached in the measurements; a = dH/dt is the rate of
magnetic field variation with time; P↑(Hm) is the true
MEP at the maximum field calculated from the experi-
mental curve Pe↑(H) using Eq. (2); and Pe↑(Hm) is the
experimental value of MEP at the start of the decrease
in the field (point C in the cycle in Fig. 1). As seen from
Eqs. (2) and (3), the P(H) and Pe(H) relations coincide
at sufficiently high dH/dt. Curves AB and CD were used
to obtain the AF and FA curves (Fig. 1) by means of
Eqs. (2) and (3), respectively. We readily see that elim-
ination of the time-dependent contribution from the
experimental Pe↑↓ (H) dependences yields a hysteresis-
free P(H) relation. Similar results were obtained when
relaxation was taken into account at 0.9 and 0.43 K. At
4.4 and 2.6 K, the calculated P(H) relations exhibit a
slight hysteresis, which, in a zero magnetic field, is
≈5% of the maximum value of the MEP for a given
curve and decreases down to zero with the field raised
to its maximum level. Figure 3 displays the P↑(H) rela-
tions obtained for Sm2(MoO4)3 at different tempera-
tures and magnetic-field orientations after the time-
dependent contribution was subtracted from the Pe↑(H)
dependences (curves 1–10). The MEP grows in magni-
tude with decreasing temperature. The 1 and 6 depen-
dences, obtained at 4.4 K, are fitted well in the weak-field
region, H < 5 T, by a relation that is quadratic in the field.
At higher fields and lower temperatures, this relation
fails. The inset to Fig. 3 presents the field dependences of
the MEP in Gd2(MoO4)3 taken from [5].

4. DISCUSSION

A magnetostriction mechanism of the MEP in ferro-
electric rare-earth molybdates was proposed in [3].
This mechanism is based on the assumption that mag-
netostriction affects the electric polarization of these
ferroelectric compounds. A comparison of the field
dependences of the MEP, P(H), obtained in this work
for Sm2(MoO4)3 (Fig. 3) with the results quoted from
[5] for Gd2(MoO4)3 (inset to Fig. 3) qualitatively sup-
ports the applicability of the magnetostriction mecha-
nism to the MEP in Sm2(MoO4)3. As seen from Fig. 3,
the MEP in Sm2(MoO4)3 is twenty times that in
Gd2(MoO4)3. One should take into account that the
effective magnetic moment of the Sm3+ ion (µeff =

gµB  = 0.845µB) is an order of magnitude
smaller than that for Gd3+ (µeff = 7.94µB). Here, g is the
magnetomechanical ratio (g = 2/7 for Sm3+, and g = 2
for Gd3+), µB = 0.9273 × 10–20 G cm3 is the Bohr mag-
neton, and J is the total angular momentum (J = 5/2 for
Sm3+ and 7/2 for Gd3+). The values of g and J for the
rare-earth ions were taken from [11]. The P(H) rela-
tions for Gd2(MoO4)3 show a tendency to saturation in
relatively weak fields. At T = 4.2 K (curves 1 and 2 in
the inset to Fig. 3), the tendency to saturation is seen in

J J 1+( )
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a field H = 10 T, while at T = 0.4 K (curves 3 and 4
in the inset), it is seen already in a field of about 2 T.
The corresponding relations obtained for Sm2(MoO4)3
do not exhibit any sign of saturation even at 20 T. These
findings agree qualitatively with the magnetostriction
mechanism. The orbital angular momentum of the Sm3+

ion in samarium molybdate is nonzero (L = 5). This
implies that the charge cloud of the outer 4f electrons of
the Sm3+ ion is spatially anisotropic. An external mag-
netic field changes the orientation of the Sm3+ magnetic
moment. Spin–orbit coupling in rare-earth ions is con-
siderably stronger than the 4f-electron interaction with

Relaxation time τ of the magnetoinduced electric polariza-
tion in Sm2(MoO4)3 measured at different temperatures in a
field of 20 T. Column 2: field along the [010] axis; column 3:
field along [100]

T, K τ, s; [010] τ, s; [100]

4.4 127 128

2.6 279 192

1.4 337 403

0.9 490 490

0.43 534 828
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Fig. 3. Field dependences of the MEP in Sm2(MoO4)3 after
elimination of the time-dependent contribution. Curves 1–5
correspond to the field parallel to the [010] axis and curves 6–
10 correspond to the [100]-oriented field. T (K): (1, 6) 4.4,
(2, 7) 2.6, (3, 8) 1.4, (4, 9) 0.9, and (5, 10) 0.43. Inset shows
the field dependences of MEP in Gd2(MoO4)3. Units of
measurement are the same as in the main figure. Curve 1:
T = 4.2 K, H along [010]; (2) T = 4.2 K, H along [100];
(3) T = 0.4 K, H along [010]; and (4) T = 0.4 K, H along
[100].
2



148 PONOMAREV et al.
the crystal field. Therefore, the Sm3+ charge cloud also
changes its orientation together with the magnetic
moment. The rotation of the spatially anisotropic
charge cloud acted upon by the external magnetic field
deforms the crystal environment of the Sm3+ ion (such
deformations are called single-ion magnetostriction),
with the result that the electric polarization of the
samarium molybdate changes. The Gd3+ ion has a zero
orbital angular momentum. This means that the charge
cloud around the Gd3+ ion is spherically symmetric.
Therefore, its rotation driven by the magnetic field does
not cause the crystal-field environment to deform. The
magnetostriction deformation in gadolinium molyb-
date originates from the magnetic dipole–dipole inter-
action. The magnetostriction created by dipole–dipole
interaction is known to be several orders of magnitude
lower than single-ion magnetostriction. This is what
accounts for the observed relation between the magni-
tudes of the MEP and µeff in Sm2(MoO4)3 and
Gd2(MoO4)3. The presence of P(H) saturation in
Gd2(MoO4)3 and its absence in Sm2(MoO4)3 are like-
wise explained as being due to the values of the orbital
angular momenta of the Gd3+ and Sm3+ ions. The non-
zero orbital angular momentum of the Sm3+ ion
accounts for the considerably higher effective field of
magnetocrystalline anisotropy in Sm2(MoO4)3 com-
pared to Gd2(MoO4)3, where the Gd3+ ion has a zero
orbital angular momentum. This is explained by the
fact that rotation of the nonspherical 4f-electron charge
cloud of the Sm3+ ion brings about an increase in the
energy of the 4f-electron interaction with the crystal
field, whereas rotation of the spherically symmetric
charge cloud of Gd3+ does not change the energy of this
interaction. Therefore, the saturation of the magnetiza-
tion, and, hence, of the P(H) dependences in
Gd2(MoO4)3, occurs in weaker fields than in
Sm2(MoO4)3. As seen from Fig. 3 (curves 1–10), the
values of MEP in Sm2(MoO4)3 measured in magnetic
fields oriented along the [010] and [100] directions are
different. For instance, at a temperature T = 0.43 K and
magnetic field H = 20 T, the MEP is –8.35 × 10–9 C cm–2

in a [010]-oriented field (curve 5 in Fig. 3) and 6.93 ×
10−9 C cm–2 for a field directed along the [100] axis
(curve 10 in Fig. 3). These differences are observed
throughout the field and temperature ranges studied.
Similar measurements made on Gd2(MoO4)3 (curves 1–
4 in the inset to Fig. 3) yield practically the same abso-
lute values of the MEP for the [010]- and [100]-oriented
fields. The theory of MEE [12] gives the following rela-
tion for the MEP:

(4)

Here, ϕ is the angle specifying the field direction in the
basal plane and ξ is a constant. Equation (4) predicts the
same absolute value of the MEP for a ϕ angle changed
by 90°. This prediction does not agree with the experi-
mental data obtained for Sm2(MoO4)3. The quadratic

P H( ) 1/2( )ξH2 2ϕ .sin–=
P

field dependence of the MEP predicted by this theory is
observed to hold for Sm2(MoO4)3 only at T = 4.2 K
and H < 5 T. In [13], another expression was derived for
the MEP,

(5)

Here, mx, my are the magnetization components and Γ1
and Γ2 are constants. Equation (5) is capable of
accounting for the asymmetry in the absolute values of
the MEP in Sm2(MoO4)3. A more comprehensive com-
parison of the theory of [13] with the behavior of the
MEP in Sm2(MoO4)3 would require magnetization
measurements to be carried out.

The MEP relaxation in Sm2(MoO4)3 is apparently
caused by the screening of electric polarization, the
effects considered in [14].
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Abstract—The effect of photoelastic relaxation is investigated using triglycine sulfate ferroelectric crystals as
an example. The optical and deformation contributions to the photoelastic relaxation are described, and their
percentage in the combined effect is determined. Consideration is given to the temperature dependences of the
relaxation amplitudes of the path difference and birefringence, which are induced by mechanical stress. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photoelastic (piezooptic) relaxation can be consid-
ered to be a change in the optical parameters of a sam-
ple with time under the action of constant mechanical
stress. Earlier [1, 2], we proved the piezocaloric mech-
anism of relaxation changes in the path difference δ∆km

under the mechanical stress σm for triglycine sulfate
crystals. Romanyuk et al. [3] noted that the relaxation
change in the path difference δ  is determined by
two contributions, namely, the optical and deformation
contributions. The optical contribution is due to the
relaxation change in birefringence δ∆ . The defor-
mation contribution is associated with the relaxation
change in the crystal thickness δ  along the direction
of light propagation. However, two problems remain
unclear: (1) the magnitude of each of the contributions
to the combined effect of relaxation of the path differ-
ence and (2) the reasons for the different signs of the
quantities δ , which can also be governed by the dif-

ferent signs of the two contributions to δ .

In this paper, we analyze the temperature depen-
dences of the relaxation amplitudes of the birefringence
δ∆  for a purely piezooptic effect, which accounts
for the change in birefringence (rather than in the path
difference) under the mechanical stress σm.

2. THEORETICAL BACKGROUND

The two-index notation for δ , δ∆ , and δ
is not an indication of the tensor character of these
quantities (they are not tensors). The lower indices refer
to the experimental conditions: k = 1, 2, and 3 are the
subscripts indicating the directions of light propagation
and m = 1, 2, and 3 stand for the directions of pressure
action.

∆km
r

nkm
r

dkm
r

∆km
r

∆km
r

nkm
r

∆km
r nkm

r dkm
r
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The optical and deformation contributions to the
photoelastic relaxation effect are related to the relax-
ation change in the path difference by the following
expression:

(1)

where dk is the sample dimension along the direction of
propagation of the light beam and ∆nk is the birefrin-
gence.

Knowing δ  and substituting the experimental

values of δ  into relationship (1), we can determine

the pure piezooptic relaxation δ∆ .

It should be emphasized that the relaxation of the
linear dimensions δ  of the sample has a purely
piezocaloric nature, because the possible deformation
relaxation due to plastic effects is absent. This is
explained by the fact that the acting mechanical stresses
are rather small: they are more than one order of mag-
nitude less than the mechanical strength of triglycine
sulfate crystals (in our experiments, we used the
mechanical stress σm = 10–50 × 105 N/m2). Moreover,
the lack of plastic deformations is confirmed by the fact
that residual effects are also absent after removal of the
mechanical stresses and completion of the relaxation

change in the path difference δ (τ), where τ is the
relaxation time.

The relationship for calculating δ  can be
obtained from the following considerations. Rapid
action of the mechanical stress σm results in an adia-

batic change in temperature δ , which can be deter-
mined from the formula [4]

(2)
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where the subscript m indicates the direction of pres-
sure action, αm is the coefficient of linear expansion
along the direction of the pressure action, Cp is the heat
capacity at a constant pressure per unit volume, and T0

is the ambient temperature.

The temperature of the sample regains its initial
value for a relaxation time τ due to heat exchange with
the environment. The relaxation change in temperature

(–δ ) causes the relaxation change in the sample

dimension δ  that is proportional to the thermal
expansion coefficient αk and the change in temperature,
that is,

(3)

Here, the subscript m indicates the dependences of the
relaxation temperature change and the deformation
relaxation on the direction of pressure action. Relation-
ship (3) will be used for calculating the deformation
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Temperature dependences of the relaxation amplitudes of

the stress-induced path difference δ /dk (solid line,

experiment) and birefringence δ∆  (dashed line, calcula-

tion) for the triglycine sulfate crystal: (1) δ /d1 and

δ∆ , (2) δ /d2 and δ∆ , and (3) δ /d3 and

δ∆  (σm = 50 × 105 N/m2).

∆km
r

nkm
r

∆13
r

n13
r ∆23

r
n23

r ∆31
r

n31
r

P

relaxation and, taking into account expression (1), the

deformation contribution to δ  (the second term).

In order to determine the relaxation of birefrin-
gence, we rewrite relationship (1) with allowance made
for relationships (2) and (3) in the following form:

(4)

By substituting the known values of αk, αm [5], and
∆nk [6] for triglycine sulfate crystals and our experi-

mental values of δ  into relationship (4), we calcu-

lated the relaxation changes in birefringence δ∆
after applying and relieving the mechanical stress σm.

The sign of the experimental δ  value with respect
to the natural path difference ∆k was determined using
standard compensation techniques with the following
criterion: if the relaxation change in the path difference

δ  increases or decreases the natural path difference

∆k, the value of δ  is positive or negative, respec-
tively.

The relaxation change in birefringence δ∆  can
also be calculated in a different way. By subtracting the
deformation contribution (the second term) from the
temperature changes in the path difference δ∆k(T) =
δ∆nk(T)dk + ∆nkδdk(T) we derive, as was done by
Ivanov et al. [7], the temperature dependences of the
relaxation change in birefringence δ∆nk(T) and, corre-
spondingly, the temperature derivative d∆nk(T)/dT.
Knowing this derivative and the relaxation temperature

change –δ , we determine the relaxation of birefrin-
gence at each temperature T0:

(5)

or, taking into account relationship (2),

(6)

Both calculation techniques lead to identical results,
to within the limits of experimental error in measuring

δ (T) and δ∆k(T).

3. RESULTS AND DISCUSSION

The figure shows temperature dependences of the
absolute amplitude of relaxation changes in the path

difference δ  per unit length (solid line) for trigly-
cine sulfate crystals. The calculated temperature depen-

dences of the relaxation change in birefringence δ∆
(dashed line) for experimental configurations, which
provide relatively high values of the relaxation change

in δ , are also depicted in the same figure. The indi-
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Optical and deformation contributions (calculated per unit length) and relaxation changes in the path difference /dk for

triglycine sulfate crystals at different temperatures and σm = 50 × 105 N/m2

Geometry 
of the 

experiment

T0 = 293 K T0 = 321 K T0 = 327 K

/dk

× 10–6

optical 
contribu-
tion, %

deforma-
tion contri-
bution, %

/dk

× 10–6

optical 
contribu-
tion, %

deforma-
tion contri-
bution, %

/dk

× 10–6

optical 
contribu-
tion, %

deforma-
tion contri-
bution, %

k = 1 2.2 96.1 3.9 17.3 91.0 9.0 –1.7 100.3 –0.3

m = 3

k = 2 –0.2 103.5 –3.5 1.7 70.0 30.0 –0.1 101.0 –1.0

m = 3

k = 3 3.0 117.0 –17.0 –8.6 166.0 –66.0 3.8 99.4 0.6

m = 1

δ∆km
r

δ∆km
r δ∆km

r δ∆km
r

ces k, m = 1, 2, and 3 correspond to the directions coin-
ciding with the axes X1, X2, and X3 of the optical indic-
atrix of the crystal.

The comparative data on optical and deformation
contributions [the first and second terms in relation-
ship (1)] to the relaxation of the path difference at dif-
ferent temperatures are given in the table.

Analysis of the data presented in the table and the
figure revealed the following features.

(I) The deformation contribution to δ  has oppo-
site signs at different experimental configurations; i.e.,
under certain conditions, the deformation contribution
decreases the relaxation change in the path difference

δ  (for example, at k = 3, m = 1, and T < Tc and at k =
1, m = 3, and T > Tc), and, under other conditions, the

deformation leads to an increase in δ  (for example,
at k = 1, m = 3, and T < Tc and at k = 3, m = 1, and
T > Tc).

(II) Upon passing through Tc, the deformation con-
tribution at k = 1, m = 3 and k = 3, m = 1 changes sign.

(III) In all cases, an increase in the temperature to Tc

is accompanied by an increase in the magnitude of the
deformation contribution. At T > Tc, the deformation
contribution is small in magnitude (≤1%; hence, it is
not shown in the figure) and is virtually temperature
independent. The small magnitude of the deformation
contribution in the paraelectric phase is determined pri-

marily by the small magnitude of δ . The smallness
of the latter quantity results from small coefficients αk

in relationship (3) at T > Tc [5].

(IV) The relaxation changes in birefringence are
very small compared to the natural changes (∆n1 =
0.075, ∆n2 = 0.028, and ∆n3 = 0.103). This is confirmed

by the following values (T = 273 K): δ∆ /∆n1 ≈

δ∆ /∆n3 ≈ 3 × 10–5 (0.003%) and δ∆ /∆n2 ≈ 1.4 ×

∆km
r

∆km
r

∆km
r

dkm
r

n13
r

n31
r n32

r
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10–5 (0.0014%). However, compared to the piezooptic
changes, the relaxation changes are rather large. For
example, at T = 293 K, we have the following values:

δ∆ /δ∆n13 ≈ 5.7%, δ∆ /δ∆n31 ≈ 3.0%, and

δ∆ /δ∆n23 ≈ 1.5%. At T ≈ Tc, these ratios are as fol-

lows: δ∆ /δ∆n13 ≈ 16.4%, δ∆ /δ∆n31 ≈ 16.6%, and

δ∆ /δ∆n23 ≈ 7.0%. Here, δ∆nkm are the piezooptic
changes, which were determined from the experimental
piezooptic changes in the path difference δ∆km with
inclusion of the elastic contribution according to the
procedure described in [8].

(V) The magnitude of the deformation contribution
is smaller than that of the optical contribution over the
entire temperature range covered. However, the defor-
mation contribution near Tc reaches high values and, at
k = 3 and m = 1, constitutes 66% of the combined effect.

As follows from item V, the opposite signs of the
optical and deformation contributions to the relaxation
change in the path difference are not responsible for the

opposite signs of the δ  quantities and the sign
reversal upon passing through Tc, because the deforma-
tion contribution is universally smaller. The opposite

signs of δ  are determined by the signs of thermoop-
tic (the path difference) and piezocaloric effects in the

piezocaloric model of the δ  relaxation, which was
described earlier in [1–3].

In conclusion, we note that the sign reversal

observed for relaxation of the path difference δ  and

the birefringence δ  at T = 308 K (curve 2 in the fig-
ure) is nothing more than the piezocaloric reflection of
the thermooptic effect. The sign reversal is characteris-
tic of the thermooptic effect in the case of light propa-
gation along the X2 axis [7].

n13
r n31

r

n23
r

n13
r n31

r

n23
r

∆km
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Abstract—A correlation between the specific features of the electron emission spectrum of a ferroelectric elec-
tret and the behavior of the potential at the surface of the sample is determined within the theoretical approach
proposed. The physical nature of the main features in experimental emission spectra is interpreted in terms of
the behavior of the potential relief. It is revealed that the electret charge relaxation affects the spectrum shape
due to the bifurcation (branching) of singularities in the spectrum. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The distribution of the electric field in a ferroelectric
plays an important role in the processes of electron
emission from cold cathodes [1, 2] and ferroelectric
electrets exposed to x-ray radiation [3–6]. In the latter
case, as was noted in [5], the problem involves two
aspects concerned with the behavior of tangential- and
normal-to-surface components of the electric field. The
normal component has a maximum in the surface layer
owing to the injected electron charge [3], whose prox-
imity to the surface of a solid determines the emission
intensity [6]. The behavior of the tangential component
is governed by the stability of the homogeneous state
along the sample surface and can exhibit an oscillating
character [5], resulting in a complex pattern of the
observed emission spectrum I(ε). In the present work,
we theoretically proved a direct correlation between the
singularities in the spectrum shape and the behavior of
the potential along the surface of a ferroelectric electret.
Formal aspects of this correlation are considered below.

2. THEORETICAL ANALYSIS

The proposed approach is a generalization of the
approximation technique described earlier in [7] and, in
essence, consists in the following. We assume that j0(ε)
is the spectral density of the emission current from the
neutral surface. In this case, the contribution to the cur-
rent dI from the segment dS in the vicinity of the point
with coordinates (x, y) and a potential ϕ(ρ) (ρ is the
radius-vector of the point) is determined from the
expression

(1)

The electron energy ε and potential ϕ are measured
from the standard energy level, which is specified by
the measuring system of the spectrometer (hereafter,

dI j0 ε ϕ–( )dS.=
1063-7834/02/4401- $22.00 © 20153
the potential will be taken to mean the potential energy
of an electron). Integration of expression (1) over the
surface of the sample is performed in two stages: first,
along the equipotential lines l and, then, over all physi-
cally possible values of the potential ϕ from the stand-
point of recording the emission. The result for I(ε) can
be represented as the convolution of j0(ε) and function
n(ϕ):

(2)

The function n(ϕ) is determined by the electric field
E = –∇ϕ (ρ)at the surface of the sample, that is,

, (2a)

and formally coincides with the definition of the den-
sity of electron states for a two-dimensional lattice,
which, under certain conditions, exhibits specific fea-
tures known as van Hove singularities [8]. In our case,
as follows from expression (2a), these features are asso-
ciated with the regions characterized by a low field E at
the surface of the electret and should give rise to singu-
larities in the shape of the spectrum I(ε). Reasoning
from the general behavior of the n(ϕ) function [8] in
these regions, the sharpest singularities in I(ε) should
be expected in the one-dimensional case. Physically,
this situation corresponds to the formation of surface
anisotropic band structures in the distributions of the
electric field and polarization. The potential differences
along one of the directions in these structures are small,
and the problem under consideration can be treated as a
one-dimensional case. The change-over to more sym-
metric two-dimensional distributions should lead to a
smoothing of the singularities in I(ε). Similar qualita-
tive changes in the spectra are actually observed in
experiments during ageing of the electrets: the shape of

I ε( ) j0 ε ϕ–( )n ϕ( ) ϕ .d∫=

n ϕ( ) dl
∇ϕ ρ( )
-------------------

l

∫=
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the I(ε)spectra changes from a set of sharp δ-shaped
maxima to broad distributions whose width can be as
large as several hundred electron-volts and whose
structure is weakly pronounced [3, 4]. Let us now begin
our theoretical analysis of the changes in the shape of
I(ε)with the one-dimensional case.

In the one-dimensional case, n(ϕ) = 1/|E(ϕ)|. We
consider three types of characteristic points in the
potential ϕ(x) that can give rise to singularities in the
n(ϕ) function and the I(ε) spectrum. These are the
extrema (minimum or maximum) and an inflection
point. We can write the following equations in the
vicinity of these characteristic points:

(3)

(4)

For j0(ε), we accept a simple approximation of the
form

(5)

where θ(ε) = 0 (at ε < 0) and 1 (at ε > 0).
Expression (5) corresponds to a spectrum in the

form of a cascade maximum, which is typical of the
neutral surface [9, 10]. The parameter γ characterizes

ϕ x( ) ax2, a _ 0,=

ϕ –λx bx3.+=

j0 ε( ) ε/γ–( )θ ε( ),exp∼
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Fig. 1. Theoretical shape of the electron emission spec-
trum I(ε) in the vicinity of the (1) minimum, (2) maximum,
and (3) horizontal step of the potential. The electron energy
ε is measured from the singularity. The inset shows the
experimental emission spectrum of lead magnesium niobate
[3].
P

the width of this maximum; as a rule, it is approxi-
mately equal to ~10 eV.

By using relationships (2) and (2a) with due regard
for relationship (5), the intensity I(ε) in the vicinity of
the potential extrema can be expressed through the
probability integrals [11]. Specifically, for a minimum
(a > 0), the expression for I(ε) has the form

(6)

where s =  and  = ε/γ is the dimensionless electron
energy.

The parameter ϕc characterizes the potential differ-
ence in the vicinity of the singularity. For the region  >
ϕc in expression (6), the upper limit of integration

should be fixed. In our case, it is taken as s = sc = 
and I(ε) decays exponentially. At ε < 0, we have the
intensity I(ε) = 0 in the accepted approximation (5) for
j0(ε).

According to relationship (6), the intensity I(ε) is
proportional to the characteristic length l = (γ/ |a |)1/2,
which is specified by the curvature of the potential in
expression (3). As the curvature of the potential
decreases, the intensity I(ε) increases.

The shape of the spectra, which correspond to the
extrema in the potential at identical values of l, is shown
in Fig. 1 (for the convenience of graphical representa-
tion, the I(ε) intensity at the maximum is diminished by
a factor of two). At ε ~ 0, the spectra are characterized
by a singularity of the type

(7)

(where α = 0.5 and C and I0 are constants) to the right
and to the left of this point for minimum and maximum,
respectively. In the former case, I0 = 0.

Now, we consider the evolution of the spectrum in
the vicinity of the inflection point in ϕ(x). At λ < 0 in
formula (4) (for definiteness, we assume that b > 0), the
function n(ϕ) in expression (2) has no singularities,
whereas I(ε) exhibits a single structureless maximum
whose intensity decreases with a decrease in λ. How-
ever, the situation reverses with an increase in λ.
Indeed, at λ = 0, the potential is characterized by a hor-
izontal step and the spectrum shows a maximum. The
shape of the maximum is displayed in Fig. 1 (curve 2).
In the vicinity of ε & 0, the spectrum has a singularity
of type (7) but with α = 1/3. With a further increase in
λ, this maximum splits into two maxima. Their energy
positions εB, A, depending on λ (see the inset (b) in
Fig. 2), are determined by zero values of the electric
field as a function of ϕ. With allowance made for
expression (4), this leads to the relationships εB, A ~
±(λ/3b)3/2. The splitting of the lines is due to branching
(bifurcation) of the singularities in the function n(ϕ).

I ε( ) l s2–( ) t2( )exp t, ϕc ε 0,> >d

0

s

∫exp∼

ε ε

ε

ϕc

I ε( ) C ε α I0+∼
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This function has no singularities to the left of the bifur-
cation point λ = 0 and exhibits two root singularities to
the right of this point, namely, at the points εB, A: n(ϕ) ~
|ϕ – εB, A|–1/2. The reverse change in the parameter λ is
accompanied by the confluence of two maxima in the
spectrum.

Let us illustrate the aforesaid with a fragment of the
spectrum for lead magnesium niobate electret (see the
inset in Fig. 1). The main features in the experimental
spectrum can be explained in terms of quasi-one-
dimensional (band) distributions of the electric field
and polarization in the sample with the potential relief
in the vicinity of the side electrode, which is shown in
the inset (a) in Fig. 2. (The behavior of the potential
relief agrees with the inferences made in [5] on the pos-
sible oscillating behavior of the potential on the surface
of the ferroelectric electret.) The spectrum can be rep-
resented as the superposition of the contributions from
the singularities A, B, and C in the potential. By using
the data shown in Fig. 1 and choosing the appropriate
energy position of the lines, we can obtain the spectrum
I(ε) shown in Fig. 2, which is in qualitative agreement
with the experimental spectrum. Maxima A, B, and C in
the spectrum correspond to contributions from the
neighborhood of the corresponding points in ϕ(x). The
structure with two extrema (A, B) in ϕ(x) corresponds
to potential (4) with λ > 0 and b > 0. As is the case with
the bifurcation effect, a decrease in the parameter λ

B
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Fig. 2. Theoretical shape of the emission spectrum I(ε) for
the potential relief ϕ(x) shown in the inset (a): the maxima
A, B, and C in the spectrum correspond to the points A, B,
and C in the potential relief ϕ(x) in the vicinity of the side
electrode of the electret. The inset (b) shows the energy
location of lines A and B in the spectrum at different param-
eters λ in the course of bifurcation (branching) of singular-
ities in the spectrum.
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results in convergence of the extrema (A and B) in the
potential and lines A and B in the spectrum (see the
inset (b) to Fig. 2) and their confluence at λ = 0. Subse-
quently, at λ < 0, there remains only a single line in the
I(ε) spectrum at the energy ε = ε0. Similarly, the maxi-
mum C in Fig. 2 can split with an increase in λ.

The change in the spectrum shape when going over
to two-dimensional distributions of the electric field
can be considered using extrema in the potential ϕ as an
example. In this case, the potential is determined by
two values of the curvature a± in expression (3) and two
values of the length l± = (γ/|a±|)1/2 [see expression (6)].
The intensity I(ε) is characterized by their average
value  = (l+l–)1/2. If one of the parameters l± (for exam-
ple, l+) exceeds the sample dimension L, we have the
quasi-one-dimensional case discussed above. As the l+
parameter decreases to l+ & L, the potential in the
immediate vicinity of the extremum becomes essen-
tially two-dimensional and the function n(ϕ) is constant
in this region, as can easily be shown using relationship
(2a). This lead to the truncation of vertices of the A and
B maxima shown in Fig. 2 and the appearance of hori-
zontal plateaus in the spectrum. With a further decrease
in l+, their width increases. In this energy range, the I(ε)
spectrum has the shape of a broad maximum with a
weakly pronounced structure, as was noted above.

3. CONCLUSION

It was demonstrated that the complex shape of the
energy spectra I(ε) of electron emission from ferroelec-
tric electrets is determined by the singularities in the
distributions of the electric field and polarization over
their surface. The character of I(ε) is qualitatively dif-
ferent for a quasi-one-dimensional (band) distribution
and a more symmetric two-dimensional distribution of
the electric field. This circumstance can be used in ana-
lyzing the dynamics of the domain structure and eluci-
dation of the physical mechanisms of electron emission
from ferroelectric electrets.
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Abstract—This paper reports on new results of experimental investigations into the nature of the electrical
resistivity ρ(T) ≅  const at T < Tcrit for YBaCuO and LaSrMnO dielectric films. The films are prepared by pulsed
laser deposition and contain nanocrystalline clusters with metallic conductivity. Dependences of the electrical
resistivity ρ(T) ≅  const are observed for the epitaxial films YBaCuO (Tcrit = 10 K) with a tetragonal structure
after exposure to KrF excimer laser radiation and for the as-prepared amorphous films LaSrMnO (Tcrit ≅  160 K).
The effect of interest (ρ(T) ≅  const) manifests itself in the case when the optical spectra of the studied samples
contain portions attributed to absorption by free charge carriers. The inference is made that this effect can be
associated with tunneling conduction in a system of quantum dots. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rapid progress in nanoelectronics has stimulated a
continuously increasing interest expressed by research-
ers in systems with different-type disordered structures
containing crystalline or crystal-like nanoclusters
(from several nanometers to several tens of nanometers
in size) [1–13]. A specific feature of these systems is
that they are hard to produce in materials with a perfect
long-range order. From the practical standpoint, a ran-
domly inhomogeneous medium—a dielectric matrix
(in an amorphous or crystalline state) containing clus-
ters with metallic conductivity—holds considerable
promise. In this regard, metallic oxides (high-tempera-
ture superconductors and manganates), in which the
mechanisms of formation of structural inhomogeneities
are associated with the nature of these compounds [14–
20], appear to be beyond comparison. This inhomoge-
neous medium is sometimes referred to as a foggy or
droplet phase [17]. When the electrical conductivities
of inhomogeneous regions differ considerably, the total
electrical conductivity of the system is generally lim-
ited by two main channels: electron tunneling between
neighboring clusters and tunneling between particular
localized states formed by impurity atoms or point
defects in the dielectric material. In the latter case, hop-
ping conduction with a varying hopping length, as a
rule, is realized at low temperatures and the tempera-
ture dependences of the electrical conductivity for the
samples obey the Mott law:

(1)σ T0/T( )1/4–[ ] .exp∼
1063-7834/02/4401- $22.00 © 20157
In both cases, the tunneling depends on temperature
and proceeds with the participation of phonons. For
nonmetallic low-resistance inclusions, the former
mechanism does not differ radically from the latter
mechanism. Actually, we are dealing here with two dif-
ferent channels of hopping conduction. In the presence
of clusters with metallic conductivity, dielectric films
acquire the characteristic properties of granular metals.
Intensive investigations performed over the last
decades revealed that the electrical conductivity of
these films changes with temperature according to the
so-called one-half power law [1, 11],

(2)

which is primarily related to the size distribution of the
metallic grains involved [11].

However, experiments carried out for three systems
(YBaCuO, LaSrMnO, and PrCaMnO) with the use of a
planar geometry of electrodes demonstrated that, in the
case when the dielectric films contain small-sized clus-
ters with metallic conductivity, the temperature depen-
dences of the electrical resistivity ρ exhibit portions
with ρ(T) ≅  const [18, 21, 22]. For YBaCuO amorphous
films, similar data were obtained for sandwich-type
structures (Ag-a-YBaCuO–Cr–glass) [21]. This pro-
vides strong evidence that the phenomenon observed is
related to neither surface contamination of high-resis-
tance films nor to instrumental limitations in the course
of measurements. In all the above cases, the films were
prepared through pulsed laser deposition when the
cluster formation was especially pronounced.

σ T1/T( )1/2–[ ] ,exp∼
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In our recent work [21], this specific feature of
dielectric systems with a disordered structure was inter-
preted in terms of the transformation of grains with
extremely small sizes (of the order of several nanome-
ters) into quantum dots. It is evident that analysis of the
electrical conductivity in this system should account for
the quantum-confinement effects. As is known from
quantum mechanics, the electrical resistivity upon elec-
tron tunneling between two discrete levels can be char-
acterized by the dependence ρ(T) = const.

The spacing ∆ between the quantum-confinement
levels is determined by the cluster size R and the den-
sity of states at the Fermi level N(EF) and can be repre-
sented by the relationship

(3)∆ R3N EF( )[ ] –1
R3 p/EF[ ] 1–

,≅≈
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Fig. 1. Temperature dependences of the electrical resistivity
for (1–3) amorphous and (4, 5) crystalline
La0.6Sr0.2Mn1.2O3 samples with a planar geometry of elec-
trodes. Film growth temperature TS, °C: (1) 450, (2) 550,
(3) 600, (4) 650, and (5) 700. The film thickness l is 1 ×
10−5 cm, and the interelectrode spacing is 0.3 cm. The dc
electric field strength used in resistivity measurements is
equal to (1–3) 1 × 103 and (4, 5) 3.3 V/cm. The inset shows
the optical transmission spectra of amorphous films at
T = 300 K. TS, °C: (1a) 450, (2a) 550, and (3a) 600.
PH
where p is the free charge carrier concentration, which
depends on the density of states N(EF).

The electron tunneling between quantum dots is
governed by the relationship between ∆, kT, and the
charge energy 

(4)

(c = χR/2 is the capacitance of a spherical cluster of
radius R/2). When solving this problem, the main diffi-
culties are associated with the spread in grain size and
free charge carrier concentration. According to
Smirnov [13], the cluster plasma technique makes it
possible to obtain materials with grains of identical size
(in this case, nonactivation tunneling becomes possible
[11]). However, in our opinion, this is highly improba-
ble. Among theoretical investigations concerned with
electron tunneling between two quantum dots, special
mention should be made of the recent work by Burdov
[23]. Burdov proved that, despite the Coulomb block-
ade limiting the electron tunneling between grains, the
electron density can oscillate between quantum dots
and a charge equal to the elementary charge periodi-
cally flows from one quantum dot to another [23]. A
similar problem for granular systems still remains
unsolved. However, it seems likely that the results
obtained in [23] can be easily applied to granular sys-
tems, because this special case can be reduced to the
problem of a resistance grating formed by neighboring
grains.

In the present paper, we report new experimental
data concerning the problem of the electrical resistivity
ρ(T) = const in YBaCuO and LaSrMnO films. As in our
previous works [12, 18, 19], the films were prepared by
pulsed laser deposition onto SrLaGaO4 and Nd3Ga5O12
substrates with the use of a KrF excimer laser (τ ≈ 25 ns
and Φ ≅  1.5–2.5 J/cm2 at a target).

2. RESULTS AND DISCUSSION

First, let us consider the situation with amorphous
films containing crystalline clusters, as is the case with
the films studied earlier in [18, 21]. Figure 1 shows the
temperature dependences of the electrical resistivity
ρ(T) for LaSrMnO amorphous films prepared by the
sputtering of an La0.6Sr0.2Mn1.2O3 target at different
temperatures TS of the Nd3Ga5O12 substrates. The por-
tions ρ(T) = const (Tcrit ≅  160 K) are observed at depo-
sition temperatures TS < 650°C. At higher temperatures
(TS ≥ 650°C), there occurs an amorphous–crystalline
transition and the temperature dependences of the resis-
tance ρ(T) exhibit a maximum (typical of this state) at
temperatures near the Curie point [15, 22]. In this case,
the electrical conductivity of the studied films increases
by five or nine orders of magnitude. The positive tem-
perature coefficient of resistances, which is charac-
teristic of metals, manifests itself in the temperature
dependence of ρ = ρ(T) at high electrical resistivities ρ
(~1 Ω cm). This is an important indication that the sam-

U q2c
2=
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ples involve inhomogeneities [17]. The occurrence
of clusters with metallic conductivity can be judged
from the fact that the optical transmission spectra at
"ω < 0.7–0.9 eV contain certain portions attributable to
absorption by free holes in the clusters upon interband
optical transitions [19]. (The boundary value of "ω
decreases from 0.9 to 0.7 eV as the temperature TS

increases from 450 to 600°C.) Earlier [18], we
observed similar portions in the spectra of YBaCuO
amorphous films containing nanocrystalline clusters
with metallic conductivity. It is worth noting that the
increase in transmission of the films (and, correspond-
ingly, the decrease in optical conductivity) in this "ω
range with an increase in the temperature TS, which is
caused by the decrease in volume of the metallic clus-
ters, agrees well with the increase in the electrical resis-
tivity ρ of the samples in the portion ρ(T) = const. By
analyzing the function (1/t)∂t/∂("ω) (where t is the
transmission coefficient) in the long-wavelength spec-
tral range, we determine the product of the metal phase
content Cm by the hole concentration p as follows
[12, 18, 19]:

(5)

Analysis of the transmission spectra of LaSrMnO
films makes it possible not only to determine the con-
centration of metallic clusters but also to evaluate their
size R with the use of the formula [15]

(6)

Here, ξ is the effective permittivity, f(X) = [2X + 3 –
3(1 + X)2/3], and X = VA/VF is the volume ratio of the
antiferromagnetic to ferromagnetic phase. It is assumed
that X ≅  1/Cm. For Cm = 0.02–0.05, we obtain R = 20–
50 Å, which corresponds to the sizes of the clusters
formed in the amorphous films upon pulsed laser depo-
sition [18]. In the case when the hole concentration p is
approximately equal to p ~ 3 × 1021 cm–3, the spacing ∆
ranges from 10–2 to 10–1 eV. This provides an explana-
tion of the critical temperature Tcrit = 160 K.

In our experiments with YBaCuO epitaxial films,
we hoped first of all to reveal the portions with ρ(T) =
const or portions with a nearly zero temperature coeffi-
cient of resistance in the temperature dependences of
the electrical resistivity of films with a tetragonal struc-
ture. These films are of particular interest because they
are characterized by a low oxygen concentration and a
high probability of forming clusters with metallic con-
ductivity. A typical optical transmission spectrum for
these samples is depicted in Fig. 2 (curve 1). Without
going into detail on the short-wavelength spectral
range, we should note that the spectrum contains no
portion corresponding to absorption by free charge car-
riers at "ω < 1.2 eV. This portion is always observed in
the spectra of YBaCuO epitaxial superconducting lay-

1
t
--- t∂

"ω( )∂
--------------- Cm p.≈

R3 135π2ξ 1 X+( )1/3

32m2e2EF f X( )
------------------------------------------.=
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ers (Fig. 2, curve 5) [19]. The high resistance of the
samples makes electrical measurements at low temper-
atures impossible; for this reason, the dependence
ρ(T) ≅  const was not revealed. The portion that corre-
sponds to absorption by free charge carriers and indi-
cates the presence of metallic clusters appears after
high-energy pulsed laser irradiation (Fig. 2, curve 2),
which promotes the formation of inhomogeneities [12].
Unfortunately, precision measurements at low temper-
atures failed due to the higher resistance of the samples
(at T ≅  300 K, the electrical resistance increases by a
factor of five or ten). Note that, even after exposure of
the film to laser radiation, the content Cm of the metal
phase did not exceed 2%.

Success was achieved with an increase in the oxy-
gen content in the films with a tetragonal structure and
a decrease (by approximately one order of magnitude at
T = 300 K) in the electrical resistance of the samples.
The decrease in the sample resistance favorably
affected the measuring technique and permitted us to
use conventional instruments for low-temperature mea-
surements. No indications of a superconducting transi-
tion in the samples were observed at T ≥ 4.2 K. How-
ever, as can be seen from Fig. 2 (curve 3), the portions
corresponding to absorption by free charge carriers
appear even in the spectra of the initial samples.

The temperature dependences of the electrical resis-
tivity of the samples (Fig. 3, curve 3) differ qualita-
tively from those described by the Mott law (1) and
relationship (2). At low temperatures, the local activa-
tion energies δε, which we defined earlier in [10] as
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Fig. 2. Optical transmission spectra of YBa2Cu3O6 + x crys-

talline films with a tetragonal structure (ρ ≅  1.2 × 104 Ω cm
at T = 300 K) (1) prior to and (2) after laser irradiation
(20 pulses, τ ≅  25 ns, J = 0.1 J/cm2) and with a tetragonal
structure and increased oxygen concentration (ρ ≅  3 ×
102 Ω cm at T = 300 K) (3) prior to and (4) after laser irra-
diation (10 pulses, τ ≅  25 ns, J = 0.1 J/cm2). (5) Optical
transmission spectrum of the epitaxial superconducting film
(TC = 90.3 K).
2



160 OKUNEV et al.
δε = ∂lnρ/∂(kT)–1, are close to zero. As the temperature
decreases further, the local energy δε decreases rather
rapidly and becomes equal to 1.65 × 10–4 eV at T = 10 K,
which is five times less than kT. However, the equality
ρ(T) = const does not hold. A virtually exact equality
ρ(T) = const (at T < 10 K) was achieved only after laser
irradiation of the samples (Fig. 3, curve 4). In the range
100 K < T < 300 K, the electrical resistivity of the sam-
ples increases by a factor of 1.5–5. At lower tempera-
tures (T < 20 K), when the system of tunnel-coupled
quantum dots makes the dominant contribution to the
conduction, the electrical resistivity decreases by one
or two orders of magnitude (almost by a factor of 40 in
Fig. 3) as compared to the initial samples. An increase
in the inhomogeneity of the samples under irradiation
can be judged from the changes in the transmission
spectra (Fig. 2). Indeed, considerable bleaching is
observed in the short-wavelength range, whereas the
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Fig. 3. Temperature dependences of the electrical resistivity
for the film with a tetragonal structure and increased oxygen
content (3) prior to and (4) after laser irradiation. The film
thickness l is 1 × 10–5 cm, the interelectrode spacing L is 3 ×
10–3 cm (planar geometry), and the dc electric field strength
F used in the resistivity measurements is 3.5 × 104 V/cm.
The numbering of the curves corresponds to that in Fig. 2.
The inset shows the experimental temperature dependences
of the local activation energy δε = ∂lnρ/∂(kT)–1 for the film
(3a) prior to and (4a) after laser irradiation and the calcu-
lated dependences (1) δε ~ T3/4 and (2) δε ~ T1/2 [corre-
sponding to the Mott law (1) and relationship (2), respec-
tively].
PH
transmission decreases in the long-wavelength spectral
range in the portions associated with absorption by free
charge carriers due to an increase in the amount of clus-
ters with metallic conductivity. Under the assumption
that the hole concentration in clusters with metallic
conductivity corresponds to the carrier concentration in
epitaxial layers with the Curie temperature TC = 90–91 K
(the spectrum of this film is represented by curve 5 in
Fig. 2), the content Cm of the metal phase does not
exceed 2–3% in the initial films and increases to ~5–7%
after irradiation. Making allowance for the tendency
toward a decrease in the size of clusters and the hole
concentration in them, we find that, after laser irradia-
tion of the samples, the amount of clusters with metallic
conductivity in the film bulk can increase by a factor of
four or five. The above estimates were made with due
regard for the influence of the dielectric phase on the
parameters of epitaxial layers [19]. In our opinion, the
most important result obtained in this work is that the
laser irradiation of films leads to a decrease in the dis-
tance between metallic clusters and, hence, to an expo-
nential increase in the electron transition probability.

It remains unclear whether relationship (6) can be
used to determine the size of nonferromagnetic clusters
in YBaCuO films. Nonetheless, we performed the
appropriate calculations with the use of the experimen-
tal results obtained. It was found that the cluster size is
slightly larger and the Tcrit temperature is slightly less
than those for the LaSrMnO amorphous samples. How-
ever, the situation with YBaCuO films is complicated
by the specific features of interaction between the laser
radiation and the material [12]: a decrease in the cluster
size and hole concentration is accompanied by the gen-
eration of new clusters. Therefore, the decrease in the
inhomogeneity size does not necessarily occur with a
decrease in the Cm content. In this case, the method pro-
posed in [15] is inapplicable to determination of the
cluster size.

Let us now assume that the electrical resistivity ρ
and the temperature T are related by expression (2). It
follows that the temperature dependence of the local
activation energy can be represented by the expression

δε = ∂lnρ/∂(kT)–1 = (1/2)k T1/2 (straight line 2 in the
inset to Fig. 3). For the Mott law (1), this dependence is

more pronounced: δε = (1/4)k T3/4 (straight line 1 in
the inset to Fig. 3). The experimental data are also rep-
resented by points in the inset to Fig. 3. If the experi-
mental temperature dependence of δε is approximated
by the power function δε ~ Tn, we obtain n = 2.1. This
value is three times larger than n = 3/4, which corre-
sponds to the Mott law. After irradiation of the sample,
the temperature dependence of δε falls off steeply at
low temperatures. At T = 7 K, the quantity kT = 6 ×
10−4 eV is more than two orders of magnitude greater
than the local activation energy δε ≅  5 × 10–6 eV. Lack-
ing a satisfactory theory, the nature of these low ener-
gies δε remains unclear. In order to trace how the

T1
1/2

T0
1/4
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energy δε approaches zero, it is necessary to decrease
the experimental error, which can be achieved with
lower resistance samples.
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Abstract—The problem of the thermal and magnetic destruction of the critical state in hard superconductors
is investigated. The initial distributions of temperature and electromagnetic field are assumed to be essentially
inhomogeneous. The limit of the thermomagnetic instability in quasi-stationary approximation is determined.
The obtained integral criterion, unlike the analogous criterion for a homogeneous temperature profile, is shown
to take into account the influence of any part of the superconductor on the threshold for critical-state instability.
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While dealing with instabilities of the critical state
in hard superconductors, the character of the tempera-
ture distribution T(x, t) and that of the electromagnetic
field E(x, t) are of substantial practical interest [1]. This
derives from the fact that thermal and magnetic destruc-
tions of the critical state caused by Joule self-heating
are defined by the initial temperature and electromag-
netic-field distributions. Hence, the form of the temper-
ature profile may noticeably influence the criteria of
critical-state stability with respect to jumps in the mag-
netic flux in a superconductor. Earlier (cf., e.g., [2]), in
dealing with this problem, it was usually assumed that
the spatial distributions of temperature and field were
either homogeneous or slightly inhomogeneous. How-
ever, in reality, physical parameters of superconductors
may be inhomogeneous along the sample as well as in
its cross-sectional plane. Such inhomogeneities can
appear due to different physical reasons. First, the vor-
tex structure pinning can be inhomogeneous due to the
existence of weak bonds in the superconductor. Second,
inhomogeneity of the properties may be caused by their
dependence on the magnetic field H. Indeed, the field H
influences many physical quantities, such as the critical
current density jc, the differential conductivity σd, and
the heat conductivity κ.

In the present paper, the temperature distribution in
the critical state is investigated in the quasi-stationary
approximation. It is shown that the temperature profile
can be essentially inhomogeneous, which affects the
conditions of initiation of a magnetic flux jump.

The evolution of thermal (T) and electromagnetic
(E, H) perturbations in superconductors is described by
a nonlinear heat conduction equation [3, 4],

(1)v T( )dT
dt
------ ∇ κ T( )∇ T[ ]= jE;+
1063-7834/02/4401- $22.00 © 20016
a system of Maxwell’s equations,

(2)

; (3)

and a critical-state equation,

(4)

Here, ν is the specific heat, jc is the critical current den-
sity, and jr is the active current density.

We use the Bean–London critical state model to
describe the jc(T, H) dependence, according to which
j = j0 – a(T – T0) [5], where the parameter a character-
izes thermally activated weakening of Abrikosov vortex
pinning on crystal lattice defects [3], j0 is the equilib-
rium current density, and T0 is the temperature of the
superconductor.

The jr(E) dependence in the region of sufficiently
strong electric fields E ≥ Ef can be approximated by a
piecewise-linear function jr ≈ σf E, where σf is the effec-
tive conductivity in the regime of viscous flow and Ef is
the limit of the linear region of the current–voltage
characteristic of the sample. In the region of weak fields
E ≤ Ef, the function jr(T) is nonlinear. This nonlinearity
is associated with thermally activated creep of the mag-
netic flux [6].

Let us consider a superconducting sample placed
into an external magnetic field H = (0, 0, He) increasing

at a constant rate dH/dt =  = const. According to the
Maxwell equation (2), a vortex electric field E = (0, Ee, 0)
is present. Here, He is the magnitude of the external
magnetic field and Ee is the magnitude of the back-
ground electric field. In accordance with the concept of

curlE
1
c
---dH

dt
--------,–=

curlH
4π
c

------j=

j jc T H,( )= jr E( ).+

Ḣ
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the critical state, the current density and the electric
field must be parallel: j || E.

The thermal and electromagnetic boundary condi-
tions for Eqs. (1)–(4) have the form

(5)

For the plane geometry (Fig. 1) and the boundary con-
ditions H(0) = He, H(L) = 0, the magnetic field distribu-
tion is H(x) = He(L – x), where L = cHe/4πjc is the depth
of magnetic flux penetration into the sample and w0 is
the coefficient of heat transfer to the cooler at the equi-
librium temperature T0.

The conditions of applicability of Eqs. (1)–(4) to the
description of the dynamics of evolution of thermo-
magnetic perturbations are discussed at length in [1].

In the quasi-stationary approximation, terms with
time derivatives can be neglected in Eqs. (1)–(4). This
means that the heat transfer from the sample surface
compensates the energy dissipation arising in the vis-
cous flow of magnetic flux in the medium with an effec-
tive conductivity σf . In this approximation, the solution
to Eq. (2) has the form

(6)

Upon substituting this expression into Eq. (1), we
get an inhomogeneous equation for the temperature
distribution T(x, t),

(7)

Here, we introduced the dimensionless variables

and the dimensionless parameters ω = σf /cj0 and r =

(cκ/a L2)1/3, where r characterizes the spatial scale of
the temperature profile inhomogeneity in the sample.

Solutions to Eq. (7) are Airy functions, which can be
expressed through Bessel functions of the order 1/3 [7]:

(8)

κ dT
dx
------ 

 
0

w0 T 0( ) T0–( )+ 0, T L( ) T0,= =

dE
dx
------- 

 
0

0, E L( ) 0.= =

E
Ḣ
c
---- L x–( ).=

d2Θ
dρ2
---------- ρΘ– f ρ( ).=

f ρ( ) 1 rωρ+[ ]
j0

aT0
---------, Θ–

T T0–
T0

---------------, ρ L x–
r

------------= = =

Ḣ

Ḣ

Θ ρ( ) C1ρ
1/2K1/3

2
3
---ρ3/2

 
 =

+ C2ρ
1/2I1/3

2
3
---ρ3/2

 
  Θ0 ρ( ),+

Θ0 ρ( ) ρ1/2K1/3
2
3
---ρ3/2

 
 =
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where C1 and C2 are integration constants, which are
determined by the boundary conditions to be

From the Maxwell equation (2), the temperature
inhomogeneity parameter can be expressed in the form

(9)

It is evident that α ~ 1 near the threshold for a flux

jump, when a /4πv j0 ~ 1, even under the quasi-sta-

tionary heating condition tκ/He ! 1; tκ = vL2/κ is the
characteristic time of the heat conduction problem.

Let us estimate the maximum heating temperature
Θm in the isothermal case w0 = κ/L ≥ 1. The solution to
Eq. (7) can be represented in the form

(10)

near the point at which the temperature is a maximum,
x = xm (Fig. 1).

With solution (10) being approximated near the
point xm = L/2 with the help of the thermal boundary

× 1 rωρ1+[ ]ρ 1
3/2I1/3

2
3
---ρ1

3/2

 
  ρ1 ρ1/2I1/3

2
3
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 –d

0

ρ
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× 1 rωρ1+[ ]ρ 1
3/2K1/3

2
3
---ρ1

3/2
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Ḣ

Θ x( ) Θm= ρ0

x xm–( )2

2
---------------------–

Θ

0 Lxm x

Θmax

Fig. 1. Temperature distribution for the isothermal case.
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conditions, the coefficient ρ0 can be easily determined
to be (8/L2)Θm and the temperature can be written as

(11)

Substituting this solution into Eq. (7), the superconduc-
tor maximum heating temperature due to magnetic flux
jumps can be estimated as

(12)

For a typical situation when γ/L2 ! (a /cκ)(L – xm),
the estimation for Θm is

(13)

Here, the parameter γ ~ 1 (for a parabolic temperature
profile, γ ~ 8). It is easy to verify that for typical values

of j0 = 106 A/cm2,  = 104 G/s, and L = 0.1 cm, the
heating is sufficiently low: Θm ! 1. In the case of poor
sample cooling, w0 = 1–10 erg/(cm2 s K), the Θm is

i.e., the heating temperature can be as high as δTm =
T0Θm ~ 2 K. One can see that in the case of poor sample
cooling, the heating can be rather noticeable and influ-
ence the conditions of the thermomagnetic instability
of the critical state in the superconductor.

Let us investigate the stability of the critical state
with respect to small thermal (δT) and electromagnetic
(δE) fluctuations in the quasi-stationary approximation.
We represent solutions to Eqs. (1)–(4) in the form

(14)

where T(x) and E(x) are solutions to the unperturbed
equations obtained in the quasi-stationary approxima-
tion describing the background distributions of temper-
ature and electric field in the sample and λ is a parame-
ter to be determined. The instability region is deter-
mined by the condition that Reλ ≥ 0. From solution
(14), one can see that the characteristic time of thermal
and electromagnetic perturbations tj is of the order of
tκ/λ. Linearizing Eqs. (1)–(4) for small perturbations
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P

[δT/T(x), δE/E(x) ! 1], we obtain the following equa-
tions in the quasi-stationary approximation:

(15)

Eliminating the variable δT between Eqs. (15), we
obtain a fourth-order differential equation with variable
coefficients for the electromagnetic field δE:

(16)

Here, we introduced the following dimensionless vari-
ables:

One should keep in mind that the variables T(z) and
E(z) are given by Eq. (8), in which ρ = (L/r)(1 – z).
Using the relation between δE and δT given by
Eqs. (15), we write the boundary conditions to Eq. (16)
in the form

(17)

where W = w0L/κ is the dimensionless thermal imped-
ance.

The condition for the existence of a nontrivial solu-
tion to Eq. (16) subject to boundary conditions (17)
allows one to determine the boundary of the critical-
state thermomagnetic instability in a superconducting
sample. This problem is complicated, and its analytical
solution cannot be found in a closed form. We will con-
sider the development of thermomagnetic instability in
the adiabatic approximation, which is valid for hard
superconductors with low heat conductivity. The adia-
batic character of the instability development leads to
the predominance of magnetic flux diffusion over heat
diffusion in the sample: τ = Dt/Dm ! 1 [1], where Dt =
κ/v  and Dm = c2/4πσf  are the coefficients of the thermal
and magnetic diffusion, respectively. In this case, as
seen from Eq. (14), the characteristic times of temper-
ature (tj) and electromagnetic field perturbations have
to satisfy the inequalities tj ! tκ (λ @ 1) and tj @ tm

v
λ
tκ
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κ
L2
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dx2
------------ j x( ) σ f E x( )+[ ]+ δE= aE x( )δT ,–
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L2
-----d2δE
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c2tκ
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dz4
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z x/L, B z( ) 4πaL2/c2v( ) j z( ),= =

j z( ) σ f E z( )= a T z( ) T0–[ ] ,  E z( )– ḢL/c( ) 1 z–( ),=

τ 4πσf κ /c2v , Eκ κ /aL2,= =

v v 0 T /T0( )3, κ κ 0 T /T0( ).= =
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dz2
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z 1=

 = 0, d3δE

dz3
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 = W
d2δE

dz2
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δE z 1=  = 0, dδE
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 = 0,
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(λτ  ! 1), where tκ = L2/Dt and tm = L2/Dm are the char-
acteristic times of the thermal and magnetic diffusion,
respectively.

In this approximation (τ ! 1, λτ  ! 1, λ @ 1),
Eq. (16) is reduced to a lower order differential equa-
tion:

(18)

It is worth noting that while going over to Eq. (18), we
kept only terms of the order of τ1/2, because λτ  ~ τ1/2.

In the case of τ ! 1, the instability threshold
depends on the thermal boundary conditions at the sur-
face of the sample only slightly. Therefore, the thermal
boundary conditions at the boundaries of the current-
carrying layer (z = 0, z = 1) can be neglected and one
can keep only the electrodynamic boundary conditions
to Eq. (18),

because under the condition of adiabatic instability
development in a hard superconductor, the instability
threshold depends on the conditions of heat removal on
the sample surface only weakly [1].

Multiplying Eq. (18) by δE and integrating the result
with respect to z over the interval 0 < z < 1, we obtain

(19)

where we use the equality

and the boundary conditions. The right-hand side of
Eq. (19) has a minimum at λ = λc:
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Therefore, Eq. (19) can be written in the form

(20)

where

Since we do not know the function δE(z), we try, fol-
lowing [8], to obtain an integral estimation of the insta-
bility growth increment and the low boundary of its
occurrence. The behavior of the integrand in Eq. (20) is

basically determined by the factor E = ( L/c)(1 – z),
which is equal to zero at z = 1 (the other factors change
more smoothly). Hence, the integrand reaches its max-
imum at z = 0 and the upper estimate for λc is

(21)

It is evident that λc @ 1 and λcτ ! 1 at τ ! 1. Numer-
ical evaluation gives λc ≈ 10–102 at τ = 10–3. It should
be noticed that in determining the critical-state instability
boundary from Eq. (20), terms of the order of τ1/2 ! 1
can be omitted because the influence of normal currents
is negligible in hard superconductors; i.e., σfE(z) !
jc(T(z)).

Equations (20) and (21) enable one to write the
instability occurrence criterion in the form

(22)

This criterion essentially depends on the boundary

conditions and the functions j(z), E(z), T(z), and (z).
Figure 2 presents graphs of the functions T(z) and
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(z). Inequality (22) can be strengthened by means of
an evaluation,

(23)

which can be easily verified by expanding the function
δE(z) in a Fourier series:

Let us now try to strengthen inequality (22) further. For
this purpose, we consider the integral

nE
2

δEd
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--------- 
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2

z d
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Fig. 2. Plots of the functions (a) T(z) and (b) (z).nE
2

g

1
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Fig. 3. Plot of the function g(z).
P

The last term can be represented in the form

taking intermediate values of the g– in the range z < z1
and g > g– in the range z1 < z < 1 outside the integral. It
is evident (Fig. 3) that

or

(24)

With inequality (24), the instability occurrence cri-
terion can be represented in the form

(25)

Inequality (25), unlike the analogous criterion for a
homogeneous temperature profile, has an integral char-
acter and takes into account the influence of each part
of the superconductor on the threshold for the super-
conducting-state instability. If condition (25) is satis-
fied, then small fluctuations of temperature δT and elec-
tric field δE in the superconductor will exponentially
increase with time. The most probable result of the
development of such an instability would be a transition
from a critical state to a resistive one.

In conclusion, we note that the description of the
critical state applied in this paper is based on the BCS
microscopic theory. Then, a continual approximation
is used and the physical parameters are assumed to
vary slowly at distances of the order of the average dis-
tance d between vortices. The continuity condition is,
therefore, L @ d.

One more limitation occurs from possible supercon-
ductor overheating above the critical temperature Tc,
where Eqs. (1)–(4) are not valid. This case is realized if
the condition jc(T0, Ee) ≥ a(Tc – T0) is fulfilled.

The quasi-stationary approximation is applicable if

Using this criterion, one can easily evaluate the rates
of change of the electric field
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temperature

,

and current density

One can see that these quantities are small, because
they are of the second order in the quasi-stationary
parameter, and can be omitted.
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Abstract—The energy spectrum and wave functions of the Kane oscillator are determined. The Kane oscillator
equation describes the energy spectrum of electrons, light holes, and a spin–orbit split-off band of holes in a
quantum dot with a parabolic confining potential. © 2002 MAIK “Nauka/Interperiodica”.
As is known [1], the energy spectrum of quantum
dots can be described in the framework of the rigid wall
model or the model of parabolic confining potential. It
is established that the model of parabolic potential ade-
quately describes small quantum dots. This model, as
applied to the standard law of electron dispersion, was
used in solving some problems of quantum dot physics,
including the quantum crystallization of electrons in an
external magnetic field [2].

Semiconductor compounds III–V (InAs, GaAs,
InSb, etc.) with quantum dots exhibit a complex energy
spectrum that can be described well by a multiband
Hamiltonian. Specifically, the nonparabolicity of the
energy spectrum can be accounted for in the Kane
eight-band model [3]. This approach was applied by
Darnhofer and Rössler [3]. However, the equation
derived within this approach was very complicated and
the analysis of its solution was performed using rather
specific approximations.

The aforementioned complexity of the equation
arises with the use of the standard procedure of intro-
ducing the parabolic confining potential through the
scalar potential. However, the parabolic confining
potential can be introduced through the so-called mini-
mal substitution [4]:

(1)

where β is the diagonal matrix with the elements ±1. In
this case, as was shown earlier in [4–7], we obtain the
oscillatory equation for the Dirac Hamiltonian with an
extra constant term whose nature is associated with the
spin–orbit interaction.

Here, we applied the above approach in deriving the
oscillatory equation from the Kane eight-band Hamil-
tonian, in which the interaction between the valence
and conduction bands is taken into account through a
single matrix element of the Kane parameter P.

We referred to the obtained equation as the Kane
oscillator by analogy with the Dirac oscillator. The
Kane oscillator equation and its solutions are given
below. The system of Kane equations, which also

p p= ιλβ r,–
1063-7834/02/4401- $22.00 © 20162
include the dispersionless bands of heavy holes, has the
following form [8, 9]:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here, P is the Kane parameter, Eg is the band gap, ∆ is
the spin-orbit splitting, and

Let us carry out the substitution K  K – ιλβ r,
where βij = 0, i ≠ j, β11 = β33 = β66 = 1, and β44 = β55 =
β77 = β88 = –1.
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Substituting expressions (4)–(9) into formulas (2)
and (3), we obtain

(10)

(11)

where A = –E + (–∇ 2 + λ2r2 +

3λ); A = –E + (–∇ 2 + λ2r2 + 3λ),

and Lz are the components of the angular momentum
operator. Since the problem has a spherical symmetry,
we seek a solution to the differential equation in the
form F(r)Yl, m(θ, ϕ).

By acting upon the second equation through the
operator L+ and using commutation relationships for

the operators ([Lz, L+) = L+, [ , L2] = 0), we obtain
L+C2. After substituting this quantity into expression (10),
we derive two equations for F(r):

(12)

The eigenvalues and eigenfunctions take the follow-
ing form:

(13)

(14)

Here, (λr2) are the generalized Laguerre’s poly-
nomials and Anl is the multiplier of normalization:
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Equation (13) determines the energies of electrons,
light holes, and the spin–orbit split-off band of holes.

As for the Dirac oscillator, the zero energy for the

Kane oscillator in the limit  ≤ 1 exceeds the zero

energy for the oscillator of the standard Schrödinger
equation by a factor of two.

Equation (13) can be useful for analyzing the influ-
ence of nonparabolicity on the energy spectrum of elec-
trons in a quantum dot. Earlier [10, 11], this problem
was considered in the framework of the rigid wall
model. The advantage of this approach lies in the sim-
plicity of treating analytical expressions as compared to
numerical calculations [10, 11].
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Abstract—This paper reports on the first experimental observation of quantum-well states and sp-type reso-
nances in thin single-crystal gold, silver, and copper layers formed on single-crystal W(110) surfaces, which
result from spatial localization of Bloch-type electronic wave functions in a quantum well with potential barri-
ers at the vacuum/metal and metal/W(110) interfaces. The quantization of the valence-band electronic structure
in Au/W(110), Ag/W(110), and Cu/W(110) systems was studied experimentally using angle-resolved photo-
electron spectroscopy. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Research in modern solid-state physics focuses con-
siderable attention on the experimental study and theo-
retical analysis of the electronic structure in low-
dimensional systems. This interest is accounted for, on
the one hand, by the lack of information on such struc-
tures compared, e.g., to bulk crystals and, on the other,
by the broad application potential of low-dimensional
systems in micro- and nanoelectronics. In thin layers,
the motion of electrons perpendicular to the surface of
a solid is substantially constrained, with the scale of
this limitation being comparable to the coherence
length of the electron wave function. As a result of the
electron motion being constrained in this direction, the
energy spectrum becomes modified and the continuum
typical of a bulk crystal is replaced by a set of quantum-
well states (QWSs). A QWS standing wave is produced
through the interference of Bloch electronic waves,
which are multiply reflected from the walls of the
potential well formed by the vacuum/metal and
metal/substrate interfaces. Note that the actual energy
position of the QWS depends on the potential well
width, i.e., on the thickness of the quasi-two-dimen-
sional structure [1]. Therefore, dispersion in the spec-
tral features of the thin-film system under study with
variation of its thickness serves as evidence of the exist-
ence of the QWS. The quantization of the electronic
energy bands of a bulk single crystal occurring as one
crosses over to thin single-crystal films offers a unique
possibility of using angle-resolved photoelectron spec-
troscopy (ARPES) to experimentally study the quan-
1063-7834/02/4401- $22.00 © 20164
tum electronic states created in thin metal layers [1, 2].
The most essential goal of these experimental studies
was to obtain thin single-crystal films of noble metals
with a perfect crystal structure, because any defects at
the vacuum/metal and metal/W(110) interfaces, as well
as film inhomogeneities, produce electron scattering
and, as a consequence, weaken the effect to be
observed. In our experiments, thin single-crystal films
were prepared through thermal deposition of noble
metals on an atomically clean W(110) surface. The
crystal structure of the layers thus produced was ana-
lyzed using low-energy electron diffraction (LEED).

Earlier experiments showed [3–7] that the surface of
the closely packed (111) face of a thin fcc metal layer
formed on the (110) surface of a bcc metal can have two

10.53°

60°

70.53°

5.26°
bcc(110)

fcc(111)

Nishiyama–Wassermann
fcc[110] || bcc[001]

Kurdjumov–Sachs
fcc[110] || bcc[111] or bcc [111]

____

Fig. 1. Two possible (Nishiyama–Wassermann and Kurdju-
mov–Sachs [7]) orientations of the (111) surface of an fcc
metal on the (110) surface of a bcc metal.
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(‡) (b) (c)

Fig. 2. LEEDS patterns obtained for (a) Au/W(110), Ep = 141 eV; (b) Ag/W(110), Ep = 121 eV; and (c) Cu/W(110), Ep = 173 eV.
types of orientation, Nishiyama–Wassermann (NW) or
Kurdjumov–Sachs (KS) [5–7] (Fig. 1), depending on
certain conditions (the relative magnitudes of the sub-
strate and adsorbate interatomic distances, film thick-
ness, temperature, etc. [3, 4]). The LEED patterns
obtained for the Au/W(110), Ag/W(110), and
Cu/W(110) systems (Fig. 2) confirm the formation of
thin single-crystal films of Au, Ag, and Cu on the sin-
gle-crystal W(110) surface. The LEED patterns permit
one to conclude that thin Au and Cu layers form
through the NW mechanism and Ag layers form
through the KS mechanism, which is in agreement with
[8].

Our photoemission studies showed that quantum
states and resonances of the sp type indeed form in
Au/W(110), Ag/W(110), and Cu/W(110) structures. It
was demonstrated that the photoelectron (PE) spectra
observed in the Ag/W(110) system can be employed to
monitor the thickness of the deposited layers. The dis-
persion relation E(k⊥ ) was obtained experimentally for
the Cu/W(110) system in the [111] direction.

2. EXPERIMENTAL TECHNIQUE

The studies were carried out at the BESSY-I and
BESSY-II synchrotron centers (Berlin, Germany), with
output channels TGM3 and U125, respectively, using a
WSW ARIES-type angle-resolved electron spectrome-
ter equipped with a diffractometer to measure LEED
patterns. Laboratory studies were performed on an SES
200 SCIENTA electron spectrometer with a gas-dis-
charge helium lamp providing hν = 21.2 and 40.8 eV
photons for ARPES experiments. The total energy res-
olution reached in the ARPES experiments was ≈150
and ≈50 meV for the ARIES and SCIENTA electron
spectrometers, respectively.

The atomically clean W(110) single-crystal surface
was obtained through a series of short heatings of the
crystal to 2300°C, with subsequent annealing at
1300°C in an oxygen environment in a vacuum of no
worse than 5 × 10–8 Torr. The heating in oxygen
resulted in a chemical reaction of the oxygen with the
carbon evolved onto the W(110) surface from the bulk
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
of the crystal, and the CO2 thus formed escaped from
the surface and was pumped out. This procedure pro-
duced an atomically clean W(110) surface, whose qual-
ity was monitored using ARPES and LEED. Figure 3
presents a PE spectrum and a LEED pattern character-
istic of a perfectly clean W(110) single-crystal surface,
which demonstrate the absence of any foreign inclu-
sions on the surface.

Thin single-crystal layers of Au, Ag, and Cu on
W(110) substrates were prepared through thermal
evaporation of a small piece of the corresponding metal
(a sphere ~2–3 mm in diameter, metal purity 99.999%)
spot welded to a 0.25-mm diameter wire of W75-Re25
alloy. The wire with the metal was heated to the metal
evaporation temperature by passing a dc current
through it (~2.7 A for Ag, and ~3.8 A for Au and Cu).
The Au, Ag, and Cu single-crystal layers were found to
have the best quality when the deposition on a W(110)
substrate was made at room temperature at a rate of no
more than 2 Å per minute. The thickness of the depos-
ited Au, Ag, and Cu layers was determined from the
change in the frequency of a quartz resonator main-
tained inside the vacuum chamber under the same con-
ditions as the sample. On reaching the base vacuum in
the chamber, each source was outgassed to achieve
cleanness of the source components, for which the
pressure during the evaporator operation increased only
to 2 × 10–10 Torr. The base pressure in the chamber in
each experiment was kept below 1 × 10–10 Torr.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Quantum Resonance States 
in the Au(111)/W(110) System

Figure 4 presents the photoemission spectrum
obtained at a photon energy hν = 50 eV under normal
electron emission from the Au/W(110) system with a
gold layer 22 Å thick. This spectrum exhibits several
features (denoted by the symbols 2–6, D1–D3, and S)
that were observed earlier [9, 10]. The feature at 0.4 eV
below the Fermi level, which is denoted by S1, is a
Shockley-type surface state located in the relative
2
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Fig. 3. Photoelectron valence-band spectrum of W(110) measured under normal photoelectron emission and incident photon energy
hν = 40.8 eV. Inset: LEED pattern for the W(110) single-crystal surface.
energy gap at the L point [10, 11]: EF < ESS < 1.1 eV.
The S2 feature is also assigned to a Shockley-type sur-
face state. This feature was observed earlier in [11] and
is in agreement with the surface-state calculations per-
formed for Au(111) in [12]. The symmetric shape of the
surface-state peaks and their high intensity argues for
the high quality of the Au film. The 2–6 features result
from direct transitions between the volume electronic
states along the ΓL direction. The D1–D3 features were
shown [9] to be surface resonances, because their
energy does not change with varying the photon energy
and they exhibit resonance properties at photon ener-
gies from 18.6 to 26.5 eV [9]. The S feature in the PE
spectrum is accounted for by the variation in the poten-
tial at the surface [9]. In addition, the PE spectrum also
has two new features lying at ≈1.3 and ≈2.0 eV below
the Fermi level (denoted by QWR1 and QWR2, respec-
tively) that were not observed earlier in the PE spectra
obtained when studying bulk single-crystal Au(111)
[10]. To establish the nature of these electronic states,
we measured PE spectra for different gold layer thick-
nesses and photon energies. Figure 5 presents PE spec-
tra for the Au/W(110) system obtained at a photon
energy hν = 60 eV. The gold layer thickness was varied
P

from 8 to 30 Å. Note that at gold layer thicknesses in
excess of 8 Å, a QWR1 feature appears in the spectrum
that shifts toward lower binding energies (toward the
Fermi level) with increasing layer thickness. At a gold
layer thickness of 18 Å, a QWR2 feature is seen to
appear in the PE spectrum that also changes its energy
with increasing film thickness. Note that the QWR1 and
QWR2 features for the gold layer thickness of 22 Å lie
at binding energies of ~1.3 and ~2.0 eV, respectively,
which coincide with the positions of similar features in
the PE spectrum for the same system measured at a
photon energy hν = 50 eV. It should be pointed out that,
as the gold layer thickness increases, the QWR1 and
QWR2 features are observed in the PE spectra at ener-
gies down to an energy of ~1.1 eV below the Fermi
level (the Au valence-band top in the [111] direction),
but their intensities decrease noticeably as one
approaches this energy. At binding energies of less than
~1.1 eV, these features are not seen.

The QWR1 and QWR2 features observed in the PE
spectra cannot be due to surface resonance states,
because although their positions are seen to be indepen-
dent of the photon energy, they change with varying
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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gold layer thickness. For the same reason, QWR1 and
QWR2 cannot result from hybridization of the Au and
W electronic states. We believe that these specific fea-
tures in the PE spectrum [compared to the PE spectrum
of a bulk Au(111) single crystal] can be only a signature
of sp-type quantum electronic states due to sp electrons
being spatially confined to a thin single-crystal layer of
gold by potential barriers at the Au/vacuum and Au/W
interfaces. Tungsten has a relative gap extending from
3.5 to 6.2 eV below the Fermi level in the ΓN direction
perpendicular to the surface [13, 14]. Because the

energy bands  and  of gold and tungsten, respec-
tively, have different crystal symmetries [15], the wave
functions of the electronic sp states in gold will experi-
ence practically total reflection from the Au/W inter-
face at energies from 2.0 to 6.2 eV. However, the wave
functions of the Au sp electrons at binding energies of
less than 2.0 eV can penetrate through the effective

Au/W potential barrier to interact with the  elec-
tronic states of tungsten [16, 17]. This means that the
Au sp electron wave functions in this energy region are

Λ6
1 Σ5

2
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1

Fig. 4. Photoelectron valence-band spectrum of the
Au/W(110) system measured under normal photoelectron
emission and incident photon energy hν = 50 eV. Gold layer
thickness 22 Å.
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not totally localized in a thin single-crystal Au layer.
Thus, the semiconfined electronic states observed in the
PE spectra are sp-type quantum resonance states of Au.
In the description of quantum resonance states [1], one
observes a certain analogy to surface resonance states
[9, 18].

Thus, the above analysis gives one grounds to con-
clude that thin epitaxial Au layers produced on single-
crystal W(110) exhibit, in addition to known features,
sp-type quantum resonance states. Note that the elec-
tronic structures of ultrathin gold layers on W(110)
substrates were already studied in [17] and d-type
quantum states were observed at energies from 2 to
4 eV, i.e., in the region of the W energy gap for elec-
tronic states in the ΓN direction of the Brillouin zone

that exhibit  crystal symmetry.

Note that when the Au/W(110) system is excited by
photons of energy hν = 21.2 eV, the QWR1 and QWR2
quantum resonance states are not observed in the PE
spectrum, because the electron photoionization cross
section is considerably smaller in this case than that for

Σ5
1

Fig. 5. Photoelectron valence-band spectra of the
Au/W(110) system measured for different gold layer thick-
nesses. The spectra were obtained under normal photoelec-
tron emission and incident photon energy hν = 60 eV.
Dashed line specifies the position of the surface state.
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hν = 60 eV. For this reason, quantum resonance states
of the sp type were not observed in the studies in [17].

3.2. Quantum-Well States and Resonances
in the Ag/W(110) System

Figure 6 displays a series of PE spectra measured at
a photon energy hν = 50 eV in a system prepared by
depositing thin silver layers of various thicknesses onto
a W(110) single crystal. For a layer thickness of 2 Å,
the PE spectrum exhibits a feature in the region of the
sp electron binding energy of ≈3.2 eV that can be asso-
ciated with electron emission from a quantum state
characteristic of a monolayer Ag film. As the silver
thickness is increased gradually, a new feature appears
in the PE spectrum at a binding energy of ≈2.4 eV,
which signals the formation of a second monolayer.

3
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Fig. 6. Photoelectron valence-band spectra of the
Ag/W(110) system measured for different silver layer
thicknesses. The spectra were obtained under normal pho-
toelectron emission and incident photon energy, hν = 50 eV.
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After the silver coating thickness reaches 7 Å, a feature
with a binding energy of ≈2.0 eV is seen to appear in
the spectrum, thus indicating the formation of the third
monolayer.

Note that at silver film thicknesses above three
monolayers, the film growth was shown to be accompa-
nied by island formation on the surface [8]. This obser-
vation is supported by the considerable decrease in
intensity of the spectral features originating from quan-
tum states in thicker Ag layers. As a result of the pres-
ence of Ag surface imperfections in such films, elec-
trons scatter from surface defects in reflection from the
Ag/vacuum interface, thus giving rise to a blurred struc-
ture of the PE spectra associated with size quantization.

As in the Au/W(110) system, at binding energies of
less than 2 eV, electron wave functions of silver can
penetrate through the effective barrier into the sub-
strate. Therefore, the quantum states of silver in this
energy region should be considered to be sp-type reso-
nance quantum states. Figure 7 plots the typical depen-
dence of the energy positions of the quantum states and
resonances on the silver layer thickness.

As seen from Fig. 6, the thickness of a silver layer
can be derived from the position of the quantum elec-
tronic states in the PE spectra. This experimental obser-
vation offers the possibility of using QWSs to determine
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Fig. 7. Energy position of the peaks of quantum states vs.
silver film thickness for the Ag/W(110) system derived
from the photoelectron spectra in Fig. 6.
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the thickness of very thin metal layers in addition to
evaporator calibration.

3.3. Quantum Resonance States
in the Cu/W(110) System

Interest in this system has been stimulated, on the
one hand, by studies of the quantum effects in such sys-
tems as, for instance, Cu/Ni(100) [19] and Cu/Co(100)
[20], and, on the other, by observations arguing for the
existence of sp-type quantum resonance states in thin
copper layers on W(110), namely, by the possibility of
growing thin epitaxial single-crystal copper layers on
W(110) substrates [21], by the similarity of the elec-
tronic band structures in Au, Ag, and Cu in the [111]
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
direction [15], and by the existence of an effective
potential barrier at the Cu/W interface.

Figure 8a displays a series of PE spectra of epitaxial
copper films of various thicknesses on W(110) sub-
strates measured at a photon energy hν = 21.2 eV. At
this photon energy, one observes the maximum inten-
sity of the Shockley-type surface state on Cu(110),
which provides a possibility of monitoring the surface
quality of thin single-crystal copper layers. The feature
corresponding to a surface state in the PE spectra
shown is observed at a binding energy of ≈0.3 eV below
the Fermi level and lies in the energy gap (EF < ESS <
0.75 eV) at the L point. In addition to the surface state,
the PE spectrum exhibits a number of features (denoted
by 1–4) not seen in the PE spectra of bulk Cu(110) sin-
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Fig. 8. (a) Valence-band photoelectron spectra of the Cu/W(110) system measured for various copper layer thicknesses; the spectra
were obtained under normal photoelectron emission and incident photon energy, hν = 21.2 eV; the Cu layer thickness is varied from
22 to 50 Å; the dashed line identifies the position of the surface state. (b) Dispersion relation E(k⊥ ) along the [111] direction per-
pendicular to the Cu(111) surface; points are experimental data extracted from the PE spectra; the solid curve represents a fitting
function calculated from the two-band model [25].
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gle crystals [22]. Increasing the copper thickness shifts
these features toward the Fermi level. These features
can be accounted for in terms of the quantization of the
Cu sp band in the ΓL direction through the formation of
quantum electronic states. In the Cu/W(110) system,
the wave functions of copper electrons with energies in
the range 0.75 < E < 2 eV are capable of penetrating
through the effective Cu/W barrier into the substrate to
form semiconfined resonance quantum states.

The quasi-wave vector k⊥  in the direction perpen-
dicular to the surface for a quantum state with a given
energy can be calculated from the condition of quanti-
zation of k⊥ , which is based on the finite thickness of a
thin layer [1, 23, 24]. Thus, experimental PE spectra
can be used to calculate the dispersion relation E(k⊥ )
along the [111] direction. The E(k⊥ ) dispersion for the
Cu(111)/W(110) system is presented in Fig. 8b as a set
of experimental dots and a curve representing the fitting
function E(k⊥ ) calculated in [23] in terms of the two-
band model [1, 25]. The best fit to the experimental data
was obtained with the following parameters: a copper
valence-band top in the given direction of 0.75 eV and
an effective mass m* = 0.66me, where me is the free-
electron mass.

4. CONCLUSIONS

Thus, the results of our study of thin single-crystal
Au, Ag, and Cu layers formed at room temperature on
atomically clean W(110) single-crystal surfaces permit
one to conclude that localization of the sp electron
wave functions gives rise to the formation of quantum-
well states and resonances, which reveal characteristic
variations of the energy position with metal layer thick-
ness. The quantum states observed in the PE spectra of
thin uniform Ag layers on W(110) are a signature of the
layer-by-layer film growth, which can be used to mea-
sure the thickness of a deposited coating. It should be
pointed out that quantum-well states and resonances
were observed in the Au/W(110), Ag/W(110), and
Cu/W(110) systems for the first time.
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Abstract—This paper reports on an atomic-force microscopy study of the surface of α-Al2O3 single crystals
irradiated by Bi ions with energies of 710, 557, 269, and 151 MeV. The shape of the radiation defects produced
by single ions was established to depend on the ionization energy loss. The threshold ionization density above
which the surface topography is observed to change lies in the 27–35 keV/nm interval. Possible mechanisms of
defect formation in the thermal-spike model, namely, a phase transition and the creation of thermoelastic
stresses in the high-energy ion track, are considered. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Irradiation by high-energy heavy ions may produce
specific radiation damage on the surface of a solid. This
damage is associated with the effect of single ions and
observed to appear starting from a certain threshold
level of the ionization energy losses (dE/dx)ion. Depend-
ing on the actual conditions of irradiation and the type
of material, the damage can take the form of craters or
hillocks ranging in characteristic size from a few
nanometers to a few tens of nanometers. Investigation
of the mechanisms of formation of such defects and of
their relation to structural distortions in the bulk
appears to be of interest for predicting the behavior of
materials whose radiation strength is determined by
defects produced by fission fragments, i.e., atoms vary-
ing in atomic weight from 80 to 155 and having an
energy of about 100 MeV, under conditions of high and
superhigh (above 10 keV/nm) ionization losses and a
high rate of defect formation. Of particular interest is
the investigation of the surface topography and micro-
structure of a number of ceramics and oxides (which
are candidate materials for use as inert nuclear-fuel
matrices, such as MgO, Al2O3, MgAl2O4, SiC, TiC,
AlN, and Si3N4) irradiated by heavy ions with energies
above 1 MeV/nucleon to simulate the effect of actinide
fission products.

Being one of the most radiation-stable dielectrics,
Al2O3 is the most promising and widely used material
in various nuclear power installations. This is due, to a
large measure, to the fact that ionization, as an indepen-
dent source of structural distortions in aluminum oxide,
manifests itself only at ultrahigh energy losses
observed under irradiation by high-energy heavy ions
[1, 2]. The threshold value (dE/dx)ion = 21 keV/nm,
starting from which the formation of both point and
extended radiation defects can be assigned to inelastic
energy losses, was estimated [2] by analyzing experi-
1063-7834/02/4401- $22.00 © 20171
mental Rutherford backscattering data for sapphire sin-
gle crystals irradiated by uranium ions with energies
ranging from 115 to 809 MeV. The research reported in
[1, 2] was continued in the discovery of latent tracks in
sapphire after its bombardment by 20-MeV fullerenes
[3, 4]. Direct electron microscopic structural studies
made determination of the track diameter possible; this
diameter was found to be 13 nm for a given ionization
energy loss level of 76.2 keV/nm. An atomic-force
microscopy (AFM) study [4] of the surface topography
of sapphire irradiated by 30-MeV fullerenes was also
made, which showed that each latent track on the sam-
ple surface could be identified with a hillock about
20 nm in diameter and 4.5 ± 0.5 nm in height. The
observed correlation between structural changes in the
bulk and on the surface of irradiated crystals is of great
interest, because it considerably broadens experimental
possibilities through the use of such a powerful tool as
AFM. Although AFM techniques are employed to
advantage in similar experiments on other materials,
the above study [4] is, in our opinion, the only example
of an investigation into Al2O3 surface modification by
high-energy heavy ions that stimulates systematic
research over a broad range of ion energies and masses.
Our previous paper [5] contains the first data on radia-
tion defects on the surface of differently oriented
α-Al2O3 crystals irradiated by 160–710 MeV bismuth
ions. The present work represents a continuation of the
AFM study of structural surface modifications of sap-
phire single crystals bombarded by high-energy bis-
muth ions.

2. EXPERIMENTAL TECHNIQUE

Irradiation by high-energy bismuth ions was carried
out in the applied-research channel of a U-400 cyclo-
tron of LNR, JINR [6]. Al2O3 single crystals, represent-
002 MAIK “Nauka/Interperiodica”



 

172

        

SKURATOV 

 

et al

 

.

                                                                    
ing 20 × 10 × 0.5-mm platelets oriented with

(c){0001}, (m) , and (a) , were attached
with heat- and electrically conducting carbon paste to a
water-cooled target holder. To preclude the irradiated
targets from overheating, the ion flux density was set to
2 × 108 cm–2 s–1. Under these irradiation conditions, the
heat power dissipated by the ion beam did not exceed a
few tenths of a watt. The irradiation parameters, such as
the ion energy, specific ionization energy losses, and
energy losses to elastic scattering in the target surface
layer (calculated using the SRIM-2000 code) are listed
in the table. The ion energy was varied by means of alu-
minum absorbers screening different parts of the same
sample, thus providing adequate comparison with
experimental data. The samples were irradiated to a flu-
ence of 1010 ion/cm2. Uniform beam distribution over
the surface of the irradiated targets was achieved by
scanning the beam vertically and horizontally.

The AFM study of the irradiated samples was per-
formed with a SOLVER P47-SPM-MDT microscope

1010{ } 1120{ }

Conditions of sapphire single crystal irradiation

Absorber 
thickness, µm

Bismuth ion 
energy, MeV

(dE/dx)ion, 
keV/nm

(dE/dx)el, 
keV/nm

0 710 41 0.08

6 557 40 0.12

18 269 35 0.19

24 151 27 0.35
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Fig. 1. AFM image of the sapphire surface irradiated by
710-MeV Bi ions. Image size, 180 × 180 nm.
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(Lukin SRIPP, Zelenograd, Moscow, Russia). The sur-
face topography was studied in the resonant tapping
mode at a cantilever frequency of 350 ± 50 kHz, with
the idle and operating cantilever frequency, as well as
the feedback gain, maintained constant when probing
the parts of samples of a given orientation bombarded
by ions of different energies. The data obtained are real
three-dimensional images of the surface topography
investigated.

3. RESULTS AND DISCUSSION

As demonstrated in the AFM studies, irradiation by
bismuth ions with energies of 710, 557, and 269 MeV
produces single defects on the surface of sapphire sin-
gle crystals, whereas at ion energies of 151 MeV and
less, no changes were observed on the surface. The den-
sity of the observed defects is in agreement with the ion
fluence of 1010 ion/cm2 to within experimental accu-
racy, ±10%. It was established that the shape of the
defects depends qualitatively on the ion ionization
energy losses near the surface and, to a lesser extent, on
the crystallographic sample orientation, although it
should be noted that the most pronounced surface
changes were observed on m-oriented samples.

The defects observed on the surface of the m-ori-
ented sample irradiated by 710-MeV bismuth ions
[(dE/dx)ion = 41 keV/nm] represent hillocks with a
diameter of about 15 nm at the base and an average
height of 2 nm surrounded by an outer ridge about 1 nm
high and about 27 nm in diameter (Figs. 1, 2a). The
defects produced by 557-MeV ions with approximately
the same ionization losses (40 keV/nm) exhibit practi-
cally the same shape.

Ions of lower energy [269 MeV, (dE/dx)ion =
35 keV/nm] produce defects of another type, namely,
hillocks about 1 nm high with an average base diameter
of 22 nm, which feature a small depression at the center
about 5 nm in diameter and approximately 0.7 nm deep
(Fig. 2b).

The data presented in Figs. 1 and 2 and the depen-
dence of the character of the observed damage on the
ionization density permit one to unambiguously assign
the formation of radiation defects on the surface of sap-
phire single crystals to inelastic energy losses of the
bismuth ions. As follows from the table, while the ion-
ization density falls off with decreasing ion energy, the
elastic scattering losses increase. The nature of the
structural distortions in dielectrics caused by the energy
relaxation of excited electrons, more specifically, latent
tracks, is treated using two main models, ion-explosion
and thermal spikes, which are considered in detail in [7,
8]. In the former model, one assumes a heavy charged
particle to produce, along its trajectory, a cylindrical
zone of ionized atoms, which subsequently explodes as
a result of Coulomb interaction among the ions to form
an extended defect zone. In the thermal spike model,
the formation of latent tracks is associated with a tem-
YSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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perature increase (in the volume surrounding the ion
trajectory) above the melting point Tmelt, followed by a
phase transformation (amorphization or recrystalliza-
tion) due to the rapidly cooling overheated region. In
our opinion, the AFM measurements argue for the ther-
mal mechanism of defect formation on the surface of
α-Al2O3 crystals. It may be conjectured that within the
interval 35 > (dE/dx)ion > 27 keV/nm, the temperature
is already in excess of Tmelt, such that the material melts
and is subsequently expelled onto the sample surface
because of the difference in volume between the liquid
and crystalline phases. The shape of the melt surface is
governed by the surface tension and the pressure of the
melt column. If the surface tension is not strong enough
to support the surface, a crater forms in the melt. These
processes, shown schematically in Figs. 3a and 3b, take
place in the adiabatic stage, i.e., when the heat cannot
be removed from the place of its release. Craters can
also form through atom evaporation from the central,
most overheated part of the melt or as a result of surface
rupture already in the cooling stage.

The topography of the defects observed to occur at
ionization densities of 40–41 keV/nm gives one
grounds to relate their origin to the formation of an
amorphous phase with a density substantially lower
than that of the crystal. This gives rise to a volume dif-
ference, which is assumed to favor expulsion of the
excess volume onto the surface (Fig. 3c). This interpre-
tation was invoked in some earlier studies (see, e.g.,
[4]) to account for the formation of hillocks on the sur-
face of a fullerene-irradiated sapphire.

A comparative analysis of the experimental data
obtained from AFM and transmission electron micros-
copy revealed a correlation between the transverse
dimensions of the hillocks and of the latent tracks in the
bulk of the material. According to [9], the diameter of a
track is approximately equal to the Gaussian FWHM of
the hillocks. Our estimates yield D ≈ 7 nm for the diam-
eter of the latent tracks in α-Al2O3 single crystals
formed by bismuth ions of 570 and 710 MeV, which is
close to 8.4 nm, the value obtained for the case of a
fullerene-irradiated sapphire with an ionization density
of 41.4 keV/nm [4].

The dissipation of the energy confined in a cylindri-
cal volume with a radius of a few nanometers is known
to entail generation of thermoelastic stresses, which
may exceed the ultimate stress and should substantially
affect the defect formation in the bulk and on the sur-
face of the irradiated material [10, 11]. Let us estimate
the level of the stresses which are created in the thermal
spike zone produced by a single bismuth ion assuming
a Gaussian distribution of thermal energy in the track:

(1)

where RC is the effective track radius. The time in
which the ion kinetic energy is converted to the energy

ε r( ) dE/dx( )/πRC
2[ ] r2

RC
2

------–
 
 
 

,exp=
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of lattice thermal vibrations, 10–12–10–13 s, does not
exceed the characteristic time of action of the stress
pulse, 2RC/s ≥ 10–12 s, where s is the sound velocity.
One may therefore accept that the heat source acts
instantaneously at time t = 0, i.e., that ∂ε/∂t = ε(r)δ(t).
Here, ε(r, t) is the density of absorbed energy by time t
and δ(t) is the Dirac delta function. We use for the cal-
culation, the equations given in [10] for the stress tensor
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Fig. 2. Three-dimensional AFM image of surface defects
produced by Bi ions with an energy equal to (a) 710 and
(b) 269 MeV. Image size, 40 × 40 nm.

Fig. 3. Schematic of the formation of the observed surface
defects produced by (a, b) local melting and (c) subsequent
amorphization of the target material in the ion track.
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components in the track of a charged particle. It can be
shown that for r > RC, the radial tensile stress is

(2)

where Γ is the Grüneisen parameter and α is a function
having the shape of a bipolar pulse which propagates
with the sound velocity and decays with distance as
r−1/2. Figure 4 plots the dependence of α on time for
r = 5RC. One cannot exclude the possibility that the
hillock shape displayed in Fig. 3b is the result of the
action of a thermoelastic stress pulse.

Accepting Γ = 1.4, (dE/dx)ion = 35 keV/nm, and
RC = 3 nm, we obtain 40 GPa for the maximum stress
at a distance of 15 nm from the track axis. This value can
be contrasted with the literature data on the macroscopic
compressive strength for sapphire at 0.3–2.0 GPa [12].
At such thermoelastic stresses, the linear equations for
the stress tensor components are most likely inapplica-
ble; thus, they can be employed only for very rough
estimates. Nevertheless, one can conclude that the ther-
moelastic stresses created at our ionization loss levels
can contribute appreciably to the formation of radiation
defects on the surface and to target lattice destruction
even at distances far exceeding the size of the thermal
spike region. Moreover, for (dE/dx)ion = 40–41 keV/nm,
one should take into account that the excited pulse is
not purely thermoelastic, because it should contain a
contribution associated with the change in the volume
of the material, ∆Vq, connected with the phase transfor-
mation. As shown in [11], the acoustic pulse excited by
particles stimulating a phase transition can exceed, by
an order of magnitude or more, the values following
from linear thermoacoustic theory.

Note that the assumption of the thermal energy dis-
tribution in a track being Gaussian is also a rough
approximation. To more accurately estimate the profile
of the thermal energy distribution in the lattice and the
size of the region where melting and subsequent amor-
phization take place, one should consider the heat trans-
fer processes involved in more detail. The standard
thermal-spike model for metals considers the lattice
heating to be a two-stage process, which consists of the
thermalization of the released energy in the electron

σrr
Γ

π3/2RC
2

---------------dE
dx
-------α r

RC

------ st
RC

------, 
  ,≈
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0
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–0.2

4 6 8 10

Fig. 4. Function α(t) plotted vs. time for r = 5RC (the shape
of the radial component of the thermoelastic stress pulse).
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subsystem and the transfer of this energy to the lattice
mediated by electron–phonon coupling. This is done by
means of coupled nonlinear differential equations,
whose parameters are the electron and lattice specific
heats and heat conductivities, the electron–phonon cou-
pling constant, and the energy transferred to the elec-
tron subsystem in a time substantially shorter than the
characteristic thermalization time [8].

Because the mechanism of heat transport from elec-
trons to the lattice in a dielectric differs from that in a
metal, the parameters describing energy relaxation in
the electron subsystem and energy transfer to the lattice
cannot be determined in the way this is done for metals.
While the heat transport by free electrons in metals
occurs to a considerable extent through the replacement
of the hot electrons in the excitation region by cold
peripheral electrons, in insulators, there are no free
electrons outside the excited region. A simplified ther-
mal-spike model was proposed for insulators in [8, 12],
in which all parameters of the electron subsystem are
considered to be temperature-independent. The main
parameter in this model is the electron mean free path

λ = , where D is the thermal diffusion coefficient
of hot electrons and τ is the electron–phonon relaxation
time. The latent track radius (the maximum distance
from the axis of the track over which melting occurs)
derived experimentally as a function of (dE/dx)ion offers
the possibility of finding the electron mean free path. To
determine the parameter λ, one has to quantify the
threshold energy from which latent tracks start to form
in sapphire. In accordance with the present study, this
value is confined within the 27–35 keV/nm interval.

Thus, irradiation by bismuth ions with energies
above 269 MeV produces radiation defects associated
with inelastic energy losses on the surface of α-Al2O3
single crystals. The defect morphology depends on the
level of ionization losses near the surface. For
(dE/dx)ion = 40–41 keV/nm, the defects are shaped as
conical hillocks whose most probable origin is the for-
mation, in the track region, of an amorphous phase with
a density lower than that of the crystal lattice. The high
thermoelastic stresses generated in the track region can
also considerably affect defect formation.
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Abstract—This paper reports on a study of the excitation and ionization of small sodium clusters by femtosecond
light pulses with a maximum intensity of 5 × 1012–1 × 1014 W/cm2 and photon energy from 1 to 3 eV made in
terms of the density functional theory and jellium model through direct numerical solution of the Kohn–Sham
time-dependent equation. The dependence of the degree of ionization on the intensity, duration, and frequency of
the light pulses, as well as on the cluster size, is studied. The efficiency of the processes is shown to be determined
primarily by the field intensity rather than by the total pulse energy. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The photoexcitation of electrons is an important tool
in the investigation of condensed media, including
atomic clusters. The behavior of metallic clusters in
weak external fields has been dealt with in a large num-
ber of theoretical and experimental publications (see,
e.g., [1–10]). One of the most powerful approaches to
the description of the interaction of atomic clusters with
electromagnetic radiation is the nonstationary density
functional theory [11]. This theory is applied to clusters
in weak fields in a very efficient linearized version,
which, when combined with the jellium model, pro-
vides the best fit to experimental data at the present
time [1–6]. Recently, experiments on clusters in a field
of short (femtosecond) high-intensity laser pulses,
which induce strong electronic excitations in clusters,
have been reported [12–14]. The response of clusters to
a strong laser field is nonlinear and includes multipho-
ton ionization and fragmentation of the clusters. There-
fore, the linear response theory and, hence, the linear-
ized density functional method based on this theory can
no longer be applied to the investigation of electron sys-
tems in strong fields. The general density functional
formalism, however, does not use the perturbation the-
ory and can be employed to study nonlinear effects.
This work reports on a study of the ionization of NaN

clusters by strong femtosecond light pulses in the
energy range from 1 to 3 eV, which is made through
direct numerical solution of the one-dimensional
Kohn–Sham time-dependent equation in the jellium
model. We considered clusters with magic numbers of
valence electrons N = 8, 20, and 40, which, in the jel-
lium model, correspond to spheres with closed elec-
tronic shells. The dependence of the degree of ioniza-
tion on the intensity, duration, and frequency of the
1063-7834/02/4401- $22.00 © 0176
light pulses, as well as on the cluster size, is studied.
The change in the kinetic energy of the electrons left in
the clusters, which results from interaction with the
laser pulses, is calculated.

2. FORMALISM

Our study of electronic excitations in small metallic
clusters initiated by a strong laser field is based on
direct numerical solution of the time-dependent
Schrödinger equation (here and henceforth, the atomic
system of units is used, with |e | = m = " = 1)

(1)

for a jellium sphere in an external potential Vext(r, t)
created by an electromagnetic field. Within the elec-
tronic density-functional theory, the one-electron effec-
tive potential V(r, t) in Eq. (1) is written as

(2)

[in this case, Eq. (1) is the Kohn–Sham equation]. The
electronic density of the jellium cluster n(r, t) is calculated
using the one-electron wave functions of filled states:

The radial distribution n+(r) of the uniform positive jel-
lium background of radius R is defined as

i
∂
∂t
-----Ψ j r t,( ) –

∇ 2

2
------ V r t,( )+ Ψ j r t,( )=

V r t,( ) V ext r t,( )=

+
n r ' t,( ) n+ r '( )–

r r '–
------------------------------------- r ' Vxc+ r t,( )d∫

n r t,( ) ψ j r t,( ) 2.
j

∑=

n+ r( ) 3

4πrs
3

-----------Θ R r–( ).=
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Here, rs is the Wigner–Seitz electronic radius (for
sodium, rs = 3.98a0, where a0 is the Bohr radius), Θ(R –
r) is the Heaviside unit function, and the radius of the
jellium positive background R (considered to be the
cluster radius) is connected to the number of valence
electrons N in a cluster through the relation R = N1/3rs.
The exchange-correlation potential Vxc(r, t) is defined
by the time-independent local expression obtained by
Vosko et al. [15].

If the cluster interacts with a light pulse polarized
linearly along the z axis, then, within the dipole approx-
imation, the external potential can be written in the
form

The electric field E(t) is approximated by a Gaussian
function.

To retain spherical symmetry of the problem, we
transfer to spherical coordinates. To do this, we accept
z = rcosθ (where θ is the angle between the position
vector r of the electron and the electric field vector E of
the electromagnetic wave) and average Vext(r, t) over
the angular coordinates. The result is

(3)

It should be pointed out that the use of a spherically
symmetric model limits our consideration to single-
particle excitations by separating them from the dipole
surface plasma oscillations, which also take part in the
absorption of electromagnetic radiation by clusters
[10–12, 16]. A similar spherical approximation was
successfully employed recently in [17] to describe the
multiple ionization of sodium clusters by a strong elec-
tromagnetic field in the Thomas–Fermi model.

Equation (1), with the potential given by Eqs. (2)
and (3), reduces to a one-dimensional (with respect to
spatial coordinates, i.e., radial) time-dependent Kohn–
Sham equation, which was solved using the method
proposed in [18] with a time step of 2.5 × 10–18 s. The
initial state was calculated by self-consistently solving
the ground-state density-functional problem for a
spherical jellium cluster [19]. The solution of Eq. (1)
permits one to study electronic emission from metal
clusters acted upon by strong light pulses. The emission
was estimated from the decrease in the number of
valence electrons in a spherical box of radius Rbox =
1.5R, whose center coincides with that of the cluster:

The excitation of electrons to higher bound states
should also manifest itself in the Nesc spectra, provided
that these states lie partially beyond Rbox.

V ext r t,( ) zE t( ) ωt.cos=

V ext r t,( ) 2r
π
-----E t( ) ωt.cos=

Nesc t( ) 4π n r 0,( ) n r t,( )–[ ] r2 r.d

0

Rbox

∫=
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3. RESULTS

The formalism described in the preceding section
was used to study the ionization of small sodium jelli-
umlike clusters by light pulses with lengths at half-
maximum T = 10, 20, 40, 100, and 200 fs (their full
length was 25, 50, 100, 250, and 500 fs, respectively;
we will understand the quantity T to be the pulse length
in what follows), maximum intensity I0 = 5 × 1012–1 ×
1014 W/cm2, and photon energy ω varied from 1 to 3 eV
in 0.05-eV steps. Figure 1 shows the Nesc(t) depen-
dences for the case of interaction of a Na8 cluster with
40-fs pulses of maximum intensity 2.5 × 1013 W/cm2

and with various photon energies. To characterize the
result of the cluster interaction with the light pulse on
the whole, the Nesc(t) functions were averaged over the
last one-third of the pulse (in this region, their average
values reach saturation). The averaged values are
denoted by 〈Nesc〉 . Figure 2 presents 〈Nesc〉  functions for
jellium clusters Na8, Na20, and Na40 placed in a field of
light pulses of the same intensity but with different
durations (curves 1, 2), or the same length for different
intensities (curves 1, 5), or the same energy for different
lengths and intensities (curves 2–6). As expected, an
increase in the pulse length for the same intensity, or in
the pulse intensity for the same pulse length, produces
an increase in the electron emission [compare curves 1
and 2 in Fig. 2 (T = 20 and 200 fs) for I0 = 5 ×
1012 W/cm2, as well as curves 1 and 5 for 20-fs pulses
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Fig. 1. Time evolution of the number of electrons Nesc emit-
ted from a Na8 cluster in interaction with a 40-fs light pulse
(the figure specified is full length at half-maximum; the total
length is 100 fs) of maximum intensity 2.5 × 1013 W/cm2

and with photon energies of 1.80, 2.25, and 2.30 eV. Curve 1
is the pulse envelope (in arbitrary units).
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with intensities at a maximum of I0 = 5 × 1012 and 5 ×
1013 W/cm2, respectively]. Note that the dependence of
〈Nesc〉  on the pulse intensity is stronger than that on the
pulse length. A comparison of the results obtained for
pulses with the same energy but different intensities
and lengths shows that the number of emitted electrons
grows with increasing intensity even if the pulse length
has been reduced accordingly. The ionization also
increases with increasing cluster size. The 〈Nesc〉  spectra
obtained for different clusters but normalized to the
squared cluster radius coincide very closely at photon
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Fig. 2. Spectral dependence of the number of electrons
〈Nesc〉  that escaped from Na8, Na20, and Na40 clusters as a
result of interaction with laser pulses of different maximum
intensities I0 (in units of 1012 W/cm2) and durations T (fs)
equal to (1) 5 and 20, (2) 5 and 200, (3) 10 and 100, (4) 25
and 40, (5) 50 and 20, and (6) 100 and 10, respectively.
Pulses (2–6) are of the same energy.
PH
energies below 2 eV, while in the interval from 2 to
3 eV, the maximum values of 〈Nesc〉/R2 for the clusters
become increasingly similar, although the size depen-
dence (associated with specific features of the elec-
tronic energy structure in clusters of different size) is
retained (Fig. 3).

We consider the variation of the 〈Nesc〉  spectra as a
function of the cluster size and laser pulse intensity and
length in more detail. The 〈Nesc〉  spectra obtained for the
lowest of the laser pulse intensities studied (I0 = 5 ×
1012 W/cm2) reflect the electronic structure of the clus-
ter ground state and, therefore, are most likely associ-
ated with resonant one-photon absorption. For instance,
for the Na8 jellium cluster (electron configuration
1s21p6), the increase in 〈Nesc〉  in the energy range below
2 eV could be due to electron transitions from the 1p
shell to the more highly lying 1d and 2s discrete levels
(the energies of these transitions, derived from a cluster
ground-state calculation using the density-functional
method, are 1.21 and 1.90 eV, respectively). The one-
photon ionization threshold of the 1p shell is 3.23 eV.
Between 2 and 3 eV, the 〈Nesc〉  spectrum is close to zero
because of the absence of allowed electronic transitions
(recall that the approach used here disregards surface
plasma oscillations, whose energy lies exactly in this
region). Transitions between discrete bound levels from
the outer filled shells also take place in the jellium clus-
ters Na20 (1s21p61d102s2) and Na40

(1s21p61d102s21f 142p6) below 2 eV (the stationary den-
sity-functional theory yields, for a zero external field,
the following values for Na20: 2s  2p: 1.19 eV,
1d  1f: 1.13 eV, 1d  2p: 1.80 eV; and for Na40:
2p  3s: 1.21 eV, 1f  2d: 1.74 eV). The one-pho-
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Fig. 3. Spectral dependence of the number of electrons
〈Nesc〉  that escaped from (1) Na8, (2) Na20, and (3) Na40
clusters acted upon by a 20-fs laser pulse with a maximum
intensity 1014 W/cm2. The values of 〈Nesc〉  are normalized
to the squared cluster radius.
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ton ionization thresholds are about 2.7 eV for both clus-
ters. For I0 = 5 × 1012 W/cm2, the maxima in the 〈Nesc〉
spectra lie slightly below these values; this may be due
to the clusters becoming polarized by the external elec-
tric field, a factor that increases the energy of the one-
electron states while affecting the level separation only
weakly [20]. As the laser pulse intensity increases, the
main peaks in the 〈Nesc〉  spectra grow in amplitude,
become broader and more complex in shape, and shift
toward higher energies (this displacement is particu-
larly pronounced in the Na8 spectra). The broadening
and shift of the main maxima is connected primarily
with the onset of over-barrier ionization, upon which
resonant absorption is superposed. (As follows from
our calculations of the effective potential V(r, t), the
conditions favoring over-barrier electron escape out of
clusters become realized in the cases considered
(Fig. 2) at intensities of I0 ≥ 1 × 1013 W/cm2.) The over-
barrier cluster ionization in an alternating field occurs
stepwise (within the time intervals near the pulse
maximum, where cosωt in Vext(r, t) assumes values
close to –1). In the course of cluster interaction with a
pulse, over-barrier ionization sets in before resonant
ionization and results in a lowering of the one-electron
energy levels in the cluster and an increase in level sep-
aration; therefore, resonant absorption occurring at
higher energies than this can be expected in the case of
an unperturbed energy spectrum. We will illustrate this
process using Fig. 4. In the frequency range under con-
sideration, over-barrier ionization depends on the radi-
ation frequency only weakly. Therefore, in the course
of cluster interaction with pulses of the same intensity
and length but having different photon energies, the
level shift caused by over-barrier ionization occurs in

approximately the same way from the  position (in

the absence of an external perturbation) to  (at the
pulse maximum). If the photon energy lies in the range

 to , resonant excitation and/or ionization will
take place as soon as the photon energy becomes equal
to the energy of the bound–bound or bound–free elec-
tron transition. In this case, the higher the photon
energy, the later the resonance will occur. Figure 1
shows the time dependences Nesc(t) for an Na8 cluster
interacting with a 40-fs laser pulse with photon ener-
gies of 1.80, 2.25, and 2.30 eV. In the first case, 〈Nesc〉  =
1.523; in the second, 1.803; and in the third, 0.169. As
seen from Fig. 1, the sharp increase in 〈Nesc〉  at a photon
energy of 1.80 eV occurs earlier than that at ω =
2.25 eV. In both cases, the electron escape from the
cluster is associated with the ionization decay of the 1p
electron excitation to outer electron shells. For ω =
2.30 eV, no resonance is observed, because the energy
levels in the cluster do not have time to drop to the
required position in the over-barrier ionization. The
higher the radiation intensity, the more intense the over-
barrier ionization. As a consequence, the one-electron

E j
0

E j
T

E j
0 E j

T
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levels drop and the resonant maxima in the 〈Nesc〉  spec-
tra broaden and shift toward higher energies (Fig. 2). As
the pulse intensity increases, the spectra become more
complex, which may be due to the enhancement of
multiphoton absorption.

As already mentioned, the effect of the pulse dura-
tion on the cluster ionization spectrum is weaker than
that of the field intensity. As is evident from Fig. 2
(curves 1 and 2 for pulses with an equal intensity of I0 =
5 × 1012 W/cm2 and T = 20 and 200 fs, respectively), an

t10
Tmax

Ej
0

Ej
1

Ej
T

Fig. 4. Schematic illustrating the change in position of a
one-electron energy level Ej in the jellium cluster induced
through over-barrier ionization by a light pulse reaching its
maximum intensity at time Tmax.
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envelope (in arbitrary units).

Ej



180 KURKINA
increase in the pulse duration for the same maximum
intensity primarily influences the resonant (one- and
multiphoton) absorption by enhancing the resonant
maxima. In stronger fields, a change in the pulse dura-
tion also affects the fine structure of the 〈Nesc〉  spectra.

Figure 5 shows the variation of the kinetic energy
∆Wkin(t) of the electrons left in a Na8 cluster in interac-
tion with laser pulses, which have the same parameters
as those in Fig. 1 for Nesc(t). ∆Wkin(t) was calculated as
the difference between the kinetic energy of the elec-
trons remaining inside a spherical box of radius Rbox at
a given time t and that of electrons in an unperturbed
cluster at t = 0. One clearly sees that the Nesc(t) and
∆Wkin(t) curves behave in a correlated manner. Note the
strong oscillations in ∆Wkin(t) during the cluster–pulse
interaction, which, in the absence of resonant absorp-
tion (in Fig. 5, ω = 2.30 eV), damp by the end of the
pulse without changing the kinetic energy of the cluster
electrons markedly.

To analyze the variation in the kinetic energy of
electrons in a cluster in the course of interaction with a
laser pulse on the whole, we averaged ∆Wkin(t) over the
last one-third of the pulse (as in the case of 〈Nesc〉). The
calculation showed that the structure of the averaged
〈∆Wkin〉  spectra (Fig. 6) reproduces that of the corre-
sponding 〈Nesc〉  spectra. As expected, the energy is
pumped into a cluster most efficiently in resonant one-
photon absorption. However, the dependence of 〈∆Wkin〉
on cluster size is stronger than that of 〈Nesc〉; for photon
energies below 2 eV, 〈Nesc〉  is, on the average, propor-
tional to the squared cluster radius, whereas 〈∆Wkin〉  is
proportional to the fourth power of the cluster radius
(above 2 eV, this relation is more complex, which is
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Fig. 6. Spectral dependence of the change in the kinetic
energy 〈∆Wkin〉  of the electrons left in an Na40 cluster acted
upon by laser pulses of different maximum intensities I0 (in

units of 1012 W/cm2) and lengths T (fs) equal to (1) 5 and
20, (2) 10 and 100, and (3) 50 and 20, respectively. Pulses
(2) and (3) have the same energy.
connected with specific features of the electron energy
spectrum in clusters of different size).

Thus, our studies of cluster interaction with strong
laser pulses show that, at high pulse intensities, one-
particle mechanisms of the absorption of electromag-
netic radiation may give rise to multiple ionization and
heating of metallic clusters. The efficiency of this pro-
cess is dominated by the field intensity rather than by
the total pulse energy.
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Abstract—The thermal conductivity κ of photonic crystals differing in degree of optical homogeneity (single
crystals of synthetic opals) was measured in the 4.2–300 K temperature range. The thermal conductivity
revealed, in addition to the conventional decrease in comparison with solid amorphous SiO2 characteristic of
porous solids, a noticeable decrease for T < 20 K, the range wherein the phonon wavelength in amorphous SiO2
approaches the diameters of the contact areas between the opal spheres. This effect is enhanced in the case of
phonon propagation along the SiO2 sphere chains (six directions in the cubic opal lattice). The propagation of
light waves (photons) through a medium with spatially modulated optical properties (photonic crystals) is pres-
ently well studied. The propagation of acoustic waves through a medium with spatially modulated acoustic
properties (phononic crystals) may also reveal specific effects, which are discussed in this paper; among
them are, e.g., the ballistic mode of phonon propagation and waveguide effects. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The propagation of light through a medium with a
spatially modulated refractive index (opals as photonic
crystals) was discussed earlier [1]. That work was par-
alleled by a study of the propagation of phonons (ther-
mal conductivity) through these media, because
phonons can also produce coherent effects in such reg-
ular systems (and related composites). This paper pre-
sents experimental data indicating that phonon propa-
gation in opals with spatially modulated acoustic prop-
erties exhibit features that permit one to consider them
to be “phononic crystals,” which also manifest some
specific effects in thermal conductivity when the
phonon wavelength approaches the modulation scale of
the medium.

Opals possess a peculiar fractal-type crystalline
structure [2, 3]. They are made up of closely packed
spheres of amorphous SiO2. The diameters of the
spheres usually range from 2000 to 2500 Å (first-order
spheres). These spheres contain an array of smaller
closely packed spheres 300–400 Å in size (second-
order spheres), which, in turn, are formed of closely
packed particles about 100 Å in diameter (third-order
spheres).

The closely packed sphere lattice contains voids of
the octahedral and tetrahedral types interconnected by
horn-shaped channels. Depending on the sphere size,
the voids can also be classed under the first, second, and
third orders. Filling the first-order voids with various
substances produces new lattices (replicas). The voids
1063-7834/02/4401- $22.00 © 20181
contribute to the total volume porosity of the opal,
which can be estimated theoretically as 59%. In prac-
tice, however, the real total porosity of the opal is 46%
[4, 5]. This results from partial sintering of the second-
and third-order SiO2 spheres.

The first-order amorphous SiO2 spheres make up a
closely packed regular fcc lattice with a period of
~3000–4000 Å and with sphere contacts shaped as dia-
phragms where their diameters cross.

Thus, opal can be considered to be an amorphous
medium (amorphous first-order SiO2 spheres) with a
regular spatial modulation of its properties (a regular
array of amorphous SiO2 spheres forming a closely
packed cubic lattice).

2. RESULTS AND DISCUSSION

This paper reports on measurement of the thermal
conductivity κ of single-crystal synthetic opal made on
several samples in the 4.2–300 K and 4.2–100 K tem-
perature ranges.1 The κ was measured using a tech-
nique similar to that described in [8]. Opal is an insula-
tor. Thus, the experimental values of κ(T) are related to
the thermal conductivity of the crystal lattice. The tech-
nique used to prepare opal single crystals was described
briefly in [6]. X-ray diffraction measurements showed
the opal samples studied to be purely amorphous. No
traces of a crystalline phase were revealed. The param-
eter of the cubic lattice formed through the first-order

1 The thermal conductivity of opals was studied by us earlier [5–7].
002 MAIK “Nauka/Interperiodica”
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amorphous SiO2 spheres was determined by optical
structural analysis [5, 9]. The lattice parameter is com-
parable to the wavelength of visible light, which acted
in this case as a counterpart of the x-rays used in x-ray
diffractometry.
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Fig. 1. (a) Temperature dependence of the thermal conduc-
tivity of amorphous SiO2 (curve 5) [12, 13] and synthetic
opal single crystals (curves 1–4); (1) through (4) are the
opal sample numbers. (b) Schematic of two adjacent first-
order amorphous SiO2 spheres in the opal lattice. D is the
sphere diameter, 2a is the diameter of the contact region
formed by intersecting spheres, and h is the depth of the
overlap of adjacent spheres in their contact.
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the plane of the figure).
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The degree of structural perfection of the opal single
crystals studied was judged both from optical structural
measurements and (visually) from the presence or
absence of diffuse light scattering, as well as from the
easiness with which the single crystals could be cleaved
along the (100) plane.

The thermal conductivity of opals should decrease
compared to bulk amorphous SiO2 because of the
porosity of the former. The opals considered in this
work were prepared using the same technology, and
their porosities were found to be similar. Therefore,
based on the standard theory of thermal conductivity,
including the effect of the porosity of a material on κ
[10, 11], the samples studied should not have exhibited
any difference in thermal conductivity to be referred to
amorphous SiO2. However, this conjecture has no
experimental support. Moreover, the measurements
(Fig. 1) produced a result which may seem at first
glance paradoxical, namely, the thermal conductivity of
the opals decreased with increasing degree of perfec-
tion of the crystals, which, as determined from the opti-
cal and structural studies, increased from sample 1 to
sample 4 (Fig. 1).

Therefore, to explain the experimental data
obtained, a model other than that of [10, 11] for the
behavior of the thermal conductivity of the opal had to
be invoked, which is a porous medium with a regular
structure.

The propagation of heat flux through the opal at the
contacts between the first-order amorphous spheres
gives rise to contact thermal resistance similar to the
contact electrical resistance r:

(1)

where ρ is the electrical resistivity and 2a0 is the contact
diameter.

When the contact area is small (in the limit
approaching a point), the opal thermal conductivity at
high temperatures will be dominated by this contact
thermal resistance (a purely geometric factor).

Thus, the more perfect the opal crystal structure
(when the contacts between all the spheres are the same
and approach a point type), the larger the part played by
the contact thermal resistance between spheres and the
smaller the crystal thermal conductivity (in the a  0
limit, κ  0, with a weak dependence on the opal
density).

The samples of the opals studied by us were cut
from (111)-oriented plates (Fig. 2). All the samples,
except sample no. 3, had an arbitrary crystallographic

orientation. Sample 3 was cut close to the [ 10] direc-
tion, so that when it was used in thermal conductivity
measurements, the heat flux propagated along the
chains of the first-order amorphous SiO2 spheres. For
T > 20 K, the κ increases at temperatures close to the
κ ~ T law in all the samples studied. For T < 20 K, the
κ behaves differently. The thermal conductivity

2r ρ/4a0( ) 2× ,=

1
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decreases with decreasing temperature as Tn but with
different values of n for different samples, namely, n =
1.1 for sample 1, 1.3 for samples 2 and 4, and 2.3 for
sample 3.

An analysis of the behavior of κ in opals of different
degrees of perfection and arbitrary orientation will be
presented elsewhere. We will consider here only the
results obtained on sample 3.

Optical structural analysis yielded 2350 Å for the
size of the first-order amorphous SiO2 spheres and
3300 Å for the fcc lattice parameter.

Opal single crystals provide an illustration of porous
media which, due to their density being spatially mod-
ulated in a regular manner, lend themselves to correct
geometric description. Using simple geometric rela-
tions and experimental data for κ of bulk amorphous
SiO2 obtained at 300 K [12, 13] and of opal sample
no. 3, we calculated, for the latter, the depth h of cross-
ing of adjacent SiO2 spheres in opal and the contact
radius a of these spheres (Fig. 1b). The values of h and
a were found to be ~1 and ~45 Å, respectively.

Thus, first-order amorphous SiO2 spheres in opal are
in contact through sufficiently small “contact transpar-
ency windows” representing diaphragms 2a in diameter.

The values of h and a were calculated from the eas-
ily derivable relations

(2)

(3)

where D is the diameter of a first-order opal amorphous
sphere and R1 and R2 are the opal thermal resistances
for h = h1 and h = h2, respectively. Equations (2) and (3)

are valid for h < D/12 and 2a < D/ .
One may thus draw the conclusion that a new

phonon scattering mechanism not operative in continu-
ous amorphous SiO2 exists in this case.

We consider the relation obtained for κ of opal sam-
ple 3 in more detail. The value of its thermal conductiv-
ity is matched with that of bulk amorphous SiO2
(Fig. 3a). We denote the difference between these val-
ues as ∆κ. In this way, we exclude the simple geomet-
rical factors that result in a decrease in the opal thermal
conductivity, namely, the thermal resistance of the con-
tacts between the amorphous spheres of the opal and its
porosity. Next, we raise the values of κ of the opal by
an amount ∆κ throughout the temperature range stud-
ied (Fig. 3a). As seen from Fig. 3a, the κ of the opal
coincides with the κ of continuous amorphous SiO2 in
the temperature range 300–50 K. The only difference is
observed for T < 50 K, where the κ of the opal scales
with decreasing temperature as ~T2.3.

The observed effect can originate from phonon scat-
tering from the diaphragms, which are the contact
transparency windows of the opal. For T ~ 20 K, the
phonon mean free path l in bulk amorphous quartz is

2a 2 h D h–( ),=

R1/R2 8a/D,∼

3
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~40 Å and the dominant wavelength is ~20 Å [12]
(Fig. 3a), which is close to the radius of the amorphous-
sphere contact region, with the result that the contact
transparency regions start to place a constraint on the
mean free path of long-wavelength phonons and l
becomes constant and temperature-independent within
the temperature range of interest here. The thermal con-
ductivity is related to the specific heat C, the sound
velocity v, and the phonon mean free path through

(4)

As a rule, v  depends on temperature only weakly in sol-
ids (v  = const). If l and v  are constant, then

(5)

As evident from Fig. 4, Eq. (4) is satisfied fairly well
for the opal sample in the 5–20 K temperature interval
of interest; indeed, κ ~ T2.3 and C ~ T2.5.

For the above model (which is an analog of the
model of a thin rod at whose boundaries long-wave-
length phonons are scattered) to become realized, the
contact transparency windows must be arranged regu-
larly along the heat flux propagation direction and be

κ 1/3Cv l.=

κ T( ) C T( ).∼
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close to one another; these conditions exactly apply to
sample 3. In Fig. 3b, the dashed lines connecting the
opal contact transparency windows, which scatter the
phonons, illustrate the thin rod model. At sufficiently
low temperatures, the phonons can propagate along the
opal channels in the ballistic mode (Fig. 3b).

Propagation of phonons along a modulated
nanochannel would undoubtedly require a comprehen-
sive theoretical analysis. A similar problem is also rel-
evant to the case of phonon propagation through replica
lattices, i.e., substances that fill the void sublattices in
opals; this was studied by us earlier in [15, 16]. In this
case, the junctions connecting the structural lattice ele-
ments resemble cut horns rather than diaphragms [2].

We do not exclude the possibility of applying other
models to the interpretation of the results obtained.

For example, it appears only natural to use the anal-
ogy of acoustic and dielectric waveguides as applied to
opal-based systems at sufficiently low temperatures.
According to [17], the number of electromagnetic
modes N fitting a circular dielectric waveguide depends

on the reduced waveguide diameter  as

(6)

d̃

N d̃
1.84

2a '/λ( )1.84.∼=
P

Here, a' is the waveguide radius and λ is the wavelength
of the electromagnetic wave in the waveguide

(7)

where λ0 is the wavelength in vacuum and c1 and c2 are
the velocities of light in the waveguide and the sur-
rounding medium, respectively. Since the thermal con-
ductivity is proportional to the number of phonons (i.e.,
to the number of modes), one may assume that κ ~ N.

Because the λ of phonons in amorphous quartz
scales in the temperature range of interest (4–30 K) as
λ ~ 1/T, the thermal conductivity, according to Eq. (6),
should vary as κ ~ T1.84, which is close to the tempera-
ture dependence of κ obtained by us experimentally
(Fig. 4a).

As already stated, other models can also be applied
to the interpretation of the results obtained.

3. CONCLUSIONS

Thus, one may draw the following conclusions.
A model taking into account phonon scattering from

the contact transparency windows of opal has been
employed to explain the results obtained. At sufficiently
low temperatures, the opal is also considered to be a

λ
λ0

c1
2– c2

2––
-----------------------,=
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three-dimensional array of acoustic waveguides in
which phonons can propagate ballistically along the
chains of amorphous SiO2 spheres (Fig. 3b).

In the latter model, each site of the opal lattice (an
amorphous SiO2 sphere) is the crossing point of six
independent acoustic channels (Fig. 3b), which, in prin-
ciple, can also be used to exert an acoustic action on any
opal lattice site to produce filters, delay lines, and other
nanoacoustic devices. By placing a nanodevice that is
sensitive to the acoustic wave amplitude at each site,
one can obtain a three-dimensional array of transducers
controlled by coherent phonon fluxes (Fig. 3b).

In the case where the phonon wavelength becomes
comparable not to 2a but to the SiO2 sphere diameter D,
the vibrational spectrum of such a lattice of heavy clus-
ters will be shifted toward low frequencies, with its posi-

tion changing by approximately  ~ 103 times
compared to that of amorphous SiO2 and falling into the
radio frequency range (109–1010 Hz for T < 4 K). In this
case, the condition λ ~ D is similar to that for the real-
ization of photonic crystals, thus justifying, in a certain
sense, the concept of phononic crystals.

A number of problems concerning nanoacoustics
have remained uncovered and will be considered in
subsequent publications. Among these are the effect of
waveguide properties on the behavior of κ of asbestos,
a model material with fibers ~100–200 Å in diameter;
the photonic properties of opals transmitting radiation
with a wavelength λ ~ 100 Å (because of the existence
of channels of this size in opals); and so on.
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Abstract—The barriers to relative shell rotation and other energy characteristics of C60@C240 two-shell carbon
nanoparticles (“onions”) with outer shells of different shapes are calculated. The disturbance of the orienta-
tional order in the mutual arrangement of shells with an increase in temperature (orientational melting) is stud-
ied by the molecular dynamics method. The intershell orientational diffusion is represented by the Arrhenius
relationship, and the Arrhenius parameters are calculated numerically. A definition is proposed for the temper-
ature of short-range order disturbance in systems that undergo melting without structural change. The calcu-
lated temperature of orientational melting of the C60@C240 nanoparticle is approximately equal to 60 K. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last decade, after the discovery of
fullerenes [1] and the development of the method of
their preparation in macroscopic amounts [2], consider-
able interest has been expressed by researchers in other
carbon nanostructures, specifically in nanoparticles that
have a shell structure and can be produced in an arc dis-
charge [3, 4]. The structure and energetics of these
nanoparticles have been investigated in a number of
works [5–13]. However, to date, the thermodynamic
properties of these objects have not been adequately
studied.

The melting of a cluster can differ essentially from
phase transitions in macroscopic systems [14–20]. In
particular, the melting of a cluster with a shell structure
can be represented as a hierarchy of transitions with
several stages in the destruction of the order of particle
arrangement. For example, for two-dimensional clus-
ters in an external confining potential with Coulomb
[14–16], screened Coulomb [18], logarithmic [19], and
dipole [20] interactions between particles, the distur-
bance of the order in the mutual arrangement of neigh-
boring shells precedes the breakdown of the order in the
particle arrangement inside the shell. This phenome-
non, which involves relative reorientations of shells
and, at an increasing temperature, their relative rota-
tion, is referred to as the orientational melting of a clus-
ter. Investigation into the relative rotation of shells in
nanoparticles is of great interest in nanomechanics. In
particular, Porto et al. [21] proposed a technique for
transferring energy to a shell consisting only of three
particles in such a way as to induce directed shell
rotation.

The van der Waals interaction between atoms of
neighboring shells in a carbon nanoparticle is consider-
1063-7834/02/4401- $22.00 © 20186
ably weaker than the chemical interaction between
atoms inside the shell. It is quite probable that these
objects undergo orientational melting [5]. Possible orien-
tational melting was also considered for a long two-shell
nanotube [22] and single-shell nanotube ropes [23].

In the present work, we investigated the orienta-
tional melting in a C60@C240 carbon nanoparticle com-
posed of two shells, namely, C60 and C240 fullerenes
with the Ih symmetry. The energy characteristics of the
studied nanoparticle (such as the interaction and strain
energies for shells and the barriers to their relative rota-
tion) were determined at zero temperature. The thermo-
dynamic properties of the nanoparticle in the course of
orientational rotation were investigated using the
molecular dynamics technique. A definition was pro-
posed for the temperature of complete orientational
melting of a nanoparticle. This temperature was calcu-
lated.

2. NUMERICAL CALCULATION 
AND SIMULATION TECHNIQUES

Our choice of the nanoparticle shells (C60 and C240
fullerenes with the Ih symmetry) as the subject of inves-
tigation was made for the following reasons. First, the
examination of transmission electron microscope
images of nanoparticles revealed that the diameter of
the inner shell can be close to the diameter of the C60
fullerene [24, 25]. Second, fullerenes whose size is
smaller than that of C60 are absent among the fullerenes
extracted from fullerene-containing soot with benzene,
toluene, and other solvents (see, for example, [26, 27]).
This fact was explained under the assumption that
fullerene atoms shared by two adjacent pentagons can
form chemical bonds with neighboring fullerenes and
002 MAIK “Nauka/Interperiodica”
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other clusters and molecules involved in the soot [28,
29]. These chemical bonds between neighboring
fullerenes are observed, for example, in C36 fullerene
crystals [30]. Fullerene C60 with the Ih symmetry is the
smallest fullerene whose structure contains no adjacent
pentagons. Thus, we believe that the C60 fullerene with
the Ih symmetry is the smallest inner shell for which
chemical bonds with the outer shell are, most probably,
absent (this is the necessary condition for relative rota-
tion of shells). Fullerene C240 with the Ih symmetry was
chosen as the outer shell of the nanoparticle. In this
case, the theoretical distance between the shells agrees
with the experimental distance determined by Ugarte
[25]. Moreover, the binding energy of the C240 fullerene
with the Ih symmetry is higher than that of C240
fullerenes of the other structure [7].

The lengths of single and double bonds in the C60
fullerene were taken equal to 1.455 and 1.391 Å,
respectively [31]. We considered five different shapes
of the second C240 shell with the Ih symmetry. Shapes B,
C, D, and E were obtained from first-principles calcu-
lations of the binding energy minima for the C240
fullerene with the Ih symmetry by optimizing seven
independent geometric parameters [5, 8, 9]. Shapes B
and D correspond to the global and local binding
energy minima of the C240 shell [8] and are similar to a
sphere and a truncated icosahedron, respectively.
Shapes C and E are similar to each other and are inter-
mediate between the B and D shapes. The former (C
and E) shapes correspond to the sole binding energy
minima determined by Yoshida and Osawa [5] and Scuc-
eria [9]. All atoms of the C240 shell with shape A are
arranged on a sphere. This shape was obtained by opti-
mizing three independent geometric parameters [8].

The van der Waals interaction between atoms of the
neighboring shells can be described by the Lennard-
Jones potential U = 4ε[(σ/r)12 – (σ/r)6] with parameters
ε = 28 K and σ = 3.4 Å. These parameters were used by
Cheng and Klein [32] to simulate a solid C60 fullerene.
The atomic interaction inside the C60 and C240 shells
can be represented by the Born potential:

where ui and uj are the atomic displacements from equi-
librium positions at zero temperature and rij are the
interatomic distances. The parameters of the potential
α = 1.14 × 106 dyn/cm and β = 1.24 × 105 dyn/cm were
taken from Jiang et al. [33], who used the Born poten-
tial to calculate the spectrum of the internal vibrations
of the C60 fullerene. It is evident that the Born potential
adequately describes the interaction only in the vicinity
of the potential well bottom. However, the use of the
simple Born potential in this work is justified, because
the system is studied at temperatures that are tens times
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less than the temperature of bond breaking in
fullerenes.

The orientational melting of C60@C240 nanoparti-
cles whose second shells have a D shape was investi-
gated by the molecular dynamics technique. The
molecular dynamics simulation was performed within a
microcanonical ensemble. The equations of motion
were integrated using a step-by-step scheme with a
time step t = 6.1 × 10–16 s. This corresponds to approx-
imately 100 steps per period of atomic vibrations inside
the shell. At the initial instant of time, the velocities of
atoms in the outer graphitic layer were specified with a
Maxwell distribution in a random manner and the
atomic deviations from equilibrium positions were
assigned to a Gaussian distribution in such a way that
the kinetic energy was approximately equal to the inter-
nal energy of the shell according to the virial theorem
for harmonic potential. The system was equilibrated for
300–500 ps, which corresponds to approximately
30 periods of rotational vibrations of the shells. In this
time interval, the root-mean-square fluctuations of the
total energy and temperature decayed and reached
steady-state values. Then, the properties of the system
were analyzed for 100 ps. The root-mean-square fluctu-
ations of the total energy were less than 0.3% of the
kinetic energy, and the root-mean-square fluctuations
of temperature were less than 1.3%. The time it took for
the angular velocities of the shells to change their direc-
tions was long as compared to the time reachable in the
given numerical experiment. Therefore, all the physical
quantities at each temperature involved were obtained
by averaging over 34–46 numerical experiments with
different random directions and magnitudes of angular
velocities of the shells in accordance with the distribu-
tion of these velocities at the given temperature.

3. RESULTS AND DISCUSSION

3.1. Energy characteristics of nanoparticles. The
global and local minima of the potential energy (includ-
ing the intershell interaction and shell strain energies)
for C60@C240 nanoparticles were determined by opti-
mizing three angles of mutual orientation of the shells
and the interatomic bond lengths inside the shell. (The
intershell interaction energy minima and the barriers to
rotation of the shells without regard for their strain were
calculated for several shapes of the second shell in our
earlier work [34].) The angles αz, αy, and αx of succes-
sive rotations of the first shell about the OZ, OY, and OX
axes of the coordinate system were used as the angles
of mutual orientation of the shells. Figure 1 displays the
initial shell orientation from which the αz, αy, and αx

angles were reckoned. The centers of both shells coin-
cide with the origin of the coordinate system. Owing to
the high symmetry Ih of the shells, the number of the
equivalent global or local potential energy minima of
the nanoparticle is equal to 60. These equivalent min-
ima are attributed to different mutual shell orientations.
2
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Table 1 lists the intershell interaction energies and the
orientation angles that correspond to the global and
local potential energy minima of a nanoparticle with a
particular mutual shell orientation.

The intershell interaction energies calculated in this
work are insignificantly less than those determined for
the studied nanoparticle within the framework of the
other models of van der Waals interaction (16.9 [10],
18.57 [11], and 20.3 meV/atom [10]) and are approxi-
mately three times less than the estimate obtained for
graphite [35]. Note that, contrary to the assumption

Z

Y
X

0

Fig. 1. Fragments of two shells (the second shell has the
D shape) with the initial orientation. OX, OY, and OZ are the
axes of the coordinate system. One of the fivefold axes of
both shells coincides with the OZ axis. In each shell, one
atom (closed circles) nearest to the OZ axis is located in the
OXZ plane: this fixes the orientation of shells with respect
to the OX and OY axes.

Table 1.  Intershell interaction energies E and the angles αz,
αy, and αx for the global and local potential energy minima
of the nanoparticle with a particular mutual shell orientation

Shape E,
meV/atom αz , rad αy , rad αx , rad

A 15.034 0.0819 0.1452 0.0540

A 15.033 0.2495 0.8128 –0.0081

A 15.032 0.6283 0.4634 0.0

B 15.124 0.6283 0.4634 0.0

B 15.101 0.0 0.0 0.0

C 15.180 0.0 0.0 0.0

C 15.098 0.6283 0.4634 0.0

D 13.819 0.0 0.0 0.0

D 13.777 0.6283 0.4634 0.0

E 15.166 0.0 0.0 0.0

E 15.061 0.6283 0.4634 0.0
P

made by Lu and Yang [11], the energy of interaction
between spherical shells is not maximum.

According to our calculations, the mutual shell ori-
entation angles that correspond to the potential energy
minima of the nanoparticle are determined by the shape
of the second shell. For the C, D, and E shapes similar
to the shape of a truncated icosahedron, the mutual ori-
entation of shells with aligned symmetry axes corre-
sponds to the global potential energy minimum of the
nanoparticle. Selected global minima of the potential
energy are shown in Fig. 2a. In the case of a nearly
spherical shape B, this mutual orientation corresponds
only to the local minimum of the potential energy
(Fig. 2b). For spherical shape A, the mutual shell orien-
tation with the aligned symmetry axes is inconsistent
with all minima of the potential energy. It is of interest
that the differences ∆Eloc between the potential energies
of nanoparticles at global and local minima are several
orders of magnitude less than the potential energy itself
and (as is the case with the angles of mutual shell ori-
entation) are determined by the shape of the second
shell (Table 2). It is this small difference that is respon-
sible for the orientational melting at low temperatures.
Table 2 presents the geometric parameters of the sec-
ond shell, which determine the ∆Eloc differences. These
parameters are as follows: (1) the difference l = h – rmin

(where h = 〈Ri2〉  – 〈Ri1〉  is the mean distance between the
shells, Ri1 and Ri2 are the distances from the nanoparti-
cle center to atoms of the first and second shells, and
rmin is the intershell distance corresponding to the min-
imum of the interatomic potential) and (2) the mean
deviation of the second shell from spherical shape,
〈∆Ri2〉 = 〈|Ri2 – 〈Ri2〉|〉 .

The differences ∆Eloc are especially small for nano-
particles with a small value of 〈∆Ri2〉 , i.e., when the sec-
ond shell is nearly spherical or spherical (the A and
B shapes). Moreover, among nanoparticles with second
shells similar in shape to a truncated icosahedron (the
C, D, and E shapes), the difference between the global
and local minima for the D shape is several times
smaller. This fact can be explained as follows. The l
value for the nanoparticle with the second shell of the
D shape is several times smaller than those for the
nanoparticles with the second shells of the C and E
shapes; i.e., the distance between the shells in the nano-
particle with the second shell of the D shape is several
times closer to the value corresponding to the interpar-
ticle potential bottom. Consequently, in this particle, a
smaller number of the distances d12 between atoms of
different shells falls in the interatomic potential range
characterized by a steeper dependence of the interac-
tion energy on the distance. Therefore, the change in
the d12 distances upon shell rotation more weakly
affects the change in the intershell interaction energy
and leads to a smaller difference between the interac-
tion energies for different mutual shell orientations.
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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Fig. 2. Dependences of the intershell interaction energy E on the angles of mutual shell orientation for different shapes of the second
shell: (a) D and (b) B. αz and αy are the angles of successive rotations of the first shell from the initial orientation about the OZ and
OY axes of the coordinate system. The angle of rotation about the OX axis is taken equal to zero.
The shell strain energies averaged over three angles
of the mutual shell orientation are given in Table 2. The
effect of the shell strain on the barriers to relative shell
rotation at zero temperature was analyzed in terms of
the barriers B5 to the relative rotation of shells about a
fivefold axis as an example. (This rotation began from
the mutual orientation of the shells with the aligned
symmetry axes.) A comparison of the B5 barriers calcu-
lated with and without inclusion of the shell strain dem-
onstrates that the inclusion of the shell strain leads to a
change in the B5 barriers by less than 1% for all five
shapes of the second shell. For this reason, we disre-
garded the shell strain in the calculation of the barriers
to relative shell rotation at zero temperature. (The inter-
atomic bond lengths and bond angles in the shells were
fixed during their rotation.) Note that the reverse is true,
for example, in a cluster with a logarithmic interparticle
interaction [19]. In this case, the interactions between
particles in the same and neighboring shells are identi-
cal and the inclusion of the shell strain is necessary for
adequate calculation of the barriers to shell rotation.
When calculating the barriers to relative shell rotation,
the symmetry centers of the shells were fixed at the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
same point, because the displacement of shells with
respect to each other only increases the potential energy
of the nanoparticle.

The energy barriers to relative rotation of the shells
were calculated for the mutual shell orientations corre-
sponding to the global potential energy minima of the
nanoparticle (Table 1). The surprising thing is that the
rotation barriers are only several times higher than the
barriers ∆Ea in the dependence of the energy of interac-
tion between one atom of the second shell and all atoms
of the first shell on the shell rotation angle. For exam-
ple, the barrier to rotation about the fivefold axis for the
nanoparticle with the second shell of shape D is equal
to 158.8 K. On the other hand, the maximum barrier
among the ∆Ea barriers for different atoms of the sec-
ond shell for this rotation is 21.6 K. A detailed analysis
demonstrates that the maxima of the ∆Ea barriers for
different atoms are observed at different angles of shell
rotation. As a result, the dependence of the intershell
interaction energy on the rotation angle is considerably
smoothed (Fig. 3). This leads to a substantial decrease
in the effective barrier to shell rotation. The barriers to
Table 2.  Characteristics of nanoparticles at zero temperature: geometric parameters l and 〈∆Ri2〉; differences ∆Eloc between
the global and local minima of the total energy for the nanoparticle; the minimum Bmin and average Bav ± ∆Bav barriers to
relative shell rotation (the Bav barriers are obtained by averaging over the rotation axis directions, and ∆Bav is the variance of
this barrier); and the mean strain energies Es1 ± ∆Es1 and Es2 ± ∆Es2 for the first and second shells, respectively (the Es1 and
Es2 energies are obtained by averaging over three angles of the relative shell orientation and ∆Es1 and ∆Es2 are the variances
of these energies)

Shape l, Å 〈Ri2〉 , Å ∆Eloc, K Bmin, K Bav ± ∆Bav, K Es1 ± ∆Es1, K Es2 ± ∆Es2, K

A –0.245 0.0 3.2, 5.5 19.0 20.5 ± 0.8 2.09 ± 0.02 34.56 ± 0.12

B –0.258 0.057 76.7 82.9 122.1 ± 12.1 1.62 ± 0.07 29.98 ± 0.50

C –0.289 0.152 287.4 349.3 363.1 ± 8.8 2.17 ± 0.26 18.19 ± 0.42

D –0.119 0.244 144.4 160.3 177.3 ± 9.6 3.75 ± 0.20 34.40 ± 0.55

E –0.299 0.147 368.3 441.2 459.9 ± 12.9 4.58 ± 0.44 13.78 ± 0.38
2
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Fig. 3. Dependences of the energy of interaction between
the first nanoparticle shell and groups of atoms of the sec-
ond shell of shape D on the angle αz of rotation of the first
shell from the initial orientation about the OZ axis. Each
group of atoms involves all the atoms characterized by the
same dependence of the energy Ea of interaction between an
individual atom and the first shell on the rotation angle. The
thin lines correspond to 25 groups of atoms (23 groups of
10 atoms each and 2 groups of 5 atoms each) with different
dependences of the energy Ea on the rotation angle. The
thick line represents the dependence of the total energy of
interaction between the nanoparticle shells on the rotation
angle αz. All the energies are measured from their minima.
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Fig. 4. Temperature dependences of the shell reorientation
frequency ν. Points are the results of simulation. The thick
line is the interpolation according to the Arrhenius formula (1)
at temperatures kT ! Beff. The thin line represents the esti-
mates obtained from relationship (2) at kT @ Bre.
P

relative shell rotation are also governed by the shape of
the second shell. Similarly to the behavior of the differ-
ence between the global and local potential energy min-
ima of the nanoparticle (see above), the rotation barri-
ers decrease at 〈Ri2〉   0 and h  rmin. Note that the
calculation for the second shell of spherical shape
results in an appreciable underestimation of the rotation
barriers.

Thus, our calculations demonstrated that the barri-
ers to relative shell rotation are very sensitive to the
shape of the second shell. As a result, the barriers cal-
culated using different shapes (taken from [5, 8, 9]) of
the second shell in the nanoparticle vary over a wide
range (from 80 to 500 K). However, the barrier to rela-
tive rotation of shells about the fivefold axis in the
C60@C240 nanoparticle with the second shell of shape
E, which was calculated in our work with due regard for
the shell strain, is only 12% less than the barrier
obtained from quantum-chemical calculations for the
same direction of the rotation axis and shape of the sec-
ond shell [5]. Therefore, in our calculations, the van der
Waals interaction between the shells is adequately
described by the simple Lennard-Jones potential.

3.2. Simulation of orientational melting. By using
the molecular dynamics method, we obtained the tem-
perature dependences of the following quantities: the
total energy for the nanoparticle, the shell reorientation
frequency, the angular velocity autocorrelation func-
tions of shells, the spectrum of rotational vibrations of
shells (librons), the distribution of the Eulerian angles
of mutual shell orientation, and the real barriers in the
intershell interaction energy at the instant of reorien-
tation.

The temperature dependence of the total energy was
used to calculate the heat capacity of the nanoparticle.
In the temperature range 30–150 K, the difference
between the heat capacity per degree of freedom and a
similar heat capacity for a system of harmonic oscilla-
tors appears to be less than 2%. This is less than the
computational error, which does not exceed 5%. Only
three degrees of freedom are associated with the mutual
orientation of shells. Therefore, as could be expected,
features in the temperature dependence of the heat
capacity for the nanoparticle are absent and the orienta-
tional melting of the two-shell carbon nanoparticle has
a crossover character.

The numerically simulated temperature dependence
of the shell reorientation frequency ν is plotted in
Fig. 4. The hopping orientational diffusion of shells
proceeds in the temperature range kT ! Beff (where Beff
is the effective energy barrier to shell reorientation). In
this temperature range (30–150 K), we interpolated the
shell reorientation frequency ν by using the Arrhenius
formula (thick line in Fig. 4):

(1)ν Ω0
Beff

kT
--------– 

  ,exp=
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where Ω0 is the preexponential factor. The least-squares
fitting gives the following Arrhenius parameters: Beff =
167 ± 22 K and Ω0 = 540 ± 180 ns–1. The use of a nar-
rower temperature range (T = 30–75 K) for the interpo-
lation only slightly affects the calculated parameters
Beff and Ω0. It is of interest that the Beff effective barrier
obtained in the numerical experiment is in agreement
(within the limits of error) with the minimum (Bmin) and
average (Bav) barriers to relative shell rotation at zero
temperature. This allows one to use the barriers Bmin
and Bav as the effective barrier in estimating the orien-
tational melting temperature of carbon nanoparticles
and nanotubes.

The reorientation frequency ν ceases to increase
exponentially at temperatures of 100–150 K, which
indicates the onset of the relative shell rotation (shell
rotations in this temperature range were observed in
approximately 30% of the numerical experiments). It
can be demonstrated that the reorientation frequency ν
in the case of free shell rotation (at temperatures kT @
Beff) can be estimated from the relationship

(2)

where n is the mean number of reorientations over the
period of the relative shell rotation (n ≈ 5) and I1 and I2
are the moments of inertia of the first and second shells,
respectively. The temperature dependence of the shell
reorientation frequency ν calculated from relationship (2)
is shown by the thin line in Fig. 4 (the moments of iner-
tia of unstrained shells were used in the calculations).

The considerable smoothing of the distributions of
the Eulerian angles of mutual shell orientation (Fig. 5)
and the disappearance of maxima in the angular veloc-
ity autocorrelation functions of the shells (Fig. 6) and in
the libron spectrum (Fig. 7) confirm the assumption
that the shell rotation determines the thermodynamic
properties of the nanoparticle at temperatures above
140 K.

The experimental values of the barrier Bre in the
intershell interaction energy were obtained by averag-
ing over all the observed reorientations (approximately
30–70 reorientations at temperatures in the range from
40 to 55 K and 200–600 reorientations at temperatures
in the range from 70 to 150 K). The temperature depen-
dence of the Bre barrier is displayed in Fig. 8. In the
temperature range 30–100 K (characterized by the hop-
ping orientational diffusion of shells), the Bre barriers
reasonably agree with the minimum barrier Bmin to shell
rotation (Table 2) and the effective barrier Beff in the
Arrhenius formula. At 100–150 K, when the shells
begin to rotate freely, the real barriers increase by ∆Bre,
which becomes equal to about 50 K at a temperature of
154 K. This increment exceeds the variance ∆Bav (10 K)
of the barrier to shell rotation at zero temperature
(Table 2). Consequently, it is impossible to explain the

ν n
2π
------

3kT I1 I2+( )
I1I2

------------------------------,=
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increment ∆Bre in the barriers in terms of the fact that,
as the temperature increases, the barrier can be over-
come not only in its deepest point. Hence, we believe
that the increment ∆Bre in the real barriers with an
increase in the temperature results from the shell strain.
The effect of the shell strain on the Bre barriers is also
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Fig. 5. Distributions of Eulerian angles of the mutual shell
orientation at temperatures T = (1) 21, (2) 36, and (3) 140 K.
θ, ψ, and ϕ are the polar angle and azimuths of the mutual
shell orientation.
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Fig. 6. Angular velocity autocorrelation functions F of the
first shell at temperatures T = (1) 21, (2) 36, and (3) 140 K.
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indicated by an increase in the variance ∆Bre of the bar-
riers with an increase in the temperature (Fig. 9). Note
that the shell strain energy is three orders of magnitude
larger than the increase in the Bre barriers due to the
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Fig. 7. Libron spectra Z at temperatures T = (1) 21, (2) 36,
and (3) 140 K.
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shell strain. (The shell strain energies Es determined in
the numerical experiment are consistent with the virial
theorem for a harmonic system Es = kT(3N – 6)/2,
where N is the number of atoms in the shell.)

As a rule, the phenomena associated with the distur-
bance of order in systems with a finite number of parti-
cles take place in a certain temperature range. This pre-
sents problems in attempts to define the temperature of
order disturbance in these systems (see, for example,
[36] and references therein). During melting of the
majority of clusters (as during melting of a macro-
scopic system), as the temperature increases, the cluster
structure undergoes a change and, in addition to the
ground state, other potential energy minima are filled in
the system. In a number of cases, the system upon melt-
ing fluctuates between different states separated by bar-
riers: the solid state corresponding to the ground state
of the system and the liquid state with a structure corre-
sponding to other potential energy minima. Jellinek
et al. [37] proposed to characterize this system in the
course of melting by the quantity K = γl/γs, where γl and
γs are the probabilities of the system occurring in the
liquid and solid states, respectively. In this case, the
temperature at which the system spends equal time in
each of the two states, i.e., at which K = 1, can be con-
sidered the melting temperature.

In our system (the C60@C240 nanoparticle), the shell
reorientations upon orientational melting are transi-
tions between the states corresponding to the equivalent
minima of the potential energy. Therefore, the orienta-
tional melting of this nanoparticle does not lead to a
change in its structure. In order to characterize the
“degree of melting” of the systems in which the order
disturbance is accompanied by the appearance of diffu-
sion without structural changes, we propose to use the
quantity Km = νt/ωt, where νt is the frequency of transi-
tions between the equivalent potential energy minima
and ωt is the frequency of vibrations at which particle
motion provides the transition. In our opinion, the tem-
perature of the order disturbance in the systems under
consideration can be defined as the temperature Tc at
which Km = 1 (i.e., one-half the relevant vibrations are
attended by the transition to the equivalent minimum).
It should be noted that the proposed definition (unlike
the above definition for systems with transitions
between nonequivalent minima) adequately describes
the temperature of the short-range order disturbance
and has no parallels with phase transitions in macro-
scopic systems.

For the C60@C240 nanoparticle, the quantity Kr =
ν/ω (where ν is the shell reorientation frequency and
ω is the frequency of rotational vibrations of the shells)
characterizes its orientational melting. The equality
Kr = 1 implies that, in half the cases, the relative rota-
tional vibration of shells starts in a particular minimum
(in the dependence of the total energy of the nanoparti-
cle on the mutual shell orientation angles) and is com-
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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pleted by the transition to the neighboring minimum
rather than by the return to the initial minimum. The
orientational melting temperature Tc (Kr = 1) numeri-
cally simulated for the C60@C240 nanoparticle with a
second shell of shape D is equal to .60 K (the fre-
quency of rotational vibrations of shells was deter-
mined from the maximum in the libron spectrum).

According to the calculations carried out in the
present work, the barriers to relative shell rotation are
very sensitive to the shell shape. Consequently, the pos-
sibility of the orientational melting occurring in multi-
ple-shell carbon nanoparticles is determined by their
shape. The nanoparticles formed in the arc discharge, as
a rule, have a faceted shape [3, 4]. However, their shape
becomes almost spherical under electron bombardment
[25, 35, 38]. This should lead to a decrease in the barri-
ers to relative shell rotation and, hence, in the orienta-
tional melting temperature. Different theoretical works
predict faceted [7, 10] and spherical [11, 13] shapes of
multiple-shell nanoparticles and also the transforma-
tion from a faceted to a spherical shape of shells con-
taining more than 3500 atoms [39]. Furthermore,
according to the calculations performed by Maiti et al.
[10, 12], faceted nanoparticles can transform into
spherical nanoparticles with an increase in the temper-
ature. In this case, the barriers to relative shell rotation
can decrease with an increase in the temperature due to
a change in the shell shape. The orientational melting
temperature determined for the C60@C240 nanoparticle,
Tc . 60 K, is more than one order of magnitude smaller
than the destruction temperature of the shells. Hence,
we assume that the orientational melting can also pro-
ceed in carbon nanoparticles and short nanotubes com-
prised of several shells [40].

The carbon nanoparticles with a shell structure are
not unique examples of nanoparticles with different
types of interactions between atoms in the same and
neighboring shells. For example, a two-shell nanoparti-
cle composed of MoS2 was obtained by Srolovita et al.
[13]. We believe that orientational melting can also
occur in nanoparticles consisting of this and other sim-
ilar materials (MX2, where M = Mo or W and X = S or
Se) with a layered structure.

The orientational melting of nanoparticles with a
shell structure can be revealed from the experimental
temperature dependence of the linewidth in the IR and
Raman spectra. Actually, the rotational diffusion of
shells should result in the Arrhenius contribution to the
relevant linewidths (as in plastic crystals [41]). These
investigations also make it possible to estimate the
reorientation barrier. Moreover, the orientational melt-
ing can lead to the narrowing of NMR lines.
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Abstract—The relaxation contribution of the molecular reorientation in an elastic field of an acoustic wave to
the effective shear moduli is calculated in the framework of the phenomenological two-level model of orienta-
tional states in the low-temperature phase of solid C60. The polarity of the rotation axis of C60 molecules and
the possible existence of orientational domains in the structure of the low-temperature phase are taken into con-
sideration. The estimates obtained are compared with the available experimental data. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known [1–4] that, upon cooling of solid C60, an
orientational phase transition from the face-centered

cubic phase to the simple cubic phase with the Pa
symmetry occurs in the range of Tc = 260 K. However,
C60 molecules partially retain their orientational mobil-
ity [5]: in the low-temperature phase, C60 molecules can
rotate about the [111]-type axes of the crystal so that,
for all four molecules in the unit cell, the directions of
these axes differ from one another. The rotation of C60
molecules brings about a change in their mutual orien-
tation and, consequently, a change in the molecular
interaction energy; in this case, the intermolecular
energy exhibits two minima depending on the rotation
angle, namely, the absolute energy minimum (the so-
called pentagonal orientation) and the relative mini-
mum (the hexagonal orientation) [6–8]. This situation
has been described in the framework of the phenome-
nological model of double-well orientational potential
[6, 9–11], according to which a molecule can reside in
two energy states that differ from each other by approx-
imately 10 meV [6, 10, 12] and are separated by a
potential barrier of approximately 0.3 eV [5, 10, 12–
14]. (In principle, the orientational motion of molecules
has a cooperative character; however, recent estimates
[15] demonstrated that the activation volume involved
in an elementary act of a transition from one energy
state to another is approximately equal to the crystal
volume per C60 molecule, which confirms the validity
of the phenomenological single-particle (single-mole-
cule) model used in the case under investigation.) A
considerable amount of C60 molecules (~40%) at tem-
peratures close to the orientational phase transition
point can occur in the excited state due to thermal
motion. As is known, external actions upset the equilib-
rium of a system. In the case when an acoustic wave
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propagates in the material, the disturbance of the equi-
librium gives rise to an additional inelastic strain and
additional relaxation contribution to the effective elas-
tic moduli [11, 15–18]. The available experimental data
on the temperature dependences of the elastic proper-
ties of solid C60 suggest the relaxation contribution to
the effective elastic moduli [15–20]. Moreover, the esti-
mates made for the activation parameters of the relax-
ation process are in agreement with the results obtained
using other techniques [5, 10, 12–14, 21]. It should be
noted that theoretical calculations (see, for example,
[11]) have predicted a similar relaxation contribution
only in the case of elastic vibrations of the longitudinal
type that are accompanied by dilatation of the crystal.
However, the recent investigation [15] experimentally
revealed an additional relaxation contribution to the
effective shear moduli. As will be shown below, the
inclusion of specific structural features of the C60 low-
temperature solid phase in the theoretical treatment
also leads to the relaxation contribution of the molecu-
lar reorientation to the effective shear moduli.

2. THEORETICAL ANALYSIS

2.1. A C60 molecule should possess a polar rotation
axis in a simple cubic lattice, as predicted by theoretical
calculations [22]. In general, this is predetermined by

the crystal symmetry (Pa ) and stems from the fact
that the {110} crystal planes passing through the rota-
tion axis of a molecule are not planes of symmetry for
this molecule (according to recent estimates [8, 23], the
deviation of the symmetry planes of the molecule from
the {110} planes ranges from 2° to 6°). The crystal
symmetry is also responsible for the structural isomor-
phism of the phase under investigation [24]. In this
case, the coexistence of isomorphic structures through
the formation of domains is energetically more favor-

3
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able than that in the form of a homogeneous solution.
Therefore, it can be assumed that the real structure of
the C60 low-temperature phase involves orientational
domains of the isomorphic type. This assumption is
supported by the experimental data available in the lit-
erature [9, 25].

The characteristic size of domains is determined by
the energy of domain boundaries and the conditions of
formation of the structure during the orientational
phase transition. These conditions are taken to be such
that individual domains are large enough to contain a
statistically significant number of molecules and the
total volume of domain boundaries is considerably
smaller than the crystal volume. It is also assumed that
the crystal is sufficiently perfect so as to disregard the
lattice disturbance brought about by undissociated and
partial dislocations and other defects. Under these con-
ditions, the direction and sign of polarity of the rotation
axis of a particular molecule remain unchanged upon
translation through the lattice spacing within a particu-
lar domain. To every molecule of a particular domain
there corresponds an axial vector Sα (α = 1, 2, 3, 4),
which is collinear with respect to the rotation axis of
this molecule. For example, if one of the structural vari-

ants is represented by the set of vectors (1, 1, 1), (1, ,

), ( , , 1), and ( , 1, ) [24], the other (isomorphic)

variant will be described by the set of vectors ( , ,

), (1, 1, ), (1, , 1), and ( , 1, 1). Therefore, all the
molecules involved in a particular domain can be
divided into four subsystems depending on the direc-
tion of vectors Sα. At temperatures far from Tc, these
subsystems are statistically independent of one another,
because the direction and sign of the rotation axis
remain unchanged and the transition of a particular
molecule from one subsystem to another becomes
impossible. On the other hand, these subsystems are
statistically equivalent to one another when external
actions are absent. Hence, it follows that the number

 of excited orientational states in the α subsystem is

determined from the formula  = Ne/4 (where Ne is
the number of excited states of the domain) and the
total number Nα of orientational states in the α sub-
system is expressed as Nα = N/4 (where N is the total
number of orientational states of the domain). By anal-
ogy with the theoretical treatment made by Natsik and
Podol’skiœ [11], we write the following kinetic equation

for  in terms of the phenomenological model of dou-
ble-well orientational potential:

(1)

1

1 1 1 1 1

1 1

1 1 1 1

Ne
α

Ne
α

Ne
α

∂Ne
α

∂t
----------

Ne
α

τ0
-------

Uh

kT
------– 

  N /4 Ne
α–( )

τ0
---------------------------

U p

kT
------– 

  ,exp+exp–=
P

where Uh = E0 – ∆U/2, Up = E0 + ∆U/2, E0 is the activa-
tion energy, ∆U is the difference between the energy
levels of the ground and excited states, and τ0 is the
characteristic time of relaxation. Note that such a sim-
ple kinetic equation can be written only at a low density
of excited states, when the interaction between these
states can be ignored. Otherwise, the activation param-
eters will depend on the excitation density, which, in
turn, should lead to the appearance of the spectra of the
activation energies, relaxation times, etc. Therefore, at
a high density of excited states, the quantities E0, ∆U,
and τ0 in relationship (1) (as well as the deformation
potentials considered below) should be treated as effec-
tive integrated quantities, which, in general, depend on
the temperature.

For convenience, we change over to the relative den-

sity of excited states nα = /Nα. It is easily seen that

n = Ne/N = /4 and the relative equilibrium den-
sity of excited states without external actions can be

written as  = n0 = 1/(1 + exp(∆U/kT)). Let us intro-
duce now, as was done by Natsik and Podol’skiœ [11],
additional terms for the potential barriers Uh and Up,
which are related to small elastic strains of the crystal
lattice; that is,

(2)

Here, summation over α is absent and  and 
are constants expressed in terms of energy. The first
additional term in expression (2) is similar to the com-
ponent related to the elastic strain of a cubic crystal,
which was introduced in [11]. The second additional
term in expression (2) arises from the fact that the sym-
metry of the molecular environment in the α subsystem
is determined by the vector Sα. Consequently, the
kinetic equation for nα in the approximation linear in
the strain ε can be represented in the form

(3)

where ∆V1 =  – , ∆V2 =  – , and τ =

τ0 exp(E0/kT).

2.2. Now, we analyze the effect of orientational
excitations of the crystal on its elastic characteristics in
the same manner as was described in [11]. Small strains
εij bring about small deviations of the density of orien-
tational excited states from equilibrium values: να =
nα – n0, which, in turn, leads to a change in the density
of free energy F. The change in the free energy density
in a particular domain at a given temperature can be

Ne
α

nα
α∑( )

n0
α

U p h,
α ε( ) U p h, V p h,

1( ) δijεij–= V p h,
2( ) Si

αS j
αεij.–

V p h,
1( ) V p h,

2( )

τ ∂nα

∂t
-------- nα n0–( )+ n0 1 n0–( ) ∆( V1δijεij=

+ ∆V2Si
αS j

αεij )/ kT( ),

V p
1( ) Vh

1( ) V p
2( ) Vh

2( )

n0 1 n0–( )
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determined accurate to the second-order in ε and ν from
the expression

(4)

where F0 is the equilibrium density of the free energy
and a, b, and c are the temperature-dependent coeffi-
cients. For simplicity, the additional terms related to the
possible temperature change are omitted from expres-
sion (4), because our prime interest here is in the effect
of orientational excitations on the propagation of shear
vibrations that are not accompanied by dilatation and
thermoelastic effects [26]. For longitudinal modes of
acoustic vibrations, this expression corresponds to an
isothermal approximation. The thermoelastic effect on
the propagation of longitudinal acoustic vibrations in
fullerite was thoroughly considered in [11].

By using the thermodynamic definition of the elastic
stress tensor (σij = |∂F/∂εij |T, ν) and relationship (4), we
obtain the following expression for σ, ε, and ν:

(5)

We seek a solution to this equation combined with the
equation

(6)

(which describes the relaxation of orientational excita-
tions) in the form of an expansion in the harmonics
exp(iωt). As a result, the complex elastic moduli are
represented in the form

(7)

It can easily be shown that, upon substituting either
of the two sets of vectors Sα into relationship (7) and
performing subsequent summation, the second term in
the square brackets reduces to the expression
8∆V1∆V2δijδkl and the third term transforms to
4(∆V2)2(δijδkl + δikδjl + δilδjk). This implies that the elas-
tic properties of a crystal at any volume ratio between

F F0= a να ∆V1δijεij ∆V2Si
αS j

αεij+( )
α
∑–

+ b να( )2
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∑ c νανβ 1/2Cijklεijεkl,+
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σij Cijklεkl= a να ∆V1δij ∆V2Si
αS j
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× ∆V1δijεij ∆V2Si
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------------------------------–=
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αSl

α δklSi
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+ ∆V2( )2 Si
αS j
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α

α
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its isomorphic structures can be described by the same
expression

(8)

In actual fact, the initial conditions used in solving this
problem are redundant. For example, expression (8)
was derived without resorting to the condition for
polarity of the rotation axis of a particular molecule.
Moreover, analysis of relationships (7) and (8) shows
that the condition for the existence of a statistically sig-
nificant number of molecules in an individual domain is
not a necessary condition. In the case when the crystal
involves microdomains, statistical averaging can be
performed over each of the possible Sα states of the
crystal, which results in the same relationship (8). It is
necessary that the volume of defect regions (domain
boundaries) be considerably smaller than the crystal
volume, whereas the lifetime of microdomains must be
substantially longer than the time of orientational relax-
ation τ and the time of measurement.

2.3. Let us now use relationship (8) in order to write
the real parts of the effective elastic constants C11, C12,
and C44 for fullerite:

(9)

(10)

(11)

Expressions (9) and (10) are similar (to within the
designations used) to those derived earlier in [11] (see
also [15]). From relationship (11), it follows that the
orientational mobility of C60 molecules in the fullerite
cubic lattice should also make a relaxation contribution
to the elastic modulus C44. The magnitude of this con-
tribution is determined by the difference ∆V2 between

the deformation potentials  and . At the same
time, it is clearly seen from expressions (9) and (10)
that the relaxation component is absent in the shear
modulus C ' = (C11 – C12)/2. This is in excellent agree-
ment with the experimental results obtained in the
recent study [15], which experimentally revealed the
relaxation contribution to the elastic modulus C44 and
the absence of this contribution (to within the measure-
ment error) to the shear modulus C '. The experimental
relaxation contributions found in [15] for different elas-
tic moduli can be used to estimate the difference ∆V2.
As was noted in [15], the quantity V∆ = ∆V1 + ∆V2 ≈
−0.8 eV can be determined from the data obtained in
[27]. As follows from relationships (9)–(11),

C̃ijkl ω( ) Cijkl=
4an0 1 n0–( )
kT 1 iωτ+( )
-------------------------------–

× ∆V1 ∆V2+( )2δijδkl ∆V2( )2 δikδjl δilδjk+( )+[ ] .

C11 ω( ) C11
∞( ) 4an0 1 n0–( )

kT 1 ωτ( )2+( )
----------------------------------- ∆V1 ∆V2+( )2,–=

C12 ω( ) C12
∞( ) 4an0 1 n0–( )

kT 1 ωτ( )2+( )
----------------------------------- ∆V1 ∆V2+( )2,–=

C44 ω( ) C44
∞( ) 4an0 1 n0–( )

kT 1 ωτ( )2+( )
----------------------------------- ∆V2( )2.–=

V p
2( ) Vh

2( )
2
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(∆V2)2/(V∆)2 = AG/AK, where AG and AK are the relax-
ation contributions to the shear modulus C44 and the
bulk modulus K = (C11 + 2C12)/3, respectively. Conse-
quently, substitution of the experimental data taken
from [15] yields |∆V2| ≈ 0.45 eV.
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Abstract—The structure and phase transitions in the mesoscopic system of vortices in a quasi-two-dimensional
superconducting ring are investigated. The shell structure of the mesoscopic system of vortices is studied, and
its variation with the number of vortices and the parameters of the superconducting ring is analyzed. Two mech-
anisms of formation of new shells in vortex clusters with an increasing number of vortices in an increasing mag-
netic field are discovered: the generation of a new shell in a cluster and the splitting of the internal shell into
two shells. The melting of vortex clusters and their thermodynamic parameters are analyzed using the Monte
Carlo method. It is found that the melting of shell-type clusters occurs in two stages, orientation melting taking
place at the lower temperature (during which nearly crystalline adjacent shells start rotating relative to each
other) and blurring of the vortex structure occurring at the higher temperature. The shells obtained by splitting
upon an increase in the number of vortices do not participate in orientational melting. The two-stage form of
melting is associated with the smaller height of potential barriers being surmounted during the rotation of shells
relative to one another as compared to the barrier for vortices jumping from one shell to another. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A magnetic field H > Hc1 penetrates a type II super-
conductor in the form of Abrikosov vortices, which
form a perfect triangular lattice in the low-temperature
region (in the absence of pinning centers) [1]. As the
temperature increases, this lattice can melt and the liq-
uid phase can be formed from vortices, which has
indeed been observed for high-temperature supercon-
ductors (see review [2]).

The behavior of vortices in mesoscopic supercon-
ducting structures is of considerable interest in connec-
tion with their possible application as an elemental base
in memory devices.

Real type II superconductors contain pinning cen-
ters associated with defects and impurities. Supercon-
ducting properties, such as the critical current, depend
to a considerable extent on the behavior of vortices near
such centers. For large distances between pinning cen-
ters, a group of vortices near a defect can be regarded as
a vortex cluster. Artificial superconducting structures
with a profiled surface, apertures, etc. are also of con-
siderable interest from the theoretical point of view and
for their practical usefulness [3, 4]. It can be expected
that, among other things, the critical current in such
structures might increase considerably owing to
pinning.

In the light of what has been said above, the simula-
tion of a system of vortices in such a structure is of con-
siderable interest. As the first step, we can analyze the
structure and melting of vortex clusters in a mesoscopic
1063-7834/02/4401- $22.00 © 20022
superconducting ring (this forms the basis of the
present work). It was found that mesoscopic vortex
clusters in superconducting rings possess some proper-
ties analogous to the properties of vortex clusters in
superconducting islands [5, 6].

In Section 2, we describe the physical model under
investigation. The numerical methods used by us are
discussed in Section 3. In Section 4, the configurations
of vortex clusters in global and local potential-energy
minima are studied in terms of their dependence on the
geometrical parameters of the ring and on the number
of vortices. The results of an analysis of melting in vor-
tex clusters in a ring are presented in Section 5. In Sec-
tion 6, the potential barriers for the relative rotation of
shells and for the hopping of particles between shells
are investigated.

2. PHYSICAL MODEL

Let us consider an island of a type II superconductor
in the form of a ring in a transverse magnetic field. If
the island thickness d in a certain temperature range is
smaller than the coherence length ξ(T) of the supercon-
ductor, the island can be regarded as two-dimensional
in regards to its superconducting properties. The mag-
netic field penetrates into the system in the form of two-
dimensional (2D) vortices. We will take the interaction
potential between two 2D vortices in the form (see [7])
U(r) = –q2ln(r/a), a ! r ! λ⊥ ; and U(r) = q2λ⊥ /r +
const, r @ λ⊥ , where q is the charge, proportional to the
density of the superfluid component; r is the separation
002 MAIK “Nauka/Interperiodica”
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between vortices; a is the radius of a vortex core, a ~
ξ(T); λ⊥  = λ2/d is the depth of penetration of a trans-
verse magnetic field in the 2D superconductor; and λ is
the London penetration depth of the magnetic field into
a 3D superconductor. For example, for films of thick-
ness d . 100 Å and for λ . 2000 Å, we have λ⊥  . 4 µm.

We assume that the size of a superconducting island
satisfies the relation ξ ! Rmax – Rmin ! λ⊥ . In this case,
vortices in a superconducting ring can be regarded as
point particles which repel one another in accordance
with a logarithmic law. In this model, the stabilization
of the vortex concentration in superconductors in an
external magnetic field is taken into account by intro-
ducing an effective external confinement potential
Uext = α(r – r0)2 (the parameter r0 is chosen in the annu-
lar region of the ring) corresponding to a homogeneous
compensating background with a charge density ρext =
2α. The variation of the effective interaction near the
boundary of the superconducting system can be taken
into account through the introduction of image forces;
however, image forces for vortices do not change the
properties of a cluster qualitatively; rather, they affect
its quantitative characteristics only slightly (see [5, 8]).
For this reason, these forces will be disregarded here.

Thus, we arrive at a model of a 2D cluster consisting
of N classical particles (N = 1–50) with a logarithmic
law U(rij) = q2ln(rij/a) of repulsion between the particles
confined by the external potential Uext(ri) = α(ri – r0)2.

After scaling the transformations r  (α1/2/q)r,
T  (kB/q2)T, and U  (1/q2)U, the potential
energy assumes the form

(1)

to within the constant ln(q/α1/2a). It can be proved
that (see [5, 6]) the properties of clusters under investi-
gation do not change qualitatively even in the case of a
slight anisotropy of Uext(r).

3. NUMERICAL METHODS

In order to find equilibrium configurations of the
particles, we used the following two approaches: the
annealing method and the gradient descent method. In
order to analyze the dependence of physical quantities
on the temperature and melting of a cluster, we used the
Monte Carlo method with a modified Metropolis algo-
rithm [5, 6]. The following quantities were calculated:

(1) Total potential energy Upot.

(2) Heat capacity

(2)

U rij ri r0–( )2

i

∑+ln
i j>
∑–=

CN
2

C
Upot

2〈 〉 Upot〈 〉 2–
T

--------------------------------------.=
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(3) Radial mean square displacements (RMSD),
both the total displacement and the displacement of
each shell separately:

(3)

where NR is the number of particles in a cluster or in a
shell; averaging 〈…〉  was carried out over various
Monte Carlo configurations.

(4) Angular mean square displacements (AMSD)
relative to the nearest neighbor particles in the same
shell:

; (4)

and AMSD relative to the particles of the nearest neigh-
bor shell:

(5)

where i1 and i2 correspond to the nearest neighbor par-
ticle from the same shell and to a particle from the
neighboring shell, respectively, and ϕ0 = 2π/NR is the
mean angular distance between adjacent particles for a
given shell.

(5) The radial distribution function for particles in a
cluster,

(6)

where ri are the radial coordinates of particles in the
cluster.

(6) Angular correlation function for two shells,

(7)

where ϕi and ϕj are the angular coordinates of particles
from two neighboring shells of a cluster and N1 and N2
are the numbers of particles in each of the two shells.

(7) The parameter of mutual orientational order of
shells s1 and s2,

(8)

where Ψl = 1/Nl  is the angular order
parameter of the lth shell and Nl is the number of parti-
cles in the lth shell. In the case of orientational melting,
the parameter of mutual orientational order of the shells
must vanish.

The potential barriers for relative rotation of the
shells and for particles jumping between shells were

UR
1

NR

-------
ri

2〈 〉 ri〈 〉 2–

a2
---------------------------,

i 1=

NR

∑=

Uϕ1

1
NR

-------
ϕ i ϕ i1

–〈 〉 ϕ i ϕ i1
–〈 〉 2–

ϕ0
2

-----------------------------------------------------
i 1=

NR

∑=

Uϕ2

1
NR1

NR2

-----------------
ϕ i ϕ i2

–( )2〈 〉 ϕ i ϕ i2
–〈 〉 2–

ϕ0ϕ02

------------------------------------------------------------,
i2 1=

NR2

∑
i 1=

NR1

∑=

gr δ ri r0–( )〈 〉 ,
i 1=

N

∑=

g∆ϕ δ ϕi ϕ j– ϕ0–( )〈 〉 ,
i 1=

N2

∑
i 1=

N1

∑=

gs1s2
Re Ψs1

Ψs2
( )〈 〉 ,=

iNlϕ il( )exp
i 1=

Nl∑
2



24 LOZOVIK et al.
analyzed taking into account relaxation, i.e., by tuning
particles to the corresponding changes in configuration.
Otherwise, the theory gives nonrealistic (exaggerated)
values of the potential barriers.

4. EQUILIBRIUM CONFIGURATIONS 
OF CLUSTERS

We determined global potential-energy minima for
two-dimentional clusters of vortices in a ring-shaped
confining potential with numbers of vortices N = 1, …,
50 for various values of the radial parameter r0 of the
confining potential. It turned out that vortex clusters in
the ring have a shell structure at low temperatures and
for small numbers of particles (Fig. 1).

A shell in a cluster is defined as a convex polygon
formed by the maximum possible number of particles
P

(containing the previous shell in its interior), which sat-
isfies the following condition: the maximum distance
from a particle in the given shell to the center of the sys-
tem must be smaller than the minimum distance from
particles of the neighboring outer shell to the center of
the system.

The potential energy of the system and the potential
energy per particle (specific potential energy) decrease
according to a quadratic and a linear law, respectively,
upon an increase in the number of particles. This result
can be obtained from the model of vortices uniformly
smeared over the ring. The charge density of the island
in this case is given by

(9)ρ qN

π Rmax
2 Rmin

2–( )
-----------------------------------.=
N = 27 N = 28 N = 29 N = 30

N = 31 N = 32 N = 33 N = 34

N = 35 N = 36 N = 37 N = 38

N = 39 N = 40 N = 41 N = 42

N = 43 N = 44 N = 45 N = 46

N = 47 N = 48 N = 49 N = 50

Fig. 1. Configurations of vortex clusters in a ring depending on the number of particles.
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Table 1.  Shell structure and the potential energy of vortex clusters in a ring

N N1, N2, …, r0 = 0.5 Upot, r0 = 0.5 N1, N2, …, r0 = 2 Upot, r0 = 2

8 8 –1.179805 × 101 8 –3.222613 × 101

9 1, 8 –1.607791 × 101 9 –4.124632 × 101

12 3, 9 –3.457878 × 101 12 –7.548147 × 101

13 3, 10 –4.269991 × 101 13 –8.936393 × 101

14 4, 10 –5.187863 × 101 14 –1.045188 × 102

15 4, 11 –6.210678 × 101 8, 7 –1.209840 × 102

23 8, 15 –1.855514 × 102 8, 15 –3.046596 × 102

24 1, 8, 15 –2.065622 × 102 8, 16 –3.342975 × 102

34 5, 11, 18 –4.922492 × 102 13, 21 –7.165943 × 102

35 5, 12, 18 –5.286966 × 102 7, 7, 21 –7.636627 × 102

38 6, 13, 19 –6.470145 × 102 8, 8, 22 –9.150325 × 102

43 8, 14, 21 –8.748539 × 102 8, 14, 21 –1.201622 × 103

44 1, 7, 15, 21 –9.251369 × 102 8, 14, 22 –1.264181 × 103
Here, q is the charge of a vortex and Rmax and Rmin are
the outer and inner radii of the ring island, respectively.
The potential energy of such a cluster is U = –constSN2,
where S is the area of the ring island independent of N;
in other words, the potential energy of the cluster is pro-
portional to N2 and the specific potential energy is pro-
portional to N.

Table 1 gives examples of equilibrium configura-
tions and their energies for vortex clusters in a ring-
shaped confining potential with the radial parameters
r0 = 0.5 and 2.

Clusters with ring and circular confining potentials
are characterized by different mechanisms of formation
of new shells. When a new shell is formed in a circular
cluster, one particle appears first at the center of sym-
metry of the cluster and then the numbers of particles in
all shells increase monotonically. In the case of a ring-
shaped cluster with r0 = 2, the formation of a new shell
begins with the splitting of the inner shell into two
shells with approximately equal numbers of particles
and a further increase of particles in number leads to a
monotonic increase in the numbers of particles in the
shells. In this process, some particles from the inner
shell come close to the neighboring shell and a struc-
tural transformation of the inner shells takes place for a
certain critical number of particles: the numbers of par-
ticles in two inner shells change jumpwise, after which
a monotonic increase in the number of particles takes
place in all the shells until the next splitting of the inner
shell occurs. Thus, the formation of new shells in a ring
cluster with a large radial parameter occurs in two
stages. In the intermediate case of a cluster in a ring
with r0 = 0.5, the formation of a new shell occurs in one
stage as in a circular cluster. In this case, the formation
of a new shell in the cluster also begins with the emer-
gence of a particle, but, first, the particle is displaced
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
from the symmetry center of the cluster and, second,
this configuration is not stable: an increase in the num-
ber of particles by unity leads to the formation of an
inner shell consisting of two particles, in contrast to a
cluster in a circle.

In order to determine the structural changes in clus-
ters upon an increase in the number of particles, we
analyzed the mean distance  between nearest neigh-
bor particles, the inner and outer radii Rmin and Rmax of
the cluster, the cluster area S, and the numbers of parti-
cles Nl in the shells as functions of the number of parti-

cles in the cluster. Here,  = (Rext – Rint)/ , where
Rext and Rint are the radial coordinates of the particles
located at the maximum and minimum distances from
the cluster center, respectively: Rmax = Rext + /2, Rmin =
Rint – /2, S = π(Rmax – Rmin)2 (Figs. 2a, 2b).

The mean distance  between particles decreases
abruptly during the formation of new shells and experi-
ences small jumps in the course of a structural transfor-
mation of inner shells. In the absence of structural rear-
rangements, the value of  decreases monotonically
with increasing N if a cluster has only one shell and
increases monotonically for a cluster consisting of two
or more shells. The values of Rmax, Rmin, and S also
experience drops and jumps during the formation of
new shells and in the course of structural rearrange-
ments of inner shells.

It is also interesting to trace the changes in the struc-
ture of clusters with the same N but with different val-
ues of parameter r0. These changes were analyzed for
clusters with N = 12, 24, and 38. It was found that for a
given N, the change in parameter r0 gives rise to the
same structural transformations as for clusters with dif-

a

a π N

a
a

a

a

2
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ferent values of N for a given r0. With increasing r0, the
inner shells are first rearranged and then two shells are
combined into one. The numbers of particles in the
shells at intermediate stages between structural trans-
formations change insignificantly. For example, in a
cluster with N = 12, an increase in r0 leads to the chain
of configurations (3, 9), (2, 10), (6, 6), and (12); in a
cluster with N = 24, an increase in r0 gives the configu-
rations (2, 8, 14), (1, 8, 15), (9, 15), (8, 16), (6, 6, 12),
(12, 12), and (24); while in a cluster with N = 38, the
following configurations alternate: (6, 13, 19), (8, 10,
20), (8, 8, 22), (15, 23), (16, 22), (19, 19), and (38). The
potential energy decreases monotonically upon an
increase in r0.

10
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Fig. 2. Dependence of (a) mean radii of shells and (b) the
number of particles in shells on the number of particles in a
cluster. The figures correspond to the shell numbers. Param-
eter r0 is equal to (a) 2.0 and (b) 0.5.

Table 2.  Potential barriers and melting temperatures for vortex
clusters

N r0 Urot Ujump

12 0.5 1.7 × 10–2 6.5 × 10–2 4.0 × 10–3 1.5 × 10–3

17 0.5 1 × 10–9 5 × 10–2 4.5 × 10–3 5.0 × 10–8

27 0.5 5 × 10–3 3.1 × 10–2 4.0 × 10–3 8.0 × 10–4

16 2.0 6 × 10–2 1 × 10–2 3.3 × 10–3 –

21 2.0 6.5 × 10–2 7 × 10–2 2.7 × 10–3 2.3 × 10–3

22 2.0 7 × 10–3 9 × 10–2 2.5 × 10–3 8.0 × 10–5

Note: Urot is the potential barrier to relative rotation and Ujump is
the potential barrier to particle jumps between shells.

Tc1
Tc2
P

We also analyzed the dependences of , Rmax, Rmin,
and S on r0 for N = 12, 24, and 38. The mean distances

 between particles undergo jumps upon an increase in
r0 for structural transitions associated with a decrease in
the number of shells. Moreover, the value of 
decreases abruptly during structural transitions associ-
ated with rearrangement of the inner shells. In the
absence of structural transitions, the value of 
decreases monotonically for clusters consisting of two
or more shells and increases monotonically for clusters
with only one shell. In fact, parameter r0 is a function
of the inner and outer radii for a given number of vorti-
ces. However, it is easier to study the inverse depen-
dence, viz., the formal dependence of r1 and r2 on r0.
The inner radius of a cluster increases on the whole as
a function of parameter r0, experiencing small jumps in
the course of rearrangements of inner shells and small
drops when two shells merge into one (the number of
shells decreases). The outer radius of a cluster increases
monotonically with parameter r0, undergoing jumps in
the case of coalescence of two shells.

5. MELTING AND PHASE TRANSITIONS

In order to study the melting of vortex clusters in a
ring, we determined the temperature dependences of
the quantities described in Section 3 for several clusters
(Table 2). The following regularities were revealed. In
all clusters with r0 = 0.5, as well as in clusters with r0 =
2, in which the inner shells have strongly different num-
bers of particles, melting occurs in two stages as in the
case of clusters in a circle. For example, complete
(radial) melting of clusters takes place at , while the
specific orientational melting typical of clusters with a
shell structure occurs at a temperature , which is

considerably lower than . The shells in a cluster,
preserving their crystalline nature, start rotating relative
to one another. The ratio /  of temperatures of
complete and orientational melting for magic clusters
(with a multiple number of particles in the shells) is
much smaller than that for other clusters. On the whole,
an increase in the number of particles in the shells leads
to an increase in the orientational melting temperature
and to a decrease in / . In clusters with r0 = 2 with
inner shells obtained through the splitting of a cluster
shell with a smaller number of particles (i.e., with
approximately equal numbers of particles in two inner
shells), orientational melting of the inner shells does
not take place at all (Table 2).

The melting of vortex clusters in a ring is considered
for clusters with N = 12, 17, and 27 with r0 = 0.5 and for
clusters with N = 16, 21, 22, and 38 with r0 = 2 (Table 2).

Complete melting in the clusters is demonstrated
most visually through the temperature dependences of

a

a

a

a

Tc1

Tc2

Tc1

Tc1
Tc2

Tc1
Tc2
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the RMSD. Figure 3 shows a jump in the RMSD (for a
cluster with N = 27 and r0 = 0.5) at the complete-melt-
ing temperature  (Table 2). The sharp peaks in the
function g(r) that correspond to the shells (see Section 3)
and are observed for T >  are blurred and merge into

one at T < .

The orientational melting of vortex clusters in a ring
can be observed with the help of the temperature depen-
dences of the AMSD, the RMSD, the angular correla-
tion function of particles from two shells, and the order
parameter . It is shown for clusters with N = 21, 22,
and 38 and r0 = 2 and with N = 12 and 27 for r0 = 0.5
that the AMSD as a function of T displays a sharp kink
(only for the two outer shells in the case of N = 38) at
T =  (Fig. 4 and Table 2). The RMSD also experi-

ences small jumps at T = . The angular correlation

function g∆ϕ has zero values in some ranges for T < ,

the ranges vanishing for T > . Consequently, for

T > , the particles in adjacent shells can be sepa-
rated from one another by arbitrary angular intervals,
while for T <  they can only be within definite inter-
vals of angular separations. The order parameter 
decreases abruptly at the orientational melting point
(Fig. 5 for a cluster with N = 12 and r0 = 0.5) and then
fluctuates about its zero value.

The potential energy increases linearly with temper-
ature up to the point of complete melting, after which it
starts increasing at a higher rate near the melting point
and fluctuates strongly (Fig. 6). The heat capacity also
starts fluctuating vigorously. This is due to the fact that
at temperatures higher than the complete melting point,
a cluster can exist (with different probabilities) in con-
figurations corresponding to different local minima
(dynamic coexistence).

6. POTENTIAL BARRIERS TO SHELL 
ROTATIONS AND TO JUMPING OF A PARTICLE 

FROM ONE SHELL TO ANOTHER

The method described in Section 3 was used by us
to determine the rotational potential barrier Urot and the
potential barrier Ujump to the jumping of a particle from
one shell to another in clusters with various values of N
and r0 (Table 2 and Fig. 7). As expected, the potential
barriers to the relative rotation of shells are lower than
the potential barriers to particles jumping between
shells only for those pairs of shells in clusters that melt
orientationally relative to each other. The ratio
Urot/Ujump of the potential barriers coincides in order of
magnitude with the ratio of the temperature corre-
sponding to orientational melting for the relevant shells
and the complete-melting temperature of the cluster.
For shells with equal numbers of particles (appearing as

Tc1
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gs1s2
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Tc2
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Fig. 3. Temperature dependence of the radial mean square
displacement for a cluster with N = 27, r0 = 0.5. The rapid
growth of this parameter corresponds to complete melting
of the vortex cluster.
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Fig. 4. Temperature dependence of the angular mean square
displacement for a cluster with N = 22, r0 = 2: (1) the
intrashell AMSD of the outer shell, (2) the intrashell AMSD
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Fig. 6. Temperature dependence of the mean potential
energy 〈U 〉  of a cluster with N = 16, r0 = 2.
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Fig. 7. Dependence of the total potential energy of a vortex
cluster with N = 17, r0 = 0.5 on (a) the relative angular posi-
tion of the shells and (b) the coordinate of a particle upon its
displacement from one shell to another. Dependence (a)
gives the potential barrier to relative rotation of the shells,
while dependence (b) gives the potential barrier to a particle
jump between the shells.
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a result of splitting), orientational melting does not take
place in view of the large height of the rotational barrier
for these shells. In the case of relative rotation of such
shells, the angular coordinates of particles of the outer
shell simultaneously assume the same values as the
angular coordinates of the corresponding particles of
the inner shell. For this reason, the separations between
the corresponding particles in these shells simulta-
neously assume minimum values and the radial separa-
tion between these shells is small (and hence, the poten-
tial barrier is very high). In other words, a large value
of the barrier is connected with the commensurability
of shells; a small value, with their incommensurability.

7. CONCLUSIONS

The results obtained in the present work can be for-
mulated as follows.

(1) It is shown that two-dimensional mesoscopic
vortex clusters in a superconducting ring have a shell
structure at low temperatures. The possible configura-
tions of the system are determined at the local and glo-
bal minima of the potential energy. Two mechanisms of
formation of new shells upon a change in the number of
vortices caused by an increase in the magnetic field and
in parameter r0 have been discovered: (a) a new vortex
shell is formed in a cluster and (b) the inner shell of a
cluster splits into two shells with an equal number of
particles, which is followed by further structural rear-
rangement of the inner shells formed. The latter mech-
anism is typical of particles in the ring-shaped potential
and prevails upon an increase in r0.

(2) The temperature dependences of potential
energy, heat capacity, and mean square (radial and
angular) displacements and the function of radial and
angular distributions of particles are analyzed in detail.
The melting of the system is studied thereby. It is
shown that melting in mesoscopic clusters occurs in
two stages: orientational melting (from the frozen
phase to the state with rotational reorientation of crys-
talline shells relative to one another), occurring at lower
temperatures, is followed by a transition with distur-
bance of the radial order. The reason behind the orien-
tational melting lies in the smallness of the potential
barrier to relative rotation of the shells (associated with
the incommensurability of adjacent shells) as compared
to the barrier to particle jumping from one shell to
another. Orientational melting is not observed for inner
shells that are formed as a result of splitting and contain
an equal number of particles.

The ratio of temperatures corresponding to orienta-
tional and complete radial melting is found to be equal,
in order of magnitude, to the ratio of the barriers to rel-
ative rotation of the shells and to a jump in a vortex
from one shell to another.
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Abstract—This paper reports on the temperature and field dependences of the specific heat of high-quality
La1.85Sr0.15CuO4 single crystals carried out at low temperatures in magnetic fields of up to 8 T for two magnetic
field orientations, namely, along the [100] and [110] crystallographic axes. The field dependence of the elec-
tronic density of states (DOS) was found to be anisotropic for different magnetic field orientations in the a–b
plane, with the electronic density being the lowest along the a axis (for H || [100]) and maximum for the field
inclined at 45° to the a axis (for H || [110]). Electronic specific heat in a magnetic field was observed to depend
linearly on temperature T and nonlinearly on the magnetic field H: CDOS = bTH1/2. In a zero field, the electronic
specific heat grows quadratically with temperature as CDOS = αT2. Estimation of the maximum superconduct-
ing gap width from the experimentally determined values of the α coefficient of T2 and of the electronic DOS
in the normal state yields ∆0 = 300 K. The observed features indicate that La1.85Sr0.15CuO4 is a superconductor
with d symmetry of the order parameter. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable attention has been focused in recent
years on investigation of the symmetry of the order
parameter in HTSCs by measuring the specific heat in
magnetic fields, because in this way, one can determine
the electronic density of states (DOS), which can be
readily compared with various theoretical predictions.
Since specific heat is a volume thermodynamic charac-
teristic of matter, such measurements are a convenient
approach to studying the mechanism of superconduc-
tivity.

The theory of superconductors with d symmetry of
the order parameter suggests that the d and s compo-
nents of the superconducting gap have different spatial
distributions. Therefore, the electronic density of states
and, particularly, its dependence on the magnetic field
differ for d- and s-electron pairing; hence, specific-heat
measurements performed in a magnetic field can con-
tribute substantially to our understanding of the nature
of pairing. Such measurements also yield the densities
of electronic states, which are essential in making com-
parisons with model calculations of the quasiparticle
excitation spectrum.

The low-temperature behavior of the thermody-
namic properties depends on the energy density of
states in the excitation spectrum of the superconductor
near the Fermi level. The vanishing of the supercon-
ducting gap in some sections of the Fermi surface
affects the energy spectrum strongly, which gives rise
to temperature anomalies in the thermodynamic prop-
erties of the superconductor in both the superconduct-
1063-7834/02/4401- $22.00 © 20030
ing (Meissner) and mixed (Shubnikov) states. Theory
[1–5] predicts that the specific heat of a superconductor
with d symmetry of the order parameter will have three
characteristic features in the low-temperature region:
(i) In a zero field, the electronic specific heat depends
quadratically on temperature. (ii) In a magnetic field
and in the mixed state, the electronic specific heat
scales as C ~ bTH1/2. (iii) The specific heat exhibits a
nontrivial fourth-order anisotropy for a magnetic field
oriented in the a–b plane.

The first two features have been observed experi-
mentally in a number of laboratories [6–10], primarily
on polycrystalline samples of La1.85Sr0.15CuO4 and
YBa2Cu3O7. Single crystals of YBa2Cu3O7 were stud-
ied in differently oriented magnetic fields [11–13]. The
effect of magnetic field on the specific heat was found
to be trivially anisotropic, depending on the field orien-
tation relative to the Cu–O plane in fields parallel and
perpendicular to the c axis. Those studies, however, did
not reveal any nontrivial anisotropy, within experimen-
tal accuracy, in the a–b plane.

The present work was aimed at studying the temper-
ature and field dependences of the electronic compo-
nent of the specific heat on bulk high-quality
La1.85Sr0.15CuO4 single-crystal samples, as well as the
nontrivial anisotropy in the electronic density of states
for different magnetic field orientations in the a–b
plane. Preliminary results of these studies were pub-
lished in [14–17].
002 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION 
AND CHARACTERISTICS

The studies were performed on a high-quality bulk
La1.85Sr0.15CuO4 single crystal grown by crucibleless
zone melting under radiative heating. Room tempera-
ture x-ray diffraction analysis showed the sample to
have a tetragonal structure (F4/mmm) with the lattice
parameters a = b = 3.773(1) Å and c = 13.233(2) Å.

The superconducting transition temperature Tc and
the transition width ∆Tc were derived from the magnetic
susceptibility and electrical resistivity (Tc = 39.2 K,
∆Tc = 0.5 K) and from the specific heat (Tc = 38 K,
∆Tc = 2 K). The temperature dependence of the specific
heat exhibited a distinct jump corresponding to a super-
conducting transition; the magnitude of the jump was
∆C/T = 10 mJ mol–1 K2. The specific heat of the sample
was measured using the adiabatic method with pulsed
heating. The measurement error was 2% in the 1.5- to
4-K interval, 1% in the 4- to 10-K interval, and 0.2–
0.5% from 10 to 50 K.

The specific heat was studied for two magnetic field
orientations in the a–b plane, namely, along the a axis
(in the [100] direction) and at 45° to the a axis (along
[110]). We estimated the total error of determination of
the orientation and sample adjustment with respect to
the field as not exceeding 5′.

3. EXPERIMENTAL RESULTS

The specific-heat measurements on the
La1.85Sr0.15CuO4 single-crystal sample were carried out
at low temperatures and in magnetic fields of 0, 2, 4, 6,
and 8 T oriented in two directions, along the [100] and
[110] axes. Figures 1–3 display series of the C(T, H)
dependences measured in the two magnetic field direc-
tions.

The experimental data obtained were analyzed as a
sum of contributions, with each depending differently
on the temperature and magnetic field.

Since, in a zero field, there is a line along which the
energy gap vanishes, the electronic contribution to the
low-temperature specific heat due to the electronic
DOS at the Fermi level CDOS(T, 0) is proportional to the
temperature squared:

where Cbkgd(T) includes a contribution that is linear in
temperature, γ*(0)T, whose nature remains unclear, and
the phonon contribution βT3.

In accordance with theory, we analyzed C(T, H)
under the assumption that the αT2 term vanishes in a
magnetic field and that Cbkgd(T) is field-independent.
Then, in a magnetic field, we have

C T 0,( ) Cbkgd T( )= CDOS+ T 0,( )

=  γ* 0( )T βT3 αT2,+ +

C T H,( ) Cbkgd T( )= CDOS T H,( ).+
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To separate the contributions to specific heat that
have dependences of the form CDOS(T, H) = αT2 for
H = 0 and CDOS(T, H) = bTH1/2 in a magnetic field, as
predicted by theory, one can conveniently present the
results as a series of C(T, H)/T2 vs. H1/2/T relations plot-
ted for several fixed temperatures. In such a representa-
tion, a relation of type C(T, H) = Cbkgd(T) + bTH1/2 will
be a straight line, whose slope is the coefficient b and
whose vertical intercept yields a value of Cbkgd(T)/T2 at
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Fig. 1. Specific heat C(T, H) of an La1.85Sr0.15CuO4 sample
in magnetic fields H = 0, 2, 4, 6, and 8 T plotted as C(T,
H)/T2 vs. H1/2/T for four fixed values of temperature and
two magnetic field orientations along the [100] and [110]
axes. The straight lines are least squares fits of the experi-
mental points measured at 0, 2, 4, 6, and 8 T.
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the given temperature. One readily sees, however, that
this relation does not persist to a zero field; indeed, the
experimental points measured in a zero field lie above
the straight line drawn through the points obtained with
a magnetic field present. This may be due to the fact
that at low magnetic fields, an additional contribution to
the specific heat appears, which vanishes when a mag-
netic field is applied. The magnitude of this contribu-
tion is equal to the difference between the specific heat
measured experimentally in a zero field and its value
extrapolated to a zero field.

Figure 1 presents experimental data obtained for
four fixed temperatures (3, 3.5, 4, and 4.5 K) in mag-
netic fields of 0, 2, 4, 6, and 8 T plotted in the C/T2 vs.
H1.2/T form for two magnetic field orientations (H || [100]
and H || [110]). The data obtained at each fixed temper-
ature, except those measured at H = 0, are seen to lie on
parallel straight lines having a slope dependent on the
magnetic field orientation. The solid lines drawn on the
data corresponding to the H || [110] orientation yield a
slope b[110] = 0.34 mJ mol–1 K–2 T–1/2, and the dashed
lines corresponding to the H || [100] case lie at a slope
b[100] = 0.27 mJ mol–1 K–2 T–1/2.

The difference between the specific heat C/T2 mea-
sured experimentally in a zero field and that extrapo-
lated to a zero field is approximately constant for differ-
ent temperatures and magnetic field orientations. The
value of the α coefficient of the quadratic term derived
from this difference is α = 0.1 mJ mol–1 K–3. This cal-
culational scheme, which takes into account the qua-
dratic term in the specific heat, permits one first to sep-
arate Cbkgd(T) and then to determine the electronic spe-
cific heat CDOS(T, H) = C(T, H) – Cbkgd(T).

We analyzed the temperature dependence of the
Cbkgd term obtained in the standard manner, Cbkgd(T) =
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Fig. 3. Magnetic field dependence of the quantity ∆γ(H) =
γ*(H) – γ*(0) plotted vs. H1/2 for two magnetic field orien-
tations, (1) along the [110] and (2) [100] axes. The straight
lines are least squares fits corresponding to the relation
∆γ(H) = bH1/2.
P

γ*(0)T + βT3, and determined the coefficients of the lin-
ear and cubic contributions to the specific heat: γ*(0) =
0.65 mJ mol–1 K–2 and β = 0.189 mJ mol–1 K–4. This
value of β corresponds to a Debye temperature of ΘD =
419 K.

Figure 2 plots the CDOS(T, H)/T relation as a function
of temperature for two magnetic field directions, along
the [100] and [110] axes. In a zero field, the experimen-
tal data fall on a straight line which passes through the
origin, corresponding to CDOS(T, H) ~ T2. In a magnetic
field, the experimental points fall on horizontal straight
lines, corresponding to a linear temperature depen-
dence of the specific heat, CDOS(T, H) ~ T . As the mag-
netic field increases, the CDOS(T, H)/T plots shift toward
larger values without changing their slope.

Figure 3 plots the quantity ∆γ(H) = γ*(H) – γ*(0) vs.
H1/2 for two magnetic field orientations, along the [100]
and [110] axes. The specific heat is seen to increase
with magnetic field, this effect being smaller for the
field oriented along the a axis (for H || [100]) than at 45°
to this axis. The straight lines obtained using least
squares fitting describe the experimental data well and
provide supportive evidence for the quantity γ*(H) –
γ*(0) scaling nonlinearly as bH1/2. The values of the
slope b depend on the magnetic field orientation
(b[100]   = 0.28 mJ mol–1 K–2 T–1/2 and b[110] =
0.33 mJ mol–1 K–2 T–1/2) and are close in magnitude to
the results displayed in Fig. 1. This means that the
CDOS(T, H) contribution of the electronic DOS to the
specific heat of La1.85Sr0.15CuO4 has been determined to
within acceptable accuracy.

A comparison of these values shows that the anisot-
ropy in the electronic DOS for different magnetic field
orientations, [γ*(H) – γ*(0)[110]]/[γ*(H) – γ*(0)[100]], is
20%.

The electronic DOS anisotropy in the a–b plane
observed by us can be assigned to that of the energy gap
whose minimum lies along the [110] direction.

The energy gap in a two-dimensional  super-

conductor can be written as ∆(k) = ∆0cos(2ϕ), where ϕ
is the angle characterizing the direction of the quasi-
momentum relative to the crystallographic axes.
Assuming the Fermi surface to be cylindrical, the
energy DOS of quasiparticles can be found by integrat-
ing over all values of the angle ϕ:

where N0 is the energy DOS at the Fermi level in the
normal state. The electronic specific heat CDOS in a zero
field is related, for T ! Tc, to the maximum width of the
gap through the expression [6]

d
x

2
y

2–

N E( )
N0

2π
------ ϕRe

E

E2 ∆0
2 2ϕ( )2cos–

-------------------------------------------- ,d

0

2π

∫=

CDOS 3.28γnT2/∆0 αT2,= =
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where ∆0 is the maximum energy gap in units of tem-
perature.

Taking the estimate of the electronic specific-heat
coefficient of La1.85Sr0.15CuO4 in the normal state, γn =
9 mJ mol–1 K–2 [14], and our value of the coefficient
α = 0.1 mJ mol–1 K–3, we come to ∆0 = 300 K as an esti-
mate of the maximum energy gap at the Fermi level.
For a dimensionless ratio of the energy gap width to the
critical temperature, we obtain 2∆0/Tc = 16, which
implies strong coupling in the superconductor under
study. Our estimate of 2∆0/Tc is substantially larger than
the value derived from the experimentally measured
specific heat [6] and inelastic neutron scattering [18]
and Raman scattering data [19], which may be due to
the high quality of the single-crystal sample employed
by us.

Low-energy Raman spectra of an La1.83Sr0.17CuO4
single crystal were measured both above and below Tc.
Redistribution of the Raman scattering intensity as a
result of the opening of the superconducting gap was
observed. An analysis of the Raman scattering intensity
as a function of photon polarization showed that the gap
is anisotropic and has zeros along the [±1, ±1] direc-
tions and maxima along [0, ±1]and [±1, 0], which indi-
cates  symmetry of the superconducting order

parameter.
Our results on the electronic DOS anisotropy sup-

port the information obtained in Raman scattering
experiments and give one grounds to assume that the
energy gap on the Fermi surface is anisotropic and has
zero lines on it.
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Abstract—The lattice vibrations induced by nickel impurities with a negative charge relative to the lattice in
ZnSe : Ni, ZnO : Ni, ZnS : Ni, and CdS : Ni semiconductors are investigated using very sensitive field-induced
vibronic spectroscopy. This technique is based on the interaction of lattice vibrations with impurity excitons
and the effect of an ac electric field on these excitons. The phonon replicas of the zero-phonon line (ZPL) of
impurity excitons (including intense peaks of combination replicas up to the eighth order) in the experimental
spectra of the system under investigation are observed for the first time. These spectra make it possible to ana-
lyze the interaction between different vibrations. The experimental results are interpreted in terms of model cal-
culations of the vibrations in a lattice with a charged impurity center and vibrations in a monoatomic chain with
a strong anharmonicity. It is demonstrated that charged impurity centers initiate new lattice vibrations,
namely, extrinsic anharmonic modes with a considerable third- or fourth-order anharmonicity. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Lattice vibrations induced by impurities have been
investigated over the last decades. As a rule, new lattice
vibrations associated with changes in the mass or force
constants upon the introduction of an isovalent (neutral
with respect to the lattice) impurity into the crystal are
observed using IR absorption or first-order Raman
spectroscopy. Recently, primary attention has been
focused on either light impurities (that initiate local
vibrations whose frequencies are substantially higher
than those of phonons in a perfect lattice) or heavy
impurities responsible for noticeable peaks in the fre-
quency range of acoustic phonons. New vibrations
(both local and resonance) are primarily due to vibra-
tions of an impurity center and have a harmonic nature.

Substitutional impurities with an excess charge rel-
ative to the lattice in semiconductors, as a rule, are 3d
or 4f  ions, because an excess charge can be localized
on the impurity only at the expense of a change in the
number of electrons in a partially filled d or f shell. The
3d impurity can possess a stationary excess charge in
the presence of a compensating impurity. Photoioniza-
tion of the 3d impurity brings about the detachment of
a d electron or a d hole from the impurity under expo-
sure to light and the formation of a nonstationary excess
charge. Hereafter, the vibrations thus induced by a
charged impurity will be referred to as photoinduced
vibrations. The majority of 3d impurities in semicon-
ductors are not very light or very heavy compared to
atoms of the host lattice. Consequently, new vibrations
are predominantly governed by the motion of lattice
1063-7834/02/4401- $22.00 © 0034
atoms surrounding the impurity. Since the nearest-
neighbor ions in a Coulomb field of the charged center
are displaced in opposite directions, it can be assumed
that new vibrations in the vicinity of displaced equilib-
rium positions exhibit a considerable anharmonicity.
This situation is of particular interest from the view-
point of existing theoretical concepts concerning the
initiation of localized vibrations in the model of a
monoatomic chain, provided the anharmonicity is very
strong [1–4].

Under exposure to light, the impurity undergoes a
transition to a hydrogen-like excited state; i.e., it forms
an impurity exciton. In this case, both donor and accep-
tor excitons can be formed [5]. The formation of an
impurity exciton is attended by a change in the impurity
charge. This initiates photoinduced lattice vibrations.
The charge carrier in the Coulomb field of the impurity
center is sufficiently far removed and virtually does not
affect the lattice strain in the vicinity of the charged
impurity. Hence, knowing the type of impurity exciton,
it is possible to assign unambiguously the new lattice
vibrations to a particular charge of the impurity center.

The absorption spectrum at the photoionization
band edge of nickel contains a zero-phonon line (ZPL),
which is attributed to an electron transition to the impu-
rity exciton state, and a series of its phonon replicas
associated with the interaction between the impurity
exciton and photoinduced lattice vibrations. This series
of phonon replicas overlaps with the absorption caused
by the transition of a carrier from the impurity to the
allowed band. For this reason, it is extremely difficult or
2002 MAIK “Nauka/Interperiodica”
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even impossible to identify the phonon replicas of the
zero-phonon line of the impurity exciton from the
absorption spectra. In the present work, we used a rad-
ically different approach to the identification of the
photoinduced vibrations. This approach accounts for
the strong effect of an ac electric field on the hydrogen-
like component of the wave functions for vibronic
states and the weak effect of an ac electric field on the
background absorption. The sensitivity of the proposed
technique of field-induced vibronic spectroscopy is
substantially higher than that of traditional methods.
This technique makes it possible to separate reliably the
phonon replicas of the zero-phonon line and to charac-
terize them in detail. It was found that these replicas can
be represented by a series of overtones of the dominant
mode with frequencies nΩ and a series of combination
phonon replicas with frequencies (nΩ + ωi), which are
superpositions of overtones of the dominant mode and
satellite modes with frequencies ωi [6, 7]. Our special
interest here is in the combination phonon replicas,
which provide valuable information on the interaction
of impurity excitons with photoinduced lattice vibra-
tions and the interaction of the dominant mode with sat-
ellite vibrations. In this work, we systematically inves-
tigated four II–VI : Ni compounds and performed a
comparative analysis of their experimental spectra.

2. EXPERIMENTAL TECHNIQUE

The measurements of the electroabsorption spectra
for impurity excitons were described in detail in review
[5]. In order to obtain the spectra with a large number
of phonon replicas of the zero-phonon line, it is neces-
sary to use samples with a low concentration of nickel
impurities. This makes it possible to measure reliably
signals within the energy range of photoionization with
photon energies for which the absorption noticeably
increases compared to that at the photoionization band
edge. For the purpose of optimizing the conditions of
measuring the variable and constant components of the
light intensity, the measurements were carried out for
several samples of different thicknesses and impurity
concentrations [5]. The electroabsorption second-har-
monic amplitude spectra were recorded on a setup
equipped with an MDR-3 monochromator. The resolu-
tion was equal to 1–2 meV depending on the spectral
range. The lowest resolution was observed in the high-
energy range of the electroabsorption spectrum, i.e., in
the range of the strongest absorption of the material.
The error in determining the second-harmonic ampli-
tude α2 in this spectral range was 20–30%, whereas the
error in the low-energy spectral range was 3–5%. As a
rule, the reproducibility of the spectra was checked
using samples of different thicknesses.

3. EXPERIMENTAL SPECTRA

Figures 1–3 display the spectra of the electroabsorp-
tion second harmonic amplitude α2 for ZnSe : Ni,
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
ZnS : Ni, and CdS : Ni semiconductors. The spectrum
for ZnO : Ni is reported in [6]. In order to demonstrate
more clearly the advantages of field-induced vibronic
spectroscopy, the excitation spectra of the intracenter
luminescence of ZnSe : Ni [8] and ZnS : Ni [9] are also
shown for comparison in Figs. 1 and 2. The spectra are
divided into regions that correspond to the first-order
processes (F-OP) and higher-order processes (M-OP).
Arrows in the spectra indicate the positions of negative
peaks. For all the studied crystals, the line attributed to
the acceptor exciton shifts in response to the electric
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of the acceptor exciton [d9h] (solid line). T = 4.2 K. The
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Fig. 2. Electroabsorption spectrum of ZnS : Ni in the range
of the acceptor exciton [d9h] (solid line). T = 4.2 K. The
amplitude FM of the ac electric field is 25 kV/cm. The
dashed line represents the excitation spectrum of the
Ni+2(d8) intracenter photoluminescence [9]. Arrows indi-
cate the positions of the lines attributed to the dominant and
satellite modes and their combinations.
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field. As a result, the electroabsorption spectrum
involves a structure of positive and negative peaks of
identical intensity [5] and the point of passage through
zero in this structure corresponds to the spectral line
core in the absorption spectrum. If the lines in the
absorption spectra are closely spaced, the structures in
the electroabsorption spectrum overlap, which is espe-
cially pronounced in our spectra. Since, in this situa-
tion, the true energy positions of absorption bands are
determined ambiguously, we indicate the locations of
negative peaks whose energies are determined fairly
exactly (to within the limits of spectral resolution).

It is clearly seen that all the spectra obtained are
characterized by a common feature: the phonon repli-
cas of the zero-phonon line are separated into several
series in the region of higher-order processes. The
peaks in each series are replicated at frequencies of the
same mode. Let us consider, in greater detail, this pat-
tern for the ZnSe : Ni semiconductor. The electroab-
sorption spectrum of ZnSe : Ni (Fig. 1) reflects the
effect of the ac electric field on the zero-phonon line of
the acceptor exciton [d9h] and its phonon replicas. The
interaction of the impurity exciton with first-order
vibrations manifests itself in the first region of the elec-
troabsorption spectrum, and the interactions of the
impurity exciton with second-, third-, and higher-order
vibrations are observed in the second region. The first
region of the spectrum involves the zero-phonon line
replicas at the frequencies ω1 and ω2 and the most
intense structure at the frequency Ω3. The region of
multimode replicas contains the peaks 2Ω3, 3Ω3, and
4Ω3 and more intense combination peaks (nΩ3 + ω1)
and (nΩ3 + ω2). Therefore, all the peaks in the first-
order region are replicated in the higher-order region at
frequencies shifted by nΩ3. The most unexpected fea-
ture observed in the structure of phonon replicas is that
the intensities of the (nΩ3 + ω1) and (nΩ3 + ω2) peaks
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Fig. 3. Electroabsorption spectrum of CdS : Ni in the range
of the acceptor exciton [d9h] (solid line). T = 4.2 K. The
amplitude FM of the ac electric field is 30 kV/cm. The elec-
tric vector of the light wave is perpendicular to the optic
axis. Arrows indicate the positions of the lines attributed to
the dominant and satellite modes and their combinations.
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of the combination replicas are considerably higher
than those of the peaks attributed to the nΩ3 overtones
of the dominant mode. Intense combination replicas
are observed at n > 4, for which the nΩ3 peaks of the
dominant mode are absent. This feature has defied
explanation in the case when the vibrational process is
considered within the harmonic approximation,
because the intensities of the peaks of the combination
phonon replicas should be proportional to the product
of the intensities of peaks forming the combination
replicas [10]. Consequently, the intensities of the
(nΩ3 + ω1) combination peaks should be small because
of the low intensity of the first-order peak at the fre-
quency ω1, whereas the peaks at n > 4 should be absent.
However, the intensities of the combination peaks are
substantially higher than those of the zero-phonon line
and the maximum peaks of the dominant mode at n = 2.
The number n of the last peak observed in the series of
overtones of the dominant mode will be referred to as
the critical number ncr. As can be seen from the figures,
the critical number ncr has the following values: ncr = 2
for ZnS : Ni, ncr = 4 for ZnSe : Ni, and ncr = 8 for
CdS : Ni. According to [6], the critical number ncr for
ZnO : Ni is 6.

Let us now compare our electroabsorption spectra
with the spectra of other systems that are characterized
by the carrier localization and sufficiently intense
phonon replicas of electron transitions. In particular,
the line of the exciton bound to either a Zn vacancy or
a Cu impurity substituting for Zn (the total energy of
additional localization of the electron–hole pair is
approximately equal to 20 meV) and a series of phonon
replicas due to the interaction with longitudinal optical
(LO) phonons were repeatedly observed for ZnSe. As is
seen from Fig. 1 reported in [11], the spectrum involves

four clear-cut LO replicas of the  line. The inten-
sity of these replicas is considerably less than that of the
zero-phonon line and decreases rapidly with an
increase in the replica number n. This indicates that the
Huang–Rhys factor S, which characterizes the coupling
of longitudinal optical lattice vibrations with a hydro-
gen-like electronic state, is appreciably less than unity.
Note that, for this system, combined states of the
(nωLO + ω) type were not found. Recently, Vavilov et al.
[12] examined the cathodoluminescence spectrum of

ZnSe and revealed the series  – nLO = mP1, where 
is the line of an exciton bound to a zinc vacancy defect
and mPl is a series of phonon replicas of the plasma
type. However, the nLO and mPl series manifest them-
selves independently of each other and cannot be con-
sidered combination phonon replicas when each nLO
replica of the zero-phonon line is accompanied only by
a single Pl peak.

Another local system is an exciton bound to an O
oxygen impurity in ZnTe : O [13]. The energy of addi-
tional localization of the electron–hole pair is approxi-
mately equal to 410 meV. In this case, the energy of the
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S Ii

S
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strongly localized electron trapped by the local poten-
tial is equal to 350 meV and the energy of the hydro-
gen-like hole is 60 meV. The wave function of the elec-
tron is spatially localized and decays rapidly. This leads
to a strong interaction of the localized exciton with lat-
tice vibrations [14]. As a result, the luminescence and
impurity absorption spectra exhibit intense phonon rep-
licas that consist of a set of nΩ peaks and (nΩ + ωi)
combination replicas (the Ω frequency is close to the
frequency of the longitudinal optical phonons). It
should be noted that the intensities of the combination
replicas of the zero-phonon line in the luminescence
spectrum do not exceed the intensity of the nΩ peaks.
The absorption spectrum contains the background con-
tribution due to the impurity–valence band transitions,
which changes the intensity ratio of the nΩ and (nΩ +
ωi) peaks. In this system, the S factor is approximately
equal to 3. This value corresponds to the maximum
intensity of the peaks at n = 3.

A molecular ion Mn  in the lattice of KBr and
RbBr alkali halide crystals [15, 16] is the most promi-
nent example of a system of the local type. The vibra-
tional frequencies of this ion are considerably higher
than the maximum frequency of optical phonons in the
aforementioned crystals. The phonon replicas of the

–  electron transition in the absorption and pho-
toluminescence spectra of KBr crystals involve a set of
nν1 and (nν1 + ν2) peaks. The intensity of the nν1
overtones is described by the Poisson distribution In ~
(e–SSn/n!). Here, the factor S is equal to two or three.
However, the intensity of the (nν1 + ν2) combination
(composite) modes is universally less than that of the
nν1 peaks. For these systems, there occurs no situation
when, at n > ncr, the composite modes are clearly
observed but overtones of the dominant mode are
absent.

Thus, the observed structure of the phonon replicas
of the zero-phonon line for Ni impurity excitons differs
from the spectra obtained earlier for the other systems
in two aspects. First, for the ZnSe : Ni and ZnO : Ni
crystals, the intensity of the combination peaks sub-
stantially exceeds the intensity of overtones of the dom-
inant mode. Second, in the series of phonon replicas of
the zero-phonon line for the ZnSe : Ni, ZnS : Ni, and

O4
–

A1
1 T1

2
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ZnO : Ni crystals, there exists such a critical number ncr
that the nΩ overtones of the dominant mode and the
(nΩ + ωi) combination peaks are observed at n < ncr,
whereas only the (nΩ + ωi) combination peaks arise at
n > ncr. These features are revealed only for impurity
excitons in II–VI : Ni crystals.

4. DISCUSSION

Now, we consider the type of lattice vibrations inter-
acting with an impurity exciton. The theoretical param-
eters of the vibrational spectrum and the frequencies of
phonon replicas in the electroabsorption spectra of
II−VI semiconductor crystals are listed in the table. It
can be seen that, in a number of cases, the frequency Ω
of the dominant mode is very close to the frequencies
of longitudinal optical vibrations. Possibly, this was the
reason why the peaks in the absorption and intracenter
luminescence excitation spectra were assigned to longi-
tudinal optical phonons [8, 9]. The impurity exciton can
interact with phonons at the expense of the hydrogen-
like carrier. However, in this case, the S factor must be
less than unity. In our case, the structure of the phonon
replicas is similar to that for systems with a consider-
able localization, because the carrier held by the local
potential resides in the d shell. This gives rise to an
excess charge, which, in turn, induces lattice strains and
localized vibrations. It is these vibrations that interact
with the impurity exciton through the d shell of the
impurity center. The model calculations of these vibra-
tions in ZnSe : Ni and ZnO : Ni were performed in our
earlier works [21, 22].

First, we calculated the displacements of the near-
est-neighbor ions to new equilibrium positions (lattice
relaxation) after the change in the impurity charge. It
was assumed that the radius of the impurity in the neu-
tral state is close to the radius of the replaced atom and
that displacements of the nearest neighbors with
respect to the neutral impurity center are absent. This
situation takes place for Ni+2 substituting for Zn2+ in
II−VI compounds. Then, we calculated the vibrational
spectrum of the lattice. According to [21], the lattice
relaxation was calculated without regard for the hybrid-
ization of electrons in the d shell with the band states;
i.e., the charge of the Ni+ impurity ion (the d9 configu-
Parameters of lattice vibrations and experimental frequencies of phonon replicas in the electroabsorption spectra of crystals
(in THz)

Crystal Gap ωM LO TO Ω ωi References

ZnSe 5.76–6.00 8.32 7.58 6.26 Ω3 = 7.84 ω1 = 3.48 ω2 = 6.28 – [17, 20]

ZnO 8.25–11.58 17.00 17.22 11.40 Ω4 = 17.65 ω1 = 3.63 ω2 = 10.63* ω3 = 15.74 [7, 18, 20]

ZnS 6.18–8.10 10.5 11.00 8.22 Ω3 = 10.35 ω1 = 5.32 ω2 = 9.19 – [17, 20]

CdS 4.0–6.9 9.2 9.06 6.84 Ω4 = 8.94 ω1 = 1.43 ω2 = 3.63 ω3 = 6.29* [19, 20]

* Experimental frequencies of vibrational modes in the gap between acoustic and optical vibrations calculated for crystals free of Ni impu-
rities.
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ration) was taken precisely equal to –1. The results of
the model calculations demonstrate that the ions of the
first coordination sphere undergo the largest displace-
ment. This displacement is equal to 0.24–0.25 Å; i.e., it
comprises approximately 10% of the bond length. The
ions of the second coordination sphere are displaced
with respect to the initial equilibrium position by
approximately 0.04 Å, which corresponds to approxi-
mately 1% of the distance to the impurity. The ions of
other coordination spheres are displaced from equilib-
rium positions by a substantially smaller distance. The
distortion of the cluster is shown in Fig. 4. The change
in the distance between the Se–2 ions of the first coordi-
nation sphere and the Zn2+ ions of the second coordina-
tion sphere is equal to 0.1 Å; i.e., it comprises 4% of the
bond length. For comparison, we note that the bond
lengths in the majority of solids at melting temperatures
increase by approximately 3% and that the hydrostatic
compression of ZnSe crystals leads to a change in the
lattice parameter by 4% at a pressure of approximately
100 kbar and to a transition between the phases with
zinc blende and NaCl-type lattices at a pressure of
135 kbar [23]. These findings give grounds to believe
that the photoionization of the impurity can result in a
considerable lattice distortion in the vicinity of the
charged impurity center. Within the model of a
diatomic chain with a charged impurity, it is easy to
demonstrate that the displacement of the Zn2+ (the sec-
ond coordination sphere) and Se2– (the first coordina-
tion sphere) ions leads to an asymmetric arrangement
of these ions with respect to the nearest neighbors. In
addition to changes in the distances between the atoms
of the first and second coordination spheres, the lattice
distortion is accompanied by a change in the distance
between the neighboring ions of the same coordination
sphere. In our case, the Zn2+ ions (the second coordina-
tion sphere) approach each other, whereas the distance
between the Se2– ions (the first coordination sphere)
increases. This can be represented as a symmetric lat-

Zn+2Zn+2 Ni+

Se–2 Se–2A(1)
1

A(2)
1

A(3)
1

Fig. 4. Section of the NiSe4Zn12 cluster by the (110) plane.

Positions of the Se2– ions of the first coordination sphere
and the Zn2+ ions of the second coordination sphere and the
chemical bonds for the Ni+2(d8) neutral impurity (solid
lines) and the Ni+(d9) impurity with an excess negative
charge (dashed lines) are shown. Arrows indicate the ionic
displacements corresponding to the totally symmetric
vibrational modes A1 of the Td cluster.
P

tice distortion that is equivalent to a uniform contrac-
tion or elongation of a monoatomic chain.

The results of the vibrational mode calculations for
ZnSe : Ni+ (d9) and ZnO : Ni+ (d9) are shown in
Figs. 5 and 6, respectively. For ZnSe : Ni, a change in
the charge Ni+2  Ni+ results in the appearance of
peaks 1–4. Peaks 1 and 2 in the acoustic spectral range
are associated with the motion of Se2– ions and corre-
late with the spectral structure at the frequency ω1 in the
experimental spectrum. Peak 3, which is attributed to
the motion of Zn2+ ions with the symmetries A1 and E
[the sum of the A1(Zn) and E(Zn) modes], can be
assigned to the satellite mode with the frequency ω2.
Peak 4 correlates with the Ω3 dominant mode and arises
from the vibrations of the Zn2+ ions with the A1 symme-
try. The model calculations for ZnO : Ni demonstrate
that the dominant mode with the frequency Ω4 corre-
sponds to an E(O)-type peak in the optical range of the
vibrational spectrum, whereas the ω2 satellite mode
giving rise to the most intense combination peaks is
governed by the gap mode with the A1(O) symmetry.

The results of model calculations and a certain sim-
ilarity of the combination phonon replica structure in
the electroabsorption spectra to the absorption spectra
for systems with a strong localization [15, 16] indicate
that vibrations induced by a change in the charge of the
impurity center substantially differ from the vibrations
observed in a perfect lattice. These differences are asso-
ciated with the specific features of the lattice distortion,
i.e., with symmetric and asymmetric changes in the
positions of ions in the first and second coordination
spheres with respect to the nearest neighbors. This is
clearly seen from Fig. 4. The Se2– ion (the first coordi-
nation sphere) is asymmetrically arranged relative to
the Ni+ and Zn2+ (the second coordination sphere) ions,
and the Zn2+ ion (the second coordination sphere) is
asymmetrically located with respect to the Se2– (the
first coordination sphere) and Se2– (the third coordina-
tion sphere) ions. (The ions of the third coordination
sphere are not shown in Fig. 4.) This can give rise to a
considerable cubic anharmonicity (K3x3) of the lattice
vibrations induced by a charged impurity. It is because
of this cubic anharmonicity that one of the modes
becomes dominant. The reason for this is that, owing to
the anharmonicity, this mode loses its energy to other
vibrations. An increase in the replica number n occurs
with an increase in the amplitude of the dominant mode
and, correspondingly, in its anharmonicity, which
results in an increase in the rate of energy transfer. At
n = ncr, the dominant mode completely loses the energy
stored from light to other vibrations; hence, it is not
observed in the spectrum for n > ncr . Seemingly, the
combination vibrations should also disappear, because
two of the three satellite modes are only a very small
fraction of the total number of the vibrations to which
the dominant mode loses its energy. Therefore, it is rea-
sonable to expect that the energy transferred to the sat-
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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ellite modes should be insignificant. However, in actual
fact, the intensity of combination peaks slowly
decreases with an increase in the replica number n at n
> ncr. In our opinion, this can be explained in terms of
the anharmonicity of the satellite modes. This anhar-
monicity differs in magnitude and character from the
anharmonicity of the dominant mode, and the interac-
tion between these modes is very unusual.

A comparison of the electroabsorption spectra for
different materials indicates a difference between the
intensities of the combination peaks and the peaks of
the dominant mode in these spectra. For example, the
intensity of the combination peaks for ZnSe : Ni is
appreciably higher than that of the peaks of the domi-
nant mode. At the same time, as the number n increases,
the intensity of the combination peaks for CdS : Ni
exceeds the intensity of the zero-phonon line but
remains considerably less than the intensity of the
peaks of the dominant mode. The difference between
the intensities of combination replicas for different sat-
ellite modes in the same material is especially pro-
nounced for ZnO : Ni, in which the sole mode ω2 is
observed at n > ncr. This suggests a different interaction
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Fig. 5. Vibrational states of ZnSe. (a) The total density of
vibrational states for a perfect crystal (solid line) [17] and
the total projected density of the modes A1, E, and T2 for a

crystal with Ni+ ions (dashed line). Peaks 1 (A1) and 2 (T2)

are attributed to motion of Se2– ions (first coordination
sphere), and peaks 3 (A1, E) and 4 (A1) are assigned to

motion of Zn2+ ions (second coordination sphere).
(b) Phonon replicas of the zero-phonon line of the [d9h]
acceptor exciton in the region of first-order processes (F-OP).
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of the satellite modes with the dominant vibrations due
to the difference in anharmonicity of the satellite
modes.

At present, it is difficult to draw conclusions regard-
ing the nature of the anharmonicity of satellite modes.
We can only make certain assumptions based on recent
theoretical results that prove the strong anharmonicity
of satellite modes and experimental data on the anhar-
monicity of molecules and molecular defects in alkali
chalcogenide crystals. The potential energy of a chain
composed of identical atoms can be represented as
U(x) = K2x2 + K2x4, where x is the displacement from an
equilibrium position. In a perfect lattice, the fourth-
order anharmonicity can induce specific vibrations
whose frequency depends on the vibration amplitude
and the ratio K4/K2 between the anharmonic and har-
monic constants. The high-frequency localized mode
(termed the discrete breather [4]) arises at K4 > 0,
whereas the anharmonic resonant mode appears at K4 < 0.
According to Takeno and Sievers [3], the anharmonic
resonant mode is associated with the motion of only a
single atom and the neighboring atoms are virtually at
rest. Within the model of a monoatomic chain with
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fourth-order anharmonicity and an impurity center,
Kosevich and Kovalev [24] showed that the anharmo-
nicity favors the excitation of quasi-localized vibrations
of the impurity center. In our case, the dominant and
satellite modes are initiated by the impurity. Hence,
they can be referred to as extrinsic anharmonic modes
or extrinsic breathers. The extrinsic anharmonic modes
are induced by the motion of ions in the first and second
coordination spheres when the distances between these
ions and their neighbors in a cluster are symmetrically
and asymmetrically distorted as a result of lattice strain.
Therefore, it can be assumed that a noticeable fourth-
order (K4x4) and third-order (K3x3) anharmonicity can
appear in the expansion of the potential energy in terms
of the displacement from the equilibrium position. It is
quite possible that the different ratios of these contribu-
tions determine the specific features of the interaction
between the satellite and dominant modes. For exam-
ple, the Ω3 dominant mode for the Ni acceptor exciton
in ZnSe : Ni has the A1 symmetry and can be associated
with Zn2+ ion motion when the ions are displaced to
new equilibrium positions in the asymmetrically dis-
torted structure (Fig. 4). This mode should exhibit a
considerable cubic anharmonicity (K3x3). The ω2 satel-
lite mode corresponds to the calculated peak 3 in the
projected density of states (Fig. 5). The two modes
A1(Zn) and E(Zn) contribute to this peak. The A1(Zn)
mode is characterized by a cubic anharmonicity. The
vibration with the E(Zn) symmetry is initiated by the
interaction of all ions in the cluster, including the inter-
action between the Zn2+ and Zn2+ ions, which approach
each other upon lattice distortion in the field of the neg-
atively charged Ni+ ion. This suggests that the fourth-
order anharmonicity for the E(Zn) mode increases in
the same manner as for the monoatomic chain upon its
contraction. The A1(Zn) and E(Zn) vibrations derive
their energy from the dominant mode in different ways.
The A1(Zn) oscillator with cubic symmetry loses its
energy upon the negative displacement x, because the
anharmonic force –K3x2 and the harmonic force –K2x
act in opposite directions. For the E(Zn) oscillator, the
anharmonic force –K4x3 always coincides in direction
with the harmonic force –K2x. As a consequence, this
oscillator accumulates the energy derived from the
dominant mode. This manifests itself in an increase in
the intensity of the peaks of the (nΩ3 + ω2) combination
replicas with an increase in the number n. The satellite
mode with K4x4 anharmonicity resembles the anhar-
monic resonant mode studied in [3]. The sole difference
lies in the fact that all ions of the NiSe4Zn12 cluster par-
ticipate in the extrinsic anharmonic mode, whereas
only the motion of a single atom of the chain contrib-
utes to the modes investigated by Takeno and Sievers
[3]. Therefore, there are grounds to believe that the
cluster distortion in the field of the negatively charged
Ni+ impurity brings about an increase in the fourth-
order anharmonicity of the ω2 satellite mode (as is the
P

case with the monoatomic chain upon its uniform con-
traction) and in the cubic anharmonicity of the Ω3 dom-
inant mode. Since the constant K3 for different materi-
als can differ significantly, it can be expected that the
rate of energy transfer to other vibrations in different
materials will also be different. Moreover, several
modes can exhibit a cross anharmonicity (in [25], the
anharmonicity constants are designated as xij). Note
that the xij constant describing the interaction of two
modes, as a rule, is slightly larger than the anharmonic-
ity constant xii. In the case when the anharmonicity con-
stants xij and xii are small, there appear only dominant
peaks and very low-intensity combination replicas. In
this situation, the replicas do not exceed the dominant
peaks and are absent at n > ncr. It is this pattern that is
observed in the absorption, luminescence, and Raman
spectra of KBr : MnO4 and RbBr : MnO4 crystals and
the electroabsorption spectrum of CdS : Ni. In the last
case, the overall spectrum of phonon replicas remains
unknown because of the proximity to the fundamental
absorption edge, which makes correct interpretation of
the experimental results complicated.

5. CONCLUSION

Thus, the experimental data and the results of model
calculations allow us to make certain inferences con-
cerning the nature of vibrations induced by charged
impurity centers. First, the vibrations under investiga-
tion are associated primarily with the motion of lattice
ions in the vicinity of an impurity center. These vibra-
tions are characterized by either the gap modes or the
quasi-localized modes whose frequencies only slightly
exceed the maximum frequencies ωM of optical vibra-
tions. The contribution from the Ni+(d9) impurity cen-
ter to excitation of the dominant and satellite modes is
insignificant. Second, the dominant and satellite modes
exhibit a considerable anharmonicity. This justifies the
term extrinsic anharmonic mode (extrinsic breather)
introduced in this work. The satellite modes with
fourth-order anharmonicity somewhat resemble the
anharmonic resonant modes considered by Takeno and
Sievers [3] for a monoatomic chain. The dominant and
satellite extrinsic anharmonic modes induced by
charged impurity centers in II–VI semiconductors and
their interaction with each other and with impurity
excitons call for further theoretical and experimental
investigations. In our opinion, it is of particular interest
to consider vibrations initiated by charged impurities in
crystals with a substantial intrinsic anharmonicity (for
example, BeSe and BeTe [26]). Third, the excitation of
extrinsic anharmonic modes upon photoionization of
impurity centers makes it possible to use very sensitive
field-induced vibronic spectroscopy to identify new
vibrations. The generation of charged centers during
photoionization of impurities provides a way of trans-
forming the light energy into the energy of crystal
vibrations under conditions of considerable anharmo-
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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nicity. Moreover, elucidation of the nature and mecha-
nisms responsible for photoinduced vibrations opens
up ways to investigate the dynamics of formation of
extrinsic breathers upon changes in the impurity charge
with the use of short laser pulses, as in the case of the
kinetics of chemical reactions [27].

ACKNOWLEDGMENTS
We are grateful to A.B. Borisov and K.A. Kikoin for

their participation in discussions of the problem con-
cerning the anharmonicity of lattice vibrations.

REFERENCES
1. A. S. Dolgov, Fiz. Tverd. Tela (Leningrad) 28 (6), 1641

(1986) [Sov. Phys. Solid State 28, 907 (1986)].
2. A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61 (8), 970

(1988).
3. S. Takeno and A. J. Sievers, Solid State Commun. 67

(11), 1023 (1988).
4. S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).
5. V. I. Sokolov, Fiz. Tekh. Poluprovodn. (St. Petersburg)

28 (4), 545 (1994) [Semiconductors 28, 329 (1994)].
6. V. I. Sokolov, E. A. Shirokov, A. N. Kislov, and

V. G. Mazurenko, Phys. Status Solidi B 221 (1), 553
(2000).

7. V. I. Sokolov, E. A. Shirokov, A. N. Kislov, and
V. G. Mazurenko, J. Cryst. Growth 214–215 (4), 304
(2000).

8. S. G. Bishop, D. J. Robbins, and P. J. Dean, Solid State
Commun. 33, 119 (1980).

9. R. Heitz, A. Hoffmann, and I. Broser, Phys. Rev. B 48
(12), 8672 (1993).

10. K. K. Rebane, The Elementary Theory of Vibrational
Structure of the Spectra of Impurity Centers in Crystals
(Nauka, Moscow, 1968).

11. S. Satoh and K. Igaki, Jpn. J. Appl. Phys. 20 (10), 1889
(1981).

12. V. S. Vavilov, A. A. Klyukanov, K. D. Sushkevich, et al.,
Fiz. Tverd. Tela (St. Petersburg) 41 (7), 1176 (1999)
[Phys. Solid State 41, 1070 (1999)].
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
13. D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys.
Rev. Lett. 15, 857 (1965).

14. V. I. Sokolov and T. P. Surkova, Fiz. Tverd. Tela (Lenin-
grad) 29 (10), 2938 (1987) [Sov. Phys. Solid State 29,
1689 (1987)].

15. T. I. Maksimova and A. M. Mintairov, Fiz. Tverd. Tela
(Leningrad) 27 (8), 2468 (1985) [Sov. Phys. Solid State
27, 1477 (1985)].

16. T. I. Maksimova and A. M. Mintairov, Fiz. Tverd. Tela
(Leningrad) 29 (5), 1422 (1987) [Sov. Phys. Solid State
29, 813 (1987)].

17. K. Kunc, M. Balkanski, and M. A. Nusimovici, Phys.
Status Solidi B 72, 229 (1975).

18. S. V. Mel’nichuk, V. I. Sokolov, T. P. Surkova, and
V. M. Chernov, Fiz. Tverd. Tela (Leningrad) 33 (11),
3247 (1991) [Sov. Phys. Solid State 33, 1833 (1991)].

19. J. Camacho and A. Cantarero, Phys. Status Solidi B 215,
181 (1999).

20. Landolt–Börnstein: Numerical Data and Functional
Relationships in Science and Technology, Vol. 17: Semi-
conductors: Physics of II–VI Compounds, Ed. by
O. Madelung (Springer-Verlag, Berlin, 1982).

21. A. N. Kislov, V. G. Mazurenko, V. I. Sokolov, and
A. N. Varaksin, Fiz. Tverd. Tela (St. Petersburg) 39 (12),
2147 (1997) [Phys. Solid State 39, 1921 (1997)].

22. A. N. Kislov, V. G. Mazurenko, V. I. Sokolov, and
A. N. Varaksin, Fiz. Tverd. Tela (St. Petersburg) 41 (6),
986 (1999) [Phys. Solid State 41, 897 (1999)].

23. S. Ves, K. Strössner, N. E. Christensen, et al., Solid State
Commun. 56, 479 (1985).

24. A. M. Kosevich and A. S. Kovalev, Fiz. Nizk. Temp. 1
(12), 1544 (1975) [Sov. J. Low Temp. Phys. 1, 742
(1975)].

25. A. A. Ovchinnikov and N. S. Érikhman, Usp. Fiz. Nauk
138 (2), 289 (1982) [Sov. Phys. Usp. 25, 738 (1982)].

26. V. Wagner, J. J. Liang, R. Kruse, et al., Phys. Status
Solidi B 215 (1), 87 (1999).

27. M. Gruebele and A. Zewail, Phys. Today 43, 24 (1990).

Translated by O. Borovik-Romanova
2



  

Physics of the Solid State, Vol. 44, No. 1, 2002, pp. 4–7. Translated from Fizika Tverdogo Tela, Vol. 44, No. 1, 2002, pp. 6–8.
Original Russian Text Copyright © 2002 by Tarasov, Khodzhaev, Chirkov.

                                                                             
Canonical Form of the Averaged Equations of Motion 
of a Charged Particle upon Superposition of an Electromagnetic 

Wave Field on a Weakly Inhomogeneous Magnetic Field
V. E. Tarasov, K. Sh. Khodzhaev, and A. G. Chirkov

St. Petersburg State Technical University, Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russia

Received May 21, 2001

Abstract—The Hamiltonian function of a charged particle in a weakly inhomogeneous magnetic field
perturbed by a plane wave is determined correct to terms of the order of the small parameter inclusive. The
canonical motion equations averaged over the fast phase for motion in the vicinity of the resonance are derived.
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The problem of motion of a charged particle in an
electromagnetic wave field was treated earlier in [1–3].
In these works, the motion of a particle was investigated
under the conditions when an electromagnetic wave
field was superposed on a constant magnetic field.
However, the methods used in [1–3] failed to analyze
the equation of motion of a charged particle upon
superposition of an electromagnetic wave field on a
weakly inhomogeneous magnetic field. In our recent
work [4], we obtained an expression for the Hamilto-
nian function that provides an adequate description of
the aforementioned motion.

Similar problems are of considerable interest in
astrophysics, plasma physics, and practical applica-
tions. In particular, the problem of controlled thermo-
nuclear reactions can be reduced, in many cases, to the
problem of confinement of charged particles in closed
configurations. The properties of the simplest adiabatic
traps were studied earlier. Resonance motions and non-
adiabatic resonance methods of confinement can be
analyzed after the sought equations have been deduced.

We consider the case when a field rapidly varying
with time is induced by a plane elliptically polarized
wave. The electric field of this wave can be represented
in the form

(1)

Here, E1 = const, E2 = const, and ni (i = 1, 2, 3) are the
unit vectors forming a right Cartesian trihedron. The
scalar potential of the wave field is set equal to zero,

Ev  = n1E1
ω
c
----n3r ωt– 

  n2E2
ω
c
----n3r ωt– 

  .sin+cos
1063-7834/02/4401- $22.00 © 20004
and the vector potential can be taken in the form

(2)

By analogy with the calculations performed in [4],
we change over to dimensionless variables and write
the expression for a dimensionless vector potential as
equal to the dimensional potential divided by the prod-
uct [L][B], where the quantities in square brackets
denote representative values of the corresponding vari-
ables. Let us assume that [E] is the representative value
of the electric wave amplitude. By introducing the same
designations for the dimensional and dimensionless
quantities, we obtain

(3)

Here, ε1 = ω[RL]/c, ν = ω/[ωL], and ε = [RL]/L (the des-
ignations are similar to those used in [4]).

The parameter ε1 can be rewritten in the form ε1 =
(ω/[ωL])([v]/c). In what follows, we will consider
motions for which the values of ω and [ωL] are of the
same order of magnitude. Moreover, the motion is
assumed from the outset to be nonrelativistic; hence,
the ratio [v]/c is a small quantity. Correspondingly, the
parameter ε1 is also small.

Av
c
ω
---- n1E1

ω
c
----n3r ωt– 

 sin=

– n2E2
ω
c
----n3r ωt– 

  .cos

Av
c E[ ]

ω L[ ] B[ ]
--------------------- n1E1

ε1

ε
----n3r νt– 

 sin=

– n2E2

ε1

ε
----n3r νt– 

  .cos
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Let us now consider the relationship

(4)

We restrict our consideration to the case when the
parameters ε and ε1 are of the same order of smallness.
Furthermore, in order to remain within the framework
of the perturbation theory, it is necessary that the ratio
of the wave potential to the potential of the slowly vary-
ing magnetic field should be a small quantity. To
accomplish this, the ratio [E]/[B], which we designate

as , should be small. The parameter ε2 is assumed to
be a small quantity of the same order of smallness as ε1
and ε. For convenience, we introduce the following des-

ignations: ε1 = µ1ε and /ε1 = µε, where µ = µ1 = O(1).

The quantities n1, n2, n3, and r in expression (3) can
be treated as standard functions of the magnetic field
coordinates εq1, εq2, and εq3 [4]. As a result, we have
Av = Av i(εq1, εq2, εq3)ri. Here,

(5)

The valence of the canonical transformation upon
introducing the variables qi and pi is equal to 1/ε2 [4].
Therefore, the Hamiltonian function (see formula (2.3)
in [4]) should be supplemented by the components of
the total vector potential Av i [defined by Eq. (5)], which
are divided by ε (hereafter, they are designated by the
same symbols). In other words, relationship (2.3)
derived in [4] should include the quantities Ai + Av i

instead of Ai, where Av i are taken from relationship (5)
but without the factor ε. As a result, the addition to the
vector potential is of the order of O(ε). We change over
now, as was done in [4], to the variables J, ϕ, etc. Let us
again calculate the Hamiltonian function accurate to
within the terms of the order of ε. We can set q1 = q2 =
0 and rq3 = εz in the εq1, εq2, and εq3 functions involved
in Av i (see [4]) and rewrite the total vector potential in
the form

(6)

Next, we introduce the designations for the following
functions of the argument εz:

(7)

Consequently, the Hamiltonian function takes the
form

(8)

where the terms H0 and H1 were determined in [4], the
addition εHv to the Hamiltonian function can be

c E[ ]
ω L[ ] B[ ]
---------------------

c
ω RL[ ]
---------------

RL

L[ ]
-------- E[ ]

B[ ]
-------- ε

ε1
---- E[ ]

B[ ]
--------.= =

ε2
2

ε2
2

Av i µε2 n[ 1riE1 µ1n3r( )sin{=

– n2riE2 µ1n3r( ) ] ν tcoscos

– n1riE1 µ3n3r( )cos n2riE2 µin3r( )sin+[ ] ν t } .sin

Av i µε Fv i νtcos Gv i νtsin–( ).=

Fv i n1riE1 µ1n3r( )sin= n2riE2 µ1n3r( ),cos–

Gv i n1riE1 µ1n3r( )sin= n2riE2 µ1n3r( ).sin+

H H0= εH1 εHv ,+ +
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obtained from the sum gikAv i(Pk0 – Ak), and the function
Hv has the form

(9)

Here,

(10)

are the aforementioned functions of the argument εz.
The system under consideration is a two-phase sys-

tem; i.e. it is characterized by two fast phases, ϕ and
v  = νt. Hence, two cases of the motion become possi-
ble, namely, the resonance and nonresonance motions.

The nonresonance case embraces the motion in
which the characteristic cyclotron frequency substan-
tially differs from the wave frequency. The system with
the Hamiltonian of the unperturbed problem has the
integral of motion J (the action variable). The level set
of this integral is a one-dimensional torus (a circle),
because we are considering a single-frequency system.
This torus is invariant by the phase flow of the unper-
turbed problem: each phase curve beginning at a point
of this torus remains on it. Therefore, when analyzing
the nonresonance motions in a perturbed system, we
can use the averaging method (see [5]). In this case, the
Hamilton equations can be averaged over both fast
phases and no problems of small denominators arise.
Furthermore, the terms of the equations of motion,
which appear upon differentiation of the part of the
Hamiltonian associated with the wave, vanish after
averaging; hence, to a first approximation, the wave
field does not affect the motion.

This circumstance is confirmed by the general the-
ory. The following theorem holds (see, for example,
[5]): the evolution of the variables J does not take place
in a Hamiltonian system with n frequencies. This the-
ory is a corollary of the more general Kolmogorov–
Arnold–Moser theorem, which states (in the appendix
to the problem under consideration) that, when the per-
turbation of the Hamiltonian function is small (and the
Hamiltonian perturbation is also small), the invariant
tori are only slightly deformed and do not disappear.

Hv µ G( v 4 2J ϕ ν tsinsin Fv 4 2J ϕsin νtcos+=

+ Gv 5 2J ϕ ν tsincos Fv 5 2J ϕ ν tcoscos+

+ P11Fv 3 νtcos P11Gv 3 νt ).sin–

Gv 4 ωg11( )0Gv 1–= g12( )0Gv 2– g13 ω
g11
------- 

 
0

Gv 3,+

Fv 4 ωg11( )0Fv 1–= g12( )0Fv 2 g13 ω
g11
------- 

 
0

Fv 3– ,+

Gv 5 ω0Gv 2–=
ω2g23

ωg11
---------------

 
 
 

0

Gv 3,–

Fv 5 ω0Fv 2=
ω2g23

ωg11
---------------

 
 
 

0

Fv 3+
2
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The fundamental effect exhibited in two-frequency
systems is the passage through the resonance. In this
case, the difference (ω – ν) is a small quantity and δ =
ϕ – v  is a slow variable. Let us accept δ as a new vari-
able in place of the variable ϕ. This is a canonical
change of the variables, and the new Hamiltonian H' is
related to the foregoing Hamiltonian by the expression
H' = H – νJ.

By using the results obtained in [4], we derive the
following relationship:

(11)

In general, the application of the averaging method
to two-frequency systems in resonance is not valid.
However, an important feature of this case is that the
perturbed system remains a Hamiltonian.

Recall that there is a theorem of the passage through
resonances in two-frequency systems ([5], p. 146). As
applied to the problem under investigation, this theo-
rem can be reformulated as follows: if the rate of
change in the frequency ratio ω/ν along the trajectory
of the perturbed system is universally nonzero, the dif-
ference between J(t) in the perturbed problem and I(t)

H' J δ xL yL p11 εz v, , , , , ,( ) ω ν–( )J
p11

2

2
-------+=

+ ε p[ 11
2 xLF1 yLF2+( ) p11F3 p11 yL

2 J–( )F4+ +

+ p11xLyLF5 yLJF6 xLJF7 p( 11
2 F1 p11xLF9++ + +

+ p11yLF8 yL
2 F10 xLyLF11 JF12 ) 2J δ vsincos(+ + +

+ δ v )cossin p( 11
2 F2 p11yLF13 p11xLF14 yL

2 F15+ + ++

+ xLyLF16 JF17 ) 2J δ vcoscos δ vsinsin–( )+

+ p11JF18 2δcos 2vsin 2δ 2vcossin+( )

+ p11JF19 2δcos 2v 2δ 2vsinsin–cos( )

+ J 2JF20 3δcos 3vsin 3δ 3vcossin+( )

+ J 2JF21 3δcos 3v 3δ 3vsinsin–cos( ) ]

+ εµ 2J
2

----------Gv 4 δcos δ 2vcoscos– δ 2vsinsin+( )

+
2J
2

----------Fv 4 δsin δcos+ 2vsin δ 2vcossin+( )

+
2J
2

----------Gv 5 – δsin δcos+ 2vsin δ 2vsinsin+( )

+
2J
2

----------Fv 5 δcos δcos+ 2v δ 2vsinsin–cos( )

--+ p11Fv 3 vcos p11Gv 3 vsin– .
P

in the averaged problem remains small during the time
t ~ 1/ε:

(12)

According to relationship (12), the passage through the
resonance neighborhood results in a dispersion of the

order of .
In the case when the condition of the theorem is sat-

isfied only on the trajectories of the averaged system,
we obtain the estimate

(13)

Thus, the question as to the justified applicability of
the averaging method in the case of resonance (the
validity of the Neœshtadt theorem [6]) should be
resolved specifically for each type of magnetic field.

Let us consider the Hamilton equations with the H'
function. Instead of εz, we introduce the new variable λ
through the relationship ω(εz) – ν = λ. It is assumed
that ω and λ are close to λ = O(1). As a result, we obtain
a system of equations in a standard form with the

parameter . However, this system has the following
feature: the right-hand sides of four out of the six equa-

tions are proportional to ε rather than to . Certain
interest arises here in the averaged equations of the sec-

ond approximation with respect to , i.e., the equa-
tions containing the terms proportional to ε.

After introducing the variable λ, the argument εz in
the initial equations should be expressed in terms of λ.
For this purpose, we should invert the dependence

ω(εz) = ν + λ. As a result, we obtain

(14)

or, to within the required accuracy,

. (15)

In order to achieve the required accuracy, it is suffi-
cient to substitute the expression εz = Ψ(ν) into all the
equations, except for the equation containing ε ; after
this, the functions Fv 4, Gv 4, etc. become constant. The
equation involving ε  is transformed as follows:

Whence, it follows that

(16)

Generally speaking, in the second approximation,
the expressions for the desired variables should have

the following form: J = I + uJ(v, I, ∆, …), δ = ∆ +

J t( ) I t( )– c1 ε, 0 t
1
ε
---.≤ ≤≤

ε

J t( ) I t( )– c2 ε εln , 0 t
1
ε
---.≤ ≤≤

ε

ε

ε

ε

ε

εz Ψ ν ελ+( )=

εz Ψ ν( )= ελΨ ' ν( ) …+ +

ż

ż

εż λ̇ εΨ' ν( ) ελΨ '' ν( )+( ).=

λ̇ ε
Ψ'
------ p11= ε Ψ''

Ψ'2
-------- p11λ .–

ε

HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002



CANONICAL FORM OF THE AVERAGED EQUATIONS OF MOTION 7
uδ(v, I, ∆, …), etc. Here, I and ∆ are the evolution
components and the functions uy and uδ depend on both
v  and these components.

However, owing to the specificity of the appearance

of the terms proportional to  in the equations, all the
first corrections can be taken equal to zero. In this case,
the desired variables should be equal [to within an
accuracy of the order of O(ε)] to their evolution compo-
nents. Therefore, in the representation of the averaged
equations of the second approximation, they can be
identified with one another. Consequently, we obtain
the following system:

(17)

ε

ε

J̇ εµ 2J
2

---------- Gv 4 Fv 5+( ) δsin Gv 5 Fv 4–( ) δcos+[ ] ,=

ẋL ε p11
2 F2 2 p11yLF4 p11xLF5 JF6+ + +( ),–=

ṗ11
ε

Ψ'
------J ,–=

δ̇ ελ= ε – p11F4 yLF6 xLF7+ +( )+

+
εµ

2 2J
------------- Gv 4 Fv 5+( ) δcos Fv 4 Gv 5–( ) δsin+[ ] ,
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Here, Gv 4, Fv 4, …, Ψ', and Ψ'' are constant.
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Abstract—This paper reports on measurement of the temperature dependences of the following transport coef-
ficients: electrical conductivity in the σ11 cleavage plane, the Seebeck coefficients S11 and S33 (axis 3 is along
the trigonal crystal axis), the Hall coefficients R123 and R321, and the Nernst–Ettingshausen constant Q123; all
measurements were made on high-quality Czochralski-grown Sb2Te3 single crystals. The results obtained are
analyzed in terms of phenomenological theory. It is shown that the main features of the experimental data,
including the anisotropy of the Hall and Seebeck effects, can be explained within a two-band model with notice-
ably different anisotropy of the mobilities of holes of two types in the cleavage-plane and trigonal-axis direc-
tions. Estimates are made of the band-gap width (εg ≅  0.3 eV), as well as of the energy gap between the main
and additional valence-band extrema (∆εv ~ 0.1 eV). © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Antimony telluride is employed as a constituent of
high-efficiency room-temperature thermoelectric mate-
rials, such as the (Sb1 – xBix)2Te3 solid solutions. This
accounts for its application potential and the intense
interest expressed in it by researchers [1–5]. However,
despite the wealth of literature data available, the char-
acter of its band structure remains a subject of debate.

Sb2Te3 is a narrow-band-gap semiconductor,
belongs to the class of layered compounds, and is char-
acterized by the presence of a large number of intrinsic
acceptor-type defects, presumably antisite-type (the
case where part of the excess antimony atoms occupy
the tellurium sites, SbTe [3]). This compound has a high
hole concentration (p ~ 1020 cm–3), which can be varied
only within a narrow range; this factor complicates the
study of the Sb2Te3 energy spectrum. As far as we
know, satisfactory theoretical calculations of the Sb2Te3
band structure are lacking.

Some studies of the transport phenomena [6–10]
treat experimental data in terms of a two-band model,
whereas others (see, e.g., [4]) invoke a one-band nonpa-
rabolic model. However, no success has been made in
explaining data on the transport phenomena as a whole
and details of the band structure remain a subject of
debate. Some features in the experimental data, such as
the thermopower anisotropy, the crossing of the tem-
perature dependences of the Hall tensor components,
and the temperature dependence of the coefficient of
the transverse Nernst–Ettingshausen effect (TNEE),
have not been satisfactorily explained.
1063-7834/02/4401- $22.00 © 20042
In this work, the scope of the transport phenomena
studied is broadened. We studied the TNEE together
with the Seebeck and Hall effects, as well as their
anisotropy and temperature dependences. The investi-
gation of the kinetic effects was carried out on more
perfect single crystals. Furthermore, we attempted a
somewhat different approach to the analysis of the
results, more specifically, we made use of the phenom-
enological theory without invoking any specific
assumptions on the band structure.

2. SAMPLES

Sb2Te3 single crystals were Czochralski grown
using a unique technology developed at the Baœkov
Institute of Metallurgy and Materials Sciences, which
makes use of a floating crucible to feed the growing
crystal with liquid melt [1]. This method permits one to
grow sufficiently large crystals in given crystallo-
graphic directions, including that parallel to the trigonal
axis. The single crystals were 15–20 mm thick and had
well-developed cleavage planes. The crystals had a per-
fect structure and high compositional homogeneity.
The microdistribution of the carrier concentration was
estimated from the local values of the Seebeck coeffi-
cient on the single-crystal surface. The scatter in the
measurements did not exceed 2–3%. The experiment
was performed on samples of three types, namely, sto-
ichiometric samples and samples doped by Bi and Se
isovalent impurities. The crystals were prepared from
constituents (Te, Sb, Bi, Se) of semiconductor-grade
purity with 99.9999 wt % of the main material. The
002 MAIK “Nauka/Interperiodica”
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impurity content was determined through chemical
analysis. All the crystals exhibited hole conductivity.

3. EXPERIMENT

On each sample, the following independent trans-
port tensor components were measured: the Seebeck
coefficients S11 and S33, the Hall coefficients R123 and
R321, the Nernst–Ettingshausen constant Q123, and elec-
trical conductivity σ11. Axis 3 in this notation coincides
with the trigonal axis C3 of the crystal. The subscripts
on the coefficients indicate the following in the order
they are given: the first subscript indicates the direction
of the measured electric field; the second, the direction
of the electric current or of the temperature gradient;
and the third, the magnetic field direction. The Hall and
Nernst–Ettingshausen effects were studied using tech-
niques that permitted one to reduce to a minimum the
effect of their parasitic nonisothermal components,
which may make up a noticeable fraction of the mea-
sured effect in thermoelectric materials.

The measurements were carried out mainly in the
77–420 K temperature range (one of the samples, pre-
pared using the metal–ceramic technique, was studied
up to 650 K). In accordance with [11], the carrier con-
centration was derived from the larger component of
the Hall tensor R321 at 77 K using the expression

(1)p eR321( ) 1– .=
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4. RESULTS AND DISCUSSION

We note immediately that our results on the anisot-
ropy and temperature dependences of the Hall and See-
beck coefficients and the electrical conductivity agree
well with the data quoted in [12]. For this reason, we do
not present all of them here. Main attention is focused,
in this paper, on those transport coefficients that are less
covered in the literature, namely, anisotropy in the See-
beck coefficient and the Nernst–Ettingshausen effect.
As far as we know, this paper is the first publication to
present experimental data on the Nernst–Ettingshausen
effect in Sb2Te3 on this scope.

All the Sb2Te3 samples studied exhibited the follow-
ing characteristic features in the temperature depen-
dences of the transport coefficients:

(i) A negative sign of the Nernst–Ettingshausen
coefficient Q123 throughout the temperature range cov-
ered. The temperature dependences of the Nernst
mobility |Qijk |e/k0 have a derivative d|Q|/dT > 0 and a
maximum near T ≅  400 K (Fig. 1).

(ii) The Seebeck coefficient is isotropic (within the
experimental accuracy) in the low-temperature region
(near 100 K) and reveals, for T ≥ 140 K, an anisotropy
∆S = S33 – S11 (Fig. 2) which grows with temperature.

(iii) The Hall tensor components R321 and R123 grow
with temperature at different rates; this is accompanied
by a decrease in the Hall coefficient anisotropy
(R321/R123 ~ 1.3 at 77 K) and a crossing of its compo-
nents near 300 K (Fig. 3).
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Fig. 1. Temperature dependences of one of the transverse Nernst–Ettingshausen tensor components, Q123 (—T ⊥  c ⊥  B), obtained

for single-crystal Sb2Te3 samples with different original hole concentrations p (1020 cm–3): (1) 0.78, (2) 1.21, and (3) 1.36; c is the
direction of the trigonal crystal axis C3, —T is the direction of the temperature gradient, and B is the magnetic field direction. Inset
shows the temperature dependence Q(T) used for a polycrystalline pressed sample to determine the energy gap width εg from the
temperature range above 500 K (εg > 0.3 eV).
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4.1. The Nernst–Ettingshausen Effect

We start the discussion with the data on the Nernst–
Ettingshausen effect. Figure 1 presents the temperature
dependences of the Q123 coefficient of Sb2Te3 single
crystals and the Q(T) relation for a polycrystalline sam-
ple (inset). The small magnitude of the Hall coefficient
(R321 ~ 5 × 10–2 cm3/C) implies a high hole concentra-
tion in the samples studied; therefore, the hole gas
should be considered degenerate. In this case, the one-
band model yields, for the TNEE coefficient,

(2)

where µ is the chemical potential, R123σ11 is the carrier
Hall mobility, k0 is the Boltzmann constant, and r is the
exponent in the energy dependence of the relaxation
time τ(ε) ~ εr – 1/2. The negative sign of Q123 indicates
that the effective scattering parameter r < 1/2. Numeri-
cal estimates of r made using experimental data yield
values close but not equal to zero (r ≈ 0.25). This means
that in the temperature region from 100 to 250 K, holes
scatter through a mixed mechanism, which is domi-
nated, however, by long-wavelength longitudinal
acoustic lattice vibrations.

At high temperatures (T > 500 K), the contribution
from the minority carriers to the transport phenomena
becomes noticeable and grows rapidly with tempera-
ture. In the simplest case of a valence band consisting
of only one subband, the Q123 coefficient in the region
of mixed electron–hole conduction has the form

(3)

where Qp is described by Eq. (2),

(4)

(5)

(6)

and upH and unH are the corresponding Hall mobilities of
the holes and electrons. At the very beginning of mixed
conductivity, where the concentration of the minority
carriers (electrons in this case) is still low, i.e., for σn !
σp, Eq. (6) assumes the form

(7)

(eg is the band-gap width). The mixed term Qnp is
always positive and proportional to the electron contri-
bution to the conductivity, which, in turn, is propor-
tional to the electron concentration n. As a result, the
measured negative coefficient Q, according to Eqs. (3)–
(7), passes through a minimum (inset to Fig. 1) and
thereafter starts to decrease rapidly in absolute value
and tends to sign reversal.

An analysis of the experimental data obtained at the
onset of the intrinsic conductivity yielded an estimate

eQ123k0 R123σ11π
2/3 r 1/2–( ) k0T /µ( ),=

Q σp/σQp σn/σQn Qnp,+ +=

eQn/k0 R123σ11 r 1/2–( ),=

σ σn σp,+=

eQnp/k0 σnσp/σ2 Sp Sn–( ) upH unH+( ),=

eQnp/k0 σn/σ Sp Sn–( ) upH unH+( )∼
∼ n εg/k0T–( )exp∼
P

of the thermal energy gap between the valence and con-
duction bands extrapolated to zero. It was found to be
equal to εg ≅  0.3 eV, which is close to the band-gap
width derived in [13] from optical absorption measure-
ments.

As already mentioned, a characteristic feature of the
experimental data obtained on all samples in the region
140 < T < 300 K is the increase of Q in absolute value
with a positive derivative d|Q|/dT. This behavior of the
TNEE coefficient cannot be explained within the one-
band model. It can be accounted for by the effect of an
additional extremum lying deeper in energy than the
main one. The energy gap was deduced from TNEE
data using Eq. (A18) for the two-band model. In the
temperature range where the carriers of the additional
band just begin to contribute, the ratio of the hole con-
centration in the second band p2 to the total hole con-
centration p0 = p1 + p2 is ν = p2/p0 ! 1. In this case,

using Eqs. (A3) and (A11), Eq. (A18) for  can be
written in a form similar to Eq. (7):

where ∆εv is the energy gap between the valence bands.

Experimental data on  yield ∆εv ~ 0.1 eV for all
samples. It should be pointed out that this value of the
band-gap ∆εv is an order-of-magnitude estimate,
because it does not include the contribution of inter-
band hole scattering to the TNEE coefficient.

4.2. The Seebeck Coefficient

Antimony telluride is one of the few materials in
which the Seebeck coefficient was experimentally
observed to be anisotropic in the region of extrinsic
conductivity. Its possible origin, namely, the participa-
tion of carriers of two types (holes) in the transport phe-
nomena and the anisotropic mixed scattering mecha-
nism, was treated in considerable detail in [14]. We
believe that both factors play a substantial role,
although in different degrees at different temperatures.
If only one kind of hole is involved in the transport phe-
nomena, the thermopower can become anisotropic only
if several scattering mechanisms operate, with the rela-
tive contributions of these mechanisms being different
in different directions. The most probable mechanism
of scattering in Sb2Te3 is scattering from impurity ions
and acoustic lattice vibrations. Scattering from impu-
rity ions is anisotropic, and that from acoustic vibra-
tions is largely isotropic. As the temperature is
increased from 100 to 450 K, the contribution from the
impurity anisotropic scattering decreases and that from
the less anisotropic acoustic scattering of holes
increases. In this case, if there is only one type of hole,
the anisotropy of the Seebeck coefficient should
decrease, which is at odds with experimental data. As

Q123
1 2,( )

Q123
1 2,( ) S11

1( ) S11
2( )–[ ] Ac

1( )ua
1( ) Ac

2( )ua
2( )–[ ] ta

1( )ta
2( )=

∼ p2/ p0 ∆εv– /k0T( ),exp∼

Q123
1 2,( )
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seen from Fig. 2, the anisotropy of the Seebeck coeffi-
cient grows with temperature. The growth of ∆S is the
largest at T ~ 250 K (in the same temperature range,
where the features in the temperature dependences of
the TNEE associated with the participation of two types
of holes were revealed).

The present paper suggests that the onset of anisot-
ropy in the Seebeck coefficient ∆S originates from the
involvement of holes of two types (heavy and light) in
the transport phenomena, with different anisotropy in
their mobilities. Assuming the partial thermopower
coefficients for the light and heavy holes to be isotropic,
the thermopower anisotropy in conduction involving
holes of two types can be written as

(8)

where ba = /  and bc = /  are the hole mobility
ratios in the directions of the cleavage plane and per-
pendicular to it, respectively.

As follows from Eq. (8), for ∆S > 0 (in agreement
with the experiment), we have ba/bc > 1. This condition
is met if the holes of the band characterized by a higher
mobility possess a larger anisotropy. In particular, if the
hole mobilities in the additional band (2) are higher
than those in the main one (1), ba/bc > 1, the anisotropy
of the hole mobilities in the main band (1) will be
smaller than that in the additional one (2), because

ba/bc = ( / )/( / ).

The fact that the anisotropy of the Seebeck coeffi-
cient is associated with the generation of carriers
(holes) of the second type permits one to use its temper-
ature dependence to estimate the energy gap separating
the main and additional extrema. In the temperature
range where the holes of the second band just start to
contribute to conduction, i.e., where ν = p2/p0 ! 1,
Eq. (8) assumes the form

Calculations yielded ∆εv ~ 0.1 eV. Thus, experimental
data obtained on the Nernst–Ettingshausen and See-
beck effects support a complex structure of the Sb2Te3
valence band with an energy gap ∆εv ~ 0.1 eV.

4.3. The Hall Effect

The two-band model provides a natural explanation
to the marked increase in the Hall coefficient, a phe-
nomenon observed by us and known from the literature.
Our estimates made using Eqs. (A16) show that the
present model, which assumes a substantially different
anisotropy in the mobility between holes of two types
and is characterized by the parameters ba and bc, is also
capable of accounting for the crossing of the tempera-
ture dependences of the two Hall tensor components
(Fig. 3). The inset to Fig. 3 illustrates the overall behav-
ior of the Rijk(T) components with temperature as

∆S S33 S11– S 1( ) S 2( )–( )ν bc ba–( )/bcba,= =

u1
a u2

a u1
c u2

c

u1
a u1

c u2
a u2

c

∆S ν ∆εv /k0T–( ).exp∼ ∼
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obtained within the two-band model using the band
structure parameters given in [4].

Thus, we have shown that the experimental data, as
a whole, on the electrical conductivity and the Seebeck,
Hall, and Nernst–Ettingshausen effects obtained within
a broad temperature range (77–350 K) can be explained
within the two-band model of the valence band, which
involves holes of two types possessing substantially
different mobility anisotropies along the trigonal axis
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Fig. 2. Temperature dependences of the anisotropy in
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and the cleavage plane (ba/bc > 1). Evaluation of the
energy gap between the main and additional valence-
band extrema yielded ∆εv ~ 0.1 eV.

APPENDIX

PHENOMENOLOGICAL THEORY

The papers we are aware of analyze the experimen-
tal results with expressions which, as a rule, assume a
concrete band structure and a concrete carrier scatter-
ing mechanism in the compound under study. In using
a phenomenological description of the transport effects,
we invoked as few assumptions as possible.

A phenomenological description of the main trans-
port coefficients was already made in [14], a publica-
tion to which we refer interested readers. Here, we are
going to present only those relations necessary in our
study.

In single crystals of rhombohedral symmetry, to
which Sb2Te3 belongs, the σij, Sij, and Rijk tensors have
two independent components each and Qijk has three;
the subscripts are presented here in the same order as in
Section 2 of the text.

(1) Electrical Conductivity 

Taking into account the anisotropy in the contribu-
tions of the carriers of the two valence bands (1 and 2),
we can write

(A1)

(A2)

Here and henceforth, the trigonal axis of the crystal is
denoted by 3 or c; the direction in the cleavage plane, as
1 and 2 or a.

The contribution to the conductivity has the follow-
ing coefficients:

(A3)

With this notation, Eqs. (A1) and (A2) can be recast as

(A4)

(2) The Seebeck Coefficient

(A5)

(A6)

The anisotropy in the Seebeck coefficient is defined as
∆S = Sc – Sa and can be written as

(A7)

σa σ11 σ11
1( ) σ11

2( ),+= =

σc σ33 σ33
1( ) σ33

2( ).+= =

ta
1( ) σa

1( ) σa
1( ) σa

2( )+[ ] , ta
2( ) σa

2( )/ σa
1( ) σa

2( )+[ ] ,= =

tc
1( ) σc

1( ) σc
1( ) σc

2( )+[ ] , tc
2( ) σc

2( )/ σc
1( ) σc

2( )+[ ] .= =

ta
1( ) ta

2( )+ 1, tc
1( ) tc

2( )+ 1.= =

Sa S11 Sa
1( )ta

1( ) Sa
2( )ta

2( ),+= =

Sc S33 Sc
1( )tc

1( ) Sc
2( )tc

2( ).+= =

∆S Sc Sa– S 1( ) S 2( )–[ ] tc
1( ) ta

1( )–[ ] .= =
PH
Equation (A6) was derived assuming the partial See-
beck coefficients for carriers of bands 1 and 2 to be iso-
tropic. Anisotropy is known not to appear in the one-
band model; therefore, we assume the partial contribu-
tions from carriers in bands 1 and 2 to be isotropic:

(3) The Hall Effect

(A8)

(A9)

(4) The Nernst–Ettingshausen Effect

where

(A10)

Using the earlier notation for ν, ba, bc, and p0, we trans-
form Eqs. (A3)–(A10) to

(A11)

(A12)

(A13)

(A14)

(5) The Hall Coefficients

Consider Eqs. (A8) and (A9) and transform them by

introducing an additional notation: χc = /  and

χa = / , where χa and χc are the ratios of the

structural Hall factors and , , , and 
are the structural Hall factors for bands 1 and 2 for H ||
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c (subscript c) and H ⊥  c (subscript a). Then, we obtain
for bands 1 and 2,

(A15)

The expressions for the Hall tensor components are

(A16)

or

(A17)

(6) The TNEE Coefficient Q123

where

(A18)
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1( ) Ac
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Abstract—The electron absorption spectrum of thin films of the Ag2ZnI4 complex compound is studied at pho-
ton energies of 3–6 eV. It is established that the interband absorption edge corresponds to an allowed direct tran-
sitions across the energy gap Eg = 3.7 eV. A strong exciton band is adjacent to the absorption edge at Eex =
3.625 eV (80 K); in the 80–390 K range, the temperature behavior of the half-width Γ of this band is determined
by the exciton–phonon interaction typical of quasi-one-dimensional excitons. At T ≤ 390 K, a discontinuity in
the slope of the Eex(T) and Γ(T) dependences is observed. This discontinuity is associated with the generation
of Frenkel defects and is accompanied by the transfer of Ag ions to the interstitial sites and vacancies of the
crystal lattice of the compound. © 2002 MAIK “Nauka/Interperiodica”.
Among the AgI-based compounds with high ionic
conductivity, the Ag2ZnI4 triple compound is the least
studied. Controversial information on the phase dia-
grams and crystal structure of Ag2ZnI4 can be found in
a few papers [1–4]. According to [2, 3], the Ag2ZnI4
complex compound exists in the (ZnI2)x(AgI)1 – x sys-
tem in a small interval of molar concentrations x near
x = 0.33 and at temperatures up to 192°C. According to
[1, 2], the compound has a hexagonal lattice with
parameters a = 0.439 and c = 0.73 nm. However, as
pointed out in [2], the parameters of the complete unit
cell have not yet been determined because of the diffi-
culties involved in x-ray diffraction measurements: at
the parameters mentioned, the unit cell contains a half
of the formula unit. At T > 192°C, the compound disso-
ciates into ZnI2 and αAgI. On the contrary, more recent
data [4] indicate that Ag2ZnI4 is formed into two
phases: a low-temperature orthorhombic phase with
lattice parameters a = 1.173, b = 1.334, and c = 0.73 nm
and a high-temperature phase which forms at T >
265°C and exists in the narrow temperature range from
265 to 280°C. The temperature dependence of the con-
ductivity suggests [2] that the transition of Ag2ZnI4 to a
superionic state occurs at T ≈ 146°C. This temperature
coincides with the temperature of the phase transition
from β-AgI to α-AgI, which allows one to conclude
that the compound is partially decomposed at T <
192°C.

Additional information on the phase composition
and possible phase transitions comes from the electron
spectra of the compounds. As far as we know, the elec-
tronic spectrum of Ag2ZnI4 has not yet been studied.
Since the absorption coefficient in the intrinsic absorp-
tion band is large, thin films are the most appropriate
samples for use in experimental study of the absorption
spectrum. We investigated the absorption spectra of
1063-7834/02/4401- $22.00 © 20048
Ag2ZnI4 within the temperature range 80–440 K for
energies from 3 to 6 eV. The results of this investigation
are presented in this paper.

Ag2ZnI4 films 100-nm thick were fabricated through
vacuum evaporation of a mixture of AgI and ZnI2 pow-
ders in a given molar proportion onto quartz substrates
heated to 100°C. Due to the hygroscopicity of the com-
pound, the originally smooth and transparent films,
being exposed to air and cooled, become highly dif-
fused and are unsuitable for optical measurements. For
this reason, the heated films were placed in a vacuum
cryostat whose copper finger was preliminary heated to
70°C. After the cryostat had been evacuated and filled
with liquid nitrogen, the films retained their initial
transparency (in the visible region). The phase compo-
sition of the films was determined from the absorption
spectra, which was made possible by the spectral posi-
tions of the narrow exciton bands in AgI, Ag2ZnI4, and
ZnI2 being essentially different (Fig. 1). At the molar
concentration x > 0.35, an additional band appears in
the spectrum of Ag2ZnI4 at 4.45 eV. This band is typical
of ZnI2 and is 0.77 eV from the low-frequency exciton
band of the triple compound. At x < 0.3, additional
absorption associated with excess AgI appears within
the transparency range of Ag2ZnI4 at 3 eV. At a given
thickness of the film, the most intensive exciton peak at
E = 3.625 eV, corresponding to Ag2ZnI4, was observed
at x = 0.32. Since the films were hygroscopic, their
thickness was determined from the transmission spec-
trum in the transparency range using the method
described in [5].

With increasing temperature, the exciton peak at
3.625 eV slightly broadens and shifts to the low-fre-
quency range. Judging from the intensity of the peak in
a thin film (t = 110 nm), the exciton band is adjacent to
the edge of the region of direct allowed interband tran-
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sitions. Separating the exciton band from this edge, we
found Eg ≈ 3.7 eV for the band-gap width of the com-
pound (the estimate is made with respect to the inflec-
tion point in the vicinity of the edge). The absence of a
noticeable temperature dependence in the optical-den-
sity spectrum at E > Eg indicates that there are no exci-
ton bands at higher frequencies. The continuous inter-
band absorption spectrum has a broad peak at E =
5.55 eV. Supposing that this peak corresponds to tran-
sitions between the centers of the energy bands, we find
the combined width of the conduction and valence
bands adjacent to the band gap, ∆E = ∆Ec + ∆Ev =
2(Em – Eg) = 3.7 eV.

Comparison of the electronic spectra of the triple
compounds derived from AgI is also of interest. At T =
80 K, the low-frequency exciton bands in compounds
RbAg4I5, KAg4I5, NH4Ag4I5, and Ag2CdI4 are at 3.35
[6, 7], 3.33 [6, 8], 3.33 [6], and 3.31 eV [9], respec-
tively. The close excitation energies of the 1s excitons
are indicative of a weak dependence of Eex on the type
of cations substituting for Ag ions. This fact suggests
that the excitons are localized in the AgI sublattice of
the compounds under consideration [7–9]. We suppose
that, as is the case with AgI, the upper valence band in
the triple compounds is formed by the 5p states of I
atoms and 4d states of Ag atoms, while the lower con-
duction band is associated with 5s states of Ag atoms.
In all the compounds, the edge of the continuous spec-
trum corresponds to allowed interband transitions. In
the triple compounds, the high-frequency shift of the
exciton bands with respect to the low-frequency band in
AgI (Eex = 2.3 eV) is mainly due to the increase in the
number M of Ag atoms in the second coordination shell
[7–9]. The tetrahedral ionic–covalent bond between Ag
atoms and the I atoms surrounding them is typical of all
these compounds. At the same time, the exciton band in
Ag2ZnI4 is shifted to the high-frequency spectral range
by 0.32 eV with respect to the band in the more closely
related compound Ag2CdI4.

Since the electronegativities of the Zn and Cd atoms
(1.6 and 1.7, according to Pauling and more recent data
[10]) differ only slightly, it is unlikely that this shift is
due to an increase in the ionicity of the chemical bond
in Ag2ZnI4 as compared with Ag2CdI4. Probably, the
difference in the spectral position of the exciton bands
can be explained in terms of the difference in the struc-
ture of the crystal lattices of these two compounds. The
Ag2CdI4 compound forms into an Ag2HgI4-type tetrag-
onal lattice with the unit-cell parameters a = 0.635 and
c = 1.27 nm [2]. Ag2CdI4 is characterized by a tetrahe-
dral bond between the Ag and I ions and the coordina-
tion number M = 6; the volume per I atom is VI =
0.064 nm3. As was already mentioned, AgZnI4 has a
hexagonal lattice with half a molecule per unit cell and
a volume per I atom of VI = 0.61 nm3 [1, 2]. At the same
time, according to [4], the low-temperature phase of
this compound has an orthorhombic lattice with four
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molecules per unit cell and VI = 0.072 nm3. These data
lead to the conclusion that the parameters of a structural
element of the unit cell of the orthorhombic lattice,
rather than of the unit cell itself, were determined in [1,
2] using x-ray structural analysis.

In this connection, it makes sense to compare the
electronic spectrum of Ag2ZnI4 with that of the CsAg2I3

triple compound, which also has an orthorhombic lat-
tice with parameters a = 1.108 nm, b = 1.374 nm, and
c = 0.623 nm [11] and four molecules per unit cell. As
established in [11], CsAg2I3 is characterized by double
chains consisting of AgI4 tetrahedrons oriented along
the c-axis of the crystal. It should be noted that the vol-
ume per I atom is VI = 0.060 nm3 in a double chain of
CsAg2I3, while in the unit cell, this volume is 0.071
nm3. These values of VI are very close to the corre-
sponding values of VI for the structural element and the
unit cell in Ag2ZnI4. The difference between the values
of VI indicates that the heteropolar bonds within the
double chains and structural elements in CsAg2I3 and
Ag2ZnI4 are stronger than the bonds between them. It
was shown in [12] that the low-frequency absorption
spectrum of CsAg2I3 is associated with excitons and
electrons in the double chains and that the electronic

Fig. 1. Absorption spectra of thin films: (1) AgI at T = 90 K;
(2, 3) Ag2ZnI4 at T = 90 and 290 K, respectively; and
(4) ZnI2 at T = 90 K.
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energy bands in this compound are of quasi-one-dimen-
sional character.

In CsAg2I3, the low-frequency exciton peak is at
3.73 eV, and its energy is close to Eex = 3.625 eV in
Ag2ZnI4. From the above discussion it is clear that the
excitons and electronic excitations in Ag2ZnI4 are local-
ized in the structural elements of the hexagonal symme-
try oriented along the c axis of the orthorhombic lattice
and that the energy bands of this compound are quasi-
one-dimensional. It seems to be difficult to obtain more
detailed information on the relation between the struc-
ture of the electronic spectrum of Ag2ZnI4 and its crys-
tal structure, because there are no reliable data available
on the structure of the crystal lattice of this compound.

The temperature dependence of the parameters of
the low-frequency excitonic band in Ag2ZnI4 was stud-
ied in the temperature range 80–435 K, containing the
temperature of the phase transition β  α in AgI
(495 K). The excitonic band was approximated by a
combined Gaussian and Lorentzian symmetric contour,
and the parameters of the band (spectral position Eex,
half-width Γ, oscillator strength) were determined by
the best fit between the experimental and calculated
spectral dependences of the optical density in the long-
wavelength tail of the band. The light interference in
the thin layer was taken into account using the method
described in [13]. At low temperatures, the excitonic
bands are closely approximated by a Lorentzian. With
increasing temperature, the Gaussian component
increases, and the shape of the bands becomes Gauss-

Fig. 2. Temperature dependence of (a) the spectral position
Em(T) and (b) half-width Γ(T) of the long-wavelength A-
exciton band in Ag2ZnI4; the solid line is calculated under
the assumption of a linear Γex-ph(T) dependence and the
dots are the experimental values of Γ(T).
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ian above room temperature. In the temperature range
80–390 K, a linear shift of the excitonic band to lower
frequencies is observed with dEex/dT = –2.8 × 10–4 eV/K
(Fig. 2a). The shift is of the same order of magnitude as
in a number of AgI-based triple compounds and is
indicative of exciton–phonon interaction. The exciton–
phonon interaction is also manifested in a decrease in
the oscillator strength and in the asymmetry of the exci-
tonic band with increasing temperature T (Fig. 1).
However, the half-width increases with growth in T
only slightly (Fig. 2b). In the same temperature range,
the half-width Γ grows from 0.1 to 0.115 eV. Data pro-
cessing using the least squares method and the linear-
law approximation yields Γ(0) = 0.09 ± 0.01 eV and
dΓ/dT = (1.3 ± 0.4) × 10–4 eV/K. A possible cause of the
weak dependence of Γ on T is the quasi-one-dimen-
sional character of the excitons in this compound. For
comparison, the half-width of the bands of three-
dimensional excitons in Ag2CdI4 increases from 0.025
to 0.15 eV in the same temperature range [9]. The the-
ory of exciton–phonon interaction developed for exci-
tons of different dimensionality [14] predicts larger
band widths at low T and weaker temperature growth in
Γ for one-dimensional excitons as compared with
three-dimensional ones under the same conditions (the
energy of the interstitial exciton transfer, phonon fre-
quency).

At T ≥ 390 K, a noticeable shift of the exciton band
to lower frequencies with dEex/dT = –8.75 × 10–4 eV/K
is observed. This band shift is accompanied by a dis-
continuity in the slope of the Γ(T) dependence, and the
half-width increases from 0.115 to 0.165 eV in the nar-
row temperature interval 390–445 K. The changes in
Eex and Γ observed in this temperature range correlate
well with the sharp increase in the ionic conductivity of
the compound by three orders of magnitude. As in other
AgI-containing compounds, we associate the changes
in the temperature dependence of Γ at T ≥ 390 K with
the generation of Frenkel defects. The generation of
Frenkel defects is accompanied by the appearance of
random internal electric fields, leading to additional
scattering of excitons [15]. Since the excitonic band has
a Gaussian shape at T ≥ 390 K, the total half-width of
the band in this temperature range is

(1)

where Γex-ph and ΓF are the contributions of the exciton–
phonon interaction and Frenkel defects to the half-
width, respectively. The value of ΓF and its temperature
dependence can be estimated from the experimental
values of Γ and the values of Γex-ph extrapolated to the
given temperature range. Since ΓF is proportional to the
concentration of Frenkel defects nF, whose temperature
dependence is described by the Arrhenius law

, (2)

Γ Γ ex-ph
2 ΓF

2+ ,=

nF Ae
uF/kT–

=
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the linearized ΓF(T) dependence in the range 390–445 K
gives the activation energy for Frenkel defects uF =
(0.31 ± 0.04) eV. This activation energy is almost two
times smaller than the activation energy characterizing
the temperature dependence of the ionic conductivity of
Ag2ZnI4 (uσ = 0.77 eV [2]). It should be noted that for
superionic conductors, the activation energy deter-
mined from the ΓF(T) dependence is usually smaller
than uσ [8]. Probably, this difference is due to the fact
that the motion of cations over the interstitial sites has
been activated and, therefore, the temperature depen-
dence σ(T) includes the activation energy for cation
migration over the lattice.

A sharp decrease in Eex with increasing temperature
is also typical of the classical conductor β-AgI at tem-
peratures close to the temperature of the phase transi-
tion to α-AgI (Tc = 419 K) [16]. As is the case with
Ag2ZnI4, the sharp decrease in Eex is accompanied by a
growth in the band half-width. At T ≥ Tc, the saturation
of Eex and Γ occurs. However, in contrast to Ag2ZnI4,
the band in AgI is shifted within a narrower temperature
range (408–421 K) and the value of this shift is notice-
ably larger (∆Eex = 0.185 eV). Based on the aforesaid,
one can conclude that the formation of Frenkel defects
and the ionic conductivity in Ag2ZnI4 are determined by
Ag ions occupying interstitial sites and vacancies that
accompany the Zn2+ ions. Probably, partial disorder of
the compound with precipitation of α-AgI occurs at T ≥
419 K and is followed by complete decomposition of
the compound into ZnI2–α-AgI at 455 K [2]. The latter
conclusion is in agreement with the phase diagrams and
conductivity data presented in [2, 3].

In conclusion, it should be noted that the significant
difference in the electronic absorption spectra and tem-
perature dependences of the excitonic bands of the
chemically similar compounds Ag2CdI4 and Ag2ZnI4 is
due to the difference between their crystal lattices. It
seems likely that the quasi-one-dimensional character
of the low-frequency electronic excitations in Ag2ZnI4
is determined by the specific features of its lattice
structure.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
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Abstract—The luminescence of Ca2GeO4 : Cr4+ single crystals at wavelengths in the range of 1.3 µm upon
excitation with a 1-µm semiconductor laser is investigated in the temperature range up to 573 K. At T < 110 K,
the Ca2GeO4 : Cr4+ crystals are characterized by the electron paramagnetic resonance, which is attributed to the
Cr4+ ions substituted for Ge4+ ions. The components of the g tensor and its principal axes are determined. It is
revealed that the Cr4+ impurity centers in calcium germanate affect the crystal symmetry to a lesser degree com-
pared to Cr4+ ions in forsterite. The observed deviation of the temperature dependence of the electron paramag-
netic resonance from the Curie law is explained by the transition to the excited state with a low activation
energy, as is the case in impurity 3d ions in diamond-like semiconductors. The inference is made that the giant
effective degeneracy multiplicity of the excited state is associated with the initiation of soft phonon modes in
the crystal upon excitation of the defect. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of calcium germanate Ca2GeO4 doped with
chromium are promising materials for use in near-IR
laser technology. Calcium germanate compares favor-
ably with its structural analog, namely, forsterite
(Mg2SiO4): the close values of Cr and Ge ion radii (0.41
and 0.39 Å, respectively [1]) provide predominant dis-
solution of chromium in the charge state 4+ as an impu-
rity substituting for germanium. Note that chromium in
forsterite crystals can substitute for both magnesium in
two different positions in the unit cell and silicon and
can occur in three charge states (2+, 3+, and 4+) [1–4].
Moreover, the highly efficient photoluminescence
band, which is assigned to the 3T2  3A2 transition of
Cr4+ ions in calcium germanate, corresponds to the
highest transparency of a glass fiber at a wavelength of
approximately 1.3 µm, whereas this transition in for-
sterite is observed at approximately 1.1 µm. Petricevic
et al. [1] succeeded in achieving a lasing efficiency of
10% in Ca2GeO4 : Cr4+ crystals with the use of 0.8- to
1-µm semiconductor laser diode pumping.

It is known from optical spectroscopy that chro-
mium ions in Ca2GeO4 predominantly occur in the
charge state 4+, which, as was already mentioned, is
explained by the close values of chromium and germa-
nium ion radii. However, up to now, there has been no
research done to determine the charge states of chro-
mium in this material with the use of other techniques.
In the present work, we undertook a combined investi-
gation into the electron paramagnetic resonance and
photoluminescence in Ca2GeO4 : Cr4+ single crystals in
the temperature range 55–600 K. As in [1], the photo-
1063-7834/02/4401- $22.00 © 20052
luminescence due to intracenter transitions in the 3d
shell of Cr4+ ions was observed at a wavelength λ ≈
1.3 µm up to a temperature of 573 K. In addition, we
observed the electron paramagnetic resonance (EPR)
spectrum with a fine structure and attributed this spec-
trum to the Cr4+ ions. The angular and temperature
dependences of the electron paramagnetic resonance
were examined. It was found that the Cr4+ centers can
reside in excited states with anomalously high effective
degeneracy multiplicities, which are similar to those
observed earlier for impurity 3d ions of the iron group
in diamond-like semiconductors [5, 6].

2. EXPERIMENTAL TECHNIQUE

The experiments were performed with single-crys-
tal samples (4 × 4 × 1.5 mm in size) cut from Ca2GeO4
ingots, which were grown from the undoped melt and
the melt containing approximately 0.5 wt % chromium
oxide. The edges of rectangular samples were oriented
parallel to the a, b, and c crystallographic axes of the
crystal. The undoped crystals were transparent and col-
orless, whereas the doped crystals were transparent and
deep green.

The EPR spectra were recorded on a spectrometer
operating in the 3-cm band [7] at the frequency ν =
9.34 × 109 Hz. The magnetic field was calibrated
against an MgO : Mn powder or a Fremi salt used as the
reference sample [6]. The intensity was calibrated
against a powdered silicon with a g factor of 2.0055.
The sample to be studied was placed inside a Dewar
glass vessel in the antinode of a magnetic field of a
002 MAIK “Nauka/Interperiodica”
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TE103 rectangular cavity, and the reference sample was
placed in the other antinode. The angular dependences
of the electron paramagnetic resonance were measured
in a cryostat cooled with liquid nitrogen [8]. The pre-
liminary investigations showed that the boiling temper-
ature of liquid nitrogen is too high to provide saturation
of the concentration of Cr paramagnetic centers in the
ground state. The temperature was reduced to 55 K
through the evaporation of nitrogen during its evacua-
tion. After completion of the evacuation, the sample
was gradually heated. The temperature dependences of
the EPR spectra were recorded using 30-s periodic
scanning. The temperature was measured with a cali-
brated copper–constantan thermocouple fabricated
from wires 0.05 mm in diameter. A thermocouple junc-
tion was cemented to the sample with a nitrolacquer.
The error in temperature measurement did not exceed
3 K. The EPR absorption spectra and their first deriva-
tives were recorded. The measurement conditions, even
at the lowest temperatures, corresponded to insignifi-
cant microwave saturation of the EPR spectrum.

Tetravalent chromium in the Ca2GeO4(Cr) crystals
was also determined from the photoluminescence spec-
tra. The spectra were measured using a setup based on
an MDR-23 spectrometer in the temperature range 77–
600 K. The spectra were excited with a 2-W GaInPAs
heterostructure injection semiconductor laser diode at a
wavelength of 0.98 µm.

3. RESULTS AND DISCUSSION

In chromium-free Ca2GeO4 crystals, no lumines-
cence is observed. At the same time, the crystals doped
with chromium exhibit an intense luminescence in the
wavelength range λ = 1.1–1.6 µm. The luminescence
spectra of the Ca2GeO4 : Cr crystals at different temper-
atures are displayed in Figs. 1 and 2. It is seen from
Fig. 1 that, at liquid-nitrogen temperatures, the photo-
luminescence spectrum of the studied crystals is similar
to that observed in [1] and contains a line of the zero-
phonon transition (according to the assignment made in
[1]) and the lines attributed to the 3T2  3A2 phonon-
assisted transitions, which are split by a nearly tetrahe-
dral crystal field of the 3d2 shell of the Cr4+ ions. As the
temperature increases to room temperature (Fig. 2,
curve 1), the luminescence spectrum flattens and
becomes bell-shaped with a maximum at approxi-
mately 1.25 µm, as was observed in [1]. The small dip
at a wavelength of approximately 1.38 µm is associated
with the absorption of water molecules. The lumines-
cence is also observed at temperatures higher than
room temperature (Fig. 2, curves 2–4). An increase in
the temperature is accompanied by a shift of the lumi-
nescence maximum to 1.3 µm. At T ~ 600 K, the lumi-
nescence virtually disappears. Figure 3 shows the tem-
perature dependence of the integrated intensity of lumi-
nescence in the wavelength range 1.1–1.6 µm. It can be
seen that the luminescence decay slows down at T ≈
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
350 K. The ratio of the luminescence intensities at tem-
peratures of 77 and 293 K slightly exceeds the inverse
ratio of these temperatures.

Within the detection limits of the EPR spectrometer
(about 5 × 109 spins/G), the paramagnetic resonance
absorption is not observed in the undoped Ca2GeO4
crystals at T ≥ 55 K in the magnetic field range from 0
to 7000 G. However, the chromium-doped crystals
exhibit an EPR spectrum at T < 110 K. This spectrum
involves two lines of a fine structure whose location is
dependent on the crystal orientation. Identical temper-
ature behavior of the fine structure lines suggests that
these lines are attributed to the same paramagnetic cen-
ter. In this case, the spectroscopic splitting factor g is
equal (to the third decimal place) to the pure spin g fac-
tor of a free electron. This implies that the orbital angu-
lar momentum of the paramagnetic center is either
equal to zero or frozen by the crystal field. The presence
of two fine structure lines in the spectrum indicates that
the paramagnetic center has the spin S = 1, which cor-
responds to a center with two electrons whose spins are
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Fig. 1. Photoluminescence spectra of the Ca2GeO4 : Cr
crystals at 77 K: (1) the spectrum taken from [1] and (2) the
spectrum obtained in this work.
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Fig. 2. Luminescence spectra of the Ca2GeO4 : Cr crystals
at temperatures of (1) 293, (2) 373, (3) 473, and (4) 573 K.
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parallel to each other. On this basis, by analogy with
Cr4+ ions in forsterite [2], we can assume that the EPR
spectrum observed for the Ca2GeO4 : Cr crystals is
attributed to Cr4+ ions with a 3d2 shell in the 3A2(e2) sin-
glet state and two electrons at the e level split off by the
crystal field.

In addition to the aforementioned two intense lines,
the EPR spectrum contains a group of unresolved lines
that overlap with these intense lines. The intensity of
the unresolved lines is more than one order of magni-
tude less than that of the intense lines. It seems likely
that the unresolved structure of the spectrum arises
from the hyperfine interaction of 53Cr isotopes with a
nonzero nuclear spin (3/2) [9] and a content of 9.55%
in a natural isotopic mixture. A decrease in the temper-
ature leads to an increase in the asymmetry of the
intense fine-structure lines. These findings can be
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Fig. 3. Temperature dependence of the integrated intensity
of luminescence in the wavelength range 1.1–1.6 µm for the
Ca2GeO4 : Cr crystals.
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P

explained by the specific features of spin-lattice relax-
ation and spin diffusion. However, the observed phe-
nomenon and the hyperfine structure call for further
investigation and will be discussed in a separate work.

The angular dependences of the location of the Cr4+

EPR lines at 80 K are depicted in Fig. 4. The compo-
nents of the g tensor calculated from these dependences
are as follows:

(1)

The axes of this tensor with respect to the crystal axes
are determined by the unit vectors

(2)

As can be seen from Fig. 4 and the components of
tensor (1), the g factors have lesser values compared to
the pure spin g factor of a free electron (2.0023), which
is typical of paramagnetic chromium ions in crystals.
The direction cosines (2) of the g tensor axes indicate
that these axes deviate from the crystal axes by no more
than 15°, whereas the corresponding deviation in chro-
mium-containing forsterite may be as much as 43° [3].
This means that the smaller difference between the Cr4+

and Ge4+ ion radii in Ca2GeO4, as compared to that
between the Cr4+ and Si4+ ion radii in forsterite, leads to
a weaker distortion of the tetrahedral symmetry and the
crystal lattice in the vicinity of chromium impurity ions
in calcium germanate. Most likely, the weaker distor-
tions can also be explained by the fact that the germa-
nium ion has the 3d shell, which is absent in the silicon
ion; i.e., the radial electron density distributions in
chromium and germanium ions more closely resemble
each other. It is seen from Fig. 4 that the fine structure
lines virtually do not split upon rotation of the crystal in
the bc plane, i.e., when the rotation axis coincides with
the crystal axis a, which is parallel to the threefold axis
C3 in Ca2GeO4 crystals with a forsterite-like structure.

Figure 5 displays the temperature dependences (cor-
rected for the Curie law) of the intensity Y of the Cr4+

EPR absorption line and the intensity Y ' of its first
derivative for a magnetic field oriented in the bc plane
of the crystal in such a manner that a single line has the
highest intensity. Both dependences exhibit a similar
behavior; i.e., the shape of the EPR line remains invari-
ant as the temperature increases. Numerical analysis
shows that the spectrum has a nearly Gaussian shape.
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The temperature dependences of the EPR linewidth
are plotted in Fig. 6. These dependences, as well as the
fine and hyperfine structures of the spectrum, will be
analyzed after more precise and detailed measurements
in a separate work. Here, it is worth noting that the
broadening of spectral lines without changes in their
shape is a rare case. As a rule, pure spin-lattice relaxation
results in Lorentzian broadening of the EPR lines [10].

The temperature dependence of the concentration of
visible Cr4+ EPR centers is shown in Fig. 7. The invari-
ability of the EPR line shape simplified the construction
of this dependence from the data presented in Figs. 5
and 6. It can be seen that the dependence does not obey
the Curie law. This manifests itself in a decrease in the
number of centers in the ground state with an increase
in the temperature. Demidov et al. [5, 6] observed a
similar phenomenon for impurity 3d ions of the iron
group in diamond-like semiconductors. Cooling of the
sample upon nitrogen evacuation ensured saturation of
the concentration N of chromium centers at low tem-
peratures. The saturation corresponded to the total con-
centration of Cr4+ centers N0 ≈ 1.3 × 1016 cm–3. This is
a relatively low concentration at which electron
exchange between chromium centers is highly improb-
able. As in [5, 6], we attribute the deviation from the
Curie law to the transition of the defects to excited
states.

The experimental points plotted in Fig. 7 fit the the-
oretical curve fairly well. This dependence corresponds
to the transition to an excited energy level and can be
represented by the relationship

(3)

where g10 = 550 is the degeneracy multiplicity of the
excited state with respect to the ground state and E10 =

N Cr4+( ) N0 Cr4+( ) 1 g10 E10/kT–( )exp+[ ] 1– ,=
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Fig. 5. Temperature dependences (corrected for the Curie
law) of (1) the intensity Y of the Cr4+ EPR absorption line
and (2) the intensity Y ' of its first derivative for the
Ca2GeO4 : Cr4+ crystal.
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0.03 eV is the excitation energy. The spin–orbit split-
ting is of no significance for the 3A2 singlet state of the
Cr4+ ion, especially as the parameter of this splitting is
estimated as λ ! E10. For the band gap Eg > 3.5 eV in
Ca2GeO4 (the undoped crystals are colorless and trans-
parent in visible light), it is unlikely that the impurity Cr
3d level is close to the allowed band edges of the crystal
to a hundredth of an electron-volt. The resistivity of the
chromium-doped crystals at room temperature is sub-
stantially higher than 1012 Ω cm. To put it differently, a
decrease in the concentration N with an increase in the
temperature T cannot be caused by the recharging of
centers through electron exchange with the allowed
bands of the crystal. The excitation is also unrelated to
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the inner electron transition in the 3d shell. According
to the Tanabe–Sugano diagrams [9], the nearest energy
state 3T2 of the 3d2 shell is separated from the ground
state by the crystal field energy ∆ ≈ 1 eV, which is char-
acteristic of ionic compounds and is appreciably higher
than E10. All these factors, taken together, suggest that,
as in the case of 3d ions in semiconductor crystals, the
above transition to the excited state can be considered
one of the two possible electron transitions to the
Kohn–Luttinger localized s state [11],

(4)

, (5)

which results in the formation of either the hydrogen-

like donor state  (split off from the conduction band
of Ca2GeO4) with a single-electron occupation [variant

(4)] or the acceptor state (split off from the valence
band of Ca2GeO4) with a single-hole occupation [vari-
ant (5)]. Here, we are dealing with the high-spin
approximation; i.e., it is assumed that the Hund rule is
fulfilled.

It is difficult to decide between these variants of the
excitonic excitation of the center with the formation of
an electron [variant (4)] or a hole [variant (5)] which is
more delocalized than that in the 3d shell. Upon substi-
tution of the 3d ion for the trivalent or tetravalent atom
in covalent elemental Group IV semiconductors or
compounds III–V with a high degree of covalence, the
3d ion exhibits an acceptor behavior. If the same is also
true for the more ionic compound Ca2GeO4, variant (5)
is more probable. In order to increase the fraction of
laser-active neutral Cr4+ centers substituted for germa-
nium, calcium germanate crystals should be addition-
ally doped with nontransition elements whose valence
is less by unity than that of the matrix elements and
whose ionic radius is close to the radius of the matrix
ions; i.e., these elements should be acceptor impurities
with the smallest possible size and a low activation
energy. As a result, the Fermi level shifts toward the
valence band and the fraction of Cr4+ centers increases.
In particular, the role of these impurity ions can be
played by either Na+ or Al3+ substituted for Ca2+ or
Ge4+, respectively. Another possibility consists in creat-
ing an oxygen nonstoichiometry. The observed Cr4+

concentration N0 = 1.3 × 1016 cm–3 (Fig. 7) is substan-
tially less than the predicted concentration of dissolved
chromium (approximately 1020 cm–3), provided that all
chromium oxides (0.5 wt %) in the melt pass into the
Cr(Ge) solid solution upon the growth of the Ca2GeO4
crystals. In other words, the Fermi level is located well
above the chromium recharging level in the band gap of
the crystal.

As in the case of 3d ions in semiconductors, the
excited states are characterized by the giant degeneracy
multiplicity g10 = 550, which has defied explanation in
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the framework of the conventional pure electronic
model. On the left-hand sides of schemes (4) and (5),
we have the multiplicity of electron degeneracy ge0 = 3
in accordance with the spin triplet. On the right-hand
sides of these schemes, there appears a doubling
[scheme (4)] or tripling [scheme (5)] factor owing to
the orbital degeneracy of the e or t2 states. Conse-
quently, the multiplicity ge10 = ge1/ge0 should be equal to
two or three. As for 3d ions in semiconductors, the high
value of g10 can be explained by the change in the
phonon spectrum of the crystal upon excitation of the
defect. This is attended by the initiation of soft phonon
resonant modes due to the decrease in the force con-
stants of the crystal in the vicinity of the defect upon
transition to the orbitally degenerate state according to
variant (4) or variant (5) [12]. In this case, the concen-
tration of Cr4+ centers in the ground state can be deter-
mined by the expression

(6)

The best fitting of the calculated curve N(T) to the
experimental data (Fig. 7) gives α10 = 5 × 10–5 K and
E10 = 0.01 eV. According to [12], when the phonon res-
onance frequency ωp is considerably less than the
Debye frequency ωD, we can write the following rela-
tionship:

(7)

From this relationship, under the assumption that the
Debye temperature for calcium germanate, as for ger-
manium, is approximately equal to 300 K, we obtain
the following parameters for variant (5) with ge10 = 3:
"ωp ≈ 3.4 × 10–3 eV and ωp ≈ 0.1ωD.

Since the ground and excited states in variant (5) are
energetically close to each other, we can assume that
the majority of the Cr4+ centers at low temperatures

reside in the 3d3(e2, t2)  state (characterized by the
electron paramagnetic resonance) due to lattice strains
in the crystal. The strains have a stronger effect on the
more delocalized Kohn–Luttinger states and result in a
decrease in their energy as compared to the ground state
[on the left-hand side of scheme (5)]. This is the second
reason for the large difference between the predicted
concentration of the Cr4+ centers and their concentra-
tion determined from the EPR data. For the lumines-
cence, the ground and excited states in variant (5) are
almost energetically indistinguishable; however, the
excited state is more favorable owing to the large statis-
tical weight and the higher probability of dipole
phononless transitions.

4. CONCLUSIONS

Thus, the luminescence of Ca2GeO4 : Cr crystals at
wavelengths in the range of 1.3 µm (which is of partic-
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ular importance in laser optical fiber technology) upon
excitation with a 1-µm semiconductor heterolaser is
observed in the temperature range up to 573 K. The
luminescence decay occurs rather slowly with an
increase in the temperature and becomes still slower at
350 K. It was found for the first time that these crystals
exhibit electron paramagnetic resonance at tempera-
tures up to 110 K. The EPR spectrum was attributed to
the Cr4+ ions substituted for the Ge4+ ions. The g tensor
of the spectroscopic splitting was determined. The
small deviation of the g tensor axes from the crystallo-
graphic axes indicates a smaller distortion of the point
and translational symmetry in the vicinity of Cr4+ ions
in the studied crystals as compared to that in forsterite.

The temperature dependence of the Cr4+ EPR spec-
trum for the calcium germanate crystals was analyzed.
It was revealed that the Cr4+ ions can reside in the
excited state with a low activation energy and a giant
degeneracy multiplicity. A similar state was observed
earlier in impurity 3d ions of the iron group in dia-
mond-like semiconductors. As for these semiconduc-
tors, the giant degeneracy multiplicity can be explained
in terms of soft quasi-local phonon resonant modes ini-
tiated in the crystal upon excitation of the defect. By
analogy with the free 3d ions or atoms characterized by
energy competition between the 3d and 4s states, we
assumed that the Cr4+ impurity ions experience a simi-
lar competition between the 3d states and more delocal-
ized states, which are conventionally denoted as the
Kohn–Luttinger s states. The latter states can be treated
as being “genetically” formed from the 4s and 4p states
of the free ion [13, 14]. It seems likely that the competi-
tion between the energies of the 3d and s states of impu-
rity 3d ions is a commonly occurring phenomenon,
because it is observed in narrow-gap semiconductor
crystals and a nearly wide-gap ionic Ca2GeO4 crystal.

The observed features of the states of electrons
localized on Cr4+ impurity ions can be useful in deter-
mining the oscillator strengths of photoinduced elec-
tronic transitions and the conditions of existence for
laser-efficient d centers. For the purpose of improving
the laser efficiency of the Ca2GeO4 : Cr4+ crystals, it is
necessary to increase the fraction of chromium impu-
rity ions in the charge state 4+. From this standpoint, it
is of interest to investigate how the shift of the Fermi
level toward the valence band due to either additional
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
doping with Na and Al acceptor impurities or oxygen
nonstoichiometry can affect the fraction of Cr4+ ions.
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Abstract—This paper presents a theoretical analysis of the dynamics of space-charge field formation in a pho-
torefractive crystal with double-donor centers and shallow traps. The evolution of the photorefractive-grating
recording processes in the absence of an external electric field, the relaxation of the grating in the presence of
a reference beam, and its subsequent development under application of an external field are considered. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photorefractive crystals are promising materials for
use in the processing of optical information and storage
of holographic images [1]. The processes initiated in a
crystal by light can be described using various band
transfer models. The process of space charge formation
is traditionally considered in terms of a model includ-
ing photoactive donor centers of one type and nonpho-
toactive compensating acceptors [2]. A two-center
model taking into account an additional shallow trap
level was proposed to explain the phenomenon of pho-
toinduced absorption observed experimentally in sille-
nite and BaTiO3 crystals [3]. In 1995, a “trivalent”
model was introduced [4] in which one donor center
can reside in three different charge states. This model
permitted one to successfully describe photoinduced
absorption and photoconductivity in KNbO3 : Fe and
KTN : Fe crystals [4–7]. A model involving both triva-
lent centers and shallow traps was proposed in [8] to
interpret the experimentally observed dynamics of pho-
toinduced absorption in undoped Bi12TiO20.

This paper presents a theoretical analysis of the pho-
torefractive response made in the frame of the latter
model. It is shown that the effects of nonmonotonic
dynamics of diffraction efficiency observed earlier [9–
12] and of latent-image development [13] can be
accounted for by the interaction of the charge gratings
formed on singly and doubly ionized donors and shal-
low traps.

2. THEORETICAL MODEL

Figure 1 presents an energy level diagram of the
model in question [8]. In this model, deep donors D can
reside in three charge states (0, +1, +2) and there is a
trap S which can be in the 0 and –1 states. The model
1063-7834/02/4401- $22.00 © 20058
assumes the absence of doubly ionized donor centers
D2+ and of filled shallow traps S– in the dark. The S–
level can become empty as a result of thermal carrier
excitation into the conduction band. Light ionizes the
D, D+, and S– centers by exciting electrons into the con-
duction band, where the electrons move through diffu-
sion or drift until they recombine at the D+, D2+, and S0
defects.

These processes can be described mathematically
by the following coupled equations:

(1)

(2)

(3)

(4)

(5)

where ND, MT, and NA are the total concentrations of the
donors, shallow traps, and acceptors, respectively;

, , M, and n are the concentrations of the singly
and doubly ionized donors, filled shallow traps, and
electrons, respectively; SD, S1, ST and γ1, γ2, γT are the
photoionization cross sections and recombination con-
stants for the neutral (subscript D), singly (1) and dou-
bly (2) ionized donors, and shallow traps (T); β is the
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shallow-trap thermal excitation coefficient; µ is the
electron mobility; kB is the Boltzmann constant; T is the
temperature; e is the elementary electric charge; and
ε is the static dielectric constant of the crystal.

Consider the space-charge field produced in the
interference of two, reference and signal, light beams
with intensities IR and IS, respectively. The intensity dis-
tribution in the crystal can be written as

(6)

where I0 = IR + IS is the average intensity, m =

2  is the modulation depth of the interference
pattern, |K| = K = 2π/Λ is the magnitude of the grating
vector, and Λ is the grating spatial period. The grating
vector K = Kz0 and the externally applied field E0 =
E0z0 are assumed to be aligned with the z axis of the ref-
erence frame. In the low contrast approximation (m ! 1)
of the interference pattern forming the photorefractive
grating, the coupled equations (1)–(5) can be linear-

ized by expanding the unknown functions (z, t),

(z, t), M(z, t), n(z, t), and E(z, t) in a Fourier series.
The equations describing the dynamics of the zeroth
and first spatial Fourier components of the charge grat-
ings in the crystal can be written as 

(7)
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(14)

where τdi = ε/µen0 is the dielectric relaxation time.
These equations were derived under the assumption of
a low light intensity I0 (conditions where the electron
concentration n satisfies the inequalities N ! ND, n !
M, and N ! NA) and in the adiabatic approximation,
where ∂n/∂t = 0. The coupled equations (7)–(10) for the
zeroth Fourier components form a closed system,
which does not contain amplitudes of the first spatial
harmonics and of the applied external field. To deter-

mine the first Fourier components , , M1, and
n1 from Eqs. (11)–(14), one has to find a solution to the
above system. Our method of numerical analysis of
these systems enabled us to vary the diffraction grating
period Λ; the duration of the hologram writing, storage,
and development processes; and the amplitude of the
applied external dc electric field E0. It also permitted us
to turn the pump (IR) and signal (IS) light beams, their
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Fig. 1. Energy level diagram in the band gap of a crystal
with deep donor centers that can reside in three charge states
(D0, D+, D2+) and with shallow traps (S0 and S–). The
arrows identify possible transitions in the photoexcitation,
thermal generation, and recombination of carriers.
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mutual coherence, and the external electric field E0 on
and off at arbitrary instants of time. Using Eq. (5) and
the calculated amplitudes of the first charge-grating
harmonics, one can derive the amplitude of the space-
charge field in the crystal in the form

(15)
E1 t( ) i

e
εK
-------–=

× N1
1+ t( ) 2N1

2+ t( ) M1 t( )– n1 t( )–+[ ] .
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Fig. 2. Evolution of the space-charge field of a photorefrac-
tive grating with a period Λ = 10 µm after crystal illumina-
tion by a mutually coherent signal and pump beams with a
total intensity I0 = 10 mW/cm2 at time tc = 0, turn-on of
mutual coherence at ti = 800 s, and application of an exter-
nal dc electric field E0 = 17.5 kV/cm at time te equal to
(1) 1500, (2) 2000, and (3) 3000 s.

The material parameters of photorefractive crystals with the
double-donor centers and shallow traps used in the calcula-
tions

Material 
parameter

Parameter values for various
shallow-trap concentrations

[8] this work

MT, m–3 1025 1024 1023

MD, m–3 1025 1025 1025

NA, m–3 1022 2.5 × 1022 4 × 1022

SD, m2/J 4.9 × 10–6 2 × 10–7 1.5 × 10–7

ST, m2/J 10–4 32.5 × 10–4 30.5 × 10–4

S1, m2/J 2.5 × 10–6 2 × 10–6 3 × 10–6

γ1, m3/s 3.5 × 10–17 0.8 × 10–17 0.8 × 10–17

γT, m3/s 2.6 × 10–17 6 × 10–17 2.2 × 10–15

γ2, m3/s 4.9 × 10–18 1.2 × 10–18 5 × 10–19

β, s–1 5.5 × 10–5 5.5 × 10–4 5.5 × 10–4
PH
3. RESULTS OF THE CALCULATIONS 
AND DISCUSSION

To calculate the relations describing the dynamics of
the photorefractive response, one can use the values of
material parameters presented in [8]. To determine
these parameters, the theoretical relations characteriz-
ing the evolution of photoinduced absorption during
sample illumination and relaxation of this absorption in
the dark were fitted to the experimental data available
for the Bi12TiO20 crystal. We also found other sets of
parameter values, which fit the variation of the absorp-
tion coefficient with time under crystal illumination
presented in [8] well. The material parameters used in
our subsequent numerical calculations are listed in the
table. The carrier mobility was assumed equal to µ =
2 × 10–6 m2/V s.

It was assumed that before illumination by the sig-
nal and pump beams at time t = 0, the crystal was in the
dark. This corresponds to the initial conditions

(0) = NA, (0) = 0, and M0(0) = 0, which were
used by us in the numerical integration of the coupled
equations (7)–(10). The charge gratings started to form
after the mutual beam coherence was switched on at
time tc ≥ 0.

Figures 2–5 display typical time dependences char-
acterizing the dynamics of variation of the space-
charge field of a photorefractive grating with a period
Λ = 10 µm and contrast m = 0.1 produced under differ-
ent conditions by beams with a total intensity I0 =
10 mW/cm2 in a crystal with the parameters taken from
[8]. If the mutual beam coherence is switched on simul-
taneously with crystal illumination (t0 = tc = 0, Figs. 2–
4 and curve 1 in Fig. 5), the space charge field formed
by diffusion evolves nonmonotonically. In the case
where the coherence is switched on later, e.g., at tc =
2000 s (curve 2 in Fig. 5), the grating field grows faster
in the initial stage. Then, the field continues to increase
slowly, until the coherence is turned off at ti = 2800 s.
The nonmonotonic pattern of the field evolution can be
accounted for by the fact that, in the first case, the
charge gratings form in essentially nonstationary con-
ditions. In the initial stage, the average concentrations

of the centers , , and M0 and of the electrons n0

(Fig. 6) undergo strong changes, while for t > 2000 s,
these concentrations practically reach a steady-state
level. The faster growth of the grating amplitude in the
second case is due to the higher electron concentration
in the conduction band. Note that the nonstationary
photoconductivity observed in our case in the initial
stage of crystal illumination was indicated to be the rea-
son for the nonmonotonic pattern of the space-charge
field dynamics in [14, 15].

Two characteristic regions can be seen in the evolu-
tion of the space-charge field amplitude observed after
the mutual beam coherence is turned off at time ti

(Figs. 2–5). In the first stage of the grating erasure, the

N0
1+ N0

2+

N0
1+ N0

2+
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amplitude drops rapidly in a time comparable to τd ≈ 15 s.
Dielectric relaxation sharply reduces the difference

between the charge-grating amplitudes [  + 2  –
M1]. However, as follows from Fig. 7, the amplitudes
themselves decrease insignificantly in this time. There-
after, one observes a slow space-charge field falloff,
whose rate is governed by the charge-grating relaxation
(cf. Figs. 2–5 with Fig. 7).

Applying a dc electric field to the crystal at a time
te > ti does not change the dynamics of the charge-grat-
ing amplitude relaxation (Fig. 7). However, after appli-
cation of an external field, the space-charge field ampli-
tude increases with a time constant close to the dielec-
tric relaxation time τd (Figs. 2–5). The grating field
amplitude at the maximum depends on the time of
mutual beam coherence turn-on and off (tc and ti,
respectively), as well as on the time of the field applica-
tion te. For the conditions of the formation, erasure, and
development of the grating presented in Figs. 2–5, its
amplitude always exceeds the initial value associated
with the diffusion mechanism of charge separation.
This behavior of the space charge field is connected
with the fact that the relative positions of the charge
gratings formed by the singly and doubly ionized
donors and shallow traps are changed under the action
of the applied voltage. This is evident from Fig. 8,
which illustrates the dynamics of displacement of grat-

ings with amplitudes , , and M1 along the
z coordinate relative to their initial positions after the
application of an external field. The grating displace-
ment is caused primarily by the conduction-current
nonuniformity, which is due to the crystal conducting
properties being spatially modulated. As follows from
Eq. (14), the first spatial harmonic of the electron con-
centration in the conduction band is also nonzero in the
absence of nonuniform illumination, i.e., for m = 0. In
the model used here, the spatial nonuniformity of con-
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Fig. 3. Same as in Fig. 2 but for tc = 0, te = 3000 s, and
ti equal to (1) 800, (2) 1200, and (3) 1600 s.
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Fig. 5. Same as in Fig. 2 but for te = 3000 s and (1) tc = 0,
ti = 800 s and (2) tc = 2000 s, ti = 2800 s.
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ductivity is connected with the modulation of crystal
parameters such as the absorption coefficient and the
carrier lifetime. This interpretation of our results agrees
qualitatively with the approach to describing the pro-
cesses observed in a Be12SiO20 crystal in the course of
photorefractive-grating recording in an alternating
field, of grating storage with no field applied but with a
reference beam present, and of development after field
removal [15]. It is assumed here that optical informa-
tion in a crystal can persist in the form of a photosensi-
tivity grating, which has a long relaxation time even
under uniform illumination. The photosensitivity grat-
ing is related in [15] to the spatial modulation of crystal
parameters such as the light absorption coefficient, the
carrier lifetime or mobility, and the quantum yield.

On reaching the maximum level, the space-charge
field falls off with a time constant close to the charge-
grating decay rate (cf. Figs. 2–5 with Fig. 7 for t > te).
The results displayed in Figs. 2–8 relate to a crystal
with a very high shallow-trap concentration (MT =
1025 m–3). The evolution of the growth of photoinduced
absorption observed experimentally in a Bi12TiO20
crystal after sample illumination [8] can also be
described for lower concentrations, for instance, for
MT = 1023 m–3, but for substantially larger values of the
photoionization cross section (ST = 3.05 × 10–3 m3/J)
and of the two-particle recombination coefficient (γT =
2.2 × 10–15 m3/s) than in the case of crystals with a high
shallow-trap concentration (table). The time depen-
dences of the space charge field in crystals with concen-
tration MT = 1024 (curve 1) and 1023 m–3 (curve 2) are
presented in Fig. 9 for the same conditions as curve 3 in
Fig. 2. Note that the processes of recording, erasure,
and development of gratings in crystals with the param-
eters used here do not differ. However, in a crystal with
a lower shallow-trap concentration, relaxation under
uniform illumination proceeds more slowly.

Thus, we have demonstrated the possibility of
describing the processes of development of holo-
graphic gratings in photorefractive crystals in terms of
the band transfer model, which includes singly and
doubly ionized donors and shallow trap centers.
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Abstract—This paper reports on an experimental study of the concentration and temperature dependences of
the structural parameters, as well as of the electrical and magnetic properties, of manganese-intercalated tita-
nium diselenide. The effect of manganese on the properties of the compounds produced by its intercalation
between Se–Ti–Se layers is shown to differ strongly in character from those of other guest 3d elements. The
results obtained are interpreted with account taken of the specific features of the manganese electronic structure.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intercalated compounds based on titanium dichalco-
genides, which have a CdI2-type hexagonal structure,
attract a significant portion of the interest focused on
the study of the physical properties of low-dimensional
compounds. The host matrices used for intercalation,
namely, TiS2, TiSe2, and TiTe2, have a layered atomic
structure and form weakly coupled TiX2 structural
blocks. The interlayer distance between these blocks
increases as one goes from TiS2 to TiTe2 [1], thus
changing the degree of two-dimensionality of the crys-
tal lattice and the anisotropy of the physical properties.
Depending on their concentration, the embedded (inter-
calated) atoms can form ordered chains and layers
sandwiched between these blocks. Compounds with
transition elements employed as intercalant atoms are
of particular interest. Because 3d elements have mag-
netic moments, they can be used to obtain layered
materials with magnetic layers on the atomic scale.
Investigation of such compounds based on TiS2 [2, 3]
and TiSe2 [4–8] has revealed a variety of magnetic
states, including magnetically ordered states. Studies of
the intercalation of titanium diselenide by various 3d
elements have brought some general features in the
variation of structural parameters and physical proper-
ties to light and revealed the part played by the elec-
tronic structure of these elements in the formation of
the physical properties of such materials [5, 7]. In this
series, the compounds containing manganese as an
intercalant have thus far remained practically unstud-
ied, even though manganese differs noticeably in its
electronic characteristics from other iron-group ele-
ments.

This paper is the first integrated investigation into
the structural characteristics and magnetic and electri-
cal properties of titanium diselenide intercalated by
manganese over a broad concentration range.
1063-7834/02/4401- $22.00 © 20064
2. EXPERIMENT

MnxTiSe2 samples (0 < x ≤ 0.5) were synthesized in
solid-phase reactions in evacuated quartz ampoules.
The starting materials were titanium iodide, OSCh-
grade selenium, and 99.98%-pure metallic manganese.
TiSe2 was prepared in the first stage to serve subse-
quently as the host material for intercalation, and, in the
second stage, the samples of the MnxTiSe2 system
under study were fabricated. After each stage, the mate-
rial was pressed into pellets and subjected to homoge-
nization annealing at a temperature of 900°C for 150 h.

Phase analysis using x-ray diffraction and determi-
nation of the unit-cell parameters were carried out on a
DRON-3M diffractometer. The samples were found to
be single-phase and uniform in composition. The elec-
trical conductivity was studied using the standard four-
probe technique on sintered cylindrical samples 4 mm
in diameter and 16 mm long. The thermopower was
measured at a constant temperature gradient of 10 K
over the sample length.

The magnetic susceptibility measurements were
performed using the Faraday method on an automati-
cally compensated magnetic balance.

The structural characteristics were studied at room
temperature; the physical properties, in the 80- to
300-K interval.

3. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

As follows from Fig. 1, which displays the concen-
tration dependence of the unit-cell parameter c of the
MnxTiSe2 samples, the incorporation of manganese
atoms between the Se–Ti–Se blocks loosens the crystal
structure along the hexagonal axis. This is in marked
contrast to the behavior of similar MxTiSe2 systems,
002 MAIK “Nauka/Interperiodica”
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where other 3d metals are used as guest intercalant
atoms. Figure 1 also illustrates the c(x) dependences
obtained for MxTiSe2 (M = Cr, Co, Fe) reported in [7].
The lattice compression along the c axis resulting from
the incorporation of these atoms into the van der Waals
gap was assigned to the formation of covalent bonds
between the d metal intercalants and the Se–Ti–Se lay-
ers. Moreover, the observed correlation between the
effective magnetic moment of the intercalant atom and
the parameter c suggest that the d electrons of the inter-
calant are involved in the formation of such bonds [7].

As for the parameter a, its variation with increasing
intercalant concentration turned out to have the same
character for all the studied systems intercalated by 3d
elements. The parameter a was found to increase mono-
tonically with x. This suggests that the difference in the
behavior between the crystal structure of MnxTiSe2 and
similar systems with other 3d intercalants with increas-
ing intercalant concentration is due to the specific fea-
tures of the electronic structure of manganese; this
structure possesses a half-filled 3d shell, and, hence, its
3d electron density distribution is spherically symmet-
ric. The latter is apparently the main factor that, in our
case, places a constraint on the possibility of formation
of additional covalent bonds between the Se–Ti–Se lay-
ers and, as a result, does not bring about a decrease in
their separation, unlike in other MxTiSe2 systems,
where the intercalant atoms have a 3d electron shell
filled to less (Cr) or more (Fe, Co) than one half.

As should be expected, intercalation of manganese
atoms into the TiSe2 host, possessing Pauli paramagnet-
ism [9], gives rise to a considerable rise in the magnetic
susceptibility of the compounds and affects its behavior
with temperature. The temperature dependence of the
inverse susceptibility χ–1 for the MnxTiSe2 compounds
is displayed in Fig. 2 and can be satisfactorily fitted by
a relation for a Curie–Weiss paramagnet supplemented
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Fig. 1. Concentration dependences of the lattice parameter c
of the MxTiSe2 compounds (M = Cr, Fe, Mn, Co).
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
with a temperature-independent contribution:

(1)

Fitting the experimental χ(T) data to this relation
yielded the values of χ0. The effective magnetic
moment of Mn in the MnxTiSe2 compounds calculated
using these values was found to be somewhat smaller
than the value (Fig. 3) typical of the high-spin state of a
free Mn2+ ion (µeff = 5.92µB). In our opinion, this point,
as well as the nonmonotonic character of the concentra-
tion dependence of µeff in the compounds studied, sug-
gests the possibility of partial d-electron delocalization,
depending on the intercalant concentration. This delo-
calization may give rise to the formation of hybrid
bound states, as was demonstrated in [10] for titanium
disulfide-based materials used to interpret the results
obtained in a study on intercalated titanium diselenides
[5, 7]. Because no correlation is observed to exist
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Fig. 2. Temperature dependences of the inverse magnetic
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Fig. 5. Electrical resistivity of MnxTiSe2 samples vs. man-
ganese content at T = 273 K. Inset: concentration depen-
dences of the electrical resistivity of titanium diselenide
intercalated by chromium, iron, and cobalt.
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Fig. 6. Temperature dependences of the Seebeck coefficient
for different manganese contents in MnxTiSe2.
between the concentration dependences µeff(x) and
c(x), the decrease in µeff in the initial stages of manga-
nese intercalation cannot be the result of formation of
covalent bonds with the TiSe2 layers, as is the case with
intercalation by iron, chromium, and cobalt. As already
mentioned, the reason for this apparently lies in the spe-
cific features of the manganese electronic structure.

For all the compounds studied, the paramagnetic
Curie temperatures were found to be negative (Fig. 3),
which indicates the coupling between the localized
manganese magnetic moments to be a predominantly
antiferromagnetic exchange. Taking into account the
available data on MxTiSe2 compounds intercalated by
other 3d metals [4, 7], it may be conjectured that the
MnxTiSe2 system also resides at low temperatures in a
variety of magnetic states, from spin glass states at low
manganese concentrations to magnetically ordered
states in the high-concentration region. Note the non-
monotonic concentration dependence of the Curie para-
magnetic temperature of the compounds under study.
Assuming that the exchange coupling between the
localized manganese moments is indirect and mediated
by the conduction electrons, the nonmonotonic Θp(x)
relation could reflect the changes in the electronic band
structure of the compounds that occur with increasing
intercalant concentration.

The temperature-independent contribution χ0 in
Eq. (1), which includes the diamagnetic contribution of
filled electronic shells and the itinerant-electron para-
magnetism (the Pauli paramagnetism), is positive and
grows with increasing manganese content. Such a rela-
tion can be associated only with a change in the density
of electronic states, because the diamagnetic compo-
nent is determined primarily by the filled TiSe2 elec-
tronic shells and cannot vary noticeably.

In addition to the investigation of the magnetic prop-
erties, we measured the electrical resistivity ρ and ther-
mopower of all the samples prepared. In all composi-
tions, the electrical resistivity was observed to grow lin-
early with increasing temperature (Fig. 4), a feature
characteristic of the metallic state and suggesting a pre-
dominantly phonon carrier scattering mechanism. Fig-
ure 5 demonstrates the variation in the electrical resis-
tivity of the MnxTiSe2 compounds, measured at 273 K,
with increasing manganese content. Also shown for
comparison are similar dependences obtained for com-
pounds intercalated by other d metals [7]. We readily
see that the incorporation of iron, cobalt, and chromium
results in a decrease in the electrical conductivity com-
pared with that of TiSe2 (σ ≅  10 Ω–1 cm–1) [11],
whereas intercalation with manganese produces the
opposite effect. A characteristic feature here is the cor-
relation between the concentration dependences of the
electrical resistivity and of the effective magnetic
moment, which suggests that the delocalized manga-
nese d electrons take part in conduction. The tempera-
ture dependences of the Seebeck coefficient were also
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002



STRUCTURAL CHARACTERISTICS AND PHYSICAL PROPERTIES 67
found to be different for samples with different manga-
nese concentrations (Fig. 6). For the x = 0.05 and 0.1
compositions, the Seebeck coefficient, while being pos-
itive at low temperatures, decreases in absolute value
and even reverses its sign. For the other samples, the
Seebeck coefficient retains its positive sign and grows
with increasing temperature.

The above data as a whole demonstrate that at low
manganese concentrations, for which its solution in
titanium diselenide may be considered dilute, the
simultaneous decrease in µeff and ρ can be due to the
increasing contribution to charge transfer from the s
and d electrons donated to the host lattice by the man-
ganese atoms. In this stage of intercalation, the behav-
ior of the transport characteristics can be described in
terms of the rigid-band model. That both the holes and
electrons are involved in the conduction is argued for
by the above-mentioned character of the temperature
dependence of the Seebeck coefficient at low manga-
nese concentrations. For concentrations x > 0.2,
ρ increases, despite the formally increasing carrier con-
centration; this may be a consequence of a qualitative
change in the electron energy spectrum of the crystal,
which brings about noticeable d-electron localization in
a narrow impurity band. This conclusion is indepen-
dently buttressed by the increase in the effective mag-
netic moments and the behavior of the Seebeck coeffi-
cient in this manganese concentration region, as well as
by the growth in χ0, which signals an increase in the
density of states at the Fermi level.

4. CONCLUSIONS
Thus, our studies show that the specific features in

the electronic structure of manganese atoms, which are
characterized by spherical symmetry of the 3d-electron
density distributions, zero orbital magnetic moment,
and no spin–orbit coupling, play a major role in the for-
mation of the physical properties of this class of quasi-
two-dimensional materials. The intercalation of tita-
nium diselenide with manganese substantially changes
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
the behavior of the structural characteristics and physi-
cal properties of the host compared with the effect pro-
duced by other 3d elements. One may also draw the
conclusion that the incorporation of various 3d ele-
ments brings about both a decrease (in the case of Co,
Cr, Fe) and an increase (for Mn) in the degree of two-
dimensionality of the crystal lattice.
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Abstract—The surface segregation of zirconium carbide from carbide solid solutions is investigated. The spon-
taneous surface segregation of ZrC grains from solid solutions in the pseudobinary ZrC–NbC system is revealed
for the first time. It is demonstrated that the ZrC precipitation is associated with the decomposition of the car-
bide homogeneous solid solutions Zr1 – xNbxC ≡ (ZrC)1 – x(NbC)x. The boundaries of the latent solid-phase
decomposition region formed at T < 1200 K are determined for the solid solutions formed by ZrCy and NbCy '
carbides with different nonstoichiometry. The experimental and theoretical estimates obtained for the segrega-
tion energy of ZrC are equal to –50 and –31 kJ mol–1, respectively. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper reports on the results of investigations
into the surface segregation of zirconium carbide from
(ZrC)1 – x(NbC)x solid solutions. This phenomenon was
not observed earlier in carbide solid solutions.

According to the experimental results obtained in
[1–3], zirconium and niobium carbides with a cubic
structure form a continuous series of solid solutions in
the Zr–Nb–C system at temperatures of 1973, 1773,
and 1273 K. Unfortunately, experimental data on the
phase equilibria in the Zr–Nb–C or ZrCy–NbCy ' system
at temperatures below 1273 K are not available in the
literature. However, the recent investigation [4]
revealed that, at T < 1300 K, the disorder–order trans-
formations occur in the carbon sublattice of nonstoichi-
ometric carbides with the formation of different
ordered phases. In addition to the ordering in the carbon
sublattice, the formation of short-range order and trans-
formations of the ordering or decomposition type can
proceed in the metal sublattice of M(I)Cy–M(II)Cy ' car-
bide solid solutions [5]. In particular, theoretical esti-
mates [6] indicate that, under equilibrium conditions,
an extended region of a decomposition can be observed
in the ZrC–NbC system at T < 800 K.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

For the purpose of revealing the solid-phase decom-
position, we studied the (ZrC)1 – x(NbC)x solid solutions
in the range 0.001 ≤ (1 – x) ≤ 0.05. The solid solutions
were synthesized by solid-phase vacuum sintering from
NbC and ZrC carbides (at a maximum sintering tem-
perature of 2500 K) or from Nb, Zr, and C (at a maxi-
mum sintering temperature of 2300 K). The content of
the main elements and impurities in the initial com-
1063-7834/02/4401- $22.00 © 0068
pounds was determined using chemical and spectral
analyses. The initial compounds contained the follow-
ing impurities (wt %): 10–2–10–3 Ti, 10–3 Hf, 2 × 10−3

Al, and 3 × 10–3 Si in metallic zirconium; 5 × 10–3 Fe,
4 × 10–3 Si, 2 × 10–3 Al, 3 × 10–4 Ni, <0.01 Ta, <0.01 N,
and 0.05 O in metallic niobium; 0.28 S and less than 1%
volatile impurities in carbon (carbon black); 10–3 V,
10−3 Ni, 10–4 Mg, 10–2 Fe, 10–3–10–4 Zr, 10–2 Ti, 0.32 O,
and 0.06 N in NbC0.95 niobium carbide; and 10−3 Hf,
10−2 Ti, 10–3 Fe, 0.28 O, and 0.08 N in ZrC0.96 zirco-
nium carbide.

All the synthesized solid solutions have a single-
phase composition and a cubic structure of the B1 type.
The lattice parameter aB1 = 0.44670 ± 0.00002 coin-
cides, to within the limits of measurement error, with
the lattice parameter of niobium carbide of a nearly sto-
ichiometric composition [6]. Cylindrical samples
(15 mm in diameter and 10–15 mm in height) of the
solid solutions synthesized were annealed at a temper-
ature of 2300 K under vacuum at a residual pressure of
10–3 Pa for 1 h. After annealing, the samples were
cooled first rapidly (at a mean rate of 200 K min–1) to
1300 K and then slowly to 600 K. The total time of
cooling was 3 h. The x-ray diffraction patterns were
recorded on a Siemens D-500 automated diffractometer
in the Bragg–Brentano geometry. The recording was
performed in the stepped scan mode with a 2θ step of
0.025° in the range 2θ = 10°–158°. The exposure time
at each point was 12 s. The x-ray diffraction patterns
taken from the surface regions of the (ZrC)1 – x(NbC)x

(1 – x ≤ 0.02) solid solutions prepared from niobium
and zirconium carbides and subjected to annealing
demonstrate that, apart from the lines assigned to the
niobium-containing phase with the lattice parameter
aB1 = 0.44655 nm, there appear intense lines attributed
to another phase. The former phase predominantly con-
2002 MAIK “Nauka/Interperiodica”
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tains niobium carbide and is close in composition to the
initial solid solution. The latter phase has a B1 cubic
structure with the lattice parameter aB1 = 0.4698 nm,
which is very close to the lattice parameter of the zirco-
nium carbide ZrC0.93–0.98 (0.4699 nm) [4]. Judging from
the change in the lattice parameter of the niobium-con-
taining phase after annealing and the lattice parameter
of the new phase, the initial solid solution contains
~99 mol % NbC and ~1 mol % ZrC. As can be clearly
seen in the cross sections of the annealed samples, a
very dense layer 0.1–0.2 mm thick is formed on the free
surface. This layer is brighter than the bulk of the sam-
ple. The x-ray diffraction patterns of the surface regions
of the annealed samples, which were synthesized from
Nb, Zr, and C, exhibit only the lines assigned to a phase
with the parameter aB1 = 0.46986 nm, whereas the dif-
fraction reflections from the main (niobium-contain-
ing) phase are absent (Fig. 1). Analysis revealed that the
surface region contains traces (less than 1 mol %) of the
(ZrC)1 – x(NbC)x solid solutions at a high ZrC content
and a low NbC content. This is indicated by a nearly
constant intensity against the background in a narrow
range of angles to the right of the lines attributed to zir-
conium carbide (see the inset in Fig. 1). The lattice
parameter of these solid solutions changes from 0.4698
to 0.4670 nm, which corresponds to variations in the
niobium carbide content x in the range from 0.004 to
0.120.

The electron microscopic examination of the
annealed samples of the (ZrC)1 – x(NbC)x solid solutions
synthesized from niobium and zirconium carbides
revealed the presence of well-faceted precipitates (cov-
ering as much as 50% of the surface area) of the second
phase on the surface of the sample (Fig. 2). The size of
precipitates falls in the range 3–10 µm (the size of par-
ticular grains is as large as 20 µm), and the size of the
main-phase grains is approximately equal to 1 µm. For
the most part, the precipitated particles have the form of
trihedra or hexahedra, which is characteristic of the
(111) section of cubic crystals. The observed morphol-
ogy can be explained by the fact that the growth of
cubic crystals predominantly occurs along the (111)
planes with the highest reticular density. The micro-
hardness HV of the precipitated crystals is equal to
26.0 ± 1.5 GPa and considerably exceeds the micro-
hardness of the bulk region of the sample: HV ≈ 17–
19 GPa. The surface of the annealed samples of the
(ZrC)1 – x(NbC)x solid solutions prepared from Zr, Nb,
and C is completely covered with grains of the precipi-
tated phase and contains no traces of the main phase.

The chemical composition of the precipitated phase
was determined using a JFXA-733 Superprob x-ray
microanalyzer. A backscattered electron image of the
surface was obtained. The scanning over the surface
with recording of the characteristic radiation revealed
that the sample matrix contains niobium, whereas the
precipitated grains of the new phase contain zirconium
and are almost free of niobium (Fig. 3). The semiquan-
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titative elemental analysis was performed on an
ÉMAL-2 laser energy–mass analyzer. Figure 4 displays
the mass spectra of the surface regions of the annealed
samples of the (ZrC)1 – x(NbC)x solid solutions synthe-
sized from Zr, Nb, and C. For comparison, the mass
spectra of the bulk regions of the same samples are also
shown in this figure. The mass analysis of the bulk
region of the samples (i.e., the main phase) confirmed
that this phase contains niobium, carbon, and a small
amount of zirconium. At the same time, zirconium and
carbon are the basic components of the compound
evaporated from the surface completely covered with
grains of the precipitated phase. The niobium content
on the surface is no more than 0.5 at. %. Similar mass
spectra were observed for individual grains of the phase
precipitated on the surface of the annealed solid solu-
tions, which were synthesized from niobium and zirco-
nium carbides.

The precipitation of the second phase (zirconium
carbide grains) on the surface of the sample can be due
to either the decomposition of solid solutions or their
initial inhomogeneity. In order to exclude the inhomo-
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Fig. 1. X-ray diffraction patterns of the bulk and surface
regions of the annealed sample of the (ZrC)0.02(NbC)0.98
solid solution. The main niobium-containing phase (the ini-
tial solid solution with the cubic lattice parameter aB1 =
0.44655 nm) is identified in the bulk. The surface region
contains the cubic phase with the lattice parameter aB1 =
0.46986 nm, which corresponds to zirconium carbide, and
traces (less than 1 mol %) of the (ZrC)1 – x(NbC)x solid
solutions at a high ZrC content and a low NbC content
(x progressively increases from 0.004 to 0.120). This is
indicated by a nearly constant intensity against the back-
ground in a narrow range of angles to the right of the lines
attributed to zirconium carbide (see the inset).
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10 µm

Fig. 2. Electron micrograph of the surface of the annealed
sample of the (ZrC)1 – x(NbC)x (1 – x ≤ 0.02) solid solution
with precipitated zirconium carbide single crystals 3–10 µm
in size (the size of particular zirconium carbide grains is as
large as 20 µm).
geneity as a possible cause of the formation of the new
phase, the degree of homogeneity of the initial solid
solutions was determined using x-ray diffraction.

Recall that an inhomogeneity as a structural defect
can be considered a fluctuation of the concentration c
in the volume V of a solid solution [7]. In a crystal,
the concentration fluctuations at points r are
described by the continuous fluctuation distribution
function δc(r), which can be expanded into the Fou-
rier series δc(r) = , where ck =

(1/V)  and k is the fluctuation wave

vector. Since the fluctuations reduce only to the redis-
tribution of the concentration among different crystal
regions without changes in the concentration, we have

 = 0. The concentration fluctuations in the

crystal give rise to inhomogeneities, which, in turn,
bring about static atomic displacements and broadening
of reflections in diffraction experiments. If the compo-
sition of the  solid solution is specified as
x0 ± ∆x, the degree of inhomogeneity ∆x for the solid
solution can be determined from the broadening of the
diffraction reflections.

Since the grain size in the initial solid solutions
Zr1 − xNbxC is approximately equal to 1 µm, the broad-
ening of diffraction reflections due to small sizes (less
than 100 nm) of the grains is absent. The structural
investigation demonstrated that the CuKα1, 2 doublets

ck ikr–( )expk∑
δc r( ) ikr( )exp Vd∫

δc r( ) Vd∫

Zr1 x0– Nbx0
C

10 µm

Zr

Nb

Fig. 3. Distributions of the intensity of Zr and Nb secondary electrons upon scanning of the surface of the annealed sample of the
(ZrC)0.02(NbC)0.98 solid solution along the white horizontal line. Maxima in the distributions of Zr and Nb secondary electrons
correspond to precipitated zirconium carbide grains and the main niobium-containing phase (the matrix solid solution at a NbC con-
tent close to 100%), respectively.
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are split already beginning at the (111)B1 line, i.e., at the
smallest 2θ angles. This suggests a high homogeneity
of the solid solutions. The inhomogeneity ∆x, which
was determined from the broadening of the (222)α1,
(400)α1, and (331)α1 reflections, is approximately
equal to 0.003. Consequently, the degree of homogene-
ity (1 – ∆x) for the initial solid solutions Zr1 – xNbxC is
estimated at ~0.997; i.e., it is close to unity. Therefore,
the initial solid solutions are homogeneous and the for-
mation of the second phase after annealing can be asso-
ciated only with the decomposition of the solid solu-
tions rather than with their inhomogeneity.

3. THE SOLID-PHASE DECOMPOSITION 
REGION

In order to determine the solid-phase decomposition
region in the phase diagram of the ZrCy–NbCy ' pseudo-
binary system, we calculated the phase equilibria in this
system at temperatures below 1300 K. The lower and
upper boundaries of the continuous series of solid solu-
tions are the ZrC1.0–NbC1.0 and ZrC0.60–NbC0.70
pseudobinary sections in the phase diagram, respec-
tively. The calculations were performed in the frame-
work of the subregular solution model [6]. Note that the
thermodynamic calculations can prove the possibility
of decomposing the solid solutions but do not allow one
to judge the mechanism of this process.

According to our calculations, the ZrCy and NbCy

carbides at any carbon content within the homogeneity
regions of the cubic phase form a continuous series of
solid solutions at T > 1200 K. However, at lower tem-
peratures, there exists a latent solid-state decomposi-
tion region in this system (Fig. 5). As the carbon con-
tent decreases, the maximum decomposition tempera-

ture  of the solid solution increases from  =

843 K for the ZrC1.0–NbC1.0 section to  = 1210 K
for the ZrC0.60–NbC0.70 section (at a NbC0.70 content of
57.2 mol %). The observed asymmetry of the decom-
position region and shift of its vertex in the ZrCy–NbCy

pseudobinary sections toward the NbCy niobium car-
bide (66.8 mol % NbCy at y = 1.00 and 53.6 mol %
NbCy at y = 0.70) indicates that, at temperatures T < Td,
the solubility of ZrCy in niobium carbide is several
times less than that of NbCy in zirconium carbide.

Thus, the results of x-ray microanalysis, laser mass
analysis, electron microscopy, and x-ray diffraction
unambiguously indicate that zirconium carbide grains
precipitate on the surface of the carbide solid solution.
The thermodynamic calculation confirmed that a latent
low-temperature decomposition region of solid solu-
tions exists in the ZrCy–NbCy ' system.

However, analysis showed that the bulk region of
the samples has a single-phase composition. This
enables us to make certain assumptions about the

Td
max Td

max

Td
max
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mechanism of decomposition of the (ZrC)1 – x(NbC)x

solid solutions at a low zirconium carbide content.

The diffusion decomposition of solid solutions can
occur through two mechanisms [8]. The first mecha-
nism is the spinodal decomposition proceeding
throughout the bulk of the solution. In this case, nuclei
of a new phase are not formed and the free energy of the
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Fig. 4. Mass spectra of the precipitated surface phase and
the bulk region (main phase) of the annealed samples of the
(ZrC)0.02(NbC)0.98 solid solution. The optical density is

determined from the relationship Si ~ , where ci is the

concentration of the ith element (isotope) in at. %.
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system decreases continuously (without a jump). The
second mechanism is the fluctuation nucleation of
phases and their subsequent growth. Spinodal decom-
position is not realized most likely due to the low tem-
peratures at which the diffusion mobility of atoms in
the crystal is too small to provide spatial separation of
the niobium and zirconium phases (i.e., the phases with
a predominant content of niobium and zirconium car-
bides, respectively). In the case of fluctuation nucle-
ation, the growth of new-phase grains in the surface
layer is facilitated as a result of the favorable effect of
the interfacial energy [8]. Therefore, the formation of
the zirconium phase becomes possible even at a rela-
tively low temperature.

At sufficiently high temperatures, the surface of the
solid-phase system can be enriched in a component
with a higher partial vapor pressure as the result of sub-
limation (evaporation). However, the precipitation of
the ZrC carbide in the ZrCy–NbCy ' system is observed
at low temperatures (T < 1000 K), whereas the evapo-
ration of the ZrC and NbC carbides cannot be experi-
mentally detected already at T < 1800 K, because the
evaporation rate Vev tends to zero. Furthermore, for the
ZrC and NbC carbides at T ≤ 2073K, the partial pres-
sure of zirconium is less than that of niobium [6].

The surface of the solid-phase system can be
enriched in the light component owing to gravity sepa-
ration (emersion). However, the isotopic composition
of zirconium in the precipitated zirconium carbide
coincides with the conventional isotopic composition
of zirconium; i.e., no enrichment in the light isotopes
91Zr and 92Zr occurs and the content of the heaviest iso-
tope 96Zr does not decrease. This suggests that the grav-
ity separation does not lead to the precipitation of ZrC
on the free surface of the (ZrC)1 – x(NbC)x solid solu-
tions.

4. SEGREGATION

The segregation of the second phase becomes possi-
ble when its content exceeds the solubility limit. The
calculations of the immiscibility region boundaries
(Fig. 5) demonstrated that the (ZrC)1 – x(NbC)x solid
solutions with (1 – x) ≥ 0.01 at T < 700 K are supersat-
urated with ZrC. Consequently, in the (ZrC)1 – x(NbC)x

solid solutions containing ~1 mol % ZrC or more, the
necessary condition of segregation is met at T < 700 K.
The sufficient conditions of surface segregation depend
on the segregation energy and diffusion.

In the regular solution approximation, the models of
an equilibrium state of the solid solution surface [9–11]
suggest that the bulk and surface phases coexist in a
solid under equilibrium conditions. Let us consider an
A–B system in which A is the solute and B is the sol-
vent. As applied to our system ZrCy–NbCy ', the niobium
carbide is the solvent and the zirconium carbide is the
solute; i.e., A ≡ ZrCy and B ≡ NbCy '. For the A–B sys-
tem, the atomic concentration xA–s of the solute in the
P

surface phase can be represented in the form

(1)

where xA–b and xB–b are the atomic concentrations of the
solute and solvent in the bulk phase, respectively; xB–s =
1 – xA–s; and ∆Hseg is the segregation energy of the sol-
ute A. The segregation energy is equal to the change in
the energy of the system when an atom (molecule) of
the A component of the bulk phase replaces an atom
(molecule) of the B component in the surface phase. By
substituting xZrC–s ≈ 0.985, xZrC–b ≈ 0.013, and T = 700 K
into formula (1), we obtain the surface segregation
energy of ZrC: ∆Hseg, exp ≈ –50 kJ mol–1.

According to [10, 11], the segregation energy ∆Hseg
includes the interfacial energy ∆Hint, the energy of pair
interatomic interactions ∆Hbin, and the strain energy
∆Hstr; i.e., ∆Hseg = ∆Hint + ∆Hbin + ∆Hstr.

The interfacial energy characterizes the thermody-
namic potential responsible for the transfer of compo-
nents with a lower specific surface energy to the surface
and can be represented as

(2)

where γA and γB are the specific (per unit area) interfa-
cial energies of solute A and solvent B, respectively;
sB = (M/ρNA)2/3 is the surface area per solvent molecule;
M is the molecular mass of the solvent; and ρ is the
density of the solvent. For the ZrC–NbC system at T =
1773 K, we have γA ≡ γZrC = 2.13 J m–2 and γB ≡ γNbC =
2.60 J m–2 [12], and sB is equal to 0.0793 nm2 for
NbC1.0. Therefore, the ∆Hint energy in the ZrC–NbC
system is approximately equal to –22.4 kJ mol–1. This
value of ∆Hint is merely a rough estimate, because the
accuracy of determining the γ energies for carbides is
rather low (±30–40%).

The contribution from the energy of pair interatomic
interactions in the case of solid solutions can be repre-
sented as ∆Hbin = /(zxA–bxB–b), where  is the
excess energy of mixing of the solid solution and z is
the coordination number of the lattice in which the sub-
stitutional solid solution is formed. For the solid phase,
we can write the relationship  = xAxBBs, where Bs is
the interchange energy [6]. It follows that ∆Hbin = –Bs/z.
In the ZrCy–NbCy ' solid solutions with a face-centered
cubic metal sublattice, the coordination number z is
equal to 6 and the calculated interchange energy Bs in
the solid phase is approximately –15 kJ mol–1. As a
result, we obtain the energy of pair interatomic interac-
tions ∆Hbin ≈ –2.5 kJ mol–1.

The solute strain energy ∆Hstr is associated with the
difference in sizes of the substituted atoms in the solid

xA–s xB–s xA–b/xB–b( ) ∆Hseg/kBT–( ),exp=

∆H int γA γB–( )sBNA,=

Gs
e– Gs

e

Gs
e
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solution and can be expressed in terms of elastic moduli
in the form [11, 13]

(3)

where KA is the bulk modulus of the solute, GB is the
shear modulus of the solvent, and RA and RB are the
effective atomic (ionic) radii of the substituted atoms of
the solute and solvent, respectively. The effective ionic
radii of Nb5+ and Zr4+ for the coordination number z =
6 are as follows: RNb = 0.064 nm and RZr = 0.072 nm;
the elastic moduli for NbC and ZrC are GNbC = 2.20 ×
1011 Pa and KZrC = 2.28 × 1011 Pa. By substituting these
values of R, G, and K into formula (3), we calculated
the strain energy ∆Hstr for the ZrCy–NbCy ' solid solu-
tions: ∆Hstr ≈ –6.4 kJ mol–1.

The theoretical energy ∆Hseg of segregation of zirco-
nium carbide from the ZrCy–NbCy ' solid solution with
inclusion of the calculated contributions ∆Hint, ∆Hbin,
and ∆Hstr is approximately equal to –31.3 kJ mol–1. This
value substantially differs from the experimental esti-
mate ∆Hseg, exp ≈ –50 kJ mol–1. The underestimated (in
magnitude) theoretical energy ∆Hseg can be explained
by an approximate estimate of the interfacial energy
∆Hint, which makes the largest contribution to the seg-
regation energy ∆Hseg.

Let us now consider the effect of the other factors on
the segregation. In the case when the new phase precip-
itates on the surface and α ≡ xA–s/xA–b @ 1, the solution
to the diffusion equation has the following form [14]:

(4)

where xA–s(t) and xA–s are the contents of compound A
on the surface at the instant t and after attaining the
equilibrium, respectively; D is the diffusion coefficient
of solute A at the temperature T; d is the thickness of the
surface layer of the new phase; and α = const is the
maximum coefficient of the surface enrichment with
solute A at t  ∞. The function

is the complementary probability integral: erfc(x) 
0 at x  ∞.

The evaporation from the free surface at the rate
Vev = EdxA–b(t)/(α2d) leads to a decrease in the seg-

∆Hstr 24πNA–=

× KAGBRARB RA RB–( )2[ ] / 4GBRB 3KARA+( ),

xA–s t( )

=  xA–s 1 Dt/α2d2( )exp erfc Dt/α2d2( )1/2[ ]–{ } ,

erfc x( ) 1 erf x( )–
2

π
------- x2–( )exp xd

x

∞

∫= =
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regant concentration xA–s(t), which, in this case, is
determined by the relationship [14]

(5)

At E  0 (i.e., in the absence of evaporation), rela-
tionship (5) reduces to formula (4). With due regard for
expression (1), formula (4) takes the form

(6)

Figure 6 shows the dependences of the relative sur-
face content xA–s(t)/xA–s of the segregant on the time t,
which is expressed in conventional units of α2d2/D. At
t  ∞ and E = 0 (in the absence of evaporation), the
segregant content asymptotically tends to the equilib-
rium content xA–s = xB–s(xA–b/xB–b)exp(–∆Hseg/kBT). The
evaporation brings about a decrease in the surface con-
centration of the segregant. However, the evaporation
rate Vev of zirconium carbide at T < 1600 K tends to zero
[6]. Therefore, the time dependence of the ZrC segrega-

xA–s t( )
xA–s

E 1+
------------- EDt/α2d2–( )exp Dt/α2d2( )exp–{=

× erfc Dt/α2d2( )1/2[ ] Eπ( )1/2–

× EDt/α2d2–( ) 1 EDt/α2d2( )1/2
exp–[ ]exp

× erfc EDt/α2d2( )1/2
–[ ] } .

xA–s t( ) xB–s xA–b/xB–b( ) ∆Hseg/kBT–( )exp=

× 1 Dt/α2d2( )exp erfc Dt/α2d2( )1/2[ ]–{ } .
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–s

(t
)/

x A
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xA–s(t)/xA–s ~ (Dt/α2d2)1/2

Dt/α2d2 ! 1

E = 2.0

E = 0.2
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E = 0.002

E = 0

10–2 10–1 100 101 102

Time t, α2d2/D

Fig. 6. Calculated dependences of the relative surface con-
tent xA–s(t)/xA–s of the segregant on the time t and on the
evaporation rate according to formula (5). The evaporation
rate is proportional to the dimensionless parameter E, and
the time is expressed in conventional units of α2d2/D. The
equilibrium content of the segregant is determined from the
formula xA–s = xB–s(xA–b/xB–b)exp(–∆Hseg/kBT) and
depends only on the solid solution composition and temper-
ature. In the absence of evaporation (E = 0) and at t  ∞,
the ratio xA–s(t)/xA–s asymptotically tends to unity. The
dashed line shows the time dependence of xA–s(t)/xA–s cal-
culated by formula (7), which is applicable in the range of
short times at Dt/α2d2 ! 1.
2
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tion on the surface of the (ZrC)1 – x(NbC)x solid solu-
tions can be described by function (6).

If Dt/α2d2 ! 1, we can write the relationship

exp(Dt/α2d2)erfc[(Dt/α2d2)1/2)] 
= 1 – (2/π1/2)(Dt/α2d2)1/2. 

Hence, expression (5) at E = 0 takes a simpler form,

(7)

As can be seen from Fig. 6, formula (7) adequately
describes the dependence of xA–s(t)/xA–s on t only in the
range 0 < t < 0.05α2d2/D.

The equilibrium content xA–s of the segregant in the
surface region depends only on the solid solution com-
position and the segregation energy. According to the
estimates made from formula (6), in the
(ZrC)0.01(NbC)0.99 solid solution at temperatures of
700–500 K and the segregation energy ∆Hseg =
−31.3 kJ mol–1, the equilibrium (at t  ∞) concentra-
tion xZrC–s of zirconium carbide in the surface phase lies
in the range from ~0.80 to ~0.98. This is in good agree-
ment with the experimental value, which is no less than
0.97.
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Abstract—Experiments on stress relaxation revealed that, in NaCl crystals with a surface layer damaged by
grinding, plastic flow at a low homologous temperature T/TM = 0.28 (TM is the melting point) and with total
deformation far from stage III on the work-hardening curve occurs with a noticeable contribution from dynamic
recovery processes, which is typical of higher temperatures. The kinetics of relaxation of effective and long-
range stresses is studied. The results are compared with the behavior of unground NaCl crystals at the same
temperature, as well as with the behavior of polycrystalline In–4.3 at. % Cd samples deformed at T/TM = 0.7,
for which the dynamic recovery is complete and is manifested not only in experiments on relaxation but also in
the shape of the deformation curves. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plastic flow of crystals is accompanied by a contin-
uous change in the density of structural defects. Their
accumulation is manifested in a form of work harden-
ing that requires an increase in the mechanical stress for
continuation of the deformation. However, work hard-
ening in the general case is always accompanied by
work softening (dynamic recovery) due to the instabil-
ity of the defect structure and to a tendency of the sys-
tem towards the minimum of the internal energy asso-
ciated with defects. The resultant density of defects is
determined by the balance between the number of
defects formed as a result of deformation and the num-
ber of defects “quitting” through annihilation or the for-
mation of lower energy structures during dynamic
recovery.

Although work hardening and work softening are
mainly caused by the interactions between dislocations,
these two effects differ in essence, because the former
is athermal, while the latter is thermally activated to a
considerable extent [1]. The simultaneous realization of
opposite tendencies (work hardening and softening)
occurring in a dislocation subsystem determines the
peculiarities of plastic flow of crystals. Their relative
contributions to the deformation dynamics and kinetics
depend on many factors, such as the strain, density of
defects, and the rate and temperature of deformation.
For large densities of dislocations and point defects, the
probability of their annihilation and redistribution
increases, while a decrease in the rate of deformation
and an increase in its temperature activate these pro-
cesses. Athermal work hardening in single crystals is
typical of the first two stages on the stress–strain curve,
while dynamic recovery effects are enhanced as the
1063-7834/02/4401- $22.00 © 20075
system approaches stage III and dominate in this stage
of deformation [1, 2].

When dynamic recovery becomes significant, the
plastic flow of crystals acquires a number of specific
features: (1) the work-hardening rate becomes a func-
tion of temperature, (2) the Cottrell–Stokes law and the
Arrhenius equation associated with it are violated, and
(3) the stress dependence of the strain-rate sensitivity
of the flow stress changes (the Haasen graph becomes
nonlinear) [1]. These features can be observed most
clearly at stage III, where the effective work-hardening
rate θ ≡ dσ/dε (σ and ε are the normal stress and strain)
decreases with increasing strain; at high temperatures,
θ assumes negative values almost immediately after
the elastic segment of deformation [3].

However, a more reliable and simpler indicator of
the initial stages of dynamic recovery is the relaxation
curves of deforming stresses [4], even at a distance
from stage III of deformation and at low temperatures
(see below). In the present work, it is established that an
analysis of the curves describing a transition to a steady
flow upon repeated loading also provides a useful
deformation concerning recovery processes. To our
knowledge, this final stage of experiments on relaxation
has been disregarded by researchers. The significance
of the stress relaxation method in studying qualitative
and quantitative features of plastic deformation under
dynamic-recovery conditions is demonstrated in the
present work for NaCl single crystals at T = 300 K.
Room temperature can be regarded as a low tempera-
ture for NaCl (the homologous temperature of the
experiment is T/TM = 0.28), and the processes of defor-
mation-defect annealing are strongly retarded. For the
sake of comparison, some experiments were made on
002 MAIK “Nauka/Interperiodica”
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polycrystals of an In–4.3 at. % Cd alloy (henceforth
referred to as In–Cd), because the temperature T =
300 K is high in this case (T/TM = 0.7) and the annealing
of structural defects must be activated completely. The
results obtained for pure In single crystals (which are
not given here) are virtually the same as those obtained
for an In–Cd alloy.

2. EXPERIMENTAL TECHNIQUE

The crystals of NaCl were grown from a raw mate-
rial intended for optical single crystals. Samples 8 × 8 ×
24 mm in size were cut along the cleavage planes from
a large block preliminarily annealed at a temperature of
(3/4)TM and were not subjected to additional annealing
(NaCl samples). For some samples, the lateral faces
were ground using abrasive paper with an abrasive
grain size of 200 µm (NaCl* samples).

Samples of the In–Cd alloy were prepared from an
ingot by rolling, cutting, and forging to a size of 3 × 3 ×
9 mm [5]. After this mechanical treatment, the samples
were annealed in air at temperature (4/5)TM for 8 h. The
grain size was 1.5–2 mm.

The samples under investigation were deformed at
room temperature through compression on a MRK-1
test machine (designed at the Institute for Low Temper-
ature Physics and Engineering, National Academy of
Sciences of Ukraine) with the rate of change in the sam-
ple length  = 1.52 × 10–3 mm/s. The strain diagrams
were recorded simultaneously on a KSP-4 recorder in
the load–time coordinates P(t) and on an N-307
recorder in the load–length change coordinates P(y).
The experiments on stress relaxation included the fol-
lowing three stages: (1) sample loading to a preset
strain at a constant compression rate, (2) stress relax-
ation proper on a given time interval under arrested tie-
rod of the testing machine, and (3) repeated loading at
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Fig. 1. Stress–strain diagrams (1, 2) and the strain depen-
dence of the activation volume V (1', 2') for NaCl (1, 1') and
NaCl* (2, 2') samples; σ and ε are normal stress and strain,
respectively.
P

the previous rate. This procedure was repeated many
times with increasing strain. The recorded curves were
processed graphically in order to plot the normal stress
vs. normal compressive-strain curves σ(ε), the stress
vs. time curves σ(t), and the stress vs. stress-rate curves
σ( ).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Strain Diagrams

The stress–strain curves σ(ε) for NaCl and NaCl*
samples in the region ε & 3% are shown in Fig. 1. The
qualitative difference between these curves is insignifi-
cant. The effective work-hardening rate virtually
remains unchanged in the strain range from 0.3 to 2%
(stage I): θ = dσ/dε . 100 MPa or dτ/dγ . µ/600 (τ and
γ are the shear stress and shear strain, respectively, and
µ is the shear modulus in the (110)[110] slip system).
During the transition to stage II following the strain
range 2–2.5%, the value of θ increases smoothly.

The main difference between the stress–strain
curves were observed at the initial stage of plastic flow
near the yield stress. A gradual transition from the elas-
tic region to deformation at a constant work-hardening
rate (from micro- to macroplastic flow) of an NaCl*
sample complicates the procedure of determining the
yield stress. According to [6–8], the value of yield
stress can be determined to sufficient accuracy from the
strain dependence of the activation volume V(ε). Fig-
ure 1 shows such dependences. The activation volume
was determined from the initial region of the stress-
relaxation curves: V = kT(∆ /∆τ) (  is the rate of
variation of the shear stress). It can be seen that the V(ε)
dependence for an NaCl* sample can be clearly split
into two regions. The range of small deformations, in
which the activation volume decreases sharply upon an
increase in strain, corresponds to microplasticity asso-
ciated with the movement of a small number of fast dis-
locations, while the second region of slow variation of
the activation volume corresponds to macroplasticity
associated with a large-scale multiplication of disloca-
tions. The intersection of two segments of the V(ε)
dependence indicates the strain corresponding to the
beginning of the macroscopic flow and, hence, the yield
stress (vertical arrow in Fig. 1). The activation volume
of an NaCl sample decreases linearly with increasing
strain without any features in the transition region
occupying a small strain range on the whole. The higher
values of the activation volume of this sample as com-
pared to that of the NaCl* sample are due to the lower
density of dislocations [9, 10].

The yield stress for an NaCl* sample with a dam-
aged surface layer, which creates serious obstacles for
the emergence of dislocations from the bulk, is almost
70% higher than the yield stress for the NaCl sample.
The origin of this effect was discussed in [9–11]. It will
be proved later that slip under a constraint is manifested
not only in a general increase in the yield stress and

σ̇

τ̇ln τ̇
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deforming stress but also in a considerable change in
the stress relaxation kinetics over the entire strain
range.

The stress–strain curves σ(ε) for In–Cd polycrystal-
line samples basically differ from those presented in
Fig. 1. The effective work-hardening rate in the given
case decreases with increasing strain, as expected for a
plastic flow at a high homologous temperature.
Dynamic-recovery processes are detected best of all in
experiments on stress relaxation. The relaxation depth
may reach 50% or more of the stress σ0R corresponding
to the onset of relaxation, and the process of stress
relaxation proceeds very slowly. After repeated load-
ing, the transition from elastic deformation to plastic
flow begins at stresses σER, which are much smaller
than σ0R, and the deformation continues with a smaller
work-hardening rate as compared to the initial value.

It should be noted that two completely different
types of deformation are realized in NaCl crystals and
In–Cd alloys. In the former case, the deformation is a
strictly crystallographic slip in the matrix, while in the
latter case, one observes a superposition of slip and
twinning in the matrix and a slip over grain boundaries,
with macroscopic rotation of grains relative to one
another and the formation of a relief at the sample
faces. However, it turns out that stress relaxation in the
NaCl* crystal and in the In–Cd alloy is qualitatively
identical to the visual features of softening in the course
of relaxation. The existence of a large number of chan-
nels for the relaxation of internal stresses in the latter
case obviously affects the quantitative parameters of
the dynamic-recovery process.

3.2. Stress Relaxation

Figure 2 shows segments of stress–strain diagrams
for NaCl and NaCl* samples (Fig. 2a) and for an In–Cd
alloy sample (Fig. 2b) with recording of the stress
relaxation (curves 1–6 for NaCl*, 1'–3' for NaCl) and
with a change in the strain rate   0.1  (curve 7 for
NaCl*). NaCl crystals exhibit a sharp yield point after
relaxation, which indicates that dynamic strain ageing
(DSA) occurs in the course of stress relaxation.
Although the crystals were grown from fairly pure raw
materials, the impurity concentration was nevertheless
sufficient for the pinning of mobile dislocations. The
starting stress for these crystals, when subjected to
repeated loading, increases, and the subsequent motion
of dislocations occurs in the previous prerelaxation
mode. DSA was studied by us in detail for crystals of
In-based alloys [12–14].

A peculiar feature of the stress relaxation diagrams
for a NaCl* sample is that a sharp yield point (curve 3
in Fig. 2a) or a yield plateau (4, 5 in Fig. 2a) after relax-
ation is observed for stresses lower than the stress σ0R

corresponding to the onset of relaxation. A transition to
the plastic flow mode with a steady-state work-harden-
ing rate under repeated loading takes a finite time,

ẏ ẏ
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which (or the corresponding deformation) increases
upon an increase in the total strain of the sample (cf.
curves 3, 6 in Fig. 2a). It should be noted that the strain-
rate sensitivity of the deforming stress in NaCl and
NaCl* samples remains positive over the entire σ(ε)
curve (7 in Fig. 2a).

The above singularity of deformation after relax-
ation indicates that, in the course of stress relaxation in
a NaCl* sample, two processes occur against the back-
ground of conventional work hardening; one of these
processes (DSA) leads to hardening and to the emer-
gence of a yield plateau or a sharp yield point, while the
other process (dynamic recovery) leads to work soften-
ing. In spite of the fact that the experiments were made
at a low homologous temperature T/TM = 0.28, the con-
ditions obviously facilitated the effective impurity–dis-
location (strengthening) interaction (DSA) and the real-
ization of the interaction between dislocations, result-
ing in a decrease in the internal stresses. Dynamic
recovery in a NaCl* crystal is obviously realized owing
to high dislocation densities (especially in the surface
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Fig. 2. Segments of stress–strain diagrams with stress relax-
ation recording: (a) NaCl samples [(1'  3') correspond
to increasing strain] and NaCl* samples [(1  6) corre-
spond to increasing strain for different durations of stress
relaxation; (7) is the jump in the strain rate ensured by the
machine,   0.1 ]; (b) In–Cd polycrystal; and (c) the
diagram explaining the change in work softening during
stress relaxation in IN–Cd (1) and in NaCl* (2).
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layers) in the case of a small total strain of the sample
[9, 10].

It is not surprising that in the course of stress relax-
ation, an In–Cd sample clearly displays softening (due
to a high value of the homologous temperature T/TM =
0.7). In this case, there are no conditions for the forma-
tion of stable impurity atmospheres at dislocations and
dynamic-recovery processes, stimulated by thermal
activation in the dislocation subsystem, occur in pure
form. The dislocation structure that is formed under
active deformation may be partially modified either due
to a high temperature (as in the In–Cd alloy) or as a
result of a high density of dislocations (as in the NaCl*
sample).

Naturally, strengthening and softening must be
manifested not only after relaxation but also in the
kinetics of stress relaxation.

Stress relaxation curves for NaCl crystals with a
strain ε . 2% (stage I on the σ(ε) curves in Fig. 1) and
for In–Cd polycrystals with a strain ε . 3.3% are pre-
sented in Fig. 3 in a –  coordinates. These
coordinates were not chosen accidentally. Hart [15, 16]
(see also review [17]) used the results of experiments
on stress relaxation carried out under special conditions
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Fig. 3. Relaxation curves in the –  coordi-
nates obtained (a) for NaCl (1) and NaCl* (2) samples
under a strain ε . 2% and (b) for an In–Cd sample for strain
ε = 3.3%.

σlog dσ/dtlog
P

to obtain information on σ(t) with a high degree of
accuracy even at strain rates of ~10–9 s–1 and proposed
a systematic description of the behavior of a number of
deformed structurally stable metals and alloys in terms
of directly measurable quantities σ and . Later, simi-
lar experiments were made on alkali halide crystals
[18]. It follows from those experiments and from the
phenomenological theory developed by Hart [15, 16]
that the relaxation curves in these coordinates have con-
siderably different curvatures depending on the defor-
mation temperature (or strain rate), which is due to dif-
ferent mechanisms controlling the plastic flow. In the
low-temperature (LT) region, purely dislocation mech-
anisms (slip of dislocations) dominate, while in the
high-temperature (HT) region, diffusion–dislocation
processes come into play and start to dominate. The LT
curves  vs.  (  ~ ) are such that the deriv-

ative v  = (∂ /∂ )|T, ε (strain rate sensitivity)
increases with stress (or with strain rate), while for HT
curves, this derivative increases upon a decrease in σ
(or ). In the intermediate region, where both mecha-

nisms operate, the logσ vs.  curves may have a
varying curvature or be linear.

It should be emphasized that such a form of stress
relaxation curves was predicted for conditions when
plastic deformation and, accordingly, the change in the
structure are negligibly small during relaxation.
Nabarro [17] paid attention to the fact that the HT
region is favorable to the dynamic-recovery process
when the relaxation deformation cannot be treated as
small and the structure as invariable. The involvement
of dynamic recovery leads to an increase in the strain-
rate sensitivity ν (especially at the slow-relaxation
stage).

The above-mentioned features of the –

 curves (dσ/dt ≡ ) can be seen in Fig. 3: the
NaCl sample exhibits a behavior typical for the LT
region (curve 1 in Fig. 3a), sample NaCl* exhibits an
intermediate behavior (curve 2 in Fig. 3a), and the In–
Cd sample displays a typical HT behavior (Fig. 3b); in
the latter two cases, the observed behavior is due to a
strong dynamic-recovery effect. It was found in [18]
that NaCl (and NaF) crystals are characterized by an
intermediate behavior when the logσ vs.  relax-
ation curves are close to straight lines. In contrast to our
experiments on the NaCl* sample, relaxation was not
accompanied by a change in the dislocation structure;
this is in complete accordance with the Hart model
[15, 16].

Experiments on stress relaxation make it possible
not only to detect dynamic recovery reliably during
deformation but also to determine the characteristics of

σ̇

σlog ε̇log ε̇ σ̇
σlog ε̇log

ε̇
ε̇log

σlog

dσ/dtlog σ̇

ε̇log
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strain hardening and softening. We use the stress relax-
ation equation obtained in [19],

(1)

Here, ∆σ = σ0R – σ(t), where the first term is the stress
corresponding to the onset of relaxation, the second is
the current stress, and  is the plastic strain rate at the
beginning of relaxation at point B on the diagram in
Fig. 2c. The value of  was calculated from the active-

deformation region, as well as from the –σ relax-
ation curve. The value of M corresponds to the rigidity
of the machine–sample system, which was determined
experimentally from the slope of the curve in the elastic
region of repeated sample loading after relaxation (seg-
ment CD in Fig. 2c). This equation was derived in [19]
under the assumption that not only the effective stress
σ*, but also the long-range stress σµ, changes during
relaxation under dynamic-recovery conditions and

(2)

Here, θh = (∂σµ/∂ε)T is the work-hardening rate and
r = –(∂σµ/∂t)ε, T > 0 is the recovery rate. In this case, the
effective work-hardening rate, determined from the
stress–strain curve at a given temperature T and plastic
strain rate , is given by

(3)

and, hence, θ < θh.

Expression (1) is transformed into the conventional
relaxation equation for small r, when dynamic recovery
does not play any significant role, and at small times.
The latter means that, using the initial segment on the
relaxation curve, one can determine the activation vol-
ume that characterizes the process of plastic deforma-
tion even under dynamic-recovery conditions. The sub-
sequent kinetics of stress relaxation is determined to a
considerable extent by the kinetics of work softening,
i.e., by the change in the dislocation structure (and,
accordingly, by the long-range internal stresses).

∆σ kT
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----------------------=

×
ε̇0 1 θh/M+( )

r/M
-------------------------------- rV
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------texp 1– 
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ε̇0

ε̇0

σ̇log

dσµ θhdε= rdt.–

ε̇0

θ ∂σ
∂ε
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ε T,

θh= = r
ε̇0
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Figure 4 shows the stress relaxation curves for an
NaCl* sample (Fig. 4a, the relaxation duration is 80 s)
and for an In–Cd sample (Fig. 4b, the relaxation dura-
tion is 300 s). Solid curves correspond to Eq. (1). The
values of the parameters involved in Eq. (1) are given
in the table. In the case of tensile deformation of whis-
kers of pure iron at room temperature and a shear strain
of 9.39%, it was found that r = 3 × 10–3 MPa/s [19],
which is comparable with the value obtained for the
In–Cd sample. In the NaCl* sample, dynamic recovery
is much less significant because of the lower homolo-
gous temperature and the value of r, in this case, is
approximately 20 times smaller than that for the In–Cd
alloy.

–3

0

∆σ
, M

Pa

t, s

–2

–1

0

50 100 150 200 250 300

(b)

–0.15

0

∆σ
, M

Pa

t, s

–0.10

–0.05

0 (a)

20 40 60 80

–0.20

Fig. 4. Relaxation curves σ(t) obtained (a) for NaCl* sam-
ples for a strain ε . 2% and (b) for an In–Cd sample for
strain ε = 3.3%. Solid curves correspond to fitting of exper-
imental points to Eq. (1). The fitting parameters are given in
the table.
Values of the parameters of Eq. (1) for an NaCl* crystal and an In–Cd sample

Sample M, MPa , s–1 V, cm3 θh, MPa r, MPa/s

NaCl* 1.6 × 103 5.6 × 10–5 2.16 × 10–19 102 2 × 10–4

In–Cd 2.23 × 103 1.63 × 10–4 1.1 × 10–20 70 4.7 × 10–3

ε̇0
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A comparison of the effective rates of work harden-
ing determined from the stress–strain curve and calcu-
lated using Eq. (3) shows good agreement between
them (100 and 98.4 MPa for NaCl* and 38 and 41 MPa
for In–Cd).

It should be noted that the values of parameters
obtained in this work that characterize work hardening
and dynamic recovery can be treated as rough esti-
mates, because while processing stress-relaxation
curves, we disregarded the DSA, which was clearly
manifested in the NaCl* sample. This effect was not
detected explicitly in the In–Cd sample but apparently
plays a certain role. Probably, the deviation of the fit-
ting curve from the experimental points for long relax-
ation times (t * 300 s) is associated with the strength-
ening effect of DSA: real relaxation proceeds slightly
more rapidly than theoretical relaxation (Fig. 4b) due to
the pinning (even if weak) of mobile dislocations by
impurity atoms.

The dynamic-recovery kinetics (i.e., the change in
internal long-range stresses) was studied by measuring
the dependence of ∆σr(t) = σ0R – σER on the relaxation
time, where σ0R is the stress corresponding to the begin-
ning of relaxation and σER is the stress at which the
stress–strain curve begins to deviate from the elastic
dependence during repeated loading after stress relax-
ation. This is shown schematically in Fig. 2c. Figure 5
shows that the results of measurements of the work
softening ∆σr(t) within stage I on the σ(ε) curve for the
NaCl* sample are correctly described by the function

(4)

A similar dependence was obtained for description
of the dependence of the effective stress on the relax-
ation time [20, 21]. Parameters α and β in formula (4)
were determined using the standard computer proce-
dure of fitting the proposed function to the experimen-
tal data: α = 4.8 × 10–2 MPa and β = 0.1 s–1. Since
dynamic recovery is controlled by thermally activated

∆σr t( ) α βt 1+( ).log=

0

∆σ
r, 

M
Pa

101100 102

0.02

0.04

0.06

0.08

0.10

(βt + 1), s

Fig. 5. Dependence of work hardening during stress relax-
ation on the duration of the relaxation in the NaCl* sample.
P

mechanisms, we can determine the activation volume
as one of the parameters of these mechanisms accord-
ing to the formula Vr = kT/α' (α' = 0.5 × 2.3α, where the
factor 0.5 transforms normal stresses to shear stresses).
A calculation based on this formula gives a value of
Vr = 7.5 × 10–20 cm3, which is smaller by a factor of 2−4
than the values of V measured from the initial segments
of the stress relaxation curves (2.88–1.56) × 10–19 cm3.
According to [20, 21], we have αβ = M . Substituting
the values of the parameters of formula (4) into the for-
mula gives αβ = 4.8 × 10–3 MPa/s, while M  = 9 ×
10−2 MPa/s, in accordance with the data presented in the
table. It is apparently premature to comment on the dif-
ference between the values of the quantities character-
izing the kinetics of effective and long-range stresses,
because more detailed studies are required in this field.

The kinetics of work softening in the In–Cd sample
was studied less comprehensively, but the results and
conclusions do not differ qualitatively from those for
the NaCl* crystal.
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Abstract—This paper reports on a study of the polarized reflectance and optical conductivity spectra of the
quasi-two-dimensional molecular conductor θ-(BETS)4HgBr4(C6H5Cl) within the 700–6500-cm–1 region at
300–15 K and within the 9000–40 000 cm–1 region at 300 K performed along two principal directions in the
crystal plane parallel to the conducting layers of the BETS molecules. The IR spectra obtained at 300 K follow
a close-to-Drude behavior, with strong broad features (1200–1400 cm–1) due to electron–vibrational (vibronic)
coupling (VC) superposed on the high Drude background. As the temperature is lowered in the range 180–80 K,
in the spectra there appears a Lorentz term with ωt = 2900 cm–1, as well as three additional VC-induced bands
in the 800–1180-cm–1 region, which disappear as the temperature is decreased further. The results obtained
indicate the existence of unstable structural distortions along the two principal directions in the crystal,
which are accompanied by the formation of a commensurate charge-density wave. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Radical-ion salts based on BEDT–TSeF (abbrevi-
ated to BETS)1 exhibit the highest stability of the
metallic state over a broad temperature range among
the organic quasi-two-dimensional conductors based
on the BEDT–TTF molecule2 and its derivatives (see,
e.g., [1–4]). This molecule is obtained by substituting
Se for the four S atoms in the central part of the BEDT–
TTF molecule. The large radius of the Se atom com-
pared to that of the S atom ensures a stronger two-
dimensional molecular-orbital overlap in the conduct-
ing BETS layers in crystals, which brings about a larger
width of the bands [3]. A series of BETS-based organic
conductors with the general formula λ-BETS2MX4
(M = Ga, Fe; X = Cl, Br) was recently synthesized [5];
their properties vary within a broad range depending on
the actual M and X elements and reveal a number of
new phenomena, namely, superconductivity
(λ-BETS2GaBrxCl4 – x), giant magnetoresistance, and
ferromagnetic and antiferromagnetic phases
(λ-BETS2FeCl4), which accounts for the additional
interest in these compounds.

1 BEDT–TSeF stands for bis(ethylenedithio)tetraselenefulvalene.
2 BEDT–TTF stands for bis(ethylenedithio)tetrathiofulvalene.
1063-7834/02/4401- $22.00 © 20008
We report here on a study of polarized reflectance
spectra of θ-(BETS)4HgBr4(C6H5Cl) single crystals
performed in the 700–6500-cm–1 spectral region at tem-
peratures ranging from 300 to 15 K and in the 9000–
40000-cm–1 region at 300 K in investigating, by optical
means, the features of the metallic state and of vibronic
coupling in this organic conductor, as well as the
metal–semiconductor–metal transition, which was
observed to occur in a study [3] of the electrical prop-
erties of this compound. We are aware of only one com-
munication on the investigation of the optical proper-
ties of BETS-based salts [4], which presents optical
spectra of κ-(BETS)2FeCl2, as well as IR and Raman
spectra of molecular BETS (BETS0) that will be used in
the interpretation of our results.

2. EXPERIMENT

The θ-(BETS)4HgBr4(C6H5Cl) crystals were pre-
pared through electrochemical oxidation of the BETS
molecule [1], a method described in considerable detail
in [3], which also reports on the crystal structure, elec-
tronic structure calculations, and measurements of the
electrical conductivity and Shubnikov–de Haas oscilla-
tions.
002 MAIK “Nauka/Interperiodica”



        

ELECTRON AND ELECTRON–PHONON EFFECTS 9

                                                                                                                   
Fig. 1. Polarized reflectance spectra of the θ-(BETS)4HgBr4(C6H5Cl) crystal obtained in the (1) E || a and (2) E || b polarizations;
solid lines are experiment and dotted lines are calculations with the Drude model (the reflectance R in the region not covered in the
experiment, 6500–9000 cm–1, is indicated by dashed lines). Inset: projection of the crystal structure on the (001) plane.

5000 10 000 40 000

1, 2

1000700

0.4

0.2

0

0.6

0.8

1.0

1

2
0

B'
A

a
A'

B

b

R

ω/2πc, cm–1
The crystals are black, well-faceted, rectangular
platelets ~1 × 1 × 0.3 mm in size with smooth specular
surfaces. Their main crystallographic characteristics
can be summarized as follows: tetragonal system, space
group I41/a, Z = 4, a = 9.9774(2) Å, c = 75.73(1) Å, V =
7190(4) Å3, M = 713.7, and d = 2.64 g cm–3. The radical
cation bears a formal charge of +0.5 (BETS0.5+). The
crystals have a layered structure. The BETS0.5+ radical-
cation layers (shown in the inset to Fig. 1), parallel to
the (001) plane, alternate with layers of the (HgBr4)2–

anions along the c axis. In the conducting layer along
the [100] direction, the radical cations form two differ-
ent alternating A and B stacks characteristic of the θ
phase. The angle between the central planes of the mol-
ecules making up the A and B stacks is 73.9°. The dis-
tance between the central planes of the molecules in the
A stack is 3.52(3) Å and that in stack B is 3.82(4) Å. The
molecules in stack B are in a zigzag arrangement, with
neighboring molecules displaced with respect to one
another along the long axis of the BETS molecule by
2.5 Å. Note that while there are no shortened intermo-
lecular distances along the stacks, the separations
between the S and Se atoms of neighboring molecules
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
in the layer sandwiched between the stacks are shorter
(3.55–3.52 Å). The molecules of the solvent C6H5Cl
make up a strongly disordered anion layer [1, 3].

According to the calculations made in the tight-
binding approximation [3], the electronic band struc-
ture of the θ-(BETS)4HgBr4(C6H5Cl) crystal consists of
four partially overlapping bands derived from the top
filled BETS molecular orbitals, of which the two lower
ones are fully filled and the two upper bands are filled
only partially, in accordance with the fact that there are
four BETS0.5+ cations in a unit cell. The Fermi surface
calculated for the tetragonal unit cell consists of two
hole and two electronic pockets.

Polarized reflectance spectra R(ω) were measured
under normal light incidence on the largest area (001)
crystal face in the 700–6500 cm–1 region at tempera-
tures ranging from 300 to 15 K and only at room tem-
perature in the 9000–40 000 cm–1 region. By varying
the crystal orientation in the light wave field, we
showed the anisotropy of the R(ω) spectra in the 700–
6500 cm–1 region to be the largest in the polarizations
2
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where the electric vector E is aligned with the a and b
crystallographic axes.

The reflectance spectra in the 700–6500 cm–1 region
were measured with a Perkin–Elmer 1725X Fourier
spectrometer equipped with a microscope with a liquid-
nitrogen-cooled MTC detector and a golden-wire
polarizer. The light spot diameter was 100 µm; the res-
olution, 4 cm–1. Measurements in the 300–15 K range
were performed in an Oxford continuous-helium-flow
cryostat. The spectra were obtained both under cooling
and under heating of the crystal. We estimate the error
of temperature measurement on the sample as 10 K. In
the 9000–40 000 cm–1 region, the spectra were mea-
sured on a double-beam microspectroreflectometer
developed by the State Optical Institute, with a beam
diameter of 25 µm, a resolution of 60 cm–1, and a Glan–
Thompson prism used as a polarizer. The quality and
position of the surface under study relative to the
microscope axis and the crystal orientation in the light
wave field were monitored by observing the pattern
seen in the exit pupil of the instruments. The absolute
value of the reflectance R was determined relative to an
aluminum mirror and an SiC crystal.

The optical conductivity spectra σ(ω) were derived
from the corresponding reflectance spectra using the
Kramers–Kronig relations. The reflectance was extrap-
olated to the 0–700 cm–1 region with the use of the
Hagen–Rubens relation, R(ω) = 1 – αω1/2, and to fre-
quencies above 40 000 cm–1 using the standard relation
R(ω) ~ (ω0/ω)d, where d = 2 for ω < 2 × 106 cm–1 and
d = 4 for higher frequencies. The extrapolation to the
region not covered in the measurements (6500–
9000 cm–1) was carried out using spectra of the
(BEDT–TTF)4Hg2.89Br8 superconductor investigated in
this region in [6].

3. RESULTS

Figure 1 presents R(ω) room-temperature spectra of
crystalline θ-(BETS)4HgBr4(C6H5Cl) obtained from
the (001) face in the E || a and E || b polarizations in the
700–40000 cm–1 spectral region. We readily see that
the IR spectra have a metallic, close-to-Drude character
in both polarizations and, hence, are due to quasi-free
carriers in the partially filled electronic and hole bands.
The spectra exhibit a slight anisotropy. We believe that
the largest reflectance corresponds to the E || b polariza-
tion, because, as already mentioned, the intermolecular
distances in the direction parallel to b (i.e., perpendicu-
lar to the direction of the BETS molecule stacks) were
found to be shorter [3]; in other words, the extent of
molecular orbital overlap is the largest in this direction.
Earlier, we observed a similar anisotropy in R(ω) in the
(BEDO–TTF)5[CsHg(SCN)4]2 conductor [7]. In the
3500–5000 cm–1 region, the spectra exhibit a plasma
reflectance edge with a deep minimum at 5500 cm–1.
Measurements made in both polarizations in the region
P

of intramolecular BETS vibrations [4] reveal strong
and broad vibrational features against an intense Drude
reflectance background that peak at 1353 and 1270 cm–1

for E || a and at 1350 and 1274 cm–1 for E || b.

In the high-frequency region, 9000–40 000 cm–1, the
spectra of both polarizations almost coincide; near
30000 cm–1, one can see a broad band, which we
assigned to an intramolecular electronic transition in
the BETS molecule polarized along its long axis.

The reflectance spectra in the 700–6500 cm–1 region
were measured in the 300–15 K interval in steps of 20–
15 K. To avoid superposition, Figs. 2 and 3 present only
the R(ω) spectra observed at 300, 250, 200, 100, and
15 K obtained in the E || a and E || b polarizations,
respectively. As seen from the E || a spectra in Fig. 2, as
the temperature T decreases from 300 to 250 K, the
reflectance due to quasi-free carriers increases slightly
(by 5%), while the spectrum as a whole retains its
Drude-like character. Decreasing T from 250 to 200 K
virtually does not involve an increase in R, with the
250- and 200-K spectra nearly coinciding. As T is low-
ered further to 180 K, the spectra exhibit qualitative
changes, which become most pronounced at 100 K;
namely, R grows more rapidly in the 3000–4500 cm–1

interval to form a shoulder in the spectrum at 3500 cm–1.
The spectrum retains this shape down to 80 K. Below
80 K, these features in R(ω) disappear, so that within
the 60–15-K interval, R(ω) again recovers its Drude
pattern and the spectrum obtained at 15 K almost coin-
cides with the 300-K spectrum [inset (a) to Figs. 2, 3,
where the spectra measured at 300, 100, and 15 K are
shown without translation along the R axis]. The tem-
perature-induced changes in R(ω) are also observed in
the E || b polarization (Fig. 3), although in a somewhat
less pronounced form. The spectra obtained at 15 and
300 K also almost coincide.

The spectra measured in the 180–80 K interval
reveal qualitative changes in the region of intramolecu-
lar vibrations (700–1600 cm–1). As evident from Figs. 2
and 3, the R(ω) spectrum obtained at 100 K in the E || a
polarization has new bands at 1180 and 1124 cm–1 and
a weak band at 820 cm–1 which do not rise above the
background at higher temperatures [in inset (b), the
new bands are identified by arrows]. When observed in
the E || b polarization, new bands appear at 1183 and
1122 cm–1 and a weak band appears at 960 cm–1. The
1350 cm–1 band splits into a doublet that peaks at 1379
and 1350 cm–1; in the E || a polarization, the corre-
sponding feature does not split. This difference may be
due to the BETS molecules being stacked differently
along the a and b axes (inset to Fig. 1). All these new
features in the R(ω) spectra observed in the 180–80 K
interval disappear below 80 K.

The optical-conductivity spectra σ(ω) derived for
the temperatures 300, 250, 200, 100, and 15 K are dis-
played in Figs. 4a and 4b for E || a and E || b, respec-
tively. At 300 K, in full accordance with the metallic
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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Fig. 2. Reflectance spectra of the θ-(BETS)4HgBr4(C6H5Cl) crystal for E || a obtained at T equal to (1) 300, (2) 250, (3) 200,

(4) 100, and (5) 15 K. Insets: (a) reflectance spectra (2500–5500 cm–1) without displacement of the zero at T equal to (1) 300,
(4) 100, and (5) 15 K; and (b) reflectance spectrum (700–1600 cm–1) measured at (4) T = 100 K.
type of R(ω), σ exhibits the largest values in both polar-
izations in the low-frequency region 700–1200 cm–1. At
1600–6500 cm–1, σ decreases smoothly with increasing
frequency. Against this metallic background, the σ(ω)
spectra exhibit deep dips near the BETS intramolecular
vibration frequencies (1388 and 1283 cm–1 for E || a,
and at 1374 and 1276 cm–1 for E || b), with their posi-
tions shifted slightly relative to those of the maxima of
the corresponding vibrational features in the reflectance
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
spectrum. As seen from Fig. 4, the spectra obtained in
the E || a polarization at 300, 250, 200, and 15 K are
very similar, with a noticeable hump [corresponding to
the shoulder in the R(ω) spectrum] appearing at 100 K
in the 2000–3500 cm–1 interval. The σ(ω) spectra mea-
sured in the E || b polarization at 300 and 15 K also
almost coincide. At 100 K, σ is seen to decrease mark-
edly at low frequencies (700–1200 cm–1) compared to
the values obtained at 300, 250, 200, and 15 K. The
changes in the vibrational features observed to occur in
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Fig. 3. Reflectance spectra of the θ-(BETS)4HgBr4(C6H5Cl) crystal for E || b obtained at T equal to (1) 300, (2) 250, (3) 200,

(4) 100, and (5) 15 K. Insets: (a) reflectance spectra (2500–5500 cm–1) shown without displacement of the zero at T equal to (1) 300,
(4) 100, and (5) 15 K; and (b) reflectance spectrum (700–1600 cm–1) measured at (4) T = 100 K.
the R(ω) spectra at 180–80 K are also manifest in the
optical conductivity spectra.

4. DISCUSSION OF RESULTS

4.1. Electronic Phenomena

The R(ω) and σ(ω) spectra obtained in the 1600–
6500 cm–1 region at the above temperatures and pre-
sented in Figs. 1–4 were described by us in terms of the
Drude–Lorentz phenomenological theory using the fol-
P

lowing expression for the principal components of the
complex dielectric permittivity tensor:

(1)

where ε∞ is the high-frequency dielectric permittivity of
the lattice; ωp and Γ are the plasma frequency and the
quasi-free carrier optical-relaxation parameter, respec-
tively; and ωL, ωt, and γ are the longitudinal and trans-
verse frequencies and the relaxation parameter of the

ε ω( ) ε∞=
ωp

2

ω ω iΓ+( )
-------------------------

ωL
2

ωt
2 ω2– iγω–

---------------------------------,+–
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Fig. 4. Optical conductivity spectra of the θ-(BETS)4HgBr4(C6H5Cl) crystal obtained at T equal to (1) 300, (2) 250, (3) 200, (4) 100,
and (5) 15 K. (a) E || a and (b) E || b.
Lorentz oscillator describing bound electrons, respec-
tively.

The R(ω) and σ(ω) relations were calculated from
the relations

(2)

(3)

Fitting these relations to the experimental spectra
showed that the spectra measured at 300, 250, 200, and
15 K in the 1600–6500 cm–1 region are well described
by the first two terms in Eq. (1), i.e., the Drude expres-
sion, and, hence, can be associated in this region with
quasi-free carriers. The R(ω) relations calculated for
the E || a and E || b polarizations are presented in Fig. 1
for comparison. The table lists the corresponding fitting
parameters for the temperatures used. As seen from the
table, ε∞ and ωp are temperature-independent. The
relaxation parameter Γ decreases only slightly when
the temperature is lowered to 200 K, which corresponds
to a small increase in R. Further cooling to 15 K virtu-
ally does not affect Γ. This behavior of Γ suggests that
the optical relaxation apparently involves some struc-
tural defects rather than thermal vibrations. These
defects could be associated, for instance, with the ran-

R
ε ω( ) 1–

ε ω( ) 1+
-------------------------

2

,=

4πσ ω( ) ωImε ω( ).=
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dom potential in the crystal structure created by the
C6H5Cl solvent molecules, which, as mentioned above,
are distributed in a strongly disordered manner in the
anion layer.

It should also be noted that the interband transitions,
which can take place at 300 K for the band structure
calculated in [3] and which are usually observed in the
k phase of BEDT–TTF-based molecular conductors

Parameters of the Drude and Drude–Lorentz models
obtained by fitting calculated R(ω) and σ(ω) spectra to the
experimental data

T, K ε∞ ωp, cm–1 Γ, cm–1 ωL, cm–1 ωt, cm–1 γ, cm–1

E || a
300 2.9 4820 2170

200 2.9 4870 1970

100 2.9 4800 1880 1400 2900 1500

15 2.9 4850 2200

E || b
300 2.9 4850 1900

200 2.9 4850 1700

100 2.9 4810 1780 800 2900 1600

15 2.9 4860 2050
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[8,  9], are not seen in the optical spectra of
θ-(BETS)4HgBr4(C6H5Cl). The Drude character of the
spectrum taken at 300–180 and 60–15 K indicates only
the existence of intraband transitions in the upper elec-
tronic and hole bands.

θ-(BETS)4HgBr4(C6H5Cl) crystals grown together
with our sample and investigated in [3] exhibited
changes in the pattern of the temperature dependences
of the dc resistivity ρdc(T) from the metallic to semicon-
ducting and back to the metallic type of conduction
with decreasing temperature in the 245–240 K interval;
these changes were reproduced in repeated heating and
cooling runs with a noticeable hysteresis and were
interpreted as a metal–semiconductor–metal phase
transition [3]. In our optical measurements performed
in this temperature range, the reflectance stopped
increasing with decreasing temperature, so that the
R(ω) spectra obtained at 250, 245, 240, and 200 K
almost coincide.

At temperatures from 180 to 80 K, the spectra reveal
qualitative changes and are no longer described by the
Drude expression, so that one should fit them with
inclusion of the third Lorentzian term in Eq. (1), whose
fitting parameters for 100 K are given in the table. The
appearance of the Lorentzian term in the fitting expres-
sions for R(ω) and σ(ω) can be considered to be a con-
tinuation of the metal–semiconductor–metal phase
transition reported in [3], which makes interband opti-
cal transitions possible; however, this does not involve
any noticeable changes near the Fermi level.

The appearance of new bands in the vibrational
spectrum in the same temperature range (180–80 K)
observed by us is an indication of the onset of a periodic
structural distortion along the stacks of BETS mole-
cules with decreasing temperature, as was shown ear-
lier [10, 11] to occur in TTF- and TMTSF-based quasi-
one-dimensional compounds (dimerization of the mol-
ecules is the most probable process). Unstable dimer-
ization of BETS molecules in the 180–80 K interval
accounts for the interband transitions in the R(ω) and
σ(ω) spectra. The periodic structural distortions along
the BETS stacks initiated by a decrease in temperature
also indicate the formation of a commensurate charge-
density wave in the crystals [10, 11]. These changes in
the spectra may also be treated as a manifestation of
two groups of carriers: quasi-free carriers and those

partially localized on the dimers created.
Note also that the independence of the Γ parameter
from temperature below 200 K may also be associated
with relaxation on the structural lattice distortions
formed.

We used the values of ωp for 300 K given in the table
to estimate the full band width from the relation

BETS( )2
1+
P

obtained for the one-dimensional case in the tight-bind-
ing approximation [12, 13],

, (4)

assuming it to hold for each of the principal directions
chosen. Here, t is the transfer integral, Vm is the volume
per molecule, and ρ is the number of carriers on a mol-
ecule. Using the crystallographic data presented in Sec-
tion 2 to determine the parameters entering into Eq. (4),
we obtained the following values for the band width 4t:
4t(|| a) = 0.85 eV and 4t(|| b) = 0.92 eV. These band
widths are close to the values reported in [13] for the
(BEDO–TTF)2ReO4(H2O) organic superconductor,
namely, 0.77 eV and 0.80 eV for the directions (|| c) and
(⊥  c), respectively.

4.2. Vibrational Features

The above-mentioned broad and strong vibrational
features, more specifically, the maxima in the R(ω)
spectra and the dips in the σ(ω) spectra, attest to a res-
onant interaction of the electron–hole system with
BETS intramolecular vibrations (IMV), which is a
characteristic property of most molecular conductors,
including those based on the BEDT–TTF molecule and
its derivatives (see, e.g., [6, 8, 9, 14–18]). This interac-
tion was detected earlier to exist in TCNQ salts and was
identified with Fano resonance [19, 20]. As a result of
vibronic coupling (VC), the optically inactive, fully
symmetric (Ag) IMVs manifest themselves in optical
spectra. We made a tentative assignment of the vibra-
tional features in the spectra displayed in Figs. 1–4
using the results of [4] and the data presented in [9, 17,
21]. The broad strong bands observed in R(ω) at 1353
(|| a) and 1350 cm–1 (|| b) and the corresponding dips in
the σ(ω) spectra at 1388 (|| a) and 1374 cm–1 (|| b) are
due to the interaction of carriers with the stretching
vibrations of the central bond and the C=C bonds in the
rings v 3(Ag) of BETS0 (1493 cm–1). As known from
studies of BEDT–TTF salts, the low-frequency shift of
this feature is determined by the shift of this frequency
caused by molecule ionization and by the shift due to
the VC (see, e.g., [9, 17]). The correctness of this
assignment is also buttressed by the fact that the BETS
molecule does not have optically active vibrations in
the 1350–1390 cm–1 interval. The maxima in R(ω) seen
at 1270 (|| a) and 1274 cm–1 (|| b) and the corresponding
dips in σ(ω) are due to carrier interaction with the C–C
bond stretch vibrations in the ethylene groups v 5(Ag) of
BETS0 (1282 cm–1).

It was shown in [10, 11] that the additional bands
caused by periodic structural distortions in the conduct-
ing stacks in the TTF and TMTSF salts that are
observed at low temperatures also originate from car-
rier interaction with some of the Ag vibrations of these

ωp
2

16πtd2e
2 πρ

2
------ 

 sin

ε0h2Vm

-------------------------------------------=
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molecules. The new bands observed by us at 1180 and
1124 cm–1 (|| a) and 1183 and 1122 cm–1 (|| b), which
appear in the spectra at 180–80 K, lie close to the bands
seen in the BETS0 Raman spectra at 1173 (B2g) and
1124 cm–1 (B1g) [4]. We cannot, however, assign them
to the Bg symmetry, because such vibrations usually do
not couple to the electronic system. The new band at
1180/1183 cm–1 belongs, most likely, to the v 7(Ag)
vibration mode (1195 cm–1, bending vibrations of the
C–C–H bonds), which is observed in the Raman spectra
of BEDT–TTF salts and was obtained by calculating
the D2 symmetry of this molecule [21]. We believe that
the band at 1124/1122 cm–1 should be assigned to the
v 67(B3u) vibration mode (1152 cm–1, out-of-plane
vibrations of the C–H bonds; see calculations in [22]),
which, in accordance with the data in [23], can interact
with electrons. The weak bands seen at 960 (|| b) and
820 cm–1 (|| a) can be assigned to the v 9(Ag) mode
(917 cm–1, C–C bond stretching vibrations) and the
v 10(Ag) mode (C–Se bond stretching vibrations). The
820 cm–1 band is shifted toward low frequencies rela-
tive to the C–S bond stretching vibration mode
(876 cm–1 [21]).

Thus, the appearance of the Lorentz term in the R(ω)
and σ(ω) metallic spectra (1600–6500 cm–1) of the
θ-(BETS)4HgBr4(C6H5Cl) quasi-two-dimensional con-
ductor cooled to 180–80 K, which is accompanied by
the formation of new bands in the vibrational spectrum
(700–1600 cm–1), is evidence of periodic structural dis-
tortions along the BETS stacks and the formation of a
commensurate charge-density wave.
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Abstract—The internal friction and velocity of ultrasonic waves in the β phase of Cu–Al–Ni single crystals are
measured at a frequency of 5 MHz in the temperature range 190–300 K, including the range of thermoelastic
martensite transformation. The effect of impact loading (5 GPa) on the elastic and dissipative characteristics of
the samples is investigated. The results obtained are discussed within the framework of existing theoretical
concepts on the martensite transformation mechanisms responsible for the acoustic characteristics of a material.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The anomalies observed in elastic properties and
internal friction due to martensite transformations have
attracted the particular attention of researchers, because
elucidation of the mechanism of this process is of con-
siderable (both theoretical and practical) interest. The
martensite-type transformation in copper-based alloys
with the so-called shape memory effect is especially
important from the technological standpoint. Accord-
ing to Gonzalez-Comas et al. [1], copper-based alloys
exhibit anomalies in their dynamic lattice properties
upon martensite transformations. Specifically, copper-
based alloys are characterized by the low-lying trans-
verse acoustic phonon branch, which corresponds to a
low value of the elastic modulus C ' = (C11 – C12)/2.
These quantities become more consistent as the phase
transition point is approached. Manosa et al. [2] mea-
sured the elastic constants and their temperature depen-
dences for Cu–Al–Ni alloys of different compositions
and demonstrated that the elastic properties of these
alloys behave as those of other copper-based martensite
alloys. No anomalies were observed in the behavior of
the elastic moduli C11 and C44: they increased with a
decrease in the temperature. However, it was found that
the elastic modulus C ' decreased with a decrease in the
temperature. In other words, the material became more
subject to shear in the (110) plane along the 〈110〉  direc-
1063-7834/02/4401- $22.00 © 20082
tion. This behavior is typical of all alloys that undergo
martensite transformation. It remains unclear how
external factors affect the mechanism responsible for
the martensite transformation.

The aim of the present work was to investigate the
effect of impact loading in the austenite phase on the
thermoelastic martensite transformation by measuring
the elastic moduli and internal friction at high frequen-
cies. Our earlier measurements [3] were performed
with Cu–Al–Ni samples in the martensite state under
impact loading at 5.3 GPa for 2 µs and revealed consid-
erable changes in the elastic and inelastic characteris-
tics of the material. Similar variations in the elastic
properties can be expected to occur under impact load-
ing of the samples in the austenite phase. However, a
situation involving an austenite phase might appear
more intricate compared to that with a martensite
phase. The Cu–Al–Ni alloy samples subjected to
impact loading with a load amplitude up to 5.3 GPa
undergo a reversible β  γ' thermoelastic martensite
transformation. Since the applied load obviously
exceeds the yield stress for γ'-martensite, the plastic
deformation of the sample can occur in the martensite
phase. The question now arises as to whether the mem-
ory effect of this deformation is observed after the
reversible martensite transformation.
002 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

Measurements were performed with single crystals
of the Cu–Al–Ni alloy (81.9 wt % Cu, 14.1 wt % Al,
and 4.0 wt % Ni) in the austenite phase. According to
the data obtained from differential scanning calorime-
try (DSC), the temperatures of thermoelastic transfor-
mations are as follows: Ms = 246 K, Mf = 230 K, As =
275 K, and Af = 300 K. The samples were prepared in
the form of cylinders (~3 mm long and 5 mm in diam-
eter) cut out from a single-crystal cylindrical bar. The
flat surfaces of the samples were mechanically ground
and chemically polished to a parallelism of approxi-
mately 1 µm/cm. The structure of the samples was
determined using x-ray diffraction. The deviation of the
growing axis of the single crystal (the cylinder axis)
from the [100] direction was approximately equal to 5°.
Impact loading was performed along the cylindrical
axis of the samples (i.e., along the [100] direction) in
the same manner as was described earlier in [3, 4]. The
internal friction and the longitudinal velocity of sound
were measured using the pulse echo technique (at room
temperature) and high-frequency resonance [5, 6] at a
frequency of 5 MHz along the cylindrical axis of the
samples. In our experiments, we used a liquid adhesive
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Fig. 1. Temperature dependence of the internal friction in
the initial Cu–Al–Ni crystal upon cooling (open circles) and
heating (closed circles) at a rate of 1 K/min.
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(monoethylsiloxane, [–C2H3Si(H)O–]n, n = 9–14) with
a freezing temperature of approximately 150 K, unlike
the solid adhesive applied in [2], in order to cement the
piezoelectric transducers to the sample and to provide
acoustic contact. This is important because solid adhe-
sives decompose below the temperature of martensite
transformation [2] owing to the emergence of the sur-
face relief associated with the formation of martensite
domains, thus depressing the acoustic signal. The liquid
adhesive made it possible to perform measurements in
the temperature range from 150 to 300 K, including the
range of martensite transformation.

The linear thermal expansion measurements (TMA)
of the same samples were performed on a PC SERIES
TMA7 instrument in the temperature range 100–350 K.

3. RESULTS AND DISCUSSION

The temperature dependences of the amplitude-
independent internal friction Q–1 and the longitudinal
acoustic wave velocity VL measured at a frequency of
5 MHz and temperature dependences of the linear
expansion of the samples prior to and after impact load-
ing at 0.75 and 5 GPa are shown in Figs. 1–9. The table
presents the characteristic temperatures of thermoelas-
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Fig. 2. Temperature dependence of the longitudinal velocity
of sound in the initial Cu–Al–Ni crystal upon cooling (open
circles) and heating (closed circles) at a rate of 1 K/min.
Characteristic temperatures of thermoelastic transformation in the Cu–Al–Ni crystal prior to and after impact loading from
the DSC and TMA data and measurements of the internal friction and velocity of sound

Tc

DSC TMA VL Q–1

initial 
state

initial 
state 0.75 GPa 5 GPa initial 

state 0.75 GPa 5 GPa initial 
state 0.75 GPa 5 GPa

Ms, K 246 223 215 220 249 243 245 249 242 245

Mf, K 230 215 210 213 245 239 244 243 240 240

As, K 275 282 278 280 272 268 273 270 267 270

Af, K 300 292 292 292 280 280 280 275 273 275
2
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Fig. 3. Temperature dependence of the linear expansion in
the initial Cu–Al–Ni crystal upon cooling (solid line) and
heating (dashed line) at a rate of 12 K/min.

Fig. 5. Temperature dependence of the longitudinal velocity
of sound in the Cu–Al–Ni sample upon cooling (open cir-
cles) and heating (closed circles) at a rate of 1 K/min after
impact loading (0.75 GPa).
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Fig. 7. Temperature dependence of the internal friction in
the Cu–Al–Ni sample upon cooling (open circles) and heat-
ing (closed circles) at a rate of 1 K/min after impact loading
(5 GPa).
PHY
Fig. 4. Temperature dependence of the internal friction in
the Cu–Al–Ni sample upon cooling (open circles) and heat-
ing (closed circles) at a rate of 1 K/min after impact loading
(0.75 GPa).

Fig. 6. Temperature dependence of the linear expansion in
the Cu–Al–Ni sample upon cooling (solid line) and heating
(dashed line) at a rate of 12 K/min after impact loading
(0.75 GPa).
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Fig. 8. Temperature dependence of the longitudinal velocity
of sound in the Cu–Al–Ni sample upon cooling (open cir-
cles) and heating (closed circles) at a rate of 1 K/min after
impact loading (5 GPa).
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tic transformation in the Cu–Al–Ni crystal, which were
obtained from DSC and TMA data and measurements
of the internal friction and the velocity of sound.

The basic characteristics of the studied materials are
as follows.

(1) In the initial state, the dependences VL(T) and
Q−1(T) exhibit abrupt changes in the temperature range
of the martensite transformation. (a) The longitudinal
velocity of sound VL (Fig. 2) drastically increases upon
cooling in the course of the martensite transformation.
As the temperature decreases, the velocity of sound VL

slightly decreases in the range 1–3 K below the Ms tem-
perature and then smoothly increases. Upon heating,
the velocity of sound VL sharply decreases at the mar-
tensite transformation temperature and then rapidly
increases. (b) The quantity dV/dT for the austenite
phase is appreciably less than that for the martensite
phase. (c) The dependence Q–1(T) (Fig. 1) shows very
narrow peaks at the Ms and As temperatures. It should
be noted that the internal friction in the austenite phase
is less than that in the martensite phase over the entire
temperature range covered, except for the internal fric-
tion at the Ms and As temperatures.

(2) As follows from the DSC data and measure-
ments of the internal friction Q–1(T) and the velocity of
sound VL(T), the temperatures of the onset of the auste-
nite–martensite and martensite–austenite transforma-
tions almost coincide with each other, whereas the tem-
peratures of the completion of these processes differ
significantly. (The lower temperature of the austenite–
martensite transformation, which was determined from
TMA measurements, has a methodical origin and stems
from the very high cooling and heating rates used in
dilatometric measurements of the cylindrical samples.)

(3) Impact loading virtually does not affect the
transformation temperatures and the shape of peaks in
the Q–1(T) curve. However, the difference ∆VL between
the longitudinal velocities of sound in martensite and
austenite phases considerably decreases with an
increase in the load amplitude.

(4) The temperature dependences of ∆L/L(T)
(Figs. 3, 6, 9) demonstrate a noticeable increase in ∆L/L
upon martensite transformation after impact loading.

According to [7–9], materials in which two phases
can coexist in the course of the phase transition in a cer-
tain temperature range are characterized by three main
contributions to the total internal friction:

(1)

Here,  is the sum of contributions from each of the
phases to the internal friction, which substantially
depends on the defect structure of the material (inter-
faces, dislocations, point defects, boundaries of grains

and clusters, their density and mobility, etc.);  is

Qtot
1– Qtr

1– Qpt
1– Qint

1– .+ +=

Qint
1–

Qpt
1–
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determined by the mechanism of the phase transforma-
tion and does not depend on the transformation rate;

and  is the transition component of the total internal

friction , which exists only during heating or cool-
ing, i.e., at (dT/dt) ≠ 0. This quantity is determined by
external factors, such as the cooling and heating rates
and the amplitude and frequency of applied oscillating

stresses. The transition component  is governed by
the transformation kinetics and is proportional to the

rate of bulk transformation in a unit time. Since the 
quantity is inversely proportional to the frequency, its
value should be very small at megahertz frequencies;

hence, the contribution of  to the internal friction
dominates in the temperature range of the phase trans-
formation. Until presently, there has been no univer-
sally accepted quantitative theory of acoustic wave
attenuation in the vicinity of critical points (and, in par-
ticular, at temperatures of thermoelastic martensite
transformation). The first attempts to explain the nature
of the internal friction (independent of dT/dt) were
made by Dejonghe et al. [7] and Koshimizu [10]. The
strong attenuation of acoustic waves in the martensite
phase was explained in terms of the displacement of
interfaces without refinement of any microscopic
mechanisms and without regard for anisotropy. A
microscopic model accounting for the dislocation
mechanism was proposed by Mercier and Melton [11].
They considered the effect of anisotropy on the elastic
energy of dislocation and proved that the dislocation-
assisted attenuation is proportional to the dislocation
density, frequency, and the fourth power of the disloca-
tion loop length and is inversely proportional to the
elastic modulus C' = (C11 – C12)/2. Under the assump-
tion that the anisotropy reaches a maximum in the
course of the phase transition, Mercier and Melton [11]
predicted the maximum internal friction at these tem-
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Fig. 9. Temperature dependence of the linear expansion in
the Cu–Al–Ni sample upon cooling (solid line) and heating
(dashed line) at a rate of 12 K/min after impact loading
(5 GPa).
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peratures. Koshimizu [10] proposed another model of
acoustic wave attenuation within the framework of the
Landau model for first-order phase transitions [12]. The
inclusion of the relaxation-type attenuation leads to a
jump in the internal friction Q–1 and in the relaxed mod-
ulus at the transition temperature. Van Humbeeck [9]
also considered a number of models based on the mech-
anism of stress-induced motion of coherent interfaces,
including the interphase, intervariant, and twin bound-
aries. Thus, although there is no universally accepted
quantitative theory of acoustic wave attenuation, the
concepts formulated in the aforementioned works can
be used for qualitative description of the elastic and dis-
sipative properties of materials in the temperature range
of martensite transformation.

As can be seen from Figs. 1, 4, and 7, the tempera-
ture dependences of the internal friction exhibit very
narrow peaks. This is in qualitative agreement with the
proportionality of the internal friction Q–1 to the quan-
tity 1/(Tc – T) [12–14], where Tc is the critical tempera-
ture. In the case when the internal friction Q–1 is deter-
mined by the reversible displacement of the marten-
site–austenite interface or by the occurrence of partial
dislocations, there should arise a modulus defect; i.e.,
the longitudinal velocity of sound VL should decrease.
At the same time, the structural transformation
observed upon the austenite–martensite transition
brings about an increase in VL (or a decrease in VL upon
the martensite–austenite transition). Therefore, the
behavior of VL(T) is controlled by at least two opposite
processes. An increase in the longitudinal velocity of
sound upon the martensite transition in the cooling
cycle indicates that the contribution associated with the
structural transformation is dominant. However, the
temperature dependence of the longitudinal velocity of
sound exhibits an interesting feature: a decrease (dip) in
the velocity VL(T) below the temperature of the austen-
ite–martensite transition and a similar decrease imme-
diately above the temperature of the martensite–auste-
nite transition. In both cases, the observed decrease in
VL(T) upon the martensite transformation can be attrib-
uted to the formation of mobile defects (dislocations,
interfaces, etc.), which give rise to the modulus defect.
It should be noted that we measured the longitudinal
velocity of sound along the 〈100〉  direction of the crys-
tal. Manosa et al. [2] demonstrated that the Cu–Al–Ni
crystals possess a strong anisotropy and that the longi-
tudinal velocity of sound along the 〈100〉  direction is
the minimum longitudinal velocity in the austenite
phase. Therefore, the observed decrease (dip) in VL(T)
upon the martensite–austenite transition can be associ-
ated only with an additional contribution from the
inelastic strain to the effective elastic modulus and not
with a change in the crystallographic orientation.

Note once again that the acoustic measurements
were performed at temperatures above the freezing
point of the liquid adhesive; hence, the influence of
P

acoustic contact on the results obtained was insignifi-
cant.

Let us now discuss the background level of internal
friction in the austenite and martensite phases. In our
opinion, the background level of the internal friction is
most likely governed by the scattering of acoustic
waves from different-type structural (bulk and surface)
defects rather than by acoustic absorption. The sound
attenuation due to scattering of acoustic waves does not
depend, to a first approximation, on the temperature but
is determined by the amount of defects, their geometric
sizes, and the wavelength. Although the studied sam-
ples in the austenite phase were single crystals, x-ray
investigations revealed double reflections. This sug-
gests the occurrence of twins that can give rise to acous-
tic scattering at megahertz frequencies.

4. CONCLUSION

The effect of impact loading appeared to be less sig-
nificant than considered before. It can be assumed that
the effect of impact loading primarily manifests itself in
the formation of an additional crystal texture upon ther-
moelastic martensite transformation (selection of struc-
tural variants): the larger the number of favorably ori-
ented variants, the weaker the scattering of acoustic
waves and, correspondingly, the weaker the sound
attenuation. The preferred orientation of structural vari-
ants can be such that the jumps in the acoustic velocity
and ∆L/L will change upon thermoelastic martensite
transformation. The verification of this assumption
calls for measurements of the orientation dependences
of the attenuation and the velocity of sound.
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Abstract—The conditions for the formation of two-pulse echo signals from 59Co nuclei in thin magnetic films
at T = 4.2 K are investigated. In the framework of the existing mechanisms, numerical simulation of the condi-
tions for the formation of extra 3τ and 4τ echo signals (τ is the time delay between pulses) is carried out. It is
shown that the multiple structure of the echo from 59Co nuclei at T = 4.2 K is due to a mechanism in which an
additional hyperfine magnetic field proportional to nuclear magnetization is acting on the nuclear spin system.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The method of nuclear spin echo has been widely
used in NMR study of magnetically ordered substances
[1]. The echo is formed by applying two ac magnetic
field pulses separated by a time interval τ to the sample.
At the instant t = 2τ, the nuclear spin system forms the
main echo signal. In some cases, a multiple structure of
the echo may be formed, which is manifested in the
emergence of extra echo signals at instants proportional
to τ in addition to the main echo 2τ. 

At the present time, three different reasons for the
formation of a multiple echo structure in magnetically
ordered substances are known: (i) a very high pulse rep-
etition frequency in sequences as compared to the spin–
lattice relaxation rate [2], (ii) multiquantum effects in
NMR of quadrupole nuclei [3–6], and (iii) dynamic
effects associated with magnetic hyperfine interactions
[1, 7].

In thin magnetic Co and Co–Fe films, a multiple
echo-signal structure from 59Co nuclei was observed
experimentally in [8]. Echo signals were formed at
instants t = 2τ, 3τ, and 4τ. An analysis of the depen-
dences of the amplitudes of echo signals on the time
interval τ in the temperature range from 4.2 to 300 K
led the authors of [3] to the conclusion that a multiple
structure is formed as a result of strong nonlinearity of
the nuclear spin system, as well as due to quadrupole
effects.

The present work aims at studying the conditions for
the formation of the multiple structure of the echo from
59Co nuclei in cobalt films at 4.2 K.
1063-7834/02/4401- $22.00 © 20088
2. EXPERIMENT

The experiments were performed on thin magnetic
Co-based films used earlier in [9]. Echo signals were
observed in a zero external magnetic field at 4.2 K on a
pulsed NMR spectrometer in the frequency range 150–
320 MHz. Two additional echoes at 3τ and 4τ were
observed in the experiments apart from the main echo
at 2τ. 

Figure 1 shows the NMR spectra of 59Co nuclei
determined from the dependence of the amplitudes of
the main and extra echo signals on the frequency of the
ac magnetic field of exciting pulses. Each spectrum is
normalized to the peak amplitude of the 2τ echo signal.
The spectrum of the 2τ echo reflects the multiphase
composition of the samples under investigation. The
low-frequency (ν < 218–220 MHz) component of the
spectrum corresponds to the fcc phase, while the high-
frequency spectrum component corresponds to the hcp
phase [9]. It follows from the results presented in Fig. 1
that the spectral peaks of extra echo signals are
observed at frequencies corresponding to both phases
of cobalt. The intensity of extra echo signals at the fre-
quencies of the hcp phase is higher than that at the fre-
quencies of the fcc phase.

In order to analyze the mechanisms of formation of
extra echo signals, we studied the dependences of echo
amplitudes on the magnitude of the ac magnetic field
ω1 for the same duration of two exciting pulses: t1 = t2 =
1 µs (Fig. 2). Each dependence in Fig. 2 is normalized
to the peak amplitude of the 2τ echo. The main feature
of the observed dependences is that the magnitude of
the ac field corresponding to the first peak of the echo
signal amplitude decreases with increasing time of
002 MAIK “Nauka/Interperiodica”
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echo formation. The amplitudes of the ac magnetic field
used in our experiments do not lead to additional broad-
ening of the spectra, which indicates that the value of
ω1 does not exceed the NMR spectral width.

3. DISCUSSION

The first of the above mechanisms of echo forma-
tion was excluded experimentally by choosing a pulse
repetition rate that was considerably higher than the
spin–lattice relaxation rate [9].

In the second mechanism, the number of extra echo
signals and the moments of their formation depend, to
a considerable extent, on the type of inhomogeneous
broadening of the spectral line [4]. For a quadrupole
nucleus with spin I = 7/2, the multiquantum 3τ echo can
be formed in two cases. In the first case, the inhomoge-
neity of the quadrupole constant is considerably higher
than the inhomogeneity of the magnetic field. In this

case, echo signals with 1.5τ, τ, 2.5τ, τ, 3.5τ, 4τ, 6τ,

and 7τ must be observed in addition to the 2τ and 3τ
signals. Numerical calculations of the dependences of
the echo amplitudes on the magnitude of the ac mag-
netic field, which were carried out in accordance with
the algorithm discussed in [6], revealed that the intensi-
ties of extra echo signals are of the same order of mag-
nitude under identical excitation conditions. However,
out of all possible extra signals, only the 4τ echo signals
were observed experimentally; all other signals were
absent. The absence of extra echo signals that could be
formed before the 4τ signal cannot be due to relaxation
damping.

In the case when magnetic inhomogeneous broad-
ening dominates, the theoretically predicted echo sig-
nals must appear at instants multiple to τ: 2τ, 3τ,…, 8τ.
Generally speaking, the absence of echo signals at
instants larger than 4τ can be explained in terms of
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Fig. 1. NMR spectra of 59Co nuclei in a cobalt film at T =
4.2 K: 2τ echo spectrum (1), 3τ echo spectrum (2), and 4τ
echo spectrum (3).
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relaxation damping. However, the results of numerical
calculations proved that, in all cases, the value of ω1
corresponding to the first peak in the amplitude of the
response is higher for extra echo signals than for the
main echo. Thus, the experimentally observed features
of the formation of a multiple echo structure do not
match with the theoretical predictions, which indicates
that the multiple quantum echo mechanism is inappli-
cable to the interpretation of the experimental results.

Moreover, numerical simulation of the multiple
quantum echo revealed that the peak of the amplitude
of an extra echo signal is observed for values of ω1 that
are comparable to the quadrupole splitting ωq of the
NMR spectrum. The value of ωq for the hcp phase dif-
fers from zero in view of the symmetry of this phase.
Thus, it can be assumed that in the case of NMR of
59Co, we are dealing with a selective excitation of the
spectral line ω1 < ωq. In this case, the classical equa-
tions of motion of the magnetization can be used for
qualitative analysis of the behavior of the nuclear spin
system. The difference between the classical and quan-
tum-mechanical approaches lies in that the angles of
rotation (defined as the product of the field amplitude
ω1 and the pulse duration) that ensure the maximum
value of the echo signal amplitude for a quadrupole
nucleus and for classical magnetization are different [5,
6]. Classical equations of motion are also applicable in
the case when quadrupole splitting is absent, as, for
example, is the case with NMR of 59Co nuclei in the hcp
phase.

The classical equations of motion for the isochro-
matic group of nuclear spins

(1)

describe the precession of magnetization m around the
field w (measured in frequency units). At low tempera-
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Fig. 2. Dependences of the amplitudes of the main (V2τ) and
extra (V3τ and V4τ) echo signals on the magnitude of the ac
magnetic field at T = 4.2 K: 2τ echo (1), 3τ echo (2), and 4τ
echo (3).
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tures, hyperfine magnetic interactions lead to the emer-
gence of a field [1, 7]

(2)

where µx, y = (ω)mx, ydω is the integrated trans-

verse magnetization, g(ω) is a function describing inho-
mogeneous broadening of the NMR spectral line, and
η is a parameter determined by the magnetic suscepti-
bility and the intensity of hyperfine magnetic interac-
tions.

In the numerical simulation of a two-pulse response
of a inhomogeneous broadened nuclear spin system,
the time interval corresponding to the observation of
the system was divided into time intervals of duration
∆t. During the time ∆t, the field was assumed to be
unchanged and the magnitude of the hyperfine field in
Eq. (2) was determined from the integrated nuclear
magnetization at the beginning of this interval. It was
taken into account that, during the action of pulses, the
external ac field ω1 was present along with the field
given by Eq. (2). Equations (1) were solved under the
assumption that during the time interval ∆t, the magne-
tization of an isochromatic group of nuclear spins with
detuning ∆ω rotates through an angle α = ∆t((ω1 +

ηµx)2 + η2  + ∆ω2)1/2 about the effective magnetic
field in the rotating system of coordinates [1, 2].

It was found as a result of numerical calculations
that along with the main echo 2τ, extra echo signals
appear at instants that are multiples of τ. The mecha-
nism of the formation of these signals can be described
as follows: owing to field (2), the echo signal plays the
role of an exciting pulse. It is interesting to note that if
we use in Eq. (2) the intrinsic transverse magnetization
for each isochromatic group of spins instead of the inte-
grated nuclear magnetization µx, y [1], no extra echo sig-
nals appear in the calculations. Moreover, an increase

ωx y, ηµ x y, ,=

g
∞–

∞∫

µy
2

0.2

0 0.1

V
2τ

, a
rb

. u
ni

ts

ω1/σ

0.4

0.6

0.8

1.0

1.2

0.02

0.04

0.06

0.08

0.10

0.12

0
0.2 0.3 0.4 0.5 0.6 0.7

1
2

3

V
4τ

, V
3τ

, a
rb

. u
ni

ts

Fig. 3. Calculated dependences of the amplitudes of echo
signals on the magnitude of the ac magnetic field for η/σ =
0.125 and t1 = t2 = 4π/3σ: 2τ echo (1), 3τ echo (2), and 4τ
echo (3).
P

in parameter η in this case leads to suppression of the
main echo.

By way of example, Fig. 3 shows the dependence of
the amplitudes of the main and extra echo signals cal-
culated using a Gaussian function with dispersion σ = 1
for g(ω). Each dependence in Fig. 3 is normalized to the
peak of the amplitude of the 2τ echo. It follows from the
results presented in Fig. 3 that, in the case under con-
sideration, the first peak of the extra echo amplitude can
arise for ac field amplitudes that are smaller than that
corresponding to the first peak in the 2τ echo ampli-
tude. The excitation amplitude corresponding to the
first echo peak decreases with increasing time of the
echo formation. In addition, the calculated amplitudes
of extra echo signals (Fig 3), as well as the experimen-
tal amplitudes, are an order of magnitude lower than the
amplitude of the main echo signal.

The magnitude of the field (2) responsible for the
formation of the multiple echo structure is directly pro-
portional to the nuclear magnetization. In the case of
two-phase Co films, the hcp phase dominates [9] and,
hence, its nuclear magnetization is greater in magnitude
than that of the fcc phase. This explains the larger val-
ues of extra echo amplitudes at the NMR frequencies of
the hcc phase as compared to those corresponding to
the fcc phase (Fig. 1).

The main difference between the experimental
(Fig. 2) and theoretical (Fig. 3) results is that an
increase in the amplitude of the ac magnetic field leads
to more rapid changes in the amplitude of experimental
echo signals as compared to the theoretical values. This
is due to the fact that, for the same duration of exciting
pulses, the peak value of the amplitude of echo signals
from quadrupole nuclei is attained for ac magnetic field
amplitudes smaller than in the case of classical magne-
tization [5]. Furthermore, the samples under investiga-
tion are characterized by a high inhomogeneity of the
NMR amplification factor, which was disregarded in
our calculations and serves as an additional cause of the
discrepancy between the experimental and theoretical
dependences.

Thus, for the third mechanism, we observe good
qualitative agreement between the theoretical and
experimental results. A more detailed analysis requires
a solution to the quantum-mechanical equations of
motion for magnetization instead of the classical equa-
tions (1) and inclusion of the inhomogeneity of the
NMR amplification factor [9]. In addition, the real
function of the line shape g(ω) must be used rather than
the model Gaussian function and the attenuation of the
echo signal amplitude upon an increase in the delay
time between pulses must be taken into account. All
this involves considerable expenditures of computer
time, which makes these calculations unrealistic.

Thus, a comparison of the results obtained using the
available mechanisms with the experimental results
reveals that preference should be given to the mecha-
nism based on hyperfine dynamic interactions for the
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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formation of multiple echo structures for 59Co nuclei in
thin magnetic films at 4.2 K. Electric quadrupole inter-
actions are apparently responsible for the emergence of
extra oscillations in the dependences of echo ampli-
tudes on the magnitude of the ac magnetic field, as well
as for the fact that the experimentally observed echo
amplitude increases with the ac magnetic field ampli-
tude more rapidly than the theoretical dependence.
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Abstract—The specific features of photo- and electrical conduction in manganese germanium garnet crystals
are investigated in the temperature range 4.2–370 K for the first time. Under exposure of samples with ohmic
contacts to visible light, the photocurrent in these samples is observed only at high temperatures. The charac-
teristic times of the photocurrent rise differ from those of photocurrent relaxation after the light is switched off.
The inference is made that the photo- and electrical conduction is determined by the electrical recharging of
manganese ions. The generation and transport of charge carriers are controlled by centers with electrical inho-
mogeneities and shallow attachment levels. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier, it was found that the optical and magnetic
properties of manganese germanium garnets change
under exposure to visible light. The exposure of these
crystals to linearly polarized light brings about changes
in the linear birefringence [1] and linear dichroism [2],
affects the magnetization reversal of sublattices in the
antiferromagnetic state [3], and induces a phase transi-
tion from an antiferromagnetic state to a metamagnetic
state [4]. Moreover, illumination of manganese germa-
nium garnets leads to a change in the optical absorption
coefficient [5, 6]. This effect does not depend on polar-
ization and can be observed upon exposure of crystals
to linearly and circularly polarized light, as well as to
unpolarized light. The photoinduced effects observed
in manganese germanium garnets can be used in optical
recording, specifically for holographic writing of
amplitude and phase gratings [7]. In this respect, man-
ganese germanium garnets hold considerable promise
as materials for active elements used in data recording,
storage, and processing devices.

As a rule, the mechanisms responsible for induction
and relaxation of photoinduced effects are associated
with charge transfer between manganese ions of differ-
ent valences in the garnet crystal lattice [1–8]. The pro-
cesses of photoinduction are brought about by charge-
transfer optical transitions. The charge transfer in the
course of relaxation of photoinduced effects is due to
thermal activation. At present, reliable data on photo-
and electrical conduction in manganese germanium
garnets are unavailable. However, this information can
provide a better insight into the nature and mechanisms
of photoinduced effects observed in these crystals. The
purpose of the present work was to investigate the
photo- and electrical conductivity in manganese germa-
1063-7834/02/4401- $22.00 © 20092
nium garnet crystals in the temperature range 4.2–370 K.
Manganese germanium garnets of different composi-
tions were chosen as the objects of investigation,
because the photoinduced effects in these crystals
should be sensitive to chemical impurities introduced
into the crystal lattice.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Photo- and electrical conduction was studied in
manganese germanium garnet samples with surface
electrical contacts. This made it possible to elucidate
how the chemical composition of manganese germa-
nium garnets affects the bulk and surface electrical
properties.

The samples to be studied were as follows.
Sample   no. 1 was a single-crystal wafer of the
Ca2Ga2 − xMnxGe3O12 (x = 0.002) composition with a
cubic lattice (~0.1% of the Ga ions are replaced by Mn
ions) and the (100) crystallographic orientation, sample

no. 2 was the Ca3 Ge3O12 single crystal with a tet-
ragonal structure, sample no. 3 was the Na+-doped

Ca3 Ge3O12 single crystal with a tetragonal struc-

ture, and sample no. 4 was the (CdCa)3 Ge3O12
single crystal with a cubic structure (the Cd/Ca ratio in
the batch was equal to 10).

For photoelectric measurements, two conducting
contacts (silver paste) were applied to the ground sur-
faces of the samples. The gap between the contacts on
each sample was equal to 0.5–0.7 mm, and the length
of the contacts along this gap was 4–6 mm.

Mn2
3+

Mn2
3+

Mn2
3+
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In the samples thus prepared, the thermostimulated
current (TSC) was measured in the temperature range
4.2–370 K. In addition, we measured the dark current id

and photocurrent iph as functions of the dc voltage U
applied across the contacts on the sample surface, tem-
perature T, the intensity I and wavelength λ of light
used for irradiation of the samples, and the angle
between the plane of polarization of the incident light
and the crystallographic axes in the surface region of
the sample.

The thermostimulated currents were investigated
using a helium cryostat with optical windows and auto-
matic control and regulation of temperature. The mea-
surements were performed upon heating of the samples
at a rate of 0.1 K/s. The surface electrical contacts were
shorted out prior to cooling. Then, the sample was
cooled to the temperature T = 5 K and exposed to light
for the time t = 5 min. After the light was switched off,
a dc voltage was applied across the electrical contacts.
After relaxation of the transient currents for a time
determined by the sample capacitance and reaching a
steady-state potential between the electrical contacts,
the sample was linearly heated and the thermostimu-
lated current iTSC passing between the electrical con-
tacts was measured. The measurements of the current
were performed using an electrometer. The sample was
connected to the electrometer input as a photoresistor.
The lower detection limit of the measuring setup was
2 × 10–12 A.

The dependences of the currents id and iph on T, U, I,
and λ in the ranges T = 285–370 K, U = 10–600 V, and
λ = 380–1000 nm were measured in a photoresistance
mode using a storage oscilloscope. The samples placed
in a thermostat with optical windows were exposed to
light of mercury, and incandescent lamps (with the use
of a condenser, glass light filters, and polarizers) and a
helium–neon laser (λ = 633 nm). The light intensity
could be changed with neutral light filters by a factor of
84. The angle of polarization of the incident light was
changed by rotating the sample about the axis of the
light beam. Moreover, after performing a cycle of mea-
surements, the electrical contacts were removed from
the sample surface and then again applied to the same
surface so that the angle formed by the gap (between
the contacts) and the crystallographic axes of the sam-
ple differed from that used in the preceding measure-
ments. The cycle of measurements was repeated with
the aim of analyzing the influence of the orientation of
an external electric field on the effects under investiga-
tion. After the measurements, the results obtained were
compared.

3. RESULTS

Examination of the thermostimulated current
revealed that, for sample nos. 2–4, thermoactivated
conduction currents in the temperature range 5–245 K
were not observed even in samples irradiated with light.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 1      200
At T = 250–305 K, an increase in temperature leads to
an increase in the iTSC current. However, within the lim-
its of experimental error, the iTSC current does not
depend on the irradiation of the sample at lower tem-
peratures. Figure 1 displays the dependences of
log(iTSC) on 1/T for sample no. 2 at U = 90 V prior to
illumination at low temperatures (curve 1) and after
irradiation with light at temperatures Tirr = 5, 15, and
150 K (curves 2–4, respectively). As is seen from
Fig. 1, the iTSC current does not increase at low temper-
atures and all the curves at T > 250 K are similar to each
other and can be interpolated by a straight line. The
activation energy Wat calculated from the slope of this
straight line for the thermostimulated current iTSC is
close to Wat = 0.52 ± 0.02 eV. Therefore, the tempera-
ture dependence of the iTSC current at T > 250 K can be
described by the exponential function

(1)

where k is the Boltzmann constant and Wat is the activa-
tion energy of the thermostimulated current iTSC.

It should be mentioned that our experiments failed
to reveal an increase in the iTSC current in sample no. 1
with an increase in the temperature. Furthermore, in
this sample, unlike the other samples under investiga-
tion, the dark current and photocurrent appeared to be
small (beyond the detection limit of our measuring
instruments).

The dependences of the id current on the applied
voltage U at temperature T = 293 K for sample nos. 2
(curve 1'), 3 (curve 2'), and 4 (curve 3') are plotted in the
log–log coordinates in Fig. 2. These dependences can
also be interpolated by straight lines. The slopes m' of
these straight lines for sample nos. 2, 3, and 4 are equal
(to within ±5%) to 1.11, 1.14, and 1.0, respectively. The

iTSC exp Wat/kT–( ),∼
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Fig. 1. Temperature dependences of the thermostimulated
current for sample no. 2 (1) before preliminary irradiation
and after preliminary irradiation with light at different tem-
peratures Tirr: (2) 5, (3) 15, and (4) 150 K. The voltage
across the electrical contacts is 90 V.
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results obtained allow us to approximate the depen-
dences of the id current on the U voltage by the follow-
ing function:

(2)

Figure 3 shows the dependences of log(id) on 1/T for
sample nos. 2–4. The curves can be interpolated by
straight lines. The activation energy Wat of the dark cur-
rent can be determined from the slopes of these straight

id Um ' .∼

2

1
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Fig. 2. Dependences of (1–3) the photocurrent and (1'–3')
the dark current on the applied voltage for sample nos. (1,
1') 2, (2, 2') 3, and (3, 3') 4. The wavelength λ of exciting
light is equal to 633 nm. T = 293 K.
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Fig. 3. Temperature dependences of (1–3) the photocurrent
and (1'–3') the dark current for sample nos. (1, 1') 2, (2, 2')
3, and (3, 3') 4. The wavelength λ of exciting light is equal
to 633 nm. U = 110 V.
P

lines. The dependences themselves can be represented
in the analytical form 

(3)

The dependences of the activation energy Wat on the
dc voltage U for sample nos. 2 (curve 1'), 3 (curve 2'),
and 4 (curve 3') are depicted in Fig. 4. As is seen from
this figure, the activation energy Wat only slightly
depends on the voltage U and the highest energy Wat =
0.52 ± 0.005 eV is observed for sample no. 2.

For sample nos. 2–4 at an applied voltage, the elec-
tric current passing through the sample increases under
exposure to visible light and decreases after the cessa-
tion of illumination. The observed rise and relaxation of
the electric current (kinetics of the photocurrent iph) are
long-term processes. The times of photocurrent rise and
photocurrent relaxation in different samples differ from
each other (to a lesser extent for sample no. 2 and to a
greater extent for sample nos. 3 and 4). Note that, after
the light is switched off, the photocurrent in sample
nos. 3 and 4 regains its initial value more slowly. Figure
5 shows the normalized dependences of the iph current
on the time t after switching the light on for sample
nos. 2 (curve 1) and 3 (curve 2). The vertical arrow
indicates the instant of time of switching the light off.
The photocurrent kinetics in the studied samples does
not depend on the dc voltage U and the intensity and
wavelength of visible light but is sensitive to tempera-
ture. The temperature dependence of the photocurrent
rise time constant τph for sample no. 2 is plotted in the
Arrhenius coordinates in Fig. 6. The time constant was
determined from the slope of the initial linear portion in
the time dependence of the iph current (Fig. 5, curve 1).
It can be seen from Fig. 6 that τph decreases with an
increase in the temperature. By using the results of
these measurements, we calculated the activation
energy of photocurrent rise: Wτ = 0.13 ± 0.03 eV. The
temperature dependence of the photocurrent rise time
can be represented by the relationship

(4)

Upon irradiation of the studied samples with light at
a wavelength λ < 450 nm, no photocurrent was found.
In the visible light range, the iph current at constant val-
ues of U and t is directly proportional to the light inten-
sity I and does not depend on further illumination at
wavelengths λ < 450 nm or λ > 1000 nm, the angle of
polarization of the incident light, and the direction of
the applied electric field with respect to the crystallo-
graphic axes on the surface of the sample. However, the
photocurrent substantially depends on the dc voltage U
and temperature.

The dependences of the iph current on the voltage U at
T = 293 K within 10 s after the onset of irradiation with
laser light at λ = 633 nm for sample nos. 2 (curve 1),
3 (curve 2), and 4 (curve 3) are plotted in the log–log
coordinates in Fig. 2. These dependences can be inter-

id Wat/kT–( ).exp∼

τph W τ /kT( ).exp∼
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polated by straight lines whose slopes m for sample
nos. 2, 3, and 4 are equal (to within 5%) to 1.45, 1.1,
and 1.0, respectively. The dependences of the iph current
on the voltage U are represented by a relationship sim-
ilar to expression (2), that is,

(5)

The slopes m and m' for sample nos. 3 and 4 are close
to each other and only slightly differ from unity. For
sample no. 2, the values of m and m' differ considerably.
It is worth noting that the ratios iph/id for sample nos. 2
[(5.6 ± 0.2) × 10–2], 3 [(1.5 ± 0.3) × 10–2], and 4 [(2.6 ±
0.2) × 10–2] also differ substantially.

The dependences of log(iph) on 1/T for sample
nos. 2–4 are depicted in Fig. 3. These dependences can
be interpolated by straight lines. The activation energy
Wa ph of the photocurrent can be determined from the
slopes of these straight lines. The temperature depen-
dence of iph can be represented by a relationship similar
to formula (3), that is,

(6)

Figure 4 displays the dependences of the activation
energy Wa ph on the voltage U for sample nos. 2 (curve 1),
3 (curve 2), and 4 (curve 3). It can be seen from Fig. 4
that the activation energy Wa ph does not depend on the
dc voltage U. This energy is less than the activation
energy of the dark current. For sample nos. 2–4, the
activation energies Wa ph are equal to 0.41 ± 0.01, 0.38 ±
0.01, and 0.47 ± 0.01 eV, respectively.

4. DISCUSSION

As follows from the measurements under the above
conditions, the electrical conduction and photoconduc-
tion do not occur in sample no. 1 but are observed in
samples nos. 2–4. Therefore, we can assume that these
effects are associated with the formation of an ordered
structure of Mn3+ ions in the samples. The overlap of
the outer electron shells of these ions provides a way of
transferring mobile charge carriers.

In the general case, the dark current and photocur-
rent can be determined from the following expres-
sions [9]:

(7)

(8)

where q is the elementary charge; nd and µd are the con-
centration and mobility of equilibrium charge carriers,
respectively; nph and µph are the concentration and
mobility of nonequilibrium charge carriers, respec-
tively; and E is the electric field strength. The concen-
tration of charge carriers and their transfer are deter-
mined by both the possibility of escaping from photo-
generation centers and the possibility of transitions
occurring between neighboring lattice sites.

iph Um.∼

iph exp Wa  ph / kT –  ( ) . ∼

id qndµdE,∼

iph qnphµphE,∼
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In order to determine the type (intrinsic or extrinsic)

of photoconductivity in the visible spectral range, we
analyzed the effect of temperature on the long-wave-
length absorption edge of the samples under consider-
ation. As an illustration, Fig. 7 shows the spectra of the
absorption coefficient K for sample no. 2 at different
temperatures. As the temperature increases, the energy
location of the absorption edge remains unchanged and
the magnitude of the absorption coefficient increases.
According to the available data [10–12], the drastic
increase in absorption at an energy of approximately
2 eV in concentrated manganese germanium garnets is
most likely caused by the 5Eg–5T2g transition in the
Mn3+ ions. The maximum of this absorption is observed
near 500 nm. It is known that the maximum of absorp-
tion of Mn4+ ions due to the transition between the 4A2

and 4T2 states is located at a wavelength of approxi-
mately 520 nm [13–16]. However, the concentration of
Mn4+ ions in concentrated garnets is rather small and
their contribution to the absorption is insignificant.
Consequently, it can be assumed that the photoconduc-
tivity in the visible spectral range is governed by the
excitation of Mn3+ ions.

Therefore, the optical, electrical, and photophysical
properties of the studied crystals in the visible spectral
range are determined by the presence of manganese
ions and the specific features of their distribution in the
crystal structure. The results obtained indicate that the
manganese germanium garnets under investigation can
be considered inhomogeneous semiconductors [17]
and their photophysical properties can be associated
with inhomogeneities of crystal sublattices. This
assumption is confirmed by the experimental results:
when changing over from sample no. 2 to sample
nos. 3 and 4, the kinetics of photocurrent rise slows

6
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Fig. 7. Optical absorption spectra of sample no. 2

(Ca3 Ge3O12) at different temperatures.Mn2
3+
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down and, after the cessation of irradiation, the kinetics
of photocurrent relaxation becomes slower and the
residual conductivity is observed (Fig. 5). This implies
that charge carriers can be separated by electric fields of
inhomogeneities and the charge transfer is controlled
by retrapping processes. In the temperature range 

 

T

 

 >
250 K, these processes have an activation nature. Since
the dark current and photocurrent do not depend both
on the direction of the applied electric field with respect
to the crystallographic axes of the sample and on the
light polarization, it is assumed that the charge carrier
drift proceeds through retrapping into shallow attach-
ment levels. The activation energy of carrier escape
from these levels is close to Wτ = 0.13 ± 0.03 eV. In the
low-temperature range, the deep trapping of charge car-
riers is a more efficient process as compared to the
transfer of charge carriers over large distances and their
drift. These deep traps are located in spatial regions in
the vicinity of electrical inhomogeneities. The above
assumption is also supported by the fact that the photo-
induced linear birefringence [1] and photoinduced
changes in the absorption coefficient [3] of manganese
germanium garnets are observed at low temperatures.

5. CONCLUSIONS

Thus, the experimental data obtained and their anal-
ysis allowed us to make the following inferences.

(1) In manganese germanium garnets, the photo-
and electrical conductivity in the visible light range is
determined by the concentration and location of Mn3+

ions in the crystal lattice. It is the excitation of these
ions that is responsible for the internal photoelectric
effect.

(2) The specific feature of the photogeneration and
charge carrier transfer in manganese germanium gar-
nets is that these processes are controlled by electrical
inhomogeneities in their crystal structure.

(3) At low temperatures, the inhomogeneity regions
can involve, in addition to Mn3+ ions, an Mn4+ ion
formed through the capture of an electron by an accep-
tor. The electrical recharging of manganese ions can
occur with an increase in temperature and under expo-
sure to light. As the temperature increases, the hole
trapped in the inhomogeneity region can leave this
region and then the valence electron occupying its posi-
tion can be involved in conduction due to the interac-
tion with phonons.

(4) The drift of nonequilibrium carriers is governed
by shallow attachment levels with the Wτ energy and
inhomogeneity regions with the Wa ph energy. The con-
centration of inhomogeneities and the changes in the
charge carrier potential in the vicinity of inhomogene-
ities depend on the chemical composition of the sam-
ples and the crystal lattice type. This manifests itself in
the difference between the electrical characteristics of
different manganese germanium garnet samples.
HYSICS OF THE SOLID STATE      Vol. 44      No. 1      2002
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Abstract—The structure of domain walls in magnetic multilayers is investigated taking into account the uniax-
ial anisotropy and biquadratic exchange between the layers. Analytical solutions are derived for different types
of domain wall structures. The majority of the solutions obtained have no analogs in conventional magnetic
materials. The thickness and the energy density per unit area are calculated for the domain walls under investi-
gation. The range of parameters that correspond to more energetically favorable structures of domain walls is
established. © 2002 MAIK “Nauka/Interperiodica”.
1. At present, the properties of magnetic multilayer
structures are under extensive investigation. New mate-
rials with magnetic multilayer structures have aroused
great interest owing to their unusual physical properties
and wide prospects of practical application in memory
devices.

Investigations into the phase transitions and the pro-
cesses of magnetization reversal induced in magnetic
superlattices under the action of an external magnetic
field are being carried out particularly intensively (see,
for example, [1] and references therein). Theoretical
studies of phase transitions [2–9] have shown that these
materials are characterized by a much greater number
of phase transitions as compared to conventional mag-
netic materials (see, for example, [10]). It was found
that the domain walls normal to the plane of layers in
magnetic superlattices substantially affect the magneti-
zation reversal in these materials [11–13]; this can lead,
in particular, to changes in their resistive characteris-
tics. Furthermore, the domain wall structure in itself
can affect the electrical and physical properties of mag-
netic multilayers. Numerical calculations performed by
Labrune and Milat [14] demonstrated that the domain
walls in magnetic superlattices possess a number of
unusual properties (asymmetry of the domain wall,
deviation of the magnetization from the plane of layers,
etc.) and could prove a very interesting object of inves-
tigation. It was also shown [15] that the symmetric
domain walls in magnetic multilayers can be relatively
unstable. Morozov and Sigov [16] explained the occur-
rence of domain walls in multilayers in terms of step-
type inhomogeneities at the interface between the mag-
netic and nonmagnetic layers. However, the existence
of domain walls between regions with a noncollinear
orientation of magnetization in adjacent layers [11–13]
was not interpreted. Moreover, experimental observa-
tions of magnetization reversal in magnetic multilayers
through the nucleation and growth of domains of the
1063-7834/02/4401- $22.00 © 20098
other phase [11–13, 17] also contradict the aforemen-
tioned model.

The foregoing shows that the domain walls in mag-
netic superlattices have not been adequately investi-
gated theoretically. In particular, no consideration is
given to the structure of domain walls in the case of
noncollinear orientation of the magnetization in adja-
cent layers, even though such domain walls have been
observed experimentally. In the present work, the struc-
ture of domain walls in magnetic multilayers is investi-
gated taking into account the biquadratic exchange
interaction between the layers for both collinear and
noncollinear orientation of the magnetization in adja-
cent layers. The only case considered is when the mag-
netization is identical in all the magnetic layers. The sit-
uation when the magnetization have different values in
the magnetic layers, which is of particular interest, will
be considered in a separate publication.

2. The domain wall structure is considered in the
two-sublattice approximation; i.e., it is assumed that
M1 and M2 are the magnetizations in all odd and even
layers, respectively (|M1| = |M2|). This approximation
holds for a large number of layers [18] and breaks down
only in the case of surface spin-flop transition [19]. It
should be noted that magnetic multilayer structures are
characterized by a greater number of domain wall types
as compared to conventional magnets (see, for exam-
ple, [20]). We assume the thickness of each magnetic
layer (d) to be smaller than that of the domain wall in
the bulk sample (d ! ∆). Let the z axis be directed along
the normal to the plane of the layers. In this case, the
dependence of the magnetization on the z coordinate
inside each layer can be ignored. Within this approxi-
mation, the problem of calculating the dependence of
the magnetization M(x, y, z, t) on three spatial coor-
dinates and time is reduced to the problem of calculat-
ing the dependences of two quantities, M1(x, y) and
002 MAIK “Nauka/Interperiodica”
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M2(x, y), on only two spatial coordinates and time
(Mi is the magnetization in the ith magnetic layer).

For a domain wall in a two-layer magnetic structure,
we write the variational principle in the following form:

(1)

It is appropriate to express the energy density FS in
terms of angular variables θi and ϕi, which determine
the orientation of the magnetization in the ith magnetic
layer. The polar angles θi are reckoned from the z axis,
and the azimuthal angles ϕi are measured from the
x axis in the xy plane.

The energy density FS in angular variables θi and ϕi

takes the form

(2)

where γ is the gyromagnetic ratio, M is the saturation
magnetization in the ferromagnetic layer, H is the
external magnetic field directed along the x axis, K is
the uniaxial anisotropy constant, A is the inhomoge-
neous exchange constant, and J1 and J2 are the constants
of the Heisenberg and biquadratic exchange between the
magnetic layers, respectively. Relationship (2) is
obtained from the Lagrangian density for a single-sub-
lattice ferromagnet with inclusion of the exchange inter-
action between the magnetic layers.

Since the demagnetization energy inhibits the devi-
ation of the magnetization from the plane of the layers,
we can assume that θi = const = π/2. In this case, it is
convenient to introduce the variables ϕ and ψ:

(3)

Consequently, the functional FS can be rewritten as

(4)

and equations used to describe the domain wall struc-
ture take the form

(5a)

(5b)

δ FS Sd∫ 0.=

FS
1
2
---K θi ϕ2

isinsin
2

2πM2 θ2
icos+



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2
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1
2
---A ∇θ i( )2 θ2

i ∇ϕ i( )2sin+[ ]




+
1
2
---J1 θ1 θ2coscos θ1sin θ2 ϕ1 ϕ2–( )cossin+( )

+
1
2
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FS K ϕ2sin ψ 2ϕcos2sin+[ ]= A ∇ϕ( )2 ∇ψ( )2+[ ]+

+
1
2
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K 2ϕ 2ψcossin J1 2ϕsin– J2 4ϕsin– 2A∇ 2ϕ .=
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For definiteness, we assume that the domain wall plane is
perpendicular to the z axis. In the case of a planar domain
wall, the system of equations (5) has the first integral

(6)

This allows us to find analytical solutions to this system
of equations.

In order to determine unambiguously the domain
wall structure, it is necessary to complement the system
of equations (5) with the boundary conditions. The
boundary conditions can be determined from the condi-
tion of stability of the homogeneous state. The mini-
mum condition of the functional for the homogeneous
state can be met with the following four phases depend-
ing on the magnitudes of the Heisenberg and biquadratic
exchange interactions between the layers (see, for
example, [7]): the ferromagnetic and antiferromagnetic
phases, the angular phase with the magnetization vec-
tors in adjacent layers that are symmetrically oriented
with respect to the easy axis, and the angular phase with
the magnetization vectors in adjacent layers that are
symmetrically oriented with respect to the hard axis.

3. At J1 < 0 and K > J1 > 2J2, the minimum energy
corresponds to the ferromagnetic phase. In this case,
two types of domain walls become possible, namely,
types 1a and 1b (Fig. 1). The rotation of magnetization
in adjacent layers occurs in the same direction for type
1a and in opposite directions for type 1b. The boundary
conditions for the type 1a domain walls have the form

(7)

The solution to the system of equations (4) with the
boundary conditions (7) takes the form

(8)

K ϕ2sin ψ 2ϕcos2sin+[ ] 1
2
---J1 2ϕcos+

+
1
2
---J2 2ϕcos const+ A ϕ '( )2 ψ'( )2+[ ] .=

ϕ const 0,= =

ψ ∞–( ) 0, ψ +∞( ) π, ψ' ∞±( ) 0.= = =

ψ 2 x/∆0( ),exparctan=

1a 1b 1c 1d

1e 1f 1g 1h

E

Fig. 1. The sense of rotation of the magnetization vector in
adjacent layers for different types of domain walls. E is the
easy axis.
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where ∆0 = . For domain walls 1b, the boundary
conditions are represented as

(9)

These conditions are satisfied with the solution

(10)

where ∆f =  and qf = 2J2/(K – J1).

4. The calculated wall energies per unit area for dif-
ferent types of domain walls are presented in the table.
If the magnitude of the exchange interaction between
the layers is large [|J1| > (16/π2 – 1)K], the energy of the
domain wall 1a is higher than that of the domain wall
1b. For |J1| < (16/π2 – 1)K, the lower energy can be
observed for either the type 1a or the type 1b domain
wall, depending on the magnitude of the biquadratic
exchange interaction. The regions of parameters corre-
sponding to different types of domain walls are shown
in Fig. 2.

Calculated energies per unit area for different types of domain
walls shown in Fig. 1

1a

1b

1c

1d

1e

1f

1g

1h

A/K

ψ const 0,= =

ϕ ∞–( ) 0, ϕ +∞( ) π, ϕ ' ∞±( ) 0.= = =

ϕ
x 1 q f– /∆ f( )tanh–

1 q f / x 1 q f– /∆ f( )
2

cosh–
--------------------------------------------------------------------- ,arccos=

A/ K J1–( )

4 AK

2 A K J1–( ) 1 q f– 1

q f

---------+ q farcsin 
 

4 AK

2 A K J1–( ) 1 qa– 1

qa

---------+ qaarcsin 
 

2 2AJ2 2ϕ I 2ϕ I 2ϕ Icos+sin( )

2 2AJ2 2ϕ Isin π 2ϕ I–( ) 2ϕ Icos+( )

2 2AJ2 π 2ϕ II–( ) 2ϕ IIcos 2ϕ IIsin–( )

2 2AJ2 2ϕ II 2ϕ IIcos 2ϕ IIsin–( )

0.2

0
–0.8

J 2
/K

J1/K
–0.4 0 0.4 0.8

1e 1h

1d1c1b1a0.4

0.6

0.8

1.0

1.2

Fig. 2. The regions of parameters corresponding to the min-
imum energy for different types of domain walls shown in
Fig. 1.
P

5. In the case when the antiferromagnetic phase is
more energetically favorable (K + J1 > 2J2, J1 > 0), there
can also exist two types of domain walls that differ in
the sense of rotation of the magnetization in adjacent
layers, namely, types 1c and 1d (Figs. 1c, 1d). The
boundary conditions for domain walls 1c are given by

(11)

The solution to the system of equations (5) with the
boundary equations (11) has the form

(12)

For domain walls 1d, the boundary equations are repre-
sented as

(13)

These conditions are satisfied with the following solu-
tion to the system of equations (5):

(14)

where ∆a =  and qa = 2J2/(K + J1).

As in the case of the ferromagnetic phase when the
magnitude of the Heisenberg exchange interaction
between the layers is small [|J1| < (16/π2 – 1)K], the
energy of the domain wall 1d with opposite directions
of the magnetization vectors in adjacent layers can be
less than that of the domain wall 1c. The region of
parameters J1 and J2, which corresponds to this situa-
tion, is displayed in Fig. 2.

6. For J1 < 0 and K < J1 + 2J2, the minimum energy
corresponds to the angular phase with symmetric orien-
tation of the magnetization vectors in adjacent layers
with respect to the easy axis. The possible types of
domain walls for this case are represented in Figs. 1e
and 1f. The boundary conditions for domain walls 1e
have the following form:

(15)

The solution to the system of equations (5), which sat-
isfies these boundary conditions, is given by the for-
mula

(16)

where ∆1 =  and ϕI = .

For domain walls 1f, the boundary conditions are
given by

(17)

ϕ const π/2,= =

ψ ∞–( ) π/2, ψ +∞( )– π/2, ψ' ∞±( ) 0.= = =

ψ 2 x/∆0( ).exparctan=

ψ const π/2,= =

ϕ ∞–( ) π/2, ϕ +∞( )– π/2, ϕ ' ∞±( ) 0.= = =

ϕ
x 1 qa– /∆a( )tanh

1 qa/ x 1 qa– /∆a( )
2

cosh–
-------------------------------------------------------------------- ,arcsin=

A/ K J1+( )

ψ const 0,= =

ϕ ∞–( ) ϕ I, ϕ +∞( )– ϕ I, ϕ ' ∞±( ) 0.= = =

ϕ ϕ I x 2ϕ I/∆1sin( )tanhtan[ ] ,arctan=

2A/J2
1
2
---

K J1–
2J2

---------------arccos

ϕ ∞–( ) ϕ I, ϕ +∞( ) π ϕI, ϕ ' ∞±( )– 0.= = =
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In this case, we obtain the following solutions to the
system of equations (5):

(18)

The energy of the domain wall 1e is less than that of
domain wall 1f, because the energy of the biquadratic
exchange interaction is identical for both types of
domain walls, whereas the energy of anisotropy and the
energy of the Heisenberg exchange interaction for
domain wall 1e are less than those for the domain wall
1f.

7. For J1 > 0 and K + J1 < 2J2, the minimum energy
corresponds to the angular phase with symmetric orien-
tation of the magnetization in adjacent layers with
respect to the hard axis. The possible types of domain
wall structures for this case are shown in Figs. 1g and
1h. The boundary conditions for domain walls 1g have
the form

(19)

where ϕII = . The solution to the system

of equations (5), which satisfies the boundary condi-
tions (19), is represented by the formula

(20)

Similarly, the boundary conditions for domain walls 1h
have the form

(21)

The solution satisfying these conditions is given by

(22)

As in the preceding case, the energy of the domain
wall 1h is always less than that of the domain wall 1g,
because the energy of the Heisenberg exchange interac-
tion and the energy of anisotropy for the former struc-
ture are also less than those for the latter structure.

8. Thus, the structure of domain walls in magnetic
superstructures is investigated. Eight exact solutions
are obtained for different types of domain walls. The
sense of rotation of the magnetization vectors in adja-
cent layers is represented in Fig. 1. The domain wall
structures 1b and 1d–1h have no analogs in conven-
tional magnetic materials. Domain walls of types 1f and
1g are universally characterized by a higher energy
compared to that of domain walls of types 1e and 1h,
respectively. However, it should be noted that the inclu-
sion of the magnetostatic energy can change this ratio.

ψ const 0,= =

ϕ ϕ I x 2ϕ I/∆1sin( )tanhcot[ ] .arccot=

ψ const π/2, ϕ ∞–( ) ϕ II π/2,–= = =

ϕ +∞( ) π/2= ϕ II, ϕ ' ∞±( )– 0,=

1
2
---

K J1+
2J2

---------------arccos

ϕ ϕ II x 2ϕ II/∆2sin( )tanhcot[ ] .arctan=

ψ const π/2, ϕ ∞–( ) π/2 ϕ II,–= = =

ϕ +∞( ) π/2= ϕ II, ϕ ' ∞±( )+ 0.=

ϕ ϕ II x 2ϕ II/∆1sin( )tanhtan[ ] .arccot=
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