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Abstract—New experimental data obtained on the lattice and spin modulation in oxide HTSCs are explained
in terms of superstructural ordering in the CuO2 planes without invoking the stripe model. The effect of doping
on superstructural ordering in HTSCs is considered. The shape of the Fermi surface in oxide HTSCs and its
variation with doping are also explained. © 2002 MAIK “Nauka/Interperiodica”.
The doping of oxide HTSCs has been experimen-
tally observed to produce superstructural lattice and
spin ordering [1–3]. This superstructural modulation is
most clearly pronounced in La2 – x – yNdySrxCuO4. The
results of these and other experiments on lattice and
spin ordering provided a basis for the model of electron
ordering termed the stripe model [4]. This theoretical
model rests on the assumption that the electron density
in a metal rigidly follows the atomic displacement even
on a local level. There appears to be no direct experi-
mental evidence in support of such an electronic redis-
tribution (which is certainly correct for dielectrics);
therefore, for metals, the validity of the stripe model
cannot be considered to be proved.

We will show that the observed atomic and spin
modulation in HTSCs has its origin in the specific fea-
tures of their band structure, which are due to the exist-
ence of CuO2-type conducting planes. Another conse-
quence of the same features in the HTSC band structure
is an electronic-density modulation, which differs
strongly from the hypothetical stripe model. The results
of our treatment compare favorably with new experi-
mental data and allow for their interpretation.

We will focus our attention here on the
La2 − xSrxCuO4 (LSCO) and La1.6 – xNd0.4SrxCuO4
(LNSCO) systems, because it is on these systems that
most of the experimental data on lattice and spin mod-
ulation are available. Most theoretical studies of stripes
deal with these compounds.

To study the processes occurring in HTSCs under
doping, we have first to address the nature of the insu-
lating state without doping. In particular, for the LSCO
and LNSCO systems, it corresponds to x = 0. Theoreti-
cal calculations suggest that the initial state of a system
without doping (x = 0) should be metallic. The corre-
sponding metal is called the praphase. As shown by us
earlier [5], the CuO2 planes in the praphase contain
oxygen ions in two charge states, O2– and O1.5–. This
1063-7834/02/4405- $22.00 © 20799
corresponds to Cu–O2– ionic and Cu–O1.5– ionic-cova-
lent bonds. The ordering of such “covalent” Cu–O1.5–

bonds doubles the lattice period of this metallic
praphase in the CuO2 plane in the [100] and [010]
directions. In other words, an electronic charge density
wave forms and the state with free conduction electrons
is replaced by the insulating state. A dielectric energy
gap Eg forms (in the oxide HTSCs, Eg ~ 2 eV). Thus,
one observes the insulating phase rather than the metal-
lic praphase. To discriminate this covalent charge den-
sity wave on the oxygen sublattice of an insulator from
charge density waves (CDW) forming under doping,
we shall denote it as CCDW.

The Cu–O1.5– covalent bonds in adjacent CuO2
planes should order in two mutually perpendicular
directions, [100] and [010]. It is this type of ordering
that yields the largest gain in energy when a dielectric
energy gap forms. This dielectric gap is produced not
only in the CuO2 plane but also in the c direction. The
result is a new unit cell which contains, in addition to
the O2– ions, four O1.5– ions. The insulating compound
La2CuO4 with such a doubled cell can be presented as

(1)

The O1.5– ions being coupled more weakly to the lat-
tice than O2–, their electronic states lie closest to the
chemical potential of the insulator; i.e., they are at the
top of a complex valence band. The above ordering of
these weakly coupled O1.5– ions in a crystal also pro-
duces a narrow, practically purely oxygen, valence
band lying above a broad mixed (copper–oxygen) Cu–
O2– band, as shown schematically in Fig. 1a. This
scheme conforms to the available experimental data.
Some of the energies obtained experimentally [6] are
shown for comparison in the same figure. The narrow-
ness of the upper oxygen band is accounted for by the
relatively small overlap of the 2p states of O1.5–,
because the unit cell contains only four such ions
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Fig. 1. Energy band diagram of cuprate HTSC systems
(a) in the insulating state without doping and (b) in the
metallic state under optimum doping. The arrow specifies a
narrow, purely oxygen band, which is derived from the O1.5–

states. E is the energy, µ is the chemical potential, EF is the
Fermi level, and N(E) is the electronic density of states. The
energies were taken from experimental data of [6]. The
filled area specifies the hole states created by doping.
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Fig. 2. Brillouin zones and the shape of the Fermi surface
for cuprate HTSCs constructed for different doping levels.
Crosses are experimental data obtained by ARPES [8, 9].
(a) The first three filled Brillouin zones (numbered) for the
plane doubled CuO2 lattice corresponding to the insulating
state, x = 0. The dashed line shows the first Brillouin zone
for the plane CuO2 lattice without unit-cell doubling. The
coordinates of points are in units of π/a, where a is the min-
imum Cu–Cu distance. (b) Fermi surface under light hole
doping (x ≈ 0.05–0.1, solid lines). The dashed line specifies
the boundary of the third Brillouin zone. The filled elec-
tronic states are hatched. (c) Fermi surface under optimum
doping corresponding to the half-filled third Brillouin zone.
(d) Fermi surface under heavy doping (x = 0.3, p > 0.25).
Dashed line specifies the boundaries of the second and third
Brillouin zones.
P

against 28 O2– ions. The latter ions form a broad
(~3 eV) valence band together with the Cu 3d states.

The doubled unit cell [see Eq. (1)] contains four
O1.5– oxygen ions. Thus, the upper narrow (0.4–0.5 eV)
oxygen band has 4 × 1.5 = 6 electrons per unit cell.
These electrons fill three Brillouin zones of a plane
quasi-two-dimensional lattice made up of two CuO2

planes. Because of the oxygen O1.5– states being cou-
pled, these two planes can be considered to be a unique
quasi-two-dimensional structure. The three filled Bril-
louin zones for a plane lattice in an insulator are shown
in Fig. 2a. The third Brillouin zone is identified with
two electrons; i.e., there are 2/8 = 0.25 electrons per one
copper ion in a formula unit of Eq. (1).

We now consider the doping process. Weak doping
with strontium forms hole states at the valence-band
top, as shown in Fig. 1b (filled area). The Fermi surface
thus formed is close to the boundaries of the third Bril-
louin zone, as depicted in Fig. 2b (solid lines).

Optimum doping (corresponding to the maximum
value of Tc) is reached for the half-filling of the oxygen
band by holes. Indeed, taking into account the three-
dimensional nature of the coupling, the half-filling of
this band corresponds to the maximum in the density of
states N(E), as shown in Fig. 1b. In the Brillouin zone
diagram, this corresponds to the third Brillouin zone
being half-filled by holes. Thus, the half-filling is
reached at a hole concentration popt = 0.25/2 = 0.125 per
Cu ion in a formula unit of Eq. (1). Taking into account
the trapping of a part of the holes δp [3, 7] due to deep
impurity levels of Sr and Nd, optimum doping is
reached for x = xopt = popt + δp ≈ 0.15–0.16. Figure 2c
illustrates the case of optimum doping. The crosses
refer to ARPES experimental data [8, 9]. Note that the
Fermi surface crosses the boundaries of the Brillouin
zones. If the electron energies undergo noticeable
jumps at these boundaries, the Fermi surface in the
extended band scheme should reveal breaks at these
crossing points; however, experiments are apparently
still not sensitive enough for them to become obser-
vable.

Electron depletion (strong doping x ≥ 0.25) of the
third Brillouin zone moves the Fermi surface close to
the boundaries of the second Brillouin zone (Fig. 2d).
This was also borne out by the ARPES measurements
[8] (denoted by crosses).

The results presented in Fig. 2 are obtained by
straightforward band-structure calculations. The results
of these calculations made for the dispersion E(k) of
the upper valence bands can be fitted by the following
relation obtained in the tight-binding approximation
[10–12]:

(2)
E k( ) –2t kxcos kycos+( ) 4t ' kx kycoscos–=

– 2t '' 2kxcos 2kycos+( ) t⊥ kxcos kycos–( )2
/4,–
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SUPERSTRUCTURAL ORDERING AND ELECTRONIC-DENSITY MODULATION 801
where k = (kx , ky) is the wave vector of a quasi-two-
dimensional reciprocal lattice; t, t ', t '' are the overlap
integrals with the first-, second-, and third-nearest
neighbors, respectively; and t⊥  is the overlap integral
for coupling between the adjacent CuO2 planes. The t,
t ', t '', and t⊥  parameters are derived by fitting the calcu-
lations to the ARPES experiments. The parameters
obtained for the Sr2CuO2Cl2 insulator, for which the
most complete experimental data are available, are as
follows [11]: t = 386 meV, t '/t = –0.272, t ''/t = 0.223,
and t⊥ = 150 meV. The calculated valence-band maxima
were found to coincide with the Brillouin zone bound-
aries (Fig. 2a), exactly as predicted by our oxygen-
ordering model. The large magnitude of the parameters
t' and t" stresses the significance of taking into account
long-range coupling in the insulating or weakly doped
states of HTSC systems. This coincidence argues for
the validity of the lattice-period-doubling model under
consideration.

The calculations made for the case of doping yield
the Fermi surfaces shown in Figs. 2b–2d. For instance,
in the case of optimum doping (Fig. 2c), i.e., for the
band being half-filled, the parameters are t = 0.5 eV,
t'/t = –0.3, t"/t = 0.2, and t⊥ = 0.15 eV [10]. In the case
of heavy doping (Fig. 2d), i.e., for a totally depleted
third Brillouin zone, we have t ' = t '' = 0. Thus, when the
hole concentration is sufficiently high (p ≥ 0.25), long-
range interaction is screened efficiently.

For further discussion, the extended-band scheme is
more appropriate. This scheme is shown in Fig. 3 for
the case of close-to-optimum doping. The solid lines
show the Fermi surface to be cut by the z = 0 plane in
accordance with Eq. (2). The hatched area is the region
occupied by electrons. The dashed lines bound the third
Brillouin zone. The coordinates of the points are in
units of π/a. GL = 2(π/a)[1 0 0] (or GL = 2(π/a)[0 1 0])
is the reciprocal lattice vector for the direct lattice with-
out doubling (we assume, for the sake of simplicity, that
the lattice periods in the CuO2 planes are the same in
both directions and equal to a). Hence, vector GL is the
translation vector of the copper ion sublattice. Vector
G0 = GL/2 is the reciprocal-lattice vector of the dou-
bled-period direct lattice; in other words, it is the trans-
lation vector of the oxygen sublattice of the O1.5– ions,
which form a narrow valence band near the Fermi level.
We denote by ε the distance between the boundary of
the third Brillouin zone and the Fermi surface (Fig. 3).
Vector Qn = G0 – 2ε (Fig. 3) is the nesting vector con-
necting nearly parallel (congruent) parts of the Fermi
surface. It is well known [13] that nesting gives rise to
a Peierls instability accompanied by the formation of a
dielectric energy gap on the Fermi surface, with the cor-
responding modulation of the electron density and ion
distribution density in the lattice. For the case under
study here (Fig. 3), this means there is modulation
along the [100] and [010] directions in the direct lattice.
For an arbitrary value of ε, Qn is an incommensurate
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
vector of the reciprocal lattice. As a result, the neutron
diffraction pattern should contain, in addition to the
main reciprocal-lattice Bragg reflections, superstruc-
tural reflections separated by ±2ε from the GL vectors
in the [100] and [010] directions, as shown in Fig. 4.
This conclusion as to the superstructural lattice modu-
lation is borne out by neutron-diffraction and x-ray
measurements [1–3].

Because the formation of the superstructure also
involves the Cu ions, which have a magnetic moment,
their antiferromagnetic interaction produces an antifer-
romagnetic ordering whose period is twice that of the
lattice modulation (in the direct lattice). Accordingly,
superstructural reflections of the reciprocal lattice will
be separated from the antiferromagnetic Bragg vectors
GAF = (π/a)[±1, ±1, 0] by one half this distance (i.e., by
±ε, Fig. 4). Thus, antiferromagnetic superstructural
reflections should be observed for GAF ± ε. This conclu-
sion has also been confirmed experimentally [1–3].

As the doping is increased, the Fermi surface moves
away from the boundary of the third Brillouin zone and,
as seen from Fig. 3, this entails a growth in ε. Vector Qn

becomes commensurate with vector Q0 for ε =
0.25(π/a); i.e., vector Qn = Q0 – 2ε = (π/a)[1 0 0] –
0.5(π/a)[1 0 0] = 0.5 (π/a)[1 0 0] = 0.5Q0 = 0.25QL.
Thus, for ε = 0.25(π/a), the lattice period quadruples in
the CuO2 plane.

As the doping is increased still further, the Peierls
gap ∆*, forming as a result of nesting over substantial
parts of the Fermi surface, will decrease because of the
congruence conditions breaking down in the [100]
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Fig. 3. Fermi surface in the extended-zone scheme con-
structed for the case close to optimum doping (solid lines).
Dashed lines specify the boundaries of the third Brillouin
zone. The electron-occupied region of states is hatched. ε is
the distance between the boundary of the third Brillouin
zone and the Fermi surface. See text for the notation of vec-
tors GL, G0, and Qn.
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directions (Fig. 2). It is known that the Peierls gap
reaches a maximum in the quasi-one-dimensional case
where there is a small contribution from two- or three-
dimensional coupling, which suppresses fluctuations.
In other words, the gap is maximum under light doping,
where the Fermi surface is nearly parallel to the bound-
ary of the Brillouin zone [Fig. 2b, Eq. (2)], and
decreases under doping because of the Fermi surface
curvature and an increasing contribution from two-
dimensional interactions. As follows from Eq. (2), for
small ε, the E(k) relation is strong only in one direction.
It is this quasi-one-dimensional behavior that results in

(0,2,0) (2,2,0)

(2,0,0)(0,0,0)

2ε ε

Fig. 4. Reflections and their splitting for the reciprocal lat-
tice of oxide HTSCs. Circles are Bragg reflections for the
lattice without superstructural modulation (the large and
small symbols refer to the high and weak reflection inten-
sity due to the crystal symmetry, respectively); diamonds
are Bragg reflections of a lattice with superstructural mod-
ulation (±2ε); crosses are Bragg reflections for antiferro-
magnetic ordering with modulation (±ε).

2ε
0.6

0.4

0.2

0 0.1
x
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(1/4)GL
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Fig. 5. Superstructural-modulation parameter ε plotted vs.
acceptor doping level x. Solid line is an estimation using Eqs.
(2)–(4); crosses are data from [14] (the dashed line connects
the data points); circles are data for La1.6 – xNd0.4SrxCuO4
[2]; and squares are data for La2 – xSrxCuO4 [2] (these data
are obtained from dynamic measurements).
P

the existence of nearly parallel parts of the Fermi sur-
face close to the boundary of the third Brillouin zone.
Under doping (x ≥ 0.15), the E(k) relation becomes
two-dimensional to a greater extent. This results not
only in a decrease in the energy gap ∆* but also in a
decrease in the amplitude of superstructural modulation
of both the electronic and ionic densities. This makes
superstructural modulation unobservable. This conclu-
sion has been borne out experimentally [14]. It was
shown in [14] that for x = 0.2, the distribution of elec-
tronic density in the CuO2 plane becomes uniform.

As seen from Fig. 2, the Fermi surface changes dra-
matically as one crosses over from the insulating state
(x = 0) to a heavily doped metal (x ≈ 0.3). This change,
with increasing hole concentration p, can be described
in the tight-binding approximation by introducing the
dependence of the parameters t' and t" on p in the form

(3)

(4)

where  and  are the parameters for the insulating
state (p = 0). The maximum value of p corresponding to
complete depletion of the third Brillouin zone is 0.25.

Equations (2)–(4) can be used to construct the
ε(p)relation. Figure 5 shows the dependence of the
quantity 2ε on the doping level x = p + δp (solid line).
The results obtained agree qualitatively with [1–3, 14].
The measurements reported in [14] were made not of ε
but rather of the line halfwidth under superstructural
ordering, which is related to ε. Therefore, the data from
[14] are presented, for the sake of convenience, in arbi-
trary units normalized against the value of ε for x = 0.15
which was taken from [2]. Significantly, the superstruc-
tural modulation reported in [14] was observed only for
x < 0.2 and disappeared at x = 0.2.

It is thus obvious that the new available experimen-
tal data from [1–3] find a natural and straightforward
explanation in terms of the oxygen-ordering model
without any need of invoking the stripe model. The
model of oxygen ordering also predicts other experi-
mental observations. It can be shown that the Peierls
gap ∆* discussed above has the same properties (depen-
dence on temperature, doping level, etc.) as the well-
known pseudogap observed at temperatures below T *.
The narrowing of the Peierls gap with increasing dop-
ing level and the onset of the insulating state when the
superconductivity is destroyed by a strong magnetic
field for x < xopt [15–17] suggest that it is the Peierls gap
that one observes experimentally as a pseudogap.

Another consequence of the model under consider-
ation is possible superconducting carrier pairing at con-
gruent parts of the Fermi surface. As seen from Fig. 3,
G0 is the translation vector for oxygen states in the nar-
row upper valence band. Thus, the points (π/a)(0, ±1)
and (π/a)(±1, 0) can be considered to be the origin in
the reduced-zone scheme. Hence, carrier pairing can

t ' t0' 0.25 p–( )/0.25,=

t '' t0'' 0.25 p–( )/0.25,=

t0' t0''
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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take place on the Fermi surface, as is shown by the
arrows in Fig. 3, and condensation of superconducting
pairs with zero momentum relative to these points is
possible.

The existence of congruent sections on the Fermi
surface makes nesting favorable for both Peierls (insu-
lating) and superconducting pairing [13]. Under light
doping, only the Peierls gap occurs. When the doping is
increased, the feature in the density of states N(E) for
the Peierls gap smears out. This results from the
increasing influence of the two- and three-dimensional-
ity effects. This smear in the Peierls density of states
can initiate the superconducting state. This conclusion
is buttressed by tunneling measurements [18], which
reveal both the superconducting gap and the density-of
states singularities due to the Peierls gap at higher ener-
gies.
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Abstract—The behavior of the semiconductor dielectric susceptibility under the action of a strong laser pulse
in the range of the luminescent M band and two-photon probe of a biexciton level is investigated. It is shown
that the pronounced Autler–Towns effect occurs at the two-photon transition. The position of the absorption
peaks is essentially determined by the amplitude and frequency of the pump field. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The optical Stark effect is one of the most striking
nonlinear optical effects in the exciton spectral range.
This effect has been studied in a number of experimen-
tal and theoretical works [1–11]. Experimentally, the
optical Stark effect is manifested by a shift of the exci-
ton level under the action of an ultrashort laser pulse
and by its returning to the initial position after the pulse
action is terminated. Theoretical works have made it
possible to investigate the peculiarities of the behavior
of exciton systems in semiconductors affected by
strong coherent laser radiation, which leads to macro-
scopic coherent polarization of the medium. In [3], this
effect was interpreted in terms of the exciton Bose–Ein-
stein condensation induced by external coherent laser
radiation. It turned out that the filling of the phase space
by virtual electrons and holes results in a change in the
internal exciton structure. These phenomena are similar
to those occurring upon spontaneous exciton Bose–
Einstein condensation [8]. The bands of the absorption
and amplification of a weak probing beam in the pres-
ence of Bose-condensed excitons, which appear under
nonequilibrium conditions due to the field of coherent
laser radiation, were investigated in [9, 10]. It was
shown that instabilities, which essentially affect the
absorption of a probing beam, occur in the spectrum
due to the real emergence of two laser photons and their
conversion into two noncondensate particles.

In connection with those investigations, the pump–
probe method acquired special significance in the
experimental investigation of semiconductor optical
properties in the exciton spectral range at high excita-
tion levels of the crystal. This method uses two beams
of laser radiation: a strong pump and a weak probing
beam. The weak beam probes the changes in the optical
1063-7834/02/4405- $22.00 © 0804
properties of the crystal caused by the action of the
pump beam. These changes are determined by the
amplitude and frequency of the field and by the param-
eters of the crystal.

A pump–probe investigation of the optical proper-
ties of media composed of two-level atoms revealed a
number of nonlinear optical effects [12]. Application of
these experimental techniques to solid-state systems is
very promising. For example, the pump–probe method
was used to investigate the kinetics of the radiative
biexciton recombination, nonlinear response of a high-
density system of excitons and biexcitons, red and blue
shifts of the exciton band under picosecond pumping,
and the analog of the Autler–Towns effect on biexcitons
in CuCl [12].

In recent years, many efforts have been made to
develop a satisfactory theory of the pump–probe
method for high-density systems of excitons and biex-
citons [9, 10, 13, 14]. It has been shown [14] that in the
presence of elastic exciton–exciton interaction, the sus-
ceptibilities of a semiconductor in the exciton spectral
range reveal bistable behavior depending on the fre-
quency and intensity of the pump pulse and on the fre-
quency of the probing pulse.

Below, we present the results of the theoretical stud-
ies of the behavior of the semiconductor dielectric sus-
ceptibilities in the pump–probe regime. These studies
were initiated by the experimental investigation of the
Stark effect on excitons and biexcitons in CuCl [12], in
which the splitting of the biexciton absorption band
into two lines was observed at high excitation levels
between the Z3-exciton polariton and biexciton state.
Knowing the amount of splitting, the authors of [12]
determined the corresponding transition dipole
moment in the M-band range. We experimentally found
2002 MAIK “Nauka/Interperiodica”
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that the spectra of the two-photon absorption bands are
essentially determined by the pumping intensity and
the frequencies of the pump and probe pulses.

2. STATEMENT OF THE PROBLEM 
AND BASIC EQUATIONS

Let us investigate the behavior of the real and imag-
inary parts of the semiconductor dielectric susceptibil-
ity in the case of stationary excitation by a strong pump
beam in the M-band (optical exciton–biexciton conver-
sion band) range and two-photon probing of the biexci-
ton state by a weak laser beam (Fig. 1). The formulation
of the problem corresponds to the experimental condi-
tions in [12]. The biexciton state, which is a bound state
of two excitons (two electrons and two holes), was
observed in the spectra of different semiconductors by
using either two-photon excitation from the ground
state of the crystal or the optical conversion of excitons
into biexcitons in the M-band range [15]. These pro-
cesses are characterized by giant oscillator strengths.
The nonlinear optical process associated with the biex-
citon formation can be described in terms of the three-
level model of the semiconductor (Fig. 1). If the fre-
quency of the strong coherent pump pulse is equal to
the transition frequency between the exciton and biex-
citon states, then these states are mixed due to photon-
induced exciton–biexciton transitions and the so-called
dressed states of the exciton and biexciton occur (the
polariton states of the system “exciton + photon and
biexciton” [16, 17]). These states can be probed in the
range of two-photon excitation of biexcitons from the
ground state of the crystal by a weak pulse whose fre-
quency is equal to half the biexciton transition fre-
quency.

We consider the case where a strong monochromatic
coherent laser radiation (pump beam) with amplitude
E0 and frequency ωl = Ω0 – ω0 and a weak monochro-
matic laser radiation (probe pulse) with amplitude E
and frequency ω ≈ Ω0/2 are incident on a semiconduc-
tors; Ω0 and ω0 are the eigenfrequencies of the biexci-
ton and exciton states, respectively. The pump photons
mix the exciton and biexciton states, and photons of the
second pulse probe these changes in the spectral range
of two-photon excitation of biexcitons from the ground
state of the crystal. Using the resonance approximation,
which contains the terms responsible for the optical
exciton–biexciton conversion by the field of the strong
pulse E0 and for two-photon excitation of biexcitons by
the field of the weak pulse E, we write the interaction
Hamiltonian in the form (Fig. 1)

(1)

where a and b are the amplitudes of excitonic and biex-
citonic polarization waves of the medium, respectively;

(E+) and (E–) are the positive- and negative-fre-

H "σ E0
–
a

+
be

iωl t E0
+
b

+
ae

iωl t–
+( )–=

– "µ b
+
E

+
E

+
e

2iωt–
bE

–
E

–
e

2iωt
+( ),

E0
+

E0
–
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quency components of the pump (probe) radiation; and
σ and µ are the constants characterizing the optical
exciton–biexciton conversion and two-photon excita-
tion of biexcitons from the ground state of the crystal,
respectively [15, 17, 18].

Using Eq. (1) and assuming the exciton, biexciton,
and photon states to be macroscopically filled, we can
easily obtain the Heisenberg (material) equations for
the amplitudes a and b:

(2)

(3)

where γ1 and γ2 are phenomenological parameters char-
acterizing exciton and biexciton damping, respectively,
due to exciton and biexciton transitions from the coher-
ent to incoherent modes.

Let us calculate the response of the system to all
orders in the perturbation expansion in the pump pulse
amplitude E0 and to the second order in the amplitude
E of the weak pulse in the stationary regime. We seek a
solution to Eq. (2) in the form of a sum of terms with
the exponential factors exp(–iωl t) and exp(–iωt) and a
solution to Eq. (3) in the form of a sum of terms with
the factors exp(–2iωl t) and exp(–2iωt), which oscillate
with the frequencies of the strong and weak pulses. In
this case, the nonlinear parts of these equations lead to
the appearance of resonant terms. In Eq. (2), these
terms are proportional to exp(–2iωl t + iωt) and
exp(−2iωt + iωl t), and those in Eq. (3) are proportional
to exp(–iωt – iωl t) and exp(–3iωl t + iωt); the frequen-
cies of these terms are close to the frequencies of the
corresponding transitions. Thus, we seek solutions to
Eqs. (2) and (3) in the form

(4)

iȧ ω0a iγ1a– σE0
–
be

iωl t,–=

iḃ Ω0b iγ2b– σE0
+
ae

iωl t–
– µE

+
E

+
e

2iωt–
,–=

a = a0e
iωl t–
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iωl t A1e
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A1*e

iωt
A2e

i 2ω ωl–( )t–
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i 2ω ωl–( )t
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i 2ω ωl–( )t–
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i 2ω ωl–( )t

,+ +

Fig. 1. Schematic diagram of the energy levels (0 is the
ground state of the crystal and ω0 and Ω0 are the exciton and
biexciton states, respectively) and quantum transitions
under the action of a pump field with frequency ωl and two-
photon probing of the biexciton level by a pulse with fre-
quency ω.
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ω
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0

..........
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(5)

where a0, A1, A2, A3, and b0, B1, B2, B3 are time-indepen-
dent amplitudes. Substituting Eqs. (4) and (5) into
Eqs. (2) and (3) and equating the coefficients of the
identical exponentials, we obtain the following system
of nonlinear equations to the lowest order in the ampli-
tudes E, Ai, and Bi (i = 1, 2, 3) in the stationary regime:

(6)

From these equations, we obtain a0 = b0 = A1 = B1 =
A3 = B3 = 0 and

(7)

The probing pulse induces the polarization of the
medium P corresponding to the two-photon transition
from the ground state of the crystal into the biexciton
state, which is determined by the equation P =
2"µbE− = χE+E+E–. Taking this into account and
using Eqs. (5) and (7), we obtain the following
expression for the complex dielectric susceptibility of
the medium χ ≡ χ(3):

(8)

This formula shows that the dielectric susceptibility χ
is a nonlinear function of the amplitude E0 of the field
of the strong pump pulse (σE0 = ωR is the Rabi fre-
quency) and a complicated function of the frequencies
ωl and ω of both pulses. To understand the results that
follow, let us consider the dependence of the dielectric
susceptibility on the frequency ω of the probe radiation
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PH
in the limit of zero damping constants. In this case, we
have

(9)

It follows from Eq. (9) that χ(ω) diverges if the fre-
quency of the probing pulse equals ω = ω±, where

(10)

It should be noted that a similar formula was used in
[12, Eq. (1)] to interpret the experimental data.

If the frequency of the pump pulse is in exact reso-
nance with transitions in the M-band range, then we
have

(11)

If the detuning between the frequency of the strong
pulse and the transition frequency is significantly larger
than the Rabi frequency, then

(12)

The frequencies ω± are the eigenfrequencies of the re-
normalized states. The pump field mixes two states of
the same energy: the biexciton state and the combined
state of the exciton and a pump photon. The coherent
coupling of these states leads to the renormalization of
the semiconductor energy spectrum. We can see from
Eqs. (10) and (11) that the eigenfrequencies of the new
states ω+ and ω– are determined by the amplitude of the
pump pulse E0. The splitting between these states ω+ –
ω– grows with increasing E0.

Using Eq. (9) and the formula c2k2/ω2 = ε∞ + 4πχ|E |2
(ε∞ is the background dielectric function and E is the
amplitude of the probe field), we can derive the disper-
sion law ω(k) for the probe photons in the presence of a
strong pumping pulse (Fig. 2). It is seen from Fig. 2 that
the dispersion law consists of three branches. We

χ ω( )
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2
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2
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--- ω0 ωl+( ), ω–

1
2
---Ω0.= =

Fig. 2. The dispersion laws for the probing photons in the
presence of a strong pump pulse, which mixes the exciton
and biexciton levels, at different frequencies ωl of the
pump pulse: (a) ωl + ω0 = Ω0, (b) ωl + ω0 > Ω0, and (c) ωl +
ω0 < Ω0.
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explain this dispersion as follows. The pump field splits
the biexciton level into two sublevels with frequencies
ω+ and ω–. Under the conditions of two-photon excita-
tion of biexcitons from the ground state of the crystal,
the interaction between the probe photons and these
levels results in polariton-like branches of the disper-
sion law of the weak pulse. With increasing pump field
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
amplitude E0, the region of existence of the middle
branch broadens (Fig. 2). There are also two longitudi-
nal modes, whose frequencies are determined by the
condition ε = 0.

The real χ' and imaginary χ'' parts of the susceptibil-
ity χ = χ' + iχ'' can be found to be
(13)
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It follows from Eqs. (13) and (14) that the suscepti-
bilities χ' and χ'' are nonlinear functions of the ampli-
tude E0 of the strong pump pulse and depend on the fre-
quencies ωl and ω of both pulses. When the frequencies
of each pulse are in exact resonance with the corre-
sponding transitions (with frequencies ωl = Ω0 – ω0 and
ω = Ω0/2), we have χ' = 0 and

(15)

It follows from Eq. (15) that under the conditions of
exact resonance, the susceptibility χ'' quickly saturates
with increasing pump intensity. If the pump photons are
in resonance with the frequency of transitions in the
M-band range (ωl = Ω0 – ω0), then the absorption com-
ponent χ'' of the susceptibility, as a function of the
probing pulse frequency, is symmetrical with respect to
the frequency ω = Ω0/2. If the pump amplitude is such

that σ2  ≤ /(2γ1 + γ2), then the spectral dependence
of χ'' has a maximum at ω = Ω0/2. In the opposite case

of σ2  ≥ /(2γ1 + γ2), it has a minimum at ω = Ω0/2
and two symmetrical maxima at the frequencies

(16)

Introducing the normalized quantities
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where ∆ = ω – Ω0/2 and ∆l = ωl – (Ω0 – ω0) are the
detuning of each pulse from resonance, we can repre-
sent Eqs. (13) and (14) in the form

(18)

(19)

Here, f0 plays the role of the Rabi frequency in the spec-
tral range of the optical exciton–biexciton conversion.
It follows from Eqs. (18) and (19) that χ'(–δl , –δ) =
−χ'(δl , δ) and χ''(–δl , –δ) = χ''(δl , δ).
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3. DISCUSSION

It follows from Eq. (19) that at δl = 0 (at exact reso-
nance with respect to the pumping), the function χ''(δ)
is a Lorentzian with the maximum at δ = 0 and half-
width γ2. With an increase in f0, the Lorenzian is dis-
torted gradually; at the critical field f0 = f0c = (2 + s)–1/2,
a dip appears in the center of the χ''(δ) curve which
becomes deeper with increasing f0; and at f0 > f0c, the
χ''(δ) curve transforms into two Lorentzians located
symmetrically about δ = 0. In this case, the absorption

2
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Fig. 3. Dependence of the absorption component χ''/χ0 of
the susceptibility on the detuning of the resonance δ of the
probe pulse and on the field amplitude f0 of the pump pulse
at two values of the detuning of the resonance δl for the fre-
quency of the pump pulse.
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Fig. 4. Dependence of the absorption component χ''/χ0 of
the susceptibility on the detuning of the resonance of the
pump pulse δl and of the probe pulse δ at a fixed value of the
pump field amplitude f0.
P

of the probing pulse is associated with two exciton sub-
levels split by the pump pulse. Evidence of the forma-
tion of new polariton states is found in the splitting in
the spectrum of two-photon probing in the region of
biexciton resonance. Figure 3 shows the spectrum of
the absorption component of the susceptibility as
dependent on the detuning of the resonance δ for the
probe pulse at δl = 0 for different amplitudes of the
pump field f0. It is clearly seen that as the pump field
increases, splitting of the biexciton line occurs and
monotonically increases and the absorption at the cen-
ter of the absorption band decreases quickly. The calcu-
lated peaks of the absorption spectrum of the weak
probing pulse are consistent with those observed in the
experiment [12, Fig. 2]. At high excitation levels, the
pedestal of the absorption bands is determined by the

parameter s. At f0 @ f0c, we have χ'' ~ .

The absorption spectrum also depends essentially
on the difference δl between the frequency of the pump
field and the transition frequency in the M-band region.
It is seen from Fig. 3 that the absorption band acquires
an asymmetric form. At δl > 0, the long-wavelength
absorption peak for the probe radiation is stronger than
the short-wavelength peak. In this case, the latter peak
initially increases with a growth in the excitation level,
then reaches its maximum value, and decreases,
whereas the long-wavelength peak decreases quickly
after its appearance. This occurs because at δl > 0, the
upper polariton-like branch of the system “exciton +
pump photon and biexciton” is biexciton-like to a
smaller extent; that is, it contains a dominant electro-
magnetic and a feebly marked mechanical component,
which leads to suppression of the two-photon absorp-
tion of the probe radiation. At δl < 0, the situation is
opposite. These results also agree well with the experi-
mental data [12, Fig. 3]. The upper part of Fig. 3 shows
contour lines of equal susceptibility which are symmet-
rical (with respect to δ = 0) at δl = 0 and asymmetrical
at δl ≠ 0. The larger δl, the more pronounced one of the
two absorption peaks and the weaker the other.

Figure 4 shows the χ''(δl , δ) spectra depending on
the resonance detuning of both pulses at a fixed excita-
tion level. In the vicinity of δl = 0, the function χ''(δ) has
a symmetrical two-peak structure. At |δl | @ f0, the
absorption spectrum becomes essentially asymmetri-
cal. For example, at δl @ f0, there is a strong long-wave-
length and a weak short-wavelength absorption peak.
The spectral position of the strong peak is virtually
independent of δl and is determined by the frequency
ω– of the renormalized energy spectrum of the semi-
conductor, whereas the spectral position of the weak
peak is determined by the frequency ω+. At δl @ f0, we
have ω+ ~ δl /2; i.e., the weak peak rapidly shifts to
shorter wavelengths with increasing δl. The amplitudes
of these peaks are different, because the split polariton-

f 0
2–
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like states formed by the field of the strong pulse have
different fractions of the mechanical component.

It should be noted that at low temperatures, when
γ1  0 and γ2  0, the absorption band of the probe
radiation consists of two pronounced, δ-function-like
peaks at the frequencies ω+ and ω–. The larger the
amplitude of the pump field E0, the larger the distance
between these peaks. With increasing temperature, the
peaks broaden and their amplitudes decrease.

It should also be noted that the absorption compo-
nent χ'' is always positive. Therefore, upon any changes
in the intensity and frequency of the pumping pulse, the
probing pulse is absorbed; it cannot be amplified, in
contrast to the case where there is elastic exciton–exci-
ton interaction [14].

Precision measurements of the absorption peak
positions can provide detailed information on the
parameters of the optical transitions.

It should be noted that only the behavior of the
absorption component of the susceptibility was studied
in [12]. Nevertheless, the behavior of the dispersion
component χ' of the susceptibility is of great interest. It
is seen from Eq. (18) that χ' also essentially depends on
the amplitude of the pump pulse f0 and on the frequen-
cies of both pulses. Figure 5 shows the χ'(δ, f0) depen-
dence at δl = 0. It can be seen that at f0 * 0, the χ'(δ)
graph has a typical form with a maximum and a mini-
mum symmetrically located about δ = 0. As the excita-
tion level grows, the extrema of the χ'(δ) curve shift to
longer and shorter wavelengths, respectively, and their
amplitudes decrease. At a certain value of the pump

0
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0
1

2

1

2

0
–1

1

χ'
/χ

0

f 2
0δ

δl = 0
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Fig. 5. Dependence of the dispersion component χ'/χ0 of the
susceptibility on the detuning of the resonance δ of the
probe pulse and on the pump pulse amplitude f0 at δl = 0.
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field amplitude f0, an additional maximum and mini-
mum appear; therefore, the χ'(δ) dependence has two
regions of anomalous dispersion in this case. These
results are in complete agreement with those for the
function χ''(δ) shown in Fig. 3.

Figure 6 shows the χ'(δ, δl) dependence at a fixed
value of f0, which also demonstrates changes in the
semiconductor energy spectrum due to a strong pump
pulse. At δl @ f0, there is a long-wavelength region of
dispersion with a sharp change in χ'(δ) and a distant
short-wavelength region of feebly marked dispersion.
These features are also consistent with those in the
behavior of the function χ''(δ) (Fig. 4).

4. CONCLUSION

Thus, the results of the experimental investigations
[12] of the peculiarities of two-photon probing of the
biexciton state of a semiconductor excited by a strong
laser pulse in the absorption M-band region associated
with optical exciton–biexciton conversion are
explained theoretically. The dispersion and absorption
components of the semiconductor dielectric suscepti-
bility depending on the frequency of the probing pulse,
as well as on the amplitude and frequency of the pump
pulse, are calculated. It is shown that the form of the
two-photon absorption band for a weak probing pulse is
essentially determined by the frequency and amplitude
of the pump field and acquires a pronounced doublet
structure as the excitation level grows. This paper gives
additional information on the dynamics of the absorp-
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Fig. 6. Dependence of the dispersion component χ'/χ0 of the
susceptibility on the detuning of the resonance of the pump
pulse δl and probing pulse δ at a fixed value of the pump
field amplitude f0.
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tion component of the susceptibility that can be used in
further experiments. The calculated dispersion compo-
nent of the susceptibility can also be useful in explain-
ing experimental results and gives a more comprehen-
sive understanding of the physical processes involved.
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Abstract—Birefringence in porous silicon layers prepared with different etching currents on a (110) substrate
is studied by IR Fourier spectroscopy. The spectra exhibit beats in the intensity of transmitted and reflected radi-
ation due to the summation of the intensities of the ordinary and extraordinary waves interfering in the porous
layer. An analysis of the spectra shows the layers to exhibit properties of a negative uniaxial crystal with the
optical axis lying in the layer plane. The difference between the refractive indices of the ordinary and extraor-
dinary waves for a layer with a porosity of 80% reaches 18%. The experimental data are in agreement with the
calculations based on the effective-medium approximation, which takes into account the anisotropy of silicon
nanocrystal arrangement in a porous layer. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Due to its remarkable electronic and optical proper-
ties, porous silicon (PS) has been attracting consider-
able interest over the past decade. In particular, high-
porosity PS exhibits efficient photoluminescence in the
visible range [1], which may be considered to result
from quantum size effects due to confinement of the
photoexcited carriers in silicon nanocrystals [2]. As the
nanocrystal dimensions are much less than the wave-
length in the optical region, the optical properties of PS
are characterized by an effective dielectric permittivity
(DP). The latter differs considerably from that of crys-
talline silicon because most of the material has been
removed [3]. The optical properties of PS have been
reported in many publications (see, e.g., [1–4]). Only
quite recently, however, was it established that PS
exhibits a noticeable optical anisotropy [5–7].

It is known that crystalline silicon has cubic symme-
try and is isotropic; however, the nanostructure formed
in the growth of pores gives rise to optical anisotropy.
The reason for this lies in the pores growing preferen-
tially along the [100] crystallographic directions [2]. PS
layers prepared on (100) substrates are optically iso-
tropic under normal incidence but exhibit birefrin-
gence when light strikes the surface at an angle, which
is interpreted as form birefringence [5]. PS layers pre-
pared on low-symmetry substrates, for instance,
(110)-oriented plates, exhibit strong birefringence
under normal light incidence [6, 7]. At present, there is
no consistent theory describing the birefringence phe-
nomenon in PS layers. In [7], this phenomenon is attrib-
uted to spatial distribution of silicon nanocrystals with
different filling factors in two main directions in the
(110) plane. The DP tensor of a system of cylindrical
1063-7834/02/4405- $22.00 © 20811
nanocrystals is considered theoretically in [8]. How-
ever, the applicability of the latter model to real PS lay-
ers requires substantiation. To develop an adequate
model which would describe PS birefringence, one
would obviously have to obtain new experimental data,
in particular, the dependence of the DP anisotropy of
this material on its porosity. One should also learn
whether PS is a positive or a negative crystal.

This work was aimed at a comprehensive study of
the birefringence phenomenon in (110)-oriented PS
layers of different porosity. The IR Fourier spectros-
copy method employed permits one to investigate the
reflectance and transmittance of PS layers at various
angles of light incidence over a broad spectral range.

2. EXPERIMENTAL TECHNIQUE

PS layers were prepared by electrochemical etching
of (110)-oriented single-crystal plates of p++-Si : B
(electrical resistivity 1.5 mΩ cm) in a 1 : 1 solution of
HF (48%) in ethanol. The etching current density was
varied from 10 to 100 mA/cm2, which corresponds to a
porosity of 60–80%. The etching time was varied from
5 to 35 min, and the layer thicknesses thus obtained
were 10–50 µm. The film was exfoliated from the sub-
strate by sharply increasing the current density up to
500 mA/cm2 for a few seconds. The thickness of the
exfoliated PS layers was measured with an optical
microscope.

A Perkin–Elmer Spectrum RXI FT-IR (Fourier
Transform Infrared) spectrometer was used in measur-
ing the IR spectra. The IR transmittance and reflectance
spectra were obtained in the range from 500 to
6500 cm–1 (1.54–20 µm) with a resolution of 4 cm–1.
002 MAIK “Nauka/Interperiodica”
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The reflectance spectra were taken at a close-to-normal
incidence angle. The transmittance spectra were stud-
ied at different incidence angles. The experiments were
carried out in air at room temperature.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents typical reflectance and transmit-
tance spectra of (110)-oriented PS layers obtained with
polarized IR radiation. The transmittance spectra fea-
ture lines corresponding to absorption by Si–Hx (2050–
2150, ~910, 610–630 cm–1) and Si–O–Si bonds (1070–
1190 cm–1) [3]. The spectra exhibit clearly pronounced
periodic intensity oscillations associated with interfer-
ence in the thin layer. The amplitude of these oscilla-
tions is modulated by beats, whose period is the same
in transmission and reflection. No such beats were
observed on reference PS layers prepared on a
(100)-oriented substrate. The onset of beats in (110)
layers can be accounted for by the ordinary and extraor-
dinary waves interfering in the porous layer.

The observed beats can be characterized by a short
(∆ν1) and a long (∆ν2) period (Fig. 1). The beat periods
can be readily connected with the refractive indices for
the ordinary and extraordinary waves. Indeed, in the
case of a uniaxial crystal with the optical axis lying in
the layer plane, the intensities of two waves, an ordi-
nary and an extraordinary one, each of which interferes
in the thin film, will add to produce beats. Thus, under
normal incidence,
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Fig. 1. IR transmittance (T) and reflectance (R) spectra of a
porous silicon layer prepared on a (110)-oriented substrate.
The spectra were obtained with nonpolarized radiation. The
etch current density was j = 50 mA/cm2, and the layer thick-
ness was d = 16 µm.
PH
(2)

where d is the layer thickness and no and ne are the
refractive indices for the ordinary and extraordinary
waves, respectively. Straightforward estimates made
using Eqs. (1) and (2) yield no = 1.76 and ne = 1.58 for
the layers formed at a current density of 50 mA/cm2.
For d varying from 10 to 60 µm, the refractive indices
did not depend on the layer thickness. The samples
exhibited stable optical properties for several months
after their preparation.

Note that although measurements with unpolarized
light do allow determination of no and ne, relating these
quantities to the crystallographic directions in the orig-
inal silicon crystal is possible only by using polarized
radiation. Polarization measurements were conducted
in the spectral region 4000–6000 cm–1 (1.66–2.5 µm).
No beats were present in the transmittance spectra
obtained with polarizers, which made it possible to
determine the refractive indices for different polariza-
tion directions. Thus, we succeeded in establishing
that the refractive index for the light polarized along

[001] is minimum, whereas along the [ ] axis, it is
maximum.

Fast Fourier transform is a more precise method of
determining no and ne by analyzing the beat pattern in a
PS layer. We used reflectance and transmittance spectra
differentiated with respect to wave vector, which made
it possible to eliminate the invariable component and to
reduce the contribution due to the absorption lines orig-
inating from surface molecular groups. The frequencies
of the corresponding Fourier components ωo, e are
related to the refractive indices through a simple
expression, ωo, e = 4πdno, e. This permits one to easily
find the values of no and ne.

Figure 2 shows Fourier-analyzed transmittance
spectra obtained at different incidence angles. The sam-

ple was rotated about the [ ] crystallographic axis.
The data obtained in the Fourier analysis were used to
derive the refractive indices, with due account made of
the dependence of the Fourier component frequencies
on the angle of light incidence θ on the sample: ωo, e =

4πd(  – sin2θ)1/2. We readily see that the Fourier
component corresponding to the smaller refractive
index shifts toward larger values of the refractive index
with increasing incidence angle. It is known that the
phase velocity and, hence, the refractive index ne of the
extraordinary wave depend on the wave-vector direc-
tion in the crystal. Therefore, one may conclude that the
smaller refractive index corresponds to the extraordi-
nary wave, in other words, that the birefringent film
under study exhibits properties of a negative crystal
whose optical axis coincides with the [001] crystallo-
graphic axis. Note that the Fourier component corre-
sponding to the extraordinary wave disappears at suffi-
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Fig. 2. Fourier analysis of IR transmittance spectra of a porous silicon layer (d = 48 µm, j = 50 mA/cm2) obtained by rotating the
layer around the direction perpendicular to the optical axis. Inset: points are experimental refractive indices for the ordinary and
extraordinary waves plotted vs. incidence angle; lines are theoretical calculations of no and ne made using the effective-medium
model.
ciently large angles of light incidence on the sample
(θ ≈ 50°). This observation finds ready explanation in
that θ approaches the Brewster angle. Indeed, because

the sample rotates around the [ ] axis, the extraordi-
nary wave is p-polarized and, hence, the reflectance
drops with increasing θ; this results, in turn, in a
decrease of the corresponding Fourier component in
amplitude [9].

The inset to Fig. 2 shows the values of no and ne
determined experimentally for different incidence
angles. We readily see that the refractive index of the
ordinary wave does not change in magnitude to within
experimental accuracy, whereas that of the extraordi-
nary wave increases with the angle of light incidence on
the sample. Note that the error in the experimental data
obtained in such a processing is determined by the half-
width of the corresponding Fourier component.

The dashed line in the inset to Fig. 2 presents a plot
of the refractive index for the extraordinary wave
against the angle of incidence, which was calculated
using the expression [10]

(3)

where θin is the angle the wave vector in the PS layer
makes with the surface normal. We observe good agree-
ment of the calculated ne(θ) dependence with experi-
mental data, which quantitatively corroborates the ear-
lier conclusion that the layer under study is a negative
uniaxial crystal.

110

ne θin( )
neno

ne
2 θinsin

2
no

2 θincos
2

+
-------------------------------------------------------,=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
The anisotropy of a PS layer depends, obviously, on
its porosity. To study this dependence, we used PS sam-
ples prepared with different etch current densities and,
hence, having different porosities. Figure 3a plots the
refractive indices of the ordinary and extraordinary
waves, and Fig. 3b shows their difference ∆n = no – ne
as a function of current density j. The decrease in the
refractive indices no and ne with increasing j is obvi-
ously associated with the increasing PS layer porosity.
Estimates of the layer porosity made using the data
from [3] are given in Fig. 3 for several values of j.
An increase in the current density also entails a growth
in the refractive index difference ∆n, which reaches, in
the spectral region 1.5–8 µm, a value of 0.24 for an
average refractive index 〈n〉  = (no + ne)/2 = 1.3 for j =
100 mA/cm2. These values of ∆n indicate that the PS
layers under study have an extremely large anisotropy.
The relative difference between the refractive indices of
the ordinary and extraordinary waves δn = ∆n/〈n〉
reaches 18% for j = 100 mA/cm2, which is substantially
larger than, for instance, that for Iceland spar (δn ~ 9%
in the same spectral region [11]).

By applying a Fourier transform within compara-
tively narrow IR intervals, one can determine the
refractive index dispersion. The wavelength depen-
dence of the quantity no – ne for samples prepared with
two different etch currents is presented in Fig. 4. The
PS layers are seen to have normal dispersion. We car-
ried out simulation of ∆n in the effective-medium
approximation. We used Bruggeman’s theory of the DP
of a disordered heterogeneous mixture [12], which
relates the effective DP of such a system εeff to the DP
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Fig. 3. (a) Refractive indices of the ordinary and extraordi-
nary rays in porous silicon layers plotted vs. the etch current
density. (b) Refractive index difference ∆n = no – ne for
porous silicon layers plotted vs. the etch current density; the
figures adjacent to the experimental points are the porosities
of the PS layers under study taken from review [3]. The
lines were drawn to aid the eye.

Fig. 4. Dispersion relations for the refractive index differ-
ence ∆n = no – ne in porous silicon layers prepared at differ-
ent etch current densities j. The experimental points were
obtained by Fourier-analyzing transmittance spectra of non-
polarized light. The analysis was made within the ±750 cm–1

region of the experimental points. The lines are theoretical
calculations making use of the effective-medium approxi-
mation, which were carried out for fo = 0.38, fe = 0.32 (solid
line) and fo = 0.447, fe = 0.4 (dashed line).
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of silicon εSi and that of the dielectric filling the pores
εd; in our case, the pores are filled by air and εd = 1:

(4)

where f is the filling of the medium by silicon nanocrys-
tals, f = 1 – p, and p is the porosity. The different in-
plane refractive indices, which correspond to electric
vector vibrations along and perpendicular to the optical
axis, were simulated by accepting different filling fac-
tors fe and fo, respectively. The condition (fo + fe)/2 =
1 − p was imposed. Next, using Eq. (4) and the disper-
sion of the DP of crystalline silicon εSi [13], we calcu-
lated ne and no and their difference ∆n. Figure 4 dis-
plays the spectral dependence of ∆n for samples of two
porosities (solid and dashed curves). We readily see that
∆n grows weakly with decreasing wavelength within
the interval from 2 to 10 µm, which agrees with the
experimental data.

Thus, our results show that the birefringence in the
PS layers under study is so large that it considerably
exceeds the change in the refractive index due to nor-
mal dispersion of the material. This situation differs
radically from that typical of most semiconductors,
which opens new possibilities for the application of
anisotropic porous media in nonlinear optics. In partic-
ular, their birefringence can be used for phase matching
of the nonlinear optical processes occurring in such
media. Indeed, as we discovered recently [14], the effi-
ciency of second harmonic generation in (110)-oriented
anisotropic PS layers is substantially higher than that in
PS layers prepared on substrates with another orienta-
tion, for instance, (100). This effect was attributed to
having met the phase matching conditions for the bire-
fringent PS layers. Moreover, it was established that the
second harmonic is polarized in the plane containing
the [001] axis and the propagation vector. It is known
[10] that in negative crystals, the phase-matched second
harmonic is always polarized in the optical-axis plane.
This is in accord with the fact that the (110) PS layer is
a negative uniaxial crystal with the optical axis along
the [001] direction.

4. CONCLUSION

Thus, our study shows that infrared Fourier spec-
troscopy is a very efficient tool for analyzing birefrin-
gence in PS layers. In particular, the beats observed in
the reflected and transmitted light intensities provide a
convincing argument for the existence of birefringence
in (110)-oriented PS layers. Fourier analysis of IR spec-
tra permits one to determine the refractive indices of the
ordinary and extraordinary waves, as well as their dis-
persion. It has been established that the refractive index
difference between the ordinary and extraordinary
waves reaches as high as 18% in the region of transpar-
ency of PS, which attests to this material possessing a
strong optical anisotropy. An analysis of the transmit-

1 f–( )
εd εeff–

εd 2εeff+
--------------------- f

εSi εeff–
εSi 2εeff+
----------------------+ 0,=
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tance spectra obtained at various angles of incidence on
a sample suggests that the birefringent PS layer under
study is a negative uniaxial crystal whose optical axis
lies in the (110) plane and coincides with the [001]
direction. The experimental results are in good agree-
ment with the conclusions drawn using the effective-
medium approximation, which assumes anisotropic
distribution of silicon nanocrystals in space.
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Abstract—The temperature dependences of magnetic susceptibility are employed for the first time to study the
self-compensation of metastable centers with negative correlation energy in the As2S3 chalcogenide glass. The
one-electron states of the metastable centers manifest themselves in the Curie paramagnetism at high tempera-
tures, whereas for T ≤ 77 K, one observes an enhancement of antiferromagnetism as a result of spontaneous
dissociation of these states 2D0  D+ + D–. The observed self-compensation of the paramagnetic centers is
similar to the spin-Peierls instability of magnetic lattices, which is supported by the existence of a double peak
in the temperature dependence of inverse magnetic susceptibility. This peak identifies the spontaneous dissoci-
ation of two different metastable centers for T ≤ 77 K. A comparative analysis of the data on magnetic suscep-
tibility, optically induced absorption, and ESR shows that the one-electron paramagnetic states of these meta-
stable centers (D0) represent native hole and electronic defects formed by the chalcogen and arsenic dangling
bonds, respectively. The self-compensation of the two types of metastable centers is enhanced in successive
cooling runs 300 K  3.5 K  300 K  3.5 K … accompanied by optical pumping at an energy close
to the Urbach absorption edge, which is reflected in a decrease in the Curie paramagnetism and an enhancement
of the van Vleck paramagnetism of two-electron states with negative correlation energy (D–). © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Interpretation of the results obtained in studies of
ESR, optical absorption, photoluminescence, and pho-
toconductivity in chalcogenide glasses is based on dif-
ferent models of native defects with deep levels lying in
the band gap [1, 2]. The one-electron models of deep
defects in amorphous semiconductors [1, 2] predict a
high density of localized states near the Fermi level,
which is supported by electrical and optical measure-
ments [3, 4]. However, the concentration of unpaired
spins in chalcogenide glasses residing in thermody-
namic equilibrium was not found by ESR to be any-
where near noticeable, an observation which practically
unambiguously indicates the absence of one-electron
localized states in the band gap [5]. To remove this con-
troversy, the concept of negative correlation energy was
put forward [6–9], within which the one-electron deep
center (D0) dissociates spontaneously to form a two-
electron (D–) and an empty (D+) state as 2D0  D– +
D+ + |U|, where U is the Hubbard correlation energy [6].

Actually, the deep-center models proposed are
based on the effective Hubbard attraction of two elec-
trons at a defect as a result of the Coulomb repulsion
being cancelled by electron–vibration coupling; this is
what accounts for the absence of the Curie paramagnet-
ism and for the Fermi level pinning in the band gap of
chalcogenide glasses. In other words, the two-electron
deep-center states with an inverse level order (negative-
1063-7834/02/4405- $22.00 © 20816
U centers) represent counterparts of Cooper pairs with
a short correlation length.

A direct consequence of the formation of negative-
U centers in chalcogenide glasses is the possibility of
generation of paramagnetic one-electron states in non-
equilibrium conditions, for instance, through the opti-
cal injection of electron–hole pairs D– + D+ + hν 
D– + D+ + (e + h)  2D0. Such paramagnetic centers
have been observed in ESR studies performed under
optical pumping with monochromatic light with its
photon energy near the Urbach optical absorption edge
in chalcogenide glasses α-Se, As2Se3, and As2S3 [10].
An increase in the concentration of the electronic and
hole paramagnetic centers localized at arsenic and chal-
cogen atoms, respectively, was accompanied by
quenching of the intrinsic photoluminescence and the
generation of optical absorption, which was due to opti-
cal transitions between the deep one-electron states and
the conduction band [10, 11]. Subsequent optical
pumping by monochromatic light with its photon
energy corresponding to the induced-absorption spec-
trum produced optical dissociation of the one-electron
paramagnetic states, 2D0 + hν  D– + D+ [12], which
may be considered an additional argument for the
intrinsic defects having a negative correlation energy in
chalcogenide glasses.

However, no models of two-electron states of these
defects were identified and their possible role in photo-
structural transformations initiated in chalcogenide
002 MAIK “Nauka/Interperiodica”
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glasses under prolonged optical pumping was not dis-
cussed. This work is the first attempt at solving these
problems by measuring the temperature dependences
of the magnetic susceptibility.

2. EXPERIMENTAL

The objects chosen for the study of the temperature
dependences of the magnetic susceptibility in chalco-
genide glasses were bulk As2S3 samples prepared from
99.999%-pure constituents using a standard technol-
ogy. ESR studies carried out in stationary conditions (in
the absence of optical pumping) did not reveal residual
impurities in anywhere near noticeable concentrations,
in particular, of iron centers, which usually form during
the preparation of chalcogenide glasses [12].

The temperature dependences of the magnetic sus-
ceptibility were obtained in the range 3.5–300 K by the
Faraday method using an MGD312FG magnetic bal-
ance. This method is based on measuring the force with
which the sample under study interacts with an external
magnetic field having a characteristic gradient dB/dx
along a chosen direction:

(1)

where χ is the specific magnetic susceptibility and m is
the sample mass. Note that the MGD312FG instrument
provides a high sensitivity of magnetic susceptibility
measurements (10–9–10–10 emu), which is reached
through stabilization of the BdB/dx product by using
pole pieces of a special profile. The BdB/dx values were
calibrated on samples of pure indium phosphide, whose
magnetic susceptibility (χ = 313 × 10–9 cm3/g) did not
vary with temperature within the above range. This cal-
ibration permitted us to determine the range of BdB/dx
variation within the magnetic-field range used (0.05–
1.1 T) from 0 to 15 T2/m.

The optically induced enhancement of the paramag-
netic component in the magnetic susceptibility and the
red shift of the absorption spectrum of the As2S3 sam-
ples were studied in the course of preliminary optical
pumping by monochromatic light with its photon
energy near the Urbach edge (α ~ 100 cm–1). This was
done with a 4H-SiC-based laser diode operating at a
wavelength of 0.53 µm at a power level of ~1 mW/cm2.
The induced paramagnetism was subsequently opti-
cally bleached and the initial spectral response of
absorption was recovered by irradiation with IR light of
wavelength 1.55 µm and intensity ~1 mW/cm2 gener-
ated by an InGaAsP–InP heterojunction laser diode. In
addition, the samples were optically pumped with a pho-
ton energy near the Urbach absorption edge in successive
cooling runs 300  3.5  300  3.5 K … to study
the changes in the paramagnetic properties of the As2S3
chalcogenide glasses building up in the course of slow
photostructural transformations.

F mχB
dB
dx
-------,=
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3. RESULTS AND DISCUSSION

The temperature dependence of the magnetic sus-
ceptibility recorded in an As2S3 sample under cooling
exhibits Curie paramagnetism only at high tempera-
tures (Fig. 1). As the temperature is lowered, the 1/χ =
f(T) plot reveals two characteristic peaks below 100 K,
which signal spin instability of two different paramag-
netic centers.

The temperature bleaching of the paramagnetic
properties observed in As2S3 is similar to the spin-
Peierls doubling in magnetic lattices [13] and is appar-
ently due to the formation of singlet states of the nega-
tively charged chalcogen and arsenic dangling bonds
caused by their self-compensation, 2D0  D– + D+.
Therefore, the temperature dependence of χ can be
described by the expression

(2)

where the first term relates to the Curie paramagnetism
of neutral dangling bonds and the second describes the
van Vleck paramagnetism of the negatively charged
dangling bonds in the singlet state, which is manifested
in their transition to the excited triplet state through
exchange interaction; a is the exchange constant. The
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Fig. 1. Temperature dependence of the magnetic suscepti-
bility of As2S3, which shows self-compensation of the neu-
tral paramagnetic hole and electronic centers of the chalco-
gen and arsenic, respectively. (1) Cooling in the dark, (2) after
irradiation by a monochromatic light of wavelength 0.53 µm
carried out at T = 3.5 K and (3) after subsequent irradiation
by 1.55-µm monochromatic light at T = 3.5 K.
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Fig. 2. ESR spectra induced optically in As2S3 at T = 3.5 K
under irradiation by monochromatic light of wavelength
0.53 µm. Curves 1–3 reflect the variation in the concentra-
tion of the electronic centers of arsenic (broad resonance
line) and the hole centers of the chalcogen (narrow line)
with pumping time. Curve 4 relates to the chalcogen hole
center forming in the early stage of the optical pumping by
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length 0.53 µm at T = 3.5 K, and (3) after subsequent irra-
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(b) (1) After sample cooling to 3.5 K and (2, 3) after two and
three consecutive cooling runs 300  3.5  300 
3.5 K, respectively, performed under irradiation by mono-
chromatic light of wavelength 0.53 µm.
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concentrations of neutral (N0) and negatively charged
(N–) dangling bonds depend on the sample cooling rate,
which was revealed in the corresponding temperature
hysteresis of the magnetic susceptibility for T < 100 K.

Note that the bleaching of the paramagnetic compo-
nent of the magnetic susceptibility observed to occur in
As2S3 at low temperatures apparently accounts for the
attempts at ESR detection of dangling bonds in the
absence of optical pumping being unsuccessful.
Accordingly, at high temperatures (T > 100 K), where
unpaired dangling bonds dominate (Fig. 1), no notice-
able ESR spectra were observed because of the fast
electron spin–lattice relaxation.

It is known [12] that ESR spectra of dangling bonds
in chalcogenide glasses are produced as a result of opti-
cal generation of their neutral states (D– + D+ + hν 
2D0), which was reached in this work through irradia-
tion by monochromatic light with a wavelength of
0.53 µm, which corresponds to the Urbach absorption
edge in As2S3 (Fig. 2). The growth of the ESR signal
with optical-pumping duration is accompanied by an
enhancement of the paramagnetic component of the
magnetic susceptibility, whose temperature depen-
dence becomes closer in shape to the Curie law (Fig. 1).
Moreover, the red shift of the absorption spectral
response revealed after irradiation with 0.53-µm light
indicates unambiguously that the optically induced
paramagnetic centers D0 create deep levels in the As2S3
band gap (Fig. 3a).

An optically induced ESR spectrum is a combina-
tion of a narrow high-field line and a broad low-field
line belonging to a hole and an electronic center formed
at the chalcogen and arsenic atoms, respectively [12].
The neutral dangling bonds localized at the arsenic
atoms require a longer optical pumping for their forma-
tion than the paramagnetic chalcogen centers, which is
accounted for by the metastable properties of the latter.
Therefore, the high-temperature peak in the tempera-
ture dependence of 1/χ is apparently due to self-com-
pensation of the chalcogen dangling bonds, which
becomes fixed at T ≈ 77 K as a result of their metasta-
bility. By contrast, spontaneous dissociation of the
arsenic neutral paramagnetic centers is observed to
occur only for T < 40 K, which accounts for their much
weaker metastability, with the latter also becoming
manifest in the stability of the corresponding peak in
the temperature dependence of 1/χ to optical pumping
at 0.53 µm (Fig. 1).

It should be pointed out that the partially resolved
ESR multiplet forming under prolonged optical pump-
ing at 0.53 µm is apparently due to the arsenic D– sin-
glet state transforming to a paramagnetic center with
spin S = 1. Such transitions were observed in Frenkel
pair systems with nonequidistant components on the
III–V sublattices [14], which gives one grounds to asso-
ciate the observed ESR spectrum of chalcogenide
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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glasses with exchange interaction of the D– centers with
the photoinduced D0 paramagnetic centers.

ESR spectra of distant (D+ – D–)–D0 pairs can be
simulated by means of the Hamiltonian [14]

(3)

assuming the g tensor to take into account all possible
D0 configurations with respect to the D+–D– axis, along
which the self-compensation of arsenic dangling bonds
is the strongest. Note that the line separation in a photo-
induced ESR spectrum (S = 1), which reflects the mag-
nitude of the exchange coupling, increases with optical-
pumping time, which is most probably associated with
the creation of ever closer (D+ – D–)–D0 pairs.

As follows from a comparative analysis of ESR data
and magnetic susceptibility measurements, the self-
compensation processes in As2S3 can be described by
models of metastable centers with a negative correla-
tion energy proposed within the Anderson Hamiltonian
approach [6, 15]:

(4)

where P and Q are the canonical momentum and the
center coordinate, respectively; M and κ are the center
mass and the corresponding force constant; E0 and U
are the one-electron energy and the interelectron inter-
action at a center; F is the electron–vibration coupling
constant; nσ are the occupation numbers for electrons
with spins σ = ↑ , ↓ ; βn are the projection operators for
the center charge states with the total electron number n;
δF is the Stark-induced change in the electron–vibra-
tion coupling constant at a deep center placed in an
electric field E; and θ is the angle between the electric
field and the coordinate Q.

Diagonalization in the defect charge states permits
one to determine the adiabatic potentials for different
values of n = n↑ + n↓ in an explicit form (Fig. 4a):

(5)

where the one- and two-electron ionization potentials
[I1(E) and I2(E), respectively] of a point center can be
identified with the change that the correlation energy
U(E) undergoes in the capture of a background and a
correlated electron D+  D0  D– (Fig. 3); Q0 =

H βBgS D Sz
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β1 = n↑ n↓ 2n↑ n↓ , β2–+  = n↑ n↓ , δF = eE θ,cos

E0 Q( ) κ Q Q0– δQ–( )2
/2 D

+
-center,=

E1 Q( ) –I1 E( ) κ Q Q1–( )2
/2 D

0
-center,+=

E2 Q( ) –I2 E( ) κ Q Q2– δQ+( )2
/2 D

–
-center,+=
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F0/κ, Q1 = F1/κ, Q2 = F2/κ, δQ = δF/κ,  = Q0 + δQ,

 = Q2 – δQ; and

(6)

Thus, the change in the local effective correlation
energy resulting from electron capture by neutral para-
magnetic centers (D0  D–) is caused by the polaron

energy shift W1 = (  – )/2κ.

The two-electron adiabatic potentials (Figs. 4a, 4b)
and the equivalent one-electron band diagrams
(Figs. 4a', 4b') offer a revealing explanation for the
spontaneous dissociation of one-electron dangling-
bond states in chalcogenide glasses observed to occur
under cooling, where their metastable properties are
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Fig. 4. (a, b) Adiabatic potentials and (a', b') equivalent one-
electron band diagrams of centers with negative correlation
energy present in the metastable state in As2S3 (a, a') as a
result of a built-in electric field inducing a Stark shift δQ ≠
0 and (b, b') with the built-in electric field self-compen-
sated, δQ = 0. Arrow 1 corresponds to photoionization of
the D–center, which stimulates the formation of a neutral
paramagnetic state; arrow 2 identifies photoluminescence
with a Kondo shift; and arrow 3, photoionization of the D0

center with subsequent self-compensation produced by
two-electron capture (2D0 + hν  D– + D+).
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Fig. 5. A fragment of the As2S3 chain, which demonstrates the electric dipoles formed by centers with negative correlation energy
for the cases of (a) parallel and (c) antiparallel orientation, as well as (b) the neutral paramagnetic states of these centers forming at
T = 3.5 K under irradiation by monochromatic light at 0.53 µm. The arrows specify various stages in the transformation of the par-
allel to the antiparallel orientation of dipoles subjected to successive cooling runs 300  3.5  300  3.5 K under irradi-
ation by monochromatic light of wavelength 0.53 µm.
governed by the height of the energy barrier between
their two-electron and neutral states, which can be
overcome only at high temperatures; this results, in par-
ticular, in the thermal generation of paramagnetic neu-
tral states (D–  D0), which manifests itself in Curie
paramagnetism (Fig. 1). However, the intense reverse
transitions (D0 + e  D– or D0 + D+ + e  2D0 
D+ + D–), combined with the short electron spin–lattice
relaxation time due to exchange interaction, do not
allow observation of the ESR of neutral paramagnetic
centers at high temperatures. In addition, the energy
barrier separating the D0 and D– states stabilizes (at low
temperatures) the one-electron paramagnetic state,
which is generated under the 0.53-µm optical pumping
(D– + D+ + hν  D– + D+ + (e + h)  2D0).

The model proposed here (Figs. 4a, 4b) also allows
interpretation of the optical bleaching of photoinduced
paramagnetic centers in As2S3 under optical pumping
performed at 1.55 µm, 2D0 = hν  D– + D+ (Fig. 1),
which is accompanied by the recovery of the photolu-
minescence and edge absorption spectra (Fig. 3a). Note
that the energy of photoionization (D–  D0) and the
kinetics of carrier trapping by neutral paramagnetic
centers (D0  D–) depend on the magnitude of the

polaron energy shift W1 = (  – )/2κ and can vary
substantially in the presence of an external and an inter-
nal electric field (Figs. 4a, 4b).

It should be pointed out that the internal electric
field, which induces the Stark shift δQ accounting for
the metastable properties of the hole and electronic
chalcogen and arsenic centers, is apparently due to

the formation of electric dipoles of the type –

and –  in the course of their self-compensation
(Fig. 5a). When oriented parallel to one another, the
dipole centers can produce a fairly strong electric field
(~107–108 V cm–1), which in the case of Stark-shifted
charge states of the chalcogen and arsenic dangling
bonds, produces an Urbach tail (α ~ 100 cm–1) in the

F1
2

F2
2

As2
+

As4
–

S1
+

S3
–

P

spectral response of the absorption coefficient (Figs. 3a,
3b) [16]:

(7)

where the band gap E1g does not include the effects of
disorder. It appears only natural to assume that the par-
allel orientation of the dipoles (Figs. 4a, 5a) formed by
centers with negative correlation energy is nonequilib-
rium and sets in only in the course of chalcogenide
glass preparation. Therefore, the possibility of control-
ling the optical properties of chalcogenide glasses by
bleaching the Urbach tail stimulates interest in the
investigation of the mechanisms underlying self-com-
pensation of the built-in electric field through transfer
of electric dipoles to the antiparallel state with a lower
energy.

In this work, such bleaching was observed to occur
in successive As2S3 cooling runs 300  3.5 
300  3.5 K …, which were followed by optical
pumping at 0.53 µm (Fig. 3b). The temperature depen-
dence of the magnetic susceptibility measured in these
runs reveals a decrease in the concentration of the para-
magnetic component, as well as stabilization of the
two-electron singlet state of the chalcogen and arsenic
dangling bonds (Figs. 6, 7), which are manifested in the
Curie law breaking down at high temperatures and in an
enhancement of van Vleck paramagnetism in the low-
temperature domain, respectively. It was found that
after the completion of the above cyclic cooling proce-
dure, the formation of paramagnetic neutral states
under 0.53-µm optical pumping at low temperatures
(D– + D+ + hν  2D0) was suppressed, which was
signaled by the corresponding stabilization of the
temperature dependence of magnetic susceptibility
(Figs. 6c, 7).

Thus, successive cooling runs applied to As2S3 sup-
press the metastable properties of centers with negative
correlation energy and stimulate sample bleaching as a
result of a disappearance of the Urbach tail in the edge
absorption spectrum. The results obtained are treated in

α ω( ) α0 2 "ω E1g–( )/κ Q2 Q1– δQ–( )2[ ] ,exp=
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terms of the proposed model of a deep metastable cen-
ter, because the magnitude of the Stark shift δQ
decreases strongly with increasing number of cooling
runs (Fig. 4b). The explanation of such a decrease in the
Stark shift revealed in the spectral response of absorp-
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Fig. 6. Temperature dependence of the magnetic susceptibil-
ity of As2S3 obtained on a sample (a) cooled in the dark and
after (b) two and (c) three successive cooling runs 300 
3.5  300  3.5 K under irradiation by monochro-
matic light of wavelength 0.53 µm and (d) after subsequent
irradiation by 0.53-µm monochromatic light at 3.5 K.
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tion (Fig. 3b) lies apparently in the self-compensation
of the built-in electric field occurring as the electric
dipoles cross over gradually to the antiparallel state
(Fig. 5c).

4. CONCLUSION

To sum up, our study of the temperature dependence
of magnetic susceptibility has permitted identification
of the metastable properties of centers with negative
correlation energy created by chalcogen and arsenic
dangling bonds in the As2S3 chalcogenide glass. The
observed reactions of optical bleaching and recovery of
the neutral paramagnetic states of negative-U centers
showed that the metastable chalcogen and arsenic dan-
gling bonds undergo self-compensation with the forma-
tion of electric dipoles, which are responsible for the
Urbach edge in the spectral response of absorption. The
transformation of the parallel to antiparallel oriented
electric dipoles, which was realized in the course of
successive cooling runs and was identified with
changes in the temperature dependence of the magnetic
susceptibility, resulted in self-compensation of the
built-in electric fields, a process revealed in the
observed disappearance of the Urbach tail in the edge
absorption spectra.
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Abstract—Numerical calculations of the thermopower component Sd that is associated with the fine structure
of the density of d states near the Fermi level are carried out for CeNi5 and its La analog. The estimates, together
with earlier experimental data on the transport coefficients in Ce(MxNi1 – x)5 solid solutions with M = Ga, Cu
(0 ≤ x ≤ 0.4)), are used to analyze the behavior of the thermopower component Sf originating from the Ce
valence instability. It is shown that as Ce crosses over from the state of its usual intermediate valence to the
saturated-valence state, the feature near the Fermi energy, which represents a Lorentzian-shaped peak of the
density of f states, transforms to a double-humped structure. The possibility of formation of a strongly corre-
lated band of f states in Ce(MxNi1 – x)5 in the crossover to the Ce saturated-valence state, accompanied by the
opening of a quasi-gap ∆ ~ 400 K, is discussed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite the considerable interest expressed in
metallic systems with electronic instability of f states,
known as intermediate-valence (IV) systems, heavy
fermions, or Kondo lattices (KLs), the microscopic
nature of the Ce f states in condensed phase remains
unclear [1–4]. This is particularly true for the formation
of electronic states near the Fermi level EF under strong
f-electron instability or for the so-called saturated-
valence (SV) state of Ce. The Ce saturated-valence
state can apparently be considered to be a nonmagnetic
KL with a high characteristic temperature TK ~ 103 K
[1]. There are, however, calculations and experimental
data [3–6] which suggest that f electrons in the valence-
instability regime can be treated essentially as itinerant,
which disagrees, to some extent, with the description of
their properties in the Kondo model. The difficulties
associated with this problem are aggravated by the fact
that the Ce saturated-valence state occurs primarily in
compounds characterized by a high density of d states
at the Fermi level [7, 8]. In such cases, detection of the
Ce SV effects in their “pure” form becomes substan-
tially complicated by correlation interactions in the nar-
row d bands.

Of particular interest among the Ce saturated-
valence compounds is CeNi5 (hexagonal CaCu5-type
structure), in which, in addition to spin fluctuation
effects in the narrow d band [7, 9], a certain effect of
f-electron instability on conduction-band states near
the Fermi energy EF can be detected [10, 11]. This was
revealed in the presence of a high-temperature maxi-
mum in the thermopower Smax2 (TSmax2 ≈ 700 K), which
1063-7834/02/4405- $22.00 © 20823
is sensitive to the Ce valence state [10]. However, the
maximum Smax2 stands out unusually weakly against
the S(T) dependence (Smax ≈ 2 µV/K [10, 11]). It is well
known that in most Ce intermediate-valence com-
pounds, the characteristic values of thermopower
exceed those observed in conventional metals of the
type of copper by 10–100 times. The S(T) relation in
such compounds has a positive extremum and can quite
frequently be satisfactorily fitted by the relation S ≈
aT/(T2 + b), which indicates strong electron scattering
in transitions from the broad sd conduction band to the
narrow f band forming a Lorentzian density-of-states
peak near the Fermi level [12–14]. Note that the tem-
perature position of the S maximum correlates qualita-
tively with TK and the Ce f-state occupation number
(TSmax ~ TK ~ 〈nf 〉–1) [14].

To date, it has not been established whether the fact
that the characteristic dependence S ≈ aT/(T2 + b) does
not hold in CeNi5 is caused by the masking action of
specific features in the structure of the d states or by the
Ce f states at EF not being described by a Lorentzian
density-of-states peak. Analysis of all the earlier data as
a whole [7, 9–12] suggests that the total CeNi5 ther-
mopower can be written as

where Sph is the phonon-drag component of ther-
mopower, Smag is the magnetic contribution originating
from spin fluctuations in the narrow d band, Sd is the
Mott contribution due to scattering in s–d transitions,
and Sf is the contribution from f states of the valence-
unstable Ce. The main components of the total ther-

S Sph Smag Sd S f ,+ + +≈
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mopower of LaNi5, which is used frequently as an ana-
log, can differ in magnitude from those of CeNi5. This
applies particularly to the component Sd, which is asso-
ciated with structural details of electronic states near
EF. Band calculations suggest that CeNi5 and LaNi5
have a nearly identical density-of-states structure in the
conduction band, with the exception of a narrow energy
interval (~0.2 eV) in the vicinity of EF [15–18]. The
component Smag in LaNi5 can apparently be neglected.
The components Sph and Smag contribute noticeably to the
total thermopower of CeNi5 for T < 300 K but are
strongly suppressed for low substitutional-impurity con-
centrations (<5 at. %) on the nickel sublattice (Ni 
Cu, Ga, Al, Si, Ge) [7, 10–12, 19]. Spectroscopic stud-
ies [20, 21] show that atomic substitutions made within
these limits do not affect the Ce valence state substan-
tially. Hence, the component Sf(T) in phases with satu-
rated Ce valence can be estimated if data on Mott’s
component Sd(T) are available.

We present estimates of the contributions due to the
band structure and local f states to the total ther-
mopower of the Ce(MxNi1 – x)5 solid solutions (M = Ga,
Cu; 0 ≤ x ≤ 0.4) containing Ce in amounts correspond-
ing to the SV–IV transition. We used the phenomeno-
logical approach developed by us earlier [12–14] to
describe the transport coefficients of systems with
intermediate Ce valence in order to analyze the behav-
ior of the thermopower component Sf(T) associated
with saturated Ce valence. It is shown that the fine
structure in the density of f states near the Fermi level
is due to a Kondo-type s(d)–f correlation interaction.
The Ce transition to the SV state is accompanied by a
quasi-gap formation in the f spectrum, which may
imply the formation of strongly correlated itinerant
f states.

2. MOTT COMPONENT OF THE THERMOPOWER 
IN RNi5 (R = La, Ce)

Calculations of the N(E) curves relating the density
of states to energy for RNi5 (R = La, Ce) made using
various band-structure approaches yield fairly similar
results [7, 15–18]. The total density of states N(E) is
derived primarily from states of the s and d type. The
N(E) curves for these compounds agree well within a
broad energy range of conduction-band states, except
in the energies closely adjoining the EF level. In the
case of CeNi5, a narrow peak of the density of d states
appears. Remarkably, this peak forms not as a result of
additional d–f hybridization but rather because of the
f states being expelled out of the conduction band into
the region of positive energies [18]. The specific fea-
tures seen in the N(E) curve suggest that the band com-
ponent of thermopower is connected primarily with
carrier scattering in transitions from the s to d states,
and it can be estimated using Mott’s model [22]. In this
model, the relaxation time τ(E) is inversely propor-
tional to the density of d states. The density of s states
P

being comparatively low, one usually assumes τ(E) ~
1/N(E).

Although calculated N(E) curves are frequently
used to estimate the temperature dependences of the
electronic properties of a metal [23–27], no clear-cut
criteria of the applicability of this approach to a realistic
thermopower estimation have thus far been elaborated.
An analysis of such estimates [25, 26] suggests that cal-
culation of the transport coefficients should take into
account the smearing of the N(E) fine structure, which
is caused by the finite lifetime of electrons in a metal
due to their scattering. For this purpose, one frequently
employs the electrical resistivity ρ of the crystal. In this
case, the half-width of the Lorentzian broadening func-
tion is found from the relation σ = h/τ, where τ =
m/ne2ρ [25]. This method of estimation of σ can, how-
ever, produce an overestimated broadening of the N(E)
structure if applied to transition metals and their alloys
[27]. Application of the transport relaxation time to
determination of the parameter σ is apparently not fully
justified, and the problem of calculation of the density-
of-states broadening is far from trivial.

In our calculation of the thermopower component
Sd, the parameter σ was considered variable. This is
particularly convenient if one takes into account the
sensitivity of the absolute values of Sd to the particular
choice of σ, which is usually high. The calculations of
thermopower with inclusion of the broadening of the
structure was done using our earlier calculations of the
energy spectrum of RNi5 by a modified LCAO method
[15, 16]. To take into account the effect of conduction
electron scattering on the overall pattern of N(E), a den-
sity-of-states histogram was constructed taking into
account the weight of each computational point of the
Brillouin zone in k space by means of not the δ func-
tion, as was done in [15, 16], but of the Lorentzian
broadening function of the half-width σ.

Figures 1 and 2 present N(E) curves calculated for
RNi5 [15, 16] within a narrow energy interval about EF
with due account of the variable broadening σ, as well
as similar density-of-states curves obtained in [18]
without the inclusion of broadening. Also shown are the
diffusion components of thermopower Sd(T) calculated
from the relation [22]

where F(E) is the Fermi–Dirac distribution function. In
estimating Sd(T), one may limit oneself to integration
within an energy interval ±1 eV about the Fermi energy
EF(0) = 0.
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For comparison, Fig. 1 also presents experimental
S(T) relations obtained for LaNi5 and an LaNi4Cu solid
solution [10, 12]. The deviation from linearity S ~ T and
the additional positive contribution to the thermopower
of LaNi5 for T < 200 K are due predominantly to
phonon drag [7]. In the case of CeNi5, this positive con-
tribution is considerably enhanced (Smax1 = 5 µV/K for
TSmax1 = 100 K) [7, 10]. Note that no additional positive
contribution to the thermopower appears already in the
case of Ni being substituted by ~2–5 at. % Cu or Ga, Al,
Si, Ge, irrespective of the actual type of the R element
[7, 10–12, 19]. This means that the experimental S(T)
curve for La(MxNi1 – x)5 can be identified with the com-
ponent Sd(T). Despite the thermopower being slightly
dependent on the content of the substituting element,
the character of the Sd(T) dependence is retained virtu-
ally without chang over a broad temperature range [12]
and follows the pattern of curve 7 in Fig. 1b. Because of
the existence of an additional component Sf associated
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Fig. 1. (a) Density-of-states functions of LaNi5 near the
Fermi level obtained (1) in [18] and (2) in [15] with the
inclusion of broadening σ = 0.02, (3) 0.05, and (4) 0.1 eV,
and (b) the corresponding temperature dependences of
thermopower calculated for the starting Fermi level dis-
placed by (1) 0 and (2–4) 0.1 eV. Curve 5 was obtained by
taking into account the temperature dependence of broad-
ening σ = σ0 + bT (σ0 = 0.05 eV, b = 1.5 × 10–4 eV K–1) and
displacement EF'(0) = 0.1 eV. Also shown for comparison
are the experimental thermopower plots for (6) LaNi5 and
(7) LaNi4Cu.
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with the Ce intermediate valence, a similar estimate of
the thermopower Sd(T) can be made only by calcula-
tions.

Taking into account the inaccuracy with which the
Fermi energy at T = 0 K is determined in band-structure
calculations, Sd(T) was computed for a number of EF'(0)
values displaced from the starting level EF(0) = 0 in
steps of 0.02 eV within ±0.2 eV. For LaNi5, the magni-
tude of thermopower and the character of the calculated
curves were found to depend radically on the choice of
σ and EF'(0). The calculation approaches the experi-
ment most closely only when the starting Fermi level is
displaced to positive energies by 0.1 eV and the broad-
ening is taken to be σ = 0.1 eV. For such a broadening
σ, however, the Sd(T) dependence becomes almost linear
throughout the temperature interval covered (curve 4 in
Fig. 1b). It is seen that a certain nonlinearity in the
Sd(T) dependence for LaNi5 similar to the one observed
experimentally can be obtained in the approach [18]
made without invoking a broadening function and
Fermi level displacement or in the calculation [15, 16]
performed with the parameters σ = 0.02 eV and EF'(0) =
0.1 eV (curves 1 and 2 in Fig. 1b, respectively). With
such parameters, however, the Sd(T) curve disagrees
with experimental values at high temperatures. To rec-
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Fig. 2. (a) Density-of-states functions of CeNi5 near the
Fermi level obtained in [16] with inclusion of broadening σ
equal to (1) 0.02 and (2) 0.1 eV, (3) in [18], and (4) in this
work, and (b) the corresponding temperature dependences
of thermopower calculated for the starting Fermi level dis-
placed by (3') 0 and (1–4) 0.1 eV.
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oncile the calculated thermopower with experimental
values throughout the temperature range studied, one
should take into account the dependence of σ on tem-
perature. Assuming a linear growth of the broadening
parameter by the relation σ ≈ σ0 + bT (σ0 = 0.05 eV,
b = 1.5 × 104 eV K–1), one can obtain a fairly good fit to
the experimental thermopower for the LaNi4Cu alloy
(curve 5 in Fig. 1b).

As follows from the above estimates, the calculated
thermopower Sd agrees well with experimental values
for La (CuxNi1 – x)5, if one neglects the Sph contribution
for the composition with x = 0. In doing this, one should
correct the starting position of the EF(0) level in the cal-
culated density-of-states of LaNi5, which is frequently
done in such estimates of the electronic characteristics
of metals [24, 27].

Determination of the component Sd for CeNi5 by
using band-structure calculations [18] results in a tem-
perature dependence (curve 3' in Fig. 2b) that differs
slightly from the one obtained for LaNi5. This can be
traced, in the case of CeNi5, to the formation of a dis-
tinct fine structure in the density of d states at the
EF level. The presence of this feature is supported
experimentally by the onset of spin fluctuations in
CeNi5 [9]. A more realistic estimation of the Sd(T)
dependence should be based on the fitting to experi-
ment done for LaNi5. As expected, if the Fermi level
displacement EF'(0) = 0.1 eV and the broadening σ =
0.1 eV are taken into account, the calculated ther-
mopower components Sd(T) for CeNi5 (curves 3, 4 in
Fig. 2b) and for LaNi4Cu (curves 3, 5 in Fig. 1b) follow
approximately the same course. Note the fundamen-
tally different behavior of Sd(T) at high temperatures
(T > 300 K) obtained when using the band structure cal-
culations presented in [16, 18]. This is due to the N(E)
curves behaving differently in the region of positive
energies (Fig. 2a). In the calculations reported in [18],
the band of the itinerant f states lies slightly higher
above the EF level (by ~0.5 eV) in comparison to the
data from [16]. As a result, the hybridization of the f and
sd states in [18] is weaker, thus producing a steeper
N(E) falloff within the interval EF < E < 0.5 eV. The dis-
crepancy between the calculations originates from the
fact that the f-orbital contribution to CeNi5 band states
is taken into account in [16] in a somewhat simplified
manner. For this reason, the high-temperature part of
the Sd(T) dependence represented by curve 3 in Fig. 2b
is preferable. Taking nonzero σ into account primarily
affects the magnitude of the thermopower and does not
influence its temperature behavior in any way.

To include the broadening of the peak in the density
of d states near EF and the steep decay of N(E) for E >
EF, we calculated the Sd(T) relation using the model
density of states N(E) (curve 4 in Fig. 2a). Curve 4 cor-
responds to the calculation made in [16] with a broad-
ening σ = 0.1 eV for E < EF'(0) (curve 2 in Fig. 2a) and
P

to the calculation in [18] for positive energies E > EF'(0)
(curve 3 in Fig. 2a). This is probably the most appropri-
ate model of the density of states for estimation of the
component Sd(T) for Ce (MxNi1 – x)5 alloys with small x.
We readily see that the magnitude of thermopower and
the nature of the Sd(T) relation (curve 4 in Fig. 2b)
agree satisfactorily with similar estimates made for La
alloys (curves 3, 5 in Fig. 1b).

Thus, the calculations show that taking the fine
structure in N(E) and the high-energy shift of the EF(0)
level into account is sufficient for a realistic evaluation
of the thermopower component Sd(T) for alloys of the
type R(MxNi1 – x)5 with small values of x. Treated within
the one-electron band approach, the f states are not
directly involved in the formation of an additional
structure in the total density of states near EF. Whence
one may conclude that the Sd(T) relations follow
approximately the same behavior for the Ce and La
alloys and that La(MxNi1 – x)5 can be used as an analog
to determine the contribution from the valence-unstable
Ce to the total thermopower of Ce(MxNi1 – x)5.

3. CONTRIBUTION FROM f STATES 
OF VALENCE-UNSTABLE Ce TO THE TOTAL 

THERMOPOWER OF Ce(MxNi1 – x)5 (M = Ga, Cu)

Data on the thermopower S and the electrical resis-
tivity ρ of Ce(MxNi1 – x)5 alloys with M = Cu, Ga and of
the corresponding La analogs obtained within a very
broad temperature range (4–900 K) can be found in [7,
10–12, 19].

Figures 3 and 4 present the temperature depen-
dences of the f-state contribution (Sf) of the valence-
unstable Ce to the total thermopower of Ce(MxNi1 – x)5
alloys (M = Ga, Cu) calculated using the Gorter–Nord-
heim relation [22]

where ρ(Ce), ρ(La) and S(Ce), S(La) denote the total
electrical resistivity and thermopower of alloys of the
same composition with Ce and La, respectively. The
component Sf  for the x = 0 composition is seen to addi-
tionally contain Smag and Sph contributions. This mani-
fests itself clearly in the Sf(T) dependence in the form
of a positive contribution peaking at T ≈ 120 K (Fig. 3).
The additional contribution is very sensitive to compo-
sition and vanishes completely in Ga alloys even for x =
0.035 (curve 2 in Fig. 3) or in Cu alloys with x > 0.02
[7]. As follows from these examples, Ce(MxNi1 – x)5
alloys (M = Ga, Cu) with small substitutional-impurity
concentrations on the Ni sublattice (x < 0.1) appear to
be particularly convenient subjects for studying the Ce
SV phenomenon.

The temperature behavior Sf(T) of Ce(MxNi1 – x)5
alloys differs from that usually observed in systems
with intermediate Ce valence [1] in the presence of a
negative contribution for T < TS f max, which passes

S f  = ρ Ce( )S Ce( )[ ρ La( )S La( ) ] / ρ Ce( )[ ρ La( ) ] ,––
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through a minimum at T ~ 50–100 K. As x increases,
the region of the negative contribution becomes pro-
gressively narrower, resulting in the appearance of a
linear region in the thermopower (S = aT, a > 0) at low
temperatures, which is characteristic of conventional
systems with intermediate Ce valence. Spectroscopic
measurements of the occupation numbers 〈nf 〉  [20, 21]
suggest that the Ce3+ state becomes stable with increas-
ing x. The increase in 〈nf 〉  is ~10% for Ce(GaxNi1 – x)5
(0 ≤ x ≤ 0.135) and ~40% for Ce(CuxNi1 – x)5 (0 ≤ x ≤
0.4). The temperature TS f max for both alloys correlates
qualitatively with the f-state population (TSfmax ~ 〈n〉–1),
which is in agreement with general ideas concerning
the relation of thermopower to the intermediate-valence
state of Ce [14].

The thermopower of systems with intermediate Ce
valence has been studied most comprehensively within
the Anderson model with strong f-orbital degeneracy in
[28–30]. However, analytic relations which would per-
mit a comparison of the theory with experiment over a
broad temperature range have not been obtained thus
far. The phenomenological approach proposed by us
[12–14] for consideration of transport effects in sys-
tems of this type appears to be the most convenient for
this purpose. It is assumed in [12–14] that the main con-
tribution to thermopower in the case of the intermediate
Ce valence is due to electron scattering in transitions
from the broad sd conduction band to a strongly corre-
lated f-like band with a Lorentzian-shaped density of
states gf(E):

g f E( ) W f / E E f–( )2
W f
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Fig. 3. Temperature dependences of the contribution of Ce
f states to the total thermopower of Ce(GaxNi1 – x)5. Solid
lines plot the thermopower calculated from Eq. (3).
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where Ef and Wf are the position of the f band relative to
the EF level and its width, respectively. Now, one can
readily derive the following expression for the ther-
mopower component Sf(T) [12]:

(1)

where εf = Ef/kB and Γf = Wf/kB (kB is the Boltzmann con-
stant). The Sf(T) relation passes through an extremum,

Equation (1) satisfactorily describes the temperature
dependences of thermopower for most systems with
intermediate Ce valence even regardless of the possible
temperature dependence of the parameters εf and Γf

[14]. In the case of strong orbital degeneracy of f states
(Nf @ 1), which occurs in systems with intermediate Ce
valence, it is appropriate to use the well-known relation
connecting the parameters εf, Γf, and TK(εf = TK , Γf =
πTK/Nf [29]). Then, in place of Eq. (1), we obtain a
more convenient expression,

(2)

with only one fitting parameter TK.
Systems with saturated Ce valence exhibit a maxi-

mum orbital degeneracy Nf = 2J + 1 = 6, and the calcu-
lated maximum Sf max lies at T ≈ 0.62TK. This means that
if the experimentally found thermopower follows the

S f
2
3
---π2kB

e
-----

Tε f

π2
/3( )T

2 ε f
2 Γ f

2
+ +

---------------------------------------------,=

S f extr,
π
3

-------
kB

e
-----

ε f

ε f
2 Γ f

2
+

----------------------, TSf extr,
3

π
------- ε f

2 Γ f
2

+ .= =

S f
2
3
---π2kB

e
-----

TTK

π2
/3( )T

2
1 π2

/N f
2

+( )TK
2

+
----------------------------------------------------------------,=

1

2

3

4 Ce(GaxNil – x)5
x = 0.035 (1)

S f
, µ

V
/K

30

20

10

0

0 200 400 600 800
T, K

Ce(CuxNil – x)5
x = 0.2 (2)

0.3 (3)
0.4 (4)

Fig. 4. Temperature dependences of the contribution of Ce
f states to the total thermopower of Ce(MxNi1 – x)5 with M
standing for (1) Ga and (2–4) Cu. Solid lines plot the ther-
mopower calculated from Eq. (2).
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S = aT/(T2 + b) relation, Eq. (2) can be used to deter-
mine the characteristic temperature TK.

Figure 4 presents Sf(T) curves (solid lines) calcu-
lated from Eq. (2) under the assumption of a tempera-
ture-independent TK and fitted to experimental data by
matching their maxima. For convenience of compari-
son with experimental values, the calculated ther-
mopower was normalized using a coefficient p =
Sf max, exp/Sf max, calc, where Sf max, exp and Sf max, calc denote
the maxima in the experimental and calculated rela-
tions, respectively. For Ce(CuxNi1 – x)5 alloys, the fitting
is reached at TK = 880, 640, and 368 K for the compo-
sitions with x = 0.2, 0.3, and 0.4, respectively. The
curve calculated for an x = 0.035 Ga alloy was obtained
with TK = 1200 K. The best fit to experiment was
obtained for a Cu alloy with x = 0.4, in which Ce is
close to the trivalent state [20]. Alloys with x < 0.2
exhibit substantial disagreement with experimental val-
ues at low temperatures (T < TSf max) because of the
appearance of an additional negative component. In this
range of compositions, Ce is in the SV state [20, 21].
The negative contribution to thermopower for T <
TSf max is seen to increase as Ce approaches the SV state.
As for a certain disagreement of the calculations with
experimental values at high temperatures (T > TSf max),
this can be attributed to a possible temperature depen-
dence of TK. Ce(CuxNi1 – x)5 alloys with x ≥ 0.2 exhibit
a noticeable stabilization of the Ce3+ state with increas-
ing temperature [20]. Hence, one may expect a
decrease in TK at high temperatures and a steeper falloff
of the calculated thermopower for T > TSf max.

The character of the deviation of the experimental
Sf(T) relation from calculations made using Eq. (2) sug-
gests the possibility of formation of an additional den-
sity-of-states peak below the EF as Ce transfers to the
SV state. The behavior of Sf(T), in this case, can be
qualitatively described with the relation

(3)

where εf i and Γf i denote the parameters of the gf 1(E)
and gf 2(E) peaks. Figure 3 plots normalized Sf(T) rela-
tions (solid lines) calculated from Eq. (3). Curve 2, cal-
culated for the x = 0.035 composition, agrees well with
the experiment. Agreement is reached for εf1 = 316 K,
Γf 1 = 1510 K and εf 2 = –52 K, Γf 2 = 542 K. In the case
of compositions with x > 0.035, agreement with the
experiment is not reached over the whole temperature
range if only εf i and Γf i are used as fitting parameters.
Matching the curves at high temperatures (T > 300 K)
does not yield a distinct minimum and consistent values
of TSf max in the low-temperature part of the Sf(T) rela-
tion (curve 3, calculated with εf 1 = 316 K, Γf 1 = 1232 K
and εf 2 = –39 K, Γf 2 = 453 K). Whence it follows that
the gf 1(E) and gf 2(E) peaks may approach a Lorentzian
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shape only for an x = 0.035 alloy and that they exhibit
a stronger energy dependence of the density of states
near EF for alloys with x > 0.035. This situation can be
identified qualitatively with the formation of a quasi-
gap ∆ ≈ |εf 1 | + |εf 2 | ≈ 400 K in the energy spectrum of
CeNi5 in the vicinity of EF. Total disappearance of the
quasi-gap and the formation of only one gf(E) peak in
Ce(MxNi1 – x)5 solid solutions are observed to occur
when Ce transfers from the SV to its usual intermedi-
ate-valence state.

4. DISCUSSION OF RESULTS

Judging from the fine-structure parameters of gf(E)
and from their sensitivity to the Ce valence state, the
fine structure forms primarily by the Kondo mecha-
nism. This conclusion is buttressed by estimates of TK

made in terms of Anderson’s impurity model with
inclusion of strong orbital degeneracy [29]. This can be
done conveniently by using the relation connecting TK

with the band structure characteristics

(4)

where D is the conduction-band half-width, Ef is the
binding energy of the f states to band states, and Γ is the
hybridization-induced broadening of an f level in the
single-particle approximation. Band-structure calcula-
tions [16, 18] and spectroscopic measurements [31]
suggest the following values of the parameters: D =
2.5 eV, Γ = 0.3 eV, and EF = –1.5 eV. Then, Eq. (4)
yields TK = 1330 K, a value close enough to that derived
from the Sf(T) relation (TK = 1200 K). One may also
conveniently use the expressions relating TK to param-
eters allowing experimental determination [29],

(5)

or, invoking the paramagnon model of systems with
intermediate Ce valence [32],

(6)

where C is the Curie constant for the principal Ce3+

configuration (4f 1, J = 5/2), which is 0.807 emu K/mol
Ce, and χf(0) is the low-temperature part of the para-
magnetic susceptibility associated with f states. The
f-state occupation number for CeNi5 is known from
spectroscopic measurements (〈nf〉  = 0.6 [20]). χf(0) can
be estimated using data on the magnetic susceptibility
of CeNi5 and LaNi5 at 300 K in order to avoid the effect
of impurities and of the additional paramagnon suscep-
tibility component connected with spin fluctuations in

TK D Γ /π E f( )
1/N f πE f /NΓ( ),exp=

TK C n f〈 〉 /χ f 0( )=

Tsf C/2χ f 0( ),=
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the d band of CeNi5. Using the data quoted in [12, 21],
we find

Equations (5) and (6) now yield TK = 1470 K and Tsf =
1220 K. We see that the estimates of the characteristic
temperature TK (Tsf) made in terms of different model
approaches [29, 32] correlate satisfactorily with the TK
derived from the thermopower.

Analysis of the present model concepts [2, 33, 34]
permits the suggestion that the double-humped gfi(E)
structure observed near EF in the case of the saturated
Ce valence is of a coherent nature.

In principle, a double-humped gfi(E) structure of a
correlation nature can also be obtained within Ander-
son’s model of the f impurity center [29, 30]. At high
f-state hybridization energies with the band states,
where TK becomes of the same order of magnitude as
the spin–orbit splitting energy of the f states (∆SO/kB =
3000 K), the f ' state with J = 7/2 can be thermally pop-
ulated. This produces a density-of-states resonant peak
gf 2(E) lying below EF. However, as follows from theo-
retical estimates [29] and inelastic neutron-scattering
data [35], the separation between such peaks is ~∆SO,
which is at odds with the figure ∆ ~ 400 K found here.

It is well known that coherent effects in systems
with intermediate Ce valence quite frequently produce
a double-humped fine structure near EF with a quasi-
gap ∆ [1, 2]. Treated in terms of the Kondo and Ander-
son lattice models, this quasi-gap can have a spin,
charge, or quasi-particle nature and assume values of ∆
comparable to TK [33, 34]. Unfortunately, the results
obtained in theoretical studies of thermopower within
these models are contradictory [28–30] and do not per-
mit a quantitative comparison. The calculated Sf(T)
relations obtained in [36] are the closest to those
observed experimentally in Ce(MxNi1 – x)5 alloys. The
model parameters used in the calculation correspond
approximately to the case of strong hybridization of the
Ce f states with itinerant states (high TK) in metallic sys-
tems. However, a negative low-temperature minimum
in the thermopower occurs only at a small number of
electrons per f center, a situation which is not likely to
apply to CeNi5.

In conclusion, we note that although the mechanism
of formation of the quasi-gap ∆ in CeNi5 requires fur-
ther studies, it is apparently connected with the satu-
rated Ce valence states.
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Abstract—The equilibrium geometry and hyperfine interaction constants of the nearest and next-to-nearest
neighbor atoms are calculated for a negatively charged silicon vacancy in the high-spin state in cubic SiC. The
calculations are performed within the cluster approach in terms of the density-functional theory (DFT). It is
shown that the results of calculations with the use of a 70-atom cluster are in good agreement with experimental
data. A detailed consideration is given to spin polarization in the electron subsystem and the applicability of a
simple LCAO model that is commonly used in the interpretation of the electron paramagnetic resonance data
for semiconductors. The spin density distribution for the defect under investigation is analyzed in terms of local-
ized orbitals. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last forty years, the negatively charged
vacancy in crystalline silicon has been a subject of
extensive theoretical investigation [1]. Originally, the
properties of this defect were treated in the framework
of the so-called defect molecule model. This model
allows for only the interaction between the orbitals of
silicon atoms in the first coordination sphere. However,
calculations performed in the last few years have dem-
onstrated that a quantitative agreement between the
hyperfine parameters and experimental data can be
achieved only with clusters or supercells containing at
least several hundreds of atoms [2]. It was found that
the point symmetry, lattice relaxation, and energy char-
acteristics calculated for a negatively charged vacancy
in silicon substantially depend on the size of the system
used for simulating this defect. In the general case, it is
necessary to answer the question as to how the size of
the model cluster affects the calculated properties of the
defect under consideration and to choose the appropri-
ate cluster with a minimum size for adequate descrip-
tion of this defect.

As a rule, microscopic models of vacancy defects in
semiconductors are based on the analysis of the hyper-
fine parameters determined by the electron paramag-
netic resonance (EPR) and electron–nuclear double res-
onance (ENDOR) methods. At the same time, first-
principles calculations of the hyperfine parameters
present considerable difficulties. This is associated with
the necessity of applying computational techniques that
account for both the electron correlation and relaxation
of atoms in the neighborhood of the studied defect and
large basis sets for the wave functions.

In recent years, the high efficiency of calculations in
terms of the density-functional theory (DFT), which is
1063-7834/02/4405- $22.00 © 20831
outside the province of the local-spin-density approxi-
mation, has been demonstrated for many characteristics
of molecular systems, including hyperfine parameters
[3, 4]. In this respect, it is of particular interest to apply
the density-functional methods to the calculation of
defects in semiconductors (for at least those formed by
relatively light elements).

At present, it is established that the ground state of
a negatively charged vacancy in tetrahedral semicon-
ductors can have both the spin S = 1/2 and spin S = 3/2
depending on the exchange interaction in each specific
case [5, 6]. Itoh et al. [7] studied cubic n-SiC after irra-
diation and identified the negatively charged silicon
vacancy  from the intensity ratio of hyperfine lines
in the EPR spectrum. More recently, Wimbauer et al.
[8] determined the actual value of the spin (S = 3/2) for
the  center in 3C-SiC from the ENDOR measure-
ments and calculated the hyperfine parameters for
atoms of two coordination spheres in the framework of
the local-spin-density approximation without regard
for lattice relaxation. Subsequently, Torpo et al. [9] cal-
culated the relative stability of the spin states S = 1/2
and 3/2 for  in the framework of the local-spin-den-
sity approximation, pseudopotential, and supercell
approach. It was found that the high-spin state is more
energetically favorable. However, the spin densities and
hyperfine parameters were not computed.

In the present work, the  center was considered
within the cluster approximation in terms of the den-
sity-functional theory. The purpose of this work was to
examine the contribution of the spin polarization
effects to the observed hyperfine interaction constants
and to analyze the applicability of a number of simpli-
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fied approaches to the interpretation of experimental
EPR data.

2. COMPUTATIONAL TECHNIQUE

The electronic structure of a negatively charged sil-
icon vacancy in 3C-SiC was calculated within the clus-
ter approximation. The calculations were performed
using the density-functional method with an unre-
stricted wave function, the 6-311G(d) all-electron basis
set of Gaussian functions with six d functions for sili-
con and carbon atoms, and the STO-3G basis set for
saturating hydrogen atoms [10]. The use of the all-elec-
tron basis set stems from the necessity of correctly
describing the behavior of the wave function in the
vicinity of the nucleus in order to calculate precisely the
hyperfine parameters. In the density-functional theory
calculations, we used the B3LYP three-parameter func-
tional [11], including local and nonlocal terms. More-

Fig. 1. Schematic representation of the clusters used in the
calculations: (a) C16Si18H36 and (b) C4Si12H36.

(a)

(b)

C Si H
P

over, for comparison, we carried out the calculation of
the electronic structure at the unrestricted Hartree–
Fock level with the same basis set. The actual region of
the crystal in the vicinity of the defect was simulated by
the C4Si12H36 and C16Si18H36 tetrahedral clusters (Fig. 1).
The geometry was optimized at fixed saturating hydro-
gen atoms.

The isotropic hyperfine constant aiso and the compo-
nents of the spurless tensor Tij for the anisotropic hyper-
fine interaction with the Nth nucleus were calculated
according to the relationships [12]

(1)

(2)

where τij(r – RN) = ( δij – 3rkN, irkN, j), ρS(r) is the
spin density, and the other coefficients have the univer-
sally accepted meaning.

3. RESULTS OF CALCULATIONS

A comparative calculation of the total energies of
the negatively charged silicon vacancy  with spins
S = 1/2 and 3/2 in SiC was performed using a vacancy
defect simulated by the C4Si12H36 cluster. It was found

that the gain in total energy ∆Etot for the  center in
the high-spin state is equal to 0.32 eV. This result is
consistent with the inferences made by Torpo et al. [9].
The point symmetry group at the total energy minimum
corresponds to Td for S = 3/2 (which is in good agree-
ment with the experimental data obtained by Wimbauer
et al. [8]) and C3v for S = 1/2. In the ground state, car-
bon atoms of the first coordination sphere undergo an
outward-directed relaxation. As a result, the C–C dis-
tance is equal to 3.379 Å (for a perfect lattice, this dis-
tance is 3.086 Å) and the displacement of the carbon
atoms along the [111] direction is 0.18 Å.

The isotropic hyperfine parameters and components
of the anisotropic-hyperfine-interaction tensor for car-
bon and silicon atoms of the first and second coordina-
tion spheres were calculated within different approxi-
mations (Table 1). As can be seen from the data pre-
sented in Table 1, the accuracy in calculating the
hyperfine parameters increases both with an increase in
the cluster size and upon changing over to the higher
level of the theory used in the calculation (from the
unrestricted Hartree–Fock method to the DFT method).
This is a quite reasonable result. Good agreement
between the calculated hyperfine parameters and the
experimental data indicates that the magnetic reso-
nance properties of the  defect can be adequately
described with the use of a 70-atom cluster (C16Si18H36)
and the B3LYP hybrid functional. Note that silicon
atoms of the second coordination sphere are character-

aiso
N( ) 4π

3
------gβgNβN Sz〈 〉 1– ρS

RN( ),=

Tij
N( ) 1

2
---gβgNβN Sz〈 〉 1– ρS

r( )τ ij r RN–( ) r,d∫=
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2
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ized by negative spin densities (it should be remem-
bered that, for a 29Si isotope, the magnetic moment
gNβN is negative). According to our calculations, atoms
of more distant coordination shells have a zero spin
density, which agrees with the ENDOR data [8]. This is
another argument in support of the above inference that
the cluster of the chosen size is quite suitable for
describing the properties of the defect under investiga-
tion.

Figure 2 shows the regions with a negative spin den-
sity ρS(r) in the vicinity of the studied defect. It can be
seen that silicon atoms of the second coordination
sphere are characterized by negative spin densities,
whereas carbon atoms of the first coordination sphere
exhibit positive spin densities.

4. THE RELATIONSHIP BETWEEN THE 
PARAMETERS OF HYPERFINE AND THE WAVE 

FUNCTION OF UNPAIRED ELECTRONS

Since our cluster calculation has demonstrated good
agreement between the theoretical and experimental
hyperfine interaction parameters, it is of interest to
examine the applicability of a simple LCAO model in
terms of higher level methods. As a rule, the hyperfine
interaction constants obtained in electron paramagnetic
resonance investigations of deep defects in semicon-
ductors are analyzed according to the procedure pro-
posed earlier by Watkins [13] and widely used to date
(see [14]). This procedure is based on the representa-
tion of the wave function for an unpaired electron in the
form

(3)

In expression (3), summation is performed over all
atoms in the localization region of the unpaired elec-
tron. The parameters η are quantitative characteristics
of the degree of localization, and the parameters α and
β determine the degree of hybridization of the orbitals
of the atom under consideration. If the hyperfine inter-
action parameters a0 and b0 are known for the s and p
atomic orbitals, the parameters α, β, and η (for exam-
ple, for axial symmetry) are determined from the fol-
lowing relationships:

(4)

where a and b are the experimental hyperfine interac-
tion constants.

Within this approximation, it is assumed that all the
other electrons are paired electrons and do not contrib-
ute to the hyperfine interaction constants. As follows
from relationships (4), the signs of a and b are deter-
mined by the signs of the hyperfine interaction param-
eters a0 and b0, respectively. For the atomic orbitals, we

can write the relationships a0 = (8/3)πgβgNβN (0) and

Ψ ηi α iϕ si βiϕ pi+( ).
i

∑=

η i
2α i

2
a0 a, η i

2βi
2
b0 b, α i

2 βi
2

+ 1,= = =

ϕ s
2
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b0 = (2/5)gβgNβN〈 〉 . Hence, in the LCAO approxi-
mation, the sign of the hyperfine interaction parameters
is governed only by the sign of the nuclear magnetic
moment gNβN and the spin densities on the atomic orbit-
als are universally positive.

It is generally believed that errors in determination
of the parameters ηi , αi, and βi in the wave function (3)
stem from the fact that the atomic functions are modi-
fied in crystals. In turn, this leads to changes in the
hyperfine interaction parameters a0 and b0 compared to
those for a free atom. In our calculations, we used the
split-valence basis set augmented with d orbitals. In this

rp
3–

Table 1.  Hyperfine parameters (in G) for the  center with
spin S = 3/2 in SiC

Cluster type Atom

Components 
of the hyper-
fine interac-
tion tensor

Calculated compo-
nents of the hyperfine 

interaction tensor

Hartree–
Fock 

method

DFT 
method 

(B3LYP)

C4Si12H36 C aiso 33.80 36.78

T1 11.4 9.26

T2 –5.7 –4.63

T3 –5.7 –4.63

Si aiso 4.60 –1.66

T1 –0.39 –0.40

T2 –0.09 –0.06

T3 0.48 0.46

C16Si18H36 C aiso 29.60 15.17

T1 11.8 11.8

T2 –5.9 –5.9

T3 –5.9 –5.9

Si aiso 5.50 3.01

T1 –0.28 –0.24

T2 –0.18 0.06

T3 0.46 0.18

Experiment [2] C aiso 17.36

T1 11.20

T2 –5.6

T3 –5.6

Si aiso ±2.92

T1 0

T2 0

T3 0

Note: T1, T2, and T3 are the principal components of the anisotro-
pic-hyperfine-interaction tensor calculated according to for-
mula (2).
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case, changes in the size and shape of atomic orbitals in
the crystal are automatically taken into account.

The experimental determination of the sign of the
hyperfine interaction constants is a very complex prob-
lem and, as a rule, can be accomplished only in rare
cases. As was noted above, the spin densities calculated
for the  center in 3C-SiC are negative in the case of
silicon atoms of the second coordination sphere. Illgner
and Overhof [15] also obtained the negative spin densi-

VSi
–

C

Si
H

C

C

C

Si

Si

Si

H

H

H

H

H

Fig. 2. Spin density distribution for the  defect in the
C16Si18H36 cluster in the (110) plane. Hatched regions cor-
respond to negative spin densities. Contours indicate posi-
tive spin densities.
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–

Table 2.  Contributions of the highest canonical molecular
orbitals to the total tensor of hyperfine interaction (in G) for

the  center with spin S = 3/2 in cubic SiC

Cluster
type Atom Hyperfine 

parameter

Computational technique

all MOs 3α MOs (4α + β) 
MOs

C16Si18H36 C aiso 15.17 1.03 –0.94

T1 11.8 16.7 17.6

T2 –5.90 –5.6 –6.0

T3 –5.90 –11.1 –11.6

Si aiso 3.01 –150.1 –141.2

T1 –0.24 –0.33 –0.32

T2 0.06 0.07 0.03

T3 0.18 0.26 0.29

VSi
–

P

ties when calculating other point defects in semicon-
ductors. It can be assumed that the occurrence of nega-
tive spin densities in a number of coordination spheres
is a rule rather than an exception for deep defects in
semiconductors. However, according to the simple
LCAO model [see relationships (3) and (4)], the spin
densities must necessarily be positive. This is direct
evidence of the inadequacy of this model.

Expressions (1) and (2) for the hyperfine constants
can be represented as the sums of the contributions
from different occupied molecular orbitals (MOs),
that is,

(5)

(6)

where Nα and Nβ are the numbers of the α and β occu-
pied orbitals with electron spin projections +1/2 and
–1/2, respectively.

The partial contributions of the ith α orbital to the
hyperfine constants have the following form:

(7)

(8)

Here,  stands for the coefficients of the ith α orbital
defined as

(9)

Similar expressions can be written for the partial
contributions of the β orbitals.

The representation of the wave function in the form
of expression (3) implies that, for spin S = 1/2, only the

terms  and a(i, α), which correspond to the highest
occupied α MO (i = Nα), are taken into consideration.

When this model is applied to the  center with spin
S = 3/2, allowance should be made for three α electrons
of molecular orbitals with i = Nα , (Nα – 1), and (Nα – 2).
In this case, it is assumed that the other terms in rela-
tionships (5) and (6) cancel each other or, in other
words, that the other electrons are paired electrons.
This suggests that the spatial parts of the α and β orbit-

als coincide with each other; i.e.,  = .

Table 2 lists the hyperfine interaction parameters
calculated in terms of the density-functional theory

T jk t jk
i α,( )

i 1=

Nα

∑ t jk
i β,( )
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using three different techniques. The first technique
consists in calculating the hyperfine interaction param-
eters according to formulas (1) and (2) with allowance
made for all MOs of the particular cluster. Table 2 also
presents the contribution of the three highest occupied
α orbitals to the total tensor of hyperfine interaction
(the second technique) and the contribution of four α
and one β orbitals to the total tensor of hyperfine inter-
action (the third technique), which were calculated
from expressions (5)–(8).

As is well known [13], the one-determinant wave
function, one-particle density functions, and two-parti-
cle density functions are invariant with respect to a uni-
tary transformation of single-electron MOs. Conse-
quently, in order to choose these functions unambigu-
ously, it is necessary to impose additional constraints
on the orbitals. The contributions of the highest occu-
pied MOs (Table 2) correspond to the so-called canon-
ical orbitals [13]. The data presented in Table 2 demon-
strate that the partial contribution of several upper MOs
to the hyperfine interaction parameters is small com-
pared to the contribution of the other orbitals. There-
fore, in the case when the MOs are chosen in the form
of canonical orbitals, the hyperfine interaction parame-
ters in the system under consideration are determined
by polarization of the all-electron subsystem rather
than by only three unpaired α electrons.

The single-electron MOs can be interpreted in a
more pictorial form by changing over from the canoni-
cal orbitals to the so-called localized orbitals.

5. ANALYSIS OF THE SPIN DENSITY IN TERMS 
OF LOCALIZED ORBITALS

The invariance of the one-determinant wave func-
tion with respect to unitary transformations of single-
electron occupied MOs can be used to construct a new
set of orbitals that are well localized on a small number
of atoms. As a rule, these orbitals correspond to intui-
tive notions of two-center two-electron chemical
bonds. When calculating the localized orbitals, the spe-
cific criterion of localization is used as an additional
constraint. In order to describe qualitatively the local-
ized MOs, we performed the MO calculations for clus-
ters of different sizes in terms of the density-functional
theory [10] and in the valence approximation at the
Hartree–Fock level with the GAMESS code [16]. In
these calculations, we used three different procedures
in accordance with the criteria of localization: (i) the
self-repulsion of each electron pair on a particular MO
was maximized [17], (ii) the distance between the cen-
ters of MO distributions was maximized [18], and
(iii) the number of atoms on which the particular MO is
localized was minimized [19].

It turned out that all three procedures lead to similar
localized orbitals which can be described in the follow-
ing way. Let us assume that the valence subsystem con-
tains (2N + 1) electrons or, more precisely, (N – 1)
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
β electrons and (N + 2) α electrons. In this case, the
localized orbitals obtained in the calculation can be
divided into three groups.

The first group involves four equivalent one-center
orbitals centered on carbon atoms of the first coordina-
tion sphere (Fig. 3a). Four α electrons that are not
involved in chemical bonds with neighboring atoms
and correspond to the concept of dangling bonds are
localized on these orbitals.

The second group contains (N – 2) two-center orbit-
als localized on the neighboring silicon and carbon
atoms. The relevant bonds can be considered classical
two-electron two-center chemical bonds. However, the
spatial parts of the orbitals for the α and β electrons are
somewhat different, which gives rise to a low spin den-
sity on these orbitals. Nonetheless, the α electrons on
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Fig. 3. Density contours for localized orbitals of the 
defect in the C16Si18H36 cluster in the (110) plane: (a) one
of the four α equivalent localized orbitals and (b) the β delo-
calized orbital.
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(N – 2) two-center orbitals can be treated to be approx-
imately paired with the β electrons.

The third group is represented by one β orbital
delocalized over the cluster and transformed accord-
ing to the A1 irreducible representation of the Td group
(Fig. 3b).

Therefore, the above choice of the single-electron
orbitals provided five unpaired electrons with spatial
orbitals that differ drastically from orbitals of the other
(paired) electrons. Instead of the expected three
unpaired α electrons and (2N – 2) paired electrons, we
obtained four strongly localized α electrons, one com-
pletely delocalized β electron, and 2(N – 2) virtually
paired electrons. In this case, it is incorrect to assert that
the measured hyperfine interaction constants can be
calculated from the wave function of three unpaired
electrons, because the magnitudes and signs of these
constants are determined by the spin polarization of the
all-electron subsystem. As was noted above, the choice
of the single-electron orbitals is not unique. For this
reason, these orbitals are mathematical rather than
physical objects. However, the many-electron wave
function and its related spatial distribution of α and β
electron densities have real physical meaning.

6. CONCLUSION

Thus, the equilibrium geometry, spin state, and
parameters of hyperfine interaction for a negatively
charged silicon vacancy in cubic 3C-SiC were calcu-
lated in terms of the density-functional theory with the
use of a 70-atom cluster. The results of calculations are
in good agreement with the experimental data. As fol-
lows from the above analysis of the spin density distri-
bution, the simple LCAO model, which is widely
applied in experimental works to the interpretation of
the hyperfine interaction parameters for deep centers in
semiconductors, is inadequate for the  center in SiC
and even qualitatively does not describe the real physi-
cal situation. This model should be applied with caution
to defects in semiconductors, because the spin polariza-
tion effects can make a dominant contribution to the
observed hyperfine interaction parameters for a number
of actual coordination spheres.
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Abstract—A large array of experimental data on the electrical conductivity of boron and high-boron com-
pounds obtained within a broad temperature range is analyzed. It is shown that there is no need to describe the
temperature dependence of the conductivity, as is usually done, by summing numerous exponentials corre-
sponding to different charge-transfer mechanisms from conduction in extended states at high temperatures to
hopping between localized states near the Fermi level at low temperatures. The conductivity obeys, within a
broad temperature range, either a power law or the inverse Arrhenius relation. The difference is associated with
specific structural features of the materials, the depth of the spatial potential relief, and with whether polarons
participate in the charge transport or not. A number of compounds exhibit a crossover from the power- to
inverse-Arrhenius law dependence with increasing temperature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Physical properties of disordered compounds
exhibit a number of specific features compared to sin-
gle-crystal semiconductors. In optical spectra, this is
the Urbach tail. In charge-transfer processes, this is the
conduction activation energy, which decreases slowly
with decreasing temperature. The smoothness of the
σ(T) relation permits researchers to draw more than one
tangent, whose slope corresponds, by Mott’s interpreta-
tion [1], to different activation energies and different
charge-transfer mechanisms, from conduction in
extended states at high temperatures to hopping
between localized states near the Fermi level at low
temperatures (Fig. 1).

Because of the smoothness of the σ(T) curves, the
question of how to draw a tangent remains open, which
makes calculation of the corresponding activation ener-
gies uncertain. At the same time, it is seen from Fig. 1
that when plotted on the inverse Arrhenius scale, the
σ(T) relation allows linearization over a broad temper-
ature range. The validity and uniqueness of the inter-
pretation put forward in [1] becomes questionable in
this case. As shown in [2–4], the conductivity of a num-
ber of disordered materials can be described, within a
broad temperature range, not by a sum of several expo-
nentials corresponding to different charge-transfer
mechanisms but rather by any one relation other than
the Arrhenius law.

One more point requiring elucidation is the part
played by lattice strain around a carrier in noncrystal-
line solids. Some researchers have attributed consider-
able significance to small polarons in charge transfer [1,
5, 6]. At present, there is a wealth of experimental infor-
1063-7834/02/4405- $22.00 © 20837
mation on transport phenomena in disordered materi-
als. Their interpretation, however, can quite frequently
be done both in terms of Mott’s model [1] and based on
the small-polaron theory [5, 6].

Boron and its compounds represent an interesting
subject for use in studying the semiconducting proper-
ties of disordered materials [7–9]. Viewed from the
crystallographic standpoint, borides are crystals. In
their semiconducting properties, they are similar to
amorphous materials.
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Fig. 1. Typical temperature dependence of conductivity for
solids: (1) crystal, (2, 3) disordered solids in (2) the Arrhe-
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Boron, the fifth element in the Periodic table, has
three valence electrons. It forms high-melting com-
pounds (Tmelt > 2500 K), thus permitting one to study
their semiconducting properties up to extremely high
temperatures. The lattice of boron and of borides is
made up of B12 icosahedra. Two of the B valence elec-
trons provide intraicosahedral bonding. The third
valence electron accounts for the strong covalent bonds
in the crystal. In more complex compounds, conglom-
erates of icosahedra B12(B6)12 and B12(B12)12 act as
building blocks. The number of atoms N in the unit cell
varies in the boron and boride series from 12 to 1600.
As N increases, atoms can form groups with different
coordination numbers. Note also the looseness of the
structure of boron and of the borides, i.e., a large num-
ber of crystallographic voids in the structure. The space
filling for β-B, for instance, is ~36%.

The rhombohedral α boron (N = 12), the simplest
substance in crystallographic structure in the boride
series, is the closest to crystals in its physical proper-
ties. However, as N increases, some of the properties of
borides approach those of amorphous semiconductors.
This is evident from an analysis of IR absorption spec-
tra [10]. Disorder in complex compounds increases
through statistical distribution of boron vacancies,
interstitial boron, and boron atoms with different coor-
dination numbers, as well as because of a change in
short-range order parameters, i.e., in this particular
case, of bond lengths in a unit cell.

The so-called “boron impurity in boron” [8] plays a
fundamental part in the density-of-states distribution in
boron and its compounds. These are boron atoms dif-
fering from others in their coordination number. For
instance, in β-B, the boron coordination number is six.
However, ~13% of the atoms have coordination num-
bers equal to eight and nine. This gives rise to the for-
mation of a band of localized states ~0.5 eV distant
from the valence-band edge (the band gap ~1.4 eV).
The Fermi level is pinned at this band. The density of
states at the Fermi level is g(EF) ≈ 1019–1020 eV–1 cm–3.

According to present-day concepts [8], conduction
in β-B is governed at low temperatures by electrons
hopping near the Fermi level. At very low T, variable-
range hopping provides a large contribution (Mott’s
law). At higher temperatures, charge transfer via local-
ized states in the valence-band tail becomes dominant.
At still higher T, conduction occurs in extended
valence-band states. In metal borides, polaron effects
may become significant in conduction. A small-polaron
(bipolaron) model has been developed for boron car-
bide [5, 6].

It thus follows that boron and its compounds are a
suitable subject for testing various models of charge
transfer in disordered materials, experimental determi-
nation of the functional dependence σ(T) over a broad
temperature range (in some cases, more than one thou-
sand kelvins in width), and learning the role played by
polaron effects in charge transfer.
P

As already mentioned, it has been shown for a group
of disordered materials that conductivity lends itself to
description over a broad temperature range by any one
law except the Arrhenius law. This means that charge
transfer in noncrystalline materials can be treated in a
frame that would not invoke several activation pro-
cesses with different activation energies. Models have
been proposed for conduction both in the absence of
polaron effects and in the case where they are involved.
These models describe the experimentally observed
relations for σ(T) [2–4] and yield the following results.

If the material conductivity is due to electrons hop-
ping from one state to another in a one-phonon process,
the transition probability scales with temperature as [1]

(1)

where ω is the phonon frequency. In this case, the con-
ductivity σ is described by the inverse Arrhenius law
[2–4]:

(2)

where α–1 and T0 are parameters, α ≥ 1, and T0 deter-
mines the density-of-states decay in the exponential
region. Such a mechanism is characteristic of nonpolar
materials in the case where the polaron effects are
insignificant.

In the case of polar materials, where many-phonon
polaron transitions from one state to another are domi-
nant, the transition probability at moderately high tem-
peratures scales with temperature as [1]

(3)

where n is the number of phonons involved. Now, the
conductivity depends on temperature by the law [3, 4]

(4)

We will use the concepts developed earlier [2–4] to ana-
lyze a large array of experimental data as to the conduc-
tivity of boron and its compounds. The results of this
analysis suggest some conclusions on the mechanism
of charge transfer in these materials, as well as identify
manifestations of the polaron conductivity in them.

2. EXPERIMENTAL

The rhombohedral β boron (N = 105, Eg = 1.4 eV)
is the most well studied of the four B crystallographic
modifications [7, 8]. Figure 2a displays the temperature
dependence of conductivity of β-B measured on several
samples. In the range 100–1100 K, it is seen to follow
the inverse Arrhenius law closely. In some samples, the
conductivity varies over six to seven orders of magni-
tude. The parameter α–1T0 varies from 20 to 40 K for
different samples (depending on the technology of

w ω ω/kT–( ),exp∼

σ σ0 T /α 1–
T0( ),exp=

w kT /"ω[ ] n
,∼

σ σ0T
n
.=
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preparation used). According to published data [7, 8],
polaron effects should not operate in β-B.

Metal atoms enter β-B-based interstitial solid solu-
tions as a doping impurity in B voids. Figure 2b plots
the conductivity of the β-B : Si and β-B : Mn interstitial
solid solutions (impurity content 1–2 at. %). The tem-
perature dependence of the β-B solid-solution conduc-
tivity is described well by the inverse Arrhenius law
(α−1T0 = 35–40 K).

The situation is different for boron compounds with
metals. The B content in this case is, as a rule, ≥90%. In
contrast to the β-B and its solid solutions, high-boron
compounds exhibit polaron properties. B14Si, B22Mn,
and B24Cu (N = 105) are structural analogs of β-B. In
contrast to the β-B : Si and β-B : Mn solid solutions, the
temperature dependence of the B14Si and B22Mn com-
pounds follows a power law σ ~ Tn (Fig. 3). The value
of the parameter n depends on the technology of sample
preparation.

IR absorption in borides [10] clearly exhibits a ten-
dency to spectral modification, more specifically, from
spectra characteristic of boride crystals with a small N
to those typical of the amorphous state of borides with
a large N (~1600). No such distinct relationship is
observed, however, in the conductivity of borides. Fig-
ure 4 plots the temperature dependences of the conduc-
tivity for α-AlB12 and (Be, Al)B12 for which N = 200
and for β-AlB12 for which N = 50. In all these cases, the
conductivity scales well as σ ~ Tn and has comparable
values.

Amorphous boron (a-B), both in the form of films
and in bulk samples, has been recently attracting con-
siderable interest [14, 15]. This interest is connected
with the problem of thin nanostructured amorphous
semiconducting films, i.e., amorphous films which con-
tain inclusions of nanocrystallites or nanoclusters 1 nm
in size distributed in an amorphous host. Amorphous
boron is different in that it always contains nanoinclu-
sions from B12 icosahedra d = 0.51 nm in diameter to
B12(B12)12 structural blocks with d = 2.3 nm. Figure 5
shows the temperature dependences of the conductivity
for amorphous boron. Unlike crystalline β-B, the con-
ductivity of a-B follows a power-law relation.

Compounds of the MB66 type (N = 1600) are fre-
quently compared with amorphous boron in terms of
their physical properties [7, 8]. The structure of these
compounds is the most complex of the materials con-
sidered here. Figure 5 presents the temperature depen-
dence of the conductivity of YB66. It indeed behaves
similar to that of a-B. However, the σ(T) relation for
YB66 does not differ qualitatively in behavior from that
of other borides with N = 50, 105, and 200.

3. DISCUSSION

Boron and its compounds are heavily defective crys-
tals. This accounts for the high density of states at the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
Fermi level and in the band tails (of the order of 1019–
1020 eV–1 cm–3). Therefore, the electronic properties of
these compounds resemble those of amorphous materi-
als very closely. In particular, the temperature depen-
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dence of the conductivity of β-B crystals plotted in the
Arrhenius coordinates (  ~ 1/T) differs very little
from that of amorphous boron. In both cases, it is a
curve with an activation energy varying smoothly with
temperature. The temperature dependences of conduc-
tivity of all B compounds (with N from 50 to 1600)
behave similarly. As follows from these data, when
experimental results are plotted in the standard Arrhe-
nius coordinates, it is difficult to see whether they have
features inherent to charge-transfer mechanisms in
boron and its compounds or not. The method employed
by us, namely, plotting experimental curves in inverse
Arrhenius coordinates, permitted us to establish that the
conductivity of crystals of β-B and its solid solutions
has a radically different nature than that of a-B and the
metal borides. At the same time, it was found that the
number of atoms in the unit cell of borides is not a cru-
cial factor in the mechanism of conductivity.

Following the concepts developed in [2–4], conduc-
tivity of the type σ ~ exp(T/α–1T0) is characteristic of
materials in which polaron effects do not occur and
charge transfer is realized through electrons hopping
from one state to another in a one-phonon process. By
contrast, a temperature dependence of the form σ ~ Tn

is typical of polaron conduction wherein polaron tran-
sitions between states involve a many-phonon process.

The polaron is a conduction electron (or hole) mov-
ing slowly in a polar crystal. The electron polarizes and,
thus, distorts the ionic lattice in its vicinity. The poten-
tial well created by the electron in the polar material
can be written as Up(r) = e2/εpr, where r is the distance
and εp is given by the difference between the high-fre-

quency ε∞ and static ε dielectric permittivities:  =

 – ε–1. Hence, the manifestation of polaron effects
should be expected in materials with ionic or partially
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P

ionic bonding, because the electron–phonon coupling
in them is substantially higher than that in covalent
crystals [16]. The β-B crystal has covalent bonds, and it
does not reveal polaron effects in its conductivity. By
contrast, in metal borides, one may expect to see
polaron conduction. Polaron conduction occurs in the
cases where, for the electron drift velocity and the elec-
tron–phonon coupling characteristic of the material, the
dielectric relaxation time of ions in the field of an elec-
tron is long enough for a structural rearrangement to
take place around the electron.

The interstitial solid solutions of β-B with Mn and
Si and B compounds with Mn and Si are structural ana-
logs. An analysis of the temperature dependences of the
conductivity suggests, however, that charge transfer in
boron and its solid solutions occurs by one-phonon
electron hopping from one state to another, whereas in
the Mn and Si borides, it involves many-phonon
polaron hopping. The polaron charge-transfer mecha-
nism turns out to be typical of all metal borides (with N
from 50 to 1600).

Polaron conduction is also found to be typical of a-
B. The possibility of small-polaron formation in non-
crystalline materials has been considered by a number
of authors, in particular, by Emin [17]. The probability
of formation of such polarons in a disordered system
was shown to increase considerably compared with that
in the crystalline state. If a carrier resides near an
atomic site long enough to allow displacement of
neighboring atoms, a potential well may form and will
trap the carrier. The experiments made on β-B crystals
and amorphous boron are in agreement with these con-
clusions. In contrast to the crystalline material, amor-
phous boron exhibits polaron properties.

It appears crucial to analyze the behavior of conduc-
tivity in materials with polaron conduction at high T,
where one may expect a transition from the power-law
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to the inverse Arrhenius relation. It is in the high-melt-
ing borides that one may expect this transition to occur.
Figure 6 displays the temperature dependence of the
conductivity of FeB28 in the high-temperature domain.
For T > 400 K, it follows the inverse Arrhenius relation
(α–1T0 = 300 K); i.e., for T > α–1T0, as expected, the
conductivity scales as σ = σ0exp(T/α–1T0). For lower T,
the power law becomes dominant. The σ(T) behavior
for FeB29.5 (an analog of FeB28) was studied in consid-
erable detail in [7, 18]. An analysis of the experimental
data reveals that for temperatures T < α–1T0, the temper-
ature dependence of the conductivity is described by a
power law with n ~ 3.

Figure 6 also presents the temperature dependence
of the conductivity of MgAlB14 measured in the high-
temperature domain. As in the case of FeB28, the con-
ductivity follows the inverse Arrhenius relation for T >
α–1T0 (α–1T0 ≈ 600 K). Below α–1T0, the σ(T) relation
deviates from the inverse Arrhenius law. The small
number of experimental points available does not per-
mit one to determine the exponent n accurately.

Disorder in a material gives rise to strong fluctua-
tions of the band edge potentials. Density-of-states tails
appear as a result of averaging over all possible poten-
tial-well configurations. The T0 parameter, which deter-
mines the exponential decay of the density of states,
characterizes the effective potential-well depth. For
β-B, the parameter α–1T0 is small, 20–40 K. This corre-
sponds to a well depth of a few millielectronvolts. The
more structurally perfect a β-B crystal, the smaller the
parameter α–1T0.

Polaron wells may have different depths. In some
cases, two to five phonons are enough for a carrier to
hop, while in others, this number has to be of the order
of ten.

In all substances that do not feature polaron effects,
the α–1T0 parameter is, as a rule, less than 100 K. As for
the polaron wells, they are substantially deeper. As a
result, in materials with polaron conduction (FeB28,
FeB29.5, MgAlB14), the inverse Arrhenius law starts to
operate only at very high temperatures. According to
Mott [1], the polaron transition probability from one
state to another at such temperatures is described by an
exponential exp(–ε/kT).

The parameter α–1T0 can be used to estimate the
polaron well depth:

(5)

Here, z is the coordination number (z ~ 6), mp is the
effective polaron mass, and a is the distance between
localized states (a = 10 Å).

For MgAlB14, we have Up = 60 meV, and for FeB28,
Up = 30 meV (to within the magnitude of α, α ≥ 1). The
effective mass of the polaron involved in charge trans-

Up 2z"
2
/ mpa

2( ).=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
fer is mp = 13me for MgAlB14 (to within α) and mp =
6me for FeB28.

4. CONCLUSIONS

The above analysis of experimental data on the tem-
perature dependence of conductivity carried out for a
large number of boron compounds has shown that there
is no need to describe this dependence by summing
numerous exponentials corresponding to different
transfer mechanisms. Studied over a broad temperature
range, the conductivity obeys either a power-law or the
inverse Arrhenius relation. This is associated with the
specific structural features of the material involved, the
depth of the spatial potential relief, and with whether
polarons are involved in charge transfer or not. In the
case where electron hopping occurs between shallow
potential wells in single-phonon transitions, the con-
ductivity is described by the inverse Arrhenius relation.
If self-trapping produces deep potential wells, many-
phonon polaron transitions between states become
dominant and the conductivity scales with temperature
as a power law. When the temperature is increased
(above α–1T0), the probability of hopping between deep
wells in such materials is described by the formula typ-
ical of a one-phonon process and the power law for the
conductivity crosses over to the inverse Arrhenius rela-
tion.

Thus, the temperature dependence of conductivity
permits one to establish the degree of disorder in a
material, the role played by polaron effects in charge
transfer, the polaron well depth, and the effective
polaron mass. It becomes possible to interpret, within a
common frame, the behavior of the temperature depen-
dence of conductivity for a large group of materials, its
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power-law or inverse Arrhenius scaling, and the cross-
over from one relation to another at T ~ α–1T0.
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Abstract—An analysis of events in the tunneling junction shows that the interaction of one-electron processes
in a many-electron system may be a source of scale-invariant low-frequency fluctuations of conductivity (the
interaction consists in that the quantum probability of an electron transition depends on fast random changes in
the environment in the course of the transition, including the changes caused by analogous transitions). The the-
ory relates flicker fluctuations in the tunneling conductivity to the discrete character of the spectrum of electron
states and explains the nonlinearity of the noise–current characteristic observed in nanocomposites. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Low-frequency flicker noise (noise with a 1/f spec-
trum), observed in a large variety of structures [1–5], is
an important problem for both applied and theoretical
physics. A special feature of this noise is that it repre-
sents fluctuations in the rates of transport and relaxation
processes. In electronics, these are primarily the con-
ductivity fluctuations, which are difficult to remove by
frequency filtration (or by smoothening in time). As a
rule, these fluctuations are much more sensitive with
respect to the material structure and the external factors
than is the conductivity itself. Therefore, once an ade-
quate theory is created, such fluctuations would provide
additional information about the charge transfer mech-
anisms.

At present, flicker noise is usually related to a large
time scale, for example, to slow (rare) thermoactivated
fluctuations in the structural disorder, occupation of
electron traps, etc. [1, 3, 5–17]. The 1/f spectrum is
interpreted as a superposition of Lorentzians corre-
sponding to “fluctuators” with various lifetimes,
assuming that there is a rather broad and homogeneous
distribution of their activation energies [1]. However,
such a theory fails to explain some factors, including
the 1/f fluctuations of the band mobility of carriers in
intrinsic semiconductors [2, 18] or the 1/f noise in liq-
uid metals [4]. In recent years, extensive investigations
have been devoted to noise in the systems with nonme-
tallic (narrow-band, hopping, tunneling, percolation)
conductivity, representing heavily doped and amor-
phous semiconductors [8, 10–14], defect metal films
[5, 9], oxides [7] (including manganites featuring the
giant magnetoresistance effect [19–21]), etc. An impor-
tant part in such systems belongs to the long-range
Coulomb interactions, while the role of a slow fluctua-
1063-7834/02/4405- $22.00 © 20843
tor can be performed by charge redistribution in the
“Coulomb glass” [6, 8, 14]. However, particular esti-
mates are indicative of a low-frequency saturation of
the 1/f noise spectrum [13], in discrepancy with the
experiment. Apparently, the forecast of Tandon and
Bilger [22] that reducing the 1/f noise to Lorentzians
will be a drawback of the theory comes true.

At all importance of fluctuations of the activation
type and of the other “slow” fluctuations, the funda-
mental 1/f noise is worth special attention. This noise
originates directly from the “fast” kinetic events (colli-
sions and interactions between particles or between
quasi-particles and quanta) responsible for the electric
resistance [4, 23–27]. It should be recalled that the phe-
nomena of relaxation and irreversibility in any dynamic
system are related essentially to its ability to “forget”
the prehistory. Loosing memory of the number and type
of kinetic events in the past, the system is incapable of
maintaining the “average number (probability) of
events per unit time” (more precisely, only a proportion
of the events mutually inverse in time is controlled,
rather than the difference or sum of such events [23, 26,
27]). In such a case, the probable fluctuations in the
number of events (as well as the most probable number
of these events) increase in proportion to the time of
observation and, hence, no definite time-average num-
ber of events exists. In other words, if the fluctuations
in the current “number of kinetic events per unit time”
(or the “rate of events” in terms of [28]) produce no
feedback reaction, then such fluctuations exhibit no
relaxation and, hence, possess no characteristic (upper)
time scale. This behavior evolves precisely into the
scale-invariant 1/f spectrum (for more details, see [4,
23, 27]). As a (quite paradoxical) result, the long-lived
correlations corresponding to the 1/f spectrum reflect
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forgetfulness of the system rather than memory of its
prehistory (Krylov [28] emphasized that not every sta-
tistical correlation reflects causal relationships).

The kinetic theory misses the 1/f noise of this nature
by postulating strictly determined “probabilities per
unit time” (collisional integrals). On the contrary, the
gas kinetics constructed on the statistical mechanics
without this simplification [24, 27] reveals the 1/f fluc-
tuations in the diffusion rate and in the molecular
mobilities. These fluctuations are caused by the fact
that the system is insensitive to a random distribution of
the past collisions of any molecule over the impact
parameter (i.e., to the real collision cross section of this
molecule) rather than by large relaxation times (absent
in the system). The flicker fluctuations of dissipation
and light scattering observed in quartz can also be
explained as an intrinsic statistical property of the sys-
tem kinetics (in this case, of the phonon system) [25].
This kinetics cannot be reduced to certain three- or
four-particle collisional integrals because the “elemen-
tary” kinetic events (decay, merging, and scattering of
phonons) are intermixed in time and parametrically
mutually influence one another.

Below, we will demonstrate that the “1/f noise due
to the loss of memory” in the quantum kinetics of
many-electron systems (as well as in the phonon sys-
tems) can arise from intermixing of the kinetic events
representing electron transitions. The flicker fluctua-
tions of conductivity in such systems are manifested,
provided that the real duration of the events and the real
quantum discreteness of the energy states of electron
are not ignored.

With allowance for the finite duration, every one-
electron transition appears as the fragment of a many-
body process. Separating this fragment using boson
lines, we may consider the quantum amplitude of the
transition as formed under the action of effective vari-
able fields reflecting other components of the process.
For example, the accomplished electron transitions
through a tunneling junction, together with the thermal
motion of charges inside the junction sides (banks),
induce fast voltage fluctuations across the junctions.
The latter fluctuations randomly shift the phases of
increments of the quantum amplitude of the forthcom-
ing transition. This mutual influence of one-electron
events involving numerous soft photons was studied in
the theory of Coulomb blocking and low-temperature
anomalies in the current–voltage characteristics of
small tunneling junctions [29–31] (a mathematically
analogous problem with phonons instead of photons
was encountered in the theory of mobility of a tightly
bound polaron [32]).

Apparently, this may result both in renormalization
of the transport characteristics and in the appearance of
specific fluctuations in these characteristics. Since the
quantum probabilities of “elementary” electron transi-
tions considered as functionals of the whole system
noise (including fluctuations of the electric, magnetic,
P

exchange, and elastic fields) are random, the conductiv-
ity of this system is also random. To our knowledge,
this effect has never been studied before. It must be well
pronounced, provided that the noise correlation time is
small as compared to the duration (expectation time) of
a typical transition. This situation is natural, in particu-
lar, for the tunneling conductivity. Using this example,
we will demonstrate how the fast noise becomes a
source of low-frequency flicker fluctuations in the con-
ductivity (probably, an additional source of such fluctu-
ations in the case of hopping conductivity is the fast
fluctuations of the Coulomb potential induced by local
charge redistribution).

For illustrative purposes, we concentrate on the
ideal tunneling junction. It should be emphasized that,
originating from the thermal noise, the effect under
consideration principally differs from the reproducible
fluctuations of conductivity caused by a static disorder
in the junction [33] observed at low temperatures [34].
As for the 1/f noise in real tunneling junctions [16, 35],
this process is usually attributed to the structural fluctu-
ators representing two-level systems. The possibilities
of the corresponding theory were analyzed in detail by
Gal’perin et al. [15]. Note also that the interest of
researchers in the role played by discreteness of the
electron states in tunneling junctions and the many-
body processes in these systems has a long history (see,
e.g., [36, 37] and references therein).

2. CHARACTERISTIC TUNNELING TIMES

When a small voltage U < T/e (T is the temperature)
is applied to a tunneling junction, the average amount
of charge transferred over the time interval ∆t and the
corresponding conductivity can be expressed as fol-
lows:

(1)

Here, δE is the average distance between the electron
energy levels on the two sides, ν is the density of states,
Ue/δE is the effective number of “active” levels
“loaded” by the charge transport, and τt is the average
time required for the electron transition from a given
level on one boundary to the opposite boundary (more
strictly speaking, τt is the time of accumulating the
quantum probability of a jump on the order of unity, so
that the inverse quantity γ plays the role of the jump
probability per unit time).

A real tunneling junction is always characterized by
a finite capacitance C and a characteristic time τ = RC ≡
C/G. Analogous to the relaxation time of a usual RC
chain, this is the correlation time of the thermal fluctu-
ations of charge in the junction (if the Coulomb interac-
tion between the junction sides is manifested in a sto-

∆Q e
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-------∆t
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chastic form). Let us compare the time scales intro-
duced above:

(2)

Here, Ec is a characteristic Coulomb energy and, hence,
the ratio (2) is merely the number of levels involved in
the charge relaxation.

Now, we will demonstrate that tunneling is a slow
process, such that

(3)

even if the Coulomb effects are weak in the trivial sense
(Ec ! T). For certainty, we consider the case of flat
sides with thickness w confining a flat barrier with
thickness d and a typical dielectric constant e ~ 20.
Using the formula for C of a flat capacitor and the well-
known expressions for the electron density of states and
the Fermi energy and velocity in a standard metal, we
obtain

where a is a characteristic atomic size (on the order of
three Ångströms). This result clearly indicates that ine-
quality (3) is always valid and, in this sense, the Cou-
lomb effects are always strong. Therefore, a tunneling
electron experiences numerous variations of the voltage
u(t) across the junction (fluctuating under the action of
other transitions of electrons in both directions).

In terms of a one-electron process, this result
implies that the quantum-mechanical probabilities of
transitions are random values. From the standpoint of a
strict many-body theory, a description of the corre-
sponding excess contribution to the transport current
fluctuations would require using at least four-particle
Green’s functions (determined at four different time
instants and not admitting approximate separation into
two-particle functions [4]). Since the necessary formal-
ism is not yet developed, we will attempt to formulate
the problems in simple terms of a tunneling Hamilto-
nian and quantum-mechanical nonstationary perturba-
tion theory. We will employ the simplest model,
according to which all the tunneling matrix elements
are approximately equal: gkq ≈ g.

We consider the standard tunneling Hamiltonian
approximation, initially assuming u = 0. Let pkq(∆t, U)
be the probability of the electron transition from state k
on one (left) boundary to state q on the other (right)
boundary (or of the reverse transition) during the time
interval t. The total probability of jumping left to right
from state k is given by a sum of probabilities over q,
while the jump duration, in its physical sense, is inverse
to the probability of jumping per unit time:

τ t

τc
---- e

2ν
C

--------
Ec

δE
------.= =

τ t/τc @ 1,

e
2ν/C

e
2

"v F

----------4πdw

ea
2

-------------- dw

a
2

-------,≈ ≈
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(it will be assumed that these values weakly depend on
k). Now, we will employ (which is a usual practice in
constructing a kinetic theory) the Fermi golden rule

(where the plus sign refers to the right boundary). This
rule provides for the linear increase in the jump proba-
bility with time, thus stipulating a certain rate (fre-
quency) of jumps:

(4)

Application of the golden rule (i.e., the continuum
approximation) implies that the time of observation of
the evolution of quantum amplitudes (sufficient for an
adequate evaluation of the probabilities) falls within the
interval "/T ! ∆t ! τg, where τg = 2π"/δE is a charac-
teristic time determined by the discreteness of the
energy spectrum. Obviously, the adequate observation
time interval necessary for properly taking into account
the noise u(t) must be much longer than the noise cor-
relation time; with allowance for condition (3), it is
desired that the observation time be comparable to a
typical jump duration. Therefore, a standard scheme
would have to obey the condition τg > τt. However, for-
mulas (1) and (4) yield the relation

(5)

which indicates that a low-transparent junction features
just the opposite situation:

(6)

The physical meaning of this inequality is that the
broadening of levels caused by the barrier transparency
is small compared to the distance between levels. Thus,
in the case of a well-pronounced discreteness, the
golden rule is inapplicable and the analysis encounters
the problem that the “probabilities of transition per unit
time” are undetermined.

We will address the situation in (6), which is essen-
tially the most interesting case, the more so since the
method of the tunneling Hamiltonian for R < R0 is for-
mally incompatible with the perturbation theory [38]
(unless the contact with R < R0 is equivalent to a parallel
connection of autonomous high-ohmic [in the sense of
(6)] junctions). Under condition (6), the perturbation
theory is undoubtedly applicable, including the case
with the voltage noise u(t). This noise, making the tran-
sitions inelastic, restores the linear growth of the prob-
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ability with time. However, the noise will also render a
probability fluctuating with increasing amplitude in
proportion to the time of observation.

3. PROBABILITY FLUCTUATIONS

Let us consider the quantum transitions under the
action of a variable potential difference u(t) between
terminal points. According to the modern theory of
quantum chaos, stochastic behavior is typical of quan-
tum systems despite the discreteness of the energy
spectrum [39, 40]. In this context, we will interpret u(t)
as a classical random process (in strict theory, u(t) is an
operator intermixed with the operators of particles). For
∆t ~ τt, it will be sufficient to find an approximate (in
terms of the perturbation theory) solution to the
Schrödinger equation for the electron wave function.
The result can be written as

(7)

where ϕ(t) is a diffusively accumulated random phase
gain. For u(t) = 0, formulas (7) can be reduced to the
usual expressions for the probabilities of transitions;
otherwise, these formulas describe a chaotic parametric
excitation or quenching of the probabilities by the
phase breakdown.

Let us introduce a phase correlation function, the
corresponding time of coherence of the quantum ampli-
tudes, and the energy equivalent:

(8)

where the angle brackets denote averaging over u(t).
Generally speaking, the multiplicative character of
noise Z(t) implies that the calculation of even elemen-
tary statistical characteristics of the solution would
require extensive information concerning the u(t) sta-
tistics. However, for the coherence time that is much
smaller than the observation time, the factor Z(t) in the
integrand of (7) behaves as complex white noise. Then,
the transition amplitudes Akq behave for the most part as
(complex) Brownian trajectories and, hence, knowl-
edge of characteristics (8) is quite sufficient.

Now, let us consider the coherence time, assuming
for simplicity that the shunting effect of an external
chain upon the τc is insignificant. Note that K(t) is a
characteristic function (in the sense of the probability
theory) of the random phase gain. This function can be
readily determined (e.g., for Ec ! T) by considering the

pkq Akq
2
, Akq

gkq

"
------- iEkqt/"( )Z t( ) t,dexp

0

∆t

∫≡≈

Z t( ) iϕ t( )[ ] , ϕ t( )exp
e
"
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0
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K t1 t2–( ) Z t1( )Z* t2( )〈 〉 ,=

τcoh K τ( ) τ , ∆Ed

0

∞

∫ 2π"/τcoh,= =
P

voltage noise as a Gaussian random process. This
yields τcoh ~ ("/e)(C/T)1/2 ! τg. This estimate probably
gives a minimum possible value of τcoh. For Ec > T, it
would be more reasonable to employ a statistical model
in which the charge of the capacitor varies by discrete
portions and, accordingly, the process u(t) takes values
that are multiples of e/C. In this case, the calculation of
K(t) with allowance for (6) yields an estimate τcoh ~ τc;
as a result, the coherence time can also be comparable
to τg.

Thus, we have grounds to consider Z(t) to be fast
(white) noise and the amplitudes to be Brownian ran-
dom walk; therefore,

(9)

Here, we use the convenient Malakhov cumulant brack-
ets 〈x, y〉 ≡ 〈xy〉  – 〈x〉〈 y〉 . This result leads to the first
interesting conclusion: the probabilities of transitions
are completely undetermined for a time exceeding the
coherence time. The second conclusion is that the aver-
age probabilities increase linearly with time:

(10)

However, we are most interested in determining the
total probability of jumping. This probability can be
presented in the following form:

(11)

where the kernel of the integral is

The analytical properties of this kernel, determined by
discreteness, are of basic importance. In the continuum
approximation, Γk(τ) would be an integrable function
rapidly and irreversibly tending to zero (e.g., delta
function). In fact, this kernel is extremely nonlocal and
never decays, while sometimes returning to values on
the order of the value at zero (this behavior is a kind of
manifestation of the unitarity of the quantum dynam-
ics). Taking for the sake of illustration an equidistant

spectrum  – Ek = nδE + εk, where n is an integer, we
obtain

(12)

Therefore, the third evident, important circumstance is
that the energy band ∆E accessible for the transitions
from a given level is determined by the noise (coher-
ence time) rather than by the time of observation. For
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this reason, jumps into a discrete spectrum are possible
as well as jumps into continuum. For ∆E > δE, the aver-
age probability of jumping 〈pk ≈ ∆t/τt〉  virtually coin-
cides with that employed in the usual kinetics.

Of course, the noise will not make the probabilities
more definite. The fourth conclusion is that the dis-
creteness renders the total probability of jumping a ran-
dom quantity. Owing to the possibility of treating Z(t)
as white noise, we can obtain an expression for the vari-
ance of this random quantity:

(13)

For ∆E > δE, this expression can be evaluated in a more
or less general form. Taking into account that only the
regions of t1 ≈ t4 and t3 ≈ t2 are significant and the
remaining two-dimensional integral contains contribu-
tions from the delta functions entering into kernel (12),
we obtain

(14)

(here, it is also taken into account that the “width” of
the delta functions, equal to the inverse total width of
the energy band, is much smaller than τcoh). For the fol-
lowing, it is important to determine the mutual correla-
tion of fluctuations of the probabilities of jumps (charge
injection) from various levels. Estimating the cross cor-
relator, we obtain

(15)

where the function

describes the correlation as depending on the energy
distance ∆E between levels. As can be seen, the levels
occurring in the same “coherence band” ∆E introduce
in-phase contributions to the charge transfer fluctua-
tions.

The above formulas require certain comments. First,
these expressions can be readily generalized to the case
of violated inequality (6), with allowance for the real
nonequidistant character of the energy spectrum. Sec-
ond, a giant increase in the jump probability fluctua-
tions (100% and above) is possible provided that ∆E <
δE. In this extreme case, evaluation of the fluctuations
depends on the details of the spectrum and requires
knowledge of the statistics of the levels. In addition,
this is accompanied by a significant renormalization of
the average probabilities (and, hence, of the conductiv-
ity and the current–voltage characteristic) under the
action of noise (even though we are only interested in
the case of fluctuations against an approximately linear
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I–U background). Third, expressions (14) and (15) sug-
gest that there is a kind of uncertainty relation, whereby
the variances of all jump probabilities are inversely pro-
portional to ∆E, such that a decrease in the probability
fluctuations is accompanied by an increase in the corre-
lation of these fluctuations and vice versa. Finally, the
random contributions from various parts of the observa-
tion period are statistically fully correlated with each
other despite being due to independent parts of u(t) (a
phenomenological statistics of such random flows of
events was considered in [23, 26, 27]).

4. CONDUCTIVITY FLUCTUATIONS

Let us consider fluctuations in the charge transport
through a junction between electrodes (connected via
an external chain), assuming that the temperature is not
very low (T @ δE) and the external voltage is not very
large (U < T/e). Below, ∆Q will denote a random quan-
tity containing two parts, ∆Q = ∆Qth + ∆Qex, where the
first term describes the contribution of fast thermal
(shot) fluctuations of the transport current related to the
random character of the transition moments. This con-
tribution (also present in the state of equilibrium, when
U = 0) can be readily evaluated using the fluctuation-

dissipation theorem 〈∆ 〉 ≈ 2TG∆t. Now, we are
interested in the second term including the average
transport current and the excess fluctuations caused by
the random quantum probabilities of the transitions.

In terms of statistics, the ∆Qex value can be defined
as the conditional average of ∆Q for fixed pkq. From the
elementary thermodynamic considerations, it is evident
that this conditional average is of the same sign as U
and vanishes when U = 0. Thus, we may treat this term
as a result of “uncompensated” jumps in one direction
(e.g., left to right). Using this circumstance, we can
avoid an analysis of correlations between opposite tran-
sitions and use the results obtained in the preceding sec-
tion (without recourse to such correlations). It is impor-
tant to note that such correlations do not hinder any
low-frequency fluctuations of the transport current pro-
ceeding with conservation of the internal statistical bal-
ance in the junction [23, 26, 27]. We can assume that all
correlations are implicitly taken into account in the sta-
tistics of u(t) noise. This is a quite reasonable assump-
tion in view of the aforementioned fact that details of the
u(t) statistics are insignificant. Without any loss of gen-
erality, we may also assume that pk(∆t, U) ≈ pk(∆t, 0). 

In the first step, we will ignore the mutual correla-
tions in the random arrangement of active levels (from
which the excess jumps take place) on the energy scale.
According to this model, the second term can be
expressed as

(16)

Qth
2

∆Qex e f Ek( ) f Ek eU+( )–[ ] pk ∆t U,( ),
k

∑=
2
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where f(E) is the Fermi distribution function and it is
implied that averaging over the level arrangements
(determined by the Fermi statistics of the occupation of
states on the sides) is performed. The first term in the
sum has the meaning of the probability that an arbi-
trarily selected level is active. Note that, with neglect of
the pk fluctuations, expression (16) reduces to the well-
known formula for the average tunneling current (it
should be emphasized that this formula takes into
account the Fermi statistics of levels on both sides). The
result of averaging (16) coincides with the correspond-
ing formula (1).

Let us consider a variance of the transferred charge
and the corresponding fluctuations of the conductivity
G = ∆Qex/U∆t (details of the calculations are omitted).
For a sufficiently small coherence time, when ∆E > δE
(“large” junction area, dense spectrum, strong noise), a
variance of (16) with allowance for (15) can be pre-
sented in the following form:

(17)

where 〈G〉  is the average conductivity and

is a function playing the role of a “one-particle” proba-
bility distribution density of the active levels with
respect to energy. From this we obtain a quite universal
result for the conductivity fluctuations:

(18)

For a large coherence time, when ∆E < δE (“small”
junction area, rare levels, weak noise), the conductivity
fluctuations become sensitive to the statistics of (mutu-
ally incommensurate) levels on the junction sides and
cannot be unambiguously evaluated. In this situation
(called extreme),

(19)

potentially “everything is possible” up to relative fluc-
tuations on the order of unity.

As is seen, the discreteness is essentially a measure
of relative fluctuations in the conductivity. The factor
∆E is missing from the estimates; this is a correct result,
provided that the average number of active levels N ≡
eU/δE is small and these levels can be arranged in any
manner, even falling within the same coherence band
∆E. However, the latter is impossible for N exceeding
the possible number of levels (∆E/δE) in such bands.
Therefore, permissible distributions of the active levels
with respect to energy for eU > ∆E are on the average
more uniform and, hence, the fluctuations of the proba-
bilities of jumping from these levels are less correlated.
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T
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2
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P

This can lead to suppression of the conductivity fluctu-
ations with increasing voltage even at eU ! T (when
the average conductivity is still more or less constant).

The expression for variance (17) shows that this
effect is not described by model (16), in which the “two-
particle” (pairwise) distribution with respect to the
energy is formally factorized in the form W(E ')W(E ''). In
order to make the necessary corrections, let us renumer-
ate the active levels in the order of increasing energy.
Then the distance between levels with the number j > i
cannot be smaller than ≈( j – i)δE. Each pair of numbers
corresponds to its own pairwise distribution

(20)

where ϑ is the Heaviside function. Instead of (16), we use

(21)

thus passing to the real unity populations of the active
levels and considering all possible positions of these
levels. In this case, the average value of n is N. Let us
calculate a variance of (21) by averaging this expres-
sion simultaneously over level positions and random
jump probabilities. Since the result for N ~ 1 must
coincide with that obtained above, it is sufficient to
put N @ 1 and n = N. Accomplishing simple transfor-
mations, we obtain

(22)

and the following estimate of the conductivity fluctua-
tions instead of (18):

(23)

where

(24)

is the function describing the dependence of the fluctu-
ations on the voltage. According to this estimate, the
fluctuations at eU > ∆E decrease approximately in
inverse proportion to U. For example, in the case of
exponential phase correlation, we obtain

Estimate (19) is modified in the same manner.
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We can say that, as the voltage increases, the effec-
tive number of statistically independent energy chan-
nels of electron tunneling grows and the relative fluctu-
ations of the conductivity decrease in inverse propor-
tion to the number of channels. Thus, both the
discreteness scale δE and the parameter ∆E character-
izing the noise of the environment are directly reflected
either in the current–voltage characteristic or in the
noise–current characteristic. A strict difference between
the roles of these values suggests that these quantities
will probably retain their meaning in more rigorous
theory.

As for the junction transparency, this parameter is
missing from the estimates of relative fluctuations of
the conductivity and, hence, is not a small parameter in
this respect. Nor is it a small parameter in comparison
with the excess fluctuations to the thermal (shot) noise.
Although the latter noise contribution to the transport
variance is proportional to the first power of transpar-
ency, the contribution due to excess fluctuations is pro-
portional to the square of the transparency. While the
first contribution increases linearly with time, the sec-
ond contribution is quadratic and, hence, dominates at
sufficiently large times and low frequencies (thus repre-
senting a qualitatively different type of noise). It is easy
to check that, for eU ~ T, this takes place already at a
time on the order of one jump duration τt. This is con-
firmed by the experiments with real operating currents.
From the formal mathematical standpoint, the transpar-
ency cannot be considered a small parameter because
the random phase gain ϕ(t) depends on this parameter
in a nonperturbative manner.

5. DISCUSSION AND COMPARISON 
WITH EXPERIMENT

There is a certain parallelism between the theory
outlined above and the experimental data reported in
[35], where the 1/f noise was thoroughly studied in a
metal–ceramic composite comprising Ni nanoparticles
in an Al2O3 matrix. In this system, the parameters of a
typical tunneling junction between metal granules were
δE ≈ 0.2 meV, d ≈ 2 nm, C ≈ 5 × 10–6 cm, EC ~ T (at
room temperature), and R ≈ 30 MΩ , which corresponds
to τg ≈ 3 × 10–11 s, τc ≈ 1.5 × 10–10 s, and τt ≈ 3 × 10–8 s.
The system exhibited giant conductivity fluctuations
with a spectral density SδG( f ) ≈ α/Ng f, where α ≈ 6 ×
10–3 and Ng is the number of metal granules in a sample.
Since EC ~ T, the Ng value approximately coincides
with the number of mobile (simultaneously transferred)
electrons in the sample [35]. Therefore, an almost
“standard” 1/f noise was observed with a “classical”
Hooge constant (α ≈ 2 × 10–3 [1–4]).

These results correspond to fluctuations SδG( f ) ~ α/f
in a separate elementary junction; since the inequali-
ties (3) and (6) are quite well satisfied, we can assume
that the noise is caused by the mechanism described
above. To compare the theory to the experiment, let us
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relate the variance of conductivity fluctuations to the
spectrum of fluctuations. For stationary noise, this rela-
tionship must include the logarithm of the observation
time approximately as δG2 ≈ fSδG( f )ln(∆t/τc). For ∆t ~
τ t and α = 0.006, this yields δG2 ~ 0.03. For δE =
0.2 meV and room temperature, formula (18) gives
≈0.008. This is quite a good agreement, since we are
basically dealing with the extremal region (19): for the
above estimates, τcoh ~ τc > τg and, hence, ∆E is compa-
rable with δE.

It is interesting to note that the relative fluctuations
of the conductivity decreased in approximately inverse
proportion to the applied voltage when the latter
exceeded a certain threshold value (which was much
smaller than the linearity threshold of the current volt-
age characteristic). It has been noted [35] that the
threshold corresponds to a voltage of ~δE/e per elemen-
tary contact. This result reveals sensitivity of the 1/f
noise with respect to discreteness of the electron spec-
trum of the granules (the current–voltage characteristic
was ohmic up to a voltage greater by a factor of T/δE ≈
100). Taking into account the close values of ∆E and
δE, we may conclude that, as far as this effect is consid-
ered, the theory is fully consistent with experiment.

In the above example, the discreteness of the levels
was determined by the volume of metal nanoparticles.
Apparently, in the case of continuous sides, the δE
value will also be determined by the volume of a region
physically accessible for the jump, that is, by the junc-
tion geometry and by the processes of electron interac-
tion and scattering at the junction sides. At not too low
a temperature, there is not much freedom for selection:
the accessible volume is restricted to the contact area A
and the inelastic mean free path of electrons λ in the
junction sides (electrodes). In other words, this is a
region in which the distance between levels is on the
order of their broadening caused by the inelastic relax-
ation. Of course, now it would be more correct to con-
sider the situation in terms of the statistics of energetic
repulsion between the spatially close states [40] (which
is operative at a nonzero temperature as well [39])
rather than in terms of strictly fixed levels. Here, the
discreteness is a synonym for uncertainty: details of the
state depend on the “environment noise” and cannot be
controlled to within less than δE.

In accordance with these considerations, this uncer-
tainty limit in a system with sufficiently thick metal
sides is δE ~ EFa3/Aλ, where EF is the Fermi energy and
a is the characteristic atomic size. Relating the λ value
to the metal conductivity (σ ~ λ/a2R0) and using (18),
we obtain the estimate

(25)

where σmin ~ (aR0)–1 is the minimum metal conductiv-
ity. For example, let the boundary metal be pure such
that the phonon relaxation mechanism dominates. Then

δG
2 EF

T
------a

2

A
-----
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σ
---------,∼
2
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[41], σ ~ ("e2ne/m*T)(TD/T)4 (in standard notation) and
we may expect the excess noise at a temperature below
the Debye temperature to be proportional to the fourth
power of the temperature (in relative units).

In terms of the possible orders of magnitude, the
variance of the relative fluctuations of conductivity
(related as shown above to fSδG( f ) for EF ~ 5 × 104 K)
is δG2 ~ (a2/A)(T/TD)4. For a microjunction with a con-
tact area of ~10–9 cm2 (studied in [16]) and T ~ TD, the
variance amounts to ~10–7. This estimate agrees with
the results of measurements at 260 K [16]. The above
formulas naturally explain the rapid (by almost two
orders of magnitude) noise buildup experimentally
observed in response to the temperature increase from
100 to 300 K [16]. In order to explain this, the authors
of [16] had to assume the presence of a sharp step in the
fluctuator activation energy distribution, although the
1/f spectrum structure implies that this distribution is
smooth. In our opinion, two types of noise were
observed in the experiment, representing a structural
noise (with an uneven spectrum composed of several
Lorentzians) dominating below 100 K and the noise
studied in this paper, which dominated at higher tem-
peratures but still gave a residual 1/f component with a
smooth spectrum as in [16].

In this context, it should be noted that the two types
of noise, albeit markedly different, can nevertheless
exhibit a mutual influence. For example, the fact that
the electrons from metal participate both in the conduc-
tion and in the heat transfer (i.e., are involved in low-
frequency temperature fluctuations of the conductivity)
may lead to a change in the spectrum of flicker fluctua-
tions to 1/f γ with γ > 1 [4]. By the same token, the inter-
action of electrons with structural defects may also
influence the flicker noise of the conductivity, while not
being a reason for this noise. In particular, the elastic
scattering of carriers on the impurities suppresses the
flicker fluctuations of mobility [2]. In contrast, the pres-
ence of vacancies enhances the flicker noise in metal
films [5]. This effect can hardly be explained by the
thermoactivated diffusion of vacancies: from the stand-
point of an elementary diffusion step, the real scatter of
the activation energies is insufficiently broad and the
process cannot account for the 1/f spectrum. This was
established in the case of temperature diffusion
(rejected as the hypothetical source of such a spectrum)
[1–4]. At the same time, vacancies can favor the inelas-
tic scattering of carriers, thus acting as mediators of the
“flicker noise due to a loss of memory.”

Thus, according to a theory consistently taking into
account the role of quantum discreteness in the process
of charge transfer (in contrast to the continuum approx-
imation), the amplitude of elementary quantum transi-
tions (influenced by the whole system noise) may per-
form Brownian motion, eventually leading to fluctua-
tions in the rate of charge transfer. These fluctuations
exhibit no characteristic time scale and are insensitive
to the time of averaging and observation, which is a dis-
P

tinctive feature of the flicker noise. Formally speaking,
an analysis restricted to the times ∆t ~ τt led to fluctua-
tions with nondecaying correlations and a spectrum
~δ( f ) resembling static universal fluctuations of con-
ductivity in disordered conductors [40]. However, in
contrast to the “universal” fluctuations suppressed by
the random diffusion of quantum phases (decoherence),
the fluctuations under consideration are generated due
to this random process.

From the basic standpoint, our results follow from
the trivial quantum-mechanical rule that (even in the
presence of noise and decoherence) the final result of a
system evolution is determined by the interplay of
amplitudes of the intermediate steps rather than by their
probabilities. For this reason, the inelastic boundary
processes explicitly included into the theory do not
break the pattern (from the standpoint of quantum uni-
tarity and discreteness); therefore, the scale-invariant
character of conductivity fluctuations must be retained
in a more rigorous many-electron theory considering
arbitrarily large times (while the ~δ( f ) spectrum trans-
forms into that of a 1/f  type with the same frequency
dimensionality). A formal justification of this transfor-
mation will be considered separately.

In concluding, we will make several remarks con-
cerning the standard scheme of quantum kinetics,
which originates from the well-known Pauli kinetic
equation. Van Hove [42] mathematically justified this
scheme in the limit of negligibly weak interaction.
However, the final model does not leave place for the
flicker noise. This seems to be related to the fact that,
prior to the limiting transition g  0 (where g is the
interaction energy scale), the theory implicitly adopts
the transition δE  0, leading to a partial loss of the
dimensional effects related to discreteness of the quan-
tum evolution. Probably, elimination of the former lim-
iting transition would lead to the kinetic theory of
flicker noise.
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Abstract—The effect of high pressure on the structure of Cu2O is investigated. Polycrystalline samples are
treated during different periods of time at different temperatures and pressures in the vicinity of the kinetic
curve of the decomposition Cu2O  Cu + CuO. The structure of the samples subjected to thermobaric treat-
ment is characterized by x-ray diffraction, electron diffraction structural analysis, and electron microscopy at
atmospheric pressure. It is found that, upon treatment of Cu2O at temperatures and pressures close to the
decomposition region, the microstructure undergoes a transformation into the nanocrystalline state. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last several decades, considerable attention
has been given to investigations into polymorphic
transformations of chemical elements and compounds
under pressure and the elucidation of the behavior of
solids upon transition from a phase equilibrium
between two polymorphic modifications to the metasta-
ble region of one of these phases. It has been demon-
strated that, at temperatures below the glass transition
point Tg when the kinetics of the crystal–crystal poly-
morphic transformation is frozen, the metastable phase
becomes unstable and transforms into the amorphous
state.

There are a large number of works dealing with
solid-phase amorphization (see, for example, [1–3] and
references therein). However, the behavior of materials
that are able to decompose into simpler species or even
elements under pressure has been studied to a consider-
ably smaller extent. The same is true for both the
decomposition reaction at all its stages and the specific
features in the behavior of the initial material in the
metastable region between the thermodynamic equilib-
rium and the kinetic decomposition region. As the tem-
perature decreases, the rate of decomposition attended
by diffusive motion of atoms should decrease, the meta-
stable region of existence of the initial phase should
increase, and thermodynamic stability of the initial
phase should decrease away from the thermodynamic
equilibrium. From general considerations, we can out-
line the following possible scenarios for the behavior of
materials susceptible to pressure-induced decomposi-
tion at temperatures below the glass transition point Tg:
(i) polymorphic phase transition to a denser crystalline
modification and (ii) amorphization due to a change in
the short-range order, as has been observed in a number
of experiments (see, for example, [4–6]).
1063-7834/02/4405- $22.00 © 20852
It can be assumed that, at moderate temperatures,
the structure and properties of the initial compound
exhibit specific behavior in the vicinity of the kinetic
decomposition region due to a decrease in the kinetic
stability against decomposition. The purpose of the
present work was to investigate structural transforma-
tions of Cu2O in the predecomposition region at differ-
ent temperatures and pressures. The choice of Cu2O as
the object of investigation was made for the following
reasons.

(1) In the P–T phase diagram, the calculated curve
of the equilibrium Cu2O  Cu + CuO (curve II in
Fig. 1) [7] corresponds to pressures convenient for
experimental investigations into decomposition and
predecomposition processes.

(2) In the P–T phase diagram, the kinetic curve of
the decomposition Cu2O  Cu + CuO (curve III in
Fig. 1) and the curve of the back synthesis Cu +
CuO  Cu2O (curve I in Fig. 1) under pressures are
constructed using treatment of the samples at different
temperatures and pressures and their subsequent x-ray
diffraction investigation at atmospheric pressure [7].

(3) A considerable body of experimental data on the
structure and physical properties of Cu2O over wide
ranges of temperatures and pressures is available [8–11].

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

A microcrystalline powder of Cu2O with 5- to 10-µm
grains was produced through the reduction of divalent
copper to the univalent state with the use of a weak glu-
cose reductant. The phase composition of the powder
prepared was checked using x-ray powder diffraction.
The initial Cu2O powder was placed in a teflon cell
5 mm high and 3 mm in diameter and was then sub-
002 MAIK “Nauka/Interperiodica”
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jected to pressure treatment in a Toroid high-pressure
chamber. The pressure treatment of Cu2O was carried
out at temperatures ranging from 80 to 170°C and pres-
sures up to 100 kbar. The sample was allowed to stand
at specified temperatures and pressures for different
times (from 20 min to 3 days). Then, the temperature
was decreased to room temperature and the high-pres-
sure chamber was relieved. The compact samples thus
prepared were studied using x-ray diffraction and elec-
tron microscopy. X-ray diffraction analysis of cleavages
and polished surfaces of the sample was performed on a
Siemens D500 diffractometer (CuKα radiation). The
microstructure was examined with a JEM-100CX elec-
tron microscope. For electron microscopic investiga-
tions, the samples were mechanically polished to a
thickness of 0.1–0.2 mm and were then finished to the
thickness required on a Gatan Diomill 600 ionic thin-
ning instrument.

3. EXPERIMENTAL RESULTS

As was noted above, the reactions of Cu2O decom-
position and back synthesis under pressures up to
80 kbar were analyzed thoroughly by Belash et al. [7].
Figure 1 shows the kinetic curves for synthesis and
decomposition of cuprous oxide (curves I and III,
respectively) and the calculated curve for the equilib-
rium Cu2O  Cu + CuO (curve II) according to the
results obtained in [7]. Kalliomaki et al. [8] performed
optical and x-ray diffraction investigations of the phase
transformations in cuprous oxide samples with the use
of diamond anvils and observed the decomposition of
Cu2O at room temperature and pressure P > 150 kbar.
Webb et al. [9] also observed the decomposition of
Cu2O into CuO and Cu; however, according to their
observations, the decomposition of Cu2O occurs only at
temperatures above 500°C. At the same time, Webb
et al. [9] did not reveal the decomposition of Cu2O at
room temperature under pressures up to 240 kbar. From
the aforesaid, it is seen that the data available in the lit-
erature on the stability of Cu2O under high pressures
are very contradictory. In this respect, it was necessary
to verify experimentally the decomposition of Cu2O
under the same pressure–temperature conditions as
were established in [7]. For this purpose, the Cu2O sam-
ples studied in the present work were treated at T =
170°C and P = 70 kbar (point 1 in Fig. 1). Analysis of
the x-ray diffraction pattern of the sample treated under
these conditions (Fig. 2) demonstrates that the decom-
position of Cu2O actually occurs in the vicinity of the
decomposition curve constructed in [7]. Moreover, it is
revealed that, after the decomposition, the sample has a
two-phase composition and consists of Cu and CuO.
All the subsequent treatments (the region bounded by
dashed lines in Fig. 1) were performed at temperatures
and pressures below the kinetic curve of decomposi-
tion [7].
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X-ray diffraction patterns of the samples treated at
temperatures and pressures in the vicinity of the kinetic
curve of decomposition are depicted in Figs. 3 and 4.
For comparison, Fig. 3 shows the x-ray diffraction pat-
tern of the Cu2O initial sample. It can be seen from
Figs. 3 and 4 that, after the treatment, the positions of
all the diffraction peaks remain unchanged, whereas
their intensities decrease drastically and the half-widths
increase considerably. The half-widths of the most
intense peaks in the x-ray diffraction pattern of the
Cu2O initial sample are estimated to be 2θ = 0.1°–0.2°.
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Fig. 1. P–T phase diagram: (I) the kinetic curve of the syn-
thesis of cuprous oxide (solid line) [7], (II) the calculated
curve of the equilibrium Cu2O  Cu + CuO (dot-dashed
line) [7], (III) the kinetic curve of the decomposition of
cuprous oxide (solid line) [7], (1) decomposition Cu2O 
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After the treatment, we obtained 2θ = 1.0°–1.5°. An
increase in the heat treatment temperature at the same
pressure leads to a broadening of the diffraction peaks.
An increase in the pressure at a constant temperature
affects the x-ray diffraction patterns in a similar man-
ner. It should be noted that, after heat treatment under
pressure both to the left of the curve of the equilibrium
Cu2O  Cu + CuO (curve II in Fig. 1) and in the
immediate curve of thermodynamic equilibrium (point 4
in Fig. 1), the x-ray diffraction patterns of the initial and
treated Cu2O samples virtually coincide and substantial
broadening of the diffraction lines is not observed.

(1
11

)

(2
00

)

(2
20

)

20

15

10

5

0

(a)

3000

2000

1000

0
30 40 50 60 70

(b)(1
11

)

(2
00

)

(2
20

)

2θ, deg

In
te

ns
ity

, a
rb

. u
ni

ts
In

te
ns

ity
, 1

03  a
rb

. u
ni

ts

(1
11

)

(2
00

)

(2
20

)

30 40 50 60 70
2θ, deg

In
te

ns
ity

, a
rb

. u
ni

ts

Fig. 3. X-ray diffraction patterns of (a) the initial sample
and (b) the sample after heat treatment under pressure.

Fig. 4. X-ray diffraction patterns of the samples after heat
treatment under pressure: (a) P = 70 kbar and T = 100°C
(quasi-hydrostatic treatment) and (b) P = 72 kbar and T =
90°C (hydrostatic treatment).
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P

                

Therefore, we can assume that heat treatment under
pressure leads to either atomic disordering within this
structure or a decrease in the crystalline grain size.

The real structure of the sample subjected to heat
treatment under pressure was examined with the use of
electron microscopy. Figure 5 displays typical bright-
field and dark-field images of the Cu

 

2

 

O sample after
heat treatment under pressure (

 

P

 

 = 70 kbar and 

 

T

 

 =
100

 

°

 

C), which were obtained with an electron micro-
scope. As can be seen from these micrographs, the
structure involves 5- to 20-nm nanocrystals attributed
to the initial phase of the Cu

 

2

 

O compound. Analysis of
the electron diffraction pattern (see inset in Fig. 5a) did
not reveal an amorphous phase in the sample. Judging
from the initial size of crystalline grains (5–10 

 

µ

 

m), we
can conclude that, upon heat treatment under pressure,
the size of the crystalline grains decreases significantly
and the sample attains the nanocrystalline state.

4. DISCUSSION

At room temperature and atmospheric pressure,
Cu

 

2

 

O has a cubic structure (space group 

 

Pn

 

3

 

m

 

). This
structure can be represented in the form of two inter-
penetrating lattices: one (face-centered) lattice is
formed by copper atoms and the other (body-centered)
lattice consists of oxygen atoms. Reasoning from this
structure, it would be expected that, under pressure,
Cu  2  O undergoes a transition to a denser crystalline
phase. This assumption is also supported by the results
of earlier investigations into the elastic properties of
Cu

 

2

 

O [11], according to which an increase in the pres-
sure at room temperature leads to a considerable
decrease in the shear moduli 

 

C

 

44

 

 and 

 

C

 

11

 

–

 

C

 

12

 

. This sug-
gests that the formation of a nanocrystalline structure
can be considered a consequence of the mechanical
instability of the system in the vicinity of the polymor-
phic phase transition. However, Werner and Hochhe-
imer [10] performed a comprehensive structural inves-
tigation and revealed that the first polymorphic phase
transition in Cu

 

2

 

O occurs at 

 

P

 

 = 100 kbar, whereas the
decrease in size of crystalline grains is observed
already at 

 

P

 

 

 

≥

 

 50 kbar.
The nanocrystalline state of materials can be

achieved through plastic deformation in different ways
(grinding, milling, extrusion, etc.). In the course of
powder compacting, the most severe plastic strains
arise at early stages of compacting, as a rule, in the
pressure range 10–20 kbar. However, we did not reveal
noticeable changes in the grain size of cuprous oxide
samples in this range of pressures. In our case, a
decrease in the crystalline grain size of Cu

 

2

 

O is
observed at pressures above the curve of the equilib-
rium Cu

 

2

 

O  Cu + CuO (curve 

 

II

 

 in Fig. 1). Hence,
we can make the inference that the nanocrystallization
observed after the heat treatment under pressure is
unrelated to conventional plastic strains. This inference
is confirmed by the results obtained for the Cu

 

2

 

O pow-
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Fig. 5. (a) Bright-field and (b) dark-field images of the Cu2O sample after nanocrystallization. The inset shows the electron diffrac-
tion pattern of the same sample.
der heat treated under pressure in a sealed cell filled
with a mixture of ethanol and methanol, i.e., under con-
ditions of actual hydrostatic pressure. Upon treatment
of the Cu2O powder at P = 72 kbar and T = 90°C for
10 min, Cu2O also transforms into the nanocrystalline
state (Figs. 1, 4). However, it should be noted that
curves a and b in Fig. 4 differ appreciably. Analysis of
the diffraction peaks in curves a (quasi-hydrostatic
treatment) and b (hydrostatic treatment) demonstrates
that the crystals in the sample subjected to hydrostatic
treatment have different sizes, whereas the size of crys-
talline grains in the sample subjected to quasi-hydro-
static treatment is characterized by a considerably
smaller scatter. The difference observed in the x-ray
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
diffraction patterns of the samples after hydrostatic and
quasi-hydrostatic treatments suggests that the nonhy-
drostatic pressure components appreciably affect the
nanocrystallization, even though they cannot be consid-
ered a decisive factor responsible for this process.

5. CONCLUSION

Thus, the above investigation demonstrated that the
Cu2O compound has a nanocrystalline structure after
heat treatment under pressure in the vicinity of the
decomposition curve (curve III in Fig. 1). As far as we
know, this result has been obtained for the first time.
Reasoning from the experimental data, it would be
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expected that the microstructure undergoes further
transformation until the amorphous phase is formed in
the immediate vicinity of the decomposition curve at
certain parameters T and P. However, the experimental
verification of this assumption calls for further in situ
structural investigation under pressure, which will be
performed in the near future.
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Abstract—The isochoric thermal conductivity of Kr1 – ξXeξ solid solutions (ξ = 0.034, 0.072, and 0.14) is
investigated in the temperature range from 80 K to Tm (Tm is the melting temperature) for samples of different
densities. It is found that an increase in disordering of the crystal leads to a gradual crossover from the thermal
conductivity of a perfect crystal to the lower limit of the thermal conductivity of the lattice. A quantitative
description of the results obtained is performed within the Debye model of thermal conductivity and allows for
the fact that the mean free path of phonons cannot be less than half the phonon wavelength. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In dielectric crystals, heat transfer occurs primarily
through phonons. An increase in temperature leads to
an enhancement of phonon–phonon scattering and a
decrease in the phonon mean free path l. However, the
phonon mean free path cannot become less than the
phonon wavelength λ. At l ~ λ, the temperature behav-
ior of the thermal conductivity of a crystal should devi-
ate from the dependence Λ ∝  1/T and the magnitude of
the thermal conductivity should tend to a minimum
value permissible for this crystal.

Strong phonon scattering can be caused by struc-
tural disordering, defects, etc. The thermal conductivity
reaches a lower limit Λmin in glasses and strongly disor-
dered crystals. Phenomenologically, the lower limit of
thermal conductivity Λmin can be treated as a lower limit
of the mean free path of phonons in the framework of
the Debye model. Slack [1] assumed that the lower
limit of the mean free path of phonons is equal to the
phonon wavelength. Cahill et al. [2, 3] showed that the
thermal conductivity in a number of amorphous mate-
rials and strongly disordered crystals can be adequately
described under the assumption that excitations are
weakly localized in regions whose size is of the order
of half the wavelength λ/2 and migrate from region to
region through diffusion. In this case, the lower limit of
the thermal conductivity Λmin can be written as

(1)

Here, the summation is performed over three (two trans-
verse and one longitudinal) vibrational modes, v i stands
for the velocities of sound, Θi = v i("/kB)(6π2n)1/3 is the
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Debye temperature for each polarization, and n is the
number of atoms per unit volume. In the high-tempera-
ture limit (T ≥ Θi), Λmin is temperature independent and
its magnitude falls in the range 1–10 mW cm–1 K–1 for
the majority of materials.

The question arises as to whether the lower limit of
thermal conductivity Λmin can be achieved in perfect
crystals with an increase in temperature due to three-
phonon scattering. This problem has been considered in
a number of works [1, 4, 5]. According to the estimates
made by Roufosse and Klemens [4], noticeable devia-
tions from the dependence Λ ∝  1/T for the majority of
materials should be observed at temperatures above
1500 K. As follows from the theoretical analysis carried
out by Pettersson [5], the thermal conductivity can tend
to the lower limit Λmin in alkali halide crystals com-
posed of ions with significantly different masses (NaBr,
NaJ, KJ, RbF, etc.). To the best of our knowledge, direct
measurements of thermal conductivity in alkali halide
crystals have never been performed at temperatures
close to the melting point (hereafter, premelting tem-
peratures). The possible minimum of the thermal con-
ductivity in ThO2 and α-Al2O3 at T > 1500 K was dis-
cussed in [1]. However, the problem of heat transfer by
radiation at these temperatures calls for detailed con-
sideration.

In order to choose the most suitable objects for
observations of the minimum thermal conductivity in
perfect crystals, we compare the thermal conductivities
Λmeas for a number of crystals with different types of
chemical bonding [1, 5–9] and the minimum thermal
conductivities Λmin calculated according to formula (1)
at temperatures close to the melting point Tm (Fig. 1).
For alkali halide crystals, the thermal conductivity in
002 MAIK “Nauka/Interperiodica”
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the vicinity of Tm was estimated by extrapolating the
available data with the use of the relationship Λ ∝  1/T
[5]. The densities and acoustic velocities required for
the calculation of Λmin were taken from [7–10]. It can
be seen from Fig. 1 that the ratio Λmeas/Λmin is equal to
1.5–2 for solidified rare gases and simple molecular
crystals, 2–5 for alkali halide crystals, and ~10–12 for
crystals with diamond-type structures. For diamond,
the ratio Λmeas/Λmin (calculated according to the data
taken from [10, 11]) is approximately equal to 30 at
temperatures close to the sublimation temperature.
These data indicate that the ratio Λmeas/Λmin increases
with an increase in the bond strength. Multicomponent
crystals and crystals with a complex structure, as a rule,
are characterized by a low thermal conductivity of the
order of several mW cm–1 K–1 [12], which is close to
Λmin for the majority of compounds [1–3]. However,
exact calculations in this case can be complicated
because of the necessity of accounting for the contribu-
tion of the optical branches [1]. A similar problem also
arises in molecular crystals. For example, the ratio
Λmeas/Λmin is equal to ~1.7 for solidified rare gases and
N2O. The isochoric thermal conductivity of solidified
rare gases at premelting temperatures deviates only
slightly (by 20–25%) from the law Λ ∝  1/T [6], whereas
the thermal conductivity of solid N2O is virtually inde-
pendent of temperature at T ≈ Tm [13]. As was noted
above, the thermal conductivity should not depend on
temperature at T ≥ ΘD (where ΘD is the Debye temper-
ature) in the case when it reaches the lower limit Λmin.
The degree of approximation of the isochoric thermal
conductivity to a steady-state value [for example, the
parameter (∂lnΛ/∂lnT)v] can be used as a criterion for
closeness of the thermal conductivities Λmeas and Λmin.
In the case of N2O, it is reasonable to make the infer-
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Fig. 1. Comparison of the thermal conductivities Λmeas for
a number of crystals with different types of chemical bond-
ing [1, 5–9] and the minimum thermal conductivities Λmin
calculated according to formula (1) at temperatures near the
melting point.

KI
P

ence that the rotational degrees of freedom of mole-
cules in a crystal make an additional contribution to
Λmin, which is disregarded in relationship (1). This con-
tribution is determined by the possibility of transferring
the rotational energy from site to site, i.e., by the non-
central interaction force.

Therefore, crystals with van der Waals bonding, in
particular, solidified rare gases, are the most suitable
objects for observations of the effects associated with
the attainment of the lower limit of the thermal conduc-
tivity due to umklapp processes. Since the melting tem-
peratures for the majority of simple molecular crystals
are below room temperature, heat transfer by radiation
is ruled out. The ratio Λmeas/Λmin for these materials at
premelting temperatures is equal to 1.5–2. Investiga-
tions into the isochoric thermal conductivity of solidi-
fied rare gases and simple molecular crystals revealed
considerable deviations from the dependence Λ ∝  1/T
[6, 13, 14].

In the case when the thermal conductivity
approaches Λmin with an increase in temperature, the
effect of impurities should manifest itself in a specific
manner. Impurities cannot considerably decrease the
thermal conductivity at premelting temperatures at
which the conductivity has already been close to the
minimum value. A decrease in temperature should
result in an increase in the contribution of impurities to
the thermal resistance of crystals W = 1/Λ. This behav-
ior of the thermal conductivity was observed in solid Kr
with a CH4 impurity [15]. The maximum impurity con-
tent was equal to 6.3%, and the thermal conductivity
substantially exceeded the lower limit calculated
according to relationship (1). In the present work, we
elucidated how the Xe heavy impurity affects the ther-
mal conductivity of solid Kr. The thermal conductivity
was investigated at a constant density in order to
exclude the effect of thermal expansion.

2. EXPERIMENTAL TECHNIQUE

Molecular solids that are characterized by relatively
small temperature pressure coefficients (dP/dT)V can be
investigated at a constant volume. If a high-pressure
cell is filled with a solid sample of sufficiently high den-
sity, the sample can be subsequently cooled at virtually
a constant volume and the pressure in the sample
decreases rather slowly. In a certain density range, the
sample separates from the cell walls at a characteristic
temperature T0 and the condition V = const does not
hold. An increase in the sample density leads to a shift
in the melting temperature toward the high-temperature
range. The deviations from the constant volume due to
thermal and elastic deformations of the measuring cell
can be easily taken into account.

In this work, the experiments were performed on a
coaxial-geometry setup using the stationary method
[16]. A beryllium bronze measuring cell 160 mm long
and 17.6 mm in inside diameter was rated at a maxi-
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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mum pressure of 800 MPa. The diameter of the inner
measuring cylinder was equal to 10.2 mm. Temperature
detectors (platinum resistance thermometers) were
placed in special channels of the inner and outer cylin-
ders and did not experience a high pressure. The sam-
ples were grown at a temperature gradient of approxi-
mately 1 K cm–1 along the measuring cell. In order to
prepare samples of different densities, the pressure in
the capillary during the growth could be varied in the
range from 50 to 250 MPa. After the growth, the inlet
capillary was blocked by freezing with liquid nitrogen
(hydrogen) and the samples were annealed for 5–6 h at
premelting temperatures. Upon completion of the mea-
surements, the samples were evaporated into a thin-
wall vessel and their mass was determined by weigh-
ing. The molar volume of the sample was calculated
from the known volume of the measuring cell and the
sample mass. The total systematic error in measure-
ments was predominant and did not exceed 5% for ther-
mal conductivity and 0.2% for volume. The purity of
the initial gases Kr and Xe used for preparing a solution
was no less than 99.98%. The component concentra-
tions were measured by chromatography in the gaseous
phase.

3. RESULTS

In this work, the isochoric thermal conductivity of
Kr1 – ξXeξ solid solutions (ξ = 0.034, 0.072, and 0.14)
was investigated in the temperature range from 80 K to
the melting temperature for samples of different densi-
ties. The choice of this system, concentrations, and
temperature range of measurements was made for the
following reasons.

The phase diagram of the Kr1 – ξXeξ solid solution is
well known [17]. The liquid and solid phases are char-
acterized by a point of equal concentrations at a temper-
ature of 114.1 K and ξ = 0.15. At temperatures from 75
to 114 K, the components form solid solutions with a
face-centered cubic structure in the entire range 1 ≥ ξ ≥ 0.
When the samples are grown with a temperature gradi-
ent along the measuring cell, the phase separation of
solid solutions can be observed at ξ > 0.15. Therefore,
the maximum Xe concentration in the solution was lim-
ited by 14%. The scattering factor Γ (see below) for the
Kr1 – ξXeξ solid solution is one of the largest among
those for rare-gas solutions. Therefore, strong scatter-
ing by impurities can be expected.

The smoothed coefficients of the isochoric (ΛV) and
isobaric (ΛP) thermal conductivities of Kr1 – ξXeξ solid
solutions are listed in Table 1. The molar volumes Vm,
temperatures T0 (which correspond to the onset of the
satisfaction of the condition V = const in the experi-
ment), temperatures Tm of the onset of melting, and the
Bridgman coefficients g = –(∂lnΛ/∂lnV)T calculated
from the experimental data for the studied samples are
presented in Table 2. Since the molar volume of the
solid solution changes drastically when changing over
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
from Kr to Xe with a variation in ξ, the experimental
results are conveniently compared for samples with the
same temperature T0 at which the condition V = const is
satisfied. It is rather difficult to choose the growth con-
ditions in such a way as to prepare the samples with
identical temperatures T0. However, if the thermal con-
ductivity is measured for several isochores at the same
concentration of the components, the thermal conduc-
tivity can be calculated for any temperature T0 by using
the volume dependence of the thermal conductivity in
the form g = –(∂lnΛ/∂lnV)T.

Figure 2 shows the temperature dependences of the
isochoric thermal conductivity for pure Kr and
Kr1 − ξXeξ solid solutions, which were reduced to T0 =
80 K. The thermal conductivity of pure Kr was calcu-
lated from the semiempirical relationship proposed in
[6]. The lower limit Λmin of the thermal conductivity of
pure Kr for the isochoric case (T0 = 80 K) is shown by
the dashed line in Fig. 2. The necessary data on the den-
sity and velocities of sound for our calculations were
taken from [9, 18]. It can be seen that the thermal con-
ductivity of Kr1 – ξXeξ solid solutions decreases and its
temperature dependence becomes weaker with an
increase in the Xe concentration. At ξ = 0.14, the ther-
mal conductivity virtually coincides with the lower
limit calculated by formula (1).

4. DISCUSSION
As was noted above, the lower limit Λmin of the ther-

mal conductivity can be phenomenologically treated as
a lower limit of the mean free path of phonons in the
framework of the Debye model. Since the mean free
path of high-frequency phonons is limited in the case of
umklapp processes and Rayleigh scattering, it can be
assumed that heat transfer occurs through low-fre-
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Fig. 2. Smoothed isochoric thermal conductivities of pure
Kr [5] and Kr1 – ξXeξ solid solutions (ξ = 0.034, 0.072, and
0.14) for samples whose volume is constant starting from
80 K. Solid lines represent the results of computer fitting.
The dashed line indicates the lower limit of the thermal con-
ductivity Λmin of pure Kr for the isochoric case (T0 = 80 K).
2
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Table 1.  Smoothed coefficients of the isobaric (ΛP) and isochoric (ΛV) thermal conductivities (mW cm–1 K–1) for Kr1 – ξXeξ
solid solutions

T, K

ξ

0.034 0.072 0.14

ΛP

ΛV at Vm
ΛP

ΛV at Vm
ΛP

ΛV at Vm

28.95 29.35 29.45 29.9 29.95

80 2.10 2.12 1.60 1.25

90 1.75 1.98 1.80 1.44 1.55 1.18 1.20

100 1.54 1.90 1.73 1.32 1.52 1.35 1.10 1.17

110 1.35 1.83 1.63 1.21 1.50 1.32 1.03 1.15

120 1.76 1.55 1.45 1.29 1.13

130 1.70 1.50 1.43 1.27 1.11

140 1.66 1.47 1.40 1.25 1.09

150 1.63 1.45 1.38 1.08

160 1.60

Note: The molar volumes of the studied samples are given in terms of cm3 mol–1.
quency mobile phonons and modes localized in regions
whose size is of the order of λ/2. The phonon mobility
edge is equal to the Debye frequency when the mean
free path of each mode is larger than λ/2 and should
shift toward the low-frequency range with an enhance-
ment in scattering. In the limit of a very strong scatter-
ing, when all the modes are scattered at a distance of the
order of λ/2, the thermal conductivity reaches the min-
imum value Λmin. The crossover from weak phonon
scattering to strong scattering can be described in the
framework of the Debye model. The expression for
thermal conductivity can be written in the form

(2)

where ΘD = v ("/kB)(6π2n)1/3 is the Debye temperature,
v  is the polarization-averaged velocity of sound, and
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Table 2.  Molar volumes Vm, temperatures T0 of the onset of
the satisfaction of the condition V = const in the experiment,
temperatures Tm of the onset of melting, and Bridgman coeffi-
cients g for the studied samples

ξ Sample 
no.

Vm,
cm3 mol–1 T0, K Tm , K g

0.034 1 28.95 78 165 8.0

2 28.35 87 150

0.072 1 29.45 82 169 5.5

2 29.90 95 150

0.14 1 29.95 84 160 4.0
P

l(x) is the mean free path of phonons. At T ≥ ΘD, grain-
boundary scattering is relatively weak and the mean
free path is predominantly determined by umklapp pro-
cesses and Rayleigh scattering [19]; that is,

(3)

The mean free paths corresponding to different scat-
tering mechanisms can be represented in the following
form [19, 20]:

(4)

where

(5)

and

(6)

where

(7)

Here, γ is the Grüneisen parameter equal to 2.5 for Kr
[9], m is the atomic mass, M = (1 – ξ)MKr + ξMXe is the
averaged atomic weight per atom of the solid solution,
Ω0 = (1 – ξ)Ω0Kr + ξΩ0Xe is the averaged volume per
atom of the solid solution (Ω0 = 6.3 × 10–23 cm3 and M =
131 for pure Xe and Ω0 = 5.0 × 10–23 cm3 and M = 83.8
for pure Kr), ∆M = M – MXe is the difference between
the averaged atomic weight of the solid solution and the
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atomic weight of the impurity, and ∆Ω0 = Ω0 – Ω0Xe is
the difference between the averaged volume of the solid
solution and the volume of the impurity.

Relationship (3) is inapplicable when the mean free
path l(x) is of the order or less than the phonon wave-
length. A similar situation was discussed earlier only
for umklapp processes [3]. Let us now consider the
combined case of umklapp processes and Rayleigh
scattering. It is assumed that the mean free path l(x) is
described by relationship (3) at l(x) ≥ αλ /2; otherwise,
we have

(8)

where α is the numerical coefficient, which is of the
order of unity and does not depend on T and λ. Excita-
tions scattered at a distance of the order of λ/2 are con-
sidered to be localized. The phonon mobility edge λ∗
can be found from the condition

(9)

Now, we introduce the effective temperature Θ∗  =
hν/kBλ∗  (it is assumed that Θ∗  < ΘD; otherwise, Θ∗  =
ΘD). Recall that, within the proposed model, the heat is
transferred through low-frequency mobile phonons
and, above the phonon mobility edge, through the
modes localized in regions whose size is of the order of
λ/2. In this case, the thermal conductivity integral is
separated into two parts:

(10)

In the high-temperature limit (T ≥ ΘD), when only
umklapp processes are involved, the thermal conductiv-
ity is represented by the relationship Λ(T) = A1/T2 +

, where A1 is the numerical temperature-indepen-

dent coefficient and  is given by

(11)

This expression for Λmin is identical to formula (1),
provided the polarization-averaged velocity of sound is
used and α = 1. For strong phonon scattering, when the
heat is predominantly transferred through localized
modes (Θ∗  ! ΘD), the thermal conductivity is deter-
mined by relationships (1) and (11).
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The computer fitting with the use of expression (10)
for the thermal conductivity was performed for pure Kr
and Kr1 – ξXeξ solid solutions (ξ = 0.034, 0.072, and
0.14) for isochores with T0 = 80 K. The relevant densi-
ties and velocities of sounds were calculated according
to the data taken from [9, 18] by assuming a linear
interpolation with respect to ξ when changing over
from Kr to Xe. In order to decrease the number of vari-
able parameters, the coefficient B describing the Ray-
leigh scattering was computed using relationships (6)
and (7). The results of the fitting are represented by
solid lines in Fig. 2. The Debye model parameters (n, v,
Γ) used in the fitting and the coefficients C and α
derived by the fitting are given in Table 3. The coeffi-
cient C characterizing the intensity of umklapp pro-
cesses is in good agreement with the low-temperature
data (1.5 × 10–9 cm K–1) obtained by Dudkin et al. [21].
The parameter α varies from 1.2 to 1.4. This confirms
the applicability of relationship (1) to the description of
the lower limit of thermal conductivity in solidified rare
gases. At the same time, it would make no sense to dis-
cuss the validity of the choice of λ/2 as the lower limit
of the phonon mean free path. The simple Debye model

80 100 120 140 160
T, K

0

0.5

1.0

1.5
ω*/ωD

Kr–Xe

Pure Kr

ξ = 0.034
ξ = 0.072
ξ = 0.14

Fig. 3. Temperature and concentration dependences of
ω∗ /ωD, where ω∗  = 2πv /λ∗  is the phonon mobility edge.

Table 3.  Fitting parameters of the Debye model of thermal
conductivity for pure Kr and Kr1 – ξXeξ solid solutions

ξ n × 10–22,
cm–3 v, km s–1 Γcalcd

Variable parameters

C, cm K–1 α

0 2.11 0.86 0 1.07 × 10–9 1.29

0.034 2.07 0.863 0.10 1.17 × 10–9 1.2

0.072 2.05 0.866 0.19 1.75 × 10–9 1.19

0.14 2.02 0.87 0.29 3.2 × 10–9 1.05
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used in our analysis ignores a number of essential fac-
tors, primarily of the dispersion and the real density of
states. The coefficient α in relationship (8) for the mean
free path is an integrated factor accounting for imper-
fection of the model.

Figure 3 shows the temperature and concentration
dependences of the phonon mobility edge ω∗ /ωD,
where ω∗  = 2πv /λ∗ . The relative contributions of low-
frequency mobile phonons to the thermal conductivi-
ties of pure Kr and Kr1 – ξXeξ solid solutions are pre-
sented in Fig 4. It can be seen that the localization of
high-frequency modes in pure Kr occurs at tempera-
tures above 90 K. As the impurity concentration
increases, a progressively larger part of the heat is
transferred through localized modes. However, even at
a maximum impurity concentration (ξ = 0.14) and the
highest temperature of measurements (160 K), an
appreciable part of the heat is transferred through low-
frequency mobile phonons.

5. CONCLUSIONS

Thus, in solidified rare gases, unlike crystals with
strong interatomic bonds (for example, crystals with a
diamond-type structure), the thermal conductivity
approaches the lower limit Λmin at premelting tempera-
tures. In this case, impurities cannot substantially
decrease the thermal conductivity in the vicinity of the
melting temperature Tm; however, at lower tempera-
tures, the introduction of impurities can lead to a
noticeable decrease in the thermal conductivity. In
Kr1 − ξXeξ solid solutions, a gradual decrease from the
thermal conductivity of a perfect crystal to the mini-
mum thermal conductivity is observed as the crystal
becomes increasingly more disordered. Since the mean
free path of high-frequency phonons is limited in the

80 100 120 140 160
T, K

0

0.2

0.4

0.6

0.8

1.0

Λph/Λ

ξ = 0.034

Kr–Xe

Pure Kr

ξ = 0.072

ξ = 0.14

Fig. 4. Relative contributions of low-frequency mobile
phonons to the thermal conductivities of pure Kr and
Kr1 – ξXeξ solid solutions.
P

case of umklapp processes and Rayleigh scattering, the
heat is transferred through low-frequency mobile
phonons and, above the phonon mobility edge, through
the modes localized in regions whose size is of the
order of λ/2. The phonon mobility edge shifts from the
Debye frequency toward the low-frequency range as
scattering becomes stronger. In the limit of very strong
scattering, when all the modes are scattered at a dis-
tance of the order of λ/2, the thermal conductivity
reaches the lower limit Λmin. It was demonstrated that
the behavior of the thermal conductivity of Kr1 − ξXeξ
solid solutions can be described in terms of the Debye
model with allowance made for the fact that the mean
free path of phonons cannot be less than half the
phonon wavelength.
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Abstract—EPR spectra of the Er3+, Nd3+, and Ce3+ ions substituting for the Y3+ ion in the YAlO3 yttrium
orthoaluminate lattice are studied. The EPR spectra of these rare-earth ions are described by a spin Hamiltonian
of rhombic symmetry with an effective spin S = 1/2. The principal values of the g tensors were determined from
an analysis of the angular dependences of the EPR spectra. The orientation of the local magnetic axes of para-
magnetic centers relative to the YAlO3 crystallographic directions are shown to depend on the actual rare-earth
species. The EPR spectra exhibit a hyperfine structure due to the 167Er, 143Nd, and 145Nd odd isotopes, which
permitted unambiguous identification of these spectra. The hyperfine coupling constants for the odd erbium and
neodymium isotopes are determined. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rare-earth-doped single crystals of yttrium
orthoaluminate (YAlO3), also called yttrium aluminum
perovskite (YAP), enjoy wide application in quantum
electronics [1, 2]. Interest in these materials has been
increasing in recent years in connection with the possi-
bility of the use of cerium-doped YAP as fast high-effi-
ciency scintillators [3–7]. For instance, lutecium
orthoaluminate LuAlO3 doped with cerium has demon-
strated the highest scintillator efficiency, to date, for the
detection of positron annihilation, which makes it a
potentially promising material for use in positron emis-
sion tomography in medicine [8]. Although EPR is
widely employed in studies of laser crystals, it has thus
far been only scarcely applied to YAP materials. Only a
few ions (Cr3+, Fe3+, Gd3+, Ti3+) have been investigated
in YAlO3 single crystals by EPR to date [9–16].

We report here on a comprehensive study of EPR
spectra of three rare-earth ions (Er3+, Nd3+, Ce3+) in
yttrium orthoaluminate. These ions were detected and
studied by EPR in YAlO3 for the first time, and the
results were published by us in [17].

2. EXPERIMENTAL TECHNIQUES

We studied YAlO3 single crystals doped by cerium,
erbium, and neodymium ions to concentrations of up to
~0.3 at. %. The crystals were grown by the Czochralski
method and by directed horizontal crystallization at
Preciosa Crytur, Ltd (Turnov, Czech Republic), and at
the Institute for Raw Materials Synthesis (Aleksandrov,
Russia). The EPR spectra were obtained in the 3-cm
wavelength range at temperatures from 4 to 50 K on
commercial JEOL-JES-PE-3X and ERS-230 radiospec-
1063-7834/02/4405- $22.00 © 20864
trometers. The samples were oriented by x-ray diffrac-
tion to within ±0.5° and cut in the ab, ac, and bc crys-
tallographic planes to form rectangular parallelepipeds
measuring 1.5 × 2 × 5 mm. More precise alignment of
the principal magnetic axes relative to the external
magnetic field was achieved radiospectroscopically,
directly in the microwave cavity, by matching the EPR
signals due to inequivalent positions. Our samples
exhibited, in addition to the EPR response of the Er3+,
Nd3+, and Ce3+ ions, signals from residual impurities,
which made comprehensive investigation of the orien-
tational dependences of the spectra and, in particular, of
the hyperfine structure (HFS) due to the odd 167Er,
143Nd, and 145Nd isotopes difficult. It should be pointed
out that the EPR spectra of Mo3+ ions in yttrium
orthoaluminate crystals grown in molybdenum con-
tainers were observed for the first time and the results
of their detailed investigation will be published sepa-
rately.

3. EXPERIMENTAL RESULTS

The crystal structure of yttrium orthoaluminate

belongs to the –Pbnm orthorhombic space group and
has been described in detail in a number of publications
(see, e.g., [18–20]). The orthorhombic unit cell of
YAlO3 contains four distorted perovskite pseudocells.
Therefore, the Y3+ and Al3+ ions reside in four structur-
ally inequivalent positions. The aluminum ions are sur-
rounded by six oxygen ions, forming a weakly distorted
octahedron (local symmetry Ci). The nearest neighbor
environment of the Y3+ ions is more complex and is
more strongly distorted (local symmetry Cs). Figure 1

D2h
16
002 MAIK “Nauka/Interperiodica”
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presents the structure of yttrium orthoaluminate with
identification of the positions of the Y3+ ions (large
hatched circles) substituted by Er3+, Nd3+, and Ce3+. In
contrast to the aluminum positions, all ions of oxygen
and yttrium are displaced by a few tenths of an ang-
strom with respect to the ideal perovskite positions. The
aluminum sites have only inversion symmetry, and the
yttrium sites possess a mirror symmetry plane perpen-
dicular to the c axis of the crystal.

One of the principal g-tensor axes for the paramag-
netic ions localized at the Y3+ sites must coincide with
the crystal c axis, and the two others must lie in the ab
plane. Moreover, the Y3+ ions are related pairwise by
inversion site symmetry through the aluminum posi-
tions, such that there are only two magnetically
inequivalent positions for an arbitrary orientation of an
external magnetic field B, as well as for B rotating in
the ab plane. If the external magnetic field rotates in the
bc or ac planes, the pattern becomes simplified,
because in this case, all four positions are magnetically
equivalent and the EPR spectrum has one line only
(neglecting the HFS). Thus, one EPR line is also
observed when the external magnetic field is parallel to
the principal crystal axes.

Figure 2 presents EPR spectra recorded in three
principal magnetic-field orientations (B || a, B || b, and
B || c) at 12 K for a frequency of 9.24 GHz. One can
separate spectra of four types out of the EPR response,
which, as will be shown later, belong to the rare-earth
ions Er3+, Nd3+, and Ce3+, as well as to the transition
element Mo3+. Erbium, neodymium, and molybdenum
have odd-number isotopes that possess a nuclear mag-
netic moment, and their EPR spectra allow unambigu-
ous identification based on the HFS.

3.1. Erbium Ions

The erbium ion Er3+ has an electronic configuration
4 f 11 with the ground state 4I15/2. The energy level dia-
gram of the Er3+ ion in YAlO3 single crystals was stud-
ied in [1, 2]. The ground-state multiplet 4I15/2 is crystal-
field split into a number of Stark components, with the
lowest of them involved in an EPR transition in the
3-cm range. Because of the large splitting between the
ground and the next Stark level (51 cm–1), detection of
the excited state in EPR spectra has not been success-
ful. Natural erbium contains, in addition to even iso-
topes with a zero nuclear spin moment, an odd isotope
167Er with a nuclear spin I = 7/2. Its natural abundance
is 22.94%. The EPR spectrum of YAlO3 (Fig. 2) agrees
fully with the one expected for Er3+. We observed eight
nonequidistant lines in it representing the magnetic
HFS components due to the odd isotope, whereas the
strong central line should be assigned to the even iso-
topes. The line intensity ratio is in accord with the nat-
ural abundance of the erbium isotopes. The EPR spec-
trum of the Er3+ ions in YAlO3 is anisotropic; as the ori-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
entation of the external magnetic field relative to the
crystal crystallographic axes changes, the EPR lines
shift with the magnetic field and the distance between
the HFS components also changes; however, their sep-
aration remains nonequidistant. The circles in Figs. 3
and 4 refer to the experimental positions of the strong
Er3+ line of the even erbium isotope obtained with the
crystal rotated in a magnetic field in the ab and bc
planes, respectively.

These experimental orientational relations can be
described by a rhombic-symmetry spin Hamiltonian,

(1)

where the effective spin S = 1/2; g and A are the tensors
of the g factor and HFS interaction, respectively; and
β is the Bohr magneton. The solid lines in Figs. 3 and 4
show the theoretical plots obtained by direct diagonal-
ization of the spin Hamiltonian (1) using the R-Spectr
code [21]. The g-tensor parameters used are as follows:
gx = 8.98 ± 0.01, gy = 8.13 ± 0.01, and gz = 2.73 ± 0.01.
Note that the principal directions of the Er3+ local mag-
netic axes in yttrium orthoaluminate are oriented so that
the x axes are along the c axis of the crystal and the y
and z axes lie in the ab plane. Experimental measure-
ments showed that the local magnetic axis z makes an
angle of 41.4° with the a axis of the crystal in the ab
plane. The orientational relations of the HFS compo-
nents yielded the following HFS constants for 167Er:
Ax = 329 × 10–4, Ay = 315 × 10–4, and Az = 250 × 10–4 cm–1.

* βBgS SAI,+=

Y3+ Al3+ O2–

a

b

Fig. 1. Projection of the YAlO3 lattice structure on the ab
plane.
2
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Fig. 2. EPR spectra of Er3+, Nd3+, and Ce3+ ions in YAlO3 single crystals obtained for different magnetic-field orientations at ν =
9.24 GHz and T = 12 K.
For the mean g factor, we obtained 〈g〉 = (gx + gy +
gz)/3 = 6.61, which agrees quite well with the value of the
g factor obtained for the Kramers doublet Γ7 of Er3+ ions
in a cubic crystal field, which is quoted to be 6.8 [22].

3.2. Neodymium Ions

The Nd3+ ion has an electronic configuration 4f 3 and
ground state 4I9/2 [1, 2]. Because of the large splitting
between the ground and the first excited Stark compo-
nents (118 cm–1), the EPR spectra measured in the
X range can reveal only the ground state. The natural-
abundance neodymium has two even and, in addition,
two odd isotopes, each having a nuclear spin I = 7/2.
The natural abundances of 143Nd and 145Nd are 12.17
and 8.30%, respectively, and their nuclear magnetic
moment ratio is 1.609. The observed EPR spectrum
Nd3+ exhibits two groups of eight nonequidistant lines
each, which represent HFS components due to the odd
neodymium isotopes; the central strong line derives
from the even isotopes. The ratio of the distances
P

between the HFS lines in each group corresponds to the
nuclear magnetic-moment ratio for the odd isotopes,
and the intensity ratio of the observed EPR lines reflects
the natural abundance of these isotopes.

The EPR spectrum of Nd3+ ions in YAlO3 is aniso-
tropic. The squares in Figs. 3 and 4 show the experi-
mental values of the resonant magnetic fields corre-
sponding to the position of the strong lines of the even
neodymium isotope obtained on a crystal rotated in a
magnetic field in the ab and bc planes, respectively.
These experimental orientational relations are described
by the spin Hamiltonian (1) with an effective electronic
spin S = 1/2 and a nuclear spin I = 7/2. As seen from
Figs. 3 and 4, the experimental resonance fields fit well
to the calculated curves. The experimental angular
dependences of the EPR response yielded the following
principal values of the g tensor: gx = 2.83 ± 0.01, gy =
2.58 ± 0.01, and gz = 1.69 ± 0.01. The principal local
magnetic axes of the Nd3+ ion in yttrium orthoalumi-
nate were found to have the same orientation as those
of Er3+. The local magnetic axis z makes an angle of
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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30.5° with the a axis in the ab plane. The HFS constants
for the 143Nd isotope were derived as Ax = 295 × 10–4,
Ay = 256 × 10–4, and Az = 192 × 10–4 cm–1.

The mean g factor 〈g〉  = 2.37 agrees well with that of
the Kramers doublet Γ6 of the Nd3+ ion in a cubic crys-
tal field, which was quoted as 2.67 in [22].

3.3. Cerium Ions

The Ce3+ ion has the 4f 1 electronic configuration
with the ground state 2F5/2. In yttrium orthoaluminate
crystals, ions of cerium, as of most rare-earth elements,
substitute for Y3+. Natural cerium has only two even
isotopes, 140Ce and 142Ce. Because of the absence of
odd isotopes, EPR spectra of Ce3+ do not have HFS.
The single strong line that we assigned to cerium ions
was identified by studying YAlO3 samples with differ-
ent concentrations of these ions, as well as on the basis
of the small mean g factor 〈g〉 , which is characteristic
only of the Ce3+ cerium ions. Figures 3 and 4 show
(with crosses) the experimental values corresponding
to the positions of the Ce3+ line obtained by rotating the
crystal in a magnetic field in the ab and bc planes. The
strongly anisotropic orientational dependences of the
Ce3+ EPR spectra in YAlO3 single crystals are described
by a spin Hamiltonian of the type of Eq. (1) with an
effective electron spin S = 1/2. The experimental and
calculated curves are seen to be in good agreement. We
used the experimental orientational dependences of the
EPR spectra to derive the following values for the
g-tensor parameters: gx = 0.395 ± 0.005, gy = 0.402 ±
0.01, and gz = 3.614 ± 0.005. The principal magnetic
axes of the Ce3+ ion are oriented so that the x axes are
along the c crystallographic axis and the y and z axes lie
in the ab plane. The local magnetic axis z makes an angle
31.8° with the crystallographic axis a in the ab plane.
The EPR linewidth of Ce3+ in YAlO3 is also anisotropic
and varies from 4 to 140 G with the external magnetic
field changing orientation from the gx axis to the gy axis.
The mean g factor 〈g〉  = 1.47 agrees well with the g fac-
tor for the Kramers doublet Γ6 of the Ce3+ ion in a cubic
crystal field, which is 1.43 [22].

Ce3+ EPR spectra of YAlO3 exhibit two main strong
lines due to magnetically inequivalent centers and, in
addition, a number of weaker lines (by two to three
orders of magnitude). These lines crowd around the
main cerium lines and exhibit similar angular and tem-
perature dependences.

4. DISCUSSION OF RESULTS

Our EPR study of yttrium orthoaluminate single
crystals revealed and unambiguously identified the
EPR spectra of the impurity ions Er3+, Nd3+, and Ce3+

substituting for Y3+. It was found that the local mag-
netic axes z and y of different paramagnetic rare-earth
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
ions residing at equivalent sites are oriented differently
with respect to the crystal axes. The direction of the
z axis relative to the a axis in the ab plane is 41.1° for
Er3+, 30.5° for Nd3+, and 31.8° for Ce3+. Note that an
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Fig. 3. Calculated (solid lines) and experimental (symbols)
angular dependences of the resonant magnetic fields of the
Er3+, Nd3+, and Ce3+ ions in the ab plane of the yttrium
orthoaluminate crystal lattice.
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Fig. 4. Calculated (solid lines) and experimental (symbols)
angular dependences of the resonant magnetic fields of the
Er3+, Nd3+, and Ce3+ ions in the bc plane of YAlO3.
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earlier measurement of this angle for the case of Gd3+

substituted for Y3+ in YAlO3 yielded 25° [14]. The Y3+

ion in YAlO3 crystals is known to be displaced from the
ideal perovskite position by a few tenths of an ang-
strom. Substitution of rare-earth ions with different
ionic radii (1.00, 1.06, 1.12, and 1.14 Å for erbium,
gadolinium, neodymium, and cerium, respectively) for
the Y3+ ion [rion(Y3+) = 1.02 Å] distorts the nearest envi-
ronment of a paramagnetic center differently; it is,
therefore, conceivable that the principal local magnetic
axes gz orient differently. The above values of the ionic
radii were taken from [1]. The nearest neighbor envi-
ronment of the paramagnetic rare-earth centers in
yttrium orthoaluminate is distorted in such a way that
the mirror symmetry plane does not change and, there-
fore, the magnetic axis x directed perpendicular to it
(along the c crystal axis) does not change its orienta-
tion. A difference in the angles between the magnetic
axes gz and the crystallographic directions is also
observed to exist for 3d transition ions substituting for
Al3+ in the octahedral sites [9–16]. The difference
between the angles for Cr3+ and Ti3+ in YAlO3 is
assigned in [15] to the absence and the presence of the
Jahn–Teller effect in the former and the latter cases,
respectively.

The absence of odd cerium isotopes with a nonzero
nuclear magnetic moment entails some difficulties in
the interpretation of the Ce3+ EPR spectra. However,
the absence of the HFS and the narrowness of the EPR
lines permit one to detect very weak EPR signals near
the main signal, which is due to Ce3+ ions in a regular
environment. We also observed weak EPR lines in
cerium-doped YAlO3 crystals. Part of these lines, which
we call satellites, are crowded near the two main strong
cerium lines corresponding to the magnetically
inequivalent positions. We assigned these satellite lines
to the Ce3+ ions, because the values of the g factors, the
character of the angular dependences of the resonance
magnetic fields, and the linewidths correlate with the
characteristics of the main EPR signals of the Ce3+ ions.
Each of these satellites is weaker in intensity than the
main line by a factor 100–1000 and exhibits a slight
deviation in the direction of the principal magnetic
axes, including the axis parallel to the c axis of the crys-
tal. These lines are apparently due to cerium ions whose
nearest environment contains a defect distorting the
crystal field at the paramagnetic center. These defects
are very likely to be the Y3+ ions substituting for the
Al3+ ions in the octahedral sites. This brings about dis-
placements of the nearest neighbor atoms of the para-
magnetic center and a change in the symmetry and
magnitude of the crystal field on it. The direction of the
local magnetic axis oriented along the c crystal axis
also changes. It is also possible that some of the satellite
lines originate from the Ce3+–Ce3+ pairs. Similar cen-
ters were observed by us in EPR spectra of Ce3+ ions in
the yttrium-aluminum garnet Y3Al5O12 [23]. The same
P

complex centers also possibly exist for erbium and
neodymium; however, their detection is made difficult
by the lower anisotropy of their EPR spectra compared
to that of cerium and, hence, by the weaker sensitivity
of the EPR line position to changes in the crystal field.
The HFS, which is observed in EPR spectra of Er3+ and
Nd3+, also hampers identification of the satellite lines.

The optical spectra of YAlO3 are known [5] to have
additional luminescence peaks due to cerium ions,
which may add up in integrated intensity to nearly 10%
of the main band. The EPR satellites, which were
observed in our experiments and were assigned to Ce3+

ions with a defect in the nearest environment associated
with off-stoichiometry and to pairs, amount to 1.5–2%
of the main lines in integrated intensity.

The strong angular dependence of the Ce3+ EPR lin-
ewidth in yttrium orthoaluminate, which varies from 4
G for B || z to 140 G for B || y, is in qualitative agreement
with the g factor anisotropy and is apparently caused by
an unresolved superhyperfine structure due to ligands.
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Abstract—The complete sets of 12 fundamental optical functions for fluorite crystals in the range 5–39 eV and
corundum crystals in the range 2–30 eV are determined from the experimental and theoretical spectra known
for certain of these functions. The main features and generalities of these functions are revealed. A theoretical
analysis of the optical spectra obtained is performed using the known theoretical band diagrams and the spectra
of ε2. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among strongly ionic crystals, fluorite CaF2 and
corundum α-Al2O3 are the most convenient model
materials. These compounds are widely used in micro-
electronics, laser materials science, catalysis, radiation
dosimetry, and nuclear reactors [1, 2]. In this respect,
their electronic structure has been intensively investi-
gated both experimentally ([3–6] for CaF2 and [7–12]
for Al2O3) and theoretically ([13–18] for CaF2 and [19–
24] for Al2O3) over a wide range of energies.

It is universally accepted that comprehensive data
on the specific features in the electronic structure of
crystals over a wide range of energies can be obtained
from the spectra of 12 fundamental optical functions:
the reflection coefficient R, the imaginary (ε2) and real
(ε1) parts of the permittivity ε, the bulk (–Imε–1) and
surface [–Im(1 + ε)–1] characteristic electron energy
loss functions, neff, εeff, and others [25]. The experimen-
tal spectra of R [3, 4], ε2, ε1 [5], and –Imε–1 [6] for CaF2
crystals and the spectra of R [7–12] for Al2O3 crystals
are available in the literature. In a number of works, the
spectra of other optical functions were calculated from
the measured spectra. Theoretical optical spectra were
obtained only for ε2 in [17, 18] for CaF2 and in [22–24]
for Al2O3 crystals. The experimental data reported in
different works were not compared. Theoretical spectra
of ε2 in [17, 18, 23, 24] were compared with the exper-
imental spectra of ε2 for CaF2 [5] and the experimental
spectra of R for Al2O3 [11].

The aim of the present work was to calculate four
complete sets of the spectra of the optical functions for
CaF2 and Al2O3 crystals with the use of the experimen-
tal spectra taken from [3–6] and [8–11], to decompose
the spectra of ε2 and –Imε–1 into components, and to
compare and discuss the experimental, calculated, and
theoretical data.
1063-7834/02/4405- $22.00 © 0870
2. COMPUTATIONAL TECHNIQUES

The most frequently applied techniques of deter-
mining the complete set of optical functions involve
their calculation from the known experimental reflec-
tance spectrum over a wide range of energies with the
use of special programs. As a rule, the computational
programs are developed using the Kramers–Kronig
integral relationships and formulas for the optical func-
tions. A large number of similar techniques have been
devised to date. For the most part, these methods differ
in the procedure of extrapolating R(E) to unknown
energy ranges [25]. The calculations of the optical
functions from the known spectra of ε2 or –Imε–1 are
performed in a similar manner.

The calculation procedures we used here for calcu-
lating the complete set of optical function and decom-
posing the integrated spectra of ε2 and –Imε–1 into indi-
vidual components were described in detail in [25–27]
and discussed in [28–30].

3. RESULTS OF CALCULATIONS 
AND DISCUSSION FOR CaF2

The reflectance spectra were experimentally mea-
sured in the range 6–36 eV at 90 K by Rubloff [3] and
in the range 5–21 eV at 4.2 K by Ganin et al. [4]. Barth
et al. [5] recorded the spectra of ε2 and ε1 in the range
10–35 eV at 300 K by using the ellipsometric method,
and Frandon et al. [6] experimentally obtained the
spectrum of –Imε–1 in the range 8–39 eV at 300 K by
characteristic electron energy loss spectroscopy. On the
basis of these spectra in the framework of a unified
approach, we calculated the sets of fundamental optical
functions for CaF2 in the range 5–39 eV. In the present
work, we will briefly dwell only on the spectra of R, ε2,
ε1, –Imε–1, –Im(1 + ε)–1, neff, and εeff.
2002 MAIK “Nauka/Interperiodica”
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Let us compare the four reflectance spectra in
Figs. 1–4. These spectra have a similar character and
contain ten principal intense peaks at 11.15 (peak 1),
13.05 (peak 2), 13.8 (peak 3), 15.55 (peak 4), 19.1
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Fig. 1. (3) Experimental spectrum ε2(E) of the CaF2 crystal
[5], (1, 2) the spectra ε2(E) calculated from the experimental
spectra R(E) taken from (1) [3] and (2) [4], (4) the spectrum
ε2(E) calculated from the experimental spectrum –Imε–1(E)
taken from [6], and (5, 6) the theoretical spectra ε2(E) taken
from (5) [17] and (6) [18]. Arrows and numbers indicate the
positions of the maxima in curve 1.
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R(E) taken from (1) [3] and (2) [4], (3) the spectrum
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and ε2(E) taken from [5], and (5, 6) the spectra –Imε–1(E)
calculated from the theoretical spectra ε2(E) taken from (5)
[17] and (6) [18].
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(peak 5), 20.3 (peak 6), 25.05 (peak 7), 27.7 (peak 8),
32.75 (peak 9), and 34.3 eV (peak 10) [3]. The locations
of many maxima in the four spectra R(E) differ by 0.1–
0.3 eV. Most likely, this difference is associated with
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Fig. 2. (3) Experimental spectrum ε1(E) of the CaF2 crystal
[5], (1, 2) the spectra ε1(E) calculated from the experimental
spectra R(E) taken from (1) [3] and (2) [4], (4) the spectrum
ε1(E) calculated from the experimental spectrum –Imε–1(E)
taken from [6], and (5, 6) the spectra ε1(E) calculated from
the theoretical spectra ε2(E) taken from (5) [17] and (6)
[18]. Arrows and numbers indicate the positions of the max-
ima in curve 1.
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specific features in the calibrations used in the four
works [3–6]. Two main differences should be noted in
the spectral structures. First, the most long-wavelength
and intense peak 1 manifested itself in [5] as an initial
portion of a very weak band; this can be explained by
the long-wavelength limit of spectrum recording. Sec-
ond, peak 2 has a triplet [4] or doublet [3, 5, 6] struc-
ture. The differences between the intensity distributions
in the four R(E) spectra are much more pronounced.
Compared to the data obtained in [3], the relative
changes ∆R/R in the intensities measured in other works
are as follows: +0.25 [4] and –0.10 [6] for peak 1;
+0.22 [4], –0.18 [6], and –0.50 [5] for peak 2; 0.0 [4]
and –0.3 [5, 6] for peak 3; ~–0.1 [4–6] for peak 4; +0.7
[4], ~–1 [5], and –0.5 [6] for the doublet with peaks 5
and 6; and ~0.5 [5, 6] for peaks 7 and 8. It should be
noted that the spectra of R in [3] and the spectra of ε2
and ε1 in [5] were measured under continuous high-
intensity synchrotron radiation, whereas the spectrum
of R in [4] was recorded with a laboratory, line, low-
intensity light source. In the characteristic electron
energy loss spectrum –Imε–1(E), all peaks are very
weak compared to the most intense, very broad plas-
mon excitation band. Barth et al. [5] devised a unique
ellipsometric technique for recording the spectra of ε2
and ε1 in the energy range E > 6 eV. They noted that
large errors can arise in calculations of ε2 and ε1 due to
a superposition of diffraction orders of the lattice in the
range 8–20 eV. Making allowance for the specific fea-
tures of the measuring techniques used in [3–6], we can
draw the conclusion that the most correct spectrum
R(E) of CaF2 in the range 8–18 eV was obtained in [3].
It is of interest that the experimental spectrum R(E) of
the CaF2 single-crystal cleavage [3] is in close agree-
ment with the R(E) spectrum calculated in our work
from the measured spectrum of –Imε–1 in thin polycrys-
tals [6]. In the energy range 18–33 eV, the intensity of
the R(E) spectrum recorded in [3] is nearly twice as
high as that of the spectra measured in [5, 6]. Possibly,
this is associated both with the different techniques
used in accounting for scattered light in [3, 5] and with
the specific features in the calibration of the –Imε–1 loss
function in [6]. In this respect, the R(E) spectra
obtained for the CaF2 crystal by four essentially differ-
ent methods were compared for the first time in the
present work. This allowed us to reveal and estimate
quantitatively the common features and differences in
these spectra and to analyze the possible errors in deter-
mining the energies and intensities of the maxima cor-
responding to optical transitions.

The specific features revealed in the R(E) spectra
naturally manifest themselves in the spectra of other
optical functions (Figs. 1–4). The four spectra ε2(E),
ε1(E), and –Imε–1(E) contain analogs of the ten most
intense peaks observed in the spectrum R(E). For ε2(E),
these peaks either are observed at about the same ener-
gies (peaks 1, 2, 5) or are shifted toward the low-energy
PH
range by 0.12 (peaks 3, 6, 8), 0.35 (peak 4), and 0.6 eV
(peaks 7, 9, 10). In this case, it is clearly seen that an
overestimation of the R(E) values in [4] (underestima-
tion in [5]) leads to an appreciable overestimation
(underestimation) of the ε2(E) values in the energy
range 5–21 eV (10–14 eV). The differences in the posi-
tion of the peaks observed in the four spectra ε2(E) fall
in the range 0–0.2 eV (at 10–20 eV). At higher energies,
these differences increase to 0.5–1.0 eV.

A comparison of the spectra ε2(E) and –Imε–1(E)
demonstrates that, compared to the peaks in the spectra
ε2(E), the loss peaks are shifted toward the high-energy
range by ~0.1–0.2 (peaks 1, 2, 5, 8) and 0.4–0.9 eV
(peaks 3, 4, 6, 7, 9, 10). These shifts determine the ener-
gies of longitudinal–transverse splittings of the ten
strongest transitions in fluorite.

The peaks of the surface loss function –Im(1 + ε)–1

either coincide with those of the bulk loss function
−Imε–1 (peaks 1, 2, 3, 5, 8) or are shifted toward the
low-energy range by ~0.3 (peaks 4, 6, 7), 2.6 (peak 9),
and 1.9 eV (peak 10).

Analysis of the spectra R(E), ε2(E), ε1(E),
−Imε−1(E), and –Im(1 + ε)–1(E) recorded for the CaF2
crystal with the use of four different techniques shows
that the spectrum R(E) measured by the first method in
the range 10–33 eV and the spectra of the other functions
calculated from this spectrum (curves 1 in Figs. 1–4)
should be treated as the most adequate. The results of
two other techniques in the range 20–33 eV (curves 3, 4)
compete with the data obtained by the first method. For
this reason, it is expedient to compare the aforemen-
tioned data with the theoretical spectra ε2(E) derived in
[17, 18] and with the spectra of other functions calcu-
lated on this basis.

Gan et al. [17] calculated the theoretical spectra
ε2(E) of fluorite in the range 10–27 eV with the use of
three methods: the OLCAO self-consistent first-princi-
ples method in the LDA approximation without and
with due regard for self-interaction corrections (models
G1 and G2, respectively) and with an additional
upward shift of the conduction band by ~5.1 eV in
order to fit the theoretical value of Eg to the experimen-
tal data (model G3). Benedict and Shirley [18] per-
formed first-principles calculations in the framework of
the LDA and quasiparticle approximation without and
with due regard for the electron–hole interaction (mod-
els B2 and B1, respectively) and obtained the spectra
ε2(E) in the range 8–20 eV. Among the aforementioned
five theoretical models, two models (B1 and G2) are
most consistent with the experimental data and the
results of calculations from the experimental data
(hereafter, these results will be referred to as the exper-
imental–calculated data). For brevity, we will consider
the spectra ε2(E) derived within models B1 and G2
and  the theoretical–calculated spectra ε1(E), R(E),
−Imε–1(E), and –Im(1 + ε)–1(E) obtained in our work
from these ε2(E) spectra.
YSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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It is generally believed that the longest wavelength
peak 1 in the optical spectra is attributed to free exci-
tons. In actual fact, peak 1 is observed in the theoretical
spectrum ε2(E) only in the case when the electron–hole
interaction is taken into account (Fig. 1, curve 6). This
peak is located at 11.1 eV, i.e., at an energy that is only
0.1 eV less than the energy found from our experimen-
tal–calculated data on the R(E) spectrum [3] (curve 1).
Such a close agreement between the theoretical and
experimental–calculated data was achieved in [18] by
increasing the value of Eg from 6.8 to 11.8 eV (i.e., by
5 eV). In this case, the exciton binding energy is equal
to 0.7 eV, which is characteristic of strongly ionic crys-
tals. The spectral features predicted theoretically in
[18] at higher energies are as follows: a shoulder at
12.0 eV; an unresolved doublet at 13.0 and 13.4 eV; a
shoulder at 14.7 eV; three strongly overlapping peaks at
15.4, 15.8, and 16.5 eV; and weak peaks at 18.3 and
19.0 eV. The positions of these features differ from the
experimental–calculated data by ~0.2–0.4 eV. The the-
oretical spectrum ε2(E) (within model B1) agrees well
with the experimental–calculated spectrum not only in
structure but also in intensity distribution.

The peaks and shoulders observed in the experimen-
tal–calculated spectrum ε2(E) are also present in the
theoretical spectrum derived in [17] within model G2.
The differences in position of these features are nearly
the same (~0.2–0.4 eV). However, their intensity distri-
butions in both spectra differ significantly in the energy
range E < 13.3 eV. For the most part, this discrepancy
can be artificially decreased by shifting the theoretical
spectrum at E > 12.9 eV toward the low-energy range
by ~1 eV but without a decrease in Eg.

The differences found in the spectral features and
intensities of the theoretical (Fig. 1, curves 5, 6), exper-
imental (Fig. 1, curve 3), and experimental–calculated
(Fig. 1, curves 1, 2, 4) functions ε2(E) are observed in
the spectra ε1(E) but to a smaller extent (Fig. 2). The
positions of the main features 1–4 (2–4) in the theoret-
ical spectra coincide accurate to within ±0.1 eV with
those in the experimental–calculated spectra without a
shift for model B1 (or with a shift of ~1 eV toward the
low-energy range for model G2). The intensities of fea-
tures 3 (4) and 7 appear to be considerably underesti-
mated in the theoretical spectra for model B1 (G2).

In [18], the theoretical spectrum ε2(E) was calcu-
lated at 0 K. The energies of the maximum (~11.1 eV)
and the half-widths (~0.8 eV) of the longest wavelength
exciton reflection band 1 are almost identical in the the-
oretical and experimental spectra. However, experi-
mental band 1 exhibits a more pronounced dispersion
structure: the values of R(E) at a maximum (minimum)
are equal to 0.2 (0.02) at 90 K [3] and ~0.15 (0.05)
according to our calculations from the theoretical spec-
trum ε2(E) taken from [18]. The inclusion of the exci-
ton–phonon interaction can lead both to an increase in
these differences and to a considerable increase in the
discrepancy between theory and experiment. In the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
experimental spectrum obtained in [3], the reflection
band in the range 12–15 eV consists of the two narrow
intense peaks 2 and 3, a side weak shoulder, and a side
weak peak. In the theoretical spectrum [18], this band
is represented by one very broad band with a maximum
approximately in the range of peak 3 and a weakly pro-
nounced shoulder approximately in the range of peak 2.
Instead of the experimental intense peak 4 and the sub-
sequent two weak shoulders in the range 15–18 eV, the
theoretical spectrum (model B1) contains two intense
bands with a very complex fine (doublet and quintet)
structure. The theoretical spectrum R(E) taken from
[17] (model G2) can be well fitted to the experimental
spectrum according to the positions of the principal
peaks and their intensities. The sole exception is peak 1,
which should be shifted toward the low-energy range
by approximately 1 eV.

The theoretical spectra ε2(E) in [17, 18] were com-
pared with insufficiently correct experimental data
taken from [5] without discussing the origin of the
peaks. Gan et al. [17] considered three models (G1, G2,
and G3) of the bands along the ΓL, ΓX, and ΓK direc-
tions (Fig. 5). The most adequate model G2 underesti-
mates Eg by ∆E ≈ 3.4 eV. With due regard for this cor-
rection, the energies of the possible most intense inter-
band transitions are estimated at ~12.9 eV for Γ (V1–C2)
and 13.0 eV for ΓX (V1–C1) (peak 2); 13.5 eV for Γ (V2–
C1), 13.4 eV for ΓX (V1–C2)), and 14.4 eV for ΓL (V1–
C1) (peak 3); 15.4 eV for Γ (V1–C3), ΓX (V1–C3 and V1–
C4), and ΓL (V2–C2) (peak 4); 17.5 eV for ΓL (V2–C3)
(peak 5); 19.5 eV for Γ (V2–C3) and ΓL (V2–C4) (peak 6);
and 25.4 eV for ΓL (V2–C4) (peak 7). Many peaks in the
spectra ε2(E) and R(E) can be attributed to metastable
excitons. In this case, the peaks are shifted toward the
low-energy range with respect to the energies of inter-
band transitions by approximately the binding energy.

The bulk plasmon band is easily identified in the
experimental spectrum –Imε–1(E) taken from [6]. The
maximum of this band is located at the energy Epv =
35.8 eV (Fig. 3, curve 4). An analog of this band asso-
ciated with the surface plasmons is observed in the
experimental–calculated spectrum –Im(1 + ε)–1(E) at
the energy Eps = 35.0 eV (Fig. 4, curve 4). According to
the plasmon model, these energies should be related by
the expression Epv ≈ AEps, where A ≈ 1.4 is the constant
factor [31]. For graphite and molybdenum chalco-
genides, the value of A is approximately equal to 1.2–
1.3 [32]. In our case of fluorite, the A factor proves to
be considerably smaller and close to unity (A ≈ 1.02).
This is in sharp contrast with the simplest general plas-
mon model. The value of Epv can be estimated theoret-
ically from the point of intersection between the curve
ε1(E) and the energy axis [31], which holds for covalent
crystals of the A4 group. However, this regularity breaks
down for the strongly ionic crystal CaF2.

The intensity of the loss spectra calculated from the
theoretical curves ε2(E) taken from [17, 18] (Figs. 3, 4,
2
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Fig. 5. Brillouin zones for (a) CaF2 and (b) Al2O3 crystals.
curves 5, 6) is in poor agreement with the intensity of
the experimental and experimental–calculated spectra.
The structure of the experimental–calculated spectra
agrees with the structure of the spectra calculated using
model B1 and strongly differs from that obtained within
model G2.

A considerable overestimation (underestimation) of
the reflection coefficients in [4] ([5]) results in the cor-
responding distortions of the spectra of neff and εeff.
These spectra are most correctly derived with the use of
the experimental spectra R(E) [3] and –Imε–1(E) [6]. In
these cases, the inclusion of excitons in the framework
of model B1 leads to the results close to the experimen-
tal–calculated data, whereas the use of theoretical
model G2 gives the underestimated results.

Twelve electrons of the six upper valence bands of
CaF2 are completely involved in the transitions at the
energy E ≈ 27 eV. At higher energies in the range E <
35 eV, the dependence neff(E) smoothly increases with-
out indications of saturation. Most likely, this is associ-
ated with the participation of deeper valence bands
formed by the Ca2+ 3p states.

The effective permittivity εeff at 40 eV is equal to
1.9, and the long-wavelength permittivity ε0 is ~ 2.0 [2].
The closeness of εeff (at 40 eV) and ε0 indicates the
validity of the calculations of the optical functions from
the experimental reflectance spectra taken from [3].

4. RESULTS OF CALCULATIONS
AND DISCUSSION FOR Al2O3

The polarized reflectance spectra of α-Al2O3 were
measured by Tomiki et al. [9] (in the range 2–110 eV),
Arutyunyan et al. [10] (5–25 eV), and Mileshkin et al.
[7] (5–25 eV) at the polarizations E ⊥  C and E || C and
also by French et al. [11] (5–43 eV) and Abramov et al.
[8] (7–20 eV), most likely, at the polarization E ⊥  C.
P

Since corundum is extremely popular in science and
engineering, it is of interest to compare the reflectance
spectra obtained in the five different works in the range
5–30 eV. The polarized reflectance spectra were most
thoroughly investigated in [9]. According to the data
reported in this work (see Table 1, in which the energies
of weak peaks and shoulders are parenthesized), the
reflectance spectra of the corundum crystal contains
weakly polarized peaks 1 and 10 and shoulders 11 and
12, a strongly polarized peak 6, and polarized bands
with a triplet (peaks 3, 4, and 5 at E || C and peaks 3',
4', and 5' at E ⊥  C or doublet (peaks 7, 8 and 9, 10 at
E || C) structure. The intensity of the reflectance spectra
only slightly depends on the polarization, except in the
narrow range from 12.5 to 16 eV. The parameters of the
polarized reflectance spectra obtained in [9] differ con-
siderably from those determined in [10]:

(1) All the peaks in the spectra measured in [10],
specifically in the ranges of the longest wavelength
peak 1 and from 15 to 19 eV, are very strongly broad-
ened (by a factor of two or three).

(2) Over the entire energy range, the reflection
intensity at the polarization E || C is substantially
higher than that at the polarization E ⊥  C.

(3) The fine structure observed in [9] for bands 3, 4,
and 7–10 was not revealed in [10].

(4) The maxima of bands in the spectra measured in
[10] are shifted toward the low-energy range by ~0.3
(peak 1), 0.6 (peak 4'), and 0.1 eV (peak 6) or toward
the high-energy range by ~0.45 eV (peak 4').

The results obtained in [7] also differ appreciably
from those reported in [9]:

(1) Peak 1 in the spectra taken from [9] is unpolar-
ized with a high accuracy, whereas this peak in the
spectra measured in [7] is strongly polarized and has a
higher intensity (by a factor of approximately 1.5 as
compared to that observed in [9] at E ⊥  C).
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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Table 1.  Energies (eV) of peaks and shoulders in the reflectance spectra of corundum

No.
E || C E ⊥  C

[9] [10] [7] [9] [10] [7] [11] [8]

1 8.975 8.65 ~8.9 9.057 8.65 9.0 8.85 9.24

2' – – (10.4) (10.7) (10.7) (10.2) 10.4 (10.6)

2 (11.5) – 11.4 – – 11.5 (10.7) –

3' – – – 12.08 – – 11.8 12.08

3 12.25 – – – – – –

12.65

4 12.93 – – – – – –

4' – – – 13.25 12.70 – 12.8 13.25

5 (13.7) 14.0 14.0 – – – – –

5' – – – (13.9) – – – –

6 – 15.5 – 15.1 ~15.0 (14.5) 14.6 15.1

7 (17.1)

17.7 16.7 (17.6) 17.7 16.5 17.3 17.2

8 (18.1)

9' – – – 19.2 – 18.8 19.2 19.0

9 19.45 – – – 19.6 –

20.0 20.3

10 21.7 21.45 – – 21.65 –

10' – – (~22.3) – 22.4 (~22.0) (22.1) –

11 (24.2) – – (24.2) – – – –

12 (26.7) (26.0) – (26.7) ~27 – ~27 –
(2) Instead of the weak and strongly polarized
shoulder 2 in [9], a very intense and weakly polarized
peak was found in [7]; moreover, a very weak peak was
observed in [7] in place of intense peak 6 in the spec-
trum obtained in [9].

The reflectance spectra, most likely, at one polariza-
tion E ⊥  C were measured in [11] (in the range 6–
42 eV) and [8] (4–20 eV). Almost all the spectral fea-
tures noted in [9] were also observed in [11]; however,
they were shifted toward the low-energy range by 0.3–
0.5 eV (features 1, 2', 3', 4', 6, and 8). It should be noted
that the reflection coefficients determined in the range
8–15 eV in [11] considerably (by ~0.07) exceed the
coefficients R(E) obtained in [9]. By contrast, the
reflection coefficients measured in [8] are approxi-
mately 0.02–0.05 less than those determined in [9]. For
the major part, the structures of the spectra R(E) mea-
sured in [8, 9] almost coincide.

Thus, the polarized reflectance spectra of corundum
in the range 8–30 eV involves 18 peaks and shoulders.
The most complete set of these features was obtained in
[9], and they are likely characteristic of the most perfect
crystals. All the intense peaks with relatively small vari-
ations in the energy positions were revealed in all five
works. In the range E < 8.5 eV, the R(E) spectra
recorded in [7, 10] contain intense bands attributed to
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impurities. Consequently, the discrepancies between
the data obtained in these works can be partly explained
by the imperfectness of the samples and their spectra
R(E) are likely typical of commonly encountered,
insufficiently perfect crystals, which is of certain inter-
est in itself. It is difficult to explain the origin of the dif-
ferences in the reflection intensity in the range 8–13 eV
at E ⊥  C in [9, 11]. One of the possible reasons for the
differences observed in the R(E) spectra obtained in the
five different works is the use of single crystals grown
by different techniques. In this case, the considered
R(E) spectra are characteristic of corundum samples
that are produced by many existing techniques (includ-
ing those used in [7, 10]) and have a high concentration
of impurities and defects, as is indicated by the pres-
ence of intense bands in the energy range E < 8.5 eV.

By using the reflectance spectra measured in [8–11],
we calculated the complete set of the spectra of the
optical functions for the corundum crystal. For brevity,
we consider the basic results for the spectra of ε1 and ε2

(Fig. 6). Table 2 presents the positions of principal
peaks and shoulders (parenthesized) in the spectra
ε2(E), namely, A and A', B and B', C, and D, which were
obtained in our work from the reflectance spectra
recorded in [9], [10], [11], and [8], respectively.
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The spectra ε2(E) calculated from the data obtained
in [9], [8], and [10, 11] originate at energies of ~8.5, 8,
and 7.5–7.8 eV, respectively. These energies corre-
spond to the location of the long-wavelength funda-
mental absorption edge. The absorption edge either is
rather sharp without a noticeable tail in the low-energy
range (spectra A, A') or is shifted toward the low-energy
range and has a substantially smaller slope (spectra B,
B', C, D), which is explained by the lower degree of per-
fection of the samples used in [8, 10, 11]. The polariza-
tion affects both the energy position of the longest
wavelength peak 1 [E(E ⊥  C) – E(E || C) = 0.08 eV for
spectra A and A' and 0.20 eV for spectra B and B'] and
its intensity [ε2(E || C) = 2.08 for spectrum A' and 2.5
for spectrum B', and ε2(E ⊥  C) = 2.19 for spectrum A
and 1.3 for spectrum B]. As the energy increases, the
permittivity ε2 increases first slowly (in the range 9.5–
11.0 eV) and then very rapidly to maximum values of
~5.6 for peak 4 at E || C and ~6.4 for peak 4' at E ⊥  C.
Thereafter, the curve ε2(E) (spectra A, A') falls off
steeply to ε2 < 1 at E > 24 eV and exhibits intense
peaks 6 and 7 + 8 at E ⊥  C and 7 and 8 at E || C. For

2
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(b)

18 26
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0
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8
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Fig. 6. Theoretical spectra (a) ε2(E) and (b) ε1(E) calculated
for the Al2O3 crystal from the experimental reflectance
spectra R(E) taken from (1, 2) [9], (3, 4) [10], (5) [11], and
(6) [8]. Polarization: (1, 3) E ⊥  C, (2, 4) E || C, and (5, 6)
unpolarized spectra.
P

less perfect corundum samples, the intensity ratios of
the peaks in the spectra ε2(E) (spectra B, B', C) differ
significantly from those in spectra A and A'. It should be
emphasized that the peaks and shoulders in the calcu-
lated spectra ε2(E) for four polarizations E ⊥  C and two
polarizations E || C appeared to be very close in posi-
tion. The differences between the positions of the cor-
responding features are equal to ~0.1–0.5 eV; i.e., they
amount to only ~1–5% and less.

In all the cases under consideration, the calculated
spectra ε1(E) are similar to the reflectance spectra in the
energy range E < 13.5 eV. At higher energies, the values
of ε1(E) very rapidly decrease from ~6.0 at 13.5 eV to
~−0.5 at 20 eV and 0.5 at 30 eV.

For an isolated band corresponding to a particular
transition, the relative positions of the peaks in the
spectra of R, ε1, and ε2 follow the universally accepted
classical order: E(ε1) < E(R) < E(ε2) [25]. However, in
the case when the bands overlap considerably, this clas-
sical inequality can break down for the maxima in the
integrated curves. We examined the positions of the
peaks in the spectra R(E), ε2(E), and ε1(E) of corundum.
It was found that the classical inequality holds for the
longest wavelength band 1: the energy E(R) is higher
than E(ε1) by 0.06 eV and is less than the energy E(ε2)
by 0.12 eV. However, for many peaks in spectrum A',
the values of E(ε2) are less than the values of E(R) by
approximately 0.1 eV for peak 4; 0.3 eV for peak 8;
0.6 eV for peaks 7, 9, and 11; and 1.1 eV for peak 10.

For the majority of solids, only experimental reflec-
tance spectra are available. In the absence of the spectra
ε2(E), the transition energies and band gaps are deter-
mined from the peaks in the spectra R(E) under the
assumption that E(R) ~ E(ε2). Our analysis of the rela-
tive position of the peaks in the integrated curves R(E)
and ε2(E) indicates that the error of this forced assump-
tion can be as large as 1 eV. Moreover, compared to the
peak in the spectrum R(E), the peak in the spectrum
ε2(E) can be located in the low-energy range rather than
in the high-energy range. Unfortunately, this circum-
stance is disregarded in numerous theoretical band cal-
culations in which the fitting parameters are chosen
from the energies of reflection peaks.

Traditionally, the longest wavelength peak 1 in the
reflectance spectrum of corundum is attributed to Fren-
kel free excitons with the quantum number n = 1 [1, 7–
9, 11]. The long-wavelength absorption was experi-
mentally measured only in a narrow range of absorp-
tion coefficients up to ~103 cm–1 and the energy range
E ≤ 9 eV [9]. Analysis of this weakly polarized absorp-
tion in terms of the Urbach empirical rule led the
authors of [9] to the inference that the maximum of the
exciton band is located at 9.25 eV for E || C and 9.31 eV
for E ⊥  C with µ ≈ 4 × 106 cm–1 for E || C and 3 ×
107 cm–1 for E ⊥  C. However, these results can be
treated only as approximate. According to our experi-
mental–calculated data, the exciton absorption maxi-
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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mum is located at 9.17 eV for E || C and 9.20 eV for
E ⊥  C with µ ≈ 4 × 105 for E || C and E ⊥  C. Hence, it
follows that the use of the Urbach empirical rule in [9]
very strongly overestimated the value of µ for the exci-
ton band at a maximum, especially in the case of the
polarization E ⊥  C.

For free excitons in corundum, experimental data
for the states with n > 1 and the corresponding theoret-
ical calculations are unavailable in the literature and
their binding energy Eb is unknown. There are only sev-
eral rough values of Eg and Eb, namely, Eg ~ 9.4 eV [8],
Eg ≤ 9.5 eV [11], Eb ≈ 0.4 [8], and Eb ≈ 0.1 eV [11]. The
absorption bands associated with the free excitons and
interband transitions in corundum overlap significantly.
As follows from our data, the minima in the integrated
curves ε2(E) are located at ~9.5 eV for E || C and 9.5 eV
for E ⊥  C. Therefore, the values of Eg apparently lie in
the range between these energies and the energies cor-
responding to the exciton maxima, namely, 9.2 <
Eg(E || C) < 9.5 eV and 9.3 < Eg(E ⊥  C) < 9.7 eV. The
half-width of the exciton band is equal to ~0.4 eV.
These estimates and the specific features in the spectra
ε2(E) allow us to assume that corundum is characterized
by Eg ~ 9.35 eV for E || C and 9.45 eV for E ⊥  C and
Eb ≈ 0.15 eV.

The other peaks and shoulders in the spectra R(E),
ε2(E), and other optical functions can be attributed to
interband transitions, metastable excitons, and their
interference [25]. The theoretical electronic structure of
corundum is known only in the framework of the band
model without regard for free and metastable excitons.
Now, we very briefly dwell on the basic results obtained
in theoretical calculations of the bands and the spectra
R(E), ε2(E), and ε1(E).

It is common knowledge that intense absorption
peaks are associated with transitions between those
pairs of bands that are parallel along the most extended
portions of the directions of the Brillouin zone. Within
this qualitative model, we considered the energy bands
obtained in [20–23] and determined the energies and
the origin of the possible most intense interband transi-
tions along the ΓX, ΓZ, ΓA, AD, ΓM, MK, ΓK, AL, and
AH directions (Table 3). The theoretical values avail-
able in the literature for Eg(Γ) are equal to 8 [20], 18
[21], and 6 eV [23]; i.e., they are underestimated by
approximately 1.5 eV in [20] and 3.5 eV in [23] and are
overestimated by a factor of approximately two in [21].
These corrections were taken into account in our calcu-
lations of the interband transition energies. The upper
valence band with a width of about 7 eV consists theo-
retically of 24 subbands, certain of which are degener-
ate. The intersubband spacings at different points of the
Brillouin zone vary from 0.1 to 1.0 eV. Numerous con-
duction subbands are also spaced very closely. There-
fore, the scheme of direct interband transitions along
different directions of the Brillouin zone involves sev-
eral variants of assigning each peak in the spectrum
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
ε2(E). The most probable variants are listed in Table 3.
The intense bands can be associated with transitions in
different regions of the Brillouin zone, which was dis-
regarded in [20–23]. Certainly, the origin of the peaks
in the spectrum ε2(E) can be treated within an alterna-
tive model of metastable excitons [25]. However, no
theoretical calculations for corundum were performed
in terms of this model.

In [22–24], the spectra of R, ε2, and ε1 in the range
0–40 eV were calculated using theoretical band dia-
grams along the ΓX, ΓZ, ΓA, ΓD, ZA, and DA direc-
tions. Unfortunately, the transition probabilities and the
bands within the Brillouin zone were ignored in these
calculations and the spectra were represented as inte-
grated curves of all transitions without identifying the
origin of the peaks. In [23], the theoretical spectra of ε2
were compared with the curve calculated in [11] from
the experimental reflectance spectrum. However, the
comparison was carried out without regard for the shift
in the theoretical spectrum ε2(E) along the energy scale
by ∆E ≈ 3.5 eV due to the theoretical underestimation
of Eg. Naturally, this crude error predetermined the
unreliability of the main conclusion drawn in [23] as to
good agreement between the theoretical and experi-
mental data on ε2(E). A direct comparison of the theo-
retical spectra ε2(E) with our calculated data obtained

Table 2.  Energies (eV) of peaks and shoulders in the spectra
ε2(E) of corundum

No.
E || C E ⊥  C

A' B' A B C D

1 9.12 8.90 9.20 9.10 8.95 9.30

2' – (10.6) (10.8) – (10.4) (~10.6)

2 (11.55) (11.75) – – (10.7) –

3' – – ~12.2 – 11.35 12.15

3 12.30 – – – –

12.85

4 12.80 – – – –

4' – – 13.15 12.8 12.1 13.2

5 ~13.55 ~14.25 – – – –

6 – ~15.5 14.90 – (14.45) 14.9

7 16.4

17.10 17.30 16.5 (16.7) (17.1)

8 ~17.8

9' – – 18.3 – (~18.5) –

9 ~19.0 – – – –

19.7

10 ~20.6 20.5 – – –

10' – – – ~20.7 – –

11 ~23.5 – – – – –

12 – ~25 – ~26 – –
2
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Table 3.  Theoretical energies (eV) of transitions in corundum and their assignment to the directions of the Brillouin zone

No. [23] (E || C) [23] (E ⊥  C) [20] [21] [22]

1 – – – – –

2' (~10) ΓX (10.6) ΓX 11.5 ΓZ, ΓY 10.5 ΓM 10.6 LΓZ

2 13.2 ΓX, ΓZ, AD – – – 12 LΓZ

3' – (11.5) ΓX, AZ 12.6 ΓX, ΓZ, ΓY 12.5 ΓM 13 LΓZ

3 14.1 ΓZ, AD – – – 13.7 ΓZ

4 14.8 ΓX, ΓZ, AD – – – 14.4 LZ

4' – 13.4 ΓX, ΓZ, ΓA 14.0 ΓX, ΓZ, ΓY 12.5 ΓMK –

5 15.5 ΓX, ΓZ, ΓA – – – 15 ΓZ

6 – 15.7 ΓX, ΓZ, ΓA 15.0 ΓX, ΓZ, ΓY 16.5 ΓM, MK, AL 15.5 LZ

7 16.5 ΓX, ΓZ, ΓA 17.2 ΓX, ΓA, AD 17.3 ΓX, ΓY 17.0 ΓMK, AL 16.5 LZΓ
8 17.8 ΓX, ΓZ, ΓA (17.9) ΓX, ΓZ 17.3 ΓX, ΓY 17.0 ΓMK, AL 17.3 ΓZ

9' 18.5 ΓX, ΓZ, ΓA 18.7 ΓX, ΓZ, ΓA 18.4 ΓX, ΓZ, ΓY ~18.0 ΓMK, AL 19 LZΓ
9 19.0 ΓX, ΓZ, ΓA – – – –

10 20.0 ΓX, ΓZ, ΓA 19.8 ΓA, ΓX 19.4 ΓX, ΓZ ~19.5 ΓMK, AH 20 LZΓ
10' – – – – –

11 22.0 ΓX – – – 21.5 LZΓ
12 – – – – –
from the reflectance spectra taken from [8–11] indi-
cates considerable differences between them both in the
structure and intensity ratio of the peaks in the spectra
ε2(E) and R(E). These problems will be considered in
more detail in a separate work.

5. CONCLUSIONS

Thus, the complete sets of the spectra of fundamental
optical functions for fluorite and corundum crystals over
a wide energy range of fundamental absorption were
determined within a unified approach for the first time.
The calculations were performed using the experimental
spectra R(E) [3, 4], ε2(E), ε1(E) [5], and –Imε–1(E) [6] of
CaF2 and the experimental spectra R(E) of Al2O3 [8–
11]. Analysis of the experimental spectra showed that
the most correct data were obtained in [3, 9]. The main
features in the spectra of the optical functions were
revealed. Within the scheme of direct interband transi-
tions, the model assignment of the peaks revealed in the
spectra ε2(E) of both crystals was proposed reasoning
from the recent, most detailed theoretical works. It was
demonstrated that, for fluorite crystals, the theoretical
spectra ε2(E) for models B1 in [18] and G2 in [17] and
the theoretical spectra ε1(E) and R(E), for the most part,
agree well in structure with the experimental–calcu-
lated spectra R(E), ε2(E), and ε1(E). However, the inten-
sities of these spectra are in rather poor agreement. It
should be noted that, despite a certain simplicity, the
theory allowing for the electron–hole interaction [18]
has a great advantage in the entire energy range of fun-
damental absorption.
PH
The results obtained enabled us to calculate essen-
tially more precise fundamental spectra ε2(E), ε1(E),
and R(E) for fluorite and corundum crystals in the range
8–35 eV. This makes it possible to elaborate the theory
of electronic structure of fluorite and corundum with
inclusion of the excitonic effects over a wide range of
energies and to analyze thoroughly the origin of numer-
ous peaks in the spectra ε2(E) and R(E).
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Abstract—A study of transient optical absorption of the ADP (NH4H2PO4) and KDP (KH2PO4) nonlinear
crystals in the visible and UV spectral regions is reported. Measurements made by absorption optical spectros-
copy with nanosecond-time resolution established that the transient optical absorption (TOA) of these crystals
originates from optical transitions in the hole A and B radicals and the optical-density relaxation kinetics is rate-
controlled by interdefect tunneling recombination, which involves these hole centers and the electronic H0 cen-
ters representing neutral hydrogen atoms. At 290 K, hole polarons and the H0 centers undergo thermally stim-
ulated migration, which is not accompanied by carrier ejection into the conduction or valence band. The slow
components of the TOA kinetics with characteristic times from a few tens of milliseconds to a few seconds can
be assigned to diffusion-controlled annihilation of hydrogen vacancies associated with impurity or structural
defects. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The tetragonal crystals of potassium and ammo-
nium dihydrophosphate, KH2PO4 (KDP) and
NH4H2PO4 (ADP), respectively (space symmetry

group I 2d), belong to a small class of nonlinear opti-
cal materials used in commercial high-power laser sys-
tems [1, 2]. Of the presently known crystals possessing
high electrooptical coefficients, only the KDP, ADP,
and lithium niobate are employed widely for light mod-
ulation. The short-wavelength boundary of optical
transparency of the ADP and KDP crystals lies in the
VUV region, at 176 nm for KDP and 184 nm for ADP
[3]. Coupled with their good nonlinear properties, this
permits one to use them to advantage for efficient third-
and fifth- harmonic generation in high-power YAG : Nd
or YLF : Nd picosecond lasers.

Subjecting these crystals to ionizing or high-power
laser radiation affects their dielectric properties, optical
characteristics, and structural perfection appreciably.
The main factor limiting their behavior in this respect is
the optical absorption of the crystal, which originates
from the formation of intrinsic lattice defects induced
by irradiation [4–6]. Among the best studied intrinsic
defects in the ADP and KDP crystals, which were reli-
ably identified by EPR, are the A radical ([HPO4]–) rep-
resenting a hole localized at an oxygen ion near a
hydrogen vacancy [7–9]; the B radical ([H2PO4]0),
which is a self-trapped hole (STH) [10, 11]; and the H0

electronic center based on a hydrogen interstitial [10,
12]. Optical absorption (OA) bands of the A and B rad-
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icals were identified at 10 K [13, 14]. At room temper-
ature, all three defects are metastable. Transient OA
(TOA) of the KDP crystals in the visible and near-UV
spectral regions was observed under irradiation by a
high-intensity laser (λ = 266 nm) in [4, 6], as well as
under electron-beam excitation in [15, 16]. However,
many fundamental problems bearing on the nature of
TOA in the ADP and KDP crystals still remain unclear.

The purpose of this work was to make a detailed
study of the transient optical absorption of electron-
beam-excited nonactivated ADP and KDP crystals
using absorption spectroscopy with nanosecond-scale
resolution.

2. EXPERIMENTAL TECHNIQUE

We used ADP and KDP single crystals of high opti-
cal quality grown at the Issyk-Kul State University
(Karakol, Kirghiz Republik) using the technology
described in [17]. The samples were 7 × 7 × 1-mm
plane-parallel plates with polished planes perpendicu-
lar to the c crystallographic axis.

A detailed description of the experimental setup and
of the luminescence and absorption spectroscopy with
nanosecond-time resolution used in this work can be
found in [18]. The induced optical absorption and lumi-
nescence in the spectral region 1.2–5.5 eV were mea-
sured by the photoelectric method in the total-internal-
reflection arrangement with the use of an MDR3 mono-
chromator provided with 1200 and 600 mm–1 inter-
changeable gratings, a FÉU-97 or FÉU-83 PM tube,
2002 MAIK “Nauka/Interperiodica”
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and an S8-12 storage oscillograph. Measurements car-
ried out at different wavelengths permitted reconstruc-
tion of the total optical absorption (luminescence) spec-
trum. The excitation source was a nanosecond-pulsed
electron accelerator consisting of an Arkad’ev–Marks
pulsed-voltage generator, a generator startup system,
and an electron beam ejector. The accelerator had the fol-
lowing parameters: average electron energy 0.25 MeV,
pulse length adjusted by cutting off the pulse trailing
edge within 3–20 ns, current density in the pulse vari-
able from 10 to 1000 A cm–2, and maximum pulse
energy 0.16 J cm–2. The pulse energy used for excita-
tion was 23% of the maximum level. The electron beam
passed through a ~30-µm-thick aluminum foil directly
into an evacuated cryostat with quartz windows, which
was connected rigidly to the accelerator exit flange. The
probing light sources were an INP-5.50 pulsed lamp
for decay times of up to 20 µs and KGM12-100 and
DDS-30 lamps powered by a stabilized voltage supply
for studies of slower processes.

A YAG : Nd laser with an LiNbO3 frequency dou-
bler served as an additional excitation source. The out-
put parameters of the optical pulse were λ = 532 nm,
τ = 30 ns, and P = 8 mJ; the electrical vector was per-
pendicular to the c optical axis of the crystal.

The polarization was analyzed with a Frank–Richter
prism. The degree of polarization was estimated from
the relation P = (D|| – D⊥ )/(D|| + D⊥ ), where the || and ⊥
indices correspond to the probing-pulse electric vector
oriented parallel or perpendicular to the crystal optical
axis.

3. RESULTS OF THE EXPERIMENT

Figure 1 presents time-resolved TOA spectra of
ADP and KDP measured immediately after the termi-
nation of the exciting pulse and 10 µs later. The spectra
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
of both crystals have a similar structure and consist of
two groups of partially overlapping bands of Gaussian
shape in the regions 1.5–4.5 and 4.5–5.5 eV. Table 1
lists the parameters of these bands. As follows from an
analysis of Fig. 1 and Table 1, the TOA in ADP and
KDP apparently originates from the same relaxation
processes. All the bands in the time-resolved TOA
spectra exhibit a slow monotonic decay of the induced
optical density. One readily sees, however, that the
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Fig. 1. TOA spectra of (a) ADP and (b) KDP measured at
290 K (1) immediately after the end of the excitation pulse
and (2) 10 µs thereafter. Circles are experimental data, and
solid lines are fitting by a sum of Gaussians G1–G5.
Table 1.  Parameters of TOA spectra of ADP and KDP

Parameter

Crystal

Parameter

Crystal

ADP KDP ADP KDP

Dmax D(10 µs) Dmax D(10 µs) Dmax D(10 µs) Dmax D(10 µs)

Em1 2.15 2.16 2.11 2.11 Dm3 0.21 0.15 0.12 0.10

∆E1 0.45 0.44 0.46 0.48 Em4 4.09 4.13 3.82 3.89

Dm1 0.13 0.09 0.10 0.07 ∆E4 0.64 0.55 1.09 1.09

Em2 2.56 2.59 2.52 2.49 Dm4 0.07 0.03 0.15 0.10

∆E2 0.60 0.63 0.64 0.63 Em5 4.95 4.98 5.32 5.40

Dm2 0.21 0.17 0.16 0.10 ∆E5 0.86 0.86 0.88 0.88

Em3 3.33 3.42 3.12 3.12 Dm5 0.20 0.18 0.32 0.26

∆E3 0.79 0.79 0.75 0.75

Note: Dmax and D(10 µs) are TOA spectra measured directly after the end of the excitation pulse and 10 µs thereafter, respectively; Em,
∆E, and Dm are the position of the maximum (eV), FWHM (eV), and the amplitude of the corresponding constituent band G1–G5,
respectively.
2
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short-wavelength part of the 4.5–5.5 eV spectrum
decays slightly slower. This indicates that the TOA in
the long- and short-wavelength spectral regions is due
to different color centers.

We can use Smakula’s relation to estimate the cross
section of optical absorption and the concentration n(t)
of optically active centers at time t:

(1)σ k t( )
n t( )
---------

n
3

2n
2

1+( )
2

------------------------ f 10
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---------------------,= =
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Fig. 2. TOA decay kinetics in the 2.2-eV band of (a) KDP
and (b) ADP at 290 K measured after electron-beam excita-
tion (1, 3, 5) at 23% and (2, 4) 12.3% power levels. Circles
are experimental data, solid and dashed lines are theory.
Curves 3 and 4 are the calculated contribution from the slow
component.
PH
where k(t) and ∆ are the absorption coefficient at the
maximum and the FWHM of the OA band, respec-
tively; f is the oscillator strength; and n is the refractive
index. For both crystals, σ ≈ 1.04 × 10–16f/∆. Accepting
f = 0.1, we obtain σ ≈ 4.5 × 10–17 cm2 as an estimate of
the cross section for the longest wavelength OA band in
the ADP and KDP crystals. The concentration of the
centers and the optical density D(t) at the maximum of
the OA band are related through

(2)

where l is the effective optical path in the layer of
induced optical absorption about 50 µm thick. For the
7° measurement geometry, l = 2 × 0.05 mm/sin7° =
0.8 mm. The concentrations of the centers estimated for
the long-wavelength OA band in ADP and KDP are
given in Table 2. Note that no saturation was observed
with increasing electron beam power, which may imply
that the color centers involved are of other than extrin-
sic nature.

Figure 2 displays experimental data on the TOA
decay kinetics in ADP and KDP crystals obtained in
various excitation conditions. An analysis of these data
revealed that the slow monotonic relaxation of the
induced optical density occurs at 290 K within a broad
time range extending over six to eight decades, while
the dynamic range of its variation is comparatively
small. One can single out two time regions differing in
decay character. In the micro- and millisecond region,
the experimental data allow one to make close approx-
imations with a straight line in the log–log coordinates
(Fig. 2) and can be formally related by a linear law,

(3)

This implies a power-law dependence of optical density
on time, D(t) ~ t–p. The fitting parameters A and p are
given in Table 2, which shows, in particular, that the
exponent p depends on crystal type and varies from
0.117 to 0.200 with increasing excitation power. For

n t( ) 10ln
σl

-----------D t( ),=

D t( )log– A p t.log+=
Table 2.  TOA kinetics parameters for the 2.2-eV band

Parameter
Crystal

Parameter
Crystal

ADP KDP KDP ADP KDP KDP

Beam power, % 23 12 23 n(t0), 1017 cm–3 3.0 1.3 3.0

A 0.358 0.397 0.677 D(t0) 0.47 0.20 0.47

p 0.155 0.200 0.117 σ0, THz 54 1000 1000

th, s 0.015 60 2 a3 × N, 10–5 4.30 1.91 3.11

Dh 0.099 0.036 0.034 N, 1019 cm–3 4.3 1.9 3.1

t0, ns 124 114 126

Note: A and p are fitting parameters used in a formal approximation of the kinetics as –log(D) = A + plog(t), where t is the time in µs; t0
specifies the beginning of kinetics measurement; n(t0) and D(t0) are the OA center concentration and optical density at time t0,
respectively; and Dh and th are the fitting parameters for the slow component D = Dh/(1 + t/th). The parameters of the defect tunnel-
ing-recharging model: σ0 is the prefactor, a is one half of the defect Bohr radius, and N is the defect concentration.
YSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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longer decay times, the TOA kinetics can also be
approximated with a straight line from Eq. (3) but with
p ≈ 1, which assumes a first-order hyperbolic relation:

(4)

where Dh and th are the initial concentration and the
half-life of the defects responsible for the given TOA
decay kinetics component. The hyperbolic component
is seen most clearly in the ADP crystal for t > 10 ms;
however, numerical treatment of the TOA kinetics in
KDP also reveals the presence of this component
(Fig. 2).

Measurements performed in polarized light showed
the TOA band to exhibit a comparatively weak optical
dichroism at 2.2 eV. The degree of TOA polarization
measured immediately after termination of the excita-
tion pulse is approximately –0.1 (ADP) and –0.2
(KDP).

When studying cascade excitation, an additional
high-intensity optical pulse was pumped into the
1.9-eV band after a variable delay relative to the end of
the electron pulse. The TOA kinetics did not, however,
exhibit any change in ADP and KDP under cascade
excitation.

Electron-beam excitation of ADP and KDP crystals
at 290 K gives rise to a burst of cathodoluminescence
with a characteristic decay time of about 20 ns, which
is comparable to the excitation pulse length (Fig. 3).
The luminescence is unpolarized throughout the spec-
tral region studied. Figure 4 presents pulsed cathodolu-
minescence (PCL) spectra measured at the peak of this
burst. As evident from Fig. 4, the PCL spectra of ADP
and KDP are similar in structure and consist of two
main bands, at 3.5–3.7 and 4.6–4.9 eV, with an FWHM
of 0.9–1.0 and 1.3–1.4 eV, respectively.

4. DISCUSSION OF RESULTS

An analysis of the TOA spectra of ADP and KDP
measured at 290 K (Fig. 1) revealed that they are simi-
lar to the spectra of the low-temperature stable OA of
these crystals [14]. Indeed, unactivated ADP, KDP, and
DKDP crystals exhibit, after irradiation by x-ray pho-
tons at 10 K, a broad composite OA band in the region
1.5–4.0 eV with a maximum at 2.43 eV (ADP) or
2.26 eV (KDP) and a shoulder at 3.2 eV due to the A
and B hole radicals [13, 14]. The concentration of the A
and B radicals grows monotonically under irradiation;
however, the ratio of their concentrations depends nei-
ther on the dose nor on the temperature [13]. In both
color centers, optical transitions from valence-band
(VB) states to the local level of the defect are observed.
Viewed from the standpoint of electronic structure [19,
20], the highest occupied molecular orbitals (HOMO)
of the H2PO4 anion group derive from the antibonding
states of oxygen; the VB states derived from the hydro-

D t( )
Dh

1 t/th+
-----------------,=
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gen orbitals (E ≈ –2.3 eV) and phosphorus–oxygen
orbitals (E ≈ –3.3 eV) lie lower. The hole produced in
the formation of the A radical is trapped by the dangling
oxygen orbital, pointing toward a hydrogen vacancy
[8]. The hole becomes self-trapped (the B radical) in the
HOMO states. In both cases, the optical transitions are
associated with electron transfer to the defect level
from the same lower lying occupied states, which
assumes a marked similarity between the spectral OA
profiles of the A and B radicals. Their OA spectra differ
primarily in polarization; namely, the OA of the A rad-
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Fig. 3. PCL decay kinetics in the bands at (1, 2) 2.2 eV and
(3) 4.6 eV in (1) KDP and (2, 3) ADP measured at 290 K.
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icals is predominantly πpolarized, whereas the B radicals
provide a major contribution to the σ-polarized OA [14].

All three crystals exhibit a correlation between the
thermal-bleaching curves in the OA band of the A and
B radicals [14] and the nonisothermal relaxation of the
EPR spectra of these centers [9, 21]. Note that the B
radicals are annealed (the STHs become mobile) at a
temperature of about 70 K, whereas the A radicals are
annealed near the Curie point Tc = 123 K (KDP) and
148 K (ADP). No stable OA is observed to exist above
Tc in the region 1.5–3.5 eV.

The short-wavelength OA bands at 4.7 and 5.4 eV in
KDP are attributed to the formation of L defects (hydro-
gen vacancies) associated with impurities (Fe, Cr, Mn,
Al) or radiation defects [15, 22–24]. In both cases, the
L defects form to compensate the excess charge of the
main defect. Note that the low-temperature A radical
represents essentially a hole trapped by a single hydro-
gen vacancy. The L defects associated with impurities
form in the course of growth and exist in the crystal
before the irradiation, their concentration depending on
the impurity content. The L defects associated with
radiation defects form when the crystal is irradiated by
γ photons, neutrons, and ion and electron beams, and
their number grows with increasing irradiation dose.
The optical transitions occurring in such L defects
depend only weakly on the actual type of the impurity
or radiation defect, which would imply the same spec-
tral response of OA; however, stabilization of A radicals
by impurities may affect the kinetics and temperature
behavior of the optical-density relaxation [15, 22, 25].

We believe that the transient optical absorption of
ADP and KDP in the region 1.5–4.0 eV (the G1–G3
bands in Fig. 1) is due to optical transitions taking place
between VB states and the local level of a hole center
(A or B radical). The comparatively weak polarization
of the TOA indicates there are similar contributions
from the π and σOA components, i.e., from the optical
transitions in both centers. We assign the short-wave-
length TOA (4.0–5.5 eV) observed in ADP and KDP
crystals under electron-beam irradiation at 290 K
(Fig. 1) to the formation and, possibly, recharging of
the L defects associated with various impurity or radia-
tion defects.

The above analysis of the TOA spectra of ADP and
KDP (Fig. 1) suggests that the transient optical absorp-
tion in both crystals originates from contributions due
to hole centers of several different types. Thus, the
comparatively uniform relaxation of the TOA spectra
can be accounted for only if the decay of these defects
is limited in all cases by the same relaxation process,
which is common for both crystals. In this case, the
optical-density decay law should reflect the kinetics of
this process. We consider the most probable hypotheses
on its nature.

It is known that in alkali halide crystals, hole-type
centers move above their delocalization temperature
through diffusion [26]. The parameters of thermally
P

stimulated STH migration in ADP and KDP are known,
namely, the frequency factor ω0 = 13–19 s–1 and the
activation energy E = 42–45 meV [14]. The character-
istic lifetime of the hole centers is given by the relation

(5)

where kB is the Boltzmann constant and T is the temper-
ature. One readily sees that for 290 K, τ ≈ 360 ms. This
time exceeds the characteristic time of TOA decay in
ADP and KDP crystals by three to four orders of mag-
nitude (Fig. 2). One may suggest in this connection that
the TOA kinetics in these crystals is rate-limited not by
hole polaron transfer but rather by another process, for
instance, by electron recombination. This conjecture is
indirectly argued for by the absence of cascade excita-
tion effects under excitation into the OA band of the
hole center.

We note, first of all, that one should consider only
intrinsic lattice defects common for the ADP and KDP
crystals to be electronic centers. Indeed, the hole center
concentration in unactivated ADP and KDP is fairly
high (Table 2) and does not reveal a tendency to satura-
tion with increasing dose. The number of electronic
centers in these crystals cannot be less than that of the
hole centers. This excludes from consideration the elec-
tronic centers associated with residual impurities. Let
us discuss the electronic centers involving native ADP
and KDP lattice defects.

EPR studies in KDP revealed electronic centers in

the form of a molecular  ion produced in the cap-
ture of an electron by an oxygen vacancy [27]. These
centers persist at room temperature for several weeks,
and their optical transitions are presumably confined to
the region 1000–2000 nm. Obviously enough, the char-
acteristics of these centers do not meet the requirements
formulated above.

The most appropriate candidate is the electronic
center representing an interstitial hydrogen atom H0.
The H0 centers form by the following scenario [12]:
ionizing radiation or two-photon absorption of laser
radiation (λ = 266 nm) generates band electrons and
holes. The hydrogen ion H+ sitting at a lattice site traps
an electron to become a neutral hydrogen atom, which,
acted upon by thermal vibrations, is ejected from the
site. The oxygen atom closest to the vacancy thus
formed traps the hole and forms the A radical. Intersti-
tial diffusive migration of the neutral hydrogen atom
culminates in its localization at the free position of a
singly occupied hydrogen bond, a process giving rise to

the formation of an H3  group (the D defect) [28,
29]. As established by EPR studies [12], the concentra-
tions of the A radicals and H0 centers in KDP crystals
irradiated at 77 K are approximately equal and can be
as high as 1018 cm–3; i.e., there is a common mechanism
of formation of these complementary nonimpurity
defects. Thermal annealing of the H0 centers takes

τ1 ω0 E/kBT–( ),exp=

PO3
2–

PO4
2–
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place at temperatures of 80–200 K as a result of their
migration and annihilation with hydrogen vacancies.

Diffusive interstitial transport of the H0 atom is tem-
perature-dependent and has been studied in consider-
able detail in ADP and KDP by the methods of electri-
cal conductivity [28], NMR [30, 31], and 3H0 tracer dif-
fusion [32]. In particular, the migration activation
energy of this defect was determined to be 0.53 eV for
KDP and 0.48 eV for ADP. As follows from the theory
of diffusion-limited reactions (DLR) [33] with a recom-
bination sphere of radius R0 and an interdiffusion coef-
ficient DR, the kinetics of this reaction is quasi-station-

ary (except the initial stages within t < /DR) with the
rate constant

(6)

This rate constant is characterized by a steady-state dis-
tribution function of reaction partners over their separa-
tion Y(r) = 1 – R0/r and does not undergo noticeable
variations during the process. Assuming R0 = 5 Å and
DR = 1.3 × 10–11 cm2 s–1 [32] and accepting Nh = 1 ×
1017 cm–3 for the initial defect concentration, we obtain
for the characteristic time of DLR kinetics (the half-
life) [33]

(7)

Therefore, the diffusion mechanism of particle migra-
tion should not become manifest in the observed TOA
kinetics in the microsecond and microsecond ranges
(Fig. 2). The comparatively small value of the exponent
p obtained in the approximation of the TOA kinetics is
also not typical of DLR, for which p ≈ 1. All this nar-
rows down the scope of acceptable hypotheses bearing
on the TOA relaxation mechanisms in ADP and KDP.
Only a few post-radiation processes are characterized
by a similar asymptotic behavior of the concentration
of the relevant defects. In particular, a relatively small
exponent p is characteristic of tunneling recharging
(TR) of defects, which contributes markedly to the
reaction rate constant not only in the low-temperature
domain but also at temperatures where the defects
become mobile [33]. We believe that the rate-limiting
process in the TOA relaxation in ADP and KDP in the
microsecond and microsecond ranges is the defect TR.

In the treatment of diffusion-limited TR, the radius
R0 is replaced by the effective recombination radius Rs,
which depends on the diffusion coefficient, and the TR
reaction is assumed to be confined to a spherical layer
of thickness a (a is one half of the Bohr radius of the
defect wave function) close to Rs. The TR probability is
given by the relation

(8)

where σ0 is the prefactor. We consider the case of equal-
probability distribution of electronic and hole centers
over the crystal. If the concentration of localized elec-

R0
2

K 4πDRR0 1 R0/ πDRt+( ).=

th K Nh( ) 1–
1.25 s.≈=

σ r( ) σ0 r/a–( ),exp=
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trons N at time zero considerably exceeds that of local-
ized holes n (t = 0), the time variation of the hole concen-
tration n(t) under TR is described by the relation [34]

(9)

where t0 is the time starting from which the TOA decay
kinetics is analyzed.

For short observation times (t ≤ 104t0), Eq. (9) trans-
fers to a power-law function,

(10)

where p = 4πa3Nln2(σ0t0). For typical values of the
parameters σ0 ~ 1000 THz, a ~ 1 Å, N ~ (2–5) ×
1019 cm–3, and t0 ~ 100 ns, we obtain p = 0.085–0.213.
This compares well with our experimental data.

Table 2 lists the TOA kinetics parameters for ADP
and KDP at 290 K, which were obtained by fitting the
experimental data in Fig. 2 with a sum of two compo-
nents described by Eqs. (9) and (4). N was estimated
by accepting that a = 1 Å. As seen from Table 2, for
decay times up to 10 ms for ADP and 100 ms for KDP,
the TOA asymptotic behavior is well approximated by
the theory of TR of randomly distributed fixed defects.
The slow component in the TOA decay kinetics origi-
nates from the diffusive transport of defects. Let us esti-
mate the radius of the recombination sphere Rs [33]:

(11)

Substituting the recombination sphere radius of
Eq. (11) into Eq. (6) for the reaction rate constant and
using the numerical values of th (Table 2), we obtain the
following estimate for Nh from Eq. (7): (1–10) ×
1015 cm–3 for KDP and about 1018 cm–3 for ADP. For the
KDP crystal, the value of Nh is comparable to the con-
centration of hydrogen vacancies associated with
extrinsic or structural defects. In this case, the slow
TOA component could be identified with the TR of
these defects (possibly, with their annihilation), which
is rate-limited by the diffusive transport of mobile
hydrogen atoms. Interpretation of the large value of Nh

obtained for the ADP crystal requires separate consid-
eration.

The existence of high carrier concentrations local-
ized at comparatively long-lived defects is favorable for
the onset of recombination luminescence. We showed
earlier [24] that subnanosecond-scale photoexcitation
of KDP at 10 K gives rise to a fast luminescence with a
characteristic decay time τ < 10 ns. There is nothing
strange, therefore, in the fact that the main part of the
luminescence generated under 15-ns-long electron-
beam irradiation is confined within the excitation pulse
duration and a short time interval after its completion
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(Fig. 3). This luminescence originates from electron
and hole recombination of band carriers at the corre-
sponding defects (A and B radicals and the H0 center).
Hole (3.55 eV) and electron (4.77 eV) recombination
luminescence bands have been identified in ADP, KDP,
and DKDP crystals [14]. It is these bands that are dom-
inant in the fast PCL spectra of ADP and KDP at 290 K
(Fig. 4). Obviously enough, at 290 K, the slow ther-
mally stimulated migration of the partners (A and B rad-
icals and the H0 center) involved in the interdefect tun-
neling recombination is not accompanied by ejection of
localized carriers into the conduction or valence band.
Otherwise, the characteristic recombination lumines-
cence would be observed throughout the TOA decay
time range and the decay itself would follow a law dif-
ferent from Eq. (9). It is known [26] that in alkali halide
crystals, the interdefect tunneling recombination is usu-
ally accompanied by inertial tunneling luminescence.
Equation (9) yields, for the tunneling luminescence
intensity,

(12)

Within the decay time range from 10 ns to 10 s, the
expression in the numerator depends comparatively
weakly on time. The numerical values of the parameters
in Table 2 provide the estimate I(t) ≈ 5 × 1015/t, cm3 s–1.
This seems to correspond to a luminescence intensity
too weak to be detected in our measurements. Further
specific experiments would be required to investigate
this.

5. CONCLUSIONS

Thus, our absorption optical spectroscopy study
with a nanosecond-scale time resolution has estab-
lished that the transient optical absorption in ADP and
KDP crystals observed in the visible and near-UV spec-
tral regions at 290 K originates from optical transitions
in hole polarons representing the A and B radicals. The
optical-density relaxation kinetics is rate-limited by
interdefect tunneling recombination, which involves
hole polarons and electronic H0 centers representing
neutral hydrogen atoms. At 290 K, the hole polarons
and the H0 centers migrate in a thermally stimulated
manner, which is not accompanied by carrier ejection
into the conduction or valence band. Slow TOA compo-
nents with characteristic times from a few tens of milli-
seconds to a few seconds were assigned to TR or anni-
hilation of hydrogen vacancies associated with extrin-
sic or structural defects, which is rate-limited by
diffusive transport of the hydrogen atoms.
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Abstract—The electron structure of a relaxed nanocrystal of potassium chloride with an edge dislocation was
calculated in the tight-binding approximation using a procedure self-consistent in effective charges and dipole
moments of ions. Total and partial local densities of states were calculated. The effect of relaxation and polar-
ization on the single-electron energy spectrum was calculated. © 2002 MAIK “Nauka/Interperiodica”.
The electron structure of dislocations in ionic crys-
tals has been studied insufficiently, despite the wide use
of such crystals in fundamental investigations and
applications. To our knowledge, there are only a few
works [1–5] in which the dislocation levels have been
determined in alkali-halide crystals (AHCs) both
experimentally and theoretically. The available experi-
mental data are difficult to interpret adequately, and the
results of theoretical works substantially contradict one
another. Compare, e.g., theoretical results for KCl crys-
tals. According to [2], the splitting-off of the lowest
donor dislocation level from the top of the valence band
is a few electron-volts (in any case, it is greater than
4 eV; it cannot be indicated more exactly, since, in our
opinion, the data given in the table and in the main text
of [2] disagree); the acceptor levels were not considered
in [2]. In [3], it was revealed that the donor dislocation
band is located in the range 2.47–2.58 eV above the
valence band, while the acceptor dislocation band is in
the range 1.76–1.96 eV below the bottom of the con-
duction band. According to [4], the splitting-off of
dislocation levels from the top of the valence band is
0.038 eV and that from the bottom of the conduction
band is 0.05 eV. In [2, 3], the lattice relaxation caused
by dislocation was not considered. In [4], the Madelung
fields were calculated proceeding from the ion coordi-
nates in a relaxed lattice with a dislocation that were
obtained in [6]. The calculations of the dislocation lev-
els were performed in terms of the one-dimensional
perturbation theory, as in [2, 3]. Note that in [2–4] the
polarization effects, which necessarily should be taken
into account in alkali-halide crystals [7], were com-
pletely ignored.

The calculation of the electron structure of a polar
crystal with a dislocation with allowance for relaxation
and polarization effects is a nontrivial problem. How-
ever, the situation is simplified if we restrict ourselves
to a nanocrystal. In this paper, we consider an electri-
cally neutral KCl nanocrystal consisting of eight layers.
1063-7834/02/4405- $22.00 © 20888
The upper layer is shown in Fig. 1. The total number of
ions was 344. As in [2–4], an edge dislocation with a
Burgers vector 〈110〉  was located in the glide plane

{ }.

The relaxation of the nanocrystal was considered in
terms of the model of pointlike polarizable ions. In this
approximation, the potential energy of interaction of
the ions of the system is

(1)

110

W WC WR WVdW Wpol,+ + +=

1

2

3 3

2

1

–3
–2

–1 –1

–2

–3

Fig. 1. The upper layer of a nanocrystal with an edge dislo-
cation. The cations are the circles of larger size. Along the
axes, coordinates in units of half-lattice-parameter are indi-
cated.
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where

(2)

(3)

WC is the energy of the Coulomb interaction of the ions;
WR is the energy of repulsion of electron shells; WVdW
is the van der Waals energy with allowance for the
dipole–dipole interaction; Wpol is the polarization term;
qi, the charge of the ith ion; Rij = |Ri – Rj | is the spacing
between the ith and jth ions; and βij , ri , ρ, Cij, and Dij

are the parameters of the potential. The g(Rij) function
has the form [8]

where t = (R – Rb)/(Rc – Rb), Rc is the cut-off radius, and
Rb < Rc. The g(R) function ensures a gradual falloff of
the potentials WR and WVdW to zero in the interval [Rb,
Rc] and is necessary to prevent jumps in the derivatives
on going from WR to WVdW.

In the model under consideration, each ion repre-
sents a point quasi-elastic dipole with an electric
moment

(4)

where αi is the polarizability of the ith ion and E(Ri) is
the strength of the electric field at the point where this
ion is located. The term Wpol represents the energy of
induced quasi-elastic dipoles [9]

in the field produced by point ions and induced dipoles
with a strength

where

WC

qiq j
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Here, the vector Rij = Ri – Rj is directed from the point
Rj to the point of observation Ri. As follows from the
above formulas, for each spatial configuration of the
ions, the induced dipole moments should be determined
in a self-consistent way. The parameters required to cal-
culate (2) are given in Table 1. The magnitude of the
effective charge Z was obtained previously in our self-
consistent calculations [10], and the other parameters,
except for b, Rb, and Rc, were taken from literature data
[11–13]. The parameter b was determined by minimiz-
ing the potential energy of the ideal infinite crystal
using the experimental value of the lattice parameter.
The values of the parameters Rb and Rc were taken such
that the pair potentials of repulsion of electron shells
and the van der Waals potential smoothly tended to zero
in an interval (R2, R3), where Rk is the radius of the kth
coordination shell.

In the zero approximation, all moments of quasi-
elastic dipoles were set to zero. Then, in the process of
the minimization of the potential energy of the system
with respect to ion coordinates, which was performed
by the Fletcher–Reeves method [14], the dipole
moments were calculated in a self-consistent way.
When constructing the initial spatial configuration of a
nanocrystal, data on the geometry of the core of an edge
dislocation given in [4, 6] were used.

After the calculation of the equilibrium configura-
tion of the nanocrystal, its electron structure was con-
sidered. We used the Slater–Koster variant of the tight-
binding method modified by one of us [15], in which
the self-consistency was performed with respect to the
effective charges and dipole moments of the ions. Pre-
viously, such a scheme of calculations was successfully

Table 1.  Parameters of ion interaction for KCl

Parameter Value

re, Å 3.145

r+, Å 1.330

r–, Å 1.810

ρ, Å 0.345

β++ 1.250

β–– 0.750

β+– 1.000

b, eV 0.163

C++, eV Å6 14.355

C––, eV Å6 114.219

C+–, eV Å6 38.947

Rb, Å 4.600

Rc, Å 5.000

Z 0.979

α+, Å3 1.33

α–, Å3 2.97
2
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Fig. 2. Histograms of the total densities of states for a nanocrystal consisting of 100 ions calculated in various approximations:
(a) non-self-consistent calculation without allowance for relaxation and polarization; (b) self-consistent calculation without allow-
ance for relaxation; (c) self-consistent calculation with allowance for relaxation; and (d) non-self-consistent calculation for a frag-
ment (cluster) of an ideal crystal with matrix elements taken from [18].
applied to studying the electron structure of polar
nanocrystals with atomically rough surfaces [10, 16].
The Slater–Koster parameters, as in [17], were taken
from [18]. Within this approach, the diagonal matrix
elements of the Hamiltonian are calculated by the for-
mula

(5)

where

(6)

(7)

(8)

(9)

Here, l is the order number of a site, α is the type of
atomic orbital (AO), ϕC(Rk) and ϕD(Rk) are the electro-
static potentials at a site k caused by monopoles and by

induced dipoles of the ions, and  is the Madelung
field at the kth site in an ideal crystal. The ionic (iner-

Hlα lα, Hlα lα,
0 ∆W̃l,+=

∆W̃l – e ϕ Rl( ) Wl
M
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ϕ Rl( ) ϕC Rl( ) ϕD Rl( ),+=
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q j

Rl R j–
--------------------,

j l≠
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ϕD Rl( )
d j Rl R j–( ),( )

Rl R j–
3

-----------------------------------.
j l≠
∑=

Wk
M

PH
tial) polarization is taken into account in this formalism
by using the coordinates of ions in relaxed nanocrystals
found in terms of the model of point polarizable ions.
The off-diagonal elements of the Hamiltonian for the
relaxed nanocrystals were found using the Harrison for-
mula [19]

(10)

Here, l ≠ l ', m is the electron mass, dll ' = |Rl – Rl ' |, and
ηαα ' is the dimensionless Slater–Koster parameter.

Formulas (5)–(10) make it possible to perform a
self-consistent calculation over the effective charges
and dipole moments of the ions. The iteration proce-
dure was continued until the maximum deviation of the
dipole moments for two neighboring iterations became
less than a preliminarily specified δ (in our calculations,
δ = 10–4 Debye). In principle, the calculated effective
charges and dipole moments could be used to recalcu-
late the parameters entering into formulas (2) and (3)
and to refine the coordinates of ions of the relaxed
nanocrystal. However, in view of the lack of a reliable
algorithm for such a recalculation, we restricted our-
selves to the search for the geometry of an equilibrium
configuration using only the parameters taken from
Table 1.

Hlα l 'α', ηαα '
"

2

mdll '
2

-----------, α α ', s p.,= =
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The allowance for polarization effects in calcula-
tions of the electron structure of polar crystals and
nanocrystals with defects is of great importance. We
consider, using various approximations, the electron
structure of a KCl nanocrystal consisting of 100 ions that
form a parallelepiped with dimensions of 5 × 5 × 4 ions.
Figure 2a displays the histogram of the total density of
states (TDOS) for this nanocrystal calculated non-self-
consistently, without allowance for relaxation and
polarization. It is seen that there are occupied states
located in the forbidden band of the ideal crystal. The
self-consistency with respect to effective charges but
without allowance for relaxation somewhat changes the
TDOS (Fig. 2b), but the changes are small. A self-con-
sistent calculation with allowance for both relaxation
and polarization leads to qualitative changes in the
TDOS. It is seen from Fig. 2c that no deep levels are
now present in the region corresponding to the forbid-
den band of the ideal crystal. For comparison, Fig. 2d
shows the TDOS of a cluster consisting of 100 ions of
the same shape but simulating the bulk states of an ideal
crystal. The hatched regions in the above figures corre-
spond to the valence band and the conduction band of
an ideal KCl crystal calculated in terms of the band the-
ory with the same Slater–Koster parameters as in the
case of nanocrystals. Thus, the neglect of relaxation and
polarization effects leads to an overestimation of the
splitting-off of local levels from the band edges. Note
also that upon relaxation, the cations and anions located
at the centers of faces shift deeper into the nanocrystal.
The other ions shift in a similar manner; i.e., on the
whole, the nanocrystal shrinks, which qualitatively
agrees with the data given in [20].

A self-consistent calculation of the TDOS with
allowance for relaxation and polarization for nanocrys-
tals with an edge dislocation shows that in the region
corresponding to the forbidden band of an ideal crystal
there are occupied levels. The upper occupied level is
located above the top of the valence band by about
0.27 eV (Fig. 3). However, it follows from an analysis
of orbital coefficients for these levels that the corre-
sponding states are mainly localized near the bordering
ions of the nanocrystal rather than in the region of the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
dislocation line. Calculation of partial local densities of
states for ions located at the dislocation line in the bulk
of the nanocrystal (Fig. 4) shows that these densities
exhibit sharp peaks in the region of band states rather
than in the forbidden band. This indicates that the dis-
turbances at the line of dislocation are not too large. Let
us turn to Table 2, which lists effective charges, compo-
nents of the dipole moments, and corrections (6) to
diagonal matrix elements of the Hamiltonian for the

ions at the line of dislocation (  was calculated for
the relaxed nanocrystal with allowance for polarization,

and  was calculated for the starting configuration
without allowance for the field of dipoles). The disloca-
tion line goes, as in [4], through an ion located in the
square in Fig. 1 and coincides with the axis OX. Ions 1
and 8 (Table 2) are located on the opposite surface
faces, and ions 4 and 5 are farthest from the surfaces.
The nanocrystal has C2v symmetry; therefore, the val-
ues listed in the table have no symmetry even in abso-
lute magnitudes with respect to the plane perpendicular
to the dislocation line located between the fourth and

fifth layers (except for the corrections  corre-
sponding to the unrelaxed crystal). The magnitudes of

∆W̃
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Fig. 3. Histogram of the total density of states of a nanoc-
rystal (consisting of 344 ions) with an edge dislocation.
Table 2.  Effective charges, components of dipole moments, and corrections to diagonal matrix elements of the Hamiltonian

No. Ion Q, |e| dx , D dy , D dz, D , eV , eV

1 Cl– –0.980 –0.865 –0.197 –0.197 0.344 3.829

2 K+ 0.979 –0.111 0.082 0.082 0.262 –1.037

3 Cl– –0.979 –0.251 –0.186 –0.186 0.227 1.812

4 K+ 0.979 –0.036 0.065 0.065 0.157 –1.569

5 Cl– –0.979 –0.182 –0.192 –0.192 0.113 1.569

6 K+ 0.979 –0.058 0.055 0.055 0.101 –1.812

7 Cl– –0.979 –0.467 –0.210 –0.210 –0.080 1.037

8 K+ 0.981 –0.253 0.067 0.067 0.005 –3.829

∆W̃ ∆W̃
0

2
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the effective charges of surface and bulk ions differ
only insignificantly. This is characteristic of the Slater–
Koster variant of the tight-binding method, which was
already noted in [17]. The dipole moment of the chlo-
rine ion at the site of emergence of the dislocation onto
the surface differs weakly from the dipole moment of
the chlorine ion at the (100) surface of a sodium chlo-
ride crystal [21]. With moving into the depth of the
nanocrystal, the dipole moment decreases in absolute
value. The corrections to the diagonal matrix elements
of the Hamiltonian for the ions of the dislocation line,
which arise due to the total effect of the redistribution
of the charge density and the appearance of induced

dipoles upon relaxation, are quite significant;  is

smaller than  in absolute value by at least an order
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Fig. 4. Partial local densities of states (PLDOSs) for ions at
the line of dislocation in the bulk of a nanocrystal: (a) PLDOS
for 4s orbitals of potassium ions, and (b) PLDOS for 3p orbit-
als of chlorine ions.
PH
of magnitude, which explains the shape of the histo-
grams of the partial densities of states in Fig. 4.

Thus, if we extrapolate our results onto an infinite
crystal, the states localized at the ions of the dislocation
line will most probably be of pseudolocal rather than
local type. Our data are most close to those of [4].
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Abstract—The dependence of the domain wall velocity V on the acting magnetic field H is investigated for
bismuth-containing single-crystal garnet ferrite films with orthorhombic magnetic anisotropy. It is shown that
this dependence includes both the initial linear portion and a saturation portion and exhibits a complex behavior.
This behavior is explained within the model of domain wall motion with spin wave radiation. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Earlier investigations into the dynamics of domain
walls in bismuth-containing single-crystal garnet fer-
rite films of the composition (Bi,Y,Pr)3(Fe,Ga)5O12
with (210) orientation and orthorhombic magnetic
anisotropy have demonstrated that the dependence of
the domain wall velocity V on the acting magnetic field
H exhibits, at first glance, classical behavior: after the
initial linear portion, the V(H) curve shows a small peak
followed by a saturation portion in which the differen-
tial domain-wall mobility is considerably less than the
initial mobility [1–4]. However, high-speed photo-
graphic observations of dynamic domains in magnetic
fields at approximately the midpoint of the linear por-
tion in the V(H) curve have revealed that dynamic
domain walls undergo irregular distortions which are
not reproducible from pulse to pulse [5, 6]. This implies
that the nonstationary motion of domain walls corre-
sponds to the linear portion of the V(H) curve, which
contradicts the theory described in [7].

In the present work, we made an attempt to elucidate
the reasons for the above contradiction. For this pur-
pose, the dependence V(H) was measured more thor-
oughly using high-speed photography [8, 9].

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

The magnetic anisotropy parameters for bismuth-
containing single-crystal garnet ferrite films were mea-
sured by the phase transition method [10–12]: the azi-
muthal dependences of the critical bias field Hb(ϕ) and
the in-plane magnetic field Hin(ϕ) were recorded in the
course of homogeneous domain nucleation. As no the-
ory offering simple analytical expressions for magnetic
anisotropy in the (210)-oriented films exists, it is
1063-7834/02/4405- $22.00 © 20893
impossible to determine the anisotropy constants from
these dependences with sufficient accuracy. For this
reason, the magnitude of orthorhombic magnetic

anisotropy was judged from the maximum ( ) and

minimum ( ) in-plane magnetic fields in the depen-

dence (ϕ) at which the domain structure disappears.

In order to investigate the dynamics of domain
walls, the initial bismuth-containing single-crystal gar-
net ferrite film was magnetized to saturation with the
bias field Hb applied along the normal to the film sur-
face. A pulsed magnetic field Hp was applied in the
opposite direction with the use of a pair of pancake
coils. The film to be studied was placed in the midplane
between the pancake coils. We recorded the image of
the reversed domain that nucleated at the point defect.
The domain wall velocity was measured in the direc-
tion along which it reached a maximum (see Figs. 1a–1c
in [6]).

The data reported in this paper refer to a sample with
thickness h = 7.3 µm, an equilibrium width of strip
domains ω = 16.3 µm, a saturation magnetization

4πMs = 59 G,  = 2000 Oe, and  = 4800 Oe.

3. RESULTS AND DISCUSSION

The field dependences of the domain wall velocity
are shown in the figure. Note that the abscissa is both
the pulsed magnetic field Hp and the acting magnetic
field H [9]:

(1)

It can be seen that, unlike the classical dependence of
the domain wall velocity on the acting magnetic field,

H in
max

H in
min

H in*

H in
min

H in
max

H H p Hb.–=
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the initial portion of the V(H) curve, which was treated
earlier as the initial linear portion, can be divided into
two linear portions. The first linear portion is character-
ized by a slope of 8.3 m s–1 Oe–1, and the second portion
has a slope of 11.9 m s–1 Oe–1. Furthermore, the first
portion intersects the abscissa axis at negative H values.
It is seen from the figure that, in this case, the bias field
Hb is equal to 43 Oe. Direct observations of dynamic
domains revealed that the crossover to the second linear
portion corresponds to the appearance of spatial distor-
tions of domain walls. Note that the unidirectional
anisotropy of the domain wall velocity [3, 13] was
observed in the bismuth-containing single-crystal gar-
net ferrite film under investigation but was not well pro-
nounced.

The results obtained can be explained, according to
[14–16], in terms of the spin-wave mechanism of
domain wall motion. The crossover to the second lin-
ear portion with an increased (by a factor of approxi-
mately 1.4) differential mobility is associated with the
attainment of a threshold field of spin wave radiation.
The spin waves induce a local rotation of the magneti-
zation vector in front of the moving domain wall. In
turn, this leads to an increase in the velocity of the front
of the reversed domain. The Gilbert attenuation param-
eter α, which depends on the effective magnetic field in
the film plane [14, 16], is sufficiently large due to the

relatively high value of . Hence, spin waves atten-
uate at a small distance from the domain wall and the
slopes of the two linear portions of the V(H) curve dif-

H in
min

V, m s–1

100 200
Hp, Oe

H, Oe
100 200

500

1000

0

Dependences of the domain wall velocity on the acting
magnetic field H and the amplitude of the pulsed magnetic
field Hp.

0

P

fer insignificantly. For the same reason, despite the fact
that the magnitude of m [16],

(2)

is more than unity, the unidirectional anisotropy of the
domain wall velocity was not well pronounced.

As was noted above, the first linear portion of the
V(H) curve does not intersect the H axis at the origin of
coordinates. This means that the acting magnetic field
cannot be calculated from relationship (1) for bismuth-
containing single-crystal garnet ferrite films with (210)
orientation in which the localized canting of the easy
magnetization axis is significant [17, 18]. For uniaxial
bismuth-containing single-crystal garnet ferrite films
with (111) orientation, nucleation of reversed domains
at points defects has never been observed at negative
acting magnetic fields H. At Hp < Hb, the magnetization
reversal of bismuth-containing single-crystal garnet
ferrite films becomes possible. However, in this case,
the domain structure intergrows from the sample
periphery [19].

It was experimentally found that the width of the
image of the moving domain wall exceeds not only the
width of the image of the static domain wall but also the
domain wall displacement during the course of an emit-
ted pulse (~5 ns). This indicates that the tilts of the
static and dynamic domain walls differ from each other.
Consequently, the projections of the bias field vector
onto the domain wall plane differ for static and
dynamic domain walls even though the bias field vector
remains unchanged during the experiment. It is because
of this circumstance that the first linear portion of the
V(H) curve intersects the abscissa axis at a negative H
value. This circumstance was ignored when construct-
ing the V(H) curve in the figure.

4. CONCLUSION
Thus, we demonstrated that the appearance of spa-

tial distortions of domain walls in bismuth-containing
single-crystal garnet ferrite films with orthorhombic
magnetic anisotropy corresponds not to the midpoint of
the initial linear portion of the dependence V(H) but to
the crossover to the second linear portion characterized
by an increased differential mobility. The second linear
portion is associated with the spin wave radiation. The
spin waves initiate local rotations of the magnetization
vector in the vicinity of the moving domain wall.
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Abstract—Three variants of three-pulse excitation of the quadrupole spin echo are considered. The specific
features are determined for each variant of the excitation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier, Hahn [1] demonstrated experimentally and
theoretically that spin echo signals are observed in a
sample exposed to a three-pulse sequence of rf pulses
with a pulse-recurrence frequency equal to the reso-
nance frequency of the transition to be excited. This
excitation was considered with the following condi-
tions: tw < τ1; τ2 < T2, T1; and T0 > 6T1. Here, tw is the
pulse duration, τ1 is the time interval between the first
and the second pulses, τ2 is the time interval between
the second and the third pulses, T0 is the repetition
period of the pulse sequence, T2 is the time of spin–spin
relaxation, and T1 is the time of spin–lattice relaxation.
The spectrum of excited pulses covers the whole line.
Consideration was given to the case τ2 ≥ 2τ1.

The present work is dedicated to further investiga-
tion into the mechanism of echo signal formation upon
three-pulse excitation of a spin system of quadrupole
nuclei.

2. THEORETICAL BACKGROUND

We consider the case when the total number of
responses of a spin system to three-pulse excitation is
equal to 16. In each specific case, the responses are
grouped in a different manner.

The calculation was performed in the framework of
the density matrix method, as was done by Das et al.
[2, 3], and led to the following expressions for the
amplitudes of nine possible echo signals at the instant
of time t:

(1)

(2)

Em 1 m,+
1( )

0( ) = 2 Ix'( )m 1 m,+ A1 xi( ) ωm 1 m,+ t 0–( )sin{ } ,

t 0=

Em 1 m,+
2( ) τ1( ) = 2 Ix'( )m 1 m,+ A2 xi( ) ωm 1 m,+ t τ1–( )sin{ } ,

t τ1=
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

Em 1 m,+
3( )

2τ1( )

=  2 Ix'( )m 1 m,+ A3 xi( ) ωm 1 m,+ t 2τ1–( )sin{ } ,

t 2τ1=

Em 1 m,+
4( ) τ2( )

=  2 Ix'( )m 1 m,+ A4 xi( ) ωm 1 m,+ t τ2–( )sin{ } ,

t τ2=

Em 1 m,+
5( )

2τ2( )

=  2 Ix'( )m 1 m,+ A5 xi( ) ωm 1 m,+ t 2τ2–( )sin{ } ,

t 2τ2=

Em 1 m,+
6( ) τ1 τ2+( )

=  2 Ix'( )m 1 m,+ A6 xi( ) ωm 1 m,+ t τ1 τ2+( )[ ]–( )sin{ } ,

t τ1 τ2+=

Em 1 m,+
7( )

2τ1 τ2+( )

=  2 Ix'( )m 1 m,+ A7 xi( ) ωm 1 m,+ t 2τ1 τ2+( )–[ ]sin{ } ,

t 2τ1 τ2+=

Em 1 m,+
8( ) τ1 2τ2+( )

=  2 Ix'( )m 1 m,+ A8 xi( ) ωm 1 m,+ t τ1 2τ2+( )–[ ]sin{ } ,

t τ1 2τ2+=

Em 1 m,+
9( )

2τ1 2τ2+( )

=  2 Ix'( )m 1 m,+ A9 xi( ) ωm 1 m,+ t 2τ1 2τ2+( )–[ ]sin{ } ,

t 2τ1 2τ2.+=
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Here, xi = ( )m + 1, mγ t∆;  and t∆ are the ampli-

tude and the duration of the ith pulse of an rf field lin-
early polarized along the X axis of the electric field gradi-
ent, respectively (i numbers the pulses in the sequence);

γ is the nuclear gyromagnetic ratio; ( )m + 1, m is the
matrix element of the operator Ix in the representation
of the quadrupole Hamiltonian Hq; Aκ(xi) stands for the
trigonometric functions of the angular duration of rf
pulses (κ numbers the amplitudes of the echo signals);
and m is the magnetic quantum number.

Under the assumption that the integrated intensity of
one response is taken to be unity, the intensity distribu-
tion has the following form:

3. RESULTS AND DISCUSSION
All these responses can be separated into two types

of observed signals: (i) signals of the first type are
observed under the excitation conditions considered in
[1], and (ii) signals of the second type are generated
under the conditions discussed in part in [4–6]. These
signals of responses can be observed immediately at the
instants of pulses, in the intervals between the pulse
sequences, etc. Their common feature is as follows: in
order for these signals to be observed, it is necessary to
create special conditions for their excitation. For exam-
ple, in order to observe all the responses at the instants
of pulses, the following conditions must be met: (1) the
onset of the pulse sequence must be synchronized not
at the onset of the first pulse but to the left from it in
order to observe the left wing of the response, and
(2) the excitation conditions must be changeable over a
wide range.

This can be achieved by different methods, for
example, by varying the radio pulse duration, the time
interval between radio pulses, and the repetition period
of the pulse sequence. The location of almost all
responses depends on the time intervals τ1 and τ2 of the
pulse sequence. Figure 1 illustrates three possible vari-
ants of three-pulse excitation: τ2 ≥ 3τ1, τ1 ≥ 3τ2, and
τ1 = τ2.

The first variant of three-pulse excitation (τ2 ≥ 2τ1)
was investigated experimentally and theoretically in
[1–3, 7, 8]. According to the calculations, nine echo sig-
nals can be observed in this case. In actual fact, only
five response signals were observed in the experiments.
Under the condition τ2 ≥ 2τ1, no echo signal is observed
at the instant of time t = τ2. However, in the case when

1
2
--- Ix' H1

i
H1

i

I x'

Em 1 m,+
1( )

0( ) = 1, Em 1 m,+
2( ) τ1( ) = 3, Em 1 m,+

3( )
2τ1( ) = 1,

Em 1 m,+
4( ) τ2( ) 2, Em 1 m,+

5( )
2τ2( ) 1,= =

Em 1 m,+
6( ) τ1 2τ2+( ) 3, Em 1 m,+

7( )
2τ1 τ2+( ) 2,= =

Em 1 m,+
8( ) τ1 τ2+( ) 2, Em 1 m,+

9( )
2τ1 2τ2+( ) 1.= =
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τ2 ≈ 3τ1, the echo signal at the instant t = τ2 becomes
visible. 

The second variant (τ1 ≥ 3τ2) is of chief interest. In
this case, observations of nine echo signals are also the-
oretically possible. Our prime interest here is in the
echo signals observed at the following instants of time:
t = τ2, 2τ2, 2τ1, 2τ1 + τ2, τ1 + 2τ2, and 2τ1 + 2τ2. All these
cases are included in the first variant. It is worth noting
that the locations of two echo signals (t = τ2 and 2τ2) are
very unusual. These signals are recorded after the first
pulse. There arises a paradoxical situation: the earlier
signals “know” about the later time interval (this para-
dox also manifests itself, but not so clearly, in the first
variant). Moreover, the envelopes of these signals
depend on the time interval τ2 between the second and
third pulses. This paradox comes into existence,
because a new pulse, when acting on the sample, gives
rise to a reflection of the preceding time interval, i.e.,
changes its direction. As a result, the new state “for-
gets” information regarding the preceding time interval.
In our case, after the third pulse, we have (τ1 + τ2) – τ1 =
τ2 and (τ1 + 2τ2) – τ1 = 2τ2. Analysis of the whole set of
responses demonstrates that the nuclear spin system
“remembers” all that occurred with it but, particularly,
sets off the current instant of time. This implies that, at
the current instant of time (after the action of a new
pulse), the nuclear spin system resides in a new current
state.

The third variant (τ1 = τ2) can be obtained from the
first two variants. Under the three-pulse excitation,
five response signals are formed. The intensity distri-

bution is as follows: (0) = 1, (τ1) = 5,Em 1 m,+
1( )

Em 1 m,+
2( )

(a)

(b)

(c)

0 τ1 τ2

τ2τ10 t

t

tτ1 τ20

Fig. 1. Variants of three-pulse excitation: (a) τ2 ≥ 3τ1, (b) τ1 ≥
3τ2, and (c) τ1 = τ2.
2
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(2τ1) = 5, (3τ1) = 4, and (4τ1) = 1.
This allows for a quantum-type accumulation of
nuclear quadrupole resonance signals that can be used
for samples containing quadrupole nuclei with a small
natural occurrence.

In this work, KReO4 was chosen as the object of
investigation (187Re resonance, J = 5/2, 5/2–3/2 transi-
tion, ν2 = 55.651 MHz, T = 77 K, T2 = 390 µs, T1 =
4800 µs). For τ1 = 150 µs and τ2 = 50 µs, we observed
six echo signals at the following instants of time: t1 =
50 µs, t2 = 100 µs, t3 = 250 µs, t4 = 300 µs, t5 = 350 µs,
and t6 = 400 µs. The amplitude maximum of the echo
signals recorded at the instants t1 and t2 was observed at

T0 = /2.

In the case when the duration of the rf pulses
changes in the range of tw ~ τ1, the responses are
observed (the wings of the signals become visible) at
the instants of pulse action. The amplitude maximum of
these signals cannot be observed experimentally
because of the effects of the pulses, but its location can
be determined from the signal shapes by varying the
location of the midpoint of the line through the change
in the duration of each radio pulse.

Em 1 m,+
3( )

Em 1 m,+
4( )

Em 1 m,+
5( )

T2T1
P

Thus, different variants of excitation of echo signals
in a three-pulse sequence make it possible to extent the
range of spectroscopic and technical applications of the
pulse method.
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Abstract—The mobility of an end domain wall in (Bi,Lu)3(Fe,Ga)5O12 single-crystal garnet ferrite films with
(210) orientation is determined by the photoresponse method. It is shown that the mobility of end domain walls
in these films is considerably higher than that in (111) single-crystal garnet ferrite films free of rapidly relaxing
ions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mechanism of magnetization reversal through
the motion of an end domain wall makes it possible to
increase significantly the speed of controlled magne-
tooptical transparencies [1, 2]. For the first time, the
velocity of an end domain wall Vh was measured in
(Bi,Y)3(Fe,Ga)5O12 bilayer single-crystal garnet ferrite
films with the (111) orientation upon transitions of bub-
ble domains from the punched-through state to the
floating state and vice versa [3, 4]. It was found that the
end domain wall velocity is approximately two times
higher than the velocity of a side 180° Bloch wall. Note
that the end domain walls of floating bubble in bilayer
films have a domed form.

It is known that a planar end domain wall is formed
upon pulsed magnetization reversal of inhomogeneous
single-crystal garnet ferrite films [5–11]. Specifically,
this wall is formed in a layer with a weaker magnetic
anisotropy (or at the layer boundary) either through the
coalescence of closely located nuclei with reverse mag-
netization or through the rotation of the magnetization
vector. The range of magnetic fields in which end
domain walls exist can be taken as a measure of the
inhomogeneity of a single-crystal garnet ferrite film.

2. THEORETICAL BACKGROUND

The theory proposed by Khodenkov [12] is based on
the assumption that the angle between the magnetiza-
tion vector inside the end domain wall and the normal
to this wall varies in the same manner as in a 180°
Bloch domain wall. According to this theory, the rela-
tionship for the mobility of an end domain wall has the
following form:

(1)µh αγ∆h/ 1 α 2
+( ).=
1063-7834/02/4405- $22.00 © 0899
Here, α is the Gilbert dimensionless attenuation param-
eter, γ is the gyromagnetic ratio,

(2)

A is the exchange interaction constant, Ku is the uniax-
ial anisotropy constant, and 4πMs is the saturation mag-
netization.

The initial mobility of a 180° Bloch domain wall
can be determined from the relationship [13]

(3)

where

(4)

For single-crystal garnet ferrite films free of rapidly
relaxing ions, we have α ! 1. Consequently,

(5)

The dynamics of a planar end domain wall over the
entire range of its existence was investigated by Œorgov
et al. [14] for a (Bi,Y,Lu)3(Fe,Ga)5O12 single-crystal
garnet ferrite film with the (111) orientation. It was
shown that the experimental mobility of the end domain
wall (2.7 ± 0.2 cm s–1 Oe–1) agrees closely with the the-
oretical value (2.2 cm s–1 Oe–1) obtained from relation-
ship (1).

It should be noted that Y3+ and Lu3+ are slowly relax-
ing ions and do not contribute significantly to the atten-
uation parameter of the (111) single-crystal garnet fer-
rite films free of rapidly relaxing ions. However, the
attenuation parameter of these films increases drasti-
cally provided a constant magnetic field is applied in
the plane of the (111)-oriented film [15] or the film has
the (110) or (210) orientation when the orthorhombic
magnetic anisotropy arises [16, 17].

∆h A/ Ku 2πMs
2

–( )[ ]
1/2

,=

µ α 1– γ∆,=

∆ A/Ku( )1/2
.=

µh ! µ.
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The goal of the present work was to investigate the
motion of an end domain wall in (Bi,Lu)3(Fe,Ga)5O12
single-crystal garnet ferrite films with the (210) orien-
tation. These films exhibit orthorhombic magnetic
anisotropy, and the easy magnetization axis is tilted at a
sufficiently large angle θ with respect to the normal to
the film plane [18]. We report data for a sample with the
following parameters: h = 11 µm (film thickness), θ =
46°, 4πMs = 43 G, α = 0.0135, and Ku = 1050 erg/cm3.

3. EXPERIMENTAL TECHNIQUE

The dimensionless attenuation parameter was deter-
mined from the width of the ferromagnetic resonance
line. Note that the aforementioned value of α can be
overestimated because of the inhomogeneity of the sin-
gle-crystal garnet ferrite film. The value of HK – 4πMs

(where HK = 2Ku/Ms is the field of uniaxial magnetic
anisotropy) was also determined from the ferromag-
netic resonance data, specifically from the resonance
fields when the external magnetic field is perpendicular
and parallel to the film plane. The value of 4πMs was
calculated from the field of bubble collapse provided
the effect of the tilt of the easy magnetization axis was
ignored.

The measurements were performed on a universal
magnetooptic setup providing high-speed laser photo-
graphic observations of magnetization reversal. The
Faraday effect was used to visualize the domain struc-
ture.

In the initial state, the sample was magnetized with
a bias field Hb exceeding the saturation field Hs. The
pulsed magnetic field Hp was applied in the opposite
direction. During the course of a pulse, the total exter-
nal field was determined as H = Hp – Hb. The widths of
the front and the tail of the magnetic field pulse were
equal to 7 and 40 ns, respectively.

The motion of the end domain wall was investigated
over the entire range of its existence. This range is lim-
ited, from below, by the minimum magnetic field in
which the end domain wall is formed and, from above,
by the minimum field in which the so-called wave of
magnetic moment turn-over is generated [19].
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Dependence of the velocity of an end domain wall Vh on the
external magnetic field H.
PH
The velocity of the end domain wall was determined
from the photoresponse signal when the wall was
located in the midplane of the film [20].

4. RESULTS AND DISCUSSION

The dependence of the velocity of an end domain
wall Vh on the external magnetic field H is shown in the
figure. According to the theory proposed in [12], this
dependence has a linear behavior; however, the experi-
mental mobility (µh = 150 cm s–1 Oe–1) is substantially
larger than the theoretical value (~2.5 cm s–1 Oe–1)
obtained from relationship (1). In single-crystal garnet
ferrite films of similar composition, the mobility of the
end domain wall for the (210) orientation is consider-
ably larger than that for the (111) orientation [14]. This
confirms the inference made earlier in [17] that the
attenuation parameter in a single-crystal garnet ferrite
film increases in the presence of orthorhombic mag-
netic anisotropy.

Thus, we demonstrated that, in single-crystal garnet
ferrite films free of rapidly relaxing ions, the mobility
of the end domain wall for the (210) orientation is
almost two orders of magnitude higher than that in the
case of the (111) orientation.
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Abstract—The dynamics and temperature dependences of the mobility of domain walls in EuFeO3 (from 4.2
to 300 K), TmFeO3 (from 100 to 300 K), LuFeO3 (300 K), YFeO3 (460 K), and DyFeO3 (from 77 to 300 K)
orthoferrites are investigated in pulsed magnetic fields H up to 4.8 kOe. It is found that the field dependence of
the domain wall velocity v (H) in all these compounds exhibits a nonlinear behavior and consists of discrete
portions corresponding to the magnetic field ranges ∆Hi in which the domain wall moves at a constant velocity.
The appearance of these features in the ∆Hi ranges is associated with magnetoelastic and flexural oscillations
generated by domain walls in a strongly dissipative nonlinear medium. It is revealed that the domain wall
dynamics at supersonic velocities has a non-one-dimensional character. At the instant the domain wall breaks
through the sound barrier, the domain structures undergo a nonstationary transformation with changes in the
fine structure of the domain walls. The interface motion is accompanied by self-organizing processes. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Owing to the specific features in crystalline and
magnetic structures of rare-earth orthoferrites RFeO3

(where R3+ is a rare-earth ion), the anisotropy (HA),
exchange (HE), and Dzyaloshinski–Moriya (HD) fields
induced in these materials are such that the spin flop
occurs in anomalously high fields HSF = –HD/2 +
((HD/2)2 + HEHA)1/2 ≈ 75 kOe [1]. In lower fields, the
domain wall (DW) motion is the main mechanism of
magnetization reversal in rare-earth orthoferrites.
Experimental and theoretical investigations have
revealed that the dynamics of domain walls in the
YFeO3 orthoferrite exhibits a nonlinear non-one-
dimensional character [2]. For YFeO3, the limiting
velocity of stationary domain-wall motion C ≈ 19.74 ×
103 m/s considerably exceeds the velocities of trans-
verse (v t) and longitudinal (v l) sound (4.2 × 103 and
7.2 × 103 m/s, respectively). As a rule, the limiting
velocity of stationary domain-wall motion C in orthof-
errites is estimated from the spin-wave dispersion
dependence within the long-wave approximation: C ~
γ(2HEA/M0)1/2, where A is the inhomogeneous
exchange constant, M0 is the sublattice magnetization,
and γ is the gyromagnetic ratio [2]. In the case when the
velocity of a domain wall in YFeO3 exceeds the veloc-
ity of sound, the domain wall bends spontaneously and
periodic domain structures in the form of truncated
ovals with the same spacing necessarily arise on this
domain wall irrespective of the configuration of the
applied magnetic field [2]. Adjacent structures of this
type are connected via singular points at which the
1063-7834/02/4405- $22.00 © 20902
derivatives with respect to spatial coordinates have a
discontinuity. It has been demonstrated that, in the
course of domain wall motion over a sample, the non-
one-dimensional domain structures execute a stationary
motion (in the process, their initial shape remains
unchanged) and their spacing λ decreases with an
increase in the driving magnetic field [2]. For YFeO3
platelike samples, the dependence of the domain wall
velocity on the amplitude of the driving magnetic field
v (H) exhibits a number of features in the form of hori-
zontal segments in the magnetic field ranges ∆Hi in
which the domain wall velocity remains virtually con-
stant. Zvezdin et al. [3] proved that the appearance of
these features in the dependence v (H) at velocities
coinciding with v t (in the range ∆Ht) and v l (in the
range ∆Hl) is associated with magnetoelastic interac-
tions. The horizontal segments appear in the depen-
dence v (H) at supersonic velocities (C > v i > v t, l)
under the parametric resonance conditions when the
frequency of natural (wall) flexural oscillations of
domain walls coincides with the spatial frequency
determined by the size of growth inhomogeneities [4].

Unlike the structure of YFeO3, the structure of
orthoferrites RFeO3 involves two magnetic subsystems
(Fe3+ and R3+) with different properties. As a conse-
quence, the orthoferrite compounds undergo different
orientational phase transitions due to changes in tem-
perature, field, or elastic stresses [1, 2]. In rare-earth
orthoferrites, the magnetic anisotropy constants are
renormalized at the instant the domain wall breaks
through the sound barrier when the phase velocities of
spin waves in the magnetic and elastic subsystems coin-
002 MAIK “Nauka/Interperiodica”
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cide with each other [2, 3]. In our earlier work [5], we
visually observed and examined the separation of a
dynamically deformed region from the domain wall in
TmFeO3 immediately at the instant the domain wall
broke through the sound barrier.

Earlier, the domain wall dynamics in rare-earth
orthoferrites was investigated using either a magne-
tooptical variant of the Sixtus–Tonks induction method
or a stroboscopic technique with a low temporal resolu-
tion (about 6 ns) in TmFeO3 with an insufficient accu-
racy in measurements and without control of the
domain wall shape during domain wall motion. To our
knowledge, the domain wall dynamics in rare-earth
orthoferrites at different temperatures has not been
examined using double-exposure high-speed photomi-
crography [2, 4].

2. EXPERIMENTAL RESULTS

All the rare-earth orthoferrite samples were pre-
pared in the form of plates cut out normally to the optic
axis. The plate thickness was chosen in such a way as
to provide the maximum magnetooptical contrast and
did not exceed 1 × 10–4 m. The samples were chemi-
cally polished in superheated H3PO4 acid with the aim
of decreasing the coercivity of the samples. A pulsed
magnetic field (induced by two Helmholtz coils 1 ×
10−3 m in diameter) with a leading edge of shorter than
20 ns and an amplitude as high as 4.8 kOe was applied
to the sample. The pulse frequency was no higher than
several hertzs. Prior to motion, a single straight-line
domain wall was produced at a distance of 1.5 × 10–4 m
from the inner edge of the coil under the action of a gra-
dient magnetic field. The gradient field strength varied
depending on the temperature and the rare-earth ortho-
ferrite composition. For example, the domain wall
dynamics in TmFeO3 at a temperature of 168 K was
investigated in a constant magnetic field with a gradient
of 2500 Oe/cm.

The temperature dependences of the domain wall
mobility µ can be examined by measuring the relax-
ation dependences of the domain wall displacement in
a high-frequency sinusoidal magnetic field [6]. The
maximum mobility µ thus obtained for TmFeO3 sam-
ples is observed at a temperature of 168 K and amounts
to 860 cm/(s Oe). Below this temperature, the domain
wall mobility µ in TmFeO3 decreases with a decrease in
the temperature to 100 K. The temperature dependence
of the domain wall mobility µ for the EuFeO3 rare-earth
orthoferrite is plotted in Fig. 1. As the temperature
decreases, the mobility µ in this orthoferrite increases
to 5800 cm/(s Oe) at 4.2 K in accordance with a law
close to 1/T2 [2, 6]. The domain wall mobilities in 25-
and 90-µm-thick DyFeO3 samples at room temperature
are equal to 343 and 295 cm/(s Oe), respectively.
A decrease in the temperature to 77 K results in a
decrease in the mobility µ to 50 cm/(s Oe). Single crys-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
tals of all these orthoferrites were grown by crucible-
less melting with optical heating.

The LuFeO3 orthoferrite sample 1.05 × 10–4 m thick
was grown through spontaneous crystallization from a
solution in the melt. In this orthoferrite, as in the YFeO3

and EuFeO3 compounds, the spin reorientation is
absent in the temperature range covered; i.e., the
domain wall mobility µ should increase with a decrease
in the temperature. However, as the temperature
decreases, the domain wall mobility, which is equal to
350 cm/(s Oe) at room temperature for this sample,
decreases and becomes virtually zero at 80 K. This
indicates a low quality of the samples grown by the
above method.

The dependences v (H) were analyzed using double-
exposure high-speed photomicrography [2, 4]. Owing
to the improvement in the spatial and temporal resolu-
tions, the error in determining the velocity, the location,
and the shape of domain walls at the highest velocity
equal to 20 × 103 m/s was reduced to 2% [4, 5]. Typical
double dynamic domain walls in LuFeO3 samples at
room temperature and in the YFeO3 sample at 460 K
are shown in Fig. 2. At supersonic velocities, the
domain walls bend with the formation of truncated
ovals joined together. The shape and size of these non-
one-dimensional structures on the domain walls (Fig. 2c)
in the YFeO3 sample at T = 460 K (the Néel tempera-
ture is 640 K) at the domain wall mobility µ =
2000 cm/(s Oe) coincide with those observed earlier
at T = 100 K on the domain wall with the highest
mobility µ = 20000 cm/(s Oe) [2]. The evolution of
non-one-dimensional structures on the domain walls in
rare-earth orthoferrites (Figs. 2a, 2b, 4a, 4c) also agrees
with that observed previously in YFeO3 [2]. The non-
one-dimensional structures (with the spacing λ) arise
less than in 1 ns after breaking through the sound bar-
rier at any domain wall velocity in the range C > v i >
v t, l . This process has a nonstationary character.
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Fig. 1. Temperature dependence of the domain wall mobil-
ity in EuFeO3.
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(a)

(b)

(c)

Fig. 2. Micrographs of the double dynamic domain structures in rare-earth orthoferrites (a, b) LuFeO3 at 293 K and (c) YFeO3 at

460 K at different velocities: (a) v  ≥ v t, (b) 12 × 103 m/s, and (c) 18 × 103 m/s. The time separation between the light pulses is 15 ns.
Scale: (a, b) 75 and (c) 60 µm to one centimeter.
The field dependences of the domain wall velocity
for EuFeO3 at the liquid-helium temperature, LuFeO3

at room temperature, and YFeO3 at 460 K are displayed
in Fig. 3. The domain wall mobility in YFeO3 at this
temperature becomes comparable to those in rare-earth
orthoferrities. Analysis of the dependences v (H) (Fig. 3)
revealed features common to all these dependences.
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Fig. 3. Field dependences of the domain wall velocity in
platelike orthoferrite samples: EuFeO3 at T = 4.2 K,
LuFeO3 at T = 300 K, and YFeO3 at T = 460 K.
P

The dependences v (H) for all rare-earth orthoferrites,
as for YFeO3 [4], exhibit a nonlinear behavior and con-
sist of a discrete set of horizontal segments in the mag-
netic field ranges ∆Hi in which the domain wall velocity
is constant. The first two segments in the dependence
v (H) in the ranges ∆Ht and ∆Hl correspond to the
domain wall velocities coinciding with v t and v l. For
example, the first two horizontal segments are observed
at velocities of 3.5 × 103 and 5.8 × 103 m/s for EuFeO3

and 3.5 × 103 and 6.3 × 103 m/s for LuFeO3, which are
equal to the velocities v t and v l in these materials. The
dependence v (H) for TmFeO3 at transonic domain-
wall velocities (3.6 × 103 and 6.2 × 103 m/s) also has
horizontal segments in the ranges ∆Ht and ∆Hl.

Apart from the horizontal segments in the ranges
∆Ht and ∆Hl, all the rare-earth orthoferrite samples are
characterized by the ranges ∆Hi in which the domain
wall motion at supersonic velocities is retarded at dif-
ferent temperatures. For example, the horizontal seg-
ments in the dependence v (H) for EuFeO3 are observed
at velocities of 3.5 × 103, 5.8 × 103, 7.5 × 103, and 14 ×
103 m/s in fields up to 0.5 kOe at the liquid-helium tem-
perature (at the maximum domain-wall mobility µ) and
at velocities of 3.5 × 103, 5.8 × 103, 7.5 × 103, 12 × 103,
14 × 103, 15.5 × 103, 17 × 103, and 18 × 103 m/s in fields
up to 2 kOe at 77 K (Fig. 3). The dependence v (H) for
TmFeO3 in fields as high as 4.8 kOe also involves a
number of horizontal segments at domain wall veloci-
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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(a) (b) (c)

Fig. 4. Micrographs of the double dynamic domain structures in TmFeO3 at 168 K at different velocities v  (103 m/s): (a) 6.5, (b) 3.6,
and (c) 16. The time separation between the light pulses is 15 ns. Scale: 60 µm to one centimeter.
ties of 3.6 × 103, 6.2 × 103, 8 × 103, 11.9 × 103, 13.5 ×
103, 15 × 103, and 16 × 103 m/s. Similar horizontal seg-
ments in the ranges ∆Hi (in addition to the ranges ∆Ht

and ∆Hl) at supersonic domain-wall velocities are
revealed for DyFeO3. The dependence v (H) for
LuFeO3 in fields up to 4.8 kOe is also characterized by
the specific features at supersonic velocities of 9 × 103

and 12 × 103 m/s (Fig. 3). The dependence v (H) for this
compound in higher fields was not investigated.

For rare-earth orthoferrites, as in orthoferrite YFeO3
[4], the regularities observed in the behavior of ∆Hi and
v (H) are as follows. (1) The dependence v (H) at v t <
v l < C contains a discrete set of horizontal segments in
the ranges ∆Hi whose length and number increase with
an increase in the sample thickness. (2) For v i  C,
the difference (v i + 1 – v i) decreases and the range ∆Hi

increases.

The motion of a non-one-dimensional domain wall
at supersonic velocities in the field range Hi < H < Hi + 1
is stationary in all the rare-earth orthoferrites under
investigation. The spacing of the oval structures on the
curved domain wall is retained during motion of this
wall in the sample.

Among supersonic horizontal segments in the
dependence v (H) for TmFeO3, the horizontal segments
at domain wall velocities of 8 × 103, 11.9 × 103, and
16 × 103 m/s are noteworthy. The change-over between
these velocities (i.e., at the end of the corresponding
horizontal segment over a field range of about 1 Oe)
occurs in an irregular manner. At this point, the domain
wall velocity increases drastically and the spacing λ of
semioval structures decreases jumpwise. Within the
∆Hi range, λ remains constant, whereas the amplitude
A of non-one-dimensional structures gradually
decreases to zero at the end of the horizontal segment.
As can be seen from Fig. 4c, the spacing λ in TmFeO3
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
at a domain wall velocity of 16 × 103 m/s is equal to
0.4 × 10–4 m. This is clearly seen in the case when the
domain wall is illuminated with the first pulse. The val-
ues of λ at domain wall velocities of 8 × 103 and 11.9 ×
103 m/s are equal to 3.3 × 10–4 and 1.8 × 10–4 m, respec-
tively. For comparison, the smallest spacing λ observed
earlier in YFeO3 at a domain wall velocity of 16 ×
103 m/s is equal to 2.5 × 10–4 m [2]. The dependence of
the spacing λ of non-one-dimensional structures
(formed on the domain wall) on the pulsed magnetic
field for TmFeO3 is depicted in Fig. 5.

In the TmFeO3 sample (Fig. 4b), the initial two-
domain structure undergoes a dynamic transformation
when the domain wall breaks through the sound barrier.
It is seen from the micrograph in Fig. 4b that the
dynamic domain structure becomes more complex.
A new magnetic phase moving from right to left is
formed at this instant. The region with the initial
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Fig. 5. Dependence of the spacing of non-one-dimensional
structures in TmFeO3 on the magnetic field.
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dynamic domain structure is retained in the left part.
The domain wall velocity v t in this region is equal to
3.6 × 103 m/s. The new magnetic phase arising in the
right part moves from right to left and is bounded from
above and from below by conventional domain walls
with well-defined contours. These domain walls move in
the original direction with velocities v1 = 0.9 × 103 m/s
and v 2 = 2.7 × 103 m/s. Their vector sum is equal to v t.
The domain walls at these (transonic) velocities have a
straight-line shape. A similar transformation of the
domain structure in this orthoferrite occurs when
breaking through the sound barrier in the vicinity of v l.
After breaking through the sound barriers (at v  > v t, l),
the domain wall motion becomes stationary and the
velocity is uniquely determined by the amplitude of the
driving magnetic field (Figs. 4a–4c). The same trans-
formation of the domain structure is observed in
EuFeO3 (T = 4.2 K) at transonic domain-wall velocities
(v  ~ v t, l).

The velocity of motion v l of the curved domain wall
(from right to left) in the direction normal to the plane
of this wall is equal to 6.5 × 103 m/s. The observed
domain wall bending coincides in shape with a kink
revealed earlier for YFeO3 [2]. The curved domain wall
has a diffuse contour. This is clearly seen in the lower
part of the dynamic domain structure in the micrograph
upon illumination with the second pulse. In this region,
unlike the conventional sharp wall observed between
dark and bright regions, the magnetooptical contrast is
absent. The new magnetic phase moves in two mutually
perpendicular directions (Fig. 4b). One of them coin-
cides with the direction of original upward domain-wall
motion (along the [100] axis). At the same time, the
curved domain wall moves (from right to left) along the
[010] axis. The presence of the region with the initial
domain structure (the dynamic domain structure on the
left of Fig. 4b at a velocity equal to v t) indicates that all
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Fig. 6. Field dependence of the domain wall velocity. The
inset shows the evolution of non-one-dimensional struc-
tures on a domain wall in TmFeO3 at 168 K.
P

the processes manifesting themselves in this micro-
graph proceed simultaneously in the period between
two light pulses (15 ns). The size of the region occupied
by the new magnetic phase is equal to 6.5 × 10–4 m
(from right to left) and 1.8 × 10–4 m (from bottom to
top), which correspond to velocities of higher than 40 ×
103 and 12 × 103 m/s, respectively. The former velocity
exceeds the limiting velocity of stationary domain-wall
motion in this orthoferrite. The latter velocity coincides
with the velocity at which the horizontal segment is
observed in the dependence v (H) for this compound
(Fig. 6).

Figure 4a shows the micrograph of the stable double
domain structure in which the domain wall moves with
a velocity equal to the velocity of longitudinal sound
v l = 6.7 × 103 m/s. The domain wall has well-defined
leading and trailing edges. A new oval-shaped magnetic
phase with a spacing of approximately 1.22 × 10–4 m is
formed in front of the domain wall at the boundary with
the coil. The rate of growth of this structure with a dif-
fuse contour over the period between two light pulses is
estimated at 9 × 103 m/s. Moreover, fringes with diffuse
edges and a rapidly decreasing intensity are seen in the
micrograph. Their spacing is equal to 40 µm. Two
structures of the same type at a domain wall velocity of
16 × 103 m/s are also observed in the micrograph in
Fig. 4c. In addition to the fringes with the aforemen-
tioned spacing, there appear fringes with a spacing of
20 µm. The superposition of the latter fringes is a typi-
cal fringe pattern. The location of their origin depends
on the domain wall velocity and lies on the normal to
the tangent at the point of domain wall bending at the
instant the domain wall breaks through the sound
barrier.

3. DISCUSSION

The rare-earth orthoferrite samples studied in this
work contain trivalent ions R3+ of different types: the
Dy3+ ions belong to Kramers-type ions (with an odd
number of electrons and a half-integer spin), whereas
the Eu3+, Tm3+, and Lu3+ ions are non-Kramers-type
ions. In EuFeO3 and LuFeO3, the total quantum number
J is equal to zero; hence, the magnetic moment of R3+

ions is zero and temperature spin-reorientation transi-
tions are absent. The Dy3+ ion is the Ising-type ion. In
this case, the magnetic moment is aligned along a par-
ticular crystal axis irrespective of the magnetic field ori-
entation. In DyFeO3, the first-order (Morin) phase tran-
sition from a weak ferromagnetic state to an antiferro-
magnetically ordered state Gy is observed at a
temperature below 40 K. In TmFeO3, the spin-reorien-
tation transition (a change in the orientation of the
weak ferromagnetic vector from the [001] axis to the
[100] axis) in the form of two second-order phase
transitions GxFz  GzFx occurs in the temperature
range 86–92 K [1].
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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The dependences v (H) for rare-earth orthoferrites
exhibit a pronounced nonlinear behavior and consist of
horizontal segments in the specific magnetic-field
ranges ∆Hi such that the domain wall velocity changes
jumpwise when changing over from one range to
another (Fig. 3). The domain wall motion at a velocity
coinciding with a phase velocity of excited quasiparti-
cles is accompanied with erenkov radiation. This
manifests itself in the appearance of horizontal seg-
ments in the field ranges ∆Hi in the dependence v (H).
The first two horizontal segments in the dependence
v (H) are caused by magnetoelastic interactions with
transverse (v t) and longitudinal (v l) acoustic waves and
correspond to the field ranges [2, 3]

(1)

where ηt, l stands for the acoustic damping constants,
δt, l are the magnetoelastic interaction constants, and
∆0 is the thickness of the static domain wall. The ranges
∆Ht and ∆Hl for rare-earth orthoferrites are appreciably
wider than those for YFeO3 [2, 4]. At the same tem-
perature (77 K) and identical plate thickness (about
10−4 m), the ratio /  is equal to
100 Oe : 35 Oe. Such a large difference between the
values of ∆Ht, l for rare-earth orthoferrites and YFeO3,
according to relationship (1), can be associated with
the increase in the magnetoelastic interaction con-
stants δt, l [2].

All the rare-earth orthoferrite single crystals under
investigation exhibit characteristic concentration
growth bands that form a periodic relief of magnetic
inhomogeneities. The specific features in the depen-
dence v (H) in the ranges ∆Hi for rare-earth orthofer-
rites at supersonic domain-wall velocities are similar to
those observed for YFeO3 [4]. Therefore, the resonance
retardation of domain walls by parametrically excited
Winter (wall) magnons also occurs in rare-earth ortho-
ferrites. The amplification factor of these oscillations
over a wide range of growth inhomogeneity sizes is
found to be larger than unity. The appearance of new
horizontal segments in the dependence v (H) for rare-
earth orthoferrite samples with artificially applied mag-
netic inhomogeneities confirms the applicability of the
proposed model of domain wall retardation. Further-
more, this offers a way to control stationary supersonic
domain-wall velocities by varying artificially produced
magnetic inhomogeneities.

An increase in the domain wall mobility in EuFeO3
with a decrease in the temperature to 4.2 K (Fig. 1) sug-
gests a low coercivity of the sample. This coercivity
was estimated from the dependence v (H) (Fig. 3) at
several Oersteds. The highest domain-wall mobility in
all the studied orthoferrites is one order of magnitude
less than that obtained by Rossol [6] from the relaxation
dependences of the domain wall displacement in a
high-frequency magnetic field. According to [6], the

Č

∆Ht l, ∆0δt l,
2

1 v t l,
2

/C
2( )–[ ]

1/2
/3M0η t l, v t l, ,≅

∆HtEuFeO3
∆HtYFeO3
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coercivity of rare-earth orthoferrite samples is less than
1 Oe and the mobility µ increases in the temperature
range covered (down to 77 K). Among the samples
studied in our work, the YFeO3 orthoferrite has the
highest domain-wall mobility, 20 × 103 cm/(s Oe) at
100 K, which is of the same order of magnitude as that
found in [6]. The highest mobility µ in EuFeO3 (Fig. 1)
proves to be one order of magnitude smaller. The
mobility of Néel-type domain walls is defined as µN ≈
γα–1(A/(K + 2πM2))1/2 [2, 6]. The difference between
the dependences µ(T) for YFeO3 and rare-earth orthof-
errites can be explained by the fact that the temperature
dependence of K for RFeO3 orthoferrites is more pro-
nounced than those of the Hilbert phenomenological
damping constant α and the other quantities (A and M).
Moreover, the quantity K is additionally affected by
dynamic renormalization of the anisotropy constants at
v   v t, l [2–5]. It is under these conditions that the
nonstationary transformation of the domain wall is
observed in EuFeO3 at 4.2 K and TmFeO3 at 168 K
(Fig. 4b).

For orthoferrites LuFeO3 at T = 300 K (Figs. 2a, 2b),
TmFeO3 at T = 168 K (Fig. 4c), and YFeO3 at T = 460 K
(Fig. 2c), the non-one-dimensional structures, which
were revealed earlier only in YFeO3 at the highest
mobility [2], are observed at supersonic domain-wall
velocities that are multiples of v t and v l. The minimum
spacing (40 µm) of non-one-dimensional structures on
the supersonic domain wall in TmFeO3 is found to be
considerably less than that in YFeO3. This can be asso-
ciated only with the effect of rare-earth ions R3+. All the
foregoing indicates that the formation of these struc-
tures substantially depends on the temperature and
dynamic changes in K and on rare-earth ordering.

A jumpwise change in the spacing of non-one-
dimensional structures with an increase in the driving
magnetic field (Figs. 5, 6) can be explained in terms of
the theoretical inferences following from the probabi-
listic approach to the description of the nonlinear and
non-one-dimensional dynamics of domain walls in
orthoferrites. The main tendencies for non-one-dimen-
sional structures to change can be analyzed using the
following relationships for their spacing λ and ampli-
tude A [7]:

(2)

(3)

Here, τ is the lifetime of magnetic oscillations and ϕ is
the angle between the normal to the domain wall plane
and the direction of the domain wall velocity. The qual-
itative dependences λ(H) and A(H) calculated accord-
ing to formulas (2) and (3) are depicted in Fig. 5. The

λ 1 v /C( )2
–( )

1/2
τC

2
/µ( )=
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spacing and amplitude of non-one-dimensional struc-
tures decrease linearly with an increase in the driving
magnetic field. This is in agreement with the experi-
mentally observed dynamic changes in the non-one-
dimensional structures on the domain walls.

It is found that jumps in the domain wall velocity
bring about changes in the size of non-one-dimensional
structures on the domain walls. For example, this size
in TmFeO3 varies with jumps in the ith velocity v i to
8 × 103, 11.9 × 103, and 16 × 103 m/s (Fig. 6). The
domain wall acceleration to each velocity v i necessarily
occurs with the domain wall breaking through the
sound barrier. When the domain wall motion becomes
unstable, the domain wall exhibits a negative differen-
tial mobility [3]. This corresponds to a jump v i 
v i + 1 from one horizontal segment to another horizontal
segment (∆Hi  ∆Hi + 1). Note that the difference
between the corresponding values of H (the range
between ∆Hi and ∆Hi + 1 in Fig. 6) is approximately
equal to 1 Oe and is not constant. In this scenario,
according to [7], two time scales can be separated in the
dynamic behavior of the domain wall. The relaxation of
the domain wall toward the state with a local energy
minimum after switching off the pulsed magnetic field
is a fast process whose time is determined by relaxation
in the magnetic subsystem (10–9 s). On the other hand,
tunneling of the domain wall through the potential bar-
rier produced by an elastic dynamic strain is a slow pro-
cess. The time of domain wall tunneling through the
barrier is two orders of magnitude longer. The observed
phenomena of domain structure transformation during
supersonic motion of a domain wall in a weak ferro-
magnet under the conditions of elastic nonlinear excita-
tion and strong dissipation belong to self-organizing
processes. The non-one-dimensional structures on the
domain wall play the role of an additional channel of
the energy dissipation [7]. As the domain wall velocity
approaches v i, the integral in relationship (2) diverges
and the ratio A/λ tends to zero; i.e., the two-dimensional
solution transforms into the one-dimensional solution.
At this instant, the domain wall velocity changes jump-
wise and, according to formula (2), the spacing of oval
structures increases to infinity; i.e., the domain wall
becomes planar.

For each of the aforementioned domain wall veloc-
ities (including the velocities v t and v l), there is a local
minimum of the domain wall energy. The transitions
between these minima are similar to tunneling processes
[7]. A qualitative pattern illustrating the observed pro-
cesses is shown in the inset to Fig. 6. The supersonic
domain wall tends to transform its own structure in
such a way as to provide new additional channels of
dissipating the energy acquired by the system. This
transformation of dissipative structures on the domain
wall impedes an increase in the negentropy in open
structures to which the moving domain wall can be
assigned [3, 8]. The domain wall energy (with an
increase in the driving magnetic field in the range ∆H at
P

sonic and above supersonic velocities) is maximum at
the end of the horizontal segment. This is also con-
firmed by the previously observed increase in the inten-
sity of light scattering by dynamic deformations of
domain walls at the end of the range ∆Ht prior to a
change-over from v t to v l in YFeO3 [9].

Apart from the temperature-induced transitions,
orthoferrites can undergo spin-orientation transitions
caused by external magnetic fields or elastic stresses [1,
2]. The main magnetic phase (GxFz) of the RFeO3
orthoferrites under investigation can involve domain
walls of two types, namely, with and without rotation of
the weak magnetic vector [10]. The antiferromagnetic
vector rotates in the (010) plane at the effective in-plane
anisotropy constant Kab > 0 and in the (001) plane at
Kcb < 0. In the latter case, the weak ferromagnetic
moment vanishes; i.e., the Morin-type first-order phase
transition GxFz  Gy occurs inside the wall prior to
antiferromagnetic ordering throughout the domain. In
the case when the domain wall moves in fields far from
the spin-flop field (H ! HSF) but has an effective in-
plane anisotropy constant that changes upon exposure
to temperatures [1], the dynamic renormalization of
this constant after the domain wall breaks through the
sound barrier can be sufficient to change the sign of the
constant. For TmFeO3 at 168 K, the change in sign of
the in-plane anisotropy constant (Kab  Kcb) can lead
to the fact that the weak ferromagnetic moment van-
ishes at the center of the domain wall and that the anti-
ferromagnetic moment vector rotates in the (001) hard
magnetic plane.

The dynamics of the Bloch (DW ⊥  [010]) and Néel
(DW ⊥  [100]) domain walls at transonic velocities dif-
fer significantly [3, 4, 7]. For the Bloch domain wall,
the dependence v (H) has a horizontal segment in the
range ∆Hl, whereas the range ∆Ht is equal to zero. For
the Néel wall in the same sample, the horizontal seg-
ments are observed in the ranges ∆Ht and ∆Hl; i.e., the
sound barrier at v l is higher than that at v t [3]. This
inference is confirmed by a more complex domain
structure in the micrograph in Fig. 4b and a more sub-
stantial domain structure transformation observed at
the velocity v l. Moreover, the magnetooptical contrast
of the dynamic domain structures (Fig. 4b) allows us to
trace their magnetization distribution. The region with
an intermediate contrast that is traversed by the new
magnetic phase (between the domain structures at
domain wall velocities of 0.9 × 103 and 2.7 × 103 m/s)
should involve a region of the antiferromagnetic phase
Gy in which the weak ferromagnetism is absent. A sim-
ilar change in the magnetooptical contrast in DyFeO3 in
the vicinity of TM was observed earlier for the static
magnetization distribution in the weak ferromagnetic+,
antiferromagnetic, and weak ferromagnetic– metastable
phases [11].

In addition to a conventional domain wall motion,
Bar’yakhtar et al. [2] proposed the soliton mechanism
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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to offer an explanation of the possible motion of
domain walls at velocities above the limiting velocity
(the domain wall motion at a velocity of 40 × 103 m/s).
A soliton is generated through a fluctuation at the lead-
ing edge of a domain wall under the action of a shock
wave. As was shown in [2], the soliton free of a topo-
logical charge in the magnetic field grows and deforms
in different directions. When propagating along the
direction of the domain wall motion (Fig. 4b, top and
bottom), the soliton annihilates with the domain wall.
As a result, the stationary growth rate of the soliton
increases to 12 × 103 m/s. At the same time, the domain
wall motion at velocities actually higher than the limit-
ing velocity becomes possible in the perpendicular
direction due to the strongest longitudinal shock defor-
mations. This motion is highly unstable and, appar-
ently, proceeds through the soliton mechanism. The
velocity of the new magnetic phase with the diffuse
leading edge (the kink-type domain wall moving from
right to left in Fig. 4b) is governed by the transition
GxFz  Gy , which occurs considerably faster than the
interface motion [11] and, most likely, is not restricted
by the limiting velocity of stationary domain-wall
motion. These data indicate the possibility of forming a
new magnetic phase with antiferromagnetic ordering.

The formation of new magnetic phases with diffuse
boundaries and fringes of the same shape, decreasing
intensity, and different spacings can occur in front of
the domain wall in different directions along the nor-
mals to the non-one-dimensional structures on a
domain wall moving at supersonic velocities (Figs. 4a,
4c). This can be explained in terms of the fluctuation
mechanism of domain wall breaking through the sound
barrier. Note that each subsequent domain-wall break-
ing through the sound barrier should be accompanied
by the generation of a shock wave [5]. The micrographs
presented in this work were obtained in real time. This
implies that the recorded changes in the magnetooptical
contrast and the domain wall motion occur simulta-
neously. The lifetimes of magnetic and elastic excita-
tions (≤10–9 s) and the velocities of motion do not pro-
vide a satisfactory explanation of the origin of these
changes. At the same time, the character and specific
features of the changes observed in the magnetooptical
contrast and their interrelation with the domain wall
breaking through the sound barrier do not rule out the
shock wave mechanism. Earlier, Bar’yakhtar et al. [2]
investigated forced oscillations of domain walls in a
strip domain structure in YFeO3 under the same condi-
tions and even observed mechanical fracture of the
samples. This directly indicates that the generated
shock waves possess a high energy. In a similar situa-
tion, Chetkin et al. [13] examined a thin plate of the
FeBO3 weak ferromagnet upon ultrasonic excitation
and observed magnetoelastic waves that led to the mod-
ulation in the intensity of the magnetooptical contrast
with diffuse boundaries. Apparently, the shock waves
are excited at all supersonic domain-wall velocities.
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However, this process is attended by changes in the pro-
file and distribution of deformations in the domain wall
depending on the velocity. Recently, shock waves
whose velocity is four times higher than the velocity of
sound in condensed media have been recorded with a
temporal resolution of 4 × 10–10 s [14]. As applied to our
case, the shock wave (leading the domain wall) possi-
bly modulates the intensity of light transmitted through
the sample, which is observed in the micrographs
(Figs. 4a, 4c).

4. CONCLUSIONS

Thus, we revealed the conditions of the formation of
a moving domain wall in the studied orthoferrites and
elucidated the mechanisms of dissipation of its energy
into magnetoelastic and flexural (Winter) oscillations.

A domain wall moving in a dissipative nonlinear
medium is a self-organizing dynamic system. On this
basis, the observed evolution of non-one-dimensional
supersonic dynamics in rare-earth orthoferrites is in
agreement with the theoretical inferences made in [7].

It was demonstrated that, under the conditions of
strong dynamic renormalization of the anisotropy con-
stant, the transformation of a ac-type domain wall into
a ab-type domain wall with the formation of an inter-
face region of antiferromagnetic ordering becomes
energetically favorable at the instant the domain wall
breaks through the sound barrier. The observed nonsta-
tionary behavior of the domain wall is described and
interpreted qualitatively.
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Abstract—Considering the case of a plate of a centrally antisymmetric tetragonal antiferromagnet for illustra-
tion, it is shown that if the tensor of magnetoelectric coupling constants is antisymmetric, then an external elec-
tric field causes earlier unknown anomalies to occur in the spectrum of bulk acoustic magnons even in the
exchangeless limit. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

From the point of view of spin-wave dynamics, the
linear magnetoelectric effect in a magnetic crystal is of
special interest when (i) the electric component of an
electromagnetic field can excite (through linear cou-
pling) those normal magnon modes in a many-sublat-
tice crystal that are not of the magnetic-dipole type in
the quasi-static limit ω/c  0 (ω is the spin-wave fre-
quency and c is the speed of light) [1, 2] and (ii) the dis-
persion of spin waves in a magnetically ordered crystal
can be intentionally changed using an external static
electric field [1].

Such a situation is realized in centrally antisymmet-
ric antiferromagnets (AFMs), for example, in TbPO4,
which possesses a fairly high magnetoelectric suscepti-
bility [3]. The linear magnetoelectric coupling in mag-
netically ordered crystals of this type can be generally
written in the form

(1)

where  is the tensor of magnetoelectric coupling con-
stants and P is the electric-polarization vector [4–9]. In
the two-sublattice AFM model, m = (M1 + M2)/2M0 is
the ferromagnetism vector, l = (M1 – M2)/2M0 is the
antiferromagnetism vector, M1 and M2 are the sublat-
tice magnetizations, and |M1| = |M2 | = M0. Therefore,
for a fixed orientation of the equilibrium ferromag-
netism vector m, both the magnitude and character of
magnetoelectric coupling in these AFMs can depend
critically on the equilibrium orientation of the antifer-
romagnetism vector l.

Calculations showed that both optical [8] and acous-
tic modes [9] of the magnon spectrum can be of the
electric-dipole type in an antiferromagnetic crystal with
the magnetoelectric interaction energy of Eq. (1). In
[10–12], the conditions under which a new class of
electric-dipole exchangeless spin waves (electrostatic
spin waves) can propagate in a plate of a centrally anti-

Fme γ̂lmP,=

γ̂
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symmetric AFM with magnetoelectric interaction (1)
were first found. If the magnetoelectric coupling tensor

 in Eq. (1) is antisymmetric, then magnons of this
class are not of the magnetic-dipole type in a certain
geometry and, therefore, cannot propagate in the
absence of linear magnetoelectric interaction. Physi-
cally, the propagation of exchangeless spin waves of
this class in a magnetoelectric plate is due to indirect
spin–spin interaction via the long-range electrostatic
field. In fact, these electric-dipole magnons are Cou-
lombic magnetic TM polaritons (E-type polaritons). As
shown in [10–12], under certain conditions, magnetic-
dipole and electric-dipole exchangeless spin waves can
propagate simultaneously and independently in a finite
AFM with an antisymmetric magnetoelectric coupling
tensor. Magnetic-dipole magnons (magnetostatic spin
waves) are Coulombic magnetic TE polaritons (H-type
polaritons). Therefore, by analogy with polariton
dynamics, we will refer to magnetic-dipole exchange-
less magnons as H magnons and to electric-dipole ones
as E magnons in what follows.

For E magnons, it was shown in [10–12] that mag-
netoelectric interaction in combination with spatial dis-
persion (due to inhomogeneous exchange interaction)
leads to a number of anomalies in the spectrum of this
type of dipole exchange spin waves with dispersion
relation Ων(k⊥ ), where k⊥  is the wave number1 and the
mode index ν = 1, 2, 3, … runs over an infinite discrete
set. Among the anomalies under discussion are, in par-

ticular, inflection points (∂2Ων(k⊥ )/∂  = 0), extremum

points (∂Ων(k⊥ )/∂k⊥  = 0, ∂2Ων(k⊥ )/∂  ≠ 0), and cross-
over points (Ων(k⊥ ) = Ωρ(k⊥ ) for ν ≠ ρ). In [10–12], we

1 In this paper, we ignore the dependence of the magnon spec-
trum Ων(k⊥ ) on the direction of the wave vector k⊥  in the plane
of the plate and consider only the dependence on the wave num-
ber |k⊥ | = k⊥ .

γ̂

k ⊥
2

k ⊥
2
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considered, as an example, the collinear phase of a tet-

ragonal AFM (|l | = 1, |m | = 0) with structure  in
the absence of external magnetic (H) and electric (E)
fields and under the condition that the normal to the
film plane n, the direction of wave propagation k⊥ /|k⊥ |,
and the equilibrium vector l lie in one plane (l || n or
l ⊥ n).

It was found in [10–12] that the optimal conditions
for the existence of the anomalies under discussion in
the magnon spectrum are realized if the corresponding
electric-dipole-active branch of the spectrum of acous-
tic spin waves has a low activation energy. For example,
this can take place in weakly anisotropic magnetic crys-
tals (in particular, in an easy-plane AFM) or in the case
where the magnon mode in question is soft and the
crystal is near a phase transition from the given mag-
netic state.

From the above discussion, it is clear that, when
developing a consistent theory of the spectrum of
acoustic electric-dipole magnons in a magnetoelectric
crystal, one should take into account at least the follow-
ing two factors: (1) the finite size of the actual magnetic
sample and (2) the spatial dispersion due to inhomoge-
neous exchange interaction. We note that the effect of
an external electric field on the spectrum of electric-
dipole magnons in a finite centrally antisymmetric
AFM has not yet been investigated despite the fact that,
due to its low activation energy, the acoustic-magnon
spectrum is also sensitive to external fields. As shown
in [4–7], even in the collinear phase (|l | = 1, |m | = 0) of

a magnetoelectric AFM with structure , an
external electric field E ⊥  l induces a uniform magneti-
zation m ⊥  E, (ml) = 0. As a result, spin waves that are
of the electric-dipole type for |E | = 0 become, in addi-
tion, of the magnetic-dipole type when |E | ≠ 0. How-
ever, the features of the spectrum of electric-dipole
exchangeless magnons have not yet been investigated
in a finite magnetoelectric AFM placed in an external
electric field.

The objective of this paper is to find the conditions
under which additional anomalies arise in the spectrum
of bulk exchangeless spin waves in a finite centrally
symmetric AFM when an external electric field E is
applied to it.

2. BASIC RELATIONS

In the case of |m | ! |l | = 1 (relativistic interactions
are weak in comparison to the intersublattice
exchange), the energy density of a two-sublattice tet-
ragonal magnetoelectric AFM can be written in terms

4z
±
2x

±
I

–

4z
±
2x

±
I

–

P

of the ferromagnetism m and antiferromagnetism l vec-
tors (following [4–7]) in the form

(2)

where δ and α are the homogeneous and inhomoge-
neous intersublattice exchange constants, respectively;
b and β are the anisotropy constants; and κ⊥  and κ are
the dielectric susceptibilities.

As an example (in order to compare the results with
those obtained in [10–12]), we will study the spin-wave
dynamics of a centrally antisymmetric tetragonal AFM

with structure . In this AFM, the tensor of the
magnetoelectric coupling constants is antisymmetric
and the magnetoelectric interaction energy Fme in
Eq. (2) can be written in the form [4–7]

(3)

where γ1,2,3 are the magnetoelectric coupling constants.
Phenomenologically, the dynamic properties of the
model characterized by Eq. (2) is described by a set of
coupled dynamic equations composed of magnetostat-
ics and electrostatics equations, Landau–Lifshitz equa-
tions for the vectors m and l, and an effective equation
of motion for the electric polarization P. In the case
under study, the spin-wave frequency satisfies the ine-
qualities [1]

(4)

where g is the gyromagnetic ratio, f ~ z2/mv 0, and z and
m are the absolute value of the ion charge and the
reduced mass of the unit cell of volume v 0, respectively.
Therefore, one can reduce the initial set of dynamic
equations by eliminating m and P between them.

In the case of |E | = |H | = 0, the AFM under study can
have either of two equilibrium magnetic phases: the
easy-axis one (l || z) or easy-plane one (l ⊥  z) [4–7]. If
the equilibrium antiferromagnetism vector l lies in the
plane of propagation of the magnetic polariton wave
(taken as one of the coordinate planes) and coincides
with one of the coordinate axes, then, as analysis
reveals, both phases can support propagating magnetic
polaritons of the TE and TM types independently. In
particular, for l || x and k ∈  xy (i.e., kz = 0; k is the wave
vector), the following (nonzero) components of the

vectors E, H, , and m are related to one another:2 Hz ,

Ex, y, ,  ≠ 0 in a spin wave of the electric-dipole

2 The notation  means that the quantity A performs small-ampli-
tude oscillations about its equilibrium value.

F Fm Fme Fp,+ +=

Fm M0
2

0.5δm2
0.5α ∇ l( )2

0.5blz
2

+ +(=

+ 0.5βlx
2
ly

2 mH– ),

Fp 0.5κ 1–
Pz

2
0.5κ⊥

1–
Px

2
Py

2
+( ) PE,–+=

4z
±
2x

±
I

–

Fme –γ1mz lxPy lyPx±( ) γ2Pz mxly mylx±( )–=

– γ3lz mxPy myPx±( ),

ω ! gδM0, f /κ⊥ , f /κ ,

l̃

Ã

m̃z l̃ y
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type (magnetic TM polariton) and Ez , Hx, y , ,  ≠ 0
in a spin wave of the magnetic-dipole type (magnetic
TE polariton). If l || x and k ∈  xz (ky = 0), then the non-
zero components of the vectors E, H, and l are Hy , Ex, z ,

,  ≠ 0 for the TM polariton and Ey , Hx, z , ,  ≠
0 for the TE polariton. It is easy to verify that analogous
conditions for the propagation of magnetic TM and TE
polaritons take place in an infinite magnetoelectric
AFM not only in the easy-plane phase for k ∈  xy (kz =
0) or k ∈  yz (kz = 0) but also in the easy-axis phase. For
example, if in the equilibrium we have |m | = 0 and l || z,
then the magnetic polaritons of the types indicated
above can propagate independently for k ∈  xz (ky = 0)
and for k ∈  yz (kx = 0) [9]. It should be stressed that in
all these cases, because of the linear magnetoelectric
effect, the normal polariton-like modes of both TE and
TM types are of a nonreciprocal nature, ω(k) ≠ ω(–k),
in the case of (kl) ≠ 0, and the velocity of electromag-
netic waves is finite (ω/c ≠ 0).

As shown in [4–7], an external electric field E can
change the equilibrium magnetic configuration of the

magnetoelectric AFM with the ( ) structure even
in the absence of an external magnetic field H. In par-
ticular, if E ⊥  l and |H | = 0, then |m | ≠ 0 (m ⊥  E). How-
ever, the dispersion of propagating waveguide magnetic
polaritons in a finite magnetoelectric crystal in these
circumstances has not yet been investigated. In this
paper, we consider only the case where the direction of
an external electric field E is such that the electric-
dipole magnon corresponding to the Coulombic mag-
netic TM polariton for |E | = 0 becomes, in addition, of
the magnetic-dipole type when |E | ≠ 0 and, therefore,
the Coulombic magnetic TM polariton is transformed
into a Coulombic magnetic EH polariton.

As an example, we consider (following [4–7, 11])
the easy-plane phase of a tetragonal AFM with the

 structure: l || x, E || z, and m || y. In this case, in
the absence of an electric field (|E | = 0), as indicated
above, bulk exchangeless magnons of the H and E types
can propagate independently with k ∈  xy (kz = 0) and
k ∈  xz (ky = 0) in an infinite magnetoelectric crystal
described by Eq. (2). In the presence of an external
electric field applied perpendicular to the plane of prop-
agation of such a TM polariton (e.g., k ∈  xy, E || z), this
polariton transforms into a magnetic EH polariton
whose spectrum consists of two branches in the Cou-
lombic limit. In order to simplify analytical calcula-
tions, we will assume that in the easy-plane AFM
described by Eq. (2) (with the easy plane taken as the
xy coordinate plane) the following condition is satis-
fied:

b @ β. (5)

In this case, the spectrum of normal spin waves for any
k consists of two (high- and low-frequency) branches
[12]. In particular, if |E | = |H | = 0 and k ∈  xy (kz = 0),

m̃y l̃z

m̃y l̃z m̃z l̃ y

4z
±
2x

±
I

–

4z
±
2x

±
I

–
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then the magnetic TM polariton is associated with the

low-frequency magnon mode ( ,  ≠ 0) and the TE
polariton is associated with the high-frequency magnon

mode ( ,  ≠ 0).

In the case of k ∈  xz (ky = 0) and |E | = |H | = 0, the

high-frequency magnon ( ,  ≠ 0) is of the electric-

dipole type and the low-frequency magnon ( ,  ≠ 0)
is of the magnetic-dipole type. Naturally, the magneto-
electric effects will be more pronounced in the spec-
trum of the low-frequency magnon mode. For this rea-
son, in what follows, we will restrict our consideration
to those Coulombic magnetic EH polaritons that are
associated with the low-frequency magnon spectrum of

the magnetoelectric AFM under study ( ,  ≠ 0, in
the case of l || x). Furthermore, we will ignore the influ-
ence of the high-frequency branch of the magnon spec-

trum on the low-frequency branch for ω2 ! δb,
where ωs ≡ gM0. We also restrict our consideration to

the case of E || z, l || x, k || xy (kz = 0), and ,  ≠ 0,
because the low-frequency magnon mode is of the elec-
tric-dipole type for k || y and of the magnetic-dipole
type for k || x when Ez ≠ 0, |H | = 0, and l || x.

With these restrictions, the dispersion relation for
the EH magnons under study in the infinite AFM
described by Eq. (2) can be written in the following

form in the short-wavelength limit (k2 ≡  + ):

(6)

In this paper, we study the dynamics of a finite mag-
netoelectric crystal. Therefore, the set of dynamic
equations should be supplemented by boundary con-
ditions. We will assume that the normal n to the sur-
face of the AFM is directed along one of the coordi-
nate axes (x or y).

If the magnetic moments at the surface of the AFM
plate are completely pinned, the boundary (exchange)
conditions can be written in the form [13]

(7)

where ζ is the coordinate along the normal n and 2d is
the thickness of the plate.

The electrodynamic boundary conditions for the
magnetostatic potential ϕ (H ≡ ∇ϕ ) and electrostatic
potential ψ (E ≡ ∇ψ ) are assumed to have the following

m̃z l̃ y

m̃y l̃ x

m̃y l̃z

m̃x l̃ y

m̃z l̃ y

ωs
2

m̃z l̃ y

kx
2

ky
2

ω2 ω0
2

cm
2 k2

+( ) 1 Apky
2k 2–

+( ) ωE
2
kx

2 µky
2

kx
2

+( )
1–
,+=

Ap 4πγ1
2κ⊥

2
/ δε( ), µ 1 4π/δ,+≡=

ωE
2 ωs

2γ2
2
4πκ2

Ez
2
/δ,≡

ε⊥ 1 4πκ⊥ , cm
2

0.25αδωs
2
,≡+≡

ω0
2

cm
2 β/α , ε 1 4πκ.+≡ ≡

m̃ l̃ 0, ζ d ,±= = =
2
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form (depending on the relative orientation of the nor-
mal n and the equilibrium direction of the antiferro-
magnetism vector l):

(8)

where α∗  = α∗ (l/ |l |) and β∗  = β∗ (l/ |l |).
In the specific case where both surfaces of the plate

are covered with a superconducting layer, we have
1/β∗  = 0 and α∗  = 0 [14].

3. THE SPECTRUM OF BULK EH MAGNONS

In order to calculate the spectrum of waveguide EH
magnons with allowance for the magnetoelectric and
inhomogeneous exchange interactions, we use the
method developed in [15–17] for calculating the spec-
trum of dipole–exchange bulk magnons in a thin ferro-
magnetic film. From the electrostatics and magnetostat-
ics equations (for ω/c  0) subject to boundary con-
ditions (8), we express the amplitudes of the
electrostatic potential ψ and magnetostatic potential ϕ
in terms of the amplitude of the y component of the

antiferromagnetism vector , assuming the spatial vari-
ation of this component along the normal to the film to
be given and using the Green’s function method. There-
fore, the problem of determining the magnon spectrum
of a finite magnetoelectric crystal is reduced to a
boundary-value problem in the form of an integrodif-

ferential equation for  with exchange boundary con-
ditions (7) alone. Following the method developed in
[15–17], we seek a solution to our boundary problem in
the form of an expansion in terms of the eigenfunctions
of the exchange boundary-value problem. In the case of
boundary condition (7), we have [15–17]

(9)

where τ ∈  xy, t ⊥  n, and κν = πν/d, with ν = 1, 2, … .
Therefore, the dispersion relation that describes the
spectrum of waveguide EH magnons under consider-
ation with allowance for the magnetoelectric and inho-
mogeneous exchange interactions for k ∈  xy, n || x or
n || y and boundary conditions (7), (8) can be repre-
sented in the form of an infinite set of linear algebraic
equations for the unknown amplitudes Aν.

Since the structure of this set of equations is basi-
cally the same for different relative orientations of the
vectors l and n in the chosen plane (xy) of propagation
of the polariton wave, we write out the relevant expres-
sions only for the case of k ∈  xy and n || x (kx = κν and
ky = k⊥ ):

ψ α*
∂ψ
∂ζ
-------+ 0, ϕ β*

∂ϕ
∂ζ
------+ 0, ζ d ,±= = =

l̃

l̃ y

ly r t,( ) Aν κνζ( ) iωt ik⊥ t–( ),expsin
ν
∑=

Wνν k ⊥( ) ω2
–( )Aν Wνρ k ⊥( )Aρ– 0,=

ν ρ, ν ρ,≠ 1 2 …,, ,=
P

(10)

The condition for the existence of a nontrivial solution
to the set of equations (10) for the amplitudes Aν is the
vanishing of the determinant of their coefficients. An
analysis reveals that if 1/β∗  = 0 and α∗  = 0 in Eq. (8)
(perfect superconductor), then we have Wνρ = 0 for any
ν, ρ, and k⊥ . In this case, the spectrum of the waveguide
EH magnons under study, traveling along the AFM
plate, is found from Eqs. (10) to be

Wνν k ⊥( ) 1 ApPνν k ⊥( )+( )≡

× ω0
2

cm
2

kx
2

ky
2

+( )+( ) ωE
2
Rνν k ⊥( ),+

Wνρ k ⊥( ) ApPνρ k ⊥( ) ω0
2

cm
2

kx
2

ky
2

+( )+( ) ωE
2
Rνρ k ⊥( ),+≡

Pνν k ⊥( ) k ⊥
2 ζ κ νζ( ) tG ζ t,( ) κνt( ),sind

d–

d

∫sind

d–

d

∫=

Pνρ k ⊥( ) k ⊥
2 ζ κ ρζ( ) tG ζ t,( ) κνt( ),sind

d–

d

∫sind

d–

d

∫=

Rνν k ⊥( ) κν
2 ζ kνζ( ) tF ζ t,( ) kνt( )cos ,d

d–

d

∫cosd

d–

d

∫=

Rνρ k ⊥( ) κνκρ ζ kρζ( ) tF ζ t,( ) kνt( )cos ,d

d–

d

∫cosd

d–

d

∫=

G ζ t,( )

k ⊥ t d– ζα+( )( )sinh

× k ⊥ ζ d ζα+ +( )( )/∆G,sinh

d ζ t,≤ ≤–

k ⊥ t d ζα+ +( )( )sinh

× k ⊥ ζ d– ζα+( )( )/∆G,sinh

t ζ d ,≤ ≤











≡

ζαk ⊥( )tanh k ⊥ α*, ∆G k ⊥ 2k ⊥ d( ),sinh≡=

F ζ t,( )

ak ⊥ t d– ζβ+( )( )cosh

× ak ⊥ ζ d ζβ+ +( )( )/∆F,cosh

d ζ t,≤ ≤–

ak ⊥ t d ζβ+ +( )( )cosh

× ak ⊥ ζ d– ζβ+( )( )/∆F,cosh

t ζ d ,≤ ≤











≡

aζβk ⊥( )tanh ak ⊥ β*,=

∆F ak ⊥ 2ak ⊥ d( ), asinh µ.≡ ≡
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(11)

Thus, if we solve Eqs. (10) using the coupled-mode
method [18], then, in general, the off-diagonal elements
Wνρ ≠ 0 in Eqs. (10) can be considered a perturbation
with respect to the zeroth-order approximation in Wνρ ≠
0 given by Eq. (11). The presence of Wνρ ≠ 0 gives rise
to coupling between the waveguide EH-magnon modes
with indices ν and ρ. Therefore, if the modes with given
indices ν and ρ are degenerate in Eq. (11), then the
crossover points will disappear for Wνρ ≠ 0, and in the
vicinity of a specific crossover point, which is deter-
mined from Eqs. (10) in the case of Wνρ = 0 by putting
Ων(k⊥ ) = Ωρ(k⊥ ) for ν ≠ ρ, the spectrum of the bulk EH
magnons under study can be found from Eqs. (10) and
(11) to be

(12)

A similar calculational technique can also be used in
the case of n || y, k ∈  xy. In what follows, we calculate
the spectrum of EH magnons for n || x and n || y through
second order in Wνρ ! 1 (ν ≠ ρ); that is, we ignore
repulsion of the dispersion curves at the crossover point
and put kx = κν, κy = k⊥  for n || x and ky = κν, kz = k⊥  for
n || y. As a result, we obtain

(13)

In order to investigate the effect of nonlocal spin–spin
interaction on the spectrum of EH magnons traveling
along the AFM plate and described by Eqs. (2), (7), and
(8), we will analyze Eqs. (13) in the specific case of
α  0. This limit corresponds to the exchangeless
approximation, which ignores the spatial dispersion
due to inhomogeneous exchange interaction and is
well known from the theory of magnetic-dipole mag-
nons [13].

4. THE SPECTRUM OF BULK EH MAGNONS
IN THE EXCHANGELESS LIMIT

In the case of α  0 and Wνρ(k⊥ ) ! 1 (ν ≠ ρ), as
follows from Eqs. (13), the short-wavelength limit of
the spectrum of the bulk magnons under study for k ∈
xy, E || z, and l || x can be written in the form

Ων
2

k ⊥( ) Wνν k ⊥( )– 0, ν 1 2….,= =

Wνν k ⊥( ) ω2
–( ) Wρρ k ⊥( ) ω2
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2

k ⊥( )– 0,≈
ν ρ.≠
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2
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2
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2
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2

+( )
1–

+( )=

+ ωE
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2 κν

2
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,

n x,||
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2
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2
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2
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2 κν

2
+( )+( ) 1 Apκν

2
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2 κν
2
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+( )=

+ ωE
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k ⊥
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k ⊥( ) ω0
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1 Apk ⊥
2 κν
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k ⊥

2
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1–
+( )=
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where kx = κν, ky = k⊥  for n || x and ky = κν, kx = k⊥  for
n || y. It can be seen from Eqs. (14) that this spin-wave
spectrum has condensation points at k⊥   0 and
k⊥   ∞; that is, |Ων(k⊥ ) – Ωρ(k⊥ ) |  0 for the two
fixed mode indices ν and ρ. When |E | = 0, then in a cen-
trally antisymmetric AFM described by Eq. (2), the dis-
persion curves of the spectrum in the exchangeless
limit (14) correspond to direct waves (∂Ων(k⊥ )/∂k⊥  > 0)
for n || x and to back waves (∂Ων(k⊥ )/∂k⊥  < 0) for n || y
for any mode index ν and wave number k⊥ . For a given
value of the wave number k⊥  and a fixed mode index ν <
ρ, we have Ων(k⊥ ) > Ωρ(k⊥ ) for n || x and Ων(k⊥ ) <
Ωρ(k⊥ ) for n || y. For any mode index ν, the dispersion
curves described by Eqs. (14) have an inflection point
(|E | = 0) at some value of k⊥  ≠ 0 in both cases of n || x
and n || y. When |E | = 0, the dispersion of exchangeless
EH magnons under study described by Eqs. (14) is due
to magnetoelectric interaction alone (Ων(k⊥ ) ≠ const
only if  ≠ 0 [10–12]).

Now, we consider the anomalies in the spin-wave
spectrum of Eq. (14) that are due to Ez ≠ 0. An analysis
reveals that in this case, the equation ∂Ων(k⊥ )/∂k⊥  = 0
can have a nonzero root for both n || x and n || y. There-
fore, an electric field E applied along the z axis can
cause an extremum to appear at k⊥  ≠ 0 on the dispersion
curve Ων(k⊥ ) of bulk EH magnons with k ∈  xy for n || x
(or n || y). In particular, for µ > 1, an extremum appears
at k⊥  = k∗  on the dispersion curve described by Eq. (14)
for n || x or n || y if the following conditions are satisfied:

(15)

where k ∈  xy; kx = κν, ky = k⊥  for n || x and ky = κν, kx =

k⊥  for n || y; and R2 ≡ /Ap . If the strength of the

external field E || z is such that  < /µ, then for
a given mode index ν, the type of the dispersion curve
Ων(k⊥ ) described by Eq. (14) remains the same as in the
case of |E | = 0; that is, we have a direct wave
[∂Ων(k⊥ )/∂k⊥  > 0] for n || x and a back wave
[∂Ων(k⊥ )/∂k⊥  < 0] for n || y. In the case where the ine-

quality  > µ is true, as calculation shows, the
application of an electric field E || z reverses the wave
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type in comparison to the case of |E | = 0 for a given
mode index ν in Eq. (14) and a given relative orienta-
tion of n and l: we have a direct wave (∂Ων(k⊥ )/∂k⊥  > 0
for n || y and a back wave (∂Ων(k⊥ )/∂k⊥  < 0 for n || x.

In the case where the conditions of Eq. (15) are sat-
isfied, the modes with indices ν and ρ can have a cross
point (crossover) at k⊥  ≠ 0 for n || x and n || y. If at some
value of k⊥  ≠ 0 a bulk EH-magnon mode of Eq. (14) has
a maximum (µ > 1), then for mode indices ν < ρ we
have Ων(k⊥ ) > Ωρ(k⊥ ) in the vicinity of the long-wave-
length condensation point of the spectrum (k⊥   ∞)
and Ων(k⊥ ) < Ωρ(k⊥ ) for k⊥  ≠ 0. If at some value of k⊥  ≠ 0
a bulk EH-magnon mode of Eq. (14) with a fixed mode
index ν has a minimum (µ > 1), then for mode indices
ν < ρ we have Ων(k⊥ ) < Ωρ(k⊥ ) for k⊥   0 and
Ων(k⊥ ) > Ωρ(k⊥ ) for k⊥   ∞ (Figs. 1, 2).

Up to this point, when analyzing dispersion rela-
tions (13), we neglected the effects of inhomogeneous
exchange interaction (formally putting α  0). How-
ever, even in an infinite crystal, the contribution from
the inhomogeneous exchange interaction to the
energy of a spin wave described by Eq. (6) increases
with wave number k⊥ . The effect of this mechanism of
spatial dispersion on the spectrum of bulk EH mag-
nons under study in a finite centrally antisymmetric
AFM described by Eq. (2) is discussed in the follow-
ing section.

5. THE EFFECT OF INHOMOGENEOUS 
EXCHANGE INTERACTION

In general, an analysis of Eqs. (13) is difficult to
make, but it is significantly simplified if one assumes

ν = 2

ν = 1

ω2

ω2
C

ω2
B

ω2
A

0 k'

Fig. 1. Spectrum of bulk exchangeless EH magnons given

by Eq. (14) for n || x and, /µ <  < µ, where

 ≡ ,  ≡ (1 + Ap), and  ≡ (kν∗ ), with

 ≡ (R – 1)/(µ – R).

ω0
2
Ap ωE

2 ω0
2
Ap

ωA
2 ω0

2 ωB
2 ω0

2 ωC
2 Ων

2

kν*
2 κν

2

PH
that for n || x, the strength of the external electric field

Ez ≠ 0 is such that |Rν – 1| ! 1, where Rν = /Ap ,

and  =  + . In the case of n || y, calculations
are also simplified if the electric field E || z is such that
|Rν – µ| ! µ. Analysis of Eqs. (13) and (14) in this case
reveals that if in the exchangeless limit of Eq. (14) we
have Ων(k⊥ ) > Ωρ(k⊥ ) for modes with given indices ν
and ρ (ν < ρ) in the vicinity of a condensation point,
then even for an infinitely small inhomogeneous
exchange constant α the condensation point disappears
and an additional cross point (crossover) of the disper-
sion curves Ων(k⊥ ) and Ωρ(k⊥ ) of Eq. (13) arises at some
value of k⊥  ≠ 0.3 If the above condition in the vicinity
of a condensation point of dispersion curves of Eq. (14)
is not satisfied and we have Ων(k⊥ ) < Ωρ(k⊥ ) for ν < ρ,
then only the disappearance of this condensation point
takes place in Eqs. (13) in the case of α ≠ 0. Further-
more, if in the vicinity of the short-wavelength conden-
sation point (k⊥   ∞) we have ∂Ων(k⊥ )/∂k⊥  < 0 for a
given mode index ν in the exchangeless approximation
(α  0), then in the presence of inhomogeneous
exchange interaction (α ≠ 0) the condensation point dis-
appears and a minimum arises at some value of k⊥  ≠ 0 on
the corresponding dispersion curve Ων(k⊥ ). The appear-
ance of this minimum on the dispersion curve of Eq. (13)
with mode index νdepends critically on the strength of
the external electric field E || z for a given relative ori-
entation of the vectors n and l (k ∈  xy). In  particular,

the conditions ∂Ων(k⊥ )/∂k⊥  = 0 and ∂2Ων(k⊥ )/∂  > 0 can
be satisfied simultaneously for dispersion relation (13)

3  Here and henceforth, we neglect energy dissipation.
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Fig. 2. Spectrum of bulk exchangeless EH magnons given

by Eq. (14) for n || y and /µ <  < µ, where

 ≡ (kν∗ ),  ≡  + , and  ≡ (1 + Ap),

with  ≡ (µ – R)/(R – 1).
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with mode index ν and k⊥  ≠ 0 if  >  for n || l

and  <  for n ⊥ l.

Thus, the comparison of Eqs. (13) and (14) shows
that in the case of α ≠ 0 and Ez ≠ 0 an additional cross
point of dispersion curves of Eq. (13) for bulk EH mag-
nons appears in comparison to the exchangeless limit of
Eq. (14). In particular, in both cases of n || l and n ⊥ l,
two cross points Ων(kνρ) = Ωρ(kνρ) (kνρ ≠ 0) can appear
for the dispersion curves of Eq. (13) with mode indices
ν and ρ. For example, in the case of n ⊥ l (k ∈  xy), two
cross points can arise if condition (15) is satisfied. For
n || l, the spatial dispersion together with an external
electric field can also cause an additional extremum
(minimum) to appear on a dispersion curve Ων(k⊥ ) of
spin waves described by Eq. (13) at some value of k⊥  ≠ 0
if in the exchangeless limit (α  0) of Eq. (14) there

is only a maximum at k⊥  ≠ 0 for  >  >

.

When the quantity cmν/d is sufficiently large, the
dispersion curve Ων(k⊥ ) of EH magnons described by
Eq. (13) corresponds to a direct wave (∂Ων(k⊥ )/∂k⊥  > 0)
for any value of the wave number k⊥  and has no inflec-
tion point (∂Ων(k⊥ )/∂k⊥  = 0) and no crossover [Ων(k⊥ ) =
Ωρ(k⊥ )].

It is well known [19] that, when analyzing the
reflection and refraction of a bulk normal wave at the
boundary of a crystal, the shape of the wave-vector sur-
face of the normal wave is of prime importance. The
local geometry of a constant-frequency surface of the
normal bulk waves under study in an infinite crystal
must significantly affect the spectrum of these waves in
a finite crystal, because in the latter case, the spatial dis-
persion of the amplitude of bulk vibrations is a result of
the interference of bulk waves incident on and reflected
from the boundaries of the crystal. In the next section,
we analyze the combined effect of the magnetoelectric
and inhomogeneous exchange interactions on the shape
of the wave-vector surface of normal spin waves of the
EH type in an infinite AFM and the relationship
between the local geometry of this surface and the
anomalies in the spectrum of Eq. (13) of bulk EH mag-
nons in a plate of a magnetoelectric AFM.

6. THE SHAPE OF A CONSTANT-FREQUENCY 
SURFACE AND THE STRUCTURE 

OF THE WAVEGUIDE EH-MAGNON
SPECTRUM

Since in Eqs. (6) and (13) the wave vector of the EH
magnon under study is assumed to lie in the xy plane,
we should examine, using Eq. (6), the shape of the
intersection of the kxky plane and a constant-frequency
surface (ω = const) of the normal EH-type spin wave in
k space. The corresponding expression can be written
in the form

ωE
2 ων

2
Apµ

ωE
2 ων

2
Ap/µ

ων
2
Apµ ωE

2

ων
2
Ap/µ
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(16)

where /k2 ≡ sin2θ and k2 ≡  + . Analysis of the
extremum points of the curves described by Eq. (16)
and comparison with the results of the analysis of dis-
persion relations (13) presented above reveals that a
local extremum on the dispersion curve of the
waveguide EH magnon in question is associated with
the region of ∂ω/∂kx = 0 for n || y or ∂ω/∂ky = 0 for n ||
x in the corresponding cross section of the wave-vector
surface of the normal spin wave of the same polariza-
tion as in Eq. (16) propagating in the infinite crystal.
Whether this extremum is a maximum or a minimum is
determined by the sign of the local Gaussian curvature
of the curve described by Eq. (16) at this point. In par-
ticular, if |E | = 0 and n || y, an extremum at k⊥  ≠ 0 on a
dispersion curve described by Eq. (13), as well as the
region of ∂ω/∂kx = 0 in the corresponding cross section

of Eq. (16), can appear for ω2 < (1 + Ap)2 (Fig. 3). In
the case of a minimum (maximum) on a dispersion
curve of Eq. (13), the Gaussian curvature of the corre-
sponding portion of the wave-vector surface of Eq. (16)
will be positive (negative).

In the magnetoelectric AFM in question, the pres-
ence of an extremum on a dispersion curve of Eq. (13)
of bulk dipole–exchange magnons is determined not
only by the frequency ω, mode index ν, plate thickness
d, and wave number k⊥  of these magnons but also by the
strength of the external electric field Ez. For example,

when n || x,  > Apµ, and (1 + Ap) < ω2 < ,
the region of ∂ω/∂k⊥  = 0 can appear simultaneously on
curves of Eqs. (13) and (16) (Fig. 4). The points of
intersection of curves of Eq. (16) with straight lines ky =
const or kz = const carry information about the spectrum
of the corresponding waveguide EH magnons with
given wavenumber k⊥ , frequency ω, and mode index ν,
that is, information about curves of Eq. (13). In partic-
ular, when the normal to the surface of the plate n lies
in the kx , ky plane and is aligned with the axis of ordi-
nates (n || y), then the number of points that the straight
line kx = kperp and the curve of Eq. (16) have in common
is equal to the maximum number of bulk spin-wave
modes that can propagate along the x axis through an
AFM plate of thickness 2d and have the same wave
number k⊥  and frequency ω (i.e., the number of cross-
overs). In the same geometry, the common points of the
curve of Eq. (16) and the straight line ky = κν indicate
the wave numbers k⊥  with which the waveguide mag-
nons in question with a fixed mode index ν and fre-
quency ω can propagate through a thin plate of thick-
ness 2d of the AFM under study. Since the group veloc-
ity of a wave is aligned with the outward normal to the
wave-vector surface [19], an investigation of the local
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k
2 ω2 ωE
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Gaussian curvature of the cross section of the constant-
frequency surface described by Eq. (16) allows one, as
an analysis of Eq. (13) reveals, to determine the type
(direct or back waves) of bulk EH magnons corre-
sponding to the portion of the dispersion curve of
Eq. (13) characterized by given ω, κν, and k⊥ . In partic-
ular, a bulk spin wave with k ∈  xy propagating along a
plate with n || x and described by Eq. (13) will be of the
back-wave type if the projection of the outward normal
to the wave-vector surface onto the y axis at the point of
intersection of this surface and the straight line kx = κν
is negative; if this projection is positive, the corre-
sponding wave will be of the direct-wave type for given
k⊥ , ω, and κν.

In this paper, we primarily analyzed the zeroth-
order approximation in Wνρ ! 1 to Eqs. (10) and (11).
It should be noted, however, that when dispersion
curves of direct waves (∂Ων(k⊥ )/∂k⊥  > 0) and back
waves (∂Ων(k⊥ )/∂k⊥  < 0) intersect at a degeneracy point
[Ων(k⊥ ) = Ωρ(k⊥ )], then the degeneracy is lifted, accord-
ing to Eq. (12), and an additional extremum
(∂Ων(k⊥ )/∂k⊥  = 0) corresponding to a local maximum or
minimum of the dispersion curve appears on each of the
two separated branches of the spin-wave spectrum.

7. CONCLUSIONS

Thus, we have considered the case of a plate of a
centrally antisymmetric AFM and found the necessary
conditions under which the application of a static elec-

I II III

kx

0 ky

Fig. 3. Cross section of the wave-vector surface of EH mag-
nons described by Eq. (16) for |E | = 0 and different frequen-

cies: (I)  < ω2 < (1 + Ap), (II) (1 + Ap) < ω2 <

(1 + Ap)2, and (III) ω2 > (1 + Ap)2.

ω0
2 ω0

2 ω0
2

ω0
2 ω0

2

PH
tric field can lead to earlier unknown anomalies in the
spectrum of bulk electric-dipole magnons. Among the
features of the spin-wave dynamics caused by a static
electric field E in a finite magnetoelectric crystal are
(1) transformation of a waveguide E magnon into a
waveguide EH magnon; (2) the possibility of the bulk
EH spin-wave energy flux (group velocity) reversing in
comparison to the case of |E | = 0 in a given magnetoop-
tical geometry; (3) the possibility of extremum points
appearing on a dispersion curve of the magnon spec-
trum Ων(k⊥ ) for k⊥  ≠ 0 in the presence of spatial disper-
sion (inhomogeneous exchange interaction), as well as
in the exchangeless approximation; (4) the existence of
cross points (at k⊥  ≠ 0) of dispersion curves of modes
with indices ν and ρ of the bulk EH spin-wave spectrum
Ων(k⊥ ); and (5) the ability of an external electric field to
change the local geometry of a constant-frequency sur-
face of a normal EH spin wave in a centrally antisym-
metric AFM; there is a one-to-one correspondence
between the local geometry of the wave-vector surface
of a normal EH spin wave in an infinite AFM crystal
and the structural features of the spectrum of a
waveguide mode of the same type in a finite crystal of
the AFM.

It should be noted that, when discussing possible
experimental observations of the features of the quan-
tized spectrum of bulk magnons investigated in this
paper, one should take into account the mode damping.
It is not difficult to include energy dissipation phenom-
enologically. However, since the class of magnetoelec-
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Fig. 4. Cross section of the wave-vector surface of EH mag-

nons described by Eq. (16) for  > µ and different

frequencies: (I)  +  > ω2 > (1 + Ap), (II)  +

 < ω2 < , and (III) ω2 > , where  ≡ (1 +

Ap)2 – (1 + Ap)/µ.
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tric crystals in question has not been well studied exper-
imentally, we can only make order-of-magnitude esti-
mates. Let ∆Hν be the linewidth of the bulk normal
mode Ων(k⊥ ) with index ν and let ∆Ωνρ be the fre-
quency gap between the bulk normal modes Ων(k⊥ ) and
Ωρ(k⊥ ) at their cross point after their degeneracy has
been lifted. It follows from Eq. (12) that quantum size
effects will be experimentally observable in the spec-
trum of bulk magnons (far from crossovers) in an AFM
plate of thickness 2d if the following condition is satis-
fied:

(17)

where HE is the exchange field and a is the lattice param-
eter. The linewidth ∆Hν can vary considerably with tem-
perature [20]; for example, in MnF2, it can vary over
four orders of magnitude. Putting ∆Hν ≈ 103 Oe, HE ≈
106 Oe, and a ≈ 10–8 cm [20], we obtain from Eq. (17)
that d ! 10–5 cm. As for the repulsion between disper-
sion curves Ων(k⊥ ) and Ωρ(k⊥ ) near their cross point, the
criterion for it to be observable, according to Eq. (12),
is more stringent than Eq. (17):

(18)

where g is the gyromagnetic ratio.
It should also be noted that although the calculations

in this paper were carried out for the specific exchange
and electrodynamic boundary conditions, the results
are of a more general character, because the spectrum
of bulk spin waves, which are inhomogeneous across
the plate thickness for ν > 1, depends only slightly on
the boundary conditions [21]. The sole exception to this
may be the conditions for the existence of intersection
points of dispersion curves, which were found using
boundary conditions (7) and (8).
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Abstract—This paper reports on a first study of the effect of oxygen content in La0.67Ca0.33MnO3 – α on the
electrical conductivity, magnetoresistance, and specific heat within a broad range of oxygen deficiency varia-
tion, 0 ≤ α < 0.4. Preparation of a large quantity of stable samples with an easily controllable oxygen deficiency
was made possible by using a “soft” hydrogen treatment (870 K, 1–2 kPa). The properties of samples with 0 ≤
α ≤ 0.06 are shown to differ from those with α ≥ 0.1. For instance, samples studied in the semiconducting phase
at 300 K revealed, on the average, Eg = 0.28 eV in the first group and Eg = 0.43 eV in the second, and only
samples of the first group exhibit giant negative magnetoresistance and specific-heat anomalies in the range
150–200 K. The latter anomalies correlate with magnetoresistance peaks observed in all samples of the first
group (with α ≤ 0.06). The metal–semiconductor transition was found to disappear abruptly for α > 0.006. The
effects of a variation in the cation composition and the oxygen content on the physical properties are compared.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Perovskite oxides with mixed-valence cations have
been attracting interest for a long time because of their
physical properties, which are frequently unusual and
promising for use in potential device applications. For
instance, the ferromagnetic (FM) properties of the
(RE)1 – x(AE)xMnO3 solid solutions were discovered
more than 50 years ago, the high-temperature protonic
conductivity of (AE)Ce1 – x(RE)xO3 has been a subject
of intense interest for over 20 years, and the
(RE)Ba2Cu3O7 – α compound was found to be supercon-
ducting 15 years ago (AE = Ca, Sr, Ba; RE = Y, La).
Despite the differences in their physical properties,
these groups of oxides have, in addition to structural
similarities, a number of other common characteristics.
Viewed from the chemical standpoint, these are the
presence of cations of transition elements (Mn, Cu, Ce)
and off-stoichiometric variations both in the cations
and in oxygen, which give rise to either a smooth
(quantitative) variation of the physical characteristics
or to radical changes in the properties. Present-day con-
cepts tend to relate such changes, in many cases, to the
behavior of cations in the perovskite position B, prima-
rily, to a change in their charge state. The latter can be
achieved in more than one way, for instance, indirectly,
through a compositional change in the cation position A
(in manganites); by direct chemical substitution in the
cation position B (in cerates); and by acting on the
anion component (the oxygen sublattice, in cuprates). It
should be stressed that although we are actually dealing
1063-7834/02/4405- $22.00 © 20920
with the existence and/or formation of a mixed-valence
(charge) state of these cations, it would be more appro-
priate in some cases to examine the change in the oxi-
dation state of the oxygen–transition element sub-
system or of the BOx polyhedra (2 ≤ x ≤ 6). For
instance, in the case of manganites, it is on the manga-
nese mixed valence that one usually focuses attention,
more specifically, on the Mn3+/Mn4+ ratio, which is
governed, in turn, by the ratio of differently charged
ions in the A position, for instance, La3+/Ca2+. However,
one also takes into account the oxygen environment of
the B position, whose significance in the formation of
both the transport properties and magnetic ordering is
always stressed even for oxygen-stoichiometric manga-
nites [1, 2].

It appeared, therefore, only natural to choose an
experiment to test the corresponding theoretical con-
cepts in which the oxygen content in a solid solution of
the lanthanum and calcium manganites could be varied
and correlations between the electrical and magnetic
properties, on the one hand, and the deviation from
oxygen stoichiometry, on the other, could be looked for.
Such studies were found very useful in their time in
understanding the properties of superconducting
cuprates [3, 4]. In contrast to the cuprates, however,
manganites are much stabler against oxygen loss. To
produce noticeable deviations from the stoichiometric
oxygen content (characterized usually as three oxygen
atoms per formula unit), temperatures above 1200 K
and extremely low partial oxygen pressures are needed.
This entails a risk of changing the cation composition
002 MAIK “Nauka/Interperiodica”
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near the surface and even of a partial decomposition of
the original sample. Moreover, determination of the
amount of extracted oxygen, which is necessary in such
cases and should be done with a high enough precision,
was carried out in the available publications in an indi-
rect way, from the partial pressure of oxygen equili-
brated with the sample, which was measured by ZrO2-
based oxygen sensors. This pressure is connected with
the oxygen off-stoichiometry through a complex rela-
tion; it was derived for specific samples and did not take
into account the technological factors, which are essen-
tial here. In our work within the project “Hydrogen and
Mixed Valence in Perovskites” supported by the Rus-
sian Foundation for Basic Research, we decided to
employ, for oxygen removal, reduction by molecular
hydrogen, a method which, while being not less effi-
cient, is “softer.” The corresponding experience was
gained by us in studies with superconducting cuprates
[5, 6], and a preliminary work performed with manga-
nites [7] has provided supporting data for the potential
of the method.

The present paper describes a study of a series of
La0.67Ca0.33MnO3 – α samples with 0 ≤ α < 0.4. Atten-
tion was focused primarily on two aspects, namely, the
methodology bearing on the preparation of oxygen-
deficient samples by reduction in hydrogen, a most
important and original point, and the specifics of the
experiment, which are connected with changes in the
electrical conductivity, giant negative magnetoresis-
tance, and thermal properties as a function of α, i.e., of
the oxygen content for a fixed cation composition, a
feature revealed by us, effectively, for the first time.
Measurements by differential scanning calorimetry
(DSC), a very efficient method of studying phase trans-
formations, including those occurring in other perovs-
kites investigated by us [6, 8], were performed on the
same samples that were used in the electrical measure-
ments, thus substantially reducing possible differences
among the samples caused by technological factors.

2. EXPERIMENTAL

2.1. Chemical Procedures

The starting material of La0.67Ca0.33MnO3 – α compo-
sition was prepared by direct cold-crucible rf melting
[9]. The composition of the material is specified based
on the ratio of the starting oxides. Chemical analysis of
such materials shows that the starting cation ratio usu-
ally remains unchanged in the samples. A comparative
x-ray structural and phase analysis of various parts of
the ingot, 200 cm3 in total volume, showed it to be
homogeneous enough, particularly after annealing it in
air at 800°C. For the experiments, we chose two pieces
cleaved from the same part of the ingot, about 15 mm
in diameter. They were used to cut out rectangular sam-
ples, 2 × 2 × 4 mm in size, for the electrophysical and
subsequent calorimetric measurements. Three more
samples measuring 25 × 10 × 2 mm were cut for verifi-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
cation experiments (see below). After cutting and visual
selection for the absence of mechanical damage, cav-
erns, cracks, etc., all samples (14 in all) were subjected
to preliminary oxidation in air at 800°C to check for the
homogeneity and identity of the samples with respect to
oxygen content and stability against thermal effects. In
this experiment, all 14 samples prepared from the start-
ing material revealed exactly the same relative change
in weight, which may be considered as an additional
argument for the starting material being homogeneous
and for the samples having the same composition. (The
small samples weighed 150 ± 20 mg.) After this, all
samples were annealed in dry oxygen at 800°C for
48 h. No substantial changes in sample weight were
found compared with that measured immediately after
the annealing in air; ∆α was not more than +0.005.

Oxygen was extracted by reacting a sample with
hydrogen in a closed reactor, 250 cm3 in volume, con-
sisting of two parts; one of them, which contained the
samples, was heated, and the other was cooled by liquid
nitrogen to condense the water vapor formed. These
parts of the reactor were separated by a stopcock. After
putting the samples in place and evacuating both parts
with a fore pump (at room temperature), hydrogen was
admitted. The hydrogen pressure was chosen based on
the amount of oxygen desired to be extracted and the
calibrated reactor volume. Then, the heating and liquid-
nitrogen cooling of the corresponding parts of the reac-
tor were activated. The temperature of 600°C, chosen in
preliminary experiments, ensured oxygen extraction in
a reasonable time (about six hours). Six to ten hours
later, the residual pressure in the reactor was measured
and, on making sure that the hydrogen had been com-
pletely consumed, the two reactor parts were discon-
nected. The samples were annealed at 1000°C in a
residual vacuum of about 1 Pa for 24 h to make sure that
the samples became homogeneous in oxygen content.
The samples were cooled to room temperature over two
to three hours. While the samples thus prepared were
weighed to additionally determine the oxygen loss, the
basic method remained barometric measurement of
both the consumed hydrogen and the water formed. The
amount of the water was determined by evaporating it
from the trap into a larger volume (480 cm3) in order to
avoid water vapor condensation on the vessel walls.
The changes in the oxygen content measured by the
three methods coincided within 10% for ∆α less than
0.03 and within 5% for larger changes in α. The values
of α and of the corresponding changes in the oxygen
concentration are given in the table.

2.2. Measurements of the Electrical Conductivity

The bar-shaped samples of the above dimensions
were placed, after the chemical treatment, into a special
fixture providing a sufficiently strong clamping of the
copper electrodes to the sample. The measurements
were carried out using the dc four-probe arrangement.
The fixture with the samples was placed inside a mas-
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Main characteristics of the oxygen-deficient La0.67Ca0.33MnO3 – α samples

No. α ∆N,
1020 cm–3

σ (300 K), 
S/cm

Eg (300 K), 
eV , K Tmax, K MR, %

Specific heat,
J/mol K

Specific 
entropy at 

Tpt , J/mol K110 K 250 K

1 0 0.0 15.0 0.2 ± 0.03 197 186 45 60.4 102.1 1.96; 185
2 0.006 1.0 12.0 0.30 ± 0.01 185 180 41 59.0 104.9 2.21; 170
3 0.017 2.9 11.4 0.28 ± 0.01 158 158 31 60.3 102.7 1.36; 150
4 0.03 5.3 3.7 0.28 ± 0.01 140 17 62.3 101.9 1.03; 155
5 0.04 6.8 2.8 0.27 ± 0.01 125 18
6 0.06 10.6 1.24 0.26 ± 0.01 120 120 15 62.3 101.9 0.45; 150
7 0.10 17.0 0.092 0.45 ± 0.02 155
8 0.16 27.2 0.051 0.42 ± 0.02 63.39 99.84
9 0.22 37.4 0.028 0.42 ± 0.02 60.62 97.69

10 0.34 58.0 0.009 0.45 ± 0.02 140 60.75 95.18

Notes: ∆N is the change in the oxygen ion concentration corresponding to the given α.

 are specific points in the resistivity vs. temperature curves.

Tmax is the temperature of the maximum magnetoresistance (MR).
Tpt is the temperature of the maximum of the anomalous specific-heat peak and, probably, of the paramagnet–ferromagnet phase tran-
sition.

Tpart*

Tpart*
sive copper cylinder, whose temperature was varied
slowly from room temperature to 78 K (or 20 K). The
temperature was measured with a copper–constantan
thermocouple. The input resistance of the instruments
was 1011 Ω , which permitted one to perform studies
within a broad range of sample resistances. The resis-
tance measurement reproducibility at various tempera-
tures was not worse than 0.5%.

2.3. Magnetoresistance

The magnetoresistance (MR) of the samples under
study is defined as the relative difference between the
resistance in a magnetic field H (RH) and without it
(RH = 0), i.e., MR(%) = 100(RH = 0 – RH)/RH = 0. The mea-
surements were done in the following order. After the
temperature had been stabilized at a given level, the
sample resistance was measured just before field appli-
cation, then in the field, and then immediately after field
turnoff. The sample resistance at H = 0 was determined
as the mean between the values measured before and
after application of the field. The magnetic field used in
the work was 0.5 T. This field does not saturate the sam-
ple magnetization. No relaxation phenomena associ-
ated with the application and turnoff of the field were
detected.

2.4. Calorimetric Measurements

The temperature dependence of the specific heat
C(T) was measured on a Perkin-Elmer DSC-2 differen-
tial calorimeter in dry helium in the range 100–270 K.
The temperature scale of the instrument was calibrated
against the melting points of indium (430 K) and ice
P

(273.1 K); the specific-heat scale, against the specific
heat of sapphire. The measurements were done in two
steps. First, we recorded the baseline with the empty
chambers, after which the sample to be studied was
placed into the measuring chamber and the temperature
scanning was repeated. The difference between the
relations thus obtained yields C(T) of the sample. The
scanning in temperature was performed in heating and
cooling runs at a rate of 5–40 K/min. The relative error
of such specific-heat measurements was less than 1.5%.

To increase the sensitivity and precision of determi-
nation of thermal effects in the region of the phase tran-
sitions, we used the differential method, in which a sec-
ond temperature scan of the sample together with a sap-
phire reference was made, with the latter placed into the
calorimeter chamber intended for comparison measure-
ments. The relative error of this method of specific-heat
measurement was ~0.5%.

2.5. Effect of Water Vapor

Our procedure of oxygen extraction entails the for-
mation of water vapor, which is condensed in a trap
cooled by liquid nitrogen. The equilibrium vapor pres-
sure over ice at this temperature is negligible, and,
therefore, the water vapor produced can be considered
frozen out. Our experience gained in working with such
systems (barium yttrium cuprate [3, 5, 10]) indicates,
however, that part of the water may end up trapped by
the sample. In this case, the oxygen positions will be
occupied by hydroxyl ions rather than by vacancies.
While this phenomenon is of interest in itself, it is cer-
tainly beyond the scope of the present work. Neverthe-
less, we performed verification experiments as follows.
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First, we ran the reaction with molecular hydrogen
without cooling the trap. Second, the oxygen-deficient
samples were brought in contact with water vapor
(300 Pa at 300–600°C). After these procedures, thermal
desorption was studied. No noticeable release of water
was detected and, hence, was not absorbed in the course
of the experiments, although our experimental condi-
tions were very favorable for dissociative dissolution of
water in perovskite cerates [11]; thermodynamic calcu-
lations suggest that this process can also take place in
manganites [12]. Interestingly, La0.33Ca0.67MnO3 – α
samples yielded an opposite result [13]. The reason for
this is planned for study, but there are grounds to sug-
gest that these differences may be connected with the
asymmetry of the electronic subsystem, which was
pointed out, e.g., in [14].

3. RESULTS AND DISCUSSION

3.1. Characterization of the Complete Set of Samples

First of all, we stress that these are the first measure-
ments made on melted, high-density (up to 98.5% the-
oretical level), rather than on ceramic, samples.

The La0.67Ca0.33MnO3 – α samples retained the cation
composition characteristic of the starting sample. This
statement rests on an x-ray phase analysis of a special
sample subjected to hydrogen treatment together with
the samples to be studied. Only sample 11 revealed
weak reflections belonging to foreign phases. These
reflections could be assigned to lanthanum oxide; how-
ever, they disappeared after a repeated oxidation. Actu-
ally, the relatively low temperature of the reaction with
hydrogen (600°C) could not have resulted in chemical
decomposition of the samples. Literature data suggest
that the oxygen content of 2.6 is a critical level for these
samples at temperatures above 1200°C [15]. The oxy-
gen off-stoichiometry (column labeled “α”), the mea-
sured physical parameters, and the characteristics
derived from them are listed in the table.

Because we worked with high-density samples, we
had to make sure that they had a uniform oxygen distri-
bution. To do this, we compared the differences in com-
position between samples of different thickness (2, 4,
and 6 mm) but with a larger area (250 mm2) than the
ones typical of this series and, accordingly, of a larger
weight, which increased the accuracy of oxygen con-
tent determination by weighing. If the depth profile was
nonuniform (diffusive) and the anneal time was not suf-
ficiently long, one could expect differences in the rela-
tive weight changes between these three samples. No
such differences were observed in our experimental
conditions.

The lattice parameters of the samples used in the
measurements could not be determined; however, mea-
surements performed on the same special sample of a
larger size did not reveal any substantial changes in the
reflection pattern observed at room temperature;
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
namely, the structure was pseudocubic with a parame-
ter of 0.3884 nm.

3.2. Dependence of the Magnitude and Character 
of Electrical Conductivity on the Oxygen Content

The resistance vs. temperature plots obtained at
temperatures below 300 K for 11 samples with different
oxygen contents varying from 3.0 to 2.60 exhibit an
increase in the electrical resistivity with decreasing
oxygen content; this increase is as high as four orders
of magnitude compared to the room-temperature level
(see table) and is substantially larger in the low-temper-
ature domain.

The R(T) curves can be clearly separated into two
groups. The first group (samples 1, 2) is characterized
by a nonmonotonic variation of R with decreasing T.
The second group (samples 4–10) exhibits a mono-
tonic, exponential-like growth of R with decreasing
temperature; this pattern becomes particularly pro-
nounced when plotting the graphs in Arrhenius coordi-
nates, lnR vs. T–1. Sample 3 shows a nonmonotonic
variation of the first derivative of lnR with respect to T–1

that can be classed in either group. The temperature
behavior of sample 11 was not studied because of its
resistance being too high already at room temperature
and of the above-mentioned indications of the presence
of foreign phases. The curves are displayed in Fig. 1.
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A more careful analysis of mathematically treated
data permitted us to separate some other features in the
behavior of the R(T) curves, which appear to be of
importance for interpretation of the experimental
results. The following points deserve attention in this
connection.

(1) In all the curves (1–10), there exists a tempera-
ture interval near room temperature where the R(T)
relation follows, in the first approximation, a semicon-
ducting pattern, can be linearized in the lnR vs. T–1

coordinates (the rms error is less than 0.5%), and allows
determination of the band gap Eg from the argument of
the exponential (see column 5 in table). As seen from
the table, Eg varies relatively weakly for oxygen con-
tents corresponding to α ≤ 0.06 and is approximately
0.28 eV. As the oxygen content is reduced still lower, a
growth is observed up to Eg ≅  0.43 eV.

(2) One observes an exponential decrease in the
sample conductivity with increasing α in the semicon-
ducting phase. This decrease is different for the two
intervals of the oxygen deficiency; namely, it is much
steeper for α ≤ 0.06 than for α ≥ 0.1.

(3) After the resistance R of samples 1 and 2 has
passed through a maximum, the conductivity acquires a
metallic character with a further decrease in the temper-
ature (below 150 K); namely, it grows slightly with
decreasing temperature to 25 S cm–1 in the former sam-
ple and does not change in the latter, remaining equal to
5 S cm–1.
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(4) For samples 3–9, the resistivities plotted in the
Arrhenius coordinates are convex-up curves, such that
their description would formally require invoking a
quadratic dependence of lnR on T–1, where the coeffi-
cient of T–2 characterizing the curvature of the lnR =
f(T–1) curve would be negative.

Viewed from the standpoint of the present theoreti-
cal concepts concerning the mechanism of electric
transport in manganites, the above approximation
excludes the possibility of charge transfer by small-
radius polarons. Indeed, the corresponding relation of
the type of R ~ Texp(E/T), if plotted in the lnR vs. T–1

coordinates, would bring about a curvature of the oppo-
site sign!

3.3. Magnetoresistance as a Function 
of Temperature and Oxygen Content

Magnetoresistance as a characteristic of manganites
is of interest only in the temperature region where it
reaches giant levels. By theory, this occurs in a region
close to the metal–semiconductor and ferromagnet–
paramagnet phase transitions. As seen from the table, in
our experiments, a giant MR was observed only for 0 ≤
α ≤ 0.06. The temperature position of the maximum
and the maximum magnitude of the effect decrease
with decreasing oxygen content. The general pattern of
the phenomenon is illustrated in Fig. 2. We clearly see
two overlapping maxima of magnetoresistance in the
samples studied. This observation will be analyzed in
detail in a subsequent publication.

3.4. Specific Heat as a Function of Temperature
and Oxygen Content

Figure 3 presents the starting DSC curves used to
determine the specific heat of samples 1–8. As seen
from the curves, at temperatures below 190–200 K, the
specific heat of samples 1–5 exhibits an anomaly in the
form of an endothermic λ-shaped peak whose intensity
decreases with increasing α, while the temperature
position of the peak Tmax shifts toward lower tempera-
tures. Experimental isolation of the anomaly ∆C from
the overall temperature dependence of the specific heat
C(T) does not appear possible for a sample with a fixed
α, because the specific heats of samples with different
α differ from one another, as well as from those of sam-
ples 6–8, whose specific heats could serve as baselines
as they do not exhibit any anomalies.

To isolate the local endothermic peak and derive the
specific transition entropy ∆S, we attempted to fit the
lattice (phonon) part of the specific heat to the Debye
interpolation relation FD(T/Θ), with the Debye temper-
ature Θ constant for different samples. In this case, the
anomaly ∆C of interest could be found as the difference
∆C = C(T) – FD(T/Θ). It turned out, however, that the
lattice specific heat of the La0.67Ca0.33MnO3 – α samples
with different α cannot be represented in this form. To
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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describe the lattice specific heat analytically, one would
have to use not only Debye’s interpolation expression
with different Debye temperatures for different samples
but also additional components. Without going into
details, we present, as an illustration, an experimental
C(T) relation and a generalized FD(T/Θ) function for
the sample with α = 0 (Fig. 4). These dependences are
seen to coincide for T > 190 K, while for T < 190 K, the
difference between the C(T) and FD(T/Θ)curves repre-
sents the anomaly as an endothermic λ-shaped peak
with a specific heat ∆S. The specific heat ∆C thus
derived was used to calculate the specific entropy of the

peak ∆S = (T)/T]dT. The calculated values of ∆S

for samples 1–4 and 6 are presented in the table.

3.5. Discussion of the Results

Our analysis of the results related to the three differ-
ent characteristics of the oxygen-deficient solid solu-
tions of the lanthanum and calcium manganites studied
(conductivity, magnetoresistance, and specific heat)
revealed a number of points which become evident in
inspecting the table.

(1) Coincidence of the oxygen-content intervals
within which all three properties investigated undergo
quantitative and/or qualitative changes (for α ≤ 0.06:
Eg = 0.28 eV, MR is observed to exist and there is non-
zero entropy of the phase transition; for α ≥ 0.1: Eg =
0.43 eV, there is no MR effect and no specific-heat
anomalies are observed in the range 100–300 K).

(2) Coincidence of the temperature intervals within
which magnetoresistance and the specific-heat anom-
aly are observed and their variations follow those in the
oxygen content (compare Tmax of the MR and of the
specific heat and the decreases in the MR effect and in
the specific entropy of the phase transitions).

(3) A sharp change in the temperature behavior of
the conductivity with oxygen loss (within the loss inter-
val from 0.2 to 0.6 at. %, the semiconductor–“dirty”
metal transition disappears).

Thus, we have obtained convincing evidence of a
substantial role being played by the oxygen subsystem
in the physical properties of manganites. Note that the
above findings were made in a direct experiment and
are in no way associated with the model. At the same
time, the present theoretical models, which are quite
frequently alternative in nature, consider oxygen to be
the component primarily responsible for the electro-
physical properties. Its influence is both through the
formation of the Mn4+–O–Mn3+ chains, supporting
electron transfer, and through variation of the carrier
concentration. (Note that theoretical models usually
consider the stoichiometric concentration of oxygen.)

The same can be said of the theoretical ideas con-
cerning the role of oxygen in the magnetic properties of
solid solutions of manganites and the related phase
transformations. Nevertheless, the available theoretical

[∆C∫
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models can be used to relate, based on the variation of
the Mn4+/Mn3+ ratio, the variations in the oxygen con-
tent with those in the magnetic properties.

By and large, if one associates the chemical nature
of the changes in conductivity and magnetoresistance

dH/dt = 0.5 mcal/s 1
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Fig. 3. DSC curves obtained on La0.67Ca0.33MnO3 – α sam-
ples. Oxygen deficiency increases from top to bottom
through α = 0, 0.006, 0.017, 0.03, 0.06, 0.16, 0.22, and 0.34.
The figures adjoining the curves are sample numbers in the
table.
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with action on the mixed-valence state of the manga-
nese ions only, then variations in the oxygen content
and in the La3+/Ca2+ ratio should produce the same
effect (in this sense, two calcium ions are equivalent to
one oxygen ion). These considerations are buttressed
qualitatively by the Goodenough diagram [16] for the
La1 – xCaxMnO3 system, according to which the Curie
temperature (for the paramagnet–ferromagnet phase
transition) decreases from 250 to 140 K with x decreas-
ing from 0.33 to 0.09, a process equivalent to the
removal of 0.24/2 = 0.12 oxygen ions per formula unit
(in our experiments, this would correspond to α =
0.12). According to the same diagram, when x
decreases still further, the character of the phase transi-
tion is changed to paramagnet–antiferromagnet, with
the Néel temperature becoming a characteristic temper-
ature in the diagram. The absence of the MR effect in
samples with α ≥ 0.1 in our experiments can be attrib-
uted to such changes, which could also be treated as an
abrupt decrease in the fraction of the FM phase (islands
of the FM phase in an ocean of the antiferromagnetic
phase [2]).

However, current theoretical concepts suggest a
conclusion that extraction of oxygen may produce an
effect which is not analogous with the variations in the
cation composition; indeed, the removal of one oxygen
ion breaks one link in the …O–Mn–O–Mn–O… chain.
Thus, a change in the concentration of carriers disorga-
nizes the paths of their transport. This is probably why
the character of the conductivity changes so abruptly
when the oxygen content becomes slightly off-stoichi-
ometric. This is not equivalent to a change in the Curie
temperature when the La3+/Ca2+ ratio varies near the
value of 0.33. Indeed, a decrease in oxygen content by
∆α = 0.01 actually blocks the metal–semiconductor
phase transition, while a change in calcium content
from 0.33 to 0.31 changes Tc at most by 5–7 K. (∆α =
0.01 was chosen as the average change of α in going
from sample 2 to sample 3.)

We conclude by stressing once again the unconven-
tional character of our approach to studying the compo-
sition–property relation in the family of perovskite
manganites, which exhibit the giant magnetoresistance
effect in a number of cases. Actually, the phase diagram
should be at least three-dimensional, such as, for
instance, the phase transition temperature–cation com-
position–oxygen content phase diagram; however,
most studies examine only the same cut of this diagram
PH
for a constant oxygen content (an assumption that may
not hold). Our approach may be called “perpendicular”
in the sense that we examine a cut of the diagram at a
constant cation composition. The lanthanum–strontium
system will be the next in the series of our studies in this
direction.
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Abstract—This paper reports on a study of the magnetic, transport, magnetotransport, elastic, and magne-
toelastic properties of the R0.55Sr0.45MnO3 ceramics (R = Sm, Eu0.40Nd0.15, Tb0.25Nd0.30) with the same carrier
concentration and identical tolerance factor but which differ in the cation disorder parameter σ2. It was found
that the Curie temperature TC decreases linearly with increasing σ2. An increase in σ2 results in an increase in
the maximum electrical resistivity and an increased jump in the temperature dependence of linear thermal
expansion near TC, as well as in a decrease in magnetoresistance and magnetostriction. For T > TC, one observes
an abrupt increase in magnetostriction, magnetization, and magnetoresistance in a critical field HC1 which
grows with increasing temperature. The value of HC1 determined at fixed T/TC decreases with increasing σ2.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic properties of the R1 – xAxMnO3 manga-
nites with perovskite structure, in which rare-earth R3+

and alkaline-earth A2+ ions occupy the A positions, are
affected by various factors. Among them are, in partic-
ular, the carrier concentration, the average radius of the
A cation 〈rA〉 , and the disorder caused by the difference
in radii between the cations on the A sublattice, which

is defined as σ2 =  – 〈rA〉2, where xi is the con-
centration of cation i on the A sublattice and ri is the
ionic radius of cation i [1, 2]. For instance, the Curie
temperature TC increases linearly with 〈rA〉 , except in
the case of large 〈rA〉 , where this linearity breaks down.
In addition, it has been found that disorder on the A sub-
lattice substantially reduces TC for the same value of
〈rA〉 , with σ2 remaining related linearly to TC [2, 3]. It
has been shown [4] that increasing σ2 for fixed 〈rA〉  and
carrier concentration suppresses magnetic interactions,
both ferromagnetic (FM) and antiferromagnetic
(AFM), and destabilizes charge ordering (CO). The
effect of disorder on the elastic and magnetoelastic
properties has not thus far been studied.

2. EXPERIMENTAL RESULTS 
AND DISCUSSION

In order to study the effect of cation disorder on the
magnetic, electrical, galvanomagnetic, elastic, and magne-

xiri
2∑
1063-7834/02/4405- $22.00 © 20927
toelastic properties of manganites, we synthesized
Sm0.55Sr0.45MnO3 (composition 1), Eu0.40Nd0.15Sr0.45MnO3

(2), and Tb0.25Nd0.30Sr0.45MnO3 (3) ceramics with a con-
stant carrier concentration and the same tolerance fac-
tor (t = 0.927) but with different cation disorder param-
eters σ2 = 7.85 × 10–3, 8.05 × 10–3, and 8.48 × 10–3 Å for
compositions 1, 2, and 3, respectively. To avoid possi-
ble influences of the conditions of preparation, all the
samples were synthesized at the same time and in the
same conditions as described in [5]. This paper reports
on a study of the magnetic, electrical, galvanomag-
netic, elastic, and magnetoelastic properties of the
above samples. The results obtained are presented in
Figs. 1–8. The experimental techniques employed are
described in [5].

Figure 1 plots the temperature dependence of the
initial magnetic susceptibility measured in an ac mag-
netic field with an amplitude of 1 Oe and frequency of
8 kHz. The Curie points were determined as the tem-
peratures at which the [∂χ/∂T](T) curves pass through a
minimum and were found to be TC = 126, 112, and 76 K
for compositions 1, 2, and 3, respectively. The inset to
Fig. 1 presents a TC vs. σ2 plot, which shows that TC

decreases linearly with increasing σ2 in accordance
with the relation TC(〈rA〉 , σ2) = TC(〈rA〉 , 0) – p1σ2 pro-
posed in [2]. The values of TC(〈rA〉 , 0) = 750 K and p1 =
8 × 104 K Å–2, which were derived from the TC(σ2) rela-
tion plotted in the inset to Fig. 1, turned out to be larger
002 MAIK “Nauka/Interperiodica”
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than those obtained for Ln0.7A0.3MnO3 [TC(〈rA〉 , 0) =
400 K, p1 = 2.06 × 104 K Å–2] [2] and for Ln0.5A0.5MnO3

[TC(〈rA〉 , 0) = 330 K, p1 = (2.9–1.9) × 104 K Å–2] for dif-
ferent 〈rA〉  = 1.225–1.237 Å [3]. In addition, we
revealed a strong dependence of TC on the magnetic
field H in which the measurements were carried out
(inset to Fig. 4). For instance, the change in the Curie
temperature ∆TC = TC(H = 50 kOe) – TC(H = 1 Oe) =
65, 61, and 53 K for compositions 1, 2, and 3, respec-
tively, which indicates that ∆TC decreases with increas-
ing σ2. It should be pointed out that although the com-
pounds studied in this work are characterized by a large
tolerance factor t and, hence, a large transfer integral,
their TC do not exceed 126 K, which is apparently
accounted for by the large value of σ2. Local distortions
determined by σ2 affect the Mn–O–Mn angle and,
hence, reduce TC; we observed exactly this. Figure 2
displays the temperature dependence of the inverse
paramagnetic (PM) susceptibility 1/χ(T) for all the
compositions studied. We readily see that at high tem-
peratures, this dependence follows the Curie–Weiss

law χ = N /3K(T – θ) with the PM Curie points θ1 =
250, 210, and 170 K for compositions 1, 2, and 3,
respectively, and with effective magnetic moments
µeff = 5.6, 5.7, and 7.3 µB per formula unit, which is
slightly in excess of the values calculated taking into
account the contribution due to the R3+ ions. While the
Curie–Weiss law also holds for T ≥ TC, the parameters
θ2 and µeff2 are different: θ2 = 70, 50, and 10 K and
µeff2 = 14.8, 11.5, and 11.0 µB per formula unit for com-
positions 1, 2, and 3, respectively. The large values of
µeff2 imply the existence of magnetic clusters in this
temperature region. Calculations showed that the above
magnetic moments correspond to clusters consisting of
four Mn ions (2Mn3+, 2Mn4+). The inflection point T*
in the 1/χ(T) curves is apparently the temperature at
which clusters start to form. As seen from Fig. 2, T* =
305, 270, and 210 K for compositions 1, 2, and 3,
respectively; i.e., this temperature decreases with

µeff
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Fig. 7. Temperature dependence of volume magnetostric-
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Tb0.25Nd0.30Sr0.45MnO3 sample.
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increasing σ2. The fact that θ2 ! θ1 indicates the exist-
ence of AFM coupling at temperatures T ≥ TC. This may
be associated with the local charge ordering observed to
occur for composition 1 above TC [4, 6, 7].

The isotherms of magnetization of all three compo-
sitions behave similarly. For illustration, Fig. 3 shows
the isotherms of magnetization of composition 2 with
TC = 112 K for several temperatures. We see that in the
PM region, an abrupt increase in magnetization occurs
after the magnetic field reaches the level HC1, which
increases with temperature. In addition, a hysteresis is
observed as the magnetic field is increased and
decreased. Note that the width of the hysteresis loop
increases with increasing σ2. The spontaneous magne-
tization M measured at 5 K is 3.50 µB/f.u. for composi-
tions 1 and 2, which is slightly lower than 3.55 µB/f.u.,
the figure corresponding to FM ordering of the Mn3+

and Mn4+ ions. For composition 3, we have M =
4.02 µB/f.u.; this large magnetic moment is, however,
associated probably not with σ2 but rather with the
magnetic moment of the Tb3+ ion. The rate of saturation
of the magnetization isotherms depends on σ2. Indeed,
the magnetization saturation of sample 3 occurs much
slower than that of compositions 1 and 2. While the
M(T) curves indicate the FM transition at TC in all the
samples, the sample magnetization at low temperatures
decreases in magnetic fields H ≤ 10 kOe (Fig. 4). Such
a low-temperature behavior of M is not typical of ferro-
magnets and indicates the presence of AFM interac-
tions. Moreover, the low-temperature magnetization
depends on the actual conditions in which the cooling
was carried out. As seen from Fig. 4, the FC magnetiza-
tion (with the sample cooled in a magnetic field) differs
substantially from the ZFC magnetization (with the
sample cooled in zero field). The difference between
the FC and ZFC regimes disappears in magnetic fields
H > 10 kOe.

A sharp maximum in the temperature dependence of
electrical resistivity ρ(T) is observed near TC for all
compositions. Note that ρ at 4.2 K is close to its room-
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temperature value. For illustration, Fig. 5 shows a ρ(T)
graph for composition 3, as well as how it is affected by
a magnetic field. The magnitude of ρmax grows with
increasing σ2. For instance, ρmax = 102 Ω cm for com-
position 1 and 2.7 × 103 Ω cm for composition 3. The
reason for this lies in that a deviation of the Mn–O–Mn
angle from 180° strongly increases the resistivity in
regions with local lattice distortions. The magnetoresis-
tance (MR), which forms as a result of the maximum in
ρ(T) being suppressed by a magnetic field, peaks near
TC and decreases strongly with increasing σ2. For
instance, MR, defined as ∆ρ/ρ = [ρ(H) – ρ(0)]/ρ(0),
reaches colossal values of 69, 64, and 2.5% for compo-
sitions 1, 2, and 3, respectively, in a magnetic field of
10 kOe. Note that a MR of 40% is reached in composi-
tion 3 only in a field H = 50 kOe (Fig. 5).

Linear thermal expansion ∆L/L is observed to
undergo an abrupt change near TC for all compositions
(Fig. 6). The corresponding volume change ∆V/V =
3∆L/L is 0.06, 0.09, and 0.13% for compositions 1, 2
and 3; in other words, ∆V/V increases with increasing
σ2. Hence, local distortions give rise to an additional
contribution to thermal expansion. Application of an
external magnetic field suppresses the jump in the
[∆L/L](T) relation and initiates a negative volume mag-
netostriction ω, which is small everywhere except in a
narrow interval near TC where the ω(T) curves pass
through a minimum. At the minimum, |ω| reaches a
giant value. This is seen from Fig. 7, which plots the
ω(T)dependence for composition 3. As follows from a
comparison of the values of |ω| in a weak magnetic field
obtained on all the samples studied, this quantity
decreases with increasing degree of disorder. For
instance, in H = 8.4 kOe, we have ω = 5 × 10–4, 4 × 10–4,
and 0.8 × 10–4 for compositions 1, 2, and 3, respec-
tively; i.e., |ω| of sample 1 is larger by nearly an order
of magnitude than that of composition 3. The volume
magnetostriction saturates for all compositions in a
field ~50 kOe to about the same level |ω| ≈ 10–3. The
anisotropic part of the magnetostriction is very small
for all compositions throughout the temperature inter-
val covered, increases near TC, and reverses sign at TC.
The isotherms of volume magnetostriction ω(H)
exhibit a jump in ω at a field HC1 in all compositions.
This is seen from Fig. 8, which displays ω(H) curves
for composition 3. Note that the values of HC1 derived
for the same temperature from the magnetization and
magnetostriction coincide only for sample 1, while for
compositions 2 and 3, the values of HC1 determined
from the magnetostriction are larger than those calcu-
lated from the magnetization. In addition, the values of
HC1 obtained for a fixed T/TC ratio decrease with
increasing σ2.

An analysis of the experimental data obtained in this
work shows that the disorder produced by chemical
substitution on the A sublattice affects the physical
properties of the manganites substantially. Many prop-
P

erties of the manganites presently allow interpretation
in terms of the model of phase separation [8]. Note that
phase separation in manganites has a more complex
pattern than that in conventional magnetic semiconduc-
tors. In manganites, one has to take into account orbital
and charge ordering and the influence of the Jahn–
Teller effect and of the disorder stemming from the dif-
ference in ionic radii on the A sublattice. Computer cal-
culations made with due account of the latter factor
have revealed that large metallic and dielectric clusters
may coexist in manganites at carrier concentrations
close to 0.5 [9]. The size of these clusters depends on
the actual degree of disorder; namely, the less the disor-
der, the larger the clusters. Their distribution can be
arbitrary, and the shape is fractal. A percolation mech-
anism was proposed in [10] to explain the ρ(T) depen-
dence near TC. For instance, for T < TC, the AFM clus-
ters are arranged in a singly connected network of
metallic FM jumpers, so that, on the whole, the sample
will behave as a “dirty” metal (Fig. 5). Obviously
enough, a magnetic field and temperature will change
the volume of the jumpers, producing the effect of large
MR (Fig. 5). Neutron diffraction showed that at low
temperatures, the Sm1 – xSrxMnO3 system supports a
nonuniform magnetic state including the FM, A-type
AFM, and AFM CO phases. The FM and A-type AFM
reflections disappear near TC, whereas the AFM CO
phase is seen to persist above TC [7]. The size of AFM-
ordered CO clusters in a sample with x = 0.40, close in
composition to sample 1, was estimated in [8] to be a
few hundreds of angstroms. The coexistence of FM and
AFM clusters for T > TC in the samples under study fol-
lows from measurements of the paramagnetic suscepti-
bility. After the applied magnetic field has reached HC1,
the FM clusters start to grow rapidly at the expense of
the AFM clusters, thus bringing about a sharp increase
in the magnetization (Fig. 3) and magnetostriction
(Fig. 8) and a decrease in the resistivity. This is
observed to occur up to the field HC2, where the FM
clusters percolate and the above characteristics satu-
rate. The Curie point in the samples under consider-
ation is the temperature at which the FM clusters break
down. Therefore, the external magnetic field, in creat-
ing the FM clusters destroyed by temperature, should
increase TC. We observed this in our work (see inset to
Fig. 4).

3. CONCLUSION

Thus, we have shown experimentally that the mag-
netic, electrical, galvanomagnetic, elastic, and magne-
toelastic properties of the R0.55Sr0.45MnO3 ceramics
(R = Sm, Eu0.40Nd0.15, Tb0.25Nd0.30) with a constant car-
rier concentration and the same tolerance factor depend
on the degree of cation disorder σ2 on the A sublattice.
Although the compositions studied have a large toler-
ance factor t = 0.927 and, hence, a large transfer inte-
gral, their TC are not high (126, 112, 76 K). This is
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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apparently due to the large value of σ2. Local distor-
tions determined by σ2 change the Mn–O–Mn angle
and, hence, decrease TC. In the absence of disorder
(σ2 = 0), their TC would be 750 K (inset to Fig. 1), i.e.,
an order of magnitude higher. As follows from mea-
surements of the paramagnetic susceptibility, FM clus-
ters start to form at a temperature T*, which is substan-
tially higher than TC and decreases with increasing σ2

(Fig. 2). The increase in σ2 gives rise to an increase in
the maximum electrical resistivity, which is due to the
increasing resistivity in regions with local lattice distor-
tions caused by the Mn–O–Mn angle deviating from
180°. A strong suppression of the MR is observed to
occur in our compositions with increasing σ2. Local lat-
tice distortions provide an additional contribution to
thermal expansion, which becomes manifest in an
increased jump in the temperature dependence of linear
thermal expansion (Fig. 6) and a decrease in magneto-
striction near TC with increasing σ2. For T > TC, one
observes a jump in magnetostriction (Fig. 8), magneti-
zation (Fig. 3), and magnetoresistance at a critical field
HC1, which grows with increasing temperature. The
magnitude of HC1 determined for a fixed T/TC ratio
decreases with increasing σ2.
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Abstract—Mechanisms leading to anisotropy of dispersion curves of the spin-wave resonance spectrum in
magnetic multilayer films are investigated experimentally and theoretically. One of the reasons for the consid-
erable increase in the dispersion-curve slope for the static magnetic field directions intermediate between the
parallel and normal ones in relation to the film plane is shown to be connected to the alteration of the equilib-
rium orientation of magnetization. This factor (in addition to the dominant dissipative mechanism of the spin
pinning and to the reactive or dispersive properties of a layer with strong damping) is established to affect the
wavenumbers of standing spin waves and cause a difference between the dispersion curves for normal and par-
allel orientations of the dc magnetic field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spin-wave resonance (SWR) spectra allow one to
derive a large amount of information concerning the
physical properties of magnetic films [1–4]. In addi-
tion, these spectra are highly sensitive to the character
of the spatial distribution of film properties, which
allows them to be determined by analyzing the spec-
trum evolution occurring when the film thickness is
reduced through layer-by-layer etching [5–7]. Such a
characteristic of the SWR spectrum as the dispersion
curve, along with SWR lines, their number, strengths,
and widths, contains very important information [8–
10]; e.g., its slope gives the exchange constant A. In
order to extract this information, however, one needs a
reliable identification of the absorption peaks of spin-
ware (SW) modes and knowledge of their wave num-
bers, which is far from being an easy and uniquely
resolvable task.

SWR spectra, whose excitation is caused by the
dynamical mechanism of spin pinning or by surface
anisotropy, are known to be very anisotropic [2–5, 10].
Depending on the direction of the dc magnetic field H,
harmonic standing spin waves are excited in different
parts (layers) of the film. This leads to a strong modifi-
cation of the SWR spectrum when the H direction is
varied. In particular, when the uniform-resonance fields
in the layers coincide, the spectrum collapses into a sin-
gle common zeroth mode.

The dissipative mechanism of spin pinning [8, 11–
13] operates in multilayer films with layers differing
widely in damping parameter and, unlike the mecha-
nisms mentioned above, does not depend on the H
direction; i.e., it is isotropic. The reasons for this are,
first, that the harmonic part of a standing spin wave at
any H orientation relative to the film is limited by the
layer with low damping and, second, that the damping
1063-7834/02/4405- $22.00 © 0932
parameter of garnet ferrite films does not depend on the
H direction. As follows both from the numerous exper-
imental results obtained by us and from the published
data, the magnitude of possible anisotropy of the
Gilbert damping parameter α = ∆Hγ/ω (where ∆H is
the absorption line half-width, γ is the gyromagnetic
ratio, and ω is the cyclic frequency of the microwave
field) does not exceed the experimental error, which is
less than 6%. At the same time, even in this case, the
dispersion-curve slope depends crucially on the orien-
tation of the dc magnetic field H relative to the film.
The purpose of the present work was to investigate the
mechanisms determining the slope of dispersion curves
of the SWR spectrum in multilayer films in the case of
dissipative mechanisms of spin pinning.

2. EXPERIMENTAL

Experimental investigations were carried out on
two- and three-layer films of garnet ferrite single crys-
tals. The films were produced using the liquid-phase
epitaxy method by means of consecutive growth of lay-
ers on a gadolinium gallium garnet substrate with (111)
orientation from various solutions in a melt. The layer
closest to the substrate (pinning layer) was made of
(SmEr)3Fe5O12 and had a high value of α = 0.2; the sat-
uration magnetization 4πM was 1330 G, the effective

uniaxial anisotropy field  = 96 Oe, the cubic-crys-
talline anisotropy field Hk1 = –120 Oe, γ = 1.38 ×
107 Oe–1 s–1, and the thickness h = 1.2 µm. The follow-
ing (excitation) layer was made of Y2.98Sm0.02Fe5O12,

α = 0.003, 4πM = 1740 G,  = –1715 Oe, Hk1 =
−82 Oe, and γ = 1.76 × 107 Oe–1 s–1. In different sam-
ples, the thickness of this layer h1 varied from 0.46 to
0.9 µm. Three-layer films were different from bilayers

Hk
eff

Hk
eff
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in their having one more pinning layer. In films of this
kind, spins were pinned at both surfaces of the excita-
tion layer (symmetrical boundary conditions). SWR
spectra were registered at a frequency of 9.34 × 109 Hz.
The magnetic field was measured by an NMR magne-
tometer. The thickness was determined by the interfer-
ence method on single-layer analogs of the layers. The
thickness of the excitation layer was changed by vary-
ing the time of its growth or by etching it chemically.
The orientation of the 〈100〉  and 〈111〉  axes, as well as
the values of Hk1, was found using the technique
described in [14]. It is noteworthy that in recording
SWR spectra at a constant microwave frequency ω, the
dispersion curve has been assumed, as a rule, to be
described by the relation H0 – Hn = f(k2), where H0 and
Hn are the resonance fields of the zeroth and nth SW
modes and k is the wave number [5, 8, 9, 11]. In this
case, the difference H0 – Hn, as well as the SW fre-
quency (at constant H), is a quadratic function of k.
When constructing dispersion curves, the wave num-
bers of the SW modes were taken equal to (n + 1/2)π/h1
for two-layer and (2n + 1)π/h1 for three-layer films [5].
This indexing scheme implies that a node of a standing
spin wave is located at the interface between layers.

Upon the basis of numerous experiments, it was
established that SWR spectra have no essential differ-
ences in their structure for the perpendicular, parallel,
and intermediate orientations of the magnetic field rel-
ative to the film if the dissipative mechanism of spin
pinning is dominant and the parameter α in the pinning
layer is no less than 0.2 (Fig. 1). At excitation layer
thicknesses h1 ≥ 0.9 µm, the dispersion curves for the
perpendicular and parallel orientations of H differ only
slightly (in slope, Fig. 2). With decreasing h1, the dis-
persion curves for both field orientations remain linear,
their slopes increase, and, simultaneously, the differ-
ence between the curves increases. Spin pinning at both
boundaries of the excitation layer (in a three-layer film)
leads to an approximately two times greater difference
between the curves (Fig. 3), although the mean value of
their slopes is approximately the same as in the case of
a two-layer film.

In all films studied, the slope of the dispersion curve
corresponding to the SWR spectrum for the parallel ori-
entation of H exceeded that for the perpendicular orien-
tation. The slope was even greater when the field had an
intermediate direction between the normal and parallel
ones and the angle θH between H and the normal to the
film lay in the range between ~20° and 80°. As an illus-
tration, Figs. 2 and 3 show dispersion curves of the
SWR spectrum for the angle θH equal to 45°.

3. CALCULATION OF THE SWR SPECTRA

With the aim of explaining the obtained results, a
calculation of the SWR spectra and the corresponding
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
dispersion dependences was undertaken. We used the
dispersion relation [15]
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for a film with excitation layer thickness h1 = 0.69 µm.
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Equation (1) describes spin-wave dispersion in both the
excitation and pinning layers and allows one to find the
relation between the wave numbers in the layers. The
angle θM is found from the condition for the equilib-
rium orientation of the magnetization M:

(2)

In these equations, θM and θH are the angles that the
normal to the film makes with M and H, respectively;
these angles are measured in the (110) plane from the
normal to the film [111] through the shortest path
towards the crystallographic direction [001]. We note
that the vector M lies in the (110) plane if the field H is
in this plane.

The calculation was made using the exchange
boundary conditions at the excitation layer boundaries

(3)

and additional conditions that take account of the spin-
wave damping in the layer with a large value of α (pin-
ning layer):
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(4)

where

(5)

h1 and h2 are the thicknesses of the excitation and pin-
ning layers, respectively; and the z axis coincides with
the normal to the film.

These conditions were derived by integrating the
equation of motion over the region including the pin-
ning layer. We also used the relation between the real
and imaginary parts of the wave number in the pinning
layer [1]

(6)

The spatial configuration of the spin wave was
assumed to be harmonic in the excitation layer,

(7)

and harmonic and exponentially decaying with distance
from the boundaries in the pinning layer,

(8)

In these equations, Bi and Ci are constants and z = 0
corresponds to the free surface of the excitation layer.
The results of calculations are presented in Figs. 2 and
3, and they are in good agreement with experimental
data.

4. DISCUSSION OF RESULTS

One of the reasons why the slope of the dispersion
curves increases in the case of 20° ≤ θH ≤ 80° is the
alteration of the equilibrium orientation of the magne-
tization M, which is caused by the alteration of H when
the SWR spectrum is recorded [16]. The effect of this
factor depends on the relative value of the effective

anisotropy field /(ω/γ) and is most pronounced in
the range of θH values mentioned above. However, as
has already been stressed, in experiments, a difference
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between dispersive curves for the normal and parallel
field directions is observed, i.e., when H is directed
along the hard axis or the easy axis and, therefore, H
and M are parallel to each other.

The dispersion curve anisotropy can also derive
from (a) anisotropy of the exchange constant; (b) differ-
ent magnetic-dipole contributions to the magnitude of
resonant fields of SW modes at different orientations of
H; (c) different spin-wave polarizations (circular at the
perpendicular field orientation and elliptical at the par-
allel one); (d) the transverse wave structure in the
former orientation and transverse-longitudinal struc-
ture in the latter; and (e) the difference in the spatial
phase of harmonic spin waves at either one or both
boundaries of the excitation layer, which can be caused
by the difference in spin-wave configuration in the pin-
ning layer(s) for the different field orientations.

As for reason (a), garnet ferrite films are known not
to have any distinctive anisotropy of the exchange con-
stant. Moreover, we carried out an additional investiga-
tion of possible anisotropy of the constant A. This
anisotropy should basically reveal itself in the case of
M orientations along crystallographic axes 〈100〉  and
〈111〉 . For these orientations of M, we recorded the
SWR spectra and constructed dispersion curves, taking
into account the influence of the alteration of the equi-
librium magnetization orientation. As the experiment
showed, the possible anisotropy of the constant A in the
investigated films does not exceed the experimental
error (3%) and cannot explain the observed anisotropy
of the dispersion curves.

Now, we discuss reasons (b) and (c). The magnitude
of the possible contribution due to them to the resonant
fields of SW modes can depend on the SW wavelength
λ1 or the corresponding wave number k1 = 2π/λ1; how-
ever, for the same value of k1, this contribution should
not depend on the excitation layer thickness or on the
symmetry of the boundary conditions. For example, for
the same value of k1, the difference in the resonant
fields of SW modes for the normal and parallel field
directions in a three-layer film (symmetrical boundary
conditions) should be the same as for the two-layer film
(asymmetrical boundary conditions). At the same time,
the experimental data testify to the contrary. Pinning at
both surfaces of the excitation layer leads to a double
difference between the dispersion curves (Fig. 3). This
fact, as well as the thickness dependence of the relative
difference between the curves, implies that the observed
SWR spectrum anisotropy is due to reason (d); i.e., it
relates to the influence of the region(s) of strong SW
damping on the phase of a harmonic spin wave excited
by the microwave field in the layer with a small value
of α and, hence, on the wave numbers of SW modes.

Sets of possible wave numbers for the perpendicular
and parallel field orientations found by solving the
equations presented above are shown in Fig. 4a. We
note that, in all samples studied, the pinning layer is a
reactive (elastic) medium for spin waves in the case of
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the perpendicular field orientation and a dispersive
medium in the case of the parallel orientation in the
magnetic-field range corresponding to the observed
SWR spectrum. In the first case, the uniform-resonance
field in the pinning layer is less than that in the excita-
tion layer, while in the second case, the situation is

reversed. The two different sets of wave numbers, 

and , determined from the abscissas of intersection
points of curves 1 and 2 in Fig. 4a with the family of
curves  correspond to the two cases dis-
cussed above. As follows from Fig. 4a, the zeroth-mode
wave numbers for both field orientations are almost
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Fig. 4. (a) Graphical representation of a solution of the set
of equations (1)–(8) for h1 = 0.69 µm. Numbers near the
intersection points of curve 1 are the values of n for θH = 0°,
and those of curve 2 are the values of n for θH = 90°. (b) The
distribution of the normalized magnetization of the ith layer
mi(z)/Mi for the first five SW modes at θH = 0° and 90°.
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identical and close to π/2h1. As the index n increases,
the difference in the SW mode phases at the excitation

layer boundary δ = h1 – h1 (for the same n)
increases monotonically. For example, for n = 8, this
difference is already as large as ~π/2. From Fig. 4a, it

can also be seen that the values of h1 are very close
to (n + 1/2)π and only slightly exceed them for the
field H parallel to the film (the case where the pinning
layer is a dispersive medium). At the perpendicular
field orientation (when the pinning layer exhibits reac-

tive properties), the values of h1, on the contrary,
noticeably deviate from (n + 1/2)π to smaller values.
Therefore, as n increases, the spatial phases of the SW
modes at the excitation layer boundary vary differently
for the different field orientations. First, several mode
configurations for a sample with h1 = 0.69 µm are
shown in Fig. 4b, illustrating this difference.

Thus, the increase in the spatial-phase difference
and, therefore, the increase in the wave-number differ-

ence δ = h1 – h1 with increasing mode index n
are the reason for the observed difference between the
dispersion curves. If we shift the SW mode wave num-
bers for the perpendicular field orientation by ∆k1 =

 –  = δ/h1, the dispersion curves for both field
orientations will coincide (Fig. 5).

A calculation shows that the difference between

wave numbers  –  increases as their values

increase. Since we have ,  ~ , the difference

 –  increasing with the mode number has to be
faster for smaller excitation layer thicknesses δ/h1; i.e.,
for the same wave numbers, the relative influence of a

change in the standing-spin-wave phase upon  and
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Fig. 5. Dispersion curves H0 – Hn = f(k1h1/π)2 for two-layer
films with layer thickness h1 equal to (1) 0.46, (2) 0.69, and
(3) 0.9 µm. k1 is the calculated wave number. Designations
are the same as in Figs. 2 and 3.
P

 increases with decreasing thickness h1. This factor
explains the increased difference between the disper-
sion curves with decreasing excitation layer thickness
(Fig. 2).

The approximately double increase in the difference
between the dispersion curves in three-layer films in
comparison to two-layer films with the same excitation
layers is due to the fact that the mechanism described
above operates in the former case at two interfaces
rather than at one. In this case, SW phase alterations at
both boundaries of the excitation layer influence the
wave number.

It is necessary to stress that the change in sign of the
anisotropy field in the layers would result, according to
calculations, in the opposite effect; i.e., the dispersion
curve slope for the perpendicular field orientation (the
case where the pinning layer is a dispersive medium
rather than a reactive one) would be larger than that for
the parallel orientation.

5. CONCLUSIONS

Thus, the results obtained above allow one to make
the following conclusions:

(1) At an intermediate orientation of the magnetiza-
tion between perpendicular and parallel (or between the
hard and easy directions), the alteration of the equilib-
rium magnetization orientation taking place in SWR
spectrum recording produces an essential increase in
the dispersion curve slope.

(2) In addition to the dominant dissipative mecha-
nism of spin pinning, the reactive or dispersive
(depending on the field orientation) behavior of the pin-
ning layer causes an alteration of the spatial phases of
standing spin waves at the boundary of the excitation
layer and, as a result, a difference in the SW mode wave
numbers with the same values of n. The last circum-
stance accounts for the difference between the disper-
sion curves for the perpendicular and parallel orienta-
tions of the static magnetic field with respect to the film.
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Abstract—The problem of spin transport (spin transfer and localization in space by charge carriers) is consid-
ered from the standpoint of implementing this phenomenon in microelectronic devices based on novel physical
principles. Experimental data are presented to confirm the possibility of creating extremely-high-frequency
solid state microelectronic devices, operating in the millimetric and submillimetric wavelength range, which
can be used as the main elements for spin informatics. These devices can be based on ferromagnetic semicon-
ductor–nonmagnetic semiconductor junctions, the output parameters of which are controlled both by the trans-
port current and by an external magnetic field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the beginning of 2000, the Physics World journal
published a list of the ten currently important and prom-
ising directions in physics most intensively developed
over the past years. These include the direction pertain-
ing to solid state and semiconductor physics related to
the electron spin transfer (spin transport) from a magnet-
ically active (ferromagnetic) material to a paramagnetic
material. The field of applications of this phenomenon in
microelectronics is called spin electronics (spintronics).
The significance of this field in modern science and tech-
nology is related, on the one hand, to the creation and
development of quantum one-electron logical structures
and spin systems for informatics, the so-called spin
informatics, in which a memory unit cell is based on the
electron spin (one spin representing one bit of informa-
tion) [1]. These systems will probably reach the limiting
possibilities offered by the magnetic data recording.

On the other hand, the spin transport by charge carri-
ers opens new possibilities in solid state electronics.
Examples are offered by the phenomenon of spin-polar-
ized luminescence and by the creation of microwave
diodes with the output characteristics controlled by an
external magnetic field [2, 3]. These possibilities consti-
tute a base for the new generation of narrow-band
devices for solid state spin electronics operating in the
millimetric and submillimetric wavelength range,
including oscillators, amplifiers, receivers, filters, etc.
These devices are current-controlled and can be modu-
lated and frequency-tuned by an applied magnetic field.
This additional “degree of freedom” (current control)
and the possibility of changing the properties of spin-
tronic structures with the aid of an external magnetic
field (which is rarely possible in heterostructures based
on usual nonmagnetic semiconductors and in related
1063-7834/02/4405- $22.00 © 20938
devices) significantly expands the functions of existing
and future microelectronic devices [4]. In this way, we
can develop and implement in practice solid state spec-
troscopy in the aforementioned wavelength range and
create a solid sate laser operating in this range (which is
inaccessible with the existing heterostructures based on
nonmagnetic semiconductors). The latter possibility,
rarely mentioned in the literature, is specially considered
in this paper based on both previously reported data and
new experimental results obtained by the authors.

It should be noted that, in principle, binary struc-
tures representing junctions of the normal metal–ferro-
magnet (Me/F) or nonmagnetic semiconductor–ferro-
magnet (S/F) types allow us to create a magnetically
controlled stabilitron, the reverse breakdown voltage of
which can be changed by an applied magnetic field.
Based on a detailed investigation of the spin transport
mechanisms, together with an analysis of basic prob-
lems such as the coexistence of superconductivity and
ferromagnetism and the possibility of Josephson tun-
neling through a ferromagnetic barrier, we can actually
solve the tasks of localizing and transferring the elec-
tron spin in space, expanding the frequency range of
solid state spectroscopy and some others. In addition,
such investigations, stimulating single crystal and pla-
nar techniques and the physics and chemistry of sur-
faces and contact phenomena, form grounds for the
development of advanced technologies.

2. THEORETICAL PREMISES 
AND EXPERIMENTAL BACKGROUND

Historically, the problem of observing electron tun-
neling in the classical (single-particle) variant was
essentially solved as long ago as in 1961, when L. Esaki
002 MAIK “Nauka/Interperiodica”
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and his coworkers observed a tunneling current
between two normal metal electrodes separated by a
magnetic dielectric (EuS or EuTe) [5]. This was in fact
the first observation of a spin-polarized tunneling cur-
rent. It should be noted that such magnetically active
spacers represent ferromagnetic semiconductors, with
localized magnetic moments of Eu2+ ions possessing a
fully ferromagnetically ordered structure at low tem-
peratures in an external magnetic field. In turn, the fer-
romagnetic ordering of europium ions leads to a spin
polarization of charge carriers by the mechanism of s–d
(d–f) exchange interaction. A record magnetic moment
per ion (~7µB) for ferromagnets was observed in EuO
crystals (this value is due to the 4f 7 electrons of Eu
ions), where the saturation magnetization at T ≈ 0 K
reaches 4πσs = 2.43 T. As a result, the charge carriers in
this ferromagnetic semiconductor exhibit a maximum
(close to 100%) spin polarization. It is this circum-
stance that makes ferromagnetic semiconductors (FSs)
rather than ferromagnetic metals promising materials
as structures ensuring a high spin polarization of the
emission current (in particular, for tunneling and con-
tact structures). It should be recalled that a maximum
degree of the spin polarization of charge carriers in fer-
romagnetic metals is only on the order of 10% [6].

Another remarkable property of FSs is a significant
dependence of the optical absorption edge shift (or the
gap Eg in the electron energy spectrum) on the degree
of magnetic ordering in the structure and on the exter-
nal magnetic field. A maximum “red” shift for FSs
observed on decreasing the sample temperature to 20 K
was reported in EuO, where ∆Eg = 0.25 eV (Eg = 0.16
eV in EuS and in LaMnO3-based compounds at T < TC,
where TC is the Curie temperature). Application of an
external magnetic field increases the ∆Eg value by
almost 10%. Thus, by varying this external parameter
and thus controlling the concentration and mobility of
charge carriers, we can change both the intrinsic and
impurity conductivity of FSs at a maximum spin polar-
ization. The use of EuO and EuS in spin filters of spin
injectors is restricted to a low temperature region, since
the corresponding TC values are 69 and 16 K, respec-
tively. Somewhat higher Curie points, reaching the
region of liquid nitrogen temperature, are known for
FSs based on chromium chalcogenide spinels
(Me2+Cr2Se4, Me = Cd, Hg) and LaMnO3-based perovs-
kites. Doping the latter compounds with Ca2+ or Sr2+

ions allows their TC values to be increased up to room
temperature. These FSs are also capable of nearly
100% spin polarization of the intrinsic charge carriers,
although the magnetic parameters of these materials are
inferior to the aforementioned properties of europium
monochalcogenides. Such materials are especially
promising for use in spin structures intended for opera-
tion without expensive cryogenic systems. In particu-
lar, preliminary results show that these FSs can be used
in tunneling spintronic structures [7].
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It is interesting to note that the aforementioned fea-
ture of the ferromagnetically ordered barrier in a multi-
layer Me(S)/F structure (capable of passing one-parti-
cle tunneling current of charge carriers with the spin
orientation corresponding to magnetization of the fer-
romagnetic barrier) found an interesting practical appli-
cation even before the onset of interest in the develop-
ment of spintronic structures. This application is related
to the exchange-induced splitting of the conduction
band in a ferromagnetic metal into subbands corre-
sponding to the spin up (↑ ) and spin down (↓ ) states
upon spin ordering on the Fermi level. This splitting
presents an additional energy barrier for the tunneling
quasi-particles possessing a certain spin orientation. In
the case of the spin orientation coinciding with the
lower spin-split subband of the ferromagnetically
ordered barrier, the energy barrier height effectively
decreases and the barrier becomes more transparent to
these particles than to those with the opposite spin ori-
entation. Thus, the ferromagnetically ordered barrier in
a tunneling multilayer Me(S)/F structure plays the role
of a spin filter.

Under conditions of cryogenic temperatures, high
vacuum, and sufficiently high electric field strength, the
diode current of spin-polarized electrons, acquiring an
azimuthal asymmetry upon scattering from an anode
target, found a direct application in research (for exam-
ple, in experimental atomic physics and high-energy
physics) in the study of low-energy electron scattering,
parity conservation effects, and some other phenomena
[8], which sharply increased the informativity of such
processes. In spin-polarized electron emitters based on
a W/EuS solid state structure, the degree of particle ori-
entation in an electric field of E ≈ 1 kV was on the order
of 85%. Theoretically, the possible degree of electron
spin polarization in such an Me/FS solid state emitter
may reach up to P ≈ 93–96% and is limited only by the
natural smearing (~4% [10]) of the Fermi distribution
function on the tail of the density of states for electrons
in an FS. Close properties can be expected for a source
of polarized electrons based on an Me/EuO structure,
which, in contrast to the W/EuS emitter, must be capa-
ble of stable operation in high vacuum at temperatures
up to liquid-nitrogen temperature [11].

The rectifying effect in a multilayer Me/FS struc-
ture, related to the Schottky barrier formation in the
interfacial region of a ternary FS based on a CdCr2Se4
phase, in a paramagnetic temperature range (T > TC)
was reported for the first time in [12]. For an analogous
Me/FS heterojunction using a HgCr2Se4 crystal of the
n type in the ferromagnetic temperature range (T < TC =
120 K), additional physical possibilities were demon-
strated in [13]. These features were related to the
exchange-induced splitting of the conduction band of
this FS upon ferromagnetic ordering of Cr3+ ions with
the formation of two subbands by the s–d exchange
interaction mechanism:

∆sd 1/2AsdSσ T( )/σ 0( ).±=
2
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Here, S is the ion spin, Asd is the s–d exchange integral,
and σ(T) and σ(0) are the FS saturation magnetization
at the current temperature T and at T = 0 K, respectively.
As the electrons pass by tunneling from metal to FS and
occupy the upper subband, the electric conductivity of
the structure decreases when the applied voltage
exceeds a certain critical value (U > Ucr), which is
related to a decrease in the mobility of carriers in the FS
as a result of the electron–magnon scattering.

Figure 1 presents the experimental data illustrating
this process observed for a HgIn/HgCr2Se4 junction at
various temperatures [13]. The diode (rectifying) prop-
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Fig. 1. Rectifying properties of the HgIn/HgCr2Se4 junction
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Fig. 2. An energy band diagram of the FS/S junction:
(1) nonradiative carrier spin transfer from FS to a donor level
of S and an increase in the level occupancy in the absence of
magnetic field H; (2) transition of a charge carrier to a free
acceptor level in S at an EPR frequency with radiation from
S; Ef is the Fermi level split into sublevels with spins up (↑)
and down (↓) as a result of the spontaneous magnetization.
PH
erties of the junction decrease when the temperature T
decreases from 300 to 200 K (Figs. 1d, 1e) but then
increase again for T < 120 K and U > Ucr (Figs. 1c, 1f).
The temperature dependence of the critical voltage
Ucr(T) for various σ follows the variation in the mag-
netic gap ∆sd(T); in this FS, the cut-off voltage always
corresponds to a negative potential on the metal side.

In contrast to the above heterostructure, the cut-off
voltage in an Me/HgCr2Se4 structure of the p type is
observed for a positive polarity of the metal, which cor-
responds to the behavior of classical metal–semicon-
ductor junctions [14]. However, the rectifying proper-
ties of this junction disappear at T < TC and the contact
becomes ohmic, whereby the electric resistance varies
as that in a metal, by analogy with a FS based on
HgCr2Se4 of the n type.

New practical possibilities for realization of the spin
transport are related to the physical phenomena in het-
erojunctions and multilayer FS/S structures. In a wide
variety of heterostructures and other multilayer struc-
tures based on nonmagnetic semiconductors and metals
employed in existing microelectronic devices, the spin
orientation of charge carriers is insignificant and does
not influence the properties of these devices and the
mechanisms determining their operation. The novel
possibilities are related to the spin-controlled injection
of polarized electrons from FS to S, which can radically
change the properties of the latter semiconductor. As
indicated above, it is possible to observe the phenome-
non of polarized luminescence [2, 3]. The mechanism
of this luminescence is different from the theoretically
predicted possibility of magnetizing the spin system of
charge carriers in a semiconductor illuminated by a
nonpolarized light [15]. In both cases, however, the
spin orientation of charge carriers in a semiconductor
must influence the microwave characteristics in an
external magnetic field. For example, this can be mani-
fested at an electron paramagnetic resonance (EPR)
frequency ν = µBgH/h, where h is the Planck constant,
µB is the Bohr magneton, and g is the g-value of con-
duction electrons in the normal semiconductor.
Depending on the degree of population inversion on the
Zeeman electron levels as a result of the spin-polarized
carrier injection from FS to S, we can observe either
increased absorption or an additional radiation with a
quantum energy hν = µBgH controlled by an external
magnetic field H.

The possibility of such generation in an FMe(FS)/S
structure is illustrated in Fig. 2, which represents an
energy band diagram for the spin transfer from
FMe(FS)/S to the uppermost Zeeman level of the non-
magnetic semiconductor with an electron transported
by the electric field E (absorption process) in the
absence of an external magnetic field; this can be fol-
lowed by the transition of carriers at the EPR frequency
to a lower vacant level of the semiconductor, accompa-
nied by liberation of the corresponding energy hν (radi-
ation process).
YSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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The above effects were realized for the first time in
the following microjunction heterostructures of the
FS/S type: n-HgCr2Se4/n-InSb (I), n-EuO/n-InSb (II),
and p-HgCr2Se4/n-InSb (III) [16, 17]. The investigation
of microwave processes accompanying the passage of
current of a certain polarity in structure I revealed a
microwave absorption in the millimetric range at the
EPR frequency of the free charge carriers in n-InSb
(Fig. 3) [16]. For the same polarity, heterostructures II
and III produced microwave radiation with a magnetic-
field-controlled wavelength (Fig. 4) which could be
continuously tuned from the centimetric (8 mm) to sub-
millimetric range (0.2 mm) [17]. The transfer of an
electron from FS to an upper Zeeman level in S, fol-
lowed by radiative transition to a vacant lower level,
gives rise to electromagnetic radiation at an EPR fre-
quency. The theoretical limit of the output power for
this heterostructure is

where J is the current passing in the heterostructure and
e is the electron charge. According to this formula, N =
156 µW/A for the 8-mm spectral range and 12 mW/A
for the 0.1-mm range [18]. Although the experimentally
observed values in these intervals are lower by 1–2
orders of magnitude, there exist technical possibilities
to increase the output power up to the theoretical limit.
Indeed, this heterostructure is capable of bearing a cur-
rent of up to 10 A.

The above relationship for the radiation emitted
from an FS/S heterostructure indicates that the output
power is proportional to the frequency and the applied
magnetic field strength. This fact suggests that these
structures can be used in magnetic-field- controlled
generators of millimetric and submillimetric micro-
wave radiation. The magnetic field control cannot be
implemented in the existing semiconductor generators,
where the output power depends on the frequency as
N ~ ν–4. Thus, there is experimental evidence that FS/S
heterostructures and microjunctions can serve as a basis
for the new generation of narrow-band solid state spin-
tronic devices operating in the millimetric and submil-
limetric wavelength range. Measurements of the
parameters of radiation emitted from structure III in an
external field of H ≈ 460 Oe showed that, for a current
of 2 A and T = 77 K, the radiation linewidth was ∆H ≤
20 Oe (at a pass cavity frequency of 33.4 GHz) [18].

A difference in the energetics of electron spins tun-
neling from FS to S, which is reflected by occupancies
of the upper and lower Zeeman electron energy levels
in the nonmagnetic semiconductor, can determine the
orientation of spins relative to the applied magnetic
field and, hence, can be used as a data bit code. In other
words, these structures can be employed in quantum
one-electron logical devices for spin informatics. This
application is favored by selecting n-InSb crystals as a
nonmagnetic semiconductor for the FS/S structures,
which offers several important advantages. First, an

N µBgHJ /e hνJ /e,≡=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
anomalously large g value (about 50) of this semicon-
ductor allows the submillimetric wavelength range to
be achieved already with a magnetic field strength as
low as H ≈ 4 kOe. Second, this material provides for a
relatively small EPR line width for the conduction elec-
trons (∆H ≈ 0.2 Oe in the 8-mm range for a field
strength of H0 ≈ 450 Oe and ∆H ≈ 2–3 Oe in the 0.8-mm
range for H0 ≈ 5.5 kOe) at T = 4.2 K. Third, a record
level of the charge carrier mobility (reaching up to
106 cm2/V s) together with a large spin–lattice relax-
ation time allow the charge carriers to be polarized in
the n-InSb layer with a thickness of 0.1–1.0 cm. The
ratio of the spin–lattice relaxation time (10–7–10–6 s) to
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the carrier free-run lifetime (10–12 s) amounts to ~105–
106, which favors a considerable spin localization in
time for carriers on the corresponding Zeeman energy
levels. The latter circumstance is one of the most
important physical requirements for implementation of
the FS/S structures as an element for spin informatics. 

Figure 4 shows parameters of the magnetic-field-
controlled radiation from an FS/S heterostructure with
an output power of several tens of microwatts measured
at temperatures from 4 to 160 K. It was suggested that
this temperature interval of microwave generation is
determined by the magnetic properties of FS (EuO or
HgCr2Se4), while the range of magnetic fields depends
on the microwave properties of S (InSb). From this it
follows that a change in the spin-orienting medium
employed in the structure (e.g., use of an FS material
possessing a higher Curie temperature) will allow the
radiation to be observed at higher temperatures. In
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order to check for this possibility [19], we studied a
structure in which the FS component was replaced by a
Geissler alloy with the composition Co2MnSn possess-
ing TC = 826 K. This ferromagnet belongs to semimet-
als and is characterized by a lower degree of the carrier
spin orientation as compared to that in the aforemen-
tioned FS materials [20].

The experiments were performed with two hetero-
structures of the Co2MnSn/n-InSb type possessing dif-
ferent carrier concentrations in the semiconductor com-
ponent: n = 1015 cm–3 (structure 1) and 7.3 × 1013 cm–3

(structure 2). The samples were prepared by vacuum
deposition of a preliminarily synthesized Geissler alloy
onto a polished semiconductor crystal surface. The
main experimental results are as follows.

1. When the current passed from the ferromagnet to
the semiconductor, a signal in the detector appeared in
a field on the order of 3 kOe, increased with the field
strength H, and tended to saturation at H = 7 kOe for
structure 2 and at H = 14 kOe for structure 1 (Fig. 5).
The current in both structures was maintained on a con-
stant level, since an increase in the field led to a growth
in the electric resistance of the InSb crystal. From these
data, it follows that the radiation wavelength in both
structures was below 2 mm, thus falling outside the
standard Q-band in which the available 8-mm-range
instrumentation was applicable (this corresponds to the
frequency range from 24 to 36 GHz). Nevertheless, the
presence of microwave radiation could be judged from
the shape and character of the pulsed signal rectified by
the detector: the output pulse had a rectangular shape
repeating that of the current pulse, and the pulse ampli-
tude could be fully suppressed by a resistive microwave
attenuator (this proves the absence of a spurious
induced electromagnetic signal in the detector).

Since the output power is proportional, as demon-
strated above, to the radiation frequency (or the mag-
netic field strength), while the detector sensitivity drops
as ν–1 (as a result of the intrinsic capacitance), the
experimentally observed signal saturation at H ≥
10 kOe can be explained by both these factors.

2. The fact that the radiation of the Co2MnSn struc-
tures studied is due to the carrier spin transfer from the
ferromagnet to the semiconductor is confirmed by a
plot of the ratio of sample resistances for the direct (F
to S) and reverse (S to F) current (Fig. 6). Assuming that
electrons are more strongly spin-polarized in the ferro-
magnet film than in the semiconductor substrate, we
have to conclude that only electrons with the spin polar-
ization corresponding to that in the ferromagnet will
enter the film in the case of a reverse bias, while carriers
with the opposite spin polarization will accumulate at
the F/S interface, thus creating a cut-off layer in the
semiconductor. This effect must be magnetic-field-
dependent since the energy difference for electrons
with different spin orientations increases with the mag-
netic field strength H.
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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Figure 6 shows that an increase in the magnetic field
strength leads to a buildup of the difference in resis-
tance for the direct and reverse bias polarity. For the
same applied voltage, the current from F to S is always
greater than that in the reverse direction (from S to F).
This effect of the current “rectification” in the mag-
netic field must be related to the injection of spin-
polarized electrons in the heterostructure under con-
sideration. Figure 7 shows the temperature depen-
dence of the output microwave signal amplitude for
the two Co2MnSn/InSb structures studied. As can be
seen, the output signal intensity for structure 2 drops at
140 K, while the radiation from structure 1 is detected
up to 200 K.

It should be recalled that a drop in the intensity of
radiation detected from an EuO/InSb structure was
observed at T = 160 K [18]. The close values of these
temperatures are probably related to the parameters of
the semiconductor (InSb) used in the heterostructures
studied, rather than to the ferromagnetically ordered
sate of the ferromagnet component. These results can
also be influenced by a lower degree of polarization of
electrons in Co2MnSn as compared to that in EuO and
by some other factors which have to be studied. From
this it follows that a solution to the problem of increas-
ing the temperature of microwave generation in spin
structures requires further investigations [21, 22].

3. PROBLEMS AND PROSPECTS 
FOR FUTURE INVESTIGATIONS

As can be seen from the above considerations, the
apparently simple (at first glance) problem of injecting
spin-polarized carriers from one medium to another, in
which the carriers would accumulate on an excited
level (with the spin orientation retained), in fact sepa-
rates into several independent problems requiring spe-
cial approaches to their solution. The least studied of
these is the problem of transferring the spin through the
boundary between two media without loss of orienta-
tion corresponding to injector magnetization. The inter-
face behaves as an energy barrier: not every oriented
spin can penetrate through this barrier, and not every
one that succeeds can retain the spin orientation in what
follows. The spin orientation can be lost under the
action of uncontrolled spin defects in the interfacial
layers, gases adsorbed at the interface, and nonplanar
geometry and/or discontinuity of the junction. Solving
this contact problem reduces to the development of
technology ensuring the obtainment of stable and
reproducible physical results.

The second important problem consists in detecting
and measuring the radiation of heterostructures. The
electromagnetic wave generated as a result of the inter-
electron spin transition can be absorbed inside the
structure and converted into heat or can lose energy
upon reflection from semiconductor crystal faces
(including the output surface–vacuum interface). In
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
order to solve this problem, it is necessary to develop
the methods of microwave spectroscopy, in particular,
the pulsed and modulated techniques.

The third problem is related to the need to match the
heterostructure output to the waveguide tract. This, in
contrast to the two former problems, is a purely engi-
neering and technical problem.

From the technological standpoint, it is most impor-
tant to provide for a good electrical contact between the
two media constituting the F/S heterostructure, that is,
between two crystals, between a crystal and a film, or
(in planar film technology) between film components.
In the former case, this is achieved by mechanically
joining (due to spontaneous adhesion) two optically
smooth plane single crystal surfaces, the distance
between which must not exceed 10 Å. Then, tight con-
tact is provided by the van der Waals forces, static elec-
tric forces, and chemical bonds [23], making the joint
strong and vacuum tight. However, this connection
requires the preparation of perfectly plane and chemi-
cally clean surfaces with a roughness not exceeding a
few nanometers, which can be achieved only by using
special technologies [24].

In the case of heterostructures fabricated by meth-
ods of multilayer (thin film) technology, some of the
aforementioned difficulties can be obviated, but the
problem of proper preparation of the substrate (crystal)
surface for the ferromagnetic layer deposition still
remains. It is necessary to ensure that the magnetic
characteristics of the ferromagnetic film would not dif-
fer significantly from those of the bulk material. The
film must retain the ability to increase the degree of
spin polarization of electrons (in particular, at elevated
temperatures) due to residual magnetization. The
development of film deposition techniques for the fab-
rication of multilayer FS/S structures includes selection
of the optimum deposition regimes for each FS and S
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material using initial components or preliminary syn-
thesized compounds.

Finding solutions to the above problems is based on
experience in creating and characterizing FS/S hetero-
structures, which is permanently accumulated and
enriched by implementing new technologies, novel
materials, advanced experimental techniques, compu-
tation facilities, and computer simulation methods.

The problem of spin transport in solid state struc-
tures is a multifold problem. Although the physical
mechanisms pertaining to realization of this transport
are more or less clear, the practical implementation of
spin injection in real structures encounters both techno-
logical difficulties and restrictions posed by a limited
set of available materials in which the spin can be trans-
ferred only at relatively low temperatures. In this paper,
we concentrated on the pathways of extending the
study of spin transport toward a new range of high-fre-
quency investigations of solids—millimetric and sub-
millimetric microwaves—offering additional practical
possibilities. In particular, there are good prospects for
creating a solid state laser operating in the correspond-
ing frequency range and the related development of
solid state spectroscopy in this microwave region. The
study of spin transport from the standpoint of special
features in the manifestation of optical properties of
heterostructures and their magnetoresistance behavior
is of independent interest. Research and development in
the above directions were considered in recent sympo-
sia [21, 22].

It should be noted that the wish to control the prop-
erties of “classical” MIS heterojunctions by means of
external magnetic field led to the need of replacing a
nonmagnetic semiconductor by a ferromagnetic semi-
conductor or metal [25]. Structures of the MIFS (or
MIFM) types are capable (in contrast to their precur-
sors) of combining the functions of selecting, amplify-
ing, delaying signals, etc. Since the publication of
review [25], where the expected direction of research
was formulated to be magnetoelectronics, numerous
physicochemical and technological problems in this
field have been solved [26]. The concept of spintronics,
having methodologically replaced the previous term, is
based on new physical knowledge and recent techno-
logical achievements. In our opinion, the main distinc-
tion of recent investigations [26] from the preceding
works is that the spintronic structures involving ferro-
magnetic semiconductors can be controlled both by
applying an external magnetic field and by varying the
transport current in the heterostructure using the elec-
tron–magnon interaction between mobile spin carriers
and magnetization of the ferromagnetic semiconductor.

Since the contribution of lattice oscillations to the
spin transport increases with the temperature and can
become dominant at elevated temperatures, the obser-
vation of room-temperature spin injection can be prob-
lematic even with the “high-temperature” ferromag-
netic semiconductors. We hope that solving this prob-
P

lem can be facilitated by investigations of the
phenomenon of magnetoabsorption in the new struc-
tures developed for spintronics. It is probably necessary
to search for an FS/S pair characterized by close values
of the electron conductivities, a nearly 100% spin
polarization of carriers in the FS component, and a
large degree of Zeeman level splitting in the semicon-
ductor component (with a g-value exceeding 50). In
view of the aforementioned limitations and recent esti-
mates [27], the attempts to use the existing FS/S struc-
tures in spintronics are evidently low-effective because
of the negligibly small probability of providing for a
significant spin transport from ferromagnetic to non-
magnetic semiconductors.
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Abstract—The relaxation time distribution function F(τ) is calculated in the framework of the random-field
theory. The function F(τ) is expressed through the distribution function f(E) of a random electric field E with
due regard for the derived dependence of the relaxation time τ on the electric field. The distribution function
F(τ) is calculated in terms of the statistical theory within the random-field approximation. The nonlinear ran-
dom-field contributions and spatial effects of correlations between randomly distributed electric dipoles are
taken into account. The calculations are performed for a mixed ferroelectric glassy phase in which the short-
range and long-range polar orders coexist. It is demonstrated that the inclusion of nonlinear contributions of the
random field leads to an asymmetric relaxation time distribution function F(τ), whereas allowance made only
for the linear random-field contributions results in a symmetric function F(τ). A comparison of the calculated
functions F(τ) with empirical functions derived from the Cole–Cole (CC), Davidson–Cole (DC), Kohlrausch–
Williams–Watts (KWW), and Havriliak–Negami (HN) laws for the dielectric response shows that these laws
correspond to disordered systems in which the long-range and short-range orders coexist. Different forms of
the function F(τ) are determined by either linear (the CC law) or nonlinear (the DC, KWW, and HN laws) con-
tributions of the random field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Disordered ferroelectrics, polymers, and compos-
ites are characterized by anomalies in their dynamic
properties.

Specifically, strong dispersion of the dynamic mag-
netic or dielectric susceptibility has been observed for
many spin or dipole glasses (see, for example, [1] and
references therein). As a rule, the dispersion stems from
the fact that disordered systems are characterized by a
broad spectrum of relaxation times. This spectrum can
be derived from the observed frequency dependence of
the susceptibility [2]. For this purpose, it is general
practice to use a model of superposition of several
relaxation processes with different relaxation times
described by the Debye law. Within this model, the
dynamic characteristics (frequency dependences of the
polarization, the permittivity, etc.) can be calculated by
averaging with the use of the relaxation time distribu-
tion function F(τ) under the assumption that concurrent
(independent) relaxation processes occur in the system
under consideration. The key problem of the above
approach is associated with the particular form of the
relaxation time distribution function. So far, this func-
tion has not been calculated in the framework of an
appropriate physical model. Hence, a number of simple
1063-7834/02/4405- $22.00 © 20946
empirical expressions derived for F(τ) have been used
in practice to date. One of these expressions was pro-
posed by Fröhlich [3], who assumed that the function
F(τ) is equal to a positive constant in the relaxation time
range [τ0, τ1] and to zero outside this range. However,
this function cannot be used to describe the dielectric
response which appears to be more complex than that
predicted by the Debye law and, as a rule, can be repre-
sented by the Cole–Cole (CC), Davidson–Cole (DC),
Havriliak–Negami (HN), and other empirical laws [4].
Malecki and Hilczer [5] showed that a non-Debye
response can be described using different complex
empirical relationships derived for the function F(τ)
[5]. However, it is evident that the distribution functions
determined from experimental dielectric responses
cannot provide insight into the physical nature of the
anomalies observed in the response of disordered sys-
tems.

In our recent works, we calculated both the linear [6,
7] and nonlinear [8] dielectric responses in an external
dc electric field for ferroelectric relaxors, such as
PbMg1/3Nb2/3O3 (PMN), PbSc1/2Nb1/2O3 (PSN), and
Pb1 – xLaxZr0.35Ti0.65O3 (x = 0.7–0.9, PLZT).

A random electric field induced by a substitutional
disorder form lead and oxygen vacancies and other lat-
002 MAIK “Nauka/Interperiodica”
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tice defects was treated as a dominant factor responsi-
ble for the specific features in the dynamic properties,
because the random field brings about changes in barri-
ers between different dipole orientations. Within this
model, we proved that the temperature dependence of
the relaxation time obeys the Vogel–Fulcher law and
that the time dependence of the polarization is ade-
quately described by the stretched exponential law [6].
Furthermore, we revealed a number of interesting fea-
tures in the nonlinear susceptibility [8].

In the present work, the random-field method was
applied to the calculation of the relaxation time distri-
bution function. Moreover, we analyzed how the ran-
dom electric field affects the square and parabolic bar-
riers. The relaxation time distribution function was cal-
culated in terms of the random-field distribution
function with the inclusion of both the linear [9] and
nonlinear random-field contributions and the spatial
correlation effects [10].

2. RELATION BETWEEN THE RANDOM-FIELD 
AND RELAXATION-TIME DISTRIBUTIONS

2.1. General relationships. The random electric
field E is a specific feature of disordered systems. In a
random electric field, all physical characteristics,
including the relaxation time τ, become random quan-
tities and, in particular, τ = τ(E). A detailed form of this
dependence will be considered below. In our earlier
works [9–11], we calculated the random-electric-field
and elastic-field distributions in the framework of the
statistical theory. With knowledge of the distribution
function f(E) and the relationship between the relax-
ation time τ and the random field E, it is possible to cal-
culate the distribution function for the relaxation time τ
according to the standard formulas of the probability
theory. In the simplest case, when τ(E) is a single-val-
ued continuous function of E, the probability theory
gives the following expression [12]:

(1)

where E(τ) is the inverse function, which determines
the random field E for the given value of τ.

In a more general case, when τ(E) is a many-valued
function [i.e., to each value of τ there correspond sev-
eral values of E (E1, E2, …, En)], the space of the E val-
ues is separated into n regions (involving the given
points E1, E2, …, En) in such a way that τ(E) is the sin-
gle-valued continuous function in each region. As a
result, the function F(τ) in the whole space of fields can
be written as the sum of expressions (1) in the regions
of monotonic behavior of τ(E) [12]; that is,

(2)

F τ( ) f E τ( )( ) dE τ( )
dτ

-------------- ,=

F τ( ) f Ei τ( )( ) Ei τ( )d
τd

--------------- .
i 1=

n

∑=
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Formula (2) represents the general expression of the
distribution function for a single random quantity in
terms of the distribution function for another quantity
when the relationship between these quantities is
known. In particular, formula (2) was used to calculate
the random-field distribution function in the case of sig-
nificant contributions of nonlinear effects and correla-
tions [10].

2.2. The influence of electric field on the relax-
ation time. Conventional ferroelectric materials (such
as PbTiO3 and BaTiO3) with a long-range polar order
are characterized by a sole relaxation time that accounts
for the recovery rate of macroscopic polarization after
disturbance of the system under external action.

Disordered systems, for example, relaxors, exhibit a
broad spectrum of relaxation times, because they most
probably occur either in the dipole glass state (charac-
terized only by nanometer-sized polar clusters or, in
other words, by the short-range polar order) or in the
ferroelectric glassy phase in which the short-range and
long-range orders coexist. Since the polar order in the
disordered systems under investigation is governed pri-
marily by the alignment of electric dipoles, their mis-
orientation can be considered the main mechanism of
relaxation. As a rule, the temperature dependence of the
dipole misorientation probability is described by the
Arrhenius law. In this case, the relaxation rate can be
represented in the form

(3)

where U is the height of the barrier between equivalent
directions of the dipole.

It is believed that the barrier heights at different
points of the studied sample should be different due to
changes in the type and number of ions surrounding a
particular dipole. These changes in the environment
manifest themselves in changes in the local electric
field and can be accounted for in the random-field dis-
tribution function.

In order to derive the relationship between the relax-
ation time τ and the random field E, we consider the
relaxation dynamics of a dipole with two equivalent
orientations in the random electric field. Analysis dem-
onstrates that the relaxation time depends primarily on
the form of the potential U(x) in which the dipole exe-
cutes a motion. In the absence of the random field (E =
0), the potential U(x) ≡ U0(x) has a symmetric form with
a maximum at x = 0 and U(x = 0) ≡ U corresponds to the
barrier height in the conventional Arrhenius law (3).
In the presence of the random field, the potential
becomes asymmetric and can be written in the follow-
ing form:

(4)

1
τ
---

1
τ0
---- U

T
----– 

  ,exp=

U x( ) U0 x( ) eElocx.±=
2
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The function U0(x) can be represented as a constant
term (square barrier) or as the sum of the potential U
and a power series of x whose form is governed by sym-
metry. It can be seen from Fig. 1 that, for a square bar-
rier, the barrier height is a linear function of the field. It
can easily be shown that, for a parabolic barrier, the
barrier height varies in proportion to the square of the
field. Below, we will consider the square barrier. In this
case, the Arrhenius expression can be rearranged as fol-
lows:

(5)

where d is the dipole moment.

It follows from relationship (5) that the electric field
can either decrease the barrier height when the dipole is
aligned with the field or increase the barrier height
when the dipole is oriented in the opposite direction.

In the final form, the dependence of the relaxation
time on the field E can be obtained after averaging func-
tion (5) over the possible orientations of the electric
dipole. The quantum-static averaging with the Hamilto-
nian H = –dEloc gives

(6)

In expression (6), we made allowance for the equal-
ity dEloc = d*E, where d* is the effective dipole
moment. It follows from expression (6) that the random
field leads to an increase in the relaxation time; i.e., it
hinders reorientation of the electric dipoles.

1
τ
---

1
τ0
----

U dEloc±
T

----------------------– 
  ,exp=

τ〈 〉  = τ0
Sp d*E/T H/T–( )exp

Sp H/T–( )exp
------------------------------------------------------ = τ0

2d*E/T( )cosh
d*E/T( )cosh

------------------------------------,

τ0 τ0
U
T
---- 

  .exp=

U(x)

x

Fig. 1. Effect of the electric field E on the double-well
potential U(x) with a square barrier at E = 0 (solid line), E <
0 (dashed line), and E > 0 (dotted line).
P

3. RELAXATION TIME DISTRIBUTION

3.1. General equations. Formula (6) leads to the
following relationship between the electric field and the

dimensionless relaxation time t ≡  ≥ 1:

(7)

Here, the signs ± correspond to two branches of the
function

(8)

These two branches correspond to two values of i =
1 and 2 in formula (2), from which it is possible to
obtain the relaxation time distribution function by sub-
stituting the function E(t) in the form of expressions (7)
and (8) into the random-electric-field distribution func-
tion. In the simplest case when only the electric dipoles
are sources of random fields, this distribution function
can be written in the Gaussian form

(9)

Here,

L is the number of coherently oriented dipoles, n is the
dipole concentration, d* is the effective dipole
moment, and rc and ε0 are the correlation radius and the
static permittivity of the host lattice, respectively [9].
The subscript l in formula (9) indicates that the distri-
bution function is written in the approximation linear
with respect to E. Substitution of relationships (9) and
(7) into formula (2) gives the relaxation time distribu-
tion function

(10a)

(10b)
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Here, we introduced the following dimensionless
parameters convenient for numerical calculations:

(11)

3.2. Relaxation time distribution function in the
mean-field approximation. In the paraelectric and fer-
roelectric phases, all the properties of disordered ferro-
electrics, including the relaxation time distribution, can
be calculated in the mean-field approximation. Within
this approximation, the random-field distribution func-
tion can be represented as a delta function or, more pre-
cisely, δmf(E) = δ(E – E0L) in the linear case and δ(E –

E0L(1 + α L2)) in the nonlinear case, where α is the
nonlinearity constant [10]. The number of coherently
oriented dipoles is given by L ≠ 0 in the ferroelectric
phase and L = 0 in the paraelectric phase. By substitut-
ing these functions into formula (1), we obtain the fol-
lowing expression for the linear contribution of the ran-
dom field:

(12)

Making allowance for the equations f(x)δ(x – a) =

f(a)δ(x – a) and δ( f(x)) =  (see, for exam-

ple, [12]), where xk are the real roots of the equation
f(x)  = 0, we can rewrite expression (12) in the
form

(13)

Here, tmf is the unique root of the equation E(t) – E0L = 0
for the linear case. Relationship (13) is also valid for the
nonlinear case; however, the relaxation time tmf in the
mean-field approximation is determined as the root of

the equation E(t) – E0L(1 + α L2) = 0. In the
paraelectric phase (L = 0), according to formulas (7)
and (8), we obtain tmf = 1; i.e., τmf =  = τ0exp(U/kT).
In the ferroelectric phase (L ≠ 0), the temperature
dependence of the relaxation time exhibits a more com-
plex behavior. Specifically, at LE0 /kT @ 1, we have
τmf = τ0exp((U + LE0)/kT) in the linear case and τmf =

τ0exp[(U + LE0(1 + α L2))/kT] in the nonlinear case
(where L = L(T) is the order parameter). Note that the
terms dependent on L in the exponent account for the
effect of the mean field on the barrier height.

3.3. Numerical calculations of the relaxation time
distribution function. The relaxation time distribution
functions beyond the scope of the mean-field approxi-
mation (i.e., for the dipole glass state or the mixed fer-
roelectric glassy phase) were numerically calculated

b1
kT

2 nB
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2 nB
--------------

1
2
--- 15πz,= = =

z nrc
3
, υ kT

E0
------, B

16
15
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3 d*

ε0rc
3
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  2

.= = =
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2

Fmf t( ) δ E t( ) E0L–( ) dE t( )
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|x xk=
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2
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2
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from formula (10a) in the linear case and from formu-
las (2) and (7) in the nonlinear case. In the latter case,
the nonlinear and correlation effects were taken into
account in the random-field distribution function in the
same manner as in [10]. Since the disordered systems
are characterized by a very broad spectrum of relax-
ation times (1 ≤ τ/  = t < ∞), we constructed the relax-
ation time distribution function F(t) on a logarithmic
(lnt) scale, as is done in the majority of works. For the
same reason, the derivative df0±/dt ~ dlnt/dt was disre-
garded when constructing the relaxation time distribu-
tion curves, because this derivative becomes constant at
sufficiently long times t. The relaxation time distribu-
tion functions calculated for the linear case are depicted
in Fig. 2. In order to exclude the paraelectric phase
from our consideration, we chose υ = T/Tcmf < 1 and

two dipole concentrations z =  = 1 and 10 (Fig. 2,
curves 1 and 2, respectively). The concentration z = 1 is
characteristic of the mixed ferroelectric glassy phase,
whereas the concentration z = 10 corresponds to a suf-
ficiently high degree of long-range order in the system.
In this case, the distribution function should approach
the delta function, which is illustrated in Fig. 2. Curve 1
can be described by the Gaussian form (9) of the ran-
dom-field distribution function fl(E). For other forms of
the random-field distribution function fl(E) (for exam-
ple, Lorentzian, Holtsmarkian, and other forms corre-
sponding to different sources of random fields), the
relaxation time distribution function F(t) in the linear

τ0

nrc
3

7

6

5

4

3

2

1

0

–10 1 2 3 4 5 6 7

1

2

F
(τ

)

ln(τ/τ0)

Fig. 2. Relaxation time distribution functions in weak ran-
dom fields (the linear case). The parameters used in the cal-
culations are as follows: υ = 0.3 and (1) z = 1 and (2) z = 10.
2
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case should have the same form as the function fl(E) in
accordance with the probability theory. Since all the
above forms of the function fl(E) are symmetric forms,
the relaxation time distribution function should also
have a symmetric form in the linear case.

Let us now consider the nonlinear case. As was
assumed in the preceding section for systems with the
center of inversion in the paraelectric phase, the first
term nonlinear in the random field is proportional to
~αE3. The calculations demonstrated that the form and

3

2

1

2

1

0

0 1 2 3 4 5 6 7 8

3

2

1

2

1

0 1 2 3 4 5
ln(τ/τ0)

F
(τ

)
F

(τ
)

Fig. 3. Relaxation time distribution functions in strong ran-
dom fields (the nonlinear case) for (a) positive and (b) neg-
ative nonlinearity coefficients. The parameters used in the
calculations are as follows: (a) υ = 0.5; z = 2; and α0 = (1) 1,
(2) 0.5, and (3) 0.1 and (b) υ = 0.3; z = 1; and α0 = (1) –0.01,
(2) –0.1, and (3) –0.3.

(a)

(b)
P

width of the relaxation time distribution function F(t)
are strongly affected by the sign and magnitude of the

dimensionless nonlinearity coefficient α0 ≡ α
(Fig. 3a for α0 > 0 and Fig. 3b for α0 < 0). It can be seen
that, at α0 > 0 (Fig. 3a), the distribution function F(t)
broadens and shifts in maximum toward longer times t
with an increase in the magnitude of α0. This behavior
can be associated with an increase in the barrier height
due to the nonlinear contribution of random fields. As
the α0 coefficient increases, the function F(t) trans-
forms from a totally symmetric to slightly asymmetric
form. For example, at α0 = 1, the right wing of F(t) has
the Gaussian form, whereas the left wing falls off more
steeply than in the case of the Gaussian form.

It turned out that, at α0 < 0, the specific feature of
F(t) is a substantially asymmetric form. As can be seen
from Fig. 3b, an increase in the magnitude |α0 | leads to
an increase in the asymmetry of F(t). The relaxation
time distribution function F(t) narrows and shifts in
maximum toward shorter times t with an increase in
|α0 |. This behavior can be explained by the decrease in
the barrier height. Judging from the values of z and υ,
the curves shown in Figs. 3a and 3b correspond to the
mixed ferroelectric glassy phase in which the short-
range and long-range orders coexist. The calculations

of F(t) for the dipole glass state (z < zc , zc = nc  is the
critical concentration [13]) led to a very broad distribu-
tion with slowly descending branches even on a lnt
scale.

4. COMPARISON OF THE CALCULATED 
AND EMPIRICAL RELAXATION TIME 

DISTRIBUTION FUNCTIONS

As a rule, the empirical relaxation time distribution
function can be determined from the experimental fre-
quency dependences of the dielectric response. For
ordered systems, the dielectric response can be
described by the Debye law with a sole relaxation time.
A number of empirical functions representing the gen-
eralized Debye law were proposed earlier in order to
describe the observed dynamic response in disordered
ferroelectrics, polymers, and composites (see, for
example, [4, 5]). Among these functions, the most well-
known are represented by the following expressions:

Formula (14a) corresponds to the Cole–Cole function
(0 ≤ κ < 1), formula (14b) represents the Davidson–
Cole function (0 < β ≤ 1), and formula (14c) describes
the Havriliak–Negami function (0 < γ ≤ 1 and 0 < δ ≤ 1).

E0
2

rc
3

ε* ω( ) ε∞–
ε0 ε∞–

--------------------------

1 iωτCC( )1 κ–
+( )

1–

1 iωτDC+( ) β–

1 iωτHN( )γ
+( )

δ–
.
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14a( )
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All these functions are written in the frequency
space. In the time space, the decay function has the
form exp(– t/τ) for the Debye law and, as a rule, is rep-
resented in the stretched exponential form, which cor-
responds to the Kohlrausch–Williams–Watts (KWW)
relaxation function; that is,

(15)

Alvarez et al. [4] numerically calculated the Fou-
rier transform of function (15) and demonstrated that
this function at a specific parameter ratio (γδ = α1.23)
coincides with the Havriliak–Negami function [for-
mula (14c)].

For many years, the empirical functions (14) and
(15) were used to describe slow relaxation processes in
conventional glasses, polymers, composites, disordered
ferroelectrics, etc. The experimental data obtained by
different techniques (dielectric spectroscopy, nuclear
magnetic resonance, quasi-elastic neutron scattering,
etc.) were successfully fitted to formulas (14) and (15).
It was assumed that these formulas could be obtained
from the Debye function 1/(1 + iωτ)by including the
relaxation time distribution function:

(16a)

(16b)

Expressions (16) make it possible to derive the
relaxation time distribution function for all empirical
functions (14). The relaxation time distribution func-
tions thus obtained in [5] for the Cole–Cole (κ = 0.2),
Davidson–Cole (β = 0.6), and Kohlrausch–Williams–
Watts (α = 0.42) functions are displayed in Fig. 4. In
this figure, the vertical straight line (instead of the
delta function) shows the distribution function corre-
sponding to the conventional Debye law. It should be
noted that, owing to the aforementioned relationship
between the Kohlrausch–Williams–Watts and Havril-
iak–Negami laws, their functions F(τ) have a similar
form (Fig. 4).

For the purpose of elucidating the physical mecha-
nisms responsible for the substantially different behav-
ior of the relaxation time distribution function for dif-
ferent empirical laws (14), we compared the functions
F(τ) represented in Fig. 4 with the calculated functions
shown in Figs. 2 and 3. A comparison of the curves in
Figs. 3 and 4 shows that curves 2 and 3 in Fig. 3b are
similar to the KWW and DC curves in Fig. 4. The coin-
cidence of the time τCCwith the Debye relaxation time
τD and the considerable difference in width of the dis-
tributions F(τ) for these laws (Fig. 4) are in agreement
with the calculated data presented in Fig. 2, according

Φ t( ) t
τKWW
-------------– 

  α
, 0exp α 1.≤<=

ε* ω( ) ε∞–
ε0 ε∞–

--------------------------
1

1 iωτ+
------------------F τ( ) τln( ),d

0

∞

∫=

t
τKWW
-------------– 

  α
exp t

τ
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  F τ( ) τln( ).dexp

0

∞

∫=
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to which curve 2 should transform into the delta func-
tion with an increase in the concentration of randomly
distributed electric dipoles. The symmetric distribution
function representing the Cole–Cole law in Fig. 4 cor-
responds to the symmetric functions (Fig. 2) calculated
in the framework of the linear (with respect to the ran-
dom field) approximation, which holds at a sufficiently
low concentration of random-field sources. The calcu-
lated curves in Figs. 2 and 3 correspond to the mixed
ferroelectric glassy phase in which the short-range
order coexists with the long-range order. Therefore, we
can draw the conclusion that the physical mechanisms
of relaxation processes described by the aforemen-
tioned empirical laws are associated with this coexist-
ence and a weak random field for the Cole–Cole law or
a sufficiently strong random field (responsible for the
contribution of nonlinear effects at a negative nonlin-
earity coefficient) for the Kohlrausch–Williams–Watts,
Davidson–Cole, and Havriliak–Negami laws. It should
be noted that, as was shown earlier in [10], the nonlin-
ear effects at a negative nonlinearity coefficient lead to
a decrease in the degree of ordering of the system; as a
result, the system becomes more disordered. Under
these conditions, the random electric field and its
related relaxation time distribution play a decisive role
in the specific features of the physical properties of dis-
ordered materials.

DC

KWW

D

CC

F
(τ

)

0
τD, τCC

τKWW, τDC
ln(τ)

Fig. 4. Relaxation time distribution functions derived in
terms of the Debye (D), Cole–Cole (CC), Davidson–Cole
(DC), and Kohlrausch–Williams–Watts (KWW) laws [5].
2
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Abstract—The thickness dependence of the real and imaginary parts of the dynamical dielectric susceptibility
is investigated phenomenologically for a multilayer structure consisting of alternating ferroelectric and
paraelectric layers. It is shown that the frequency dependence of the linear dielectric response can be closely
approximated by that of a damped harmonic oscillator, with the static susceptibility, relaxation time, and soft-
mode frequency depending on the layer thickness and temperature. When the layer thickness and temperature
are equal to their critical values corresponding to the onset of a size-driven ferroelectric phase transition, the
static susceptibility and the relaxation time become anomalously large and then decrease with further increasing
layer thickness. A spectrum of natural polarization oscillations is predicted to exist with thickness-dependent
frequencies. This spectrum includes a soft-mode frequency which vanishes at the critical thickness and at the
critical temperature. The frequency spectrum lies below the soft-mode frequency of a thick film (in which the
gradient of polarization is negligible). The calculations are compared with experimentally measured dispersion
of the dielectric response of a PbTiO3–Pb0.72La0.28TiO3 multilayer structure. The agreement between the theory
and experiment is found to be good. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable recent attention has been focused on
ferroelectric thin films and multilayers, because they
have considerable application potential in the develop-
ment of new types of memory devices, capacitors, elec-
tromechanical microtransducers, pyroelectric detec-
tors, etc. (see, e.g., [1, 2]). Investigation of the proper-
ties of thin ferroelectric films is not only of practical
importance but also of much fundamental interest,
because it was found experimentally that ferroelectric
thin films and multilayers exhibit a number of unusual
properties, such as anomalous behavior of the paraelec-
tric–ferroelectric phase transition temperature [3], anom-
alous growth of multilayers [4], and specific features of
their domain structure and vibrational spectra [5].

Of particular interest is the giant dielectric response,
which has been recently observed in multilayers com-
posed of layers of ferroelectric PbTiO3 (PT) and
paraelectric Pb1 – xLaxTiO3 (PLT, x = 0.28) grown on
single-crystal SrTiO3 substrates [6]. The real and imag-
inary parts of the dielectric susceptibility of multilayers
with spatial periods 400 and 2000 Å were reported in
[6] to exhibit frequency dispersion of the Debye type,
with the low-frequency susceptibility being equal to
4.2 × 105 and 3.5 × 105 at T ≈ 50°C, respectively, and
increasing up to 7 × 105 at T = 125°C in the multilayer
with spatial period 400 Å. Recently, it was shown [7]
that such behavior of the susceptibility can be due to a
size-driven phase transition [8] and, therefore, is a man-
1063-7834/02/4405- $22.00 ©0953
ifestation of size effects in thin ferroelectric films. The
giant susceptibility can also be due to domain wall pin-
ning caused by electrodes of a special type [6] and to
the contribution from the electronic conductivity
(through the Maxwell–Wagner mechanism) to the low-
frequency susceptibility [9]; in this case, however, the
dispersion must be essentially different from that of the
Debye type, which is in contradiction with the experi-
mental data. On the other hand, it is not clear whether
the dispersion of the susceptibility is of the Debye or
another type in thin ferroelectric films where the size
effects, including size-driven phase transitions, depend
on the gradient of polarization [8]. Solving this prob-
lem is of importance in understanding the mechanisms
of the anomalous dielectric response of ferroelectric
thin films and multilayers.

In this paper, we calculate the dynamical dielectric
susceptibility by using a phenomenological model and
analytically solving the Lamé equation. The model ade-
quately describes the experimentally measured disper-
sion of the real and imaginary parts of the susceptibility
of a PT–PLT multilayer.

2. MODEL OF A MULTILAYER

We consider a multilayer (superlattice) consisting of
alternating ferroelectric (A) and paraelectric (B) layers
(similar to a PL–PLT multilayer). The layers have the
same thickness, lA = lB = l; therefore, the total thickness
of the multilayer is L = 2Nl, where N is the number of
 2002 MAIK “Nauka/Interperiodica”
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unit cells in the superlattice, which extends along the z
axis from z = –L/2 to L/2. Since the dielectric suscepti-
bility reaches its maximum when an external field E is
applied along the x axis (i.e., when E = Ex and the
capacitance of the multilayer is equal to the sum of the
capacitances of the layers, which are connected in par-
allel in this case), we will consider the case where the
ferroelectric A layers have an a-domain structure, i.e.,
where the polarization is subject to the conditions PAx =
PAy ≡ PA ≠ 0 and PAz = 0. In the paraelectric B layers, the
spontaneous polarization is zero and the field-induced
polarization is such that PBx ≡ PB ≠ 0 and PBy = PBz = 0.
In thin layers, the polarization is nonuniform across the
layer thickness, i.e., PA = PA(z) and PB = PB(z), because
there is a gradient of polarization along the z axis. The
free-energy functional can be written as

(1)

(2a)

Here, we have introduced the notation

(2b)

In Eq. (2a), the last two terms describe the surface
energy, where Pq1, 2 are the surface polarizations and
δq1, 2 are the extrapolation lengths. The coefficients αq,
βq, and γq differ from the respective coefficients for the
free energy of the bulk materials, because the former
are renormalized by internal mechanical stresses due to
the differences in the lattice constants and in the coeffi-
cients of thermal expansion and to growth imperfec-
tions [7, 10]. Due to this renormalization, the phase
transition of the first order may become a second-order
transition [10]; therefore, Eqs. (2) are applicable for
describing both first- and second-order phase transi-
tions.

The last term in Eq. (1) describes the interaction
between A and B layers and can be approximated by the
expression [11]
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We note that only the first nonzero terms of the power-
series expansions in the surface polarization are
retained in Eq. (3) and in the surface energy in Eq. (2a).
In considering the dynamical properties, we follow the
procedure proposed in [12] and arrive at the equation of
motion [7]

(4)

Here, phenomenological parameters ρq and ηq are the
mass coefficient and the damping constant of polariza-
tion oscillations, respectively. The last term in Eq. (4) is
the variational derivative of the free energy of Eq. (1).
Taking this derivative of Eq. (1) with allowance for
Eqs. (2) and (3) and substituting into Eq. (4) yields

(5)

with the boundary conditions

(6)

where  = A, B and  ≠ q; i.e., if q = A, then  = B and
vice versa.

The polarization must also be subject to the period-
icity conditions

(7)

In the case of a multilayer of A and B layers, the model
can be simplified. Since the spontaneous polarization is
zero in the B layers, the interaction energy FABj = 0 and
the layers can be considered to be independent of one
another. Therefore, boundary conditions (6) will not
contain the last (cross) terms associated with interac-
tion between the layers. Such boundary conditions
imply that zero surface polarization corresponds to zero
extrapolation lengths; therefore, for the paraelectric
layers, we have δB1 = δB2 = 0 [13]. In what follows, we
consider the simple case where, for the A layers, we
also have δA1 = δA2 = 0 and, hence,  = 0. Physi-

cally, this model corresponds to the case of 180°
domain walls present on the surfaces of the ferroelec-
tric layers. In this model, the dynamical polarization
can be found by solving Eq. (5) for PA and PB with
boundary conditions 

(8)

ρq

∂2
Pq

∂t
2

----------- ηq

∂Pq

∂t
--------- δF

δPq

---------+ + 0.=

ρq

∂2
Pq

∂t
2

----------- ηq

∂Pq

∂t
--------- αqPq βqPq

3 γ
∂2

Pq

∂z
2

-----------–+ + + E=

–
∂Pq

∂z
--------- 1

δq1
-------Pq

Q
γq

-----Pq+ +
z zq1 j( )=

0,=

–
∂Pq

∂z
--------- 1

δq2
-------Pq

Q
γq

-----Pq+ +
z zq2 j( )=

0,=

q q q

Pq z 2 jl+( ) Pq z( ), j 0 1 2 … N 1.–, , , ,= =

PA z1 2 j,

PA z z1 2 j,= 0, PB z z1 2 j,= 0.= =
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3. THE THICKNESS DEPENDENCES
OF THE DYNAMIC POLARIZATION 

AND OF THE SOFT MODE

3.1. The Ferroelectric Phase

Let us consider the spontaneous polarization Ps ≡
PAs. We represent Ps in the ferroelectric layer 0 ≤ z ≤ l
as the sum of two terms, one of which describes the sta-
tionary distribution of the spontaneous polarization,
while the other describes time variations of the polar-
ization in the absence of an external field (E = 0):

(9)

Here, the parameter µ characterizes the time depen-
dence of the polarization and can be found by solving
Eq. (5) with boundary conditions (8).

The steady-state component Ps0(z) satisfies the fol-
lowing equation and boundary conditions:

(10)

Here, α ≡ αA, β ≡ βA, γ ≡ γA, and α = α0(T – Tc), where
Tc is the ferroelectric phase transition temperature in
thick films. A solution to this equation can be expressed
in terms of elliptic functions [14]. In the case of α < 0
(i.e., T < Tc), a finite solution to Eq. (10) subject to zero
boundary conditions has the form

(11)

We have introduced the following notation in Eq. (11):

Pst =  is the spontaneous polarization in a thick

film, l0 =  is the correlation length, and sn(u; m)
is the elliptic sine [14], whose parameter m is deter-
mined from the equation 

(12)

where K(m) is a complete elliptic integral of the first
kind [14]. In Eq. (12), the parameter m varies from zero
to unity; otherwise, the spontaneous polarization of
Eq. (11) becomes a complex quantity. As follows from
Eq. (12), the limit m  1 corresponds to the case of a
thick film (l @ l0), while the limit m  0 corresponds
to l  l0π. Thus, there is a critical layer thickness lc =
πl0 at which the spontaneous polarization vanishes [see
Eq. (11)]; for layer thicknesses smaller than this critical
value, the spontaneous polarization does not occur.
Therefore, a decrease in the layer thickness at a fixed
temperature lower than the phase transition tempera-
ture Tc for a thick film can give rise to the occurrence of
a phase transition from the ferroelectric (Ps ≠ 0) to the

Ps z t,( ) Ps0 z( ) e
µtδP z( ).+=

αPs0 βPs0
3 γ

∂2
Ps0

∂z
2

-------------–+ 0,=

Ps0 z 0= 0, Ps0 z l= 0.= =

Ps0 z( ) Pst
2m

1 m+
-------------sn

z

l0 1 m+
---------------------; m 

  .=

α /β–

γ/α–

l 2l0 1 m+ K m( ),=
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paraelectric (Ps = 0) phase (size-driven phase transi-
tion).

On the other hand, in a film whose thickness
exceeds the critical value, the phase transition occurs
when the temperature is varied, because both the corre-
lation length and the critical length are temperature-

dependent through the relation l0 = .
The phase transition temperature in a thin layer Tcl can
be found from the condition l = πl0(T = Tcl), which gives

(13)

where lc(0) is the critical layer thickness at T = 0. For
l ≤ lc(0), we have Tcl ≤ 0; that is, the layer is in the
paraelectric phase at any temperature.

An equation for the time-dependent component of
the polarization is obtained by substituting Eq. (9) into
Eq. (5). Assuming that deviations from the stationary
polarization distribution are small and using Eq. (10)
for the stationary polarization, we obtain the equation

(14)

which should be subject to the zero boundary condi-
tions δP(z)|z = 0, l = 0. Using Eq. (11) and introducing a

new variable u = z/l0 , we represent Eq. (14) and
the boundary conditions for it in the form 

(15)

Since Eq. (15) and the boundary conditions for it are
homogeneous, the problem has a nontrivial solution
only if the parameter qm = (1 + m)[1 + (ηµ + ρµ2)/α] is
equal to one of the eigenvalues of the boundary-value
problem (15), whose solution can be expressed in terms
of Lamé functions of the first kind [15]. The lowest and
next-to-lowest eigenvalues and the corresponding
eigenfunctions are

(16)

where dn(u; m) and cn(u; m) are the delta amplitude and
the elliptic cosine, respectively [14]. The other eigen-
values are higher than those in Eq. (16), and their eigen-
functions are of a more cumbersome form.

Knowing the discrete set of eigenvalues q, one can
calculate the corresponding values of µ. Using the
eigenvalues in Eq. (16), we easily find that either µ is
purely imaginary (and the time-dependent polarization
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Tcl Tc 1
lc 0( )

l
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α0Tc

-----------,= =

ρµ2 ηµ α 3βPs0
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+ 1 m+( ) 1 ηµ ρµ2
+
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  6m sn

2
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  δP 0,=

δP u 0= δP u 2K m( )= 0.= =

qm1 1 4m, δP u( )+ sn u; m( )dn u; m( ),= =

qm2 4 m, δP2 u( )+ sn u; m( )cn u; m( ),= =
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component is an undamped standing wave) or the real
part of µ is negative and, therefore, deviations from the
stationary polarization distribution decay in time, being
either oscillatory or aperiodic in character. For each
specific eigenvalue, the character of polarization varia-
tions in time depends on the relationship between the
material constants involved in the power-series expan-

0

0

δP
(z

)

z0
1.5

l/lc

l

2.0 ∞

0.5

1.0

ω
n/

ω
0

1.0

Fig. 1. Dependence of the two lowest frequencies of natural
polarization oscillations (dotted and dashed curves) on the
thickness of the ferroelectric layer. The solid curve is the cal-
culated frequency involved in approximate expression (29)
for the low-frequency susceptibility. The inset shows the
amplitudes of these two oscillation modes calculated from
Eq. (16) for m = 0.9.

0
0

ω
n
/ω

0(
0)

T/Tc

0.5

1.0

0.5 1.0

1
2

3 4

Fig. 2. Temperature dependence of the soft-mode frequency
of a thin ferroelectric layer of thickness l/l0(0) equal to (1) 3.5,
(2) 4, (3) 5, and (4) 7 and of a thick film (dashed curve).
P

sion of the free-energy functional in Eq. (2a) and the
damping constant in Eq. (4).

In order to find an explicit solution for the time-
dependent polarization component, one should take
into account the initial polarization distribution; its
expansion in terms of the eigenfunctions δPi allows one
to determine the contribution from each oscillation
mode to the polarization of Eq. (9).

The dependences of the polarization oscillation fre-
quencies corresponding to the eigenvalues q1, 2 of
Eq. (16) on the layer thickness and temperature are
shown in Figs. 1 and 2 for the case of low damping
(η ≈ 0). The inset to Fig. 1 shows the space-coordinate
dependence of eigenfunctions (16).

As seen from Fig. 1, the frequency that corresponds
to the lowest eigenvalue qm1 vanishes at the critical
layer thickness l = lc and, therefore, corresponds to the
soft mode associated with the size-driven phase transi-
tion. The variation in the polarization oscillation ampli-
tude across the layer thickness for this soft mode is
shown in the inset to Fig. 1. The temperature depen-
dence of the soft-mode frequency is shown in Fig. 2 for
different layer thicknesses. The frequency can be seen
to vanish at the size-driven phase transition temperature
T = Tcl given by Eq. (13). For comparison, the dashed
line in Fig. 2 represents the soft-mode frequency in a
thick film, which is always higher than that in thin lay-
ers. At a fixed temperature, the frequency of the soft
mode decreases with decreasing thickness (Fig. 1). As
T  Tcl for a fixed layer thickness, the soft-mode fre-
quency vanishes at l = lc, as well as at T = Tcl (Figs. 1, 2).

We note that the frequencies are represented in Figs. 1
and 2 in units of the soft-mode frequency of a thick film

in the ferroelectric phase: ω0 =  =

ω0(0) .

3.2. The Paraelectric Phase

In paraelectric layers, as well as in ferroelectric lay-
ers of an arbitrary thickness at T > Tcl (α > 0) and of a
thickness l < lc at T < Tc (α < 0), there is no spontaneous
polarization and only the dynamic polarization is non-
zero and given by Eq. (14), in which Ps0(z) should be
put equal to zero. The boundary-value problem for this
equation can easily be solved, which gives a set of val-
ues of the parameter µ whose real and imaginary parts
determine the damping and frequency of polarization
oscillations, respectively. In particular, in the absence
of the gradient term (γ = 0) and damping (η = 0), one

can find that µ = iω0, where ω0 =  is the
soft-mode frequency of a thick film in the paraelectric
phase.

In thin layers, there is a set of oscillation frequen-
cies, rather than one frequency, and these frequencies
depend on temperature and layer thickness. For a layer

2α0 Tc T–( )/ρ

1 T /Tc–

α0 T Tc–( )/ρ
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of an arbitrary thickness at T > Tc (α > 0), the values of
µ can be found to be

(17)

where n = 1, 2, 3, …, τ0 = η/α is the relaxation time of
the soft mode for a thick film in the paraelectric phase

and lp = π  is a parameter characterizing the corre-
lation length. It can be seen that we always have
Re(µ) < 0, which corresponds to damped oscillations; if
damping is low (τ0 ≈ 0), there is a set of natural oscilla-

tion frequencies ωn = ω0  which collapses
into one (soft-mode) frequency ω0 in the case of a thick
layer (l @ nlp). In the case of fairly thin layers (l ! lp),
the oscillation frequencies are temperature-indepen-
dent.

For a ferroelectric layer of a thickness less than its

critical value (α < 0, l < lc = π ), the parameter µ
is given by Eq. (17), in which the quantities ω0, τ0, and
lp are defined by the same expressions as before, except
that α(T) is replaced in them by –α(T), with the result
that, for example, lp turns into the critical thickness lc.
In the case of τ0 ≈ 0, the natural oscillation frequencies

are ωn = ω0 . Therefore, the lowest fre-
quency (corresponding to n = 1) tends to zero as l 
lc, i.e., when the layer thickness approaches its critical
value. This size effect is the distinctive feature of the
thin (l < lc) ferroelectric A layers in the paraelectric
phase in comparison with the paraelectric B layers.

4. DIELECTRIC SUSCEPTIBILITY

Now, we consider the linear (with respect to an
external field) dielectric response of the ferroelectric
layers. In this case, the field-induced polarization is
small in comparison with the spontaneous polarization
and the total polarization can be written as

(18)

where Ps is the spontaneous polarization satisfying
Eq. (5) with E = 0 and χ(z, t) is the linear dielectric sus-
ceptibility.

An equation for the susceptibility χ can be found by
substituting Eq. (18) into Eq. (5); we assume that the
external field E varies in time as E(t) = Eexp(–iωt),
where ω is the frequency of the external field. We con-
sider the simple case where the time-dependent compo-
nent of the spontaneous polarization can be neglected;
this component is only a small correction (decaying in
time) and makes a negligible contribution to the linear
susceptibility.

In this case, the time dependence of the field-
induced polarization is determined by that of the exter-

µn –τ0 τ0
2 4

ω0
2

------ 1
nlp

l
------- 

 
2

+–±
 
 
  ω0

2

2
------,=

γ/α

1 nlp/l( )2
+

γ/α–

nlc/l( )2
1–

P z t,( ) Ps z t,( ) χ z t,( )E t( ),+=
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nal field alone; therefore, the susceptibility does not
vary in time. If E = Ex, all layers are connected in par-
allel and the susceptibility of the multilayer is the sum
of the susceptibilities of the individual layers:

(19a)

where z1, 2 are given by Eq. (2b). Since the layers are
independent of one another, Eq. (19a) can be rewritten as 

(19b)

First, we consider the susceptibility of the ferroelectric
layers χxxA ≡ χ. This susceptibility obeys an equation
similar to Eq. (14), with –iω replacing µ and with unity
in place of zero on the right-hand side. Using the vari-
able u introduced above, this equation and the boundary
conditions for it can be written as

(20)

Here, w = χ0(ρω2 + iηω), where χ0 = 1/(–2α) is the
static susceptibility of a thick film at a temperature T <
Tc (i.e., α < 0). Equation (20) is an inhomogeneous
Lamé equation [15]. We seek a solution to this equation
in the form of the following trigonometric series, each
term of which satisfies the boundary conditions:

(21)

where am(u; m) is the elliptic amplitude [14]. Substitut-
ing the series of Eq. (21) into Eq. (20) and equating the
coefficients of sin(nam(u; m)) to zero, we obtain a set
of algebraic equations for the unknown coefficients Bn.
Since this set of equations is infinite, it is impossible to
obtain exact expressions for B2k – 1 for k > 1. However,
we can find an approximate solution by assuming that
only the first several coefficients are nonzero.

The accuracy of such a solution can be controlled by
increasing the number of coefficients taken into
account and by then calculating the changes in these
coefficients. Reasonable accuracy was attained in the
case where the first four coefficients (B1, B3, B5, B7)
were assumed to be nonzero (i.e., Bn = 0 for n > 7).

It should be noted that this number of terms taken
into account in the series of Eq. (21) does not allow one
to obtain a reasonably smooth space-coordinate depen-
dence for the dynamical susceptibility; however, the
oscillations will be smoothened out when calculating
the averaged susceptibility of Eq. (19b) (see [16]).
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Having taken the integral of the first term in
Eq. (19b), the averaged susceptibility 〈χ〉  can be repre-
sented in the form

(22)

The dominant contribution comes from the first term of
the sum in Eq. (22), for which B1 = 1/[3m – 2(1 + m)w]

and I1(m) = ln[(1 + )/(1 – )]/2 K(m). We
note that it is the first term of the sum in Eq. (22) that
contains the contribution from the soft mode. Explicit
expressions for the functions I1(m) and Bn(m, w) for n =
3, 5, 7 are written out in the Appendix.

Equation (22) describes the dependence of the aver-
aged layer susceptibility 〈χ〉  on the external-field fre-
quency and material parameters of the layer, because
the parameter m is unambiguously determined by the
layer thickness l, temperature T, and expansion coeffi-
cients of the free energy in Eq. (2a) through Eq. (12).

The solution to Eq. (20) becomes significantly sim-
pler in some physically interesting extreme cases.

As seen from Eq. (12), the parameter m tends to
unity for layer thicknesses l @ l0. In this case, the solu-
tion to Eq. (20) is independent of the space coordinate
(in regions sufficiently far from the layer boundaries)
and has the form 

(23)

Thus, the susceptibility of a thick film χT is similar to
that of a damped harmonic oscillator with frequency

ω0 = 1/  and relaxation time τ0 = χ0η. Another
physically interesting case is that of high frequencies,
where ω @ ω0 or ωτ0 @ 1 and, therefore, |w | @ 1. In this
case, Eq. (20) can be reduced to an algebraic equation.
From the solution to that equation, it follows that the
high-frequency susceptibility χH is independent of the
coordinate z and layer thickness l and has the form

(24)

which is identical to the susceptibility of a thick film χT

of Eq. (23) at high frequencies.
It should be stressed that the free-energy functional (2a)

with critical α(T) dependence takes into account the
contribution from the ionic subsystem alone and
ignores the effect of the electronic subsystem, which
makes the dominant contribution to the high-frequency
susceptibility. Therefore, Eq. (24) describes only the
ionic-subsystem contribution to the linear susceptibil-
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iωτ0 ω/ω0( )2
+
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P

ity, which decreases considerably with increasing fre-
quency. At optical frequencies, the ionic polarization
can be considered to be static in the adiabatic approxi-
mation for the much lighter electronic subsystem.
Therefore, the effect of the ionic polarization is similar
to that of an external electric field, which gives rise,
through the quadratic electrooptic effect, to the appear-

ance of an additional term proportional to (z) in the
optical refractive index. We note that the refractive-
index profiles recently observed in PZT films [13] can

be approximated closely by the (z) dependence
given by Eq. (11).

At low frequencies, the behavior of the susceptibil-
ity is determined by the ionic subsystem. First, we con-
sider the static susceptibility (in static external fields,
ω = 0), which can be found in a closed form [7]. The
solution to Eq. (20) for ω = 0 has the form [15] 

(25)

where C1 and C2 are constants to be determined by the
boundary conditions in Eq. (20). A solution for an arbi-
trary nonzero frequency can be found by the method of
variation of constants C1, 2 in Eq. (25). By expanding
the coefficients C1, 2 in powers of the small parameter
ε = 2(1 + m)w, one can find the susceptibility at low fre-
quencies in a closed form. We drop cumbersome calcu-
lations and only present the final expression for the
averaged low-frequency susceptibility 〈χL〉:

(26)

where χS is the averaged static susceptibility, which can
be derived from Eqs. (19b) and (25) to be

(27)

with E(m) being the complete elliptic integral of the
second kind [14], and τ(m) is the dimensionless relax-
ation time

(28)
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The low-frequency susceptibility of Eq. (26)
increases indefinitely with frequency, in contrast to the
high-frequency susceptibility of Eq. (24); therefore, it
is desirable to find an approximate expression that
reduces to Eqs. (26) and (24) in the respective limits.
Approximating Eq. (26) by rational fractions or using
the Padé approximant method [16], we arrive at the
expression

(29)

This expression goes over into Eq. (26) at low frequen-
cies and is qualitatively similar to Eq. (24) at high fre-
quencies. We also note that Eq. (29) is identical to the
susceptibility of a damped harmonic oscillator of
Eq. (23) with χS in place of χ0 and with renormalized
relaxation time τR = τ(m)τ0 and natural oscillation fre-

quency ωR = ω0 .

The dependence of this renormalized frequency on
the layer thickness is shown by the solid line in Fig. 1.
It can be seen that if the layer thickness is several times
the critical thickness lc, the frequency ωR equals the
lowest frequency of natural polarization oscillations
(dashed line in Fig. 1). The difference between these
frequencies for larger thicknesses is due to the fact that,
as the layer thickness increases and the parameter m
approaches unity, the eigenfunctions δPi become
degenerate and the frequency spectrum is changed: dif-
ferent frequencies are mixed due to the nonlinear term
in Eq. (5).

The dependencies of the real and imaginary parts of
the susceptibility on the external-field frequency ω are
shown in Figs. 3a and 3b, respectively, for the case of a
purely relaxative response (ρ = 0). As seen from
Fig. 3a, there are three frequency ranges in which the
behavior of the dynamical susceptibility is essentially
different. At low frequencies (τ0ω ! 1), the layer sus-
ceptibility calculated from Eq. (22) and shown by solid
curves in Fig. 3 is closely approximated by Eq. (29)
derived for the low-frequency susceptibility (repre-
sented by crosses). At high frequencies τ0ω @ 1 (inset
to Fig. 3a), the susceptibility coincides with that of a
thick film given by Eq. (23) and represented by the
dashed line; a considerable difference (by several
times) is observed between the susceptibility calculated
from Eq. (22) and that calculated at low frequencies. At
frequencies close to the inverse relaxation time (τ0ω ≈ 1),
the behavior of the averaged susceptibility of Eq. (22)
noticeably changes: a crossover is observed from the
low-frequency dependence, characterized by thickness-
(parameter-m-)dependent relaxation time (28) and
static susceptibility (27), to the high-frequency depen-

+ 1 m+( )3
g m( )3 ] /9m 1 m–( )2
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× 1 m 1 m–( )K m( ) 2E m( )–[ ] g m( )+ +{ } .
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dence, which is the same for different layer thicknesses
(curves 1–4 merge together).

The distinctions between calculations of the imagi-
nary part of the susceptibility from different formulas
represented in Fig. 3b are qualitatively similar to those
for the real part discussed above, although in the region
of intermediate and high frequencies, these distinctions
are not so pronounced in this case. It is notable that at
frequencies ω < 1/τ0, the susceptibility of thin layers is
always higher than that of a thick film (dashed curves in
Figs. 3a, 3b).

We emphasize once again that at low and high fre-
quencies, the dynamical layer susceptibility of Eq. (22)

Fig. 3. Frequency dependences of (a) the real and (b) imag-
inary parts of the susceptibility of ferroelectric layers in
the case of a purely relaxative response. Crosses are calcu-
lations by Eq. (29) for different values of m: (1) 0.0054,
(2) 0.0171, (3) 0.054, and (4) 0.1709; dashed curves repre-
sent the susceptibility of a thick film calculated from Eq. (23).
The inset to (a) shows the high-frequency susceptibility.
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is closely approximated by the susceptibility of a
damped harmonic oscillator of Eqs. (29) and (23),
respectively, but with essentially different parameters:
the relaxation time and static susceptibility are thick-
ness-dependent only at low frequencies.

The cumbersome expressions for the relaxation time
τR and static susceptibility χS can be simplified in two
extreme cases: near the size-driven phase transition
(i.e., for fairly thin layers) and for thick layers. Expand-
ing Eqs. (12), (27), and (28) in powers of m  0 and
of m  1, one can obtain approximate expressions for
layer thicknesses close to the critical thickness,

(30)

and for fairly thick layers,

(31)

Using the expansions mentioned above and
Eq. (13), one can also obtain expressions that describe
the behavior of the static susceptibility and relaxation
time near the phase transition temperature:

(32)
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Fig. 4. Dependences of (1) the static susceptibility and
(2) relaxation time on the inverse layer thickness calculated
from Eqs. (27) and (28), respectively, as well as from
approximate expressions (30) and (31) (dotted and dashed
curves, respectively).

0

0.5

1.0
PH
Equations (32) are qualitatively similar to the tem-
perature dependences of the static susceptibility χ0 =
1/2α0(Tc – T) and relaxation time τ0 = η/2α0(Tc – T) for
a thick film.

As seen from the formulas presented above, the
static susceptibility and relaxation time for layers of a
finite thickness diverge at the size-driven phase transi-
tion point; as the layer thickness increases, these quan-
tities tend to the values corresponding to a thick film.
Figure 4 shows the thickness dependences of the static
susceptibility and relaxation time and the dependences
given by approximate expressions (30) and (31). It can
be seen from Fig. 4 that the approximate expressions
adequately describe the static susceptibility and relax-
ation time over a fairly wide range of layer thicknesses.
The temperature dependences of the relaxation time τ
calculated from Eq. (28) and approximate formula (32)
and of the relaxation time τ0(T) for a thick film are
shown in Fig. 5. It can be seen that the approximate for-
mula adequately describes the relaxation time and that
the relaxation time for a thick film is shorter than that
for thin layers over the entire temperature range. The
relaxation time diverges at T = Tcl for thin layers and at
T = Tc for a thick film; we note that Tcl < Tc according to
Eq. (13).

In the paraelectric phase, the linear susceptibility
χ(z) can be found from the following equation, which is
derived from Eq. (5):

(33)–ρω2
iηω– α+( )χ γd

2χ
dz

2
--------– 1.=

0
0

τ 0
(0

)/
τ R

T/Tc

0.5

1.0

0.5 1.0

1

2

4

3

Fig. 5. Temperature dependence of the relaxation time cal-
culated from Eq. (28) (solid lines) and from approximate
formula (32) (crosses) for different values of l/l0: (1) 3.5,
(2) 4, (3) 5, and (4) 7. The dashed line is the relaxation time
of a thick film τ0(T). 
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A solution to this equation can be written as a sum of
trigonometric functions, and the averaged susceptibil-
ity in this case has the form

(34a)

(34b)

where q2 = (ρω2 + iηω – α)/γ.
In the ferroelectric A layers, the paraelectric phase

occurs when l < lc and T < Tc (α < 0) or when T > Tc

(α > 0), while in the paraelectric B layers, the paraelec-
tric phase exists either at any temperature (in incipient
ferroelectrics) or at T > Tc (α > 0).

The frequency dependence of the dielectric suscep-
tibility of the ferroelectric layers in the paraelectric
phase (l < lc) is shown in Fig. 6 for the case of low
damping (ω0τ0 = 0.2). The natural oscillation frequency
spectrum (see Section 3) is seen to manifest itself in the
susceptibility as a set of peaks in the high-frequency
region (inset to Fig. 6). The height of these peaks
decreases with increasing frequency, and the dielectric
response is closely approximated by the high-fre-
quency expression χ(ω) ≈ –1/(ρω2 + iηω). This high-
frequency susceptibility is independent of the layer
thickness and significantly decreases with increasing ω,
which is consistent with the fact that the contribution
from the ionic subsystem is negligible at high frequen-
cies.

We note that in Eq. (34a), for the case of A layers in
the ferroelectric phase (l > lc) and of paraelectric B lay-
ers, one should take χA(l) in the form of either Eq. (22)
or approximate expression (29) and χB(l) in the form of
Eq. (34b) for α > 0.

5. COMPARISON WITH EXPERIMENT 
AND DISCUSSION

Our calculations showed that the dielectric suscepti-
bility of thin ferroelectric layers is adequately
described by Eq. (29), which has the form of the sus-
ceptibility of a damped harmonic oscillator whose
oscillation frequency, static susceptibility, and relax-
ation time depend on the layer thickness and tempera-
ture, as shown in Figs. 1, 2, 4, and 5. In the case of a
purely relaxational response (ω0  ∞), Eq. (29)
becomes identical to the Debye formula with thickness-
dependent parameters. In particular, the static suscepti-
bility and relaxation time increase as the layer thickness
decreases and approaches its critical value. Such behav-
ior was indeed observed in PL–PLT multilayer struc-
tures S-10 and S-2 with a layer thickness of 200 and
1000 Å, respectively [6]. The static susceptibility was
as high as 4.2 × 105 for S-10 and 3.5 × 105 for S-2 at T ≈

χ l( ) χA l( ) χB l( ),+=

χA B, l( ) 1

α A B, iη A B, ω ρA B, ω2
+ +

---------------------------------------------------------≡

×
2 1 qA B, l( )cos–( )
qA B, l qA B, l( )sin

------------------------------------------ 1– ,
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50°C. The relaxation time, as estimated from the posi-
tion of the peak of χ''(ω), was roughly 10–4 and 10–5 s
for the S-10 and S-2 samples, respectively.

Figure 7 shows the frequency dependence of the
dielectric response calculated theoretically and
observed in the S-2 and S-10 samples of a PT–PLT mul-
tilayer structure. The experimental data are seen to be
adequately described by the theory in both low-fre-
quency and high-frequency (of the order of a mega-
hertz; crosses in Fig. 7) regions.

The absence of dispersion in the range 1–103 kHz in
samples S-40 (whose layer thickness 50 Å was shown
in [7] to be less than the critical value) can be due to the
fact that in the paraelectric phase, which exists when
l < lc, the relaxation time is very short, τ ! 10–6 s, and
the relaxation term is negligible in the frequency range
indicated above.

The prediction that the soft-mode frequency in a
thin layer is always lower than that in a thick film
(Fig. 2) agrees with the experimental data on Raman
scattering in a BaTiO3–PbTiO3 multilayer [5]. In partic-
ular, the peak corresponding to the ETO mode was
shifted to lower frequencies with decreasing spatial
period of the superlattice. We note, however, that the
multilayer studied in [5] did not contain paraelectric
layers and, therefore, the data presented in [5] can be
considered only as an illustration of the predicted
behavior.

The theory also predicts some specific features in
the frequency dependence of the dielectric response of
multilayers (in particular, in the paraelectric phase)

4

2

0

–2

χ(
ω

)/
χ 0

0.03

0

–0.03

–0.06
5 10

0 1 2 3
ω/ω0

1

2

2

1

Fig. 6. Frequency dependences of (1) the real and (2) imag-
inary parts of the dielectric susceptibility of ferroelectric
layers in the paraelectric phase of thickness l = 2lc/π for low
damping (ω0τ0 = 0.2). The inset shows the same depen-
dences at high frequencies; the dashed curves are calculated
from the formula corresponding to the high-frequency limit.
2
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which should be observed near the frequencies of natu-
ral polarization oscillations in the layers (Fig. 6). How-
ever, the additional peaks of the susceptibility are seen
to be much smaller than the main low-frequency peak
(at ω ~ ω0) of the imaginary part of the susceptibility
and their experimental observation may prove to be a
problem.

In closing, we note that, since one of the two layers
of the multilayer unit cell under study is in the paraelec-
tric phase at any temperature and, therefore, the layers

3
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Fig. 7. Frequency dependence of (1) the real and (2) imagi-
nary parts of the dielectric constant of a PL–PLT multilayer
for samples (a) S-10 and (b) S-2. Solid curves are calculated
from the formula ε(ω) = ε0/(1 – iωτ) for a purely relaxative

response with ε0 = 4.1 × 105 and τ = 1.4 × 10–4 s for sample

S-10 and ε0 = 3.3 × 105 and τ = 6.7 × 10–6 s for sample S-2.
Dashed curves are experiment, and crosses represent calcu-
lations of the high-frequency limit εB/(ωτB)2, where

εB/  = 2 × 1011 s–2. τB
2

P

can be considered to be independent of one another, the
results obtained in this paper are relevant to both multi-
layers and isolated single films. In the latter case, how-
ever, the boundary conditions can differ from those in
multilayers and calculations for ferroelectric films
should be carried out for an arbitrary extrapolation
length in much the same manner as the static dielectric
susceptibility was calculated in [17]. The calculations
performed in [17] showed that the main feature of the
case of zero extrapolation length is that the critical
thickness lc = kl0 reaches its maximum, kmax = π,
whereas in the case of a nonzero extrapolation length,
we have k < π; for example, if δ = 0.6l0, then k = 2.

Otherwise, all dependences on the layer thickness
and temperature are similar for different extrapolation
lengths. Therefore, the dependences of the dynamical
susceptibility on layer thickness and temperature calcu-
lated in this paper can be believed to hold for both mul-
tilayers and isolated single films.

APPENDIX

Here, we introduced the notation h = (1 + m)w and

The integrals In(m) can easily be represented as a
sum of standard integrals as presented, e.g., in [14].
After straightforward algebra, one can find the integrals
of interest:

B3
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30∆
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3
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Abstract—The experimental temperature dependences of the thermal expansion coefficient and the mean-
square amplitude of atomic vibrations in the longitudinal direction (along the axes of chain molecules) in
poly(ethylene) crystals of different sizes are measured using x-ray diffraction in the temperature range 5–350 K.
Theoretical calculations of the temperature dependences of the thermal expansion coefficient and the mean-
square amplitude of atomic vibrations in poly(ethylene) crystals are carried out. It is shown that the results of
calculations are in good agreement with experimental data. The temperature ranges in which the quantum char-
acter of lattice dynamics affects the thermal expansion coefficient and the mean-square amplitude of vibrations
are determined. It is revealed that the shear longitudinal modes play an important role in the lattice dynamics
of crystals with a chain structure. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Molecular dynamics in polymer crystals has
attracted the particular attention of many researchers by
virtue of the specific features associated with strong
anisotropy of the elastic characteristics in these materi-
als. This anisotropy stems from a chain structure of
crystals in which the rigidity of interatomic bonds in the
longitudinal direction (along the molecular axes) is sev-
eral orders of magnitude higher than the flexural and
torsional rigidities and the rigidity of bonds in the trans-
verse direction, i.e., between the chain molecules.

It is well known that the aforementioned anisotropy
is responsible for the negative sign of the longitudinal
thermal expansion coefficient α|| [1]. The negative lon-
gitudinal thermal expansion in like crystals has been
analyzed in a number of works [2–5]. For the classical
temperature range, Chen et al. [4, 5] calculated the lin-
ear thermal expansion coefficient along the axis of a
chain polymer molecule with the inclusion of flexural
and torsional transverse vibrational modes. It turned
out that the longitudinal thermal expansion coefficient
α|| calculated for poly(ethylene) at room temperature
agrees closely with the experimental data. However, as
far as we know, theoretical calculations of the longitu-
dinal thermal expansion coefficients over a wide range
of temperatures (beginning with the lowest temperature
at which quantum effects manifest themselves) or com-
parison of the calculated coefficients with the corre-
1063-7834/02/4405- $22.00 © 20964
sponding experimental data have never been per-
formed. Furthermore, such an important dynamic char-
acteristic as the mean-square amplitude of atomic
vibrations in the longitudinal direction has not been
considered to date.

The purposes of the present work were as follows.
(1) Measurements of the temperature dependences of
the thermal expansion coefficient and the mean-square
amplitude of atomic vibrations in the longitudinal
direction over a wide temperature range (5–350 K) for
poly(ethylene) crystals. (2) Calculation and theoretical
analysis of the temperature dependences of these quan-
tities for poly(ethylene) in the same temperature range.
(3) A comparison of the calculated and experimental
results.

2. EXPERIMENTAL TECHNIQUE

The experiments were performed with samples of
oriented poly(ethylene) of two types: (i) samples with
poly(ethylene) large-sized crystalline grains (PEL) and
(ii) samples with poly(ethylene) small-sized crystalline
grains (PES).

The PEL samples were prepared by annealing of
preliminarily oriented plates under high pressure.1

1 We are grateful to Yu.A. Zubov (Karpov Research Institute of
Physical Chemistry) for supplying the samples used in our inves-
tigations and for many pieces of helpful advice.
002 MAIK “Nauka/Interperiodica”
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According to x-ray diffraction measurements, the linear
sizes of crystalline grains are equal to 90–100 nm along
the molecular axes and 50–60 nm in the transverse
direction.

The PES samples were produced through a conven-
tional fivefold orientational extension of a poly(ethyl-
ene) film at a temperature of 350 K. The crystalline
grain sizes in the longitudinal and transverse directions
were equal to 12–14 and 16–18 nm, respectively.

The choice of poly(ethylene) samples containing
crystalline grains of two significantly different sizes
was made from theoretical estimates (see below),
according to which the thermodynamic characteristics
depend on the crystalline grain size (especially in the
longitudinal direction). 

The temperature dependences of the thermal expan-
sion coefficient and the mean-square vibration ampli-
tude for crystal lattices in the longitudinal direction
were determined from changes in the parameters of
meridional (i.e., along the orientation axis of the sam-
ple) x-ray reflections with temperature.

The angular difference between the centers of gyra-
tion of the reflection at different temperatures T was
used to determine the thermal expansion ε|| of the lattice
and the longitudinal thermal expansion coefficient α||:

The temperature dependence of the mean-square

amplitude of atomic vibrations 〈 〉 (T) in the longitu-
dinal direction was calculated from the temperature
dependence of the reflection intensity I(T) according
to the standard expression for the Debye–Waller fac-
tor [6].

In order to determine the parameters α|| and 〈 〉
more reliably, the diffraction measurements were per-
formed with the use of filtered radiation at two wave-
lengths: CuKα radiation (λ = 0.154 nm) and MoKα radi-
ation (λ = 0.071 nm). In the case of MoKα radiation, we
used reflections of two orders. The measurements were
performed on a DRON-1.0 x-ray diffractometer
equipped with a thermocryostat attachment, which
made it possible to change the sample temperature from
~5 to 350 K.

3. EXPERIMENTAL RESULTS

Figure 1 illustrates the temperature behavior of the
(002) meridional reflection (CuKα radiation) for the
PEL sample at the lowest and highest temperatures.
Similar results are obtained using CuKα and MoKα
radiation types for PEL and PES samples at intermedi-
ate temperatures.

For CuKα radiation with a longer wavelength, it was
possible to measure only the first-order reflection (002).

α|| T( )
dε|| T( )

dT
----------------.=

δ||
2

δ||
2
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The first-order (002) and second-order (004) meridi-
onal reflections were measured for MoKα radiation.

The splitting of the (002) reflection shown in Fig. 1
is associated with the presence of two radiation compo-
nents, namely, CuKα1 and CuKα2. In the case of MoKα
radiation, the splitting is more pronounced, specifically
at lower temperatures. This splitting will be used for
analyzing the reflection intensity (see below).

Examination of the angular widths of meridional
reflections of two orders demonstrated that the crystal
lattices in PEL and PES samples exhibit a very low
degree of distortion (<10–4) in the longitudinal direction
and that the crystalline grain sizes in the longitudinal
direction are equal to 90–100 nm for PEL and 12–
14 nm for PES.

According to our analysis of the angular widths of
equatorial reflections (their contours are not presented
in this work), the crystalline grain sizes in the trans-
verse direction are 50–60 nm for PEL and 16–18 nm
for PES.

3.1. Negative longitudinal expansion of crystal-
line grains. As can be seen from Fig. 1, an increase in
the temperature brings about a shift of the reflection
toward the large-angle range. It should be noted that a
similar shift toward the large-angle range was observed
in all the diffraction measurements.

For longitudinal lattice strains, differentiation of the
Bragg equation gives the following relationship:

(1)

where d and ∆d are the interplanar distance and its
change, respectively, and ϕm and ∆ϕ are the angular
position of the reflection and its angular difference,
respectively. This implies a lattice contraction in the
longitudinal direction at the positive difference ∆ϕ.

ε||
∆d
d

-------
∆ϕ

2 ϕm/2tan
-----------------------,–= =
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ϕ75°30′75°00′74°30′
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2

Fig. 1. The (002) meridional reflection (CuKα radiation) at
temperatures of (1) 5 and (2) 350 K.
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By using relationship (1) and the experimental
dependences ∆ϕ(T), we obtain the dependences ε||(T)
for PEL and PES crystal lattices in the temperature
range 5–350 K (Fig. 2). It is seen from Fig. 2 that, for
each poly(ethylene) sample, the points attributed to dif-
ferent radiation types and reflections of different orders
lie along the same curve. This indicates that the depen-
dence ε||(T) is determined with a high degree of accu-
racy.

Differentiation of the dependences ε||(T) gives the
temperature dependence of the thermal expansion coef-
ficient in the longitudinal direction (Fig. 3):

.

First and foremost, we should note that the depen-
dences α||(T) for PEL and PES crystal lattices can be
considered to be virtually coincident with due regard
for the spread of points with respect to the approximat-
ing curves in Fig. 2.

The main result obtained from the analysis of the
temperature dependences α||(T) resides in the fact that
the negative longitudinal thermal expansion coefficient
α|| strongly depends on the temperature; more specifi-
cally, α|| changes from 0 at T = 0 to ~ –1.5 × 10–5 at T =
300 K. Earlier, this circumstance escaped proper atten-
tion and was not analyzed theoretically in a quantitative
way. This analysis will be carried out below.

3.2. Amplitudes of longitudinal vibrations in
crystalline grains. The vibration amplitudes were
determined from the data on the temperature behavior
of the meridional reflections (Fig. 1).

It can be seen from Fig. 1 that, apart from the angu-
lar difference, the reflection is characterized by a
decrease in the intensity with an increase in tempera-
ture. A similar change in the reflection intensity is
observed in all the diffraction measurements. It should
be emphasized that, in this case, the angular width of
reflections (∆ϕ1/2) remains virtually constant. This can
be judged from the data presented in Fig. 4 for the PEL
and PES samples, CuKα and MoKα radiation types, and
reflections of two orders.

The constancy of the angular width of the reflections
under investigation allows us to use the peak intensity
when calculating the Debye–Waller factors [6]. The
temperature dependence of the peak intensity of the
meridional reflection is depicted in Fig. 5.

As follows from the theory of diffraction, a decrease
in intensity of crystalline reflections is caused by the
spreading of Bragg planes in the crystal lattice. For the
(002) reflection of poly(ethylene), this spreading is
associated with thermal vibrations of carbon atoms in
the direction perpendicular to the (002) plane, i.e.,
along the axes of chain molecules. By designating the

α|| T( )
dε|| T( )

dT
----------------=
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mean-square amplitude of these vibrations as 〈 〉 , we
can write, according to [6], the following expression:

(2)

where I(0) and I(T) are the peak intensities of the reflec-
tion at T = 0 and T > 0, respectively, and n is the order
of the reflection.

For correct application of expression (2), the follow-
ing conditions should be met when processing the
experimental data.

(i) The crystalline component should be separated
from the measured reflection intensity; i.e., it is neces-
sary to eliminate the instrument background and the
thermal diffuse scattering intensity which increases
with a rise in the temperature. This separation can be
efficiently accomplished using the doublet splitting of
the reflection for which the ratio between the crystalline
components I(Kα1) and I(Kα2) is known [6]. This pro-
vides a means of determining the actual intensities of
the crystalline reflections.

(ii) The component attributed only to the lattice
dynamics should be separated from the temperature
dependence of the intensity of the crystalline reflection;
i.e., it is necessary to eliminate the decrease in the
reflection intensity, for example, due to amorphization
at the crystalline grain boundaries with an increase in
the temperature, which leads to a decrease in the coher-
ence volume. This separation can be achieved with
reflections of two orders. From expression (2), we
obtain

(3)

where I '(0) and I '(T) are the intensities of the first-order
crystalline reflection at T = 0 and T > 0, respectively,
and I ' '(0) and I ''(T) are the intensities of the second-
order crystalline reflection at T = 0 and T > 0, respec-
tively.

The experimental data on the temperature depen-
dences of the reflection intensity were processed
according to formula (3). As a result, we obtained the
temperature dependences of the mean-square ampli-

tude of longitudinal vibrations 〈 〉  for PEL and PES
crystal lattices (Fig. 6). As can be seen from Fig. 6,
these dependences exhibit similar behavior. It is worth

noting that the values of 〈 〉  for the PEL crystal lattice
are substantially larger than those for the PES crystal
lattices.

With the aim of interpreting the magnitudes and
temperature dependences of the longitudinal thermal
expansion coefficient and the mean-square amplitude
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of longitudinal vibrations, we carried out a theoretical
analysis.

4. THEORETICAL ANALYSIS

4.1. Calculation of the longitudinal thermal con-
traction in poly(ethylene) crystals. The Stockmayer–
Hecht model was chosen as a model of a polymer crys-
tal (Fig. 7a). This model includes the characteristics
required for describing the dynamic effects, makes it
possible to calculate the amplitudes of longitudinal and
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Fig. 5. Temperature dependence of the intensity of the
meridional reflection for PEL: (1) CuKα radiation and
(2) MoKα radiation (first-order reflection).

Fig. 6. (1, 2) Experimental and (1', 2') calculated tempera-
ture dependences of the mean-square amplitude of longitu-
dinal vibrations for (1, 1') PEL and (2, 2') PES crystal lat-
tices.
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transverse vibrations, and, what is particularly impor-
tant, accounts for the effect of flexural rigidity of the
lattice (the coefficient γ). It is also significant that the
phonon spectrum is known for the Stockmayer–Hecht
model [7]. Thus, the thermodynamic parameters under
investigation can be numerically calculated from the
general principles of solid-state physics.

Since the longitudinal rigidity of the carbon-chain
skeleton of a macromolecule is very high [for poly(eth-
ylene), the modulus of longitudinal elasticity is approx-
imately equal to 250 GPa and, correspondingly, the
rigidity β is ~300 N m–1], the poly(ethylene) molecule
can be considered to be thermally nonstretchable when
calculating the longitudinal thermal expansion coeffi-
cient. Chen et al. [4, 5] demonstrated that the longitudi-
nal thermal expansion coefficient of a polymer crystal
can be represented as an asymptotic expansion in terms
of the parameter 1/β in which the main contribution is
determined by a term independent of β. In this case, the
change in the axial length of the studied molecule (the
projection of the molecular contour onto the molecular
axis) with a variation in temperature is governed prima-
rily by transverse vibrations of the skeleton atoms. This
model was accepted earlier in [3, 4] and is illustrated in
Fig. 7b. Within this model, the projection of each link
(a|| is the link length) onto the macromolecular axis is
determined by the square of the difference between
the transverse displacements of the neighboring
atoms, that is,

(4)

The addition term to 〈ln 〉  due to the proper elongation of
a|| at the expense of a finite rigidity β appears to be ~l/β,
whereas the second term in relationship (4) consider-
ably exceeds this quantity [4, 5].

ln a||
xn xn 1––( )2

2a||
----------------------------.–≈

a⊥
a⊥

a||

αα

0

0

χ

γ β

γ

(a)

ln

xn – 1

xn

0

0

(b)

a||

Fig. 7. (a) Stockmayer–Hecht model of a polymer crystal
with a chain structure (α, β, γ, and χ are the force elastic
constants) and (b) dynamics of a nonstretchable skeletal
bond.
PH
Consequently, the longitudinal thermal expansion
coefficient can be represented in the following form:

(5)

Therefore, in order to calculate the longitudinal
thermal expansion coefficient, it is necessary to deter-
mine the transverse-displacement correlator in relation-
ship (5).

For convenience of calculations, it is expedient to
change over from vibrations of individual atoms to nor-
mal lattice vibrations (phonons).

The mean-square amplitude 〈 〉 i of atomic vibra-
tions along the ith axis is defined by the expression [8]

(6)

Here, Uq, α are the amplitudes of normal modes of the
αth branch with the wave vector q, which make a con-

tribution to the mean-square amplitude 〈 〉 i , and N is
the number of atoms in the crystal. For transverse vibra-
tions, we have un = xn.

In the case when the interaction between polymer
chains is relatively weak (the force elastic constant γ is
very small), the phonon spectrum within the Stock-
mayer–Hecht model [7] is split into three acoustic
branches, namely, two transverse branches and one lon-
gitudinal branch. Hence, the thermodynamic character-
istics can be calculated by omitting the summation over
branches in formula (6) and choosing precisely the
spectral branch which makes a dominant contribution
to the calculated parameter. It should be noted that, in
the general case, this separation cannot be accom-
plished, because the displacements in the longitudinal
and perpendicular directions are correlated and the nor-
mal modes of the system involve both the longitudinal
and transverse displacement components.

According to Ziman [8], we can write the relation-
ship

(7)

where m is the atomic mass, which is taken equal to the
mass of a CH2 group; Nm is the mass of the crystal; and
〈Eq〉  is the mean energy of the mode (i.e., the energy of
a set of phonons with the wave vector q). Since the
mean energy can be represented by the expression [9]
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from relationship (7), we obtain

(8)

The dispersion dependence for the transverse mode has
the following form [7]:

(9)

Here, α, β, γ, and χ are the force elastic constants given
in Fig. 7. The quantities ϕ1 and ϕ2 are related to the wave
vector q of the transverse vibrations by the formulas

The quantity ϕ3 and the wave vector in the longitudinal
direction are related by the expressions

where a|| and a⊥  are the interatomic distances and N||
and N⊥  are the numbers of atoms in the transverse and
longitudinal directions, respectively. Therefore, the
summation over wave vectors in relationships (6), (8),
and (9) reduces to the summation over the indices i, j,
and k.

It follows from expression (5) that the longitudinal
thermal expansion coefficient is determined by correla-
tor (6) rather than by the mean-square vibration ampli-
tude, because the displacements of neighboring atoms
are not statistically independent. This correlator can
easily be calculated in normal coordinates and has the
form

(10)

This relationship makes allowance for two vibrational
modes in the transverse direction.

With due regard for relationships (8) and (9), the
expression for numerical calculations of correlator (10)
takes the form

(11)

In calculations for poly(ethylene), we used the force
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0.16 N m–1, and χ = 35 N m–1 [4] and the interatomic
distances a|| = 0.13 nm and a⊥  = 0.4 nm.2 In accordance
with the experimental sizes of crystalline grains, the
following numbers of atoms were taken for calcula-
tions: N|| = 800 and N⊥  = 140 for the large-sized crystal
and N|| = 100 and N⊥  = 40 for the small-sized crystal.

The temperature dependence of the longitudinal
thermal expansion coefficient was obtained by differen-
tiating expression (11) with respect to temperature.

The calculated and experimental dependences α||(T)
for both crystals are compared in Fig. 3. This compari-
son revealed the following features.

(i) The calculated dependences α||(T) also indicate
that the longitudinal thermal expansion coefficient sub-
stantially changes with a variation in temperature in the
range below 200 K.

(ii) The calculated longitudinal thermal expansion
coefficients for the large-sized and small-sized crystals
differ only slightly. The estimates demonstrate that cor-
relator (11) weakly depends on the crystal size in the
transverse direction at N⊥  > 20 and is virtually indepen-
dent of the crystal size in the longitudinal direction at
N|| > 100.

(iii) The calculated and experimental dependences
α||(T) almost coincide in the range T < 200 K. As the
temperature increases above 200 K, the experimental
values of the negative longitudinal thermal expansion
coefficient α|| become increasingly higher than the cal-
culated values. This can be explained by the fact that
the Stockmayer–Hecht model is no more than a rough
approximation for poly(ethylene) crystals (the skele-
tons of poly(ethylene) molecules have the form of a
planar zigzag whose planes are perpendicular to each
other in a unit cell of the poly(ethylene) crystal [10])
which disregards torsional vibrations and anharmonic-
ity of intermolecular interactions. It seems likely that
all these factors are of little significance at low temper-
atures but begin to play an increasingly important role
with a rise in temperature (T > ~200 K).

4.2. Calculation of the mean-square amplitude of
longitudinal vibrations in poly(ethylene) crystals.
The particular interest expressed in this parameter is
associated with its unexpectedly high values observed
in experiments (Fig. 6). Indeed, the classical expression

〈 〉  ≈ kT/β gives an obviously overestimated ampli-
tude of longitudinal vibrations of the skeleton atoms in

the poly(ethylene) chain molecule: 〈 〉  ≈ 0.1 × 10–4 nm2

at T = 300 K. This value is overestimated because,
owing to the high characteristic temperature (~1000 K),
the longitudinal vibrations are not completely excited at
room temperature and, hence, their mean amplitude
should be appreciably less than the classical amplitude.
At the same time, it is clearly seen from Fig. 6 that the

2 The choice of the flexural constant χ, which is equal to the rigid-
ity upon a change in the bond angle, will be discussed below.

δ||
2

δ||
2
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value of 〈 〉  at T = 300 K is approximately equal to
1.0 × 10–4 nm2; i.e., it is approximately one order of
magnitude larger than the aforementioned estimate.
Therefore, the amplitude of longitudinal vibrations of
the skeleton atoms in the poly(ethylene) crystal is
determined by vibrational modes other than internal
longitudinal vibrations of atoms in the poly(ethylene)
molecule.

The amplitude of longitudinal atomic vibrations in
the poly(ethylene) lattice is calculated from formula (6).
In contrast with the calculation of the thermal expan-
sion coefficient, in this case, there is a need to use the
longitudinal branch of the phonon spectrum. The dis-
persion relationship for this branch can be written in the
form [7]

(12)

Here, the designations are the same as in the above for-
mulas. Note that relationship (12) includes neither the
flexural constant χ nor the constant α of the transverse
interaction between the nearest neighbors in the adja-
cent chains.

The computational formula for the mean-square
amplitude of longitudinal vibrations has the form

(13)

The constants entering into expression (13) are taken
equal to those used in the above calculations.

The calculated values of 〈 〉  for crystalline grains
of both sizes are given in Fig. 6. It should be noted that
the component related to zero-point vibrations (~0.2 ×
10–4 nm2) is subtracted from the calculated amplitudes.

The results obtained can be summarized as follows.

(1) The calculated amplitudes 〈 〉  for both the large-
sized and small-sized crystals differ noticeably. The
estimates indicate that the mean-square amplitude of
longitudinal vibrations is virtually independent of the
crystal size in the transverse direction at N1 > 20 (N2 >

20). Therefore, the observed difference in 〈 〉  is asso-
ciated with the difference in crystal sizes in the longitu-
dinal direction. (2) The calculated and experimental

dependences of the mean-square amplitude 〈 〉  virtu-
ally coincide in the temperature range below 200 K. As
the temperature increases above 200 K, the discrepancy
between the calculated and experimental data increases
progressively but remains less pronounced than in the
case of the longitudinal thermal expansion coefficient
(Fig. 3). The reasons for this discrepancy are most
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likely the same as those for the longitudinal thermal
expansion coefficient (see above). The force elastic
constant γ of the diagonal interaction between atoms in
the adjacent chains (Fig. 7a) makes the main contribu-

tion to the calculated amplitudes 〈 〉 . The proper lon-
gitudinal rigidity of the molecules (the force elastic
constant β in Fig. 7a) is very high, and, hence, the
intramolecular longitudinal atomic vibrations contrib-
ute insignificantly to the mean-square amplitude of lon-
gitudinal vibrations (see above). On the other hand, the
shear longitudinal displacements of atoms in the adja-
cent chains becomes possible owing to the low value γ
~ 0.16 N m–1 [4]. This can lead to the observed spread-
ing of the (002) Bragg planes.

Thus, it can be assumed that the shear vibrations
(the longitudinal displacements of chains with respect
to each other) play an important role in the dynamics of
the lattice with a chain structure. Earlier, the contribu-
tion of these vibrations to the lattice dynamics was
ignored.

A close agreement between the calculated and

experimental dependences α||(T) and 〈 〉 (T) over a
wide range of temperatures (from 0 to ~200 K) indi-
cates that the lattice dynamics in poly(ethylene) crys-
tals is adequately described in the framework of the
proposed model.

A theoretical analysis of the strong dependence
α||(T) in the temperature range from 0 to ~200 K
revealed a significant role played by quantum effects,
viz., gradual defreezing of modes in the spectrum of
longitudinal vibrations. Judging from the calculated
dependence α||(T), the Debye temperature of the trans-
verse vibrations can be estimated at ~100 K. This esti-
mate agrees with those given in [1].

The theoretical model considered above is not
entirely consistent with the real geometry of poly(eth-
ylene) crystals. A real molecule of poly(ethylene) has a
planar transzigzag structure [11] and is characterized
not only by the flexural vibrational mode associated
with changes in the bond angles but also by the tor-
sional transverse vibrational mode (twisting of a planar
ribbon—the so-called transzigzag). Chen et al. [5] ana-
lyzed the influence of the torsional mode on the longi-
tudinal thermal expansion coefficient of the poly(ethyl-
ene) lattice in the classical temperature range. It was
shown that the contribution from this mode is close to
the contribution from either of the two components of
the flexural vibrations in the Stockmayer–Hecht model.
Consequently, the longitudinal thermal expansion coef-
ficient of the tetragonal lattice under consideration
proves to be close to the longitudinal thermal expansion
coefficient of the real poly(ethylene) molecule, which
is determined by flexural and torsional vibrations.

For the mean-square amplitude of longitudinal
vibrations, the calculated temperature dependence
becomes linear at temperatures above ~50 K, which is

δ||
2

δ||
2
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consistent with the classical dependence [11]. To put it
differently, the quantum effects are significant at T <
50 K. This can be explained by the fact that the constant
of longitudinal shear vibrations is small and the charac-
teristic temperature of these vibrations is low (esti-
mated at 20–30 K).

In this work, we analyzed the experimental and cal-
culated data for only one polymer, namely, poly(ethyl-
ene). This polymer is characterized by relatively weak
forces of the interchain interaction (van der Waals
bonds). The effect of the negative longitudinal thermal
expansion is inherit in all polymers with a chain struc-
ture [1]. It is clear that the magnitudes of the longitudi-
nal thermal expansion coefficient, the mean-square
amplitude of longitudinal vibrations, and the character-
istic temperatures (the ranges in which quantum effects
manifest themselves) should depend on the intermolec-
ular interaction.
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Abstract—The phonon spectra g(ν) of rare-earth hexaborides MeB3 are calculated both in the approximation
MeB* + B (B* = B6) without regard for bonding between metal and boron atoms and in the approximation mak-
ing allowance for this bonding. The temperature dependences of the heat capacity are calculated from the
dependences g(ν), and the results obtained are compared with the experimental data in the range 5–300 K. It is
found that stretching vibrations in the metal and boron sublattices and between these sublattices variously affect
the thermodynamic functions of hexaborides at low and high temperatures. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

A unit cell of rare-earth hexaborides has a body-
centered cubic structure of the CsCl type in which the
cube vertices are occupied by rare-earth atoms and
the atomic group B6 plays the role of a centering
pseudoatom.

As an illustration, Fig. 1 shows the structure of lan-
thanum hexaboride with the distances between metal
atoms (Me–Me), boron atoms (B–B) inside the B6 (B*)
pseudoatom centering the unit cell, and boron atoms
(B–B) in the adjacent unit cells.

The distinctive feature of the unit cell of rare-earth
hexaborides is that it involves the atomic group B6 in
which the B–B distances are somewhat longer than the
bond between boron atoms of the adjacent unit cells.

When analyzing the lattice dynamics of rare-earth
hexaborides, allowances are made for the following
bonds: (i) bonds between the neighboring metal atoms
(Me–Me), bonds between the metal atom and pseudo-
atom (Me–B6), bonds inside the B6 pseudoatom (B–B),
and bonds between B6 groups of the adjacent unit cells
(B–B). The ratio of the total bonding energies for bonds
between the metal atoms (Me–Me), the boron atoms
(B–B), and the metal and boron atoms (Me–B) is of cru-
cial importance. The atomization energy of rare-earth
hexaborides can be considered as the sum of the atom-
ization energies of the metal and boron sublattices and
the energy of the Me–B bond. The table presents the
reference values of atomization energies for rare-earth
metals, boron, and B6 and the formation energies for
MeB6 per mole of the relevant hexaboride [1, 2]. As fol-
lows from the table, the formation energy of the MeB6
1063-7834/02/4405- $22.00 © 0972
compound per gram-atom, which is referred to the stan-
dard states of the metal and boron, is substantially less
than the atomization energy for the rare-earth element
and boron. The relative fractions of bonding energies of
the Me–Me bonds with respect to the Me–B and B–B
bonds involved in the MeB6 compounds are also given
in the table.

Without going into detail on particular interatomic
bonds in the unit cell of rare-earth hexaborides, we will
analyze the lattice heat capacity and other thermody-
namic properties of hexaborides in the framework of
two macroscopic approaches. First, let us consider two
sublattices, namely, the metal and boron sublattices, in
the approximation of two Debye solids with a parabolic
phonon spectrum in the case when bonds between these
solids are ignored. As the second approximation, we
consider the phonon spectrum of the metal–pseudo-
atom B* (B6) compound with a CsCl-type structure and
complement this spectrum with the density function of
vibrational states inside the B6 pseudoatom.

2. PHONON SPECTRUM OF HEXABORIDES 
AS A SUPERPOSITION OF DEBYE SPECTRA
OF THE METAL AND BORON SUBLATTICES

The Debye spectrum of vibrational states g(ν) =
dn/dν is uniquely determined by the Debye characteris-
tic temperature Θ:

(1)

Here, N is the number of particles in the system, h is the
Plank constant, and k is the Boltzmann constant.

g ν( ) 9N /Θ3( ) h/k( )3
v

2
.=
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The overall spectrum of the MeB6 compound is
determined as a superposition of the partial Debye
spectra of the metal and boron, that is,

(2)

The characteristic temperatures for sublattices of
rare-earth elements (ΘMe) and boron (ΘB) are listed in
the table. These temperatures were determined recently
by Novikov [3] from an analysis of the temperature
dependences of the heat capacity for rare-earth
hexaborides. Figure 2 shows the overall phonon spec-
trum of lanthanum hexaboride as a superposition of the
partial spectra calculated for the characteristic temper-
atures of the corresponding sublattices (ΘLa = 205 K
and ΘB = 1230 K). The function (ν), which was
calculated earlier by Kunii [4] from the spectroscopic
data, is given in Fig. 2 for comparison. It can be seen
from Fig. 2 that, despite certain minor differences,
these spectra exhibit similar behavior.

The phonon spectra of all the isostructural rare-
earth hexaborides under investigation were obtained
by the superposition of the Debye spectra of boron
and the relevant metal and had a similar shape. The
heat capacities Cp(T) calculated for these hexaborides
from the phonon spectra in the temperature range
300–1000 K differ from the experimental values by no
more than 3–7% [3].

3. PHONON SPECTRA OF HEXABORIDES 
AS A SUPERPOSITION OF BORN–KÁRMÁN 

SPECTRA OF MeB*-TYPE STRUCTURES
AND A BORON SPECTRUM

In the second approximation, the phonon spectra of
rare-earth hexaborides are treated as spectra of rare-
earth compounds with a CsCl-type structure in which
the chlorine site is occupied by the B* (B6) pseudo-

gMeB6
ν( ) gMe ν( ) gB ν( ).+=

gLaB6
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atom. Moreover, these spectra are complemented with
the phonon spectra of boron atoms (within the approx-
imation MeB* + B6). The molar mass mB* of the B*
pseudoatom in this structure is equal to 64.86 g/mol,
which amounts to approximately half the atomic mass
of the rare-earth element.

1.7
6 Å

1.66 Å

4.16 Å

(a)

(b)

Fig. 1. Crystal structure of lanthanum hexaboride: (a) LaB6
unit cell and (b) projection of the structure onto the X0Y
plane.
Characteristics of rare-earth hexaborides for the calculation of the phonon spectra

Com-
pound

U0Me, 
kJ/mol

,

 kJ/mol
U0,

kJ/mol

Fractions of bonding 
energies ΘMe, K ΘB, K

Lattice 
parameter 

a, Å

Molar 
volume

of MeB*,
V0, cm3

β × 106, 
K–1 m n

η1 η2 η3

LaB6 431 470.4 535 1 1.23 1.31 205 1230 4.1563 43.2 15 4 12

CeB6 423 340.2 517 1 1.22 1.33 203 1293 4.1396 42.7 16.5 4 12

PrB6 455.6 418.3 489 1 1.38 1.58 210 1218 4.1327 42.5 16.8 4 12

NdB6 427.6 431.8 475.9 1 1.45 1.72 200 1170 4.1266 42.3 15 4 12

SmB6 208.7 456.1 417.2 1 2.0 2.70 210 1200 4.1334 42.5 13.5 4 12

EuB6 175.3 471.2 402.5 1 2.30 3.21 198 1383 4.1844 43.9 12 4 6

GdB6 397.5 481.7 514.4 1 1.29 1.42 212 1254 4.1066 41.92 17.4 4 12

TbB6 388.7 494.8 510.9 1 1.31 1.45 207 1025 4.1052 41.55 18 5 12

DyB6 290.4 504 462.4 1 1.59 1.94 208 1074 4.1008 41.4 18.6 5 14

B 562.7

UMeB6
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The phonon spectra of MeB* compounds can be cal-
culated according to the Born–Kármán–Delaunay
method via solving the secular equation

(3)

Here, M is the atomic mass, L is the unity matrix, and
D(q) is the dynamic matrix specified by vector q [5–7].

The following three types of bonds in the CsCl-like
lattice of MeB* should be considered in the calculation
of the phonon spectrum: (i) j1 is the bond between the
metal atoms (Me–Me), (ii) j2 is the bond between the
metal atom and the B* (B6) pseudoatom (Me–B*), and
(iii) j3 is the bond between the B* pseudoatoms (B*–B*).
Each MeB* compound can be characterized by an
expression relating the proportionality coefficients of
the aforementioned bonding energies and the total
atomization energy of the MeB* compound per gram-
atom.

For the LaB6 compound, the proportionality coeffi-
cients can be expressed in terms of the j1 bond (Me–Me)
as follows: ηj = U0Me/U0j. For the bonds j1 (Me–Me),
j2(Me–B*), and j3 (B*–B*), we obtain η1= 1, η2 = 1.23,
and η3 = 1.31, respectively. We introduce the following
notation: U0Me is the atomization energy of the metal
per gram-atom, U0B is the atomization energy of boron,
and  is the formation energy of the MeB6 com-
pound, which is referred to the standard state of the
components.

These coefficients are introduced into the program
to calculate the phonon spectra of MeB* crystals with a
CsCl-type structure. The atomization energy per gram-
atom of the MeB* compound can be determined from
the relationship

(4)

D q( ) Mω2
L– 0.=

UMeB6

U0
1
2
--- U0Me U0B UMeB6

+ +( ).=
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Fig. 2. Phonon spectrum of LaB6: (1) the Debye phonon
spectrum of the lanthanum sublattice gLa(ν), (2) the Debye
phonon spectrum of the boron sublattice gB(ν), and (3) the
phonon spectrum of LaB6 taken from [4].
P

The Delaunay force constants were taken into
account in the computation of four coordination
spheres: i = 1… 4. Their values are proportional to the
second and first derivatives of the atomization energy in
the function of distances between the nearest-neighbor
atoms, which are taken at the points corresponding to
the ith coordination spheres for each bond type j [5]:

(5)

(6)

The bonding energy as a function of the distance
between the nearest-neighbor atoms can be conve-
niently expressed in the analytical form using the
approximation of Uj(r) in the form of the Mie–Grü-
neisen potential [8]

(7)

From the condition (∂Uj /∂r  = 0, we obtain

(8)

Consequently, the Delaunay force constants take the
following form:

(9)

(10)

where ki = r0/ri is the ratio of the radius of the first coor-
dination sphere to the radius of the ith sphere.

The exponents n and m in relationships (7)–(10) are
calculated according to the procedure described in [8].
In this case, the change in the interatomic distances r
determines the change in the mole volume and depends
on the presence of different-type atoms.

The (m + n) value can be determined from the bulk
modulus B [9], the bulk thermal expansion coefficient β
[10], and the nomogram taken from [8]:

(11)

where V0 is the volume per gram-atom, β is the bulk
thermal expansion coefficient, and R is the universal
gas constant. The product mn can be calculated from
the atomization energy of the hexaboride U0, the vol-
ume per gram-atom V0, and the bulk modulus B; that is,

(12)

The characteristics of rare-earth hexaborides, which
are used for calculating the exponents m and n, are
given in the table.

The calculated phonon spectra of MeB* rare-earth
compounds (Me = La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, and
Dy) for m = 4 and n = 12 are shown in Fig. 3.

α ij ∂2
U j( )/∂r

2 )rij,=

βij 1/r–( ) ∂U j( )/∂r )rij
.=

U j – α /r
m( ) β/r

n( ).+=

)r0

Uj = U0mn/ n m–( )( ) 1/m( ) r0/r( )m
1/n( ) r0/r( )n

–[ ] .

α ij

mn m 1+( )U0 jki
m 2+

n m–( )2
----------------------------------------------- 1

n 1+
m 1+
-------------ki

n m–
– ,=

βij

mnU0 j

n m–( )r0
2

-----------------------ki
m 2+

1 ki
n m–

–[ ] ,–=

g V0βB/R,=

mn 9V0B/U0.=
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Fig. 3. Phonon spectra of MeB* structures: (1) LaB*, (2) CeB*, (3) PrB*, (4) NdB*, (5) SmB*, (6) EuB*, (7) GdB*, (8) TbB*, and
(9) DyB*.

00
The second component of the overall phonon spec-
trum of MeB6 hexaborides is the phonon spectrum of
vibrational states of boron atoms inside the B* (B6)
pseudoatom. This component for all the hexaborides
under investigation is approximated by the Gaussian
function

(13)

which is cut off at the highest frequency ν0. The fre-
quency ν0 is determined from the characteristic temper-
ature for elemental amorphous boron ΘB = 1217 K [11].
The calculated phonon spectrum of boron atoms is
shown in Fig. 4.

The overall phonon spectrum of MeB6 hexaborides,

(14)

is normalized to 3NA (NA is the Avogadro number).

gB ν( ) Ae
ν ν0–( )/ν( )2

–
,=

gMeB6
ν( ) gMeB* ν( ) gB ν( ),+=
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4. LATTICE HEAT CAPACITY
OF RARE-EARTH HEXABORIDES

The heat capacities of MeB* compounds CMeB*(T)
and boron CB(T) per gram-atom are calculated from the
phonon spectra g(ν) by numerical integration:

(15)

where νm is the cutoff phonon frequency.

The molar lattice heat capacities of rare-earth
hexaborides are calculated from the relationship

(16)

The coefficient 2 of the first term accounts for the con-
tribution of the MeB* diatomic pseudomolecule. The
coefficient 5 of the second term allows for the contribu-

Cv g ν( ) ε/ Tdd( ) ν ,d

0

νm

∫=

CMeB6
T( ) 2CMeB* T( ) 5CB T( ).+=
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tion of the boron atoms involved in the B6 octahedron,
except for one boron atom taken into account in the first
term.

Figure 5 depicts the calculated dependences of the
total heat capacity for hexaborides of lanthanum and
neodymium in the temperature range 20–300 K. For
NdB6, the contribution of the Schottky heat capacity is
taken into account in addition to the lattice contribu-
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rb

. u
ni

ts

Fig. 4. Phonon spectrum of boron.
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Fig. 5. Heat capacities calculated for hexaborides of (a) lan-
thanum and (b) neodymium from the phonon spectra and
available data on the splitting of the energy levels: (1) 2CMeB*,
(2) 5CB, (3) C = 2CMeB* + 5CB, and (4) CSchottky. Dashed
lines represent the experimental dependences.

0

P

tion. For the greater part of the temperature range cov-
ered, the calculated and experimental values are in rea-
sonable agreement. The electronic components of the
heat capacity and contributions from anharmonicity are
small in the temperature range under consideration and,
hence, are disregarded.

Analysis of the calculated phonon spectra and lat-
tice heat capacities of rare-earth hexaborides demon-
strates that the (MeB* + B) model allows for the metal–
boron bond and leads to a more realistic phonon spec-
trum compared to the model of independent sublattices.
On the other hand, the (Me + B) model of independent
sublattices agrees satisfactorily with the experimental
data in the temperature range 5–300 K. The isobaric
heat capacities CB(T), which were calculated from this
model, are close to the heat capacities calculated from
the (MeB* + B) model and agree with the experimental
data [3].

At low temperatures (below 60–80 K), the lowest
frequency vibrations among the possible vibrations are
efficient, whereas the high-frequency vibrations are
partially frozen. This explains the good agreement
between the experimental heat capacities Clat(T) and the
calculated values in the model of independent sublat-
tices, including the range of a certain anomaly in the
lattice heat capacity at T = 40–80 K.

At higher temperatures, the role of Me–B* and B–B
high-frequency vibrations increases. Consequently, the
MeB* model in the temperatures range 60–300 K gives
results that are in close agreement with the experimen-
tal data. At temperatures above 100–200 K, the vibra-
tions of boron atoms play a decisive role.

A satisfactory quantitative description of the tem-
perature dependence of the lattice heat capacity Clat(T)
at temperatures of 50–300 K and above in both the
(MeB* + B) model and the approximation of indepen-
dent sublattices can be explained as follows. (1) The
characteristic temperature ΘMe in the model of indepen-
dent sublattices is lower than the temperature ΘMeB* by
a factor of approximately three, whereas the mass of the
B* (B6) pseudoatom considerably exceeds the atomic
mass of boron but is less than that of the metal by a fac-
tor of approximately 2.5; as a result, the bonding ener-
gies for the Me–Me and Me–B* bonds are close to each
other. (2) At temperatures below T = 100 K, the heat
capacity is determined primarily by the low frequencies
of metal atom vibrations, which are close in magnitude
in both models. (3) The characteristic temperatures of
boron in both models are close to each other. (4) The
curve Clat(T) is weakly affected by the specific features
of the phonon spectrum.

Although the (Me + B) model of independent sublat-
tices and the (MeB* + B) model lead to close results,
the latter model is more general. In addition to the
Me−Me bonds, the (MeB* + B) model makes allowance
for the Me–B bond, which naturally exists in
hexaborides. This bond is ignored in the former model
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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because of its relative insignificance. In a number of
thermodynamic works [12–15], it is accepted that the
metal–metal bond in higher borides is immaterial. The
results of our investigation have demonstrated that, at
high temperatures, the metal–metal bond in rare-earth
hexaborides is of little importance. However, at low
temperatures (below 100 K), the contribution of this
bond is predominant.
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Abstract—The propagation of heat pulses in systems with defects as trapping centers of nonequilibrium
phonons is investigated theoretically. Among these defects are point defects involving two-level systems (TLSs)
of different nature. It is demonstrated that, in addition to the principal signal, one more signal can be detected
by the bolometer due to reemission of the nonequilibrium TLS energy at a certain ratio of relaxation times in
the phonon and TLS subsystems. The temperature and concentration dependences of the time of signal arrival
at the bolometer are analyzed. The results of theoretical investigations are compared with experimental data on
the propagation of weakly nonequilibrium thermal phonons in solid solutions of the Y3 – xErxAl5O12 rare-earth
yttrium aluminum garnets. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The technique based on analyzing the propagation
of weakly nonequilibrium phonons injected by a
“warm” generator at S/T ! 1 (where S is the difference
between the generator temperature and the thermostat
temperature T) is widely used in structural investiga-
tions of systems (such as mixed crystals, amorphous
materials, and ceramics) with strong phonon scattering
by defects [1–4]. Despite a large number of theoretical
works dealing with the propagation of weakly nonequi-
librium phonons in real materials (see, for example, [5–
8]), this problem remains unsolved. In particular, the
mechanisms responsible for anomalous retardation of
weakly nonequilibrium phonons (by two orders of
magnitude) in solid solutions of the Y3 – xRxAl5O12 rare-
earth yttrium aluminum garnets (where R = Er, Ho, and
Tb) are not clearly understood.

The main difficulties encountered in theoretical
investigations of this phenomenon stem from the fact
that the propagation of a short heat pulse is essentially
a nonstationary process. In the case when the studied
system involves low-energy two-level systems (TLSs),
this nonstationarity can result in its spatial inhomoge-
neity associated with the dependence of the TLS state
on the coordinate. It is known that nonstationary energy
exchange with a thermostat in a system consisting of
subsystems characterized by different relaxation times
can differ appreciably from stationary exchange.
Kumenkov and Perel’ [9] demonstrated that the cooling
of an electron–hole plasma in semiconductors under
dynamic conditions (after flash plasma heating) can be
described by two significantly different characteristic
relaxation times (τ1 ! τ2). The former time character-
izes plasma cooling and heating of optical phonons up
to equalization of their effective temperatures, and the
1063-7834/02/4405- $22.00 © 0978
latter time accounts for slow cooling of the system as a
whole. As will be shown below, similar processes can
be observed during the propagation of a short heat pulse
in dielectrics with a sufficiently high TLS concentra-
tion, which is responsible for the anomalous depen-
dence of the phonon propagation time in these systems.

2. BASIC EQUATIONS

The propagation of a heat pulse will be described in
terms of the following kinetic equations (they formally
coincide with the equations used in [9]):

(1)

(2)

Here, nq0 and nt0 are the equilibrium filling numbers of
phonons at the thermostat temperature and the TLS
effective temperature, respectively; E is the TLS
energy; Γtq is the scattering rate of phonons by TLSs;
and ΓL is the rate of energy exchange between phonons
and the thermostat. Within the approximation linear in
the deviations Sq and St of the subsystem temperatures
from the thermostat temperature T (Si = Ti – T), the set
of equations (1) and (2) can be rewritten in the form

(3)

(4)

∂nq

∂t
-------- Γ tq Γ L+( )nq+ Γ Lnq0 Γ tqnq0,+=

∂E
∂t
------

1
2π
------ 

 
3

ωqΓ tq nq nt0–( )d
3
q.∫=

∂Sq

∂t
-------- NΓ Γ L+( )Sq+ NΓSti,=

∂St

∂t
------- Γ

cph

cTLS
--------- Sq St–( ),=
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where cph = 4π4(T/TD)3/5 is the heat capacity of
phonons, cTLS = (∆/T)2exp(–∆/T)/(1 + exp(–∆/T))2 is
the heat capacity of TLSs, N is the concentration, ∆ is
the TLS parameter, and TD is the Debye temperature.
Relationships (3) and (4) were derived by ignoring the
dependence of Γtq on q and using the approximation lin-
ear in the defect concentration N under the assumption
that Γtq = NΓ, where Γ is the scattering rate of phonons
per defect.

3. THE SPATIALLY HOMOGENEOUS CASE

Before proceeding to the spatially inhomogeneous
problem, we consider a simpler case. Let us assume
that, at the initial instant of time, all excess energy in a
spatially homogeneous system is contained in the TLS
subsystem; i.e., St(0) = S(0) and Sq(0) = 0. This situa-
tion can be observed experimentally upon energy
pumping of a subsystem of paramagnetic levels with a
short microwave pulse [10]. By applying the Laplace
transform with respect to the time variable, it is easy to
obtain the following expression for the effective tem-
perature of the TLS subsystem:

(5)

Here, the reciprocals of the relaxation times –p1 and –p2
are the solutions to the quadratic equation

(6)

and the coefficients A1 and A2 have the form

The solution of Eq. (6) is conveniently analyzed when
one of the terms in the square brackets is considerably
larger (smaller) than the other term. In this case, we
have

Upon fast heat exchange between phonons and the ther-
mostat, i.e., at ΓL @ ΓN(1 + cph/NcTLS), no narrow
phonon bottleneck arises. Hence, the TLS relaxation
rate within the above approximation is independent of
the TLS concentration; that is,

In the presence of a narrow phonon bottleneck, at
ΓL ! ΓN(1 + cph/NcTLS), the relaxation times become
dependent on the defect concentration and can be writ-
ten as

(7)

Sq t( ) S 0( ) A1e
p1t

A2e
p2t

+( ).=

p
2

p N 1 cph/NcTLS+( ) Γ L+[ ] cphΓΓ L/cTLS+ + 0=

A1 1 A2–
p1 Γ L Γcph/cTLS+ +( )

p1 p2–( )
---------------------------------------------------.= =

p1– 1/τ1 ΓN 1 cph/NcTLS+( ) Γ L,+= =

p2– 1/τ2

cph

cTLS
---------

ΓΓ L

ΓN 1 cph/NcTLS+( ) Γ L+( )
---------------------------------------------------------------.= =

1/τ1 Γ L, 1/τ2 Γcph/cTLS.= =

1/τ1 ΓN 1 cph/NcTLS+( )
cph

cTLS
---------Γ

C
----,= =
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
(8)

where C = cph/(NcTLS + cph) < 1.

The time τ1 characterizes the fast process of equal-
izing the temperatures of the TLS subsystem and
phonons involved. This process is governed by the
cross section for phonon scattering by TLSs. After
equalizing the temperatures, the whole system under-
goes slow relaxation with the characteristic time τ2.
This process is controlled by the interaction of phonons
with the thermostat, does not depend on Γ in the
approximation used for deriving expression (8), and is
determined only by the rate of energy exchange
between phonons and the thermostat. As a rule, the ine-
quality cph/NcTLS ! 1 holds in experiments and expres-
sion (8) coincides with the Altshuler relationship [11].

In the case when the characteristic time of energy
exchange between phonons and the thermostat is deter-
mined only by the time of diffusive propagation of
phonons over the bulk of a sample with a characteristic
linear size L, it is easy to obtain the relationship for the
relaxation time τ2:

(8a)

where D is the phonon diffusion coefficient and A is the
numerical coefficient (of the order of unity), which
depends on the sample geometry. Then, the condition
for a narrow phonon bottleneck can be written in the

form L2 >  = Dτ1/A.

As will be shown below, the parameters characteriz-
ing the energy relaxation of the TLS subsystem and
phonons in the presence of a narrow phonon bottleneck
in the spatially homogeneous case also play an impor-
tant role in describing the propagation of heat pulses in
these systems.

4. HEAT-PULSE PROPAGATION

Now, we consider the problem of propagation of
a δ-like heat pulse from the origin of coordinates into
an infinite one-dimensional sample. In this case, ΓL

in Eq. (1) should be taken as the diffusion term: ΓL =
–D0∂2/∂z2, where D0 is the phonon diffusion coeffi-
cient, which depends solely on elastic scattering of
phonons by defects. (Here, heat exchange between the
sample and the thermostat is ignored.) The spatial Fou-
rier transform of the function Sq(t, k) formally coincides
with relationship (5); that is,

Here, S(0) is the power of the heat pulse, Di(k) =
−pi(k)/k2 stands for the effective diffusion coefficients

1/τ2

cph

cTLS
---------

Γ L

N 1 cph/NcTLS+( )
------------------------------------------ Γ LC,= =

1/τ2 AL
2
/ DC( ),=

L0
2

Sq t k,( ) S 0( ) A1 k( )e
k

2
D1 k( )t–

A2 k( )e
k

2
D2 k( )t–
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of phonons, and pi(k) are determined from the quadratic
equation similar to Eq. (6); that is,

(9)

Let us introduce the dimensionless variables k' = kL,
(k) = Di(k)/D0, and t ' = t/t0, where L is the coordi-

nate of the point at which the temperature is measured
(the sample length) and t0 = L2/2D0 is the characteristic
time of phonon propagation, which is calculated with
allowance made only for elastic scattering of phonons
by defects. For the effective diffusion coefficients, we
have

(10)

Expression (10) involves the parameters C = cph/(cph +

NcTLS) < 1 and  = (L/L0)2, which were introduced for
the one-dimensional case (A = 1) in the preceding sec-
tion. From relationships (9) and (10), we obtain  = 1

and A1 = 1 at k' @ k0 and  = C and A2 = C at k' ! k0.

The spatial dispersion of the diffusion coefficients
D'i(k') is shown in Fig. 1, from which the physical
meaning of the introduced parameters becomes clear.
At k0 @ 1, the narrow phonon bottleneck arises in the
system and the time of signal arrival at the bolometer is
determined by slow processes: t2 = L2/(2D0C) in accor-
dance with formula (8a). At k0 ! 1 (in the absence of
the phonon bottleneck), the phonon system has no time
to respond to changes in the TLS subsystem and the

A1 1 A2– p1 D0k
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Fig. 1. Spatial dispersion of the effective diffusion coeffi-
cients.
P

signal propagation time is independent of the TLS
state: t1 = t0 = L2/(2D0).

At intermediate values of k0, the expression for this
parameter can be conveniently written in the equivalent

form k0 = . From this expression, it follows that
k0 increases with an increase in the number of phonons
that have already managed to interact inelastically with
TLSs in the presence of a narrow phonon bottleneck.
The other phonons do not undergo inelastic scattering
by TLSs, and their propagation is governed by the D0
coefficient. The results of numerical calculations of
Sq(t ') at the point L for different values of k0 and C are
displayed in Fig. 2. It is seen from the dependences
depicted in this figure that the height and position of the
first maximum depend primarily on the k0 parameter,
whereas the shape and position of the second maximum
are determined by the C parameter.

For an approximate description of the dependences
of the position and shape of the maxima on the param-
eters of the problem, we restrict our consideration to the
limit C ! 1. In this case, we can write the relationships

and derive the approximate relationships for the posi-
tion and shape of the peaks. For the first peak, we obtain

As follows from this expression, the time it takes for the
first peak to arrive at the bolometer is determined by the
expression

(11)

The approximate relationship for the position and
shape of the second peak can be derived at sufficiently
large values of k0; that is,

(12)

Note that, in the limit under consideration, the condi-
tions for a narrow phonon bottleneck are satisfied and
the signal propagation time is independent of τ1.

We now turn to the discussion of the temperature
and concentration dependences of the heat-pulse prop-
agation. Unfortunately, as far as we know, experimental
data on the spin-lattice relaxation in these systems in
the presence of a narrow phonon bottleneck are
unavailable. Hereafter, k0 will be treated as a fitting
parameter of the model. For definiteness, we assume
that the temperature dependence of the relaxation rate
Γ(T) in formula (7) is described by an exponential law
[11]: Γ(T) = Γ0exp(–∆/T). As will be shown below, the
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theoretical results obtained for this temperature depen-
dence are in reasonable agreement with the experimen-
tal data. Under the assumption that the diffusion coeffi-
cient D0 is determined by the Rayleigh scattering of
phonons from defects (D0 ~ 1/NT4), we found that the
parameter k0 increases with an increase in both the tem-
perature and the defect concentration (k0 ~ NLT2Γ1/2).
At k0 ≥ 1, from relationship (11), it follows that the time
t1 is concentration independent and increases linearly
with an increase in the parameter L. In other words, the
time t1 behaves as a signal of ballistic phonons but
decreases with an increase in the temperature. Since, at
small k0, the time t1 is proportional to T4, the depen-
dence t1(T) exhibits a maximum whose position is
determined by the temperature dependence Γ(T). Fig-
ure 3 displays the dependences t1(T)/L calculated from
expression (11) at different parameters L and constant
values of N and Γ0. The behavior of these dependences
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0.1 1 100.010.001
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Ct'

Fig. 2. Shapes of the phonon nonequilibrium signals as
functions of the parameters (a) k0 and (b) C. (a) C = 0.1 and
k0 = (1) 0, (2) 3, and (3) 10 and (b) k0 = 3 and C = (1) 0.1,
(2) 0.05, and (3) 0.01.
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agrees qualitatively with the available experimental
data [4]. Special experimental investigations into the
temperature and concentration dependences of t1 at dif-
ferent L were not carried out. However, Ivanov et al.
[10] noted that the behavior of the first peak is similar
to that of the ballistic signal.

The temperature and concentration dependences of
the arrival time of the second peak will be analyzed
under the conditions when k0 @ 1. These conditions can
always be satisfied with a sufficiently long sample.
Note that the contribution of the first peak to the signal
at the bolometer can be disregarded. The arrival time of
the second signal is represented by the relationship

The temperature dependences of t2/N at D0 ~ 1/NT4

and different defect concentrations are plotted in Fig. 4.
It can be seen from this figure that, at a sufficiently high
defect concentration, when the inequality NcTLS @ cph
holds at temperatures in the vicinity of ∆, the depen-
dence t2(T) exhibits a nonmonotonic behavior. At T <
0.5∆, the time t2 increases exponentially. At T > 0.5∆,
when cTLS ~ 1/T2, the time t2 decreases as 1/T. In the other
temperature ranges (in which the inequality NcTLS ! cph
is satisfied) and at low defect concentrations, the depen-
dence t2(T) exhibits conventional behavior: t2(T) ~ T4.
As regards the concentration dependence t2(N), the

t2 T N,( ) L
2

2D0 T N,( )C T N,( )
----------------------------------------------.∼

10

1

0.1

t 1
/L

3 4 T, K

Fig. 3. Normalized (to the sample length) arrival times of
the first maximum at L = 4, 6, 8, and 10 mm (from bottom
to top).
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982 SALAMATOV
time t2 is proportional to N2 in the temperature range
where ctls @ cph.

The above analysis has demonstrated that the pro-
posed model qualitatively describes the experimental
temperature and concentration dependences of the
phonon nonequilibrium signal shape for Y3 – xRxAl5O12
(R = Er, Ho, and Tb) yttrium aluminum garnets.

5. COMPARISON WITH EXPERIMENT

The phonon dynamics in Y3 – xErxAl5O12 solid solu-
tions has been investigated experimentally in sufficient
detail. It is found that, at x > 0.2, the phonon nonequi-
librium signal has the second maximum and the propa-
gation of phonons is retarded appreciably. In this case,
the temperature dependence of the arrival time of the
second signal at the bolometer on the concentration of
erbium impurity atoms and the sample length has a
complex character. At low concentrations of impurity
atoms (0.2 < x < 0.6), the time t2 increases very rapidly
(exponentially, according to [10]) with an increase in
the temperature. At high concentrations x, the tempera-
ture dependence t2(T) is characterized by the negative
derivative. At intermediate concentrations x, the sign of
the derivative of t2(T) is predominantly determined by
the sample size.

From the above consideration, it is clear that, within
the proposed model, the observed behavior of t2(T) as a
function of the concentration can be explained solely
under the assumption that the system involves two TLS
subsystems with different energy parameters ∆1 < T <
∆2. The solution of the problem with two TLS sub-
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1t 2
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Fig. 4. Normalized (to the concentration) arrival times of
the second maximum at ∆/T = 0.01 and different x: (1) 0,
(2) 0.05, and (3) 0.5.
PH
systems does not differ radically from the solution con-
sidered above but leads to qualitatively new results (for
example, the appearance of the third maximum in the
phonon nonequilibrium signal curve observed experi-
mentally in [4]) and calls for separate treatment. In the
present work, we restrict our consideration to the limit
of large values of the parameter k0 (or, more precisely,
an analog of this parameter). In this case, it is easy to
obtain the physically obvious result that the arrival time
of the second maxima is determined by the parameter
C = cph/(cph + N1cTLS, 1 + N2cTLS, 2), where Ni and cTLS, i
are the concentration and the heat capacity of the ith
TLS subsystem, respectively.

According to the experimental data on the low-tem-
perature heat capacity [12], doubly degenerate para-
magnetic levels with ∆2 = 38.9 K reside in the
Y3 − xErxAl5O12 system. As can be seen from Fig. 4, it is
these TLSs that can lead to a very steep increase in the
time t2 with an increase in the temperature. Experimen-
tal investigations into spin-lattice relaxation in this sys-
tem revealed low-energy paramagnetic levels with ∆1 .
4 K [10]. At the temperatures used in the experiments,
we have cTLS, 1 @ cTLS, 2. Under these conditions, the
contribution of the second TLS subsystem dominates
when the concentration of high-energy TLSs at x ≤ 0.6
considerably exceeds the concentration of low-energy
TLSs (N2 @ N1). This becomes possible in the case
when the low-energy level is associated with the partic-
ular atomic configuration rather than with each impu-
rity atom. At low impurity concentrations, the probabil-
ity of forming these configurations is small; i.e., N1 !
N2. Most likely, it is this situation that is observed at low
impurity concentrations in the Y3 – xErxAl5O12 system.
For this reason, in the subsequent discussion (except for
the specified case), we will ignore the contribution of
low-energy TLSs and consider the case of low concen-
trations (x ≤ 0.6).

In order to solve the formulated problem, it is neces-
sary to determine the diffusion coefficient D0 and the
parameters C and k0. The diffusion coefficient D0 for
the system with TLSs cannot be determined directly
from experiments. Hence, in the absence of TLSs, this
coefficient is assumed to be approximately equal to the
diffusion coefficient for the Y3 – xLuxAl5O12 system:
D0 = (3.4/T)4(0.2 + x0)/(x + x0) mm2/µs, where x0 =
0.025 is the residual concentration of impurities [4].
When calculating the C parameter, the Debye tempera-
ture of the solid solution was determined from the for-
mula TD = TDY(MY/Ms)1/2, where TDY = 750 K is the
Debye temperature of yttrium garnet, MY is the molar
mass of yttrium garnet, and Ms is the molar mass of the
solid solution [12, 13]. The parameters k0 were
obtained from the approximate relationship (11). By
comparing the calculated [from formula (11)] tempera-
ture dependence of the arrival time of the first maxi-
mum and the experimental dependence (Fig. 1 in [4]),
we found that Γ0 is equal to 6.78 × 10–5 µs–1 per formula
YSICS OF THE SOLID STATE      Vol. 44      No. 5      2002



NONLOCAL EFFECTS IN DIFFUSIVE PROPAGATION OF HEAT PULSES 983
unit of defects. The dependences t1, 2(T) calculated
using the above parameters for 6.8-mm-long samples
with impurity concentrations of 0.2 and 0.6 formula
units are plotted in Fig. 5 (curves 1–3). Figure 6 shows
the phonon nonequilibrium signals for Y3 – xErxAl5O12

(solid lines) and Y3 – xLuxAl5O12 (dashed lines) samples
at two temperatures T = 3.85 and 2.7 K. The theoretical
data presented in Figs. 5 (curves 1–3) and 6 are in rea-
sonable agreement with the experimental dependences
(Figs. 1, 3 in [4]).

Curves 4 and 5 in Fig. 5 are qualitative in character
and illustrate changes in the slope of the dependence
t2(T) when the concentration of low-energy TLSs with
∆1 < T in the system reaches a certain value. The cal-
culations were performed at x = 1.0 and N1 = 0.1 N2

for different temperature dependences of the diffusion
coefficient D0(T). Curve 4 was calculated under the
assumption that the diffusion coefficient D0 is deter-
mined by the Rayleigh scattering of phonons from
defects. It follows from expression (12) that, in this
case, the exponent α in the relationship t2(T) ~ Tα can-
not be less than –1, whereas the experiments revealed
a stronger dependence t2(T) with the negative deriva-
tive [4].

It can be assumed that, at sufficiently high concen-
trations of impurity atoms in the Y3 – xErxAl5O12 system,
the primeval diffusion coefficient D0 of phonons is gov-
erned primarily by phonon scattering from interfaces.
In actual fact, the Y3 – xErxAl5O12 solid solutions are
prone to phase separation. In turn, this brings about the
formation of regions that have a characteristic size
equal to 20–100 nm and are either depleted or enriched
with impurity atoms [14]. It is known that, in the case
when phonons propagate in systems with well-devel-
oped interfaces, the temperature dependence of the
phonon diffusion coefficient cannot be determined
from the Rayleigh scattering but depends in a complex
way on the interface structure (see, for example, [15]).
As an illustration of this situation, curve 5 in Fig. 5 was
calculated by assuming that D0(T) = const. As a result,
the calculated dependence t2(T) agrees qualitatively
with the experimental dependence (see Fig. 1 in [4]).

It should be noted that the experimental strong tem-
perature dependence t2(T) with the negative derivative
can be explained in terms of the spectral composition of
propagating phonons, which was ignored in our simpli-
fied treatment. In the case of long propagation times for
phonon nonequilibrium signals, a significant role can
be played by decay processes [16]. In the framework of
the model considered in the present work, the maxi-
mum delay of the phonon nonequilibrium signal should
be observed in the Y3 – xTbxAl5O12 system for which the
energy parameter of the TLS associated with each
impurity atom is equal to 2.45 cm–1 [17]. For this sys-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
tem, under usual experimental conditions (T . 3.5 K,
x . 0.5, and L .1 cm), the time t2 is of the order of 5 ×
10–3 s, which is comparable in magnitude to the time of
decay processes.
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Fig. 5. Temperature dependences of the arrival time (µs) of
the (1) first and (2–5) second maxima for the
Y3 − xErxAl5O12 system at x = (2) 0.2, (3) 0.6, and (4, 5) 1.0.
The dashed line represents the temperature dependence of
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6. CONCLUSION

A sufficiently simple theoretical model that includes
two basic parameters—the ratio C of the phonon heat
capacity to the heat capacity of the whole system and
the ratio k0 of the diffusive phonon propagation time to
the TLS relaxation time—has been proposed. These
two parameters suffice to describe the main anomalies
in the temperature and concentration dependences of
the propagation of weakly nonequilibrium phonons in
systems involving trapping centers. Consideration of
more subtle effects observed in experiments calls for
further improvement of this model (for example, inclu-
sion of the spectral composition of injected phonons
and several TLS subsystems in the analysis outside the
province of the linear approximation).
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Abstract—The specific heat of crystalline [NH2(CH3)2]2 · CuCl4 in the ferroelectric phase, both nonirradiated
and irradiated by electrons, was measured calorimetrically. The temperature region of existence of the ferroelec-
tric phase was shown to broaden under electron irradiation. The existence of an incommensurate phase above the
Curie point Tc1 in the crystal was confirmed. The phase-transition sequence observed in [NH2(CH3)2]2 · CuCl4
is shown to be described by a phenomenological model for A2BX4-type ferroelectrics with an organic cation.
© 2002 MAIK “Nauka/Interperiodica”.
Dimethylammonium chlorocuprate [NH2(CH3)2]2 ·
CuCl4 [(DMA)2CuCl4] is a representative of a large
class of A2BX4 crystals with the common formula
[NH2(CH3)2]2 · MeCl4 (Me = Co, Zn, Cu, Cd). The
(DMA)2CuCl4 crystal undergoes two first-order phase
transitions (PTs), at Tc1 = 279.5 K and Tc2 = 253 K,
between which a ferroelectric phase (FEP) exists [1, 2].
A study of the temperature dependence of the birefrin-
gence of (DMA)2CuCl4 suggests an indirect conclusion
[3] that an incommensurate phase (IP) exists in this
crystal in the 296–279.5 K interval. In [4], we studied
the effect of γ irradiation on the heat capacity of
(DMA)2CuCl4 and showed that the region of the IP
existence increases with γ-irradiation dose, which is at
odds with the results obtained on the effect of γ irradia-
tion on the Curie temperature Tc1 in other ferroelectric
crystals. The PT temperature Tc1 usually decreases with
increasing γ irradiation [5–8]. It was, therefore, of inter-
est to investigate the effect of electron irradiation on the
PT in (DMA)2CuCl4 and analyze the results obtained.

The heat capacity measurements were performed on
an UNTO setup providing computer-controlled temper-
ature variation in a vacuum adiabatic calorimeter with
discrete heat injection into the sample (m = 4.559 g).
The sample heating rate was 0.01–0.08 K/min. The heat
capacity was measured in steps of 0.2–1.5 K to within
0.3%. The electron irradiation was carried out at room
temperature on a 6-MeV electron accelerator in a flux
of 1015 electrons/cm2.

Figure 1 presents the temperature dependence of the
specific heat of a (DMA)2CuCl4 sample unirradiated
(curve 1) and electron-irradiated (2). We readily see
that the Cp(T) curve exhibits anomalies in the form of
peaks in the PT region at Tc2 = 256 K and Tc1 = 281 K.
In the electron-irradiated sample, the anomaly at Tc2 =
1063-7834/02/4405- $22.00 © 20985
256 K shifts toward lower temperatures and the anom-
aly at Tc1 = 281 K shifts toward higher temperatures,
with both peaks decreasing in amplitude and broaden-
ing; this effect is similar to the one observed under γ
irradiation [4]. The specific-heat peak at Tc1 = 281 K is
asymmetric; more specifically, the specific heat falls off
more slowly above the IP–FEP phase transition point.
It is known that the incommensurate (sinusoidal) phase
transfers to the soliton mode as one approaches Tc1,
where the polarization distribution represents actual
commensurate regions separated by domain walls (soli-
tons). Considered in the single-harmonic approxima-
tion, the anomalous part of the specific heat does not
undergo significant changes with decreasing tempera-
ture (in the region T > Tc1) [9]. Nevertheless, the specific
heat should increase, as one approaches Tc1, as ∆Cp ~
(T –Tc1)–1ln2(T – Tc1) because of the domain-like soliton
structure [10]. The dependence of (∆Cp)–1 on (T – Tc1)
plotted in Fig. 2 for (DMA)2CuCl4 is linear in the inter-
val Tc1 + 0.1 K < T < Tc1 + 0.8 K, which agrees with the-
ory. Therefore, a comparison of the experimental data
obtained for (DMA)2CuCl4 with theory argues for the
incommensurate nature of the phase observed at tem-
peratures T > Tc1.

A theoretical description based on the Landau the-
ory was developed in [11] for the PT sequence in A2BX4
crystals with an organic cation, more specifically, for
the (TMA)2ZnCl4 crystal, where TMA stands for the
N(CH3)4 tetramethylammonium ion. The phenomeno-
logical model proposed does not differ radically from
the one elaborated for A2BX4 crystals with a metal cat-
ion, which has been applied to a number of representa-
tives of the family, namely, K2SeO4, Rb2ZnCl4, and
Rb2ZnBr4. Using the free-energy expansions for ferro-
electric phase III FIII and ferroelastic phase IVFIV given
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the specific heat of [NH2(CH3)2]2 · CuCl4 (1) before irradiation and (2) after irradiation.
in [12] (the notation is retained), one can analyze the
temperature dependence of the free energy of the crys-
tal under study. Figure 3 plots the temperature depen-
dence of the free energy of (DMA)2CuCl4 in units of R,
which was derived from the measured values of the spe-
cific heat (the origin was placed at Ti = 296 K, which is
the PT temperature in the IP quoted in [3]). It is seen
that the theoretical least squares fits FIII and FIV calcu-
lated within the temperature regions of existence of the
corresponding phases from the model used by us
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Fig. 2. (∆Cp)–1 vs. T – Tc1 plot for an [NH2(CH3)2]2 · CuCl4
crystal.
P

describe the experimental F(T) dependences fairly
well. The deviations of experimental points from the
phenomenological relations in the PT region show that
the Landau model becomes inapplicable in the immedi-
ate vicinity of the PT point.

As seen from Fig. 1, electron irradiation shifts the
Curie point of (DMA)2CuCl4 toward higher tempera-
tures, as was reported in [4] for γ irradiation of the same
crystal and in [13] for Rb2ZnBr4. It is known that the
ferroelectric PT temperature in ferroelectrics usually

0
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Fig. 3. Temperature dependence of the free energy of an
[NH2(CH3)2]2 · CuCl4 crystal.
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decreases as a result of suppression of the ferroelectric
properties by irradiation. The deterioration of the ferro-
electric state in (DMA)2CuCl4 with increasing irradia-
tion dose manifests itself in a decrease in the specific-
heat anomalies (Fig. 1), i.e., in a decrease in the energy
associated with the PT, which implies a decrease in
spontaneous polarization, because, as follows from
thermodynamic considerations [14], the change in tran-
sition energy is proportional to Ps.

It is known that near Tc1, polar regions with mutually
opposite directions of spontaneous polarization, sepa-
rated by domain walls (phase solitons), become nucle-
ated in the IP. This accounts for the complex character
of the IP-to-FEP transformation. The IP–FEP transition
is governed in this case by the thermodynamics of the
solitons, which are semimacroscopic objects [15].
According to the phase soliton model, the transition to
the FEP at Tc1 occurs as the polar regions grow contin-
uously through soliton motion [16]. The period of this
soliton lattice increases as the temperature approaches
Tc1. The parameter of the IP–FEP transition is the soli-
ton density (or modulation period), which tends to zero
for T  Tc1. Nevertheless, in real crystals, the soliton
density may remain large enough for T < Tc1, which was
observed in a number of crystals. In the FEP, the width
of the polar IP regions may grow to a size as large as
that of a usual ferroelectric domain (≥104 Å) [17]. The
additional specific-heat peak observed by us in the FEP
of (DMA)2CuCl4 at T ≈ 275 K is apparently due to the
relaxation motion of the solitons that did not decay
below Tc1. Note that a nonlinearity in the relative elon-
gation as a function of temperature and a weak specific-
heat anomaly were observed in [1] within the same
temperature interval.

Thermodynamic equilibrium in a real crystal is
established through the creation, annihilation, and dif-
fusion of solitons. However, if solitons are pinned by
defects and impurities, these processes break down and
the formation of the period of the equilibrium structure
corresponding to the incommensurate wave of atomic
displacements is delayed. The metastable state thus
formed persists until the system overcomes the pinning
energy (as a rule, such states are fairly stable and relax
very slowly to the equilibrium state) [15].

The effect of soliton pinning by the crystal lattice,
defects, and impurities becomes most manifest near Tc1,
where the amplitude of the incommensurate modula-
tion reaches saturation, the distance between the soli-
tons is sufficiently large, and the interaction between
them is weak. The kinetics of the IP–FEP transforma-
tion in a crystal with defects can be conceived as fol-
lows. The positions of the solitons separating commen-
surate-phase regions, into which the crystal breaks
down near Tc1, are fixed by defects. The polarization
distribution in this case is determined by the spatial dis-
tribution of defects. The transition to the FEP with
decreasing temperature takes place in the low-tempera-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 5      200
ture region of the IP, where the influence of defects
becomes dominant because of the weak interaction
between the solitons. The temperature of this transition
is apparently the point where the energy of intersoliton
interaction becomes equal to that of the soliton pinning
by defects. As the temperature increases, interaction
between solitons becomes a dominant factor. As the
concentration of defects grows, they pin the soliton
structure more strongly. For the equilibrium state
(depinning) to set in, the intersoliton interaction energy
must be increased; this is reached through an increase
in the transition temperature and is observed experi-
mentally.

Thus, as one approaches the IP–FEP transition in
the region T < Tc1, the interaction of the local fields of
the irradiation-induced defects with the incommensu-
rate displacement wave becomes a dominant factor,
which gives rise to soliton pinning on defects. As a
consequence, the Tc1 transition temperature for
(DMA)2CuCl4 increases with increasing defect concen-
tration. The same effect is observed to occur in
Rb2ZnBr4 and (DMA)2CuCl4 crystals [4, 13] under
γ irradiation. Such a behavior of the IP–FEP transition
temperature is apparently typical of other ferroelectric
crystals with an incommensurate phase and different
defect concentrations, which is accounted for by there
being soliton interaction with lattice defects.

As seen from Fig. 1, the anomaly at T ≈ 275 K dis-
appears under electron irradiation. The broadening of
this anomaly is apparently associated with the soliton
mobility decreasing because of their pinning at defects,
which brings about a decreased contribution to Cp(T).
A similar effect has been observed under γ irradiation
of the same crystal [4].
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Abstract—This paper reports on a threshold photoemission study of the variation of electronic properties
occurring as Cs is adsorbed on GaAs(100) and the surface transfers gradually from the As- to Ga-rich state. The
ionization energy and integrated photoemission current are studied as functions of the Cs coverage. The mini-
mum of ionization energy and the corresponding Cs dose are established to differ substantially for the As- and
Ga-rich GaAs(100) surfaces. The first observation is reported of anomalous curves with two ionization-energy
minima, which are characteristics of surfaces in an intermediate state, with Ga and As dimers present. The stick-
ing coefficient of Cs to the surface enriched in As is found to be several times smaller than that for the Ga-rich
surface. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest presently expressed in studies of the
GaAs(100) surface stems from its broad application
potential, in particular, for the development of semicon-
ductor nanostructures using molecular-beam epitaxy.
The atomic structure and stoichiometric composition of
GaAs(100) surfaces obtained with various growth tech-
nologies and heat treatments are dealt with in numerous
publications. Atomically clean GaAs(100) surfaces are
obtained, as a rule, in ultrahigh vacuum after thermal
removal of the oxide or arsenic cap layer. It has been
established that the As cap layer disappears when the
sample is annealed up to T = 320–350°C, which results
in the surface being coated by a (1 × 1) As monolayer
[1–3]. By increasing the annealing temperature gradu-
ally, one can obtain various dimer-reconstructed sur-
faces, from As- to Ga-rich ones. Annealing at T ~ 400–
450°C results in a (2 × 4) or c(2 × 8) (As-rich) recon-
struction with As dimers in the upper layer. The dimers
occupy ~70% of the surface. Further increasing the
anneal temperature gives rise to the appearance of Ga
dimers, i.e., to a decrease in the As/Ga dimer ratio on
the surface. When the sample is annealed up to ~570–
590°C, the surface becomes Ga-rich with the (4 × 2) or
c(8 × 2) reconstruction. The surface thus reconstructed
is occupied to ~70% by Ga dimers in the top layer. The
transformation from an As- to Ga-rich surface is
accompanied by a decrease in the work function by
~0.4 eV, which is connected with there being a positive
charge on the Ga dangling bonds and a negative charge
on the As dangling bonds [2].

These results were obtained by low-energy electron
diffraction (LEED) and x-ray photoemission (XPS) and
1063-7834/02/4405- $22.00 © 0989
Auger spectroscopy, which characterize macroscopic
regions on the surface. Obviously enough, if a surface
has microregions that differ in their properties, the
resultant signal measured by these techniques will be
determined by the dominant regions. Scanning tunnel-
ing microscopy (STM) studies made at the atomic level
revealed that between the stablest (2 × 4) As-rich and
(4 × 2) Ga-rich reconstructions there are various transi-
tion phases, for instance, (3 × 6), (4 × 6), and disordered
systems, which are observed to exist in samples
annealed at intermediate temperatures T = 470–550°C
[3, 4]. The size of domains of different phases is typi-
cally estimated to be ~300 Å [3]. Photoemission mea-
surements also indicate the existence of domains of two
types on the GaAs(100) surface [1].

The processes involved in alkali-metal adsorption
and the mechanisms governing interface formation, in
particular, Cs/GaAs(100), have been studied actively for
the Ga-rich surface [5–8]. By contrast, data on the elec-
tronic properties, the character of adsorption, the sticking
coefficient, and the decrease in the work function and
ionization energy for the As-rich Cs/GaAs(100) interface
as a function of Cs coverage are practically lacking.

The ionization threshold is as fundamental a charac-
teristic of semiconducting surfaces as the work func-
tion. The change in the work function and ionization
energy entailed in the formation of the metal–semicon-
ductor interface is directly related to the local interac-
tion of adatoms with the active surface dangling bonds;
it is the strongest in the initial stage of adsorption, at
submonolayer coverages. An increase in the surface
concentration of metal adatoms brings about modifica-
tion of the surface-state spectrum. Saturation of the
2002 MAIK “Nauka/Interperiodica”
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dangling bonds results, as a rule, in stabilization of the
work function and of the ionization energy [9, 10].

The present study deals with Cs adsorption on a
GaAs(100) surface whose reconstruction and stoichio-
metric composition were varied gradually in situ from
As-rich to Ga-rich by annealing at 450–580°C. Mea-
surement of the integrated photoemission current as a
function of the Cs dose directly in the course of deposi-
tion (the so-called concentration relation) was applied
for the first time to study semiconductor surfaces. This
method was shown to provide an efficient and fast anal-
ysis of the surface condition. It was found that the ion-
ization energy curves for the Cs/GaAs(100) As-rich and
Cs/GaAs(100) Ga-rich interfaces differ substantially
both in the lowest values of the ionization energy and in
the Cs dose required to reach them. It was established
that the Cs sticking coefficient for an As-rich surface is
several times smaller than that for a Ga-rich one.
Anomalous curves with two ionization energy minima
obtained as a function of the Cs dose were found for the
first time to exist for intermediate reconstructions of the
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Fig. 1. (a) Ionization energy and (b) photocurrents Is and Ip
measured under excitation by s- and p-polarized light hν =
1.96 eV, respectively, for the Ga-rich Cs/GaAs(100) system
and plotted as a function of cesium dose. The inset is a
scheme of the excitation of photoemission from the semi-
conductor by s- and p-polarized light in the threshold
region.
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GaAs(100) surface, more specifically, for the case
where both the As and Ga dimers are present. Analysis
revealed the existence of domains of two types, namely,
of Ga-rich and As-rich ones, on such surfaces. The
adsorption properties of the domains were observed to
be substantially different; as a result, adsorption occurs
initially on domains enriched in Ga, to shift subse-
quently to As-rich domains. Annealing the sample at
~580°C gives way to a complete transition to the Ga-
rich surface, with the domain structure disappearing
altogether. The density of surface states in the band gap
is extremely low for all the interfaces studied.

2. EXPERIMENTAL TECHNIQUE

The photoemission studies were performed in situ in
an ultrahigh vacuum, P ~ 5 × 10–11 Torr, at room tem-
perature. An atomically clean surface of a GaAs(100)
sample (n type, 1018 cm–3) was obtained after the
removal of the As cap layer. The sample annealing tem-
perature was measured with a thermocouple and an IR
pyrometer. The error of temperature determination was
~10°C. Atomically pure cesium was deposited on the
sample surface from a standard source. The Cs flux was
derived using a W(110) reference sample by the tech-
nique described in [11]. The error in determining the
cesium dose D deposited on the GaAs(100) surface did
not exceed 10%.

The method employed was threshold photoemission
spectroscopy, by which photoemission is excited by s-
and p-polarized light striking a sample at 45° [11, 12].
The photoemission excitation processes in the thresh-
old region are illustrated schematically in the inset to
Fig. 1a. The s-polarized light excites volume states of
the substrate, such that the photoemission threshold hνs

corresponds in energy to the valence band top; i.e.,
hνs = φ, where φ is the ionization energy. In the case of
p polarization, photoemission is excited both from the
volume and from the surface through interaction with
the normal component of the electric vector of light. If
there are filled surface states in the gap, the threshold
for p-polarized light hνp < hνs. We studied the spectral
response of photoemission Is(hν) for different Cs doses,
as well as the dependence of the photoemission current
on the Cs dose, the so-called concentration relations
Is(D) and Ip(D), under excitation by a He–Ne laser with
hν = 1.96 eV and P = 2 mW. The photoemission cur-
rents in the range 10–8–10–13 A were measured with an
error of 1 to 10%, respectively.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1a plots the variation of the ionization energy
obtained under Cs deposition on a Ga-rich GaAs(100)
surface, and Fig. 1b shows the corresponding concen-
tration dependences of the photoemission, Is(D) and
Ip(D). The symbols on the curve of Fig. 1a (hνs = φ) cor-
respond to the approximation of the Is(hν) spectral
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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response curves measured for each Cs dose. The curves
in Fig. 1b were taken under continuous Cs deposition
and at a fixed excitation energy hν = 1.96 eV. The min-
imum of the ionization energy curve is seen to coincide
in position with the maximum of the Is(D) concentra-
tion dependence. These results show that only the Is(D)
relation properly reflects the variation of the ionization
energy and, thus, offers a possibility of determining,
with a high accuracy, the dose corresponding to the
lowest ionization energy from the position of the max-
imum on this curve. The course of the Ip(D) photoemis-
sion curve is governed not only by the variation of φ but
also by the modification of the surface-state spectrum.
The maximum of this curve can differ in position from
the ionization energy minimum (Fig. 1b). Hence, this
method of express analysis can be employed only under
conditions which preclude excitation of the surface
states. This means that in order to excite photoemission
at nonzero (off-normal-) incidence angles, one should
use s-polarized radiation, which does not have an elec-
tric vector component normal to the surface.

Figure 2 presents curves relating the ionization
energy to Cs dose for various conditions of the
GaAs(100) surface occurring in going from an As-rich
to Ga-rich surface. Curve 1 corresponds to an As-rich
surface obtained after complete removal of the As cap
layer and a short (10 min) annealing of the sample at
450°C. Curve 2 was measured on a sample surface
annealed at an intermediate temperature T = 490°C, and
curve 3 was obtained on a Ga-rich surface after long
(~1-h) annealing of the sample at T = 590°C. For com-
parison, curve 4 in Fig. 2 shows the variation of the ion-
ization energy for a Ga-rich Cs/GaAs(100) system,
where the Ga-rich surface was obtained by removing
the protective oxide layer [13]. Curves 3 and 4 are seen
to agree well, in particular, in the position of the mini-
mum of ionization energy.

As seen from Fig. 2, the minima in curves 1 and 3
differ in depth and in position, corresponding to differ-
ent Cs doses being deposited. Curve 1 for the As-rich
surface passes through a minimum φmin = 1.53 eV posi-
tioned at D ~ 1.4 × 1015 atoms/cm2. Adsorption of Cs on
a Ga-rich surface reduces the ionization energy to
φmin ~ 1.4 eV at D ~ 6.5 × 1014 atoms/cm2. When
annealing a sample within the temperature interval
470–550°C, we observed, for the first time, anomalous
ionization-energy curves with two minima. Their depth
varies with increasing anneal temperature in such a
manner that curve 1 (As-rich surface) transforms prac-
tically smoothly to curve 3 (Ga rich). Curve 2 in Fig. 2
displays such an anomalous dependence with two min-

ima,  = 1.65 eV and  = 1.57 eV, obtained at
doses of 6.5 × 1014 and 1.6 × 1015 atoms/cm2, respec-
tively. The character in which the ionization energy
curves vary with increasing sample anneal temperature
suggests that the anomalous curve with two minima is
actually a superposition of two components. Because

φmin
1 φmin

2
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annealing of a sample at 450°C produces an As-rich
surface with As dimers in the uppermost layer [3], the
minimum at D = 1.3 × 1015 atoms/cm2 can be assigned
to the interaction of Cs adatoms with the As-dimer dan-
gling bonds. On the other hand, after annealing at the
maximum temperature, i.e., for a Ga-rich surface, one
also observes a minimum at a substantially lower dose,
D ~ 6 × 1014 atoms/cm2, which is apparently connected
with Cs adsorption on the Ga dimers. Observation of
both minima at intermediate temperatures can be
accounted for by the simultaneous existence of
domains enriched in As and in Ga on the surface. The
modification of the curves with increasing anneal tem-
perature reflects surface reconstruction with an increase
in the fraction of Ga-rich domains in the intermediate
phase until the surface becomes Ga-rich.

Figure 3 presents concentration dependences of the
photoemission current Is obtained for the same
GaAs(100) surface conditions for which the ionization
energy curves in Fig. 2 were measured. The transforma-
tion of the ionization energy curves and the sharp
changes that the integrated photocurrent curves
undergo are seen to be qualitatively similar. For the As-
and Ga-rich surfaces, the concentration curves have one
maximum. The corresponding Cs doses, however, dif-
fer more than twofold. As already mentioned, the con-
centration dependence technique provides the most
accurate rapid analysis of the presence of an ionization
energy minimum and determination of the correspond-
ing adsorbate dose. For instance, for an As-rich
Cs/GaAs(100) system, a maximum of ~0.2 nA is
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Fig. 2. Ionization energy of the Cs/GaAs(100) system plot-
ted vs. Cs dose. The GaAs(100) sample was annealed at
(1) 450, (2) 490, and (3) 590°C. Curve 4 is data for the
Ga-rich GaAs(100) surface from [13].
2
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observed to occur for a dose D ~ 1.3 × 1015 atoms/cm2

(Fig. 3a). The Ga-rich Cs/GaAs(100) system exhibited
an order-of-magnitude higher intensity of the maxi-
mum, ~2 nA, for D ~ 6 × 1014 atoms/cm2 (Fig. 3c). The
concentration curve obtained for an intermediate sur-
face condition with As and Ga dimers present has two
clearly pronounced maxima (Fig. 3b).

These results show that the interaction of Cs ada-
toms with As and Ga dimers differs considerably in
character. Because the dangling bonds of the Ga dimers
are not occupied, a Ga-rich surface may be expected to
be more adsorption-active. Indeed, adsorption of Cs on
a Ga-rich surface brings about a larger decrease in the
ionization energy, which corresponds to lower Cs doses
than in the case of an As-rich surface. The presence of
two minima (Fig. 2) or two maxima (Fig. 3) suggests
that Cs adatoms present on a GaAs(100) surface in
intermediate phases interact initially with the Ga dan-
gling bonds, and only after their saturation is reached
do the Cs adatoms transfer to the As dangling bonds.

One of the most important parameters characteriz-
ing the initial processes of the metal–semiconductor
interface formation is the extent of submonolayer cov-
erage (or the surface concentration of the metal ada-
toms). Determination of the coverage is a complex
problem, because it requires knowledge of both the
dose and the adatom sticking coefficient for the surface
under study. Data obtained by Auger spectroscopy for
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Fig. 3. Concentration dependences of photocurrent Is(D) for
the Cs/GaAs(100) system obtained under excitation by s-
polarized light of energy hν = 1.96 eV. The GaAs(100) sam-
ple was annealed at (a) 450, (b) 490, and (c) 590°C. Dashed
line relates to a Ga-rich GaAs(100) surface obtained by
removing the oxide cap layer.
P

the Ga-rich Cs/GaAs(100) system show that at room
temperature, the adsorption proceeds in a layer-by-
layer manner. The sticking coefficient is S ~ 1 until a
0.5-ML coverage is reached, after which it decreases to
one half this value, to practically disappear at a close-
to-monolayer coverage [5–8]. The interpretation of
these results has been made on the assumption that sat-
uration of the Cs Auger signal occurs upon completion
of the first monolayer and that the sticking coefficient
changes at 0.5 ML. It should be pointed out that, in the
above studies, one understands a Cs monolayer to be
the coverage at which the number of adsorbed atoms in
direct contact with the surface is the largest. Quantita-
tive estimates of this coverage vary from 4 ×
1014 atoms/cm2 [6, 14] to 7.9 × 1014 atoms/cm2 [7]. We
shall use the traditional determination of the mono-
layer, 1 ML = 6.3 × 1014 atoms/cm2. This corresponds
to a Cs coverage at which the concentration of adatoms
is equal to that of atoms on the unreconstructed
GaAs(100) 1 × 1 surface. As follows from the above
data, the cesium dose required to form a monolayer
coverage on a Ga-rich GaAs(100) surface is ~9.3 ×
1014 atoms/cm2 and the coverage corresponding to the
minimum ionization energy is ~0.7 ML.

Information on the variation of ionization energy
and on the sticking coefficient for the As-rich
GaAs(100) surface is lacking. The above results show
that the ionization energy reaches a minimum at con-
siderably larger Cs doses, ~1.3 × 1015 atoms/cm2.
Because the coverage corresponding to the minimum
ionization energy cannot exceed 1 ML, the maximum
sticking coefficient for an As-rich surface can be esti-
mated at S ~ 0.5 throughout the submonolayer coverage
range studied. It should be stressed that the sticking
coefficient should vary with increasing coverage.
A comparison of the results obtained for the As- and
Ga-rich surfaces shows that the sticking coefficient for
the As-rich surface is smaller, on the average, by at least
a factor of two than that for the Ga-rich surface. Hence,
the dose needed to form a monolayer Cs coverage on an
As-rich surface is ~1.8 × 1015 atoms/cm2 and, accord-
ingly, the lowest value of the sticking coefficient can be
estimated at S ~ 0.3.
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Abstract—Plastic-deformation-induced destruction of long-range order in alloys with an L12 superstructure is
considered. A mathematical model is suggested which takes into account the following mechanisms that lead
to the destruction of long-range order: generation of superdislocations, generation of single dislocations, mul-
tiplication of antiphase boundaries (APBs) upon the conservative motion of dislocations, multiplication of
APBs upon dislocation climb, formation of APB tubes on superdislocations, generation of point defects, and
thermal ordering. A mathematical model of deformation strengthening and long-range order destruction with
allowance for the change in the type of shear-forming dislocations from superdislocations to single dislocations
is formulated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plastic deformation of alloys can be accompanied
by changes in both the defect structure of crystals and
phase composition of the alloy. Experimental investiga-
tions of alloys with an L12 superstructure subjected to
plastic deformation under various conditions (uniaxial
deformation, rolling, ball milling) show the presence of
changes in the degree of long-range order in these
alloys. This follows both from indirect data on the
changes in the dislocation substructure [1] and mag-
netic properties of the alloys [2] and from direct mea-
surements of the degree of long-range order by x-ray
diffraction [3–5]. Detailed investigations of the long-
range order by X-ray diffraction methods were per-
formed recently for various ordered alloys in [6–10].

To explain the phenomenon of destruction of long-
range order under the effect of plastic deformation, var-
ious mechanisms were considered [7, 11] related to the
motion and accumulation of deformation-induced
defects.

In our previous works [12–14], we constructed spe-
cial models of the destruction of long-range order
related to the accumulation of superdislocations [12],
generation of antiphase boundaries (APBs) by moving
dislocations [13], generation of APB tubes, generation
of deformation point defects [13, 14], and climb of edge
dislocations [13, 15].

This paper represents an attempt to construct a
model that reduces all these particular mechanisms into
a single mathematical model.

Recent experimental investigations indicate the het-
erogeneous character of the deformation-induced
order–disorder phase transition [7–10]. This circum-
stance is considered in the final part of our paper, where
we suggest a model of destruction of long-range order
1063-7834/02/4405- $22.00 © 20994
with allowance for transition from the motion of super-
dislocations to the motion of single dislocations.

2. MECHANISMS OF DESTRUCTION 
OF LONG-RANGE ATOMIC ORDER

It follows from experimental works that, during
plastic deformation of ordered alloys, the accumulation
of deformation defects leads to a decrease in the degree
of ordering of the material [3–10], which is accompa-
nied by an increase in the area of APBs [6–10] and the
appearance of regions of a disordered phase.

A decrease in the average (over the material vol-
ume) long-range order parameter η with increasing
degree of deformation ε and the appearance of a disor-
dered phase can be caused by the following factors.

First, there occurs a disturbance of the long-range
atomic order in the bulk of antiphase domains due to the
mutual annihilation of point defects generated upon the
alloy deformation as a result of nonconservative motion
(drag) of jogs by shear-forming dislocations of screw
orientation.

The change in the parameter of long-range order
inside antiphase domains caused by the mutual annihi-
lation of point defects can be written, as will be shown
below, in the form

(1)

where  is the rate of deformation, µr is the tempera-
ture-independent coefficient of recombination, D0 is the

preexponential factor, is the activation energy for
migration of interstitial atoms, k is the Boltzmann con-
stant, T is the deformation temperature, and Ci and Cv

dη*
dε

---------- η*
1
ε̇
---µrD0 Ei

m/kT–( )CiCv ,exp–=

ε̇

Ei
m
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are the concentrations of interstitial atoms and vacancies,

respectively. Here, µrD0exp( /kT)CiCv determines

the number of point defects that are mutually annihi-
lated inside antiphase domains [13].

Second, an increase, because of deformation, in the
area of APBs having a nonzero thickness leads to a
reduction of the parameter of long-range order.

The rate of variation of the average long-range
order parameter determined from x-ray radiation scat-
tering can be written as a function of deformation in
the form [13]

(2)

Here, η∗  is the average degree of long-range order

inside an antiphase domain, k0 ∈  (0, 1) is a constant
specified by the law of variation of the long-range order
parameter in the APB, δ is the thickness of APBs (mag-
nitude of their smearing), and S* is the area of APBs per
unit volume of the crystal.

It is seen from Eq. (2) that the rate of variation of the
long-range order parameter is determined by the rate of
accumulation of the APB area and by the degree of
ordering inside antiphase domains. Thus, the change, in
the process of deformation, of the long-range order
parameter related to the change in the degree of long-
range order inside antiphase domains and the rate of
accumulation of the area of APBs will be described by
Eqs. (1) and (2).

Note that the change in the area of APBs occurs for
various reasons; in particular, their area can increase
due to the accumulation of both superdislocations and
single dislocations. A conservatively moving shear-
forming dislocation upon the intersection of an APB
creates steps in it. The formation of tubes of APBs due
to the conservative motion of jogs along screw disloca-
tions favors the accumulation of APBs. In addition, part
of the interstitial atoms and vacancies accumulated in
the process of plastic deformation annihilate at disloca-
tions, thereby causing their climbing, which increases
the total area of APBs in the material under deforma-
tion. All above mechanisms are related to dislocations
generated during deformation.

It is known [1] that under certain conditions upon
deformation of alloys with an L12 superstructure, the
type of shear-forming dislocations can change from
superdislocations to single dislocations. Depending on
which dislocations (single dislocations or superdisloca-
tions) are carriers of shear at a degree of deformation ε,
different mechanisms of destruction of long-range
atomic order can be realized.

1
ε̇
--- Ei

m–

dη
dε
------

1
2η
------η*

2 1 k0
2–( )δdS*

dε
---------.–=
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2.1. Condition for a Changeover of the Type
of Shear-Forming Dislocations

The accumulation of superdislocations in a
deformed ordered material will occur until the resis-
tance to motion of superdislocations becomes greater
than the resistance to motion of single dislocations; i.e.,
until the condition [16]

(3)

is fulfilled. Here, ζ is the APB energy; b is the Burgers
vector; α1 and α2 are the parameters that characterize
the intensity of interaction of single and superstructure
shear-forming dislocations with forest dislocations,
respectively; G is the shear modulus; ρ is the disloca-
tion density; and τf is the friction stress, which is deter-
mined by the formation of Kear–Wilsdorf barriers at
screw dislocations and the trapping of point defects by
edge dislocations [17]. The parameters that describe
shear processes upon slip of single dislocations will be
labeled by indices 1 and I, and the analogous parame-
ters referring to the superdislocations will be denoted
by indices 2 and II. When condition (3) is fulfilled, dis-
location sources that emit single dislocations start oper-
ating.

In ordered materials, the APB energy can be deter-
mined as a certain effective energy ζ = ζ0η2, where ζ0 is
the energy of APBs in a completely ordered material [1].

In what follows, we assume that the energy of APBs
of different types depends on an effective parameter of
long-range order which is determined by all the mech-
anisms of deformation-induced destruction of long-
range order considered in our paper. Thus, the condi-
tion that determines the type of shear-forming disloca-
tions will depend on the effective parameter of long-
range order as follows:

(4)

2.2 Mechanisms of Destruction of Long-Range Atomic 
Order Related to the Motion of Superdislocations

First, we obtain an equation that determines the vari-
ation of the long-range order parameter in L12 alloys in
the process of plastic deformation under the condition
that only sources that emit superdislocations are opera-
tive in the deformed material. In this case, all of the
above-mentioned deformation mechanisms of destruc-
tion of long-range atomic order take place.

(1) Rate of accumulation of the APB area as a
result of generation of superdislocations. Let super-
dislocations be generated in an ordered material. Then,
the long-range order parameter will decrease because
of the accumulation of APBs due to an increase in the
concentration of superdislocations. The area of APBs
per unit volume, when sources of superdislocations are

ζ
b
--- α2 α1–( )Gbρ1/2 τ f+<

ζ0η
2

b
----------- α2 α1–( )Gbρ1/2 τ1.+<
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operative, is directly proportional to the length of dislo-
cations and their width (spacing between superpartial
dislocations): S* = ρh, where ρ is the density of super-
dislocations and h = Gb2/2πζ0η2 is the width of super-
dislocations.

The extent of splitting of the shear-forming superd-
islocation (their width) is determined by the effective
energy of APBs and, therefore, depends on the degree
of ordering in the deformed material (on the effective
parameter of long-range order). Earlier [12, 13], we
supposed that the splitting of superdislocations is inde-
pendent of the presence of APBs in the material. Under
the assumptions made in [12, 13], the spacing between
the superpartials depended on the presence of deforma-
tion-induced point defects which could annihilate in a
random manner, thereby decreasing the long-range
atomic order in the bulk of the deformed alloy. In what
follows, we will assume that the splitting of superdislo-
cations depends on both the presence and accumulation
of point defects and the presence and accumulation of
APBs; i.e., the spacing between the superdislocations
will depend on the effective parameter of long-range
order. With these assumptions, the rate of accumulation
of the area of APBs as a result of generation of superd-
islocations, d /dε, can be written as

(5)

(2) Rate of accumulation of the APB area as a
result of intersection of APBs by moving superdislo-
cations. In their conservative motion, superdislocations
can intersect interdomain APBs; as a result, steps arise
in the latter. This leads to an increase in the total area of
APBs. In this case, for the area of APBs, we obtain the
following relationship, which describes the greatest of
the possible rates of accumulation of the APB area [13]:

(6)

where d0 is the initial average dimension of antiphase
boundaries, ω is a constant that determines the shape of
antiphase domains, and χ is the Schmid factor.

(3) Rate of accumulation of the APB area due to
the formation of APB tubes. The formation of APB
tubes as a result of the conservative motion of jogs
along superdislocations of screw orientation, along
with the previous mechanisms, leads to an increase in
the total area of APBs. For this case, the equation that
describes the accumulation of the area of APBs is
obtained in the form [13]

(7)

S 1( )*
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dε
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2πζ0η
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dρII

dε
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η
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dε
---------– .=

dS 2( )*

dε
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1
d0χ
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ωχ
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  ,exp=

dS 3( )*

dε
-----------

1 t1–
2Γbχ
------------- 4b

Gb2

πζ0η
2

--------------+ ρ1/2,=
PH
where t1 is the fraction of jogs that generate point
defects and Γ is a factor that takes into account the
shape of the shear zone.

Since APB tubes are formed as a result of a conser-
vative motion of edge jogs along shear-forming dislo-
cations of screw orientation, the rate of accumulation of
the area of APBs is proportional to the dislocation den-
sity and the fraction of jogs that generate APBs and is
determined by the perimeter of the APB tubes. With
allowance for the fact that the width of splitting of
superdislocations is determined by the degree of defor-
mation, the perimeter of APB tubes will depend on the
effective parameter of long-range order.

(4) Rate of accumulation of the area of APBs
caused by the climb of edge dislocations. The rate of
accumulation of APB area (per unit volume of the
deformed material) caused by climbing edge superdis-
locations d /dε can be written as follows [13]:

(8)

where al is the lattice parameter,  is the activation
energy for migration of vacancies, τ2 is the flow stress
in the case of generation of superdislocations, and θ is
the fraction of edge dislocations.

Thus, the total increase in the area of APBs upon
deformation of ordered L12 alloys is determined by the
action of all of the above-mentioned mechanisms. The
rate of accumulation of the area of APBs of various
types per unit volume of the crystal can be represented
in the linear-summation approximation as follows:

(9)

Correspondingly, the equation that describes the
change in the effective parameter of long-range order in
the case where surface superdislocation sources are
operative will have the form

(10)

(5) Destruction of long-range atomic order by
deformation-induced point defects. Upon motion of
dislocations with jogs, both vacancies and interstitial
atoms can be generated [1, 18], which can lead, in
ordered alloys, to a decrease in the degree of long-range
order. This circumstance is related to the fact that the
probabilities of trapping of interstitial atoms at vacant
sites usually depend only slightly on which sublattice a
vacant site belongs to and on which type of interstitial
atom is to be trapped in the site, since the energy liber-
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ated upon the annihilation of an interstitial atom with a
vacancy is much greater than the energy of ordering. In
this connection, to a first approximation, we can
assume that the trapping of interstitial atoms at vacant
sites occurs randomly. It is shown in [13] that the rate
of variation of the long-range order parameter in the
bulk of the deformed material caused by the mutual
annihilation of point defects has the form

(11)

Here, dCi/da determines the number of interstitial
atoms per unit volume trapped per unit time by vacant
sites.

We assume that the rate of mutual annihilation of
point defects inside antiphase domains is proportional
to their concentrations, i.e., to kiCiCv . The proportion-
ality coefficient ki can be related to the coefficient of
diffusion Di of interstitial atoms as follows [19]: ki =
Diµr . Taking into account that Di = D0exp(–Ei/kT), the
rate of variation of the long-range order parameter
inside an antiphase domain caused by the mutual anni-
hilation of point defects can be written as

(12)

2.3. Destruction of the Long-Range Order Caused
by the Motion of Single Dislocations 

In the case where sources that emit single disloca-
tions are operative, no APB tubes arise in the crystal,
since the APB tubes are formed only by superdisloca-
tions. The area of APBs that are accumulated due to the
generation of single dislocations by operative sources is
determined by the area swept by single dislocations as
they slip in the crystal. In this case, under the assump-
tion that the single dislocations move independently of
one another, we have dS*/dε = 1/χb.

The rate of variation of the area of APBs caused by
the action of all various mechanisms of destruction of
long-range atomic order under the condition that
sources of single dislocations are operative can be writ-
ten as

(13)

where τ1 is the flow stress for the case of generation of
single dislocations. The equation that describes the

dη
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--------.–=
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variation of the effective parameter of long-range order
will have the form

(14)

3. MODEL OF THE KINETICS 
OF DEFORMATION-INDUCED ORDERING

AND DESTRUCTION OF LONG-RANGE ORDER

First, we obtain the equations of the balance of
deformation-induced defects for the case where sources
of superdislocations and single dislocations are opera-
tive. The equation that describes the accumulation of
superdislocations in the process of plastic deformation
can be written as [18, 20]

(15)

where ra =  is the effective radius of

capture for superdislocations upon their annihilation,

is the friction stress connected with the overcoming
of the Peierls barrier, and ν is Poisson’s ratio. The first
two terms in Eq. (15) represent the rate of generation of
superdislocations, which is determined by the rate of
accumulation of superdislocations at the periphery of
the shear zone (first summand) and the rate of the for-
mation of Kear–Wilsdorf barriers inside the shear zone
(second summand). The annihilation of superdisloca-
tions occurs as a result of the climb of their edge com-
ponents; the rate of annihilation is determined by the
last summand in Eq. (15). The meaning of the parame-
ters entering into Eq. (15) has been discussed in detail
in [18, 20]. The authors of [18, 20] assume that the
annihilation of edge dislocations is possible if disloca-
tions are separated by distances at which the force of
interaction between them exceeds the friction stress

(  + τf). The distance between such dislocation seg-
ments is determined by the effective capture radius ra

[18, 20]. At high dislocation densities, when the spac-
ing between dislocations is less than ra, we may assume
that the distance between dislocation segments capable
of annihilating is equal to the average distance between

them . Thus, the dislocation spacing at which
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the annihilation of edge dislocations is possible may be

determined as the smaller of the values ra or ,

which is designated as min(ra, ) in Eq. (15).

If condition (4) is fulfilled, sources emitting single
dislocations begin operating in the deformed material.
In this case, the rate of generation of single dislocations
will be determined by the intensity of their accumula-
tion at the boundary of the shear zone. No Kear–Wils-
dorf barriers will be formed since this process only
takes place upon the motion of superdislocations. The
rate of annihilation of single dislocations may be
obtained in the same manner as for superdislocations,
but with allowance for the fact that in this case, the
effective radius of trapping single dislocations is deter-
mined as

 = .

Thus, the equation that describes the accumulation
of single shear-forming dislocations will have the form

(16)

The equations of the balance of deformation-
induced point defects are written as follows:

(17)

(18)

In these relationships, the first term describes the gen-
eration of point defects by moving dislocations [21],
the second term corresponds to the annihilation of point
defects at dislocations [18], and the third term stands
for the mutual annihilation of point defects.

Equations (17) and (18) in the case of accumulation
of superdislocations and single dislocations will differ
in the expressions for the flow stress; we represent them
in the following form:

(19)

(20)
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Formulas (1), (10), (15), (17)–(19) and (1), (14),
(16)–(18), (20) represent mathematical models of the
kinetics of strengthening and destruction of long-range
order for the cases where superdislocation sources and
sources emitting single dislocations are operative,
respectively.

Now, we introduce a function ψ, which takes into
account the change of the type of shear carriers, as fol-
lows:

(21)

The mathematical model of strengthening and destruc-
tion of long-range atomic order with allowance for the
change in the type of shear-forming dislocations from
superdislocations to single dislocations may be written
in the form

(22)

(23)

(24)

(25)

(26)

Experimental data show that single dislocations are
observed already at moderate degrees of deformation
and their fraction increases with increasing deforma-
tion [22]. This fact indicates that already at small defor-
mations, regions exist in the alloy which are deformed
as a disordered material. This also follows from the
results of x-ray diffraction investigations [6–10].
Therefore, we assume that in the deformed material,
which is initially ordered, a disordered phase arises as
a result of a heterogeneous order–disorder transition
[6–10]. We designate the fraction of the remaining
ordered phase as C*(ε). In the general case, the type of
the C*(ε) dependence is unknown; however, experi-
mental data [10] indicate that, within good approxima-
tion, this dependence can be assumed to be linear:
C*(ε) = 1 – ε/εk. Here, εk is the critical degree of defor-
mation at which the alloy passes into a completely dis-
ordered state. The degree of deformation εk can be
determined by numerically solving the set of differen-
tial equations (22)–(26) as that corresponding to the
deformation at which the long-range order parameter
vanishes. Under the above assumptions, the set of equa-
tions of the balance of defects and deformation-induced

ψ
1,

ζ0η
2

b
----------- α2 α1–( )Gbρ1/2 τ f+≥

0,
ζ0η

2

b
----------- α2 α1–( )GBρ1/2 τ f .+<









=

dρ
dε
------

dρII

dε
---------ψ

dρI

dε
-------- 1 ψ–( ),+=

dCi

dε
--------

dCiII

dε
-----------ψ

dCiI

dε
---------- 1 ψ–( ),+=

dCv

dε
----------

dCv II

dε
-------------ψ

dCv I

dε
----------- 1 ψ–( ),+=

dη
dε
------

dη II

dε
---------ψ

dη I

dε
-------- 1 ψ–( ),+=

τ τ IIψ τI 1 ψ–( ).+=
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002



SIMULATION OF THE PROCESS OF DEFORMATION-INDUCED DESTRUCTION 999
strengthening of L12 alloys that allows for the heteroge-
neous order–disorder phase transition can be written as

(27)

(28)

(29)

(30)

(31)

It is known that, in the process of plastic deforma-
tion at enhanced temperatures, restoration of the long-
range atomic order can occur in ordered alloys under
the effect of large concentrations of point defects. An
analysis of various kinetic models of thermal strength-
ening of alloys was performed in [23]. The kinetics of
atomic ordering in L12 alloys based on migration of
deformation-induced vacancies is described by the
Zee–Wilkes model, according to which the rate of
ordering has the form [23]

(32)

where V0 is the energy of ordering.
With allowance for the process of restoration of

long-range atomic order, Eq. (30) is written as follows:

(33)

The set of equations (1), (27)–(29), (31), and (33)
represents a model of the variation of the effective
parameter of long-range order with allowance for the
transition from the motion of single dislocation to the
motion of superstructure dislocations and the model of
the kinetics of deformation strengthening of alloys with
an L12 superstructure.

4. NUMERICAL REALIZATION 
OF THE MODEL

In terms of the model developed, we calculated the
degree of long-range order, stress-strain curves, dislo-
cation densities, and concentrations of point defects as
functions of the degree of deformation (η(ε), τ(ε), ρ(ε),
and Ck(ε), respectively). The calculations were per-
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formed for alloys with a high energy of APBs (to this
end, parameters characteristic of the Ni3Ge alloy were
used) and for alloys with a low APB energy (in this
case, parameters typical of the Ni3Fe alloys were
employed).

The values of the parameters necessary for solving the
set of equations (1), (25)–(27), (29), and (31) for the Ni3Ge
alloy were taken as follows [20, 24]: C1 = 6 × 104 N/m2,
C2 = 5 × 1016 N/m4, C3 = 1023 N/m4, U1 = 0.0094 eV,

U2 = 0.72 eV,  = 300 MPa,  = 1700 MPa, χ =

0.48, α0 = 1.9, β = 1.8 × 10–3,  = 50 MPa, G = 8 ×
1010 N/m2, b = 2.5 × 10–10 m, α1 = 0.7α2, pj = 0.5,
ξ = 0.5, B = 340, η0 = 1, k0 = 0.5, δ = 0.5 nm, and
ζ0 = 0.2 J/m2.

The parameters for Ni3Fe were borrowed from [25]:

ζ0 = 0.05 J/m2,  = 42 MPa, α0 = 1.2, and β = 4.2 × 10–4.

The results of numerical calculations [with initial

conditions ρ(0) =1010 m–2, Ci(0) = exp( /kT), and

Cv (0) = exp( /kT), where  and  are the ener-
gies of formation of an interstitial atom and a vacancy,
respectively, and η∗ (0) = 1 and η(0) = 1] are given in
Figs. 1–4.

(1) Alloys with a low ordering energy. Figure 1
displays the dependence of the long-range order param-
eter on deformation for various deformation tempera-
tures calculated for the Ni3Fe alloy. It is seen that the
long-range order parameter in the low-temperature and
moderate-temperature ranges (77–423 K) is virtually

τ0
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Fig. 1. Dependence of the effective parameter of long-range
order on deformation at various deformation temperatures
in Ni3Fe: (1) 77, (2) 293, (3) 423, and (4) 573 K; (5) exper-
imental curve obtained at room temperature by X-ray dif-
fraction [26, 27].
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Fig. 2. Dependence of (a) the dislocation density, (b) flow
stress, (c) concentration of interstitial atoms, and (d) con-
centration of vacancies on the degree of deformation at var-
ious temperatures in Ni3Fe: (1) 77, (2) 293, (3) 423, (4) 573,
and (5) 673 K. In the inset, a comparison of experimental
(E) [28] and theoretical (T) dependences of the flow stress τ
on the degree of deformation ε for the Ni3Fe alloy calcu-
lated on the basis of the model suggested is given.
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Fig. 3. Dependence of the effective parameter of long-range
order on the degree of deformation for various deformation
temperatures in the Ni3Fe alloy: (1) 77, (2) 293, (3) 423,
(4) 573, and (5) 673 K.
P

independent of the temperature and is determined by
the degree of deformation, reaching zero at relative
deformations of 30–40%. At enhanced temperatures, a
restoration of long-range order is observed in the
deformed material. Thus, at 573 K, the long-range
order begins restoring at a degree of deformation equal
to 25%; the effective parameter of long-range order first
increases (a partial ordering of the material occurs until
the relative deformation reaches 38%); then, it remains
almost unaltered; and, beginning from 50%, a slow
decrease in the long-range order parameter occurs with
a further increase in deformation.

Curve 5 in Fig. 1 represents the results of experi-
mental measurements of long-range atomic order per-
formed on Ni3Fe single crystals that had been deformed
by rolling at 293 K [26, 27]. A comparison with calcu-
lations shows satisfactory agreement up to deforma-
tions of 30–40%. Substantial discrepancies at higher
deformations may be due to, primarily, specific features
of short-range order in this alloy, i.e., to difficulties in
the methodological character related to the experimen-
tal resolution of the effects of X-ray radiation scattering
by long-range and short-range order inhomogeneities at
the degrees of long-range order η < 0.2. Therefore, a
comparison of the experimental η(ε) curve with calcu-
lations at deformations ε > 30–40% makes no sense
without introducing some parameters that would char-
acterize the alloy short-range order in the model.

The dislocation density and the flow stress
(strengthening curves) as functions of the degree of
deformation for the Ni3Fe alloy are given in Figs. 2a
and 2b. In the inset to Fig. 2b, theoretical (T) and exper-
imental (E) strengthening curves for Ni3Fe are com-
pared [28].

Figures 2c and 2d display the dependences of the
concentrations of point defects (interstitial atoms and
vacancies, respectively) on the degree of deformation
for various deformation temperatures. It is seen that,
with increasing deformation temperature, the concen-
tration of point defects decreases. At a certain degree of
deformation, the concentration of point defects at 77 K
turns out to be higher than that at 673 K; in the case of
interstitial atoms, they even differ by orders of magni-
tude. The high concentration of point defects in a
deformed material at low and moderate temperatures
(77–423 K) is natural, since the annihilation of vacan-
cies and interstitial atoms at dislocations and their
mutual annihilation occur less intensely at low temper-
atures.

(2) Alloys with a high ordering energy. Figure 3
displays the dependence of the long-range order param-
eter on deformation for various deformation tempera-
tures for the Ni3Ge alloy. As in the case of alloys with a
low APB energy, in the temperature range of 77–423 K,
there is observed only a weak temperature dependence
of the long-range order parameter on the temperature
and on the degree of deformation. The restoration of
long-range order at enhanced temperatures occurs
HYSICS OF THE SOLID STATE      Vol. 44      No. 5      2002
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almost from the very beginning of plastic deformation;
as a result, the long-range order parameter changes
with deformation relatively slowly. The restoration of
long-range order in alloys with both high and low APB
energies occurs at almost the same rate. At enhanced
temperatures, the long-range order parameter in the
alloys with a high APB energy only weakly depends on
the deformation temperature. A substantial dependence
of the long-range order parameter on temperature is
possible at degrees of deformation exceeding hundreds
of percent.

Figures 4a and 4b display the dependence of the dis-
location density on deformation and the ordering
curves, as well as experimental data for the density of
dislocations at temperatures of 293 K (curve 6) and
673 K (curve 7) for the Ni3Ge alloy. It is seen from
Fig. 4a that the dislocation density substantially
depends on temperature. At 77–423 K, the dislocation
density increases with both the temperature and the
degree of deformation. At enhanced temperatures, the
dislocation density at certain degrees of deformation
(different at different temperatures) decreases, which is
due to a more intense annihilation of dislocations as a
result of their climb.

Fig. 4. Dependence of (a) the dislocation density, (b) flow
stress, (c) concentration of interstitial atoms, and (d) con-
centration of vacancies on the degree of deformation for
various deformation temperatures in Ni3Ge: (1) 77, (2) 293,
(3) 423, (4) 573, and (5) 673 K. Curves 6 and 7 in Fig. 4a
correspond to experimental data obtained by transmission
electron microscopy of thin Ni3Ge foils for 293 and 673 K,
respectively [20, 24]. In the inset, a comparison of experi-
mental (E) [20, 24] and theoretical (T) dependences of the
flow stress τ on the degree of deformation ε for the Ni3Ge
alloy calculated on the basis of the model suggested is
given.
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The dependences of concentrations of point defects
on the degree of deformation for various temperatures
are given in Figs. 4c and 4d. As in the case of Ni3Fe,
there is observed an increase in the concentration of
point defects with decreasing temperature. The accu-
mulation of point defects, their mutual annihilation,
and annihilation at dislocations occur more intensely in
the alloys with a high APB energy, which follows from
a comparison of Figs. 2d and 4d.

A comparison of theoretical and experimental [24]
strengthening curves for Ni3Ge is given in the inset to
Fig. 4b to show satisfactory agreement between the cal-
culated and experimental data.

5. CONCLUSION

Thus, in terms of the assumptions made, we can sat-
isfactorily describe the experimentally observed regu-
larities of the destruction of long-range atomic order
and deformation strengthening in alloys with an L12
superstructure possessing various ordering energies.
A simulation of the process of destruction of long-
range atomic order shows that, in alloys with the L12
structure, a substantial disturbance of long-range
atomic order at low and moderate temperatures is
observed at deformations of about 30%. Under the
assumptions made, the APB energy virtually does not
affect the intensity of variation of the long-range order
parameter in this temperature range. The effect of the
APB energy becomes substantial at enhanced deforma-
tion temperatures, where both qualitative and quantita-
tive differences in the η(ε) curves are observed depend-
ing on the APB energy. The phenomenon of destruction
of long-range order described in this paper (as well as
the process of deformation strengthening) apparently
cannot be related to the manifestation of only one cer-
tain mechanism of destruction of long-range order but
is a result of the simultaneous action of a number of
mechanisms related to the multiplication of both APBs
and point defects and dislocations.
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