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Abstract—The electronic band-structure calculations of the PdFe ferromagnet and the PdMn antiferromagnet
performed in this work permit one to conclude that the specific features of the electrical resistivity observed in
the ternary PdMnxFe1 – x alloy system [the deviation from the Nordheim–Kurnakov rule ρ0(x) ~ x(1 – x), which

is accompanied by a high maximum of residual resistivity (not typical of metals)  ~ 220 µΩ cm at xC ~ 0.8
and a negative temperature resistivity coefficient in the interval 0.5 ≤ x ≤ 1] are due to the microinhomogeneous
(multiphase) state of the alloys and a variation in the band-gap parameter d spectrum caused by antiferromag-
netic ordering of a PdMn-type phase. © 2002 MAIK “Nauka/Interperiodica”.
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1. The concentration dependence of the residual
resistivity ρ0(x) of the PdMnxFe1 – x ternary alloy system
determined experimentally in [1] has a fairly unusual
form (Fig. 1). It does not follow the Nordheim–Kurna-
kov relation, which is usually satisfied in quasi-binary
solid solutions [2]:

ρ0 ~ x(1 – x). (1)

First, the maximum of ρ0(x) is observed at a critical
concentration xC ~ 0.8, which does not coincide with its
value 0.5 following from Eq. (1). In contrast to Eq. (1),
the ρ0(x) relation for PdMnxFe1 – x alloys has an asym-
metric shape. Second, near xC, the residual resistivity

increases up to maximum values  ~ 220 µΩ cm,
which are unusually high for metal alloys. Accepting
the weak potential scattering approximation in which
Eq. (1) was derived, this growth should be ~10 µΩ cm.

It appears natural to relate the behavior of ρ0(x)
observed in PdMnxFe1 – x ternary alloys to specific fea-
tures in their structural and magnetic states [3–5].
These alloys may only be considered single phase and
ordered in the L10 structure close to extreme composi-
tions. For x < x1 ~ 0.2, they are ferromagnets with the
limiting value of the Curie temperature TC1 = 730 K for
PdFe and antiferromagnets for x > x2 ~ 0.8 with TN =
815 K for PdMn. In the intermediate concentration
region 0.2 < x < 0.8, the alloys represent a microinho-
mogeneous multiphase medium, both structurally and
magnetically, which simultaneously contains two
phases (of the PdMn and PdFe type) shaped as
extended platelets typically measuring 1–100 µm or
greater. For T < 1000 K, both the phases have the L10
structure but with different weakly concentration-
dependent lattice parameters and degrees of tetragonal-
ity. The magnetic moments in the PdFe-type phase are
ordered ferromagnetically (F1) [3–6]; in the PdMn-type
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phase, antiferromagnetically (A) [7]. Moreover, an
additional F2 phase with noncollinearly ordered
moments forms in the intermediate alloy concentration
region, most likely, along the precipitation boundaries
of the main F1 and A phases. In view of such a mul-
tiphase state, there are indeed no grounds to expect the
PdMnxFe1 – x system to follow the Nordheim–Kurnakov
rule of Eq. (1).

2. A comparison of the concentration dependences
of the electrical resistivity measured at T = 4.2 K !
(TC1, TN) and for T ~ 850 K ≥ TC1 shows that the behavior
of ρ0(x) in the PdMnxFe1 – x ternary system is related pri-
marily to specific features of the magnetic state of the
alloys. As seen from Fig. 1a, for T > TC1, TN, the resistivity
varies weakly with concentration and can be described,
within experimental accuracy, by the expression

(2)

This appears only natural, because for T > (TC1, TN,
ΘD), where ΘD = 374–340 K is the Debye temperature
[5], the spin-disordered and phonon components of the
resistivity are dominant and their variation with con-
centration can be roughly fitted by a linear function.
The electronic component can be neglected because of
its being comparatively small.

In addition to these contributions, an analysis of the
ρ(x) relation for the PdMnxFe1 – x alloys using Eq. (2)
should take into account, for any temperature, contribu-
tions of the type of Eq. (1), which originate from con-
duction electron scattering on nonuniformities of the
Coulomb potential. This resistivity component (with-
out the inclusion of the potential nonuniformities asso-
ciated with exchange interaction) should remain con-
stant in the transition from the paramagnetic to a mag-
netically ordered state, because the crystalline structure
of all samples of the system under study does not
change in the magnetic phase transition [4, 5].
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Hence, the fact that Eq. (2) is satisfied in the para-
magnetic temperature region indicates that the specific
features in the behavior of ρ0(x) are practically not con-
nected with conduction electron scattering from struc-
tural inhomogeneities of the PdMnxFe1 – x alloys. The
dominant role of the magnetic component in ρ0(x) is
also suggested by its unusually high maximum value

 ~ 200 µΩ cm, which exceeds even the spin-disor-
dered resistivity ρm(T > TC, TN). Note that the ρ0(x) has
a maximum at the critical concentration xC = x2 ~ 0.8, at
which the F1 phase of the PdFe type and the noncol-
linear F2 phase are formed with decreasing x. It should
be pointed out that the critical concentration x1 ~ 0.2 for
the nucleation of the PdMn-type A phase does not man-
ifest itself in any way in the ρ0(x) curve.

3. The above features in the structural and magnetic
states of PdMnxFe1 – x alloys are accompanied by a qual-
itative change in the pattern of the temperature depen-
dences of the electrical resistivity. As seen from Fig. 2,
a PdFe alloy exhibits a ρ(T) behavior typical of ferro-
magnets, with a positive temperature coefficient of
resistivity α that has a spin-fluctuation anomaly at the
Curie point. In contrast, the coefficient α(T) of the
PdMn antiferromagnet reverses its sign to negative for
T ≥ 600 K. The behavior of α(T) and, hence, of ρ(T)
observed in PdMn for T < TN = 815 K is characteristic
of metallic antiferromagnets and can be related to the
band-gap formation in the electronic spectrum near EF
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Fig. 1. Electrical resistivity of PdMnxFe1 – x alloys pre-
sented for T equal to (a) 850 and (b) 4.2 K. (a) The solid line
is a plot of Eq. (2); (b) ρ0(x) calculation: the dashed line was
calculated following the percolation theory, Eq. (5); the
solid line, following the effective-medium model, Eq. (7);
dotted line, using Eq. (4) for x < xC = 0.8. The dot-and-dash
line shows the ρ0 (x) ~ (1 – x) relation for x > xC.
P

as a result of the sample becoming magnetically
ordered [8].

Our LMTO calculations of the electronic energy
spectrum show (Fig. 3) that when PdMn undergoes A
ordering, an unusually deep dip does indeed appear
near the Fermi level EF in the density-of-states N(E)
curve. If one considers only the d band, magnetic order-
ing brings about, in essence, the formation of an energy
gap in the electron spectrum near EF. As seen from Fig. 3,
the gap width is ∆ ~ 1 eV and the density of states at EF

decreases as a result of the A ordering by approximately
20 times, from N(EF) = 6.7 state/eV per unit cell in the
paramagnetic state to N(EF) = 0.19 state/eV per unit cell
in the A state. Using self-consistent calculations of the
Mn A state (such as the eigenvectors and eigenvalues of
the Hamiltonian matrix for the 3d spin-up and spin-
down Mn bands), we also computed the parameter J of
exchange interaction between the 3d electron shells of
the nearest neighboring Mn atoms, which is defined in
the Heisenberg model as H = 2JS1S2. The J parameter
was calculated following the technique proposed in [9].
The calculation yielded J ~ 63.5 meV, which is in agree-
ment with the value expected from TN = 815 K for the
PdMn antiferromagnet.

According to [6], the Fermi level in a ferromagneti-
cally ordered PdFe alloy lies between the density-of-
states peaks formed by the d states of the spin-up and
spin-down Fe atoms. Here, however, N(EF) in both
paramagnetic and magnetically ordered states derives
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Fig. 2. Temperature dependences of the electrical resistivity
(open circles) and of the temperature coefficient of resistiv-
ity (filled circles) drawn for samples of extreme composi-
tion: (a) PdMn and (b) PdFe.
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from the s, p, and d states. The density of states at EF for
PdFe is N(EF) = 6.2 state/eV per unit cell in the para-
magnetic state and N(EF) = 1.55 state/eV per unit cell
in the magnetically ordered state.

A comparison of the electronic band-structure cal-
culations made for the ferromagnet PdFe and the anti-
ferromagnet PdMn in the paramagnetic and magneti-
cally ordered states shows that the resistivity in a
PdMn-type phase can indeed be described using the
model from [8], provided the d electrons are considered
to be the majority carriers in the magnets under study.

At the Néel point, an α(T) anomaly takes place in
PdMn, which would appear standard under magnetic
ordering if it were not for the additional magnetic con-
tribution having, in this case, a negative sign. This
experimental observation, appearing fairly strange at
first glance, can be assigned to the fact that the mag-
netic component of the resistivity of an antiferromag-
net, which originates from gap formation in the elec-
tronic band spectrum caused by magnetic-cell doubling
under A ordering, is proportional to the squared sublat-

tice magnetization, ρm ~  [8]. As follows from [7],
the variation of the PdMn sublattice magnetization with
temperature for T ≤ TN can be described in terms of the
fluctuation theory [10] by a power law relation,

(3)

From Eq. (3), it follows that the magnetic “gap” contri-
bution to the temperature coefficient of the resistivity
αm(T) = (1/ρm)(dρm/dT) ~ –[(TN – T)/TN]2β – 1 is nega-
tive and has a maximum magnitude at the Néel point
and its temperature dependence is similar to Eq. (3),
differing only in the magnitude and sign of the critical
exponent.

As seen from Fig. 2, the sign of α(T) in PdMn is also
negative for T > TN, up to the temperature TS ~ 1000 K
of the martensitic transition to another B2 phase [5].
This experimental finding suggests that the energy gap
in the d spectrum of the given antiferromagnet also
exists in the paramagnetic temperature region. Elec-
tronic-spectrum calculations carried out for the para-
magnetic PdMn do not indicate the presence of a gap
singularity in Nd(E) near EF . One may only conjecture
that the short-range A order and, hence, remnants of the
d gap in the electronic spectrum are retained in PdMn
above TN.

4. As shown by analyzing the temperature depen-
dences of electrical resistivity in samples with extreme
compositions, PdFe and PdMn, as well as in samples
with intermediate concentrations (see [1]), a metal–
semiconductor phase transition takes place in the d car-
rier subsystem (in addition to the F–A magnetic phase
transition) in ternary PdMnxFe1 – x alloys with increas-
ing x. This conjecture is borne out by measurements of
the Seebeck coefficient S(T) of the alloys under study
[1]. At room temperature (T ! TC1, TN), the sign of S is

Mi
2

Mi ~ TN T–( )/TN[ ] β.
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changed from negative to positive with increasing man-
ganese concentration near x2 ~ 0.8, while at high tem-
peratures, T ≥ (TC1, TN), the S value is positive almost
everywhere over the region of existence of the PdMn-
type A phase with x > x1 ~ 0.2.

Hence, for T < (TC1, TN), the alloys with concentra-
tions x < 0.8 can be considered a mixture of two phases
with residual resistivities differing by almost two
orders in magnitude. Note that the high-resistivity
phase consists not only of the A but also of the noncol-
linear F2 phase. The latter, due to the magnetic
moments being almost completely disordered, should
have the largest possible magnetic component of the
resistivity already at low temperatures. The high-resis-
tivity F2 phase is present only in the region of coexist-
ence of the main collinear phases (0.2 < x < 0.8), and its
volume is maximum at x ~ 0.5 [3, 4].

X-ray diffraction measurements show [4] that man-
ganese atoms virtually do not dissolve in a PdFe-type
phase. One could thus assume that PdMnxFe1 – x alloys
exhibit a tendency to nucleation of the PdMn-type
phase already at low Mn concentrations. As the concen-
tration x increases, the volume of the conducting PdFe-
type phase decreases and that of the “insulating”
PdMn-type phase, conversely, grows. Near the thresh-
old concentration (percolation threshold) xC = x2 ~ 0.8,
the conducting PdFe-type phase almost disappears. It
should be stressed that we attribute the large magnitude
of ρ0 of the PdMn-type A phase to the existence of an
energy gap in its d spectrum at EF, which persists to
very low temperatures.

For this reason, we attempted to describe ρ0(x) of
the microinhomogeneous alloys under consideration in
terms of the percolation theory in the effective-mass
approximation. We used the well-known expression for
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Fig. 3. Total and partial densities of states of the PdMn
intermetallic compound for (a) paramagnetic and (b) anti-
ferromagnetic solutions. The Fermi level corresponds to
E = 0. The dashed and solid lines in the central panel of (b)
show the densities of states for two projections of the Mn
spin.
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the effective conductivity of a two-phase medium (the
Kondorskiœ–Odolevskiœ equation) [11]

(4)

and the expression from percolation theory [12]

(5)

Here, σF and σA are the conductivities of the low- and
high-resistivity phases, respectively, and xF and xA are
the corresponding concentrations. The ε and xC are the
critical exponent and the percolation threshold concen-
tration for the conducting F1 phase. The concentration
dependences of the volumes of the F1, F2, and A phases
were determined from studies on magnetic properties
[3, 4]. It was assumed that the F1 phase is a conducting
insulator and that the F2 and A phases are high-resistiv-
ity insulators. We note immediately that none of these
two models is capable of fitting the experimental ρ0(x)
relation throughout the concentration range studied
(0 ≤ x ≤ 1).

In these two approximations, one succeeds at deriv-
ing a ρ0(x) relation close to that determined in experi-
ment [1] only for the region where the two phases, con-
ducting and insulating, coexist, i.e., for x < xC = x2 ~ 0.8.
Figure 1b shows the results of a mathematical treatment
of the ρ0(x) relation made using Eqs. (4) and (5). It was

assumed that σA = 1/ , i.e., that this quantity differs
from the conductivity of the PdMn antiferromagnet. As
seen from Fig. 1b, the effective-medium model [11]
provides the best fit to the experimental data on the
residual resistivity of the PdMnxFe1 – x alloys within the
above concentration range. This conclusion may be
considered reasonable, because the scatter in the values
of ρ0(x) for the alloy system under study is comparable
to its mean value in order of magnitude [12].

Above the threshold concentration (x > xC ~ 0.8), the
situation with these alloys is different. According to [4],
Fe impurity atoms dissolve fairly well in a PdMn-type
host. This should bring about changes in the parameters
of the d gap in the electronic energy spectrum, which
originates from the A ordering. It may be conjectured
that in the first stage of Mn replacement by Fe, the gap
singularity in the spectrum of the PdMn-ordered
PdMnxFe1 – x ternary alloys becomes more significant.
For T < TN, the change in the electronic spectrum will
give rise to an increase in the electrical resistivity; in
first approximation, this change will be proportional to
the iron concentration in the sample. Obviously
enough, for T > TN, the magnitude of ρ should vary
with concentration x substantially more weakly as a
result of the strong decrease in the gap singularity in the
d spectrum of A alloys in the paramagnetic temperature
region.

σ* 1/ρ* 1/4( ) 3xF 1–( )σF 3xA 1–( )σA+[ ]= =

+ 3xF 1–( )σF 3xA 1–( )σA+[ ] 2/16 σFσA/2+{ } 1/2

ρ0 x xC–( )/xC[ ] ε– .∼

ρ0
m

P

This conjecture on the electron energy spectrum of
the PdMn antiferromagnet changing as a result of the
substitution of Fe atoms for Mn is in complete agree-
ment with experimental data. As seen from Figs. 1 and
2 (see also [1]), a decrease in the manganese concentra-
tion in PdMnxFe1 – x A alloys within the range 1 ≥ x ≥
xC ~ 0.8 is accompanied by not only an increase in ρ0
but also a considerable growth of the negative coeffi-
cient α in magnitude for T < TN. In our case, both these
characteristics are governed by the magnitude of the
energy gap in the d spectrum, which appears as a result
of the A ordering, and the change in these characteris-
tics observed experimentally to occur with decreasing x
indicates enhancement of the gap singularity in the
Nd(E) curve. However, LMTO band-structure calcula-
tions indicate, conversely, that the gap singularity in the
electron spectrum of the PdMn antiferromagnet disap-
pears when the Mn atoms are replaced by Fe.

5. While not excluding the above explanation of the
behavior of the ρ0(x) relation of the PdMnxFe1 – x ter-
nary alloys, we suggest another alternative. As already
mentioned, the microstructure of these alloys can be
represented in the form of low-resistivity F1 regions
surrounded by high-resistivity A regions, which are
separated by F2 layers. In this case, the electrical resis-
tivity of the low-Ohmic F1 regions remains virtually
constant with x. At the same time, ρ of the higher resis-
tivity A and F2 regions varies fairly strongly throughout
the volume of the alloy and as a function of concentra-
tion x, because it is in this part of the alloy volume that
the Fe atoms are replaced by Mn.

The electrical structure of such an inhomogeneous
state of the alloys can be approximated in the effective-
medium model by a random network of resistances (or
conductances) [13]; the random-valued resistances
should be interpreted as those of microcontacts, and the
equivalent circuit of a microcontact can be represented
in the form of resistances connected in series (as was
done, for instance, in [14, 15]), more specifically, of ρF

of the metallic F1 regions and ρA of the intermediate
volume including the F2 and A phases:

(6)

Actually, the random-valued resistance network is
replaced in this case by a regular network of equal,
averaged microcontact resistances.

Taking into account the variation in phase volume
with concentration and the random nature of substitu-
tion of the manganese and iron atoms in the F2 and A
phases, the resistivity of these phases can be described,
as in [15], by a normal distribution [16]. Therefore, we
can write

(7)

ρ0 x( ) ρF ρA.+=

ρ0 x( ) ρF A/ ω π/2( )0.5[ ]+=

× 2 x xC–( )/ω[ ] 2–{ } .exp
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As seen from Fig. 1b, the ρ0(x) relation for PdMnxFe1 – x
microinhomogeneous alloys is approximated well by
Eq. (7) within the whole concentration region studied
here (0 ≤ x ≤ 1). This supports the validity of the pro-
posed effective-medium model for the ternary alloys
under consideration, which assumes that ρF is constant
and that the values of ρA are given by a normal distribu-
tion [16]. We find that the center of the distribution is at
xC = 0.785 and the variance is ω2 = 0.14.

The concentration dependence of the residual resis-
tivity of PdMnxFe1 – x microinhomogeneous alloys can
also be described in terms of other possible equivalent
electric circuits of microcontacts. In particular, satisfac-
tory results are obtained by treating ρ0(x) experimental
data with the use of a random-valued conductance net-
work, whose analysis yields the expression

(8)

Other, more complex variants of electric circuits of
microcontacts can be conceived based on their connec-
tion in series or parallel. In any case, in order for a con-
crete scheme chosen for description of an experiment to
be adequate, the ρA(x) dependence must follow a nor-
mal distribution [16].

6. It should be noted in conclusion that ρ0(x) depen-
dences similar to the one displayed in Fig. 1 were also
observed earlier for solid solutions of noble and transi-
tion metals (see, e.g., [2]). The deviation of the ρ0(x)
curves from the form of Eq. (1) was likewise related in
that case, as a rule, to features in the electron band struc-
ture of the alloys, but with a pattern differing from that
suggested in this work. It is known that the resistivity in
the two-band Mott model is proportional to the density
of d states at EF; i.e., ρ0(x) ~ Nd(x). Hence, the anoma-
lous increase in ρ0(x) at some xC can be accounted for by
a considerable increase in Nd associated with rearrange-
ment of the narrow d band, for instance, with a forma-
tion of virtually coupled d states near EF. Such an
approach does not, however, agree with the band-struc-
ture calculations of the PdMn antiferromagnet and is at
odds with the multiphase nature of the magnetic and
structural states of PdMnxFe1 – x alloys.

Thus, the behavior of the electrical resistivity of
PdMnxFe1 – x ternary alloys with concentration and tem-
perature can be properly understood only by taking into
account specific features in their structural and mag-
netic states. Two approaches are employed in this work
to describe the residual resistivity of the microinhomo-
geneous alloys under study in terms of the effective-
medium approximation. In one of them, the whole con-
centration range is divided into two regions separated
by a critical concentration xC = x2 ~ 0.8. For x < xC, the
microinhomogeneous (heterogeneous) state of the
alloys consisting of magnetic phases with the values of
ρ0 differing by almost two orders of magnitude is sim-
ulated by an effective medium within the Kondorskiœ–
Odolevskiœ model [11]. In the range 1 ≥ x > xC, the

1/ρ0 x( ) 1/ρF 1/ρA.+=
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alloys under study are considered to be single-phase
with a PdMn-type A ordering. The parameters of the d
band of the A phase are assumed to vary in proportion
to the concentration of the Fe impurity atoms. There-
fore, in this range, the ρ0(x – 1) ~ (1 – x) relation is
approximately satisfied, as is evident from Fig. 1b. In
the other approach, the microinhomogeneous state of
the alloys is described, throughout the region in which
the alloys are ranged from the PdFe ferromagnet to the
PdMn antiferromagnet, in terms of the effective-
medium model, which represents a microcontact net-
work whose equivalent electric circuit consists of resis-
tances of the metallic F1 regions with constant ρF con-
nected in series and resistances of the F2 and A phases
which separate the F1 regions and are characterized by
the resistivity ρA whose concentration dependence is
described by a normal distribution [16].
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Abstract—The decomposition of the amorphous phase upon heating of the Mg87Ni13 and Mg83Ni13Y4 amor-
phous alloys prepared by rapid quenching of the melt is investigated. The nanocrystalline structure is formed
at the first crystallization stage and contains crystals of magnesium and the metastable phase. The structure of
the metastable phase (the lattice parameters and space group) is determined. The possible chemical composi-
tions of the metastable phase are considered. No differences are revealed in the structures of the metastable
phases in the yttrium-containing and yttrium-free alloys. Heating of the alloys results in decomposition of the
metastable phase. After completion of the transformations, the alloy structure consists of Mg and Mg2Ni in
accordance with the equilibrium phase diagram. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Metallic glasses based on magnesium belong to the
group of light alloys and exhibit a rather high tendency
to vitrification. Among light materials, these glasses
possess record-high strength characteristics. For exam-
ple, the tensile strength of the Mg65Cu25Y10 alloy
reaches 800 MPa, which is nearly twice as large as that
for a crystalline alloy of the same composition [1]. The
physical properties of materials depend on their struc-
ture. It is known that the strength of light alloys based
on aluminum substantially increases at the initial stages
of devitrification. As was shown earlier in [2], the
microhardness of the Al86Ni11Yb3 alloy increases from
1.6 GPa in the amorphous state to 4.2 GPa after anneal-
ing with the formation of a nanocrystalline structure. It
is reasonable to expect the properties of metallic
glasses based on magnesium also to change at different
stages of crystallization. In particular, Kobelev et al. [3]
studied the Mg84Ni12.5Y3.5 amorphous alloy and
observed considerable changes in the elastic and dissi-
pative properties. In this respect, investigations into the
physical properties of alloys should involve a study of
the alloy structure and its thermal stability at different
stages of the structural transformation. Amorphous
alloys in the Mg–Ni–Y system crystallize in several
stages. At the initial stage, the decomposition of the
amorphous phase brings about the formation of the
metastable phase with a large Young’s modulus [3].
The purpose of the present work was to investigate the
structure of this metastable phase.

2. EXPERIMENTAL TECHNIQUE

The Mg–Ni–Y amorphous alloys (containing 13 at. %
Ni and 0 or 4 at. % Y) were prepared in the form of
1063-7834/02/4402- $22.00 © 20204
25-µm-thick ribbons by rapid quenching of the melt.
The alloy samples were placed in evacuated sealed
tubes and were then annealed at different temperatures.
The structure was investigated by x-ray diffraction on a
Siemens D-500 diffractometer (CuKα radiation, reflec-
tion geometry). The samples were mounted on plates
cut out from silicon single crystals that were oriented in
such a way as to exclude their own reflections. The
x-ray powder diffraction analysis was performed using
a software package. This made it possible to carry out
automatic correction for the background, to determine
the positions and intensities of diffraction maxima, to
resolve the overlapping maxima, and to perform a qual-
itative phase analysis of the multiphase systems in an
automatic mode.

3. RESULTS AND DISCUSSION

The as-prepared samples have an amorphous struc-
ture. No indications of crystalline phases are revealed
in the x-ray diffraction patterns. The amorphous phase
crystallizes in the course of heating.

The x-ray diffraction pattern of the Mg87Ni13 alloy
after the initial crystallization stage (heating to 210°C
and cooling to room temperature) is displayed in Fig. 1
(curve 1). As can be seen, the diffraction pattern exhib-
its a series of sufficiently broad diffraction maxima.
This indicates that the sample has a fine-crystalline
structure after the initial crystallization stage. Accord-
ing to the Mg–Ni phase diagram [4], the crystallized
alloy should contain two phases, namely, Mg and
Mg2Ni. A number of reflections in the x-ray diffraction
pattern actually correspond to the hexagonal close-
packed lattice of magnesium (these reflections in the
x-ray diffraction pattern are designated by I). However,
002 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray diffraction patterns of the (1) Mg87Ni13 and (2) Mg83Ni13Y4 alloys after the first crystallization stage.
the majority of the diffraction maxima (denoted as II in
the diffraction patterns shown in Fig. 1) can be assigned
to none of the crystalline phases known for the system
under investigation.

Analysis of the positions of the most intense diffrac-
tion maxima allows us to assume that reflections II are
attributed to the same crystalline phase. This phase
has a cubic structure with the parameter a = 10.04 Å.
Table 1 presents the positions of all the reflections
observed in the x-ray diffraction pattern (Fig. 1, curve 1).

The presence of the hkl reflections (h, k, l ≠ 0) with
even and odd indices h, k, and l (h + k + l = 2n and h +
k + l = 2n + 1) in the x-ray diffraction pattern suggests
that the observed phase has a primitive lattice. As was
noted above, this phase has a cubic structure; hence, the
crystal lattice can belong to either of two Laue classes,
m3 or m3m. Analysis of the series of hk0, hhl, and h00
reflections demonstrates that no constraints are
imposed on the hk0 and hhl reflections, whereas the h00
reflections are observed only in the case when the index
h is equal to 2n (even). This indicates that the unit cell
can be described by either the P213 space group (the
Laue class m3) or the P4232 space group (the Laue
class m3m).

The available experimental data are obviously insuf-
ficient to decide between these two space groups. How-
ever, according to the universally accepted principle of
YSICS OF THE SOLID STATE      Vol. 44      No. 2      200
preferring a more symmetric structure (all other factors
being the same), preference should be given to the
space group P4232.

Another essential problem concerns the chemical
composition of the metastable phase. In this respect, it
is necessary to dwell on two important aspects of the
problem.

(1) The precipitates of the metastable phase are very
small in size, as judged from the broad lines in the x-ray
diffraction pattern. The size of nanocrystals can be esti-
mated from the linewidths of the diffraction patterns.
The grain size is conveniently determined using the
Selyakov–Scherrer formula [5], according to which the
grain size L is represented as

where λ is the emission wavelength, θ is the reflection
angle, and ∆(2θ) is the half-width of the relevant dif-
fraction line. Since the half-width of the diffraction
reflections is rather large, the instrumental broadening
can be ignored. The mean nanocrystal size thus deter-
mined does not exceed 10 nm. At the early crystalliza-
tion stages, the mean grain size is no more than 5 nm.

It is known that a decrease in the precipitate size is
accompanied by an increase in the equilibrium concen-
tration of the solute. As follows from the Gibbs–Thom-
son equation, the concentration Cβ(r) of a component B

L λ 1/ θcos( )/∆ 2θ( ),=
2
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Table 1.  Experimental (dexp) and calculated (dcalcd) interplanar distances for the x-ray diffraction pattern shown in Fig. 1
(curve 1)

N dexp, Å dcalcd, Å hkl (Mg) hkl (new phase)

1 5.787 5.796 111

2 5.015 5.019 200

3 4.510 4.489 210

4 4.089 4.098 211

5 2.679 2.683 321

6 2.602 2.605 002

7 2.432 2.435, 2.452 101 322, 410

8 2.366 2.366 330, 411

9 2.310 2.303 331

10 2.237 2.245 420

11 2.139 2.140 332

12 2.047 2.049 422

13 1.932 1.932 511, 333

14 1.867 1.864 432, 520

15 1.775 1.775 440

16 1.720 1.722 433, 530

17 1.673 1.673 442, 600

18 1.629 1.6285 532, 611

19 1.566 1.568 540, 621, 443

20 1.535 1.531 533

21 1.514 1.5134 622

22 1.470 1.473 103

23 1.449 1.449 444

24 1.421 1.420 543, 550, 710

25 1.366 1.366, 1.366 112 522, 721, 633

26 1.331 1.330 722, 544

27 1.288 1.285 643, 650

28 1.235 1.2357 554, 811, 741

29 1.217 1.2174 820, 644

30 1.145 1.144 832, 654

31 1.0949 1.095 842
dissolved in a small-sized crystal of a component A
depends on the crystal size r according to the law

where Cβ(∞) is the equilibrium concentration of the B
component in the crystal lattice of the A component at
a given temperature, σ is the interfacial energy
(assumed to be isotropic), Vm is the molar volume, R is
the universal gas constant, and T is the temperature [6].
The specific free energy of the metallic precipitate–

Cβ r( ) Cβ ∞( ) 1 2σVm/RTr+( ),=
metallic matrix interface is generally equal to 0.02–
0.6 J m–2. Setting the interfacial energy σ = 0.2 J m–2

and the temperature T = 500 K, we found that the solute
concentration increases by approximately 25% for
nanocrystals 5 nm in size and by approximately 13%
for nanocrystals 10 nm in size. This implies that, even
if the equilibrium crystalline phases (Mg and Mg2Ni in
accordance with the phase diagram) are formed at the
first stage of the crystallization of the amorphous phase,
the magnesium concentration in the intermetallic com-
pound will increase appreciably at the early crystalliza-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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tion stages, because the nucleation and growth of this
phase occur in the magnesium-rich matrix.

(2) In the case under consideration, the metastable
phase is formed during crystallization of the amor-
phous phase produced by rapid quenching of the melt.
The initial amorphous alloy has a relatively homoge-
neous chemical composition and inherits the structure
of the melt before its quenching. In alloys of the eutec-
tic and hypoeutectic compositions, the crystallization is
attended by redistribution of the chemical components.
As a rule, the alloy components have no time to be com-
pletely redistributed at the early crystallization stages.
The amount of dissolved components in the phase
formed upon crystallization is larger than that predicted
from the phase diagram. In the course of subsequent
annealing or heating, the concentration of the dissolved
component decreases and reaches an equilibrium value.
A typical example of this behavior is provided by the
Fe–B system. In the Fe–B system, the crystallization
brings about the formation of the metastable tetragonal
phase Fe3B (or Fe3.5B). This phase undergoes a series of
phase transitions with a gradual decrease in the iron
concentration to the point of decomposition into Fe or
Fe2B [7]. This situation is not uncommon with the
metal–metalloid and metal–metal systems.

In our case, the sequence of transformations occur-
ring during the crystallization is as follows:

Amorphous phase  Mg + metastable phase

 Mg + Mg2Ni.

As in the case discussed above, it can be assumed
that the magnesium concentration in the metastable
phase is higher than that in the Mg2Ni phase. In our
experiment, the formation of magnesium crystals
occurs simultaneously with the formation of the meta-
stable phase. Analysis of the x-ray diffraction patterns
recorded after the heat treatments performed at differ-
ent temperatures revealed that the volume fractions of
these phases are comparable to each other. For this rea-
son, it is difficult, if not impossible, to determine which
of these phase is formed first. Now, we attempt to eval-
uate the chemical composition of the phase formed
upon crystallization. It is known that several equilib-
rium crystalline phases can be formed in the Mg–Ni
system. As the nickel concentration increases, the
specific volume (the unit cell volume per atom of any
sort) varies from 23.24 Å3/atom for pure Mg to
10.94 Å3/atom for pure Ni (Fig. 2). For phases of inter-
mediate composition, the specific volume monotoni-
cally decreases with an increase in the nickel concen-
tration. For example, the specific volume of the Mg2Ni
phase is 17.28 Å3/atom. Knowing the lattice parameter
of the metastable phase (10.04 Å), it is an easy matter
to determine the unit cell volume. For this phase, the
unit cell volume is approximately equal to 1012 Å3. By
using the unit cell volume and the data displayed in
Fig. 2, we can estimate the possible number of atoms in
the unit cell.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
The specific volumes and the numbers of atoms per
unit cell in the phases of different possible composi-
tions from Mg6Ni to Mg5Ni2 are given in Table 2. Since
the alloy crystallizes with the formation of the metasta-
ble phase and magnesium, the ratio Mg : Ni in this
phase cannot exceed 6 : 1. Spassov and Koster [8]
examined the crystallization of the Mg87Ni12Y1 amor-
phous alloy and observed the precipitation of magne-
sium crystals at the first crystallization stage and the
formation of the cubic metastable phase Mg6Ni upon
subsequent decomposition of the residual amorphous
matrix. The phase studied in [8] has a face-centered
cubic lattice and is isomorphic with respect to the
Mg6Pd phase (F-43m, a0 = 20.09 Å). The lattice param-
eter of the former phase is nearly twice as large as that
for the crystalline phase observed in our case. However,
we did not observe reflections that would allow us to
judge the presence of the aforementioned phase in the
structure. In particular, our x-ray diffraction patterns
contain no relatively intense (for the Mg6Pd-type lat-
tice) (620) reflection corresponding to an interplanar
distance of 3.18 Å and a weaker (331) reflection corre-
sponding to an interplanar distance of 4.61 Å. More-
over, there are certain differences in the relevant ranges
of reflections with higher indices. It follows from
Table 2 that the observed phase has either the chemical
composition Mg6Ni, but with a different crystal lattice
(cubic primitive with a lattice parameter of 10.04 Å), or
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Fig. 2. Concentration dependence of the unit cell volume
per atom for crystalline phases in the Mg–Ni system.

Table 2.  Specific volumes and numbers of molecular units
and atoms per unit cell for crystalline phases of different
compositions

Phase
composition

Specific
volume,
Å3/ atom

Number of 
molecular units 

per unit cell

Number of atoms 
per unit cell

Mg6Ni 20.4 7 42Mg + 7Ni

Mg5Ni 20 8.4 42.5Mg + 8.5Ni

Mg4Ni 19.4 10.4 42Mg + 10.5Ni

Mg7Ni2 18.9 6 42Mg + 12Ni

Mg3Ni 18.2 14 42Mg + 14Ni

Mg5Ni2 17.8 16.25 40.6Mg + 16.25Ni
2
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Fig. 3. X-ray diffraction patterns of the Mg87Ni13 alloy after heating to (1) 210 and (2) 350°C.
one of the two chemical compositions of the formulas
Mg7Ni2 or Mg3Ni, i.e., the chemical composition with
the Mg : Ni ratio equal to 3.5 : 1 or 3 : 1. In this case,
the unit cell should involve 12 or 14 formula units,
respectively. From analyzing the possible positions of
atoms in the unit cells described by the space groups
P213 and P4232 [9], it is easy to see that both cells actu-
ally contain positions for 42 Mg atoms and 14 (or 12)
Ni atoms.

The metastable phase described above is observed
in the yttrium-free (Fig. 1, curve 1) and yttrium-con-
taining (Fig. 1, curve 2) samples. No appreciable differ-
ences in the lattice parameters for alloys of different
compositions are revealed. In the case of the yttrium-
containing alloy, the question arises as to whether the
yttrium atoms occupy the magnesium lattice or if they
are located in the crystal lattice of the metastable phase.
The solubility of yttrium in pure magnesium at a tem-
perature of 230°C is approximately equal to 2 at. %.
Undeniably, the presence of nickel affects the solubility
of yttrium in magnesium; however, the true solubilities
in the ternary system are as yet unknown. Making
allowance for the size of precipitated crystals and the
observed increase in equilibrium solubility in small-
sized crystals, we can assume that yttrium is dissolved
in both magnesium and metastable phase crystals. At
this stage of investigation, the question remains open.
P

As the heat treatment temperature increases, the
x-ray diffraction pattern changes substantially. After
heating to 210°C, the samples contain the magnesium
and metastable phases. The reflections of these phases
in Fig. 3 (curve 1) are designated by I and II, respec-
tively. Upon heating to 330°C (Fig. 3, curve 2), the
cubic metastable phase, which is formed at the first
stage of the crystallization of the amorphous alloy,
undergoes decomposition. The observed reflections
correspond to two equilibrium phases, namely, Mg
(reflections I similar to those in curve 1) and Mg2Ni
(reflections III).

4. CONCLUSIONS

Thus, the first stage of the crystallization of the
Mg87Ni13 and Mg83Ni13Y4 amorphous alloys leads to
the formation of magnesium crystals and the cubic
metastable phase with the space group P4232 and a lat-
tice parameter of 10.04 Å. According to the estimates,
this phase has either the chemical composition Mg6Ni
or one of two similar compositions, Mg7Ni2 or Mg3Ni.
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Abstract—This paper reports on measurements of the de Haas–van Alfven effect in the quasi-two-dimensional
organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 performed within the temperature range 0.33–1.44 K in
magnetic fields of B ≤ 50 T. An analysis of quantum oscillations together with cyclotron resonance data
obtained in the 40–120-GHz frequency range revealed that the complex quantum-oscillation spectrum is
formed by the fundamental frequencies α ~ 256 T and β ~ 670–610 T, as well as by combination and multiple
frequencies. It is shown that the character of the temperature-induced oscillation-spectrum rearrangement can
be interpreted within a model taking into account the existence of a magnetic phase transition at Tc ~ 0.9 K and
the closeness of the fundamental frequency α with effective mass m* = 1.48m0 to the spin damping condition.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper reports on an investigation into the
ground state of an organic conductor of the (BEDT-
TTF)8Hg4X12(C6H5Y)2 family, where BEDT-TTF
stands for bis(ethylenedithio)tetrathiofulvalene and X,
Y = Cl, Br. We shall denote subsequently, for the sake
of simplicity, various compounds in the (X–Y) form;
for   instance, (Cl–Cl) corresponds to (BEDT-
TTF)8Hg4Cl12(C6H5Cl)2 and so on.

The (BEDT-TTF)8Hg4X12(C6H5Y)2 compounds have
a layered structure and exhibit two-dimensional con-
duction involving the BEDT-TTF molecular layers [1–
6]. The low-temperature behavior of these organic con-
ductors depends essentially on the chemical composi-
tion: while the (Br–Br) and (Br–Cl) compounds
undergo a metal–insulator transition with decreasing
temperature, the ground state of (Cl–Cl) and (Cl–Br)
remains metallic down to liquid-helium temperatures
[1–6]. In (Cl–Cl) and (Cl–Br), Shubnikov–de Haas
(SH) and de Haas–van Alfven (HA) quantum oscilla-
tions were observed to exist [6–9], which makes these
materials promising in Fermi-surface studies.

The pioneering paper [7] reported a complex struc-
ture for the SH oscillations observed in (Cl–Cl) sam-
ples in magnetic fields of B ≤ 16 T. At T ~ 1.4 K, the
spectrum consisted of six frequencies: F1 = 150 T, F2 =
250 T (dominant), F3 = 400 T, F4 = 500 T, F5 = 650 T,
and F6 = 910 T, whose conditions of observation
depended on the direction of the measuring current rel-
ative to the crystallographic axes. At the same time,
measurements of the HA effect showed the HA spec-
1063-7834/02/4402- $22.00 © 0210
trum to be not so rich and, for B < 14 T, to consist of
three frequencies, namely, F2, F4, and F5. Extending the
field range covered to B ~ 35 T also revealed a number
of features in the SH oscillation spectrum with frequen-
cies in excess of 1000 T [9].

The complex oscillation spectrum observed is diffi-
cult to reconcile with the theoretical model proposed in
[10], according to which the Fermi surface is made up
of two cylinders with approximately equal cross-sec-
tional areas. The explanation proposed in [9] suggests
that some of the frequencies in the spectra are of com-
bination nature and result, for instance, from magnetic
breakdown or magnetic interaction [11].

Another unclear point is the effective mass of carri-
ers in (Cl–Cl). The temperature dependence of the SH
oscillation amplitude yields m* = 1.35m0 [7], which
differs noticeably from the value m* = 1.9m0 derived
from optical experiments [12].

To establish the nature of these contradictions, we
carried out measurements of the HA effect in magnetic
fields of up to 50 T at temperatures from 0.33 to 1.44 K,
as well as cyclotron resonance (CR) measurements in
the millimeter-wavelength range. The data obtained
allowed one to interpret the complex oscillation spec-
trum of the (Cl–Cl) samples and the specific features of
its temperature-induced rearrangement.

2. EXPERIMENTAL TECHNIQUE

The samples used in the HA measurements were
single crystals typically measuring 1 × 1 × 0.5 mm; in
2002 MAIK “Nauka/Interperiodica”
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the CR studies, they measured 3 × 3 × 0.5 mm. Each
technique was tested on several samples, and each of
them exhibited identical behavior.

The preparation technique employed and the struc-
ture of the samples are described in [1]. The magnetic
field used in the CR and HA studies was directed per-
pendicular to the planes in which the two-dimensional
carriers moved.

The studies of the HA effect were performed on a
pulsed magnetic field setup at the Katholieke Univer-
siteit Leuven (Belgium) [13]. The magnetic properties
in pulsed magnetic fields of up to 50 T were investi-
gated using the induction method [11] with pulses
20-ns long. The temperature measurements in the 0.33–
1.44 K range were performed in a He3 cryostat.

The magnetic properties in a strong pulsed field
were studied on three (Cl–Cl) crystals; all of them
exhibited the same quantum-oscillation pattern. To
reduce random error and check the reproducibility of
experimental data, the pulsed measurements were
repeated several times for each fixed temperature and
with varied pulsed-field amplitude (10, 20, 30, 40, and
50 T). The accuracy of reproducibility of receiving the
coil signals was no worse than 0.3%, with the error
being primarily due to the baseline displacement, and
the oscillating part did not depend, within experimental
error, on the pulse amplitude and did not vary under
repeated pulses of the same amplitude.

The CR measurements were performed at the Insti-
tute of General Physics, RAS, using a custom-built mil-
limeter-range magnetooptical spectrometer. 40–
120 GHz radiation was generated with backward-wave
tube generators, a carbon bolometer in thermal contact
with the sample serving as the sensor. As shown earlier
[14, 15], this measurement circuit permits one to mea-
sure the power absorbed in a sample as a function of the
magnetic field, P(B). To enhance the sensitivity in stud-
ies of (Cl–Cl) crystals, two identical bridge-connected
bolometers, one of them attached to the sample and the
other left free, were placed into the radiation channel.
This sensor connection circuit substantially suppressed
the instabilities associated with uncontrollable temper-
ature fluctuations and made it possible to increase the
sensitivity to the sample response by a factor of approx-
imately 10–15 compared to the sensitivity level
reported earlier in [14, 15]. In addition, the bridge
arrangement turned out to be very convenient in per-
forming temperature measurements in the 1.7–4.2 K
range.

3. CYCLOTRON RESONANCE
IN (BEDT-TTF)8Hg4Cl12(C6H5Cl)2 CRYSTALS

Because the CR detection technique employed
assumes that not only the sample but also the compo-
nents of the measuring cell are acted upon by micro-
wave radiation, check P0(B) measurements on the cell
without a sample were carried out in order to separate
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
the resonant magnetoabsorption associated with the
sample, P(B). Such a comparison is illustrated in
Fig. 1a. We readily see that placing a sample into the
cell at a frequency ω/2π = 100 GHz gives rise to a res-
onance at Bres ~ 4.9 T, whereas the resonance at B ~
3.5 T has the same amplitude as in the case of the empty
cell and originates from EPR in the bolometer material.

The slope of the linear Bres(ω) plot (Fig. 1b) yielded
an effective mass m* = (1.48 ± 0.05)m0. This is close to
the value derived earlier from the SH effect, m* =
1.35m0 [3]. Figure 2 presents the temperature depen-
dences of the CR parameters (the amplitude ∆P/P =
P(Bres)/P0(Bres) – 1 and the relaxation time τ, calculated
from the absorption line width). Note that the CR
amplitude first grows with decreasing temperature, to
fall off subsequently for T ≤ 2.6K. At the same time, for
T ≤ 3 K, one observes a strong (practically threefold)
decrease in the relaxation time τ.

Thus, the conditions of CR observation in (Cl–Cl)
samples become less favorable with decreasing temper-
ature (i.e., the parameter ωτ decreases). This behavior
appears anomalous, because in the organic metals
investigated earlier [14, 15], as well as in conventional
metals and semiconductors, a decrease in temperature
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Fig. 1. (a) Resonance magnetoabsorption of microwave
radiation in a (Cl–Cl) sample and (b) resonance field vs.
radiation frequency plot.
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brings about an increase in CR absorption rather than a
decrease.

4. DE HAAS–VAN ALFVEN EFFECT
IN (BEDT-TTF)8Hg4Cl12(C6H5Cl)2

The induction technique used in the pulsed mag-
netic-field experiments permits one to measure the
derivative of the magnetic moment (dM/dB) = f(B)
[11]. The experimental data on dM/dB obtained on a
(Cl–Cl) sample at different temperatures are displayed
in Fig. 3. At T = 1.44 K, one observes distinct quantum
oscillations of the magnetization consisting of several
frequencies for B ≥ 15 T (Fig. 3a). Lowering the tem-
perature to T = 0.9 K results in a strong suppression of
the oscillations (Fig. 3c). A further decrease in temper-
ature restores the oscillatory pattern for T ≤ 0.7 K
(Fig. 3d).

Interestingly, HA quantum oscillations are observed
for T ≤ 0.7 K only in the region B ≥ Bc = 25 T and are
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not seen for B ≤ Bc. At B = Bc, the dM(B)/dB curve
exhibits a maximum characteristic of a magnetic phase
transition, which is accompanied by an abrupt increase
in the sample magnetization (inset to Fig. 3d). Because
the amplitude of quantum oscillations usually grows
with decreasing temperature as a result of Landau level
narrowing [11], it is probably the magnetic phase tran-
sition in (Cl–Cl) induced by the temperature decrease
that is the origin of the anomalous suppression of the
oscillation amplitude at T ~ Tc ~ 0.9 K.

Indeed, the decrease in the oscillation amplitude at
temperatures close to the phase-transition point can be
accounted for, for instance, by an increase in scattering
from magnetic fluctuations and additional Landau level
broadening caused by them. Note that the trend towards
poorer CR observation conditions with decreasing tem-
perature (Section 3) is in qualitative agreement with
this hypothesis.

The data of Fig. 3 suggest that the formation of a
phase with a new type of magnetic ordering for T < Tc

results in a strong increase in carrier scattering and that
the application of a strong field B > Bc suppresses this
effect, making observation of the HA oscillations again
possible. Apparently, for B > Bc, magnetic order recov-
ers to a level close to that of the original high-tempera-
ture (T > Tc) phase.

Note that a strong effect of the magnetic phase tran-
sition on the amplitude and harmonic composition of
the quantum oscillations was observed earlier in the
strongly correlated metal PrCu2 [16].

To test the above conjectures, we consider the vari-
ation of the HA oscillation frequency spectra in more
detail. To compute the spectra, we subtracted the mono-
tonic component from the dM/dB curves and repre-
sented the data as a function of the inverse magnetic
field. Prior to describing the results thus obtained, we
note that the position of each feature in a complex oscil-
lation spectrum with closely lying lines can be deter-
mined only to within a certain error. In this case, some
lines which can be observed in computed Fourier spec-
tra are not stable and depend substantially on the actual
choice of the window function. For instance, for T =
1.44 K, such unstable features lie in the 750–950 and
100–200 T ranges (Fig. 4). These frequencies will not
be considered in what follows, and we shall limit our-
selves to a discussion of the spectral features whose
positions are reproduced at different temperatures and
do not depend on the method used in data processing.
The data on the frequencies characterizing the HA
spectra at different temperatures are displayed in Fig. 5
and listed in the table.

We consider first the result obtained for T > Tc ~
0.9 K (Fig. 4). For T = 1.44 K, there is a good correla-
tion between the data presented in this work and those
derived earlier from an analysis of the SH oscillations
(in Fig. 4a, the frequencies F1–F6 taken from [5] are
denoted by triangles). As in [5], in the HA spectrum
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002



CYCLOTRON RESONANCE AND THE DE HAAS–VAN ALFVEN EFFECT 213
obtained at 1.44 K and dominated by the frequency α ≈
F2, one also observes the frequencies y ≈ F3, x ≈ F4, and
β ≈ F5. At the same time, the HA oscillation spectrum
does not contain the frequencies F1 ~ 150 T and F6 ~
900 T, while one observes a new frequency γ ~ 1000 T.
The decrease in temperature in the range 1.11 ≤ T ≤
1.44 K results in suppression of the α and x frequencies
relative to the y and β frequencies (Fig. 4).

In the phase-transition region, T ~ Tc ~ 0.9 K, all
oscillation frequencies in the spectra disappear, except
γ, a frequency which is observed both for T < Tc and for
T > Tc (Fig. 4).

Below the phase-transition temperature, T < Tc, the
spectra do not contain the α frequency (Fig. 4) and the
harmonic frequencies β and y decrease slightly, while x
and γ remain unchanged within experimental error
(Figs. 4, 5 and table). Thus, the analysis of the HA
oscillation spectra suggests that the magnetic phase
transition can apparently induce a change in the ele-
ments of the Fermi surface of the (Cl–Cl) sample.

5. DISCUSSION OF RESULTS

As follows from our preceding consideration, the
HA oscillation spectrum obtained in this work at T =
1.44 K resembles an SH spectrum rather than the HA
spectra measured in [9] for B ≤ 14 T. A possible reason
for these contradictions consists in that additional fre-
quencies in our spectra appear for B ≥ 15 T and the SH
and HA oscillation spectra are in actual fact identical.
There is, however, another possibility associated with
induction currents that are generated in a sample in
pulsed experiments and modulated by SH magnetore-
sistance oscillations. The modulated induction current
should produce, in turn, an additional component of the
signal in an induction coil not connected with dM/dB.
As a result, the quantum oscillations detected in an
induction experiment may turn out to be intermediate
between the cases of pure SH and HA effects and this
should affect the character of the observed spectra. In
view of the strong temperature dependence of the fea-
tures in Figs. 4 and 5, a final conclusion as to the pure
or combined nature of the HA spectrum obtained in this
work requires data on the SH oscillations at tempera-
tures T < 1 K.

However, irrespective of the nature of the discrepan-
cies between the variants of measurement of the HA
effect, the main problem in interpretation of the oscilla-
tion data is how to reconcile a complex oscillation spec-
trum consisting of five or six frequencies with the rela-
tively simple form of the Fermi surface, which is made
up, according to calculations [10], of two closed parts.
CR data confirm this result, because our experiments
revealed one absorption line for m* = 1.48m0, whereas
in the case of a Fermi surface consisting of many parts,
there would have been several resonant magnetoab-
sorption features.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
We consider the possibility of interpreting our
experimental data under the assumption [9] that some
frequencies in the spectra are multiple- and combina-
tion-type. Following [9], we assume that the fundamen-
tal frequencies are α and β and that α corresponds to
the effective mass  = 1.48m0, while the effective

mass  for the frequency β is very high and lies out-
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side the magnetooptic-spectrometer range (for ω/2π ≥
40 GHz and B ≤ 7 T, estimates yield  = 4.9m0). First,
we consider the region T > Tc . As seen from the data in
Fig. 5 and the table, the frequencies x and y satisfy,
within experimental accuracy, the relations

(1)

(2)

i.e., x is the second harmonic of the frequency α and y
is a combination frequency. As for the nature of the fre-
quency γ, it remains unclear, because one cannot
choose a proper combination of the type mβ ± nα for it
(n and m are integers).

Within the T < Tc range, one has first to explain the
disappearance of the frequency α. One possible inter-
pretation is that the Fermi surface of (Cl–Cl) undergoes
a strong rearrangement at temperatures below the phase
transition. However, this hypothesis is at odds with the
frequencies γ and x remaining unchanged. Therefore,
within this approach, one has to assume that only cer-
tain parts of the (Cl–Cl) Fermi surface are sensitive to
changes in the magnetic order type.

Another possible explanation can be obtained using
the approach proposed in [17] and applied successfully
to description of the anomalous decrease in the oscilla-
tion amplitude of (BEDT-TTF)2KHg(SCN)4 samples at
low temperatures. The model of [17] consists essen-
tially in that the g factor becomes renormalized by car-
rier interaction with the magnetic subsystem and, in
general, is a function of the magnetic field and temper-
ature, g(B, T). As a result, when describing the temper-
ature dependence of the quantum-oscillation ampli-
tude, one has to take into account the spin factor for the
p harmonic cos[(1/2)pπg(B, T)(m*/m0)] [11]. One
clearly sees that if a mode is close to the condition of
spin damping of the first harmonic

(3)

small changes in the g factor are capable of giving rise
to strong features in the oscillation amplitude.

It is such a case that is realized for the frequency α
in the (Cl–Cl) samples, because m* ~ 1.5m0 and g ≈ 2.
Indeed, CR measurements yield 1.48m0 for the effec-
tive mass (Section 3), which is close to the critical value

mβ*

x 2α ,=

y β α ;–=

g
m*
m0
------- 2n 1, n+ 0 1 2 …,, , ,= =

Oscillation frequencies for a (Cl–Cl) sample derived from
the de Haas–van Alfven effect

Tempera-
ture range

Frequency, T

α y x β γ

T > Tc 256 ± 7 396 ± 8 515 ± 18 670 ± 33

T ~ Tc – – – – 1008 ± 30

T < Tc – 347 ± 4 515 ± 18 610 ± 12
P

1.5m0, and a relatively small renormalization of the g
factor is enough for the condition of Eq. (3) to become
satisfied and, hence, for the amplitude of the first har-
monic of frequency α to vanish. The amplitude of the
second harmonic will remain finite in this case; this fea-
ture [for the frequency x in the case of (Cl–Cl)] is
observed in quantum-oscillation spectra (Figs. 4, 5).
Note that, because the amplitude of all oscillation fea-
tures is strongly suppressed for T ~ Tc, observation of
the 2α frequency requires the temperature to be low-
ered to T ~ 0.4 K (Fig. 4).

Considered within this interpretation, the constancy
of the frequency x implies constancy of the frequency α
for T > Tc and T < Tc. According to the data in Fig. 5 and
the table, the frequency β decreases approximately by
60 T for T < Tc; however, Eq. (2) is still met within
experimental accuracy, which, on the one hand, but-
tresses the combination nature of the frequency y, while
on the other, is in accord with the assumption of an
invisible presence of frequency α, in full accordance
with the model from [17].

Combination frequencies in quantum-oscillation
spectra can arise as a result of magnetic breakdown or
magnetic interaction [8]. However, estimation of the
Shoenberg parameter for the (Cl–Cl) sample yields α =
4π(dM/dB) ~ 10–2, which practically excludes the latter
effect from consideration [8]. Thus, the frequency y and
the orbit associated with it originate most probably
from magnetic breakdown. It may be conjectured that
the frequency γ can also be accounted for by the mag-
netic breakdown effect; however, additional studies are
required to provide a final answer to the nature of this
feature in the quantum-oscillation spectrum.

In accordance with the proposed interpretation, the
combination frequency y is a difference rather than a
sum frequency and should be due to the subtraction of
some electronic orbits. This is possibly connected with
the fact that the fundamental frequency β, in turn, is a
combination of frequencies and results from magnetic
breakdown. Analysis of the possible Fermi surface
structure and making the corresponding theoretical cal-
culations is, however, beyond the scope of the present
work.

Thus, a combined study of cyclotron resonance and
the HA effect has established that the complex quan-
tum-oscillation spectrum and the character of its rear-
rangement in the 0.33–1.44 K temperature range in
(Cl–Cl) samples can be interpreted in terms of a model
that assumes the existence of a magnetic phase transi-
tion at Tc ~ 0.9 K and the closeness of one of the funda-
mental harmonics to the spin damping condition.

The magnetic transition manifests itself experimen-
tally as a feature in the monotonic part of the field
dependence of magnetization, which is observed for
T < 0.9 K, and as suppression of the amplitude of the
oscillating part in dM/dB in the vicinity of T ~ 0.9 K
(Figs. 3, 4).
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The complex temperature-induced rearrangement of
quantum-oscillation spectra can be qualitatively
accounted for within the hypothesis by assuming g-fac-
tor renormalization to occur as a result of interaction
with the magnetic subsystem, as well as the existence
of parts of the Fermi surface and/or orbits sensitive to
the postulated magnetic phase transition.

At the same time, the origin of magnetism in (Cl–
Cl) samples remains unclear and the hypothesis formu-
lated in this work requires further experimental testing.
This would require further investigation of the mag-
netic properties and magnetic structure of (Cl–Cl) sam-
ples at low temperatures.
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Abstract—The ground-state energy of the two-sublattice two-dimensional Hubbard model is calculated in the
static-fluctuation approximation with allowance for electron transfer from sites to next-to-nearest neighbor
sites. In a specific case, the energy of the one-dimensional Hubbard model is calculated and compared with an
exact solution. © 2002 MAIK “Nauka/Interperiodica”.
1. Some properties of high-temperature supercon-
ductors (HTSCs) in both superconducting and normal
states can be explained only if one takes into account
both the copper–oxygen hopping integrals B and the
hopping integrals B' between nearest neighbor oxygen
atoms. Qualitative consideration reveals that the oxy-
gen–oxygen hole transfer can affect the physical prop-
erties of HTSCs. Therefore, it is of considerable inter-
est to calculate the characteristics of the system with
allowance for electron (or hole) transfer to next-to-
nearest neighbor sites of the crystal lattice.

In [1, 2], we developed a method for solving equa-
tions of the B–B'–U Hubbard model in the static-fluctu-
ation approximation (SFA) and investigated (in [2]) the
dependence of the energy spectrum and magnetization
of the system on the magnitude of the transfer integral
B' to a next-to-nearest neighbor site in the two-dimen-
sional bipartite Hubbard model [3, 4].

The objective of this paper is to calculate the
ground-state energy of the B–B'–U Hubbard model in
the SFA.

2. By analogy with the Emery model, it is assumed
that, in contrast to the standard Hubbard model, the lat-
tice is composed of two sublattices of atoms of different
species. We also assume that electrons can be trans-
ferred to next-to-nearest neighboring atoms of the crys-
tal lattice. The Hamiltonian of this two-dimensional
bipartite B–B'–U Hubbard model has the form

(1)

(2)

H H0 V ,+=

H0 ε1n fσ

σ f A∈,
∑ ε2nlσ

σ l C∈,
∑+=

+ B fl a fσ
+ alσ alσ

+ a fσ+( )
σ f l, ,
∑ Bl 'lal 'σ

+ alσ,
σ l ' l, ,
∑+
1063-7834/02/4402- $22.00 © 20216
(3)

where  and ajσ are the creation and annihilation
Fermi operators, respectively, of an electron with spin

σ at lattice site j (j = f, l); nfσ = afσ; ε1 and ε2 are the
self-energies of an electron at a site of the A and C sub-
lattices, respectively; Bfl = B(f – l), Bl 'l = B(l' – l) are the
transfer integrals describing electron hopping (due to
the kinetic energy of the crystal field) to a nearest and a
next-to-nearest neighbor site, respectively;  = –σ; and
U1 and U2 are the Coulomb repulsion energies of two
electrons at one site of the A and C lattices, respectively.
In order for Hamiltonian (1) to be used to describe the
case of holes moving in CuO2 planes in HTSCs, only
the electrons of one sublattice (as in the case of oxygen
in CuO2 planes) are assumed to be able to transfer along
the diagonals of a square unit cell to sites of the same
sublattice (for the sake of simplicity, we consider a
hypothetical square lattice).

3. In [2], the electron creation operators in the
Heisenberg representation, which determine the evolu-
tion of the system, were found to have the form

(4)

V
U1

2
------ n fσn f σ

σ f A∈,
∑ U2

2
------ n fσn f σ,

σ f C∈,
∑+=

a jσ
+

a jσ
+

σ

akσ
+ τ( ) akσ

+ 0( ) ε1' ε2k'–( )/2tk( ) tkτ( )sinh[[{=

+ tkτ( )cosh ] bkσ
+ 0( ) tkτ( )Bk/tksinh+ ] U1Φτ( )cosh

+ ∆n1σakσ
+ 0( ) ε1' ε2k'–( )/2tk( ) tkτ( )sinh[[

+ tkτ( )cosh ] ∆n1σbkσ
+ 0( ) tkτ( )Bk/τksinh+ ]

× U1Φτ( )/Φ} τ ε 1' ε2k'+( )/2( ),expsinh

bkσ
+ τ( ) bkσ

+ 0( ) ε2k' ε1'–( )/2tk( ) tkτ( )sinh[[{=
002 MAIK “Nauka/Interperiodica”



THE GROUND-STATE ENERGY OF THE B–B'–U HUBBARD MODEL 217
(5)

where

The remainder of the notation is the same as that in [2].
Using Eqs. (4) and (5), we will calculate the ground-

state energy (the average energy of the Hubbard model
E0 = 〈H〉  at the temperature T  0).

Following the method developed in [2], we calculate
the anticommutator Green’s functions:

(6)

The anticommutator Green’s functions 〈 |akσ〉E

are also given by Eq. (6) with U2 in place of U1. In
order to take into account the contribution from the
Coulomb repulsion energy (3) to the ground-state
energy, we should also calculate the anticommutator

Green’s functions 〈 | (0) (0)ak↑(0) 〉E

and 〈 | (0) (0)bk↑(0) 〉E for electrons of
different subsystems and sum them over all possible
values of k1, k2, and k in the first Brillouin zone.

Using Eq. (4), it can be found that

+ tkτ( )cosh ] akσ
+ 0( ) tkτ( )Bk/tksinh+ ] U2Φτ( )cosh

+ ∆n2σbkσ
+ 0( ) ε2k' ε1'–( )/2tk( ) tkτ( )sinh[[

+ tkτ( )cosh ] ∆n2σakσ
+ 0( ) tkτ( )Bk/τksinh+ ]

× U2Φτ( )/Φ} τ ε 1' ε2k'+( )/2( ),expsinh

ε1' ε2k'+ ε1 ε2 U1 U2+( )/2+ +=

+ σS U1 U2–( ) 4B ' kxa( ) kya( ),coscos–

ε1' ε2k'– ε1 ε2– U1 U2–( )/2+=

+ σS U1 U2+( ) 4B ' kxa( ) kya( ).coscos+

akσ
+ bkσ〈 | 〉 E

i
2π
------1

4
---

Bk

tk

----- 1
E U1Φ– tk – ε1' ε2k'+( )/2–
-----------------------------------------------------------------





=

+
1

E U1Φ tk– ε1' ε2k'+( )/2–+
-----------------------------------------------------------------

–
1

E U1Φ– tk ε1' ε2k'+( )/2–+
-----------------------------------------------------------------

–
1

E U1Φ tk ε1' ε2k'+( )/2–+ +
-----------------------------------------------------------------





.

bkσ
+

ak k1 k2↓–+
+ ak1↓ ak2↑

+

bk k1 k2↓–+
+ bk1↓ bk2↑

+

2U
N

------- ak k1 k2↑–+
+ ak1↑ 0( )ak2↓

+ 0( )ak↓ 0( )〈 | 〉 E

k1 k2 k, ,
∑

=  
i

2π
------U

4
---- ak1↓

+ ak1↓〈 〉
1 ε1' ε2k'–( )/2tk+

E U1Φ– tk– ε1' ε2k'+( )/2–
----------------------------------------------------------------





k1 k,
∑
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(7)

A similar expression can also be found for the

Green’s function 〈 | (0) (0)bk↑(0) 〉E.
(We do not write it out, because it is cumbersome.)

We consider the case where, on the average, there is
one electron per site of the crystal lattice (n = 1); it is
not difficult to extend the results to the case of an arbi-
trary electron concentration n. Using Eqs. (6) and (7)
and the fluctuation–dissipation theorem, the average
energy of the system is calculated to be

(8)

where

(9)

+
1 ε1' ε2k'–( )/2tk+

E U1Φ tk– ε1' ε2k'+( )/2–+
----------------------------------------------------------------

+
1 ε1' ε2k'–( )/2tk–

E U1Φ tk ε1' ε2k'+( )/2–+–
-----------------------------------------------------------------

+
1 ε1' ε2k'–( )/2tk–

E U1Φ tk ε1' ε2k'+( )/2–+ +
-----------------------------------------------------------------





+
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2π
------ U

4Φ
------- ∆n1↓ ak1↓

+ ak1↓〈 〉
k1 k,
∑

×
1 ε1' ε2k'–( )/2tk+
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----------------------------------------------------------------





–
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-------------------------------------------– 
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(10)
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In Eqs. (9) and (10), f+(x) = [1 + exp(βx)]–1 is the

Fermi distribution function, Φ = , Bk =
−2B[cos(kxa) + cos(kya)],  = –4B'cos(kxa)cos(kya),
and summation is carried out over k and p lying in the
first Brillouin zone.

In Fig. 1, the ground-state energy E0 is plotted as a
function of (U1 + U2)/2 for three different values of the
transfer integral to a next-to-nearest neighboring site
(along a square diagonal). Analysis of these depen-
dences reveals that in the region of strong correlations,
the ground-state energy for B' < 0 decreases as the
transfer integral to a next-to-nearest neighboring site
increases in magnitude. This is due to the fact that
allowance for the transfer integral B' in the case of
strong correlations leads to delocalization of electrons,
which causes the total energy of the system to decrease.
If electron correlations are weak, then, conversely, the
ground-state energy increases, because the electrons
that are itinerant in the case of a small Coulomb inter-
action energy tend to localize when the transfer integral
B' is taken into account.

4. Now, we compare our results with those available
in the literature. An exact expression for the ground-
state energy of the one-dimensional Hubbard model
was derived in [5]. For comparison purposes, we con-
sider the ground-state energy in this particular case.
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Putting U1 = U2 = U, Bk = –2Bcos(kxa), and  = 0 in
Eqs. (8) and (9), we obtain

(11)

Figure 2 shows the dependences of the ground-state
energy E0 on the ratio U/B as calculated from three dif-
ferent formulas: (i) the exact expression derived by
Lieb and Wu [5], (ii) Eq. (11) with allowance for the
dependence of the spin S on the Coulomb repulsion
energy U, and (iii) Eq. (11) with S = 1/2. It is seen from
Fig. 2 that the values of E0 given by the exact expres-
sion in the limits of U = 0 and ∞ are identical to those
calculated from Eq. (11) and the SFA solution is seen to
be qualitatively similar to the exact solution. There is
also reasonable quantitative agreement between the
exact and approximate solutions; for example, the ratio

((E0 – )/ ), which can be considered to be the
relative error, is roughly 18% for U/B = 4 and 2% for
U/B = 2. Thus, comparison of the exact and approxi-
mate solutions shows that the SFA adequately describes
the Hubbard model under study in the cases of weak
and strong correlations. In the intermediate case of
moderate correlations, the SFA is likely to overestimate
the effect of the Coulomb interaction. This overestima-
tion becomes smaller in amount when the dependence
of the spin S on the Coulomb repulsion energy is taken
into account (curve 2 in Fig. 2).
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Fig. 1. Ground-state energy E0 as a function of (U1 + U2)/2
for n = 1, B = 1.5 eV, T = 0, and B' equal to (1) 0, (2) –0.3B,
and (3) –0.45B.
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It should be noted that in the case of strong correla-
tions, the ground-state energy of the antiferromagnetic
phase is found to be lower than that of the paramagnetic
phase. The same result was obtained in [6] using the
variational method. In the case of weak correlations at
low temperatures (near T = 0), there is a tendency for
the energy of the paramagnetic state to decrease in
comparison with that of the antiferromagnetic phase
(calculated in the SFA); for example, at U/B = 1, we

have  = 4%, where  and  are the

average energies of the system in the paramagnetic and
antiferromagnetic states, respectively. Therefore, we
may anticipate that at low temperatures, the antiferro-
magnetic–paramagnetic phase transition can occur as
the Coulomb repulsion energy U is decreased (we
recall that the case of half-filling is considered). It
seems likely that a decrease in U at a fixed low temper-
ature is similar in effect to an increase in temperature at
a fixed value of U. As for the magnetic structure of the
ground state in the weak-correlation regime (at T = 0),
it should be investigated taking into account the charac-
ter of elementary excitations at T = 0 [7–11].

Thus, the method developed in [1, 2] for calculating
an anticommutator Green’s function in the SFA enables
one to investigate the energy spectrum of the B–B'–U
Hubbard model and the magnetization of the system [2]
and to calculate the ground-state energy. The electron
transfer to next-to-nearest neighboring sites is shown to
affect the ground-state energy of the Hubbard model.
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Abstract—This paper reports on the results of experimental investigations into the thermal conductivity of GaS
and GaSe layered semiconductor crystals in directions parallel and perpendicular to the crystal layers in the
temperature range 5–300 K. Specific features of the thermal conductivity of these crystals are analyzed. © 2002
MAIK “Nauka/Interperiodica”.
A substantial difference between weak interlayer
interaction and strong intralayer interaction leads to a
number of interesting features in the phonon spectra of
layered crystals. The specific features in the phonon
spectra of layered semiconductor crystals in relation to
the temperature behavior of the heat capacity and ther-
mal expansion have been investigated theoretically and
experimentally. However, data on the thermal conduc-
tivity of layered semiconductor crystals at low temper-
atures either have not been adequately covered in the
literature or are unavailable.

In this paper, the results of investigations into the
thermal conductivity of a GaSe layered crystal in the
temperature range 5–300 K (Fig. 1a) are presented for
the first time. For comparison, we report data on the
thermal conductivity of a GaS isostructural layered
crystal (Fig. 1b) [1]. It should be noted that the thermal
conductivity of GaS and GaSe at temperatures above
100 K has been studied by Guseinov et al. [2]. The
results we obtained at room temperature agree satisfac-
torily with the data reported in [2]. Mamedov et al. [3]
demonstrated that, at low temperatures, the temperature
dependences of the heat capacity Cp(T) for GaS and
GaSe layered semiconductor crystals are characterized
by temperature ranges in which bending waves play a
dominant role. Moreover, the investigation of the ther-
mal expansion in GaS and GaSe layered semiconductor
crystals revealed temperature ranges in which the ther-
mal expansion coefficient α||(T) in the plane of the crys-
tal layers is negative due to the manifestation of the
membrane effect, which is specific to layered semicon-
ductors [4]. In this respect, the influence of the features
of the phonon spectrum of layered semiconductors on
the thermal conductivity is undoubtedly of scientific
interest.

The thermal conductivity κ was measured by the
stationary method described earlier in [5]. The maxi-
mum error in measurements did not exceed 5%. Note
that the temperature behavior of the thermal conductiv-
ity coefficient κ⊥  in the direction perpendicular to the
layer plane slightly differs for different samples. This is
1063-7834/02/4402- $22.00 © 20221
likely caused by the difficulties associated with orienta-
tion of the samples along the [001] direction. The data
on the thermal conductivity κ⊥  were obtained by aver-
aging measurements for two samples. It is clearly seen
from Fig. 1 that the temperature dependences of the
thermal conductivity have a specific bell-like shape,
which is characteristic of phonon thermal conductivity

5
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T, K
10 40 100 400
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 W
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Fig. 1. Temperature dependences of the thermal conductiv-
ity coefficient for (a) GaSe and (b) GaS layered semicon-
ductors in directions (1) parallel to the plane of crystal lay-
ers (κ||) and (2) perpendicular to the plane of crystal layers
(κ⊥ ).
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in crystals. Analysis of the experimental data repre-
sented in Fig. 1 revealed the following features in the
thermal conductivity of GaS and GaSe layered semi-
conductor crystals.

(1) The thermal conductivity is anisotropic (at room
temperature, κ||/κ⊥  ~ 10). The anisotropy of thermal
conductivity decreases with a decrease in the tempera-
ture.

(2) In the range of the temperature increase in the
thermal conductivity, the temperature dependences of
the thermal conductivities κ|| and κ⊥  are approximated
by the following power laws: κ|| ~ T 2.4 ± 0.1 and κ⊥  ~
T 2.1 ± 0.1 for GaS and κ|| ~ T 2.5 ± 0.1 and κ⊥  ~ T 2.2 ± 0.1 for
GaSe.

(3) The temperature location of the maxima of the
thermal conductivity in the direction of the stronger
bond (in the layer plane) is displaced toward the high-
temperature range. The maxima in the dependences
κ||(T) and κ⊥ (T) are located at temperatures of 24 and
20 K for GaS and 19 and 13 K for GaSe, respectively.

(4) In the temperature range beyond the maximum,
the thermal conductivity κ follows an exponential law
over a wide temperature range: κ = a(T/Θi)nexp(Θi/bT),
where Θi is the characteristic temperature and a, b, and
n are constants [6].

The thermal conductivity anisotropy in GaS and
GaSe has defied interpretation on the basis of peculiar-
ities in the acoustic spectrum and can only be explained
in terms of the features of carrier scattering by defects
typical of layered semiconductor crystals. A character-
istic property of virtually all layered semiconductor
crystals is the existence of stacking faults that give rise
to strong scattering of phonons during their motion in
the direction perpendicular to the plane of layers and
does not affect their motion in the plane of these layers.

The temperature increase in the thermal conductiv-
ity of GaS and GaSe layered semiconductors according
to the law T 2 + X is due to the corresponding increase in
the heat capacity of these crystals [3].

Different temperatures of the thermal conductivity
peaks in the dependences κ||(T) and κ⊥ (T) can be
explained by different times of switching-off the
umklapp processes, which, in turn, is due to the anisot-
ropy of bonding forces in these crystals.

In the range of exponential decay of the thermal
conductivity, we performed a careful graphical analysis
of the dependences κ||(T) for GaS and GaSe. On this
P

basis and with due regard for the results obtained in [3],
we estimated the quantity Θ/b for GaS and GaSe at
approximately 110 and 65, respectively. According to
the experimental data [3], the Debye temperatures ΘD
for GaS and GaSe are approximately equal to 260 and
190 K, respectively. Hence, we can argue that the con-
stant b is larger than two for GaS and GaSe. Moreover,
Anders et al. [7] calculated the possible umklapp pro-
cesses with the participation of three phonons belong-
ing to only a bending branch of the acoustic spectrum
and obtained the constant b ~ 1. Therefore, we can state
that the efficiency of these processes in GaS and GaSe
layered semiconductor crystals is rather low.

In conclusion, it should be emphasized that all the
aforementioned features of the thermal conductivity in
GaS and GaSe are inherent in the most typical represen-
tatives of layered crystals, namely, graphite [8] and
boron nitride [9].
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Abstract—The influence of normal processes of electron–electron and phonon–phonon scattering on quasipar-
ticle momentum relaxation in nonequilibrium electron–phonon systems of degenerate semiconductors is inves-
tigated. A system of kinetic equations is solved for the electron and phonon distribution functions, and the
kinetic coefficients of a semiconductor are calculated in the linear approximation in the degeneracy parameter.
The influence of normal scattering of quasiparticles on the electrical conductivity, thermopower, and heat con-
ductivity of a degenerate semiconductor is analyzed. Redistribution of the phonon momentum in N processes
within each branch of the vibrational spectrum, as well as among different branches, is taken into account.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In investigating the influence of electron–phonon
drag on kinetic effects in conductors, it was assumed
[1–12] that the quasiparticle momentum relaxation in a
nonequilibrium electron–phonon system can be
described through the introduction of total relaxation
rates for quasiparticles. In this approximation, normal
processes (N-processes) of electron–electron scattering
were not taken into account, while phonon–phonon
normal scattering was included into the total relaxation
rates for phonons. This approach is not accurate for suf-
ficiently pure conductors at low temperatures when the
quasiparticle relaxation rates in N-processes become
comparable to (or even higher than) the resistive relax-
ation rates for electrons and phonons. It is well known
[13–18] that the N processes of quasiparticle scattering
do not lead to electron and phonon momentum relax-
ation but cause the subsystems to relax to a drifting
local equilibrium distribution of quasiparticles. There-
fore, in order to describe the nonequilibrium distribu-
tion of each of the subsystems with allowance for N
processes, three parameters should be introduced: two
relaxation rates (the resistive rate and that characteriz-
ing quasiparticle relaxation in N processes) and the
average drift velocity. In this case, the system of kinetic
equations should be complemented with two momen-
tum balance equations for the drift characteristics of the
electron and phonon subsystems to be determined.

This new approach was developed in [19] when ana-
lyzing the kinetic effects in metals. It was shown that N
processes in electron–electron scattering contribute
only to diffusion fluxes and, therefore, to the ther-
mopower and thermal conductivity of metals. The
phonon drift caused by N processes in phonon–phonon
1063-7834/02/4402- $22.00 © 0223
scattering can lead to enhancement of mutual electron
and phonon drag in electrical conduction and to a dra-
matic growth in the phonon component of the ther-
mopower. The three-parameter approximation proved
to be more adequate for describing the nonequilibrium
electron–phonon system and kinetic effects in metals.
In [20], the influence of N processes in phonon–phonon
scattering upon the electron–phonon drag and kinetic
effects in degenerate semiconductors was examined. It
is noteworthy that the system of integral equations for
the parameters that characterize the electron distribu-
tion function in metals [19] is simpler than that in the
case of degenerate semiconductors [20], because the
phonon wave vectors involved in expressions for the
relaxation rates due to electron–phonon collisions in
metals are limited by the Debye wave vector qd [21].

The purpose of the present paper is to investigate the
influence of drift motion of quasiparticles caused by N
processes upon electron–phonon drag and kinetic
effects in degenerate semiconductors. First, in contrast
to [20], we will completely treat the problem on mutual
electron–phonon drag with allowance for N processes
in the scattering of electrons and phonons. Second, in
contrast to [20], where the momentum redistribution of
longitudinal and transverse phonons due to N processes
is considered only within each branch of the vibrational
spectrum (Simons’s mechanism [22]), we will also ana-
lyze Herring’s N-process mechanism of relaxation [23],
which leads to redistribution of the phonon momentum
among different branches. We will show that the effec-
tive electron relaxation rate, the thermopower due to
electron–phonon drag, and the lattice heat conductivity
of sufficiently pure semiconductors and semimetals
depend heavily on the type of phonon momentum
relaxation due to N processes [22, 23]. The influence of
2002 MAIK “Nauka/Interperiodica”
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N processes on the phonon-drag thermopower is the
most important conclusion made in the present study,
which has further practical applications. It is shown that
the phonon-drag thermopower is completely deter-
mined by the resistive phonon relaxation rate averaged
over frequency if the phonon relaxation rate due to N
processes νphN(q) is much greater than the resistive
phonon relaxation rate νphR(q). In the one-parameter
model of the nonequilibrium electron–phonon system
[1–12], the phonon-drag thermopower in this extreme
case is determined by the phonon relaxation rate due to
N processes.

In Section 2, the set of kinetic equations and of
phonon- and electron-momentum balance equations is
transformed into a set of three integral equations for the
parameters that characterize the nonequilibrium elec-
tron distribution function. In Section 3, the latter set is
solved in the linear approximation in the degeneracy
parameter kBT/ζ ! 1 (where ζ is the Fermi energy). In
Section 4, the electrical conductivity and thermopower
of a degenerate semiconductor are calculated with
allowance for mutual electron–phonon drag. In Section 5,
the Onsager relations and the contribution of normal
scattering of quasiparticles into the electron and
phonon heat conductivity are analyzed.

2. A SET OF KINETIC EQUATIONS 
FOR THE NONEQUILIBRIUM ELECTRON–
PHONON SYSTEM INCLUDING NORMAL 

SCATTERING OF QUASIPARTICLES

A set of kinetic equations for the nonequilibrium
electron f(k, r) and phonon Nλ(q, r) distribution func-
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Schematic illustrating momentum relaxation in a nonequi-
librium electron–phonon system with allowance for normal
quasiparticle scattering.
P

tions can written as [2–5, 19]

(1)

where  = sλq/q is the group velocity of acoustic

phonons with polarization λ, (q) is the phonon

relaxation rate due to N scattering, and the rate (q) =

(q) + (q) + (q) includes all nonelectron
resistive phonon relaxation rates due to phonon scatter-
ing on phonons (Umklapp processes), on defects, and
on the boundaries of the sample. The collision integrals
of electrons with impurities (Iei), with electrons (Iee),
and with phonons (Ie, ph) and of phonons with electrons
(Iph, e) are defined in [2–5, 17–19]. In Eq. (1), it is taken
into account that N scattering of phonons brings the
phonon subsystem to a local equilibrium characterized
by Planck’s distribution with a drift velocity uλ, which
can be different for phonons with different polarization
λ [13–16]:

(2)

where is Planck’s function.

Figure 1 illustrates the redistribution and relaxation
of the momentum gained by an electron–phonon sys-
tem from the electric field and the temperature gradient.
Due to the electron–phonon relaxation mechanisms
characterized by relaxation rates νe, ph and νph, e, the
momentum is redistributed in the electron–phonon sub-
system. The scattering of electrons on impurities (char-
acterized by a relaxation rate νei), the electron–electron
scattering and phonon–phonon scattering accompanied
by Umklapp processes (relaxation rates νeeU and νphU ,
respectively), the phonon scattering on the boundaries
(relaxation rate νphL), and the scattering of phonons on
impurities (Rayleigh’s mechanism, relaxation rate
νph, i) result in relaxation of the total momentum of the
electron–phonon system. The phonon–phonon N scat-
tering causes a momentum redistribution among differ-
ent phonon modes and leads to a phonon drift with
velocity uλ. The electron–electron N scattering causes a
momentum redistribution to take place in the electron
subsystem, because of which a local equilibrium Fermi
distribution is established that is characterized by a
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mean drift velocity u and described [17–19] by the
function

(3)

The electron and phonon distribution functions can
be written as

(4)

where f0(εk) and  are local equilibrium distribution
functions and δfk and gλ (q) are nonequilibrium addi-
tions that are linear in external perturbations. We linear-
ize the collision integrals with respect to these addi-
tions. Then, in the relaxation time approximation, the
collision integral Iee can be represented as [18, 19]

(5)

The relaxation rates νeeN(k) and νeeU(k) are determined
in [18]. The collision integrals Iei(δfk) and Iph, e( f0,

gλ (q)), as well as Ie, ph(δfk, ), are expressed through
relaxation rates in the elastic scattering approximation
[12]. In calculating the collision integral Ie, ph(f0,
gλ (q)), we take into account the inelasticity of colli-
sions of electrons with phonons to the first order in the
inelasticity parameter "ωqλ /ζ. The electron distribution
function δfk is represented in the standard form [2–5]

(6)

In order to find the quasiparticle drift velocities, the set
of kinetic equations (1) should be complemented with
two momentum equilibrium equations for the electron
and phonon subsystems [19]. Taking into account that
the total momentum of the electron subsystem is con-
served in normal electron–electron scattering, we
express the electron drift velocity u through c(ε) as in
[19] as

(7)

Hence, as in [19], the nonequilibrium electron sub-
system is described by three parameters: two relaxation
rates νeeN(k) and νeR(k) (here, νeR(k) = νei(k) + νe, ph(k)
+ νeeU(k) is the resistive relaxation rate of the electron
momentum) and the mean electron drift velocity u.
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Substituting Eqs. (2)–(4) into Eq. (1), we find the
phonon distribution function gλ (q) [20] to be

(8)

where  =  +  +  and (kF , q) is
the phonon momentum relaxation rate due to collisions
with electrons. The first and second terms in Eq. (8) are
due to diffusion and drift of phonons, respectively,
while the last term is due to the electron system being
in a nonequilibrium state. The phonon drift velocity uλ
can be found from the momentum balance equation,
which can be derived from Eq. (1) and the law of
phonon subsystem momentum conservation in normal
phonon–phonon scattering and has the form

(9)

Two mechanisms of normal three-phonon scattering
are known, Herring’s mechanism [23] and Simons’s
mechanism [22]. The transverse-phonon relaxation rate

for Herring’s mechanism (  ≅  BtT 4ωt) is defined by
three-phonon scattering (t + l  l) in which one trans-
verse and two longitudinal phonons are involved [16].
The longitudinal-phonon relaxation rate in an anisotro-

pic continuum model (  ≅  BLT 3 ) is defined by
three-phonon processes of either the decay of a longitu-
dinal phonon into two transverse phonons belonging to
different branches or the fusion of two transverse
phonons into a longitudinal phonon (l  t1 + t2).
Thus, phonons of different polarizations are involved in
Herring’s scattering mechanism and this relaxation
mechanism provides drift-momentum redistribution
among longitudinal and transverse phonons. This is the
reason why, in the nonequilibrium phonon system,
three-phonon Herring processes tend to establish a
local equilibrium distribution with the same drift veloc-
ity for phonons of both polarizations: ul = ut = uH.

Simons’s relaxation mechanism [22] involves
phonons of the same polarization. For this scattering

mechanism (  ≅  BλT4ωλ ), the momentum conser-
vation law is fulfilled in N processes for each branch of
the phonon spectrum and the drift velocities of longitu-
dinal and transverse phonons are different. For this rea-
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son, we will consider two cases of phonon momentum
relaxation due to N processes: first, when N processes
redistribute momentum only within each branch of the
vibrational spectrum and, second, when momentum
redistribution among different branches prevails.

The phonon drift velocities uλ for Herring’s relax-
ation mechanism [23] (uH) and Simons’s relaxation
mechanism [22] (uS) can be found from the phonon
momentum balance equation (9), and Eq. (8) and can be
expressed through the function χ(ε):

(10)

(11)

Here,

and mF = m(ζ) and kF are the effective mass and the
electron wave vector at the Fermi level, respectively.
The other functions are defined as

(12)

u H( ) sL
2

T
----βλ

H( ) ∇ T–( )
2sL

2

kBT
---------

kF

qTL

------- 
 

3

dε
f 0∂
ε∂

--------– 
  m̃ ε( )

0

∞

∫+=

× c ε( )βe phN,
H( ) ε( ) u0

H( ) ∆u H( ),+=

uλ
S( ) sλ

2

T
----β1

S( ) ∇ T–( )
2sλ

2

kBT
---------

kF

qTλ
------- 

 
3

dε
f 0∂
ε∂

--------– 
  m̃ ε( )

0

∞

∫+=

× βe phN,
S( ) ε( )c ε( ) u0λ

S( ) ∆uλ
S( ),+=

β1
S( ) ΨN

λ

ΨNR
λ----------, βe phN,

S( ) ε( )
ψe phN,

λ ε( )
ΨNR

λ-----------------------,= =

βλ
H( ) sλ

sL

---- 
 

2

β1
H( ),=    β1

H( ) ΨN
L 2S*

3 ΨN
t+

ΨNR
L 2S*

5 ΨNR
t+

------------------------------------,=

βe phN,
H( ) ε( )

ψe phN,
L ε( ) 2ψe phN,

t ε( )+

ΨNR
L 2S*

5 ΨNR
t+

--------------------------------------------------------.=

S* sL/st, zq
λ "ωqλ

kBT
------------

q
qTλ
-------, qTλ

kBT
"sλ
---------,= = = =

z2k
λ 2k

qTλ
-------, m̃ ε( ) m ε( )

MF

------------,= =

ΨN
λ ν phN

λ q( )
ν ph

λ q( )
------------------

zdλ

=

≡ zq
λ zq

λ( )4ν phN
λ q( )

ν ph
λ q( )

------------------Nqλ
0 Nqλ

0 1+( ),d

0

zdλ

∫

ΨNR
λ ν phR

λ q( )ν phN
λ q( )

ν ph
λ q( )

-------------------------------------
zdλ

,=
PH
where (q) = νphN(q) + (q) is the total phonon

momentum relaxation rate, (q) =  + (q)

is the resistive phonon relaxation rate, and (q) is
the phonon momentum relaxation rate due to scattering
on electrons [10, 12], zd λ = "ωd λ /kBT (ωd λ is the Debye
frequency of phonons with polarization λ). We sepa-
rated the phonon drift velocity uλ into two parts, one of
which (u0λ) is determined by the temperature gradient,
while the other (∆uλ ) is due to the electrons being in a
nonequilibrium state. Therefore, when normal phonon
scattering is taken into account, the nonequilibrium
phonon subsystem is also described by three parame-

ters (the relaxation rates (q) and (q) and the
mean velocity of the phonon drift) rather than by one
parameter (the total phonon momentum relaxation rate
[1–12]).

We substitute Eq. (8) into the expression for the
phonon distribution function gλ (q) and unite the drift
and diffusion contributions, both of which are propor-
tional to the temperature gradient. Then, gλ (q) can be
represented as the sum of three terms [20]:

(13)

where (q) is the effective phonon momentum relax-
ation rate renormalized by normal phonon scattering.

The functions (q) and g∆uλ (q) include the influence
of the nonequilibrium electron subsystem on the drift
and diffusion of phonons. The nonequilibrium addition

(q) derives from the immediate action of the tem-
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perature gradient on the diffusion and drift of phonons.
In contrast to [20], we show here that this renormaliza-
tion and, hence, the expressions for the phonon-drag
thermopower and lattice heat conductivity are different
for Simons’s relaxation mechanism [2] (which implies
the phonon momentum redistribution to be within each
branch) and Herring’s mechanism [23], which implies
the momentum exchange to be between different
branches in the N processes. It is evident that if the ine-

quality (q) ! (q) is valid, then (λ) ≈

(q) and the contribution of the phonon drift to the
distribution function gλ (q) can be neglected. In this
extreme case, the one-parameter approximation used in
[1–12] to describe the influence of the nonequilibrium
phonon subsystem on electron transport phenomena in
degenerate semiconductors is adequate. In the opposite

extreme case of (q) @ (q), one must take into
account the influence of phonon drift on the momentum
exchange in the nonequilibrium electron–phonon sys-
tem. Thus, if normal processes play a significant role in
the phonon momentum redistribution, description of
the phonon system in an extended basis is required.

The present study is focused on the influence of the
quasiparticle drift caused by N processes on the elec-
tron transport phenomena. If the N processes are taken
into account, an equation can be derived for the func-
tion c(ε) in the same way as was done in [12, 20]. This
equation is more conveniently represented in the form
of Volterra’s integral equation:

(14)

(15)

Here,  = k/kF, "kF is the Fermi momentum, and τ(ε) is
the total electron relaxation time,
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the phonon system would return to the electrons [12].
The function Q(ε) takes into account the influence of
the nonequilibrium electron distribution on electrons
through the phonon subsystem caused by mutual drag
of electrons and phonons.

The function c1(ε) takes into account the direct
action of the electric field and the temperature gradient
upon the electron subsystem, as well as the electron
drag by phonons involving normal phonon–phonon
scattering, and is equal to

(16)

where the functions (ε) and Φ(ε) depend on the
energy ε only through the upper limit of integration

 [12]. The quantities cu(ε) and cΛ(ε) are deter-
mined by electron–electron and phonon–phonon nor-
mal scattering, which causes quasiparticle drift. These
functions have the form

(17)

In what follows, the indices (H) and (S) for the func-
tions K(ε) and L(ε) will be omitted to simplify the nota-
tion.

Formulas (7) and (14)–(17) represent a set of three
integral equations for the functions u, Q(ε), and L(ε)
characterizing the nonequilibrium electron subsystem.
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In [12], it was shown that the integral equation (14)
allows a regular scheme of the function Q(ε) to be cal-
culated without expanding in powers of a small param-
eter characterizing the strength of the electron–phonon
interaction or without assuming that the influence of the
nonequilibrium electron and phonon subsystems on
each other is small. We will show further that the set of
equations (14)–(17) can also be solved taking into
account normal quasiparticle scattering using only the
condition of strong degeneracy kBT/ζ ! 1.

3. SOLUTION OF THE KINETIC EQUATION 
FOR ELECTRONS IN SEMIMETALS

AND DEGENERATE SEMICONDUCTORS

In solving the set of integral equations (14)–(17), it
is convenient to find the function Q(ε) rather than c(ε).
Using Eqs. (14)–(17), we express the electron drift
velocity u and the quantity L(ε) (characterizing the
influence of the phonon drift on the electron distribu-
tion function) through the function Q(ε):

(18)
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Here, we introduced an auxiliary vector F, which sig-
nificantly simplifies solution of the problem. This vec-
tor is defined as

(19)

In solving the set of three integral equations (14),
(15), and (18), the Gurevich–Korenblit method [10] can
be used, substituting (–∂f0/∂ε) ≅  δ(ε – ζ) into the inte-
gral operator in Eq. (15) under the strong-degeneracy
condition. However, this method enables one to cor-
rectly analyze the transport properties with allowance
for the mutual electron–phonon drag only in the zeroth
order in the electron gas degeneracy parameter. For this
reason, we apply the method proposed in [12], which is
sufficiently universal (cf. [19–21]) and the most conve-
nient for use in parametrical solution of the set of inte-
gral equations. This method allows one to find a solu-
tion to these equations in the linear approximation in
the degeneracy parameter without specifying the
dependence of the functions Φ(ε), τ(ε), and m(ε) on the
electron energy ε. In this method, the problem is solved
in two stages. First, the Q(ε) energy dependence is
found, and then, the integral equations are reduced to a
set of three algebraic equations.

In the first stage, we expand Q(ε) in a power series
in (ε – ζ):

(20)

Using the integral equation (15), we calculate the deriv-
atives Q(n)(ζ) and keep only linear terms in the parame-
ter (kBT/ζ), neglecting quadratic terms. As shown in
[12], the expansion in Eq. (20) is made, in effect, in the
parameter η = (ε – ζ)/kBT. Since the inequality |η| ! 1
is not satisfied, one cannot keep a finite number of
terms in the expansion. Summing the infinite series
yields [12]

(21)

where

F –eEA mFνeeN ζ( )u L ζ( ) Q ζ( )+ + +=

=  c ζ( )/τF.

Q ε( ) Q ζ( ) ε ζ–( )n

n!
------------------Q n( ) ζ( ),

n 1=

∞

∑+=

Q n( ) ζ( ) dnQ ε( )
dεn

------------------ 
 

ε ζ=

.=

Q ε( ) Q ζ( ) kBTΦ 1( ) ζ( ) ηK> ζ( ){+=

– f 1 η( )c ζ( ) f 2 η( )τF kB—T–( )– } ,

K> ζ( ) ε
f 0∂
ε∂

--------– 
  m̃ ε( )χ ε( ),d

ζ

∞

∫=

f 1 η( ) η /2( )sinh( ),ln=

f 2 η( ) η f 1 η( ) 2 η ' f 1 η '( ).d

0

η

∫–=
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002



NORMAL QUASIPARTICLE SCATTERING AND KINETIC EFFECTS 229
In the linear approximation in (kBT/ζ), we expand the
function Φ(ε) – Φ(ζ) ≈ (ε – ζ)Φ(1)(ζ) and represent
Eq. (15) in the form

(22)

where

In order to determine Q(ζ), u, and L(ζ) to the first order
in the degeneracy parameter, we substitute Eq. (21) into
Eqs. (14), (18), and (22) and integrate them over η. As
a result, we obtain a set of three algebraic equations for
the functions in question, which is much easier to solve
using the auxiliary vector F. In the zeroth order in the
degeneracy parameter, we have

(23)

Here, (ζ) = [ (ζ)]–1 is the effective electron
momentum relaxation rate. As seen from Eq. (23), the
phonon subsystem drift related to normal scattering
enhances the mutual electron–phonon drag and
decreases the effective electron momentum relaxation
rate. The parameters K and KR characterize the influ-
ence of the nonequilibrium electron distribution on
electrons through the drifting phonon system. It is evi-
dent that expressions for these parameters will be dif-
ferent for Herring’s and Simons’s relaxation mecha-
nisms [see Eq. (17)]. The parameters Γ = τF/τe–ph–e and
ΓR = Γτ eR/τF characterize the influence of the nonequi-
librium electron distribution on electrons through the
diffusing phonon system. The parameter ΓR is equal to
the ratio of the resistive relaxation time τeR to the time
τe−ph–e required for the momentum imparted by elec-
trons to phonons to return to the electron subsystem.

To the first order in the degeneracy parameter, the
solution to the set of equations for the functions u, L(ε),
and Q(ζ) can also be expressed through the vector F:
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(24)

(25)

where

Expressions (24) and (25) allow one to investigate the
case of full mutual electron–phonon drag, where the
electron and phonon drift velocities are so close to each
other that 1 – ΓK – KR ! (kBT/ζ). In this case, the con-
duction current is basically determined by the mutual
electron–phonon drag. This limiting case demands a
separate detailed analysis. For the more realistic case of
(kBT/ζ) ! 1 – ΓR – KR, which we will consider herein-
after, upon expansion of the denominator in Eq. (25) in
powers of the small parameter, we find

(26)

In order to find the heat flux, it suffices to calculate the
function K>(ζ) to zeroth order in the degeneracy param-
eter:

(27)

Substituting Eqs. (24)–(26) into Eqs. (21) and (18)
gives L(ε), u, and Q(ε) and, therefore, the function c(ε)
in Eq. (14). This solution allows one to calculate the
conduction current and the electron heat flux and to
analyze the influence of normal quasiparticle scattering
on the transport properties of degenerate semiconduc-
tors in both cases of strong and weak mutual electron–
phonon drag.
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4. CALCULATION OF THE ELECTRICAL 
CONDUCTIVITY AND THERMOPOWER

In order to calculate the conduction current j, we
divide it into four parts proportional to nonequilibrium
additions to the electron distribution function:

(28)

Substituting expressions (24)–(26) and (21) into
Eq. (14) and then into Eq. (28), we obtain

(29)

Here,

The first two terms in braces give the current j1. The
normal scattering enhances electron drag by phonons
because of the phonon drift and the renormalization of
the phonon relaxation rate caused by this drift [this rate

is involved in expressions for (ζ) [see (16)]. The
first term in the square brackets relates to the electron
drift caused by electron–electron normal scattering.
The term proportional to L defines the current jΛ caused
by the influence of nonequilibrium electron distribution
on the electrons through the drifting phonon subsystem.
The last term in the square brackets defines the mutual-
drag current. Substituting Eq. (24) into Eq. (29) gives
an expression for the conduction current, from which
the kinetic coefficients σxx and βxx are found to be

(30)
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P

Let us consider the renormalization of the electron
relaxation rate due to the phonon subsystem drift in
more detail:

(31)

If νphN(q) ! νphR(q), the main contribution to the renor-
malization of the electron relaxation rate comes from
the parameter ΓR whereas the contribution of the
phonon drift is relatively small (KR ! ΓR). If the oppo-
site inequality is true, νphN(q) @ νphR(q), then the
phonon drift in sufficiently pure semiconductors may
produce a significant decrease in the effective electron
relaxation rate due to phonons and a change in the tem-
perature dependence of the carrier mobility. This renor-
malization depends on the character of the phonon
momentum relaxation due to N processes:

(32)

One can see from Eqs. (31) and (32) that the phonon
subsystem drift increases the momentum imparted by
phonons to electrons. This enhances the effect of
mutual electron–phonon drag on the electric conductiv-
ity and causes renormalization of the phonon relaxation
rate by the N processes involved in the thermoelectric
coefficient βxx. The addition of the first order in the
degeneracy parameter to the electrical conductivity is
caused by the mutual electron–phonon drag.

Now, let us consider the influence of normal quasi-
particle scattering on thermopower in degenerate semi-
conductors. From the condition j = 0, we find

(33)

One can see from Eq. (29) that both electron–electron
and phonon–phonon normal scattering make contribu-
tions (DN) and DΛ, respectively) to the diffusion com-
ponent of the thermopower. The phonon-drag ther-
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mopower is affected by normal phonon scattering most
significantly. In the extreme case of νphN(q) ! νphR(q)

[νph(q) ≈ νphR(q)], where we have (ζ) = Aph(ζ), one
can use the expression for the thermopower derived
earlier in the one-parametrical approximation [1–12]. If
νphN(q) @ νphR(q), normal phonon–phonon scattering
and the phonon subsystem drift related to it may lead to
a significant increase in the absolute value of the ther-
mopower. It is noteworthy that the phonon component
of thermopower αph is determined by the phonon
momentum relaxation rate [renormalized by N pro-
cesses, Eq. (10)], rather than by the total phonon relax-

ation rate (q), as advocated in [1–12]. In contrast to
[20], we showed that the renormalization mentioned
above and, correspondingly, αph are different for the
cases of N process-induced phonon momentum redis-
tribution within the branches of the vibrational spec-
trum (Simons’s mechanism) and among the branches
(Herring’s mechanism):

(34)

This is the most important result of this paper and has
important practical applications. The point is that, in
theoretical works using the one-parameter approxima-
tion (see [1–12, 24] and references therein) when inter-
preting experimental data on phonon-drag ther-
mopower, the phonon relaxation rates due to N pro-

cesses were included into the total rate (q)
characterizing the resistive mechanisms of phonon
scattering and, at νphN(q) @ νphR(q), these relaxation
rates were considered as the dominant mechanism of
long-wavelength phonon momentum relaxation [2–5].
However, from Eq. (34), it follows that in this extreme
case, the relaxation rate νphN(q) is not involved in the
phonon-drag thermopower and αph is determined solely
by the frequency-average resistive phonon relaxation
rate:

(34a)
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Therefore, in interpreting experimental data, one has to
take into account the phonon subsystem drift by using
expressions (33) and (34). As for the conclusions made
earlier in [1–12] concerning the temperature and field
dependences of the phonon-drag thermopower, they
must be revised.

5. CALCULATION OF THE ELECTRON 
AND PHONON HEAT FLUXES AND ANALYSIS 

OF THE ONSAGER RELATIONS

In order to calculate the electron heat flux We,

, (35)

we substitute Eqs. (21) and (24)–(27) into Eq. (14) and
then into Eq. (35). After integrating over the parameter
ε, we obtain, in linear approximation in (kBT/ζ),

(36)

where

Comparing Eqs. (30) and (36), we can verify that the
Onsager relations for the thermoelectric coefficients in
the heat (We) and charge (j) fluxes do not hold. As
shown in [12], the heat flux that is transported by
phonons but caused by nonequilibrium electrons
should be taken into account.
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The phonon heat flux has three components:

(37)

The heat flux Wph1 arises from both diffusion and
drift of phonons caused by the temperature gradient.
Taking phonon–phonon normal scattering into account,
as is the case in the Callaway theory [13], leads to a
renormalization of the phonon momentum relaxation
rate:

(38)

Consistent generalization of the Callaway theory [13]
by taking account of the difference between the longi-
tudinal- and transverse-phonon contributions, as well
as of the phonon momentum redistribution due to
phonon–phonon normal scattering within branches (the
Simons mechanism) and among branches (the Herring
mechanism), is a new result of the present investiga-
tion. This result has an important practical application
in the treatment of experimental data on the lattice heat
conductivity of isotopically enriched crystals of germa-
nium, silicon, and diamond, in which normal scattering
plays an important role in the phonon momentum relax-
ation [25–27]. The point is that in theoretical calcula-
tions of the heat conductivity of such systems, the gen-
eralized Callaway model was applied [25], which
assumes that the phonon momentum relaxation occurs
independently for each branch of the phonon spectrum.
Thus, this model corresponds to the Simons relaxation
mechanism [22]. This approach is inadequate because,
in actuality, the Herring mechanism dominates in the
phonon relaxation due to the N processes in these sys-
tems, which causes a phonon momentum redistribution
among different branches of the phonon spectrum. In
this case, the drift contribution to the heat conductivity
is different from that for the Simons mechanism [see
Eqs. (11), (13)] and in treating experimental data [25–
27] consistently, one must take into account the results
of the present investigation.

The heat fluxes W∆u and Wph, e are due to the influ-
ence of the nonequilibrium electrons on the diffusion
and drift of phonons. These fluxes are

(39)
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The electron subsystem as being nonequilibrium relates
not only to the action of an electric field and a temper-
ature gradient but also to the electron drag by phonons.
Hence, the fluxes in Eqs. (39) and (40) are due to both
the nonequilibrium electrons and the influence of non-
equilibrium phonons on phonons through the electron
subsystem. These fluxes contribute both to the electron
and phonon heat fluxes. Calculation gives

(41)

As in the analysis of the flux Wph, e carried out in [19,
20], we include the diffusion and drift components of
the heat flux in Eq. (41) into the total electron heat flux:

(42)

The terms proportional to ( (ζ))2—T in Eq. (41) are
related to the influence of nonequilibrium phonons on
phonons through conductivity electrons and contribute
to the phonon heat flux. As a result of this separation,
the expressions for the kinetic coefficients can be writ-
ten as

(43)

where βxx is defined by Eq. (30). Thus, we verified
through direct calculation that the Onsager relations for
the thermoelectric coefficients βxx and γxx, calculated in
linear approximation in the degeneracy parameter with
allowance for normal quasiparticle scattering, are ful-
filled. It is noteworthy that the Onsager relations follow
from the laws of thermodynamic irreversible processes
and always have to be fulfilled. However, while solving
kinetic equations and calculating transport properties,
one assumes a number of approximations which can
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break these relations. The fulfillment of the Onsager
relations for the kinetic coefficients calculated above
means that we have correctly taken account of the influ-
ence of the nonequilibrium electrons on electrons
through the phonon subsystem, as well as of the influ-
ence of the nonequilibrium phonons on phonons
through the conductivity electrons.

The electron heat conductivity is usually calculated
under the condition j = 0. In this case, Eqs. (43), (30),
and (33) give

(44)

We note that the mutual electron–phonon drag contri-

butions, proportional to [ (ζ)]2, in the total heat con-
ductivity κ = κph + κe cancel each other:

(45)

The Wiedemann–Franz relations are seen from
Eqs. (30) and (44) not to hold. The effects of electron

drag by phonons [ (ζ)] and of their mutual drag (Γ)
(both related to inelastic electron–phonon scattering),
as well as normal quasiparticle scattering, decrease the
effective Lorenz factor L* = L/L0. Neglecting the terms
proportional to the degeneracy parameter, we obtain

(46)

It is evident that the electron drag by phonons, their
mutual drag, and normal quasiparticle scattering can
produce an essential increase in the Lorenz factor L*
and must be taken into account in interpreting experi-
mental data.

6. CONCLUSIONS

Thus, in this study, we solved a set of kinetic equa-
tions for electron and phonon distribution functions,
taking into account the normal processes of electron–
electron and phonon–phonon scattering in degenerate
semiconductors. The kinetic coefficients are calculated
in the linear approximation in the degeneracy parame-
ter. The role of the mutual drag of electrons and
phonons and of the normal quasiparticle scattering in
the electrical resistance, thermopower, and heat con-
ductivity was analyzed. Description of the nonequilib-
rium electron–phonon system in the framework of the
three-parametrical approximation allowed the kinetic
effects in semiconductors to be treated more correctly.
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It is shown that the phonon subsystem drift caused by
normal processes enhances the effect of mutual elec-
tron–phonon drag on the electrical conductivity and
significantly increases the phonon component of the
thermopower if the phonon relaxation rate due to N pro-
cesses is considerably higher than the resistive relax-
ation rate. In this case, the phonon-drag thermopower is
determined by the frequency-average resistive phonon
relaxation rate rather than by the phonon relaxation rate
due to normal scattering [1–12]. Therefore, the results
of earlier studies into phonon-drag thermopower in
semiconductors [1–12] should be revised and a correct
account of normal scattering should be taken. It is to be
noted that direct inclusion of normal scattering into the
resistive phonon momentum relaxation rate or, espe-
cially, the assumption of N processes to be the only
resistive mechanism of phonon momentum relaxation
is wrong.

We have shown that the renormalization of the
effective phonon relaxation rate by normal phonon–
phonon scattering is different in the cases when N pro-
cesses redistribute the phonon momentum within each
branch of the phonon spectrum (the Simons mecha-
nism) and among different branches (the Herring mech-
anism). For this reason, the contribution of the phonon
drift to both heat conductivity and phonon-drag ther-
mopower is different for the Simons mechanism and
that of Herring, which should be taken into account in
treating the experimental data.

In the future, we plan to apply the theory developed
here to analyze the lattice heat conductivity and ther-
mopower in semiconductors with isotopic disorder. In
isotopically enriched samples of Ge and Si and in artifi-
cial diamonds under sufficiently low temperatures, the
resistive phonon relaxation processes turn out to be sig-
nificantly frozen out and the phonon momentum relax-
ation is determined mainly by normal scattering [25–27].

In the present work, the influence of normal quasi-
particle scattering on the mutual drag of phonons and
electrons and on kinetic effects in semiconductors is
consistently taken into account. However, inelastic
electron–phonon collisions were allowed for only in
calculating the collision integral Ie, ph( f0, gλ (q)),

whereas the collision integral Ie, ph(δ fk , ) was cal-
culated in the approximation of elastic scattering and
expressed through the relaxation rate. This approxima-
tion is quite satisfactory in calculating the electrical
resistance but is not sufficient for calculating the ther-
mal resistance at low temperatures [15]. At tempera-
tures T ! Θd, vertical electron transitions [15] with
small momentum transfer in electron–phonon colli-
sions provide an effective mechanism of thermal resis-
tance; therefore, one must also take into account inelas-
tic collisions in calculating the collision integral

Ie, ph(δ fk , ).

The following problems of the electron–phonon
drag theory in degenerate semiconductors remain

Nqλ
0

Nqλ
0

2
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unsolved: (1) the influence of inelastic electron–
phonon scattering on the mutual drag of electrons and
phonons and (2) normal scattering in semimetals with
two types of charge carriers. We hope that the method
for solving the set of integral equations for nonequilib-
rium electron–phonon systems developed in this paper
will also prove useful in solving these problems.
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Abstract—The dynamic properties of excitons and biexcitons in a ring cavity are studied. The nonlinearity of
the problem is due to the direct binding of two excitons into a biexciton by virtue of the Coulomb attraction
between them. A bifurcation analysis is carried out, revealing the points of Hopf bifurcations and period dou-
bling. The effect of the cavity Q factor on the switching times is investigated. The possibility of experimental
observation of the phenomena under study is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, special interest has arisen in investigating
the appearance, control, and damping of chaotic self-
oscillations. These phenomena, associated with exci-
tons and biexcitons in condensed media, are of interest
because of their giant optical nonlinearities at the long-
wavelength edge of the fundamental absorption of the
crystal, short relaxation times, small energies, and short
switching times. This opens enormous prospects for
investigation of fundamentally new optical phenomena
involving excitons and biexcitons and for practical
application of these phenomena mainly in optical data
processing and in the development of a new generation
of computers with optical logic.

In [1–3], we studied some nonlinear phenomena in
a system of coherent (in terms of the Bogoliubov treat-
ment) excitons and biexcitons at different quantum
transitions. In particular, we developed a theory of opti-
cal bistability, regular and chaotic self-pulsations,
induced optical phase transitions, and one- and two-
photon stationary laser generation. Also, the theory
describes the appearance of dissipative structures and
the dynamic transient optical chaos, which is accompa-
nied by the creation of a system of strange attractors in
the phase space.

The theory of nonlinear and chaotic oscillations has
been developed for the case when the systems of exci-
tons, photons, and biexcitons under investigation are
Hamiltonian and the corresponding effects appear
within a time interval less than the characteristic relax-
ation time [4, 5].

It should be noted that for a system of coherent pho-
tons, excitons, and biexcitons, the nonlinear coopera-
tive phenomena under investigation have been studied
only with account of the giant oscillator strength of the
1063-7834/02/4402- $22.00 © 20235
exciton–biexciton transitions [6, 7] in the case of one-
and two-photon creation of biexcitons. However, it was
shown in [8–10] that there is another nonlinear process
associated with biexciton creation due to Coulomb
attraction between two excitons. Taking into account
this fundamentally new mechanism of the exciton–
biexciton rearrangement of the semiconductor spectra,
which is due to the binding of two excitons into a biex-
citon by virtue of the Coulomb attraction, we studied
[11] the stationary optical bistability and stability of the
stationary states and determined the optical switching
times between the branches of optical bistability. In
addition, it was demonstrated that the appearance of
nonlinear periodic and chaotic self-pulsations is also
possible. However, a number of fundamental questions
remained unsolved in [11]. For example, the scenario of
the transition of the system to the dynamic-chaos
regime was not described in detail, possible dynamic
bifurcations were not revealed, the corresponding
bifurcation diagrams were not plotted, and the power
spectrum of the appearing oscillations was not found
and studied.

This paper is devoted to eliminating these draw-
backs and is a logical continuation of [11]. We carried
out a bifurcation analysis, revealing the Hopf bifurca-
tion points and period-doubling bifurcations. Also, we
found the scenario of the transition to optical dynamic
chaos and of the possible appearance of optical turbu-
lence and determined the power spectrum of nonlinear
self-pulsations. In the case when the external pumping
is a parabolic function of time, the effect of the Q factor
of the ring cavity on the dynamic optical bistability was
studied. Finally, possible experimental observations of
the effect under consideration are discussed.
002 MAIK “Nauka/Interperiodica”
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2. STATEMENT OF THE PROBLEM 
AND FUNDAMENTAL EQUATIONS

Let a coherent monochromatic electromagnetic
wave be incident on a ring cavity, in which a semicon-
ductor specimen of length L is placed (Fig. 1), and let
coherent excitons be generated in it. According to [8,
10], excitons can form biexcitons due to the Coulomb
attraction between them. This process makes the prob-

lem nonlinear and is described by the term Db+aa.

For the ring cavity, the boundary conditions are

where EI is the amplitude of the field at the entry into
the cavity (the amplitude of the external pumping), ET

is the amplitude of the field at the cavity exit, R = 1 – T
is the reflection coefficient of mirrors 1 and 2 of the cav-

ity, ∆t =  is the delay time due to the feedback, c0

is the speed of light in vacuum, and F = kL + k0(2l + L)
is the field phase shift in the cavity, with k0 being the
wave vector of the field in vacuum.

The Hamiltonian of the problem is the sum of the
Hamiltonians of the free excitons, biexcitons, and the
field and of the Hamiltonian describing the interaction
of coherent excitons with the electromagnetic field and
coherent biexcitons. Within this model, the latter
Hamiltonian has the form

(1)

where a+(b+) is the exciton (biexciton) creation opera-
tor, g is the exciton–photon interaction constant, D is
the constant of the direct binding of two excitons into a
biexciton, and E+ is the positive-frequency part of the

1

V
--------

E 0 t,( ) TEI RE L t ∆t–,( )eiF,+=

ET TE L t,( ),=

L 2l+
c0

--------------

H int i"g aE+ a+E–( ) i"D ba+a+ b+aa–( ),+=

E

L
1 2

EI

34

l

ET

ER

Fig. 1. Ring cavity: mirrors 1 and 2 are characterized by
reflection coefficient R; the reflection coefficient of mirrors
3 and 4 is 100%. The distance between mirrors 1 and 2 is L,
and the distance between mirrors 2 and 3 is l; EI, ER, and ET
are the amplitudes of the incident, reflected, and transmitted
fields, respectively.
P

electric field of the electromagnetic wave. Hereafter,
we suppose the volume of the system to be equal to
unity.

The equations of motion for the amplitudes of exci-
tons a and biexcitons b have the form

(2)

(3)

where "ωex("ωbiex) is the energy of the exciton (biexci-
ton) creation and γex and γbiex are the exciton and biex-
citon damping constants, respectively, which determine
the transition rate of quasiparticles from the coherent to
incoherent modes and are considered to be phenomeno-
logical constants.

The equation of motion for the component of the
electromagnetic field E is equivalent to the wave
equation:

(4)

where c1 is the speed of field propagation through the
semiconductor.

We represent the amplitudes of the excitons, biexci-
tons, and the field in the form of modulated plane
waves:

(5)

where ω and k are the carrier frequency and wave vec-
tor, respectively, and A'(z, t), B'(z, t), and E '(z, t) are
slowly varying amplitudes.

Hereafter, it is convenient to use the following
dimensionless quantities:

the optical-bistability constant C = αL/4T, where α =
4π"g2ω2/c1kγex and T is the transmission coefficient of
the mirrors of the ring cavity (Fig. 1); the relative damp-
ing constant of excitons with respect to that of biexci-
tons d = γex/γbiex; the reduced biexciton energy δ0 =
(2ωex – ωbiex)/γbiex; the dimensionless detuning from the
exciton level δ1 = (ω – ωex)/γbiex; the damping of the
electric field amplitude in the cavity (the cavity Q fac-

tor) σ = kT/Lγbiexω; the dimensionless time τ = γbiext;

and ∆1 = (ω2 – k2)/2ωγbiex.

Taking into account the boundary conditions and
using the mean-field approximation [12, 13], we obtain

da
dt
------ –iωexa gE– 2Dba+ γexa,–+=

db
dt
------ –iωbiexb Daa– γbiexb,–=

c1
2∂2E

∂z2
--------- ∂2E

∂t2
---------– i4π"g

∂2a

∂t2
--------,=

a z t,( ) = A' z t,( )ei kz ωt–( ), b z t,( ) = B' z t,( )e2i kz ωt–( ),

E z t,( ) E ' z t,( )ei kz ωt–( ),=

X
E '
Ea

-----; B
B'
Ba

-----; A
A'
Aa

------;= = =

Eδ
γbiex

2

gD
---------; Aδ Bδ

γbiex

D
---------;= = =

C1
2

c1
2
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a system of nonlinear differential equations, which
describes the time evolution of coherent photons, exci-
tons, and biexcitons:

(6)

(7)

(8)

(9)

(10)

(11)

where we took into account that X, A, and B are com-
plex-valued quantities: X1 = ReX, X2 = ImX, A1 = ReA,
A2 = ImA, B1 = ReB, and B2 = ImB. Detailed derivation
of equations (6)–(11) is given in [11].

The system of nonlinear differential equations
describes the dynamics of coherent quasiparticles in
six-dimensional phase space and is the basis for inves-
tigation of the dynamics of coherent excitons, photons,
and biexcitons with inclusion of the Coulomb binding
of excitons into biexcitons. Solving the system of equa-
tions (6)–(11) exactly is a very complicated or even
intractable problem.

Nonetheless, it should be noted that the evolution of
solutions to the system of equations (6)–(11) essen-
tially depends on the evolution of a small volume of the
phase space of this system. Changes in the elementary
six-dimensional phase volume V0, each point of which
moves according to Eqs. (6)–(11), are determined by
the equation

(12)

It follows from Eq. (12) that the six-dimensional
phase volume of the system of equations (6)–(11) tends

dX1

dτ
--------- –∆1X2

σ 1 R Fcos–( )
T

----------------------------------X1–=

–
σR Fsin

T
-------------------X2 2CσA1 σY ,+ +

dX2

dτ
--------- –∆1X1

σ 1 R Fcos–( )
T

----------------------------------X2–=

–
σR Fsin

T
-------------------X1 2CσA2,+

dA1

dτ
--------- –dA1 δ1A2– X1– 2 B1A1 B2A2+( ),+=

dA2

dτ
--------- –dA2 δ1A1– X2 2 B2A1 B1A2+( ),+ +=

dB1

dτ
--------- 2δ1 δ0+( )– B2 B1– A1

2– A2
2
,+=

dB2

dτ
--------- – 2δ1 δ0+( )B1 B2– 2A1A2,–=

dV0

dτ
--------- 2 1 d

σ 1 R Fcos–( )
T

----------------------------------+ + V0.–=
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to zero as τ  ∞ with a characteristic time equal to

(13)

However, this does not mean that any small volume
of the phase space collapses into a point. It can spread
over a surface, and the points of any element of the
phase space are attracted to a subset whose dimension-
ality is smaller than the dimensionality of the original
space.

Stationary states of the system, which relate the den-
sities of the coherent excitons and biexcitons to the
intensity of the electromagnetic field and the intensities
of the field at the entrance to and exit from the cavity,
can be easily found from Eqs. (6)–(11) [11].

If the stationary solutions are unstable, then the
attractor in the phase space can be a limit cycle, sphere,
or a strange attractor. They correspond to nonlinear
periodic, quasi-periodic, or stochastic self-oscillations
in the system.

3. COMPUTER EXPERIMENT. THE POSSIBILITY 
OF THE APPEARANCE OF STRUCTURES 

PERIODIC AND CHAOTIC IN TIME

Equations (6)–(11) belong to the class of nonlinear
ordinary differential equations that describe open
dynamic systems. There can be several stationary solu-
tions to such equations. However, depending on the
relationship between the parameters of the system,
some of the stationary states may be unstable. For this
reason, analysis of the solutions to Eqs. (6)–(11)
implies answering the question of the stability of the
stationary states. If part of the curve of the stationary
state is unstable, nonlinear periodic or chaotic self-
oscillations appear in the system.

The characteristic equation of system (6)–(11) is an
algebraic sixth-degree equation and has the form

(14)

where ai are constants dependent on the parameters of
the system.

Equation (14) has six roots λi = Reλi + iImλi. Thus,
the problem of stability of the stationary states is
reduced to determining the positions of the roots in the
complex λ plane. If all the roots are in the left half-
plane, the stationary states are stable. In the case when
at least one root is in the right half-plane, the stationary
state is unstable. Using the Routh–Hurwitz criterion, it
can be shown that at certain values of the parameters, a
part of the stationary curve of the dependence X1(Y)
corresponds to an unstable solution. In particular, Fig. 2
shows the stationary nonlinear dependence of the real

1
2
--- 1 d

σ 1 R Fcos–( )
T

----------------------------------+ +
1–

,

V0 τ( )  =V0 0( ) 2 1 d
σ 1 R Fcos–( )
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---------------------------------+ + τ–

 
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part of the amplitude of the radiation X1 emerging from
the cavity on the incident radiation amplitude at the
parameters σ = 1 (Fig. 2a) and 2 (Fig. 2b), δ0 = 5, c = 5,
F = 2πn, Λ1 = 0, and δ1 = 10. As seen from Fig. 2, insta-
bility windows, which are indicated by dotted lines,
appear at these values of the parameters. The dimen-
sions of the windows depend on the parameter σ. Hopf
bifurcations correspond to points A and B. An increase
in the parameter σ leads to merging of the bifurcation
points at σ > σcr = 3.45 and disappearance of the insta-
bility windows.

30
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40 80 120

30
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(b)

X
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Fig. 2. Dependence of the real part of the amplitude of the
transmitted field X1 on the incident field amplitude Y for σ
equal to (a) 1 and (b) 2 and for the parameter values C = 5,
δ0 = 5, F = 2πn, and δ1 = 10. The dotted curves show unsta-
ble stationary states.
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Fig. 3. Self-oscillation region in the plane of the cavity Q
factor σ and incident field amplitude Y. The solid line corre-
sponds to Hopf bifurcation points. The period-doubling
bifurcations are represented by dotted lines.
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Figure 3 shows the regions of self-pulsations in the
(σ–Y) coordinate plane (cavity Q factor versus incident
amplitude field diagram). The Hopf bifurcation line
(Reλ = 0) is obtained using the method of analytic con-
tinuation in a parameter [14]. This line is the boundary
between the stable and unstable stationary states of the
system. The shaded part of Fig. 3 is the region in which
the system is unstable and nonlinear oscillations
appear. The dotted lines show the regions of parameter
values corresponding to oscillation period doubling in
the system. Thus, nonlinear periodic self-pulsations
occur along the boundary in the diagram of the system
of coherent excitons, photons, and biexcitons and the
corresponding phase trajectory is a limit cycle. As the
representative point moves to the center of the instabil-
ity window, oscillations become more complicated. A
cascade of period-doubling bifurcations followed by a
chaotic-oscillation regime and the appearance of a
strange attractor is observed. In contrast to the Lorenz
strange attractor associated with hops between the cor-
responding equilibrium states, the strange attractor, in
our case, appears as a result of a complicated filling of
six-dimensional phase space by nonintersecting phase
trajectories.

It should be noted that bifurcation diagrams are
important tools for studying the dynamic properties of
nonlinear systems. Computer experiments indicate that
various regimes of nonlinear oscillations can occur in a
system of coherent excitons, photons, and biexcitons in
the case where the nonlinearity is due to excitons being
united into biexcitons. Figure 4 shows bifurcation dia-
grams at different values of the cavity Q factor. For σ = 3,
the maxX1(Y) is a single-valued function over the entire
instability region (Fig. 4a). It is seen from Fig. 4a that
at incident field amplitudes Y < Y(HB1), the stationary
state is a stable focus. This means that the system, hav-
ing been disturbed from the equilibrium state, comes to
equilibrium after several oscillations. At Y = Y(HB1) =
87, the stable focus is transformed into an unstable
focus. At Y(HB1) < Y < Y(HB2), nonlinear periodic
oscillations arise in the system and the phase trajectory
goes to a stable limit cycle with time. Thus, a Hopf
bifurcation, i.e., the transition of the system from the
focus to a limit cycle, occurs. Analogous results are
obtained for the motion of the representative point from
B to A (Fig. 2). At σ = 2, the stationary states are stable
focuses for Y < Y(HB1) and Y > Y(HB2) (Fig. 4b); the
Hopf bifurcation occurs at Y(HB1) = 83 and Y(HB2) =
41. When the value of the incident field amplitude lies
between Y = Y(PD11) = 96 and Y = Y(PD12) = 106,
period doubling is observed. The first bifurcation of the
period doubling takes place at Y = Y(PD12). The cas-
cade of period-doubling bifurcations corresponding to
the transition of the system to the dynamic-chaos
regime is shown in Fig. 4c. In this case, a strange attrac-
tor appears in the phase space.

Figure 5 shows a power spectrum of oscillations. At
Y = 99, there is only one frequency f0 in the original
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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spectrum (Fig. 5a). When the field strength becomes
equal to Y1 = 102.3, two lines with frequency f0/2
appear in addition to the line at f0 and the motion
becomes doubly periodic (Fig. 5b). As Y increases fur-
ther, a new subharmonic appears with frequency f0/4.
This indicates that the subharmonic with f0/2 becomes
unstable and a stable fourfold cycle appears (Fig. 5c).
Finally, at Y = 105, the spectrum becomes continuous,
a strange attractor appears in the phase space, and the
motion of the system becomes chaotic (Fig. 5d).

The bifurcation diagram at σ = 1 (Fig. 4d) is more
complicated. The chaotic behavior of the system is
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Fig. 4. Bifurcation diagrams at the cavity Q factor σ equal
to (a) 3, (b) 2, (c) 1.4, and (d) 1. The other parameters are
C = 5, δ0 = 5, F = 2πn, δ1 = 10, d = 0.1, T = 0.01, and ∆1 = 0.
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observed in different regions of the phase plane. It is of
interest that, between the regions of chaotic regimes,
there are regions with periodic self-oscillations.

It should be noted that in experimental studies on
optical bistability, the dynamic optical bistability is
observed when the time dependences of the pumping
power and corresponding response of the system are
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Fig. 5. Power spectrum of self-oscillations at the transition
to the chaotic regime through period-doubling bifurcations
for the incident field amplitude Y equal to (a) 99, (b) 102.3,
(c) 103.3, and (d) 105. The other parameters are the same as
in Fig. 4c.
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compared. We numerically solved the system of nonlin-
ear differential equations (6)–(11) subject to the bound-
ary conditions for a ring cavity in the case where the
external pumping Y(τ) was a parabolic function of
time. The results of this computer experiment are
shown in Figs. 6a and 6b (for σ = 10) and Figs. 6c and
6d (for σ = 2). The other parameters are F = 2πn = 5,
∆1 = 0, δ1 = 30, δ0 = 5, d = 0.1, and T = 0.01. Figure 6a
shows the time dependences of the electromagnetic
fields incident on and emerging from the cavity for the
case where the pulse duration is equal to τ = 100 (t =
100 ps). It is seen that the pulse transmitted through the
cavity is deformed. The dependence of the field ampli-
tude emerging from the cavity on the incident field
amplitude is shown in Fig. 6b. Dynamical optical bista-
bility is seen to occur for a pulse traveling clockwise in
the system of coherent excitons, photons, and biexci-
tons in this case. If the Q factor of the cavity is
decreased, the switching will be accompanied by oscil-
lations, which adversely affects the operation of a
bistable element (Figs. 6c, 6d).

In conclusion, let us discuss possible experimental
observations of the predicted effects. We made numer-
ical estimates for CdS-type crystals in which "D =
10−9 eV cm3/2, "g = 0.1 eV cm–1/2 V–1, "ω = 2 eV,
"c0k0 ≈ 2 eV, "γex = 10–5 eV, "γbiex = 10–4 eV, T = 0.01,
L = 1 µm, and "(2ω – ωbiex) = –0.04 eV. The critical
power at which the nonlinear phenomena under inves-
tigation can be observed is about P ~ 40 × 103 W cm–2.
In this case, the concentrations of excitons and biexci-
tons are of the order of 1016 and 1014 cm–3, respectively.

Thus, the numerical estimates enable one to con-
clude that it is possible to observe the phenomena under
discussion and control self-pulsations which originate
in the system of coherent excitons and biexcitons in
semiconductors in the case where excitons unite into
biexcitons.
P
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Abstract—The ranges of ε*/ε∞ and of the electron–phonon coupling constant in which the three-dimensional
bipolaron exists are determined. The limits of these ranges correspond to the emergence of the first bound state
of two polarons. The criteria for the first bound state to arise are found by solving an integral equation, which
corresponds to a Schrödinger equation describing internal vibrations of a bipolaron. The Hamiltonian describ-
ing these vibrations is separated from the complete Hamiltonian of the electron–phonon system by using the
Bogoliubov–Tyablikov method of canonical transformations of coordinates. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

In recent years, the existence of bipolarons has been
the subject of numerous publications [1–9]. Experi-
mentally, bipolarons have been observed in organic
compounds [10–12], molten salts [13], and ammonia-
based systems [14, 15]. In theoretical studies, the crite-
rion for the formation of a bipolaron is based on the
requirement of positiveness of its binding energy ∆F =
2Fp – Fbp, where Fbp is the total energy of a singlet bipo-
laron and Fp is the total energy of a polaron in the
ground 1s state. The energies are reckoned from the
bottom of the conduction band. From this requirement,
one commonly determines the limiting values of either
the electron–phonon coupling constant or the dielectric
constant of the polar medium for the region of existence
of the three-dimensional bipolaron. However, the posi-
tiveness of the binding energy is a necessary but not
sufficient condition. A bipolaron will arise if there is at
least one bound state in the bipolaron potential well.
This condition is of particular importance when the
parameters of the system are close to their critical val-
ues and the bipolaron binding energy tends to zero.

In this paper, we determine the boundaries of the
region of existence of the three-dimensional bipolaron
from the condition of the emergence of the first bound
state of two polarons in the bipolaron potential well. In
order to solve this problem, one should first separate the
Hamiltonian describing the ground state of the bipo-
laron from the complete Hamiltonian of the electron–
phonon system and then find the Hamiltonian of the rel-
ative motion of two polarons in the bipolaron potential
well. This problem can be solved using a canonical
transformation of the coordinates and by going over to
collective variables [16, 17], which enables one to sep-
arate the internal translation-invariant degrees of free-
1063-7834/02/4402- $22.00 © 0241
dom from the motion of the system as a whole. In this
case, the degeneracy with respect to the translation
group is lifted and one can expand the initial Hamilto-
nian in powers of a small parameter and construct a suc-
cessive-approximation scheme for calculating the
energy and wave function.

2. RESULTS AND DISCUSSION

The Hamiltonian describing the states of two elec-
trons in a polarizable medium in the effective-mass
approximation is written in the standard form

(1)

where

m* is the effective electron mass; α = e2u/2ε*"ωf is the
electron–phonon coupling constant; ωf is the frequency
of longitudinal optical phonons; ε∞ and εs are the high-
frequency and static dielectric constants of the medium,

respectively; ε*–1 =  – ; and Ω is the volume of
the system. The summation is carried out over all vec-
tors of the first Brillouin zone. Following [16, 17], we
introduce a formally small parameter ξ such that ωf =
ξ2νf. This approach is valid if α > 1 [18].
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It is convenient to go from the operators bf and 
to canonically conjugate variables of the phonon field,
namely, to coordinates qf and momenta pf:

(2)

Using Eqs. (2), Hamiltonian (1) is transformed into
the form

(3)

where we have introduced the notation

Let us also introduce the new variables

(4)

where R1 and R2 are the position vectors of the centers
of gravity of the polarization potential wells and r1 and
r2 are position vectors of the electrons which describe
high-frequency oscillations of the electrons in the
polaron potential wells and are reckoned from the cen-
ters of gravity of the first and second polarons, respec-
tively. It is convenient to go over to the position vector
of the center of gravity of the system R and the relative
position vector of the polarons r using the relations

(5)

Thus, the motion of the interacting polarons is rep-
resented as the sum of translation of the system as a
whole and oscillations of the polarons (relative to each
other) about their equilibrium positions. Instead of the
variables qf, we introduce new phonon coordinates Qf,
which describe quantum fluctuations of the phonon
field about its classical values uf(1) and uf(2) [19]:

(6)

Equation (6) allows one to separate out two inde-
pendent classical components of the phonon field uf(1)
and uf(2) that follow the moving electrons. These com-
plex quantities are subject to the condition u–f = .
Transforming coordinates (5) and (6), the translation
coordinates are separated out and Hamiltonian (3)
becomes explicitly invariant under the translation oper-
ators.
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Let us go from the variables r1, r2, and qf to the new
variables R, r, r1, r2, and Qf in Hamiltonian (3) and
construct a self-consistent approximation scheme for
solving the two-electron problem with allowance for
the law of conservation of total momentum of the sys-
tem. After changing the coordinates, the Hamiltonian is
written as a power series in the small parameter ξ:

(7)

where we have introduced the notation

(8)
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As is known [16, 17], the time-independent
Schrödinger equation with Hamiltonian (7) exists only
if 〈χ 0|H1|χ0 〉  is equal to zero. From this condition, one
can determine the unknown complex quantities uf(1)
and uf(2), which are subject to six additional conditions
[in order to average out the redundant degrees of free-
dom that are introduced by Eqs. (4) and (5)]:

(9)

Without loss of generality, the quantities νf(i) and uf(i)
can be subject to the linear orthogonality conditions

(10)

The quantities uf(1) and uf(2) are chosen to minimize
the potential energy of renormalized phonons. Once the
transformations indicated above are performed, the
Schrödinger equation of the system under study can be
expanded in powers of the parameter ξ:

(11)

The wave function Ψ and energy E are also sought in
the form of perturbation series:

, (12a)

. (12b)

Substituting Eqs. (12a) and (12b) into Eq. (11) and
equating the coefficients of powers of ξ to zero yields
the set of equations
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(13b)

(13c)

The main term of the expansion is the Hamiltonian H0,
which carries important information about the system.
The principal result of the electron–phonon interaction
is the formation of a polarization potential well for each
of the particles. Since, in the zeroth approximation, H0
depends only on the variables r1 and r2 (and on the
coordinate r as a parameter), the zeroth approximation
Ψ0 to the wave function can be written in a multiplica-
tive form:

(14)

The ground state of the singlet bipolaron can be found
either by solving the integro-differential equation (13a)
or by using the variational principle and minimizing the
functional corresponding to Eq. (13a). In the limiting
long-wavelength optical phonon approximation (ωf =
ω0), the functional corresponding to the lowest energy
electron state of the bipolaron has the form [19, 20]

(15)

As ρ  ∞, the energy E0(ρ) tends to twice the polaron
energy. The choice of the trial wave function and mini-
mization of this functional using the method of inter-
mediate electron–phonon coupling strength [21] (under
the assumption that the wave function is normalized
and the virial theorem is valid for any fixed value of ρ)
were made in [22]. In [20, 22], using the Heitler–Lon-
don method and taking electron–electron correlations
into account, it was shown that the three-dimensional
singlet bipolaron is a two-center formation and that its
total energy reaches a minimum at a finite equilibrium
distance ρ0, about which two bound polarons oscillate.

Using Eqs. (13), the first-order correction to the
wave function is found to be

(16)
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Parameters involved in Eq. (24)

ε*/ε∞ ρ0, α–1("/2m* ω0)1/2 γ,  α2(2m* ω0/") –V0, 2α2"ω0 mρ, α4m*

1.00 5.0 3.65 × 10–2 2.000 × 10–2 0.02424

1.05 5.5 0.1357 1.250 × 10–2 0.01953

1.08 5.75 0.2421 7.340 × 10–3 0.01708

1.10 6.5 0.2833 1.0673 × 10–3 0.01583

1.12 7.43 0.7940 2.5848 × 10–4 0.01450
where Φ1 is a function of coordinates Qf (orthogonal
to Φ0).

Substituting the wave function given by Eqs. (12b)
and (16) into Eq. (11) and replacing the vectors Ff by
their corresponding expressions, one can derive an
equation describing the relative motion of the polarons
with a reduced mass mρ and the motion of the bipolaron
as a whole with an effective mass mR, as well as the
motion of new (renormalized) phonons:

(17)

where

The momentum PR canonically conjugate to the coordi-
nate R is an integral of motion (the total momentum of
the system). Since the dependence on R in Eq. (17) is
due solely to the kinetic-energy operator, the equation
of motion of the bipolaron center of gravity can be sep-
arated from Eq. (17). Therefore, the variable R is cyclic
and related only to those translations of the bipolaron as
a whole that are characterized by the effective mass mR.

Since the dominant contribution to the sums over f
comes from |f | ≈ ξ–1, we can assume that |f ||r | @ 1;
therefore, the terms involving exp(ifr) can be omitted
from Eq. (17), because the exponential is a rapidly
oscillatory function. This makes it possible to separate
the variables r and Qf in Eq. (17) and to obtain an equa-
tion describing the relative motion of polarons charac-
terized by the reduced mass mρ,

(18)
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The electronic term E0(ρ) plays the role of an interac-
tion potential; it depends on the dielectric properties of
the medium (through the ratio ε*/ε∞) and on the elec-
tron–phonon coupling constant [22]. Analysis revealed
that the binding energy of the bipolaron decreases with
increasing ratio ε*/ε∞; the maximum value of the latter
(with constraint ∆F ≥ 0) is found to be 1.13 using the
data from [19, 22, 23] or 1.15 using the data from [24].

Using the results of [22] and Eq. (18), one can find
the critical value αcr for the emergence of the first
bound state in the bipolaron potential well for a fixed
value of ε*/ε∞. To do this, we take into account that the
interaction potential between polarons E0(ρ) is closely
approximated by a Gaussian V0 exp[–γ(ρ – ρ0)2] near
its minimum. The zero in the energy scale is taken to be
twice the polaron energy. The table lists the parameters
of the interaction potential between the polarons near
its minimum. As the ratio ε*/ε∞ increases, the equilib-
rium distance between the polarons ρ0 (characterizing
the average size of the bipolaron) increases monotoni-
cally (table), which is natural because the interaction
between the polarons becomes progressively weaker. It
has been argued on occasion (see, e.g., [24–26]) that the
bipolaron size can be characterized by the average dis-
tance 〈r12 〉 , which is, in fact, the spacing between the
electrons in Eq. (1). However, the distances between
the electrons and between the polarons are not one and
the same. Moreover, the average distance 〈r12 〉  was
found in the above-mentioned papers to depend on the
dielectric properties of the medium only slightly.
Therefore, the results obtained in [24–26] lead to the
paradoxical conclusion that, as ε*/ε∞ increases, the
bipolaron binding energy monotonically decreases, but
the bipolaron size remains constant over the entire
range of the ε*/ε∞ values in question. Furthermore, in
this scheme, the repulsion energy between the polarons
tends to infinity as the polarons approach each other,
although the distance r12 does not have to be zero when
the centers of gravity of the polarons coincide (ρ = 0),
because the distance between the electrons is given by
|r1 – r2 |. The situation is similar to that in the model of
a helium atom. It seems likely that the quantitative
results obtained within the bipolaron model based on
Hamiltonian (1), which involves only the coordinates r1
and r2, cannot describe some features of the three-
dimensional bipolaron structure.
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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In order to find the critical value αcr for a fixed value
of ε*/ε∞, we go from differential equation (18) to an
integral equation. For this purpose, we make the substi-
tution χ(ρ) = u(ρ)/ρ and introduce a new variable x =
ρ – ρ0. In this case, Eq. (18) becomes

(19)

Taking into account that u(x = 0) = u(x = ∞) = 0 and
using the integral relation

(20)

differential equation (19) is reduced to a Fredholm-type
integral equation in a dimensional form,

(21)

Here, we have introduced a new variable z = x . The
first bipolaron bound state (whose energy lies below the
values of the asymptotic Coulomb interaction potential
between the polarons) arises at αcr , which corresponds
to Wρ being equal to zero [27]. Substituting u(z) =
w(z)exp(z2/2) into Eq. (21), we obtain

(22)

where the kernel of the integral equation has the form

(23)

As the interaction potential increases in strength, the
first bound state will arise when the trace of the kernel

Tj = (z, z)dz in the jth iteration cycle of the succes-

sive approximations satisfies the inequality
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For the kernel given by Eq. (23), the third iterate gives

(25)

In deriving Eq. (25), we used the integral relation

(26)

It was shown in [27, 28] that the iterations converge
rather rapidly for the trace of the kernel. For this reason,
we restrict ourselves to the first three iterations.

Using Eq. (24) and the values of parameters listed in
the table, we determined the critical value of the elec-
tron–phonon coupling constant for a given value of
ε*/ε∞. The region of existence of the three-dimensional
bipolaron is shown in the figure in the (ε*/ε∞, α) coor-
dinate plane; this region is above the solid curve. Anal-
ysis revealed that the relation between αcr and ε*/ε∞ has
the form

(27)

In the range up to α ≈ 10, this formula closely approx-
imates the results obtained directly from Eq. (24). Dis-
cordance occurs in the range of ε*/ε∞ > 1.1, where the
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formula underestimates αcr by approximately 5%. It
follows from Eq. (27) that three-dimensional bipo-
larons can exist in polar media with ε*/ε∞ < 1.14; the
maximum value corresponds to αcr  ∞ and, as one
might expect, is smaller than the critical value of 1.148
obtained in [29] from the condition of positiveness of
the bipolaron dissociation energy. The published limit-
ing values of ε*/ε∞ for the existence of the bipolaron lie
in the range from 1.16 [24, 26] to 1.8 [30] and appear to
be overestimated, because those values were obtained
by minimizing the total bipolaron energy functional
without regard for the virial theorem. Analysis revealed
that if the virial theorem is ignored when the bipolaron
binding energy is calculated using the direct variational
method, the results may be overestimated. At the same
time, in variational calculations of the polaron energy,
the virial theorem is automatically taken into account.

Using Eq. (27) and the definition of the parameter α
involved in Hamiltonian (1), one can find an approxi-
mate relationship between the medium parameters that
determines the region of existence of the three-dimen-
sional bipolaron,

(28)

Thus, our method for determining the region of exist-
ence of the three-dimensional singlet bipolaron allows
one to find a relationship between the critical value of
the electron–phonon coupling constant and the dielec-
tric properties of the medium.

Let us compare the critical values of the parameters
found in this paper with the corresponding values avail-
able in the literature. For example, in [31], the vibra-
tional states of the three-dimensional bipolaron were
directly calculated using the method of shifted 1/N
expansion and it was shown that, if ε*/ε∞ = 1.08, a sin-
gle bound state exists only for α = 7. From the calcula-
tions performed in this paper, it follows that when
ε*/ε∞ = 1.08, the first bound state arises at αcr > 6.9,
which is consistent with the results of [31].

In the figure, the region above the solid curve corre-
sponds to the values of the parameters of the dielectric
medium and the electron–phonon coupling constant,
for which there is at least one bipolaron bound state. In
the region below the solid curve, there are no bound
states of two polarons whose energy lies below the val-
ues of the asymptotic Coulomb interaction potential,
though their binding energy can be positive (∆F > 0).
However, there are metastable bipolaron states in the
region between the solid and dashed curves, because
the state of two polarons moving within the bipolaron
potential well is separated from the states of free
polarons by a potential barrier whose asymptotic
behavior is similar to that of the Coulomb potential.
Indeed, as can be seen from the expression for the
Hamiltonian H0, the interaction potential between the
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two polarons at distances larger than the bipolaron
dimensions has the form

(29)

where ε** = ε∞εs(ε∞ + εs)–1 and ρiz is the z component
of the vector ri. The z axis is directed along the line
passing through the centers of gravity of the polarons.
In the approximation where the electronic part of the
wave function can be represented as the product of two
one-electron wave functions with large distances
between the polarons, we obtain the following expres-
sion for the interaction energy between the two
polarons:

(30)

where I0 = 0.322α2"ω is the ionization energy of a
polaron, α0 = 0.5/ , and  = "2ε*/m*e2 is the effec-
tive Bohr radius. We note that the leading term of the
expansion in Eq. (30) has a Coulombic form.

The region of metastable states of the three-dimen-
sional bipolaron is found by directly solving the
Schröodinger equation (18) using the method of shifted
1/N expansion. This region lies between the solid and
dashed curves. The boundary of the region of metasta-
ble states corresponds to smaller values of α than the
boundary of the region of stable bipolaron states for the
same values of ε*/ε∞. This difference is especially sig-
nificant when ε*/ε∞ is close to its maximum value for
which the bipolaron still exists. The dashed curve can
be approximated by the equation

(31)

Below the dashed curve, bipolarons do not exist for
any value of the electron–phonon coupling constant.
For alkali-halide crystals, the typical values of the
parameters are ε*/ε∞ ≥ 1.1 and α ≈ 5–6; in such media,
even metastable bipolarons cannot exist. Three-dimen-
sional bipolarons also cannot exist in La2CuO4, for
which ε*/ε∞ ≈ 1.09 and α ≈ 4–5 [32]. At the same time,
in metal–ammonia systems, the values of the relevant
parameters are ε*/ε∞ = 1.08 and α = 13.5 and lie in the
region of existence of the three-dimensional bipolaron.
The continuum-bipolaron model was used by Mott [14]
to explain the properties of electrons in ammonia. The
formation of bipolarons in ammonia, in Mott’s opinion,
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explains the wide range of properties of the metal–
ammonia systems, including the metal–insulator phase
transitions. The hypothesis of the existence of three-
dimensional bipolarons in such systems is substantiated
by experimental optical studies [15], by investigations
of the magnetic susceptibility [33, 34] and conductivity
[35] (which revealed a sharp drop in the electrical resis-
tivity by several orders of magnitude), and by electron
spin resonance studies [36].

As can be seen from the figure, the upper limit of the
range of ε*/ε∞ ≤ 1.13–1.145 for the existence of the
bipolaron, commonly cited in the literature, corre-
sponds to the limit of very strong electron–phonon cou-
pling αcr ≥ 21. As the ratio ε*/ε∞ is decreased, the range
of values of the electron–phonon coupling constant
within which three-dimensional bipolarons exist
becomes progressively wider.
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Abstract—High-intensity Er3+ photoluminescence at wavelength λ = 1510–1535 nm and with a quantum yield
of up to 10% was revealed under nitrogen laser pumping (λ = 327 nm) in pseudoamorphous GaN films codoped
by Er and oxygen. Because Er3+ ions do not have a resonant absorption level at this wavelength, the erbium ions
are excited only via inter- and intraband recombination energy transfer. A distinctive feature of the Er3+ spec-
trum is its broadening caused by an appreciable contribution of “hot” transitions from the Stark components of
the 4I13/2 multiplet. At liquid-nitrogen temperature, this contribution is dominant. At 77 K, an instability of the
spectrum in the form of optical noise was observed in the 1550- to 1570-nm region. Temperature quenching of
the photoluminescence was virtually absent. The high Er3+ photoluminescence intensity was achieved through
proper choice of the multistage (cumulative) anneal regime. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of Er3+ emission in semiconductors at
the wavelength λ = 1530–1540 nm corresponding to the
lowest losses in quartz fibers has acquired particular
importance in connection with progress made in inte-
grated optoelectronics and, accordingly, with the need
to develop emitters that, on the one hand, would operate
at an emission line having high temperature stability
characteristic of rare-earth-doped solid-state lasers and,
on the other, would provide the possibility of control-
ling the injection currents using radiation, as is the case
with semiconductor light-emitting diodes [1, 2].
Despite the considerable progress made in this area
over the past 10–15 years, the results obtained thus far
do not give one grounds to maintain that a solution to
this problem has been reached. Among the problems
still unsolved are (i) selection of an optimum ligand
environment of the erbium ion, which determines its
optical activity; (ii) increasing the dopant ion density
until optical gain at small lengths of the active element
is reached; (iii) optimization of the excitation transfer
mechanism from the semiconductor host to the erbium
ion; and (iv) reduction of the various losses, including
those caused by temperature quenching.

Until recently, studies of erbium incorporated into
semiconductor hosts were carried out primarily on
crystalline silicon (c-Si), amorphous silicon (a-Si), and,
to a lesser extent, on III–V compounds of the arsenide–
phosphide group. These studies culminated in the very
important conclusion that the maximum optical activity
of Er3+ is reached only in the case where the erbium ion
is surrounded by ions with a large electronegativity.
The best results were obtained empirically when
codoping with oxygen. The necessity of employing an
1063-7834/02/4402- $22.00 © 20248
oxygen environment is connected with the fact that
optical transitions inside the f 11 erbium ion shell are
dipole forbidden due to the electronic states having the
same parity and only become possible when the crystal
field of the environment (for instance, of the oxygen
ligand, which is only weakly coupled with the f elec-
trons) acts through f–d hybridization to produce Stark
splitting of the f 11 multiplets created by the spin–orbit
interaction and, thus, lifts the degeneracy in parity.
Group theory shows that a necessary condition for the
lifting of parity degeneracy is the crystal field being
noncentrosymmetric. Thus, the ligand should meet
requirements relating not only to the electronegativity
but also to the type of structural symmetry involved. It
thus becomes clear that, in order to make erbium ions
luminescent, one should dope a semiconductor not with
erbium atoms but rather with ErOx complexes; it is
exactly this that is done presently using various tech-
nologies, more specifically, ion implantation with an
implanted ion ratio Er/O ≈ 1/6–1/10 [1, 3] and molecu-
lar beam cosputtering, for instance, of Si and Er2O3 [4].
It has also been reliably established that the value of x
in the ErOx complex is approximately equal to or
slightly less than six [5, 6]. Note, however, that the iso-
lated complex ErO6 is centrosymmetric and that the
inversion symmetry can be broken only through inter-
action of the oxygen ligand with the host or through
reduction of the oxygen coordination (x < 6). The need
of introducing a large amount of oxygen gives rise to an
acute problem of reaching the proper solubility of the
ErOx complexes without, at the same time, initiating
defect formation and degrading the semiconducting prop-
erties of the host matrix. It has been shown that the Er
concentration in c-Si cannot be higher than 5 × 1019 cm–3.
002 MAIK “Nauka/Interperiodica”
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For a-Si and AlGaAs, the Er density can be made as
high as (1–2) × 1020 cm–3 [7, 8]. Despite some progress
having been made in increasing the erbium solubility in
classical semiconductors (Si, GaAs), the critical prob-
lem associated with the strong temperature quenching
of the Er3+ luminescence, which reaches 10 to 100
times in the 77-to-293-K temperature interval [9, 10],
remains unsolved. It was earlier established empirically
[11] that temperature quenching decreases with
increasing band-gap width Eg. For instance, already for
a-Si : H with Eg = 1.7 eV, the quenching decreases by a
few (3–5) times, which is a significant factor. For this
reason, this work was aimed at studying wider band-
gap semiconductors of the A3N group, primarily gal-
lium nitride with Eg = 3.45 eV. GaN and its solid solu-
tions with InN and AlN have been used in recent years
to develop injection lasers and light-emitting diodes
operating in the high-energy region of the visible range
[12]. This opens up new possibilities for the excitation
of Er3+ through the absorption of photons created in the
internal reemission of localized excitons and emitting
impurity centers. Even the first experiments performed
on doping c-GaN and c-AlN with Er3+ attested to the
potential of these materials [13, 14].

This work proposes a new type of host matrix for
Er3+, namely, a pseudoamorphous a-nc-GaN thin-film
material. 

2. PREPARATION AND STRUCTURAL 
CHARACTERIZATION OF a-nc-GaN

Pseudoamorphous a-nc-GaN was prepared through
magnetron reactive cosputtering of a metallic gallium
target with small pellets of metallic erbium in an Ar +
N2 gas mixture with calibrated admission of O2.
Although nitrogen is in itself a strong electronegative
species and, hence, was expected to form a sufficiently
strong ligand field, subsequent experiments showed
that the introduction of oxygen (with a flux ≈1.0 ×
10−2 cm3/min) results in an enhancement of the Er3+

luminosity. The films were grown on fused-quartz sub-
strates and polished silicon plates at temperatures of
300 to 480°C. The erbium concentration depended on
the area of the erbium pellets, their position in the dis-
charge zone, and the discharge current. The calculated
concentration was 5.0 × 1020 cm–3. Our experience,
gained in erbium doping of a-Si : H and in monitoring
the concentration with secondary-ion mass spectrome-
try, showed the calculational technique developed by us
to yield sufficiently accurate results [15]. In some
cases, the density of the Er–O bonds was checked
experimentally by measuring the absorption associated
with the 567-cm–1 IR-active vibrational mode, which
corresponds to the Er–O bond. The Er–O bond density
derived in this way was 5 × 1020 cm–3. The x-ray diffrac-
tion pattern obtained by Kartenko (Ioffe Physicotechni-
cal Institute) was an amorphous halo whose position
corresponded to GaN. The film structure, however, was
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
not totally amorphous. A high-resolution TEM study of
the structure performed at the laboratory of Prof.
H.P. Strunk (Erlangen, Germany) [16] clearly showed
the film microstructure to be two-phase; namely, the
films were amorphous matrices with embedded GaN
microcrystallites of hexagonal symmetry 4–7 nm in
size. The volume fraction of nanocrystallites in unan-
nealed samples is ≈10%. After annealing at 750°C, the
fraction of the nanocrystallites increases to 35% with-
out an increase in their size. The dominant part being
played by the amorphous host and the tendency to the
formation of nanocrystallites under annealing are sup-
ported by the Raman spectra obtained by Davydov
et al. [17]. The spectra exhibit diffuse phonon density
distribution; the pattern is totally identical to the one
observed for amorphous GaN produced by breaking up
c-GaN through ion bombardment. In contrast, the
annealed films clearly show an increase in the intensity
of the LO(1) phonon mode, which is a measure of GaN
crystallinity.

3. PHOTOLUMINESCENCE MEASUREMENT 
TECHNIQUE. ENERGY LEVELS 

AND SPECTRA OF Er3+ IN a-nc-GaN

The photoluminescence (PL) was measured on (i) a
quartz prism monochromator equipped with an FEU-79
PM tube for operation in the UV and visible ranges and
(ii) an 80 × 80-mm diffraction grating for the IR range,
which operated in the third order and provided a reso-
lution of ≈5 nm for an exit slit 0.4 mm wide. The best
match with the input impedance of the low-noise
amplifier was obtained using an InGaAs-based pn pho-
todiode (sensitivity 25 µV/mW) as a radiation detector
(provided by Karlina, Ioffe Physicotechnical Institute).
The radiation source was an LGI-21 pulsed nitrogen
laser (λ = 327 nm) producing 10-ns-long pulses with an
average power of 3 mW. The laser radiation was passed
through a set of color filters to suppress the concomitant
narrow-line molecular-nitrogen spectrum. The amplifi-
cation unit included a pulsed phase detector and a gated
PL-response pulse measurement circuit with variable
delay time, which provided the possibility of determin-
ing the excited-state lifetime, of isolating long-lived
modes against the continuum background, and of
obtaining time-resolved spectra. Figure 1 presents
emission spectra of the trivalent erbium ion (Er3+) in
samples subjected to thermal annealing and possessing
the highest brightness. The energy level diagram of the
Er3+ ion is given in the inset on the right. The nitrogen
laser (3.68 eV) excites electrons from the valence band
to the conduction band. After thermalization to the
band edge (3.4 eV), the energy of electrons is absorbed
by localized excitons, forming a broad tail near the
band edge, and is reemitted in the hard-blue region of
the visible range. This reemission effect is enhanced by
the Ce impurity, whose PL forms a broad maximum
peaking at 2.8–2.7 eV and decaying at 2.4 eV. Thus, the
upper levels 4F7/2, 4F5/2, 4F3/2, and 2H11/2 of the  f 11 elec-
2
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Fig. 1. Photoluminescence of Er3+ ions in a-nc-GaN within a broad wavelength range. The inset on the right shows the Er3+ f 11-
shell multiplet without Stark splitting. The strongest peak (λ = 1535 nm) corresponds to the 4I13/2  4I15/2 transition.
tron shell of the erbium ion fall in the energy range of
intense photon pumping. The fact that the external
quantum yield of the blue PL always decays in the
course of erbium optical activation may serve as an
argument for the internal reemission contributing to the
excitation of erbium ions. It is appropriate to note here
that the mechanism of direct optical excitation of
erbium ions is not the only one operative in gallium
nitride; this problem will be discussed later. The Er3+

multiplet radiation is reliably observed only at energies
<2.5 eV, which correspond to the 4S3/2 and lower states,
and the transition intensity in the IR exceeds by approx-
imately one-hundredfold the intensity of transitions
4S3/2  4I15/2 in the green region. This latter observa-
tion gives one grounds to believe that the anti-Stokes
luminescence originating from cooperative excitation
may also contribute to the green radiation. Two
4I11/2  4I15/2 quanta approximately correspond to the
energy of the 4S3/2  4I15/2 transition and can initiate
it [10].

4. THERMAL ANNEALING AND OPTICAL 
ACTIVATION OF Er3+ TRANSITIONS

The 1535-nm emission measured immediately after
film preparation was extremely weak, particularly in
samples with Ts ≈ 300°C. To optically activate erbium,
we annealed the films thermally in consecutive 20-min
cycles, with the anneal temperature in each cycle being
P

higher by 25°C than that in the preceding one. The tech-
nique employed was that developed earlier in [15], but
the anneal temperature range chosen was from 650 to
750°C. Annealing resulted in a substantial enhance-
ment of the Er3+ PL intensity. This was accompanied by
qualitative changes in the PL kinetics; namely, the rap-
idly decaying luminescence with a lifetime τ ≈ 50–
100 µs was transformed into PL characterized by a
bell-shaped curve with a rise time of up to 200 µs and a
tail extending to ≈600 µs. Thus, the maximum τp1,
which also corresponded to the maximum PL intensity,
was ≈800–900 µs. An attempt to increase the number of
anneal cycles, even without increasing the maximum
temperature, brought about a decrease in the PL inten-
sity, which followed a fairly abrupt pattern in some
cases. The tendency to lose optical activity was more
clearly pronounced in samples prepared at a higher Ts.
The above process of optical activation of erbium can
be connected only with the formation of a structurally
optimal oxygen environment around the erbium ion.
Obviously enough, this process is associated with the
diffusion of oxygen and, possibly, of erbium and
requires not only thermal activation but also a long
period of time, during which the erbium complexes
form and become stabilized and, apparently, find their
place in the GaN structural network. The ErOx-complex
formation will be facilitated if atoms in the host
undergo collective displacements of some kind under
certain conditions, for instance, after an appropriate
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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temperature has been reached. In GaN, such a process
can be expected to occur at temperatures from 650 to
700°C, because it is in this range that one observes par-
tial dissociation of the compound accompanied by
intense generation of nitrogen vacancies [12]. Obvi-
ously enough, the presence of vacancies in the nitrogen
subsystem favors oxygen diffusion and, thus, rear-
rangement of the local structure around the erbium
ions. Because Er is an extremely strong oxygen getter,
the rearrangement of the local structure obviously
involves its replacement by an oxygen environment.
However, there is another factor which may favor the
formation of an oxygen ligand. At temperatures from
650 to 750°C, the nucleation and growth of nanocrys-
tallites are intensified, which is indicated in the electron
microscopy data presented earlier. The role played by
nanocrystallites in the activation of erbium ions
remains unclear, but it may be conjectured that crystal-
lite growth can be conducive to the formation of ErOx

complexes, for instance, at grain boundaries, which are
known to act as sinks for oxygen and possess a certain
freedom for chemical bonds. To fully understand the
erbium activation process, it is also important to learn
the reason for the abrupt loss of optical activity of Er3+

resulting from “overannealing.” The presence of a crit-
ical stage in the activation process means that thermal
annealing should not lead to its terminal stage. The ter-
minal stage apparently corresponds to fully completed
thermodynamic stabilization or to the formation of a
chemically saturated ligand made up of six oxygen
atoms. If, in order to reach the maximum PL, the
annealing has to be stopped in an uncompleted stage,
then the configuration of six oxygen atoms is appar-
ently not optimal; therefore, in order to obtain the max-
imum optical response, the ligand must be partially
incomplete and contain not six but, possibly, five oxy-
gen atoms. Certain experimental evidence in support of
this conclusion is presented in [6]. The ligand structure
with an oxygen vacancy may be preferable for two rea-
sons. The first of them is that an uncompleted complex
has a broken symmetry, thus resulting in a loss of the
center of inversion, and this, as pointed out before, is
the necessary requirement imposed on the ligand. The
second reason may be that a chemically unsaturated
ErO6 – z complex interacts more strongly with the host,
and this chemical coupling with the host acts as a
bridge to transfer excitation energy from the matrix to
the erbium ion. Such a coupling is called a bound defect
in the literature [10]. In such a wide-band-gap material
as GaN, a bound defect is capable of transferring the
excitation energy from localized excitons in the con-
duction-band tail to Er3+. An energy transfer effected in
this way will be nonresonant. This nonresonant energy-
transfer mechanism, combined with direct optical exci-
tation via absorption of the host-emitted photons by the
Er3+ resonant levels, accounts for the experimentally
observed PL excitation function, which, while being
basically monotonic, contains sharp resonant peaks
[18].
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
5. PHOTOLUMINESCENCE
OF Er3+ IONS AT λ = 1535 nm

By properly varying the technological parameters,
both in the course of film deposition and under thermal
annealing, we prepared a set of a-nc-GaN samples with
different erbium-ion luminosities. Samples with high
and maximum luminescence intensities appear to be
the most interesting of this set. The other samples are of
no importance. It should be stressed that there are no
accepted standards for the Er3+ luminescence bright-
ness. In this connection, we assume here that a high
intensity corresponds to a level which is slightly above
the mean statistical intensity quoted in the available
publications. This level can be most simply defined in
terms of its signal/noise ratio and was chosen to be 102.
This parameter was estimated taking into account many
additional factors, including the beam power and wave-
length, the collecting power and resolution of the opti-
cal instrumentation, etc. The validity of this estimate
was also checked using test measurements made on our
samples and reference samples prepared by other
researchers (including foreign groups) on other experi-
mental setups.

Figure 2 presents reduced Er3+ spectra of samples
with high (curve 1) and maximum (curve 2) brightness
levels. The spectrum of the first sample has only one
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Fig. 2. Reduced room-temperature spectra of the
4I13/2  4I15/2 transition of the Er3+ ion obtained on two
a-nc-GaN samples with (1) a high and (2) the maximum
brightness. The true brightness ratio of samples 1 and 2 is
larger than 1 : 30.
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peak at λ = 1535 nm and an FWHM of 35 nm. This is a
standard value for nonresonant excitation (327 nm).
The sample with the maximum brightness exhibits two
peaks, which are nearly equal in amplitude and corre-
spond to λ = 1510 and 1535 nm. One may also observe
a plateau-type curve with a flat or sloped top. The width
of such a spectrum at half maximum is as large as
60 nm. The PL intensity ratio of the bright and super-
bright samples can be in the limit of 1 : 30. The enhance-
ment in brightness is also accompanied by a change in
the temperature dependence of the spectrum. The spec-
tra of bright samples do not exhibit any noticeable
changes under cooling to 77 K. Figure 3 presents spectra
of superbright samples obtained at 77 K (curves 1–3)
and room temperature (curve 4). All the spectra were
measured at the same amplification. The approximate
equality of the PL amplitudes implies that there is vir-
tually no temperature quenching in the a-nc-GaN host.
A comparison of the spectra taken at 77 and 300 K
clearly shows that, at low temperatures, the spectral
component corresponding to the 1510- to 1520-nm line
becomes dominant. The presence in the Er3+ spectrum
of such hot lines, i.e., of lines with photon energies
higher than that of the main peak at 1535 nm, is not in
itself a new observation. Hot lines were observed ear-
lier as well [10, 18, 19]. However, we were the first to
observe these lines with an amplitude comparable or
even in excess of that of the main peak at 1535 nm. This
peak corresponds to the transition from the ground
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Fig. 3. Emission spectra of the 4I13/2  4I15/2 transition

of the Er3+ ion obtained (1–3) at 77 and (4) at 300 K on the
maximum-brightness a-nc-GaN sample.
PH
(lowest) state of the 4I13/2 multiplet to the ground (low-
est) state of the 4I15/2 multiplet. Radiation with a photon
energy above the ground state of the 4I13/2 multiplet can
be connected either with transitions from the Stark-split
states of the multiplet to the ground state of the 4I15/2

multiplet or with the Er3+ ion being capable of occupy-
ing nonequivalent positions in the host. In the latter
case, different configurations of the ligand and, accord-
ingly, of the crystal field coexist. If the crystal field
strength at different Er3+ sites differs strongly, one may
expect local changes in the position of the lower state in
the 4I13/2 multiplet; this is what may bring about the
multilevel pattern of the spectrum. The 1535 
1510-nm shift observed in this work is fairly large, and
this indicates not some distortion of the ligand but
rather a radical change in its configuration. Information
available on the Stark splitting structure of the Er3+

multiplets [20] for erbium-doped oxides suggests that
the lowest 4I13/2 state can produce radiation with λ ≈
1510 nm in a crystal field of Oh symmetry (rare-earth
garnets). The garnet unit-cell structure is, however, too
complex: it contains up to eight formula units; there-
fore, it is hard to conceive the arrangement of such
bulky atomic formations, the more so, with there being
high density already in the amorphous host. The pres-
ence of such structurally foreign inclusions would
undoubtedly have been revealed by microstructural
analysis. In this connection, the hypothesis of non-
equivalent positions should be relegated to second
place. We will discuss subsequently only the model that
assumes hot transitions from the upper Stark levels of
the 4I13/2 multiplet.

In the section dealing with thermal annealing and
erbium-ion optical activation, we considered the pro-
cess of formation of an oxygen ligand around the
erbium ion. The two following points should be
stressed in connection with the ensuing discussion.
(i) The ligand field in an oxygen-doped host is created
by oxygen atoms. As a result, the erbium ion forms an
ErO6 – z complex, with z ≈ 0–1. (ii) If the local chemical
composition in an amorphous host changes, its short-
range order structure also changes because of the struc-
tural lability of the host, i.e., of there being no rigid con-
straints on the formation of a given short-range order.
Therefore, the local structure of the ErO6 – z complex is
determined primarily by the Er–O chemical bonds,
whose thermodynamic energetics is higher than that of
the other bonds that couple Er with the other compo-
nents of the structural network of the amorphous gal-
lium nitride host. As a result, the amorphous GaN host
is, in first approximation, no more than a reservoir (a
term taken from [5]) for the ErO6 – z complexes and only
in the second approximation does the host act indi-
rectly, via the oxygen bonds, on the local ligand field
structure. This opens up a path to more labile structural
self-organization of the erbium–oxygen complex. Only
experimental investigation of the Stark spectra of spe-
YSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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cific hosts can apparently decide which ligand field
symmetry is preferable in the given conditions. The
weakly structured Stark spectra observed for high-
brightness samples in the present work do not contain
adequate information to warrant unambiguous conclu-
sions to be made concerning the local symmetry of the
erbium center. For this reason, we can venture here only
tentative considerations. In accordance with [13], the
erbium ion in III–V compounds lacks inversion sym-
metry and, hence, acquires optical activity if (i) it occu-
pies positions on the cation sublattice, as well as at
interstitial sites, and has Td symmetry or (ii) if the
erbium ion is interstitial and has C3v symmetry.
Because we did not have Stark spectra of amorphous
hosts at our disposal, we carried out a comparative anal-
ysis of such spectra for the erbium-doped oxides in
which Er3+ has different point symmetries [20–22]. It
appears remarkable that the 1510-nm hot line com-
bined with the 1532–1537 nm main transition was
observed only for the C3v erbium-center local symme-
try [21]. While this still does not imply that this symme-
try is realized in the amorphous GaN host, it does, nev-
ertheless, suggest a promising direction for further
studies.

Even though our arguments do not appear to be suf-
ficiently convincing, we shall accept the Stark-based
interpretation of the PL spectra of high-brightness sam-
ples. In this case, one has to explain the high intensity
of the hot lines. The high hot-line intensity, which may
even dominate over the main transition, is due to the
approximately equal probabilities of photon emission
from the state higher in energy and the lowest state of
the multiplet; in other words, it is due to the excitation
lifetimes being comparable for the higher and the low-
est states of the multiplet. A study of the variation of the
Er3+ emission spectrum with time within the time inter-
val of radiation decay supports this conclusion. Figure
4 displays two spectra obtained with 50-µs-long gates
delayed by 0 and 500 µs, respectively. While the rela-
tive hot-transition contribution to the total radiation is
clearly seen to decrease as the 4I13/2 multiplet is
depleted, the λ = 1510-nm radiation does not disappear
completely. It thus follows that the transition probabil-
ity from the lowest 4I13/2 state is indeed only insignifi-
cantly smaller than that from the nearest Stark levels.
One cannot exclude the possibility that this situation is
a consequence of the high density of the Er3+ ions.

The high Er3+ density can lead to aggregation of the
ErO6 – z complexes. The coupling of the electronic f
shells of Er3+ ions within such an aggregate may quite
probably become manifest. This interaction creates
new electronic configurations of the type of quantum
dots, whose properties in this variant are totally
unknown. It is clear, though, that the state-filling statis-
tics in such a formation can change and that this will
make the higher states more active, particularly under
the high pulse pumping densities produced by an
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
LGI-21 laser (1.6 kW). That this density is indeed high
is supported by the generation of optical noise at liquid-
nitrogen temperatures, which could be a forerunner of
superluminescence. Figure 5 illustrates spectra contain-
ing optical noise. The noise region extends over the
1560- to 1570-nm wavelength range. Curve 2 even
shows that the increase in noise intensity terminates in
sharpening of the line. Instability of the spectrum is
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Fig. 4. Variation in the emission spectrum of the Er3+ ion in
the a-nc-GaN host with time: (1) spectrum obtained with
zero delay after the excitation pulse and (2) emission spec-
trum taken after 500 µs. 

Fig. 5. Instability of the Er3+ emission spectrum and opti-
cal-noise generation (1550–1570 nm) in maximum-bright-
ness samples. (1–3) Different spectrum measurements. 
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always observed to occur within a fixed wavelength
range. If the radiation instability is indeed connected
with a manifestation of spontaneous optical amplifica-
tion, this means that the density of optically active
erbium ions, at any rate in local regions, approaches the
level at which partial self-synchronization of radiation
becomes possible.

It does not appear possible at present to estimate
experimentally the absolute magnitude of the quantum
yield of samples with the maximum brightness,
because the PL spatial distribution has not been studied.
Nevertheless, an idea of the emission efficiency can be
gained from the following parameters. The absolute
time-averaged PL power reaching the power-calibrated
photodetector within a 35° solid angle normal to the
sample surface was 2.0 µW at a continuous equivalent
radiation power of 1.5 mW with optical channel losses
of 10 dB.
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Abstract—The effect of irradiation by 1.2-MeV electrons to a dose Φ = 2 × 1017 cm–2 on the electrical, optical,
and photoelectric properties of In-doped CdS single crystals was studied. The experimental data obtained per-
mit one to conclude that irradiation initiates decomposition of the supersaturated In solution in CdS, with the
indium atoms at the sites of the cation sublattice being expelled by cadmium interstitial atoms. New slow-
recombination centers were observed to exist in the irradiated CdS : In samples, with the maxima of optical
quenching of the photoconductivity lying in the region of  = 0.75 µm and  = 1.03 µm. It is suggested

that the new recombination centers are related to complexes containing cadmium vacancies and indium atoms.
© 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

This paper reports on a study of the effect of elec-
tron irradiation on some electrical, photoelectric, and
optical properties of indium-doped CdS single crystals.
Published data on the mechanisms of defect formation
in CdS compounds doped by Group-III elements are
scarce.

The crystals to be studied were grown at the Institute
of Single Crystals (Kharkov) from a melt of purified
CdS powder in an inert-gas environment at a pressure
of 1.86 × 107 Pa. The crystals were doped with indium
during growth. Analysis showed the indium concentra-
tion in different samples to be NIn ≈ 1018 and ≈1019 cm–3.
The samples were irradiated by 1.2-MeV electrons (to
a dose Φ = 2 × 1017 cm–2) on a linear accelerator. During
the irradiation, the crystals were cooled by liquid-nitro-
gen vapor, such that their temperature did not rise above
290 K.

2. EXPERIMENTAL RESULTS

A feature specific to CdS : In single crystals is the
existence of impurity maxima at λM = 524 nm, which
disappear with decreasing temperature, in absorption
and photoconductivity (PC) spectra taken at room tem-
perature (curves 1, 2, peak I in Fig. 1). The displace-
ment of the intrinsic photoconductivity peak II (Fig. 1)
to shorter wavelengths with decreasing temperature
agrees well with the increase in the band gap width Eg

of single-crystal CdS under cooling.
1063-7834/02/4402- $22.00 © 0255
Irradiation of CdS : In by electrons brings about the
disappearance of impurity maxima in the absorption
and PC spectra at λM = 524 nm. Moreover, the photo-
sensitivity increases in the region of intrinsic photocon-
ductivity (peak II) and decreases for λ > 530 nm
(Fig. 1). It should also be pointed out that electron irra-
diation of doped samples results in a decrease in their
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Fig. 1. Spectral response of the photoconductivity of
CdS : In single crystals (NIn = 1018 cm–3) (1, 2) unirradiated

and (3, 4) irradiated by electrons (Φ = 2 × 1017 cm–2) (1, 3)
at 290 and (2, 4) 80 K.
2002 MAIK “Nauka/Interperiodica”



 

256

        

DAVIDYUK 

 

et al

 

.

                                                                                                    
conductivity in the dark, while irradiation of undoped
crystals gives rise to its decrease.

Before irradiation, the CdS : In samples under study
exhibited a slight (up to 5%) optical quenching of pho-
toconductivity (OPQ), well known from literature, with
maxima at  = 0.9–0.95 µm and  = 1.4 µm (the
latter disappears with decreasing temperature), which
originate from centers associated with cadmium vacan-
cies (VCd) in the ground and excited states [1, 2] (curve
1 in Fig. 2).

After irradiation, the OPQ spectral response
changes radically (curves 2, 3 in Fig. 2). First, the OPQ
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Fig. 2. Spectral response of the optical quenching of the
photoconductivity of CdS : In single crystals (NIn = 1018 cm–

3) (1) before irradiation and (2, 3) after electron irradiation
(Φ = 2 × 1017 cm–2) (1, 2) at T = 290 and (3) 80 K.
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Fig. 3. Photoluminescence spectra of CdS (1) and CdS : In
single crystals with In concentrations of (2) 1018 and
(3, 4) 1019 cm–3 measured at T = 77 K (1–3) before irradia-
tion and (4) after electron irradiation to Φ = 2 × 1017 cm–2.
P

maxima grow in amplitude (by a factor of about five)
and change position on the spectral curve. The new
OPQ bands peak at  ≈ 0.75 µm and  ≈ 1.03 µm.

The band peaking at  = 1.03 µm disappears with
decreasing temperature.

Irradiation of undoped CdS samples under the same
conditions does not affect the position of the OPQ max-
ima at  = 0.9 µm and  = 1.4 µm, with only their
amplitude increasing slightly (about twofold).

We recorded photoluminescence (PL) spectra not
only of doped samples but also of undoped single crys-
tals grown under the same conditions as CdS : In. The
luminescence was excited by UV radiation (λ =
365 nm) from a DRSh mercury lamp on as-cleaved
crystal surfaces.

At room temperature, a structureless green lumines-
cence band (G-luminescence) was dominant in the
spectra of both undoped and doped crystals. The band
of undoped samples peaked at a wavelength λ =
510 nm. Introducing an In impurity broadens the emis-
sion band and reduces its intensity. Note that the posi-
tion of the G-luminescence maximum in doped sam-
ples depends on the impurity concentration. As the In
concentration increases, the emission maximum shifts
toward short wavelengths to reach λG = 500 nm at NIn =
1019 cm–3 (with its half-width increasing approximately
twofold). At liquid-nitrogen temperature, the positions
of the G-band maxima of both undoped and doped crys-
tals almost coincide (irrespective of the actual impurity
concentration).

Figure 3 presents PL spectra of the samples obtained
at 77 K. The undoped crystals exhibited intense exciton
emission bands (at λM = 480 nm) and G luminescence
with well-pronounced phonon replicas (with the first
zero-phonon maximum located at λM ≈ 514 nm, curve 1).
The orange luminescence (O luminescence) at λM =
604 nm was weak. The intensity of the other emission
bands was at the sensitivity limit of the detectors used.
The doped samples (NIn ≈ 1018 cm–3) revealed only a
diffuse structureless G-luminescence band at λM =
514 nm (curve 2 in Fig. 3). As the In dopant concentra-
tion was increased to NIn ≈ 1019 cm–3, an emission peak,
which was absent at room temperature, appeared at
λM ≈ 524 nm (curve 3 in Fig. 3) against the background
of a diffuse G-luminescence band.

After irradiation, the PL spectra of the doped sam-
ples acquire features characteristic of undoped CdS but
with a different intensity distribution (curve 4 in Fig. 3).
At room temperature, the G-luminescence band of the
irradiated CdS : In crystals coincides in half-width and
position with that of the undoped crystals. At liquid-
nitrogen temperature, the O luminescence is seen to
appear in the spectra of the irradiated CdS : In samples
at λM ≈ 603–604 nm; the G-luminescence band
assumes the structure characteristic of undoped crys-

λM1
λM2

λM2

λM1
λM2
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tals, with the first maximum lying at λM ≈ 514 nm; and
an exciton luminescence band (which was absent
before irradiation) forms at λM ≈ 480 nm. In strongly
doped crystals, the PL band at λM ≈ 524 nm disappears
(curve 4 in Fig. 3). Note that, after irradiation, the emis-
sion intensity increases, with the intensity of the G
luminescence in CdS : In becoming practically equal to
that in CdS. In the IR region, a new and weak lumines-
cence band appears in CdS : In at λM ≈ 1.2 µm, which
is not seen in the undoped samples, as well as in doped
samples before irradiation.

3. DISCUSSION OF EXPERIMENTAL RESULTS

It is known [3] that In doped into a CdS single crys-
tal enters the lattice as an impurity substituting for Cd
on the cation sublattice to form shallow donor centers
InCd. It is these centers that are apparently responsible
for the additional extrinsic maxima in absorption and
photoconductivity (λM ≈ 524 nm) observed at room
temperature in the CdS : In single crystals (peak I in
Fig. 1). These maxima are due to photoexcitation of
electrons from the valence band to the InCd donor cen-
ters, which are empty at room temperature, with subse-
quent thermal ionization to the conduction band. Two-
step transitions of such kind are frequently observed in
II–VI wide-band-gap semiconductors.

The ionization energy of the InCd center estimated
by us from the position of the impurity maxima was
found to be E = (Ec – 0.06 ± 0.02) eV, which is in agree-
ment with the energy position of the InCd donor deter-
mined by other authors [1, 3]. As the temperature is
lowered, electrons fill the donor centers and the proba-
bility of their thermal ionization to the conduction band
decreases, as a result of which the impurity-absorption
and photoconductivity peaks disappear. This gives rise
to the formation of an additional PL band at λM ≈
524 nm (curve 3 in Fig. 3). It can apparently originate
from the recombination of electrons (which occupy the
InCd donor centers filled at low temperatures) with the
valence-band holes. That the InCd donors are indeed
responsible for the PL at λM ≈ 524 nm is supported by
the increase in intensity of this luminescence band with
increasing In dopant concentration in CdS samples.
Centers with such PL bands were also observed in CdS
crystals doped by other impurities [2], which form shal-
low levels in the crystal band gap.

The reduced emission intensity, the absence of
phonon replicas and the broadening of the dominant G-
luminescence band, the shift of its maximum to shorter
wavelengths (at room temperature), and the absence of
exciton luminescence spectra (curves 2, 3 in Fig. 3)
indicate a high defect concentration in the doped sam-
ples, particularly at high dopant concentrations (NIn =
1019 cm–3).

The unit-cell parameters of CdS and CdS : In (deter-
mined with an HZG-4A x-ray diffractometer) are given
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
in the table (shown in parentheses are data on the purest
and structurally perfect CdS single crystals taken from
[13]).

As follows from the table, there is a slight difference
between the cell parameters of the doped and undoped
samples before irradiation, which decreases after irra-
diation of the doped samples. This argues for there
being an improvement in the structure of doped sam-
ples in the course of irradiation.

It is known that the G-luminescence band at λM ≈
514 nm (at 77 K) originates from acceptors, which in
this case are interstitial sulfur atoms (Si) [4, 5]. The
radiation is generated in the recombination of free elec-
trons with holes trapped by Si acceptors. The shift of the
maximum in the G-luminescence band by 10 nm
toward shorter wavelengths (compared to the undoped
crystal) and the broadening of the luminescence band,
which are observed at room temperature in CdS : In,
can be assigned to a screening effect produced on the
luminescence centers by the charged donors, which are
InCd centers at high temperatures. Such phenomena are
well known to occur in wide-band-gap crystal phos-
phors with high concentrations of dopants (or defects)
[6, 7]. The gradual suppression of the screening effect
on the Si acceptors caused by the InCd donor centers,
which become filled by electrons as the temperature is
decreased, brings about a practical coincidence
between the G-luminescence maxima of the doped and
undoped crystals at 77 K (Fig. 3).

The mechanisms governing the interaction of native
radiation defects with dopants have been most fully
studied for silicon. It has been shown, in particular, that
interstitial silicon atoms can interact with Group-III
impurities differently, depending on the ratio of the
atomic radii of the impurity (rimp) and silicon atoms
(rSi) [8]. For rimp > rSi, the impurity atom is expelled
from the lattice site by interstitial silicon. For rimp < rSi,
there is no expulsion. For indium and cadmium atoms,
we have rIn > rCd [9]. If the mechanism operative in sil-
icon is also realized in binary semiconductors, then one
may expect part of the interstitial cadmium atoms (Cdi)
formed in the irradiation to substitute for In atoms
occupying regular lattice sites, thus reducing the con-
centration of the InCd donor centers. The interstitial
indium atoms (Ini) created in this process can interact

Unit-cell parameters of CdS and CdS : In single crystals
(NIn ≈ 1019 cm–3)

CdS

CdS : n

before irradiation after irradiation,
Φ = 2 × 1017 cm–2

a, Å c, Å a, Å c, Å a, Å c, Å

4.1351 6.7130 4.1320 6.7100 4.1340 6.7125

(4.1369) (6.7157)
2
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with other radiation-induced defects or escape through
radiation-stimulated diffusion to various sinks (disloca-
tions, twin boundaries, surface, and so on), which are
always present in II–VI semiconductors. This conjec-
ture provides a reasonable explanation for the disap-
pearance of the extrinsic-absorption and photoconduc-
tivity maxima at λM = 524 nm and of the low-tempera-
ture PL band at λM = 524 nm in irradiated Cd : In single
crystals. Because of the reduced probability of recom-
bination of VCd with the Cdi interstitials, which, after
expelling In atoms out of the lattice sites, occupy their
positions on the cadmium sublattice of the crystal, the
concentration of the complexes associated with VCd is
increased.

An improvement in the lattice structure in irradiated
Cd : In single crystals (table) can apparently account
for the appearance of exciton luminescence in these
samples, the decrease in the emission line width, and
for the G luminescence acquiring the characteristic
properties of the corresponding band in undoped sam-
ples. The increase in the PL intensity and intrinsic pho-
tosensitivity in irradiated single crystals is explained,
on the one hand, by the increase in the concentration of
the slow recombination centers containing VCd (which
is indicated by the increase in the OPQ intensity) and,
on the other, by the decrease in the concentration of the
centers responsible for the fast nonradiative recombina-
tion channel, which are known to be associated with lat-
tice defects [10].

The improvement in the structure of doped samples
produced by irradiation can be understood if we take
into account that the solution of the In dopant in CdS
(particularly at high concentrations NIn = 1018–1019 cm–3)
can exist at room temperature in a supersaturated, meta-
stable state; however, its decomposition is constrained
by the limited diffusion rate of In atoms. By enhancing
the diffusion of In atoms (through radiation-stimulated
mechanisms), irradiation initiates decomposition of the
supersaturated solution and removal of excess In atoms
to various sinks and to the surface, thus purifying the
bulk of the sample. There are reported observations of
supersaturated solutions of Al and of other atoms in sil-
icon whose decomposition can be initiated by carrier
injection, which accelerates atomic diffusion [11].

In undoped crystals and CdS : In samples before
irradiation, the VCd vacancies play the role of slow
recombination centers (r centers), with quenching max-
ima in the region of  = 0.95 µm and  = 1.4 µm
[1, 2]. Irradiation changes the nature of the slow recom-
bination centers, which is indicated by a change in the
position of the OPQ maxima associated with the
ground and excited states of holes at the centers after
irradiation (  = 0.75 µm and  = 1.03 µm, Fig. 2).

While our experimental data cannot answer the
question as to the nature of the new r centers, it may be
conjectured that these centers are associated with

λM1
λM2

λM1
λM2
PH
defect complexes containing VCd and In atoms. The for-
mation of such complexes under irradiation of CdS : In
is initiated by the enhanced mobility of In atoms and of
the forming VCd vacancies. This conjecture is based on
a number of observations. Recombination centers with
a changed position of the OPQ maxima were observed
only in irradiated doped crystals. Similar centers with
slightly different positions of the OPQ maxima were
also seen in irradiated Cu-doped CdS single crystals
[12]. The formation of new r centers in CdS : In after
irradiation in concentrations higher than that of VCd
before irradiation results in an enhancement of OPQ
and in a decrease in the dark electrical conductivity,
because these centers, as with other slow-recombina-
tion centers, are acceptors.

It is known that VCd vacancies are responsible for
the photoconductivity in the extrinsic region λ ≈ (550–
600) nm in CdS [1]. Electron irradiation of CdS : In
reduces the photosensitivity for wavelengths λ >
530 nm (Fig. 1). This is evidence of a decrease in the
VCd concentration, apparently as a result of their inter-
action with In atoms. It should be pointed out that irra-
diation of undoped CdS single crystals brings about an
increase in the extrinsic photoconductivity due to an
increase in the VCd concentration [13].

The G band and the O luminescence at λ ≈ 604 nm
are the dominant emission bands in irradiated CdS : In
samples at 77 K. The O luminescence was not observed
in doped crystals before irradiation. The increase in the
G-luminescence intensity is apparently explained, in
addition to other factors, by the formation of interstitial
sulfur atoms under electron irradiation.

The nature of the O luminescence in CdS remains
unclear. Most authors believe the Cdi atoms to be
responsible for it [14, 15], whereas others associate the
formation of the O-luminescence centers with oxygen
atoms [16]. We believe [17] that the O centers contain
Cdi atoms and some residual impurity, most probably
oxygen, which is always present in the CdS lattice.

The increase in the O-luminescence intensity in irra-
diated CdS : In single crystals is connected with the
increase in concentration of the Cdi-containing com-
plexes which did not recombine with the radiation-
induced VCd vacancies that trapped In atoms.

The luminescence band at λM = 1.2 µm, which was
observed only in irradiated CdS : In single crystals,
should apparently be assigned to the recombination of
free electrons with holes trapped by the new r centers,
whose ground state is at a distance of 1.65 eV from the
valence band.
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Abstract—The thermal conductivity of single-crystal zinc sulfide and optically transparent zinc sulfide poly-
crystals differing in crystal grain size and density is experimentally investigated in the temperature range 80–
400 K. It is shown that the thermal conductivity of polycrystalline samples substantially depends on the crystal
grain size and the defect concentration in the grain-boundary layers. In zinc sulfide samples with a grain size
of 1 µm, excess thermal resistance due to phonon scattering by grain boundaries is observed at temperatures
T  < 130 K. It is demonstrated that, at higher temperatures (T > 210 K), the heat transfer is associated not only
with transverse phonon modes but also with longitudinal phonon modes and the role of the latter modes
increases with an increase in temperature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Zinc sulfide is widely used in optical instrument
production owing to its transparency in the IR spectral
range. For some practical purposes, polycrystalline
materials based on zinc sulfide are more preferable to
single-crystal zinc sulfide [1]. In commercial produc-
tion, optical polycrystalline ZnS-based materials are
usually prepared by recrystallization compaction of a
finely disperse powder under vacuum or through vapor
deposition of raw materials. Compared to the PO-2
samples produced by vapor deposition, the KO-2 sam-
ples prepared using recrystallization compaction pos-
sess better mechanical properties but a slightly worse
transparency, especially in the short-wavelength optical
range [2, 3]. Reliable data on the thermal conductivity
coefficient κ of polycrystalline zinc sulfide samples
prepared by recrystallization compaction or vapor dep-
osition are required to optimize the procedures and
techniques of producing high-quality optical polycrys-
talline ZnS-based materials and to solve problems in
engineering. Moreover, the data on the thermal conduc-
tivity and its temperature dependence can provide a
deeper insight into both the mechanism of heat transfer
and the influence of structural features on the thermal
conductivity coefficient κ of zinc sulfide materials.

In our earlier work [4], we revealed that the thermal
conductivity of the KO-2 optical polycrystalline mate-
rial produced by vacuum recrystallization compaction
of a finely disperse zinc sulfide powder is considerably
less than that of single-crystal zinc sulfide. The thermal
conductivity coefficients determined in [4] for the
KO-2 material were 3.9 (at 80 K) and 1.6 (at 300 K)
times less than those obtained by Slack [5] for single-
crystal zinc sulfide at the same temperatures. A prelim-
1063-7834/02/4402- $22.00 © 20260
inary analysis allowed us to assume that the low ther-
mal conductivity of the KO-2 material, as compared to
single-crystal zinc sulfide, is associated with specific
features in the defect structure of polycrystalline
ceramics. In this respect, the aim of the present work
was to investigate in detail the mechanisms of heat
transfer in optical polycrystalline ZnS-based materials
in relation to their structural features, temperature,
crystal grain size, and the presence of linear and bulk
defects in the crystal structure.

The present paper reports on the results of careful
investigations into the thermal conductivities of the
KO-2 material, polycrystalline zinc sulfide samples
prepared by vapor deposition, and single-crystal zinc
sulfide.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE
The KO-2 samples were prepared by vacuum

recrystallization compaction of a finely disperse ZnS
powder (zinc sulfide for optical ceramics; particle size,
25 nm). The grain size in the samples was equal to 1–
2 µm. The relative densities of the KO-2(1) and
KO-2(2) samples amounted, respectively, to 0.998 and
0.991 of the density of the ZnS single crystal. The PO-2
samples consisted of crystallites 1–3 mm in size, and
their density was equal to the density of the ZnS single
crystal. The samples to be studied were cut from bulk
disks and had the form of rods with a circular or rectan-
gular cross section 20 mm2 in area and 22–24 mm in
height. According to x-ray diffraction analysis, the
KO-2 and PO-2 samples and the ZnS single crystal had
a cubic structure (β-ZnS sphalerite).

The thermal conductivity coefficients κ were mea-
sured by the absolute stationary method in the temper-
002 MAIK “Nauka/Interperiodica”
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ature range 80–400 K under vacuum. The experimental
setup used was similar to the A-type instrument
described in [6]. In the temperature range 160–250 K,
the κ coefficients were also measured under quasi-sta-
tionary conditions with the use of supercooled ethanol
as a cooling agent. The temperature drift was no more
than 0.5 K/h. The necessity of performing these mea-
surements was dictated by the specific features revealed
in the temperature dependences κ(T) obtained for the
samples under stationary thermal conditions at fixed
temperatures of the cooling agent. These features will
be discussed below. The relative error in measurements
for both temperature regimes did not exceed 2% at low
temperatures and 3% in the temperature range 300–
400 K.

3. RESULTS AND DISCUSSION

Figure 1 displays the experimental temperature
dependences of the thermal conductivity coefficient for
the samples studied in the present work. For compari-
son, the data on the thermal conductivity coefficient
obtained by Slack [5] for the ZnS single crystal and the
results of our earlier measurements made in [4] for the
KO-2 sample are also shown in Fig. 1. It can be seen
from this figure that our data for the ZnS single crystal
virtually coincide with the results obtained in [5].
Moreover, the κ coefficients measured for the KO-2
samples in the present work are in close agreement with
those determined earlier in [4]. The thermal conductiv-
ity of the KO-2 sample is substantially less than that of
the PO-2 sample and the ZnS single crystal over the
entire temperature range covered. The thermal conduc-
tivities of the PO-2 sample and the ZnS single crystal
are close to each other in magnitude and exhibit similar
temperature dependences. The κ coefficients measured
under stationary (when the measuring instrument was
placed in the cooling agent at a fixed temperature) and
quasi-stationary conditions also coincide to within the
limits of experimental error. For convenience, the
experimental data on the thermal conductivity coeffi-
cients for the KO-2 and PO-2 samples and the ZnS sin-
gle crystal are represented in the form of temperature
dependences of the thermal resistivity (W = 1 / κ). It is
seen from Fig. 2 that the dependences W(T) for the PO-2
samples and the ZnS single crystal in the temperature
range studied are parallel straight lines with inflection
points at a temperature of approximately 210 K. The
thermal resistivity of the KO-2 samples is considerably
greater in magnitude compared to that of the PO-2 sam-
ples and the ZnS single crystal. In the temperature
range 130–400 K, the dependence W(T) for the KO-2
samples also exhibits a linear behavior with an inflec-
tion point at 210 K. However, at T < 130 K, this depen-
dence deviates from linear behavior, most likely, due to
the specific features observed in phonon scattering.

Let us now consider the contributions to heat trans-
fer mechanisms that can be responsible for (1) the low
thermal conductivity coefficients κ observed in the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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Fig. 1. Temperature dependences of the thermal conductiv-
ity coefficient κ for zinc sulfide samples with different
structures: (1) single-crystal zinc sulfide, (2) PO-2 poly-
crystal, and (3, 4) KO-2 polycrystals of different porosities.
Points I indicate the temperature dependence of the κ coef-
ficient measured under quasi-stationary conditions. Points II
represent the κ coefficients obtained by Slack [5] for the
ZnS single crystal. Points III correspond to the κ coefficients
determined in our earlier work [4] for the KO-2 sample.
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Fig. 2. Temperature dependences of the thermal resistivity
(W = 1/κ) for ZnS samples with different structures. The
numbering of curves 1–3 is the same as in Fig. 1. (4) Tem-
perature dependence of the difference between the thermal
resistivities of the KO-2 and PO-2 samples.
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experiment with the KO-2 polycrystalline samples
(even though their optical transparency is rather high)
as compared to those obtained for the PO-2 polycrystal-
line samples and the ZnS single crystal, (2) the appear-
ance of excess thermal resistance in the KO-2 samples
at T < 130 K, and (3) the changes observed in the slope
of the temperature dependence of the thermal resistivity
for the KO-2 and PO-2 samples and the ZnS single
crystal at a temperature of approximately 210 K.

Analysis of the possible contributions to the κ coef-
ficient for the samples studied in the temperature range
80–400 K shows that zinc sulfide possesses a high elec-
trical resistivity. Hence, the electron-assisted heat
transfer can be ignored in the temperature range cov-
ered. Estimates demonstrate that, despite the optical
transparency of the samples under investigation, the
photon component of thermal conductivity κphot is neg-
ligibly small even for the ZnS single crystals. Accord-
ing to the estimates made in our recent work [7] for
polycrystalline zinc sulfide samples, the photon com-
ponent κphot at 300 K accounts for 0.006% of the total
thermal conductivity. Therefore, the thermal conductiv-
ity coefficients κ obtained in the experiment with our
samples are determined by the heat transfer through
crystal lattice vibrations.

As regards the role played by acoustic and optical
phonons in the heat transfer in zinc sulfide samples,
their contributions are quite different. The contribution
of optical phonons is insignificant in the temperature
range 80–400 K. This is explained by the fact that the
characteristic temperatures of transverse and longitudi-
nal optical phonons in this compound are equal to 426
and 477 K, respectively [8]. Consequently, the trans-
verse and longitudinal optical phonon modes are
excited only at high temperatures in the studied range.
For this reason and owing to the low group velocity, the
optical phonons cannot contribute significantly to the
heat transfer at temperatures below room temperature.
Thus, the acoustic phonons make a dominant contribu-
tion to the heat transfer in zinc sulfide samples in the
temperature range 80–400 K.

Now, we discuss the mechanisms responsible for the
decrease in the heat transfer in zinc sulfide samples. In
the temperature range 80–400 K, the thermal conduc-
tion in ZnS single crystals is limited primarily by the
mechanisms associated with three-phonon umklapp
processes and phonon scattering by point and linear
(one-dimensional) defects existing in real crystals. In
the PO-2 and KO-2 polycrystals, the heat transfer can
also be limited by two-dimensional defects (grain
boundaries). Moreover, the heat transfer in the KO-2
polycrystals can be hindered by bulk defects (pores),
because the densities of the KO-2(1) and KO-2(2) sam-
ples are 0.2 and 0.9% less than those of the PO-2 sam-
ples and the ZnS single crystal. The preparation of the
KO-2 samples through hot compaction can be accom-
panied by the formation of small-sized vacuum pores
[9]; therefore, the density of these samples decreases.
P

We estimated the contribution of pores to the observed
decrease in the thermal conductivity of the KO-2 sam-
ples according to the formula proposed by Skorokhod
[10] for materials of low porosity, that is,

(1)

where κ0 is the thermal conductivity coefficient for a
reference material whose porosity is equal to zero and
P is the porosity of the material under investigation.
These calculations demonstrated that the thermal con-
ductivity coefficients for the KO-2(1) and KO-2(2)
porous samples at 300 K amount, respectively, to 0.3
and 1.3% of the κ coefficient for the reference sample
of zero porosity. Hence, it follows that the low thermal
conductivity of the KO-2 samples as compared to the
PO-2 and single-crystal ZnS samples cannot be pro-
vided by the micropores alone in the KO-2 samples.

In polycrystalline samples, grain boundaries and
surface layers of grains always contain a large amount
of defects [9]. These defects distort the crystal lattice,
strongly scatter phonons, and increase the thermal
resistance of the samples. The role of grain boundaries
and defects in phonon scattering can be judged from the
estimates of the mean free path of phonons for each
type of scattering processes. By using the data on the
thermal conductivity coefficient, the mean free path l of
phonons can be estimated from the formula

(2)

where κ is the experimental thermal conductivity coef-
ficient, CV is the specific heat at constant volume, and v
is the mean velocity of sound. In our calculations, the
values of CV and v  for ZnS were taken from [11] and
[12], respectively. The phonon mean free paths thus
obtained for the studied samples are shown in Fig. 3.
Since the phonon scattering observed in our samples
involves phonon–phonon scattering processes and
phonon scattering by defects and grain boundaries, the
mean free path of phonons can be represented in the
following form:

(3)

where lph is the mean free path associated with phonon–
phonon scattering, ld is the mean free path of phonons
in phonon scattering by defects, and lb is the mean free
path of phonons in phonon scattering by grain bound-
aries. The mean free path associated with phonon–
phonon scattering processes in zinc sulfide can be eval-
uated from the relationship [13]

(4)

where a3 is the volume per atom in the crystal, β is the
thermal expansion coefficient, and γ is the Grüneisen
parameter. In our calculations, the values of β and γ for

κ κ 0 1
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zinc sulfide were taken from [8, 14]. The mean free path
lb was calculated using the expression [15]

(5)

where d is the grain cross section and F is the relative
fraction of phonons involved in diffuse scattering by
grain boundaries. According to Noguera and Wasim
[15], the relative phonon fraction F for ZnS is equal to
0.58. The temperature dependences of the calculated
mean free paths lph and lb for the samples under investi-
gation are displayed in Fig. 3. When calculating the
mean free path lb, the grain sizes were taken equal to
1 and 2 µm, which correspond to the grain sizes in the
KO-2 samples.

It can be seen from Fig. 3 that, in zinc sulfide poly-
crystals with a grain size of 1 µm, the contributions of
the phonon–phonon scattering and phonon scattering
by grain boundaries to the mean free path of phonons
are comparable to each other in magnitude even at
130 K. A further decrease in the temperature leads to an
increase in the relative contribution of the phonon scat-
tering by grain boundaries to the limitation of both the
mean free path of phonons and the thermal conductiv-
ity. This explains the observed deviation of the W(T)
dependence for the KO-2 polycrystalline sample
(Fig. 2) from linear behavior in the low-temperature
range (i.e., the additional increase in the thermal resis-
tance). In zinc sulfide polycrystals with a grain size d >
5 µm, the contribution of the phonon scattering by grain
boundaries to the limitation of the phonon mean free
path in the temperature range covered becomes negligi-
bly small.

The phonon mean free path associated with phonon
scattering by defects was determined from relationship
(3). As is seen from Fig. 3, the phonon scattering by
defects substantially contributes to the limitation of the
phonon mean free path in the studied samples. The cal-
culations demonstrate that the contribution of the
phonon scattering by defects to the thermal resistance
increases when changing over from single-crystal zinc
sulfide to the KO-2 polycrystalline sample. The thermal
resistance observed even in the zinc sulfide single crys-
tals due to phonon scattering by defects can, most
likely, be associated with the presence of impurities (in
particular, iron ions) in the samples. These impurities
involved in II–VI compounds are efficient scattering
centers of phonons [5] and decrease their mean free
path. In the PO-2 and, especially, KO-2 crystalline sam-
ples, it is also necessary to take into account the contri-
bution of the phonon scattering by defects in grain-
boundary layers to the thermal resistance. Owing to the
small size of the grains, the concentration of these
defects in the KO-2 samples is substantially higher than
that in the PO-2 samples. Correspondingly, their contri-
bution to the thermal resistance is appreciably larger in
the KO-2 samples than in the PO-2 samples. As can be
seen from Fig. 2, the excess thermal resistance due to a
larger amount of defects in the vicinity of grain bound-

lb 1.12F d ,=
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aries in the KO-2 samples as compared to that in the
PO-2 samples is virtually temperature independent,
which is consistent with the existing theory of phonon
scattering by defects [16].

As was noted above, the temperature dependences
W(T) for the KO-2, PO-2, and single-crystal ZnS sam-
ples exhibit a change in the slope (inflection point) at a
temperature of approximately 210 K. Devyatkova and
Smirnov [17] also observed an inflection point in the
dependence W(T) near the Debye temperature θ for
lead and cadmium chalcogenides and alkali halide
compounds. Logachev et al. [18] obtained a similar
inflection point in the theoretically calculated depen-
dence W(T) for NaCl. The mean Debye temperature for
acoustic phonon modes contributing to heat transfer in
zinc sulfide can be determined from the relationship
[19]

(6)

where θTA and θLA are the Debye temperatures for
transverse and longitudinal acoustic phonons, respec-
tively. The Debye temperature  calculated from for-
mula (6) for ZnS is equal to 206 K (in our calculations,

θ 2
3
---θTA

2 1
3
---θLA

2
+

1
2
---

,=

θ

6.0

100

lo
g

(l
–

1 , m
–

1 )

T, K
200 300 400

6.5

7.0

7.5

8.0

1

2

3

4

5
6

7

Fig. 3. Temperature dependences of the mean free path of
phonons in (1) KO-2, (2) PO-2, and (3) single-crystal ZnS
samples. Temperature dependences of the (4) calculated
mean free path of phonons (lph) in phonon–phonon scatter-
ing, (5) calculated mean free path of phonons in the KO-2
sample with inclusion of phonon–phonon scattering and
phonon scattering by grain boundaries, and the mean free
path of phonons in grain-boundary scattering for the KO-2
samples with grain sizes of (6) 1 and (7) 2 µm.
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the temperatures θTA and θLA were taken from [8]).
Thus, inflection points in the experimental depen-
dences of the thermal resistivity for the KO-2, PO-2,
and single-crystal ZnS samples are observed at the
Debye temperature. At temperatures above and below
the Debye temperature, the dependence W(T) can be
represented by the relationship

(7)

Table 1 lists the coefficients B and C, which were
determined from the experimental data. The quantity
BT = W0 is the thermal resistivity of a defect-free ZnS
crystal. The coefficient B, which determines the slope
of the linear dependence W(T), characterizes the mate-
rial and is identical (within the limits of experimental
error) for the studied samples in each temperature range
(above and below the Debye temperature). It is known
that, in the case when the heat transfer is provided by
acoustic phonons and three-phonon umklapp processes
are dominant in the phonon scattering, the thermal
resistivity of the defect-free crystal can be represented
in the following form [20]:

(8)

where A is constant, M is the mean atomic mass, and n
is the number of atoms per unit cell. A comparison of
formulas (7) and (8) shows that the coefficient B is pro-
portional to γ2/θ3. Since the slope of the straight line
W(T) is determined by the B coefficient, the observed
change in the slope is caused by the change in this coef-
ficient, i.e., by the change in the γ2/θ3 ratio. It should be
noted that the values of γ and θ differ for different
acoustic branches. Therefore, the γ2/θ3 ratio (and,
hence, the B coefficient) can vary with a change in the

W BT C.+=

W0 T( ) A
γ2T

n1/3Maθ3
----------------------,=

Table 1.  Coefficients B and C characterizing the temperature
dependences of the thermal resistivity for the KO-2 and PO-2
samples and single-crystal ZnS

Material
B, 10–5 m/W C, 10–3 m K/W

T < 200 K T > 240 K T < 200 K T > 240 K

KO-2 13.8 20.4 12.6 –2.3

PO-2 14.1 20.2 –4.9 –17.2

Single-crys-
tal ZnS

13.9 20.1 –5.6 –19.6

Table 2.  Debye temperature, Grüneisen parameter, and the
γ2/θ3 ratio for transverse and longitudinal acoustic branches
of zinc sulfide

Phonons θ, K γ γ2/θ3, 10–8 K–3

TA 131 0.21 1.96

LA 306 1.33 6.17
P

contribution of the longitudinal and transverse acoustic
phonons to heat transfer. The calculated ratios γ2/θ3 are
given in Table 2. This table also presents the values of γ
and θ (taken from [8]) for transverse and longitudinal
acoustic branches of zinc sulfide, which were used in
calculations of the γ2/θ3 ratios. It is seen from Table 2
that the γ2/θ3 ratio for transverse phonons is approxi-
mately three times less than that for longitudinal
phonons. Consequently, an increase in the contribution
of longitudinal acoustic phonons to the heat transfer
should be accompanied by an increase in the B coeffi-
cient and, correspondingly, by a change in the slope of
the dependence W(T). In zinc sulfide, all transverse
acoustic phonons are excited at 210 K (for the trans-
verse acoustic branch, θ = 131 K). A further increase in
the temperature brings about excitation of longitudinal
acoustic phonons for which θ = 306 K. Thus, as the
temperature increase, the role played by longitudinal
phonons in the heat transfer in zinc sulfide increases,
which leads to an increase in the B coefficient. It fol-
lows from Table 1 that, in the experimental depen-
dences W(T) for the KO-2, PO-2, and single-crystal
ZnS samples, the magnitude of the B coefficient in the
high-temperature range (T > 240 K) is larger than that
in the low-temperature range. Therefore, the change in
the slope of the dependence W(T) for ZnS-based mate-
rials in the high-temperature range can be explained by
the increase in the contribution of longitudinal acoustic
phonons to the heat transfer. This inference is con-
firmed by the data obtained in the study of the thermal
conductivity coefficient for ZnS under uniform com-
pression [7].

The coefficient C in formula (7) characterizes impu-
rities (their amount and the phonon scattering cross sec-
tion) contained in a particular sample and, as a rule, is
positive. In our experiment, the coefficient C is negative
for all the samples studied, except for the KO-2 sample
at low temperatures. This can be explained by the fact
that the zinc sulfide samples contain oxygen ion impu-
rities substituting for sulfur in the crystal lattice. Since
the ionic and covalent radii of oxygen are less than
those of sulfur [21], an increase in the oxygen concen-
tration in zinc sulfide samples leads to a decrease in the
mean atomic mass and the lattice parameter; conse-
quently, the thermal conductivity increases insignifi-
cantly [22]. Therefore, oxygen impurities acts as
defects that decrease the thermal conduction and
increase the thermal resistance of the crystal lattice.

4. CONCLUSION 

Thus, the results of the experimental investigation
allowed us to conclude that the relatively low thermal
conductivity of fine-grained zinc sulfide (the KO-2
sample) as compared to single-crystal ZnS is associated
with strong phonon scattering by defects in the grain-
boundary layers. The ZnS polycrystals with a grain size
of 1 µm are characterized by size effects, namely, the
mean free path of phonons at low temperatures
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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becomes comparable to the grain size and an increase
in the phonon scattering by grain boundaries with a
decrease in the temperature gives rise to an excess ther-
mal resistance in these samples at T < 130 K. The
change observed in the slope of the temperature depen-
dence of the thermal resistivity for the studied samples
near the Debye temperature is caused by an increase in
the contribution of longitudinal acoustic phonons to
heat transfer at high temperatures.
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Abstract—This paper reports on a study of the magnetic susceptibility, x-ray photoelectron, and x-ray emission
spectra of the LiCoO2 – δ and NaxCoO2 nonstoichiometric oxides. The valence-band structure of LiCoO2 was
analyzed. The hole concentration in the oxygen 2p band of LiNiO2 and LiCoO2 was derived from measure-
ments of the O Kα emission spectra. Measurements of Co 2p and Co 3s photoelectron spectra showed that the
Co3+ ions reside in the low-spin state with S = 0. The deficiency of oxygen in the LiCoO2 – δ reduced oxides
gives rise to the formation of divalent cobalt ions. The deficiency of the alkali metal in NaxCoO2 initiates the
formation of holes in the oxygen 2p band while not changing the electronic configuration d6 of the cobalt-ion
ground state. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

LiCoO2 complex oxide has a layered structure, with
the Li and Co ions ordered in alternating (111) planes.
The existence of planes containing only lithium ions
provides a possibility of complete deintercalation of the
alkali metal and, thus, application of this compound as
a cathode material in chemical storage batteries. The
ground state of the Co3+ ions can be written as

; their nonmagnetic character was estab-
lished by Bongers [1]. Estimates of van Elp [2] showed
LiCoO2 to be an insulator with a band gap of 2.7 ±
0.3 eV.

The valence band of LiCoO2 stoichiometric oxide
was studied using x-ray photoelectron spectroscopy
(XPS) in [2–4]. The O 1s x-ray absorption spectra
(XAS) were measured in [5], and in [4], XPS studies of
LiCoO2 stoichiometric oxide were complemented by O
Kα and Co Lα x-ray emission (XES) measurements.

The LiCoO2 band structure was calculated in [6].
The studies of XPS spectra of the inner Co 2p levels of
LiCoO2 performed in [2, 3] led to controversial conclu-
sions. According to [2], LiCoO2 is a charge-transfer
insulator with the energy required for charge transfer
from the oxygen to the metal ion ∆ = 4.0 eV and its
ground state is strongly covalent with 47% of the d6

configuration, 44% of the  configuration, and 9%

of the  configuration. Here,  denotes a hole in
the 2p shell of oxygen appearing as a result of electron

t2g↑
3 t2g↓

3 eg
0

d7L

d8L2 L
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transfer from an oxygen ion to a cobalt ion and  cor-
responds to two holes in the oxygen shell.

An opposite conclusion was arrived at in [3]. Kemp
and Cox [3] obtained ∆ = –0.5 eV for the charge trans-
fer energy. Whence it follows that LiCoO2 belongs to
the class of insulators with negative charge transfer
energy, similar to LiNiO2, NaCuO2, and SrFeO3 [7].

To obtain charge neutrality in oxides deficient in an
alkali metal, such as LixCoO2 and NaxCoO2 (x < 1),
these oxides should also have, in addition to Co3+, tet-
ravalent Co4+ ions. As shown in measurements of the
Co 2p and O 1s x-ray absorption spectra of deinterca-
lated samples of LixCoO2 (x = 1, 0.69, 0.57, 0.46) [8],
charge compensation takes place due to holes in the O
2p band of oxygen, rather than as a result of the forma-
tion of tetravalent cobalt. According to [8], the structure
of the Co 2p absorption spectra in deintercalated oxides
is in agreement with the calculated multiplet of the Co3+

ion in the low-spin state and the O 1s spectrum exhibits
a peak near the conduction-band bottom, which indi-
cates the formation of doping holes in the 2p band of
oxygen.

In this work, we present new data on the magnetic
properties and electronic structure of both stoichiomet-
ric LiCoO2 and of LiCoO2 – δ and NaxCoO2 nonstoichi-
ometric compounds. It is shown how subjecting
LiCoO2 samples to an environment with different par-
tial oxygen pressure brings about the formation of Co2+

ions.

L2
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2. EXPERIMENTAL

Single-phase, homogeneous LiCoO2 was prepared
by sintering a mixture of Co3O4 and Li2CO3 in air at a
temperature of 850°C for 25 h, followed by slow cool-
ing. The LiCoO2 prepared in this way was additionally
annealed in two different environments, namely, in
oxygen and in mixtures of helium and oxygen with
fixed partial pressures of oxygen (  = –1.85,
−2.85, and –3.1). All the anneals were made at 750°C.
X-ray phase analysis showed that after such a treat-
ment, all samples retained the crystal structure of
LiCoO2. The dependence of the lattice parameters on
the partial pressure of oxygen is presented in Table 1. It
should be pointed out that LiCoO2 annealed at higher
temperatures and lower partial pressures of oxygen
becomes unstable and decomposes with the formation
of CoO or Co3O4.

NaxCoO2 oxide was synthesized using the solid-
phase method from sodium oxalate Na2C2O4 and cobalt
oxide Co3O4. Annealing was performed in a flow of
oxygen at a temperature of 850°C for 150 h, with inter-
mediate grinding of the mixture to homogenize the
samples. X-ray phase analysis showed that the com-
pound thus obtained is isostructural with Na0.71CoO2.

The magnetic susceptibility was measured in the
300–1000-K temperature range using the Faraday
method in fields of up to 10 kOe and in the 4-to-300-K
range with a SQUID magnetometer (Quantum Design)
at 1000 Oe.

The XPS spectra were obtained on a PHI 5600 Mul-
titechnique System x-ray photoelectron spectrometer
with monochromatized Al Kα radiation. Samples
pressed into pellets were studied after their breakage in
a high vacuum. The spectrometer was calibrated
against the Au 4f line (binding energy 84.0 eV). The
spectrometer energy resolution estimated from the
valence-band spectrum of gold foil was 0.35–0.40 eV.
The sample charging and the associated line shift
toward higher energies were taken into account in ref-
erence to the C 1s line, whose energy was taken equal
to 285.0 eV.

The Co Lα and O Kα x-ray emission spectra were
measured on an RSM-500 x-ray spectrometer under
electron excitation. The Co Lα spectra were obtained in
second-order reflection, with instrumental broadening
of about 0.8 eV. The O Kα spectra were taken in first-
order reflection, with an instrumental line width of
approximately 1 eV. The error in determining the
energy position of the spectral maxima was ±0.2 eV.
The V Lα line of metallic vanadium (511.3 eV [9]) was
used for calibration of the O Kα spectra. The Co Kα
lines were calibrated against the Ni Ll, η, and Ni Lα
lines (with the peaks at 742.7, 762, and 851.5 eV,
respectively [9]).

pO2
log
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3. RESULTS

3.1. Magnetic Properties of LiCoO2 – δ and NaxCoO2

It was established that annealing of LiCoO2 at low
partial pressures of oxygen gives rise to oxygen nonsto-
ichiometry. The nonstoichiometry of an object mani-
fests itself distinctly in magnetic susceptibility mea-
surements. The magnetic susceptibility of stoichiomet-
ric LiCoO2 is a temperature-independent quantity
because the trivalent cobalt Co3+ resides in the low-spin

state  and, hence, its magnetic moment is
zero. The presence of oxygen defects in LiCoO2 and of
the associated paramagnetic centers, which are Co2+

ions [10], should result in an increase in the magnetic
susceptibility and in its becoming temperature-depen-
dent. As seen from the data presented in Fig. 1, the
magnetic susceptibility of stoichiometric LiCoO2 mea-
sured in an oxygen environment (curve 1) is practically
temperature-independent up to T ~ 750 K.

At the same time, the susceptibility of LiCoO2 – δ
with defects prepared at low partial pressures of oxygen
and measured under conditions close to those in which
it was synthesized depends distinctly on temperature
(curve 2 in Fig. 1) and, within the 4- to 500-K range,
can be described by the Curie–Weiss law:

(1)

where χ0 is the temperature-independent part includ-
ing the contribution from diamagnetism and the van
Vleck paramagnetism, C is the Curie constant, and Θ
is the Weiss constant. For LiCoO2 – δ annealed at

 = −3.1, we have χ0 = 0.000145 cm3/mol, C =

0.40 cm3 K/mol, and Θ = –106.3 K, which corresponds
to a content of about 2% Co2+ ions or 1% vacant oxygen
positions. This result does not contradict thermogravi-
metric data if we assume Co2+ to be in the high-spin
state S = 3/2. The assumption of the low-spin state of
the Co2+ impurity ions (S = 1/2) would have led to
unjustifiably high concentrations of the divalent cobalt.
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Table 1.  Lattice parameters of LiCoO2 – δ samples prepared
under different conditions

Sample/oxygen 
pressure a, Å c, Å

LiCoO2 (synthesis 
in oxygen)

2.8103 ± 0.0002 14.027 ± 0.004

LiCoO2 – δ
(  = –1.85)

2.8147 ± 0.0002 14.039 ± 0.005

 = –2.85 2.8153 ± 0.0002 14.047 ± 0.005

 = –3.1 2.8159 ± 0.0002 14.049 ± 0.005

NaxCoO2 2.833 ± 0.001 10.88 ± 0.01

pO2
log

pO2
log

pO2
log
2
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Susceptibility measurements on the nonstoichio-
metric sample in an oxygen environment (curve 3 in
Fig. 1) showed that the defect concentration decreases
in the 300- to 750-K range, which becomes manifest in
a drop in the susceptibility. Note the remarkably low
temperature at which oxygen exchange with the gas
phase, causing oxidation of the nonstoichiometric sam-
ple, becomes possible.

The magnetic susceptibility of NaxCoO2 displayed
in Fig. 1 fits well to the Curie–Weiss law with the
parameters χ0 = 1.78 × 10–4 cm3/mol and Θ = –0.36 K.
The effective magnetic moment per cobalt ion is very
small, 0.26µB. A question arises as to the nature of the
paramagnetic centers. It may be conjectured that in
NaxCoO2, as in LiCoO2, the crystal field also stabilizes
the low-spin state of Co3+. Otherwise, the magnetic
moment per cobalt ion would have been substantially
higher.

Based on the charge neutrality condition, the chem-
ical formula of NaxCoO2 should be written as

. In this case, the experimentally
observed paramagnetic centers could be formally
assigned to the presence of Co4+ ions. Taking into
account the stoichiometric coefficient, the magnetic
moment per such a center is

(2)

Nax
1+Co1 x–

4+ Cox
3+O2

2–

µ Co4+( ) µ Co( )

1 x–
--------------- 0.48µB.= =
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Fig. 1. Temperature dependence of the magnetic suscepti-
bility of LiCoO2 prepared at different oxygen pressures: (1)

LiCoO2 annealed in oxygen; (2) annealing at  =

−3.1 and measurements in vacuum; (3) annealing at
 = –3.1 and measurements in oxygen; and (4) tem-

perature dependence of the magnetic susceptibility of
NaxCoO2.
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One may also conceive another variant, namely, that the
paramagnetic centers are not Co4+ ions but rather an
equivalent number of exchange-coupled Co3+–O1– pairs
and that the magnetic moment of 0.48µB relates to such
a pair. This situation was analyzed for the case of
LixNi1 – xO2 [11].

3.2. X-Ray Photoelectron and Emission Spectra
of the LiCoO2 Valence Band

Figure 2 presents an XPS valence-band spectrum
and XES O Kα and Co Lα spectra of LiCoO2. The XES
spectra are shown reduced to a common energy scale
based on the electron binding energies of the O 1s and
Co 2p3/2 levels. For convenience of comparison, the
XPS and O Kα XES spectra were resolved into constit-
uent Gaussians. The background arising from second-
ary-electron scattering approximated with the Shirley
method was subtracted from the photoelectron spec-
trum.

Near the Fermi level, the Co 3d states are concen-
trated, which follows from the fact that maximum A and
component B of the XPS spectrum coincide with the
maximum of the x-ray Co Lα emission spectrum. The
Co 3d states provide a dominant contribution to the
photoelectron spectrum at the excitation energy equal
to 1486.7 eV. The peak with the binding energy of
21.6 eV relates to the O 2s states. The binding-energy
region from 0 to 10 eV includes the O 2p states, with
the maximum of the distribution at 5 eV, as determined
from the position of the O Kα emission spectrum (the
energy of the maximum is 525.2 eV on the photon
energy scale). The Co 3d and O 2p states are in the same
energy interval, which implies their strong hybridiza-
tion.

To analyze the features present in the spectra, we
shall use the density-of-states function of LiCoO2 cal-
culated in the density-functional approximation by
Czyzyk et al. in [6]. A comparison of experimental
spectra with the calculations reveals that the strongest
peak A and the B feature derive from the t2g orbital.
Considered in the simplified scheme of molecular
orbitals for an octahedral field, where only the ligand p
orbitals and the metal d orbitals are included, the t2g

level is antibonding. However, if we take into account
the existence of the other two oxygen states and of the
states of lithium, the t2g orbitals will begin to contribute
to chemical bonding, with a substantial degree of cova-
lency [6]. The XPS feature C, according to the calcula-
tions of [6], is due to the t1u orbitals, which derive pri-
marily from the O 2p states (see the correlation with the
maximum in the O Kα spectrum, curve b), with a slight
admixture of the Co 4p states. Band D, next in order,
forms from the hybridized O 2p–Co 3d (eg) states.
Finally, band E reflects hybridization of the Co 4s and
p states (the a1g and t1u orbitals) with the O 2p states. As
seen from Fig. 2, the D and E features manifest them-
selves in the O Kα spectrum (shoulder c, which is not
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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split off, apparently, because of the low resolution of
the XES spectrum).

The F satellite at 11.5 eV cannot be interpreted in
terms of band-structure calculations, because it forms
due to the presence of a poorly screened Co 3d hole (the
3d5 final states). This satellite can be reproduced only
by using multiconfigurational cluster calculations [2, 3].

Thus, the XPS features A–E originate from the states
in which the hole created in photoemission is screened
as a result of electron transfer from the oxygen 2p band

to form a  final-state configuration and the F sat-
ellite is characterized by a 3d5 configuration.

3.3. Hole Concentration in the Oxygen 2p Band
in LiCoO2

LiCoO2 and LiNiO2 oxides are structural analogs.
However, while the 3d-metal ions in LiCoO2 are triva-
lent, the Ni ions in LiNiO2 retain the ground-state elec-
tronic configuration 3d8, which corresponds to holes in
the oxygen 2p band. This was shown experimentally in
[11] using O 1s absorption spectra in the LixNi1 – xO
system. According to these data, 70% of all doping

3d6L
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Fig. 2. X-ray valence-band photoelectron spectrum and x-
ray O Kα and Co Lα emission spectra of LiCoO2. The XES
spectra are reduced to a common energy scale based on the
binding energies of the inner-level electrons.
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holes in LiNiO2 are localized at the oxygen atoms. It
appears natural to expect that variations in the filling of
the O 2p band will become manifest not only in the
absorption spectra but also in the oxygen Kα emission
spectra.

Figure 3a displays O Kα emission spectra of
LiCoO2 and CoO and an O 1s absorption spectrum of
LiCoO2 taken from [5]. For convenience of compari-
son, the CoO spectrum is shifted by 0.5 eV toward
higher photon energies to match its maximum with that
of the LiCoO2 spectrum. This comparison is suggested
by the fact that the spectra are identical in the low pho-
ton energy domain and differ only at high energies, near
the Fermi level.

In a similar manner, Fig. 3b shows the O Kα spectra
of LiNiO2 and NiO. The O 1s absorption spectrum of
LiNiO2 was taken from [11]. As in the preceding case,
the NiO spectrum is displaced by 0.5 eV toward higher
photon energies. The hatched regions in both figures
show the result of subtraction of the spectra of the mon-
oxides from those of the lithium samples.

The two systems differ appreciably. The difference
spectrum of the NiO–LiNiO2 system matches closely,
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Fig. 3. (a) X-ray O Kα emission spectra (XES) of LiCoO2
and CoO and an O 1s absorption spectrum (XAS) of
LiCoO2. The O 1s absorption spectrum is reproduced from
[5]. The hatched area is a difference spectrum obtained by
subtracting the spectrum of LiCoO2 from the O Kα spec-
trum of CoO. (b) O Kα XES spectra of LiNiO2 and NiO and
an O 1s XAS spectrum of LiNiO2. The O 1s absorption
spectrum is reproduced from [11]. A difference spectrum
(hatched region) obtained by subtracting the LiNiO2 spec-
trum from the O Kα spectrum of NiO is also shown.
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in position, the first peak of the absorption spectrum,
which, according to [11], is due to doping holes. The
intensity of this peak grows with Li concentration in the
LixNi1 – xO system and reaches a maximum for LiNiO2.

In the case of CoO–LiCoO2, the difference spectrum
and the maximum in the absorption spectrum do not
coincide in energy and, hence, are of different nature.
The maximum in the LiCoO2 absorption spectrum cor-
responds to the upper Hubbard band (the final states in
the 3d7 configuration). It may be conjectured that the
difference in the filling of the O 2p states between CoO
and LiCoO2 is due to covalency effects, namely, to
charge transfer from oxygen to the metal.

According to [2], the ground-state wave function of
CoO can be written as

(3)

Here,  and  reflect the presence of one and two
holes in the oxygen 2p band, respectively, and the coef-

ficients in the wave function expansion are  = 0.79,

 = 0.20, and  = 0.01. This means that the number
of electrons in the oxygen 2p band in CoO is given by
the relation [4]

(4)

We assume that the number of electrons in the 2p
band of oxygen, in the purely ionic limit, is six and that
charge transfer from the ligand to the metal reduces the
filling of the oxygen band.

The ratio of the integral intensities of the O Kα spec-
tra of LiCoO2 and CoO normalized as shown above is
0.958. This means that in LiCoO2, there are 0.958 ×
5.78 = 5.54 electrons or 0.46 holes per oxygen ion.

Calculations of the configuration interaction in
LiCoO2 carried out in [2] give, for the ground-state
wave function of LiCoO2, the expression

(5)

with the coefficients  = 0.47,  = 0.44, and  =
0.09. This means that the oxygen ions donate a ∆N =

 + 2  = 0.62 electron to each metal ion. If we
assume that the Li–O bond is fully ionic, then the 2p
band of the oxygen ion will have 0.31 holes. This num-
ber is in good agreement with our figure extracted from
the O Kα spectral intensity.

In the case of NiO, the ground-state wave function
can be written as

(6)

The  lies within the 0.176–0.21 limits, and the 
lies in the range from 0.005 to 0.006 [12–14]. The
experimentally found intensity ratio of the O Kα spec-
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tra of LiNiO2 and NiO is 0.88. Using the coefficients

 and , we find 0.88–0.89 holes per ion in the oxy-
gen 2p band.

Note the difference between the holes in LiNiO2 and
LiCoO2. In the LiNiO2 oxide, the holes in the oxygen
band are doping and delocalized, whereas in the oxy-
gen band of LiCoO2, the holes are covalent, localized at
definite atoms, and determine the covalent contribution
to the Co–O chemical bond. The difference between the
doping and covalent holes was considered in detail
using NiO in [15].

3.4. X-Ray Photoelectron Spectra of the Inner Levels
of LiCoO2 – δ and NaxCoO2

3.4.1. Co 2p spectra. The shape of XPS spectra of
the inner metal levels in oxides is known to be sensitive
to the electronic structure of the compounds, including
the valence state of the transition-metal ion and the
degree of covalency of the metal-oxygen bond [16]. We
shall consider the Co 2p spectra, which, as will be seen
later, vary substantially depending on the stoichiometry
of the LiCoO2 – δ oxide.

Figure 4 shows Co 2p XPS spectra of LiCoO2 – δ
samples with different stoichiometries, Co3O4,
NaxCoO2, single-crystal CoO, and metallic Co. Also
presented is a spectrum of LiCoO2 bombarded by
4.5-eV argon ions. The Co 2p spectrum of CoO is
reproduced from [17].

In addition to the two spin–orbit components, Co
2p3/2 and 2p1/2, the spectra exhibit satellites due to the
charge transfer effect. While the main line (A) is char-
acterized primarily by the 2p53d7  configuration of
the final state in photoemission, the C satellite should

correspond to the sum of the 2p53d6 and 2p53d8

configurations.
The C satellite in the spectra of the stoichiometric

LiCoO2 is 9.5 eV distant from the Co 2p3/2 maximum,
and the similar Co 2p1/2 satellite is separated by 10 eV
from the Co 2p1/2 maximum. Oxygen deficiency results
in a shift of the spectral maxima toward higher binding
energies and in the formation of an additional satellite
(B), which is about 4.5 eV away from the main spectral
line. The intensity of this satellite increases with
decreasing oxygen content.

The appearance of the additional satellite B can be
assumed to originate from the formation of Co2+ ions.
After the bombardment of LiCoO2 by argon ions, the
spectrum changes substantially and almost coincides
with that of single-crystal CoO, in which the cobalt ions
are divalent. This means that the samples prepared in
oxygen-deficient conditions contain Co2+ ions. It
should be pointed out that the spectra of reduced sam-
ples cannot be resolved into a simple sum of the spectra
of CoO and stoichiometric LiCoO2. However, the 2%

α1
2 α2

2
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content of the Co2+ ions found from the magnetic sus-
ceptibility measurements on the LiCoO2 – δ sample pre-
pared at a partial oxygen pressure  = –3.1 is
hardly capable of effecting such a strong change in the
XPS Co 2p spectrum. In our opinion, the reason for this
difference is as follows.

The magnetic susceptibility measurements relate to
the bulk of the sample. The thickness of the layer ana-
lyzed using XPS is measured in tens of nanometers.
The spectra were obtained on a sample broken in vac-
uum. The sample breaks, however, over grain bound-
aries, where the content of divalent cobalt is apparently
higher than that in the grain bulk. Therefore, the change
in the spectra induced by oxygen deficiency is substan-
tially larger than follows from magnetic susceptibility
data.

Nonstoichiometry on the oxygen sublattice shifts
not only the Co 2p levels but also those of the other
lines toward higher binding energies (Table 2). This
effect cannot be accounted for by the chemical shift; it
should be assigned to the shift of the Fermi level within
the band gap. This shift can be caused by the formation
of impurity levels inside the band gap. It should be
pointed out that impurity levels in nonstoichiometric
LiCoO2 – δ are quite probable, because the escape of
oxygen from a cell gives rise to the formation of addi-
tional XPS lines, which indicate the appearance of non-
structural oxygen.

The Co 2p XPS spectrum of NaxCoO2 virtually does
not differ from the spectrum of stoichiometric LiCoO2.
This means that the ground-state electronic configura-
tion in NaxCoO2 is the same as in LiCoO2, namely, d6.
The deficiency of the alkali metal ions is compensated
by a change in the population of the 2p oxygen band.
Interaction of the spins of holes in the 2p oxygen band
with those of the 3d electrons apparently brings about
the formation of local magnetic moments and, hence, a
change in the behavior of the magnetic susceptibility.

LaCoO3, in which all cobalt ions are trivalent, may
serve as an analog of LiCoO2. Substitution of divalent
strontium ions for the trivalent ions of lanthanum in the
La1 – xSrxCoO3 oxide should produce tetravalent cobalt
ions. In the limit of x = 1 (the SrCoO3 compound),
cobalt should be tetravalent, according to the simple ion
model.

Studies of x-ray absorption spectra by Potze et al.
[18] revealed that the ground state of SrCoO3 is an

intermediate-spin state ( , S = 3/2). However, the

dominant configuration is d6  rather than d5, because
the charge transfer energy ∆ < 0. This statement agrees
not only with the results of photoelectron and absorp-
tion studies [19] but also with magnetic susceptibility
data [20].

3.4.2. Co 3s spectra. A change in the satellite struc-
ture occurring during reduction can also be seen in the

pO2
log

t2g
4 eg

1

L
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3s spectra. The 3s levels in transition-metal compounds
are known to exhibit exchange splitting. The magnitude
of this splitting is proportional to (2S + 1), where S is
the local spin of the 3d electrons in the ground state. In
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Fig. 4. Co 2p XPS spectra of CoO, Co3O4, stoichiometric
LiCoO2, LiCoO2 – δ annealed at partial oxygen pressures

 = –1.85, –2.85, and –3.1 and of NaxCoO2. Also

shown are the spectra of LiCoO2 subjected to argon ion
milling and of metallic Co.

pO2
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Table 2.  Binding energies of inner-shell electrons, eV

Sample/oxygen
pressure Co 2p Co 3p Co 3s O 1s Li 1s

CoO 780.4 59.9 101.9 529.5 –

Co3O4 779.9 61.3 102.7 530.1 –

LiCoO2 779.4 60.8 102.3 529.1 54.1

LiCoO2 – δ
(  = –1.85)

779.5 60.7 102.3 529.1 54.0

 = –2.85 779.6 60.7 102.3 529.1 54.1

 = –3.1 780.5 61.9 103.4 530.2 55.0

NaxCoO2 779.2 59.9 102.1 528.7 –
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log

pO2
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addition to the exchange interaction, charge transfer
processes also play an important role.

Figure 5 shows spectra of the CoO monoxide, which
were drawn taking into account satellites by using a
simple two-level model [21, 22] assuming a mixture of
the 3s13d7 and 3s13d8  configurations in the final state.
The calculation was carried out for the following
parameters: the charge transfer energy ∆ = 2.9 eV, the
Coulomb interaction energy between the hole at the 3s
level and 3d electrons Usd = 6.0 eV, and the transfer
integral T = 2.9 eV. The Co 3s spectrum of single-crys-
tal CoO was obtained in [18]. The calculated line spec-
tra of the 3s13d8  configuration are shown by a dashed
line; those of the 3s13d7 configuration, by a solid line.
The envelope is the result of a transformation of line
spectra into a mixture of a Lorentzian and a Gaussian.
Each configuration splits into a high- and a low-spin
component.

The low-spin 3d6 configuration (S = 0) of stoichio-
metric LiCoO2 does not split. However, the Co 3s spec-
trum exhibits a satellite structure in the region from 105
to 115 eV. This structure can be explained in terms of
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Fig. 5. Co 3s XPS spectra of CoO, Co3O4, stoichiometric
LiCoO2, LiCoO2 – δ annealed at partial oxygen pressures

 = –1.85, –2.85, and –3.1, and of NaxCoO2. Also

shown for CoO are line spectra showing the contributions of
the 3s13d7 and 3s13d8  final states to the formation of the
main spectral lines and satellites. The solid line was
obtained by broadening the line spectra.

pO2
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L

PH
the charge transfer concept if one takes into account the

3d6, 3d7 , and 3d8  configurations.

The Co 3s XPS spectra of NaxCoO2 virtually do not
differ from those of stoichiometric LiCoO2 (Fig. 5).
Hence, the ground state of NaxCoO2 can be represented
as a sum of the ground states of the Co3+ trivalent ion
and the formally tetravalent Co4+ ion:

(7)

Here, d6 denotes the ground-state configuration for
the formally tetravalent cobalt. The ground-state con-
figuration of a truly tetravalent cobalt should look the
same as d5. However, assuming a high-spin ground
state, the presence of the d5 configuration should result
in exchange splitting between the 7S and 5S components
of the XPS spectra of about 6.2–6.5 eV, which is not
observed for NaxCoO2.

4. CONCLUSIONS

Thus, we have carried out studies of the electronic
structure; magnetic properties of the LiCoO2 – δ and
NaxCoO2 nonstoichiometric oxides, including mea-
surement of soft O Kα and Co Lα x-ray emission spec-
tra; and XPS spectra of the valence band and of the
inner Co 2p and 3s levels. The results obtained permit
the following conclusions to be drawn:

(1) The valence state of cobalt ions in LiCoO2,
according to measurements of the Co 2p XPS spectra,
is 3+.

(2) The Co 3s XPS spectrum of LiCoO2 does not
exhibit exchange splitting, which confirms the low-spin
configuration (S = 0) of the ground state.

(3) The holes created in the substitution of lithium
for cobalt are localized in the Co 3s band.

(4) According to our estimates, the number of holes
in the oxygen 2p band, which are due to the covalency
of the cobalt–oxygen bond, is 0.46 per oxygen atom.

(5) The O 2p states in LiCoO2, which are responsi-
ble for the O Kα XES spectra, lie closer to the Fermi
level than those in CoO, which implies a stronger Co-
3d–O-2p hybridization in LiCoO2 compared with CoO.

(6) Oxygen deficiency in reduced LiCoO2 – δ oxides
gives rise to the formation of divalent cobalt ions.

(7) Deficiency of the alkali metal in NaxCoO2 results
in the formation of holes in the oxygen 2p band, i.e., in
the 3d6  ground-state configuration.
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Abstract—The absorption spectra of KCl single crystals irradiated with electrons and protons at energies of 15
and 100 keV and a particle flux ranging from 5 × 1012 to 1015 cm–2 are investigated. The absorption bands attrib-
uted to simple (F, Fa, K) and complex (M, R2, R4, N) color centers are identified in the spectra. The correlation
dependences of the absorption coefficients for M, R2, and R4 centers on the absorption coefficient of F centers
and the correlation dependences of the absorption coefficients for R2 and R4 centers on the absorption coeffi-
cient of M centers are established. The oscillator strengths are calculated for M, R2, and R4 color centers. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Alkali halide crystals are model objects in solid-
state radiation physics. In the 1950s–1970s, consider-
able attention was given to the investigation of the reg-
ularities observed in the generation and accumulation
of different-type color centers in these crystals. The
results obtained at that time are currently used in the
radiative study of materials. Earlier, we investigated the
combined effects of different radiations (effects of
additivity, synergetic effects, etc.) on materials used in
space technology under conditions of simultaneous or
sequential action of protons and electrons with energies
of tens and hundreds of kiloelectron-volts [1]. How-
ever, it is difficult to elucidate the mechanisms of the
accumulation of color defects under the above condi-
tions and their influence on the degradation of the per-
formance characteristics for actual materials with a
complex composition and a complex structure. In
recent years, these studies have been performed with
alkali halide crystals [2–4]. Despite the large number of
works dealing with the accumulation of color centers in
alkali halide crystals, some of the parameters and coef-
ficients necessary for the calculations have either not
been determined or are contradictory [5, 6]. In particu-
lar, the oscillator strengths of complex electron-type
color centers remain unknown. This hampers the calcu-
lation of their concentration and interpretation of the
results. The purpose of the present work was to analyze
the correlations between the absorption coefficients at
maxima of F, M, R2, and R4 color centers and to esti-
mate the oscillator strengths of these centers in KCl sin-
gle crystals irradiated with electrons and protons.

2. EXPERIMENTAL TECHNIQUE

The procedures of preparation and irradiation of the
samples with protons and electrons, in situ recording of
1063-7834/02/4402- $22.00 © 20274
the induced absorption spectra under vacuum (at the
site of irradiation of the samples), decomposition of the
spectra into individual components on the basis of
available data on the location of the maximum (Km) and
the half-width (H1/2) of the spectral bands attributed to
simple and complex defects, and the irradiation condi-
tions were described earlier in [4–6]. The energies of
the protons and electrons were equal to 15 and 100 keV,
the particle flux density was 3 × 1011 cm–2 s–1, and the
particle flux for different samples was varied from 5 ×
1012 to 1015 cm–2. The energy and the flux of particles
were chosen in such a way as to obtain the relationships
between the absorption coefficients of different-type
color centers in the maximum permissible range. The
accuracy of measuring the absorption coefficient was
no worse than 1% in the UV and visible ranges and no
worse than 4% in the near-IR range of the spectrum [7].
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Fig. 1. Experimental (points) and calculated (solid line)
absorption spectra and absorption bands of intrinsic point
defects (dashed lines) of a KCl single crystal irradiated with
protons at an energy of 100 keV and a flux of 8.6 × 1014 cm–2.
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3. RESULTS

Figure 1 displays the experimental absorption spec-
trum of the KCl single crystal irradiated with protons
and the dependence K = f(E) calculated from the super-
position of individual absorption bands (dashed lines).
The bands associated with the F, Fa, M, N, R2, R4, R6, K,
and V1 absorption centers are resolved in the spectra.
The calculated and experimental data are in good
agreement. Similar spectra were obtained at different
fluxes of electrons and protons, i.e., at different color
center concentrations and absorption coefficients. The
accumulation kinetics and the relationships between
the absorption coefficients were analyzed only for F, M,
R2, and R4 centers.

The dependences of the absorption coefficients at
maxima of the absorption bands assigned to M, R2, and
R4 centers on the absorption coefficient at a maximum
of the band attributed to F centers are shown in Fig. 2.
It can be seen that, under the given irradiation condi-
tions, these dependences have two portions. In the first
portion, when the absorption coefficient at a maximum
of the band attributed to F centers (KF) is less than
30 rel. units, the dependences of the absorption coeffi-
cients at maxima of the bands associated with the M,
R2, and R4 color centers (the KM, , and  coeffi-
cients) on the absorption coefficient KF can be repre-
sented by the linear function

(1)

In the second portion (KF > 30 rel. units), these depen-
dences can be described by the power law

(2)

Figure 3 depicts the dependences of  and  on
the absorption coefficient KM at a maximum of the band
assigned to M centers. These dependences can be well
approximated by the linear function

(3)

The table presents the parameters A, B, and C deter-
mined by the least-squares method according to the
data shown in Figs. 2 and 3.

4. DISCUSSION

According to modern concepts, F color centers in
alkali halide crystals are considered anionic vacancies
with a trapped electron, M centers consist of two F cen-
ters located in the adjacent anionic vacancies, and R2
and R4 color centers are treated as three neighboring F
centers differently oriented in the lattice.

Reasoning from the described structure, it can be
assumed that there is a correlation between the concen-
trations or the absorption coefficients of the aforemen-
tioned centers. This assumption is supported by the
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experimental dependences of the absorption coeffi-
cients KM, , and  on the absorption coefficients

KF and  and the experimental dependence of the

absorption coefficient  on the absorption coefficient
KM. It should be noted that two (linear and power) por-
tions in the dependences of the absorption coefficients
KM, , and  on KF have never been previously
observed. In our opinion, this behavior of the depen-
dences is due to the contribution of the surface to the
accumulation of color centers under irradiation.

Earlier, the absorption spectra of irradiated KCl sin-
gle crystals were always recorded in the atmosphere. In
the case when the energy of charged particles is not
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Fig. 2. Dependences of the absorption coefficient at maxima
of the bands attributed to (a) M, (b) R2, and (c) R4 centers on
the absorption coefficient at a maximum of the band
assigned to F color centers of the irradiated KCl single crys-
tals.

Correlation parameters and oscillator strengths of different-
type color centers in KCl crystals irradiated with electrons
and protons

Color 
center 
type

Parameter Oscillator 
strengthA B n C

M 0.44 1.5 × 10–2 2.00 – 0.45 ± 0.15

R2 0.31 6.1 × 10–2 1.48 0.64 0.34 ± 0.07

R4 0.20 9.9 × 10–3 1.88 0.44 0.6 ± 0.2
2
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very high, a considerable amount of color centers is
generated in the near-surface layer and on the surface.
Consequently, they can transform or decay upon inter-
action with atmospheric oxygen. In our case, the
absorption spectra were recorded under vacuum; there-
fore, the contribution of the surface color centers to
their total concentration was taken into account.

Under the assumption that, in a KCl single crystal
exposed to irradiation with electrons and protons, color
defects are generated as a result of the decay of electron
excitations [8], the correlation dependences can be
obtained from the following system of equations:

(4)

(5)

(6)

(7)

Here, NEE is the concentration of electron excitations
(EE); NF, NM, and NR are the concentrations of the F, M,
and R color centers, respectively; NV and N0 are the con-

dNEV

dt
------------- GEE

NEE

τEE

---------– α NEV NV ,–=

dNF

dt
---------- α NEENV ,=

dNM

dt
----------- β

NF

N0
------- 

  α NEENV ,=

dNR

dt
---------- γ

NM

N0
------- 

  α NEENV .=

10

0 10

K
, r

el
. u

ni
ts

KM, rel. units
20 30 40

(b)
20

0

10

20

30 (a)

Fig. 3. Dependences of the absorption coefficient at maxima
of the bands attributed to (a) R2 and (b) R4 centers on the
absorption coefficient at a maximum of the band assigned to
M color centers of the irradiated KCl crystals.
PH
centrations of anionic vacancies and anions, respec-
tively; GEE = σiN0J is the generation term (where σi is
the ionization cross section and J is the particle flux
density); τEE is the lifetime of electron excitations with
respect to unsaturated sinks; α is the coefficient of elec-
tron trapping in an anionic vacancy; and β and γ are the
configurational factors.

The factors NF/N0 and NM/N0 determine the proba-
bility that the F and M centers will be generated in the
vicinity of the already existing F and M color centers,
respectively. From expressions (4) and (5) with allow-
ance made for expression (3), the relationships NM ~

 and NR ~  are derived under the assumption that
the color defects are generated throughout the bulk of
the irradiated sample.

The experimental results (Figs. 2, 3, table) disagree
with these relationships (taking into account the pro-
portionality of the color center concentration to the
absorption coefficient at a maximum of the absorption
band). This disagreement can be explained by the fact
that the mechanisms of color-center generation in alkali
halide crystals (including KCl crystals) under irradia-
tion with electrons and protons at energies up to
100 keV differ from those realized under irradiation
with high-energy particles.

The dependences of the absorption coefficients for
M, R2, and R4 centers on the absorption coefficient of F
color centers (Fig. 2) can be conventionally separated
into two portions. The first portion (KF < 30 rel. units)
corresponds to a more rapid increase in the absorption
coefficient KF with an increase in the irradiation time,
i.e., to conditions under which the saturation of KF is
still not attained. This portion is linear for the depen-
dences of the absorption coefficients of all three color
centers on the absorption coefficient KF. It can be
assumed that, under these irradiation conditions, the M,
R2, and R4 color centers are generated independently of
the F centers.

For KF > 30 rel. units, the experimental results can-
not be approximated by a linear function. This indicates
that the mechanisms of generation of M, R2, and R4
color centers differ for the first and second portions;
i.e., they depend on the F-center concentration.

The power character of the dependences KM, ,

 = B  indicates the complex formation of M and
R centers from the F centers. For the M color centers,
the exponent n is equal to 2. This agrees with the known
concepts on the structure of the M color center consist-
ing of two F centers [6, 7]. For the R2 and R4 centers,
the n exponent not only differs from 3 but is less than 2.

Most likely, these values of the n exponent are asso-
ciated with the influence of the surface on the relaxation
processes of electron excitations. Under the chosen
irradiation conditions, the defective layer is located in
the immediate vicinity of the surface (irradiated with
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15-keV protons). Therefore, the linear character of the
dependences , ,  = AKF suggests that the
contribution from the recombination of electron excita-
tions at the surface levels to the concentration of accu-
mulated color centers is significant.

We determined the oscillator strengths f for these
color centers from the experimental data and the
Smakula formula [6] by assuming that the changes in
KM, , and  are caused by the increase in concen-
tration of the relevant defects rather than by the changes
in the oscillator strength. The results obtained are pre-
sented in the table.

In the case when the oscillator strength f  for F cen-
ters is taken to be 0.8 [6], the oscillator strength for M
centers is equal to 0.56 f. This value is close to 2/3 of the
oscillator strength f  given in [9]. It should be noted that
the f  values differ for R2 and R4 centers, which is prob-
ably reflects their configurations being different in the
KCl lattice.

5. CONCLUSIONS

The results obtained in this work can be summarized
as follows:

(1) The dependences of the absorption coefficients
at maxima of the bands attributed to F, M, R2, and R4
color centers in KCl single crystals on the conditions of
irradiation with electrons and protons at energies of 15
and 100 keV are determined.

(2) It is found that the dependences of the absorption
coefficients at maxima of the bands associated with the
M, R2, and R4 centers on the absorption coefficient at a

KM KR2
KR4

KR2
KR4
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maximum of the band assigned to the F centers have
two portions described by linear and power functions.

(3) It is established that the dependences of the
absorption coefficients at maxima of the bands attrib-
uted to R2 and R4 centers on the absorption coefficient
at a maximum of the band associated with the M centers
exhibit a linear character.

(4) The oscillator strengths of the M, R2, and R4
color centers in KCl single crystals are estimated at
0.45 ± 0.15, 0.34 ± 0.07, and 0.6 ± 0.2, respectively.
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Abstract—The circularly polarized luminescence spectra of Y3Al5O12–Tb and Y3Al5O12–Ho garnets are ana-
lyzed in the wavelength ranges of the 5D4  7F5 transition in the Tb3+ ion and the 5S2  5I8 transition in
the Ho3+ ion. It is found that the intensities of the orthogonal circularly polarized components of the series of
luminescence lines attributed to the studied garnets differ substantially. The results obtained are interpreted in
terms of the mixing of the Tb3+ and Ho3+ electronic states in an external magnetic field. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1], it was shown that, under certain condi-
tions, the mixing of the electronic states of the Kramers
rare-earth ion in an external magnetic field leads to con-
siderable changes in the oscillator strengths of the
4 f  4 f transitions. For example, the difference
between the integrated intensities of the orthogonal cir-
cularly polarized components of the secondary emis-
sion lines attributed to the 4S3/2  4I15/2 transition in
the Er3+ ion in the Y3Al5O12–Er garnet was found to be
~15% in the magnetic field H = 10 kOe. A more notice-
able modulation of the luminescence intensity due to
the mixing effect can be expected for non-Kramers Tb3+

and Ho3+ ions in garnets, because the mixing of elec-
tronic states in a magnetic field H plays the decisive
role in the formation of the magnetization-dependent
properties of crystals containing these ions [2]. Our
measurements demonstrated that the magnetic field
strongly affects the intensity of circularly polarized
components of the secondary emission lines associated
with the radiative transitions in Tb3+ and Ho3+ ions in
the Y3Al5O12 matrix but leaves the spectral location of
these lines virtually unchanged; in other words, we deal
here with field-controlled luminescence of the garnets
under investigation.

2. SAMPLES AND MEASUREMENT
PROCEDURE

The experiments were performed with Y3Al5O12–Tb
and Y3Al5O12–Ho single crystals in which the content
of rare-earth ions was ~5 wt %. We analyzed the circu-
larly polarized luminescence spectra and the spectra of
the degree of magnetic circular polarization of the
luminescence (MCPL) attributed to the 5D4  7F5

transition in the Tb3+ ion and the 5S2  5I8 transition
1063-7834/02/4402- $22.00 © 20278
in the Ho3+ ion. Both excitation and observation of the
luminescence were carried out using the transmission
method in a magnetic field up to 10 kOe with the longi-
tudinal magnetization with respect to the direction of
light propagation. The degree of magnetic circular
polarization of luminescence can be defined by the for-
mula P = (I+ – I–)/(I+ + I–), where I+ and I– are the inten-
sities of two orthogonal circularly polarized compo-
nents of the luminescence line. The value of P was mea-
sured according to a procedure involving polarization
modulation of the secondary emission by a piezoelec-
tric modulator [1, 3]. In the spectral measurements, the
optical resolution was ~1 cm–1 for the spectra of I+ and
I– and ~2 cm–1 for the P dispersion. In all the experi-
ments, the relative error in measuring the quantities I+,
I–, and P was no more than 5%.

Since the 5S2 multiplet structure of the Ho3+ ion was
unknown, we examined the optical absorption spectra
of the holmium yttrium aluminate garnet in the vicinity
of the 5I8  5S2 transition. In order to determine the
location of the actual 5S2 multiplet sublevels, we used
the available data on crystalline splitting of the ground
5I8 multiplet of the Ho3+ ion in the Y3Al5O12 matrix [4].

3. RESULTS AND DISCUSSION

The circularly polarized luminescence spectra and
the spectra of the degree of magnetic circular polariza-
tion of the luminescence associated with the 5D4 
7F5 transition in the terbium yttrium aluminate garnet
are displayed in Figs. 1 and 2, respectively. Judging
from the luminescence lines (1–4) shown in Figs. 1 and
2, the Y3Al5O12–Tb garnet is characterized by a high
degree of magnetic circular polarization of the lumines-
cence. For example, its magnitude at H = 5 kOe and T =
90 K reaches ~0.4 (line 2). Note that, even at low tem-
002 MAIK “Nauka/Interperiodica”
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peratures under paramagnetic saturation conditions, the
typical P value for rare-earth compounds is approxi-
mately equal to 10–1 [5, 6].

As can be seen from Fig. 1, there exists a substantial
difference in the spectra of orthogonal circularly polar-
ized luminescence components of line 2. For this lumi-
nescence line, the integrated intensities I+ and I– at any
temperature in the magnetic field H = 10 kOe differ by
a factor of approximately 1.4. It is clearly seen from the
spectra measured at T = 90 K that line 2 has a doublet
structure and that the magnetic field most strongly
affects the intensities I+ and I– of the long-wavelength
component of the doublet (Fig. 1). At the same time, the
difference between the intensities I+ and I– for line 3
becomes noticeable only at low temperatures. A similar
difference in the spectra of the I+ and I– intensities is
observed for line 4 at T = 90 K (this line is not shown in
Fig. 1). As regards line 1, its orthogonal circularly

543.0

I ±
, a

rb
. u

ni
ts

λ, nm

540

543.5

545

I ±
, a

rb
. u

ni
ts

1

2
3

4 3

2

1840018410
E, cm–1

λ, nm

Fig. 1. A fragment of the circularly polarized luminescence
spectrum of the Y3Al5O12–Tb garnet at T = 90 K in the
magnetic field H = 5 kOe. The solid and dashed lines corre-
spond to the intensities of the left-hand and right-hand cir-
cularly polarized luminescence components, respectively.
The inset shows the circularly polarized luminescence spec-
trum of the Y3Al5O12–Tb garnet at T = 300 K and H =
10 kOe (the solid and dashed lines represent the orthogonal
MCPL components).
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polarized luminescence components at T = 90 K (and at
room temperature) are equal in intensity and only
slightly differ in energy.

It is known that the energy shift of the components
I+ and I– of the luminescence line is attributed to the
Zeeman splitting of states involved in the radiative tran-
sition. Moreover, admixing of other closely spaced
electronic states of the rare-earth ion in a magnetic field
H to the states participating in the optical transition
leads to a difference in the oscillator strengths of the
orthogonal components of the corresponding lumines-
cence line, and this difference does not depend on the
temperature T. On the other hand, the difference in the
thermal equilibrium population of the electronic states
involved in the radiative transition results in a tempera-
ture dependence of the difference (I+ – I–). On this basis
and with allowance made for the specific behavior of
the dispersion and temperature dependences of the A,
B, and C terms in the MCPL spectra [7, 8] (Fig. 2), we
can conclude that, in the MCPL spectra of the
Y3Al5O12–Tb garnet, lines 1 and 2 are associated with
the singlet–quasi-doublet transitions, whereas lines 3
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Fig. 2. Spectrum of the degree of magnetic circular polar-
ization of luminescence in the Y3Al5O12–Tb garnet in the
magnetic field H = 5 kOe at temperatures T = 300 K (solid
line) and T = 90 K (dashed line). At the upper left of the fig-
ure, the scheme of the 5D4  7F5 magnetooptically

active transitions in the Tb3+ ion is shown (the energy spec-
trum of the 5D4 multiplet is taken from [9]). The parenthetic

numbers are the experimental energies of the 7F5 multiplet

sublevels. Mixing in the field H of the 7F5 multiplet states
is shown by a wavy line. Numerals at the arrows denote the
numbering of the corresponding luminescence lines.
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and 4 are attributed to either the quasi-doublet–singlet
transitions or the quasi-doublet–quasi-doublet transi-
tions.

By using the results of our analysis of the spectra
shown in Figs. 1 and 2 and the available data on the
energy spectrum of the 5D4 multiplet in the Tb3+ ion in
the Y3Al5O12 matrix [9], we constructed a scheme for
the 5D7  7F5 magnetooptic radiative transitions (see
Fig. 2). In this case, the magnetooptically actual 5D4
multiplet states were treated as states of the quasi-dou-
blets Γ2, Γ1 and Γ1, Γ4 and the singlet Γ4.

Thus, according to the above model of the 5D4 
7F5 transition, the considerable change in the intensities
I+ and I– of the longer-wavelength component of line 2
in the magnetic field is associated with a strong admix-
ing of the states of the most closely spaced singlet level
of the Tb3+ ion to the upper sublevel of the quasi-dou-
blet (E = 2168 cm–1) involved in the 7F5 multiplet.1 

A qualitatively similar situation is observed for a
series of transitions between the 5S2 and 5I8 multiplet
states of the Ho3+ ion in the Y3Al5O12–Ho garnet. Fig-

1 The noticeable difference in the spectra of I+ and I– for line 2 can-

not be explained by mixing of the 5D4 multiplet states, because,
according to [8], a similar effect was not observed in the MCPL
spectra of the Y3Al5O12–Tb garnet upon the 5D4  7F6 transi-

tion in the Tb3+ ion.
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Fig. 3. A fragment of the circularly polarized luminescence
spectrum of the Y3Al5O12–Ho garnet at T = 300 K in the
magnetic field H = 10 kOe. Notations are the same as in
Fig. 1. At the upper left of the figure, the scheme of the
5S2  5F8 radiative transitions in the Ho3+ ion is shown
(notations are the same as in Fig. 2).
P

ure 3 shows a fragment of the circularly polarized lumi-
nescence spectrum of the Y3Al5O12–Ho garnet in the
wavelength range of the 5S2  5I8 transition. It can be
seen that the integrated intensities I+ and I– for lines 1,
4, and 5 differ considerably even at room temperature
(a similar difference is observed for the MCPL spec-
trum at T = 90 K). The difference in the spectra of I+

and I– for lines 1, 4, and 5 has defied explanation within
the model of a quasi-doublet–singlet transition under
the assumption that the difference (I+ – I–) is associated
with the difference in the thermal equilibrium popula-
tion of the quasi-doublet components. In this case,
according to [7, 8], we can write the following relation-
ship: [(I+ – I–)/(I+ + I–)] ≈ gβH/βT, where g is the g fac-
tor of the quasi-doublet, β is the Bohr magneton, and k
is the Boltzmann constant. In order to obtain the
observed difference (I+ – I–) for lines 1, 4, and 5 at T =
300 K, we assume that the quasi-doublet is character-
ized by an improbably large g factor. This, in turn,
should lead to more pronounced Zeeman splitting of
the corresponding luminescence lines as compared to
that determined in the experiment.

The scheme of 5S2  5I8 radiative transitions in the
Ho3+ ion is shown in Fig. 3. The scheme was con-
structed based on the results of MCPL measurements in
the Y3Al5O12–Ho garnet and the data on the energy
spectrum of the 5S2 multiplet, which were obtained
from the optical absorption spectra of the Y3Al5O12–Ho
garnet. As follows from this scheme, the mixing of the
states of two quasi-doublets located in the upper part of
the ground multiplet of the Ho3+ ion in a magnetic field
H results in a noticeable difference between the oscilla-
tor strengths of transitions 1, 4, and 5 in the orthogonal
polarization.

4. CONCLUSION

The results obtained allowed us to conclude that the
strong effect of the magnetic field on the oscillator
strengths of the 4 f  4 f transitions is a rather com-
mon phenomenon in rare-earth systems with a quasi-
doublet structure of the energy spectrum. The contribu-
tion of the mixing, which is usually ignored, can play a
significant role in magnetooptics of these systems in the
vicinity of the corresponding lines of absorption or
luminescence.
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Abstract—The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal sys-
tem, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters
of HoF3 crystals are as follows: a = 0.6384 ± 0.0009 nm, b = 0.6844 ± 0.0009 nm, and c = 0.4356 ± 0.0005 nm.
It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature
range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the
critical temperature Tc ≈ 620 K. The activation enthalpy of electrical conduction is found to be ∆H1 = 0.744 eV
at T < Tc and ∆H2 = 0.43 eV at T > Tc. The fluorine vacancies are the most probable charge carriers in HoF3

crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5 × 10–10,
5 × 10−6, and 2 × 10–3 S cm–1, respectively. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fluoride materials with a high F– anion mobility
belong to the important class of superionic conductors.
Over recent years, a great variety of new superionic
materials of different stricture types have been devel-
oped, including rare-earth trifluorides RF3 (where R is a
rare-earth element) with a β-YF3 orthorhombic struc-
ture (space group Pnma) [1–4]. As far as we know, no
works have dealt with the electrical properties of RF3
orthorhombic crystals at high temperatures. The sole
exception is the study carried out by O’Keeffe [1] in the
frequency range from 1 to 10 kHz for YF3 and LuF3
crystals prepared through molten-salt crystallization.
However, knowledge of the electrical properties of RF3
orthorhombic crystals over a wide temperature range is
essential both to the understanding of the specific
mechanisms of anionic conduction in these materials
and for their practical use in superionic solid devices. In
the present work, the high-temperature (up to 1073 K)
anion transfer in HoF3 single crystals was investigated
by impedance spectroscopy at frequencies ranging
from 0.1 to 107 Hz.

2. EXPERIMENTAL TECHNIQUE

The HoF3 single crystals were grown by planar crys-
tallization from the melt at the Shubnikov Institute of
Crystallography, Russian Academy of Sciences. The
procedure of crystal growth was described earlier in
[4]. The crystals were free from scattering inclusions of
oxygen-containing phases and had a β-YF3 structure, as
was confirmed by x-ray diffraction. The unit cell
parameters of the HoF3 single crystal are as follows:
1063-7834/02/4402- $22.00 © 20282
a = 0.6384 ± 0.0009 nm, b = 0.6844 ± 0.0009 nm, and
c = 0.4356 ± 0.0005 nm.

The samples were prepared in the form of wafers of
typical size: the surface area was 5 × 5 mm and the
thickness was equal to 1 mm. The surfaces of the sin-
gle-crystal samples were subjected to optical finishing
and ultrasonic cleaning in acetone (Bransonic 221).
The quality of the samples were checked using a Zeiss
KL1500-Z optical microscope. The thermal analysis
was performed on a Setaram DTA/TG 92-12 instru-
ment at a rate of 5–10 K/min in a flow of gaseous nitro-
gen in the temperature range from 293 to 1073 K.

The electrical properties were investigated by the
loss tangent method with a Solarton 1260 impedometer
in the frequency range from 10–1 to 107 Hz at a voltage
of 30 mV. The impedance of the crystals was measured
in a flow of gaseous N2 nitrogen at temperatures rang-
ing from 323 to 1073 K. The electrodes were fabricated
from a silver paste and provided blocking of F– ions.
The experimental setup was described in detailed in [5].
The parameters of the anion transfer were calculated
according to the formula σT = Aexp(–∆H/kT), where
∆H is the activation enthalpy of electrical conduction.

Under normal experimental conditions at high tem-
peratures, the pyrohydrolysis occurring at the surface
of HoF3 single crystals resulted in the formation of a
conducting film. This hampered correct determination
of the bulk resistivity. Figure 1 shows typical results of
the electrical measurements performed without resort-
ing to special precautions. The pyrohydrolysis of HoF3
single crystals can be caused by the presence of water
traces in the ambient atmosphere. In our experiments,
we took special precautions, such as ultrasonic cleaning
002 MAIK “Nauka/Interperiodica”
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of the samples, measurements in a flow of purified
nitrogen and in a wider frequency range in order to sep-
arate the contribution of the bulk resistivity of the single
crystal from the contribution of the resistivity of the
film, and others. These efforts made it possible to carry
out high-temperature investigation of the electrolytic
properties of HoF3 single crystals.

3. RESULTS AND DISCUSSION

Figure 2 displays the temperature dependences of
the ionic conductivity of the HoF3 single-crystal sam-
ples in different orientations. For all the samples under
investigation, the reproducibility of the results upon
heating and cooling was quite reasonable. No thermal
effects were observed in the thermograms of the sam-
ples in the temperature range from 293 to 1073 K. After
thermal cycling, the powder diffraction patterns of
HoF3 also showed no traces of other phases. The depen-
dences σ(T) at the critical temperature Tc ≈ 620 K can
be divided into two linear portions in accordance with
different mechanisms of ion transfer. It should be noted
that the activation enthalpy of electrical conduction
decreases in the high-temperature range. As was dem-
onstrated earlier in [3], the dependence σ(T) for β-YF3
crystals also has two portions (see Fig. 1 in [3]). Table 1
presents the preexponential factors A and the activation
enthalpies of electrical conduction ∆H for differently
oriented samples of HoF3 single crystals. Our data on
the parameters of the anion transfer in HoF3 single crys-
tals slightly differ from those obtained by Trnovcova
et al. [6] for these crystals but are in good agreement
with the parameters determined by the same authors [3,
4, 6, 7] for orthorhombic crystals RF3 (R = Tb, Er, and
Y) measured at temperatures no higher than 923 K
(Table 2). The conductivity anisotropy in HoF3 and
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Fig. 1. Effect of pyrohydrolysis on the electrical conductiv-
ity of the HoF3 single crystal: (1) heating, bulk resistivity
Rb; (2) cooling, impedance Rb + Rf ; and (3) cooling, resis-
tivity of the film Rf .
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β-YF3 crystals is insignificant and can be ignored
(Tables 1, 2).

The results of structural investigations [8] indicate a
similarity between structural motifs of the tysonite-type
and orthorhombic rare-earth trifluorides. The nomi-
nally pure tysonite-type rare-earth trifluorides RF3 (R =
La–Nd) are characterized by the formation of Schottky

defects (vacancies VF and VLa), among which the 
fluorine vacancies are the mobile defects responsible
for the high ionic conductivity σ ~ 10–6 S cm–1 at 293 K
[9]. As in the case of RF3 tysonite-type trifluorides, the
experimental data on ion transfer in the RF3 orthorhom-
bic crystals can be consistently interpreted under the
assumption that the electrical conduction in these com-
pounds occurs through the vacancy mechanism.
According to Trnovcova et al. [3], the VF vacancies in
β-YF3 crystals are the structural defects that most prob-
ably contribute to the anionic conduction. The activa-
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Fig. 2. Temperature dependence of the anionic conductivity
for HoF3 single crystals: (1) the sample aligned parallel to
the b axis, (2) the sample oriented normally to the b axis,
and (3) the unoriented sample.

Table 1.  Parameters A and ∆H for HoF3 single crystals

Orientation ∆T, K ∆H, eV log(A, S cm–1 K)

Sample 1, || b 323–623 0.737 4.61

623–1073 0.45 2.34

Sample 1, ⊥  b 323–623 0.745 5.14

623–1073 0.43 2.78

Sample 2, || b 323–623 0.765 5.14

623–1073 0.37 2.15

Sample 2, ⊥  b 323–623 0.722 4.65

623–1073 0.45 2.49

Sample 3 
(unoriented)

323–623 0.750 4.72

623–1073 0.43 2.14
2
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tion enthalpy of electrical conduction ∆H = 0.74 eV,
which was determined for HoF3 crystals in the present
work, is rather close to the enthalpy of migration of flu-
orine vacancies ∆H ≈ 0.70 eV [3] in β-YF3 crystals.

Making allowance for the small coefficients of cat-
ion diffusion in trifluorides, we can assume that the
kink observed in the dependence σ(T) at the critical
temperature Tc ≈ 620 K reflects a crossover from one
mechanism of anionic conduction in HoF3 crystals to
another. It should be noted that orthorhombic rare-earth
trifluorides, like the tysonite-type trifluorides [10],
obey the following relationship: ∆H2 < ∆H1, where ∆H1
and ∆H2 are the activation enthalpies of electrical con-
duction at T < Tc and T > Tc, respectively. This suggests
that the VF vacancies at different crystallographic posi-
tions contribute to the mechanism of ion transfer.

The LaF3 tysonite structure (space group P ,
number of formula units z = 6) contains three fluorine
sublattices, namely, the F1, F2, and F3 sublattices, in
which the number of anions per unit cell is determined
by the relationship F1 : F2 : F3 = 12 : 4 : 2. Note that,
along the c axis in the tysonite structure, the F1 ions are
located in puckered anionic layers and the F2 and F3
ions occupy planar cationic–anionic layers. When
interpreting the electrical properties of tysonite crys-
tals, the F2 and F3 ions are often considered to be com-
bined into a common subsystem, F2, 3 (at F2 = F3, the
trigonal tysonite-type structure with the space group

 and z = 6 transforms into the hexagonal tysonite-
type structure with the space group P6/mmm and z = 2).
Consequently, we obtain the ratio F1 : F2 = 2 : 1. In the
β-YF3 structure (space group Pmma, z = 4) [11, 12], the
anionic layers formed by the F3 ions and the cationic–
anionic layers containing F2 ions are arranged along the
b axis. The number of anions per unit cell in the β-YF3
structure is determined by the ratio F1 : F2,  = 2 : 1. At
T < Tc, the anion transfer in the β-YF3 structure pre-
dominantly proceeds, first, in one fluorine subsystem
(most probably, in the F1 subsystem) and, then, in two

3c1

3c1

Table 2.  Electrical characteristics of orthorhombic single
crystals RF3 (R = Tb, Ho, Er, and Y)

RF3 Orientation σ500 K, S/cm ∆H, eV References

TbF3 [010] 1 × 10–5 0.74 [6]

HoF3 || b 4 × 10–6 0.75  This work

⊥  b 7 × 10–6 0.73 This work

Unoriented 3 × 10–6 0.75 This work

" 1 × 10–5 0.64 [6]

ErF " 1 × 10–6 0.74 [4, 7]

β-YF3 [101] 2 × 10–6 0.71 [6]

[010] 3 × 10–6 0.71 [6]

Unoriented 2 × 10–6 0.70 [3]
P

subsystems simultaneously, including the F2 sublattice.
As the critical temperature Tc is approached, the fluo-
rine vacancies are involved in active exchange between
the anionic subsystems. At T > Tc, the anion transfer
occurs through all the fluorine sites.

However, the anionic conductivity of HoF3 crystals
at 1073 K reaches only 2 × 10–3 S cm–1. This value is
considerably less than the electrical conductivity of RF3

tysonite-type trifluorides (σ ~ 1 S cm–1). The large dif-
ference between the F– ionic conductivities in orthor-
hombic and tysonite-type lanthanide-containing triflu-
orides can be explained in terms of crystal chemistry
[13]. The characteristic coordination polyhedron of R3+

ions can be considered a trigonal prism with different
degrees of distortion that determines the minimum
coordination number to be equal to six. The mutual
arrangement of these prisms leads to an increase in the
coordination number to nine in structures of the β-YF3
type and to 11 in structures of the tysonite type.

The tysonite-type hexagonal structure with high
symmetry is composed of layers that are located nor-
mally to the c axis and consist of regular trigonal
prisms. The prisms are alternately occupied by La and
F atoms in accordance with a structural motif similar to
that in the MoS2 compound. In this structure, fluorine
atoms can occupy two different positions: vertices of
the polyhedra and the centers of the prisms built up of
like ions. However, the latter situation is not typical of
ionic structures. Hence, it is these fluorine positions at
the centers of the prisms that appear to be vacant after
the heterovalent isomorphous replacement of R3+ by
Ca2+ (Sr2+, Ba2+). Upon transition to the trigonal modi-
fication with low symmetry, the fluorine atoms are dis-
placed insignificantly, which, in turn, results in a distor-
tion of the trigonal prisms.

In structures with a β-YF3 orthorhombic lattice, the
fluorine atoms are located only at vertices of coordina-
tion polyhedra, namely, distorted trigonal prisms. This
impedes the generation of anionic vacancies (charge
carries) and, consequently, the formation of MF2 solid
solutions (M = Ca, Sr, and Ba) in orthorhombic trifluo-
rides. The above treatment in terms of crystal chemistry
is supported by the close values of the activation
enthalpy of low-temperature (at T < Tc) anion transfer
in the HoF3 crystal (Tc ≈ 620 K, ∆H1 = 0.74 eV) and the
tysonite-type solid solutions Ho0.77Ca0.23F2.77 (Tc ≈ 685 K,
∆H1 = 0.7 eV [14]) and Ho0.75Sr0.25F2.75 (Tc ≈ 670 K,
∆H1 = 0.6 eV [15]).
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Abstract—This paper presents the results of a theoretical study of deep nitrogen vacancy levels and of small
clusters of nitrogen di- and trivacancies, including the nearest neighbor defects in one layer of graphite-like
boron nitride, made using the model-pseudopotential and supercell methods. The calculated spectra and oscil-
lator strengths were used to interpret the local bands of optical absorption, luminescence, and photoconductivity
in pyrolytic boron nitride before and after irradiation by fast neutrons, protons, and carbon ions (50–150 keV).
The shallow activation levels of thermally stimulated luminescence and conductivity existing before and arising
after irradiation were identified. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite the continued interest in boron nitride as a
multifunctional material with properties stable against
extremal external factors [1, 2], the nature of its intrin-
sic and extrinsic defects still has not been sufficiently
studied. At the same time, because of the specific tech-
nology of preparation employed, the boron nitride sam-
ples obtained contain defects that differ in character
and give rise to significant features in its physical prop-
erties. For instance, defects present in the pyrolytic
boron nitride h-BN produce a red shift of the optical
absorption edge, change the conduction type, and give
rise to a fine structure in the electron paramagnetic res-
onance (EPR) spectrum. The variety of defects and of
their complexes make identification of the deep levels
they create difficult and require experimental and theo-
retical studies to be carried out with the use of different
techniques.

The nitrogen vacancy VN plays a particular part
among defects, because pyrolytic h-BN of stoichiomet-
ric composition is characterized by a noticeable defi-
ciency of nitrogen, a factor associated with its
extremely high temperature of synthesis (~2300 K) and
small VN binding energy, which is indicated in studies
of its close analogs, w-GaN and w-InN [3–5]. The elec-
tronic states of localized centers in boron nitride were
earlier investigated in the tight-binding approximation
[6, 7] using the Hückel method [8, 9] and the aug-
mented plane wave method [10]. In the cubic modifica-
tion c-BN, the unrelaxed neutral nitrogen vacancy cre-
ates a completely filled, s-like state near the valence-
band (VB) top and a partially filled, p-type resonant
state at the conduction-band (CB) edge [10].

Graphite-like h-BN is characterized by sp2 bond
hybridization, which brings about modification of the
deep levels produced by VN. The three dangling bonds
1063-7834/02/4402- $22.00 © 20286
created by the nitrogen vacancy form, in the band gap
of h-BN, a filled singlet state A1 and a twofold degener-
ate state E with one unpaired electron [6, 7].

A comparison of the results obtained using different
methods validates the approximations employed. In
particular, recent studies made using the pseudopoten-
tial method revealed [3, 4] the existence of resonance
states created by a neutral nitrogen vacancy in the VB
(a singlet) and the CB (a quasi-triplet) of w-GaN, which
is at odds with earlier tight-binding calculations [11,
12] placing the singlet state near the CB. The reason for
these discrepancies lies in the small magnitude of the
splitting between the deep levels, which was obtained
using the tight-binding method for anion vacancies and
is due, as is the case with other compounds [13, 14], to
the limited extent of the basis used and to neglection of
essential interactions. Because the defect states in
three-dimensional h-BN have thus far been investigated
only using the tight-binding method, it becomes obvi-
ous that studies based on more precise approximations
are needed.

The present work is a study of the deep nitrogen-
vacancy levels in h-BN using the pseudopotential and
supercell (SC) methods similar to [15]. This approach
provides a satisfactory description of the electronic
spectrum of both a perfect and a defected crystal. We
consider here, in addition to a single nitrogen vacancy,
small clusters of the di- and trivacancies of nitrogen,
including the nearest neighbor defects. Formation of
such complexes is made possible by the high VN con-
centration and fairly high cluster binding energy [3].
The calculated spectra and oscillator strengths offer a
basis for interpretation of the optical characteristics of
the pyrolytic h-BN.
002 MAIK “Nauka/Interperiodica”
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2. METHOD OF CALCULATION

The deep-level calculation was carried out with a
sufficiently large SC (4 × 4 × 2) containing 128 atoms,
which permitted us to reduce the dispersion of the
impurity band (for comparison, the SCs used in [3–5]
contained 32, 72, and 64 atoms, respectively) and to
study the states of complex defects. The cell was
enlarged along the hexagonal axis by a smaller number
of times than in the layer plane because of the relatively
weak interlayer coupling in h-BN [16].

According to [17], the valence-band top of perfect
h-BN lies at the symmetry point H of the Brillouin
zone, the conduction band bottom lies at the M point,
and the width of the indirect band gap is 4.65 eV. At the
Γ point, the highest filled state of symmetry  lies
0.9 eV below the top of the VB. The band dispersion
along the hexagonal axis (in particular, along the U line
connecting the symmetry points L and M) is weak.

The electronic spectrum and the wave functions of a
defected crystal were found on the basis of the 30 low-
est Bloch states of a perfect h-BN crystal using the
model-pseudopotential method [17]. The nitrogen
vacancies were placed at the anion sites of the perfect
lattice, and the lattice distortion and relaxation effects
were neglected. The deep levels were identified with
the states of a defected crystal for a zero superlattice
wave vector. The Γ, L, M, and A points and the points
on the R, S, T, and Σ lines of the Brillouin zone of the
perfect crystal are equivalent to the Γ point of the super-
lattice. Similar to [15], the potential of the neutral nitro-
gen vacancy was constructed from the nitrogen pseudo-
potential screened by the dielectric permittivity [18],
the pseudopotential being determined from experimen-
tal data and the results of ab initio band-structure calcu-
lations.

To test the method, we calculated the deep levels
created by a single nitrogen vacancy in the more well
studied crystals w-GaN and c-BN. The band structure
and wave functions of perfect w-GaN were calculated
using the pseudopotential method [18]. The deep levels
of a single nitrogen vacancy were determined using the
SC (4 × 4 × 2) approximation. The localized singlet
s-like state A1 and the quasi-triplet p-like state, both
associated with VN in w-GaN, were found to be, in
accordance with [4], resonance states lying in the VB
and CB. When transformed to the wurtzite structure,
the sphalerite state T2 splits into A1 and E states, so that
the lowest singly occupied A1 state is 0.2 (0.8) eV above
the CB bottom and the upper empty state E is 0.4 (0.5) eV
distant from it (the data in parentheses are from [4]).
The band structure of the perfect c-BN was calculated
using the model-pseudopotential method [17], and the
deep levels of a single VN vacancy were found using the
SC (4 × 4 × 4) approach. The parameters of the model
pseudopotentials [V0(B) = 0, Rm(B) = 2.5, β(B) = –15,
β(N) = –15, V0(N) = –4.8, Rm(N) = 2.15 in " = m = e = 1
atomic units] were derived from the condition that the

Γ5'
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
calculated band spectrum of c-BN be similar to the
spectrum obtained from the LMTO-TB-NO-ES
approximation [10]. In this case, the energies of the
deep levels of a perfect nitrogen vacancy in c-BN
[ε(A1) = 0.95 eV, ε(T2) = 5.34 eV relative to the VB top,

] are also in accordance with [10]. Because the
position of the deep levels depends directly on the
defect potential, the agreement obtained with the
results of ab initio calculations made for crystals with
different structure validates the nitrogen vacancy
potential model employed.

3. RESULTS OF THE CALCULATION

The calculated deep levels of defected h-BN near
the band gap are displayed in Fig. 1. A single neutral
nitrogen vacancy creates, in the band gap, two deep lev-
els split off from the VB. The energy of the lowest A1
level is ε = 3.75 eV (here and subsequently, the energies
are referenced relative to the VB top), and this level has
one unpaired electron, so that the nitrogen vacancy is a
donor. The unoccupied level E lies near the CB bottom
(ε = 4.41 eV). An analysis of the coefficients of expan-
sion of the localized states in wave functions of the per-
fect crystal showed that both levels derive primarily
from the lowest CB states at the L and M points, with
the π states (antisymmetric relative to the layer plane)
contributing to the A1 level. The character of localiza-
tion of the deep-level functions is seen from the charge
density map (Fig. 2). The density maxima of state A1 in
the cross section parallel to the hexagonal axis lie near
the nearest and next-to-nearest neighbor boron atoms.
The wave function of state A1 in the layer plane is zero.
The charge density of the E level is localized at the dan-
gling bonds. The wave functions of both levels fall off
in the direction of the hexagonal axis and vanish at the
midpoint between the layers.

The results obtained for a single nitrogen vacancy
differ from the data quoted in [6], according to which
the lower A1 level is about 1 eV above the VB and is
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Fig. 1. Diagram of h-BN deep levels with one (VN), two
(2-VN), and three (3-VN) nitrogen vacancies. The energies
are reckoned from the VB top. Solid horizontal lines are the
limits of the band gap. The arrows show the filling of the
highest level occupied by electrons.
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V
2

Fig. 2. Charge density map of the lower A1 deep level of a
single nitrogen vacancy in the (yz) plane. The squares show
the position of the nitrogen atoms, the triangles show the
positions of the boron atoms, and V identifies the nitrogen
vacancy. The densities are given in units of e/Ω0, where Ω0
is the supercell volume.

Fig. 3. Charge density map of the deep nitrogen divacancy
levels in the (xy) plane: (a) A1 (ε = 1.41 eV) and (b) A1 (ε =
3.71 eV).
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fully occupied and the E level is distant by ~2.5 eV
from it and contains one electron. The reason for this
discrepancy is probably due to the difference in the
strength of the defect potential. Calculations made with
a renormalized VN potential showed that the energy
level diagram presented in [6] can be reproduced if one
takes a stronger nitrogen-vacancy potential (by about a
factor of two). In this case, however, one does not reach
agreement with the ab initio calculations of the VN lev-
els for c-BN [10] and w-GaN [4].

It is known that the antisymmetric character of the
partially occupied A1 state of a single nitrogen vacancy
does not account for the structure of the 10 resonance
peaks observed in the EPR spectrum of pyrolytic h-BN
[19, 20]. These features are believed to be connected
with the hyperfine interaction between the spin moment
of the unpaired electron and the moments of the three
boron atoms surrounding the nitrogen vacancy. The
breakdown of the antisymmetry of the A1 state required
for the features mentioned above to occur is caused by
other defects, for instance, by the effect of interlayer
carbon atoms, as postulated in the model of the F center
[20], which creates a nonzero electron density around
the boron atoms and a finite spin interaction. We will
show later that nitrogen vacancy complexes can play a
similar role.

The symmetry of the nitrogen divacancy made up of
nearest neighbor in-plane defects (2-VN) is lower than
that of a single vacancy. As a result of interaction
between the states of two nitrogen vacancies, the diva-
cancy creates four one-dimensional states in the band
gap of h-BN. The lower A1 level (ε = 1.41 eV) is fully
occupied and derives from the states of the upper
valence σ+ band; its charge density is oriented along the
line connecting the vacancies and reaches a maximum
midway between them (Fig. 3). The deep levels next in
energy are empty. The wave function of the third level
(ε = 3.71 eV) consists of almost the same σ+ states but
is localized primarily on the dangling bonds. The char-
acter of the density distribution in the vertical plane for
the first and third divacancy levels can be reproduced
by following, in analogy, the data for the single vacancy
and Fig. 3. The second (ε = 3.42 eV) and fourth (ε =
3.85 eV) levels of the divacancy are derived from the π
states of the VB and CB; therefore, their charge densi-
ties in the layer plane are zero. The defects located in
adjacent layers affect one another only weakly. The
energy levels of a divacancy made up of such defects
are nearly degenerate (the splitting < 0.1 eV) and are
close to those of a single nitrogen vacancy.

The nitrogen trivacancy (3-VN), which consists of
three nearest neighbor VN defects lying at the vertices
of an equilateral triangle in the plane of one layer, cre-
ates four levels in the band gap of h-BN. The lower A1
level is occupied by one electron and lies near the VB
top (ε = 0.15 eV); therefore, the nitrogen trivacancy is
an acceptor. The wave function of this level is derived
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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from the VB σ– states, and the charge density maxima
are localized on the dangling bonds and at the 3-VN cen-
ter. Because of this state being symmetric, the unpaired
electron has a small but finite probability density of
residing near the boron nuclei (Fig. 4); therefore, the
nitrogen trivacancy can act as a paramagnetic center.
The influence of defect complexes on EPR signals was
observed in [21]. The E level (ε = 1.88 eV), which is
unoccupied by electrons, derives from the σ+ states of
the VB. The levels A1 (ε = 2.70 eV) and E (ε = 3.93 eV)
derive from the π states of the VB and CB and have zero
densities in the layer plane.

Thus, because the states of single defects are
strongly coupled, complexes consisting of nearest
neighbor nitrogen vacancies create a series of deep lev-
els extending over the band gap of h-BN. As the clusters
grow in size, the energy of the highest filled level
decreases and the defect center changes its character
from the donor type of single vacancy to the acceptor
type for trivacancy.

The above deep levels can manifest themselves in
various physical properties. In particular, optical transi-
tions involving these levels can produce features in the
spectral response. The interband transition intensity
depends on the momentum-operator matrix elements.
As follows from a calculation of these matrix elements,
the strongest transitions from the deep levels in a single
nitrogen vacancy and its clusters occur when the light
waves are polarized perpendicular to the hexagonal
axis. In a single vacancy, such transitions are possible
from the upper VB states to the deep levels. The transi-
tion energies are ε(   A1) = 4.6 eV and ε(  
E) = 5.3 eV. The transition connecting deep levels with
an energy ε(A1  E) = 0.7 eV is also allowed. In the
nitrogen divacancy, transitions between all deep levels
(from one to another) and between them and the L1 state
at the CB bottom are strong. The transitions from the
lowest A1 filled level (ε = 1.41 eV) to the upper deep
levels have energies of 2.0, 2.3, and 2.4 eV, and the tran-
sition energy to the CB bottom (A1  Lc) is 3.2 eV. In
the nitrogen trivacancy, transitions from the  and A3

states of the upper VB can take place only to the lower
deep levels of A1 (ε = 0.15 eV) and E (ε = 1.88 eV) with
energies of 1.1 and 2.8 eV, respectively. The energy of
the allowed transition connecting these deep levels is
1.7 eV. The transitions occurring between unfilled deep
levels next in energy and states at the CB bottom at the
L point are also strong.

4. COMPARISON OF THE CALCULATIONS 
WITH THE EXPERIMENTALLY OBSERVED 

ENERGY LEVELS

The parameters of the localized defect states with
energy ε < 1.5 eV were determined from the tempera-
ture dependences (T = 300–650 K) of the thermally
stimulated conductivity (TSC) and luminescence

Γ5' Γ5'

Γ5'
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(TSL) [22]. The density of deep states N(ε) was esti-
mated from the spectral response of the absorption
coefficient α(hν) derived from diffuse-reflection spec-
tra (T = 300 K, hν = 1.5–6.2 eV) [23]. To establish the
form of the spectral distribution in energy and type of
optical transition, the α(hν) coefficient was approxi-
mated by the Urbach rule α ~ exp(hν/EU) and the
power law αhν ~ (hν – Eg)m, which, under some
simplifying assumptions, describe interband transitions
(m = 1/2 and 2 correspond to direct and indirect allowed
transitions, respectively) [24].

Analysis of the spectra of pyrolytic BN indicates a
continuous distribution of energy states localized in the
band gap (Fig. 5). Near the fundamental absorption
edge, the α(hν) dependence follows, as is the case with

Fig. 4. Charge density map of the lowest A1 deep level of the
nitrogen trivacancy (ε = 0.15 eV) in the (xy) plane.
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most materials, the Urbach rule (hν = 4.0–4.5 eV, EU =
0.7–0.9 eV). That the values of EU characterizing the
density of states in the tails of the VB and CB are larger
than the figures obtained for other dielectrics [24] is due
to the defects of technological origin affecting the
absorption edge considerably. The band-gap width esti-
mated in terms of the models of allowed direct (Egd) and
indirect (Egi) transitions was found to be 4.1–4.2 and
2.9–3.5 eV, respectively, which differs from the theoret-
ical values Egd = 5.27 eV and Egi = 4.65 eV from [17].
This discrepancy is due to the hierarchical structure of
the ceramic [25] and the effect of the defect levels dis-
tributed near the energy band edges [22]. In addition to
a continuous spectrum of states, one also observed
monoenergetic shallow (ε < 1.5 eV) [22] and deep opti-
cal levels. The latter were deduced from the spectral
response of luminescence, I(hν); they are also seen as
local bands in the absorption spectra (Fig. 5). The
absorption center concentration was calculated using
Smakula’s formula.

The local absorption band centered on εi = 3.85 eV
is most clearly seen in a material with a deficiency of
nitrogen atoms (1–3 wt %) (curve 1 in Fig. 5). Follow-
ing fast-neutron irradiation and annealing in vacuum at
Tan ≥ 1300 K, the band at 3.85 eV becomes additionally
localized (curve 3 in Fig. 5), which correlates with a
growth in concentration of the induced paramagnetic
(VN–3B11) centers, which were identified by EPR spec-
trometry [21]. The dose and anneal dependences of the
concentration of paramagnetic VN (curve 1 in Fig. 6) are
similar to those of the concentration of the absorption
centers with energies of 3.85 eV. The above observa-
tions suggest that the 3.85-eV band is due to electron
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1018 cm–2. hν is equal to (2) 1.9 and (3) 2.5 eV.
P

transitions from the VB to the energy levels of a single
vacancy of technological and/or radiation origin. How-
ever, the band center energy (3.85 eV) and the calcu-
lated transition energies (ε = 4.6 and 5.3 eV) between
the VB top ( ) and the vacancy levels A and E do not
coincide. One also cannot overlook the contribution of
the   A transitions (ε = 4.6 eV) to the broad
absorption peak at εi = 4.8 eV (Fig. 5). A more probable
origin of this peak is the decrease in the absorption
coefficient for ε > 4.8 eV caused by a contribution to the
reflection coefficient of the photoluminescence (PL),
which is excited intensely in this spectral region [8].

The 3.85-eV absorption band can be tentatively
assigned to indirect transitions from the upper VB
states (Hv ) to the A vacancy level (ε = 3.75 eV). The
intensity of such indirect transitions is weak in a crystal
containing only nitrogen vacancies; however, the inten-
sity can increase in a realistic material because of the
effect of intra- and intercrystallite defects (average
crystallite size, ~50 nm [25]) with energy levels (con-
centration N = 1018–1019 cm–3) distributed continuously
over energy (ε = 0.3–1.5, 3.6–4.8 eV). Analysis of the
absorption [23] and luminescence [22] characteristics
confirms the strong influence of interdefect interaction
on the parameters of the monoenergetic levels of single
defects. Indirect transitions Hv  A (ε = 3.75 eV) can
also be favored by the electron–phonon coupling. By
analogy with the above discussion of absorption transi-
tions and taking into account the diagram of the activa-
tion-recombination transitions proposed in [22], the
intense x-ray luminescence band observed at ε = 3.6 eV
in an n-type material can be assigned to recombination
transitions of holes from the upper VB states (Hv) to the
A level of the vacancy (ε = 3.75 eV). The indirect char-
acter of such transitions is in accordance with the obser-
vation that temperature quenching (T = 300–600 K)
affects the luminescence intensity only insignificantly
[22]. The (p-type) photoconductivity level at εi = 3.9 eV
(table) can also be identified with the Hv  A transi-
tions.

The TSL and TSC donor monoenergetic levels with
energies of 0.7–1.0 and 1.0–1.3 eV [22] (0.7 and 1.0 eV,
according to [8]), which donate thermally ionized elec-
trons (T = 300–600 K) to the CB, should be identified
with the vacancy level A (table). That the activation
energies of the donor levels 0.7–1.0 and 1.0–1.3 eV do
not coincide with the energy position of level A relative
to the CB bottom (ε = 4.65 – 3.75 = 0.9 eV) is due both
to the interaction of defects with vacancies and to the
differences between the thermal and optical ionization
processes, as well as to the change in the vacancy
charge state (the vacancy level shift in the III–V com-
pounds is estimated, for instance, in [26] as 0.1–
0.2 eV). Analysis of the parameters of the TSL activa-
tion donor levels with ε = 0.9–1.3 eV (table), which
were revealed in a material irradiated with heavy high-
energetic particles, permits one to assign them to radia-
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Nitrogen-vacancy-complex levels, transition energies, luminescence activation energies (ε), and energy positions of optical
band centroids (εi) in pyrolytic BN before and after irradiation by neutrons (*), protons (**), and carbon ions (***)

Defect

Notation
of level 
(energy
ε, eV)

Transition 
energy (ε, eV) 
and notation

ε, eV

Absorption
Photoconduc-
tivity εi, eV

Luminescence

εi , eV N, cm–3 εi , eV I, arb. 
units

VN E(4.41) 0.7 0.7–1.2

(A  E)

A(3.75) 1.0–1.2**

0.9–1.1*

3.75 3.85 5 × 1018 3.9 3.6 0.05

(Hv  A)

3.85* 1 × 1019

4.6 4.80 3 × 1019

(   A)

5.3

(   E)

2-VN A(3.85) 2.0 1.9*** (0.9–3) × 1020 (1.8–2.0)*** 2.1–2.2*

(A  A)

A(3.71) 2.3 2.5*** (3–5) × 1020 (2.2–2.4)*** 2.5* 1.0

(A  A)

A(3.42) 2.4 (2.2–2.4)*** (2–5) × 1020 (1.5–2.3)*** 1–0.3

(A  A)

A(1.41) 3.2 3.2* 1.0

(CB  A)

0.8 (0.8–1.0)***

(A  CB)

3-VN A(0.15) 0.15 0.1–0.2*

(Hv  A)

A(0.15) 1.1 0.9–1.1*

(   A)

E(1.88) 2.8 2.85* (3–5) × 1019

(   E)
2.9*** 1.5 × 1020 2.9***

2.77 3.0* 0.5

(CB  E)

A(2.70) 1.73 1.9*** (0.9–3) × 1020

(A  E)

1.95

(A  CB)

E(3.93) 0.72 (0.2–0.4*)

(E  CB)

Γ5v'
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tion-induced nitrogen-vacancy levels, which, unlike the
VN of technological origin, are located inside the crys-
tallites rather than near the grain boundaries.
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Based on the correlation between the dose and
annealing dependences of the optical density (curves 2,
3 in Fig. 6) and the concentration of complex paramag-
2
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netic centers (curve 4 in Fig. 6) [21], the absorption
bands at εi = 1.9 and 2.5 eV (curve 2 in Fig. 5), revealed
after neutron irradiation (Φ = 1015–3 × 1018 cm–2), were
tentatively assigned to complex multivacancy com-
plexes (MVC). The variation in the parameters of the
2.5-eV PL band after annealing (Tan ≥ 1500 K) with
increasing neutron fluence relative to the parameters of
the TSL band in the original BN, which is close in
energy (curves 1–3 in Fig. 7), and the behavior of the
neutron-induced PL bands at 2.1–2.2 and 2.25–2.42 eV
[27] with annealing give one grounds to suggest that the
above bands are associated with electron transitions
between the MVC energy levels. An analysis of the
changes in the electrophysical [28, 29] and optical
properties [30, 31] induced by ion irradiation and ther-
mal treatment showed that anion vacancy complexes
produce the strongest effect among all defects. The
peaks of the ion-induced absorption at 2.2–2.4 eV and
the peaks in the excitation spectrum of n-type photo-
conductivity at 1.8–2.0 and 2.2–2.4 eV were tentatively
assigned in [31] to electron transitions from the ground
states of the anion vacancy clusters to the CB. The
above absorption, photoconductivity-excitation, and
emission bands in the irradiated material should be
identified taking into account the closeness of their cen-
ters to the energies of the calculated transitions (2.0,
2.3, 2.4 eV), with the transitions connecting the upper
A (3.85, 3.71, and 3.42 eV) and the lower A (1.41 eV)
states of the 2-VN divacancy (table). The 3.2-eV transi-
tion from the A level (1.41 eV) to the CB is not seen in
the optical spectra as a local band, probably because the
competing electronic transitions form a strong absorp-
tion peak at 3.3 ± 0.15 eV in the original material (curve 1
in Fig. 5). One cannot, however, exclude the possibility
that the strong PL peak at 3.2 ± 0.2 eV (curve 3 in
Fig. 7), which becomes manifest after neutron irradia-
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Fig. 7. Spectral response of the intensity of (1) thermo- and
(2, 3) photoluminescence at hν = 3.7 eV of boron nitride (1)
irradiated by x-rays (50 keV, 0.2 Mrad) and (2) annealed
(Tan = 2000 K) after reactor-neutron irradiation to Φ equal

to 1018–1019 and (3) Φ > 1019 cm–2.
PH
tion and annealing, can be assigned to electrons being
transferred from the CB to the divacancy level A
(1.41 eV). The intensity redistribution in the PL spectra
(curves 2, 3 in Fig. 7) can be accounted for by a change
in the level population of the divacancies, which results
from their interaction as they build up with increasing
fluence. The upper divacancy levels A (3.85, 3.71,
3.42 eV) act as traps for electrons transferred to the CB
during thermally stimulated ionization (T = 300–
500 K) of the luminescence donor levels, which are
seen at ε = 0.1–0.5 eV [32]. The depth of the A levels
(3.85 and 3.71 eV) with respect to the CB bottom is 0.8
and 0.94 eV, which is close to the activation energy of
the donor levels, 0.8–1.0-eV; these levels are populated
to a considerable extent [32] and were assigned [31] to
anion vacancy clusters.

Thermal activation spectroscopy also revealed ther-
mally activated acceptor levels in irradiated BN, which,
when ionized, deliver holes to the VB [30, 32]. The cor-
relation between the energy and kinetic parameters of
(p-type) TSC and TSL permits one, with due account of
the results of [22], to establish that the luminescence
levels lie above the VB top by 0.1–0.2 eV (T = 300–
500 K) and by 0.9–1.1 eV (T = 500–600 K). Taking into
account the position of the acceptor levels of lumines-
cence in the band gap and calculations, they can be
identified with the lower A level (0.15 eV) of the triva-
cancy acting as an acceptor. The allowed electronic
transition (ε = 1.1 eV) from the  point to the A level
can be associated with a thermally activated transition
with energy ε > 0.9 eV to levels of strongly populated
traps, and the assumed transition Hv  A (0.15 eV) is
connected with the activation of shallow (ε < 0.2 eV),
weakly populated levels.

The local absorption band at 2.85 ± 0.15 eV (curve 3
in Fig. 5), which is seen clearly in the α(hν) spectrum
after annealing at Tan ≥ 1500 K, can be due to transitions
with energy ε = 2.8 eV from the VB (the  state) to
the E level (1.88 eV); this is confirmed by the correla-
tion between the dose dependences of the paramag-
netic-center concentration [21] and optical density. The
local bands of additional absorption, 2.9 ± 0.2 eV, and
of induced photosensitivity, 2.9 ± 0.1 eV [30], which
appeared after ion irradiation and were found to grow
in intensity with increasing ion fluence, are also proba-
bly associated with the   E transitions
(1.88 eV); however, the shift of the absorption-band
maximum from 2.9 to 2.6 eV, observed to occur for
Φ ≥ 1017 cm–2 and after thermal treatment, and the
structure of this band are apparently caused by the
effect of the implanted impurity atoms on the popula-
tion of the trivacancy levels. The PL band centered on
εi = 3.0 ± 0.15 eV (curve 2 in Fig. 7) (2.73–3.1 eV in
[27]) may partially derive from electron transitions
from the CB to the E level (ε = 1.88 eV) of the triva-
cancy (table).
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The 1.9 ± 0.25-eV absorption band of the irradiated
material may have contributions from the allowed elec-
tron transitions with energy ε = 1.73 eV between the
trivacancy levels A (0.15 eV) and E (1.88 eV) and/or
from the strong transitions (ε = 1.95 eV) from the A
level (2.70 eV) to the CB states at the L point. The sim-
ilarity between the annealing-temperature dependences
of the optical density of the 1.9-eV band (curve 2 in
Fig. 6) and of the concentration of unstable complex
paramagnetic centers (curve 4, Fig. 6) supports this
band identification. The trivacancy levels E (3.93 eV)
and A (2.70 eV) should act as traps for electrons excited
to the CB from shallow donor levels (ε = 0.2–0.4 eV) of
thermoluminescence (T = 300–500 K).

Thus, a comparison of the calculated levels of the
nitrogen vacancy and of its small clusters with the char-
acteristics of band-gap states in original and irradiated
pyrolytic BN, which were revealed by thermal-activa-
tion and optical spectroscopy, has permitted us largely
to confirm the important part played by the nitrogen
vacancy and its complexes in the formation of the acti-
vation, recombination, absorption, and photoconduc-
tivity levels. The donor levels of activation with an
energy 0.7–1.2 eV relative to the CB bottom can be
identified with single vacancies of radiation or techno-
logical origin. The absorption band at 3.85 eV and the
luminescence band at 3.6 eV (the interdefect or elec-
tron–phonon coupling) are formed in indirect electron
transitions between the VB and the vacancy level A.
The electronic transitions involving divacancy or triva-
cancy levels are most clearly seen in the stage of incom-
plete annealing of multivacancy paramagnetic centers
in neutron-irradiated BN. These levels play the part of
deep traps of nonequilibrium electrons and holes,
which govern thermoluminescence.
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Abstract—The motion of a helium atom through a channel with a diameter comparable to the diameter of this
atom is investigated. Such channels are observed in materials of the quartz type. The inclusion of the local law
of momentum conservation in the analysis of the interaction between the He atom and the atoms forming the
channel wall makes it possible to reduce the problem to one-dimensional motion similar to the motion of a dis-
location in the Frenkel–Kontorova model. In the model proposed here, the activation energy of the complex
formed by the He atom and the displacements of atoms of the channel wall is calculated. The obtained energy
is expressed in terms of the shear modulus of the material forming the channel and the helium atom polarizabil-
ity, which depends on the state of the helium atom. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The motion of helium atoms through thin channels
is of considerable interest in the study of nanostructures
[1, 2] and mechanical properties of materials [3, 4]. The
penetration of He atoms into a crystal and their motion
were studied experimentally and theoretically in terms
of dynamic dislocation-assisted diffusion in [3]. This
phenomenon as a new mechanism of the influence of
the surroundings on the physical and mechanical prop-
erties of solids is of athermal nature and is observed
only in a crystalline material plastically deformed in a
gaseous or liquid medium, whose particles penetrate
into the surface layer of the material through nucleating
or moving dislocations. It has been proven, in particular
in [5], that helium transport at T ≤ 300 K occurs pre-
dominantly through dislocation tubes. (The dislocation
tube diameter is 0.6–1 nm.)

The diffusion of helium through channels in zeolites
was considered in [6, 7]. The channel diameter (0.5–
5 nm) usually exceeds the diameter of an He atom
(0.18–0.24 nm, according to different authors [2, 8–
10]).

However, the situation when an He atom moves
through a channel whose diameter is comparable with
the diameter of this atom is completely different. Such
channels are observed in crystalline materials of the
quartz type. The structural unit in such materials is an
SiO4 tetrahedron [11]. The SiO4 tetrahedrons are
arranged so that they form long channels 0.24–0.26 nm
in diameter (Fig. 1) [11].
1063-7834/02/4402- $22.00 © 200294
It was observed long ago by Ioffe [12] that the dif-
fusion of light ions (Na+, K+) takes place mainly
through these channels [12, 13]. It was assumed that He
atoms can also move through such channels relatively
freely. This process must be characterized by a large
diffusion coefficient and a high penetrability. However,
experiments show that helium diffusion in such open
crystalline structures formed by regular channels is 5–
10 orders of magnitude lower than that in disordered
glasslike structures [14, 15]. Thus, an open ordered
structure is virtually impermeable for He, in contrast to
a disordered structure.

Fig. 1. Schematic diagram of a channel formed by SiO4 tet-
rahedrons: (a) transverse and (b) longitudinal sections of the
channel and (c) potential 81. Numerals in (a) denote tetra-
hedrons; the relative height of the silicon atom at the center
of each next tetrahedron is larger by 1/3; the He atom is
hatched. Arrows in (b) indicate the displacements of the
oxygen atoms nearest to the He atom in the channel.
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It should be borne in mind, however, that a real
channel in materials of the quartz type is formed not by
the edges of the tetrahedrons but by oxygen atoms
whose ionic radii are large (≈0.12 nm) [9] and almost
overlap the geometrical diameter of the channel. In this
case, a helium atom is in direct contact with the atoms
forming the channel wall and pushes them apart during
its motion through the channel. Therefore, in order to
determine the behavior of a helium atom in a small-
diameter channel, one must also know the character of
motion of the atoms forming the channel wall. In the
general case, this problem is three-dimensional. It will
be proved below, however, that a system consisting of
an He atom and atoms of the wall can be described in
terms of a one-dimensional model similar to the Fren-
kel–Kontorova model proposed for describing the
motion of a dislocation in a one-dimensional crystal.
Using this model, we can determine the activation
energy involved in the diffusion coefficient.

This work is devoted to an analysis of the motion of
an He atom in a channel with a diameter comparable to
the diameter of this atom and to the evaluation of the
activation energy for such motion.

2. MODEL AND EQUATIONS OF MOTION

A channel in quartz along the optical axis C [0001]
is formed by the edges of SiO4 tetrahedrons [13, 16]
(Fig. 1a). Oxygen atoms occupy positions at the corners
of a tetrahedron. Thus, the channel wall is formed by a
helical chain consisting of n oxygen atoms (Fig. 1b).
The number n is infinitely large. Therefore, we can
assume that the silicon atom in a tetrahedron is
screened by oxygen atoms and a helium atom in the
channel interacts only with the oxygen atoms, causing
local deformation of the channel walls (Fig. 1b). The
oxygen atoms forming the channel wall are displaced in
this case through a distance xn from their equilibrium
positions an. The change in the separation between the
nth and (n – 1)th atoms in the chain caused by these dis-
placements can be written (in the components along the
x axis) in the form

Consequently, the force (for definiteness, its compo-
nent along the x axis) acting on the nth atom of such a
chain is given by

where αc is the elastic interaction constant between the
oxygen atoms forming the channel wall.

Similar forces are exerted on the helium atom by the
chain. A helium atom in such a chain is surrounded by
three atoms of the spiral (Fig. 1b). We assume that the
He atom interacts elastically and pairwise indepen-

xn xn 1– ax–– nax ξnx n 1–( )ax–+=

– ξn 1– x, ax– ξnx ξn 1– x, .–=

Fn x, α c ξn x, ξn 1– x,–( ) ξn 1+ x, ξn x,–( )–[ ]–=

=  α c ξn 1+ x, ξn 1– x, 2ξn x,–+[ ] ,
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dently with each nearest neighbor atom of the wall.
Consequently, the elastic force exerted on the He atom
by the surroundings of z atoms is equal to the sum of
these forces; the x component of this force is

(1)

Here, γm is the displacement vector of the He atom (m =
1–3) and αγ is the elastic interaction constant between
the helium atom and oxygen atoms (it will be proved
below that this quantity is determined by the polariz-
ability of the helium atom).

Since neither of the elastic forces acting between the
nth atom, the He atom, and the (n + 1)th atom has any
preference over the other forces, we assume that

(2)

In this case, the x component of force (1), which is
exerted on the helium atom by the wall, is given by

(3)

A transition of the He atom to another (adjacent)
position in the channel causes displacements of atoms
of the wall, making way for the He atom. Subsequently,
the wall atoms return to their initial positions under the
action of the periodic crystal field. This periodic field
(presented in Fig. 1c) also acts on the moving He atom.
In this case, the potential of this field has the form

(4)

The displacement of the He atom along the channel is
described by a system of 3(n + 1) differential equations:

(5)

Here, M is the mass of an oxygen atom, m is the mass
of the helium atom, index n labels oxygen atoms in the
channel, index j denotes the components of the dis-
placement vectors x and g ( j = x, y, z), and potential 8
is the sum of the potential of elastic forces correspond-
ing to the force Fγ, x in Eq. (3) and the potential 81
given by Eq. (4). Both potentials play the role of an
external field relative to the He atom.

The system of equations (5) shows that in order to
determine the law of motion of the He atom, we must
know the behavior of the n oxygen atoms forming the
channel wall. In turn, the displacements xn of oxygen

Fγx αγ γ1 x, ξnx–( ) ξn 1+ x, γ1 x,–( )–[–=

+ γ2 x, ξn 1+ x,–( ) ξn 2+ x, γ2 x,–( )–

+ γ3 x, ξn 2+ x,–( ) ξn x, γ3 x,–( )– ] .

γ1 x, γ2 x, γ3 x, γx.= = =

Fγx . αγ z/2( ) ξn 1+ x, ξnx 2γx–+[ ] .

81 A 1 2πγx/ax( )cos–[ ] .=

md2γx/dt2 ∂8/∂γx– 2πAax
1– 2πγx/ax( )sin–= =

+ z/2( )αγ ξn 1+ x, ξn x, 2γx–+( )

md2γ j/dt2 ∂8/∂γ j–=

=  z/2( )αγ ξn 1+ j, ξn j, 2γ j–+( ), j y z,=

Md2ξn j, /dt2 α c ξn 1+ j, ξn 1– j, 2ξn j,–+( )=

+ z/2( )αγ ξn 1+ j, ξn j, 2γ j–+( ), j x y z., ,=











2
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atoms are caused by displacements of the helium atom
in the channel. The first equation in system (5) is simi-
lar to the Frenkel–Kontorova equation [17, 18]. The
form of this equation is a consequence of the applica-
tion of potential (4), which was first introduced by Tay-
lor to describe the plastic deformation of a crystal [19].
The similarity between the first equation in system (5)
and the Frenkel–Kontorova equation suggests a possi-
ble way to solve the system.

3. REDUCTION OF THREE-DIMENSIONAL 
MOTION TO THE ONE-DIMENSIONAL CASE

In accordance with the idea put worth by Frenkel
and Kontorova [17, 18], we assume that a helium atom
and the perturbation (displacements of oxygen atoms)
caused by it propagate at a constant velocity v. Then, a
complex consisting of the He atom and the displace-
ments of wall atoms passes to an adjacent position in
the time τ = ax/v  and the displacements ξn of the atoms
of the channel wall change insignificantly. This is
equivalent to the conditions ξn(t) = ξn + 1(t + τ) and
ξn + 1(t) = ξn(t – τ). We expand the amplitudes of dis-
placements in a power series in τ and, to the second-
order terms, write ξn ± 1, x = ξn, x(t ± τ) = ξn, x(t) ±
(dξn, x/dt)τ + (d2ξn, x/dt2)τ2/2!. In this case, the first par-
enthetical expression in Eq. (5) for the displacements of
atoms of the wall has the form ξn + 1, x + ξn – 1, x – 2ξn, x =
(d2ξn, x/dt2)τ2.

In connection with the subsequent transformation of
the system of equations (5), it should be noted that
expression (1) can be regrouped, taking into account
relation (2), so that the expression for displacements in
the parentheses acquires a more conventional form and
becomes equal to (ξn + 1, x + ξn – 1, x – 2γx). Further, we
assume that the amplitude xn of the displacement of a
wall atom during time τ does not exceed the amplitude
γ of the displacement of the He atom. (This assumption
is equivalent to the local law of momentum conserva-
tion in the interaction of the He atom with the oxygen
atoms; see [9].) In this case, the displacements in the
parentheses in Eqs. (1), (3), and (5) can be represented
in an analogous form, ξn + 1, x + ξn – 1, x – 2γx .

τ2(d2 /dt2). A similar equality is also valid for the y
and z components.

As a result, the system of equations of motion (5) of
an He atom in a channel and of the channel itself
acquires the form

(6)

γx
2

m∗ d2γx/dt2 2πAax
1– 2πγx/ax( )sin–=

M∗ d2γn x, /dt2 z/2( )αγτ
2 d2γx/dt2( )=

m∗ d2γ j/dt2 0=

M∗ d2ξn j, /dt2 z/2( )αγτ
2 d2γ j/dt2( ), j y z.,= =








PH
This system can be reduced to a system of equations for
one-dimensional motion of the helium atom and n
atoms of the channel wall:

(7)

Here, M* = M – αcτ2 is the effective mass of an oxygen
atom and m* is the effective mass of the helium atom,

(8)

The second equation in system (7) is the law of momen-
tum conservation in local form (index n for ξn, x indi-
cates this locality),

(9)

and leads to the following relation between the dis-
placements of the He atom and of one of the atoms in
the channel wall:

(10)

where qx = M*(dξn, x/dt) + (m* – m)(dγx/dt) = const. It
can be seen from Eq. (10) that γx can be expressed in
terms of the quantities ξn, x. In particular, for qx = 0, we
have γx = 2M*ξn, x/(zαγτ2). For this reason, we introduce
the notation γx = γx, n. (The condition qx = 0 only leads
to a phase shift in the motion of the He atom relative to
oxygen atoms and does not affect the basic results con-
cerning the evaluation of the energy of this motion.)

Relation (9) makes it possible to reduce the entire
system of equations (7) to a one-dimensional equation
of motion of the nth atom in a chain, which was derived
by Frenkel and Kontorova:

(11)

In our case, this equation describes the motion of an
atom in a chain consisting of n atoms of He. Such a
chain is of virtual nature and arises as a result of the
transition of the He atom and of the wall atom displace-
ments accompanying it to an adjacent position in the
channel. The potential energy of the elastic interaction
between He atoms in such a chain,

(12)

is determined by the interaction constant αγ of He
atoms with oxygen atoms in the channel wall defined in
Eq. (1). The entire chain moves in the field 82 =
AΣn(1 – cos2πγn, x/ax) determined by the superposition
of sinusoidal potentials created by displacements of the
He atom at each of the n atoms of the channel wall.

In the subsequent analysis, we will be interested in
the process associated with the activation of the motion
of the He atom through the channel. This process is
equivalent to the activation of a perturbation in a virtual

m∗ d2γx/dt2 2πAax
1– 2πγx/ax( )sin–=

M∗ d2ξn x, /dt2 z/2( )αγτ
2 d2γx/dt2( ).=




m∗ m z/2( )αγτ
2.–=

d/dt M∗ dξn x, /dt( ) m∗ m–( ) dγx/dt( )+[ ] 0,=

γx M∗ ξn x, qxτ–( )/ m m∗–( )=

=  2 M∗ ξn x, qxτ–( )/ zαγτ
2( ),

m∗ d2γx n, /dt2 2πAax
1– 2πγx n, /ax( ).sin–=

81 αγ z/2( )Σn γx n, γx n 1–,–( )2/2=
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chain composed of He atoms. For this reason, we
assume that the initial conditions are the same as in [17,
18]:

(13)

In the next section, we present the relations required
for evaluating the energy of the chain. These relations
coincide (except for the substitution α  zαγ/2) with
the relations derived by Frenkel and Kontorova.

4. BASIC RELATIONS

Integrating Eq. (11) with initial conditions (13), we
find the velocity of an He atom in the channel (in the
chain of He atoms),

, (14)

and its displacement, viz., the Frenkel–Kontorova soli-
ton (kink) [20],

(15)

where constant C can be determined from the initial
conditions (13). Then, the time taken by an He atom of
effective mass m* to traverse the distance ax is

(16)

It follows from Eq. (15) that the uniform motion of a
complex consisting of the He atom and the displace-
ments of wall atoms is characterized by a negative
value of the effective mass in Eq. (8), m* < 0.

We assume that the velocity v  of the helium atom
moving in the channel does not exceed the sound veloc-
ity c in the chain of oxygen atoms. In this case, the
effective mass m* can be written in the form

(17)

From Eqs. (17) and (16), we find the length of the chan-
nel region perturbed by the He atom: λ = vT = λ0[1 –

(v /c)2]1/2, where λ0 = ( )(zαγ/2A)1/2. The quantity
λ0 depends strongly on the state of the helium atom and
may change from fractions of a nanometer to several
tens of nanometers. This is due to the dependence of αγ
on the polarizability of the He atom [see Eq. (20)].

The interaction of helium atoms in the virtual chain
is determined by the interaction constant αγ. If the value
of αγ is small or equal to zero, then a virtual chain com-
posed of He atoms does not arise, in accordance with
Eqs. (8) and (12). The effective mass m* of the helium
atom becomes positive, and the quantity γn, x given by
Eq. (15) is an oscillating function of time. This means
that the He atom in this case can perform only oscilla-
tory motion.

γn x, 0, dγn x, /dt 0.= =

dγx n, /dt 2 –A/m∗( )1/2 πγx n, /ax( )sin±=

γn x, 2ax/π( )=

× C 2π A/m∗ t–( )/ax±[ ]exp( ),arctan

T ax/2π( ) m∗ /A–( )1/2
.=

m∗ m 1 c/v( )2–[ ] .=

ax
2/2π
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
The total energy of the virtual chain of helium atoms
is given by

(18)

Here, the potential energy U is equal to the sum of 81

given by Eq. (12) and 82, while K is the kinetic energy
calculated with the help of formula (14). Passing in
Eq. (18) from summation to integration and carrying
out standard operations [17, 18], we obtain an expres-
sion for the total energy of the chain of helium atoms in
the relativistic form: E = E0/1 – (v /c)21/2, where E0 is the
rest energy of the chain,

(19)

This quantity sets the lower limit on the range of values
of energy E sufficient for an He atom to move through
the channel. For energies lower than E0, the motion of
an He atom through the channel is impossible. The
upper boundary value of E is set by the condition that
the velocity of an He atom in the channel does not
exceed the velocity of sound propagation in the oxygen
chain (in quartz).

Thus, for an He atom to be able to move through the
channel, its energy must lie in a certain range. The
energy E0 is the minimum energy above which a virtual
chain arises and its perturbation can propagate even if
this minimum energy is exceeded only slightly. There-
fore, E0 is the activation energy for a perturbation prop-
agating in the virtual chain (or, equivalently, in com-
plexes consisting of the He atom and the displacements
of atoms of the channel wall). Let us now evaluate E0
from independent data.

5. ACTIVATION ENERGY

Expression (19) for the quantity E0 incorporates
three different characteristics. One of them (αγ) corre-
sponds to the He atom, and another (ax) characterizes
the crystalline structure of the channel. The third char-
acteristic (A) is the maximum value of the interaction
potential between the helium atom and an oxygen
atom.

Let us determine αγ. The displacements ξn of the
oxygen atoms forming the channel wall are caused by
the moving He atom and lead to violation of the equi-
librium distribution of charges in SiO4 tetrahedrons.
Local dipole moments arise and attain values of the
order of the product of the electron charge and the
diameter of the atom. The electric field induced in this
case is of the order of the intra-atomic field. This local
field %(r) acts on the He atom and induces a dipole
moment in it, pind = ed = β%, where β is the polarizabil-
ity of the He atom, e is the electron charge, and d is the
displacement of an electron in the atom. Here, we
assume that the field % is uniform over the He-atomic-

E U K+=

=  –4A αγzτ2/2m∗( )Σn πγn x, /ax( )sin
2

.

E0 4ax/π( ) αγzA/2( )1/2.=
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size region. The potential energy of the induced dipole
in this field is Vpot = (1/2)%pind = (1/2)(pind/β)pind =
(pind)1/2/2β = (ed)2/2β. On the other hand, the potential
energy is equal to the elastic energy due to the displace-
ment of the He atom, Vpot = αγd2/2. The equality of
these two energies gives

(20)

The polarizability β of the He atom depends on its state.
In particular, if He is in the ground state 11S0, its polar-
izability is β = 0.0203 nm3 [21, 22]. If, however, the He
atom is in one of the metastable states 21S0 or 23S1, its
polarizability is 11.8 or 4.67 nm3, respectively.

Now, we determine the value of A using the result
obtained by Indenbom [23]. Let the lattice parameters
be ay along the normal to the plane of Fig. 1 and az in
the direction lying in this plane and perpendicular to ay

and ax . Comparing the displacement of oxygen atoms
with a uniform shear strain of the crystal in the x direc-

tion, we find the shear modulus G = A4π2az/ . This
leads to the following expression for the amplitude of
the potential in Eq. (4) in terms of observable quanti-

ties: A = G /4π2az. Therefore, the activation energy
in Eq. (19) can be written in the form

(21)

Let us estimate the value of this quantity for quartz. We
assume that ay and az in Eq. (14) are of the same order
of magnitude (ay /az ≈ 1). Further, e = 1.6 × 10–19 Pa,
G = 39.1 × 109 Pa [16], β(23S1) = 4.67 nm3 = β1 and
β(11S0) = 0.0203 nm3 = β2 [10, 21, 22]; the value of ax

can be determined from the channel geometry (Fig. 1)
and the separation between the oxygen atoms in a tetra-
hedron [15], which is equal to 0.265 nm. In this case,

we have from Eq. (21) E0 = (2e/π2) .
The activation energy (for different values of the polar-
izability of the He atom) is found to be

E0(β2) = 6.18 eV, E0(β1) = 0.4 eV.

The value of E0(β2) is comparable to the values of
energy typical of chemical compounds. With such an
activation energy, a helium atom cannot move through
the channel. However, an excited He atom has an acti-
vation energy one order of magnitude lower. Therefore,
an excited He atom can move quite freely through the
channel. In connection with such a large difference in
the values of activation energy, we note that the experi-
mentally determined activation energy for the diffusion
of He atoms in quartz has a considerable spread: the
value of this quantity is 0.54 eV according to [24],
while in [25], this quantity is reported to be 1 eV and
becomes even higher at lower temperatures.

αγ e2/β.=

ax
3ay

ax
3ay

E0 2e/π2( ) z/2( ) G/β( )ax
5ay/az.=

z/2( ) G/β( )ax
5

P

6. DISCUSSION

In the present work, the motion of a helium atom
through a channel whose diameter is comparable with
the diameter of this atom is considered. This problem
can be solved only numerically, because the state of the
atoms of the channel wall must be taken into account.
In this case, it is difficult to find an appropriate func-
tional relation between the activation energy and the
parameters characterizing the channel and the He atom.
However, the inclusion of the short-range order (the
number z) and the approximation of the elastic interac-
tion of the He atom with the surroundings followed by
the inclusion of the local law of momentum conserva-
tion in this interaction made it possible to reduce the
problem to the one-dimensional Frenkel–Kontorova
model. In this case, however, the He atom in the chan-
nel of comparable diameter cannot be regarded as an
independent particle any longer. Instead, a chain of He
atoms with a new interatomic interaction potential (12),
which is completely controlled by the polarizability of
the He atom, should be considered. The chain of these
atoms is virtual by nature; it should be dealt with each
time the helium atom and the displacements of oxygen
atoms accompanying it move to an adjacent position in
the channel.

It is important that, in order for a helium atom to be
able to move through the channel, the atom necessarily
interacts with local electric fields. Such fields arise as a
result of displacements of the oxygen atoms forming
the channel wall and are found to be strong enough to
polarize the helium atom. On the other hand, the polar-
izability of the helium atom strongly depends on its
quantum state and determines, to a considerable extent,
the conditions of motion of the atom through the chan-
nel.

Indeed, if an He atom is in the ground state, its
polarizability is extremely small and the atom virtually
does not move through the channel. The length λ0 of the
channel region involved in the interaction with the He
atom in this case is ~3 nm. The He atom is strongly
bound and oscillates. The activation energy is high and
considerably exceeds any energy of the chemical bond
between oxygen atoms and between an oxygen atom
and a silicon atom [15]. In other words, the He atom in
the ground state can move only if the channel is
destroyed. In addition, if we disregard the other quan-
tum states of He, the value of λ0 can reach as high as
~107 nm.

However, being in a metastable state, the He atom
becomes capable of moving freely along the channel.
The length λ0 of the channel region involved in the
motion is ~0.2 nm in this case. The most important
excited state of He is 23S1. This state is a long-lived one
with a lifetime of 6 × 105 s [10].

Summarizing our results, we note that an He atom in
a channel with comparable diameter is strongly bound
and cannot move if it is in the ground state. If, however,
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the He atom is in an excited (in particular, a long-lived)
state, it can easily move through the channel. However,
such a motion occurs only if the energy of the atom lies
in a certain range.
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Abstract—It is found that the form of the amplitude dependence of low-frequency internal friction in a
quenched and aged aluminum sample (99.999% pure) changes under the effect of weak magnetic field pulses
(H ≥ 105 A/m): the general level of internal friction increases. This effect is attributed to the influence of a mag-
netic field on the structural complex formed by a dislocation and point defects (the role of point defects is played
by vacancies). © 2002 MAIK “Nauka/Interperiodica”.
It was demonstrated earlier [1–3] that the level of
dislocation-induced internal friction (IF) in technically
pure materials in a nonequilibrium metastable state
changes under the action of pulses of a weak (H ≤
105 A/m) magnetic field (WMFP). On the other hand,
the IF level in a deformed (nonaged) material or a mate-
rial with a high degree of purity does not change under
the action of WMFP. In other words, the effect takes
place when dislocations are pinned by impurity atoms
and is absent for dislocations free of impurity atoms.
The observed changes in the IF level were attributed to
the influence of WMFP on structural complexes of the
dislocation–point defect type containing magnetically
active states excited by WMFP and were explained as
resulting from a change in the strength of interaction of
dislocations with impurity atoms located at dislocations
and hampering their motion.

According to the ideas developed in [4, 5], a mag-
netic field affects structural complexes such as disloca-
tion–paramagnetic pinning centers, whose role can be
played by impurity atoms of paramagnetic elements or
vacancies. Consequently, we can expect that if in a
material saturated with vacancies, the vacancies play
the role of paramagnetic centers located at dislocations,
then the dislocation-induced IF will vary as a result of
the action of WMFP; otherwise, no effect will be
observed. This communication aims at comparing the
changes in dislocation-induced IF under the action of
WMFP in a material saturated with vacancies blocking
dislocations and in a material unsaturated with vacan-
cies.

The object of our investigations was Al, for which it
is known that (1) deformation-induced vacancies van-
ish upon recrystallization [6]; (2) the concentration of
vacancies increases upon quenching [7]; (3) quench-
ing-induced vacancies block dislocations as a result of
ageing of the material [7] and vanish upon tempering
[8, 9]; and (4) after quenching, the level of amplitude-
dependent dislocation-induced IF becomes lower; this
1063-7834/02/4402- $22.00 © 20300
is due to vacancies moving towards dislocations and
blocking them upon quenching, because the disloca-
tions become fixed [7].

In order to reduce the effect of impurity atoms as
point defects blocking dislocations, we used aluminum
of a high-purity grade (99.999%). Samples in the form
of wires in diameter 3 mm and a working part length of
40 mm were obtained through hydraulic pressing; they
had a recrystallized structure and, hence [6], were char-
acterized by a low concentration of vacancies. In order
to increase the concentration of vacancies, a sample
was heated to 600°C, held at this temperature for an
hour, and then quenched in water. For dislocations to be
blocked by vacancies, the quenched sample was sub-
jected to ageing at room temperature for 24 h [7]. For
decreasing the concentration of vacancies, the
quenched and aged sample was tempered by heating to
300°C and held for 1.5 h at this temperature [8, 9].

The sample was subjected to the action of WMFP
under the following conditions: the magnetic field
amplitude was 3 × 105 A/m, the pulse leading-edge time
was 10–4 s, the pulse repetition rate was 0.5 Hz, and the
time of action was up to 5 min.

The internal friction was measured using an inverse
torsion pendulum with an oscillation frequency of
approximately 1 Hz. The dependence of IF on the
deformation amplitude, which varied from 2 × 10–5 to
12 × 10–5, was determined. The total time of measure-
ments did not exceed 5 min, and the error was within
10%. A decrease in the amplitude was not accompanied
by any IF hysteresis. The IF magnitude was measured
before and during the action of WMFP first in the initial
recrystallized sample (with a reduced vacancy concen-
tration), then in the quenched and aged sample (with an
elevated concentration of vacancies), and, finally, in the
tempered sample (with a lowered concentration of
vacancies).
002 MAIK “Nauka/Interperiodica”
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The experiments proved that the IF of the material in
the initial recrystallized state is characterized by an ele-
vated magnitude and a well-defined amplitude depen-
dence (figure, curve 1). The action of WMFP on the
sample does not modify the amplitude dependence of
IF (curve 2).

This result indicates that structural complexes of the
dislocation–pinning center type have no magnetically
active states excited by WMFP (the role of the pinning
centers is probably played by the nodes corresponding
to the intersection of dislocations).

The amplitude dependence of the IF of the material
in the quenched and aged state is characterized by a
lower IF level and by a stronger amplitude dependence
(curve 3). The observed changes in IF as a result of
quenching and ageing of the sample (curves 1, 3) are
similar to those described in [7]. These changes indi-
cate that dislocations in the material have been pinned
by new pinning centers in the form of point defects
(vacancies) and that the number of dislocation seg-
ments breaking away from pinning centers has
increased. The action of WMFP on a quenched and
aged sample elevates the general IF level and sup-
presses the amplitude dependence (curve 4), which
indicates the emergence of magnetically active WMFP-
induced states in structural complexes of the disloca-
tion–pinning center type as a result of quenching and
ageing of the material. In other words, WMFP affect
structural complexes of the dislocation–point defect
type, in which vacancies play the role of paramagnetic
point defects. This effect is manifested in the depinning
of dislocations from vacancies.

The amplitude dependence of the IF of the material
in the tempered state after quenching and ageing is
characterized by an elevated general level and a weak
amplitude dependence (curve 5). The observed changes
in the IF as a result of tempering of a quenched and
aged sample (curves 3, 5) indicate that dislocations
have broken away from point defects (vacancies) in the
material and the number of dislocation segments break-
ing away from pinning centers has decreased. The
action of WMFP on a tempered sample does not alter
the amplitude dependence of IF (curve 6). This indi-
cates that the magnetically active states excited by
WMFP in structural complexes of the dislocation–pin-
ning center type have disappeared as a result of temper-
ing of the quenched and aged material.

The results obtained by us indicate that (1) the
nature of the amplitude dependence of IF is changed
upon the action of WMFP on the material in the case
when dislocations are pinned by vacancies and remains
unchanged when dislocations are free of vacancies; (2)
the physics of the observed changes in the amplitude
dependence of the IF in the material may be associated
with the magnetically active state excited by WMFP in
a structural complex of the dislocation–point defect
(vacancies) type; and (3) the effect can be explained as
resulting from a change in the interaction energy
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
between dislocations and vacancies blocking them
upon the action of WMFP on a material saturated with
vacancies.
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Abstract—Curves describing the liberation of helium from Sn single crystals deformed by stretching in liquid
3He and 4He and from Cd polycrystals in 4He are analyzed. It is found that the stress–strain diagrams for Sn are
in qualitative agreement with the concentration of helium in the samples. The peaks in the amount of He liber-
ated from Cd and Sn at temperatures both below and above the melting point are found to be of different types.
The reasons for this difference are investigated, and the assumption concerning the existence of a chemical bond
between helium atoms and structural defects of the metals under investigation is formulated. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

This article continues an analysis of the physical
mechanism of the influence of the ambient on the phys-
ical and mechanical properties of solids, in particular,
the phenomenon of dislocation-assisted dynamic diffu-
sion (DADD), viz., the penetration of particles of a gas-
eous or liquid medium into crystalline materials
through nucleating and moving dislocations [1–3]. The
DADD effect was observed for a model medium of liq-
uid helium. Single crystals of CsI, LiF, and NaCl [2, 3],
as well as polycrystals of metals (In, Zn, Pb, Cu [4], Al
[5], Ti [6]), were investigated. It was found that these
materials contain considerable amounts of helium after
deformation in a liquid helium medium. The processes
of helium liberation from samples deformed to differ-
ent degrees are studied to determine the amount of
helium and the type of traps confining helium atoms in
these materials at various temperatures.

An analysis of LiF crystals [4] deformed in liquid
helium (T = 4.2–1.3 K) revealed various types of traps
and migration routs for He atoms in these objects. The
general nature of the DADD phenomenon was also
confirmed for a heavy-water medium [7], whose mole-
cules penetrate in different amounts and to different
depths into the surface layer of LiF crystals, depending
on the type of dislocations (edge or screw dislocations)
and on the degree of plastic deformation. The penetra-
tion of the surroundings not only into crystalline but
also into amorphous materials was discovered for
amorphous eutectic films of Pd84.5–Si15.5 and N78–Si8–
B14 [8] deformed by stretching in a liquid 3He or 4He
medium. It was found that the quantity of He atoms is
in one-to-one correspondence with the number and
1063-7834/02/4402- $22.00 © 20302
length of plastic shifts in these materials. Curves
describing the liberation of helium from amorphous
films are obtained for a wide temperature range up to
their melting point. An analysis of these curves led us
to assume the existence of a chemical bond between
helium atoms and structural defects formed in the
course of plastic deformation. Thus, the physical mech-
anism of the DADD phenomenon typical of crystalline
materials and amorphous films gives rise to the effect of
mechanochemical penetration of helium atoms through
dynamically excited defects of their atomic structure,
where plastic shear strains are formed and develop.

The present work aims at extending the range of
materials with different types of crystal lattice in order
to discover and study the DADD effect in these materi-
als under deformation in liquid helium.

2. EXPERIMENTAL TECHNIQUE

We used Sn (99.998%) single crystals (with a body-
centered tetragonal lattice), as well as polycrystalline
Cd (99.8%) with an hcp lattice. The samples of Sn
(25 × 4.5 × 1.5 mm) with the 〈110〉  orientation ensuring
their maximum plasticity in the slip system {100}〈010〉
were deformed by stretching at a strain rate  = 10–4 s–1

in liquid 4He (T = 4.2 K) to strains ε = 0.7, 3, 4.6, and
11% and in 3He (T = 1.8–0.6 K) to strains ε = 0.9 and
6.4% at a rate  = 10–3 s–1. Cadmium samples (21 × 3 ×
0.7 mm) were stretched (at  = 10–4 s–1) to rupture (ε =
7%) in liquid 4He (T = 4.2 K). The He concentration in
the deformed samples was determined using the mass-
spectrometric method. The liberation of helium from

ε̇

ε̇
ε̇
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tin samples was analyzed after five-year holding at
300 K to find out whether helium is preserved in tin
after its deformation in liquid helium and prolonged
storage of this metal at T = 300 K, which is close to its
recrystallization temperature (Tr ≈ 0.5Ts ≈ 255 K). Cad-
mium samples were investigated five days after rupture
testing at 4.2 K. We used a mass spectrometer with a
4He sensitivity of ~109 atoms and a 3He sensitivity of
~105 atoms [9]. Deformed samples were cut into pieces
using the electric spark technique. We analyzed the
working length of the samples, as well as the transition
regions to their vanes and the neck region.

The curves describing helium extraction from
deformed tin and cadmium samples were obtained
through dynamic annealing of the samples at a rate of
7 K/min in the temperature range T = 300–800 K. In Sn
single crystals, we measured the helium concentration
as a function of strain at 4.2 K. The obtained curves
were compared with the stress–strain diagram of the
samples.

3. EXPERIMENTAL RESULTS

3.1. Tin

We measured the concentration of helium (N,
atoms/cm2) in samples deformed in liquid helium to
various strains (ε) at T = 4.2 K, as well as in unde-
formed parts of the samples. It was found that the He
concentration in the vanes was approximately two
orders of magnitude lower (~5 × 109 atoms/cm2) than
that after deformation of tin in liquid helium (~(1–8) ×
1011 atoms/cm2). The obtained N(ε) dependence is rep-
resented by curve 1 in Fig. 1 and compared with a typ-
ical stress–strain diagram σ(ε) for tin single crystals at
T = 4.2 K (curve 2). It can be seen that the two curves
exhibit saturation and correlate qualitatively. However,
the shapes of the curves differ considerably at the initial
stages of deformation. A similar form of the N(ε) and
σ(ε) dependences was obtained by us earlier for poly-
crystalline aluminum [5] deformed by stretching in liq-
uid 3He at T = 0.6 K. In our opinion, the observed dif-
ference between the curves can be explained as follows.
At the initial stage, the plastic deformation of a crystal-
line body is determined by the emergence and dynamic
growth of and a sharp increase in the number of slip
bands (lines) [10]; this is accompanied by the formation
of a dislocation density gradient in the surface layer of
the material [11]. This process can be described by an
S-shaped curve [12]. Upon a further increase in strain,
the dynamic increase in the length and number of plas-
tic shifts slows down abruptly due to their intersection,
interaction with grain boundaries and subblocks, and
the formation of deformation boundaries, which pass
through the entire cross section of the sample. This
leads to a deceleration of shifts and, as a result, to an
intense hardening of the material. The number of slip
bands virtually does not increase in this case, and the
plastic deformation is associated mainly with the mul-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
tiplication of dislocations through the mechanism of
their cross slip [13]. A comparison of the stress–strain
curves with the curves describing the liberation of
helium from tin and aluminum shows (Fig. 1) that, for
both types of metals, helium atoms intensely penetrate
into the material mainly in the easy-slip region (up to
ε ~ 5%), where the hardening rate is low. At this stage,
plastic deformation in these metals occurs through
nucleation and a sharp increase in the number (density)
of slip bands moving at high velocities. The kinetics of
the process of shear deformation described above was
observed in LiF crystals for which the emergence and
development of slip bands in the vicinity of and beyond
the yield point were filmed directly in liquid helium
[14–16]. In tin single crystals, this process occurs with
a very low hardening rate as compared to polycrystal-
line aluminum, for which the hardening rate is much
higher due to the presence of grain boundaries in it (cf.
curves 2, 3 in Fig. 1 for ε < 5%). For this reason, the dif-
ference in the shape of the stress–strain diagram and the
curve describing the change in He concentration
for aluminum was much smaller than that for tin (cf.
curves 2, 3 and 1, 4).

With increasing ε, the velocities of slip bands (lines)
decrease by several orders of magnitude for the reasons
described above, leading to a decrease in the ampli-
tudes of vibrations of atoms in the cores of moving dis-
locations [17] and, hence, to a decrease in the amount
of helium absorbed by dislocations. It should also be
borne in mind that helium penetrates only into a thin
surface layer of the deformed tin sample and not into
the bulk due to the presence of impurity stoppers and
the accumulation of deformation-induced stoppers at
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Fig. 1. Dependence of the concentration N of 4He atoms in
samples of (1) Sn single crystals and (4) Al polycrystals [5]
on their strain and the stress–strain diagrams for (2) Sn and
(3) Al at T = 4.2 K.
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which moving dislocations are pinned. In addition, a
transition from the multiplication of dislocations by
Frank–Read sources at the initial stage of plastic defor-
mation of tin to multiplication through the cross-slip

Fig. 2. Curves describing the relative liberation rate of 3He
atoms from Sn single crystals deformed at T = 1.8–0.6 K:
curves 1–3 correspond to transition regions near the vanes
(ε = 0.9%) and curve 4 corresponds to the middle part of the
sample (ε = 6.4%). 3He concentration N (109 atoms/cm2)
equal to (1) 63, (2) 40, (3) 4.6, and (4) 0.3.
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mechanism for large values of ε also sharply reduces
the velocities of dislocations due to their deceleration at
obstacles. Helium atoms can also be liberated from the
surface layers of samples as a result of their subsequent
deformation [18], which is accompanied by an increase
in the total density of dislocations and an increase in the
number of mobile dislocations, as well as by an
enhancement in their interaction and annihilation in
view of the presence of image forces in the surface
layer of the deformed material [11]. These factors lead
to a considerable decrease in the intensity of He pene-
tration into moving dislocations and, hence, to a sup-
pression of the N(ε) dependence.

We also obtained helium extraction curves for tin
samples deformed in liquid 3He (T = 0.6 K, Fig. 2) and
in liquid 4He (T = 4.2 K, Fig. 3). The shape of the curves
for both types of atoms was qualitatively the same. The
position of the main peak in the helium liberation rate
virtually coincides with the melting point of tin (Ts =
505 K). However, the helium liberation curves for sam-
ples deformed in 4He are more extended along the tem-
perature scale. We can attribute this effect to the differ-
ence in the physical properties of 4He and 3He atoms
that determine the depth of their penetration into the
metal being deformed. This difference is indirectly con-
firmed by the results obtained in [19], where it is shown
that the change in the density of screw dislocations in
the surface layer of LiF crystals compressed to the yield
point in liquid 3He (T = 3 K) extends up to a depth of
50 µm, as compared to 25 µm in the case of deforma-
tion in liquid 4He (T = 4.2 K).

It is important to note that the liberation of helium
takes place not only in the vicinity of and at the melting
Fig. 3. Curves describing the relative liberation rate of 4He atoms from Sn single crystals deformed at T = 4.2 K, ε = 7.6%: curves 1
and 2 correspond to transition regions near the vanes, and curves 3 and 4 correspond to the middle part of the sample. 4He concen-
tration N (109 atoms/cm2) equal to (1) 137, (2) 57, (3) 15.2, and (4) 14.8.
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Fig. 4. Curves describing the relative liberation rate of 4He from polycrystalline Cd deformed by ε = 7% at T = 4.2 K for different
parts of the sample: curve 1 corresponds to the middle part of the sample; curve 2, to transition regions near the vanes; and curve 3,
to the necks. Helium concentration N (1011 atoms/cm2) equal to (1) 1.4, (2) 6.8, and (3) 5.9.
point for tin but also at T > Ts in both cases of 4He and
3He (cf. Figs. 2, 3). Apparently, in both cases, helium
atoms are in very deep traps due to chemical bonding
with structural defects of the deformed tin samples.
This bonding was observed using helium defectoscopy
for LiF crystals [20]. The energy of interaction of He
atoms with the cations of the lattice attained values of
−0.45 eV, which is 30 times larger in magnitude than
the van der Waals interaction energy typical of inert
gases. In addition, the probability of coagulation of
helium penetrating into tin crystals (into bubbles of var-
ious sizes, which can evolve from a melt of this metal
with a high activation energy) through the DADD
mechanism increases at high temperatures.

3.2. Cadmium

A cadmium sample deformed to rupture (ε = 7%) at
T = 4.2 K was then cut mechanically into 12 pieces. The
helium concentration in the working cross section of the
sample was in the limits N = (1–8) × 1011 atoms/cm2 and
amounted, on the average, to  = 3.5 × 1011 atoms/cm2.
In the transition zones of the sample, the concentration
was N = (21–110) × 1011 atoms/cm2 and  = 42 ×
1011 atoms/cm2, while in both necks of the sample, the
concentration was N = (19–29) × 1011 atoms/cm2 and

 = 24 × 1011 atoms/cm2. Thus, the helium concentra-
tion in the working cross section was found to be
smaller by a factor of roughly 12 than that in the transi-
tion zone and by a factor of 7 than that in neck. The
observed difference in the values of  in different parts
of the Cd sample is primarily due to the values of plas-
tic strain in these parts being different. Indeed, the
value of ε in a neck is much larger than that in the mid-
dle part of the sample due to the presence of concen-
trated strain; for this reason, the amount of helium in a
neck is considerably larger (by a factor of 7). However,
the values of  in the regions of transition to the vanes
were (by a factor of 1.7) higher than those in the neck.
This can be explained as follows. A considerable frac-
tion of helium absorbed by dislocations in the neck

N

N

N

N

N
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region is lost due to the formation of numerous micro-
and macrocracks in it [16]. These cracks lead to a sharp
increase in the area of free surface in the neck and,
hence, facilitate the evolution of helium from the bulk,
which is also stimulated by the emergence of He-con-
taining dislocations at the fresh surface on account of
the image forces aiding this process. In the sample tran-
sition region near a grip, the amount of plastic strain is
much smaller than that in the working cross section
and, even more so, than that in a neck. It should be
noted, however, that in this transition region, all slip
elements corresponding to the entire strain range in the
sample (ε = 0–7%) are present. In the major part of the
cross section adjoining the working region of the sam-
ple, slip bands oriented in the basal planes do not over-
lap and do not interact with grain boundaries in view of
their low deformation. In this case, helium atoms pene-
trating into slip bands remain in them and do not evolve
in the course of sample deformation; consequently, the
largest amount of helium is accumulated in slip bands.

The curves of the helium liberation rate from cad-
mium were obtained for two batches of samples (for
different parts), with a low and a high concentration N
of 4He atoms (Figs. 4, 5). Let us consider the liberation
of helium from different parts of the samples with a
small value of N. It can be seen from Fig. 4 that peaks
are observed in a wide temperature range (T = 340–
700 K); the main peaks lie at T < Ts, but liberation of
helium also occurs at T > Ts . All the peaks are quite
broad and smooth. This fact indicates the presence of a
wide spectrum of energy traps for helium atoms. The
main peaks can be attributed to the following tempera-
tures: the middle part of the sample (curve 1) is charac-
terized by the presence of two low-temperature peaks
(T ≈ 340, 410 K), which are not observed for the necks
and the transition regions of the sample, and a high-
temperature peak (T ≈ 570 K) typical of all the parts of
the samples investigated by us. The low-temperature
peaks are due to there being a large number of microc-
racks in the necks; this facilitates the evolution of
helium from the bulk and surface traps upon sample
heating and holding at 300 K. In the middle part, where
fracture of the material is virtually absent, helium is
2
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partially preserved in surface traps. Only two high-tem-
perature peaks were observed in the necks at T < Ts (T ≈
450, 570 K). The transition regions of the sample con-
taining the largest amount of helium (curve 2) are char-
acterized by the presence of three high-temperature
peaks in the amount of liberated helium (T ≈ 500, 570,
640 K). There is also a small peak at T > Ts (T = 670 K).

The extraction curves for a high helium concentra-
tion are presented in Fig. 5. The curves are character-
ized by the presence of sharper and higher (in ampli-
tude) peaks in the helium liberation rate over a wider
temperature range as compared to that for the low value
of N (cf. Figs. 4, 5). These peaks are observed for T <
Ts (T ≈ 380, 430, 520, 570 K), as well as for T > Ts (T ≈
680, 730 K). The last two blurred peaks overlap and are
observed for the transition regions of the sample. The
reason for their emergence can be associated with the
liberation of helium bubbles of various sizes from the
cadmium melt. The effect of the cadmium oxide film
through which helium atoms can diffuse also cannot be
ruled out.
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Fig. 6. Stress–strain curves for polycrystalline Cd (99.98%)
at (1) 4.2 and (2) 300 K after deformation to ε = 6% at 4.2 K
and at (3) 300 and (4) 4.2 K after deformation to ε = 10% at
300 K.
P

A comparison of the curves corresponding to small
and large values of N indicates that the height and
sharpness of the helium liberation rate peaks and the
amount of helium liberated at T > Ts increase signifi-
cantly upon an increase in N. Thus, an increase in the
helium concentration in different parts of the samples
considerably affects the character of helium extraction
and distribution over various types of traps formed in
the course of plastic deformation of cadmium, as well
as during its recrystallization upon heating from 4.2 to
300 K.

The traps for helium atoms in deformed samples of
tin and cadmium are regions of plastic strain. The quan-
tity and variety of traps are determined by many factors,
such as lattice type, initial defect and impurity struc-
ture, and degree of plastic deformation (dislocation
density, number of deformation-induced vacancies, and
the intensity of formation of subboundaries and
vacancy pores), as well as by the recrystallization of
these metals leading to a radical change in their sub-
structure upon heating from 4.2 K and holding at
300 K. For example, the removal of low-temperature
hardening of cadmium is so significant that the stress–
strain diagram obtained at 300 K (curve 1 in Fig. 6)
after preliminary deformation through 6% at 4.2 K
(curve 2 in Fig. 6) virtually coincides with curve 3
obtained at 300 K. Preliminary stretching of Cd by 10%
at 300 K practically does not change its stress–strain
diagram at 4.2 K (cf. curves 2, 4). The processes
described above lead to a redistribution of helium in the
bulk of samples deformed in liquid helium and to the
accumulation of helium atoms in bubbles located in
vacancy pores, as well as in the boundaries of blocks
and grains. The fact that the temperature range corre-
sponding to the liberation of helium from tin single
crystals is narrower than that in the case of cadmium
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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(cf. Figs. 2–5) is probably due to their prolonged five-
year holding at the recrystallization temperature (Tr ≈
255 K), as a result of which helium atoms are redistrib-
uted over deeper energy traps. In order to identify the
various types of helium traps and to determine their
activation parameters, special experiments on the
dynamic annealing of samples at various rates after
their deformation in liquid helium are required.

4. CONCLUSIONS

Thus, it is found that tin single crystals stretched in
liquid 3He and 4He contain helium, which is preserved
after a five-year holding at 300 K. The amplitudes of the
helium liberation rate peaks in the regions close to Ts

and above this temperature decrease sharply upon a
decrease in the total concentration of helium in
deformed samples. A qualitative correlation is estab-
lished between the stress–strain diagram for tin single
crystals deformed in liquid 3He and the curves describ-
ing the helium concentration in this metal as a function
of the amount of metal strain. Peaks on the curves
describing helium liberation from polycrystalline cad-
mium deformed to fracture at 4.2 K are observed in a
wide range of temperatures below and above the melt-
ing point for cadmium. As the helium concentration in
deformed samples increases, the height of the peaks
increases significantly and the temperature range of
helium liberation becomes wider. The emergence of
high-temperature peaks of the helium liberation rate
from tin and cadmium at T ≥ Ts indicates the mecha-
nochemical penetration of helium into these metals.
This effect is probably associated with the formation of
a chemical bond between helium atoms and structural
defects appearing during plastic deformation of the
metals under investigation in liquid helium.
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Abstract—Magnetic ordering in the RMnSi (R = La, Y, Sm, and Gd) compounds is investigated. It is found that
the type of magnetic ordering depends on the dMn–Mn distance between manganese atoms inside the magnetic
layers located in the planes perpendicular to the c axis. This inference is based on the results of studies per-
formed with SmMnSi and GdMnSi compounds in which the distances between manganese atoms are close to
the critical value dMn–Mn that corresponds to the crossover between ferromagnetic and antiferromagnetic order-
ing in RMnSi compounds. The introduction of lanthanum and yttrium atoms into the rare-earth sublattice leads
to an increase and a decrease in the unit cell size, respectively, and brings about magnetic phase transitions in
the compounds under investigation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last decade, rare-earth and transition metal
triple silicides—a new class of magnetically ordered
materials—have attracted the particular attention of
many researchers [1–6]. Compounds RMnSi (where R
is a rare-earth element) are magnets with two magnetic
sublattices, namely, rare-earth and manganese sublat-
tices, in which magnetic atoms are located in layers
separated by silicon layers alternating in the following
order: R–Si–Mn2–Si–R. As a rule, the manganese sub-
lattice is characterized by a substantial localized mag-
netic moment (1.5–3 µB) and has an ordered structure
at relatively high temperatures. The magnetic ordering
in RMnSi compounds should be considered with due
regard for different types of exchange interactions,
including the R–R, R–Mn, and Mn–Mn interactions. It
should be noted that the type of magnetic ordering in
the RMnSi compounds and the magnitude and sign of
the exchange integral inside the manganese sublattice
essentially depend on the Mn–Mn interatomic distance
within the magnetic layers located in the basal plane of
the tetragonal crystal lattice. For example, it was found
that the manganese layers in La1 – xYxMnSi compounds
with a sole magnetic subsystem are characterized by
antiferromagnetic ordering when the dMn–Mn distance
inside the manganese layers exceeds a certain value,
i.e., dMn–Mn > 2.88 Å, and by ferromagnetic ordering
when dMn–Mn < 2.85 Å. Moreover, the character of
exchange coupling between manganese layers also cor-
relates with the Mn–Mn distances inside these layers
[7].
1063-7834/02/4402- $22.00 © 20308
The purpose of the present work was to reveal a cor-
relation between the dMn–Mn distances (both inside and
between the manganese layers) and the type of mag-
netic ordering in the RMnSi (R = Sm and Gd) com-
pounds upon the corresponding substitution in the rare-
earth sublattice.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The experiments were performed with RMnSi (R =
Sm, Y, La, and Gd) alloys produced in an electric arc
furnace by melting a batch on a water-cooled copper
hearth with a tungsten electrode in a purified argon
atmosphere. The alloys prepared were subjected to
homogenizing annealing in evacuated sealed silica
tubes at a temperature of 800–850°C for 100 to 150 h.
The chemical composition of the studied compounds
was determined by x-ray fluorescence analysis. The
single-phase state of the samples was checked against
an x-ray powder diffraction analysis on a DRON-3 dif-
fractometer (CuKα radiation). Analysis of the x-ray
powder diffraction patterns demonstrated that the poly-
crystalline compounds were in a single-phase state and
had a simple tetragonal structure of the CeFeSi type.
The lattice parameters of the samples were calculated
from the x-ray diffraction patterns to within an accu-
racy ∆a = ±0.001 Å and ∆c = ±0.003 Å.

The specific magnetization of the compounds stud-
ied in this work was measured in static magnetic fields
(up to 13.5 kOe) in the temperature range 77–350 K.
The procedure of magnetic measurements was
described in detail in [8].
002 MAIK “Nauka/Interperiodica”
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3. EXPERIMENTAL RESULTS

In order to solve the posed problem, we studied
samples of the SmMnSi and GdMnSi compounds in
which gadolinium and samarium were partially
replaced by nonmagnetic rare-earth elements, namely,
yttrium and lanthanum.

The ferromagnetic ordering in the GdMnSi com-
pound at temperatures below the Curie point TC =
310 K (Fig. 1) was revealed earlier in the study of the
temperature and field dependences of the specific mag-
netization σ [1]. At temperatures close to the Curie
point TC, the dependence of H/σ on σ2 exhibits a linear
behavior characteristic of ferrimagnetic and ferromag-
netic ordering. These findings allow us to make the
inference that the magnetic moments of the manganese
and gadolinium sublattices are ferrimagnetically
ordered at T < TC.

The substitution of lanthanum for gadolinium leads
to noticeable changes in the magnetic phase transitions
in La1 – xGdxMnSi compounds. For example, the
La0.5Gd0.5MnSi compound undergoes two transitions:
an antiferromagnetic–ferrimagnetic transition at T1 =
100 K and a ferrimagnetic–paramagnetic transition at
TC = 180 K (Fig. 1). An increase in the gadolinium con-
centration (x > 0.5) brings about an increase in the mag-
netic moment of the gadolinium sublattice, whereas the
exchange interaction between gadolinium and manga-
nese ions remains antiferromagnetic. This results in
breaking of the antiferromagnetic exchange coupling
between manganese sublattices whose magnetic
moment is aligned antiparallel to the magnetic moment
of the gadolinium sublattice. Consequently, the interac-
tion between the manganese and gadolinium sublattices
leads to ferrimagnetic ordering in the La1 – xGdxMnSi
compounds. The appearance of antiferromagnetism in
the studied compounds with concentrations in the range
0.5 < x < 0.6 can be explained by the fact that, as the
temperature decreases below T1 (T < T1), the negative
exchange interaction between the manganese layers
becomes stronger than the exchange interaction
between the manganese and gadolinium layers. As a
result, the manganese sublattices undergo antiferro-
magnetic ordering at temperatures below T1. The posi-
tive paramagnetic Curie temperature θp indicates that
the positive exchange interaction inside the manganese
and gadolinium layers dominates over the negative
exchange interaction between these layers.

The substitution of yttrium for gadolinium results in
a decrease in the magnetization of the Gd0.7Y0.3MnSi
compound. As can be seen from Fig. 1, the temperature
dependence of the magnetization of the Gd0.7Y0.3MnSi
compound is similar to the curve σ(T) for GdMnSi,
even though the inflection point is not observed in the
latter case. Therefore, it can be concluded that the intro-
duction of yttrium in small amounts only slightly
affects the magnetic ordering in the Gd0.7Y0.3MnSi
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
compound, which remains a ferrimagnet at T < TC (TC =
260 K).

Let us now consider the temperature dependences of
the magnetization for the Sm1 – xRxMnSi (R = La and Y)
compounds in the magnetic field H = 10 kOe (Fig. 2).

The results of complex investigations into the struc-
tural, magnetic, and electrical properties of the
SmMnSi compound were reported in [9]. The tempera-
ture dependence of the magnetization of the SmMnSi
compound exhibits an anomalous behavior. This mani-
fests itself in a considerable temperature hysteresis, two
magnetic phase transitions, and a magnetic compensa-
tion point (Fig. 2a). Similar anomalies are also
observed in the temperature dependences of the electri-
cal resistivity and thermal expansion. This behavior of
the magnetization can be explained in the framework of
the following model. In the manganese sublattice, a
weak ferromagnetic moment µMn arises at T < TN (TN =
240 K is the Néel temperature). In the samarium sublat-
tice, the ferromagnetic moment of the manganese sub-
lattice induces a magnetic moment µSm whose orienta-
tion is opposite to that of the µMn magnetic moment. As
the temperature decreases, the µSm magnetic moment
increases more rapidly compared to the µMn moment.
At the temperature Tk = 215 K, the µSm magnetic
moment becomes equal to the µMn magnetic moment.
As a consequence, the magnetic compensation occurs
in the SmMnSi compound. A decrease in temperature
results in a drastic decrease in the coercivity of this
compound. An external magnetic field of 10 kOe is
insufficient for magnetization reversal of the studied
sample in the temperature range 130–220 K, and the
magnetic moment in this field becomes negative. At T <
130 K, the antiferromagnetic ordering of the manga-
nese sublattices leads to a first-order phase transition to
the antiferromagnetic phase with zero spontaneous
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magnetic moment. In order to reveal a correlation
between the sign of the exchange integral in the manga-
nese sublattices and the interatomic distances dMn–Mn,
we determined the parameters of the tetragonal lattice

0.4

0 50
T, K

0.2

100 150 200 250 300 350

Sm0.8La0.2MnSi

0.4

0.2

Sm0.8Y0.2MnSi

0.6

0.8

1.0

1.2

0.4

0
0.2

SmMnSi

0.6
0.8
1.0
1.2

–0.2
–0.4
–0.6

σ,
 e

m
u/

g

0 50 100 150 200 250 300 350

50 100 150 200 250 300 350

Fig. 2. Temperature dependences of the magnetization for
SmMnSi, Sm0.8Y0.2MnSi, and Sm0.8La0.2MnSi com-
pounds.
PH
and the types and temperatures of magnetic ordering in
the compounds under investigation (see table).

The introduction of yttrium into the rare-earth sub-
lattice results in an insignificant decrease in the inter-
atomic distances in the Sm0.8Y0.2MnSi compound. The
magnetic ordering in this compound is similar to that
observed in the initial SmMnSi sample, and the temper-
atures of magnetic phase transitions from the antiferro-
magnetic to the noncollinear phase (T1) and from the
noncollinear antiferromagnetic to the paramagnetic
phase (TN) are slightly shifted toward the low-tempera-
ture range (Fig. 2). No considerable temperature hys-
teresis (with negative magnetization), which is charac-
teristic of the SmMnSi compound, was observed for the
Sm0.8Y0.2MnSi compound in a magnetic field of
10 kOe.

The above investigation into the magnetic properties
of the Sm0.8La0.2MnSi sample revealed that this com-
pound is an antiferromagnet whose magnetization and
magnetic susceptibility reach a maximum at the Néel
temperature TN = 195 K.

4. DISCUSSION

A comparison of the data on the magnetic properties
and the crystal structure of the RMnSi compounds
shows that the type of magnetic ordering depends on
the dMn–Mn interatomic distances inside the manganese
layers located in the basal planes perpendicular to the
tetragonal axis c (see table). For the SmMnSi and
GdMnSi compounds, these distances are close to the
critical value dMn–Mn that corresponds to a crossover
between ferromagnetic and antiferromagnetic ordering
in RMnSi compounds. Specifically, the SmMnSi and
Sm0.8Y0.2MnSi compounds with interatomic distances
larger than the critical value exhibit antiferromagnetic
ordering at temperatures T < TN. It can be assumed that,
in the substituted compounds Sm0.8Y0.2MnSi and
Unit cell parameters a and c, interatomic distances dMn–Mn inside Mn layers, and types and temperatures of magnetic ordering
in RMnSi (R = La, Y, Sm, and Gd) compounds

Compound a, Å c, Å dMn–Mn, Å
Type and temperature
of magnetic ordering

Sm0.8La0.2MnSi 4.051(4) 7.198(6) 2.864 Antiferromagnetic TN ≈ 195 K

SmMnSi 4.044(4) 7.159(7) 2.860 Antiferromagnetic T1 = 130 K

Angular phase TN = 250 K

Sm0.8Y0.2MnSi 4.033(2) 7.133(6) 2.852 Antiferromagnetic T1 = 115 K

Angular phase TN = 205 K

Gd0.5La0.5MnSi 4.11 7.275 2.906 Antiferromagnetic T1 = 100 K

Ferrimagnetic TC = 180 K

Gd0.7Y0.3MnSi 4.052 7.005 2.865 Ferrimagnetic TC = 260 K

Gd0.7Sm0.3MnSi 4.013(4) 7.172(7) 2.838 Ferrimagnetic TC = 295 K

GdMnSi 4.016(1) 7.160(1) 2.840 Ferrimagnetic TC = 310 K
YSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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Sm0.8La0.2MnSi at low temperatures (T < 77 K), there
arises a magnetic ordering with two components of the
µMn magnetic moment of the manganese ion: one com-
ponent is directed along the [001] tetragonal axis and
the other component is aligned with the (001) basal
plane. It is quite possible that this ordering leads to the
formation of a noncollinear structure in these com-
pounds.

For the GdMnSi, Gd0.7Y0.3MnSi, and Gd0.7Sm0.3MnSi
compounds, the dMn–Mn distances are shorter than the
critical distance (2.85 Å). These compounds are charac-
terized by a ferrimagnetic ordering with strong magne-
tization.

The substitution of lanthanum for gadolinium brings
about an increase in the dMn–Mn distance and an
enhancement of the exchange interaction in the manga-
nese subsystem. As a consequence, the substituted
compounds La1 – xGdxMnSi (x < 0.5) undergo two tran-
sitions, namely, a paramagnetic–ferrimagnetic transi-
tion at the Curie temperature TC and a ferrimagnetic–
antiferromagnetic transition at the lower temperature
T1. For example, in the La0.5Gd0.5MnSi compound, the
dMn–Mn distance is equal to 2.906 Å (i.e., this distance
exceeds a critical value of 2.85 Å) and the antiferro-
magnetic state is observed in the low-temperature range
(at T < 100 K).

In compounds with a magnetic rare-earth sublattice,
the interaction between the rare-earth and manganese
sublattices (the R–Mn interaction) should substantially
affect the magnetic ordering. Since the difference
between the exchange energies of the manganese sub-
lattices in the antiferromagnetic and ferrimagnetic
states is insignificant, the R–Mn exchange interaction
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
that increases with a decrease in temperature results in
ferromagnetic–antiferromagnetic phase transitions.
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Abstract—This paper reports on the results of investigations into the field dependences of the magnetization
for biotite in the initial state, after heat treatment at a temperature of 1000°C for 15 min, and after irradiation
with 14-MeV neutrons at a dose of 1.2 × 1013 cm–2 or with 3-MeV protons at a dose of 2.2 × 1014 cm–2. It is
demonstrated that the magnetization of biotite drastically increases after neutron and proton irradiation. This
effect can be associated with the formation of oxide melt at radiation-induced thermal peaks and the freezing
of high-temperature phase states corresponding to magnetite or magnetite–hematite solid solutions. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable interest expressed by researchers in
radiation effects in biotite is motivated by the possible
use of this mineral as a natural indicator of radioactive
radiation. In particular, the use of biotite as a tracking
detector has lent impetus to comparative investigation
into the influence of proton irradiation and heat treat-
ment on the Mössbauer spectra of this material [1]. It
was found that, upon proton irradiation and heat treat-
ment under vacuum, the Mössbauer spectra of the
biotite samples change in a similar manner. Earlier [2,
3], we undertook comparative studies of the influence
of neutron and proton irradiation and heat treatment on
the magnetization of biotite. It was revealed that neu-
tron and proton irradiation and the heat treatment lead
to substantial changes in the magnetization of biotite
but produce opposite effects: exposure to neutron and
proton radiation brings about an increase in the magne-
tization, whereas the heat treatment causes a decrease
in the magnetization of biotite. The drastic change in
the magnetization of biotite under neutron and proton
irradiation can be used for examining sites of radiative
disasters, along with the use of magnetic traces of ther-
mal effects in biotite for examining fire sites [4–6]. In
our recent work [7], we analyzed the experimental
dependences of the magnetic susceptibility of biotite on
the temperature and time of heat treatment and consid-
ered the possible physicochemical processes responsi-
ble for these dependences. Now, we return to the dis-
cussion of the nature of radiation effects in biotite. It
should be noted that, when studying radiation effects in
solids, the use of neutrons rather than protons is more
adequate, because this provides a more uniform distri-
bution of radiation damages over the crystal lattice in
1063-7834/02/4402- $22.00 © 0312
samples with sizes commonly used under laboratory
conditions.

2. INTERPRETATION OF THE EFFECT 
OF NEUTRON IRRADIATION

As is known, the heat treatment of biotite at temper-
atures above 500°C results in an irreversible change in
the magnetic susceptibility [8].Therefore, it can be
expected that the change observed in the magnetization
of biotite under neutron irradiation [2, 3] is also associ-
ated with thermal processes.

In our previous works [7, 9], we investigated and
interpreted the effect of heat treatment on biotite. It was
assumed that the heating of biotite is accompanied by a
number of physicochemical processes that are respon-
sible for the dependence of the magnetic susceptibility
of this mineral on the temperature and time of the heat
treatment. These processes are as follows: (1) the oxi-
dation of Fe2+ ions to the trivalent state, (2) the forma-
tion of submicroinhomogeneous regions through the
aggregation of a certain part of the Fe3+ ions around
vacancies and subsequent transformation of these ions
into the spin-paired state, and (3) the formation of the
hematite phase at high temperatures and the precipita-
tion of Fe2O3 hematite particles upon cooling.

The observed change in the magnetization of biotite
under neutron irradiation cannot be caused merely by
the first process. In actual fact, the magnetic moment of
Fe3+ ions is equal to 5.9 µB; i.e., this value is only 10%
greater than the magnetic moment of Fe2+ ions (5.4 µB).
Therefore, the transformation of even all the biotite
Fe2+ ions into the trivalent state does not provide the
observed change in the magnetization (at a maximum
2002 MAIK “Nauka/Interperiodica”
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dose of 3.5 × 1013 cm–2, the change in the magnetization
in an external magnetic field with a strength of 18 kOe
was as high as approximately 50%).

The same situation is also true for the second pro-
cess. The formation of spin-paired states in submicro-
inhomogeneous regions results in the fact that the mag-
netic moments of ions in these states do not contribute
to the magnetization. Consequently, under neutron irra-
diation, the total magnetization of biotite should
decrease rather than increase.

The third process also cannot be responsible for the
observed change in the magnetization of biotite. At a
temperature of 4.2 K, hematite is a pure antiferromag-
net with the total magnetic moment equal to zero.
Therefore, the formation of the hematite phase in
biotite samples upon high-temperature treatment
should lead to a decrease in the magnetization mea-
sured at 4.2 K rather than to an increase (a number of
magnetic moments of iron atoms are antiferromagneti-
cally ordered and do not participate in the magnetiza-
tion process).

Thus, the physicochemical processes occurring in
biotite under neutron irradiation differ from the pro-
cesses responsible for the behavior of the magnetic sus-
ceptibility of this mineral upon heat treatment. In order
to elucidate these processes, we analyzed the field
dependences of the magnetization for biotite in differ-
ent states (see figure).

The field dependence of the magnetization mea-
sured at 4.2 K in the biotite sample in the initial state
(prior to the action of external factors) indicates that
this sample contains a paramagnetic phase (a linear
portion in the magnetization curve) and a magnetically
ordered phase with a nonzero total magnetic moment (a
nonlinear portion in the magnetization curve in the
range of low external magnetic field strengths). It can
be seen from the figure that, upon heat treatment, the
content of the magnetically ordered phase in the sam-
ples remains unchanged (the extensions of the linear
portions in the magnetization curves for biotite prior to
and after the heat treatment intersect the ordinate axis
at the same point). Exposure of biotite to neutron radi-
ation leads to an increase in the content of the magnet-
ically ordered phase with a nonzero total magnetic
moment in the biotite samples (the magnetization at the
point of intersection between the ordinate axis and the
extension of the linear portion in the magnetization
curve for the sample subjected to neutron irradiation is
higher than the magnetization at the intersection point
for the sample in the initial state). This increase in the
content of the magnetically ordered phase can be inter-
preted in the framework of the thermal peak model.

According to thermal peak concepts, neutron irradi-
ation can lead to an instantaneous release of a suffi-
ciently high energy for melting to occur in a certain vol-
ume of the biotite lattice [10]. Owing to the very short
lifetime of the thermal peak, the oxide melt thus formed
should cool very quickly, which, in turn, brings about
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
the freezing of high-temperature phase states in the
sample.

As follows from the phase diagram of the Fe–O sys-
tem, the Fe3O4 magnetite is characterized by an
extended homogeneity region at high temperatures and
large oxygen contents [11]. Hence, the observed
increase in content of the magnetically ordered phase in
biotite and, correspondingly, the increase in magnetiza-
tion of biotite under neutron irradiation can be
explained by the formation of the magnetite phase and
the precipitation of magnetite particles in the biotite
samples. This assumption is also confirmed by the
results of investigations into the radiation effects in
biotite samples subjected to proton irradiation, which
will be discussed below. Note that the aforementioned
oxidation of the Fe2+ ions to the Fe3+ state can also
make a certain contribution (no more than 10%) to the
change in the magnetization of the biotite under consid-
eration.

It should be noted that, depending on the partial con-
tent of oxygen over the oxide melt and its cooling rate,
the magnetically ordered phase formed under neutron
irradiation can involve a magnetite–hematite solid solu-
tion. In this solid solution, hematite forms an oxygen-
deficient phase and magnetite forms an oxygen-exces-
sive phase. According to the phase diagram of the Fe–
O system, the magnetite region decreases with a
decrease in the temperature, whereas the region corre-
sponding to the magnetite–hematite solid solution
increases. Thus, the lower the temperature of existence
of the frozen phase, the higher the hematite content in
this phase. Recall that the thermal processes occurring
in biotite during heat treatment at 900–1000°C bring
about the formation of the magnetically ordered phase.
This phase involves hematite and is responsible for the
drastic increase in the magnetic susceptibility of biotite
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samples subjected to heat treatment [7, 9]. However,
the hematite component in the phase formed in biotite
under neutron irradiation does not contribute to the
magnetization at 4.2 K, because, at this temperature,
hematite is a pure antiferromagnet.

3. INTERPRETATION OF THE EFFECT 
OF PROTON IRRADIATION

It can be seen from the figure that, as in the case of
neutron irradiation, the magnetization of the biotite
sample irradiated with 3-MeV protons also increases
considerably due to the increase in the content of the
magnetically ordered phase.

Reasoning from the similarity between the changes
observed in the Mössbauer spectra of the biotite sam-
ples irradiated with protons and heat treated under vac-
uum, Kotlicki et al. [1] drew the conclusion that these
changes can be associated with the oxidation of the Fe2+

ions to the Fe3+ state at thermal peaks. It is evident that,
under proton irradiation, the aforementioned oxidation
reaction proceeds in parallel with other processes
occurring in biotite in the course of heat treatment. This
reaction, together with the other processes, is responsi-
ble for the irreversible change in the magnetic suscepti-
bility of this mineral. However, the substantial increase
in the magnetization of biotite under proton irradiation
is similar to that observed in this material under neutron
irradiation and defies explanation only in terms of the
oxidation of Fe2+ ions at thermal peaks for the reasons
considered in the above analysis of neutron irradiation.

For the same reasons as in the interpretation of the
effect of neutron irradiation, the change observed in the
magnetization of the biotite samples under proton irra-
diation can also be attributed to the freezing of the mag-
netite phase and the precipitation of magnetite parti-
cles.

Note that the data obtained in [1] confirm the above
interpretation of the effect of proton (and neutron) irra-
diation on the magnetization of biotite. Indeed, the
Mössbauer spectra measured in [1] at high radiation
doses and liquid-nitrogen temperatures are character-
ized by the contribution of the magnetically ordered
phase, and the lines attributed to this phase coincide in
P

position with the corresponding lines in the spectrum of
magnetite. Moreover, the x-ray diffraction patterns
recorded in [1] also contain the lines assigned to mag-
netite.

Thus, the effect of proton irradiation on the magne-
tization and the Mössbauer spectra of biotite should be
considered with due regard for both the oxidation of
Fe2+ ions to the Fe3+ state and the process involving the
formation of oxide melt at thermal peaks and the freez-
ing of the high-temperature phase states corresponding
to magnetite or magnetite–hematite solid solutions.
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Abstract—The critical fields of the valence transition induced by a magnetic field in the EuNi2(Si1 – xGex)2 (x =
0.5–0.75) compound in an intermediate valence state are measured. The magnetic-field-induced valence tran-
sition is observed in the low-concentration range down to x = 0.5. It is demonstrated that the critical field
increases linearly with a decrease in the germanium concentration. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A number of compounds containing Ce, Sm, Eu,
Tm, and Yb ions have a variable valence. This is asso-
ciated with the location of the 4 f level near the Fermi
level. Among these systems, the EuNi2(Si1 – xGex)2 [1]
and EuPd2Si2 [2] compounds are characterized by a
substantial change in the valence under external
actions.

A mixed-valence state is observed in EuNi2Si2 and
EuNi2Ge2 solid solutions. In the EuNi2Si2 compound,
the Eu3+ ion with a 4 f 6 configuration is nonmagnetic.
In the EuNi2Ge2 compound, the magnetic moment of
the Eu2+ ion with a 4 f 7 configuration is equal to 7µB.
For EuNi2(Si1 – xGex)2 compounds, the magnetic field
can induce a valence transition from a predominantly
trivalent state to a predominantly bivalent state. This
transition is accompanied by a jump in the magnetic
moment, which was observed by Wada et al. [1] in the
concentration range 0.75 ≤ x ≤ 0.82 close to the range
of magnetic ordering. Antiferromagnetic ordering with
the Eu2+ stable state occurs at higher concentrations
(x ≥ 0.85), whereas the nonmagnetic phase is observed
when x ≤ 0.70.

Since investigation into the magnetic phenomena of
interest in the low-concentration range calls for the
application of magnetic fields above 100 T, they are not
clearly understood. In the present work, we determined
the critical fields of induced valence transitions in the
EuNi2(Si1 – xGex)2 compound in an intermediate valence
state with concentrations x = 0.75, 0.70, 0.65, 0.6, and
0.50.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

The measurements of the magnetic susceptibility
were carried out at liquid-helium temperatures in mag-
1063-7834/02/4402- $22.00 © 20315
netic fields up to 600 T. The samples were put at our
disposal by Dr. M. Shiga. These samples were prepared
by zone melting in an argon atmosphere. The single-
phase state of the samples was checked using x-ray dif-
fraction analysis and measurements of the temperature
dependence of the magnetic susceptibility. The quality
of the samples was discussed thoroughly in [1]. In order
to ensure against heating in a pulsed magnetic field, the
EuNi2(Si1 – xGex)2 single crystals were crushed in a por-
celain mortar to powder with a grain size of less than
100 µm. In this case, the heating of the samples in a
maximum field did not exceed 6 K.

The magnetic susceptibility was measured with a
force-balance transducer consisting of a pair of well-
compensated induction coils connected in opposition.
A PÉTV-2 wire 71 µm in diameter was dropped in
helical flutes of two caprolan cores 2 mm in diameter
(N = 9 turns). The degree of compensation of the coils
was tested using a high-frequency magnet. The total
coil areas defined as NS (where S is the area of one turn
and N is the number of turns) differed from each other
by no more than 2%. A hole 1.6 mm in diameter was
drilled in one of the cores to mount the sample under
investigation. In the case when the sample is inserted
into one of the coils, the measured signal is propor-
tional to the derivative of the magnetic moment of the
sample: V(H) ∝  dM/dt + KdH/dt. The coefficient K
depends on the precision of the coil compensation in
the absence of the sample and, in an ideal case, should
be equal to zero. This cannot be achieved in experi-
ments, specifically with superhigh magnetic fields
when the rate of change in the magnetic field dM/dH
reaches approximately 16 T/s. However, if the phase
transition occurs in a narrow range of magnetic fields
and the derivative dM/dH exceeds the compensation
coefficient K, the dependence M(H) can be calculated
to a sufficiently high accuracy. In this case, the quantity
dH/dt should be measured with a separate transducer.
002 MAIK “Nauka/Interperiodica”
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In order to produce magnetic fields with an induc-
tion up to 500 T, we used an MK-1 magnetic cumula-
tion generator [3]. The limiting fields achieved with this
generator can be as high as 1000 T. In this work, such
high fields were not needed and most attention was con-
centrated on the smoothness of the magnetic field pulse
and efficiency in the use of the working volume. For
this reason, the MK-1 generator was used in a single-
cascade mode without intermediate inner cascades.
From four to eight samples were measured in a single
experiment. The initial magnetic field (B ≈ 16 T) was
generated in a thin-wall multilayer multifilar solenoid
with a capacitor bank discharge W = 2 MJ. The mag-
netic flux trapped into the conducting cylinder was
compressed by the products of explosion down to a
diameter of 20 mm. The compression time for the mag-
netic field was approximately equal to 16 µs. The effec-
tive volume at a maximum magnetic field was consid-
ered a cylinder with a diameter of approximately
20 mm and a length of approximately 100 mm. The
samples and transducers used for measuring the mag-
netic field were mounted on a glass-textolite plate and
were then placed in helium of a flow cryostat. The mag-
netic field was measured using a set of one-turn induc-
tive transducers (from 0.6 to 14.0 mm in diameter)
wound with PÉTV-2 wire. The signals were recorded
on Tektronix-784 and Tektronix-744 four-trace oscillo-
scopes with a resolution of 2 ns per point.

3. RESULTS AND DISCUSSION

3.1. Figure 1 shows typical oscillograms of signals
taken from the inductive transducer measuring the
magnetic field and the transducer measuring the differ-
ential magnetic susceptibility dM/dt. At the germanium
concentration x = 0.6, the oscillogram displays two
sharp peaks. It should be noted that only one broad peak
is usually observed, as can be seen, for example, from
Fig. 2 for the sample with the germanium concentration
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Fig. 1. Time dependences of the differential magnetic sus-
ceptibility and the derivative of the magnetic field for the
EuNi2(Si0.4Ge0.6)2 sample.
PH
x = 0.75. Judging from the shape of the curve for the
magnetic susceptibility anomaly, this transformation is
a first-order transition. The jump in the magnetic sus-
ceptibility decreases with a decrease in the germanium
concentration.

The sample with the germanium concentration x =
0.75 served as a reference sample, because it was used
in similar measurements performed in a solenoid with
a long pulse of the magnetic field [1]. The results
obtained for the critical field (Hv = 80 T) and the
induced valence transition range agree well with the
data reported in [1]. Figure 3 represents the critical
fields of the valence transition for the EuNi2(Si1 – xGex)2
compound in the concentration range from 0.82 to 0.5
according to our data and the data taken from [1]. It can
be seen that the critical field Hv (x) increases linearly
with a decrease in the germanium concentration.
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Fig. 2. Dependence of the differential magnetic susceptibil-
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Fig. 3. Dependence of the critical field of the magnetic-
field-induced valence transition in the EuNi2(SixGe1 – x)2
compound on the germanium concentration at T = 4.2 K
according to (1) our data and (2) the data taken from [1].
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3.2. The magnetic properties of EuNi2(Si1 – xGex)2
compounds depend on the occupancy of the Eu bivalent
and trivalent states. A schematic diagram of the energy
levels for Eu is shown in Fig. 4. In the case when the
magnetic field is equal to zero and the temperature is
low, the electrons reside in the conduction band whose
energy coincides with the energy of the nonmagnetic
state J = 0 for the Eu3+ ion. The energy difference
between the ground and excited states for both Eu3+ and
Eu2+ ions is sufficiently large. In terms of Boltzmann
statistics, we can calculate the occupation probability
of the level J = 7/2 in the range of measured tempera-
tures at which the metamagnetic transition is observed.
It is found that the occupation probability does not
exceed 10–4. Mitsuda et al. [4] proposed the intercon-
figurational fluctuation (ICF) model for explaining the
spontaneous occupation of magnetic states. They intro-
duced the effective temperature and considered the
relationship between the splitting of the level J = 7/2
and the occupancy of the Eu2+ p2 state: Eex = E0(1 –
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
αp2), where α and E0 are the parameters. The occupa-
tion probability for the 7/2 level in a magnetic field due
to Zeeman splitting is determined by the expression
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480 K

EF
Eu3+
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E0(1 – αp2)

(J = 7/2)

7µBH

–7µBH

–5µBH
–3µBH

Fig. 4. Schematic diagram of energy levels in the
EuNi2(Si1 – xGex)2 compound in a magnetic field.
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1 –480k g3µBJzH+[ ] /kT*exp
jz 1–=

1

∑ –1330k g3µBJzH+[ ] /kT*exp
jz 2–=

2

∑+ +

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where p3 is the occupation probability of the Eu3+ state
and g2 and g3 are the Landé splitting factors for Eu2+

and Eu3+, respectively. The proper choice of the param-
eters α and E0 can provide a jump in the magnetic sus-
ceptibility whose width decreases with a decrease in the
temperature and an increase in the magnetic field. This
formula adequately describes the experimental results
with the following parameters: α = 1.05, E0 = 700–
2000 K, and Tf = 500 K. The value of E0 is dependent
on the germanium concentration.

4. CONCLUSION

Thus, the results of measurements of the magnetic
susceptibility in EuNi2(SixGe1 – x)2 compounds in
superhigh magnetic fields confirmed the occurrence of
the magnetic-field-induced valence transitions in the
low-concentration range down to x = 0.5. The critical
field Hv increases linearly with a decrease in the con-
centration x over the entire range of concentrations. The
curves of the magnetic transitions are adequately
described in terms of the ICF model.
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Abstract—The Young’s moduli along the [100] and [110] crystallographic directions and the shear modulus
along the [100] direction in a high-purity yttrium garnet ferrite single crystal are measured in the temperature
range from 20 to 600°C. All the independent elastic constants are calculated for this temperature range. The
behavior of the elastic moduli and elastic anisotropy factor is analyzed in the vicinity of the critical temperature
of the magnetic phase transition. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Yttrium garnet ferrite Y3Fe5O12 is an interesting
material, because it exhibits the properties of an antifer-
romagnet owing to the type of ordering of spin mag-
netic moments and the microproperties of a ferromag-
net. Moreover, this material is of importance in micro-
wave technology. However, the elastic properties of
yttrium garnet ferrite have not been adequately investi-
gated. Knowledge of these characteristics is necessary
both to the understanding of the role played by magne-
toelastic coupling in oscillation and wave processes
occurring in magnetically ordered materials and to the
elucidation of the mechanism of transition from an anti-
ferromagnetic state to a paramagnetic state near the
Curie temperature TC.

Gibbons and Chirba [1] were the first to measure the
Young’s modulus E for polycrystalline yttrium garnet
ferrite. According to their measurements, the E modu-
lus at room temperature is equal to 200.5 GPa. Clark
and Strakna [2] studied single-crystal yttrium garnet
ferrite containing the following impurities (wt %): Pb <
0.2, Al < 1, Si < 1, Mn < 0.01, and Cu < 0.001. It was
found that, at room temperature, the velocities of longi-
tudinal acoustic waves along the directions [100] Vl[100]

and [110] Vl[110] are equal to 7.209 × 105 and 7.153 ×
105 cm s–1, respectively, and the velocity Vt[100] of the
transverse acoustic wave is 3.843 × 105 cm s–1. In [2],
the authors used the theoretical density ρ = 5170 kg/m3

to calculate the elastic moduli C11 = 269 GPa, C12 =
107.7 GPa, and C44 = 76.4 GPa. Moreover, the previ-
ously unpublished results of MacSkimin’s measurements
of the longitudinal wave velocity (7.17 × 105 cm s–1) and
the transverse wave velocity (3.87 × 105 cm s–1) were
reported in [2]. Elastic moduli close to the data pre-
sented in [2] were obtained by Bateman [3], who used
the MacSkimin interference method to measure longi-
tudinal and transverse wave velocities in an yttrium
1063-7834/02/4402- $22.00 © 0318
garnet ferrite single crystal of higher purity (Pb < 0.1%,
Si < 0.01%, Al < 0.25%, Mn < 0.01%, Cu < 0.001%,
and Ca < 0.005%). The elastic moduli Cij  and the ther-
moelastic constants Tij = dCij/(Cij dT) for yttrium garnet
ferrite single crystals at room temperature were deter-
mined by Haussuhl et al. [4]. Kamilov and Aliev [5]
measured the Vl velocities along the [100] and [110]
directions in the temperature range from 260 to 300°C
and analyzed the character of the phase transition in the
vicinity of the Curie point.

The aforementioned data and other information on
the properties of yttrium garnet ferrites were collected
and presented in [6]. As can be seen from the available
data, the elastic properties of yttrium garnet ferrites
have been thoroughly investigated only at room tem-
perature. At higher temperatures, independent elastic
moduli have not been investigated despite the fact that
the temperature dependences of these parameters in the
vicinity of the Curie point TC can provide additional
information on the mechanism of magnetic phase tran-
sition. The phase transition near the Curie point was
investigated in [5] but only for longitudinal waves prop-
agating along two directions.

The aim of the present work was to investigate the
temperature dependences of all independent elastic
constants that provide comprehensive description of the
elastic anisotropy of yttrium garnet ferrite over a wide
temperature range, including the Curie point TC.

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

Young’s and shear moduli were measured by the
resonance method with an instrument producing elec-
trostatic excitation of longitudinal and torsional vibra-
tions in the samples. The accuracy of measurements
was 0.12%. The general principle of operation of the
instrument used was described earlier in [7]. The rela-
2002 MAIK “Nauka/Interperiodica”
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tive error in determining the modulus for the same sam-
ple with a change in temperature, which is determined
by the accuracy of measuring the resonance frequency,
was equal to 10–4%. However, the error in measuring
the resonance frequency at high temperatures and,
especially, in the magnetic phase transition range was
considerably larger due to the increase in resonance
attenuation in the sample.

All the samples used in our experiments were cut
from the same single-crystal ingot grown on a
Gd3Fe5O12 substrate in a crystallizer [8]. The initial
materials were of high-purity grade and contained the
following impurities (wt %): Pb < 0.2 and Si, Mn, Cu,
Co, Ni, Ca, and Cr < (1–2) × 10–4. The samples were
prepared in the form of rectangular rods 4 × 4 × 15 mm
in size. The sample length was measured on an IZA-2
horizontal comparator with an accuracy of 0.01 mm.
The sample density (ρ = 5150 kg/m3) at room tempera-
ture was determined by hydrostatic weighing. For
acoustic measurements, electrodes were produced by
cementing an aluminum foil 10 µm thick with the use
of a BF-2 adhesive onto two opposite faces and onto the
end of the sample. In order to improve the heat
exchange and to prevent oxidative processes, the mea-
surements were performed in a gaseous helium atmo-
sphere at a pressure of 1.013 × 105 Pa.

The resonance frequencies were measured at differ-
ent temperatures upon heating (direct run) from 20 to
600°C and cooling (back run) of the sample. However,
for the most part, the experimental data at different tem-
peratures were obtained upon slow heating of the sam-
ple from room temperature at a rate of about 2 K/min.
Each resonance frequency was measured after reaching
a steady-state temperature. The measurements of tor-
sional frequencies of samples at the instant of reso-
nance at high temperatures presented severe difficulties
associated with a large attenuation background. For this
reason, we failed to measure the torsional vibrations
upon cooling (back run). The resonance frequencies of
the longitudinal and torsional vibrations in the samples
fell in the ranges 200–208 and 113–117 kHz, respec-
tively. The Young’s moduli E100 and E110 and the shear
modulus G100 were calculated from the resonance fre-
quencies ν of longitudinal and torsional vibrations ori-
ented along the [100] and [110] directions at each
steady-state temperature.
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The elastic moduli were determined using the for-
mula for the resonance frequency of a rod: ν =
[n/(2L)](M/ρ)1/2, where n is the harmonic number, i.e.,
the number of half-waves being along the sample
length at resonance (in our case, n = 1); L is the sample
length at room temperature; and M is the elastic modu-
lus.

The Young’s moduli were calculated with correction
for thermal expansion. The Young’s modulus is defined
by the relationship

where νl is the natural frequency of longitudinal vibra-
tions of the sample at resonance and ∆L/L is the elon-
gation per unit length of the sample due to thermal
expansion in the temperature range from room temper-
ature to the temperature of measurement.

The measurements of torsional vibrations were per-
formed with samples of square section that were orien-
tated along the cube axis [100]. The shear modulus was
calculated from the formula used in calculating the
Young’s modulus but with allowance for the fact that
the square section of the sample under torsion becomes
nonplanar [9]; that is,

where νt is the natural frequency of torsional vibrations
at resonance.

The data on the linear expansion coefficient α(T)
required for calculating the moduli E and G were taken
from [10].

By using the data on elastic moduli E100, E110, and
G100 at different temperatures and the standard relation-
ships [9], we calculated the adiabatic elastic constants
S11, S12, and S44; the elastic moduli C11, C12, and Cs =
(C11 – C12)/2; and the elastic anisotropy factor A =
2C44/(C11 – C12).

3. RESULTS AND DISCUSSION

Table 1 presents the elastic constants Sij, elastic
moduli Cij , and elastic anisotropy factors A at room
temperature which were obtained in this work and
those taken from [2–4]. It can be seen that the results of
our measurements at room temperature are in agree-

E 4ρL2ν l
2/ n2 1 ∆L/L+( )[ ] ,=

G100 4.742ρL2ν t
2/ n2 1 ∆L/L+( )[ ] ,=
Table 1.  Elastic constants, elastic moduli, and density of yttrium garnet ferrite at room temperature

T, °C
S11 –S12 S44 C11 C12 C44

A ρ, kg/m3 Reference
TPa–1 GPa

23 4.821 1.378 13.089 269.00 107.70 76.40 0.9472 5170 [2]

25 4.917 1.436 13.055 268.00 110.60 76.60 0.9733 5170 [3]

20 4.865 1.416 12.903 270.10 110.90 77.50 0.9736 5188 [4]

20 4.979 1.487 13.316 269.38 114.75 75.10 0.9713 5150 This work
2
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Table 2.  Elastic constants, elastic moduli, and elastic anisotropy factors for yttrium garnet ferrite at different temperatures

T, °C
S11 –S12 S44 C11 C12 C44

A
TPa–1 GPa

20 4.979 1.487 13.316 269.38 114.75 75.10 0.9713

100 5.038 1.508 13.436 266.80 114.04 74.72 0.9744

150 5.077 1.520 13.512 264.72 113.14 74.01 0.9765

200 5.122 1.531 13.591 262.09 111.78 73.58 0.9790

250 5.172 1.543 13.679 259.06 110.12 73.11 0.9817

260 5.182 1.544 13.695 258.38 109.71 73.02 0.9822

270 5.192 1.546 13.714 257.69 109.28 72.92 0.9827

275 5.197 1.547 13.724 257.34 109.06 72.87 0.9828

280 5.202 1.548 13.734 256.99 108.84 72.81 0.9829

285 5.207 1.548 13.744 256.62 108.59 72.76 0.9830

290 5.202 1.549 13.735 257.15 109.01 72.81 0.9830

295 5.198 1.549 13.726 257.53 109.31 72.85 0.9830

300 5.195 1.548 13.719 257.66 109.34 72.89 0.9830

310 5.200 1.548 13.733 257.13 108.94 72.82 0.9828

320 5.207 1.547 13.748 256.48 108.42 72.74 0.9826

335 5.219 1.548 13.774 255.58 107.80 72.60 0.9826

350 5.232 1.551 13.800 254.76 107.34 72.46 0.9830

400 5.278 1.562 13.888 252.28 106.08 72.01 0.9850

450 5.324 1.574 13.976 249.79 104.80 71.55 0.9870

500 5.371 1.586 14.068 247.37 103.62 71.08 0.9891

550 5.419 1.598 14.158 244.91 102.40 70.63 0.9912

600 5.468 1.610 14.250 242.46 101.17 70.18 0.9934

Extrapolated values

750 5.620 1.646 14.532 234.96 97.32 68.82 1.0000
ment with the data obtained by other authors. Note that
the elastic anisotropy factor for yttrium garnet ferrite is
considerably closer to unity than that for the majority of
materials with a cubic crystal lattice.

The values of Sij, Cij , and A at different temperatures
are listed in Table 2. The temperature dependences of
the Young’s and shear moduli measured upon heating
(direct run) and cooling (back run) of the studied sam-
ples are depicted in Fig. 1. It is seen that no hysteresis
is observed in the curves E(T) and G(T) upon heating–
cooling thermocycling. This indicates that the yttrium
garnet ferrite lattice is stable to heat. In the ferrimag-
netic phase (T < TC), the dependences E(T) and G(T)
exhibit a smooth behavior with a change in tempera-
ture. However, these dependences in the ferrimagnetic
phase are essentially nonlinear. Most likely, this behav-
ior is caused by the effect of zero-point quantum-
mechanical vibrations [9, 11] at temperatures below the
Debye temperature (near 267°C [6]) and structural
transformations of the yttrium garnet ferrite lattice. As
the transition temperature is approached, there arise
elastic and magnetostrictive strains due to changes in
PH
the orientation of local magnetization vectors. This
leads to an additional decrease in the elastic moduli.
Note that the Curie temperature TC of the magnetic
phase transition can be determined from magnetic mea-
surements using the thermodynamic coefficient
method, from the complex susceptibility of the para-
process, polarized neutron diffraction, and other inde-
pendent measurements. According to different authors
[5, 6], the Curie temperature of yttrium garnet ferrite
lies in the range from 275 to 287°C. As is known, the
TC temperature increases with a decrease in the impu-
rity content in the crystals [12]. The temperature depen-
dences of the elastic moduli indicate that the TC temper-
ature of high-purity yttrium garnet ferrite is equal to
285°C. It should be noted that, in our experiments, no
temperature shift of the minima in the curves E(T) and
G(T) at the Curie point is observed upon cooling of the
samples (the direct and back runs coincide).

At temperatures close to TC (in a narrow tempera-
ture range from 285 to 300°C), the elastic moduli
exhibit an anomalous behavior characteristic of a mag-
netic phase transition. In this critical range, an increase
YSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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in the temperature leads to an increase in the Young’s
moduli E100 and E110 and the shear moduli G100 by
0.453, 0.441, and 0.135 GPa, respectively.

It is known that the critical change in the acoustic
wave velocity is virtually independent of the vibra-
tional frequency (up to 105–106 Hz) and follows a log-
arithmic or power dependence on the temperature [5].
Our measurements demonstrate that, as the TC temper-
ature is approached, the change in the velocity of sound
in the paramagnetic phase is determined by the rela-
tionship ∆V/V = ε–n, where n is the critical exponent and
ε = (T – TC)/Tc is the reduced temperature ranging from
9 × 10–4 to 10–2. This can be seen from Fig. 2, which
displays the dependence of ∆V/V on the reduced tem-
perature ε in the log–log coordinates for longitudinal
and transverse waves propagating along the [100]
direction. The change in the velocity in the critical
range was determined by extrapolating the temperature
dependence of ∆V/V from the paramagnetic phase to
the anomalous region. It follows from Fig. 2 that the
critical exponent n is equal to 0.15 for longitudinal and
transverse waves. This exponent falls in the theoretical
exponent range 0 ≤ n ≤ 0.66 [13]. However, the critical
exponent we determined is substantially less than that
obtained in [5] from measurements of the velocity and
absorption. According to the theoretical work by Ben-
net [13], it can be expected that the exponent for the
velocity will be less than that for the attenuation. The
difference in the exponents obtained in the present
work and in [5] can also be associated with the different
contents of impurities and defects in the studied sam-
ples, which manifests itself in higher velocities of
sound in our work.

Bennet [13] proved that the change in the elastic
wave velocity in the vicinity of the TC temperature
depends on the type of propagating wave and the type
of spin–phonon interaction. For an antiferromagnet in
the paramagnetic phase, the shift in the angular fre-
quency of an elastic wave due to the interaction with a
spin system near the TC temperature can be represented
by the relationship

(1)

where the wave vector q  0 tends to zero,  is the
coupling coefficient of phonons with the spin system
independent of the wave vector, λ is the wavelength, M
is the magnetic ion mass, β = 1/kT, fa is the tempera-
ture-dependent function, and A is a constant [13].

In the case when the interaction of phonons with the
spin system is determined by the volume magnetostric-

tion, the coupling coefficient  for the longitudinal
wave with the wave vector q = q(sinθcosϕ +
sinθsinϕ + cosθ) and the polarization el = q/q has the
form

(2)

∆ω λ q,( ) ∆Vq Sλ
2q/2MV λ( )A2[ ] f a λ β,( ),–= =

Sλ
2

Sλ
2

Sλ
2( )l 6Q2d2,=
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where q, θ, and ϕ are the coordinates in a spherical
coordinate system for a crystal with an axis aligned
along the Z axis; d is the lattice parameter; and Q is the
force coupling coefficient in the case of volume magne-
tostriction. From relationship (2), it follows that the
decrease in the velocity of sound in the vicinity of the
TC temperature is independent of the wave propagation
direction.

For a transverse wave with the polarization et =
−sinϕ + cosϕ, the coupling coefficient can be written as

(3)Sλ
2( )t 3/2( )Q2 θ ϕ ϕ .cos

2
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Fig. 1. Temperature dependences of the (a) Young’s and
(b) shear moduli for yttrium garnet ferrite.
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velocity of (1) longitudinal and (2) transverse waves along
the [100] direction in the critical range on the reduced tem-
perature in the log–log coordinates.
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From formula (3), when the transverse wave propagates

along one of the crystal axes, we have ( )t = 0 and,
according to expression (1), the shift in the velocity
near the TC temperature is also equal to zero.

If the phonon–magnon interaction is associated with
single-ion magnetostriction, the coupling coefficients
are represented by the relationships

(4)

for the longitudinal wave and

(5)

for the transverse wave. Here, G11 and G44 are the force
coupling coefficients for the single-ion magnetostric-
tion interaction.

In the case of single-ion magnetostriction, the
anomaly in the temperature dependence of the shear
wave velocity near the TC temperature in the paramag-
netic phase, according to formula (5), is nonzero and
should be of the same order of magnitude as the anom-
aly observed for longitudinal waves.

The experimental data count in favor of the single-
ion magnetostriction. In actual fact, relative changes in
the shear moduli that determine the transverse wave
velocities along the [100] and [110] directions are non-
zero in the vicinity of the TC temperature: ∆C44/C44 =
0.0031 and ∆Cs/Cs = 0.0033. The small difference
between the anomalies in the temperature dependences
of the shear moduli near the TC temperature can be
explained by the fact that the crystal is almost elasti-
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Fig. 3. Temperature dependence of the elastic anisotropy
factor for yttrium garnet ferrite.
P

cally isotropic. In this case, the elastic anisotropy factor
A is equal to 0.983.

Another indication of the single-ion magnetostric-
tion in the crystal is the anisotropy of the anomalous
decrease in the longitudinal wave velocity in the vicin-
ity of the TC temperature. As follows from relationships
(4) and (5), the ratio of coupling coefficients for the
waves propagating along the [100] and [110] directions

is equal to 3 /[(1/16)2(3  + 4 )]. According to
expression (2) for the volume magnetostriction, the
anisotropy of the aforementioned anomaly for longitu-
dinal waves should be absent. This anisotropy was
observed in [5]. Our measurements demonstrate that
the relative decrease in the elastic modulus responsible
for the longitudinal wave velocity along the [100]
direction is associated with critical fluctuations of the
spin system in the vicinity of the Curie point and can be
determined from the following ratio: ∆C11/C11 =
0.0092. The shift in frequency of the longitudinal wave
along the [110] direction is determined as follows:
∆[0.5(C11 + C12 + 2C44)]/[0.5(C11 + C12 + 2C44)] =
0.0083.

Thus, the anomalies in the elastic properties in the
vicinity of the critical temperature are associated with
the contribution of the single-ion mechanism of spin-
lattice interaction.

At temperatures above the critical range (T >
300°C), the elastic moduli in the paramagnetic phase
almost linearly decrease with an increase in the temper-
ature in accordance with the quasi-harmonic elasticity
theory [9, 11].

The temperature dependence of the elastic anisot-
ropy factor is plotted in Fig. 3. It is seen from this figure
that, in the ferrimagnetic phase, unlike the paramag-
netic phase, the A factor increases more rapidly with an
increase in the temperature. The extrapolation of the
dependence A(T) indicates that the crystal becomes
elastically isotropic (A = 1) at 750°C.

In conclusion, it should be noted that the experimen-
tal results obtained in this work for the elastic proper-
ties of yttrium garnet ferrite are of importance not only
in physical acoustics. These data can prove be useful
both in evaluating the wear resistance of articles and
thermoelastic stresses arising during the growth of sin-
gle crystals and epitaxial films and in solving certain
problems of phase transitions.
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Abstract—Various types of magnetic structure in a two-dimensional Heisenberg ferromagnet are considered
in a continuum approximation. The effect of anisotropic exchange and single-ion anisotropy on the vortex struc-
ture is analyzed. A new type of static magnetic structure (“target”) is predicted and investigated in an easy-plane
ferromagnet. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last two decades, there has been an increasing
interest in solitons, vortices, and other nonlinear excita-
tions in low-dimensional magnets. The important role
played by these excitations and their influence on the
occurrence of long-range order; various magnetic
phase transitions, including topological transitions; and
responses to external fields have been noticed by many
researchers (see, for example, [1–3]). These problems
are not only of academic interest but are a matter of
practical importance. Recently, a large class of quasi-
one-dimensional (1D) and quasi-two-dimensional (2D)
magnets was discovered in which the magnetic interac-
tions in crystallographic planes are by far stronger than
the interactions between planes. These materials
include layered magnets, intercalated compounds (such
as CoCl2), and a quite wide class of high-temperature
superconducting basic systems (La2CuO4, Sr2CuO2Cl2,
YBa2Cu3O6) [4].

A peculiar property of quasi-two-dimensional sys-
tems is their high sensitivity not only to relatively weak
interactions between planes but also to various kinds of
magnetic anisotropy, both local (single-ion) and nonlo-
cal (two-ion). Allowance for the second-order magnetic
anisotropy results in a well-known generalization of a
classical two-dimensional isotropic XY Heisenberg
model with the Hamiltonian

(1)

which describes the interaction of classical spins Sj on
a lattice. Here, J > 0 is the exchange integral; the spin

H J S j
xS j k+

x S j
yS j k+

y λS j
zS j k+

z
+ +( )

j k,
∑–=

– K S j
z( )2

,
j

∑

1063-7834/02/4402- $22.00 © 20324
vector Sj is represented in the form {  + i , } =
S0{sinθjexp(iΦj), cosθj}, and its orientation is deter-
mined by the polar (θj) and azimuthal (Φj) angles; λ is
the anisotropic exchange constant (generally, 0 < λ < ∞);
K is the single-ion anisotropy constant; the index j num-
bers lattice sites; and the summation over k includes
only nearest neighbors. The XY symmetry implies that,
in the range of λ values indicated above, the ground
state of the system is infinitely degenerate with respect
to the spin rotation angle in the XY plane. This model
includes both the isotropic Heisenberg model (λ = 1)
and the XY model (λ = 0).

It is well known that in 2D systems described by
Hamiltonian (1), there are not only ordinary spin waves
but also topological excitations, namely, vortices,
which are responsible for a topological phase transition
in the XY model [5] and make an important contribution
to thermodynamics of the isotropic Heisenberg model.
The structure and dynamics of vortices in model (1)
(and in its continual approximation) and their contribu-
tion to the dynamic structure factor in the approxima-
tion of a free vortex gas were investigated in [2, 6] in
the case where there is no local magnetic anisotropy
(K = 0). Numerical simulations show that, in the inter-
val 0 < λ < λc, where λc = 0.72 for a square lattice and
λc = 0.86 for a hexagonal lattice, the energy of an in-
plane (IP) vortex in the configuration

(2)

with topological charge q is less than the energy of an
out-of-plane (OP) vortex with spins going out of the
easy plane [6]. In the continual approximation for
model (1), such vortices are characterized by a mono-
tonically decreasing radial-symmetric distribution of

S j
x S j

y S j
z

Sz 0, Φ qϕ Φ0 q Z∈( )+= =
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the spin component Sz perpendicular to the easy plane,
which is subject to the boundary conditions

(3)

The aim of the present work is to investigate the
structure of vortices and other topological defects in a
quasi-two-dimensional ferromagnet with anisotropic
exchange with allowance for the local second-order
magnetic anisotropy energy and for magnetic dipole
interactions. In Section 2, we present the tenants of the
microscopic theory of spin anisotropy in systems based
on 3d and 4 f elements, as this is of great importance in
substantiating the model proposed. In Section 3, we
consider magnetization vortices in an easy-plane ferro-
magnet with anisotropic exchange and local magnetic
anisotropy. Section 4 is devoted to an analysis of mag-
netic structures of the target type in an anisotropic fer-
romagnet.

2. MICROSCOPIC ORIGIN 
OF SPIN ANISOTROPY

The microscopic origin of the two-ion anisotropy,
characterized by the parameter λ, for compounds based
on 3d elements is associated with long-range (∝ 1/R3)
magnetic dipole interaction and short-range quasi-
dipole relativistic exchange interaction, or anisotropic
exchange, which is a combination of exchange and
spin–orbital interactions [7–9]:

(4)

Here,  is the exchange integral, which is an orbital
operator in the general case, and ζnl is the one-electron
spin–orbital coupling constant. For the sake of simplic-
ity, we omitted the summation over all electrons of mul-
tielectron atoms.

The anisotropic exchange in a pair of ions is a third-
order effect in perturbation theory, and it can be sche-
matically represented as a sum of several terms,

(5)

adding terms with a change 1  2 and Hermitian con-
jugate terms. For ions 1 and 2 with spins S1 = S2 = 1/2,
the anisotropic exchange has a rather simple bilinear
form of quasi-dipole interaction and, in fact, is reduced
to an anisotropic Heisenberg interaction (1). For ions 1

Sz S0 for r 0,±
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and 2 with spins S1(S2) > 1/2, the anisotropic exchange
contains additional non-Heisenberg terms with second-
or even third-rank tensor spin operators [9] of the type

(6)

whose contribution can be comparable in magnitude
to the quasi-dipole contribution. The anisotropic
exchange parameter λ can be estimated using the rela-
tionship suggested by Moriya [7]:

where ∆g is the deviation of the g factor from the purely
spin value g ≈ 2. However, in reality, the Moriya rela-
tionship has a very limited area of application and it
would be more correct to use a more general relation-
ship [9],

(7)

where ξ3d is the one-electron spin–orbit coupling con-
stant (ξ3d ~ 0.01–0.1 eV); ∆E is an average energy of
the excited 3d ion states, which are mixed with the
ground state due to spin–orbit interaction (∆E ≥ 1 eV);
and η ~ 1–10 is a numerical parameter. Examples of
numerical model calculations of two-ion anisotropy for
a number of 3d-element compounds are presented in
[9]. On the whole, the anisotropic exchange in these
compounds is relatively small, so that usually |λ – 1 | ≤
0.1.

The second-order single-ion local anisotropy in the
compounds based on 3d elements is due to both the
spin–orbit interaction and low-symmetry crystal field.
As a rule, the single-ion anisotropy energy in these sys-
tems is far less in magnitude than the exchange energy
but is comparable to, or even exceeds, the two-ion
anisotropy energy in most cases. The important feature
of the single-ion anisotropy is that it occurs only for
spins S ≥ 1.

In magnets based on rare-earth 4f elements and
described by effective Hamiltonian (1), the constant λ
can vary in wide limits (0 < λ < ∞) and the single-ion
anisotropy energy can considerably exceed the
exchange energy. The classical long-range magnetic
dipole interaction can be taken into account by intro-
ducing a demagnetizing field.
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3. MAGNETIZATION VORTICES IN EASY-PLANE 
FERROMAGNETS WITH ANISOTROPIC 

EXCHANGE

3.1. Main Equations of the Model

The magnetization distribution in nonuniform mag-
netic structures arising in anisotropic ferromagnets
with Hamiltonian (1) can be found in a continual
approximation by minimizing the classical energy with
the density

(8)

where α = JS2 is the exchange interaction parameter,
M0 = gµBS0/a2, and

where l0 is the effective magnetic length and the param-
eter ε = ±1 defines the sign of the effective anisotropy
constant 4(1 – λ)J – K.

The demagnetizing field R satisfies the magneto-
statics equations

(9)

We consider the structure of nonlocalized vortices
(according to the terminology used in [4, 5]), in which
the magnetization does not tend to a constant vector at
large distances. For the case when demagnetizing fields
R are absent and λ = 1, the structure of such vortices is
discussed in detail in monograph [5]. It is known that
for small distances r ! l0, the function θ(r) is deter-
mined by the exchange interaction and coincides with
the well-known instanton solution (the Belavin–Polya-
kov skyrmion) [10]

(10)

and the expression for the azimuthal angle coincides
with Eq. (2). Using model (8), we consider the simplest
vortex static configurations in the form

(11)

where r and ϕ are the polar coordinates (x = rcosϕ, y =
rsinϕ) in the XY plane. It can be easily seen that in this
case, the demagnetizing field is a local function of the
magnetization [11]:

(12)
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We take the constant Φ0 to be equal to π/2, which cor-
responds to the minimum in the static magnetic field
energy RM/2. Therefore, the static magnetic field R = 0
and is not taken into account in what follows. For arbi-
trary values of q ≠ 1, the demagnetizing field is
expressed through the scalar potential ψ (R = –gradψ),
which satisfies the Poisson equation ∆ψ = 4πdivM. In
this case, the Landau–Lifshitz equation is invariant
under simultaneous spatial and spin rotations, as in the
theory of liquid crystals [12]. Therefore, at q ≠ 1, the
function θ = θ(r, ϕ, z) has a different form (than at q = 1);
it will be discussed below. From Hamiltonian (8) and
Eq. (11), we obtain an ordinary differential equation for
the function θ(r):

(13)

3.2. Easy-Axis Ferromagnet

We show now that in the easy-axis ferromagnet
(ε = –1), there is no localized vortex structures that are
regular at the origin of coordinates and approach the
ground state at infinity; i.e., we show that the boundary-
value problem with the boundary conditions

(14)

(15)

has no solution. For this purpose, we introduce the
quantity

(16)

which is proportional to the energy density in the
absence of anisotropy (l0  ∞). Then, according to
Eq. (13), its derivative is negative,

(17)

and the function F(r) decreases monotonically for
0 < λ < ∞. However, with the nonsingular boundary
conditions of (14), the values of F(r) at r  0 and
r  ∞ coincide,

(18)

which is in contradiction with the fact that F(r) is a
monotonic decreasing function. Consequently, there
are no nonsingular vortex solutions subject to the
boundary conditions of (14) and the Belavin–Polyakov
skyrmion structure (10) drastically changes in the pres-
ence of any negligibly small easy-axis anisotropy.
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3.3. Easy-Plane Ferromagnetic

Now, we discuss solutions to nonlinear equation
(13) for an easy-plane magnet (ε = 1) with nonsingular
boundary conditions

. (19)

It can be easily shown (linearizing Eq. (13) at large r
near θ = π/2) that the vortex approaches a limit at large
distances (for λ ≠ 0) exponentially:

(20)

where Ki /  is a Macdonald function of the order

i/ .
In the particular case λ = 0, Eq. (13) is factorized

and has an exact solution. One can easily verify that at
ε = 1, the solution is

(21)

[where r1 is the first maximum of the Bessel function of
the first order J1(r/l0)]; it is continuous, together with its
first derivative, and describes a localized OP vortex in
the XY model.

In the general case of an easy-plane magnet with a
given l0 value, the nonlinear boundary-value problem
for Eqs. (13) and (19) has a solution only for discrete
values of θ'(0).

We integrated Eq. (13) for various λ values using the
shooting method. Figure 1 shows, as an example, the
phase diagram of a solution found for λ = 0.8. The
phase trajectories leaving the points [θ(0) = 0, θ'(0) =

] and [θ'(0) = 0, θ'(0) = ] terminate at the focuses
[θ(∞) = 0, θ'(∞) = 0] and [θ(∞) = π, θ'(∞) = 0], respec-

tively, as r  ∞. Therefore, the interval  < θ'(0) <

, in which there is a single trajectory with θ(∞) 
π/2 and θ'(∞)  0, can be determined very accurately.
The functions θ(r) calculated using the shooting
method for different λ values are presented in Fig. 2. It
can be seen from Fig. 2 that, with increasing λ (starting
from the value λ = 0), the vortex becomes more local-
ized near the origin of coordinates and approaches the
equilibrium value θ = π/2 far from the origin more
slowly, in accordance with Eq. (20).

The OP vortex energy depends on the system
dimension L as lnL, because the energy density con-
tains the term sin2θ/r2, which results in logarithmic
divergence of the integral in the expression for the mag-
net energy for an arbitrary law of θ(r) approaching π/2.

θ 0 for r 0, θ π/2 for r ∞

θ π/2 C1K
i/ λ

r

l0 λ
----------- 

 –

π/2
C1
˜

r
------ r

l0 λ
-----------– 

  for r ∞,exp–

λ
λ

θsin 1 r r1≥( ),=
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J1 r/l0( )

J1 r1/l0( )
--------------------- r r1≤( )=

θ1' θ2'

θ1'

θ2'
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The exact value differs from the value 2παln(L/l0) by a
term which is limited at L  ∞. For convenience, we
represent the dependence of the energy EOP on the sys-
tem dimension and on the parameters λ and l0 in the
form

(22)

The B(λ) dependence is shown in Fig. 3. We compare
the OP-vortex energy with the energy

of the in-plane vortex defined by Eq. (2). Here, r0 is the
cutoff radius, which is of the order of several lattice
constants. It is clear that the OP vortex is energetically
favored under the condition

(23)

which implies a quite complex relationship between the
two-ion and single-ion anisotropy parameters. Indeed,

EOP 2π Wr rd

0

L

∫ 2πα B λ( )L
l0

--------------- 
 ln .= =

EIP 2πα L/r0( )ln=

l0

r0
---- B λ( ),>

θ, rad

θ'(r/I0)

ar
b.

 u
ni

ts

θ'2
θ'0
θ'1

0 π/2 π

Fig. 1. Phase diagrams of solutions illustrating the shooting
method: a search for a solution with the appropriate asymp-
totics at r  ∞.

λ = 5

λ = 0.2

θ,
 r

ad

0 2 4 6 8 10
r/l0

π/2

π/4

Fig. 2. Profiles of θ(r) functions for regular solutions calcu-
lated using the shooting method. The solid line corresponds
to a vortex without anisotropic exchange.
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the left-hand side of inequality (23) is determined by
the effective magnetic length, i.e., by the effective mag-
netic anisotropy constant, whilst the right-hand side is
determined only by the two-ion anisotropy constant.
The presence of the parameter r0 in Eq. (23) makes a
direct comparison of the criterion for the transforma-
tion of the IP to the OP vortex, which we derived in the
continuous model, with the corresponding criterion
derived in the lattice model complicated [6]. If only the
contribution from the anisotropic exchange interaction
to magnetic anisotropy is taken into account, then l0 =

a/2  (at 0 < λ < 1), r0 ≈ a, and the OP vortex is
stable at small positive values of (1 – λ) [6], i.e., within
the model with quasi-isotropic exchange. In the general
case, the OP-vortex energy depends on the relation
between the single-ion and two-ion magnetic anisot-
ropy contributions in a complicated way, which allows
one to consider the structure of stable topological
defects in real magnets as a result of competition
between the two contributions to magnetic anisotropy.

4. MAGNETIC STRUCTURES OF THE TARGET-
TYPE IN AN EASY-PLANE FERROMAGNET 

WITH ANISOTROPIC EXCHANGE

In this section, we predict and analyze a new type of
vortex structure, namely, structures of the static leading
center type or the target. Spatial structures of the target
type are observed in distributed active media and are
the most widespread dissipative structures [13, 14]. In
self-oscillating active media, the simplest type is repre-
sented by a source of spreading concentric phase
waves. Dynamical structures of the pacemaker type in
magnetically ordered media (easy-axis magnets) were
first described in [15, 16]. They were also observed by
other researchers, for example, in [17–21]. These spa-
tial structures persisted after switching of the alternat-
ing magnetic field, thereby approaching the thermal
equilibrium state in a sufficiently large time interval.
This fact suggests that these structures are topological
defects in magnetically ordered media and their theo-
retical study is of undeniable interest. Attempts to
investigate them theoretically were made in [22–26].

1 λ–

0 0.5

B
(λ

)

λ
1.0 1.5 2.0

2

4

6

8

Fig. 3. B(λ) graph for regular solutions.
PH
For an analytical description of a system of radial-sym-
metric domain structures, we use singular solutions to
Eq. (13) subject to the boundary conditions

(24)

These solutions we also further call vortex structures of
the magnetic target type, as the dependence of their
magnetization on the azimuthal angle Φ is also deter-
mined by Eq. (2), which is typical of vortices. The
behavior of the magnetization near the singular-vortex
core is dictated by the exchange interaction, which is
invariant under scale transformations (r  r/β).
Therefore, it is convenient to introduce a new extending
variable R = ln(r/l0), in terms of which Eq. (13) takes a
simple form,

(25)

We consider the asymptotic behavior and classifica-
tion of the singular vortices at r  0. In this limit, one
can neglect the magnetic anisotropy energy, assuming
l0  ∞ in Eq. (13), and reduce the solution θ(R) to
quadratures:

(26)

(27)

4.1. Target-Type Structure in Easy-Plane Magnets
with Isotropic Exchange Interaction

We consider a target-type structure in magnets with
isotropic exchange interaction (λ = 1). In this case, θ(r)
is expressed in terms of the elliptic functions

(28)

(29)

Here, R0 and k are constants of integration.
Note that the parameter k characterizes the periodic

magnetization distribution (as a function of R) near the
target center. The transition (λ  1) from the aniso-
tropic case of Eqs. (26) and (27) to the isotropic case of
Eqs. (28) and (29) does not change the parameter k.

These solutions are singular at r  0: θ'(r) ~ 1/r
(0 < k < 1); they coincide with the well-known Belavin–
Polyakov solution (10) at k  1, which is the separa-
trix solution to the pendulum equation (25) at λ = 1 and
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l0  ∞. Equation (28) describes R-periodic oscilla-
tions of the magnetization near zero: –k ≤ cosθ(R) ≤ k.
Solution (29), which we will discuss below, describes a
system of concentric ring-shaped domains (in the vari-
able R), i.e., a magnetic target. The two consecutive
centers of domain boundaries, at the points rn + 1 and rn,
are related through the formula rn + 1 = rnexp[2kK(k)],
where K(k) is a total elliptic integral of the first kind.
The domain width

(30)

depends on the k value and increases with distance from
the target center, because kK(k) is a monotonic increas-
ing positive function of k.

As already mentioned, the solution found is singular
and detailed analysis is required to estimate its contri-
bution to the thermodynamics of two-dimensional sys-
tems. However, in real magnets, the nucleation of spi-
ral- and target-type magnetic structures occurs, as a
rule, on defects of a nonmagnetic nature. In this case,
the target core radius coincides with the defect radius b
and the solution found for small values of r is valid at
r > b. At distances r ~ l0, the magnetic anisotropy
energy essentially influences the target structure. One
might expect the singular vortex magnetization to coin-
cide approximately with the in-plane vortex magnetiza-
tion given by Eq. (2), namely, Sz ≈ 0 and Φ = ϕ + Φ0 in
the region rc < r < ∞, where rc depends on the parameter
k. In this case, rc(k) must be an increasing function of
k−1, because the average anisotropy energy per unit area
of the nth domain

(31)

where rn = l0exp[2nkK(k)] increases with decreasing k
for configuration (2) at n  ∞. In addition, the param-
eter k, which characterizes the magnetization behavior
near the vortex core [Eqs. (26)–(29)] must assume dis-
crete values for which the θ(r) remains localized at
large distances. These qualitative considerations are
substantiated by numerical calculations performed with
the shooting method.

To illustrate the shooting method, we present phase
trajectories of the solutions at λ = 1 in Fig. 4. It can be
seen that, at a given value θ(l0) = θ0 lying in the interval

[ (l0), (l0)], there is a single phase trajectory, which
terminates at the point θ = (2N + 1)π/2. We fixed the

value θ(r = l0) and found the values (l0) and (l0) at
which the solutions of the Cauchy problem for Eq. (25)
with the initial conditions θ(l0) = θ0, (l0) exhibited
asymptotic behavior θ(∞)  Nπ, θ'(∞)  0 and
(θ(∞)  (N + 1)π, θ'(∞)  0, respectively. Having

dn d0e2nkK k( )=

2 Wr rd

rn

rn 1+

∫
rn 1+

2 rn
2–

------------------------,

θ1' θ2'

θ1' θ2'
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found these (l0) values, we took the θ'(l0) value in

the interval [ (l0), (l0)] at the next step of the calcu-

lations. Decreasing the interval (l0) < θ'(l0) < (l0)
for θ'(l0), we arrived at the only θ'(l0) value at which
boundary condition (24) was fulfilled with the required
extent of precision. Next, using the obtained values
θ(l0) and θ'(l0), we solved the Cauchy problem for
Eq. (25) in the interval r ≤ l0 and found the magnetiza-
tion near the vortex core. The resulting numerical solu-
tion was well approximated by formula (27) at r ! l0
with the particular k value. A graph of one of the solu-
tions is presented in Figs. 5 and 6.

Using the obtained numerical solutions, one can
analyze the influence of anisotropy on the target struc-
ture. Note that in traditional magnetooptical experi-
ments, for a wide class of magnets, the scale for identi-
fication of the spatial magnetic structure does not
exceed the typical magnetic length l0. Therefore, we
shall further only discuss the target structure at r > l0
and determine the N value involved in Eq. (24) as

(32)

where [x] denotes the integer part of the variable x. To
estimate the magnetization at r < l0, it is helpful to find

the average value  = 2M0  in the region

r < l0. It appears that the sign of  coincides with the
sign of Mz in the preceding ring with respect to the ring
where the θ(l0) is found. In Fig. 7, we present the
dependence of the ring width dn on the ring index n for
a target consisting of N = 15 rings. Here and further, the
rings are numbered starting from the distance r = l0. A
domain is determined as a region wherein |Mz | > 0.7M0.
To estimate the localization of the singular vortex, it is
helpful to present the dependence of the radius of the
last ring Rl on the parameter k (Fig. 8). As can be seen,
the vortex localization region decreases in size with

θ1 2,'
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Fig. 4. Phase diagrams of solutions illustrating the shooting
method.
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Fig. 5. Graph of a target-type solution with fifteen rings in dimensionless coordinates (r/l0).
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Fig. 6. Graph of a target-type solution with fifteen rings on a plane for the dimensionless magnetization Mz(x/l0, y/l0)/M0.

r/l0
increasing k and coincides with the localization region
of the regular vortex at k  1. A numerical calcula-
tion also shows that, for 1 < N < 15, excluding the two
outer rings, the domain width is described by formula
(30), which is valid only in the exchange approxima-
tion. This dependence is indicated in Fig. 7 by a solid
line. A similar formula is also valid for the domain-wall
width. Thus, the anisotropy results in the widening of
P

several outer domains and in infinite spreading of the
last domain.

4.2. Target-Type Structure in Easy-Plane Magnets
with Anisotropic Exchange

In the presence of exchange anisotropy, the solution
to integral equation (27) is expressed in terms of an
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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incomplete elliptic integral of the third kind. Therefore,
the asymptotic behavior of the singular vortex at r  0
cannot be described analytically. Solutions (27) are
periodic in R space, with the period

(33)

which is a monotonical increasing function of both the
parameter k and the anisotropy exchange parameter λ
One can easily show that at λ = 0, there are no bounded
solutions for Mz with a singular derivative. For the other
λ values, the magnetic target structure does not differ
qualitatively from the case of λ = 1. In Fig. 9, we dis-
play Mz component profiles obtained through numeri-
cal integration of Eq. (25) using the shooting method. It
is seen that with increasing λ (at a fixed k value), the
singular-vortex localization region increases in size,
which is in agreement with the asymptotic behavior
(20).

Due to the target singular behavior at small dis-
tances, its energy depends logarithmically on the cutoff
radius r0. This dependence can be found using the mag-
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Fig. 7. Dependence of the dimensionless ring width on the
ring index for a solution with fifteen rings. The solid curve
is approximation (30).
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Fig. 9. Profiles Mz(r) of a target for different values of λ in
normalized variables.
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netization asymptotic behavior at r  0 described by
Eq. (27). In this approximation, the exchange interac-
tion energy is expressed as an integral over the variable
R of the periodic function

(34)

with period T(λ, k). The integral of w over a large num-
ber of periods can be approximately represented as the
product of w averaged over a period

(35)

using the length of the interval of integration. There-
fore, one might expect the singular vortex energy to
contain the term

(36)

w
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Fig. 8. Dimensionless radius of the last ring Rl /l0 as a func-
tion of the parameter k.
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Indeed, numerical simulations show that the energy of
a magnetic target with anisotropic exchange Etarg con-
sists of two terms,

(37)

The term proportional to lnL is due to the magnetization
asymptotic behavior at infinity. The dependence of
lnB(λ, k) on k is presented in Fig. 10 for different λ val-
ues. As one might expect, the energy of a magnetic tar-
get increases monotonically with parameter λ, because
I '(λ) > 0 and B '(λ) > 0 for 0 < λ < ∞.

5. CONCLUSIONS

Thus, we have considered various vortex configura-
tions in a 2D ferromagnet with allowance for single-ion
and two-ion anisotropy (anisotropic exchange). In an
easy-axis ferromagnet (ε = –1), there are no localized
vortex structures that are regular at the origin of coordi-
nates and approach the ground state at infinity. For an
easy-plane ferromagnet, the behavior of the z compo-
nent of magnetization in the vortex at large distances

from the center is exponential, Mz ∝  exp(–r/rc)/ ,

with rv = l0 . Using the shooting method, we calcu-
lated the z-component of magnetization in the vortex at
different values of the anisotropy parameters. The OP-
vortex energy in an easy-plane ferromagnet (ε = +1)
depends on both the effective magnetic length l0 and the
anisotropic exchange parameter λ and, consequently,
on the relation between the contributions from single-
ion and two-ion magnetic anisotropy. We predicted and
analyzed the structure of a new class of vortex configu-
rations, namely, a target of the leading-static-center
type, in easy-plane magnets with isotropic and aniso-
tropic exchange. The new solutions are singular, with
the energy dependent logarithmically on the system
size and on the effective magnetic length. In real mag-
nets, vortices of the magnetic-target type will be
formed on defects and can significantly contribute to
the thermodynamics of the system. A consideration of
the nucleation mechanism of the magnetic target [26] is
of undeniable interest but is beyond the framework of
the present work.
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Abstract—Peculiarities in the propagation of IR radiation in the easy-plane antiferromagnet α-Fe2O3 are inves-
tigated. In the geometry of the Cotton–Mouton effect, magnetic birefringence is measured and magnetooptical
constants are estimated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Easy-plane antiferromagnets of the hematite type
are interesting due to their peculiar magnetoelastic
(ME) and magnetooptical (MO) properties [1, 2]. In its
own right, analysis of the ME and MO properties pro-
vides more comprehensive information on the mag-
netic structure, exchange interactions, and phase transi-
tions in such systems. According to the results reported
in a series of recent publications, these materials can be
used, for example, for controlling optical and acoustic
beams. The additional possibility of controlling the
magnetic-field for such media [1] is of special impor-
tance. However, MO properties have not been studied
comprehensively. This is due to the fact that the optical
transparency region for hematite lies in the IR range
(λ > 1.2 µm). This informational gap can be filled by
obtaining accessible sources of monochromatic radia-
tion in the IR region (semiconductor lasers).

Magnetic birefringence in hematite was discovered
by Pisarev et al. [3], who established that this effect
emerges above the Morin temperature TM ≈ 260 K. In
subsequent publications, magnetic birefringence
induced by uniaxial mechanical stresses [4] and in the
vicinity of the Morin temperature [5] was investigated.
In those works, only the terms quadratic in the antifer-
romagnetism vector L were taken into account in the
permittivity tensor εij in Eq. (1) [6], while the terms lin-
ear in L and in the magnetic field H were disregarded.
The effects of the linear and quadratic (in the magnetic
field) contributions to εij were considered in [7], where
these terms were assumed to appear due to the depen-
dence of magnetization M on the magnetic field H.

Linear magnetic birefringence in crystals that are
not antiferromagnets is normally an effect quadratic in
H or M [8]. In easy-plane antiferromagnets of the
hematite type, which are characterized by the order
parameters L and M (M ! L) [6], the power expansion
of the εij tensor in these parameters contains terms of
the form LiHj @ MiHj typical of antiferromagnets with
D3d symmetry [1, 2]. For this reason, one can expect,
for example, a magnetic field dependence of the bire-
1063-7834/02/4402- $22.00 © 0333
fringence ∆n =  ∝   to be associated with the
antiferromagnetic order parameter L. In view of such
premises, a detailed analysis of the MO properties of
hematite is essential for revealing peculiarities associ-
ated with the order parameter L. In our opinion, it is
necessary to analyze the magnetic field dependence of
∆n in order to find the actual parameters that determine
the permittivity tensor for hematite in the presence of a
magnetic field.

2. EXPERIMENTAL TECHNIQUE 
AND RESULTS OF MEASUREMENTS

A block diagram of the experimental setup is shown
in Fig. 1. The source of IR radiation was a semiconduc-
tor laser of the ILPN-206-1 type (λ = 1.35 µm). The
power supply made it possible to modulate radiation
with a frequency of 512 Hz; the reference frequency
from the power supply was fed to a synchronous V9-2
detector. The system of lenses forming the objective
made it possible to obtain a light beam with a relatively
plane wave front. Light was directed through a quartz
plate, a polarizer, and a diaphragm to samples under

ε LH

1 2
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4 5
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7

8

9

10

1112

6

Fig. 1. Block diagram of the setup: (1) laser emitter,
(2) objective, (3) He–Ne laser, (4) quartz plate, (5) polar-
izer, (6) iris diaphragm, (7) sample, (8) analyzer, (9) electro-
magnet, (10) photodetector, (11) synchronous detector, and
(12) power supply of the semiconductor laser.
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investigation mounted in the gap of an electromagnet.
Samples had antireflection coated faces with a devia-
tion from parallelism of the order of 20″. The orienta-
tion of the crystallographic axes of the crystal was
determined to within 0.3° using x-ray diffraction anal-
ysis. The sample length along the direction of light
propagation was 0.057 or 0.62 cm. The size of a thinner
sample was chosen such that the phase difference for
light emerging from the sample was smaller than π/2.
The sample orientation in the gap of the magnet was
controlled with the help of an adjusting He–Ne laser,
which allowed us to minimize the contribution to bire-
fringence associated with the deviation from parallel-

M1
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M

L

z

y

x ϕ

θ

k || z || C3

B || x || C2

Fig. 2. Experimental geometry: ϕ is the angle between the
polarization plane of incident light and the direction of the
magnetic induction vector B, θ is the angle of rotation of the
polarization plane of emerging light relative to the polariza-
tion plane of incident light, and M1 and M2 are the magne-
tizations of the sublattices.
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Fig. 3. Dependence of the angle of rotation θ on the angle ϕ
between the polarization plane of incident light and the
direction of the induction vector of the constant external
magnetic field for air gaps in a magnet (1) 50 and (2) 13 mm
wide; symbols 3 correspond to the relative intensity of light
at the input of the photodetector; B = 0.71 T.
P

ism between the direction of light propagation and the
optical axis of the crystal.

The light beam emerging from the sample passed
through an analyzer and the second diaphragm to the
input of a photodetector. The sensitive element of the
detector was a single-element photoresistor with a cool-
ing system and thermal stabilization on the basis of the
Peltier effect. The detected signal was amplified by
high-precision operational amplifiers of the
K140UD17A type with a controllable gain factor up to
105 fed to a synchronous detector.

The magnetic field induction was varied from 0 to
2.1 T. The construction of the magnet allowed us to
vary the width of the air gap and to control the position
of the pole pieces to attain a higher uniformity of the
magnetic field. The experiments were made with two
values of the gap width (50 and 13 mm). In the former
case, the magnetic field nonuniformity was character-
ized by a gradient of up to 3–4 mT/cm. In the latter
case, the uniformity of the created magnetic field was
much better, which was monitored with the help of an
NMR meter of magnetic induction of the Sh1-1 type.

We analyzed the linearly polarized light transmitted
along the axis z || C3. In our experiments, we registered
the angle θ of rotation of the optical polarization plane
at the sample exit as a function of angle ϕ between the
polarization plane of incident light and the magnetic
field direction (Fig. 2). (In the case of elliptical polar-
ization of the emerging light, the difference ϕ – θ was
determined by the angle between the semimajor axis of
the ellipse and the magnetic field.) The wave vector k
was parallel to the triad axis of the crystal. The external
magnetic field B was directed along one of the binary
axes. All measurements were made at room tempera-
ture (T ~ 295 K).

Figure 3 shows the dependences of the angle θ of
rotation of the polarization plane on angle ϕ for a
higher (curves 2) and lower (curve 1) uniformity of the
magnetic field B. For a more uniform magnetic field,
this dependence is almost linear in the intervals 0°–40°
and 50°–90°; field nonuniformity violates the linearity
of this dependence (Fig. 3). It should be noted that the
polarization of emerging light in our experiments varies
with angle ϕ: it is linear for ϕ = 0° and 90°, circular for
ϕ = 45°, and elliptical for intermediate values. This is
confirmed by the variation of the intensity of transmit-
ted light from the minimum value for nearly complete
absorption of linearly polarized light by crossed polar-
izers to the maximum value in the case of circularly
polarized light at the sample exit (curve 3 in Fig. 3).
Figure 4 shows the measured dependence of the angle
of rotation θ on the magnitude of a highly uniform mag-
netic field for a fixed angle ϕ = 22.5° (curve 1).

3. DISCUSSION

The ME and MO properties of easy-plane antiferro-
magnets in the ordered phase are determined by two
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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order parameters, viz., the total magnetization vector M
and the antiferromagnetism vector L [6]:

where Mi is the magnetization of sublattices (i = 1, 2)
in the noncollinear phase [1, 2].

Hematite has the I+3+2– structure, and the antiferro-
magnetism vector L above the Morin temperature
(TM ≈ 260 K) lies in the easy-magnetization plane at
right angles to the triad axis [1, 6]. The experimental
geometry is such that the magnetic induction vector B
also lies in the easy magnetization plane and L ⊥  B if
the field magnitude exceeds the threshold value BS ~
0.15 T at which the crystal acquires a monodomain
structure. If we choose vector B along the x axis and
vector L along the y axis in the easy plane, then the
expansion of the permittivity tensor into a power series
in the antiferromagnetism vector L to within L2 terms
can be presented in the form [1]

(1)

Here, ε|| and ε⊥  are the dielectric constants along the
triad axis (z axis) and perpendicular to it, respectively,
in a zero magnetic field and αij and αk are the MO con-
stants. When deriving Eqs. (1), we assumed that the
crystal is optically transparent, which imposes the self-
conjugation condition on the permittivity tensor εij:
εji = . In Eqs. (1), the terms proportional to the spon-
taneous magnetization MS are not written explicitly
(they are obtained through the substitution B  M)
but are taken into account in the renormalization of
coefficients αij [1].

The dependence of off-diagonal terms of tensor εij

on the z component Bz of the magnetic induction is
worth noting. For Bz = 0, we have εxy = 0 and light in the
crystal is linearly polarized [2], in contrast to elliptical
polarization for Bz ≠ 0 [2].

In the above experimental geometry, when light
propagates along axis z || C3, the normal modes have the
form

(2)

M M1 M2, L+ M1 M2,–= =

εxx ε⊥ α14BL α12L2,+ +=

εyy ε⊥ α15BL α11L2,+–=

εzz ε|| α34BL α31L2,+ +=

εxy iα0 α18L–( )Bz, εxz α68LBz,–= =

εyz –iα1B iα2L α61L2– α64LBz.–+=

εij*

n1 2,
2 1

2
--- Ωxx Ωyy+( ) Ωxx Ωyy–( )2 4Ωxy

2+±[ ] ,=
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(3)

(4)

where Ωxx = εxx – /εzz, Ωyy = εyy – /εzz, and Ωxy =

εxy – εxz /εzz; n1, 2 are the refractive indices; ki = niω/c;
ω is the frequency; and c is the velocity of light. In this
case, the Jones matrix [2, 9] has the form

(5)

where sinχ = 2α/(1 + α2), cosχ = (1 – α2)/(1 + α2), h is
the crystal thickness, 2δ = h(k1 – k2) is the phase differ-
ence between the normal modes in Eqs. (2) and (3), and
α = α' + iα". It follows from Eqs. (1), (3), and (4) that
the normal modes in Eq. (3) are linearly polarized for
Bz = 0; otherwise, they are polarized elliptically.

If linearly polarized light with its polarization vector
forming an angle ϕ with the magnetic induction vector
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Fig. 4. Dependences of (1) the angle of rotation θ and
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angle ϕ = 22.5° on the magnitude of a highly uniform mag-
netic field. The solid line describes the approximation of the
experimental results by the linear ∆n(B) dependence using
the least squares technique.
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is incident on the crystal along the z axis, we can find
the angle θ of rotation of the polarization plane of
emerging light from Eq. (5):

(6)

where

If α' = 0, ϕ = 0, and sinχ" ! 1, then expression (6) is
transformed into the formula given in [2]. Let us con-
sider the following two cases.

(a) Linear polarization (Bz = 0). In this case, α = 0;
i.e., normal modes in Eq. (3) are linearly polarized and
we obtain, instead of Eq. (6), the following expression
for the angle θ of rotation of the polarization plane:

(7)

(8)

Expression (7) coincides with the expression derived in
[10] and correctly describes the dependence presented
in Fig. 5 (curve 1). It should be noted that the depen-
dence of the angle of rotation of the polarization plane
on the magnetic field in the easy plane is determined
only by the phase difference given by Eqs. (8). The
phase difference is 2δ = 2πh(n1 – n2)/λ; it follows hence

2 ϕ θ–( )[ ]tan
a b 2ϕtan+
c d 2ϕtan+
---------------------------,=
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Fig. 5. Dependence of tan2θ on tan2ϕ for (1) a uniform and
(2) nonuniform magnetic field (B = 0.71 T).
P

from Eq. (7) that the dependence of birefringence ∆n on
the magnetic field B can be represented in the form

(9)

where the term λ/h takes into account the additional
phase shift of 2π emerging in the thick sample as com-
pared to the thin sample.

Our experimental results are presented in Fig. 4
(curve 2), demonstrating the measured magnetic-field
dependence of the birefringence ∆n induced by a highly
uniform magnetic field for a fixed angle ϕ = 22.5°. The
solid line in this figure presents the results of fitting of
the experimental results on birefringence using the least
squares technique. This allowed us to determine the
values of the constants appearing in formula (8):

Substituting the value of L equal to 0.1740 T (from
[11]) into this formula, we obtain

In a magnetic field B < BS, the monodomain struc-
ture of the crystal becomes damaged. Although the
antiferromagnetism vector within each domain differs
from zero, the resultant vector L  0 and, hence, the
phase difference 2δ also vanish. In addition, for the
magnetic fields used in our experiments, the magnitude
of the antiferromagnetism vector is independent of field
B, because the value of L is determined by the exchange
fields BE (which are of the order of 103 T). The terms
proportional to magnetization M,

(where χ ! 1 is the magnetic susceptibility and MS < L
is the spontaneous magnetization of a crystal with a
monodomain structure) make a small contribution to
the renormalization of parameters aij [1, p. 57] by virtue
of the above inequalities.

(b) Elliptical polarization (Bz ≠ 0). In this case, as
follows from Eq. (1), we have εxy ≠ 0 (i.e., α ≠ 0) and
the normal modes in Eq. (3) are elliptically polarized.
For this reason, we are dealing in this case with ellipti-
cal birefringence and rotation of the polarization plane.
The dependence of the angle of rotation of the polariza-
tion plane on angle ϕ is given by the general expression
of (6). It can be seen from Eq. (6) that the dependence
of (ϕ – θ)] on tan 2ϕ is nonlinear. This nonlinear-
ity appears due to the nonzero factor d being propor-
tional to εxy ~ Bz. In contrast to case (a), the dependence
of the angle of rotation of the polarization plane on the

∆n
λ

2πh
--------- 2 ϕ θ–( )tan

2ϕtan
-----------------------------arccos

λ
h
---,+=

α12 α11–( )L2 3.1 10 4– ,×≈

α14 α15+( )L 8.35 10 10– T 1– .×≈

α12 α11– 1.02 10 2– T 2– ,×≈

α14 α15+ 4.8 10 9– T 2– .×≈

M
MS χB+
1 4πχ+
---------------------,=

2[tan
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magnetic field in the easy plane is determined not only
by the phase difference but also by the dependence of
εxy on the z component Bz of the magnetic field. The
experimental results are presented in Fig. 5 (curve 2).
The solid curve presents the results of fitting experi-
mental data with formula (6) using the least squares
technique for Bz = 5.5 mT. In the present case, this value
apparently characterizes the magnetic-field nonunifor-
mity in the bulk of the sample.
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Abstract—The structure of domain walls and new-phase nucleation are investigated in a four-sublattice anti-
ferromagnet (AFM) of the La2CuO4 type placed in a magnetic field which initiates an AFM–weak-ferromagnet
(WFM) magnetic structural phase transition. The critical fields for nucleus growth are found in the case of two
types of domain walls present. The magnetization curve is calculated and a two-step mechanism is proposed
for the AFM–WFM phase transition observed in La2CuO4. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last decade, four- (and more) sublattice anti-
ferromagnets have attracted the attention of investiga-
tors. Among such antiferromagnets is La2CuO4,

belonging to space group . In La2CuO4, three types
of antiferromagnetic (AFM) structures can exist:

(I+ τ–) with the antiferromagnetism vector L1 =

M1 – M2 – M3 + M4, (I+ τ+) with L2 = M1 – M2 +

M3 – M4, and (I+ τ–) with L3 = M1 + M2 – M3 –
M4, where Mi (i = 1–4) are the sublattice magnetiza-
tions [1–4]. The antiferromagnet La2CuO4 consists of
alternating Cu–O layers, each of which contains two
nearly collinear magnetic sublattices. The interaction
between the sublattices of adjacent Cu–O layers is
weaker than that between the sublattices of the same
layer. The magnetic properties of La2CuO4 can be
described in terms of the ferromagnetism (mj) and anti-
ferromagnetism (lj) vectors of adjacent layers (j = 1, 2)
[5]: m1, 2 = (M1, 3 + M2, 4)/2M0 and l1, 2 = (M1, 3 –
M2, 4)/2M0, where M0 is the saturation magnetization of
the magnetic sublattices. The vectors l1 and l2 are paral-
lel to the Cu–O layers, while the vectors m1 and m2 are
normal to these layers. In the structure with L1, the vec-
tors m1 and m2 are nonzero (because of the intralayer
Dzyaloshinskiœ interaction) and antiparallel to each
other. The resultant ferromagnetism vector m = m1 +
m2 is zero in the absence of an external magnetic field
(pure AFM state [2]). In the structure with L2, the vec-
tors m1 and m2 are parallel and the resultant ferromag-
netism vector m is nonzero, which corresponds to a
weakly ferromagnetic (WFM) state. The transition
between the AFM and WFM structures occurs in a
magnetic field perpendicular to the Cu–O layers, i.e.,
directed along the 2y axis [1–3, 6]. Upon this transition,
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the direction of m2 is reversed, because the sublattice
magnetizations M3 and M4 reverse their directions.
Symmetry analysis reveals [3] that this transition is the

I+ τ–  I+ τ+ magnetic structural phase tran-
sition. According to the conductivity measurements in
an increasing magnetic field, this transition occurs in
two steps. The reason for such behavior of the conduc-
tivity as a function of magnetic field cannot be
explained in terms of the modern theory of first-order
phase transitions [7].

In our previous paper [8], we investigated the struc-
ture and steady-state dynamics of the interphase bound-
ary separating the AFM and WFM states (i.e., the L1
and L2 states) in La2CuO4. It is well known [9–11] that,
in two-sublattice antiferromagnets, the interphase
boundaries separating the AFM and WFM states are
90° walls and their formation involves rotation of the
magnetizations of all magnetic sublattices. Such an
interphase boundary can arise as a result of dissociation
of an AFM 180° wall into two 90° walls. In La2CuO4,
the interphase boundary separating the AFM and WFM
states is formed through a 180° rotation of the magne-
tizations of only two of the four magnetic sublattices.
However, the mechanisms of formation of a nucleus of
the new magnetic phase and of the interphase boundary
in four-sublattice antiferromagnets of the La2CuO4 type
during the magnetic structural phase transition remain
unclear.

The objective of this paper is to investigate the
domain-wall (DW) mechanism of new-phase nucle-
ation in a four-sublattice antiferromagnet placed in a
magnetic field H initiating the magnetic structural
phase transition. We also analyze the features of the
magnetization curve in the case where there are two
types of nuclei and explain the two-step character of the
I+ τ–  I+ τ+ magnetic structural phase tran-
sition in an increasing magnetic field.
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2. THE STRUCTURE OF A DOMAIN WALL
IN A WEAK MAGNETIC FIELD H || 2y

We start from the free-energy density [12] written in
a coordinate frame with axes y || 2y and x || 2x (see [3,
Fig. 23]):

(1)

where He and he characterize the intra- and interlayer

interactions, respectively; HD and  characterize the
intra- and interlayer Dzyaloshinskiœ interactions,
respectively; α is the exchange stiffness parameter; HAY

and HAX are the tetragonal and orthorhombic anisotropy
fields, respectively; ha is the interlayer anisotropy field;
and H is an external magnetic field.

The ground state can be found by minimizing the
energy in Eq. (1), which gives the following two possi-
ble AFM structures:

I+ τ–, l2 ↑↓  l1 ↑↑  x,

(2a)

I+ τ+, l2 ↑↑  l1 ↑↑  x,

(2b)

The first structure corresponds to the AFM state with
L1; the second structure, to the WFM state with L2. The
stability regions of the WFM and AFM phases overlap.
The transition between these phases occurs abruptly
(first-order phase transition) when the external field
becomes equal to H = Hτ, where

which is determined by the equality of the energies of
the two phases. According to [2], Hτ ≈ 30 kOe. In oxy-
gen-enriched La2CuO4 crystals, the phase-transition
field decreases, Hτ  0 [13, 14].

Four types of AFM domain walls can exist in
La2CuO4 [5]. Two of them are formed through a rota-
tion of the vectors l1 and l2 in the Cu–O plane, while in
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the other two, these vectors deviate from the Cu–O
plane. It was shown in [15] that the latter two types can
occur only in strong external magnetic fields directed
along the z axis. In this paper, we consider much lower
fields directed along the 2y axis; therefore, only the
case of antiferromagnetism vectors rotated in the Cu–O
planes is discussed.

Let θ1 and θ2 be the deviation angles of the vectors
l1 and l2 from their directions in the ground state,
respectively: lj = (–1) j + 1(cosθj, 0, sinθj). Then, the
Euler equations which determine the minimum of the
energy in Eq. (1) have the form

(3)

where θ± = θ1 ± θ2, ξ = z , β2 = 2[HAX + (  +

)/He]/M0, δ1 = 2(he – ha)/M0, δ2 = 2(he + ha +

2HD /He)/M0, and h = 2(HD + )H/HeM0.

We consider the case where the antiferromagnetism
vectors rotate in the Cu–O plane in such a way that, in
a zero field, they always remain antiparallel to each
other (A-DW [5]). In low fields h ! (δ1, δ2) ! β2, the
angles θ1 and θ2 can be written as

(4)

Here, the zeroth terms correspond to the rotation of the
antiferromagnetism vectors in the DW in the absence of
interlayer interactions and of an external magnetic field
and satisfy the equation

(5)

A solution to this equation subject to the boundary con-
ditions θ0(ξ  –∞) = 0, θ0(ξ  ∞) = π, and dθ0/dξ =
0 has the form

(6)
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A solution to the first equation of set (7) describes
distortions of the structure given by Eq. (6) that are due
to interlayer interactions; this solution has the form

(8)

The second equation of set (7) has a solution

(9)

where C is a constant. This solution describes the shift
of the θ1 and θ2 distributions relative to each other. The
constant C is found from the equation for the second-
order corrections, which is written as

(10)

This equation has a solution if

(11)

If the vectors l1 and l2 cease to be antiparallel when
rotating in the domain wall (E-DW [5]), then the con-
stant C, characterizing the shift of the centers of the θ1
and θ2 distributions relative to each other in a magnetic
field, is given by Eq. (11) with –δ1 in place of δ1.
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Thus, in a zero magnetic field, the θ1 and θ2 distri-
butions in the DW (i.e., the rotation of the sublattice
magnetizations) are described by Eq. (6) as before. In
an external magnetic field H || 2y , adjacent Cu–O layers
differ in energy, because at the DW center, the magne-
tization of one Cu–O layer is parallel to the external
field while the magnetization of the other Cu–O layer is
antiparallel. Therefore, the centers of the θ1 and θ2 dis-
tributions in adjacent Cu–O layers are shifted by C rel-
ative to each other. Figure 1 shows the dependences of
the angles θ1 and θ2 on the coordinate as calculated
numerically from Eqs. (3) for an A-DW.

3. THE DOMAIN-WALL STRUCTURE 
AND NUCLEATION IN MAGNETIC FIELDS

IN THE VICINITY OF THE MAGNETIC 
STRUCTURAL TRANSITION

Now, we consider the mechanism of formation of an
interphase boundary separating the AFM and WFM
phases in a field H || 2y . With allowance for the results
obtained above, the θ1 and θ2 distributions are taken in
the form

(12)

where ∆ and q are variational parameters. The parame-
ter ∆ is the characteristic scale of inhomogeneity and
q/2 is the shift of the centers of the θ1 and θ2 distribu-
tions in the magnetic field. The upper sign corresponds
to the case where the vectors l1 and l2 remain antiparal-
lel to each other when rotating in the DW in the field
H = 0 (A-DW), and the lower sign corresponds to the
case where the antiparallelism is destroyed (E-DW).
The DW energy as a function of q and ∆ is

(13)

Minimizing the DW energy with respect to q and ∆
gives the dependences of the DW energy and the effec-
tive DW thickness,

, (14)

on the external magnetic field. In low fields (H ! Hτ),
the shift of the centers of the θ1 and θ2 distributions rel-
ative to each other is found to be

(15)

The quantity q is identical to the parameter C found in
the preceding section [see Eq. (11)]. The DW energy
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∆
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2∆ β2
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and the effective DW thickness (for H ! Hτ) are

Figure 2 shows the effective thickness and the
energy of the A-DW and E-DW as functions of the
external field over a wide range of H values. It is seen

from Fig. 2a that as H  , the DW thickness
tends to infinity. This means that the AFM domain wall
is split into two interphase boundaries in such fields.

As shown in [5], both DWs are stable at H = 0. The
energy of the E-DW is higher than that of the A-DW. In
a magnetic field, the difference in the energy of these
DWs decreases. As the external magnetic field

increases and approaches a critical value , the
E-DW energy tends to twice the interphase boundary

energy [8]. The field  corresponds to the formation
of a nucleus of the WFM phase and is equal to Hτ, the
field at which the first-order phase transition occurs
between the AFM and WFM phases. In the case of the
A-DW, the field at which a new-phase nucleus arises is

equal to  = 1.06Hτ. It is seen from Fig. 2 that in a
narrow range 0 ≤ (H – Hτ) ≤ 0.06Hτ, two different states
of the A-DW with different thicknesses and energies
correspond to one value of the magnetic field. (The
dashed curves in Fig. 2 correspond to unstable states.)

Thus, the E-DW, which is metastable (at δ1 > 0), is
split into two interphase boundaries when the external
field becomes equal to the first-order phase transition
field Hτ. The A-DW has a minimum energy and is split

in an external field equal to , which is only slightly
higher than Hτ. It should be noted that in La2CuO4, the

critical field  is significantly lower than the field in
which the AFM phase becomes unstable, H1 = 5.5Hτ. In
actual practice, in fields close to Hτ, the fluctuation
mechanism of the first-order phase transition can be
partially blocked; the transition from the AFM to the
WFM phase can also occur through the DW mecha-
nism of nucleation in that case.

It is notable that at δ1 > 0 (he > ha), the thickness of
the DW (and, hence, the WFM-phase nucleus thick-
ness) increases continuously in the case of the E-DW
and discontinuously in the case of the A-DW (Fig. 2a).
At δ1 < 0 (he < ha), the situation is reversed. For this rea-
son, the field dependences of the magnetization in the
A-DW and E-DW are different (Fig. 3). It is seen from
Fig. 3 that, in an external magnetic field, the magneti-
zation becomes nonzero, with its maximum being at the

EW 4M0
2 α β2 δ1 δ2++−( )=

× 1 3h2

4 β2 δ1 δ2++−( ) δ1 2δ2+±( )
----------------------------------------------------------------– 
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DW center; that is, the state with L2 arises. As the field
is increased, the region where the magnetization has a
maximum increases in size and, at a certain critical
value Hn, occupies the entire volume of the sample. The
magnetization process is continuous in the case of the
E-DW and discontinuous in the case of the A-DW. The
magnitude of the magnetization My = 2M0(m1y + m2y)
tends to the value

(16)

everywhere over the sample. Here, MS = 4M0(HD +

)/He is the WFM moment and χ = 4M0/He is the
AFM susceptibility.

Thus, DWs of both the E-DW and A-DW types can
be considered as nuclei of a new, WFM phase with the

vector L2 and structure I+ τ+ arising in the AFM

phase with the vector L1 and structure I+ τ–. The
WFM phase will grow in volume through the splitting
of an AFM domain wall into two interphase boundaries
and their moving farther apart [8].

4. THE MAGNETIZATION CURVE

The difference in the fields  and , at which
interphase boundaries are formed in the case of A-DWs
and E-DWs, respectively, can manifest itself in the
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shape of the magnetization curve. Let us find the depen-
dence of the magnetization on the external magnetic
field. Taking the average of the resultant magnetization
over a magnetic-structure period, we find

(17)

where D is the domain width. Figure 4 shows the field
dependence of the average resultant magnetization,
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where  and  are the average magnetiza-
tions in blocks containing A-DWs and E-DWs, respec-
tively, and ∆NA and ∆NE are the volume fractions of
these blocks. At δ1 = 0 (ha = he), as seen from Fig. 4a,
the growth of a nucleus of the WFM phase proceeds in

one step in the field  =  = Hn = Hτ . In this case,
the A-DW and E-DW are identical and have the same

energy. As the parameter δ1 increases, the  corre-
sponding to the formation of a WFM-phase nucleus
increases (Figs. 4b, 4c). For this reason, the sample is
magnetized in two steps and the magnetization curve

exhibits two jumps, the first of which occurs at ;

the second, at .

Figure 5 presents the magnetization curve calcu-
lated with allowance for the coercive force acting on the
interphase boundary with the structure [8]

,

Here, ϑ1, ψ1 ! θ0 and z0 is the shift of the interphase
boundary at equilibrium. For the sake of simplicity, the
coercive force is assumed to be due to the inhomoge-
neous anisotropy constant β2 taken to be

(18)

where d is the characteristic scale of inhomogeneity of
the anisotropy constant. Interphase boundaries break

away from defects when the field is equal to  and

 given by

(19)

where λ = π2/d . It is seen from Eq. (19) that,

as ∆β2 increases, the fields  and  become pro-
gressively higher in comparison with the phase transi-
tion field Hτ. In the presence of a coercive force, the
magnetization in an increasing field also reaches satu-
ration in two steps (Fig. 5). When the field is decreased
and becomes equal to Hτ, corresponding to the first-
order phase transition, the magnetization drops in a
jump, because interphase boundaries arise at H = Hτ [8]
and the AFM phase increases sharply in volume
through their motion. The magnetization curve in Fig. 5
is calculated for ∆β2 = 0.1. Figure 5b corresponds to the
interlayer interaction fields taken from [16]; for this

case,  = 1.14Hτ and  = 1.20Hτ. The magneti-
zation curve in Fig. 5c is calculated for δ1 = δ2; in this

case,  = 1.14Hτ and  = 1.34Hτ. We note that
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these results correspond to he ≥ ha. When he < ha, the

field  required for a nucleus to arise is higher than

 and, therefore, the field  corresponding to the
break-away of an interphase boundary from defects is

higher than .

The magnetization curve calculated by us is similar
in character to the experimental field dependence of the
conductivity reported in [7], according to which the
AFM–WFM phase transition proceeds in two steps in
an increasing field and in one step in a decreasing field.
Two hypotheses were proposed for explaining the fact
that the observed AFM–WFM phase transition pro-
ceeds in two steps. One of them involved more complex
magnetic structures, because the approach that was
based on Eq. (1) for the energy failed to explain this
fact. The other hypothesis was based on an inhomoge-
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Fig. 4. Calculated magnetization curve in the absence of a
coercive force: (a) δ1 = 0, (b) δ1 ≠ 0 (δ1 < δ2), and
(c) δ1 = δ2.
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neous model according to which the phase transition
occurs in successive jumps in two spatially separated
parts of the sample. However, the assumption of the
existence of such spatially separated regions was not
substantiated in [7] in the framework of the well-known
model of the magnetic structure of the compounds
under study [2, 3, 12].

In constructing the magnetization curve, we
assumed that a sample consists of a great number of
regions of two types containing A-DWs and E-DWs,
respectively. This assumption is justified, because the
difference in the energy of these two types of DWs is
small (less than 8% in the case of the parameters of
La2CuO4 presented in [16]) and the stability regions of
these DWs overlap [8]. In terms of the DW mechanism
of formation of a WFM-phase nucleus considered
above, the transition to the WFM state first occurs at
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Fig. 5. Magnetization curve calculated with allowance for
the coercive force for ∆β2 = 0.1 and the same values of δ1
as in Fig. 4.
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 in the regions where E-DWs are dominant. When

the field is increased to H = , the transition to the
WFM phase occurs in the remaining regions of the
sample. In this model, the relative difference in the
magnitude of the fields in which new-phase nuclei arise
and interphase boundaries begin to break away from
defects is equal to

Here, ∆h depends on the value of δ1. For example, at
δ1 = δ2 ! β2, we have ∆h ≈ 0.2. For the values of param-
eters corresponding to La2CuO4 [16] (δ1 ≠ δ2), ∆h =
0.06. According to experimental data on conductivity
[7], the relative difference between the fields in which
the AFM–WFM phase transition proceeds in two steps
is ∆h ≈ 0.2 at T = 77 K. We see that the theory agrees
with the experimental data.

5. CONCLUSIONS

Thus, the fact that the AFM–WFM phase transition
proceeds in two steps [7] in an increasing field can be
interpreted in terms of the model of the magnetic struc-
ture of lanthanum cuprate proposed earlier (see, e.g.,
[2, 3, 12]) if the new-phase nucleation is assumed to be
governed by the domain-wall mechanism and if one
takes into account that there are two types of stable
DWs (A-DWs and E-DWs) with nearly equal energies.

Therefore, we can make the inference that, in a four-
sublattice antiferromagnet, a magnetic structural phase
transition in a magnetic field can proceed through the
domain-wall mechanism of formation of new-phase
nuclei and interphase boundaries. The DW mechanism
of new-phase nucleation in a four-sublattice antiferro-
magnet of the La2CuO4 type differs essentially from
that in two-sublattice antiferromagnets. The difference
is in the fact that the magnetization of one pair of sub-
lattices rotates in one half of the DW, while the magne-
tization of the other pair rotates in the other half of the
DW. The WFM-phase nucleus that arises at the center
of the AFM domain wall is characterized by the antifer-

romagnetism vector L2 and the structure I+ τ+. (Far
from the DW, the AFM state is characterized by the
antiferromagnetism vector L1 and the structure

I+ τ–.) The critical fields for the formation of a
WFM-phase nucleus are different for E-DWs and
A-DWs, which is the reason for the two-step character

Hc
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Hc
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∆h
Hc

A( ) Hc
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Hτ
--------------------------
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--------------------------.= =
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of the AFM–WFM phase transition observed in the
experiments.
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Abstract—Thermodynamics and kinetics of switching of ferroelastic ferroelectrics (FFs) are studied at the ini-
tial (weak-metastability) stage. It is shown that in the switching of a uniaxial FF, the role of the electric field
and mechanical stress simultaneously applied to the FF is analogous to that of supersaturation or supercooling
of solutions and melts in the process of a conventional phase transition. The dependence of the critical size of
a domain on the strength of the switching field is derived. In the space of domain sizes, the dependence of the
steady flux of repolarized and redeformed nuclei on the applied field is determined and the time required for
this steady flux to set in (latent time) and the time during which this flux is steady are estimated. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelastic ferroelectrics (FFs) have widespread
application as light valves and optical switches, logic
and memory elements, and materials for use as capaci-
tors and piezoelectric elements [1, 2]. FFs have no cen-
ter of symmetry above the phase-transition point and,
therefore, exhibit a piezoelectric effect in the paraelec-
tric phase [3]. For this reason, the spontaneous defor-
mation that arises in them below the Curie point is due
to the piezoelectric effect rather than to electrostriction,
as in pure ferroelectrics, and, hence, its magnitude is
proportional to the spontaneous polarization. Another
characteristic feature of FFs is that the domains that are
formed in the lower symmetric phase can change their
orientation under the action of an externally applied
field of a certain strength and direction. As is the case
with conventional ferroelectric crystals, the FF switch-
ing is accompanied by the occurrence of a switching
current. However, the switching of FFs also has specific
features associated with a linear relation between the
deformation and polarization. For example, because of
this relation, polarization reorientation in FFs is accom-
panied by deformation reorientation. Experimental and
theoretical studies of the switching process in ferro-
electrics and related materials (see, e.g., [4–11]) are an
important field of the physics of dielectric crystals and
of the theory of structural phase transitions.

A rigorous kinetic theory of switching processes in
uniaxial ferroelectric crystals was constructed in [12–
14]. It was shown that the role of the electric field in
switching processes is analogous to that of supersatura-
tion or supercooling in conventional phase transitions.
The switching process is a first-order phase transition,
1063-7834/02/4402- $22.00 © 20345
and its time evolution can be divided into several
stages. In the initial stage, fluctuation nucleation of the
new phase occurs and a steady flux of nuclei of reversed
polarization is established. However, the system as a
whole is not affected by these new-phase nuclei and its
thermodynamic parameters remain unchanged. In the
next stage, characterized as the basis of the switching
process, nuclei become so large in number that the elec-
tric field in the ferroelectric is changed (i.e., the extent
of “supersaturation” decreases). Coalescence of new-
phase nuclei occurs in the third, final stage.

FF switching can be considered in a similar manner,
thereby generalizing the theory developed in [12–14].

The objective of this paper is to describe the thermo-
dynamics and kinetics of the initial stage of FF switch-
ing. We restrict our consideration to uniaxial FFs
(Rochelle salt KNaC4H4O6 · 4H2O, potassium dihydro-
gen phosphate KH2PO4, etc.); the switching process in
multiaxial FFs, such as sodium trihydrogen selenite
NaH3(SeO3)2, is not considered in this paper.

In Section 2, the thermodynamics of FF switching is
considered; we outline the concepts and terminology of
the theory and show that the role of the combined elec-
tric field and mechanical stress in the switching of
uniaxial FFs is analogous to that of supersaturation or
supercooling in conventional first-order phase transi-
tions. In Section 3, the kinetics of FF switching at its
initial stage is investigated; a nonequilibrium distribu-
tion function in the domain size (number of unit cells)
of repolarization and redeformation is introduced and
the corresponding Fokker–Planck–Zel’dovich kinetic
equation is written out; the critical domain size is cal-
culated as a function of the switching field. Finally, in
002 MAIK “Nauka/Interperiodica”
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Section 4, the basic parameters of the kinetics of FF
switching at its initial stage, such as the diffusion coef-
ficient in the space of domain sizes and the steady flux
of repolarized and redeformed nuclei, are determined
and the time required for this steady flux to set in and
the time during which this flux is steady are estimated.

2. THERMODYNAMICS OF SWITCHING

We consider an L-thick slab of an FF in a spatially
homogeneous (single-domain) state below the Curie
point. It is assumed that spontaneous polarization arises
only along one of the crystal axes and that the sponta-
neous deformation is no more than a shear and is asso-
ciated with rotation about the same crystal axis. The x
axis is taken to be along the polarization vector. In other
directions, the FF is assumed to exhibit no anomalies in
its dielectric and mechanical properties. Under these
assumptions, the spontaneous polarization of the uniax-
ial FF is completely determined by the x component Px

of the polarization vector and the spontaneous deforma-
tion is the yz shear component Uyz of the deformation
tensor. The FFs with such electromechanical properties
are typified by Rochelle salt crystals (a 222  2 sym-
metry change).

If an electric field and mechanical stress are simul-
taneously applied to the crystal under study, then its
incomplete thermodynamic potential at a temperature
near the Curie point can be written in the form [3]

(1)

where η is the order parameter for the ferroelastic–fer-
roelectric phase transition (it transforms like a compo-
nent of a second-rank tensor and, simultaneously, like a
component of a vector); Φ0( p, T) is the part of the ther-
modynamic potential that is independent of the order
parameter; p and T are the pressure and temperature of
the ambient medium, respectively; α and β are coeffi-
cients of the power series expansion of the thermody-
namic potential in η; Tc is the Curie temperature; Ex is
the x component of the electric field; and σyz is the yz
component of the stress tensor.

Minimizing the thermodynamic potential (1), we
obtain a relation between the order parameter and the
applied field and stress,

(2)

Using the thermodynamic potential (1), the electri-
cal and mechanical equations of state for a unit volume

Φ Φ0 p T,( ) 1
2
---α T Tc–( )η2 1

4
---βη4+ +=

– a1ηEx a2ησ yz,–

α T Tc–( )η βη 3+ a1Ex a2σyz.+=
P

of the FF are found to be

(3)

where the equilibrium value of the order parameter is
given by Eq. (2). The x component of the polarization
vector and the yz component of the deformation tensor
are subject to the obvious condition [3]

It follows from Eq. (2) that in the absence of exter-
nal fields and stresses (Ex = 0, σyz = 0), the higher sym-
metry phase (η = 0) is stable above the Curie point. We
will study FF switching in the temperature range below
the Curie point, where the order parameter of the stable
(lower symmetry) phase of the FF is nonzero and,
hence, the polarization and deformation are also non-
zero. The equilibrium values of the order parameter are
equal to

, (4)

and, therefore, the spontaneous polarization and defor-
mation in the lower symmetry phase are

(5)

The boundaries of the stability region of the uniaxial
FF are found from the condition a1(∂Ex/∂η)T +
a2(∂σyz/∂η)T = 0 (cf. [15]) to be

(6)

In describing first-order phase transitions in solu-
tions, the quantity called supersaturation plays an
important role. In [12–14], an analogous quantity
called repolarization was introduced in constructing a
consistent theory of polarization reversal in uniaxial
ferroelectrics. In this paper, in describing the switching
kinetics of uniaxial FFs, we introduce the quantity

(7)

Px
∂Φ
∂Ex

--------- 
 

T σyz,
– a1η ,= =

Uyz
∂Φ
∂σyz

---------- 
 

T Ex,
– a2η ,= =

Px

a1
-----

Uyz

a2
--------.=

η1 20,
α T Tc–( )

β
------------------------±=

Px 1 20, , a1η1 20, a1
α T Tc–( )

β
------------------------,±= =

Uyz
1 20, a2η1 20, a2

α T Tc–( )
β

------------------------.±= =

η1 2s,
α T Tc–( )

3β
------------------------,±=

Px1 2s, a1η1 2s, a1
α T Tc–( )

3β
------------------------,±= =

Uyz
1 2s, a2η1 2s, a2

α T Tc–( )
3β

------------------------.±= =

∆η η η 10– ,=
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which is similar to repolarization and will be referred to
as repolarization–redeformation (RR). In addition, we
define the relative RR as

(8)

Using the quantities defined in Eqs. (7) and (8) and
the dependences of the spontaneous polarization and
spontaneous deformation on the order parameter given
by Eq. (3), one can determine the repolarization, intro-
duced in the theory of polarization reversal in uniaxial
ferroelectrics [12–14], and the redeformation as

(9)

where ∆P and ξP are the repolarization and the relative
repolarization, respectively, and ∆U and ξU are the
redeformation and the relative redeformation, respec-
tively. It should be noted that in a uniaxial FF, the rela-
tive repolarization, the relative redeformation, and the
relative RR are equal in value.

If the electric field and mechanical stress applied to
the crystal are weak enough, then the RR and the rela-
tive RR can easily be found as functions of these exter-
nal fields. For this purpose, we expand the left-hand
side of Eq. (2) in powers of (η – η10),

and find that

(10)

(11)

Therefore, the role of the combined electric field
and mechanical stress in FF switching is analogous to
that of supersaturation or supercooling in conventional
phase transitions.

Below the Curie point, according to [3], the dielec-

tric susceptibility is  = /2α(Tc – T) and the elas-

tic compliance is  = /2α(Tc – T). Therefore,
Eqs. (10) and (11) can be represented in the form

(12)

ξη
η

η10
------- 1–

η η 10–
η10

----------------------
∆η
η10
-------.= = =

∆P Px Px10–≡ a1 η η 10–( ) a1∆η ,= =

ξP

Px

Px10
--------- 1–≡ ξη ,=

∆U Uyz Uyz
10–≡ a2 η η 10–( ) a2∆η ,= =

ξU

Uyz

Uyz
10

-------- 1–≡ ξη ,=

α T Tc–( )η βη 3 α T Tc–( ) 3βη10+[ ] η η 10–( )≈+

=  2α T Tc–( ) η η 10–( ) a1Ex a2σyz,+=

∆η
a1Ex a2σyz+
2α Tc T–( )

------------------------------,=

ξη
a1Ex a2σyz+

2α Tc T–( )η10
-----------------------------------.=

χxx
T σyz,

a1
2

syzyz
T Ex,

a2
2

∆η
χxx

T σyz,
Ex

a1
------------------

syzyz
T Ex,

σyz

a2
------------------,+=
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(13)

Using Eqs. (9), one can also derive analogous expres-
sions for the repolarization and redeformation:

(14)

The quantity  = |η1s/η10 – 1| is the maximum

attainable value of the relative RR. At ξη > , the ini-
tial orientation of the polarization and deformation in
the lower symmetry phase becomes absolutely unstable
and spontaneous switching of the polarization and
deformation occurs in the FF.

In terms of the thermodynamic description pre-
sented above, one can make a qualitative comparison
between the features of uniaxial FF, uniaxial ferroelec-
tric, and intrinsic ferroelastic switching. For example,
the domain switching in a uniaxial FF can be performed
by applying either an electric field (as is the case with
pure ferroelectrics) or a mechanical stress (loading), as
in pure ferroelastics. In this respect, the application of
an electric field along the polar axis is equivalent to the
application of a shearing stress [1]. In the general case,
a uniaxial FF can be switched by applying an electric
field and a stress simultaneously. On the other hand, the
crystal under study is initially in a spatially homoge-
neous (single-domain) state and can be thought of as
both a ferroelectric and a ferroelastic domain (elastic
twin), because a uniaxial FF is a uniaxial ferroelectric
and, at the same time, an intrinsic ferroelastic. There-
fore, when the relative RR in a ferroelastic-ferroelectric
domain reaches its maximum value and the intrinsic
order parameter η is reversed, the ferroelectric and fer-
roelastic domains are both switched simultaneously. In
other words, when a uniaxial single-domain FF crystal
is switched, the polarization and deformation in the
lower symmetry phase are reversed. This process is
accompanied by the occurrence of both polarization-
and deformation-switching currents.

It should be noted that the term “ferroelastic-ferro-
electric domain” has not come into wide use and needs
clarification. This term is used in the context of the clas-
sification of FFs as complete and incomplete. Appar-
ently, this classification was first introduced by Gridnev
and coworkers (see, e.g., [16, 17]), who experimentally
investigated relaxation processes in various FFs, among
them uniaxial ones. It is well known that in uniaxial FFs
(termed complete), the ferroelastic domains coincide

ξη
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with ferroelectric ones, while in multiaxial (incom-
plete) FFs, a ferroelastic domain has a substructure
formed by ferroelectric domains. We apply the term
ferroelastic–ferroelectric domain to a spatially homo-
geneous complete FF.

In concluding this section, it should be noted that in
the framework of the thermodynamics of uniaxial FF
switching, one can also describe the switching of both
uniaxial ferroelectrics (as in [12]) and intrinsic fer-
roelastics. In these two particular cases, the order
parameter can be specified. In intrinsic ferroelectric
phase transitions [σyz = 0 in Eq. (1)], the order parame-
ter is the polarization, which transforms like a vector
component. In an intrinsic ferroelastic phase transition
[Ex = 0 in Eq. (1)], the order parameter is the deforma-
tion and transforms like a component of a second-rank
tensor. In these two cases, the analog of the extent of
supersaturation is the electric field and the mechanical
stress, respectively.

We are now in a position to study the kinetics of
uniaxial FF switching at its initial stage in the frame-
work of the thermodynamic description presented
above.

3. SWITCHING KINETICS AT THE INITIAL 
STAGE IN THE REGION OF WEAK INSTABILITY

When describing the kinetics of uniaxial FF switch-
ing, it is convenient to introduce, in addition to the
order parameter η, polarization Px, and deformation Uyz

used above, the corresponding (specific) quantities ηω,
px, and uyz for a unit cell of the crystal:

(15)

where ω is the unit-cell volume.
We consider domains as being composed of unit

cells of a crystal characterized by the order parameter
ηω, polarization px, and deformation uyz. A domain of
volume Vd contains n = Vd/ω unit cells and is character-
ized by the order parameter, polarization, and deforma-
tion defined as

(16)

As in [12], we introduce the size distribution func-
tion of domains f(n, t) normalized to the number of
domains N(t) per unit volume of the crystal. The kinetic
equation describing the process of nucleation of the
new phase in the case of n @ 1 has the form [12]

(17)

ηω ηω, px Pxω a1ηω,= = =

uyz Uyzω a2ηω,= =

ηn ηωn, Pxn pxn a1ηn,= = =

Uyz
n uyzn a2ηn.= =

∂f n t,( )
∂t

------------------

=  
∂

∂n
------Wn n 1+,

1
kBT
---------

∂Rmin

∂n
------------- f n t,( ) ∂f n t,( )

∂n
------------------+ ,
P

where f(n, t) is the size distribution function of repolar-
ized and redeformed domains, Wn, n + 1 is the diffusion
coefficient of reversed nuclei in the space of domain
sizes, Rmin(n) is the minimum work done by the system
to create a nucleus, and ∂Rmin/∂n is the change in the
minimum work caused by a change in the number of
unit cells in a domain whose size does not exceed its
critical value, n < nc (nc is the size of a critical nucleus
in equilibrium with the medium). Depending on their
size, the nuclei can be divided into two classes: nuclei
with n < nc and nuclei with n > nc. The former nuclei
decay, whereas the latter grow in size, because the repo-
larization and the redeformation of the medium are not
large enough for the former nuclei to exist but are suf-
ficiently large for the latter nuclei to grow. The differ-
ence in behavior of subcritical and supercritical nuclei
is due to the positive surface energy of arising nuclei;
this energy plays a decisive role in any first-order phase
transition.

At the initial stage of FF switching, the system does
not respond to the formation of the new phase and the
thermodynamic parameters of the system remain
unchanged. Therefore, it will suffice to solve Eq. (17)
for the steady-state case and find the steady flux of aris-
ing nuclei of the switched phase. For this purpose, one
has to calculate the diffusion coefficient Wn, n + 1, the
minimum work Rmin(n) done to create a nucleus, and
the critical nucleus size nc. To find these quantities,
characterizing the initial stage of FF switching, we
employ the method developed in [12].

Following [12], it is easy to show that the minimum
work done to create a new-phase nucleus of size n with
order parameter ηn, polarization Pxn, and deformation

 in a uniaxial FF at fixed values of the pressure and
temperature can be written as

(18)

where ∆W, ∆V, and ∆S are the total changes in the
energy, volume, and entropy of the nucleus on its for-
mation, respectively, and p0, T0, and µ0 are the pressure,
temperature, and chemical potential of the medium,
respectively. Here and henceforth, quantities with the
index zero are related to the medium and quantities
without this index are related to a nucleus. The first
term in Eq. (18) is the thermodynamic potential of a
nucleus of size n with combined internal field and stress

(a1Exn + a2 ) and can be written as

(19)

Uyz
n

Rmin n( ) ∆ W p0V T0S– ExnPxn– σyz
n Uyz

n–+( )=

+ Exn Ex0–( )Pxn σyz
n σyz

0–( )Uyz
n µ0n–+

≡ ∆ W p0V T0S– a1Exn a2σyz
n+[ ]η n–+( )

+ a1 Exn Ex0–( ) a2 σyz
n σyz

0–( )+[ ]η n µ0n,–

σyz
n

φ ηn( ) ∆ W p0V T0S–+(=

– a1Exn a2σyz
n+[ ]η n ) µ̃n,=
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where  is the chemical potential per unit cell of a new-
phase nucleus of size n (including the surface tension
energy).

In order to find the chemical potential of a nucleus
of the repolarized and redeformed phase with allow-
ance for the surface tension energy, one should make an
assumption as to the shapes of the ferroelastic-ferro-
electric nuclei. As in [12], we assume that the new-
phase nuclei arising in the process of uniaxial FF
switching merge instantaneously into a cylindrical
domain with a constant height H ~ ω1/3 and variable
radius and that the interfaces between old-phase and
new-phase domains are parallel to the polar axis of the
crystal (the x axis). It should be noted that a domain
wall being parallel to the polar axis of the FF is a nec-
essary condition of continuity of the tangential compo-
nent of the electric-field strength at the nucleus–
medium interface. For a cylindrical nucleus of reversed
polarization and strain, the surface energy is Ws =
2(πHω)1/2σn1/2, where σ is the surface tension coeffi-
cient of the domain wall.

With allowance for the surface tension, the chemical
potential of a new-phase nucleus of size n is

(20)

where the terms µ(a1Exn + a2 , p, T) and
(πHω)1/2σ/n1/2 are the contributions from the bulk
energy and surface energy of the nucleus, respectively,
to the chemical potential.

Using Eqs. (18)–(20), we find the minimum work

 done to create a new-phase nucleus whose size is
close to critical:

(21)

where ηω is the specific order parameter defined by
Eq. (15) [see also Eq. (16)].

The equilibrium value of the order parameter (and,
hence, the equilibrium values of the deformation and
polarization) of the nucleus–medium system is deter-
mined by the condition

(22)
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On the other hand, the equilibrium magnitude of the

combined field and stress a1  + a2  in the nucleus–
medium system (in the case of an infinitely large
nucleus, n  ∞) is found from the condition

(23)

We subtract Eq. (23) from Eq. (22) and expand the

result around the point a1  + a2  in powers of the

small deviation (a1Exn + a2  – a1  – a2 )/(a1  +

a2 ). Keeping only the first term of the power series,
we find the basic part of the nucleus size distribution
to be

(24)

Note that

(25)

where  and  are the specific order parameters of

the medium and nucleus, respectively, and  =

− . Introducing the notation  = –ηω, we obtain
from Eq. (24)

(26)

For the FF in the equilibrium state, we have a1  +
a2  = 0. When the FF is in a switching field, the size
of a critical nucleus (which is in equilibrium with the
medium) is determined by the condition  +

 = a1Ex0 + a2 , from which one can find

(27)
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a1 Ẽx a2σ̃yz+

=

× a1Exn a2σyz
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Dropping the index zero, which indicates that the
field and stress are related to the medium, we write

(28)

Substituting Eqs. (15), we rewrite Eq. (28) in the
final form

(29)

Formulas (28) and (29) give the number of unit cells
in a critical nucleus of the repolarized and redeformed
phase in a uniaxial FF. These expressions are similar to
the corresponding formulas giving the number of unit
cells in critical nuclei that arise in solutions, melts, and
uniaxial ferroelectrics [12]. The magnitude of the linear
combination a1Ex + a2σyz of the electric field and stress
is an analog of the extent of supersaturation or super-
cooling.

The minimum work done to create a cylindrical crit-
ical nucleus is [12]

(30)

On the other hand, the minimum work done to cre-
ate a nucleus whose size is close to that of a critical
nucleus can be represented in the following form using
Eq. (22):

(31)

where ηω is the specific order parameter of the medium.
Substituting Eq. (15) into Eq. (31), we obtain

(32)

Formulas (29) and (32), derived for a uniaxial FF,
are also applicable to uniaxial ferroelectrics and intrin-
sic ferroelastics. For example, in the case of a pure fer-
roelectric, Eqs. (29) and (32) are reduced to the formu-

las  = (πHω)1/2σ/2pxEx and  = –2px(Exn – Ex0)
respectively, derived in [12] for this case. For a pure fer-
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roelastic, Eqs. (29) and (32) take the form  =

(πHω)1/2σ/2uyzσyz and  = –2uyz(  – ).

Now, we calculate the basic characteristics of the
initial stage of FF switching.

4. THE MAIN CHARACTERISTICS
OF THE INITIAL STAGE 

OF THE FERROELASTIC–FERROELECTRIC 
SWITCHING

We calculate the diffusion coefficient in the space of
domain sizes, the steady flux of repolarized and rede-
formed nuclei, the time required for this steady flux to
set in, and the time during which this flux will be
steady.

In order to calculate the diffusion coefficient in the
domain-size space, we use kinetic equation (17). We
note that the quantity (Wn, n + 1/kBT)(∂Rmin/∂n) in this
equation is the growth rate of nuclei of size n; that is,

(33)

On the other hand, the nucleus growth rate can be
written as

(34)

where β(a1Exn + a2 ) is the flux of unit cells with
reversed polarization and deformation that merge with
the cylindrical domain at its lateral surface, β(a1Ex0 +

a2 ) is the reverse unit-cell flux due to dissolution of

the domain, a1Exn + a2  is the linear combination of
the electric field and stress in an imaginary medium in

equilibrium with a domain of size n, a1Ex0 + a2  is
the linear combination of the electric field and stress in
the FF under study, and S = 2(πHω)1/2n1/2 is the area of
the lateral surface of the cylindrical domain.

The equilibrium unit-cell flux is equal to

(35)

where ν is the oscillation frequency of atoms in the unit
cells situated at the domain surface; V0 is the height of
the energy barrier (in the absence of an external field)
separating two adjacent domains that are in symmetri-
cal positions but whose order parameters have opposite
directions; and Ns is the number of unit cells at the
domain surface, which is roughly equal to Ns ~ 1/ω2/3,
where ω2/3 is the area occupied by a unit cell at the
domain surface.

When an electric field and a stress are applied to the
FF, the barrier height V0 is changed; it decreases to a
value of V0 – ηω(a1Ex + a2σyz) for the unit cells of a
domain with the order parameter aligned with the field
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but becomes higher and equal to V0 + ηω(a1Ex + a2σyz)
for the unit cells of a domain whose order parameter is
in opposition to the field. Therefore, the oppositely
directed unit-cell fluxes through a domain wall
become unequal. The unit-cell flux from the medium is

β(a1Exn + a2 ) = β0exp[ηω(a1Exn + a2 )/kBT],
while the unit-cell flux from a nucleus of critical size is

equal to β(a1Ex0 + a2 ) = β0exp[ηω(a1Ex0 +

a2 )/kBT]. If ηω(a1Ex + a2σyz) ! kBT, then the above
exponentials can be expanded in a Taylor series. Keep-
ing only the linear terms and substituting into Eq. (34),
we obtain the following expression for the growth rate
of the lateral surface of a domain with n > nc:

(36)

By comparing Eq. (36) with Eqs. (33) and (31), one
can obtain

(37)

therefore, for a nucleus of critical size, we have

(38)

This formula gives the diffusion coefficient in the
domain-size space. We note that Eq. (38) is similar to
the expression for the diffusion coefficient derived in
the theory of switching of uniaxial ferroelectrics in
[12].

Using Eq. (30) for the minimum work done to create
a nucleus of critical size and Eq. (38) for the diffusion
coefficient in the domain-size space, the steady flux of
repolarized and redeformed domains can be found to be
[12]

(39)

where Nv is the number of unit cells in the crystal,
which is roughly estimated to be Nv ≈ 1/ω.

Substituting Eq. (29) for the critical size nc into
Eq. (39), the flux of reversed domains is found as a
function of the applied electric field and stress:

(40)
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kBT
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Taking the logarithm of this expression gives

(41)

where

Since the logarithm is a slowly varying function, the
second term in Eq. (41) can be considered to be inde-
pendent of the field and stress in the first approxima-
tion. In this case, Eq. (41) takes a form convenient for
making estimates from experimental data:

(42)

where const stands for the first two terms in Eq. (41).

Now, we estimate the time required for the steady
flux of new-phase nuclei to set in and the time during
which this flux will be steady. In the region of n < nc,
the flux of nuclei is determined primarily by het-
erophase fluctuations. Therefore, the flux becomes
steady upon passing through the size range of width δn0
near the critical value of the nucleus size. The width of
this range is given by [18]

(43)

Using Eq. (43), we find that the time during which
the steady flux of nuclei sets in is equal to [12]

(44)

Substituting Eq. (29) for nc into Eq. (44) yields

(45)

Thus, the time required for the steady flux to set in
varies in inverse proportion to the square of the linear
combination of the applied electric field and stress.

In order to estimate the time during which the flux
of nuclei will be steady, one should take into account
that the time required for a nucleus to pass through a
region of width δn0 near the critical point in the
domain-size space is much shorter than the time during
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which a nucleus of critical size emerges from this
region; that is,

(46)

The formulas derived above for the quantities char-
acterizing the initial stage of uniaxial FF switching can
be used to calculate analogous switching parameters of
uniaxial ferroelectrics in an external electric field (σyz =
0) and intrinsic ferroelastics subjected to external
stresses (Ex = 0).

5. CONCLUSIONS

In closing, we specify the principal results of this
work and point out some lines of further investigation
of FF switching. In this paper, we developed a kinetic
theory for the initial stage of uniaxial FF switching and
calculated the main characteristics of this process. The
results can also be used to describe the switching of
uniaxial ferroelectrics and intrinsic ferroelastics. How-
ever, the results of this work are inapplicable to the
basic stage of FF switching (not considered here), in
which the polarization and deformation reversal
involve the main body of the FF and the thermody-
namic parameters of the system are changed. It is also
of interest to theoretically investigate the switching of
multiaxial ferroelectrics and related materials charac-
terized by a multicomponent order parameter. These
subjects will be considered in the future.
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Abstract—This paper reports on measurements of the specific heat of Pb2CdWO6 made at temperatures rang-
ing from 80 to 750 K and of Pb2YbTaO6 within the 350- to 700-K temperature range. First-order phase transi-
tions from the cubic phase at 677.3 and 581 K, respectively, were observed, and their thermodynamic charac-
teristics were determined. The entropy change on the phase transitions is close to Rln4 for both compounds.
The results obtained are discussed in terms of the model of position disordering of the lead ions. It was estab-
lished that below 350 K, Pb2CdWO6 can exist in two states, stable and metastable, depending on the sample
thermal prehistory. © 2002 MAIK “Nauka/Interperiodica”.
Many perovskite-like oxygen compounds with a
three-dimensional framework of corner-sharing octahe-
dra undergo various sequences of phase transitions with
decreasing temperature which entail the formation of a
superstructure; however, only in some of them have
incommensurate modulated structures been revealed.
Only a few such compounds are thus far known to exist
among the Pb2B'B''O6 mixed perovskites, in particular,
Pb2ScTaO6 [1], Pb2CoWO6[2, 3], Pb2CdWO6 [4], and,
possibly, Pb2YbTaO6 [5, 6]. The reasons for the incom-
mensurate phase formation and the phase transitions of
this type remain poorly studied.

This paper presents the results of a study on the spe-
cific heat of two ordered perovskites, Pb2CdWO6 and
Pb2YbTaO6, carried out within a broad temperature
range with the purpose of determining the thermody-
namic parameters of the phase transitions and the
behavior of these compounds in the temperature
regions where anomalies in the dielectric properties are
observed.

The occurrence of the antiferroelectric-II–antiferro-
electric-I and antiferroelectric-I–paraelectric cubic
phase transitions (at 370 and 683 K, respectively) in
Pb2CdWO6 was first reported in [7], with the lower
temperature phase found to be pseudomonoclinic. In a
later x-ray study [4], only one phase transition, at
683 K, was detected; in contrast to [7], no appreciable
changes in the unit-cell parameters were observed to
occur near 370 K. In the higher temperature phase, the

compound has an fcc structure Fm  (Z = 4), which is
characteristic of ordered mixed perovskites. Below the
phase-transition point, the x-ray diffractograms were

3m
1063-7834/02/4402- $22.00 © 20353
interpreted as corresponding to a pseudoorthorhombic
unit cell [a0 = ac, b0 = (bc + cc)/2, c0 = (bc – cc)/2] similar
to the unit cell of the lower temperature phase of
Pb2CoWO6 [3, 8]. In this phase, one observes addi-
tional weak reflections, which were assigned in [4] to
incommensurate distortions.

The Pb2YbTaO6 compound was also reported [5, 6,
9] to undergo two phase transitions which proceed in

the following sequence: cubic paraelectric (Fm )–
antiferroelectric at T1 = 558 K and antiferroelectric–fer-
roelectric (Pcm21?) at T2 ≈ 450 K. The anomaly in the
dielectric permittivity at T2 is very weak, and noticeable
dispersion is observed.

The samples for investigation were prepared
through solid-state synthesis from a stoichiometric
mixture of the starting oxides. The mixture was heated
in a gold ampule and kept at a high temperature for sev-
eral hours. The quality and purity of the samples were
verified on a Siemens-D-5000 x-ray diffractometer. A
diffractometric analysis showed the sample to contain
neither the starting substances used in the solid-state
synthesis nor foreign phases [4]. It was also established
that there is no disorder in the distribution of the Cd2+

and W6+ ions, nor in the Yb3+ and Ta5+ ions occupying
positions at the centers of the corresponding octahedra
[4].

The heat capacity of Pb2CdWO6 was measured in
the 80- to 370-K temperature range with an adiabatic
calorimeter in the discrete and continuous heating
modes. The powder sample, 4.297 g in mass, employed
earlier in structure refinement measurements [4], was

3m
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placed in an indium container which was sealed in a
helium environment. The container heat capacity was
measured in a separate experiment. The scatter of
experimental points from a smoothened curve did not
exceed 0.5%.

In the 330- to 770-K range, the heat capacities of
Pb2CdWO6 and Pb2YbTaO6 were measured with a dif-
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Fig. 1. DSM-2M microcalorimetric traces obtained on (a)
Pb2CdWO6 and (b) Pb2YbTaO6.
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Fig. 2. Specific heat of Pb2CdWO6 measured within a broad
temperature range: (1) first series of measurements; (2) the
second series and subsequent measurements; (3) DSM mea-
surements made at high temperatures; and (4, 5) lattice spe-
cific heat.
P

ferential scanning microcalorimeter on a computerized
DSM-2M setup. The samples were 0.588 and 0.410 g in
mass, respectively. The error inherent in this method
(~5%) is substantially larger than that in an adiabatic
calorimeter.

The results obtained on samples of Pb2CdWO6 and
Pb2YbTaO6 with the differential scanning microcalo-
rimeter are presented in Fig. 1. Pb2CdWO6 exhibited
only one noticeable anomaly, with a maximum at
677 K (Fig. 1a). In Pb2YbTaO6, the anomaly is
observed at 581 K (Fig. 1b). Neither of the crystals
revealed any substantial anomalies in the temperature
regions where structural changes were reported in [5, 7,
9] to take place. This is possibly associated with the
insufficiently high sensitivity of the DSM method and
the smallness of the thermal effect of this phase transi-
tion in Pb2YbTaO6, a factor pointed out in [5]. The
enthalpy changes at the high-temperature phase transi-
tions in Pb2CdWO6 and Pb2YbTaO6 were found to be
6800 ± 300 and 6250 ± 350 J/mol, respectively.

Figure 2 displays the results obtained in a study of
the heat capacity of Pb2CdWO6. The specific heat does
not exhibit anomalous behavior up to 330 K. When
heated above 330 K, the sample reveals a stepwise
increase in the specific heat by ~5% within a narrow
(~10 K) temperature range (curve 1 in Fig. 2). The val-
ues of the low-temperature specific heat obtained in
repeated measurements were found to be higher than
those obtained in the first series. No changes in Cp(T)
near 330 K were presently found (curve 2 in Fig. 2).
The two levels of the specific heat obtained in different
series of measurements below this temperature imply
that a sample can reside in two possible states. Attempts
were made to act on the state of the sample through
thermal cycling and by maintaining it at liquid-nitrogen
and room temperature for 14 days. Subsequent mea-
surements showed, however, that this does not restore
the specific heat to its original value of below 330 K. It
may be conjectured that the equilibrium state corre-
sponding to the lower value of the specific heat is
reached as a result of aging, which is caused by pro-
longed storage of the sample at room temperature.
Effects of aging, which influence the behavior of the
dielectric properties in perovskite-like compounds,
were reported in [10]. In our case, the sample was
maintained at room temperature for several years
before the beginning of the calorimetric measurements.
The nonequilibrium state may have arisen after the
sample was heated above 330 K (above the temperature
of storage) and have persisted under subsequent cool-
ing. To investigate this phenomenon, we will repeat the
specific-heat measurements made on the same sample
following prolonged (about a year) storage at room
temperature.

The anomaly of the specific heat associated with the
phase transition from the cubic phase is observed in
scanning-microcalorimeter measurements at 677.3 K
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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(curve 3 in Fig. 2), which is slightly lower than the
value quoted in [4].

The results of the first series of measurements below
320 K and of the repeated experiment with the adiabatic
calorimeter from 140 to 360 K were treated using a
combination of the Debye and Einstein functions:

(1)

The relations derived in this treatment are plotted in
Fig. 2 (curves 4, 5). Extrapolation of the relation
obtained in the repeated series of measurements to the
high-temperature region reveals good agreement with
the data obtained from scanning microcalorimetry
above the phase-transition temperature. In our opinion,
this observation, as well as the good fit of the data in the
temperature range near 370–400 K, is evidence of a
fairly good agreement between the results obtained
with the two experimental methods and provides
grounds for their combined treatment.

It should be pointed out that when extrapolated to
the high-temperature domain, the specific heat
[described by Eq. (1)] derived from the original exper-
iments in the 80- to 320-K range tends to the classical
value following from the Dulong–Petit law. The values
of the specific heat found at high temperatures in the
second series of measurements lie above this level. The
reason for this remains unclear. We stress once more
that DSM measurements of the specific heat are made
with an error of about 5%. The systematic error can
increase at high temperatures.

The anomalous specific heat associated with the
phase transition from the cubic phase is observed in
Pb2CdWO6 within a fairly broad temperature range, as
wide as ~150 K below the transition temperature and
~15–20 K above it. The integrated thermodynamic
characteristics of the phase transition were derived
from the anomalous part of the specific heat ∆Cp(T) =
Cp(T) – CL(T), where, for the lattice specific heat CL(T),
we used results obtained by fitting the low-temperature
specific heat with Eq. (1). The phase-transition specific

enthalpy ∆H =  is 7320 ± 360 J/mol, which

slightly exceeds the value extracted from the DSM
measurements themselves (6800 ± 300 J/mol). The spe-
cific entropy of the phase transition, calculated by inte-
grating the ∆Cp(T)/T function, is plotted in Fig. 3. The
total change in the specific entropy is ∆S = 11.1 ±
0.6 J/mol K ≈ 1.33R. Also shown in Fig. 3 is the change
in the specific entropy of Pb2YbTaO6, ∆S = 10.9 ±
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0.6 J/mol K, which was derived from the DSM mea-
surements.

The value of ∆S obtained in this work for both com-
pounds is large and close to Rln4, which is in accor-
dance with our earlier data on the related compounds
Pb2CoWO6 and Pb2MgWO6, which also undergo tran-
sitions from the cubic to a pseudoorthorhombic phase
[11, 12]. Such a large change in the entropy indicates a
substantial role being played by ordering processes in
the phase-transition mechanism.

Judging from structural data on the Pb2B'B''O6
ordered perovskites [13, 14], Pb ions have the largest
temperature parameter in the cubic phase if we assume
them to occupy the 8c positions. In the distorted phase,
this parameter is of normal magnitude if the phase is
pseudoorthorhombic. This provided grounds for the
assumption that lead ions in the cubic phase are posi-
tionally disordered [14]. There are three models of pos-
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Fig. 3. Temperature dependence of the excess specific
entropy: a—Pb2CdWO6 and b—Pb2YbTaO6.
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sible disorder which consider the lead-ion displace-
ments from the 8c position in the [100]-, [110]-, and
[111]-type directions.

Symmetry considerations leave six equally probable
positions for the lead ions in the first model, twelve in
the second, and four in the third. A refinement of the
Pb2CoWO6 and Pb2MgWO6 structures made within
these models yields the following results [13, 14]. The
lowest value of the R factor for Pb2CoWO6 was
obtained in the case of lead disordered over twelve
positions (the [110] model). For Pb2MgWO6, all the
models considered yielded very close values of the R
factor, making it difficult to give preference to any one
of them. In the distorted phase, the lead ions are dis-
placed primarily along the [100]-type directions of the
pseudocubic unit cell. This may occur as a result of
complete lead-atom ordering in the [100] model and
should be accompanied by an entropy change ∆S =
2Rln6 = Rln36. In the [110] model, the lead should
remain partially disordered over two or four positions
in the distorted phase in order to provide the experi-
mentally observed mean displacements. The specific
entropy is changed in this case by ∆S = 2Rln(12/4) =
Rln9 or 2Rln(12/2) = Rln36. In the [111] model, only
two of the four possible lead-ion positions should
remain in the distorted phase, thus changing the entropy
by ∆S = 2Rln(4/2) = Rln4.

The values of ∆S determined by us agree only with
the [111] model; the entropy changes calculated within
the other models far exceed those observed in all the
Pb2B'B''O6 compounds studied in this work and in [11,
12].

Some Pb2B'B''O6 compounds revealed soft modes in
the inelastic neutron and Raman scattering spectra [15,
16]. One may thus conjecture that the phase-transition
mechanism in these compounds involves both lead
ordering and oxygen-atom displacements. Processes of
the first kind provide the major contribution to the
entropy change. That the values of ∆S found in all the
compounds studied are close to Rln4 suggests the same
lead-disordering type to be operative in the cubic phase.

Studies of the Pb2CoWO6 compound suggest a phe-
nomenological model of phase transitions to incom-
mensurate and commensurate phases [17]. It was pro-
posed in [17] that an incommensurate phase arises at T1
as a result of soft mode condensation at the point k1 =
(kx, kx, 2π/a) in the Brillouin zone. At T2, additional
x-ray reflections appear, which correspond to the wave
vector k2 = (0, 0, 2π/a) (the X point of the Brillouin
zone). Reflections of the two types coexist within a
broad (~100 K wide) temperature region. The thermo-
dynamic potential has the form [17]

(2)
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PH
where ρ is the magnitude of the order parameter of the
incommensurate phase and η1 and η3 are the nonzero
components of the order parameter corresponding to
the ferroelectric phase. The coefficient δ describes the
interaction of the two order parameters. To include the
possibility of first-order transitions associated with
these two order parameters, one has to add a term of the
sixth power in ρ to the potential in Eq. (2) [18].
Depending on the actual values of the coefficients of
the potential in Eq. (2), one may conceive various
sequences of phase transitions: cubic paraelectric
G0  commensurate G1 (ρ = 0, η ≠ 0), cubic G0 
incommensurate G2 (ρ ≠ 0, η = 0), and cubic G0 
incommensurate G2 (ρ ≠ 0, η = 0)  incommensurate
G3 (ρ ≠ 0 η ≠ 0)  commensurate G1 (ρ = 0, η ≠ 0).
The thermodynamic paths for these transition
sequences are shown in Fig. 4 in a schematic phase dia-
gram in α–a coordinates (the thermodynamic-potential
parameters) by lines 1, 2, and 3, respectively. The first
sequence is likely to be realized in Pb2MgWO6, where
one phase transition to the commensurate phase G1 is
observed [14]. In Pb2CoWO6 with a larger cation, the
intermediate incommensurate phase G2 becomes stable
in the 258- to 304-K temperature range. In Pb2CdWO6,
with a still larger cation, the region of stability of the
intermediate incommensurate phase G2 broadens and,
according to our studies, no transition to the G1 or G3
phase occurs, at least down to 80 K. As for Pb2YbTaO6,
the above phase diagram is also applicable to descrip-
tion of the phase-transition sequences in this com-
pound, because, as reported in [5], its intermediate
phase is incommensurate.
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Abstract—Thermally stimulated electron emission is experimentally observed in ferroelectric triglycine sul-
fate (TGS) crystals in a temperature range whose upper limit is 10–15 K above the Curie point. Samples of a
nominally pure and a chromium-doped TGS crystal, heated at different constant rates q = dT/dt, are investi-
gated. It is shown that an increase in the heating rate results in increased emission current density over the entire
temperature range investigated. The temperature at which emission arises depends only slightly on the rate q.
At the same time, the temperature at which emission ceases increases monotonically with increasing q; if q is
less than 1 K/min, this temperature is below the Curie point, while at q = 4–5 K/min, this temperature becomes
as large as 60–65°C, which is more than 15°C above the Curie point. In chromium-doped TGS crystal, the elec-
tron emission onset temperature is close to that of pure TGS, but the width of the temperature range over which
emission is observed in the paraelectric phase is approximately two times less than in the case of pure TGS
heated at the same rate. The emission disappearance below the Curie point (in the ferroelectric phase) at low q
is explained as a result of full emptying of the electron traps under slow heating. The reason for the occurrence
of emission above the Curie point is related to the charges that shield the spontaneous polarization and, because
of their slow relaxation, persists in the paraelectric phase. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most powerful methods of disclosing the
nature of electron emission observed experimentally is
to investigate the emission kinetics. In the case of ferro-
electrics, investigations of the kinetics of thermally
stimulated electron emission (TSEE) were carried out
in [1], where the influence of sample heating rate on the
TSEE was also considered. Main attention was focused
in [1] on the magnitude of the emission signal. In the
present work, we investigate not only this effect but
also the influence of the heating rate of ferroelectric
triglycine sulfate (TGS) crystals on the magnitude and
limits of the temperature range in which the TSEE is
observed. It is shown experimentally that at a suffi-
ciently high heating rate, emission occurs at tempera-
tures essentially above the Curie point.

2. EXPERIMENTAL TECHNIQUE
AND RESULTS

In the present study, the electron emission current
density jem was measured using a standard technique
(described in [2]) in a vacuum of 6.5 × 10–3 Pa. The
samples of nominally pure and chromium-doped TGS
crystal (1 mol % in solution) used were polar Y cuts
with an area of 20 mm2 and a thickness of 1 mm. The
heating rate of the samples q = dT/dt was varied from
0.1 to 0.4 K/min. The temperature of the samples was
1063-7834/02/4402- $22.00 © 0358
measured using a copper–constantan thermocouple and
controlled through simultaneous measurement of the
capacity of another TGS crystal sample. The tempera-
ture of samples in different experiments was varied in
the range from 20 to 65°C. The temperature was mea-
sured accurate to 5%.

The results of our investigation are the following.
The TSEE occurs in a limited temperature range
depending on the sample heating rate q = dT/dt. The
lower temperature limit virtually does not depend on
the heating rate q (Figs. 1a–1d). The magnitude of an
emission signal increases approximately linearly with q
(Fig. 2). The most interesting effect is the variation in
the upper temperature limit. As one can see from
Figs. 1a–1d and 3, this limit increases approximately in
proportion to the sample heating rate. The temperature
at which the electron emission ceases can be either
above or below Tc depending on the value of q. At q =
0.5 K/min, the upper temperature limit for electron
emission from the pure TGS crystal is 45–46°C, which
is below the Curie point. At q = 4–5 K/min, this limit
reaches 60–65°C; i.e., the electron emission is observed
in a temperature range 10–15°C above the Curie point.

In the chromium-doped TGS crystal, the situation is
qualitatively similar to that in the pure crystal, the dif-
ference being that, in this case, the width of the temper-
ature range over which electron emission is observed in
2002 MAIK “Nauka/Interperiodica”
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the paraelectric phase is smaller; in particular, for q =
4.5 K/min, this width is 4–5 K.

For both nominal pure and doped TGS samples, a
decrease in the total number of emitted electrons is
observed with an increase in the sample heating rate
(Fig. 4).

The observed thermionic emission of the investi-
gated ferroelectric crystals can be attributed to auto-
electron emission from shallow surface electronic
states in the total field of the charges due to the sponta-
neous polarization of free charges and their compensa-
tion. This total field becomes nonzero, because the bal-
ance of the mentioned fields is upset when the Curie
point is approached and the spontaneous polarization
decreases. As a result, electron emission occurs from
electron-trapping surface states [2].

Within this model, the emission current density is

(1)

where n(T) is the surface density of occupied surface
electron states at a given temperature,

(2)

is the ionization probability (per unit time) of an elec-
tron at the energy level A of a surface trapping center in
the field E, ζ is the width of the electron-trapping well,
and S is the area of the ferroelectric-sample surface
involved in the electron emission.

The n(T) dependence is defined by the equation

(3)

Substituting dt = dT/q and taking account of the bound-
ary conditions n(T = T0) = n0 [T0 is the temperature at
the beginning of the heating, E(T = T0) = 0], we obtain
(at q = const)

(4)

The position of the emission current maximum is
found from the condition ∂jem/∂T = 0, which, together
with Eqs. (1)–(4), leads to the expression

(5)

where Tm is the temperature corresponding to the emis-
sion current maximum, E(T) is the temperature depen-
dence of the total (effective) field producing ionization
of impurity centers, and

(6)

As follows from Eq. (5), W(Tm) is proportional to q. For
the sake of simplicity, when performing integration in
Eq. (4), one can assume W to be constant and put it
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equal to W(Tm). In this case, n becomes independent of
q and the emission current maximum is found to be

, (7)

which is linear in the heating rate q, in accordance with
the experimental data presented in Fig. 2.

The emission will cease when either the occupied
electron-trapping states become empty or the total field
of the charges due to spontaneous polarization and of
the charges compensating them (the factor producing
emission) vanishes. If the emission ceases below the
Curie point, the first reason is more probable. Indeed,
compensating charges can disappear only after the
charges due to spontaneous polarization have vanished
if the heating rate is very small. The charges due to
spontaneous polarization exist up to Tc, and the capacity
of the compensating charges to react swiftly to changes
and, therefore, to a decrease in the effective field (which
causes electron emission) down to a critical magnitude
is limited by the Maxwell relaxation time.

The assumption that the traps become entirely
empty in the case corresponding to Fig. 1a can be veri-
fied by comparing the total charge Q of emitted elec-
trons with the analogous charges in the cases corre-
sponding to the other panels of Fig. 1. In order to calcu-
late the charge Q, one has to replace the temperature
scale of Fig. 1 with a time scale and then calculate the
area under the corresponding curve or, alternatively, to
simply divide the area under the curves in Fig. 1 by the
heating rate. A comparison of Figs. 1a, 1d, and 4 shows
that the charge of emitted electrons at high heating rates
is always less than that at low rates, which justifies our
assumption.

The occurrence of electron emission above Tc also
confirms the assumption concerning the nature of
charges active in emission (that the compensating
charges rather than the spontaneous-polarization
charges are responsible for emission). Furthermore, the
increase in the temperature at which emission ceases in
the paraelectric phase with increasing heating rate can
be related to the compensating charges persisting up to
this temperature as a result of the fairly long Maxwell
relaxation time τ.
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Fig. 4. Dependence of the total number of emitted electrons
on the heating rate for a pure TGS monocrystal.
P

Near the phase transition, the resistivity of a TGS
crystal is about 1012 Ω cm–1 and the permittivity ε is of
the order of 103, which gives, for the Maxwell relax-
ation time of compensating charges τ = ε/4πσ, a value
of the order of 103 s [3]. The product of τ and the heat-
ing rate 3.5 K/min gives 10°C for the width of the tem-
perature range over which these charges exist, which
agrees with the estimate of 10–15°C, following from
Fig. 1d, for the width of the temperature range over
which emission occurs in the paraelectric phase.

The decrease in the width of the temperature range
of emission in the paraelectric phase in the case of the
chromium-doped TGS crystal is due to a decrease in the
Maxwell relaxation time of compensating charges,
which was observed in [4] and related to an increase in
the conductivity of the doped material [5].

Thus, the obtained results show that the temperature
at which electron emission ceases in ferroelectrics is not
a constant and does not necessarily coincide with the
Curie point Tc, in contrast to common opinion. This tem-
perature can be both below and above Tc, and in the lat-
ter case, the electron emission in the paraelectric phase
of TGS can persist over a temperature range more than
15°C wide. The disappearance of the emission below Tc

is caused by the complete emptying of electron traps
involved in emission at relatively low sample heating
rates. The persistence of electron emission in the nonpo-
lar phase confirms the presence of charges that compen-
sate charges due to spontaneous polarization involved in
emission and is related to the fairly long Maxwell relax-
ation time of the former charges.
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Abstract—The influence of low x-ray doses on pulsed polarization switching in triglycine sulfate crystals at
different chromium impurity concentrations is investigated. It is demonstrated that the activation field α in the
temperature range 20.0°C–Tc ambiguously depends on the radiation dose for pulses of switching currents of
different polarities. It is found that the unipolarity associated with the presence of chromium ions in impurity
triglycine sulfate crystals decreases as a result of the interaction between radiation-induced and impurity
defects. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The majority of studies dealing with pulsed polar-
ization switching in triglycine sulfate crystals (see
monographs [1–3] and references therein) have been
performed with nominally pure crystals. Specific fea-
tures of the polarization switching properties of trigly-
cine sulfate crystals containing defects of different ori-
gins have been thoroughly investigated in a number of
works (see, for example, [4]) predominantly through
visualization of the domain structure with the use of
nematic liquid crystals. However, in all these works,
consideration was not given to either the dependence of
polarization switching properties and important param-
eters of crystals (such as the activation field, domain-
wall mobility, etc.) on the defect concentration or the
problems concerning interaction between impurity
defects and defects induced by hard electromagnetic
radiation in the crystal.

Investigation into the aforementioned properties and
phenomena is a topical problem (because defects play
an essential role in the formation of the internal field
and its associated unipolarity in the crystal) and has a
specific feature. This feature lies in the fact that irradi-
ation of the crystal, on the one hand, generates addi-
tional radiation defects that act as impurity defects and,
on the other hand, should substantially affect the impu-
rity subsystem, which, in turn, can cause unpredictable
changes in the crystal properties. Moreover, when used
in practice, impurity triglycine sulfate crystals may be
exposed to hard electromagnetic radiation. In this case,
it is necessary to know the behavior of the operational
characteristics of these crystals.

The influence of low radiation doses (no higher than
300–500 kR) on the crystal properties is of special
interest. Under these conditions, there can exist effects
not observed at high radiation doses, as was demon-
strated earlier in [5–8] for KH2PO4 crystals and nomi-
nally pure triglycine sulfate. In the present work, we
1063-7834/02/4402- $22.00 © 0361
analyzed the influence of low x-ray doses on the pulsed
polarization switching in Cr3+-doped triglycine sulfate
crystals with the aim of elucidating the behavior of uni-
polarity in these crystals upon introduction of radiation
defects.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Crystals of triglycine sulfate with Cr3+ were grown
at a temperature below the Curie point from a solution
containing the Cr2(SO4)3 · 6H2O salt (1 mol %).
Although the chromium impurity content was not
determined, it differed for different samples due to
inhomogeneous distribution of impurities throughout
the bulk of the crystal [9]. The degree of imperfection
and the degree of unipolarity were estimated from the
internal bias field Ei. The field Ei and the coercive field
Ec were determined from the dielectric hysteresis loops
at frequencies of 50 and 300 Hz. For the studied sam-
ples, the initial values of Ei and Ec differed. The sam-
ples were prepared in the form of plane-parallel plates
from a polar cut (~0.3 cm2 in area and ~0.1 cm thick)
with vacuum-deposited silver electrodes. The samples
were exposed to CuKα characteristic radiation with an
energy of 30 eV at a dose rate Nd ≈ 240 kR/h along the
polar axis of the crystal at room temperature. For each
sample, the dose was gradually accumulated with a step
of 20 kR.

The pulsed polarization switching was examined
using the procedure described earlier in [10, 11]. The
frequency of passing bipolar pulses of the polarization
switching field was 300 Hz. The activation field α was
determined from the relationship imax = imaxα exp(–α/E),
where imax is the maximum value of the switching cur-
rent pulse and E is the strength of the polarization
switching field.
2002 MAIK “Nauka/Interperiodica”
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The polarization switching current pulses of oppo-
site polarities, which were observed for the crystals
under investigation, exhibited a pronounced asymmetry
due to the internal bias field induced by the chromium
impurity.
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Fig. 1. Dependences of the activation field in (1, 3) weak
and (2, 4) strong fields for the impurity triglycine sulfate
crystal on the x-ray dose for (1, 2) positive and (3, 4) nega-
tive pulses of polarization switching current at T = 40°C and
Ei = 100 V/cm.

Fig. 2. Dependences of the activation field in (1, 3) weak
and (2, 4) strong fields for the impurity triglycine sulfate
crystal on the x-ray dose for (1, 2) positive and (3, 4) nega-
tive pulses of polarization switching current at T = 40°C and
Ei = 300 V/cm.
P

The direction of the internal field and the preferred
direction of macroscopic polarization in the samples
were determined from independent measurements of
the static pyroelectric coefficient. It was revealed that,
in the case when the directions of the polarization
switching and internal fields coincide, the polarization
switching current pulse has a lower value of imax and a
longer duration τs compared to those obtained for the
mutually opposite orientation of these fields. According
to the terminology introduced earlier in [10], a current
pulse with the above characteristics is considered to be

positive:  <  and  > .

3. RESULTS AND DISCUSSION

For the samples with initial values of Ei ≤ 100 V/cm,
the activation fields in strong electric fields α2 are
higher than those in weak electric fields α1 (α2 > α1).
This is characteristic of nominally pure triglycine sul-
fate crystals [10, 11] and suggests that the switching in
the weak and strong electric fields predominantly
occurs through different mechanisms of changes in the
domain structure under the action of a polarization
switching field. For the samples with a pronounced uni-
polarity, the situation changes qualitatively: the values
of α1 (weak fields) become larger than α2 (strong fields)
over the entire temperature range covered. This rela-
tionship holds for samples with initial values of Ei ≥
300 V/cm in which the chromium impurity content is
rather high (heavily doped samples). In contrast with
this, the samples with fields Ei < 100 V/cm are treated
as lightly doped samples.

In the case of low chromium impurity content
(Fig. 1), the effect of the initial (impurity) unipolarity
manifests itself in the difference between the values of

 and , which were determined from the
parameters of the positive and negative pulses of the
switching current.

Under irradiation with an increasing dose, the val-

ues of  and  (  and ) approach each other.
This apparently indicates that the internal field created
by the chromium impurity is partially destroyed under
x-ray irradiation. This assumption is also supported by
the observed disappearance of the asymmetry of cur-
rent pulses with an increase in the x-ray dose.

The above regularities are also observed for heavily
doped samples. As can be seen from Fig. 2, the activa-
tion fields α1 and α2 are considerably higher than those
for the samples with low fields Ei. The second feature
of the curves depicted in Fig. 2 resides in the fact that,
for the positive pulse, the activation fields α1 and α2
only slightly differ at D = 0 and virtually coincide at
D = 20 kR. Further evolution in the activation fields α1

and α2 proceeds in such a manner that the field 
increases rapidly with an increase in the radiation dose,
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whereas the field  varies only slightly and remains

lower than . As regards the activation fields α1 and
α2 for the negative pulse, they strongly differ at zero
dose. However, after the first exposure to x-ray radia-

tion (D = 20 kR), the field  decreases against the

background of a noticeable increase in . Under fur-
ther irradiation (D = 40 kR), the situation changes qual-

itatively:  > .

The coincidence of the activation fields  and

 for pulses of different polarities suggests that the
initial unipolar state changes at a dose of ~20 kR. This
indicates that no polarization switching mechanism is
dominant in a given field E (α1 = α2). Further exposure
to radiation only stabilizes the unipolar state created by
the impurity ions.

This rather unexpected result is also confirmed by
the behavior of the switched charge under x-ray radia-
tion. It is clearly seen from Fig. 3 that an increase in the
radiation dose is accompanied by an increase in the
charge switched in the pulsed (curve 1) and sinusoidal
(curve 2) electric fields.

The results shown in Figs. 1–3 allow us to argue that
the chelate complex of chromium biglycine sulfate,
which is responsible for the formation of the unipolar
state in the Cr3+-doped triglycine sulfate crystal [12], is
rather sensitive to irradiation. Even low radiation doses
lead to breaking of intermolecular bonds in the struc-
ture of triglycine sulfate crystals [13] and apparently
cause decomposition of the chelate complex. In turn,
this leads to softening of the polarization switching
conditions for a crystal with a low initial internal field.

This assumption is corroborated by the dose depen-
dences of the coercive field measured at a frequency of
50 Hz (Fig. 3; curves 3, 4). Note that the dependence
Ec(D) exhibits a minimum for radiation doses at which
α+ ≈ α–. The dependences Ei(D) measured at a fre-
quency of 300 Hz are less pronounced. The internal
bias field, which was measured from the dielectric hys-
teresis loops, turned out to be less sensitive to irradia-
tion. More specifically, the decrease in the internal field
Ei for the same maximum dose was no greater than
10%. This value is comparable to the error in determin-
ing the fields Ec and Ei from the dielectric hysteresis
loops.

In our earlier work [10], we proved that the ratio
between α1 and α2 can differ depending on the chro-
mium impurity content in triglycine sulfate crystals
(depending on Ei) and varies from α2 > α1 to α2 < α1
with an increase in the internal field. The temperature
T0 (at which α2 = α1) shifts to the phase transition tem-
perature with an increase in the internal field. A similar
situation also occurs when radiation-induced defects
serve as a source of unipolarity. Figure 4 illustrates the
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change in the ratio between the activation fields in weak
and strong fields from α1 < α2 to α1 > α2 for nominally
pure triglycine sulfate (curve 1) and Cr3+-doped trigly-
cine sulfate (curve 2) crystals with a low initial unipo-
larity after x-ray irradiation with an increasing dose. It
is evident from Fig. 4 that this ratio changes in the same
manner as the T0 temperature varies with an increase in
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Fig. 3. Dependences of the switched charge Q/Qmax on the
x-ray dose according to the data on (1) pulsed polarization
switching and (2) dielectric hysteresis loops (Qmax is the
switched charge at the x-ray dose D = 80 kR and T = 40°C).
Dependences of the coercive field on the x-ray dose for the
impurity triglycine sulfate crystal at temperatures of (3) 25
and (4) 35°C. Ei = 100 V/cm.

Fig. 4. Dependences of the temperature T0 (α1 > α2 at T <
T0 and α1 < α2 at T > T0) on the x-ray dose for (1) nominally

pure triglycine sulfate and (2) Cr3+-doped triglycine sulfate
crystals.
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the radiation dose, i.e., with an increase in the concen-
tration of radiation-induced defects.

4. CONCLUSION
The main conclusion drawn in this work is as fol-

lows: low x-ray doses (no higher than 100 kR) can par-
tially destroy the unipolar state created by chromium
impurities in triglycine sulfate crystals. These doses
can lead to an increase in the switched part of the mac-
roscopic polarization.
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Abstract—The general features of the slow polarization kinetics in relaxor ferroelectrics, observed and studied
by us in the specific example of crystals of barium–strontium niobate (SBN) solid solutions of various compo-
sitions and of lead magnesium niobate (PMN), are considered. The dielectric hysteresis loops and spectra of
the polarization relaxation time distribution in quasi-static and static electric fields were found to reveal char-
acteristic anomalies related to a random internal electric field in the bulk of a relaxor ferroelectric. Such a field
caused by structural disorder accounts for the anomalously broad spectrum of potential barriers for domain
walls. The part played by free charge carriers in the formation of giant barriers is demonstrated. The paper pre-
sents some quantitative data characterizing the specific features of the structure and physical properties of the
relaxors. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Relaxor ferroelectrics (relaxors), to which oxide
solid solutions with perovskite [1–3] or tungsten bronze
[2, 3] structure belong, are essentially inhomogeneous
systems with a disordered structure and a number of
unique physical properties. Unlike conventional homo-
geneous ferroelectrics, the phase transition and the
anomalies in the properties of relaxors are broadened
over a wide temperature region (the Curie region) and
the dielectric, piezoelectric, pyroelectric, electroopti-
cal, and nonlinear optical characteristics are extremely
large in magnitude and only weakly temperature-
dependent. In particular, the high dielectric permittivity
ε exhibits a smooth maximum and a noticeable low-fre-
quency dispersion at a temperature Tm [1–3].

The unique features in the physical properties of
relaxors make them promising piezoelectric and optical
materials [4, 5]. A new area of interest could be optical-
frequency conversion by ferroelectric domains in bar-
ium–strontium niobate, which is made possible by the
needle-shaped domain structure characteristic of these
crystals [6–8].

Viewed solely from the standpoint of application, all
relaxors have, apparently, a common shortcoming
which consists in the irreproducibility of their proper-
ties and in the degradation of their parameters after
exposure to an electric field. This lends particular
importance to a comprehensive investigation of the pro-
cesses involved in the evolution of the polarization,
which affects virtually all the most significant physical
characteristics. The anomalous dielectric properties of
the relaxors have been studied heretofore primarily in
low-frequency electric fields [1–3, 9]. This communi-
cation offers a brief overview of our recent works [10–
12] and of some new results bearing on the specific fea-
1063-7834/02/4402- $22.00 © 20365
tures in the dielectric properties of relaxors in the
infralow-frequency range, down to 10–5 Hz.

We immediately stress the radical difference between
the PbMg1/3Nb2/3O3 (PMN) and SrxBa1 − xNb2O6 (SBN)
crystals studied here. As is well known, in the absence
of an electric field, the classical ferroelectric relaxor
PMN does not undergo a phase transition from the
relaxor to the ferroelectric state, which is accompanied
by a change in the symmetry and by the nucleation of
ferroelectric domains [1, 3]. In contrast, SBN crystals
do transfer to the 4mm polar phase [13]. The diffuse-
ness of the maximum of ε and its frequency dispersion
in SBN are much less pronounced than those in PMN
and become practically insignificant in some composi-
tions. Nevertheless, the specific features of the polar-
ization observed by us are characteristic of both types
of crystals, which apparently permits one to assume the
observed anomalies to be common for all ferroelectric
relaxors.

2. THE CRYSTALS STUDIED

Relaxors have a convenient feature in that their prop-
erties can be varied by properly varying the chemical
composition. For instance, increasing the Sr concentra-
tion in SBN [2, 3, 14] and doping it with rare-earth ele-
ments [5] considerably reduces the temperature Tm,
increases the diffuseness of the phase transition, and
makes the properties characteristic of relaxors more
clearly pronounced. For the study, we chose SBN crys-
tals with x = 0.61 doped with La and Ce to concentrations
of 0.44 and 0.023 at. %, respectively, SBN : (La + Ce);
with Nd to a concentration of 0.7–0.8 at. %, SBN : Nd;
with Cr to a concentration of 2.2 × 104 ppm, SBN : Cr;
and a PMN crystal. This particular choice of the crys-
tals was motivated by the following considerations:
002 MAIK “Nauka/Interperiodica”
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SBN : (La + Ce) has a strongly diffuse maximum of ε
at a comparatively low temperature, Tm = 310–314 K,
i.e., well-pronounced relaxor characteristics. For T <
Tm, its electrical resistivity ρ ≥ 1013 Ω cm. SBN : Nd
with Tm = 340 K has a considerably smaller ρ ≥ 1011 Ω cm
for T < Tm and, thus, is a convenient subject in studying
the effect of polarization screening by free charge car-
riers; as will be shown later, this part played in the for-
mation of giant barriers for domain walls is essential.
The temperature Tm = 244 K of SBN : Cr is the lowest
among all known SBNs, and ρ ≥ 1013 Ω cm at T ≅  Tm,
thus making it possible to study the observed anomalies
electrometrically for T > Tm. For the PMN crystal, Tm =
269 K and ρ ≥ 1013 Ω cm in the vicinity of Tm.

3. EXPERIMENTAL TECHNIQUE

The evolution of the crystal polarization P with time
t in static or slowly varying fields E was studied using
compensation electrometry. The basic unit of the mea-
suring setup is an equal-arm bridge, with one arm
including the sample, the second including a reference
capacitance C, and the third and fourth including the
sources of reference (V) and of compensating ν(t) volt-
ages. A V7-29 electrometer serving as a null indicator
was connected to the bridge diagonal. The voltage
across the diagonal was compensated using an IBM PC
and peripheral units. The dependence of the compen-
sating voltage ν(t) on time was reproduced in real time.
The maximum sensitivity of the bridge was 20 µV in
voltage and 2 × 10–9 µC in charge (at C = 10 pF). A
detailed description of the computerized measuring
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Fig. 1. Temperature dependences of permittivity ε of the
relaxors (1) SBN : Nd, (2) SBN : (La + Ce), (3) SBN : Cr,
and (4) PMN.
P

setup for recording the P relaxation is given in [15]; for
the hysteresis loops in [11].

If the field applied to the sample is E ≠ 0, then the
contributions to ν(t) come, generally speaking, not only
from the polarization P but also from the sample elec-
trical conductivity 1/ρ; i.e., ν(t) = SP(t)/C + ESt/ρC,
where S is the sample electrode area. For dielectrics
with a high ρ (as a rule, not less than 1012 Ω cm), the
inequality Et/ρ ! P(t) holds, in which case the second
term in ν(t) can be neglected, yielding P(t) = Cν(t)/S. If,
however, ρ is so small that the inequality fails, one must
correct the quantity ν(t), needed to calculate P(t), for
the electrical conductivity, thus reducing the accuracy
of P determination. For the above crystals, this correc-
tion is essential only for the SBN : Nd composition.
The electrical conductivity, which increases under crys-
tal heating, places a constraint on the temperature range
in which the application of electrometry gives reliable
results. Therefore, we succeeded in measuring P with
sufficient accuracy within a temperature range includ-
ing Tm only for the SBN : Cr crystal, which has the low-
est Tm = 244 K.

Quasi-static dielectric hysteresis loops were mea-
sured in electric fields E with a period of ~1 h. The
polarization relaxation processes were recorded in
static fields over several hours, and the smallest possi-
ble electrical resistivity was estimated after the relax-
ation had practically come to an end and the ν(t) depen-
dence had become a straight line, ν(t) = ESt/ρC. The
permittivity was measured using the standard bridge
method at a frequency of 1 kHz.

4. RESULTS AND DISCUSSION

4.1. Quasi-Static Dielectric Hysteresis Loops

The maxima of ε in the crystals under study spread
out over a broad temperature region (a feature which is
characteristic of relaxors, Fig. 1) and have a low-fre-
quency dispersion (not shown in the figure).

The quasi-static dielectric hysteresis loops of the
dependence of polarization P on electric field E have an
unusual shape (Fig. 2). Unlike the loops observed in a
conventional homogeneous ferroelectric (Fig. 2a), the
initial loop cycles of all relaxors do not close and do not
reproduce one another and the amplitude of P
decreases. After a few cycles of slow polarization rever-
sal, the polarization amplitude stops decreasing and all
the subsequent loop trajectories coincide; in other
words, they become reproducible, as usual.

The diffuseness of the ε maximum in temperature
and the irreproducibility of the first few loop trajecto-
ries are, apparently, interconnected phenomena. In
other words, the anomalous shape of the hysteresis loop
of a relaxor is also its characteristic feature. All the
relaxor loops presented in Fig. 2 were obtained at tem-
peratures below Tm (for PMN, below the field-induced
ferroelectric phase transition [16]). The loop for
SBN : Nd was constructed with due inclusion of cor-
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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Fig. 2. Quasi-static dielectric hysteresis loops of (a) TGS and the relaxors (b) SBN : (La + Ce), (c) SBN : Nd, (d) SBN : Cr, and
(e) PMN obtained at 293, 274, 273, 206, and 210 K, respectively. Inset: local free energy F plotted vs. P.
rections for the electrical conductivity (Fig. 2c). In the
SBN : Cr crystals, the field dependences of polarization
were studied within the temperature range including
Tm. The hysteresis loop and its characteristic anomalies
(Fig. 2) persist up to temperatures 30 K above Tm, with
the loop amplitude falling off smoothly with tempera-
ture [17].

The existence of loops for T > Tm, which is charac-
teristic of relaxor ferroelectrics, is in qualitative agree-
ment with estimates of the local spontaneous polariza-
tion made within the same wide temperature range
from the temperature dependences of birefringence and
thermal expansion of undoped SBN [18]. The hystere-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
sis loop anomalies are in accordance with present ideas
concerning the polar structure of the relaxors [3]. Dis-
ordered distribution of some ions gives rise to internal
electric fields Ei lowering the local symmetry; the local
free energy F should be an asymmetric double-mini-
mum function of P, namely, F = –αP2 + βP4 – (Ei + E)P,
where α and β are constants and E is the external field
(inset to Fig. 2). The field Ei, the depth of the minima,
and the height of the barrier separating these minima
are distributed in a random manner in the relaxor vol-
ume within a broad range of values. As a result, before
field application, one part of the volume resides in the
metastable state and the other is in the stable state,
2



368 GLADKIŒ et al.
which corresponds to shallow and deep minima,
respectively. When an alternating ac field E of a certain
amplitude is applied, the shape of the F function
becomes distorted, the barriers are lowered, and relax-
ation to stable states with deep minima is accelerated.
The reverse process virtually does not occur if |E | <
|Ei |. In other words, part of the relaxor volume is not
involved in the subsequent polarization switching
(remains frozen) and the amplitude of P in the repeating
cycles of E variation falls off gradually down to the
value of the total polarization of the part of the volume
in which the condition |E | > |Ei | holds. Obviously
enough, the total reproducible polarization switching of
the crystal as a whole, with coinciding loop cycles, is
possible only in fields E in excess of the maximum level
Ei, which is apparently quite high.

4.2. Polarization Switching in Ferroelectric Relaxors

An idea of the height of the barriers separating the
stable and metastable states, as well as more detailed
information on the shape of the relaxor hysteresis
loops, can be gained by studying the polarization kinet-
ics in static electric fields E. Figure 3 presents the
results of the measurement and analysis of the depen-
dence of polarization P on time t made for different val-
ues of E for the relaxors SBN : (La + Ce) [11], SBN : Cr
[17], and the homogeneous ferroelectric TGS [15].

Note the following main differences in the P relax-
ation between TGS and the relaxors. In TGS, the inter-
nal field Ei = 0 everywhere, the free energy F is a sym-
metric function of P for E = 0, and the spontaneous
polarization Ps = (α/2β)1/2 and the coercive field Ec =
(2α/3)[(2α/3)/β]1/2 (which coincides with the half-
width of the hysteresis loop) are clearly defined. In
external fields E > Ec, polarization proceeds in an ava-
lanche manner, whereas for E < Ec, polarization is a
thermally activated slow process, practically without a
jump in P at the instant of E application. The equilib-
rium polarization Pe is always equal to Ps and does not
depend on the magnitude of E. The rate of relaxation
grows with E. Thus, when an external field of any mag-
nitude is applied to a homogeneous ferroelectric, the
polarization reaches the same level Pe = Ps, albeit with
different kinetics.

In relaxors placed in a field E larger or smaller than
the half-width of the loop, the polarization P changes
initially in a jump, to vary thereafter in a thermally acti-
vated manner (insets to Fig. 3). The jumps ∆P observed
to occur at any value of E indicate the absence of a dis-
tinct coercive field Ec in the relaxor; its magnitude is
different in different parts of the crystal. An increased E
polarizes a larger volume of the crystal, and the jump
∆P naturally increases. As will be shown later, relaxors
also do not have a distinct equilibrium polarization Pe;
more specifically, to each external field corresponds a
certain value of Pe which increases with E (Fig. 3).
P

In all crystals, the slow thermally activated stage of
relaxation follows a power-law course,

(1)

where P0 is the original polarization (at t = 0) and a, n,
and Pe are fitting parameters.

Assuming the relaxation centers to be independent,
their contribution can be considered additive, so that

(2)

where f(τ) is a normalized distribution function of the
relaxation times τ. One may find it more convenient to
use a dimensionless distribution function g of lnτ or of
the barrier energy U = kTln(τ/τ0) (τ0 is a kinetic coeffi-
cient):

(3)

where Γ(n) is the gamma function and τg is related to
p(t) through the Laplace transform [19].

In analysis of the experimental data, power law (1)
is preferable to the well-known empirical Kohlrausch
relation p(t) ~ exp(–t/τ)β, where β < 1, which, as can be
readily verified, also reasonably accurately describes
our results obtained over long periods of time. First,
Eq. (1) better reproduces the experimental behavior at
short times (dp/dt is finite for t  0). Second, rela-
tion (1) corresponds to a simple distribution function
f(τ) in Eq. (2) for any value of a and n [15].

Note that the power relation (1) is apparently of a
universal nature, because under some conditions it
describes nonexponential forms observed frequently to
hold in inhomogeneous systems. For instance, p(t) ~
1/tn for t @ a, p(t) ~ 1 – (n/a)t for t ! a, and p(t) ~ 1 –
nln(1 + t/a) for n ! 1 [12]. Equation (1) also describes
the relaxation in K1 – xLixTaO3 mixed crystals in the
glassy state [20].

The measured values of P were least squares fitted
by power relation (1) with free fitting parameters a, n,
and Pe using the standard technique. The solid lines in
Fig. 3 plot our calculations, and the circles are experi-
mental points. The deviation of the experimental values
of P from the calculations does not exceed 0.5%. Note
that the errors in determination of the parameters
(Table 1) decrease with increasing time interval of the
relaxation measurement [21].

Let us consider the difference between the g(lnτ)
spectra with maxima gmax at τm = a/n obtained for TGS
and the relaxors. For TGS studied in weak fields E < Ec,
the spectrum g becomes more narrow and shifts toward
short τ with increasing E, thus exhibiting a trend in the
values of U of all barriers to decrease and become
closer in magnitude as E approaches Ec (Fig. 3a).
Relaxors do not demonstrate such a distinct depen-
dence of the spectral shape on E within a field interval.

p t( ) Pe P t( )–( )/ Pe P0–( ) 1/ 1 t/a+( )n,= =

p t( ) f τ( ) t/τ–( )exp τ ,d

0

∞

∫=

g τ f τ( ) 1/Γ n( )( ) a/τ( )n a/τ–( ),exp= =
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Fig. 3. (a, c, e) Polarization relaxation P(t) and (b, d, f) spectra g(lnτ) obtained at different fields E and temperatures T on (a, b) TGS
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Although the fraction of the polarized volume within
which the Ec fields assume different values naturally
increases with increasing E, the contributions of slow
processes to the polarization may accidentally turn out
to be the same and the spectra may almost coincide
(Fig. 3b). Heating a relaxor above Tm shifts the g spec-
trum toward short τ and narrows it, which means that
the relaxation processes become faster (Fig. 3c). The
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
points in the spectra specify values of τ equal to the
maximum relaxation measurement times tmax. The
spectra measured for τ > tmax were obtained by extrap-
olating the available data to longer times. As demon-
strated by SBN : Nd, relaxors may have giant values of
τ; for example, for ln(τ/t0) = 10, where t0 = 1 min, we
have τ = 15 days, and for ln(τ/t0) = 30, we have τ =
10 years.
2
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Table 1.  Parameters of P relaxation and of spectra g(lnτ) in the polarization of TGS, SBN : (La + Ce) and SBN : Cr crystals

Crystal T, K E, V/cm Pe , µC/cm2 a, min n τm , min

TGS 293 5.6 3.0 240 ± 10 0.063 ± 0.002 3800 ± 270

16 3.0 270 ± 10 0.22 ± 0.03 1225 ± 85

25 3.0 224 ± 8 0.60 ± 0.02 380 ± 30

SBN : (La + Ce) 273 300 4.50 ± 0.02 3.724 ± 0.012 0.045 ± 0.001 82.2 ± 0.3

400 6.97 ± 0.02 4.35 ± 0.013 0.038 ± 0.001 114.5 ± 0.4

600 8.60 ± 0.013 4.80 ± 0.007 0.058 ± 0.001 82.70 ± 0.2

SBN : Cr 205 430 4.03 ± 0.01 0.88 ± 0.05 0.010 ± 0.0002 88.0 ± 7

236 5.34 ± 0.01 1.66 ± 0.09 0.009 ± 0.0002 184 ± 14

249 4.82 ± 0.01 0.37 ± 0.04 0.0089 ± 0.0002 42 ± 5

267.7 0.67 ± 0.001 0.54 ± 0.05 0.132 ± 0.001 4.1 ± 0.4

Table 2.  Parameters of P relaxation and of spectra g(lnτ) in the depolarization of SBN : (La + Ce) and SBN : Nd crystals

Impurity T, K E, V/cm Pe , µC/cm2 a, min n τm , min

La : Ce 274 500 1.217 ± 0.003 0.82 ± 0.06 0.273 ± 0.004 3.0 ± 0.3

650 1.874 ± 0.004 0.38 ± 0.02 0.157 ± 0.001 2.40 ± 0.14

800 2.866 ± 0.006 0.094 ± 0.004 0.081 ± 0.001 1.16 ± 0.06

Nd 273 1000 1.3 ± 0.1 2.0 ± 0.3 0.012 ± 0.0004 167 ± 30

2000 13.20 ± 0.06 2.92 ± 0.13 0.022 ± 0.0003 133 ± 7
4.3. Effect of Electrical Conductivity 
on the Relaxation Processes

To correctly estimate the polarization P, one has to
subtract the linear-in-time contribution to the measured
compensating voltage ν(t) due to the electrical conduc-
tivity (see Section 3). This contribution is significant,
and it introduces a noticeable error in the determination
of P only in the case of SBN : Nd [12]. For this reason,
the ν(t) curves which fairly rapidly became straight
lines due to conductivity in the course of polarization of
SBN : Nd were not analyzed.

The part played by electrical conductivity in relax-
ation processes manifests itself clearly in depolariza-
tion measurements. In this case, E = 0 and the electrical
conduction through the sample, which masks the relax-
ation, is absent, thus allowing a sufficiently precise
analysis of the experimental data to be made. Figure 4
presents P relaxation curves obtained under depolariza-
tion in SBN : (La + Ce) and SBN : Nd. The depolariza-
tion was measured after the crystals had been polarized
in various fields E for 5 min. As in the case of polariza-
tion (Fig. 3), the process starts with a jump ∆P, after
which it becomes thermally activated and strictly fol-
lows a power-law behavior described by Eq. (1). The
solid lines in Fig. 4 are plots of Eq. 1, and the circles are
experimental data. The dashed lines are the equilibrium
P

values Pe, which are higher, the larger the polarizing
field.

The spectra g for the thermally activated stages of
relaxation were calculated using Eq. (3) with the
parameters listed in Table 2. The points in the spectra
identify the time to which the depolarization was mea-
sured. The spectra g(lnτ) of SBN : Nd are wider and
contain giant relaxation times, despite the high prepo-
larization fields employed.

The reason for the giant times τ and barrier energy
U may lie in the screening of the polarized regions in
the crystal by free carriers [12]. Indeed, as follows from
straightforward estimates, the screening times τsc =
ερ/4π are 1000 and 10 min for the SBN : (La + Ce) and
SBN : Nd, respectively (τsc was estimated using the
data on the static permittivity ε = 4πP/E given in
Fig. 2). Hence, the relaxation measurement time
~120 min is long enough for the inhomogeneously
polarized regions in the low-resistivity SBN : Nd
relaxor to become screened and this process is accom-
panied by the formation of inhomogeneously distrib-
uted fields Esc of the screening charge. This increases
the height of the potential barriers, relaxation times,
and equilibrium values of Pe (crystal memory). Note
that screening may also account for the large width of
the dielectric hysteresis loops of the SBN : Nd relaxor.
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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is equal to (1) 500 and (2) 800 V/cm; and (c, d) E is equal to (1) 1000 and (2) 2000 V/cm, t0 = 1 min. Solid lines are calculated
results, and circles are experimental results. Dashed lines are equilibrium values Pe.
4.4. Temperature Dependence of the Relaxor 
Relaxation Parameters

An idea of the temperature dependence of the
parameters may be gained from an inspection of Fig. 5,
which presents measured values of the jump ∆P
observed in SBN : Cr with the application of E, the
equilibrium polarization Pe, and the relaxation time
τm = a/n corresponding to the maximum of the distribu-
tion function g. Similar to the properties measured in
alternating fields, these parameters vary smoothly with
temperature. The jump ∆P occurring in a weak field
grows slowly and monotonically with temperature,
because the energies U of an ever increasing number of
barriers approach zero, while Pe and τm pass through
maxima near Tm, with the time τm decreasing by a factor
of approximately 30 as the crystal is heated by 20 K
above Tm, which likewise argues for the decrease in the
barrier height. The maxima of Pe and of τm become ever
smoother as the polarizing field E increases [17]. These
features correlate with the temperature dependences of
the hysteresis loop parameters. As the temperature is
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      200
lowered, the hysteresis loop anomalies become less dis-
tinct for the external fields employed due to the increase
in the potential barriers [10, 11]; as the temperature
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Fig. 5. Temperature dependences of the parameters ∆P, Pe,
and τm of P relaxation and spectra of g(lnτ) obtained for an
electric field E = 430 V/cm near the Tm point of the
SBN : Cr relaxor.
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increases, the anomalies also become less pronounced
as a result of the decrease in the polarization [17].

5. CONCLUSIONS
Thus, all the relaxor ferroelectrics studied (SBN of

various compositions, PMN) have been found to
exhibit similar anomalies in the polarization kinetics,
which manifest themselves in specific features in the
dielectric hysteresis loops (the first few loop cycles are
open and do not reproduce, the absence of a distinct
coercive field and equilibrium polarization) and in
broad spectra of the potential-barrier distribution
exhibiting giant amplitudes. These anomalies are a sig-
nature and a measure of structural disorder in relaxors.
The anomalies are only observed in static and quasi-
static electric fields and have not been revealed before,
apparently, because of the measurements having been
performed on overly short time scales. The results
obtained can account for the irreproducibility of the
various properties of relaxors known from the litera-
ture, as well as permit one to relate it to partial freezing
of the polarization after application of an external fac-
tor (an electric field). Studies on the polarization kinet-
ics in other ferroelectrics also show that similar indica-
tions of structural disorder, albeit less pronounced, can
also be observed in conventional homogeneous crys-
tals. In contrast to the rectangular profile, the slim shape
of hysteresis loops seen in traditionally employed low-
frequency electric fields is the clearest indication of the
absence of a distinct coercive field in a given sample
[21, 22].

The main results presented in this paper can be used
to characterize various inhomogeneous materials with
long-lived metastable states.
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Abstract—A group-theoretical analysis of the vibrational spectrum of benzil crystals was carried out. The
selection rules and normal coordinates were found. Raman scattering spectra of benzil single crystals were stud-
ied in polarized light within a broad temperature range from 100 K to the melting point (Tm = 96°C). The exper-
imental data were found to correlate with theory. The temperature dependences of the spectral-line half-widths
were used to separate the observed vibrations into translational and librational modes, and the correspondence
between the experimentally observed vibrations and their normal coordinates was established in some cases.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Benzil (C6H5–CO)2, whose molecules consist of
two phenyl rings and two CO groups, is an interesting
representative of organic compounds. At room temper-
ature, these crystals have trigonal (rhombohedral) sym-

metry (P31, 221) with three molecules (formula
units) in a unit cell (see, for instance, Fig. 1) [1, 2].
Quartz has the same symmetry (space group) at room
temperature, which accounts for benzil being fre-
quently called “organic quartz.” When cooled down to
Tc = 83.5 K, benzil crystals undergo a structural phase
transition from the higher temperature trigonal phase to

the monoclinic (P21) phase [3]. This transition is
assumed to be triggering; in other words, the lattice
becomes unstable at the center of the Brillouin zone
(the Γ point), which is accompanied by a softening of
the acoustic (TA) and optical (TO) phonon modes in the
Brillouin [4] and Raman [5] spectra, respectively, and
this induces an instability at the M point of the Brillouin
zone edge of the paraelastic phase through order
parameter interaction [6]. This ferroelastic triggering
phase transition brings about a unit-cell doubling, an
M  Γ folding of the Brillouin zone, and spontane-
ous deformation. Benzil (organic quartz) is a model
organic crystal for use in studying the general aspects
of lattice dynamics and structural phase transitions.

The purpose of this work was to study Raman spec-
tra of benzil single crystals for T > Tc up to the melting
point; to obtain information on the temperature behav-
ior of phonon modes, including their frequencies and
half-widths; to separate the experimentally observed
vibrations into translational and librational modes; and
to determine their normal coordinates.

D3
4 6,

C2
2
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2. NORMAL VIBRATIONAL MODES OF BENZIL 
CRYSTALS

The unit cell of benzil crystals contains three mole-
cules (Z = 3) located along the threefold screw axis
(Fig. 1), with the C2 axis of each of the molecules coin-
ciding with the corresponding C2 axis of the crystal.
The spectra exhibit three acoustic vibration modes of A2

and E symmetry (twofold degenerate) and 6Z – 3 = 15
external optical vibration modes, some of which are of

Fig. 1. Projection of the primitive cell of a benzil crystal on
the (001) plane [1, 2]. The small circles are carbon atoms,
and the large ones are oxygen atoms; the inequivalent
C6H5COCOC6H5 molecules displaced by 1/3 period along
the C3 screw axis are denoted by different (solid, dashed,
and dotted) lines.
002 MAIK “Nauka/Interperiodica”
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the translational and the remaining, of the orientational,
type. Group-theoretical consideration made in the
rigid-molecule approximation (with each molecule
assumed to displace or rotate as a whole) yielded
decomposition of the representation of external optical
vibrations (Γext), including vibrations of the transla-
tional (Γtr) and orientational (Γor) types, into irreducible
representations of the D3 point symmetry group (the
Brillouin zone center):

(1)

Thus, two vibration modes of symmetry A1(xx, yy, zz)
and five twofold degenerate vibration modes of sym-
metry E(xx, yy, xz, yz, xy) are Raman active and three
vibration modes of symmetry A2(z) and five of symme-
try E(x, y) are active in IR absorption (reflection).
Group-theoretical analysis (see, e.g., [7]) also permits
one to find the eigenvectors for the above acoustic and
external optical vibrations:

(2)

Γ ext 2A1 3A2 5E,+ +=

Γ tr A1 A2 2E,+ +=

Γor A1 2A2 3E.+ +=

A1: x1 2x2– x3 3y1– 3y3,+ +
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P

where xi, yi, zi and , ,  (i = 1–3) are displacements
of the centers of gravity of the molecules and their rota-
tion angles about the x, y, and z axes, respectively.

Figure 2 shows all the above normal modes. The
fully symmetric A1 vibrations consist of the transla-
tional and orientational vibration modes [the first and
second polynomials in Eq. (2), respectively]. In the first
case, all three inequivalent molecules [shifted by 1/3
period with respect to one another along the C3(z) screw
axis] are displaced in the (001) plane, each along its C2
axis with the same amplitude (translation), and in the
second case, all molecules rotate in phase (libration),
each about its C2 axis (Fig. 2a). The displacements z1 +
z2 + z3 (A2 symmetry, Fig. 2c) and x1 + x2 + x3, y1 + y2 +
y3 (E symmetry, Figs. 2e, 2h) relate to acoustic vibra-
tions. The IR-active optical vibrations A2 are in-phase
translations perpendicular to the C2 axes of molecules
in the (001) planes, molecular librations about these
translation directions, and in-phase librations about the
z axis (Figs. 2b, 2c). The eigenvectors of the twofold-
degenerate vibration modes of the E symmetry (Ex , Ey)
in Eqs. (2) are also displayed. These modes involve
translations in the (001) planes (Figs. 2d, 2g) and along
the C3 axis (Figs. 2f, 2i) and orientational vibrations in
the planes perpendicular to the directions of these trans-
lations (Figs. 2d, 2f, 2g, 2i), as well as about the x and
y directions (Figs. 2e, 2h).

3. EXPERIMENTAL TECHNIQUE

Raman scattering measurements on benzil single
crystals were performed on a DILOR-Z24 triple-grat-
ing Raman spectrometer, with argon and helium–neon
lasers of a low variable power (50–200 mW) used for
pumping. Low-power operation was chosen to avoid
local heating and possible surface damage of the
slightly yellow crystals used. Our samples were high-
quality benzil single crystals grown from solutions in
different solvents (ether, alcohol, xylene, etc.) with 5 ×
5 × 10-mm edges along the x, y, and z axes, respectively.
The z axis of the samples is taken along the optical axis
of the crystals, i.e., along the screw axis C3. The tem-
perature dependences of the spectra were measured in
closed-flow Cryogenic cryostats capable of maintain-
ing the temperature to within ~0.1 K.

4. EXPERIMENTAL RESULTS

We studied Raman spectra of oriented benzil single
crystals in polarized light over a broad temperature
range, from low temperatures (T > Tc) up to the melting
point (96°C). Main attention was focused on studying
external optical vibrations (lattice modes) whose fre-
quencies lie in the low-frequency domain, ~0–100 cm–1.
Figure 3 presents typical Raman spectra obtained at a
few fixed temperatures for the most characteristic
polarizations (zz vibrations of the A1 symmetry, yz and

lx
i ly

i lz
i
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Fig. 2. Eigenvectors of the fundamental lattice vibrations of benzil crystals of symmetry (a) A1, (b, c) A2, and (d, g; e, h; f, i) E. The
straight arrows [or +(–) in the case of displacements along the C3 axis perpendicular to the plane of the figure] specify the displace-
ments of the centers of gravity of the molecules (filled circles) in translational vibrations; the displacements in orientational vibra-
tions are denoted by arrows lying on the ellipses (circles).
PHY
50

ω1

1000

100 K

295 K

367 K

ν2

ν5

ν6ν1

50 1000

100 K

295 K

367 K

ν2

ν4

ν6
ν1

50 1000

100 K

295 K

367 K

ν2

ν3 ν6

ν1

ν4

ν2

Raiman shift, cm–1

In
te

ns
ity

, a
rb

. u
ni

ts

A1
x(zz)y

E
x(yz)y

E
x(yx)y

Fig. 3. Low-frequency (lattice) Raman spectra of benzil crystals obtained at different temperatures and polarizations.
SICS OF THE SOLID STATE      Vol. 44      No. 2      2002



376 IVANOV et al.
yx twofold-degenerate vibrations of the E symmetry).
One clearly sees a temperature evolution of the spectra
under heating, which consists in a frequency decrease,
line broadening, and an increase in the integrated inten-
sity. The x(zz)y geometry reveals three vibration modes
of symmetry A1, whose room-temperature frequencies
(20°C) are 29 cm–1 (ω1), 38 cm–1 (ν2), and 70 cm–1 (ν5).
The first mode exhibits an anomalously strong temper-
ature dependence of intensity compared to the other
lines, which is seen clearly from Fig. 3, and relates to
second-order Raman scattering. The two other modes
are fundamental vibrations. In the x(yz)y and x(yx)y
geometries, one clearly observes four twofold-degener-
ate vibration modes of symmetry E with room-temper-
ature frequencies of 16 (ν1), 38 (ν2), 58 (ν4), and 82 cm–1

(ν6), with the fifth vibration mode of this symmetry
lying at 47 cm–1 (ν3) being observed only under strong
cooling, starting from 200 K (Fig. 3, T = 100 K). Thus,
the theory is in full agreement with experimental data,
because we succeeded in observing all the fundamental
vibration modes predicted by group theory, namely,
two modes of the A1 symmetry and five of the E sym-
metry.

Figures 4 and 5 display the temperature depen-
dences of the frequencies and half-widths of the lines
corresponding to these modes. The vibration frequen-
cies are seen to smoothly decrease under heating up to
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Fig. 4. Temperature dependences of the phonon (vibration)
frequencies of the Raman spectrum of benzil crystals.
Points are experiment; solid lines are drawn through the
experimental points to aid the eye.
P

the melting point (96°C). Only the two lowest energy
vibration modes behave anomalously, with the frequen-
cies increasing with temperature. Such an anomalous
temperature behavior is characteristic of soft modes.
The half-widths of the spectral lines also behave differ-
ently: in some cases, the temperature dependence is
strictly linear, while in others, one observes a clearly
pronounced exponential course, which is seen particu-
larly clearly near the melting point. The latter depen-
dence is characteristic of librational modes, while the
former is usually observed for translational vibrations.
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5. DISCUSSION OF RESULTS

The study of the temperature dependence of the fre-
quencies and half-widths of the low-frequency Raman
lines of molecular crystals, performed in the region of
normal lattice vibrations (<100 cm–1), was aimed at
interpretation of the observed spectra. An attempt was
made to associate the observed vibrations with transla-
tions or librations and to assign the corresponding nor-
mal coordinates to the experimental spectral lines. The
broadening of the fundamental vibrational bands in
crystals is connected with the possibility of excitation
decay, which is due to the anharmonic interaction of the
given vibration mode with lattice phonons. Taking into
account the third-order anharmonicity, the broadening
(half-width) should depend linearly on temperature,
∆ω = αT, whereas for much less probable fourth-order
processes, the broadening is proportional to the temper-
ature squared [8].

Vibrations of the orientational type are character-
ized by a stronger temperature dependence of the half-
width, which originates from the orientational wave
being modulated by random reorientations of mole-
cules in the crystal (see, for instance, [9]). In molecular
crystals, the bonding forces acting inside molecular
groups far exceed the intermolecular forces responsible
for the condensed state of the matter. In this case, the
potential barrier for molecular reorientation can be rel-
atively low, which may give rise to orientational melt-
ing, plasticity, and second-order phase transitions. In
the case of a low potential barrier, there is always a cer-
tain number of molecules with energies high enough to
overcome it at a given temperature. The expression for
the half-width of a spectral line for librational vibra-
tions has the form

(3)

where A is a constant factor, B is the natural line half-
width (at T = 0), and U is the potential barrier to reori-
entation.

Thus, if the temperature behavior of the half-width
of a line in the low-frequency Raman spectrum of a
molecular crystal shows that the line corresponds to an
orientational vibration, this expression can be used to
estimate the potential barrier to reorientation of the
molecules in this vibration. One can, therefore, attempt
to separate the lines (vibrations) observed in a spectrum
into those due to translations and to librations and
assign the corresponding normal coordinates to them,
i.e., specific displacements of the molecules involved in
each vibration under study.

We start our analysis with vibrations of symmetry
A1. We observed and studied three strong lines in the
spectrum, two of which correspond to fundamental
vibrations with frequencies 38 (ν2) and 70 cm–1 (ν5),
while the third line at 29 cm–1 (ω1) is due to the second-
order Raman process (all the frequencies are given for
T = 293 K). The last line is possibly an overtone of the

∆ω Ae U /kT– B,+=
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soft TO branch [of the E(ν1) symmetry at the Brillouin
zone center] at the M point at the zone edge. Group-the-
oretical analysis predicts that the first-order Raman
spectrum should contain two lines of symmetry A1,
with one of them being due to translation and the other,
to libration (Figs. 2a, 3). In the case of translation, this
is a fully symmetric vibration mode (all three transla-
tionally inequivalent molecules shift in phase radially
away from the center or toward it), which manifests
itself strongly in Raman scattering. This translational
vibration mode is associated with the line at 38 cm–1

(ν2), which is also buttressed by the linear dependence
of its half-width on T. Taking into account its large half-
width and its exponential behavior, it appears natural to
interpret the remaining line of symmetry A1 at 70 cm–1

as the libration mode corresponding to in-phase rock-
ing of all three molecules about their crystallographic
or molecular C2 axes (Fig. 2a).

The vibrations of the A2 symmetry are acoustic
(along the z axis) and IR-active optical vibrations
(Figs. 2b, 2c), which were not studied in this work.

The twofold-degenerate vibrations of symmetry E,
which are both Raman- and IR-active, are the most dif-
ficult to assign. As already mentioned, vibrations of the
E symmetry consist of acoustic vibrations along the x
and y axes (Figs. 2e, 2h) and five optical vibration
modes, including two translation and three libration
modes. The most interesting of them is the vibration
mode at 16 cm–1 (ν1); its frequency decreases to 8 cm–1

as the temperature is lowered and approaches the
phase-transition point Tc = 83.5 K [5]. This vibration is
the soft TO optical mode, whose softening is possibly
induced by interaction with the soft TA acoustic mode
of the same symmetry E at the Brillouin zone center.
The small half-width and its linear temperature depen-
dence up to the melting point suggest that this optical
mode is of the translation type. A quantitative estimate
of the frequency ratio of translations of symmetry E in
the x–y plane and of translations along the optical z axis
gives one grounds to conjecture that the soft TO mode
ν1 is a translational vibration in the basal plane
(Figs. 2d, 2g), whereas the vibration mode at 58 cm–1

(ν4) is a translation along the z axis (Figs. 2f, 2i), which
follows from the linear dependence of the half-width of
the corresponding line. It appears natural to assign the
remaining vibration modes of symmetry E with fre-
quencies of 38 (ν2), 47 (ν3), and 82 cm–1 (ν6) to libra-
tions (which is supported by the exponential depen-
dences of the half-widths of these lines); however, no
sufficiently strong correlation between the observed
vibrations and normal coordinates has thus far been
demonstrated.
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Abstract—Solid solutions in the Csx(NH4)1 – xLiSO4 (0 ≤ x ≤ 0.35) system are grown and investigated. The
birefringence (na – nb) and the heat capacity are measured in the temperature range 100–530 K. The (x–T) phase
diagram is constructed. It is demonstrated that the substitution of cesium for ammonium in the NH4LiSO4 crys-
tal affects the transition temperatures in such a way that the region of the ferroelectric phase increases and the
ferroelastic phase disappears at x > 0.22. The character of the high-temperature transition remains unchanged
(2β = 0.24 ± 0.01 for all compositions), but the birefringence anomaly and enthalpy decrease. As the concen-
tration x increases, the low-temperature transition becomes more similar to a first-order transition: the birefrin-
gence jump δn and the temperature hysteresis ∆T increase. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of the ALiSO4 (A = K, NH4, Rb, and Cs)
family contain LiO4 and SO4 tetrahedral groups that are
linked into a framework structure of the tridymite type
(cations A occupy large-sized holes). These crystals are
characterized by various sequences of changes in the
symmetry upon phase transitions due to step-by-step
orientational ordering of the structural groups. Struc-
tural transformations in these compounds are primarily
associated with changes in the orientation of sulfate
groups [1]. In order to elucidate the subtle mechanisms
responsible for the specific features of ordering in dif-
ferent compounds of this family, it is expedient to
investigate mixed systems. A gradual replacement of
cations in the A position by cations of another size
induces local distortions that do not provide transfor-
mations of long-range environment but are sufficient to
change the transition temperature. Eventually, this can
lead to a change in the mechanism of phase transition.

There are many works concerned with the investiga-
tion of solid solutions belonging to the above family.
The phase diagrams and the possibility of forming a vit-
reous phase have been studied in CsxRb(1 – x)LiSO4 [2–
6] and KxRb(1 – x)LiSO4 [7, 8] solid solutions. Kawa-
mura et al. [9] performed an x-ray structural investiga-
tion of the NH4LiSO4–RbLiSO4 system. For these com-
pounds, the (x–T) regions of existence of structures
with different symmetries were determined in the tem-
perature range from the melting point to liquid-nitrogen
temperatures. It was demonstrated that a change in the
degree of substitution for the A+ cation can result in the
stabilization of particular phases, the disappearance of
already existing phases, and the formation of new
phases.
1063-7834/02/4402- $22.00 © 0379
Ammonium lithium sulfate NH4LiSO4 has been
extensively studied to date and remains a subject of
investigation. It was established that this compound is
characterized by the following sequence of changes in
the symmetry: Pmcn(c = c0)  P21cn(c = c0) 
P21/c11(c = 2c0)  C1c1(c = 2c0) at T0i = 460, 284,
and 27 K, respectively [10–12]. The phase is ferroelec-
tric with considerable spontaneous polarization at room
temperature and ferroelastic below 284 K. On the other
hand, there appear works in which new phase transi-
tions in NH4LiSO4 are revealed or previously deter-
mined symmetry groups of the known phases are sub-
jected to question [13].

Kruglik et al. [14] studied CsLiSO4 crystals and
observed only one ferroelastic phase transition from the
initial phase with the symmetry Pmcn(c = c0) to the
phase with the monoclinic symmetry P1121/n(c = c0) at
T0 ≈ 201 K.

The aim of the present work was to elucidate how
the gradual replacement of ammonium cations by con-
siderably larger-sized cations Cs+ affects the tempera-
ture and the character of phase transitions in the
NH4LiSO4 crystal. For this purpose, we measured the
heat capacity and birefringence.

The NH4LiSO4 compound was investigated earlier
by differential scanning calorimetry (DSC) [13, 15] and
differential thermal analysis [16] at temperatures above
room temperature, i.e., in the range of the high-temper-
ature phase transition. The experimental data are con-
tradictory. This is particularly true for the number of
phase transitions and the corresponding changes in the
enthalpy. In this respect, we studied not only the solid
solutions but also the NH4LiSO4 compound over a wide
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range of temperatures, including the low-temperature
and high-temperature phase transitions. It should be
noted that the temperature behavior of the birefringence
of the NH4LiSO4 crystal in the ranges of the ferroelec-
tric and ferroelastic phase transitions is sufficiently well
understood [17, 18].

2. EXPERIMENTAL TECHNIQUE

The single crystals used in our measurements were
obtained by two methods: (1) slow evaporation of the
appropriate mixtures of NH4LiSO4 and CsLiSO4 aque-
ous solutions at T ≈ 310 K and (2) growth from a mix-
ture of NH4LiSO4 and CsLiSO4 solutions in caustic
ammonia taken in required proportion. The initial com-
pounds CsLiSO4 and NH4LiSO4 were prepared accord-
ing to the reactions

Cs2SO4 + Li2SO4 = 2CsLiSO4,

(NH4)2SO4 + Li2SO4 = 2(NH4)LiSO4.

The polycrystalline compounds synthesized were
examined using x-ray powder diffraction analysis prior
to dissolution in water [method (1)] or 25 wt % ammo-
nia [method (2)].

The largest and most perfect single crystals in the
form of hexagonal prisms were grown from mixtures of
aqueous solutions. The quantitative composition of
these crystals was determined by atomic absorption
analysis. Analysis showed that, as a rule, the cesium
content in the crystals is less than that in the as-batched
composition. For example, single crystals with x = 0.15
were obtained at the as-batched composition with x =
0.4. The chemical composition of the crystals grown by
the second method was closer to the as-batched compo-
sition, which made it possible to prepare the crystals
with x = 0.2–0.35. For optical investigations, samples in
the form of plates with different orientations and thick-
nesses were oriented on a URS x-ray instrument.

The plates prepared were used in polarization-opti-
cal investigations and measurements of the birefrin-
gence in the range from the liquid-nitrogen temperature
to temperatures corresponding to the decomposition of
the studied compounds (~530 K). The birefringence
was measured on plates of the (001) section (c ≈ 8.7 Å).
The measurements were performed on a Berec com-
pensator with an accuracy of ≅ 10–5 and a Senarmont
compensator with a sensitivity of no less than 10–7. The
former compensator made it possible to investigate
small-sized samples and to determine the birefringence
magnitude.

The thermodynamic properties were studied on a
DSM-2M differential scanning microcalorimeter mod-
ified for recording and processing of measured signals
on a computer. This appreciably increased the amount
of information obtained with the microcalorimeter. The
measurements were carried out in the temperatures
ranges 150–390 K with a low-temperature unit and in
the range 340–510 K with a high-temperature unit. The
P

   

upper limit of measurements was determined by the
temperature of the onset of the NH4LiSO4 decomposi-
tion.

For the most part, calorimetric experiments were
performed with powder samples. In a number of
cases, when the solid solutions were studied in the
form of crystals, close thermal contact between the
sample and the cell was ensured by a KPT-8 organo-
silicon paste. The cesium concentrations (x) in the
Csx(NH4)1 − xLiSO4 solid solutions were equal to 0,
0.045, 0.065, 0.09, 0.125, 0.15, and 0.22. The sample
weight was approximately equal to 0.1 g.

In each experiment, the data on the DSM signals as
functions of time were converted into the temperature
dependence of the heat capacity for the studied com-
pound with the use of the heat capacity of corundum as
a reference. The enthalpy changes ∆Hi due to phase
transitions were determined by integrating the function
∆Cp(T), where ∆Cp is the excess heat capacity. In order
to increase the reliability of the results, we carried out
four or six series of measurements with one or two
solid-solution samples of each composition. In differ-
ent series, the temperatures of phase transitions for the
same sample and for different samples of the same solid
solution differed by no more than 0.5–1.0 K. The
enthalpy change was determined accurate to within 10–
15%.

Finally, it should be noted that the polarization-opti-
cal observations revealed that the grown crystals con-
tain extended regions of inhomogeneous stresses that
disappear upon annealing. Moreover, the low-tempera-
ture transition at T02 in compounds with a sufficiently
high cesium content (for example, at x = 0.15) was
observed only after annealing. For this reason, prior to
optical and thermal investigations, the samples were
necessarily annealed at a temperature of approximately
470 K for 2 h.

3. RESULTS
Experimental calorimetric data in the form of tem-

perature dependences of the excess heat capacities
associated with high- and low-temperature phase tran-
sitions are shown in Fig. 1. An increase in the cesium
concentration leads to a considerable decrease in the
temperatures of both structural transformations and in
the excess heat capacity at a maximum. This results in
an increase in the error in determining the phase transi-
tion temperatures T0i and the enthalpy changes ∆Hi.
The data on T0i and ∆Hi are listed in the table. It is seen
that, as the cesium content in the solid solutions
increases, the enthalpy of the high-temperature phase
transition decreases substantially, whereas the enthalpy
of the low-temperature phase transition remains con-
stant to within the limits of the estimation error.

Figure 2 depicts the experimental temperature
dependences of the birefringence ∆nc = na – nb for
Csx(NH4)1 – xLiSO4 solid solutions with different
HYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002
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Fig. 1. Temperature dependences of the excess heat capacity for Csx(NH4)1 – xLiSO4 solid solutions in the vicinity of (a) low-tem-
perature and (b) high-temperature phase transitions at different concentrations x: (1) 0, (2) 0.045, (3) 0.065, (4) 0.09, (5) 0.15, and
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Fig. 2. Temperature dependences of the birefringence ∆nc upon heating (open circles and squares) and cooling (closed circles and
squares) for samples at different cesium concentrations x: (1) 0, (2) 0.065, (3) 0.09, and (4) 0.35.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 2      2002



382 MEL’NIKOVA et al.
cesium concentrations x. It can be seen that the temper-
atures of the high-temperature (T01) and low-tempera-
ture (T02) transitions gradually decrease with an
increase in the cesium content in the crystal. It is worth
noting that the high-temperature phase transition does
not change in character and only the anomalous compo-
nent of the birefringence decreases progressively,
which is in agreement with the above behavior of the
enthalpy. The effect of the substitution on the phase
transition temperature T02 is much more pronounced.
An increase in the concentration x leads to an increase
in the birefringence jump δn and in the temperature
hysteresis ∆T02: δn ≈ 10 × 10–4 and ∆T02 = 2 K at x = 0,
δn ≈ 12 × 10–4 and ∆T02 = 8.5 K at x = 0.065, and δn ≈
15 × 10–4 and ∆T02 = 18 K at x = 0.15. Only the high-
temperature phase transition is observed in the solid
solution with x = 0.35. Observations made under a
microscope in polarized light indicate that, upon grad-
ual substitution of cesium for ammonium, the sequence
of changes in the symmetry of phases in the studied
compounds remains identical to that in pure NH4LiSO4.
Clear-cut and direct absences are observed in the range
from 500 K to the temperature T02 of the transition to
the monoclinic phase P21/c11. Below the T02 tempera-
ture, the twinning typical of this phase [18] is observed
in the (100) section (a ≈ 5.2 Å).

4. DISCUSSION

Figure 3 displays the phase diagram of the
Csx(NH4)1 – xLiSO4 solid solutions with x ≤ 0.35, which
was constructed using the results of optical and calori-
metric measurements. The introduction of cesium ions
into NH4LiSO4 decreases both the T01 temperature of
the high-temperature structural phase transition from
the orthorhombic phase Pmcn to the orthorhombic

200

0

T,
 K

x
0.2 0.4

400

Pmcn

P21cn

P21/c11

1
2

Fig. 3. Phase (x–T) diagram of the Csx(NH4)1 – xLiSO4
solid solutions in the concentration range x = 0–0.35:
(1) DSC data obtained upon heating and (2) optical data
obtained upon cooling.
P

polar phase P21cn and the T02 temperature of the transi-
tion to the monoclinic phase P21/c11. Note that the T02
temperature changes considerably more strongly, so
that the phase transition in the solution with the cesium
concentration x = 0.22 is not observed above the liquid-
nitrogen temperature and, hence, the region of exist-
ence of the ferroelectric phase becomes more extended.
Chekmasova et al. [19] analyzed the influence of
hydrostatic pressure on the phase transitions in pure
NH4LiSO4 and revealed that the pressure appreciably
affects the phase transition temperatures: the tempera-
ture of the high-temperature transition increases drasti-
cally (dT01/dp = 90 K/GPa), whereas the temperature of
the low-temperature transition decreases (dT02/dp =
−26 K/GPa). Our measurements demonstrate that,
compared to hydrostatic pressure, the replacement of
ammonium ions by larger-sized Cs ions in the structure
has the opposite effect. This replacement favors the
loosening of the structure and leads to a decrease in the
T01 temperature of the G0  G1 transition. At the
same time, the compression and loosening of the struc-
ture identically affect the G1  G2 transition and
drastically decrease the region of existence of the G2
phase. Therefore, it can be concluded that the G2 phase
is unstable.

The temperature dependences of the anomalous
component of the birefringence in the range below the
T01 temperature is plotted in Fig. 4. These dependences
were obtained by subtracting the linear dependences of
the birefringence (extrapolated from the initial phase)
from the dependences displayed in Fig. 2. As can be
seen, the pretransitional effects are observed in the
range 5–10 K above the phase transition, which masks
the weak first-order nature of this transition [17]. More-
over, it is seen that the birefringence anomaly accompa-
nying the phase transition gradually decreases with an
increase in x. Indeed, the maximum deviation of the
birefringence from a linear dependence for pure
NH4LiSO4 (x = 0) is determined as δ(na – nb) = 10 ×
10–4, whereas the value of δ(na – nb) for the sample with
x = 0.35 is four times less (≈2.5 × 10–4).

The anomalous component of the birefringence
δ(na – nb) and the transition parameter η are related by
the quadratic expression δ(na – nb) ~ η2 ~ (T – T0)2β.
With this relationship, it is possible to determine the
critical exponent β and to fit the phase transition tem-
perature T01 in such a way as to fulfill the above qua-
dratic dependence. The determination of the phase tran-
sition temperature from birefringence curves is prob-
lematic, especially when the transition is smeared
under the influence of any factor. In our case, the sub-
stitution leads to an increase in the fluctuation anoma-
lies in the range of the T01 temperature. There are many
techniques of determining the T01 temperature. In the
present work, the phase transition temperature was fit-
ted using linear dependences of the type shown in
Fig. 4 according to the technique proposed by Kim
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et al. [20]. The T01 temperatures obtained agree well
with the results of thermal measurements.

Figure 5 shows the dependences of δ(na – nb) on
(T01 – T)/T01 on the logarithmic scale for samples with
different concentrations x. From the slopes of the
straight lines, we obtain the “nonclassical” critical indi-
ces 2β = 0.24 ± 0.01 for all the studied samples. The
dependence is linear in the temperature range (T01 – T)
from 0.5 to 90 K below the phase transition tempera-
ture. The small critical index can be associated with the
closeness of the transition to a tricritical point and the
effect of higher-order terms in the thermodynamic
potential. It should be noted that a similar small critical
index for the high-temperature phase transition in
NH4LiSO4 was obtained earlier in [17]. The constant
value of 2β for different compositions suggests that the
transition remains unchanged in character with an
increase in the degree of substitution of cesium for
ammonium.

The enthalpy change ∆H1 determined in our work
for the high-temperature transformation in the
NH4LiSO4 compound (see table) is nearly twice as
large as that obtained by Solans et al. [13] (∆H1 =
610 J/mol) also with the use of the DSC technique. This
considerable difference in the enthalpy change ∆H1
can, most likely, be explained by the different
approaches used to determine the anomalous heat
capacity ranges. The function ∆Cp(T) was integrated in
the temperature range 410–480 K in our work and only
in a range of 6.2 K in the vicinity of the T01 temperature
in [13]. However, the anomalous heat capacity over a
wide temperature range below the T01 temperature is
indicated by the data on the thermal expansion [21, 22]
and the birefringence (Figs. 2, 4). It should be noted
that our experimental data on the enthalpy change is in
reasonable agreement with the change ∆H1 =
1305 J/mol calculated by Tomaszewski and Pietraszko
[22] from the Clausius–Clapeyron equation with the
use of data on the volume change and dT01/dp.

As far as we know, the calorimetric investigation of
the low-temperature phase transition in NH4LiSO4 was
performed for the first time in the present work. Since
this transition is a pronounced first-order phase trans-
formation, it can be assumed that the determined

Thermodynamic parameters of phase transitions in
Csx(NH4)1 – xLiSO4 solid solutions

x T01, K ∆H1, J/mol T02, K ∆H2, J/mol

0 460.5 1170 289 205

0.045 453 1045 280 190

0.065 449 990 268.5 200

0.09 445 930 260 230

0.15 431.5 530 229, 241 100

0.22 414.6 400 – –
PH
enthalpy change ∆H2 predominantly corresponds to the
latent heat. Using the data on the effect of hydrostatic
pressure on the T02 temperature (dT02/dp = –26 K/GPa
[19]), the volume jump ∆V2/V = 0.02% at T02 was cal-
culated from the Clausius–Clapeyron equation
(∆V2/V)(T02) = ∆H2(dT02/dp).

Recently, it was found that there is one more heat
capacity anomaly (at 335 [13] or 350 K [16]) which is
unrelated to the known phase transitions in NH4LiSO4.
Solans et al. [13] noted that this anomaly was revealed
at the rate of change in the sample temperature dT/dt =
5 K/min and was not observed at dT/dt = 20 K/min. We
performed measurements in the range between the T01
and T02 temperatures at a rate of 8 K/min. No anoma-
lous changes in the heat capacity were observed at
335 K or at 350 K. It should be noted that the enthalpy
change (120 J/mol) determined in [13] for the above
anomaly is only half as large as the change ∆H2 (see
table). To put it differently, we can state with assurance
that the additional anomaly in our experiments could be
recorded quite reliably. Furthermore, the necessity of
annealing the samples should be taken into account,
especially as the samples used in [13] were grown by
the short-cut method at a high temperature. For this rea-
son, we are inclined to believe that, at least in our
NH4LiSO4 sample, there occur only two phase transi-
tions in the above temperature range.

The entropy changes ∆Si due to phase transitions
were determined from the obtained calorimetric data by
integrating the function (∆Cp/T)(T). These changes for
both phase transitions in NH4LiSO4 turned out to be
small (∆S1 = 2.5 J/mol K and ∆S2 = 0.62 J/mol K) and
comparable to the entropy change upon the phase tran-
sition in CsLiSO4 (∆S = 1.66 J/mol K) [23]. Therefore,
reasoning from our experimental data, the phase transi-
tions in NH4LiSO4 cannot be treated as pure order–dis-
order transformations.

In the immediate future, the heat capacity of the
NH4LiSO4 compound will be measured on an adiabatic
calorimeter with a higher sensitivity and accuracy com-
pared to the DSM calorimeter. This will make it possi-
ble to determine more reliably the entropy changes and
to solve the problem of the additional heat capacity
anomaly in the temperature range from 330 to 350 K.
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Abstract—The sectors of propagation directions of dispersionless polaritons localized at the optically uniaxial
crystal–optically isotropic medium interface are determined. The region of possible orientations of the crystal
surface containing these sectors is revealed. The boundaries of the sector of possible propagation directions are
analytically described as functions of the crystal surface orientation with respect to the optical axis of the crys-
tal. Consideration is given to the optimum ratios of permittivities at which the width of the propagation sectors
appears to be maximum. It is found that the boundaries of the sectors of polariton propagation along different
surfaces change drastically in the limit of small dielectric anisotropy of the crystal. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Surface polaritons (surface electromagnetic waves)
that exist near the boundaries of solids at negative per-
mittivities are well understood [1–7]. The permittivi-
ties become negative in the vicinity of resonance fre-
quencies under conditions of strong frequency disper-
sion. Apart from the dispersion polaritons, polaritons
of another type can also exist in crystals at positive
permittivities when the frequency dispersion is insig-
nificant. The dispersionless surface polaritons that
propagate in optically uniaxial crystals with the optical
axis parallel to the crystal boundary were described
earlier in [8, 9]. These polaritons can exist only in opti-
cally positive crystals bordering an isotropic medium
and are characterized by a rather narrow sector of pos-
sible directions of polariton propagation: in actual sys-
tems, this sector is of the order of one angular degree
(~1°).

The purpose of the present work was to investigate
the conditions of existence for dispersionless surface
polaritons in the vicinity of different sections of opti-
cally uniaxial crystals and to analyze the dependence of
the sector of polariton propagation on the surface orien-
tation. Moreover, we determined the optimum ratios
between the permittivities of the crystal and the adja-
cent isotropic medium at which the sector of the exist-
ence of dispersionless surface polaritons is maximum.
Finally, we considered a special case of weak dielectric
anisotropy, when even insignificant changes in the per-
mittivity substantially affect the existence region of the
polaritons under investigation.
1063-7834/02/4402- $22.00 © 20386
2. CHARACTERISTICS OF THE WAVE FIELD 
OF A POLARITON

The field of a polariton depends on two permittivi-
ties of the crystal (εe and ε0) [10] and the permittivity ε
of an isotropic medium bordering the crystal. Let us
consider a coordinate system with the z axis perpendic-
ular to the surface of the crystal (Fig. 1). It is assumed
that the optical axis c lies in the xz plane and makes an
angle ϑ  with the z axis, whereas the propagation direc-
tion m lies in the xy boundary plane and forms an angle
ϕ with the x axis; that is,

(1)

The electric component of the electromagnetic wave
field of the polariton can be represented as

(2)

Here, ω is the frequency, r = (x, y, z) is the radius vector
of the current point, t is the time, c is the velocity of

c ϑsin 0 ϑcos, ,( ), m ϕcos ϕsin 0, ,( ).= =

E r t,( ) E z( ) iω
ε0

c
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Fig. 1. Schematic representation of the studied crystal (c is
the optical axis and m is the direction of polariton propaga-
tion).
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light in free space, N = c/v , v  = ω/k is the phase
velocity of the surface wave, and k is the wave number
common to all partial waves.

In a crystal (z ≥ 0), the wave field of the polariton
under consideration is a two-partial surface wave, for
which the vector amplitude in formula (2) has the fol-
lowing form:

(3)

In an isotropic medium adjacent to the crystal (z ≤ 0),
the conjugate one-partial wave propagates and the vec-
tor amplitude in formula (2) takes the form

(4)

The parameters of the wave field localization at the
crystal boundary are defined by the relationships

(5)

(6)

(7)

The amplitudes a0, ae, and a and the polarization
vectors E0, Ee, and E are determined from a system of
Maxwell equations with standard boundary conditions
at the interface. The criterion for the existence of non-
trivial solutions to this system of homogeneous equa-
tions provides a means of determining the dispersion
equation in the parameter N ≡ N(ϑ , ϕ) (or the wave
velocity v); that is,

(8)

Note that this equation in a different form is given in
[2]. Moreover, a similar equation derived in [11]
accounts for the magnetic anisotropy of the crystal.
Algebraic (rather cumbersome) treatment proved that
the real and imaginary parts of Eq. (8) are proportional

ε0

E z( ) a0E0 ω
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to each other. On this basis, Eq. (8) can be rearranged
to the real form

(9)

in which we introduced the designation

(10)

Equation (9) allows us to determine the quantity N and,
hence, the main characteristics of the polariton, namely,
the dimensionless velocity 1/N and the wave field local-
ization parameters [formulas (5), (6)].

3. THE EXISTENCE REGION 
OF DISPERSIONLESS SURFACE POLARITONS

The region of existence of surface polaritons is com-
pletely determined by relationships (5), (6), and (9),
provided the wave number N and all the localization

parameters p0, , and p are the real quantities.

Analysis demonstrates that this requirement can be
satisfied only in the case when the permittivities of the
media involved obey the following inequalities:

(11)

which are equivalent to the inequalities

(12)

These conditions are satisfied only in optically positive
crystals.

The boundaries of the region of possible angles ϑ and
ϕ (i.e., the region of possible orientations of the crystal
boundary and possible directions of polariton propaga-
tion) are specified by two conditions: (1) p(ϑ, ϕ) = 0,
when the wave in the isotropic medium is a bulk wave,
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Fig. 2. Typical characteristics of polaritons: (a) the exist-
ence region (hatched) in the ϑ–ϕ coordinates, (b) the limit-
ing parameters at the boundary of the existence region at
p(ϑ , ϕ) = 0, and (c) the limiting parameters at the boundary

of the existence region at (ϑ , ϕ) = 0. The curves are plot-

ted at δ = 4 and  = 0.8 (ϑ l ≈ 63.4°, ϕl ≈ 40.4°, and  ≈
58.0°).
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and (2) (ϑ , ϕ) = 0, when the extraordinary wave in
the crystal is a bulk wave. The equation of the line p(ϑ ,
ϕ) = 0 in the ϑ–ϕ coordinates can be represented in the
explicit form (Fig. 2a)

.(13)

Note that, for this line, the parameters N =  and p0 =

 are independent of the angles ϑ  and ϕ, whereas the

 parameter described by formula (6) depends on
these angles (Fig. 2b). For the benefit of clarity, the
curves in Fig. 2 were plotted with the dielectric anisot-
ropy parameter (δ = 4) taken to be appreciably larger
than the standard value.

The equation of the line (ϑ , ϕ) = 0 in the ϑ–ϕ
coordinates can be written in the explicit form

(14)

In this line, the parameter N is represented by the
expression (Figs. 2a, 2c)

. (15)

As is seen from Fig. 2a, the region of the angles ϑ  and
ϕ, in which surface polaritons exist, can be character-
ized by three limiting angles:

(16)

(17)

pe
R

g ϑ ϕ,( ) = pe
R p0+( )p0 δ ϕsin

2 γ ϑcot
2

+( )/d–  = 0

γ

δ̃
pe

R

pe
R

g0 ϑ ϕ,( ) N2δ ϑ δ̃ δ ϕ/dcos
2

–( )/d γp p0–cot
2[ ]=

× p0 p+( ) δ̃ δ̃ δ/d–( )p0– 0.=

N ϑ ϕ,( ) 1 δ+( )d/ d ϕcos
2

+( )=

ϑ l δ̃/δ, when ϕarccos 0,= =

ϕ l
δ̃
δ
-- 1 κ+( ),arcsin=

κ  = 
1
2
--- –1 δ̃– 1 δ̃–( )

2
4δ++[ ] , when ϑ  = 90°,

30°

0 0.25
/δ

60°

90°

0.50 0.75 1.00

30°

0 30°
ϑ

60°

90°

60° 90°

1

2

(a)

ϕ

(b)

1
2

3
4

Fig. 3. Limiting characteristics of the existence region of
polaritons as functions of the material parameters of the
media: (a) (1) the angle ϑ l determining the limiting orienta-

tion of the crystal boundary and (2) the angles ϕl ≈  in

the limit δ ! 1 and (b) the ϕ(ϑ) curves for the existence

region at δ ! 1 for the ratios /δ = (1) 0.95, (2) 0.75, (3) 0.4,
and (4) 0.10.

ϕ l
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(18)

when ϑ = 90°.
By using these relationships (expressions for the

angles ϕl and  in other forms are given in [9]), we
will analyze the possible maximum extension of the
existence region of the polaritons under consideration.

4. ON THE POSSIBILITY OF CONTROLLING 
SECTORS OF POLARITON PROPAGATION

The region of the angles ϑ  and ϕ, in which the stud-
ied polaritons exist, is determined by only two parame-
ters, namely, the dielectric anisotropy of the crystal δ
[formula (7)] and the parameter  [formula (10)] that is
dependent on the permittivity of the isotropic medium
adjacent to the crystal. (It should be remembered that

the parameters δ and  satisfy inequalities (12).) The
linear sizes and width of this region are completely
specified by three limiting angles defined by relation-
ships (16)–(18) (Fig. 2a).

The ϑ l angle defined by expression (16) is a univer-

sal function of the /δ ratio. Any ratio /δ that satisfies
inequalities (12) corresponds to the particular limiting
orientation of the crystal surface, i.e., to the particular
angle ϑ l (Fig. 3a). Therefore, the ϑ l angle can be con-
trolled through changes in the permittivity of the isotro-
pic medium adjacent to the crystal, i.e., by changing the

 parameter.
In the special case of weak dielectric anisotropy of

the crystal, when the δ parameter is small and, accord-

ing to inequalities (12), the  parameter is also insig-

nificant, the /δ ratio in the limit takes an indefinite
form of the 0/0 type. This ratio changes drastically even
with insignificant variations in the material characteris-

tics δ and . In this case, the limiting angles also
change abruptly and the existence region of the polari-
tons in the (ϑ , ϕ) plane becomes highly sensitive to the

/δ ratio but is found to be very narrow. At δ ! 1, we
obtain the relationship 

(19)

because κ – κ e ~ δ2 and ∆ϕ ~ δ2 (Fig. 3a). As a result,
the entire region of existence of polaritons virtually
contracts into a line described by the expression

(20)
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The location of this line in the (ϑ , ϕ) plane substantially

depends on the /δ ratio (Fig. 3b). A comparison of
Figs. 2a and 3b shows that the boundaries of the exist-
ence region change over a rather wide range with vari-
ations in the anisotropy parameters.

At specified permittivities of the crystal (i.e., at
δ = const), the width of the sector ∆ϕ of possible polari-
ton-propagation directions depends on both the orienta-
tion of the crystal boundary and the permittivity of the

isotropic medium: ∆ϕ = ∆ϕ(ϑ , ). In particular, the
sector width ∆ϕ has a maximum at ϑ  = 90° (when the
optical axis is aligned parallel to the crystal boundary).

Furthermore, the maximum width  = (δ) is
observed at a certain permittivity of the isotropic
medium, i.e., at ∆ϕ = (∆ϕ)m. Therefore, the maximum
width (∆ϕ)m corresponds to a maximum in the depen-

dence of the difference (  – ϕl) on the  parameter at

δ = const (Figs. 4a, 4b). The dependence  = (δ) is
plotted in Fig. 5a. This curve makes it possible to deter-

mine the permittivity of the isotropic medium ( ) at
which the sector of polariton propagation directions is
maximum for the specified dielectric anisotropy δ of
the crystal. The characteristics of these sectors are rep-
resented in Fig. 5b.

Thus, in the present work, we determined the sectors
of existence of dispersionless surface polaritons local-
ized at different sections of optically uniaxial crystals
bordering an isotropic medium. In the vicinity of the
boundaries of the sector of possible propagation direc-
tions, the dispersionless surface polaritons can be con-
sidered quasi-bulk polaritons, because the depth of
their localization is large compared to the electromag-
netic wavelength. In the case when we are dealing with
wavelengths of the order of a micrometer (in the visible
range and in the immediate vicinity), it becomes evi-
dent that, even with a localization depth of the order of
hundreds or thousands of wavelengths, this quantity is
always substantially less than the thickness of a real
crystal. This implies that the waves under consideration
remain surface waves.

The existence region of surface polaritons can be
controlled using the dependences of the permittivities
of the crystal and the adjacent isotropic medium on the
frequency, temperature, pressure, and other external
factors. By choosing isotropic media with the appropri-
ate dielectric characteristics, it is possible to obtain the
maximum sector of propagation directions of disper-
sionless surface polaritons. For example, according to
the experimental data obtained in [12] for optically
uniaxial crystals of the Hg2Cl2 calomel, the change in
wavelength from 0.4 to 18 µm leads to a change in the
dielectric anisotropy δ from ≈1.1 to ≈0.4 and, at δ ≈ 1,
the maximum width (∆ϕ)m of the sector of possible
propagation directions is approximately equal to 5°.
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δ̃ δ̃m

ϕ l
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δ̃ δ̃m

δ̃
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The excitation of dispersionless surface polaritons
can be achieved with frustrated total internal reflection
[1, 7, 13]. The specific features of this method, as
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Fig. 4. Dependences of the limiting angles on the parameter

 at constant δ: (a) the angles ϑ l, ϕl, and  at δ = 4 and

(b) the difference  – ϕl at δ = 4,  ≈ 0.31, and (∆ϕ)m ≈
20°.
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Fig. 5. Dependences of the optimum parameters on the
dielectric anisotropy δ of the crystal: (a) the dielectric

parameter  of the isotropic medium and (b) the optimum

parameters for the sector of propagation directions at  =
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applied to dispersion surface polaritons, were described
in our recent work [7]. Qualitatively, these features
remain the same in the case of dispersionless surface
polaritons.
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Abstract—The nature of electron-stimulated desorption of europium atoms Eu0 at low incident electron ener-
gies Ee (~30 eV) and the specific features of the dependence of the yield of europium atoms Eu0 on their con-
centration on the surface of oxidized tungsten are discussed. The crucial stage is found to be the primary event
of vacancy creation in the inner 5p shell of the europium adatom. As follows from estimates, only the first of
the two possible ionization scenarios (intratomic electron transfer to the outer shell of the Eu adatom or ejection
of the knocked-out electron into vacuum) results in Eu0 desorption. The concentration threshold of the Eu0 yield
is determined. © 2002 MAIK “Nauka/Interperiodica”.
1. Electron-stimulated desorption (ESD) of europium
atoms from a tungsten surface covered by an oxygen
monolayer (O/W surface) was studied in [1, 2]. It was
found that, in contrast to the ESD of alkali metals from
the O/W surface studied in detail before in [3, 4], the
dependence of the yield of Eu atoms q on the incident
electron energy Ee has a clearly pronounced resonance
character. To explain these features, an energy level dia-
gram of the Eu–O/W adsorption system was con-
structed for low and high O/W surface coverages Θ by
europium adatoms [5] and possible mechanisms of Eu0

ESD were proposed [6]. In particular, the theory devel-
oped earlier in [7, 8] was successfully used to satisfac-
torily describe the concentration dependence q(Θ) of
the yield of Eu atoms for the q(Ee) peaks lying at Ee =
50 and 80 eV. It was assumed in [7, 8] that the q(Θ)
dependence is determined primarily by the last stage in
the ESD process, namely, by the ejection of particles,
possibly accompanied by atom–ion charge exchange.
From our preliminary estimates, however, it follows
that this approach to describing the q(Θ) relation fails
for the q(Ee) peak at Ee = 33 eV (the 33-eV peak, for
brevity); in this case, the experimentally observed con-
centration dependence of the Eu0 yield differs strongly
from Ee measured at Ee = 50 and 80 eV. The present
work deals with interpretation of specific features of the
33-eV peak.

2. We will show that the specific features in the con-
centration dependence of the ESD yield of europium
atoms for the 33-eV peak (see [2, Fig. 2]) are related to
the primary event in the ESD process, namely, electron
transfer from the inner 5p Eu shell to an outer Eu shell
quasilevel, whose position depends on Θ. The involve-
ment of the 5p vacancy in the process is indicated by the
1063-7834/02/4402- $22.00 © 20391
energy threshold for the escape of europium neutrals
[1, 2].

We consider the following states in the europium
adatom that are involved in the ESD process: (1) the 5p
level with energy ε(5p) that is filled by one electron
before the excitation and is empty after the excitation,
and (2) the two-electron quasilevel [with the centroid
lying at the energy ε(Θ)] that forms in the hybridization
of the one-electron 6s and 6p states with the substrate
and has an occupation number n(Θ) < 1 before the exci-
tation and [1 + n(Θ)] or n(Θ) after the excitation (see
below). Here and subsequently, we assume that, in the
ground state, only one sublevel of the 6s shell is
involved in adsorption, i.e., that only one electron is
capable of tunneling into the metal, which follows, for
instance, from the decrease in the work function [5].
Note that the scenario of the first ESD stage proposed
by us (scenario 1) was taken from [9].

The initial (ground-state) energy of the two-level
system postulated by us can be written as

(1)

We shall reckon the energy from the Fermi level of the
system.

We consider two scenarios of formation of a 5p
vacancy. In scenario 1, the 5p shell is ionized and the
knocked-out electron is transferred to the two-electron
quasilevel; i.e., an intra-adatom transition takes place.
In this case, the potential energy of the excited system
E1 is

(2)

E0 Θ( ) ε Θ( )n Θ( ) ε 5 p( ).+=

E1 Θ( ) ε Θ( ) 1 n Θ( )+[ ]=

+ Un Θ( ) G 1 n Θ( )+[ ] .–
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Here, U is the energy of electron repulsion at the quasi-
level and G is the energy of attraction of the knocked-
out electron to the 5p hole. This ionization process
changes the potential energy of the system by W1:

(3)

In scenario 2, the electron is knocked out of the 5p
shell into vacuum. The potential energy of this excited
state E2 and the change in potential energy W2 are

(4)

Both scenarios are shown schematically (disregard-
ing the quasilevel broadening) in Fig. 1. We consider

W1 E1 E0–≡  = U G–( )n Θ( ) ε Θ( ) G– ε 5 p( ).–+

E2 Θ( ) ε Θ( ) G–[ ] n Θ( ),=

W2 Gn Θ( )– ε 5 p( ).–=

0.2
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Coverage
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5p

Vacuum
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0.4

0.6

0.8
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2

Fig. 1. Two scenarios, 1 and 2, of 5p-level ionization of the
europium adatom. Vertical lines show electron transfer from
the 5p level of the europium adatom to its (1) quasilevel or
(2) vacuum level.

Fig. 2. Europium adatom charge Z plotted as a function of
coverage Θ in the equilibrium state for Γ equal to (1) 1 and
(2) 0.25 eV.
P

some energy relations following from this scheme.
According to [1, 2], the appearance threshold of
europium atoms corresponds to an incident electron

energy  = 24 eV, a figure close to the 5p electron
binding energy in the europium atom, εb ≡ E(O3) =

26 eV [6, 10]. Hence, for Ee ≥ , ionization is possi-
ble in scenario 2. In the case of ionization in scenario 1
for the same Ee, we have an energy excess δE ≈ ϕ + K,
where ϕ is the work function of oxidized tungsten (in
Fig. 1, this approximately corresponds to the distance
between the vacuum level and the quasilevel) and K is
the kinetic energy of the knocked-out electron. Because
the work function of oxidized tungsten is ϕ ≈ 5.5 eV
(see, e.g., [5]), δE is close in order of magnitude to sur-
face plasmon energies in metals. Hence, for neutral

europium ESD to occur for Ee ≥ , the excess energy
has to be carried away by plasmons.

We consider the energy difference between excited
states 1 and 2,

(5)

If ∆W < 0, scenario 1 is energetically preferable, and in
the opposite case, scenario 2 will take place. Judging
from the resonance character of the 33-eV peak and its
threshold [1, 2], it appears reasonable to assume that it
is scenario 1 that is responsible for Eu0 ESD, because at
high incident electron energies Ee, no Eu neutrals desorb,
even though ionization in accordance with scenario 2
should take place.

3. To estimate ∆W, we have to calculate the ground-
state population n(Θ) of the quasilevel. Such a calcula-
tion can be performed in a standard way (see, e.g.,
[11−13]):

(6)

Here, Γ is the quasilevel half-width, ξ is the adatom
dipole–dipole coupling constant, Z is the adatom
charge, NML = 5 × 1014 cm–2 is the europium adatom
concentration in the monolayer, 2λ is the surface dipole
arm, A ≈ 10 is a coefficient depending weakly on the
adsorbed-layer geometry [11], and ε0 is the 6s-quasi-
level energy at zero coverage. The Z(Θ) relation calcu-
lated using Eqs. (6) is plotted in Fig. 2. The quantity λ
was taken to be equal to the sum of the europium and
oxygen radii, which are 0.74 and 2.04 Å, respectively
[14] (the mirror image plane was assumed to be coinci-
dent with the surface of the tungsten substrate); this
yields ε0 = 1 eV and ξ = 24.89 eV (for more details, see
[5]). We also calculated the change in the work function

Ee
th

Ee
th

Ee
th

∆W W1 W2–≡ ∆E E1 E2–≡=

=  Un Θ( ) ε Θ( ) G.–+

n Θ( ) π 1– ε Θ( )/Γ[ ]arccot ,=

ε Θ( ) ε0 ξΘ3/2Z Θ( ),–=

ξ 2e2λ2NML
3/2 A, Z Θ( ) 1 n Θ( ).–= =
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∆ϕ of the Eu–O/W system caused by the coverage Θ
using standard relations from [11–13]:

(7)

The results of the calculation are plotted in Fig. 3 for
Φ = 25.15 eV and are typical. Note that the case shown
in Fig. 2 (curve 2) corresponds to the minimum in the
work function of the system. Unfortunately, we have no
relevant experimental data at our disposal.

4. To estimate the Coulomb parameters U and G, we
use the observation that the europium atoms stop des-
orbing for Θ* = 0.35. Based on the above assumption
that it is the first (resonance) scenario of excitation that
the ESD of Eu neutrals follows, we set

(8)

By using the calculated Z(Θ) and properly varying the
parameter G, we can find the values of U that satisfy
Eq. (8) (table). Taking the screening into account, both
the values of the quantities U and G (see, for instance,
[15]) and the relation between them (G < U) appear rea-
sonable (because G describes the Coulomb interaction
between an electron and a hole located in different
atomic shells, while U characterizes the interaction
between electrons in the same shell). The calculated
change ∆W is plotted in Fig. 4 within the coverage
interval from Θ = 0 to Θ* = 0.35. We readily see that,
first, an increase in the parameters U and G leads to a
shift of ∆W(Θ) toward negative values and, second, in
the case illustrated by Fig. 4a, ∆W(Θ) is a monotonic
function, whereas in the case of Fig. 4b, the ∆W(Θ)
curve has a minimum. A comparison of Figs. 3 and 4
suggests the conclusion that the presence of a minimum
in the dependence of the work function ϕ(Θ) = ϕ0 =
∆ϕ(Θ) on coverage accounts for the minimum in
∆W(Θ). Of particular interest is curve 1 in Fig. 4b,
which demonstrates the existence of a threshold at cov-
erages Θth < 0.05, where ∆W becomes negative and
ESD of Eu neutrals sets in. It is this concentration
threshold (Θth ~ 0.03) that was observed experimentally
in [2]. Thus, we have obtained one more confirmation
of europium atom desorption following scenario 1.

Thus, estimates show that the 33-eV peak itself and
its concentration dependence are determined by the
first stage in ESD, more specifically, by the transfer of
a 5p electron of the europium adatom to its unfilled
outer shell quasilevel, a process accompanied by plas-
mon excitation in the substrate. The same effect is
observed in the case of an x-ray-produced hole [9].

The plasmon subsystem excitation, which is con-
comitant with the ESD of europium atoms, accounts for
the anomalous width (~10 eV) of the resonant 33-eV
peak. Even if the quasilevel hybridized with the oxygen
band is sufficiently narrow (≤1–3 eV), the set of plas-
mon frequencies (which can exist in such a complex
system) with far from small dispersion (see, e.g., [16])

∆ϕ Θ( ) ΦΘZ Θ( ), Φ– 4πe2λ NML.= =

∆W Un Θ*( ) ε Θ*( ) G–+≡ 0.=
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is large enough to account for the energy width of the
33-eV peak.
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in the Side and Main Polymer Chains
G. K. Lebedeva*, N. L. Loretsyan*, V. N. Ivanova*, K. A. Romashkova*,

V. A. Lukoshkin**, and V. V. Kudryavtsev*
*Institute of High-Molecular Compounds, Russian Academy of Sciences, St. Petersburg, 199004 Russia

e-mail: kudryav@hq.macro.ru
**Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

e-mail: V.Lukosh@pop.ioffe.rssi.ru
Received May 22, 2001; in final form, June 25, 2001

Abstract—The third-order nonlinear optical susceptibility χ(3)(3ω; ω, ω, ω) of two types of copolymer films
containing optically nonlinear N-substituted nitroazobenzene in the side (methacrylic series copolymers) and
main (copolyimidoamido esters) polymer chains is investigated using the third harmonic generation method at
a wavelength of 1.064 µm. © 2002 MAIK “Nauka/Interperiodica”.
1. Nonlinear optical (NLO) materials have attracted
the growing interest of researchers owing to their great
potential applications in various fields (e.g., telecom-
munication, optical systems of information storage and
processing, and purely optical system controlling lumi-
nous fluxes). Organic compounds, for example, dyes
with a developed system of delocalized π electrons,
which contain polar substituents of the donor–acceptor
type, occupy a significant place among such materials.
These compounds are distinguished by high values of
nonresonant NLO susceptibility, a quick electron
response, a high radiation resistance, and a low loss
level. In addition, the unlimited potential of organic
synthesis makes it possible to synthesize purposefully
high-quality optical materials with preset properties.
Film-forming polymers are materials used as matrices
for this type of NLO compound (NLO chromophores).
The form of organization of chromophore molecules in a
film determines, to a considerable extent, the effective-
ness of the nonlinear properties of the medium [1–3].

Polymer materials with covalently attached chro-
mophore groups making the main contribution to the
hyperpolarizability of the system are extremely prom-
ising because they can be used to obtain multifunc-
tional optically homogeneous and structurally ordered
films with a high chromophore concentration [4].

It is well known that the N-substituted 4-nitroa-
zobenzene dye possesses high hyperpolarizabilities of
the lowest order β and the high chemical and thermal
stability required for the operation of optoelectronic
devices [5]. The publications relevant to analysis of the
NLO properties of polymer materials containing this
chromophore are mainly devoted to the study of sec-
ond-order NLO properties. The third-order NLO
1063-7834/02/4402- $22.00 © 20395
response, determining the light-induced variation of the
refractive index ∆n(I) (I is the intensity of exciting radi-
ation) and ensuring the optical control of luminous
fluxes in the medium [6], has been studied insuffi-
ciently. It is known that the contribution to the nonlin-
ear change ∆n comes from various processes (thermal,
orientations, etc). Electronic processes, which are sen-
sitive to variations in the controlling optical radiation in
real time, appear to be the most attractive from the
viewpoint of optoelectronic applications. The third-
harmonic generation (THG) technique is perfectly suit-
able for measuring third-order electronic optical non-
linearity. The process of harmonic generation involves
only optical frequencies and is too fast to be followed
by orientational, vibrational, or rotational processes.

In the present work, the THG method is used to
study the NLO properties of two types of new film-
forming multifunctional copolymers of methyl meth-
acrylates and copolyimidoamido ethers with N-substi-
tuted 4-nitroazobenzene in the side and main chains
(Figs. 1–3).

Copolymer I contains side links in the form of fluo-
roalkyl radicals and of chromophores that are deriva-
tives of cinnamic acid. Fluoroalkyl radicals make it
possible to obtain structurally ordered films using the
Langmuir–Blodgett technique. Fragments of cinnamic
acid are capable of creating coarse-mesh structures
upon UV irradiation and of stabilizing the orientation
of NLO chromophores.

The main chains of copolymers II–IV contain struc-
tural elements of different electron origin: electron-
acceptor imide fragments and electron-donor frag-
ments (derivatives of 2-phenyl benzimidazole) capable
of participating in intra- and interchain interaction and
002 MAIK “Nauka/Interperiodica”
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of inducing the photoconductivity property in the
copolymers. The combination of this property with the
NLO activity of the copolymer is a necessary condition
for the holographic recording of information.

2. The 1H NMR spectra were recorded on a Bruker
AC-200 device (200.1 MHz) in relation to solvent sig-
nals. The electronic absorption spectra were obtained
on a Specord M-40 spectrophotometer. Copolymer
films were subjected to mechanical testing on a UTS-10
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Fig. 1. Structural formula of copolymer I based on methyl
methacrylates.

I

P

universal machine (manufactured at the German UTS
Test System Company). The films were prepared by
pouring the corresponding polymer solutions onto glass
substrates, followed by stepwise drying at temperatures
of 50, 80, 100, 120, and 150°C for 6 h at 50°C and for
1 h at the other temperatures. During testing, the stress–
strain diagram of a sample was recorded. The softening
temperature Ts was determined using differential scan-
ning calorimetry (DSC) on a DSM-2M calorimeter at a
scanning rate of 16°C/min [the weighed portion was
0.02 g; the threshold sensitivity was 10–4 W (for copol-
ymers of methacrylates)], as well as using the thermo-
mechanical method on a UMIV-3 device at a heating
rate of 5°C/min and under a tensile stress of 0.25 MPa
(copolyimidoamido ethers).

Copolymer I was synthesized through radical poly-
merization of octafluoroamylmethacrylate, methacry-
loyl oxyhexyl cinnamate, and N-substituted 4-nitroa-
zobenzene methacrylate in a ratio of 90 : 5 : 5 mol % in
a 15% solution of dimethyl acetamide (DMMA) in the
presence of 0.4 wt % benzoyl peroxide at 60°C for 20 h
in ampules in the atmosphere of an inert gas. A copoly-
mer separated in the form of a thin film on the water
surface and was purified through reprecipitation of the
solution in acetone by water. The samples were dried in
vacuum at 60°C to constant weight. The copolymer
yield after double reprecipitation was 80%; i.e., a
relatively high-molecular fraction was separated. The
characteristic viscosity in cyclohexanone was 0.144 ×
102 g cm–3 and Tg = 280°C according to the DSC data.
Fig. 2. Structural formulas of copolyimidoamido esters II and III.
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Fig. 3. Structural formula of copolyimidoamido ester IV.
The 1H NMR spectrum of a chromophore in a copoly-
mer (deuterized acetone (CD3)2CO was used as a stan-
dard) corresponds to the following contents δ, ppm:
1.45–1.72 (CH2), 3.16 (NCH3), 3.56 (NCH2), 4.05
(CH2O), 7.39–8.00 (Aryl, where Aryl stands for aro-
matic cycle), and 8.40 (Aryl-NO2).

The ratio of fragments in the copolymer is estimated
from the ratio of the signals from individual groups in
the 1H NMR spectrum.

The UV spectrum of a copolymer-I film has a long-
wavelength absorption peak at λ = 473 nm.

Copolyimidoamido esters II–IV were synthesized
through low-temperature copolycondensation in a
DMAA solution according to the techniques described
in [7, 8] and were purified through reprecipitation from
the solution in DMAA into water and extraction of the
unreacted amount of dye by chloroform during boiling
in a Soxhlet apparatus. The yield was 50–70%.

The 1H NMR spectra of solutions of copolymers II–
IV in deuterated dimethyl sulfoxide (DMSO-d6) con-
tain signals typical of a chromophore fragment and cor-
respond to the following contents δ, ppm: 1.30–1.80
(CH2), 3.46 (NCH2), 4.35 (CH2O), and 6.80 (Aryl).

The fraction of fragments with a chromophore in the
copolymer (15%) was estimated from the ratio of the
signals from individual groups in the 1H NMR spec-
trum.

The UV spectra of copolymer-II–IV films have a
long-wavelength absorption peak at λ = 525 (II), 515
(III), and 490 nm (IV).

Copolymer films possess good stress–strain proper-
ties: the breaking strength lies between 100 and 120 MPa,
and the elongation per unit length amounts to 25%. The
 SOLID STATE      Vol. 44      No. 2      200
thermal characteristics are high; the mass loss temper-
ature is τ0 = 330–430°C.

The NLO properties of the synthesized copolymers
were estimated using the THG method. Pumping of the
samples in the form of films 1 µm thick on a cover glass
was carried out by a pulsed YAG : Nd3+ laser operating
at a wavelength of 1.064 µm. The laser operated in the
Q-switching mode with a pulse duration of 15 ns. The
radiant energy in a pulse was varied to up to 30 mJ. The
Gaussian spatial profile of the laser beam was set by
selecting the higher transverse modes with the help of
an intracavity diaphragm. The P-polarized beam was
focused on the sample through a convex spherical lens
with f = 100 mm. A part of the beam was split by a
splitter and directed to a calibrated photodiode FD-24K
for monitoring of the pumping pulse energy. The third
harmonic radiation was directed by a system of lenses
to the inlet slit of a grating monochromator (MDR-2)
and then to a photomultiplier (FEU-106). Electric sig-
nals from both photodetectors were fed to integrating
analog-to-digital converters and then, through the appa-
ratus interface CAMAC, to a personal computer for
subsequent processing.

The NLO susceptibility of polymer films was esti-
mated through comparison with a standard sample under
identical conditions (a 1-mm thick fused quartz plate ori-
ented using the first intensity peak of the Maker fringes
for the third harmonic) [9]. The values of χ(3)(3ω; ω, ω, ω)
for the copolymers were 3.7 × 10–13 esu (I) and (1.5–
2.6) × 10–13 esu (II–IV).

3. Thus, new optically transparent film-forming
multifunctional copolymers with an NLO-active chro-
mophore [N-substituted 4-nitroazobenzene in the side
(copolymethacrylates) and main (copolyimidoamido
esters) chains] were synthesized.
2
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It is shown that the films of the synthesized copoly-
mers possess NLO activity (third harmonic); the value
of χ(3) amounts to 3.7 × 10–13 esu for copolymethacry-
lates and (1.5–2.6) × 10–13 esu for copolyimidoamido
esters; i.e., the polymer matrix exhibiting strong intra-
and interchain interactions weakly affects the NLO
properties of a chromophore.

The films of the synthesized polymers are of interest
for further investigations into NLO properties.
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