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Among exohedral fullerene derivatives [1], fulleroid
(a C1 homologue with the [6,5] open structure on C60)
has been collecting much attention since its early dis-
covery by Wudl, because it remains an original
60π-electron system [2]. In addition, its mechanically
unique rearrangement toward methanofullerene (the
[6,6] close structure with a cyclopropane ring) has been
1063-7834/02/4407- $22.00 © 21203
studied by both experimental and theoretical methods
[3]. A novel fulleroid derivative, bis(fulleroid) contain-
ing two [6,5] open units connected by an ethylene
(−CH=CH–) linker, was synthesized by Rubin using
photoinduced isomerization of the cyclohexadiene
derivative of C60 (an exohedral –CH=CH–CH=CH–
adduct) via sequential [4 + 4] and [2 + 2 + 2] reactions
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1 This article was submitted by the authors in English at the V International workshop “Fullerenes and Atomic Clusters.” The proceedings
of this workshop can be found in Phys. Solid State, Vol. 44, nos. 3–4 (2002).
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[4,5]. However, the occurrence of the related rearrange-
ment of bis(fulleroid) toward bis(methano)fullerene
was not known; however, the existence of bis(meth-
ano)fullerene could be found by using a multistep syn-
thesis. Herein, we describe the first example of direct
formation on bis(methano)fullerene by photoinduced
rearrangement of the cyclohexadiene derivatives of C60,
which is a key precursor of bis(fulleroid).

Recently, we reported that the reactions of C60 with
alkoxycarbonyl substituted palladacyclopentadiene
derivatives gave the cyclohexadiene derivative 1a and
irradiation of the toluene solution by visible light
afforded bis(fulleroid) 2a [6]. On the other hand, simi-
lar rearrangement of 1b bearing tert-butyl ester
afforded a mixture of the following three compounds:
bis(fulleroid) (2b), bis(methano)fullerene (3b), and ful-
leroid-methanofulle-rene (4b) [see figure]. When the
reaction mixture was obtained after 12 h of irradiation
in C6D6 at 35°C, products 2b, 3b, and 4b were observed
in a 56 : 29 : 15 ratio (87% conversion). The products
(2b and 3b) were easily separated by silica-gel chroma-
tography.

In the Cs symmetric 13C NMR spectra of 2b, 32 sig-
nals assignable to sp2 carbons were observed together
with one sp3 signal at 57.72 ppm. Compound 3b also
showed 30 Cs symmetric signals in the sp2 carbon
region and 3 kinds of sp3 carbons, the chemical shifts of
which (44.93, 53.47, and 66.87 ppm, respectively)
resembled those of the previously reported bis(meth-
ano)fullerene. The four kinds of singlet signals assign-
able to the t-butyl groups in the 1H NMR spectrum of
4b indicated that the structure was C1 symmetric.

Although Rubin and Cheng did not describe the pos-
sibilities of thermal isomerization of their cyclohexadi-
ene derivatives toward bis(fulleroid), 1a and 1b con-
verted into 2a and a mixture with 2b and 3b upon heat-
ing at 150 and 110°C, respectively. However, unlike the
related fulleroid-methanofullerene (C60–CR2) system,
P

neither photochemical nor thermal isomerization of
bis(fulleroid) (2) to bis(methano)fullerene (3) nor the
reverse reaction (3 to 2) proceeded even under forcing
conditions resulting in decomposition of the tert-buty-
lester. The production of fulleroid under kinetic condi-
tions was discussed, and methanofullerene was consid-
ered to be a thermodynamically controlled product. The
speculations were supported by semiempirical MO cal-
culations, and fulleroid is 6 kcal/mol less stable than
methanofullerene. On the contrary, in our AMI calcula-
tions, bis(fulleroid) (2b) is 27.6 and 14.0 kcal/mol more
stable than bis(methano)fullerene (3b) and 1b, respec-
tively.
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Abstract—The temperature dependences of the saturation vapor pressure of C96 and C36 fullerites and their
properties along the sublimation curves are calculated using a correlation method of unsymmetrized self-con-
sistent field that allows for strong anharmonicity of the lattice vibrations. The calculation is performed in terms
of the Girifalco intermolecular potential with parameters recently determined for these fullerenes. Since exper-
imental data on C96 and C36 fullerites are unavailable, the results of our calculations are compared with our
results obtained earlier for the most commonly encountered fullerite C60. The specific features in the depen-
dences of the properties of C96 and C36 fullerites on the number of atoms per molecule are revealed. © 2002
MAIK “Nauka/Interperiodica”.
*1. INTRODUCTION

This work continues calculations of the thermody-
namic properties of the high-temperature modifications
of fullerites. At present, the most commonly encoun-
tered fullerite C60 and the next fullerite C70 have been
adequately studied experimentally and theoretically.
Particularly, it is known that the fullerite molecules are
orientationally ordered in the crystal lattice at low tem-
peratures and rotate almost freely in the face-centered
cubic lattice (with a small admixture of the face-cen-
tered close-packed phase in C70) at high temperatures.
It is assumed that other fullerites should behave simi-
larly.

Girifalco [1] was the first to investigate theoretically
the properties of the high-temperature modifications of
fullerites. Taking into account the fact that the C60 mol-
ecule has a nearly spherical form, he derived the inter-
molecular potential for orientationally disordered
(solid, gaseous, and hypothetical liquid) phases:

(1)

where s = r/2a, r is the distance between the centers of
molecules, and a is the radius of their rigid core. Ver-
heijen et al. [2] accomplished a generalization of the
Girifalco potential (1) for C70. Kniaz’, Girifalco, and
Fischer [3] and, independently, Abramo and Caccamo

* This paper was presented at the V International Workshop
“Fullerenes and Atomic Clusters,” St. Petersburg, Russia, July 2–
6, 2001. See Proceedings of the V International Workshop in Fiz-
ika Tverdogo Tela (Physics of the Solid State), 2002, nos. 3–4.
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[4] applied the Girifalco potential (1) to the orientation-
ally disordered solid phase of C70. This corresponds to
the approximation of the C70 cage by a sphere whose
radius is determined by fitting the lattice constant cal-
culated with this potential to the experimental lattice
constant. Saito et al. [5] and Molchanov et al. [6] earlier
used a spherical approximation for higher fullerenes
with the radius depending on the number of atoms per
molecule.

The intermolecular potentials proposed by Girifalco
and Verheijen were used in the calculations of the equi-
librium thermodynamic properties of the high-temper-
ature phases of C60 [7–9] and C70 [10, 11] fullerites with
due regard for the intramolecular vibrations (which
make the major contribution to the heat capacities) over
extended regions of their phase diagrams, including the
sublimation curves [8, 10]. The agreement between the-
ory and experiment was quite reasonable.

In recent years, considerable interest has been
expressed by scientists both in higher fullerites, such as
C76, C84 [12–14], and C96 [15], and in smaller fullerites,
especially in C36 [16, 17]. A method of calculating the
coefficients of the Girifalco potential (1) from the
known coefficients for C60 [1] was proposed earlier in
[18]. This approach was based on the spherical approx-
imation of the form of the fullerene molecules; i.e., it
did not require additional fitting parameters. The coef-
ficients of the potential were calculated for a series of
smaller and higher fullerenes (from C28 to C96). It is of
interest that the coefficients α and β decrease with an
increase in the number of atoms per molecule, even
though the minimum of the potential and the depth of
the potential well increase. Potential (1) with coeffi-
cients taken from [18] was used for analyzing the satu-
ration vapor pressure and the thermodynamic proper-
002 MAIK “Nauka/Interperiodica”
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ties of two higher fullerites, namely, C76 and C84 [19,
20]. Good agreement between the calculated and avail-
able experimental data was observed in [12–14].

In the present work, the properties of the higher C96
and smaller C36 fullerites were calculated using a corre-
lation method of unsymmetrized self-consistent field
(see, for example, [7–9]).

2. CALCULATION TECHNIQUE

The zeroth-order approximation of the method used
includes strong anharmonicity of the lattice vibrations
up to the fourth order, and the perturbation theory takes
into account the fifth and sixth anharmonic terms. First,
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Fig. 1. Properties of fullerites along the sublimation curves:
(a) (1) the mean intermolecular distance and (2) the
enthalpy of sublimation and (b) logarithms of the saturation
vapor pressures. Dashed lines represent the thermodynami-
cally unstable branches of the sublimation curves.

Coefficients of relationship (2)

Fullerite A B, K 104 C, K–1

C36 9.2868 6279.5 3.6434

C60 9.4253 9032.3 2.6268

C96 9.5337 12241.73 1.9619
PH
we solve a system of equations describing the tempera-
ture dependences of the saturation vapor pressure and
the mean intermolecular distance of the crystal along
the phase equilibrium curve. A virial expansion with
inclusion of the second terms was used for the gaseous
phase. The appropriate equations were obtained in our
earlier works [8, 11]. At temperatures below the limit-
ing temperature TS (T < TS), the equations have two
pairs of roots, namely, P1sat(T) < P2sat(T) and a1(T) <
a2(T) [Psat is the saturation vapor pressure], which
become identical when T = TS. At T > TS, real solutions
to these equations are absent. The isothermal modulus
BT of the crystal is positive along the lower branch and
negative along the upper branch; therefore, it corre-
sponds to the absolutely unstable thermodynamic
states. The limiting temperature TS [Psat(TS)] is the point
of loss of thermodynamic stability (the spinodal point)
of the two-phase crystal–vapor system. Along the lower
branches, we calculated the thermodynamic properties
associated with the lattice vibrations.

3. RESULTS AND DISCUSSION

The figure represents the temperature dependences
of the mean intermolecular distance and the enthalpy of
sublimation for C36 and C96 fullerites and the depen-
dence of the logarithm of the saturation vapor pressure
on the inverse temperature. The unstable branches are
depicted by the dashed lines. As far as we know, exper-
imental data on these fullerites are unavailable. For this
reason, we compared the results of our calculations
with our data obtained earlier for the most commonly
encountered fullerite C60 [8]. The curve a(T) for C76
[19] is also shown in Fig. 1a for comparison. It is evi-
dent that the intermolecular distance and the spinodal
temperature increase with an increase in the number of
atoms per molecule. As can be seen from the figure, the
points a(TS) lie along a nearly straight line.

The dependence (1/T) for both branches
exhibits a nearly linear behavior. For the lower branch,
this behavior agrees well with the available experimen-
tal data for C60, C70, C76, and C84. The dependence

(1/T) can be more precisely described by the
following relationship over the entire range of temper-
atures:

. (2)

The coefficients involved in relationship (2) are pre-
sented in the table. Note that the last term accounts for
the anharmonicity of the lattice vibrations. Despite the
relatively small value, the coefficient C contributes
appreciably to the saturation vapor pressure Psat at high
temperatures. It is seen from the table that the constant
term in relationship (2) is virtually independent of the
number of atoms per molecule. Consequently, the satu-
ration vapor pressures at the spinodal points of different

Psatlog

Psatlog

Psatlog A
B
T
---– CT–=
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fullerites differ insignificantly. The coefficient B
increases and the coefficient C decreases as the number
of atoms per molecule increases.

It should be noted that the isothermal modulus BT of
the crystal and the shear coefficient C44 vanish at the
spinodal points.

The good agreement observed between the results
of our calculations and the experimental data obtained
earlier for C60 [7–9], C70 [10, 11], C76, and C84 [19, 20]
fullerites suggests that experimental data obtained in
the future will also agree with our calculations for C36
and C96.

REFERENCES
1. L. F. Girifalco, J. Phys. Chem. 96, 858 (1992).
2. M. A. Verheijen, H. Meekes, P. Bennema, et al., Chem.

Phys. 166, 287 (1992).
3. K. Kniaz’, L. F. Girifalco, and J. E. Fischer, J. Phys.

Chem. 99, 16804 (1995).
4. M. C. Abramo and C. Caccamo, J. Phys. Chem. Solids

57, 1751 (1996).
5. Y. Saito, T. Yoshikawa, N. Fujimoto, and H. Shinihara,

Phys. Rev. B 48 (12), 9182 (1993).
6. S. P. Molchanov, A. M. Popov, and A. V. Sukhorukov,

Poverkhnost, Nos. 8–9, 42 (1994).
7. V. I. Zubov, N. P. Tretiakov, J. F. Sanchez, and

A. A. Caparica, Phys. Rev. B 53 (18), 12080 (1996).
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
8. V. I. Zubov, J. F. Sanchez-Ortiz, J. N. Teixeira Rabelo,
and I. V. Zubov, Phys. Rev. B 55 (11), 6747 (1997).

9. V. I. Zubov, J. F. Sanchez, N. P. Tretiakov, et al., Carbon
35 (6), 729 (1997).

10. V. I. Zubov, N. P. Tretiakov, I. V. Zubov, et al., J. Phys.
Chem. Solids 58 (12), 2039 (1997).

11. V. I. Zubov, N. P. Tretiakov, I. V. Zubov, and
J. B. Marques Barrio, J. Phys. Chem. Solids 60, 547
(1999).

12. H. Kawada, Y. Fujii, H. Nakao, et al., Phys. Rev. B 51,
8723 (1995).

13. B. Brunetti, G. Gigli, E. Siglio, et al., J. Phys. Chem. B
101, 10 715 (1997).

14. V. Piacente, C. Patchette, G. Gigli, and P. Scardala,
J. Phys. Chem. A 101, 4303 (1997).

15. M. C. Abramo, C. Caccamo, D. Costa, and G. Pellicane,
Europhys. Lett. 54 (4), 468 (2001).

16. Z. Slanina, X. Zhao, and E. Osawa, Chem. Phys. Lett.
290, 311 (1998).

17. C. Piscotti, J. Yarger, and A. Zettl, Nature 393, 771
(1998).

18. V. I. Zubov, Mol. Mater. 13, 385 (2000).
19. V. I. Zubov, N. P. Tretiakov, and I. V. Zubov, Eur. Phys.

J. B 17, 629 (2000).
20. V. I. Zubov, N. P. Tretiakov, and J. N. Teixeira Rabelo,

Mol. Mater. 13, 349 (2000).

Translated by O. Moskalev



  

Physics of the Solid State, Vol. 44, No. 7, 2002, pp. 1208–1211. Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1158–1161.
Original Russian Text Copyright © 2002 by Gerasimenko, Belogolovski

 

œ

 

, Revenko, Chernyak, Svistunov, Shaternik, Rudenko, Hatta, Sasaki.

                                                                                                                                    

METALS
AND SUPERCONDUCTORS
Electron–Boson Interaction in Nonsuperconducting
Magnetic Metals

A. Yu. Gerasimenko*, M. A. Belogolovskiœ*, Yu. F. Revenko*, O. I. Chernyak*, V. M. Svistunov*, 
V. E. Shaternik**, É. M. Rudenko**, E. Hatta***, and T. Sasaki***

* Donetsk Physicotechnical Institute, National Academy of Sciences of Ukraine, Donetsk, 83114 Ukraine
e-mail: vlamis@hsts.fti.ac.donetsk.ua

** Institute of Metal Physics, National Academy of Sciences of Ukraine, Kiev, 03680 Ukraine
*** Nanoelectronics Laboratory, Graduate School of Engineering, Hokkaido University, Sapporo 060-0813, Japan

Received September 26, 2001

Abstract—Gadolinium- and chromium-based normal metal–insulator–metal tunnel junctions were studied.
Spectral functions of the Gd and Cr electron–boson interaction were reconstructed, from which it follows that
the magnetic subsystem plays a noticeable role in the electron transport in magnetic metals. © 2002 MAIK
“Nauka/Interperiodica”.
Interaction of electrons with low-energy boson exci-
tations results in renormalization of the carrier effective
mass m* in metals (m* > me, where me is the electron
mass), which, in turn, affects the kinetic and thermody-
namic properties of the metals [1]. A wealth of informa-
tion on the structure of quasiparticle spectra of conduc-
tors can be obtained from tunneling spectroscopy,
which is based on measuring I(V) curves and their
derivatives with respect to voltage V for structures of
the metal–insulator–metal type. The presently available
spectral information is, however, confined in most
cases to superconductors, in which the amplitude of the
effect is comparatively large. Moreover, except for a
small number of papers [2], tunneling spectroscopy
studies have been limited to investigation of the elec-
tron–phonon coupling. Such an analysis can be applied
only to simple materials, because in most cases a sys-
tem has additional boson-type excitations, interaction
with which is also reflected in the I(V) curves. It would
be of use to identify and estimate their contribution.

For illustration, we consider magnetic transition
metals whose carriers interact not only with phonons
but also with magnetic excitations, so that the effective-
mass renormalization λ = m*/me – 1 contains electron–
phonon (λe–ph) and electron–magnon (λe–m) contribu-
tions: λ = λe–ph + λe–m. Theoretical calculations for mag-
netic metals, which were made with inclusion of lattice
vibrations alone, could not account for the experimen-
tal values of λ obtained [3]. The calculated λe–ph were
systematically underevaluated; for instance, the theo-
retical value for gadolinium is λe–ph = 0.4, whereas heat
capacity measurements yield λ = 1.1 and de Haas–van
Alfven experiments suggest λ = 1.2–2.1. A conjecture
was put forward [3] that the reason for these discrepan-
cies lies in the interaction of electrons with the mag-
1063-7834/02/4407- $22.00 © 21208
netic excitations of gadolinium. We present here the
first experimental data on electron tunneling into ferro-
magnetic gadolinium (the Curie temperature TC =
297 K, total magnetic moment 7.55 µB), which provide
support for this conjecture and unambiguously indicate
the existence of strong electron–magnon coupling in
this material. We note that the conclusion that the effect
of magnons on electron transport in this material is of
importance was drawn earlier by Akimenko et al. [4]
from microcontact spectroscopy data; however,
because of the local heating generated at high voltages,
the spectral resolution was not good enough to eluci-
date all the details of electron interaction with the mag-
netic excitations. The tunneling method employed by
us in studies of nonsuperconducting metals is devoid of
this shortcoming.

Another object studied by us is antiferromagnetic
chromium (Néel temperature TN = 311 K), whose tun-
neling characteristics were measured earlier [5], but the
shape of the electron–boson interaction function was
not determined. We note that theory likewise disagrees
here with experiment concerning the electronic-mass
renormalization, namely, λtheor = 0.25 [6], whereas elec-
tronic heat capacity measurements yield λ = 0.5 [7].

Our analysis of electron-tunneling data for normal
metal–insulator–metal junctions is based on the con-
cepts discussed in [8, 9]. We shall discriminate the
voltage-even contribution σ+(V) = [dI(+V)/dV +
dI(−V)/dV]/2 to the differential junction conductivity
from the voltage-odd contribution σ–(V) = [dI(+V)/dV –
dI(–V)/dV]/2. As shown in [9], σ–(V) is proportional to
the real part of the self-energy Σ(ω) of electrons in the
002 MAIK “Nauka/Interperiodica”
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metallic plates. If the renormalization effects are signif-
icant only for one of the plates, then

(1)

While there is currently no common opinion on the
nature of the effect and on the magnitude of the corre-
sponding coefficient C (see [9]), the proportionality of
σ–(V) to ReΣ(eV) has been established experimentally
for a number of metals [8–10] and will be demonstrated
below for magnetic materials. The latter means that we
can presently determine the shape of the energy depen-
dence of Σ(ω) rather than that of the amplitude. This
information in itself is significant, because it permits
one to establish the energies of the characteristic boson
excitations in a system and estimate their relative effect.
Moreover, by measuring the σ–(V) dependence, one can
reconstruct the shape of the spectral function g(ω) of
the electron–boson interaction in a normal metal [9]:

(2)

In magnetic metals, there are two main types of boson
excitations with which the conduction electrons inter-
act, namely, phonons and magnons. The former are
usually below the latter in energy, thus permitting one
to separate their relative contributions to g(ω) and, thus,
compare the efficiency of electron scattering from these
two types of quasiparticle excitations.

While the odd part of the conductivity contains
information on the spectra of the plates, σ+(V) is related
to the processes occurring in the barrier [2]. As a first
approximation, one can assume the derivative
dσ+(V)/dV to be proportional to the spectral density of

σ– V( ) Cσ 0( )Re Σ eV( ).–=

g ω( ) 2ω
Ceσ 0( )π2
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σ– V( )/ Vdd
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2 ω/e( )2
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0

∞

∫=

Fig. 1. Spectral function of the electron–boson coupling in
gadolinium (solid line) and phonon density of states calcu-
lated in [11] (dashed line). Arrows specify the position of
the singularities (∂ω/∂k = 0) in the magnon dispersion
curves from [12]. Inset shows the electrical conductivity of
the Gd–Gd-oxide–Al tunnel junction at 4.2 K.
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boson excitations FB(ω) in the insulator separating the
two metallic layers [2, 8]. We compare here these data
for the oxides forming potential barriers in heterostruc-
tures based on gadolinium and chromium.

The gadolinium junctions were prepared from high-
purity single-crystal Gd from which 2- to 3-mm thick
ribbon-shaped samples about 10 mm2 in area were cut;
the samples were polished mechanically and oxidized
in air to obtain a thin insulating film of gadolinium
oxide, after which an aluminum film serving as a sec-
ond electrode was evaporated on the oxidized surface.
The chromium-based tunnel structures were produced
by oxidizing Cr films about 100 nm thick in air at nor-
mal pressure and a film temperature of 470–500 K.
After the thickness of the chromium oxide serving as an
insulator reached about 5 nm, a thin silver overlayer
was deposited.

In both cases, the measurements were carried out at
4.2 K and the sample resistance at zero voltage varied
from a few units to a few tens of ohms. The differential
conductivity dI(V)/dV was measured by the standard
low-frequency technique of harmonic detection [10],
with a modulating signal amplitude of 1 mV. The sec-
ond derivatives were obtained by numerical differenti-
ation of the conductivity curves for the two types of het-
erostructures studied.

The reconstructed curves of some samples exhibited
weak features which, in our opinion, have no relation to
electron–boson interactions in the plates and the bar-
rier. In particular, the reconstructed function g(ω) of
gadolinium had a small peak in the zero-energy region.
This peak originates from the asymmetry in the zero
anomaly (which was observed to exist in nearly all
dI(V)/dV relations for gadolinium junctions) and is due

Fig. 2. Derivative dσ+(V)/dV for the Gd–Gd-oxide–Al junc-
tion. Arrows specify the position of the singularities in the
Raman spectrum of single-crystal Gd2O3 [15].
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apparently to the tunneling electrons interacting with
the magnetic moments localized in the barrier. We do
not show these features in the net curves presented
below.

Figure 1 displays an electron–boson interaction
spectrum g(ω) reconstructed for Gd. As follows from
[11, 13], the gadolinium phonon density of states is cut
off at 14–15 meV; as a result, the part of g(ω) that cor-
responds to higher energies may be due to interaction
with other excitations, for instance, with magnons. The
important role of magnetic excitations in gadolinium is
indicated by measurements of the temperature depen-
dence of the electrical resistivity [14], which imply that
within a broad temperature interval the electrons scatter
primarily from magnons rather than from phonons. To
check this conjecture, we start from the well-known
fact that the g(ω) features directly reflect the van Hove
singularities at the critical points in the ω(k) dispersion
curves where the derivatives of ω(k) vanish [2]. As fol-
lows from Fig. 1, the data on magnons in gadolinium
obtained by inelastic neutron scattering at 78 K [12]
correlate well with our results. Let us turn now to the
even part σ+(V) of the conductivity (Fig. 2), which,
according to the theory, should reflect the boson excita-
tion spectra in the insulating layer of the tunnel junc-
tion. Indeed, the derivative dσ+(V)/dV reveals nonlin-
earities up to 80–100 mV, which agree satisfactorily
with the data extracted from Raman spectra of Cd2O3
single crystals [15].

Similar conclusions also apply to the reconstructed
g(ω) for the Cr–Cr-oxide–Ag film structures illustrated
in Fig. 3. According to the phonon dispersion curves for
chromium [16], its lattice vibration spectrum is cut off
at 40–41 meV. Therefore, all the features observed in

Fig. 3. Spectral function of the electron–boson coupling in
chromium. Arrows specify the position of the singularities
(∂ω/∂k = 0) in the phonon dispersion curves taken from
[16]. Inset shows the electrical conductivity of the Cr–Cr-
oxide–Ag tunnel junction at 4.2 K.
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the reconstructed spectral function of electron–boson
interaction above 40 meV (Fig. 3) can be assigned to
the electron–magnon interaction. We are not aware of
any published data on the magnon spectra of chro-
mium. The barrier characteristic dσ+(V)/dV obtained by
us (Fig. 4) is in good agreement with the analogous
electron-tunneling data from [5] and specific features
of the magnon spectrum of Cr2O3 [17], whereas infor-
mation on phonons in this compound is lacking.

The above results suggest that interaction of elec-
trons with a magnetic subsystem plays as important a
role in electron transport as electron scattering from lat-
tice vibrations. This conclusion may be considered, in
particular, as supportive evidence that the disagreement
between the calculated renormalized electronic mass
[3] and its experimental values is due to the contribu-
tion of the electron–magnon coupling. The approach
developed in this work can be readily applied to studies
of the nature of electron transport in cuprates and man-
ganites, where the magnetic subsystem, as well as the
phonon subsystem, is known to play a substantial role.
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Abstract—Samples of various compositions were obtained in the homogeneity range of the Yb–In–Cu system
(YbIn1 – xCu4 + x), from stoichiometric (YbInCu4) to YbIn0.905Cu4.095. Their lattice constant (at 300 K and in the
range 20–100 K), total thermal conductivity, and electrical resistivity (from 4 to 300 K) were measured. All the
compositions studied exhibited an isostructural phase transition at Tv . 40–80 K driven by a change in the Yb
ion valence state. It was shown that within the YbIn1 – xCu4 + x homogeneity range, the lattice thermal conduc-
tivity κph decreases with increasing x; at T > Tv , κph grows with temperature and the Lorenz number (which
enters the Wiedemann–Franz law for the electronic component of thermal conductivity) of the light heavy-fer-
mion system, to which YbIn1 – xCu4 + x belongs for T < Tv , behaves as it does in classical heavy-fermion sys-
tems. Thermal cycling performed through Tv generates stresses in the YbIn1 – xCu4 + x lattice, which entails an
increase in the electrical resistivity and a decrease in the thermal conductivity. “Soft anneal” (prolonged room-
temperature aging of samples) makes the effect disappear. A conclusion is drawn as to the nature of the effects
observed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

YbInCu4 is an interesting subject for research. This
compound has an AuBe5-type cubic lattice and under-
goes (at atmospheric pressure and Tv ~ 40–80 K) an
isostructural phase transition which is accompanied by
a change in the Yb valence from 3 (in the high-temper-
ature phase, T > Tv) to 2.9 (in the low-temperature
phase, T < Tv). The high-temperature phase is a semi-
metal, and the low-temperature phase belongs to light
heavy-fermion systems. The parameter γ (the coeffi-
cient of the linear-in-temperature term in the electronic
heat capacity) of YbInCu4 at T < Tv is ~50 mJ/mol K2.
For more details on the properties of this interesting
material, see [1, 2].

The phase transition temperature Tv ~ 40–80 K is
frequently assigned to the YbInCu4 composition. How-
ever, the Yb–In–Cu system in the homogeneity range
(YbIn1 – xCu4 + x) exhibits a deviation from stoichiome-
try. The stoichiometric YbInCu4 has Tv ~ 40 K. As the
composition shifts to YbIn0.8Cu4.2, Tv increases to 70–
80 K [3–6].

The Yb–In–Cu phase diagram was studied in [5, 6]
in the most interesting compositional region (Fig. 1a).
The homogeneity range of the Yb–In–Cu phase extends
from the nominal YbInCu4 to a composition with a
higher Cu content, with Cu beginning to occupy the In
1063-7834/02/4407- $22.00 © 21212
sites [Yb(In1 – xCux)Cu4] and Tv shifting from 40 to 70–
80 K. At the same time, the phase transition changes
character from abrupt to gradual.

Earlier [7, 8], we studied the thermal conductivity of
two samples of YbIn0.83Cu4.17 composition,1 which,
according to the phase diagram of Fig. 1a, lies close to
YbIn0.8Cu4.2, exhibiting the maximum melting tem-
perature.

It was found [8] that (i) the Lorenz number L enter-
ing the Wiedemann–Franz law for the electronic com-
ponent of the thermal conductivity κe behaves in a light
heavy-fermion system (to which YbIn0.83Cu4.17 can be
assigned at T < Tv) like a classical heavy-fermion sys-
tem and that (ii) the lattice thermal conductivity κph of
YbIn0.83Cu4.17 increases with temperature, following a
law close to T 0.3 for T > Tv.

This behavior of κph(T), characteristic of amorphous
or heavily defected materials, was associated in [8]
with the substitution of copper for indium in YbInCu4

1 The samples studied in [8] were prepared in two different labora-
tories, namely, at the Physicotechnical Institute, RAS, St. Peters-
burg, Russia (sample 1P), and at the Frankfurt-am-Main Univer-
sity, Germany (sample 2F). The thermal conductivity of the sto-
ichiometric YbInCu4 sample (T ~ 40 K) was measured at the
Technical University (Vienna, Austria) [9]. The experimental data
reported in [9] were not analyzed in detail.
002 MAIK “Nauka/Interperiodica”
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and the attendant formation of a large number of
defects which could serve as phonon scatterers.

Accordingly, the purpose of this work was the fol-
lowing.

(1) To prepare a set of samples within the homoge-
neity range, including the stoichiometric composition
corresponding to Tv ~ 40 K.

(2) To measure κph(T) and L(T) within the homoge-
neity range of YbIn1 – xCu4 + x and study the variation of
κph as a function of x and the behavior of κph(T) for T >
Tv and of L(T) for T < Tv in a stoichiometric sample. It
was also of interest to determine whether this composi-
tion would exhibit an increase in κph for T > Tv ,
because, as follows from the phase diagram (Fig. 1a),
no copper substitution for indium should take place in
the stoichiometric composition.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The composition of the crystal was shown to depend
on the method by which it was prepared [5, 6]. The cast
polycrystalline samples for this work were produced by
directional vertical-Bridgman crystallization from a
melt with an original Cu concentration only slightly
below the stoichiometric valve. The melt started to
solidify with the formation of crystals having a phase-
transition temperature Tv ~ 70 K. The material that
crystallized in later stages had a Tv near 40 K.

The material was melted in tantalum crucibles
sealed in an argon atmosphere [6]. Electron-beam heat-
ing was chosen to ensure a steep enough temperature
gradient at the interface between the liquid and solid
phases in the crucible during the crystal growth. The
ingot thus obtained was cut into five samples (samples
1–5, Fig. 1b). Their lattice constant a was measured at
300 K (Table 1) and in the temperature interval 20–
100 K (Fig. 2). The a(T) relation obtained for sample 5
was found to correlate well with the data reported in
[10] for YbInCu4 with Tv ~ 40 K. All the samples were
single-phase and had an AuBe5-type cubic lattice.

The total thermal conductivity κtot and the electrical
resistivity ρ were measured in the 4- to 300-K region on
a setup similar to the one described in [11].

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 3 presents temperature dependences of κtot
and ρ obtained on samples 1 and 4 in measurement runs
from 300 to 4 K.2 We note that κtot(T) of sample 4 was
found to coincide well with that of the stoichiometric
YbInCu4 sample with Tv ~ 40 K reported in [9].

Prior to turning to an analysis of the experimental
data obtained, we first determined the composition of

2 We also measured the ρ(T) relation for sample 3.
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our YbIn1 – xCu4 + x samples. To do this, we estimated
(although not with sufficient precision) the values of Tv

from the a(T), ρ(T), and κtot(T) relations for all five
samples studied, after which we used the Tv(x) graph
obtained in [12] for the YbIn1 – xCu4 + x system to find x
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Fig. 1. (a) Phase diagram of the Yb–In–Cu system
(YbIn1 − xCu4 + x) and (b) schematic image of the samples
cut from the ingot. Labels 1–5 are the sample numbers.

Table 1.  Lattice constant a at 300 K for samples 1–4 of the
YbIn1 – xCu4 + x system

Sample no. a, Å

1 7.152(2)

2 7.154(5)

3 7.161(3)

4 7.164(4)

I

1

2

5

7.155

7.150
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7.135

7.130
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a,
 Å

Fig. 2. Temperature dependence of the lattice constant a in
the YbIn1 – xCu4 + x system. Solid curve I is the data from
[10]. Labels 1, 2, and 5 are the sample numbers.
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Table 2.  Values of Tv derived from measurements of a(T), ρ(T), and κtot(T) on samples 1–5, and the corresponding values of
x for the YbIn1 – xCu4 + x system obtained from the Tv(x) relation obtained in [12]

Sample no.
Tv , K Average value

of Tv , K x Sample
compositiona(T) ρ(T) κtot(T)

1 60 60 60 60 0.095 YbIn0.905Cu4.095

2 55 – – 55 0.060 YbIn0.94Cu4.06

3 – 48 – 48 0.038 YbIn0.962Cu4.038

4 – 44 42 43 0.015 YbIn0.985Cu4.015

5 40 – – 40 0 YbInCu4
and the approximate composition of the samples
(Table 2).

We chose two samples with extreme compositions,
1 and 4, to measure κtot(T) and ρ(T). Unfortunately,
because of the mechanical defects introduced in the
course of ingot cutting, the stoichiometric sample 5 was
found to be unsuitable for the measurement of ρ(T) and
κtot(T).
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Fig. 3. Temperature dependences of (a) κtot and (b) ρ for
samples 1 and 4.
P

According to the data available in the literature, in
the homogeneity range of YbIn1 – xCu4 + x, all composi-
tions in the T < Tv and T > Tv temperature intervals are
metals and semimetals, respectively; therefore, κtot
should include both electronic and lattice components:

(1)

where κe can be calculated using the Wiedemann–Franz
relation, 

(2)

The samples studied cannot be classed among “pure”
metals and semimetals; therefore, according to the clas-
sical theory of thermal conductivity, L = L0 for these
samples (L0 = 2.45 × 10–8 W Ω/K2 is the Sommerfeld
value of the Lorenz number). We isolated κph(T) from
κtot(T) and calculated Lx/L0(T) for the T < Tv tempera-
ture interval by the technique described by us in detail
in [8].

3.1. Behavior of the Lattice Thermal Conductivity

For T > Tv , where all the samples studied are dirty
semimetals, the validity of using L = L0 in Eq. (2) is
unquestionable. Within this temperature region, the
κph(T) relations for samples 1 and 4 calculated from
Eqs. (1) and (2) with L = L0, as well as the ones for the
YbIn0.83Cu4.17 samples 1P and 2F [8], grow with
increasing temperature, following a power law κph ~ Tn,
where n ~ 0.3–0.38, which is close to the values of n
found for samples 1P and 2F [8] (Fig. 4a).

Thus, we obtained an answer to one of the questions
in our study, namely, as to the behavior of the κph(T)
relation of the close-to-stoichiometric sample 4 (Tv ~
43 K) at high temperatures being exactly like that for
YbIn0.83Cu4.17. This casts doubt on the conjecture that
the growth of κph(T) in samples of the YbIn1 – xCu4 + x
system originates from their being strongly defected by
Cu substituting for In. It is possible, however, that sto-
ichiometric YbInCu4 also has defects associated with
the presence of some lattice disorder. The nature and
origin of such disorder have not thus far been estab-
lished; this would require additional studies. One can-

κ tot κ e κph,+=

κ e LT /ρ.=
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not exclude the possibility that this behavior of κph(T) is
inherent (for some other reasons) in a certain group of
heavy-fermion materials [8].

Figure 4b presents the values of κph (300 K) for three
compositions in the homogeneity range of the
YbIn1 − xCu4 + x system. As expected, κph decreases with
increasing x.

3.2. Behavior of the Lorenz Number

We now consider the behavior of the Lx/L0(T) ratio
for T < Tv in the close-to-stoichiometric sample 4. We
used the technique developed in [8] [extrapolation of
the values of κph from the high-temperature domain by

a power law to the region of T < Tv (  in Fig. 4) and
determination of Lx/L0(T) from the relation κe = LxT/ρ =

κtot – ] to calculate Lx/L0(T) for sample 4 in the tem-
perature range 10–35 K (T < Tv) and compared the val-
ues thus obtained with the Lx/L0(T) relation for sample
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Fig. 4. Dependences of κph on (a) temperature and (b) x at
300 K for samples 1, 4, and 2F [8] of the YbIn1 – xCu4 + x

system. See the text and [8] for the explanation of .κph
0

PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
2F [8], which had the YbIn0.83Cu4.17 composition. It
was found that they practically coincide and behave as
they should in classical heavy-fermion systems [8, 13]
(Fig. 5).

This provided an answer to the second question;
namely, the behavior of the Lx/L0(T) relation in the
homogeneity range is the same for classical and light
heavy-fermion systems.

4. THE EFFECT OF PHASE-TRANSITION-
INDUCED DEFECTS ON κph

Measurements of the temperature dependence of
electrical resistivity in YbInCu4 revealed an interesting
phenomenon [14]. In the course of thermal cycling
made through Tv , ρ was observed to increase in the T >
Tv and T < Tv regions (Fig. 6a). We note that the growth
of ρ in the T > Tv region was considerably stronger (by
a factor greater than two). Repeated cycling resulted in
a stronger growth of ρ (particularly for T > Tv). No
microcracks formed in the course of the cycling, and
the lattice constant did not change [10]. The effect
described above was assigned [4] to the generation of
stresses in the YbInCu4 lattice, because the phase tran-
sition entails a change in the Yb valence from 3 to 2.9
(when crossing Tv from the higher temperature region)
and from 2.9 to 3 (in the reverse run).

Thermal conductivity is sensitive to the formation of
various defects in a material [14]. Therefore, it
appeared only natural to study how defects that form
under thermal cycling in the YbIn1 – xCu4 + x system
would influence the thermal conductivity.
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0
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L x
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Fig. 5. Temperature dependence of Lx/L0 for samples 4
(YbIn0.985Cu4.015) and 2F (YbIn0.83Cu4.17) [8].
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Figures 6b and 7 plot the temperature dependences
of ρ and κtot obtained by us under thermal cycling of
samples 3 and 4.3 The data on ρ(T) were found to repro-
duce the results quoted in [4] (compare Figs. 6a, 6b).

Samples 4 (Fig. 7a) and 1 exhibited a noticeable
decrease in κtot both for T < Tv and for T > Tv. As in the
case of thermal cycling for ρ(T), the effect is the stron-
gest in the T > Tv region.

Most of the measurements were made on sample 4
(Fig. 7). After the thermal cycling, κtot is observed to
decrease substantially (curve 2, Fig. 7a).4 We made an
interesting observation. The defects that had formed in

3 Similar measurements were also performed on sample 1.
4 We measured the lattice constant of sample 4 both before and

after the cycling. As in [10], we did not observe any change in it.
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Fig. 6. (a) Temperature dependence of ρ obtained under
thermal cycling of YbInCu4 [4]: (1) cooling from 100 to 4 K
(direct run), (2) first warming-up cycle (reverse run from 4
to 100 K), (3) second warming-up cycle (reverse run from 4
to 100 K) of the sample cooled again to 4 K after the first
warming-up cycle, and (4) after the anneal of the sample
that passed the second warming-up cycle (annealing for
several hours at 300°C). (b) Temperature dependence of ρ
for sample 3: (1) measurement under cooling from 300 to
4 K (direct run), (2) first warming-up cycle (reverse run
from 4 to 300 K), (3) second warming-up cycle (reverse run
from 4 to 300 K) of the sample cooled again to 4 K after the
first heating cycle, and (4) measurements from 300 to 4 K
after the sample passed cycle 3 after month-long storage at
room temperature.
P

the sample after the thermal cycling disappeared almost
completely after the soft anneal, i.e., after the sample
was kept at room temperature for a month (curve 3,
Fig. 7a). It is of interest to estimate the influence of the
defects created during the cycling on κph.

We consider the T > Tv region, where, as already
mentioned, one can assume with confidence that L = L0
when calculating κe. Figure 8 presents data on κph(T)
for samples 1 and 4, which were calculated assuming
L = L0 in Eqs. (1) and (2). Straight lines 1 and 4 in Fig. 8
relate to samples 1 and 4 not subjected to thermal
cycling, and lines 1a and 4a correspond to samples 1
and 4 subjected to thermal cycling. We see that ∆κph
(Fig. 8) of sample 4, which is close in composition to
stoichiometry (YbIn0.985Cu4.015), is larger than that of
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sample 4; (a) (1) direct run (300  5 K), (2) reverse run
(5  300 K), and (3) direct run (300  80 K), mea-
surement after the sample was stored for 30 days at room
temperature (after having been measured in cycle 2); and
(b) (1) direct run (300  5 K), measurement on the sam-
ple corresponding to curve 3 in Fig. 7a, and (2) reverse run
(5  300 K), measurement on the sample corresponding
to curve 2 in Fig. 7a. Part of the ρ(T) data obtained on sam-
ple 4 are omitted.
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sample 1 (YbIn0.905Cu4.095) throughout the temperature
range studied.

Thus, one can conclude that the defects that were
formed in YbIn1 – xCu4 + x by thermal cycling decrease
κph. The electrical conductivity σ = 1/ρ decreases to a
greater extent under thermal cycling than κph does. Pro-
longed soft annealing of samples at room temperature
suppresses this effect in ρ(T), κtot(T), and κph(T).

Unfortunately, an analysis of the behavior of κph(T)
before and after thermal cycling does not permit one to
determine the nature of these defects. It is possible that
the phase transition does indeed generate stresses asso-
ciated with the change in the Yb valence state, as is sug-
gested in [14]. One cannot, however, exclude the possi-
bility that thermal cycling induces only small displace-
ments of Cu from the equilibrium sites.

4

4a

1a

1 ∆κph

∆κph

9

7

5

3

100 150 200 250 300
T, K

κ p
h,

 W
/m

 K

Fig. 8. Temperature dependence of κph obtained for sam-
ples 1 and 4 in the temperature region T > Tv ; lines 4 and 1
are measurements from 300 to 5 K (direct run), and lines 4a
and 1a are measurements from 5 to 300 K (reverse run).
∆κph is the change in the lattice thermal conductivity under
cycling.
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Abstract—The specific heats of the Ni2B amorphous system and of its crystal analog were studied in the tem-
perature range 3–270 K. The data obtained permitted us to isolate the contribution due to atomic vibrations from
the experimentally measured specific heat, determine the electronic density of states at the Fermi level and the
temperature dependence of the characteristic Debye parameter Θ, and to calculate some average frequencies
(moments) of the vibrational spectrum. The electronic density of states at the Fermi level increases under amor-
phization. An analysis of the temperature dependence of the lattice specific heat showed that amorphization
brings about a substantial growth in the density of vibrational states at low frequencies, whereas the spectrum-
averaged and rms frequencies change very little, which is in good agreement with neutron diffraction measure-
ments. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of lattice dynamics and of the thermody-
namic, kinetic, and other properties of systems which
can exist in both the crystalline and amorphous phases
contribute noticeably to our understanding of many
physical properties characterizing the amorphous state
[1]. The most convenient objects for such studies are
metal–metal and metal–metalloid metallic glasses,
which have been shown to be capable of transfer to
metastable or stable crystalline states under annealing
[2, 3]. Among the latter, the systems consisting of
atoms differing strongly in mass are of considerable
interest, because they exhibit different dynamics on the
microscopic level. For instance, the atomic-vibration
energy spectrum of a diatomic system with strongly
differing atomic masses reveals, as a rule, two maxima
which differ substantially in the position of their
energy.

The most complete and reliable information on the
structure and dynamics of such systems can be gained
from elastic and inelastic neutron scattering experi-
ments and, to a certain extent, from specific-heat mea-
surements.

Measurements of the specific heat carried out over a
broad temperature range permit one to judge the amor-
phization-induced changes in the vibrational and elec-
tronic excitations occurring at low and high energies. It
should be pointed out that experimental data on the
low-temperature specific heat make it possible to ana-
lyze the low-frequency part of the vibrational spectrum
("ω < 2 meV), which is difficult to access when
employing the inelastic cold-neutron scattering
method.
1063-7834/02/4407- $22.00 © 21218
The purpose of this work was to study the effect of
amorphization on the vibrational and electronic spectra
of the Ni2B system and to compare the data with inelas-
tic neutron scattering measurements performed on the
same samples.

The choice of the Ni2B system was motivated by its
amorphous phase having an appropriate crystalline
analog and by the large difference between the masses
of its constituent atoms (MNi/MB ~ 5.4). In addition,
neutron studies of the vibration excitation spectra of
this system in the amorphous and crystalline states have
been performed [4], as well as investigations into its
structure in the amorphous state.

2. EXPERIMENTAL TECHNIQUES

The specific-heat measurements were carried out on
the same samples as the neutron studies [4]. The sam-
ples in the amorphous state were obtained by rapid
quenching on the surface of a rotating copper disk in an
inert atmosphere. The sample composition was
checked by chemical analysis; the exact content of the
constituents (in atomic percent) corresponded to

B34.0 for the crystalline sample and to B36.1

for the amorphous sample. The structure of the systems
under study was revealed by x-ray and neutron diffrac-
tion. The x-ray diffraction curves follow a general pat-
tern characteristic of amorphous systems and demon-
strate no long-range order.

We present here the temperature dependences of the
specific heats of the Ni2B amorphous system and of its
crystalline analog measured over a broad temperature
range (3–270 K).

Ni66.0
11

Ni63.9
11
002 MAIK “Nauka/Interperiodica”
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The specific heat of a sample was measured on two
experimental setups by the adiabatic method with
pulsed heating. The experimental error was about 2% in
the temperature interval of 3–5 K, 1% in the region 5–
10 K, and 0.2–0.5% in the range from 10 to 270 K. The
specific-heat data are tabulated in units of J/g-atom K,
with 1 g-atom being 42.48 g for the crystalline sample
and 41.48 g for the amorphous sample.

3. EXPERIMENTAL RESULTS

The results of the specific-heat measurements car-
ried out at constant pressure on the Ni2B amorphous
system and its crystalline analog are summed up in
Figs. 1–5 and Tables 1 and 2. As seen from Fig. 1 and
Table 1, at low temperatures, the specific heat of the
amorphous system Cam is larger than that of its crystal-
line analog, Ccr. The specific-heat difference Cam – Ccr
increases with temperature to reach a maximum at
60 K. As the temperature increases still further, Cam –
Ccr decreases and passes through zero at 190 K, and at
temperatures above 190 K, we have Cam < Ccr.

We note that the relative change in the specific heat
at the transition from the crystalline to the amorphous
system is large at low temperatures; indeed, the relative
specific-heat difference (Cam – Ccr)/Ccr is greater than
100% at 18 K, whereas at temperatures above 200 K,
the change in the specific heat does not exceed 0.6%.

Figure 2 plots the temperature dependences of the
specific heats at low temperatures (in the range 3–13 K)
in the C/T vs. T 2 coordinates. As seen from Fig. 2, at
low temperatures, the experimental data on the specific
heat are well fitted by the C = γT + βT3 relation, which
makes straight lines in the C/T vs. T2 coordinates. In the
interval from 4 to 8 K for the amorphous phase, and
from 3 to 10 K for the crystalline phase, the rms devia-
tion of experimental data from a relation of the type C =
γT + βT3 is of the order of 1.5%.

The temperature interval within which this relation
holds for the amorphous system is substantially smaller
than that for the crystalline one. At temperatures above
8 K for the amorphous sample, and above 10 K for the
crystalline sample, the specific heat deviates systemat-
ically from the C = γT + βT3 relation; indeed, the exper-
imentally measured specific heat grows with tempera-
ture faster than that given by extrapolation of this rela-
tion from the low-temperature domain. At temperatures
from 10 to 20 K, the C/T vs. T2 plot has a convex-down
curvature.

Least-squares estimates of the coefficients γ and β
and the limiting low-temperature value of the charac-
teristic Debye temperature ΘL related to β through β =

12π4R/(5 ) are presented in Table 2. Here and subse-
quently, R is the universal gas constant.

As seen from Fig. 2 and Table 2, amorphization
resulted in an increase in the coefficients of both the lin-

ΘL
3
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ear- and cubic-in-temperature terms, with the former
increasing insignificantly and that of the cubic term
growing by 40%.

4. ANALYSIS AND DISCUSSION
OF THE RESULTS

The lattice (vibrational) specific heat Cvib was iso-
lated from the experimentally measured Cp by subtract-
ing the correction CA, which combines all the other con-
tributions to the specific heat from the anharmonic
effects and thermal expansion of the substance, as well
as from the conduction electrons:

(1)

where Cp is the molar heat capacity at constant pres-
sure, Cvib is the vibrational contribution to the specific
heat in the harmonic approximation, γ is the electronic
specific heat coefficient at low temperatures, and A is
the coefficient of the linear-in-temperature term of the
specific heat at constant pressure at high temperatures.

The interpolation relation for CA yields the corre-
sponding linear asymptotic behavior at both low and
high temperatures and provides a smooth transition
between the low- and high-temperature asymptotic
lines through a relation similar to the Nernst–Linde-
mann expression [5].

The value of γ was determined in the standard man-
ner, namely, from the low-temperature asymptotic

Cvib Cp CA– Cp γ A γ–( ) Cvib/3R( )2
+[ ] T ,–= =
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Fig. 1. Specific-heat difference between the amorphous and
crystalline Ni2B in the region 3–270 K.
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behavior of the temperature dependence of the specific
heat described by the relation C = γT + βT3. The value
of A, together with the parameters Ω2, Ω4, and Ω∗
which characterize the vibrational spectrum, was
derived from the high-temperature asymptotic behavior
of the specific heat by approximating its temperature
dependence with a relation of the type

(2)
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Fig. 2. Temperature dependence of the low-temperature
specific heat of Ni2B in (1) the amorphous and (2) crystal-
line states.
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Fig. 4. Debye parameter Θ plotted as a function of temper-
ature for Ni2B in (1, 3) the amorphous and (2, 4) crystalline
states; (1, 2) are derived from the specific heat and (3, 4) are
calculated from the vibrational spectrum obtained in an
inelastic neutron scattering measurement [4].
P

where

(3)

This relation for the asymptotic decomposition of
the lattice specific heat at high temperatures was pro-
posed in [6] and used in [7]. The quantities Ω2 and Ω4
are expressed in units of temperature and are related to
the moments of the vibrational spectrum through

(4)
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Fig. 3. Temperature dependence of the lattice specific heat
of Ni2B in (1) the amorphous and (2) crystalline states.

0.5

0

∆C
vi

b(
T)

/C
vi

b
cr

(T
)

T, K

1.0

1.5

20 40 60 80 100

Fig. 5. Temperature dependence of the relative change in
the lattice specific heat of the Ni2B system at amorphization
in the region 3–30 K [see Eq. (5)].
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Table 1.  Specific heat at constant pressure Cp of the amor-
phous Ni2B system and of its crystalline analog as functions
of temperature T

T, K
Cp , J/g-atom K

 amorphous crystalline

3 0.00630 0.00530
4 0.00800 0.00731
5 0.01066 0.00971
6 0.01437 0.01254
7 0.01918 0.01591
8 0.0256 0.0199
9 0.0344 0.0248

10 0.0463 0.0307
12 0.0814 0.0465
14 0.1323 0.0685
16 0.1995 0.0984
18 0.287 0.1402
20 0.400 0.2001
22 0.535 0.279
25 0.773 0.458
30 1.236 0.850
35 1.767 1.296
40 2.346 1.793
45 2.921 2.339
50 3.468 2.910
55 4.035 3.498
60 4.706 4.134
65 5.494 4.865
70 6.298 5.669
75 7.019 6.424
80 7.726 7.150
90 9.128 8.578

100 10.44 9.953
110 11.68 11.26
120 12.87 12.51
130 14.00 13.70
140 15.05 14.81
150 16.01 15.83
160 16.91 16.77
170 17.74 17.65
180 18.50 18.46
190 19.20 19.20
200 19.82 19.88
210 20.44 20.52
220 21.07 21.15
230 21.70 21.75
240 22.23 22.30
250 22.68 22.76
260 23.04 23.09
270 23.22 23.30
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Here, g(ω) is the vibrational density-of-states function.
The quantity Ω∗  in Eq. (2) is close in magnitude to Ωn

in Eq. (4) for n = 6.

By properly varying the four fitting parameters A,
Ω2, Ω4, and Ω∗ , we succeeded in approximating the
experimental results by Eqs. (1)–(3) within the temper-
ature interval 150–270 K with an rms deviation of the
order of 0.3%. We note that, because of the narrowness
of the temperature interval within which the experi-
mental data were fitted, the errors in determination of
the quantities Ω2, Ω4, and Ω∗  are strongly correlated
and comparable in magnitude to the variations that the
quantities indicated above undergo under amorphiza-
tion. Extending the fitting region toward low tempera-
tures is impeded by the poor convergence of the
approximating series in the low-temperature domain.

If, however, one directly describes the specific-heat
difference, the convergence becomes much better, thus
making it possible to broaden the approximation region
toward lower temperatures and to improve the accuracy
of determination of the change in the corresponding
parameters in the approximating relation, because both
the systematic experimental error in specific-heat mea-
surements and the divergences in the approximating
relation cancel out to a considerable extent when one

Table 2.  Parameters characterizing the samples of an amor-
phous Ni2B alloy and of its crystalline analog

Parameter Amorphous Crystalline

 Change in 
parameter upon 
amorphization, 

%

γ, mJ/g-atom K2 1.71 1.61 6

β, mJ/g-atom K4 0.0200 0.0141 42

ΘL, K 459 516 –11

ΘH, K 613 605 –1

Ωln, K 236 269 –12

Ω–2, K 230 261 –11

Ω–1, K 285 308 –8

Ω1, K 379 383 –1

Ω2, K 474 469 1(–2)

Ω4, K 582 578 0.7(1)

Ω∗ , K 620 620 0(2)

A, mJ/g-atom K2 14 14 0

Note: The coefficients γ and β approximate the low-temperature
specific heat by the relation C = γT + βT3. ΘL and ΘH are
the low- and high-temperature values of the characteristic
Debye parameter, respectively. The quantities Ω–2, Ω–1, Ω1,
Ω2, Ω4, and Ωln relate to the average frequencies (moments)
of the vibrational spectrum in accordance with Eqs. (4) and
(6). Given in parentheses are estimates of the amorphiza-
tion-induced change in the quantities Ω2, Ω4, and Ωln
obtained by approximation of the specific-heat difference in
the 100- to 270-K temperature interval (see Fig. 1).
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analyzes difference effects. Within the 100- to 270-K
region, the specific-heat difference is described by the
corresponding difference between the relations of the
type of Eqs. (1) and (2) with an rms error of less than
0.2% of the total specific heat. The estimates of the
changes in Ω2, Ω4, and Ω∗  under amorphization
obtained in this approximation are given in parentheses
in Table 2.

Table 2 lists the values of the parameters A, Ω2, Ω4,
and Ω∗  obtained by least-squares fitting. Also pre-
sented is the limiting high-temperature value of the
Debye temperature ΘH related to the second moment of

the phonon spectrum through Ω2 = ΘH .
Because the lattice specific heat at a temperature T

is contributed substantially by lattice vibrations with
energies E < 5kT (k is the Boltzmann constant), the low-
temperature specific heat contains information on the
low-frequency part of the vibrational spectrum. It was
shown in [8] that at low temperatures and low energies,
the quantity Cvib/T3 is a good approximation to the
function g(ω)/ω2 for ω = 4.93T (the frequency is
expressed in units of temperature). Therefore, the lat-
tice specific heat in the low-temperature domain can be
conveniently analyzed by plotting the temperature
dependence of the specific heat in the Cvib/T3 vs. T
coordinates; these coordinates are traditionally used to
analyze the deviation of the temperature behavior of
specific heat from the Debye law C ~ T3.

As seen from Fig. 3, the temperature dependence of
Cvib(T)/T3 for the amorphous Ni2B system passes
through a broad maximum at T ≈ 20 K which corre-
sponds to the presence in the vibrational spectrum of a
strong low-frequency mode at an energy E ≈ 10 meV.
Crystalline Ni2B exhibits a similar, although weaker,
maximum at T ≈ 30 K which corresponds to a low-fre-
quency mode at E ≈ 15 meV. The change in amplitude
of the maximum in the Cvib(T)/T3 relation and its shift
toward lower temperatures in going over from the
amorphous to crystalline state suggest that the amor-
phization increases the density of vibrational states at
energies of the order of 10–15 meV.

The information that can be extracted from the rela-
tion under study becomes less significant with increas-
ing temperature because of the fast decrease in the
quantity Cvib/T3. For this reason, the temperature
dependence of the specific heat over a broad tempera-
ture range is more conveniently analyzed using the tem-
perature dependence of the characteristic Debye
parameter Θ; it is a finer characteristic which governs,
in particular, the rate with which Cvib(T) reaches the
high-temperature asymptotic behavior. Figure 4 pre-
sents temperature dependences of Θ derived for both
systems from specific-heat data, as well as those calcu-
lated from experimental inelastic neutron scattering
spectra [4]. At temperatures of 20–70 K, there is good
agreement between the data derived from the specific

3/5
P

heat and that obtained in the neutron experiment for
both the absolute value of the characteristic parameter
Θ and for the change in this parameter induced by
amorphization. Outside this temperature interval, good
agreement is observed to occur only in the difference
effect, i.e., in the change in Θ under amorphization,
while the absolute values of Θ inferred from the spe-
cific heat and neutron scattering reveal a noticeable dis-
agreement. We note that the characteristic Debye
parameter Θ derives, in this temperature region, from
the low-energy part of the vibrational spectrum, where
the neutron experiment is not expected to yield high
accuracy. Therefore, we believe that at temperatures
below 15 K (and in the corresponding energy interval
below 7 meV), the data inferred from the specific heat
are more reliable and that the difference is due to the
errors inherent in neutron experiments at low energies.

The temperature dependence of the Debye parame-
ter passes through a broad minimum in the 20- to 30-K
region, which corresponds to the maximum in the tem-
perature dependence of the quantity Cvib/T3. As the
temperature increases, the difference between the val-
ues of the parameter Θ characterizing the amorphous
and crystalline states decreases.

The distortion of the vibrational spectrum at low
energies occurring upon amorphization can be conve-
niently described by the relative change in the lattice
specific heat of an amorphous system compared with
that of its crystalline analog, i.e., by a dimensionless
quantity of the kind

(5)

The temperature dependence of this relative change
in the lattice specific heat of the alloys under study
caused by amorphization is presented graphically in
Fig. 5. In this system, amorphization results in the
appearance of a maximum in the temperature depen-
dence of the relative change in the lattice specific heat

∆Cvib(T)/ (T) at T = 15 K, which indicates that an
increase in the energy density of vibrational states at
low energies occurs in going over from an amorphous
system to the crystalline system.

Model-free quantitative estimates of such parame-
ters of the vibrational spectrum as the spectrum-aver-
aged vibration frequency can be obtained by calculat-
ing the moments of the vibrational spectrum, some of
which are directly expressed through integrals of the
lattice specific heat [9].

We calculated these moments using experimental
specific-heat data; within the range 10–270 K, the inte-
gration was performed by experimental points, and out-
side this range, the specific heat was extrapolated using
either the low-temperature asymptotic behavior of the
type C = βT3 or the high-temperature dependence given
by the model of the Debye spectrum, as was done in [10].
The results of the calculations are given in Table 2,
which presents, for convenience of comparison, not the

∆Cvib T( )/Cvib
cr

T( ) Cvib
am

T( ) Cvib
cr

T( )–[ ] /Cvib
cr

T( ).=

Cvib
cr
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spectral moments 〈ωn〉  but rather the corresponding
average frequencies Ωn determined in accordance with
Eq. (4) and expressed in units of temperature, with the
logarithmically averaged frequency Ωln determined by
the relation

(6)

As seen from Table 2, amorphization brings about a
noticeable decrease in the frequencies Ω–2, Ω–1, and Ωln
characterizing the low-energy part of the spectrum,
which corresponds to a growth in the density of vibra-
tional states at low energies. As the order of the corre-
sponding moment increases, the amorphization effect
decreases and even reverses sign; indeed, the frequen-
cies characterizing the high-energy part of the spectrum
(Ω2, Ω4, Ω∗ ) increase under amorphization.

The higher the order of the vibrational-spectrum
moment, the closer the corresponding frequency
approaches the vibration frequency cutoff; therefore,
the behavior of the moments described above can be
treated as an indication that the spectral density of
vibrational states at high energies and the cutoff fre-
quency of atomic vibrations increase at amorphization.
It should be pointed out that the effect of an increase in
the cutoff vibration frequency under amorphization was
observed in this system directly in the neutron experi-
ment [4]; therefore, the data on the character of distor-
tion of the vibrational spectrum at high energies
obtained by two completely independent methods (neu-
tron scattering and specific-heat measurements) are in
good agreement.
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Abstract—Phonon spectra of Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ solid solutions (x = y = 0; x = 0, y = 0.25; x = 0.25,
y = 0; x = 0, y = 0.5) were measured by inelastic neutron scattering on a DIN-2PI direct-geometry spectrometer.
A full-profile analysis of the x-ray diffraction data yielded an estimate of the distribution of alkaline-earth (AE)
and La atoms over the Ca and Sr positions in the Bi2Sr2CaCu2O8 structure. An assignment of the main features
in the phonon spectrum to dominant vibrations of certain atoms was made. In particular, the correlation of the
x-ray structural data with spectroscopic data implies that the feature due to cation vibrations in the Sr crystal-
lographic positions of the basic 2212 structure (near 11 meV) is single-mode in behavior. Substitution of La for
an AE atom modifies the high-frequency part (>40 meV) of the phonon spectrum (which corresponds to vibra-
tions of oxygen in the SrO and CuO2 layers of the Bi2Sr2CaCu2O8 structure) and affects the cut-off frequencies
in the spectra of solid solutions of various compositions. A comparison of the results obtained in this study with
earlier spectra of the 2212 compound, in which Ca was substituted for by Nd, indicates that the shape and inten-
sity of the high-frequency vibration spectra of the samples studied are related to the average cation charge in
the SrO layer of the Bi2Sr2CaCu2O8 structure. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Heterovalent cation substitution in various crystal-
lographic positions plays an important part in modifica-
tion of the functional properties (Tc , Jc, room-tempera-
ture electrical conductivity, etc.) of high-temperature
superconductors. Superconducting compounds based
on Bi2Sr2CaCu2O8 (Bi2212) can be used as potential
materials for cables and ribbons. Of particular interest
are solid solutions obtained in the substitution of rare-
earths for alkaline-earth elements in the Bi2212 struc-
ture. This substitution can be effected over a broad con-
centration range and, at a certain substitution level,
brings about a metal–semiconductor transition driven
by a decrease in the carrier (hole) concentration in the
CuO2 layers under heterovalent substitution [1, 2]. In
view of the significant role played by electron–phonon
coupling in the mechanism of superconductivity, inves-
tigation of the effect of heterovalent substitution on the
superconductor lattice dynamics is of particular inter-
est. This issue is dealt with in a number of publications
[3, 4]. In [4], the combined effect of two factors on the
lattice dynamics is considered, namely, of the carrier
concentration variation and of the built-in stress in the
crystal (the so-called “built-in pressure”), which is gen-
erated by the difference in the ionic radii of Ca2+ and
Y3+ (1.26 and 1.10 Å [5]).

To separate these effects, in our earlier study [6], we
chose solid solutions with Cd substituted for by Nd,
1063-7834/02/4407- $22.00 © 1224
whose ionic radii are larger than that of Y and almost
identical to that of a substituted alkaline-earth (AE) ion
(1.25 Å for Nd3+). A comparison of the spectra obtained
with those presented in [3] suggests that the built-in
pressure affects the vibrations of oxygen in the CuO2
layers only insignificantly. At the same time, the mag-
netic moment of the Nd3+ ion can produce an additional
contribution to the inelastic neutron scattering (INS)
spectrum, which introduces a certain ambiguity into
interpreting the experimental results. In this study, a
similar problem of separating the effects of the built-in
pressure and cation charge state on the oxygen atom
dynamics was solved by replacing the AE metal ion by
a nonmagnetic ion La3+, which is close to Nd in mass
and radius and is isostructural in the outer shell config-
uration.

It was also of interest to investigate the effect of the
crystallographic position occupied by the cation to be
substituted for on the high-frequency vibration spec-
trum of the crystal. Therefore, we studied 2212 solid
solutions with substitution of both La3+ for Ca2+ and
La3+ for Sr2+ (the ionic radii of Ca2+, Sr2+, and La3+ are
1.26, 1.40, and 1.30 Å, respectively).

2. EXPERIMENT AND DATA TREATMENT

The Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ samples (x = 0,
y = 0; x = 0.25, y = 0; x = 0, y = 0.25; x = 0, y = 0.5) were
2002 MAIK “Nauka/Interperiodica”
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prepared from nitrate–oxynitrate mixtures obtained by
dissolution of ChDA-grade Bi2O3, SrCO3, and CuO and
of OSCh-grade CaCO3 and La2O3 in 20% nitric acid,
with subsequent evaporation of the solution thus pre-
pared. The samples were synthesized by the technique
that was used in [6] to prepare Nd-containing Bi2212-
based solid solutions and included decomposition of
the salt mixture at 750°C and several subsequent 24-h
stages of annealing at 860°C alternated with grinding.
All the anneals were performed in air.

X-ray phase analysis of the samples performed with
a DRON-3M diffractometer (CuKα, ave radiation; silicon
used as the internal standard for determination of the
unit-cell parameters) showed their composition to
agree with that of Bi2Sr2CaCu2O8-based solid solu-
tions. The least-squares refined unit-cell parameters are
listed in Table 1. The data indicate that a monotonic
parameter variation bears out the formation of solid
solutions.

The inelastic neutron scattering (INS) experiments
were performed on a DIN-2PI direct-geometry spec-
trometer installed on an IBR-2 reactor (JINR, Dubna)
[7]. The spectra were recorded at room temperature in
the time-of-flight mode for neutrons of initial energy
E0 = 8.15 meV and increased energy E within the scat-
tering angle interval of 42°–134° (the detectors
mounted at smaller angles revealed a considerable neu-
tron flux with energies above 100 meV which consti-
tuted a thermal background). The spectrometer resolu-
tion was ∆E/E ≈ 5–8% for energy transfer ε = E – E0 =
0–100 meV, with the momentum transferred to the neu-
tron lying in the ranges Q = 1.8–4.2 Å–1 for ε = 6 meV
and Q = 5.9–8.7 Å–1 for ε = 100 meV. The spectra were
normalized by the vanadium elastic peak.

The spectra were treated in the incoherent approxi-
mation [8], with multiphonon scattering included [9].
After the usual corrections to the detector efficiency
and neutron flux attenuation by the sample were made,
the INS spectra were treated to obtain the G(ε)
function; i.e., the lattice frequency spectrum was
weighted by the factor ciσi 〈|ξ i(ε)|2〉/mi,

where ci, σi, mi, and 〈|ξ i(ε)|2〉  are the concentration,
scattering cross section, mass, and mean square of the
polarization vectors of the ith atom, respectively, and
exp(−2Wi) is the Debye–Waller factor (the so-called
neutron-weighted spectral density of vibrational
states).

Figure 1 displays neutron-weighted frequency spec-
tra for our samples averaged over measurements on all
detectors within the scattering angle range of 42° to
134°. To facilitate numerical evaluations of the differ-
ences in the phonon density-of-states spectra between
samples with different La contents, the low-frequency
part (ε < 50 meV) of these spectra was fitted by a super-
position of Gaussians:

(1)

2Wi–( )exp∑

I A/w π/2( )1/2[ ] 2 ε εc–( )/w–[ ] 2
,exp=
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where I is the intensity, ε is the energy, and A, w, and εc

are parameters. By subtracting the sum of the Gauss-
ians describing the low-frequency part from the G(ε)
spectrum, we isolated the part of the spectrum that is
due, according to literature data, to vibrations of oxy-
gen in the CuO2 and SrO layers (Fig. 2) and that can
likewise be approximated by the functions of Eq. (1).
The parameters of the Gaussians for all samples are
listed in Table 2, and the functions describing the G(ε)
spectrum of the Bi2Sr2CaCu2O8 sample are plotted in
Fig. 1.

3. DISCUSSION OF RESULTS
The assignment of the various parts of the spec-

tra obtained to specific atomic vibrations was made,
as in [6], by comparing the experimental data with
the results quoted in [3, 10–12] for the solid solu-
tions Bi2Sr2Ca1 − xYxCu2O8 + δ and unsubstituted
Bi2Sr2CaCu2O8. This assignment yielded the same con-
clusions as in [6], namely, that peak 1 relates to vibra-
tions of Bi; peak 2, to those of Sr; peaks 3 and 4, to
vibrations of Cu and the cations in the Ca layer; peak 5,
to the superposition of vibrations of Cu and of several
types of oxygen vibrations; peak 6, to vibrations of
oxygen in the SrO layer; and peak 7, to those of oxygen
in the CuO2 layer.

Table 1.  Parameters of the orthorhombic unit cell of the
Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ solid solutions (in Å)

Compo-
sition

x = 0,
y = 0

x = 0.25,
y = 0

x = 0,
y = 0.25

x = 0,
y = 0.5

a 5.426(3) 5.432(3) 5.437(4) 5.441(3)

b 5.426(3) 5.432(3) 5.437(4) 5.441(3)

c 30.91(3) 30.76(3) 30.73(4) 30.53(2)

0

0

G
(ε

),
 a

rb
. u

ni
ts

ε, meV

10

20

30

40

10 20 30 40 50 60 70
1

2

3

4
5

6 7
1
2
3
4

Fig. 1. Spectra G(ε) of Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ
solid solutions with (1) x = 0, y = 0; (2) x = 0.25, y = 0; (3)
x = 0, y = 0.25; and (4) x = 0, y = 0.5. Dashed lines (1–7)
refer to Gaussians approximating the G(ε) spectrum and
corresponding to specific atom group vibrations.
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Table 2.  Parameters of the Gaussians in Eq. (1) used to fit the experimentally obtained G(ε) spectra of Bi2Sr2 – yCa1 – xLax + y
Cu2O8 + δ solid solutions

Gaussian no. 1 2 3 4 5 6 7

x = 0, y = 0 εc (meV) 5.7 11 19 25 35 48 67

w (meV) 2.0 6.0 6.0 7.4 10 8.9 23

A (a.u.) 5.8 57 120 210 330 70 220

x = 0, y = 0.25 εc (meV) 5.9 11 21 27 35 48 64

w (meV) 2.1 6.2 8.3 4.9 8.4 8.8 23

A (a.u.) 5.0 53 220 82 290 88 240

x = 0, y = 0.5 εc (meV) 6.4 11 21 27 36 47 63

w (meV) 2.7 4.3 8.5 4.7 8.0 8.3 23

A (a.u.) 13 39 220 86 300 86 240

x = 0.25, y = 0 εc (meV) 6.2 11 19 25 35 50 67

w (meV) 2.5 4.9 6.0 6.0 10 11 25

A (a.u.) 8.5 42 120 170 350 100 220
Figures 1 and 2 demonstrate a slight shift of the oxy-
gen vibration spectrum toward higher frequencies
induced by the La substitution for Ca. By contrast, sub-
stitution of La for Sr virtually does not produce this
effect.

The shift of peak 2 induced by variation of the Nd
content was earlier shown [6] to correlate well with the
(estimated in [13]) distributions of the rare-earth (RE)
and AE atoms over the crystallographic positions. A
similar estimate was made in this study for
Bi2212-based La-containing solid solutions. The calcu-
lation was performed by a full-profile analysis of x-ray
diffractograms (Rietveld refinement). The calculation
made use of the RIETAN code [14]. The results
obtained are given in Table 3.

Because of the closeness of the atomic scattering
factors for Sr and the 0.49La + 0.51Ca system, which
places a constraint on the applicability of x-ray diffrac-
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Fig. 2. High-frequency parts of the spectra of Fig. 1.
P

tion to analysis of the cation distribution in the system
under study, the inclusion of second-order parameters
(incommensurate modulation) appeared unreasonable
and the calculations were performed taking into
account the substructural reflections only. Thus, the
peak with d = 2.44 Å corresponding to an incommensu-
rately modulated superstructure was disregarded in the
calculations, which increased the value of the Rwp fac-
tor. The effect of modulation on the substructural peaks
was included by accepting 2 Å for the rms atomic dis-
placement in the Bi2O2 layer, which corresponds [15] to
the modulation amplitude. The rms displacement for
the other atoms was assumed to be 0.02 Å.

The calculations made with different values of the
rms atomic displacement in a specific layer showed that
this quantity only weakly affects the cation distribu-
tions obtained. The data obtained in repeated experi-
ments and calculations with different sets of initial con-
ditions were found to be reproducible. It was thus con-
cluded that the Rietveld refinement technique can be
used in x-ray diffraction calculations to analyze the cat-
ion distribution in the solid solutions under study.
Because the x-ray diffraction methods have only lim-
ited applicability to our problem, it appears reasonable
to employ them only to identify the crystallographic
position most favorable for a given cation.

The atomic vibration frequency ratio in the SrO
layer for various La concentrations was estimated using
the data in Table 3, as was done in [6], from the relation

(2)

where ω is the vibration frequency; Z = Z(La)α +
Z(Sr)(1 – α); Z(La) and Z(Sr) are the charges of the La3+

and Sr2+ ions, respectively; µ = αm(La) + βm(Ca) + (1 –
α – β)m(Sr); α is the fraction of the Sr crystallographic
positions occupied by La and β is that occupied by Ca;
and m(La), m(Sr), and m(Ca) are the atomic masses of

ω1/ω2 Z1µ2( )/ Z2µ1( )( )1/2
,=
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La, Sr, and Ca, respectively. Indices 1 and 2 relate to
solid solutions with different La concentrations being
compared. Equation (2) was derived within a model of
atomic vibrations in a field of a rigid crystal under the
assumption of the interatomic interaction force (in a
predominantly ionic crystal) being proportional to the
average cation charge ((1 – α – β)Sr2+ + βCa2+ + αLa3+)
for a constant anion charge (O2–). This model satisfac-
torily describes, as a rule, the so-called single-mode
behavior of the vibrational spectrum of a substitutional
solid solution (see, e.g., [16]).

The results obtained are given in Table 4. In this
case, while the approximate calculations are in poorer
agreement with the observed atomic-vibration frequen-
cies in the SrO layer than for the Nd-containing solid
solutions [6] (which may stem from the ionic radii of
Nd3+ and La3+ being different), the shift of these fre-
quencies is in the right direction.

In addition to the vibration frequency shift of the
cations in the SrO layer (the low-frequency part of the
spectrum), one observes a certain modification of the
high-frequency part of G(ε) which depends on the type
and extent of La substitution for the AE metals (Fig. 2).
It is in this part of the spectrum that the effects associ-
ated with both the carrier concentration variation in the
CuO2 sheet and the built-in pressure should become
manifest. Figure 2 shows the growth of G(ε) in the 40–
60-meV interval (peak 6) for all the La-containing sam-
ples compared with unsubstituted Bi2212. We note that
substitution of La for Ca somewhat increases, as
already mentioned, the cut-off frequency. A similar
effect of the increase in the cut-off frequency was
observed [6] when Nd was substituted for Ca in a
Bi2Sr2Ca0.25Nd0.75Cu2O8 + δ sample (see Fig. 3).

The observed differences in the shape of the oxygen
vibration spectra in Bi2212-based Nd- and La-contain-
ing solid solutions can apparently be related to either
the difference in the ionic radii of Nd3+ and La3+ (1.25
and 1.30 Å [5]) or the charge differences between the
crystallographic layers containing oxygen (most prob-
ably, the SrO and Bi2O2 layers). As follows from our
spectra obtained for different scattering angles, the
presence of a magnetic moment on the Nd3+ ion, unlike
La3+, whose magnetic moment is zero, does not con-
tribute noticeably to the phonon spectrum in the low-
frequency domain. This is much less likely to occur in
the high-frequency part of the spectrum for the momen-
tum transfers used in this study.

Table 5 lists the average ionic radii and cation
charges in the Ca and Sr positions for the compositions
of interest (based on this work and [13]). We readily see
that the differences between these radii are quite small,
which suggests that the size factor (the built-in pressure
effect) cannot be the main reason for the observed dif-
ferences in the high-frequency part of the Bi2212-based
RE-containing solid solutions.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
A comparison of the spectra of the Nd-containing
solid solutions presented in [6] with our spectra of the
La-containing Bi2212 suggests that the intensity redis-
tribution between the oxygen vibrational modes
observed to occur in the substitution of La for the AE
metals is related primarily to the increase in the average
cation charge in the SrO layer.

The other effect, namely, the increase in the cut-off
frequency ωcut induced by La or Nd substitution for Ca,

Table 3.  Distributions of atoms X (La, Ca, Sr) on the sublat-
tice of alkaline-earth elements Y (Ca, Sr) calculated for the
following solid solutions: (1) Bi2Sr1.75La0.25CaCu2O8 + δ, (2)
Bi2Sr1.5La0.5CaCu2O8 + δ, and (3) Bi2Sr2Ca0.75La0.25Cu2O8 + δ;
X(Y) is the occupation of the Y atom positions by X atoms

X(Y) 1—Sr1.75La0.25 2—Sr1.5La0.5 3—Ca0.75La0.25

Sr(Sr) 1.54 1.46 1.68

Ca(Sr) 0.24 0.34 0.08

La(Sr) 0.22 0.20 0.24

Sr(Ca) 0.21 0.04 0.32

Ca(Ca) 0.76 0.66 0.67

La(Ca) 0.03 0.30 0.01

Rwp , % 8.35 7.59 8.26
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Fig. 3. High-frequency parts of the G(ε) spectra for
Bi2Sr2Ca1 – xNdxCu2O8 + δ samples with x equal to (1) 0.1,
(2) 0.25, and (3) 0.75.

Table 4.  Ratios ω1/ω2 for Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ solid
solutions; experimental and calculated from Eq. (2) (x1 = y1 = 0)

Solid-solution 
composition

Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ

x2 = 0,
y2 = 0.25

x2 = 0,
y2 = 0.5

x2 = 0.25,
y2 = 0

Calculation 0.960 0.974 0.995

Experiment 0.997 0.995 0.976
2
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Table 5.  Average ionic radii (R, Å) and charges (Z) of cations in the Sr(1) and Ca(2) positions calculated for Bi2Sr2 – xLaxCa1 – y – z
NdyLazCu2O8 + δ solid solutions

Composition x = y = z = 0 x = z = 0,
y = 0.1

x = z = 0,
y = 0.25

x = z = 0,
y = 0.75

y = z = 0,
x = 0.25

y = z = 0,
x = 0.5

y = x = 0,
z = 0.25

(1) R 1.40 1.38 1.39 1.37 1.37 1.37 1.38

Z 2.00 2.04 2.00 2.19 2.11 2.10 2.12

(2) R 1.27 1.31 1.29 1.30 1.29 1.28 1.31

Z 2.00 2.02 2.25 2.37 2.03 2.30 2.01
is also apparently connected with a change in the ionic
charge state and, possibly, with the small difference
between the Ca and La cation radii (RCa < RLa). Some of
the differences in the shape of the high-frequency part
of the spectra produced by the substitution of La and
Nd for Ca probably originate from the different con-
trasts that the partial spectra of these atoms exhibit in
the net neutron-weighted spectrum, as well as from dif-
ferent occupation of the alternative positions (in this
case, of the positions of Sr). Substitution of La for Sr
produces the same change in the shape of the high-fre-
quency spectrum. As in the first case, this is associated
with the change in the cation charge state. This is not
accompanied, however, by an increase in ωcut. In our
opinion, the latter is due to the size effect, because the
radius of La is noticeably smaller than that of Sr.

4. CONCLUSION

Thus, we have measured phonon spectra of the
Bi2Sr2 – yCa1 – xLax + yCu2O8 + δ solid solutions by inelas-
tic neutron scattering.

The La distribution over the Ca and Sr crystallo-
graphic positions in these solid solutions was estimated
from a full-profile analysis of the diffraction patterns,
and it was shown not to be at variance with the results
obtained in neutron dynamic measurements.

It was shown that substitution of La for AE metals in
the Bi2Sr2CaCu2O8 structure produces noticeable
changes in the high-frequency part (ε > 40 meV) of the
neutron-weighted frequency spectrum compared to
unsubstituted Bi2Sr2CaCu2O8. These changes are prob-
ably associated with the increase in the average cation
charge in the SrO layer of the Bi2Sr2CaCu2O8 structure.
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Abstract—The temperature evolution of the current–voltage (I–U) characteristic of a contact of the break-junc-
tion type with direct conduction is investigated on a polycrystalline HTSC of the Y–Ba–Cu–O system. The
experimental I–U characteristics possessing a hysteresis are correctly described in the framework of the Küm-
mel–Nicolsky theory for an S–N–S contact (S stands for a superconductor; N, for a normal metal) in which the
Andreev reflection of quasiparticles from the N–S interface is considered. It is shown that the shape of the I–U
curve, as well as the existence of a hysteresis, is determined by the ratio of the number of “long” and “short”
intergranular boundaries in the polycrystal under investigation. The coincidence of the calculated and experi-
mental I–U curves made it possible to estimate the effective length of “natural” intergranular boundaries in
polycrystalline HTSC materials. The estimate is obtained from the experimental temperature dependence of the
critical current in the sample under investigation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Bulk HTSC polycrystals possess much lower cur-
rent-carrying capacity than single crystals and thin
films. It is well known that the main limiting factor is
the intergranular boundaries, whose presence results in
the formation of a random network of weak links S–N–
S (S is a superconductor and N is a normal metal) in a
polycrystal. The distribution of geometrical parameters
of individual weak links in such a network is described
by a certain distribution function determined by the
technology of the synthesis of polycrystals.

Junctions at microcracks (break junctions) were
actively studied during the first years following the dis-
covery of HTSC materials. However, break junctions
continue to be attractive objects of investigation [1],
since they make it possible to study both tunnel junc-
tions and contacts with direct (metallic-type) conduc-
tion. The formation of a microcrack in a bulk HTSC
sample in the case of a direct-conduction contact leads
to a decrease in the effective cross-sectional area. The
current density in the breaking region is much higher
than the current density in the sample volume; conse-
quently, weak links in the breaking region are the first
to pass to the resistive state and determine the critical
current and the current–voltage (I–U) characteristic of
the sample until degradation of the superconductivity
begins in the bulk of the sample. Consequently, the
resistive state of a contact of the break-junction type is
determined by the superposition of a finite number of
weak links. It becomes possible to measure the I–U
1063-7834/02/4407- $22.00 ©1229
characteristics of junctions at natural intergranular
boundaries over a wide temperature range in the region
of current densities much higher than the critical value;
this almost entirely eliminates the effect of self-heating,
which is difficult to achieve in bulk HTSC samples.

In order to describe the experimentally observed I–
U curves for S–N–S junctions of the Josephson type, the
resistive shunted junction (RSJ) model [2] or its modi-
fications [3, 4] are often used. However, this model is
only an equivalent electric circuit and does not reflect
the quantum physical processes of charge carrier trans-
port in an S–N–S junction [2, 5, 6].

The charge carrier transport in an S–N–S junction is
determined by physical processes such as tunneling, the
proximity effect, and Andreev reflection [7]. Starting
from the publications by Artemenko, Volkov, and Zaœ-
tsev [8, 9], several models have been developed in
which the major role in the formation of I–U character-
istics is assigned to Andreev reflection. In the pioneer-
ing works [8, 9], the I–U curves for microbridges were
calculated only for the limiting cases, namely, near Tc

and at voltages across a junction much larger than the
energy gap in the superconductor. Blonder et al. [10]
described the I–U curves of an S–N point contact and of
a microconstriction; in this case, the shape of the I–U
curve is determined by the barrier transparency. The
theory describes the excess current and arc-shaped fea-
tures in I–U curves (subharmonic gap structure) but
fails to describe the negative differential resistance
(NDR). In experiments, the NDR is manifested in the
 2002 MAIK “Nauka/Interperiodica”
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fixed stable current mode as a hysteresis loop on the I–
U curves [11]. Some authors analyze the I–U curves of
S–N–S junctions in various approximations (see, for
example, [12–14]); however, I–U curves calculated on
the basis of these models do not contain segments cor-
responding to NDR.

In our opinion, the most attractive theory capable of
describing I–U curves of S–N–S structures in wide
ranges of the mean free paths (l) of carriers in the N
layer and geometrical thicknesses of the N layer (2a) is
the Kümmel–Nicolsky theory [15]. This theory takes
into account the contribution from Andreev reflections
in the S–N–S to the current junction and predicts the
existence of NDR in pure (l > 2a [11]) S–N–S struc-
tures. This theory also describes the excess current and
gap singularities at voltages that are multiples of the
energy gap ∆. The theory developed in [15] was suc-
cessfully used to describe some results obtained on S–
N–S contacts with low-temperature superconductors
[6]. The authors of [15–17] pointed out that the hyster-
esis observed on I–U curves of a weakly linked HTSC
can be interpreted in the framework of this theory.

It has been proved [18] that a simplified version of
the Kümmel–Nicolsky theory [5] satisfactorily
describes the experimental I–U curves for composites
Y0.75Lu0.25Ba2Cu3O7 + BaPb1 – xSnxO3 (x = 0, 0.1) mea-
sured at 4.2 K. In these composites, the normal metal
BaPb1 – xSnxO3 forms artificial metal boundaries
between HTSC crystallites. For x = 0, the “clean” limit
is realized in composites, while for x = 0.1, an effec-
tively dirty limit (l < 2a [11]) exists.

The aim of the present work is to demonstrate the
applicability of the theory [15] not only to a network of
weak links with artificially created metallic intergranu-
lar boundaries [18] but also to I–U characteristics of
polycrystallites with natural intergranular boundaries
in HTSC materials.

We measured I–U curves with a hysteresis loop of
break-junction-type contacts with direct conduction in
the temperature range 4.2–95 K. The results obtained
are described satisfactorily in the framework of the the-
ory [15] under the assumption that junctions of various
geometric length are connected in series.

2. EXPERIMENT

We used the standard ceramic technology of fabrica-
tion of HTSC Y0.75Lu0.25Ba2Cu3O7. The time of final fir-
ing was 40 h at 910°C. The Debye powder pattern dis-
plays only reflections corresponding to the 1-2-3 struc-
ture. The superconducting-transition temperature Tc as
determined from magnetic measurements coincides
with the temperature corresponding to the beginning of
the resistive transition and amounts to 93.5 K.

Samples with a typical size of 2 × 2 × 10 mm were
sawed out from synthesized pellets. The sample was
glued to a sapphire substrate. The central part of the
sample was polished down to obtain a cross-sectional
P

area S ~ 0.2 × 1 mm. For such a value of S, the critical
current at 4.2 K was ~2 A (current density 1000 A/cm2).
Further controllable decrease in the area S under inevi-
table mechanical stresses at current and potential con-
tacts is very difficult. In order to obtain a contact of the
break-junction type, the sample with the above value of
S was bent together with the substrate with the help of
screws of spring-loaded current contacts, which led to
the emergence of a microcrack in the part of the sample
between the potential contacts. As a result, either a tun-
neling contact (with resistance R > 10 Ω) or a direct-
conduction contact (R < 10 Ω) was formed. For R ~
1−2 Ω , the samples possess a critical current Jc ~ 1–
10 mA at 4.2 K, which corresponds to a decrease in the
value of S by a factor of ~102–103. It should be noted
that the shape of the I–U curves for the samples was
completely preserved after thermocycling from 4.2 to
100 K, but thermocycling to room temperature
increased the value of R and the contact was converted
into a tunneling contact.

During measurements, the samples were held in a
helium heat-exchange atmosphere. The I–U-curve
measurements were made under steady-state condi-
tions in the fixed current mode. Relatively low values of
the transport current (up to 150 mA) and of the voltage
drop across the sample (up to ~100 mV) made it possi-
ble to eliminate the effect of self-heating [19]. The crit-
ical current was determined from the I–U curve using
the 1-µV criterion [20].

3. RESULTS AND DISCUSSION

Figures 1 and 2a show typical examples of experi-
mental I–U curves recorded at 4.2 K. The curves dis-
play the presence of a critical current and a segment
with a nonlinear U(I) dependence followed by a jump-
wise (repeated in some cases) increase in the value of U
accompanied by a hysteresis. In the region of large val-
ues of I and U, the U(I) dependence is close to linear,
and its extrapolation to the value U = 0 gives an excess
current Iex whose existence confirms the metallic type
of conduction of the junctions formed [10].

The current due to Andreev reflections in an S–N–S
contact, according to theory [15], has the form (in the
notation used in [15])

(1)

Here, f(Ek) is the Fermi energy distribution function
for quasiparticles, PN is the probability of finding a qua-

siparticle in the N region, (E) and (E) are the
probabilities of the nth Andreev reflection for holes (+)
and electrons (–), b is the starting position from which
quasiparticles begin their motion when an electric field
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Fig. 1. Experimental I–U curve recorded for a sample at T = 4.2 K.
starts acting in the N layer, n is the number of Andreev
reflections, and C is the constant defined in [15]. In our
calculations, we used the density of states for charge
carriers in an HTSC material [21].

The theory describes the I–U curves for S–N–S con-
tacts with the above characteristic features excluding
the region near U ≈ 0, since the calculation of the criti-
cal current is a separate problem [7].

An example of a theoretical I–U curve is given in
Fig. 2b. It can be seen that such a theoretical depen-
dence cannot describe the experimental I–U curves
shown in Figs. 1 and 2a, in which the hysteresis is
observed for larger values of U. On the other hand, the
multiple hysteresis loops observed on some I–U curves
(Fig. 1) indicate that the U(I) dependence is formed by
a superposition of I–U curves for several contacts with
different parameters. A similar conclusion was drawn
for a point HTSC contact from an analysis of the effect
of radiation on the shape of I–U curves [22].

We processed the experimental curve shown in
Fig. 2a by using the formula

(2)

where Ui(I, 2ai) are the I–U characteristics of S–N–S
junctions with various values of 2a defined by Eq. (1)
and Vi are the weight factors indicating the effect of a
contact with a given value of 2a on the resultant (super-

U I( ) ViUi I 2ai,( ),
i

∑=
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position) I–U curve (with the obvious normalization
 = 1).

It was found that Eq. (2) correctly describes the
experimental data even when the sum in this formula
contains only two terms. The best agreement was
attained for values of 2a1/l = 0.15, V1 = 0.34, 2a2/l =
0.5, and V2 = 0.66. Figure 2b shows the theoretical I–U
curves for each of these two junctions, while Fig. 2a
shows their superposition. It can be seen that the theo-
retical dependence obtained as a result of superposition
coincides with the experimental I–U curve, including in
the region with hysteresis, but the segment of the exper-
imental U(I) dependence corresponding to values of U
close to zero cannot be described by the theory from
[15] (see above).

Figure 3a shows the experimental I–U curves for
one of the samples (the same as in Fig. 2a) in the coor-
dinates (T, I, U). Figure 3b presents the temperature
evolution of the superposition I–U curve shown in
Fig. 2b in the same coordinates. The only variable
parameter was the temperature-dependent energy gap
given by the BCS theory. The theory [15] correctly
describes the decreases in the area of the hysteresis loop
and its vanishing upon an increase in temperature. At
temperatures above 4.2 K, the discrepancy between the
theoretical and experimental U(I) dependences
becomes more pronounced, but the difference between
these dependences does not exceed 9%. It is important

Vii∑
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Fig. 2. Experimental I–U curve recorded for a sample at T = 4.2 K (circles). Solid curves are (a) the resultant superposition curve
calculated on the basis of Eq. (2) for V1 = 0.34 and V2 = 0.66 and (b) the theoretical I–U curves for S–N–S junctions with parameters
2a1/l = 0.15 and 2a2/l = 0.5 calculated using Eq. (1).
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to note that the experimental points corresponding to
the jumpwise change in voltage are described by the
theory quite successfully. A similar satisfactory agree-
ment was also attained for other samples under investi-
gation over a wide temperature range.

Knowing the mean free path of charge carriers, the
lengths of intergranular boundaries in the HTSC mate-
P

rial under investigation can be estimated by fitting to
the experimental I–U curves. If we take for l the value
~20 Å given in [23] for a Y–Ba–Cu–O system, we
obtain 2a1 = 3 Å and 2a2 = 10 Å. These values agree
with the results obtained for natural intergranular
boundaries in polycrystalline Y–Ba–Cu–O [24] and in
a bicrystal [25]. The obtained values of coefficients
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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V1 = 0.34 and V2 = 0.66 can be interpreted as follows:
the I–U characteristic is defined by at least three series-
connected contacts, one of which is 3 Å long and the
other is 10 Å.

The length of intergranular boundaries can also be
estimated from the experimental temperature depen-
dence of critical current [24–27]. The experimental
Jc(T) dependence of the sample under investigation is
shown in Fig. 4. In some theoretical works [7, 28, 29],
the dependence of the critical current of a weak link
with direct conduction on the temperature and thick-
ness of the metallic layer was investigated. The theoret-
ical curves from [7, 28], which describe similar results,
are in good agreement with our experimental data. In
the present work, we describe Jc(T) on the basis of an
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Fig. 3. Temperature evolution of I–U curves presented in
Fig. 2: (a) experiment and (b) theory.
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earlier and simpler theory [28]. Figure 4 shows the the-
oretical curves from [28]. In a wide temperature range,
good agreement is observed between the experimental
Jc(T) curve and the theoretical dependences for a weak
link having a thickness of the N layer of 2a = (0.3–
0.4ξN), where ξN is the coherence length in the normal
metal for T = Tc [28]. Figure 4 also shows the Jc(T)
dependence predicted by the theory [28] for 2a = 0,
which coincides with the Kulik–Omel’yanchuk (KO)
temperature dependence for clean short microbridges
[30] and with the dependence obtained in [7] for clean
short S–N–S junctions, as well as the Ambegaokar–
Baratoff (AB) Jc(T) dependence for tunneling contacts
[31]. The cardinal difference (even in the sign of curva-
ture) of the experimental Jc(T) dependence from the AB
dependence is an extra argument confirming that a
direct-conduction contact is formed in the sample
under investigation. In [32], the value ξN ~ 50 Å is given
for intergranular boundaries in Y–Ba–Cu–O. Using this
value, we estimate the length of the intergranular
boundary to be ~15–20 Å. This estimate is close to the
value 2a2 = 10 Å obtained from the processing of the I–
U curve (clearly, the critical current in series-connected
junctions is determined by the worst of these junctions,
i.e., by the longer one, since Jc ~ exp(–2a) in most of
the theories from [7, 11, 20, 28, 29]). It should be noted
that near Tc, the experimental and theoretical results dif-
fer noticeably; the experimental temperature depen-
dence of the critical current becomes quadratic: Jc ~
(1 – T/Tc)2. Such a behavior of the critical current near
Tc has been observed by many authors for HTSC film
structures [25, 27, 32], HTSC point contacts [33], and
in bulk HTSC polycrystals [24, 26] and has been dis-
cussed more than once. We can indicate at least two rea-
sons for such a behavior. A small coherence length in
HTSC materials reduces the pair potential at the S–N

KO AB

K (2a/ξN = 0.4)

K (2a/ξN = 0.3)

1.0

0.5

0 0.5 1.0
T/Tc

J c
/J

c 
(T

 =
 0

)

Fig. 4. Temperature dependence of normalized critical cur-
rent Jc(T)/Jc(0). Circles correspond to experimental data,
and solid curves are theoretical calculations: the Ambe-
gaokar–Baratoff (AB) dependence [31], the Kulik–
Omel’yanchuk (KO) dependence [30], and the Kupriyanov
(K) dependence [28].
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interface; as a result, the function Jc(T) becomes qua-
dratic and not linear, proportional to (1 – T/Tc) [34].
Thermal fluctuations near Tc also affect the Jc(T) depen-
dence [35, 36].

4. CONCLUSION

Thus, we have proved that the theory [15] based on
Andreev reflections can be used to obtain a satisfactory
description of the temperature evolution of I–U curves
with a hysteretic behavior at junctions formed by natu-
ral boundaries in HTSC polycrystals. Such a descrip-
tion is found to be possible in the framework of a model
with metal-type series-connected contacts with differ-
ent effective lengths. The existence of a hysteresis loop
and its shape are determined by the ratio of long and
short intergranular boundaries in the HTSC polycrys-
tals under investigation.

It should be noted that materials characterized by I–
U curves with a sharp transition from a low to a high
differential resistance (i.e., possessing a clearly mani-
fested broad hysteresis loop) can be used in short-cir-
cuit current limiters [37, 38].
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Abstract—The nonlinear screening of an ionized donor by the degenerate gas of conduction electrons in a crys-
talline semiconductor is analyzed. For nonlinear screening, the charge density of the electron cloud screening
the ion is not proportional to the total electrostatic potential produced by the ion and cloud. As a result, the
potential decreases with the distance from the ion more weakly than it does within the linear approximation and
the energy of the electrostatic correlation between the ion and screening cloud is smaller. © 2002 MAIK
“Nauka/Interperiodica”.
The phenomenon of screening implies that an ion
creates a nonuniformly charged and, on the average,
spherically symmetric cloud of free charges of opposite
sign around itself [1, 2]. The charge of the cloud is
equal in magnitude and opposite in sign to the charge of
the ion. In combination, these charges produce an elec-
trostatic (time-averaged) potential ϕ(r), where r is the
radius vector directed from the center of the ion to the
screening cloud.

In order to describe the screening of the electric field
of ions in the degenerate electron gas of a semiconduc-
tor, the Thomas–Fermi model is used [3–8]. Within this
model, the dependence of the electron energy E on the
quasi-wave vector k at the distance r from the ion is
given by the formula E = ("k)2/2m – eϕ(r), where e and
m are the modulus of the charge and the effective mass
of an electron, respectively.1 Within the linear-screen-
ing approximation, it is assumed that the modulus of
the potential energy of an “average” electron |eϕ(r)| is
smaller than the Fermi energy EF and the charge density
of the screening cloud is proportional to ϕ(r). In this
case, the total electrostatic potential produced by an ion
with charge Ze and by the conduction band electrons
screening it is described by the equation [1–8]

(1)

Here, ε = εrε0 is the dielectric permittivity of the semi-
conductor due to the electrons in the valence band, ε0 is
the electric constant, and λ is the screening length for
the Coulomb potential.

1 In [4], the change in the quadratic dependence of E(k) on the
quasi-momentum "k due to holes in the valence band was taken
into account.

ϕ r( ) Ze
4πεr
------------ r–

λ
----- 

  .exp=
1063-7834/02/4407- $22.00 © 21235
The aim of this paper is to describe the nonlinear
screening of an ion with charge Ze > 0 in an n-type
semiconductor, that is, to describe the case when the
energy of an electron |eϕ(r)| in the field of the ion is not
small in comparison with the Fermi energy EF and the
charge density of the screening cloud is not propor-
tional to ϕ(r). In addition, the correlation interaction
energies between the ion and the screening electron
cloud calculated within the linear- and nonlinear-
screening approximations are compared.

1. Let us consider the nonlinear screening of an ion-
ized donor by the degenerate gas of conduction elec-
trons in an electrically neutral crystalline semiconduc-
tor. We start from the Poisson equation [5–8]

(2)

where δ(r) is the three-dimensional Dirac delta func-
tion, ρs(r) is the screening charge density, and n(r) – n
is the deviation of the concentration of the conduction
band electrons from its average value n at a distance r
from the ion.

In the vicinity of the ion, the conduction electron
concentration corresponding to the electrostatic poten-
tial ϕ(r), which varies only slightly on the scale of the
wavelength of an “average” electron, can be written in
the form [9]

(3)

∆ϕ  = 
1
ε0
----

ρs r( )
εr

----------- Zeδ r( )+–  = 
e
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---- n r( ) n–
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n r( ) g Ekin( ) f Ekin eϕ r( )– EF–( ) Ekind
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where E = Ekin – eϕ(r) is the total energy of an electron,
which is equal to the sum of its kinetic Ekin and potential
energy –eϕ(r); g(Ekin) is the electron density of states in
the conduction band; f(E – EF) = [1 + exp((E –
EF)/kBT)]–1 is the Fermi–Dirac distribution; EF is the
Fermi energy; and kBT is the thermal energy.

In Eq. (3), the energy is measured from the bottom
of the conduction band (E = 0) and it is taken into
account that the energy of a conduction electron not
captured on the bonding orbital by the ion cannot be
negative (Fig. 1). If the electrons can occupy the states
below the bottom of the conduction band (this takes
place for the screening of the nucleus of a superatom,
which is a selectively doped nanosize region in an
intrinsic semiconductor [10]), the lower limit of inte-
gration in Eq. (3) should be replaced by –eϕ(r) < 0.

We suppose that the electron density of states in the
conduction band is equal to the density of states in the
undoped semiconductor [3, 7]:

(4)

where m is the effective mass of the electron density of
states in one valley, ν is the number of equivalent
energy valleys (minimums of the kinetic energy) in the
conduction band, and " is Planck’s constant.

g Ekin( ) 2
1/2

m
3/2ν

π2
"

3
--------------------- Ekin,=

g(Ekin)
–eϕ(r) < 0

Ekin Conduction

r

E

EF

0
1

2

3

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5
r/λ

S(
r)

Fig. 1. The screening function S(r) of an ionized donor in
(1) n-Si and (2) n-GaAs at n = 1019 cm–3 and T  0 K.
Curve 3 corresponds to S(r) = exp(–r/λ). Inset: the filling of
the conduction band by electrons (shaded region) near a
screened ion; –eϕ(r) < 0 is the potential energy of an elec-
tron at a distance r from the ion, the dashed line corresponds

to the linear screening, and g(Ekin) ∝   is the depen-

dence of the electron density of states in the conduction
band on the kinetic energy.

Ekin

band
P

Thus, Eq. (2) in combination with Eqs. (3) and (4)
gives a self-consistent description of the nonlinear
screening of the impurity ion with charge Ze > 0 ignor-
ing fluctuations of the potential energy of the conduc-
tion band electrons in the crystalline semiconductor.

It should be noted that, according to [11], the rela-
tive dielectric permittivity of a crystalline semiconduc-
tor εr depends on the distance from the screened impu-
rity ion situated at a site (or interstitial space) of the
crystal lattice. According to calculations for silicon [12]
and germanium crystals [13], the permittivity εr due to
the electrons of the valence band changes from εr = 1 in
the vicinity of the ion to εr = 11.47 (Si) and 15.40 (Ge)
at distances of order of the lattice constant a. For this
reason, Eq. (2) is applicable at distances r > a from the
ion, where the dielectric permittivity of the crystalline
lattice is equal to εrε0.

In works [14, 15], the substitution of the exact
expression (3) into Eq. (2) provokes objections. The
reason for this is that if ϕ(r) in Eq. (2) is assumed to be
the time-average of the potential at the point r, then,
after substituting Eq. (3), the average value of the func-
tion ρs in the right-hand part of Eq. (2) is replaced by
the function of the average value. This is acceptable for
linear functions of ϕ(r) only. For this reason, if fluctua-
tions of the potential energy of the electrons are signif-
icant, only the linearized Poisson equation ∆ϕ = λ–2ϕ
and its solution given by Eq. (1) have meaning.

The one-electron density of states in Eq. (4) can be
used to describe the screening of an impurity ion in a
crystalline metal when the degenerate electron gas is on
a background of regularly situated ion cores and fluctu-
ations of the potential energy of the conduction elec-
trons do not occur. In an n-type semiconductor, the
large electron concentration is due to the large concen-
tration of dopant ions (donors). Since the arrangement
of the impurity ions in the crystal lattice is random, spa-
tial fluctuations of the electron potential energy occur
(we denote the variance of these fluctuations by W2).
However, if the energy levels of impurity atoms lie in an
allowed energy band of the crystalline semiconductor,
the electron gas can be degenerate (EF @ kBT) and, at
the same time, the inequality EF > W can hold. For
example, this occurs (at least, for T  0) in PbTe:Tl
[16] and HgSe:Fe [17] crystals. In particular, Fe atoms
in HgSe are donors whose energy levels lie in the con-
duction band at a distance of approximately 220 meV
from its bottom. At concentrations of Fe atoms N < 5 ×
1018 cm–3, all Fe2+ ions autoionize, transforming into
Fe3+ ions. The concentration of conduction electrons n
is equal to the concentration of the ionized donors N in
this case. As the concentration of Fe atoms (donors)
increases further, only a part of them becomes ionized.
In this case, the Fermi level is stabilized in the vicinity
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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of the donor level. The correlation in the arrangement
of the Fe3+ donors occurs due to their Coulomb repul-
sion, which tends to arrange positive charges on Fe
atoms that are as far apart as possible. It is obvious that
if all randomly arranged donors are ionized, their order-
ing does not occur [18], because the positions of the
donors are fixed in space, and, therefore, Eq. (4) is
applicable at EF > W in this case.

Further, we consider the screening of the Coulomb
potential of an impurity ion in a doped crystalline semi-
conductor in which the electron density of states is
described by Eq. (4).

In the case of a linearly screened ion (at e |ϕ| ! EF

in a degenerate electron gas and at e |ϕ| ! kBT in a non-
degenerate gas), Eq. (2) in combination with Eqs. (3)
and (4) is reduced to the linear equation [19]

(5)

whose solution is Eq. (1) with the screening length

(6)

In a degenerate semiconductor, when f(1 – f ) 
kBTδ(E – EF), where δ(E – EF) is the Dirac delta func-
tion, Eq. (6) gives the Thomas–Fermi screening length

(7)

For nonlinear screening, it is shown in [20, 21] that
Eq. (2) with Eqs. (3) and (4) has a unique stable solu-
tion in the thermodynamic equilibrium at ∂ρs/∂ϕ < 0.
In three-dimensional space, this solution can be repre-
sented in the form [6]

(8)

where S(r) is the screening function of the Coulomb
potential satisfying the boundary conditions

In the linear approximation, we have S(r) = exp(–r/λ).

In the spherical coordinates, the Laplacian of the
potential in Eq. (8) is equal to

(9)

∆ϕ
∂ρs

∂ϕ
--------–=

ϕ 0=

ϕ
ε
--- ϕ

λ 2
-----,=

λ 2– e
2

ε
---- ∂n

∂EF

---------=
ϕ 0=

e
2

ε
----2

1/2
m

3/2ν
π2

"
3
kBT

--------------------- E f 1 f–( ) E.d

0

∞

∫=

λ
2εEF

3e
2
n

------------ 
  1/2

.=

ϕ r( ) Ze
4πεr
------------S r( ),=

S r( )
r 0→
lim 1, S r( )

r ∞→
lim 0.= =

∆ϕ r( ) Ze
4πεr
------------d

2
S r( )

dr
2

----------------;=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
therefore, the charge density of the electron cloud
screening the ion is found from Eq. (2) to be

(10)

where n(r) is given by Eq. (3).

In using Eqs. (3)–(10), Eq. (2) can be reduced to the
following equation for the screening function of the ion
S(r):

(11)

If the impurity ion is screened by a degenerate

electron gas (EF =  @ kBT), then f 

θ(EF – E), where θ(EF – E) is the Heaviside unit-step
function, and Eq. (11) can be simplified to

(12)

At ν = 1 and εr = 1, Eq. (12) is reduced to the equation
derived in [6].

Let us analyze the solution to Eq. (12) for Z = +1.
We normalize the Fermi level EF to ν2/3EB, where EB =
e2/8πεaB and aB = 4πε"2/e2m are the Bohr energy and
Bohr radius of an electron in a valley of the conduction
band, respectively. (To find a solution for Z > 1, the
following substitutions should be made in S(r) obtained
for Z = 1: r  rZ, EF  EF/Z2, and kBT  kBT/Z2.)

Figure 1 shows the S(r) dependences numerically
calculated from nonlinear equation (12) for n-Si and
n-GaAs with the electron concentration n = 1019 cm–3 at
T = 0. At this conduction electron concentration, both
n-Si and n-GaAs are on the metal side of the Mott
metal–insulator transition. (The values of the concen-
tration of hydrogen-like impurities corresponding to
the Mott transition in weakly compensated semicon-
ductors can be found in [22].) The calculations for n-Si
(curve 1) were carried out for the parameters m ≈
0.33m0, ν = 6, εr ≈ 11.5, EBν2/3 ≈ 112 meV, EF ≈ 16 meV,
and λ = 0.8 nm; for n-GaAs (curve 2), the parameters
were taken to be m ≈ 0.067m0, ν = 1, εr ≈ 12.4, EB ≈
5.9 meV, EF ≈ 260 meV, and λ = 3.45 nm. It is obvious
that the larger the Fermi energy EF, the stronger the
nonlinear screening and the closer S(r) calculated by
Eq. (12) to the linear approximation S(r) = exp(–r/λ)
with the screening length given by Eq. (7).
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2. In order to describe the electrostatic correlations
[1, 2] in an electron (hole) or electron–hole plasma, it is
necessary to calculate the interaction energy between
the screened charge and screening electron cloud E1 <
0 and the interaction energy between the electrons of
the cloud E2. The correlation energy E (cor) = –(E1 + E2)
in the case of the linear screening was calculated in [9,
23–27] to be

(13)

where the screening length λ for the ion screened by a
degenerate electron gas is determined by Eq. (7).

For nonlinear screening, the energy of the Coulomb
interaction between an ion with charge +e and a screen-
ing electron cloud with density ρs(r) given by Eq. (10) is

(14)

Using Eq. (10), the interaction energy between the
electrons of the spherically symmetric screening cloud
can be represented as

(15)
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Fig. 2. The dependence of the correlation energy E (cor) on
the Fermi level EF at T  0 (curve 1) calculated by
Eq. (19) with the use of Eq. (12); curve 2 corresponds to the
linear approximation (13). The correlation energy is nor-
malized to the Bohr energy EB and the number of the val-
leys in the conduction band ν.
PH
To perform the integration over d3r' = –2πr'2dr'd(cosθ)
in this equation, we direct the polar axis along r such
that cosθ = cos(r, r'). In this case, we have

(16)

By using the relationship [28, 29]

where Pl(cosθ) are the Legendre functions, and inte-
grating Eq. (16) over cosθ, we obtain

(17)

By substituting Eq. (10) into Eq. (17), we obtain

Thus, integration over r in Eq. (15) gives

(18)

According to Eqs. (14) and (18), the total correlation
energy due to the nonlinear screening of the impurity
ion by the conduction electrons is

(19)

Within the linear-screening approximation, S(r) =
exp(–r/λ) and Eq. (19) reduces to Eq. (13).

For the ion screening, the dependences of the ener-
gies E (cor) on EF at T  0 calculated by Eqs. (19) and
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(13) are shown in Fig. 2, where the energies are normal-
ized to ν2/3EB and the electron concentration in a valley
of the conduction band is n/ν. It is seen that as the Fermi
energy increases, the correlation energy E (cor) numeri-
cally calculated by Eq. (19) using the exact screening
function S(r) from Eq. (12) tends to the value of E (cor)

calculated from Eq. (13) within the linear approxima-
tion.

It should be noted that the thermal ionization energy
of hydrogen-like impurity atoms decreases by E (cor) in
comparison with that for isolated impurities [24]. The
energy E (cor) also makes the main contribution to the
energy gap narrowing in crystalline semiconductors for
strong doping [9].

According to [9, 27, 30], the energy-gap narrowing
in a crystalline semiconductor, which is determined by
photoluminescence, is equal to the sum of the decrease
in the energy of a nonequilibrium hole2 due to its
screening by electrons of the conduction band and the
decrease in the energy of the electrons due to their
exchange interaction:

(20)

where Eg0 and Eg are the energy gaps in the undoped

and doped crystals, respectively; ∆  = E (cor) > 0 is
the electrostatic correlation energy of the hole and the

screening electron cloud; and ∆  = E (exc) > 0 is the
decrease in the energy of an electron due to the
exchange interaction with other electrons of the con-
duction band.

According to the Wigner–Seitz theory [31], the

exchange energy  per electron is two times

smaller than the one-particle exchange energy 
calculated according to Slater [32]. According to [9, 27,
30], the exchange energy per electron at T  0 is

(21)

where "kF =  is the Fermi quasi-momentum
and n = ν(2mEF)3/2/3π2"3 is the total electron concentra-
tion in ν valleys of the conduction band.

Thus, we have described the nonlinear screening of
a positively charged impurity ion by degenerate elec-
tron gas within the Thomas–Fermi model and calcu-
lated the correlation energy of the ion and screening
electrons for the case when they do not form bound
states.

2 Before recombination, the hole in the degenerate electron gas of
the conduction band has an opportunity to form a screening cloud
around itself and transform into an electrically neutral quasiparti-
cle, a so-called plasma exciton [9].
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Abstract—The effect of gravity (from micro- to a rather high gravity, 5g0) acting during tellurium crystalliza-
tion on the concentration of neutral (ND) and electrically active (NAD) acceptor-type structural defects in samples
grown both under complete remelting of the starting ingot and under directed seed recrystallization of an ingot
was studied. The concentrations NAD and ND and their distribution over the sample length were derived from the
electrical characteristics (conductivity and the Hall effect) measured along the ingots in the temperature range
1.6–300 K. The contributions of various mechanisms to hole scattering were found from an analysis of the tem-
perature behavior of the mobility. The results obtained were compared with the characteristics of samples grown
following a similar program under normal conditions. The presence of NAD defects is characteristic of the initial
crystallization stage of all samples. NAD is substantially lower (NAD ~ 1015 cm–3) than ND ~ 1018 cm–3 and
decreases exponentially in the course of sample crystallization. Complete remelting under microgravity
revealed indications of strong supercooling and spontaneous crystallization, as well as spatial oscillations of the
electrical resistivity over the sample length caused by ND modulation. These observations are related to the spe-
cific features of the melting and crystallization in zero gravity, namely, the melt breaking away from the wall
of the ampoule and the increasing role of Marangoni convection. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This study is a part of the program dealing with
investigation of the effect of gravity on the solidifica-
tion and electrical properties of anisotropic semicon-
ductors, namely, of tellurium and its alloys with sele-
nium and silicon [1]. Te and Se stand out among the
widely known elemental semiconductors (Si, Ge, Te,
Se) because of the clearly pronounced anisotropy in
their structural and physical properties; this is due to the
complex structure of their crystal lattice (space group

), which consists of helical trigonal chains stacked
in a hexagon, with the in-chain coupling being substan-
tially stronger than the interchain coupling [2, 3].

The low-temperature concentration and mobility of
holes in pure Te are extremely sensitive to the presence
of structural and point defects, mechanical stresses, and
dislocations. At the same time, the electrophysical
properties of Te are known well enough [2, 3] for Te to
serve as a model material in studying new phenomena.
These circumstances, as well as the low melting tem-
perature (Tm = 452°C), make Te and Te-based alloys
convenient subjects for experimental investigation of
the specific features accompanying crystallization in
various gravities.

Our preceding publications reported on investiga-
tions of the electrophysical properties of Te samples

D3
4 6( )
1063-7834/02/4407- $22.00 © 1241
obtained both in a rather high gravity (up to 10g0) [1, 4]
and in microgravity (µg) [5, 6]. Our interest was
focused there primarily on studying the effect of the
gravity level on the dopant redistribution in the course
of directed crystallization and on the possibility of
obtaining more uniform samples with the lowest possi-
ble hole concentration. Sample 1 in [5], called here
SC-µg, had the highest mobility and, hence, the lowest
defect concentration. This sample is a Czochralski-
grown single crystal that underwent partial recrystalli-
zation in space conditions.

We show here that by measuring the galvanomag-
netic properties of pure Te over a broad temperature
range, 1.6–300 K, one can determine the concentration
profile along the length of the ingot not only for the
electrically active impurities but also for the intrinsic
charged defects NAD, as well as estimate the concentra-
tion ND and distribution over the ingot length of neutral
defects which govern the carrier mobility. This method
of mobility analysis, used to compare the content and
distribution of ND in polycrystalline Te samples pre-
pared in various gravity levels and initial crystallization
conditions, revealed specific features originating from
detached solidification, an effect characteristic of melt-
ing under zero-gravity conditions.
2002 MAIK “Nauka/Interperiodica”
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2. EXPERIMENT

This communication presents the results of a com-
parative study of Te samples prepared in various gravi-
ties by directed crystallization in a sealed volume and a
moving temperature gradient, more specifically, in
weightlessness (µg) in a tubular ChSK-1 Cristallizator
furnace on the MIR spacecraft and at a rather high grav-
ity on a CF-18 centrifuge (5g0) in a Meudon furnace, as
well as in normal conditions (1g0) in the same furnaces
following a technique described elsewhere [1, 4, 5].
Samples of two series were studied, namely, seed-
remelted (series S) and remelted without seed (series
W). The seeds were cleaved from a pure Te single crys-
tal (p77 K = 1014 cm–3) along the threefold symmetry axis
C3, which was the preferential growth direction of the
Te crystal. In all cases, the seed was preliminarily
attached by melting to a polycrystalline Te ingot with a
hole concentration p77 K ~ 1014 cm–3. Samples S-1g0,
S-5g0, and W-5g0 were remelted in a Meudon furnace;
S-µg, W-µg, and W-1g0, in a Crystallizator furnace.

The ingots grown in microgravity could be easily
taken out of the ampoules because of their only slightly
touching the walls, unlike those prepared at an elevated
gravity and in Earth conditions. Photographs of the
samples are presented in Fig. 1 (top). To facilitate visu-
P

alization of the crystal structure, the ingots were treated
with a selective etchant (30 vol % HNO3).

The series-S samples had a mosaic structure. The
blocks in the samples were oriented predominantly
along the growth axis C3, except sample S-5g0, which is
seen to have variously oriented blocks, including some
directed perpendicular to the growth axis. While sam-
ples of series W also consisted of blocks, they were
much smaller in size and randomly oriented.

The real structure of the S-µg and W-µg samples was
studied by x-ray back-reflection topography on a sin-
gle- and double-crystal setup [5].

X-ray topographic investigation of the S-µg sample
showed its surface to have a fine-grained mosaic struc-
ture. The grains on the sample surface coincide in crys-
tallographic orientation, on the average, with the seed;
the grain size is 5–10 µm. Some of the grains are
strongly stressed.

X-ray topographic analysis of the cross sections of
the W-µg sample showed the blocks in two parts of the
sample to differ considerably in size. At the start of the
sample, the distribution of the blocks measuring 0.6–
1.0 mm is not centrosymmetric relative to the longitu-
dinal axis of the sample. The large blocks have a frag-
mentary structure and are strongly stressed. The end of
the ingot exhibits a uniform fine-grained structure. The
grains vary in size from 5 to 50 µm and are randomly
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Fig. 1. Photographs of the samples grown in a sealed volume at various gravity levels with a seed (S) and without it (W), and the
profiles of their electrical conductivity and hole concentration at 77 K. The arrows indicate the direction of gravity in the course of
directed ingot solidification; µg, 1g0, and 5g0 relate to the gravity levels. The remelted sample size is identified by the length q on
the horizontal axis.
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oriented. This suggests that before solidification the
melt was actually supercooled and that the second half
of the ingot apparently solidified through homogeneous
spontaneous crystallization.

3. ELECTRICAL PROPERTIES

The electrical conductivity and the Hall effect in a
magnetic field of 0.5 T were measured at a number of
points along all samples. Possible surface defects and
contamination were removed by treating the samples
with a polishing etchant, and their electrical character-
istics were subsequently remeasured. The electrical
properties of the samples were found to remain virtu-
ally unaffected [5].

The measurements at 77–200 K were made by
means of spring contacts spaced at about 1.5 mm. For
measurements at lower temperatures, two pairs of Bi–
Sb potential contacts spaced at ~5 mm were soldered in
the middle of each of two equal parts of the sample on
both sides of the sample. The part lying closer to the
beginning of crystallization was called part I; the other,
part II. Figure 1 shows the profiles of the electrical con-
ductivity σ77 K obtained in the polycrystalline ingots. As
the gravity increases, the samples are seen to become
more homogeneous. Also shown are the profiles of the
hole concentration p derived from the Hall coefficient
R77 K = 1.18/ecp. In all the samples, the sign of the Hall
coefficient at 77 K corresponded to p-type conduction.

The profiles of the Hall mobility uH = Rσ of the sam-
ples measured at 77 K are displayed in Fig. 2. The Hall
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
mobility Rσ was found to be the highest and nearly
constant in the main part of the S-1g0 sample. In the S-
µg and S-5g0 samples, Rσ is smaller in magnitude, but
it increases monotonically away from the starting point
of crystallization and is accompanied by a simulta-
neous increase in the hole concentration p (Fig. 1). In
series-W samples, the hole concentration remains, on
the average, virtually unchanged along the length of the
ingot, whereas Rσ varies nonmonotonically.

Figure 3 illustrates the measurements made on parts I
and II of the samples. The sharp rise in σ(T) and the
drop in R(T) at temperatures above 200 K signal the
transition to intrinsic conduction and are characteristic
of Te with an acceptor impurity concentration below
1015 cm–3. In this region, σ(T) approaches an exponen-
tial relation,

(1)

where ∆E = 0.334 eV, which conforms to the available
data on the band gap in Te [2, 3].

The carrier mobility in polycrystalline samples with
a block structure in the region of extrinsic conduction is
only weakly temperature-dependent. This implies that
carrier scattering from neutral structural defects domi-
nates in polycrystalline samples. The higher hole
mobility in parts II compared with that in parts I of the
samples indicates that the crystal structure improves
and the hole scattering intensity from defects reduces in
the direction of solidification, a point already made in
the analysis of Fig. 1. Such variations in structural per-
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Fig. 2. Variation of the hole mobility Rσ at 77 K along the sample as shown in Fig. 1; q is the distance from the starting point of
crystallization.
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shown in comparison with the parameters of the samples that were crystallized on the Earth on identical equipment and in the same
technological regime. S are seed-grown samples, and W are samples grown without seed. Sample L-2 was cleaved from the ingot
obtained by zone melting [7].
fection have been observed to occur in experiments on
directed solidification of PbTe〈Ag〉  performed on a cen-
trifuge in various gravity conditions [8].

The improvement of structure along the length of
the samples is also supported by the temperature depen-
dences of conductivity obtained on different parts of the
samples (Figs. 2, 3). Figure 4 compares the σ(T) depen-
dence of our samples with data from a study [7] on the
effect of stepped anneal on the electrical characteristics
of Te crystal samples cleaved from ingots grown by
zone melting.
P

Comparison of the results suggests that the differ-
ence between parts I and II of the S-µg sample is due to
the different anneal times.

4. ANALYSIS AND DISCUSSION

As already discussed in [5], the concentration pro-
files shown in Fig. 1 for series-S samples can be
described by a relation that takes into account both
impurity segregation under directed crystallization
occurring at a finite rate under conditions of complete
melt mixing and exponential decay of the native, elec-
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trically active acceptor-type structural defects (of con-
centration NAD) in the initial solidification stage:

(2)

where keff is the effective distribution coefficient
(assumed to be a constant), C0 is the initial impurity
concentration in the melt, l is the total ingot length, q/l

is the reduced distance along the ingot,  is the ini-
tial defect concentration, and q0 is the characteristic
NAD decay length.

Figure 5 compares the experimental hole concentra-
tion distribution at 77 K (Fig. 2) with the curves calcu-
lated using Eq. (2). Table 1 lists the parameters of the
calculated relations.

Considered within this model, the hole concentra-
tion profile p(q) depends on the relative magnitude of
the acceptor impurity and lattice defect concentrations,
Ni and NAD, respectively, varying along the ingot length.
For NAD > Ni, the observed hole concentration profile
does not permit sufficiently accurate determination of
the parameters of Eq. (2). In this case, the minimum in
the p(q/l) dependence shifts along the ingot away from
the starting point of solidification. This situation was
observed in polycrystalline samples of the W series.

The data of Table 1 show that gravity does affect the
crystallization process. The segregation coefficient keff
decreases with increasing gravity. This is paralleled by
an increase in the parameter q0 characterizing the dis-
tance in which the concentration of electrically active
defects that formed in the initial crystallization stage
decreases.

The fit of the experimental data to Eq. (2) means that
in all the experiments of series S the melt underwent
fairly intense mixing. In weightlessness, where there is
practically no gravitational convection, the mixing is
driven by a weaker, thermocapillary mechanism
(Marangoni convection) and keff increases. The struc-
ture of the Marangoni flow under directed crystalliza-
tion in an ampoule was treated in [9]. In contrast to the
conventional hydrodynamic flow, the velocity in the
surface layer in this case is the highest. Therefore, con-
vection under microgravity conditions turns out to be
very sensitive to the character of contact between the
melt and the ampoule walls.

p q( ) keffC0 1 q/l–( )
keff 1–

NAD
0

q/q0–( ),exp+=

NAD
0
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The S-1g0 and S-5g0 samples crystallized in the
downward-heating regime. In these conditions, there is
no gravitational mixing in a standard melt. However,
the density of the Te melt reaches a minimum near the
solidification point [10]. This anomaly can be
explained by the fact that as the melt temperature
decreases to approach Tm, tellurium atoms join in
chains to form a molecular-type liquid; this is what
reduces the density while simultaneously leading to an
anomalous increase in the viscosity of the melt. This
initiates convection flows of gravitational origin near
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Fig. 4. Temperature dependence of the electrical conductiv-
ity of the samples grown in weightlessness (S-µg, W-µg)
and of sample L-1 prepared on the Earth (1) before anneal-
ing and (2, 3) after two-stage annealing of 5 h each, respec-
tively, performed at 370°C; (4) is the calculation using
Eq. (1).
Table 1.  The parameters entering Eq. (2) for the ingots under study

Gravity 
level

C0, 1014 cm–3 keff , 1015 cm–3 q0/l

S W S W S W S W

µg 4 ~11 0.8 ~0.55 6 ~8.0 0.09 ~0.09

1g0 3.55 ~8.5 0.42 ~0.95 0.6 ~1.2 0.05 ~25

5g0 5.48 ~3 0.27 ~0.99 0.85 ~0.85 0.17 ~25

NAD
0
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Fig. 6. Comparison of defect concentrations ND for samples grown with a seed (S) and without it (W) at various gravity levels. The
values of ND for the S-5g0 and S-10g0 samples were calculated using the data published in [1].
the crystallization front. This situation was discussed in
[4]. As a sample is centrifuged with the ampoule axis
aligned with the vector of acceleration, another factor
that substantially amplifies convective mixing comes
into play, namely, the Coriolis force directed perpendic-
ular to the ampoule axis [11]. As a result, keff becomes
considerably reduced (Table 1).

A quantitative analysis of the temperature depen-
dences of the hole mobility displayed in Fig. 3 permits
one to estimate the contribution of neutral defects to
hole scattering. The temperature dependence of the
reciprocal Ohmic hole mobility 1/u0 = f(1/T) of sam-
ples obtained in weightlessness was described in [12]
as resulting from three factors: (i) scattering from
phonons (1/uL ~ T3/2) dominating above 30 K; (ii) scat-
tering from charged centers (1/ui ~ T–3/2/Ni), which is
dominant at low temperatures; and (iii) temperature-
independent scattering, which imposes a constraint on
the maximum hole mobility. An experimental study of
the effect of annealing on the temperature behavior of
1/u0 performed at 1g0 revealed that this temperature-
independent scattering occurs from neutral defects,
where the quantity 1/uD is proportional to the neutral-
defect concentration ND [13, 14]. The character of the
P

1/u0(T) dependence observed in the S and W series sam-
ples conforms to this interpretation.

The resulting reciprocal mobility can be described
in the first approximation by the relation (the Matthies-
sen rule) [13]

(3)

The 1/u0(T) relation found for the SC-µg sample in [12]
was used to determine the quantities A and B, which
were subsequently employed to determine 1/uD and,
hence, ND in more defected samples. The experimental
temperature dependences of 1/u0 obtained for samples
grown in microgravity were compared in [12] with cal-
culations made using Eq. (3). The parameters used and
the calculated concentrations ND for parts II of samples
SC-µg, S-µg, and W-µg are given in Table 2. The con-
centration Ni for each sample was assumed to be tem-
perature-independent and equal to the hole Hall con-
centration at 77 K; thus, only one parameter (CND) was
varied.

Using the relation given in [14], one can calculate
the ND distribution for all samples from the experimen-
tal data presented in Fig. 2. The results are displayed in

1
u0
----- 1

uL

----- 1
ui

---- 1
uD

------+ + AT
3/2

BNiT
3/2–

CND.+ += =
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Table 2.  The parameters in Eq. (3) for the hole mobility in samples obtained in microgravity

Sample A, 10–7 B, 10–19 V s cm K3/2 Ni, 1014 cm–3 CND, ND, cm–3

SC-µg (II) 3 4.9 4.1 9.3 × 10–6 7.7 × 1015

S-µg (II) 3 4.9 5.6 7.6 × 10–4 6.3 × 1017

W-µg (II) 3 4.9 18 1.0 × 10–3 8.3 × 1017

V s

cm2 K3/2
--------------------- V s

cm2
---------
Fig. 6. ND is seen to decrease with moving away from
the starting point of crystallization. Comparative calcu-
lations of ND yield the following values: 4 × 1014 cm–3

for the Czochralski-grown single crystal (after anneal-
ing at 320°C for 120 h), 6 × 1017 cm–3 for the sample
cleaved from the zone-melted ingot (L-1), 1 × 1017 cm–3

after the first 5-h annealing stage at 370°C, and 4 ×
1016 cm–3 after the second 5-h long annealing.

However, the W-µg sample reveals a nonmonotonic
decrease in ND along the ingot, which can be associated
with a transition to crystallization from a supercooled
state under conditions favoring detached solidification.
This is also supported by the x-ray topography data on
micrograin size presented above. According to the
model from [15], detached solidification occurs in the
region of the meniscus adjacent to the crystallization
front. In this region, detached solidification changes the
Marangoni convection conditions and the impurity seg-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
regation and grain orientation become different from
those in the regions where the melt contacts the
ampoule walls. At points of contact, the C3 axis of the
micrograins is directed predominantly perpendicular to
the inner ampoule walls (as in the case of tellurium
whiskers growing from the vapor phase). Thus, the spa-
tial variation of the resistivity along such an ingot can
be assigned to the increase in the role of the grain
boundaries perpendicular to the current in the region of
contact with the ampoule and to the anisotropy of Te
conductivity (σ33 ≅  2σ⊥  [2, 3]). This is corroborated by
a correlation between the profile of ND calculated for
77 K and the profile of ρ(300 K), in which carrier scat-
tering from phonons dominates over that from point
defects (Fig. 7). Such features were not observed in
ingots grown at g ≥ 1g0, where the melt is always in
contact with the ampoule walls in the region of the crys-
tallization front.
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sample, ρ1 and ρ2.
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Thus, microgravity offers a possibility of obtaining
microcrystalline structures consisting of anisotropic
grains.

5. CONCLUSIONS
The results of our investigation of tellurium samples

obtained by directed crystallization in microgravity on
the MIR spacecraft, as well as in normal conditions at
1g0 and on a TsF-18 centrifuge at 5g0, can be summed
up as follows.

(1) The extremely high sensitivity of the Te electri-
cal properties at low temperatures to the presence of
neutral and electrically active native defects and impu-
rities makes it possible to map the impurity and defect
profiles along an ingot at a level of 10–5 at. %, a figure
that cannot be reached by other methods.

(2) The hole concentration in the initial part of all Te
ingots studied decreases, which contrasts with the case
of normal crystallization and is associated with the
decrease in the concentration of native, electrically
active defects NAD as the ingot undergoes crystalliza-
tion. We succeeded in quantitatively fitting the acceptor
distribution profile observed in all samples with one
relation that takes into account the initial exponential
decay of the native defect concentration and the redis-
tribution of the acceptor impurity in the course of
directed crystallization in the case of partial mixing
with an effective segregation coefficient keff.

(3) The low-temperature hole mobility in polycrys-
talline samples obtained in microgravity was found to
be an order of magnitude smaller than that in a single
crystal partially remelted in space with no contact with
the ampoule walls. This indicates that neutral defects
play a major role in hole scattering in polycrystalline
samples. The defect concentration in polycrystals was
estimated as ND ≈ 1018 cm–3. We succeeded in quantita-
tively describing the data on the temperature depen-
dence of mobility for all samples by taking into account
the temperature-dependent hole scattering from ions
and acoustic phonons, as well as the temperature-inde-
pendent scattering from neutral impurities.

(4) Complete remelting of Te without a seed in
microgravity is accompanied by supercooling of the
melt and spontaneous nucleation, which brings about
the formation of a homogeneous microcrystalline struc-
ture with differently oriented grains (~5 µm) at the end
of the ingot.
P

Point contacts of the melt with the ampoule walls
(detached solidification) affect the orientation of the
crystallites forming at these points and, hence, result in
modulation of the resistivity and carrier mobility along
the ingot because of the Te electrical resistivity being
different in different crystallographic directions.
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Abstract—The effect of ultrasound on the diffusion length of minority charge carriers in dislocation-free p-Si
is investigated in the frequency range 0.8–5.5 MHz. The diffusion length is measured by the surface photovolt-
age method. It is found that the diffusion length reversibly increases (by a factor of two at a sound intensity of
3 W/cm2) in response to ultrasound. The dependences of the diffusion length on the ultrasound amplitude and
the kinetic characteristics upon switching on and switching off the ultrasound are analyzed. The phenomena
observed are explained within the proposed model of transformation of recombination centers under the effect
of ultrasound. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that intense ultrasonic waves propagat-
ing in solids substantially affect the state of structural
defects [1–6]. For example, the ultrasound effect brings
about the formation of a surface layer in silicon [1] and
the dissociation of complex aggregates consisting of
several point defects [2], enhances gettering of point
defects by dislocations and precipitates [3], and
decreases the energy barrier to defect diffusion [4–6].
Considerable progress toward physical understanding
of the ultrasound effect has been achieved by elucidat-
ing the dislocation mechanism of the acoustodefect
interaction [4, 6, 7]. However, dislocation-free solids
remain poorly investigated.

In the present work, we analyzed how the ultrasound
affects silicon single crystals prepared from Cz–p-Si
(solar-cell grade). The results obtained are essential to
the understanding of the mechanism of the physical
processes associated with the interaction of ultrasonic
waves and a subsystem of point defects in dislocation-
free semiconductor crystals.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The effect of ultrasound on the diffusion length L of
minority charge carriers in Cz–p-Si was investigated
using boron-doped p-Si(100) wafers 340 µm thick (ρ =
0.5–2 Ω cm) with an oxygen concentration NO ≤
1018 cm–3 and a carbon concentration NC ≤ 1017 cm–3.
According to x-ray diffraction analysis, the dislocation
density was less than 10 cm–2; i.e., the samples were
virtually free of dislocations.

The diffusion length was measured by the surface
photovoltage method [8, 9]. This method is based on
analyzing the dependence of the surface photovoltage
Vsp on the monochromatic light wavelength. The advan-
1063-7834/02/4407- $22.00 © 21249
tage of the surface photovoltage method is its applica-
bility under the conditions of variations in the carrier
concentration in the sample [10]. Figure 1 depicts a
schematic drawing of the experimental cell. The sur-
face photovoltage Vsp was measured by the capacitor
method with the use of an electrode applied on the sam-
ple surface opposite to the illuminated surface. The
experiments were performed at room temperature.

In semiconductor wafers, ultrasonic vibrations were
excited by ceramic (TsTS-19) piezoelectric transducers
cemented to the sample. An ac voltage with a frequency
f = 0.8–5.5 MHz and an amplitude Vus up to 40 V was
applied to one of the piezoelectric transducers to gener-
ate acoustic vibrations in the silicon sample. The gener-
ation of acoustic vibrations was controlled by another

US
1

2

3
4
5

6

Vsp

Vus
rf in rf out

Monochromatic
light

Fig. 1. A schematic drawing of the experimental cell for
measuring the diffusion length of minority charge carriers
in a semiconductor wafer in an ultrasound field: (1,
2) piezoelectric transducers, (3) silicon sample, (4) mica,
(5) glass with an applied transparent electrode, and
(6) metal electrode for recording the photovoltage.
002 MAIK “Nauka/Interperiodica”
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piezoelectric transducer mounted at the opposite end of
the silicon sample. The ultrasonic waves induced in the
sample were identified as Lamb waves (the a0 and s0
modes) on the basis of the measured wave velocities.

The intensity Wus of ultrasound generated in the
sample was approximately equal to 0.5 W/cm2 at Vus =
10 V and f = 0.8 MHz.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The diffusion length of minority charge carriers
(electrons) was measured in the absence of ultrasound
and after its generation. In the absence of ultrasound,
the initial diffusion length L0 in the p-Si samples under
investigation is equal to 15–25 µm. The ultrasound
effect leads to an increase in the diffusion length L by
100% at maximum sound intensities. It should be noted
that all ultrasound-stimulated changes are reversible;
i.e., after switching off the ultrasound, the parameters
of the material regain their original values for some
time.

The characteristic dependences of the relative
change in the diffusion length L on the time of ultra-
sonic treatment are displayed in Fig. 2. The observed
behavior of the time dependence of the diffusion length
L—an increase after the ultrasound is switched on (por-
tion ab) and a decrease after it is switched off (portion
bc)—is typical of all the frequencies and amplitudes of
the ultrasound used. The maximum diffusion length Lus

is reached for an ultrasonic treatment time of 5 × 103 s
and depends on the ultrasound intensity. Figure 3 shows
typical dependences of the diffusion length Lus on the
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Fig. 2. Time dependences of the diffusion length: increase
(portion ab) after switching on the ultrasound (t = ton) and
decrease (portion bc) after switching off the ultrasound (t =
toff). f = 0.78 MHz. Vus = (1) 35 and (2) 25 V. The diffusion
length L0 in the absence of ultrasound is equal to 22 µm.
τi1 < τi2 and τt1 = τt2.
P

ultrasound intensity Wus. It can be seen that the sound-
stimulated increase in the diffusion length L is charac-
terized by a threshold at Wus ≈ 0.5 W/cm2 and saturation
at higher ultrasound intensities (>2 W/cm2). Moreover,
there is a pronounced hysteresis. It is seen that the
dependence Lus(Wus) follows the curve ABCD in the
course of the initial ultrasonic treatment and the curve
AFED in subsequent cycling. The initial dependence
(ABCD) can be regained if the samples are allowed to
stand for two or three weeks at room temperature.

During ultrasonic treatment, the temperature of the
silicon wafer was monitored using a copper–constantan
thermocouple. It was found that, at a maximum ultra-
sound intensity, the sample temperature increased by
15–18 K. After check heating of the silicon sample by
18 K in the absence of ultrasound, the diffusion length
L increased by less than 10%. Note that the measured
temperature dependence of the diffusion length L
agrees with the data obtained in [11] to within the
experimental error in the measurement of the length L
(5–7%).

As is known, the charge carrier recombination in sil-
icon at moderate degrees of doping (<1018 cm–3) and at
room temperature predominantly proceeds through
deep levels [12, 13]. Under the assumption that the
above mechanism of charge carrier recombination
remains dominant in a crystal subjected to ultrasonic
treatment, we can write the following relationship in
the framework of the Shockley–Read–Hall model:

(1)L
2–

D
1– νT Sk Nk,

k

∑=

C

A

B

F

E

D

1
2

3
4

1.0
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0 1 2 3
Wus, W/cm2

[(
L u

s –
 L

0)
/L

0]
n

Fig. 3. Dependence of the diffusion length on the ultrasound
intensity. The data obtained in the initial and subsequent
ultrasonic treatment cycles are represented by open and
closed symbols, respectively. Different types of symbols
indicate the results obtained at different ultrasonic frequen-
cies for different samples. f = (1–3) 0.78 and (4) 1.8 MHz.
The ratio [(Lus – L0)/L0]n = 1 corresponds to (Lus – L0)/L0 =
(1) 1.2, (2) 1.15, (3) 0.95, and (4) 0.48.
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where D is the diffusion coefficient of electrons, νT is
the thermal velocity of electrons, and Sk and Nk are the
capture cross section and the concentration of the kth
recombination centers, respectively. From relation-
ship (1), it follows that the reciprocal of the diffusion
length squared is directly determined by the parameters
of the deep levels involved and that the change in the

length ∆L–2 ≡  – L–2 is proportional to the change in
(SkNk), because, under the experimental conditions, the
product (D–1νT) remains virtually constant. On this
basis, the ascending and descending portions of the
curve L(t) (portions ab and bc in Fig. 2) can be
described by the expressions

(2)

(3)

where ∆  ≡  –  and τi and τt are the charac-
teristic times of changes in the system of recombination
centers in the cases of an increase (∆Li) and decrease
(∆Lt) in the diffusion length of minority charge carriers,
respectively. It should be noted that expressions (2) and
(3) are standard equations used for first-order kinetic
processes. According to expressions (2) and (3), we can
write the following relationships:

(4)

(5)

The time dependences of Fi and Ft at different
amplitudes Vus are shown in Figs. 4a and 4b, respec-
tively. As is seen from these figures, the dependences
Fi(t) and Ft(t) are well approximated by straight lines
whose slopes can be used to determine the characteris-
tic times τi and τt. The calculations demonstrate that the
characteristic time τi depends on the ultrasound ampli-
tude, whereas the time τt is independent of this param-
eter. In subsequent ultrasound switching-on and
switching-off cycles, the characteristic times τi and τt

remain unchanged.
Let us analyze the observed dependence of the char-

acteristic time τi on the ultrasound amplitude within the
diffusion theory of transformation of recombination
centers. In the general form, the characteristic relax-
ation time τ for a system of recombination centers can
be represented as

(6)

where  is the activation energy of the process which
results in a change in the diffusion length L (for exam-
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ple, diffusion of atoms or ions involved in defects) and
τ0 is a constant which is the reciprocal of the thermal
relaxation frequency. Under the conditions of mechan-
ical loading of the crystal, the change in the activation

energy  can be approximated by a linear dependence

[4, 6, 14]: Ea =  – γσ, where σ is the mechanical
stress and γ is a certain activation volume. In our case
of ultrasonic treatment of the crystal, we have σus =
(2ρsνusWus)1/2 (where ρs is the silicon density and νus is
the ultrasonic wave velocity) and the parameter γ has
the meaning of the effective coefficient of interaction
between ultrasonic waves and crystal defects.

As a consequence, under the conditions of ultra-
sonic treatment, we obtain the following expression for
the characteristic relaxation time:

(7)

Expression (7) permits us to evaluate the parameter γ.
The experimental dependence of the characteristic
relaxation time τ on σus is depicted in Fig. 5. The
parameter γ was determined from the slope of the
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Fig. 4. Time dependences of (a) Fi and (b) Ft [see relation-
ships (4) and (5)] at different amplitudes Vus: (1) 25, (2) 30,
and (3) 35 V. f = 0.78 MHz. The characteristic relaxation
times τi and τt calculated from the slopes of the depen-
dences Fi(t) and Ft(t) are as follows: τi = (1) 21, (2) 16, and
(3) 15 min and τt ≈ (1–3) 80 min.
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straight line in this figure: γ = (8 ± 2) × 10–27 m3. The
obtained value of γ corresponds to an effective acousto-
defect interaction range of 12 Å, which is comparable
to the lattice parameter. This can be associated only
with point defects (including their complexes). The
physical meaning of the parameter γ can be defined as
the effective volume of interaction between the elastic
field of a complex defect and ultrasonic vibrations.

4. A POSSIBLE MECHANISM 
OF THE ULTRASOUND EFFECT

When analyzing the possible mechanisms of the
ultrasound effect on the diffusion length in silicon of
solar-cell grade, proper allowance must be made for the
following factors: (i) the relatively small initial diffu-
sion lengths L0 (of the order of tens of microns), which
suggests a high concentration of recombination centers
(of the order of 1013–1014 cm–3); (ii) the long-term (of
the order of tens of minutes) transient processes after
switching on and switching off the ultrasound, which is
characteristic of the diffusion mechanism of transfor-
mation of defect structures [4]; and (iii) the reversibility
of the amplitude and time changes.

The experimental data obtained can be interpreted
in the framework of the model of a bistable acoustoac-
tive recombination center. Within this model, it is
assumed that a defect can exist in two stable states (A
and B) with different carrier capture cross sections (for
example, SA > SB). In the absence of ultrasound, the
probability of finding the defect in the A state is higher
than that in the B state. After switching on the ultra-
sound, a number of defects transform into the B state.
Consequently, the recombination rate decreases as the
result of a decrease in the capture cross section. After
switching off the ultrasound, the system of defects
reverts to the original state. In silicon, the system of
defects can consist of pairs, each formed by a dopant

104

103

5 10
σus, 105 N/m2

τ,
 s

Fig. 5. Dependence of the relaxation time on the mechanical
stress in an ultrasound field.
PH
atom and an interstitial metal atom, for example, Cr–B,
Fe–B, and Fe–Al pairs whose bistability has long been
known [15–17]. It should be emphasized that it is these
heavy metal impurities which are responsible for the
considerable decrease in the diffusion length of minor-
ity charge carriers [11, 12].

As an example, we consider an iron–boron pair. The
presence of iron at a concentration of 1013–1014 cm–3 in
silicon leads to a decrease in the diffusion length L0 to
20 µm [11, 12]. At room temperature, iron atoms in
Si : B are almost completely bound in Fei–Bs com-
plexes [18]. The bistability of these complexes stems
from the fact that the iron ion can occupy either the T
interstice nearest to the B atom (configuration A) or the
next-nearest interstice (configuration B) [16]. In a pair
with configuration B, the spacing between the two
energy levels that correspond to the two charge states
Fe2+ and Fe+ is smaller by 0.14 eV [16]. Within the
model under consideration, the sound-stimulated tran-
sition of a complex from the A state to the B state can
be treated as diffusion of the interstitial iron ion from
one interstice to another interstice in an ultrasound
field, followed by the recharging Fe2+  Fe+ in a
number of defects until thermodynamic equilibrium
between different charge states is attained. A decrease
in the fraction of Fe2+ ions should lead to a decrease in
the electron capture cross section and a subsequent
increase in the diffusion length L. In the ultrasound
field, the diffusion of impurity atoms is stimulated by
their interaction with nonequilibrium phonons excited
by ultrasonic waves [19]. The recharging of ions with a
change in their spatial position was described in [20].

In order to verify the validity of the model described
above, we performed experiments with illumination of
the samples under investigation. According to
Lagowski et al. [10], sufficiently intense illumination
(~10 W/cm2) of silicon crystals with white light at room
temperature brings about the decomposition of pairs of
the Fe–B type. In turn, this leads to a decrease in the
diffusion length of minority charge carriers, because
the electron capture cross section of interstitial iron
ions is larger that of the Fei–Bs pair. Illumination of the
studied samples in the absence of ultrasound causes the
diffusion length L to decrease by approximately 15%.
In the case when the samples are illuminated in the
course of ultrasonic treatment, the diffusion length
decreases to a considerably larger extent and the ultra-
sound-stimulated increase in the diffusion length is vir-
tually suppressed under exposure to light. In the frame-
work of the proposed model, this fact is explained by
the photoinduced decomposition of the pairs.

Furthermore, silicon contains other defects that can
participate in the acoustodefect interaction, namely,
complexes involving vacancies. In particular, a
vacancy–boron pair can be considered a bistable defect
[21]. In this case, different configurations of the
vacancy complex with a dopant atom exhibit signifi-
cantly different recombination properties due to partial
YSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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internal charge redistribution [22]. Therefore, the ultra-
sound-induced transition in this defect should result in
a change in the diffusion length L.

5. CONCLUSIONS
Thus, the results obtained in the present work can be

summarized as follows.
(1) The reversible increase in the diffusion length of

electrons in dislocation-free p-Si crystals under the
effect of ultrasound is observed for the first time.

(2) The effective volume of the acoustodefect inter-
action is estimated as γ = (8 ± 2) × 10–27 m3. This indi-
cates that the ultrasonic waves interact with point
defects.

(3) A model of ultrasound-induced transformation
of recombination centers in a silicon crystal is pro-
posed. Consideration is given to the possible ultra-
sound-induced transformations in different defects,
namely, pairs containing impurity atoms located at sites
and interstices and complexes involving vacancies.
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Abstract—The specific features of nonstationary photovoltage excitation in molecular crystals of tin disulfide
are investigated. A substantial change in the dependence of the photocurrent amplitude on the spatial frequency
of the interference pattern is revealed. The observed behavior is explained in terms of the model of a photocon-
ductor with different-type charge carriers of the same sign. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of tin disulfide (SnS2) are characterized by
strong anisotropy of their properties and polytypism
due to the layered structure of this material. The crystal
structure of SnS2 exhibits a molecular close packing
[1]. The smallest structural unit of SnS2 crystals is a
monomolecular layer that consists of three atomic lay-
ers, namely, S–Sn–S. The adjacent molecular layers are
linked through van der Waals forces. Superstructural
perturbations of the simplest structures of the crystal,
which are associated with regular rotations of the
molecular layers, bring about the formation of different
polytypic modifications.

The optical properties of SnS2 have been investi-
gated in many works [2–5]. It is found that SnS2 crys-
tals possess an appreciable photoconductivity in the
visible range [6–8] and a short response time [9, 10].
However, the properties of SnS2 crystals over a wide
range of incident frequencies are still not clearly under-
stood.

The main objective of the present work was to inves-
tigate experimentally the nonstationary photovoltage
[11] in SnS2 crystals at different wavelengths of the
writing light and to reveal the specific features of the
surface excitation of electric current under short-wave
radiation.

2. SAMPLES AND EXPERIMENTAL SETUP

A schematic drawing of the experimental setup for
measuring the nonstationary photovoltage is shown in
Fig. 1. The coherent radiation was excited by an LGN-
215 helium–neon laser (λ = 633 nm, Pout ≈ 40 mW) and
LPM-11 helium–cadmium (λ = 442 nm, Pout ≈ 1 mW)
and Liconix-4240NB helium–cadmium (λ = 325 nm,
1063-7834/02/4407- $22.00 © 21254
Pout ≈ 6 mW) lasers. The laser light was separated into
two beams to form an interference pattern on the sur-
face of the studied crystals. One of the beams was mod-
ulated in phase with the frequency ω and amplitude ∆
to induce spatial oscillations in an interference pattern.
The measurements of the unsteady photocurrent were
carried out using Unipan-233-7 and EG&G-7260 lock-
in nanovoltmeters. Crystals of SnS2 were grown by the
gas-transport reaction technique and had a characteris-
tic size of 5 × 5 × 0.04 mm. The electrodes were applied
on the front surface of the crystal at a distance of ~1 mm
from each other with the use of a fine-dispersed silver
paste.

3. EXPERIMENTAL RESULTS

No characteristic indications of bipolar photocon-
ductivity, namely, changes in the sign of the photocur-

Laser

Signal
generator

Lock-in
amplifier

Phase
modulator

SnS2

RL

Jω

Fig. 1. A schematic drawing of the experimental setup for
measuring nonstationary photovoltage in SnS2 crystals.
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rent with variations in the frequency of phase modula-
tion [12] or the spatial frequency [13], were observed
for any of the wavelengths used (633, 442, and
325 nm). For all these wavelengths, the photocurrent
sign corresponded to the electronic component.

The dependence of the nonstationary photovoltage
on the spatial frequency at the wavelength λ = 633 nm
is shown in Fig. 2. The experimental curve is well
approximated by the standard relationship

(1)

Here, σ0 is the photoconductivity of the crystal, K is the
spatial frequency, and Ld is the diffusion length of car-
rier transfer. The linear increase in the nonstationary
photovoltage in the initial portion is associated with an
increase in the diffusion field: ED = (kBT/e)K. The
decrease observed in the nonstationary photovoltage at
high spatial frequencies is inversely proportional to the
spatial frequency K and can be explained by the
decrease in the amplitude of the lattice photocurrent
[11]. Since the photocurrent reaches a maximum at
KLd = 1, the diffusion length of electrons can be esti-
mated from the position of the photocurrent peak. For
the SnS2 crystal under investigation, the electron diffu-
sion length Ld is equal to 0.38 µm.

Figure 3 depicts the dependence of the nonstation-
ary photovoltage on the spatial frequency at the wave-
length λ = 442 nm. It can be seen that the experimental
curve approximated by the standard relationship (1) is
characterized by considerable errors at low spatial fre-
quencies (dashed line in Fig. 3). This discrepancy van-
ishes under the assumption that charge transfer in the
crystal occurs through two channels, namely, with the

Jω σ0K

1 K2Ld
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|, 
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Fig. 2. Dependence of the amplitude of unsteady photocur-
rent on the spatial frequency of the interference pattern at
the wavelength λ = 633 nm (P0 = 33 mW, ω/2π = 100 kHz).
Points are the experimental data. The solid line represents
the theoretical dependence calculated from the standard
relationship (1).
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participation of light and heavy charge carriers of the
same sign [14]. In this case, the relationship between
the photocurrent and the spatial frequency takes the fol-
lowing form:

(2)

Here, Ld1 and Ld2 are the diffusion lengths of the light
and heavy electrons, respectively, and σ1 and σ2 are the
contributions of the corresponding channels of charge
transfer to the total photoconductivity of the material.
The experimental dependence is best approximated by
expression (2) at Ld1 = 0.15 µm, Ld2 = 2.0 µm, and
σ2/σ1 = 4.3.

The dependence of the amplitude of unsteady pho-
tocurrent on the spatial frequency at λ = 325 nm
(Fig. 4) deviates from the standard behavior to a con-
siderably larger extent compared to the curve recorded
at λ = 442 nm. The approximation of the experimental
dependence by expression (2), which was derived for
two types of carriers, is not fully adequate for all the
spatial frequencies. By comparing relationships (1) and
(2), we can modify the expression describing the pho-
tocurrent amplitude for the case of three types of carri-
ers of the same sign as follows:

(3)

The experimental data are most closely approximated
by this expression with the following parameters: Ld1 =
0.16 µm, Ld2 = 0.85 µm, Ld3 = 0.11 µm, σ2/σ1 = 2.1, and
σ3/σ1 = 20.
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Fig. 3. Dependence of the amplitude of unsteady photocur-
rent on the spatial frequency K at the wavelength λ =
442 nm (P0 = 0.29 mW, ω/2π = 140 kHz). Points are the
experimental data. The dashed line represents the theoreti-
cal dependence calculated from the standard relationship (1).
The solid line indicates the theoretical curve described by
relationship (2).
2



1256 BRYUSHININ et al.
Different-type charge carriers that are characterized
by different diffusion lengths of their transfer can be
excited with incident light owing to two specific fea-
tures of the band structure of the SnS2 crystal. First, the
conduction band of the crystal exhibits two minima
with an energy gap of ~0.8 eV [3, 15]. Consequently,
illumination of the crystal with red light (λ = 633 nm,
hν = 1.96 eV) leads primarily to the generation of car-
riers from impurity levels into a valley with a lower
energy, whereas the illumination with blue light (λ =
442 nm, hν = 2.81 eV) and, especially, ultraviolet radi-
ation (λ = 325 nm, hν = 3.82 eV) result in the band-to-
band and impurity generation of electrons into two val-
leys and, possibly, into a third, even higher energy
band. Second, actual samples of tin disulfide crystals
have a layered structure with alternating layers of dif-
ferent polytype structures. The band gap Eg for the most
commonly encountered polytypic modification of SnS2

crystals (1H) is equal to 2.18 eV [1, 16]. A larger band
gap is observed only in the 9R structure: Eg = 3.38 eV
[16]. Therefore, the total photocurrent can be deter-
mined by the generation of carriers with different trans-
port parameters in alternating layers of the crystal with

10–1

10–2

10–3

104 105 106 107 108

K, m–1

|J
ω
|, 

nA

Fig. 4. Dependence of the amplitude of unsteady photocur-
rent on the spatial frequency K at the wavelength λ =
325 nm (P0 = 3.8 mW, ω/2π = 94 kHz). Points are the exper-
imental data. The dashed line represents the theoretical
dependence calculated from the standard relationship (1).
The solid line indicates the theoretical curve described by
relationship (3).
PH
different polytype structures. It is evident that carriers
generated in high-energy bands can have larger diffu-
sion lengths due to a decrease in the van der Waals gap.
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Abstract—This paper reports on the results of precision investigations into the crystal structure of zinc diphos-
phide and cadmium diphosphide single crystals. The complete sets of fundamental optical functions are calcu-
lated for both crystals in the range 2.2–5.3 eV. The dielectric function is resolved into components for the first
time. Three basic parameters of the oscillators are determined, and the electronic structures of ZnP2 and CdP2
are compared. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Anisotropic crystals of ZnP2 and CdP2 have been
attracting the particular attention of researchers for a
long time owing to their unique properties and possible
practical applications [1–3]. These crystals are charac-
terized by a considerable band gap Eg, mechanical sta-
bility, chemical durability, and high optical activity [2,
3]. Single-crystal ZnP2 and CdP2 crystallize in a tetrag-

onal lattice with space group P41212 = . Moreover,
ZnP2 crystals can exist in an enantiomorphic form with

space group P43212 = . The unit cell contains eight
formula units. The unit cell parameters (a and c) are
reported in [4–6]. As was shown earlier in [7], the main
structural fragments of zinc and cadmium diphosphides
are composed of phosphorus spiral chains oriented
along the [100] and [010] directions.

In ZnP2 and CdP2 tetragonal crystals, the Brillouin
zone has the form of a rectangular parallelepiped. The
specific features of the band symmetry, the dispersion
laws, and the selection rules are considered in [8]. Cal-
culations of the band structure of ZnP2 and CdP2 crys-
tals in the framework of the pseudopotential formalism
are described in [9–12]. In these works, the spin-orbit
interaction is ignored in the band-structure calculations
due to its small magnitude: ∆Es.o. < 0.05 eV. It has been
found that the band topology in the vicinity of the band
gap Eg is virtually independent of the pseudopotential
type. The optimum values of Eg prove to be equal to
1.58 eV for ZnP2 and 0.81 eV for CdP2. For ZnP2 crys-
tals, the valence band top is located at the Γ point and
the absorption edge is determined by direct forbidden
transitions. For CdP2 crystals, the valence band top is
shifted to the Z point; as a consequence, the absorption
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edge is determined by indirect transitions. Leznyak
[13] calculated the band structure of CdP2 crystals in
the framework of the augmented plane wave method. In
this case, the Γ and Z points are found to be energeti-
cally similar to each other.

Sobolev and Syrbu [14] proved that the edge absorp-
tion in zinc and cadmium diphosphides is determined
by indirect transitions in the vicinity of the direct tran-
sitions: Egi = 1.97 eV and Egd = 2.30 eV for ZnP2 and
Egi = 1.70 eV and Egd = 2.11 eV for CdP2. Moreover,
Sobolev et al. [15] investigated the polarized reflec-
tance spectra of zinc diphosphide at temperatures of 77
and 300 K. However, the reflectance spectra of cad-
mium diphosphide were measured only for the polar-
ization E ⊥  c [8]. In these spectra, the reflectance dras-
tically decreased in the near-ultraviolet range due to
imperfection of the samples and the measurement pro-
cedure used in the experiments. Ambrazeavicius et al.
[16] studied the reflection and thermoreflection spectra
of cadmium diphosphide for both polarizations.
Evstigneev et al. [17] measured and analyzed the elec-
troreflection spectra of zinc diphosphide only at room
temperature. More reliable data on the reflectance spec-
tra of zinc and cadmium diphosphides were obtained in
[12, 18]. The precision method used in these works
made it possible to measure the reflection coefficient R
with an accuracy of 0.5% and a reproducibility of
≈0.03%. The measurements were carried out in the
energy range 2–5 eV at temperatures of 80 and 293 K
for two polarizations of light (E ⊥  c and E || c). The
samples were measured under vacuum. Nitrogen traps
were used to prevent deposition of water and oil vapors.
When analyzing the experimental data, Sobolev et al.
[12] considered the maxima of the integrated reflec-
tance spectra R(E) rather than the absorption or permit-
002 MAIK “Nauka/Interperiodica”
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tivity spectra; i.e., the true energies and intensities of
the complete set of optical transitions were disregarded.
This can lead to an ambiguous interpretation of the ori-
gin of the peaks observed in the reflectance spectra
R(E). In order to solve the complicated problem of con-
structing an adequate model of the band structure of
any crystal, it is expedient to analyze the complete set
of optical fundamental functions rather than only one of
them (reflection) [19, 20].

In the present work, we performed precision inves-
tigations into the optical spectra and the atomic struc-
ture of zinc and cadmium diphosphides with the aim of
obtaining more reliable data on the geometry of chem-
ical bonds and the electronic structure of ZnP2 and
CdP2 isomorphic crystals.

Table 1.  Bond lengths (Å) in ZnP2 and CdP2 crystals

ZnP2 CdP2

Zn–P1 2.3878 Cd–P1 2.579

Zn–P1 2.3899 Cd–P1 2.583

Zn–P2 2.4063 Cd–P2 2.581

Zn–P2 2.3555 Cd–P2 2.529

P1–P2 2.1658 P1–P2 2.171

P1–P2 2.206 P1–P2 2.203

Table 2.  Bond angles (deg) in ZnP2 and CdP2 crystals

ZnP2 CdP2

P1–P2–Zn 109.07 P1–P2–Cd 110.10

P1–P2–Zn 104.48 P1–P2–Cd 103.35

P1–P2–P1 106.89 P1–P2–P1 109.82

Zn–P2–Zn 115.8 Cd–P2–Cd 110.18

Zn–P2–P1 113.85 Cd–P2–P1 115.66

Zn–P2–P1 106.01 Cd–P2–P1 106.97

P2–Zn–P2 124.17 P2–Cd–P2 125.06

P2–Zn–P1 112.54 P2–Cd–P1 114.8

P2–Zn–P1 109.24 P2–Cd–P1 110.5

P2–Zn–P1 105.06 P2–Cd–P1 104.26

P2–Zn–P1 103.35 P2–Cd–P1 100.21

P1–Zn–P1 99.39 P1–Cd–P1 97.83

Zn–P1–Zn 108.35 Cd–P1–Cd 107.26

Zn–P1–P2 112.21 Cd–P1–P2 114.11

Zn–P1–P2 111.55 Cd–P1–P2 110.68

Zn–P1–P2 110.27 Cd–P1–P2 110.47

Zn–P1–P2 105.06 Cd–P1–P2 103.00

P2–P1–P2 109.17 P2–P1–P2 110.68
P

2. X-RAY STRUCTURAL INVESTIGATIONS

The experimental x-ray diffraction data used in cal-
culations of the crystal structures of zinc and cadmium
diphosphides were collected on a Hilger–Watts auto-
mated four-circle diffractometer (λMoKα, graphite
monochromator, θ/2θ scan mode).

The unit cell parameters of ZnP2 and CdP2 single
crystals with space group P41212 at room temperature
(293 K) are as follows: a = b = 5.2768(7) Å and c =
19.753(3) Å for CdP2 and a = b = 5.0586(7) Å and c =
18.506(4) Å for ZnP2. The crystal structure of ZnP2 was
refined in two enantiomorphic space groups. For the
space group P41212, the discrepancy factor was approx-
imately equal to 3% (the number of reflections used in
the structure refinement was ≈2000). For ZnP2 crystals
with space group P43212, the unit cell parameters
proved to be somewhat different. These two structures
can be distinguished by the optical rotation along the c
axis. The crystal structure of CdP2 was refined in the
space group P41212; in this case, the discrepancy factor
was approximately equal to 3.4% (the number of reflec-
tions used in the structure refinement was ≈1000). For
this reason, the results of x-ray structure determination
are given only for the space group P41212 (Tables 1, 2).

For both crystals, the structure is characterized by
three independent atoms, namely, P(1), P(2), and Zn
(Cd). These atoms occupy three equivalent eightfold
positions. The zinc atom is surrounded by four phos-
phorus atoms (for each sort there are two phosphorus
atoms); in turn, each of the phosphorus atoms is bonded
to two zinc atoms and two phosphorus atoms. After
refinement of the crystal structures of zinc and cad-
mium diphosphides, the P–P bond lengths in phospho-
rus atomic chains are found to be virtually identical to
the P–P bond lengths in black crystalline phosphorus.
The Zn–P and Cd–P interatomic distances are slightly
less than the sum of their tetrahedral radii [21]. Most
likely, this is associated with ionic bonding in the crys-
tals. The smallest bond angles in ZnP2 and CdP2 crys-
tals are equal to 99.39° and 97.83°, respectively. At the
same time, the largest bond angles in ZnP2 and CdP2 are
equal to 124.17° and 125.06°, respectively. A similar
correlation is also observed for the other bond angles.
For both crystals, the P–P bond lengths are very close
to each other (the difference amounts to only 0.003–
0.005 Å). It should be noted that, prior to precision
measurements, the P–P bond lengths in CdP2 were
assumed to be equal to 2.157 and 2.227 Å, respectively;
i.e., after the refinement, their values changed signifi-
cantly.

3. CALCULATIONS OF OPTICAL FUNCTIONS

The spectra of the optical functions for both crystals
were calculated in the range 2.2–5.3 eV in polarized
light. The calculations were carried out using the data
obtained earlier in [12, 18] and Kramers–Kronig inte-
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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gral relationships. The data in the range 5–12 eV and in
the transparency range (required for correct calcula-
tions) were taken from other authors. It was found that
the main features in the optical spectra at temperatures
of 80 and 293 K coincide with each other. However, all
the features revealed at room temperature are less pro-
nounced and certain of them almost disappear.

In this work, we compared the spectra of the follow-
ing functions: the reflection coefficient R; the imagi-
nary (ε2) and real (ε1) parts of the permittivity ε; the
absorption coefficient µ; the refractive index n; the
index of absorption k; the integral function of the cou-
pled density of states multiplied by the probability of
transitions, which is equal to ε2E2 within a constant fac-
tor; the effective number neff of valence electrons
involved in optical transitions at a given energy; the
effective permittivity εeff; the differential (electroopti-
cal) functions α and β; the phase angle of reflected light
θ; and the functions of the bulk (–Im(ε)–1) and surface
[−Im(ε + 1)–1] plasmons. All these functions are inter-
related; however, each function has a specific meaning.

The specific features of the spectra R(E) were
described in detail in [12, 18]. The spectra of the func-
tions n and ε1 are similar to those of R in the long-wave-
length range. At shorter wavelengths, the functions n
and ε1 decrease drastically and the reflectance spectra
exhibit only the most intense peaks. The spectra of the
functions k, ε2, and, to a lesser extent, ε2E2 and µ are
very similar to the reflectance spectrum, especially for
the polarization E ⊥  c; however, the intensity distribu-
tion in this case is slightly different. The absorption
coefficient at an energy of 5 eV reaches 0.9 × 106 cm–1

for ZnP2 and 1.1 × 106 cm–1 for CdP2. The functions of
the bulk and surface plasmons have similar spectra but
differ in magnitude. The spectra of these functions con-
tain all the peaks revealed in the reflectance spectrum,
except for those observed at the longest wavelengths.
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Fig. 1. Optical functions (1) ε1 and (2) ε2 of the ZnP2 crystal
for E || c at a temperature of 80 K.
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The functions neff and εeff increase monotonically but do
not attain saturation in the energy range under investi-
gation. The differential function α(E) decreases mono-
tonically and resembles, to some extent, the curve n(E).
The differential function β exhibits a more complex
behavior: the dependence β(E) is similar to the curve
R(E) near the band gap Eg and follows an asymmetric
curve at hν > 3.5 eV.

Figures 1–4 depict the spectral dependences of the
optical functions ε1 and ε2 for ZnP2 and CdP2 crystals at
a temperature 80 K for two polarizations (E ⊥  c and
E || c). It is seen that the studied crystals possess a
clearly pronounced optical anisotropy. The curves of
the real (ε1) and imaginary (ε2) parts of the permittivity
of zinc and cadmium diphosphides at different polar-
izations exhibit quite a different behavior. The absolute
values of ε1 and ε2 for ZnP2 crystals are less than those
for CdP2 crystals, because the latter crystals are charac-
terized by a stronger reflection over virtually the entire
range of energies.

However, a comparison of the dependences of the
functions ε1 and ε2 on the incident radiation energy for
ZnP2 and CdP2 crystals at the same polarizations
(Figs. 1, 3 and 2, 4) has revealed many common fea-
tures, especially at the polarization E ⊥  c.

4. PARAMETERS OF OPTICAL TRANSITIONS
IN ZnP2 AND CdP2 CRYSTALS

As a rule, the spectral bands associated with optical
transitions in solids overlap significantly; certain of
these transitions do not manifest themselves in the inte-
grated curve. For this reason, we used the Argand dia-
gram technique [20] to resolve the spectra ε2(E) into
partial components attributed to the particular groups of
optical transitions with close energies. To accomplish
this resolution, the integrated curves ε2 = f(ε1) were
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Fig. 2. Optical functions (1) ε1 and (2) ε2 of the ZnP2 crystal
for E ⊥  c at a temperature of 80 K.
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divided into portions that could be adequately
described by semicircumferences. The portions thus
obtained were used to construct the partial functions
and to determine the residues of the functions ε1 and ε2.
This process was simulated on a computer and repeated
for the time the residues of Argand curves contained
portions that could be represented by circumferential
parts. As a result, we determined the following basic
parameters of elementary oscillators: (1) the energy
position of the maximum of the band associated with
the optical transition Ei (2) the half-width of this band
Hi, and (3) the oscillator strength fi which is responsible
for the transition probability. The results obtained are
presented in Tables 3 and 4.

According to our calculations, the integrated spectra
ε2(E) for ZnP2 and CdP2 crystals in the range 2.2–
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Fig. 3. Optical functions (1) ε1 and (2) ε2 of the CdP2 crystal
for E || c at a temperature of 80 K.
PH
5.3 eV can be reproduced using 12 Lorentz oscillators
(for each polarization), whereas the spectra R(E) at low
temperatures exhibit only nine or ten features. It is
worth noting that, in this case, intensive transitions with
oscillator strengths fi > 1 are not revealed, the fi values
for the polarization E || c are considerably less than
those for the polarization E ⊥  c, and the half-widths Hi

of the bands attributed to the oscillators change insig-
nificantly.

All the bands observed can be separated into two
groups. The first group contains completely polarized
bands (transitions are allowed only for one polariza-
tion). The second group involves bands observed at dif-
ferent polarizations with close energies Ei but with dif-
ferent oscillator strengths fi. These groups of effective
oscillators are associated with interband transitions (or
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Fig. 4. Optical functions (1) ε1 and (2) ε2 of the CdP2 crystal
for E ⊥  c at a temperature of 80 K.
Table 3.  Parameters Ei (eV), Hi (eV), and fi for Oi oscillators of zinc diphosphide

Oi

E || c, 80 K E ⊥  c, 80 K

Ei Hi fi Ei Hi fi

O1 2.81 0.15 0.006 2.76 0.26 0.071

O2 3.06 0.15 0.048 3.02 0.27 0.064

O3 3.20 0.18 0.038 3.27 0.27 0.049

O4 3.36 0.24 0.097 3.41 0.29 0.089

O5 3.54 0.30 0.086 3.61 0.31 0.100

O6 3.74 0.34 0.133 3.72 0.31 0.160

O7 3.95 0.33 0.217 3.95 0.32 0.232

O8 4.21 0.36 0.273 4.20 0.33 0.238

O9 4.38 0.33 0.129 4.44 0.34 0.209

O10 4.59 0.37 0.260 4.66 0.41 0.497

O11 4.87 0.39 0.249 4.95 0.42 0.342

O12 5.09 0.40 0.141 5.10 0.43 0.288
YSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Table 4.  Parameters Ei (eV), Hi (eV), and fi for Oi oscillators of cadmium diphosphide

Oi

E || c, 80 K E ⊥  c, 80 K

Ei Hi fi Ei Hi fi

O1 2.47 0.24 0.018 2.57 0.14 0.071

O2 2.75 0.23 0.045 2.79 0.19 0.025

O3 2.91 0.23 0.081 2.89 0.22 0.056

O4 3.05 0.24 0.064 3.06 0.26 0.105

O5 3.28 0.34 0.206 3.33 0.32 0.307

O6 3.44 0.31 0.048 3.41 0.26 0.076

O7 3.59 0.35 0.224 3.62 0.38 0.453

O8 3.92 0.34 0.218 3.90 0.36 0.473

O9 4.12 0.29 0.092 4.13 0.29 0.249

O10 4.28 0.39 0.289 4.35 0.42 0.942

O11 4.59 0.37 0.351 4.62 0.34 0.481

O12 4.89 0.36 0.342 4.92 0.40 0.572
with metastable excitons) characterized by close ener-
gies and oscillator strengths.

5. DISCUSSION

Earlier [8, 15], the specific features of the electronic
structure of ZnP2 and CdP2 crystals were analyzed
using only six peaks observed in the reflectance spectra
at E ⊥  c. In [12], a similar analysis was performed with
inclusion of 19 features revealed in the reflectance
spectra for both polarizations. Figure 5 illustrates the
correspondence between the energies of the ε2 peaks of
hypothetically identical nature, which were obtained in
the present work. We analyzed the energies and intensi-
ties of 48 spectral features attributed to optical transi-
tions in both crystals. Transitions whose energies in
Fig. 5 are connected by straight lines have the same (or
nearly the same) origin. For ZnP2 crystals, virtually all
spectral features are shifted toward the high-energy
range by approximately 0.3 eV. However, certain pairs
of oscillators are characterized by either smaller shifts
(for example, by a shift of approximately 0.2 eV for O1
and O2 oscillators at (E ⊥  c) and for O12 at (E || c) or
even larger shifts (0.38 eV for O3 at E ⊥  c). The absence
of the spectral features associated with excitons sug-
gests that the band gap is determined by indirect transi-
tions. It can be seen that alternation of the ε2 peaks is
violated in the vicinity of Eg. Therefore, judging from
the similarity of the optical functions of ZnP2 and CdP2
crystals, the structural similarity of their crystal lattices,
and the similarity of the nature of the chemical bonds,
we can assume that the energy bands of these crystals
have a similar structure. This inference is confirmed by
the band-structure calculations performed earlier in [9–
12]. However, the electronic spectrum of each com-
pound exhibits its own specific features that have defied
simplified band calculation. Since the above anomalies
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
are observed near Eg, it can be assumed that the upper
valence bands or lower conduction bands at specific
points (directions) of the Brillouin zone in both crystals
possess quite a different topology. It is universally

5.2

4.8

4.4

4.0

3.6

3.2

2.8

2.4

5.07 5.28
a, Å

hν
, e

V

1
2 CdP2

ZnP2

Fig. 5. Correspondence of the maxima of the components
obtained upon resolution of the imaginary part of the dielec-
tric function ε2 for ZnP2 and CdP2 crystals at a temperature
of 80 K. Polarization: (1) E || c and (2) E ⊥  c.
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accepted that a more correct calculation of the band
structure of the crystals must include the results of ana-
lyzing the optical spectra. We believe that the results
obtained in the present work for the first time can be
used to determine the electronic structure of ZnP2 and
CdP2 anisotropic crystals more precisely. 
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Abstract—Luminescence spectra of barium cerate BaCeO3, a starting material in the family of mixed conduc-
tors with protonic and oxygen conduction, are studied for the first time. The photoluminescence of this material
is shown to be due to transitions involving cerium ions. A model of the recombination process is proposed. The
luminescence of samples subjected to various post-growth treatments is measured, and the connection between
the type of the treatment and the specific changes in the luminescence spectra is interpreted. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Materials with ionic, including protonic, conduction
exhibit properties that are unusual for most solids,
which makes them interesting subjects for basic
research and suggests promising applications. It is
believed, in particular, that protonic conductors and
mixed conductors with protonic conduction could play
a key role in water vapor conversion systems, fuel ele-
ments, etc.

Progress along these lines depends substantially,
however, on the extent to which the technological char-
acteristics of these materials are known and on the pos-
sibility of preparing materials with required properties.
The inherent ability of the compounds in this group to
fairly easily lose or incorporate some species of atoms
can both facilitate and hinder control of the properties
of a given material. This applies particularly to materi-
als whose constituent ions (atoms) have a considerable
mobility and can also be present in gaseous form. In
this case, spontaneous or properly controlled variation
of the stoichiometry can also be effected in the post-
growth period at comparatively low temperatures.

Barium cerate (BaCeO3) is a starting material for the
family of compounds with protonic conduction which
can combine with electronic or hole conduction and
with noticeable oxygen transport. The actual transport
numbers depend on the temperature and material sto-
ichiometry, the latter being dependent, in turn, on exter-
nal conditions.

Since the discovery of protonic conduction in
yttrium-doped barium cerate [1], hydrogen has been
incorporated by bringing a material into contact with
water vapor at an elevated temperature (~900 K). The
fraction of vacancies on the oxygen sublattice plays a
substantial role in this process; these vacancies are pro-
duced by deliberate doping of the material by rare-earth
1063-7834/02/4407- $22.00 © 21263
elements or yttrium in the course of synthesis. The
incorporation of hydrogen proceeds in this case by the
reaction

H2O(gas) +  + OO  2(OH . (1)

The charges in Eq. (1) are relative to the main charge

of the corresponding lattice site [2];  denotes the
oxygen vacancy, which imparts an effective 2+ charge

to the now empty lattice site, and (OH  is the OH–

group at the oxygen site; this group has a real negative
unit charge and, thus, is positively singly charged with
respect to the site it occupies, which actually belongs to
the negatively doubly charged oxygen anion. Accord-
ing to this equation, two protons are incorporated
together with one oxygen anion, thus ensuring overall
charge neutrality. The OH– anions sitting at the oxygen
sites have a comparatively weakly bound proton, which
provides a basis for the onset of hopping protonic con-
duction in the oxygen ion network.

High-melting barium cerate (>2500 K) has been
available in the past only in the form of a ceramic.
Recently, however, samples containing sufficiently
large (a few millimeters in size) single crystals have
been obtained by rf melting [3], which permits one to
make reproducible measurements and, thus, to draw
conclusions concerning the inherent bulk properties of
this material.

The high hydrogen content revealed in nominally
pure (undoped) crystals of this material came as a sur-
prise, because this is at odds with the present-day
ideas on the proton incorporation mechanism [4]. To
begin with, this disagreed with the universally
accepted mechanism of hydrogen incorporation into
barium cerate.

VO
++

)O
+

VO
++

)O
+
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We studied luminescence spectra of BaCeO3 sub-
jected to various thermochemical treatments, including
saturation with hydrogen from water vapor. We isolated
and identified the native luminescence of the material
and traced the changes in the spectra to the specific fea-
tures of the crystal state.

2. SAMPLES FOR THE STUDIES 
AND EXPERIMENTAL TECHNIQUE

Samples of crystalline barium cerate were obtained
by direct cold-crucible rf melting [3] of a stoichiomet-
ric mixture of OSCh-grade cerium oxide and barium
carbonate. The main part of the ingot thus obtained was
a conglomerate of intergrown needle-shaped single
crystals measuring about 1 mm in cross section. The
central part of the ingot was, as a rule, straw-yellow in
color; in some cases, however, the color of some
regions of the ingot could be as dark as nearly black for
the same compositions and conditions of synthesis.
Annealing the material thus obtained in air at T =
1000 K for 4 h changed the color to yellow-orange.
X-ray diffraction analysis showed the starting material
to be pseudocubic with a lattice parameter a =
0.4396 nm, with the symmetry becoming orthorhombic
after annealing in air.

The material was optically studied by photolumi-
nescence spectroscopy. The luminescence was excited
by a pulsed nitrogen laser (λ = 337 nm, pulse duration
6 ns). The studies were carried out in the temperature
interval 78–300 K. The photoluminescence signal was
detected with a FÉU-79 PM tube and isolated with a
pulsed lock-in detector. The spectral data presented in
this communication were not corrected for the spectral
response of the instrument.
P

The technique of hydrogen incorporation was devel-
oped earlier in our studies of thermodesorption. Des-
orbed hydrogen and water were measured to monitor
the course of incorporation. The incorporation tech-
niques employed are described in [4, 5].

3. IDENTIFICATION 
OF THE LUMINESCENCE BAND

As far as we know, no studies of the barium cerate
luminescence have been carried out before. The energy
band gap of this material, as derived from optical
absorption spectra presented in [6], is 4.1 eV at room
temperature, with a temperature-induced shift of about
0.39 meV/K. This value provides an estimate for the
possible spectral position of the edge luminescence.

A cerium ion that occupies a lattice site possesses,
however, characteristic features which quite frequently
determine some of the optical properties of cerium-
containing materials. In particular, materials doped
with trivalent cerium are mostly good luminophores [7,
8]. According to the BaCeO3 formula, the valency
(charge state) of cerium is four. However, ions of this
element are capable of changing valency and exist in
the Ce3+ state. When hydrogen is incorporated as a pro-
ton, the formation of the Ce3+ ion can ensure charge
compensation without the attendant incorporation of
the oxygen anion by the mechanism described by
Eq. (1). Simultaneous detection of Ce3+ would prove
the existence of a proton incorporation mechanism
other than that in Eq. (1).

Experimentally, no room-temperature luminescence
was revealed. At low temperatures (78 K), crystalline
BaCeO3 excited by light with wavelength 337 nm emits
luminescence in the blue spectral region (curve 1 in
Fig. 1). The luminescence band is a poorly resolved
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Fig. 1. Luminescence spectra of (1) crystalline barium cerate and (2) ZrO2/CaO : Ce3+ fianite measured at 78 K. The bands are seen
to be almost the same.
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doublet with the maxima peaking near 425 and 500 nm,
the shorter wavelength component being more intense.
The band is similar in shape and position to those
observed in [7, 8] for the trivalent cerium ion. This
gives us grounds to assign the short- and long-wave-
length components of the band to the 2D  4F5/2 and
2D  4F7/2 transitions, respectively [7, 8]. To check
the preliminary assignment of the band to the Ce3+ ion,
we measured (in the same conditions) the luminescence
of ZrO2/CaO : Ce3+ fianite doped with trivalent cerium.
The spectrum of this sample is shown for comparison
in Fig. 1 (curve 2). Except for some fine-structure
details, the spectra are seen to be essentially identical,
thus validating the assignment of the observed barium
cerate band to the recombination luminescence of the
Ce3+ ions.

This interpretation permits one to consider the
energy diagram of the levels involved in the optical
transitions in more detail. We shall base our analysis on
a scheme similar to the Born–Haber cycle [9, 10]. Let
us consider a variant of this scheme presented in Fig. 2
as applied to this case.

According to this scheme, the level of the Ce3+ ion
falls into the crystal band gap. Basically, Ce3+ ions
should not be present in a stoichiometric composition;
however, the Ce3+ state may come to life as a result of
doping or of thermal or optical excitation. For instance,
when barium cerate is doped by tantalum, one of the
outer shell electrons does not form valence bonds and
can be localized on a cerium ion with the attendant
charge exchange, 

Ce4+ + e–  Ce3+. (2)

In our case, the Ce3+ level is not strictly localized in
these conditions, because cerium ions make up the
crystal lattice. The presence of an electron in this level
(and, thus, the formation of the Ce3+ ion in the crystal)
indicates only local occupation of the corresponding
level in the crystal.

The Ce3+ ion, in turn, can donate an electron to the
conduction band. The ion involved, which was initially
Ce3+, becomes Ce4+, and it becomes possible for the
electron to move in the conduction band. The reverse
process is a possible recombination mechanism. Con-
sidering that the Ce4+ density in the crystal is very high,
of the order of 1022 cm–3, the probability of this process
may be expected to be high enough to make the corre-
sponding recombination radiation experimentally
observable.

Moreover, it may be conjectured that such a transi-
tion should dominate over interband recombination
even in the case of direct band-to-band excitation,
because electron encounter with a photoexcited hole
should compete with the recombination process by the
scheme of Eq. (2), which can take place at any point of
the lattice. If the material is initially doped and Ce3+
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
ions are present with the valence band filled, this chan-
nel will be all the more dominant.

Let us compare the proposed model with the avail-
able numerical data on the energy parameters of
BaCeO3. As already mentioned, the optical band gap
was found to be 4.1 eV [6]. The energy level of an elec-
tron localized with the Ce3+ formation (relative to the
valence-band top) can be identified with the activation
energy of hole conduction in BaCeO3, Ea, h = 0.7 eV.
Then, the energies of the optical photons accompany-
ing the process described by Eq. (2) should be related
through

(3)

This relation states that the excitation energy of this
transition cannot be less than the gap between the
acceptor level and the conduction-band bottom and the
luminescence photon cannot have a higher energy than
this quantity. The relation is seen to be indeed satisfied,
which is an argument for the proposed model of the
transition.

4. LUMINESCENCE OF NOMINALLY 
PURE CRYSTALS

By determining the origin of the luminescence band,
one can study the influence of technological prehistory
on the crystal states. We may recall that one of our aims
is to study the reasons for the irreproducibility of the
characteristics of the crystals obtained by crucibleless
high-temperature melting. As we will show below, the
ambiguity is introduced in the last stage of the techno-
logical procedure, where a few hours of contact with
the atmosphere in the laboratory at an elevated sample

Eexc 3.7 Eg Ea,  h –  ≥  3.4 2.9 eV ≥ E lum .= = = 
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Fig. 2.

 

 Energy diagram illustrating the electronic transitions
involved in the excitation and emission of the luminescence
in barium cerate (the Born–Haber cycle). Bottom: charge
exchange of the Ce

 

3+

 

 ion and its movement over the crystal
accompanying the excitation and recombination in the elec-
tron subsystem; grey circles are Ce

 

4+

 

, and black circles are
Ce

 

3+

 

. (a) An electron is excited from Ce

 

3+

 

, which becomes
Ce
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; (b) an electron is in the conduction band, with no
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 ions present in the local region; and (c) an electron
recombines to form Ce
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.
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temperature was enough to change various, including
optical, characteristics of the materials.

To substantiate this statement, we compared the
luminescence intensities in the Ce3+ band of different
parts of two starting samples, namely, a nominally pure
and an yttrium-doped barium cerate crystal undergoing
different additional treatments. Six samples were used
in a series of experiments, among which were three
pieces of the undoped and three of the yttrium-doped
BaCeO3 (10 mol %) samples. Of each material, one
sample was subjected to annealing in water vapor (dur-
ing which the protons were introduced), one sample
was annealed in dry oxygen, and one sample was used
as a reference.

The experiment revealed a strong dependence of the
luminescence intensity in the band corresponding to
recombination through Ce3+ on the type of material and
its technological prehistory. The undoped crystal ini-
tially exhibited a noticeable luminescence intensity in
the range 400–500 nm. Annealing with proton incorpo-
ration (at 700 K and a water pressure of 2.7 kPa for
40 h) resulted in a twofold increase in the intensity of
the band in question (curve 1 in Fig. 3). Annealing a
similar sample in dry oxygen, which corresponds to
achieving the maximum-valence states of the metals
involved, reduced the intensity of the band by a factor
of four to five. The spectrum of the yttrium-doped sam-
ple (curve 3) contains weak components near 420 and
440 nm, but this spectrum changed only insignificantly
under additional treatment.
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Fig. 3. Luminescence spectra of barium cerate crystals sub-
jected to additional treatments are shown on the same scale.
Spectra 1, 2, and 4 relate to a nominally undoped material,
and spectrum 3 corresponds to a material doped originally
with yttrium (10 at. %). Spectra 2 and 3 show the lumines-
cence of reference samples not treated after their prepara-
tion. Spectrum 1 corresponds to the undoped sample
annealed in water vapor, and 4 is the spectrum from part of
the same sample annealed in dry oxygen.
P

                      

5. DISCUSSION OF RESULTS

The results of our experiments fit into a common
model which qualitatively describes the connection of
the luminescence spectra with the technological prehis-
tory of BaCeO

 

3

 

 samples.

The starting samples obtained by high-temperature
synthesis in air contain an uncontrollable amount of
protons, because the water vapor pressure in laboratory
air can be as high as 1.5–2.5 kPa. In the originally
undoped samples, this incorporation of protons is due
to the cerium being an intermediate-valence metal and
proceeds through the formation of the Ce

 

3+

 

 ions. The
reverse treatment, i.e., the oxidation, which removes
protons from the sample, brings about luminescence
quenching in the band under study.

The intensity of the band assigned to Ce

 

3+

 

 in the
yttrium-doped sample is weak. This is only natural,
because the incorporation of protons into samples of
this type does not require a change in the valence state
of the cerium ions [see [1] and Eq. (1)]. Moreover, the
incorporation of trivalent yttrium ions into the material
should hinder the introduction of other trivalent ions
(cerium) simply by the Le Chatelier principle. A more
rigorous analysis of the equilibrium made with due
account of the Ce

 

3+

 

 concentration in the doped com-
pound and based on the material balance and charge
neutrality equations supports the above qualitative con-
clusion.

6. CONCLUSION

Thus, we studied the luminescence of the BaCeO

 

3
perovskite, which is a starting material for the family of
proton-conducting perovskites. A luminescence band
was found in the range 420–480 nm; this band was
shown to originate from recombination through the
cerium ion in another valence state, Ce3+. It was estab-
lished that incorporation of hydrogen into a barium cer-
ate sample not deliberately doped entails charge
exchange of the tetravalent cerium to Ce3+, a process
providing charge compensation when protons are
incorporated into the lattice. It was also shown that the
nominally pure material obtained in high-temperature
synthesis can contain an uncontrollable amount of
introduced protons. To obtain more accurate results, the
material should be additionally normalized to remove
this ambiguity, for instance, by annealing it in dry oxy-
gen, the procedure used by us.
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Abstract—The interaction between the translational and rotational degrees of freedom of a diatomic homonu-
clear molecule that executes a motion at the site of a two-dimensional close-packed atomic matrix located on a
close-packed atomic substrate (a molecular substitutional impurity in the crystal field of the two-dimensional
lattice of a solidified rare gas) is investigated theoretically. The relationships describing the effective dynamic
properties of an impurity rotator in the presence of translational excitations of its center of inertia are derived
in the framework of consistent procedures on the basis of the Lagrangian (the functional-integral method) and
Hamiltonian (the canonical-transformation method) formalisms. The inclusion of the translational–rotational
interaction leads to a radical change in the inertial properties of the molecule. This manifests itself in a change
in the form of the operator for the rotational kinetic energy as compared to the corresponding expression for a
free rotator. The inertia tensor components for the molecule become functions of molecular orientation, and the
molecule, in terms of rotational motion, transforms into a “parametric rotator” whose effective kinetic energy
is represented as a generalized quadratic form of the angular momentum (or the angular velocity) components
with a symmetry corresponding to the symmetry of the external crystal field. The translational–rotational inter-
action also results in the renormalization of the parameters of the crystal potential without a change in its initial
form. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effects associated with the interaction between
translational and rotational degrees of freedom in
molecular crystals and solid solutions containing
molecular components manifest themselves in many
physical properties of these solids [1]. Examples are
provided by the low-frequency anomalies of the trans-
verse phonon modes in molecular and ionic–molecular
lattices, the specific features in the temperature depen-
dences of the elastic moduli for a number of molecular
crystals, structural distortion of the orientationally
ordered phases due to phonon–libron interaction, etc.
(see [1] and references therein). The aforementioned
effects are best understood in classical solids. However,
there are a number of works devoted to the investigation
of these phenomena in molecular cryocrystals [2, 3].
Apart from the results regarding the thermodynamics of
cryosystems in the presence of phonon–libron interac-
tion, the problems of inelastic phonon scattering by
rotational degrees of freedom of individual molecules
[4–7] and molecular complexes [8, 9] have been solved
for these objects. It should be emphasized that it is these
cryocrystals that appear to be the most appropriate
objects for the investigation of the effects under consid-
eration. This can be explained by the fact that, in these
systems, phonons and librons are the sole possible
1063-7834/02/4407- $22.00 © 21268
types of collective excitations. Moreover, the condi-
tions favorable for observing specific quantum effects
that have no analogs in classical solids can be achieved
at low temperatures.

Solid solutions of homonuclear and heteronuclear
molecules in atomic matrices composed of solidified
rare gases form a particular group of objects whose
properties can be substantially affected by transla-
tional–rotational interaction.

As was shown earlier in [10–15], the rotational con-
stant B of an impurity and the crystal field constant _
in three-dimensional solutions prove to be extremely
sensitive to the presence of translational modes in the
lattice. In particular, the interaction between a molecule
rotator and short-wavelength phonons leads to the fact
that the values of B and _ for an impurity in the atomic
cryomatrix differ significantly from those for a free
molecule [13–15]. Consideration of this circumstance
made it possible to interpret successfully the experi-
mental data on the heat capacity of Ar(Kr)–N2(O2)
solutions [12, 14, 15].

Two-dimensional cryosolutions involving molecu-
lar impurities are substantially more complicated sys-
tems. These systems are prepared by applying atomic–
molecular mixtures on substrates (most frequently rep-
resented by graphite and some metals) [16–28]. In this
002 MAIK “Nauka/Interperiodica”
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case, the two-dimensional sample under investigation,
as a rule, is produced not on a crystalline substrate but
is applied on a sublayer consisting of atoms of the same
inert element that forms the matrix of the two-dimen-
sional solution. In the two-dimensional system, the
impurity motion in the direction perpendicular to the
layer is less hindered than that in a bulk crystal and the
translational oscillations are characterized by low fre-
quencies. Moreover, since the potential in which the
impurity moves has no inversion center, any rotation of
the rotator is accompanied by the displacement of its
center of inertia and, vice versa, the displacement of the
center of inertia of the molecule leads to its simulta-
neous rotation. Therefore, oscillations of the center of
inertia of the impurity molecule are related directly to
the molecular rotational degrees of freedom and the
rotation of the impurity cannot be considered by disre-
garding the interaction with displacements of the mole-
cule as a whole.

As a consequence, the dynamics of the impurity
molecule in the two-dimensional solution appears to be
substantially more complex than that in the three-
dimensional system. This can appreciably affect the
behavior of all physical characteristics. At present, the
above problem has not been adequately studied. The
purpose of the present work is to fill this gap.

2. FORMULATION OF THE PROBLEM

Let us consider the problem of motion of a diatomic
homonuclear molecule in a two-dimensional close-
packed monoatomic matrix (a solidified rare gas)
located on a substrate composed of atoms of the same
compound. The interaction between the impurity and
the environment will be included in the atom–atom
potential approximation [29]. In the system under con-
sideration, the interactions of the impurity with the
matrix and the substrate can be described by potentials
of the same type (for example, the Lenard-Jones poten-
tial). Note that, in the general case, the parameters of
the potentials corresponding to the impurity–matrix
and impurity–substrate interactions should be treated as
being different.

It is assumed that the origin of the coordinates is
located at a lattice site in which a matrix atom is
replaced by a diatomic homonuclear impurity molecule
with mass M and internuclear distance 2d. The config-
uration of the system is displayed in the figure. The
matrix and the substrate represent two-dimensional
atomic layers with a triangular lattice. The 0Z axis of
the Cartesian coordinate system is perpendicular to the
atomic layers, and the 0X and 0Y axes are oriented
along the matrix plane. The interatomic distances in
both the matrix and the substrate are equal to R1, and
the distance between the layer and substrate is defined
as c = γR1 (for a perfect close packing of hard spheres,

γ = ). Since the parameters of the interaction of
matrix atoms with each other and with the impurity

2/3
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molecule are different, the equilibrium position Oc of
the center of inertia of the impurity does not coincide
with the layer plane z = 0. From simple symmetrical
considerations, the point Oc lies on the 0Z axis at a cer-
tain distance z0 from the origin of the coordinates.

The complete Hamiltonian of the impurity–matrix–
substrate system has the form

(1)

Hereafter, we will use a system of units in which the
Planck and Boltzmann constants are equal to unity. The
first term in formula (1) is the translational kinetic
energy for the center of inertia of the molecule. The

quantity  = –i∂/∂u is the momentum of the impurity,
and u is the displacement of the center of inertia of the
impurity from the equilibrium position Oc. The second
term in Hamiltonian (1) is the rotational kinetic energy
for the impurity molecule. In this case, B = 1/(2J) is the
rotational constant, J = Md2 is the moment of inertia of

the impurity, and  is the square of the angular
momentum of the impurity, which can be represented in
the form

(2)

Here, the angles ϑ  and ϕ, which specify the orientation
of the rotator, are determined as follows: the ϑ  angle is
measured from the 0Z axis and the ϕ angle is reckoned
from the 0X axis.

H
P̂

2

2M
-------- BL̂

2
U .+ +=

P̂

L̂
2

L̂
2 1

ϑsin
----------- ∂

∂ϑ
------- ϑ ∂

∂ϑ
-------sin 

  1

ϑsin
2

------------- ∂2

∂ϕ2
---------+ .–=

X

Y

Z

0

Oc

ξ

ϕ

ϑ

u w

A geometry of the problem (the meaning of all the designa-
tions is given in the text).
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The last term in relationship (1) describes the inter-
action of the impurity with the matrix and substrate
atoms and can be written as

(3)

where V1 is the potential of the interaction between the
impurity and matrix atoms, V2 is the potential of the
interaction between the impurity and substrate atoms,
R2 is the distance from the origin of the coordinates to
the nearest neighbors in the substrate, and d and D are
the unit vectors specifying the direction to the nearest
neighbors in the layer and the substrate, that is,

(4)

The atomic coordinates in the molecule are written in
the form

, (5)

where w = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) is the unit vec-
tor specifying the spatial orientation of the impurity
molecule and R0 = (0, 0, z0) is the coordinate of the
equilibrium position of the center of inertia of the mol-
ecule.

Since the potentials V1(R) and V2(R) are short-range
potentials, it is sufficient to include only the nearest
neighbors in Hamiltonian (1). In the system under con-
sideration, the impurity molecule has six neighbors in
the matrix (in the layer, the coordination number z1 = 6)
and three neighbors in the substrate (the coordination
number z2 = 3). Note also that the theory proposed
below, in principle, is valid for short-range potentials
V1(R) and V2(R) of an arbitrary type. Hence, all further
calculations will be carried out without specifying the
form of these potentials. The explicit form of an inter-
atomic interaction potential is necessary only for per-
forming numerical calculations for particular systems.

In relationship (3), the interaction of the impurity
molecule with the neighbors is included in the quasi-
static approximation, i.e., under the assumption that
atoms of the crystalline environment are immobile.
This implies that we ignore features of the interaction
between the impurity and phonons of the matrix and
restrict our consideration to the case of atom–atom
potentials in the self-consistent field approximation by
assuming that phonon excitations of the matrix lead

U V1 R1d Ra–( ) V1 R1d Rb–( )+{ }
d
∑=

+ V2 R2D Ra–( ) V2 R2D Rb–( )+{ } ,
D
∑

δ1 2, 1± 0 0, ,( ), δ3 4 5 6, , ,
1
2
---± 3

2
-------± 0, , 

  ,= =

∆1 2, b
3

2
-------± 1

2
--- γ 3–, , 

  ,=

∆3 b 0 1– γ 3–, ,( ), b 1 3γ2
+( )

1/2–
.= =

Ra b, R0 u wd±+=
P

only to the renormalization of the rotational constant B
and the crystal field amplitude [15, 30]. For the problem
under investigation, this approach appears to be quite
justified, because the effect of oscillations of the center
of inertia of the impurity is maximum at sufficiently
low frequencies, whereas the interaction with phonons
significantly affects the impurity motion due to the con-
tribution of high-frequency excitations of the matrix
[15, 30].

The relationships presented in this section in the
general form represent the problem of the motion of a
diatomic homonuclear impurity in a two-dimensional
crystal on the substrate. However, this statement of the
problem does not allow us to obtain its analytical solu-
tion, because the interaction between the orientational
and translational degrees of freedom substantially com-
plicates the dynamics of motion of the impurity mole-
cule.

The dynamics of the system under investigation can
be analytically described only with due regard for addi-
tional physical considerations to simplify the problem.

3. POTENTIAL ENERGY FOR THE IMPURITY–
MATRIX–SUBSTRATE SYSTEM

The low-temperature range T ≤ B is of prime (both
theoretical and experimental) interest, because it is in
this range that the dependences of many physical char-
acteristics of the system exhibit the most pronounced
nontrivial behavior; in particular, anomalies are
observed in the impurity heat capacity, etc. [31, 32]. In
the studied system at given temperatures, the center of
inertia of the oscillating impurity molecule is displaced
from the equilibrium position by the distances u, which
are small compared to the lattice parameter R1; i.e.,
u/R1 ! 1. The ratio d/R1 should be regarded as the sec-
ond inherent small parameter of the problem.

By using relationship (5), potential (3) can be repre-
sented in the form

(6)

where

Here, n and N are the unit vectors that specify the direc-
tions from the equilibrium position Oc of the center of
inertia of the impurity to the sites corresponding to the

U V1 ρ1n wd u–+( ) V1 ρ1n wd– u–( )+{ }
n

∑=

+ V2 ρ2N wd u–+( ) V2 ρ2N wd– u–( )+{ } ,
N

∑

ρ1n R1d R0, ρ2N– R2D R0.–= =
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nearest neighbors in the layer and the substrate, respec-
tively; that is,

(7)

where

Now, we expand potential (6) into a series in terms of
small additions |u ± wd | ! ρ1, 2. In the fourth order, we
have

(8)

where the subscript a indicates the order of smallness of
the corresponding term in relationship (6). The poten-
tial should be expanded up to the fourth-order terms,
because it is these terms which account for a nontrivial
angular dependence of the crystal field for the impurity
that essentially affects the rotational spectrum of the
impurity molecule [15]. The zeroth-order term in
expression (8) is an insignificant constant and can be
omitted. The first-order term, which is independent of
the molecular orientation, can be written as

(9)

In what follows, we will use the designation

(10)

where the subscript α is equal to 1 for quantities refer-
ring to the matrix and 2 for quantities relating to the
substrate. The superscript m = 1, 2, 3, and 4 indicates
the order of the derivative. For subsequent consider-
ation, it is expedient to note the following facts. As is
seen from definition (7), the Z components of all the
vectors ni (i = 1, …, 6) are equal to each other. The same
holds for the vectors Ni (i = 1, 2, and 3). In order to sim-
plify the representation, these components are conve-
niently designated as follows:

(11)

n1 2, b1 1± 0 ζ–, ,( ), n3 4 5 6, , , b1
1
2
---± 3

2
-------± ζ–, , 

  ,= =

N1 2, b2
3

2
-------± 1

2
--- 3 γ ζ+( )–, , 

  ,=

N3 b2 0 1– 3 γ ζ+( )–, ,( ),=

ζ  = 
z0

R1
-----, b1 = 1 ζ 2

+( )
1/2–

, b2 = 1 3 γ ζ+( )2
+[ ]

1/2–
.

U V
a( ) u w,( ),

a 0=

4
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V
1( ) u( ) 2 D1

1( ) nu( )
n

∑ D2
1( ) Nu( )

N

∑+ .–=

Dα
m( ) ∂m

Vα ρα( )

∂ρα
m

------------------------,=

p1 b1ζ , p2– 3b2 γ ζ+( ).–= =
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The condition for equilibrium of the center of inertia of
the molecule is that relationship (9) be equal to zero.
This leads to the equation

, (12)

which determines the parameter ζ. The magnitude and
sign of the ζ parameter considerably depend on the
matrix and the substrate material. The estimates made
for real systems of the Ar(Kr, Xe)–N2(O2) type demon-
strate that the heavier the matrix atoms, the closer the
equilibrium position of the impurity to the layer plane.
In the case of very heavy atoms, for example, Xe, the
center of inertia of the molecule is located between the
layer and substrate; i.e., the ζ parameter has a negative
sign.

After a number of transformations, the second-order
term takes the form

(13)

Here,

(14)

where

Note that the coefficients G0 and Gz in formula (13)
have a positive sign. It follows from expression (13)
that, to the second order in the parameters d/R1 and
u/R1, the translational and rotational motions of the
impurity molecule are independent. In this case, the
center of inertia of the molecule moves like an anisotro-
pic spatial oscillator.

The interaction between the translational and rota-
tional degrees of freedom of the molecule arises begin-
ning with the third-order terms. We will restrict our
consideration of this interaction to the main approxima-
tion (linear in u). By ignoring the terms cubic in u,
which describe the anharmonicity of oscillatory motion
of the center of inertia of the impurity and are of no
interest in our problem, the third-order term can be rep-
resented by the expression

(15)

zα pα Dα
1( )

α 1 2,=

∑ 0=

V
2( ) u w,( ) = 

Gz G0+
2

------------------ ux
2

uy
2

+( )
Gz

2
------uz

2 G0d
2

2
------------wz

2
.–+

G0 zα Aα 3bα
2

2–( ),
α 1 2,=
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Gz 2 zα Dα
2( )

bα
2

Aα–( ),
α 1 2,=

∑=

Aα Dα
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Dα
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/ρα .–=

V
3( ) u w,( ) H int = –d

2
f νuν, ν  = x

ν
∑ y z., ,≡
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Here,

(16)

where Qij is the dimensionless quadrupole molecule
moment written as

(17)

∆ij is the Kronecker symbol (i, j = x, y, and z), and the

matrices  have the form

(18)

The quantities K0, K1, and K2 are defined by the rela-
tionships

(19)

The first term in expression (16) is independent of
the molecular orientation and can be taken into account
by two methods. On the one hand, this term can be
introduced into the equilibrium condition (12), which
results in a small correction ~(d/ρα)2 to the parameter ζ.
Since the parameter ζ enters into the coefficients G0 and
Gz, the corresponding correction also arises in these
coefficients. On the other hand, for the unchanged equi-
librium condition (12), the first term in expression (16)
can be retained and taken into consideration inter-
changeably with the other terms that are dependent on
w. In this case, we also obtain the correction ~(d/ρα)2 to
the coefficients G0 and Gz. This correction precisely
coincides with that derived in the first case. Therefore,
both methods of including the contribution of the first
term in expression (16) lead to the same result. In what
follows, we will use the second method, which seems
to be more reasonable.

f ν K0
K1
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Qij w( ),

ij

∑+=
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P

The fourth-order terms in the potential energy of the
impurity–matrix–substrate system can be represented
by the expression

(20)

Here,

(21)

When writing expression (20), we retained only the
terms that refer to the crystal field and determine the
nontrivial angular dependence of the potential energy
for the rotator. Particularly, in formula (20), the second
term associated with the substrate leads to lowering of
the symmetry of the system (to the symmetry group S6)
and to removal of the degeneracy of the z component of
the impurity angular momentum. The term applying the
correction ~(d/ρα)2 to the coefficient G0 was also
retained in expression (20). We disregarded the terms

(~ ) that correspond to the fourth-order anharmonic-
ities and the terms that describe the translational–rota-
tional interaction and have orders higher than those in
relationship (15). The corrections associated with these
terms, if required, can be allowed for in terms of the
perturbation theory.

Hence, with allowance made for the foregoing,
Hamiltonian (1) of the system takes the following form:

(22)

Here,

(23)

where

(24)
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The term Hc is given by

(25)

and the term Hint is defined by relationship (15). The

coefficients  and G1 in expression (25) are of posi-
tive sign, and the coefficient Gs is of negative sign.
From relationships (14) and (21), it is seen that the first
two terms in expression (25) are determined by the
matrix and the substrate, whereas the last term with a
lower symmetry (the symmetry group S6) is associated
only with the crystal field of the substrate. The coeffi-
cient of the last term is one order of magnitude less than
the coefficients of the first two terms.

In the case when the center of inertia of the impurity
molecule is fixed and located at the origin of the coor-
dinates, the rotational part of Hamiltonian (22) trans-
forms to the corresponding relationship obtained in
[31].

As follows from expression (24), the translational
frequency Ωz is always lower than the frequency Ω⊥ .
Physically, this result is quite obvious, because the
motion in the direction perpendicular to the layer is less
hindered compared to that in the layer plane. It is of
interest that, as the mass of atoms forming the matrix
and substrate increases, the frequency Ωz increases
monotonically, whereas the frequency Ω⊥  decreases
monotonically.

In order to analyze how the oscillatory motion of the
center of inertia of the molecule affects its rotation, we
will use two methods, namely, the functional-integral
and canonical-transformation approaches.

4. THE FUNCTIONAL-INTEGRAL METHOD

In this section, we will formally separate the trans-
lational and rotational degrees of freedom in the frame-
work of the functional-integral method. In this method,
the partition function Z of the system under consider-
ation has the following form within an insignificant
normalizing factor [30]:

(26)

where the total action for the impurity

is expressed through the Lagrangian +(τ), which
depends on the imaginary time τ and has the form

(27)

Hc –
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Here,

(28)

(29)

and the dot means differentiation with respect to τ.
With the aim of eliminating the translational degrees

of freedom, we represent the total action S as the sum
of two terms. The first term S0 depends only on the rota-
tional degrees of freedom and the second term S1
includes both rotational and translational degrees of
freedom, that is,

Let now us expand uν(τ) (entering into S1) into a series
in terms of the Matsubara frequencies ωn = 2πnT (n =
0, ±1, …), that is,

Next, in integral (26), we change the variables

(30)

where ^ν(ωn) are the transforms of components (16) of
the vector fν(τ). After integration over the translational
variables, the partition function (26) takes the form of
the product Z = ZtrZ1, where the first multiplier accounts
for the oscillatory motion of the center of inertia of the
molecule and represents the partition function of an
oscillator [33]. The second multiplier is defined by the
expression

(31)

where the term

(32)

describes the rotation of the molecule with allowance
made for the influence of oscillations of the center of
inertia on the rotation. In our problem, the translational
frequencies Ων are the largest energy parameters. On
the other hand, as was noted above, our interest here is

+tr
M
2
----- u̇ν

2 Ων
2
uν

2
+( ),

ν
∑–=

+int H int, +c– Hc,–= =

+rot
J
2
--- ∂w

∂τ
------- 

 
2

–
J
2
--- ϑ̇ 2 ϕ̇2 ϑsin

2
+( ),–= =

S0 τ +rot +c+( ), S1d

0

β

∫ τ +tr +int+( ).d

0

β

∫= =

uν τ( ) T ξν ωn( ) iωnτ–( ),exp
n

∑=

ξν ωn( ) τuν τ( ) iωnτ( ).expd

0

β

∫=

ξ̃ ν ωn( ) ξν ωn( ) d
2

M
-----

^ν ωn( )

ωn
2 Ων

2
+

--------------------,–=

Z1 $ w τ( )[ ] S0 ∆S+( ),exp∫=

∆S
Td

4

2M
---------

^ν ωn( )^ν ωn–( )

ωn
2 Ων

2
+

-----------------------------------------
n

∑
ν
∑=
2



1274 ANTSYGINA et al.
in the temperature range T ≤ B; hence, the temperature
in the given problem is the smallest energy parameter.
On this basis, by analogy with the rearrangement per-
formed in [30], after the inverse transformation with
respect to time, we obtain the following relationship for
the additional term:

(33)

The terms in relationship (33) describe essentially dif-
ferent effects. The first term contains the additive con-
stant that shifts the energy origin and also the compo-

nents that renormalize the coefficients , G1, and Gs

in expression (25) for the crystal field. After a number
of manipulations with the use of formulas (16) and
(18), the corresponding corrections can be represented
in the form

(34)

From expressions (14), (21), and (34), it follows that

the correction  to the term proportional to  is of
the order of (d/ρ1)2, whereas the corrections ∆G1 and
∆Gs do not depend on d. For real systems, all these cor-
rections turn out to be considerable in magnitude. Note

that the signs of the corrections  and ∆G1 depend
on a particular system, whereas the correction ∆Gs is
universally positive and, thus, decreases the rotational
barrier in the low-symmetry term in expression (25).
Therefore, the translational–rotational interaction leads
to an efficient isotropization of the crystal field.

The second term in relationship (33) is the quadratic
form of the components of the angular velocity  of
the rotator and, hence, is the addition to the rotational
kinetic energy for the impurity molecule. The corre-
sponding additional term in the rotational part of the
Lagrangian +rot has the form

(35)

where
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(38)

Unlike the potential energy, in which only constants are
renormalized, allowance made for the effects of the
translational–rotational interaction leads to a change in
the type of rotational kinetic energy of the system,
which takes the symmetric quadratic form of the angu-
lar velocity components . It is also easy to demon-
strate that Lagrangian (35) is invariant with respect to
transformations of the group S6.

The corrections to the moment of inertia of the free
rotator J = Md2 are conveniently represented as terms
of two types. Terms of the first type are the relatively
small positive additions (36), which are independent of
the molecular orientation and differ for rotator rotations
about the 0Z axis and the axes lying in the plane z = 0.
By virtue of these terms, the rotator proves to be
“heavier” and becomes anisotropic at any rotation
angle. Terms of the second type are described by
expression (37) and depend on the molecular orienta-
tion. Specifically, this group of terms involves the off-
diagonal elements, which appear owing to the presence
of the anisotropic field of the substrate with a threefold
axis in the system. As a result, the inertial properties of
the impurity turn out to be very complex functions of
the rotation angles. Thus, the interaction between the
translational and rotational degrees of freedom of the
impurity molecule in the crystal field leads to the fact
that the molecule becomes a “parametric” rotator
whose dynamics significantly differs from the behavior
of a simple isotropic rotator. Physically, this effect
stems from the fact that the impurity molecule rotates
in the noninertial coordinate system related to its center
of inertia, which oscillates in the anisotropic potential
produced by the neighbors in the layer and the sub-
strate.

The approach proposed in this section enables us to
analyze how the translational degrees of freedom affect
the rotational dynamics of the molecule and to provide
a clear physical interpretation of the observed effects.
At the same time, when constructing the thermodynam-
ics, we face the necessity of performing the functional
integration in relationship (31). This integration cannot
be accomplished using an analytical method, because
the Lagrangian in relationship (31) has a complex form.
Consequently, thermodynamic functions of the system
should be calculated by numerical techniques. As
regards the numerical procedure, it is conveniently con-
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structed reasoning from the eigenvalue problem, i.e., by
solving the appropriate Schrödinger equation. One of
the most delicate moments in the realization of the
above technique is correct representation of the Hamil-
tonian, which should be a Hermitian conjugate operator
analog of the quadratic form (35). In principle, this pro-
cedure is realizable; however, the approach outlined in
the next section seems to be more reasonable for deriv-
ing the Hamiltonian of the system under investigation.

5. THE CANONICAL-TRANSFORMATION 
METHOD

The translational and rotational degrees of freedom
can be efficiently separated in terms of the canonical-
transformation method as directly applied to Hamilto-
nian (22). As was noted in the preceding section, the
rotational constant B of the impurity molecule in the
studied system is small compared to the frequencies of
translational oscillations of its center of inertia. This
circumstance is essential to the procedure described
below. First, we transform such components in Hamil-
tonian (22) that involve the translational variables; i.e.,
we take the unitary transformation of the Hamiltonian
H0 = Htr + Hint, that is,

(39)

where

(40)

The quantities σν are chosen such that the coefficients
of the terms linear in uν are equal to zero. As a result,
we have

(41)

The addition obtained in expression (41) leads to the
same effects as the first term in formula (33); i.e., it
renormalizes all the coefficients in Hamiltonian (25). In
this case, the form of the crystal field remains

unchanged and the corrections , ∆G1, and ∆Gs

exactly coincide with the corrections defined by rela-
tionships (34).

After transformation similar to that given by expres-
sions (39) and (40), the rotational kinetic energy takes
the form

(42)

Here,

(43)

H̃0 iŝ1–( ) H tr H int+( ) iŝ1( ),expexp=

ŝ1 σνPν, σν

ν
∑ d

2
f ν

MΩν
2

------------.–= =

H̃0 H tr ∆H0, ∆H0–
d

4

2M
--------

f ν
2

Ων
2

-------.
ν
∑= =

∆G̃0

iŝ1–( )BL̂
2

iŝ1( )expexp BL̂
2 ∆H1 ∆H2.+ +=

∆H1 d
2
B L̂T̂ T̂L̂+( ), ∆H2– d

4
BT̂

2
.= =
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From relationships (43) and (44), it follows that the

addition ∆H2 is quadratic in . In the limit of low tem-
peratures, after averaging over the oscillatory variables,
the term ∆H2 leads to the same effects as the term ∆H0.
However, the arising corrections have higher orders in
B/Ων.

The operator ∆H1 is linear in translational angular
momenta of the center of inertia of the impurity and
depends on the translational and rotational variables. In

order to eliminate the terms linear in , we take the
second canonical transformation

(45)

where

(46)

As a result, we obtain

(47)

where

(48)

It is evident that the second canonical transformation
should result in the appearance of additions of higher
orders in B/Ων in Hamiltonian (15).

Our interest is only in the operator part (with respect
to the angular variables) of ∆H3, because the nonopera-
tor part leads to renormalization of the crystal field
amplitude with corrections of higher orders ~(B/Ων)2 as
compared to ∆H2. For the same reason, we disregard
the corrections arising from the unitary transformation
of Hc. By using relationships (18) and (48), for the
operator part of ∆H3, we obtain 

(49)

where

and the quantities ∆J⊥ , ∆Jz, and ∆Jij(w) are defined by
expressions (36) and (37). Thus, relationship (49) rep-

T̂ w P̂, P̂× 2
M
----- P̂ν
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Ων
2

-------, Λν
i

ν
∑ Γν

ij
w j.= = =

P̂ν

P̂ν
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2
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∆H3 2B
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resents the correction ∆Hrot to the operator for the rota-
tional kinetic energy.

The change-over from Hamiltonian (49) to the clas-
sical Lagrangian is accomplished through the transfor-
mation

(50)

where t is the real time. As a result of this change-over,
the first three terms in formula (49) exactly coincide
with the analogous terms in Lagrangian (35). The clas-
sical analog of the last term [in formula (49)] providing
a Hermitian character of the complete Hamiltonian of
the system is reduced to the total derivative of the func-
tion

with respect to the imaginary time and, hence, does not
contribute to the classical action of the system.

6. DISCUSSION

Undeniably, the most pronounced effect resulting
from the interaction between the translational and rota-
tional degrees of freedom of the molecule rotator
resides in the radical change in the inertial properties of
the molecule. This manifests itself in the change in the
form of the operator for the rotational kinetic energy as
compared to the corresponding expression for the free
rotator. The inertia tensor components for the molecule
become functions of molecular orientation. Physically,
this is explained by the fact that the coordinate system
related to the center of inertia of the rotator is noniner-
tial due to the complex translational motion executed
by the center of inertia in the external (crystal) field.
The discussed phenomena are of special importance in
such two-dimensional atomic–molecular systems and
three-dimensional lattices (for, example, face-centered
close-packed structures) in which the rotator moves in
the crystal potential without an inversion center and,
hence, any rotator rotation is attended by the displace-
ment of the center of inertia and vice versa. Therefore,
the translational–rotational interaction is the crucial
factor controlling the dynamics of the molecule at the
lattice site. As a result, the molecule, in terms of rota-
tional motion, transforms into a parametric rotator
whose dynamic response radically differs from the
behavior of a free rotator. In particular, the effective
kinetic energy can be represented in the generalized
quadratic form of the angular momentum (angular
velocity) components with a symmetry identical to that
of the external crystal field.

Certainly, the translational–rotational interaction
also results in renormalization of the parameters of the
crystal potential. However, although the corresponding
corrections are sufficiently large (25–30% for a typical

F –Jẇ J
dw
dt
-------,=

Ψ w( )
λ1 λ2–

4
----------------wz

2
1 wz

2
–( ) wywz 3wx

2
wy

2
–( )+=
P

cryosystem), the potential form determined by the sym-
metry of the system remains unchanged.

The key point in our problem is the adequate sepa-
ration of the translational and rotational degrees of free-
dom of the quantum rotator in the external field with the
specified symmetry. In the present work, this procedure
was performed in the framework of two approaches,
namely, the Lagrangian and Hamiltonian formalisms.
Needless to say, both approaches eventually lead to
completely coinciding results; however, each of them is
of quite independent significance in the analysis of so
complex a problem as the investigation of the influence
of translations on the effective properties of a rotational
subsystem. The results obtained with the use of the
Lagrangian formalism enable us to analyze qualita-
tively the complex behavior of the parametric rotator in
the framework of classical mechanics. On the other
hand, the Hamiltonian formalism, which is based on the
canonical transformation, immediately gives the Her-
mitian conjugate operator for the rotational kinetic
energy. The combined use of the results derived within
both approaches makes it possible to change over from
classical mechanics to quantum mechanics and vice
versa and, thus, to check the reliability of the rather
complex computational technique as a whole.

In this work, the aforementioned scheme is realized
for an impurity molecule moving in a field generated by
a system of fixed surrounding atoms. However, it is
amply clear that the results obtained will be qualita-
tively correct in the case of vibrations of the surround-
ing monoatomic lattice (i.e., in the case of phonon
interaction) and also in the case when the adjacent sites
are occupied by similar molecules and when librons
arising in the system of the aforementioned parametric
rotators occur in addition to phonons in the lattice. The
results of the present work can also be rather easily
modified for the problem of the effective substrate
potential acting on a molecule adsorbed on the crystal
surface. The above consideration allows us to make the
inference that the simplest potentials usually used for
solving such problems [34], as a rule, cannot be consid-
ered to be adequate for a real situation, particularly
where the rotational excitation spectra of adsorbates are
involved [35–37]. These problems and the effects of the
translational–rotational interaction in the thermody-
namics and kinetics of cryocrystals (specifically, two-
dimensional cryocrystals) will be investigated in sepa-
rate works.
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Abstract—The specific features in the generation and motion of dislocations are investigated in Si : N single
crystals grown by the Czochralski method. The motion of dislocation loops is analyzed by the four-point bend-
ing technique in the temperature range 500–800°C. The dislocation loops are preliminarily introduced into the
samples with the use of a Knoopp indenter at room temperature. It is found that doping with nitrogen leads to
a considerable increase in the critical stress of the onset of dislocation motion from surface sources (indenta-
tions) and in the stress of the generation of dislocations from internal sources. The velocity of dislocation
motion in Si : N crystals is less than that in undoped crystals (under comparable loads). The hardening effect
of nitrogen is explained by the fact that nitrogen promotes the decomposition of a solid solution of oxygen in
silicon during postcrystallization cooling. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Silicon wafers of large diameters are widely used in
microelectronics. In this respect, investigation into their
mechanical strength is a topical problem. An increase
in the wafer diameter considerably increases the proba-
bility of generating dislocations in the wafers in the
course of heat treatment and epitaxial growth processes
extensively used in producing ultralarge-scale inte-
grated circuits. Hence, analysis of the factors responsi-
ble for the specific features in the generation and
motion of dislocations in initially dislocation-free
wafers have acquired particular importance. It is well
known (see, for example, [1]) that the dynamics of dis-
locations in semiconductor single crystals is substan-
tially affected by impurities. In silicon single crystals,
first and foremost, these are dopants of Group III and V
elements of the periodic table and oxygen. The effect of
these impurities on the mechanical properties of silicon
has received sufficient attention in the literature.

The effect of nitrogen as an impurity has been exam-
ined to a considerably lesser extent, even though, in
recent years, this element has found wide use as a
dopant for the Czochralski growth of large-sized dislo-
cation-free silicon single crystals containing no
vacancy micropores [2]. Abe et al. [3] and Sumino et al.
[4] studied single crystals grown by crucibleless melt-
ing and showed that doping with nitrogen leads to their
hardening, specifically to an increase in the upper yield
stress. Yonenaga and Sumino [5] investigated the dislo-
cation mobility in Czochralski-grown Si : N single
crystals at temperatures of 600–800°C. These authors
did not reveal a noticeable effect of nitrogen on the dis-
location dynamics in the studied samples. Unfortu-
1063-7834/02/4407- $22.00 © 21278
nately, no data on structural features of the studied crys-
tals and, primarily, on their type (whether they were
vacancy-type or interstitial-type crystals [6]) were
reported in [5].

The purpose of the present work was to investigate
the specific features in the generation and motion of
dislocations in vacancy-type dislocation-free Si : N sin-
gle crystals grown by the Czochralski method.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The samples used in the measurements were cut
from Si : (B, N) single-crystal wafers 150 mm in diam-
eter (resistivity, ~5 Ω cm). The crystals were grown by
the Czochralski method in a “vacancy” mode in the
〈001〉  direction. The nitrogen content was equal to 1.6 ×
1014 cm–3 for samples of series 1 and 1.6 × 1015 cm–3 for
samples of series 2. The oxygen content was ~(7–8) ×
1017 cm–3. A nitrogen-free wafer cut from the vacancy-
type crystal with approximately the same resistivity and
oxygen content (sample series 3) was used as a refer-
ence wafer. All the above samples were examined in the
postgrowth state.

The samples for mechanical testing were prepared
in the form of parallelepipeds 25 × 4 × 0.6 mm in size
with {100} large faces. The long side of the sample was
oriented along the 〈110〉  direction. The samples were
chemically polished in an acid mixture HF : HNO3 =
1 : 6 for 5 min. In the process, a layer ~40 µm thick was
removed from the surface. Then, several indentations
were made on the sample surface with the use of a
Knoopp indenter (the indenter load was 0.25 N, and the
002 MAIK “Nauka/Interperiodica”
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loading time was 15 s). After indentation, the sample
was subjected to four-point bending in a special setup
described in [7]. The mechanical testing was performed
at temperatures from 500 to 800°C. In order to decrease
the effect of transient processes associated with heating
and cooling, the sample was placed in a furnace pre-
heated to a given temperature and held under load; then,
the sample was removed from the setup and quenched
in air. The time of heating the sample to a testing tem-
perature did not exceed 5 min. The loading time was
20 min. The sample side containing indentations was
subjected to tensile deformation. The indentation of the
sample surface and the subsequent loading at a testing
temperature gave rise to dislocation half-loops in the
surface layer. These half-loops consisted of two 60°
segments and one fragment of a screw dislocation
aligned parallel to the sample surface. In our case, the
sample bending with the bending axis perpendicular to
the long side of the sample resulted in the activation of

four systems of glide dislocations: (111)[ ],

(111)[ ], ( )[ ], and ( )[101]. In the
experiments performed, we examined the mobility of
60° dislocation-loop segments.

The stresses responsible for the generation of dislo-
cations by internal sources in the wafer bulk were deter-
mined from the onset of the multiple generation of dis-
locations that were not induced by indentations. After
selective chemical etching, numerous slip bands were
observed on the surface of these samples and the sam-
ples themselves underwent macrobending.

The structural transformations in the studied sam-
ples were controlled by optical microscopy after selec-
tive etching in a mixture of hydrofluoric and chromic
acids (HF : 0.15M CrO3 = 1 : 1, 10 min). The density of
growth microdefects in all the samples under investiga-
tion was 105–106 cm–3.

101

011 111 011 111
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3. RESULTS

Figure 1 displays the dependences of the velocity of
dislocation motion on the applied shear stress at tem-
peratures of 500 and 600°C. It is seen that doping with
nitrogen leads to a noticeable decrease in the velocity of
dislocation motion under comparable stresses. This
effect is most pronounced at a temperature of 500°C.

Dislocations begin to move from indentations when
stresses exceed the critical stress τcr. This term is used
in reference to a stress corresponding to the onset of
motion of a dislocation loop with the minimum size
visible with an optical microscope (for example, we
reliably distinguished 2- to 3-µm dislocation loops
under the Polyvar microscope used in our investiga-
tions).

In the studied ranges of stresses and temperatures,
the results obtained are adequately described by the
standard relationship [8]

(1)

where V is the dislocation velocity, V0 is the constant
characterizing the crystal matrix, τ is the applied stress,
τ0 = 1 MPa, k is the Boltzmann constant, T is the tem-
perature, and E is the activation energy of dislocation
motion.

An increase in the applied stress is accompanied by
the generation and motion of dislocations from internal
sources in addition to the motion of dislocations from
indentations. The generation of dislocation by internal
sources in the sample bulk brings about an appreciable
plastic deformation and the formation of numerous slip
bands. In what follows, the stress of the onset of these
processes will be referred to as the stress of plastic
deformation τpl due to internal sources.

At testing temperatures of 700 and 800°C, our
attempts to construct the dependence of the dislocation
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Fig. 1. Dependences of the velocity of dislocation motion on the applied shear stress for samples of series (a) 3, (b) 1, and (c) 2.
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Fig. 2. Temperature dependences of the velocity of dislocation motion in samples of series (a) 3, (b) 1, and (c) 2.
velocity on the applied stress were unsuccessful. This is
explained by the fact that the stresses τcr at these tem-
peratures are close to the values of τpl, which compli-
cates control over the motion of dislocations generated
by indentations. As a result, the range of used stresses
at which it was possible to obtain reliable data on the
velocity of individual dislocations moving from inden-
tations appeared to be very narrow.

Figure 2 shows the temperature dependences of the
velocity of dislocation motion in the studied samples
under different applied stresses, which were con-
structed using the results of measurements at tempera-
tures of 500 and 600°C. The experimental points are
connected by straight dashed lines. The results obtained
allow us to roughly estimate the activation energy E of

τ c
r, 

M
Pa

500°C
600°C
700°C
800°C

120

100

80

60

40

20

0
0 8 12 16 204

Nitrogen concentration, 1014 cm–3

Fig. 3. Dependences of the critical stress of the onset of dis-
location motion on the nitrogen concentration in the studied
samples.
PH
dislocation motion. The calculated energies E for sam-
ple series 1, 2, and 3 are equal to 1.75, 1.80, and
1.70 eV, respectively.

The dependences of the critical stress τcr on the
nitrogen concentration in silicon wafers over the entire
range of temperatures are plotted in Fig. 3. As can be
seen from Fig. 3, doping with nitrogen results in a sub-
stantial (almost twofold) increase in the critical stress
τcr as compared to that in the reference samples. Note
that the maximum changes are observed at a nitrogen
concentration of 1.6 × 1014 cm–3. An increase in the
nitrogen concentration to 1.6 × 1015 cm–3 does not lead
to a further noticeable increase in the critical stress τcr.

The temperature dependences of the stresses τcr and
τpl for the studied samples are displayed in Fig. 4. It is
seen from this figure that doping with nitrogen not only
increases the critical stress τcr but also substantially
affects the processes associated with the generation and
motion of dislocations from internal sources, thus
increasing the stress τpl. It is worth noting that the
increase in τpl is more pronounced at temperatures
above 600°C.

The influence of nitrogen doping on the stresses τcr
(the lower bound of each bar) and τpl (the upper bound
of each bar) is illustrated by the histograms depicted in
Fig. 5. Changes in the stresses τcr and τpl with an
increase in the testing temperature at the same nitrogen
concentration in the samples under investigation are
shown in Fig. 5a. Changes in the stresses τcr and τpl with
an increase in the nitrogen concentration at the same
temperature of the samples are displayed in Fig. 5b. As
can be seen from these figures, an increase in the testing
temperature is accompanied by a considerable activa-
tion of internal sources of dislocation generation, which
results in a drastic decrease (by a factor of five or eight)
YSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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peratures. Numerals indicate the numbers of sample series. For samples deformed at a temperature of 500°C, the boundaries sepa-
rating differently colored regions correspond to stresses above which the samples undergo brittle fracture.

series 3 series 1 series 2
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in the stress τpl. At a temperature of 800°C, the stresses
τcr and τpl are virtually identical in all the studied sam-
ples.

In the samples deformed at a temperature of 500°C,
the brittle fracture is observed at stresses higher than a
certain applied stress. For this reason, the histogram
bars for a testing temperature of 500°C are separated
into black and white regions. The boundary separating
these regions corresponds to the stress above which the
samples undergo brittle fracture, and the upper bound
of the white region corresponds to the upper yield stress
of silicon at 500°C [9].

4. DISCUSSION

The experimental data obtained indicate that, in the
temperature range 500–800°C, deformation processes
in the studied samples are substantially affected by the
applied stresses. The generation and motion of disloca-
tions from surface concentrators of stresses can be reli-
ably observed only at temperatures of 500 and 600°C in
the shear stress range 30–130 MPa. With a further
increase in the stress, the samples undergo brittle frac-
ture in the course of deformation at 500°C and plastic
bending at 600°C. However, in the latter case, the sam-
ples also exhibit indications of brittle fracture.

An increase in the temperature to 700°C and, espe-
cially, to 800°C brings about an appreciable increase in
the silicon plasticity. In turn, this leads to a considerable
activation of internal sources of dislocation generation
in the bulk of the sample under investigation. At these
temperatures, the stress τpl decreases drastically and
becomes comparable to the critical stress τcr, the den-
sity of dislocations in the deformed samples increases
significantly, well-defined slip bands are observed on
the surface of these samples, and the samples them-
selves undergo purely plastic bending without any indi-
cations of brittle fracture even at shear stresses larger
than 50 MPa. All these factors substantially complicate
the reliable determination of the dynamic characteris-
tics of dislocations at the given temperatures. Thus, we
can state that a pronounced crossover from brittle frac-
ture to plastic bending occurs in the studied samples in
the temperature and stress ranges covered. This cross-
over is observed at a temperature slightly exceeding
600°C.

The doping with nitrogen leads to hardening of the
single-crystal wafers. This manifests itself in a consid-
erable increase in the stresses τcr and τpl, a noticeable
decrease in the dislocation velocities, and an increase in
the activation energy of dislocation motion. The most
appreciable changes are observed already at a nitrogen
concentration of 1.6 × 1014 cm–3. At this level of doping,
the critical stress τcr is nearly doubled (at a temperature
of 600°C) and the activation energy of dislocation
motion increases by a factor of 1.15 as compared to
those for the reference sample not doped with nitrogen.
Note that the stress τpl in the studied samples with this
P

concentration of nitrogen also substantially increases in
the temperature range 700–800°C. A further increase in
the nitrogen concentration to 1.6 × 1015 cm–3 is not
attended by appreciable hardening. Furthermore, at
temperatures of 700 and 800°C, the stress τpl in the
samples at this level of nitrogen doping becomes even
smaller than that in the samples with a nitrogen concen-
tration of ~1.6 × 1014 cm–3.

The experimental data obtained are insufficient to
make unambiguous inferences about the nature of the
hardening effect of nitrogen. It is worth noting that dop-
ing with nitrogen even at concentrations of the order of
1014 cm–3 substantially affects the dynamic properties
of dislocations, whereas a similar effect for traditional
donor and acceptor dopants in silicon is observed at
concentrations higher by three or four orders of magni-
tude [10]. Therefore, we can assume that the hardening
effect of nitrogen stems not from the direct interaction
of nitrogen atoms with generated dislocations but from
the influence of nitrogen on the state of an ensemble of
intrinsic point defects in a growing single crystal. This
influence results in changes in the formation of growth
microdefects during postcrystallization cooling of an
ingot. Specifically, the hardening effect of nitrogen can
be associated with a more rapid decomposition of an
oxygen supersaturated solid solution in silicon at tem-
peratures below 800°C and a considerable increase in
the content of disperse oxygen-containing precipitates
(clusters) acting as efficient stoppers against disloca-
tion motion in the crystal. This is confirmed by the
results of the electron microscopic investigation per-
formed by Nakai et al. [11], according to which, in
Czochralski-grown crystals doped with nitrogen, an
increase in the nitrogen concentration leads to a
decrease in the size of oxygen-containing precipitates
and an increase in their density.

At the same time, the fact that an increase in the
nitrogen concentration to 1.6 × 1015 cm–3 in the samples
leads to a slight decrease in the stress τpl (as compared
to that in the samples with a nitrogen concentration of
1.6 × 1014 cm–3) does not exclude the possible direct
effect of nitrogen on the generation and motion of dis-
locations. Since the solubility of nitrogen in silicon is
very limited, the formation of a nitrogen supersaturated
solid solution in silicon and its partial decomposition
with the formation of disperse nitrogen-containing pre-
cipitates cannot be ruled out at nitrogen concentrations
of the order of ~1015 cm–3. The decomposition can pro-
ceed both directly during cooling of the grown crystal
and upon subsequent heat treatment.

5. CONCLUSION

Thus, it was established that doping with nitrogen
results in a considerable increase in the critical stress of
the onset of dislocation motion from indentations and
in the stress of the dislocation generation by internal
sources. Under comparable loads, the velocities of dis-
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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location motion in crystals doped with nitrogen are less
than those in undoped crystals. The assumption was
made that the hardening effect of nitrogen is associated
with the fact that nitrogen promotes the decomposition
of an oxygen supersaturated solid solution in a crystal
during postcrystallization cooling. This leads to a sub-
stantial increase in the concentration of disperse oxy-
gen-containing precipitates hindering the generation
and motion of dislocations in the ingot bulk.
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Abstract—The specific features in the generation and motion of dislocations in silicon single-crystal wafers
after different heat treatments are investigated by the four-point bending technique. It is demonstrated that
annealing of silicon single-crystal wafers at a temperature of 450°C leads to their substantial hardening as
compared to the postgrowth state. The oxygen-containing precipitates and precipitate dislocation pileups
formed in the silicon wafer bulk during multistage heat treatment are efficient heterogeneous nucleation sites
of dislocations under the action of thermal or mechanical stresses. It is found that the multistage heat treatment
of the silicon wafers under conditions providing the formation of an internal getter within their bulk results in
considerable disordering of the wafer structure. The inference is made that the formation of the defect state in
the crystal lattice of silicon and the strength characteristics of silicon wafers substantially depend on the tem-
perature–time schedules of the low-temperature stage of multistage heat treatment. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the mechanical strength of disloca-
tion-free silicon single-crystal wafers and, especially,
the problems concerning the nature of heterogeneous
nucleation of dislocations in these wafers and the fac-
tors responsible for the dynamic properties of disloca-
tions have been the center of attention of many
researchers [1–5]. This is associated with at least two
reasons. On the one hand, the existing tendency of the
diameter of grown single crystals to increase leads to a
considerable increase in the probability of generating
dislocations in silicon wafers during high-temperature
treatments used to produce instrumental compositions
due to an increase in both the thermal stress in silicon
wafers and their own weight. On the other hand, sili-
con wafers with an internal getter are used in manufac-
turing modern ultralarge-scale integrated circuits. This
getter in silicon wafers is produced through the con-
trolled decomposition of an oxygen supersaturated
solid solution in silicon. Depending on their nature and
size, the oxygen-containing precipitates formed in this
case in the wafer bulk can play the role of heteroge-
neous nucleation sites of dislocations and act as stop-
pers against dislocation motion, thus hindering the dis-
location generation and propagation [6, 7]. In the
present work, we elucidated how multistage heat treat-
ments used to form the internal getter in silicon wafers
affect the dynamic properties of dislocations in these
wafers.
1063-7834/02/4407- $22.00 © 21284
2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The samples used in the measurements were cut
from vacancy-type dislocation-free silicon single-crys-
tal wafers 150 mm in diameter. The crystals were
grown by the Czochralski method in the 〈100〉  direc-
tion. The concentration of oxygen dissolved in the sam-
ples was equal to (7–8) × 1017 cm–3. The resistivity var-
ied from 1 to 5 Ω cm. The silicon wafers were exam-
ined both in the postgrowth state and after different
multistage heat treatments, including treatment under
conditions providing the formation of an internal getter
in the silicon wafers (the heat treatment conditions for
the wafers under investigation are given in Table 1).

Table 1.  Conditions of multistage heat treatment of silicon
wafers

Sample series no. Heat treatment conditions

1 Postgrowth state

2 1000°C/15 min + 450°C/16 h

3 1000°C/15 min + 650°C/16 h

4 1000°C/15 min + 450°C/16 h + 
800°C/4 h + 1000°C/4 h

5 1000°C/15 min + 650°C/16 h + 
800°C/4 h + 1000°C/4 h
002 MAIK “Nauka/Interperiodica”
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Table 2.  Structural characteristics of the initial samples

Sample
series no.*

Half-width of
the rocking curve

Number of interference max-
ima in sectional topograms

Microdefect concentration, cm–3

X-ray sectional 
topography

optical
microscopy

electron
microscopy

1 2.9″ The initial portion 
of the fourth maximum

– ~8 × 105 –

2 2.9″ 3 – ~5 × 105 –

3 3.1″ 3 – ~5 × 105 –

4 4.7″ Not found ~1 × 109 ~3 × 109 ~4 × 1011

5 4.0″ The initial portion 
of the first maximum

~1 × 1010 ~2 × 1010 ~1 × 1011

* Numbering of the sample series corresponds to that in Table 1.
For mechanical testing, the samples were prepared
in the form of parallelepipeds 25 × 4 × 0.6 mm in size
with {100} large faces. The long side of the sample was
oriented along the 〈110〉  direction. The samples were
chemically polished in an acid mixture HF : HNO3 =
1 : 6 for 5 min. In the process, a layer ~40 µm thick was
removed from the surface. Then, several indentations
were made on the sample surface with the use of a
Knoopp indenter (the indenter load was 0.25 N, and the
loading time was 15 s). After indentation, the sample
was subjected to four-point bending in a special setup
described in [8]. The mechanical testing was performed
at temperatures from 600 to 800°C. In order to decrease
the effect of transient processes associated with heating
and cooling, the sample was placed in a furnace pre-
heated to a given temperature and held under load; then,
the sample was removed from the setup and quenched
in air. The time of heating the sample to a testing tem-
perature did not exceed 5 min. The loading time was
20 min. The sample side containing indentations was
subjected to tensile deformation. The indentation of the
sample surface and the subsequent loading at a testing
temperature gave rise to dislocation half-loops in the
surface layer. These half-loops consisted of two 60°
segments and one fragment of a screw dislocation
aligned parallel to the sample surface. In our case, the
application of bending stresses along the [110] direc-

tion with respect to the [ ] bending axis led to the
activation of four systems of glide dislocations:

(111)[ ], (111)[ ], ( )[ ], and ( )[101].
In these experiments, we examined the mobility of 60°
dislocation-loop segments.

The stresses responsible for the generation of dislo-
cations by internal sources in the wafer bulk were deter-
mined from the onset of the multiple generation of dis-
locations that were not induced by indentations. After

110

101 011 111 011 111
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selective chemical etching, numerous slip bands were
observed on the surface of these samples and the sam-
ples themselves underwent macrobending.

The regularities in the generation and motion of dis-
locations in the silicon samples were investigated by
optical microscopy, x-ray diffractometry, x-ray topog-
raphy, and transmission electron microscopy. For opti-
cal microscopy, the samples were subjected to selective
etching in a mixture of the composition HF : 0.15M
CrO3 = 1 : 1.

3. RESULTS

The results of investigations into the structural per-
fection of the initial samples in the postgrowth state and
after different heat treatments are presented in Table 2.
All the samples under investigation contain microde-
fects. The microdefect density in the as-grown samples
is of the order of ~8 × 105 cm–3. The heat treatments at
temperatures of 450 and 650°C (sample series 2 and 3)
do not lead to considerable changes in the density of the
defects observed. The multistage heat treatment under
conditions providing the formation of the internal getter
(sample series 4 and 5) results in a drastic increase in
the microdefect density to 109–1010 cm–3 according to
optical microscopy and x-ray topography and to
1011 cm–3 according to transmission electron micros-
copy. Since the capabilities of revealing high microde-
fect densities by optical microscopy and x-ray topogra-
phy are rather limited, the results of electron micro-
scopic investigations should be treated as more reliable
data. An increase in the microdefect density in the sam-
ples is accompanied by a substantial broadening of the
rocking curves and a decrease in the number of interfer-
ence maxima (pendellösung) observed in the sectional
topograms (Fig. 1). These data indicate that the forma-
tion of the internal getter in the silicon wafers is
2
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Fig. 1. Sectional topograms for samples of series (a) 1 and (b) 4 [(220) refection, MoKα radiation].
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Fig. 2. Dependences of the velocity of dislocation motion in samples of series 1 on (a) the shear stress and (b) temperature. Dashed
lines in panel (a) indicate the critical stresses τcr (the corresponding values in terms of MPa are given in circles).
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attended by an appreciable deterioration of their inte-
grated structural perfection.

The dependences of the velocity of dislocation
motion on the shear stress and temperature for samples
in the postgrowth state (sample series 1) are depicted in
Fig. 2. In the studied ranges of stresses and tempera-
tures, the results obtained are satisfactorily described
by the standard relationship [1]

(1)

where V is the dislocation velocity, V0 is the constant
characterizing the crystal matrix, τ is the applied stress,
τ0 = 1 MPa, k is the Boltzmann constant, T is the tem-
perature, and E is the activation energy of dislocation
motion. The activation energy calculated from the data
obtained is equal to 1.8 eV.

It should be noted that dislocations begin to move
from indentations when stresses exceed the critical
stress τcr. In what follows, this quantity will be referred
to as the critical stress of the onset of dislocation
motion. In our case, the critical stress τcr is considered
to mean a stress corresponding to the onset of motion
of a dislocation loop with the minimum size visible
with an optical microscope. In actual fact, dislocation
loops ~3 µm in size could be reliably distinguished
with the Polyvar optical microscope used in our inves-
tigations. As can be seen from Fig. 2, the critical stress
τcr considerably decreases with an increase in the tem-
perature.

Figure 3 shows the dependences of the velocity of
dislocation motion from indentations on the shear
stress at a temperature of 600°C and the critical stress
τcr for samples of series 2, 3, and 5. It is worth noting
that the critical stress τcr for the samples after multi-
stage heat treatment under the conditions of the forma-
tion of the internal getter (sample series 5) is substan-
tially less than those for the samples after low-temper-
ature heat treatment (sample series 2 and 3). The
dislocation mobility in samples of series 5 is suffi-
ciently high at considerably smaller shear stresses. In
these samples, the multiple generation of dislocations
by internal sources is observed at stresses above
40 MPa, which appreciably complicates control over
the motion of dislocations generated by indentations.
The same situation occurs in samples of series 2 and 3
at stresses higher than 95 and 80 MPa, respectively.

In samples of series 4, the multiple generation of
dislocations by internal stresses is observed at shear
stresses less than 10 MPa when dislocations generated
by indentations remain immobile. For this reason, we
failed to examine the dependences of the velocity of
dislocation motion on the applied stress for samples of
this series. With an increase in the testing temperature
to 800°C, this effect was already observed in samples of
series 3 and 5, which made the determination of the dis-
location velocities at this temperature impossible. It
should be noted that the shear stress of the onset of dis-

V V0 τ /τ0( )n
E/kT–[ ] ,exp=
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location generation by internal sources in the as-grown
crystals (sample series 1) is considerably larger than
that in the heat-treated samples. This circumstance
allows examination of the dislocation mobility in these
samples at temperatures as high as 1000°C (Fig. 2). The
sole exception is provided by samples of series 2 in
which the critical stress τcr and the stress of dislocation
generation by internal sources at testing temperatures
of 600 and 800°C are substantially larger than those in

24
65 66
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Sample series 5
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τ, MPa

V, cm/s

Fig. 3. Dependences of the velocity of dislocation motion
on the shear stress at 600°C for samples of series 2, 3, and
5. Dashed lines indicate the critical stresses τcr (the corre-
sponding values in terms of MPa are given in circles).
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Fig. 4. Histogram of the critical stress of the onset of dislo-
cation motion from indentations (the lower bound of each
bar) and the critical stress of the onset of multiple disloca-
tion glide from internal sources (the upper bound of each
bar) in the studied samples at 600°C.
2
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0.5 µm 0.5 µm

(a) (b)

Fig. 5. (a) Bright-field (g = 220, s < 0) and (b) dark-field (g = 220, s > 0) transmission electron microscope images illustrating the
prismatic slip of dislocation loops by the action of oxygen-containing precipitates under mechanical loading of samples of series 4
and 5.
the as-grown samples. In samples of series 3, these
stresses are comparable at a testing temperature of
800°C.

Figure 4 depicts the histogram characterizing the
behavior of the studied samples in the course of
mechanical testing at 600°C. In this histogram, the
lower bound of each bar corresponds to the critical
stress τcr and the upper bound of each bar corresponds
to the stress of the onset of multiple dislocation gen-
eration by internal sources in the samples. The low-
temperature heat treatment at 450 and 650°C for 16 h
(sample series 2 and 3) leads to a considerable
increase in the critical stress τcr as compared to that in
the as-grown samples. Moreover, the stress of the
onset of multiple dislocation generation by internal
sources also increases in the samples heat treated at
450°C. The multistage heat treatment under condi-
tions providing the formation of the internal getter in
the silicon wafers (sample series 4 and 5) is accompa-
nied by a noticeable loss of their strength. From this
viewpoint, the four-stage heat treatment involving the
low-temperature stage at 450°C (sample series 4) is
the most dangerous. The critical stress τcr for samples
of series 5 is virtually comparable to those character-
istic of the samples in the postgrowth state. However,
the multiple dislocation generation by internal sources
in samples of series 5 occurs under considerably
smaller stresses.

The electron microscopic investigation of the sam-
ples after mechanical testing demonstrated that oxy-
gen-containing precipitates formed through the
decomposition of an oxygen supersaturated solution
upon heat treatment providing the formation of the
internal getter play the role of heterogeneous nucle-
ation sites of dislocations in the wafer bulk. The dislo-
P

cation loops arising around precipitates propagate in
the wafer bulk through the prismatic slip mechanism
(Fig. 5).

4. DISCUSSION

The results obtained indicate that low-temperature
heat treatment at 450°C (for 16 h) results in substantial
hardening of the silicon wafers as compared to their
postgrowth state. This is confirmed both by an increase
in the critical stress τcr and the stress of the onset of
multiple dislocation generation by internal sources and
by a decrease in the velocity of dislocation motion
under external stresses. As the temperature of low-tem-
perature annealing increases to 650°C, the critical
stress τcr in the silicon wafers, as before, remains larger
than that in the as-grown samples, whereas the stress of
the onset of multiple dislocation generation by internal
sources somewhat decreases.

The multistage heat treatment under conditions pro-
viding the formation of the efficient internal getter in
the bulk of the silicon wafers lead to a loss of their
strength. This loss of strength is especially large (com-
pared to the postgrowth state) in the case when the low-
temperature (nucleation) stage of multistage annealing
is performed at 450°C (sample series 4). The critical
stress τcr and the stress of the onset of multiple disloca-
tion generation by internal sources in these wafers
almost coincide with each other and are several times
less than those in the postgrowth wafers. Silicon wafers
of this series are also characterized by the worst struc-
tural perfection among all the studied wafers (Table 2).
When the low-temperature stage of annealing is per-
formed at 650°C, the aftereffects of the multistage heat
treatment are not so drastic. In actual fact, the critical
stresses τcr in these wafers are, though smaller, virtually
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 6. Dark-field (g = 220, x < 0) transmission electron microscope images illustrating different mechanisms of dislocation loop
generation during mechanical testing of silicon wafers. The images correspond to the initial stage of prismatic slip of dislocation
loops. Sample series: (a) 4 (dislocation loops generated in the habit plane of the oxygen-containing precipitate nonconservatively
climb to the glide plane) and (b) 5 (generation of a tangle of dislocation loops and their retardation at small-sized precipitates).

(a) (b)
0.3 µm 0.2 µm
comparable to those in the as-grown wafers, whereas
the stresses of the onset of multiple dislocation genera-
tion by internal sources decrease from ~85 to ~50 MPa
(sample series 5).

It seems likely that the observed effects are caused
primarily by structural transformations in the silicon
crystal lattice due to the decomposition of the oxygen
supersaturated solution during heat treatment of the sil-
icon wafers. It is well known that heat treatment of sil-
icon wafers at a temperature of 450°C brings about the
generation of thermodonors, i.e., clusters consisting of
several oxygen atoms. The concentration of these clus-
ters in silicon wafers can be as high as 1016 cm–3.
Apparently, it is these clusters that play the role of effi-
cient stoppers hindering the generation of dislocation
loops and their propagation in the crystal matrix under
external loads. An increase in the annealing tempera-
ture to 650°C (sample series 3) results in a certain
increase in the size of the formed oxygen-containing
clusters. In this case, in addition to small-sized clusters
acting as stoppers, the crystal lattice involves a number
of larger sized oxygen-containing formations which
play the role of heterogeneous nucleation sites of dislo-
cations. After this annealing, the critical stress τcr in the
silicon wafers remains sufficiently large, whereas the
stress of the onset of multiple dislocation generation by
internal sources somewhat decreases compared to that
in the silicon wafers in the postgrowth state.

In the course of multistage (in our case, four-stage)
heat treatment, a great number of sufficiently large-
sized oxygen-containing precipitates and precipitate
dislocation pileups are formed in the wafer bulk. These
formations play the role of an efficient getter for rapidly
diffusing contaminations. Electron microscopic obser-
vations revealed that the concentration of gettering cen-
ters in the silicon wafers can be as large as (1–4) ×
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
1011 cm–3. It is found that layered precipitates ~150 nm
in size are formed in silicon wafers for which the low-
temperature (nucleation) stage of the heat treatment is
carried out at 450°C. In the case when the low-temper-
ature stage of the heat treatment is performed at
650°C, the oxygen-containing precipitates increase in
size to ~220 nm and in thickness to ~100 nm. Note
that the crystal lattice also contains precipitates with
considerably smaller sizes. The sufficiently large-
sized oxygen-containing precipitates formed in the
wafer bulk are efficient heterogeneous nucleation sites
of dislocations under the action of thermal or mechan-
ical stresses.

During mechanical testing of silicon wafers with an
internal getter, the generation of dislocation loops can
occur through two different mechanisms. In the first
case, dislocation loops are initially generated around
precipitates in the precipitate habit plane. Then, these
loops nonconservatively climb to the glide plane and
propagate in the crystal lattice through the prismatic
slip mechanism (Fig. 6a). In the second case, tangles of
dislocation loops (a number of which are located in the
corresponding glide planes) are formed around large-
sized precipitates; in the process, small-sized precipi-
tates contained in the crystal matrix act as stoppers
against dislocation motion (Fig. 6b). The difference in
the defect states formed in the crystal lattice upon mul-
tistage heat treatment of sample series 4 and 5 is most
likely the main reason for the considerable difference in
their strength properties.

5. CONCLUSION

The above results demonstrated that the correct
choice of temperature–time schedules for the low-tem-
perature (nucleation) stage of annealing is of crucial
importance. In particular, we established that multi-
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stage heat treatment involving the low-temperature
stage at 650°C offers undeniable advantages.
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Acoustic Emission Caused by an Edge Dislocation Breaking 
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Abstract—Acoustic emission produced by a moving edge dislocation in an isotropic crystal is investigated the-
oretically. It is shown that the acoustic-emission spectrum associated with a dislocation breaking away and
coming to rest is similar to that associated with the annihilation of two dislocations. In the case where a linear
defect breaks away and comes to rest periodically, additional extrema appear in the acoustic-emission spectrum
and the frequencies corresponding to the maxima in the spectrum are multiples of the dislocation hopping fre-
quency between minima of the potential-energy profile. Both cases of large and small distances of the acoustic-
emission detection point from a dislocation array are considered. The latter case is exemplified by experimen-
tally observed acoustic emission associated with electric-field-stimulated motion of edge dislocations in silicon.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Dislocations in crystals can move under the action
of mechanical stresses [1], electric [2] and magnetic
fields [3], etc. Break-away and motion of dislocations,
as well as other plastic effects [4], are accompanied by
the emission of acoustic waves differing in type and
spectrum.

There is a great body of experimental data on acous-
tic emission (AE), but their interpretation presents
severe problems. In addition, the acoustic pulses pro-
duced by individual dislocations can be detected only
in exceptional cases [5]. Therefore, in order to make a
direct comparison between experimental spectra and
predicted dependences, it is convenient to construct
acoustic images of the elementary acts of plastic defor-
mation associated with an ensemble of linear defects.
On the other hand, when all dislocations move in a sim-
ilar manner and their AE spectra are roughly the same,
the experimentally observed total AE spectra can be
qualitatively analyzed using the calculated spectrum
for a single dislocation.

In this paper, we consider the case where AE is pro-
duced by parallel straight edge dislocations which
either once or periodically break away and come to rest
in an isotropic medium.

2. THE ELASTIC RADIATION FIELD 
OF PARALLEL STRAIGHT EDGE 

DISLOCATIONS

Acoustic radiation generated by a set of arbitrarily
moving dislocations is described in crystal acoustics [6]
by a dynamic wave equation and a modified Hooke law
1063-7834/02/4407- $22.00 © 1291
with allowance for time-dependent lattice distortions
due to dislocations:

(1)

(2)

where ρ is the density of the medium, v i(r, t) is the
vibrational velocity of elements of the medium, σik(r, t)
is the stress tensor, λiklm is the elastic moduli tensor, and
jlm is the dislocation flux density tensor.

Let us consider an array of parallel straight edge dis-
locations occupying a finite volume and moving in one
of their slip planes, which is dictated by external forces.
The rectangular coordinate frame is set with the z axis
along the dislocation lines and the x axis lying in the
slip plane in which the dislocations move. Therefore,
the slip direction and the Burgers vectors of the edge
dislocations are parallel to the x axis. In the case of an
infinite isotropic medium, Eqs. (1) and (2) were solved
by the Green’s function method in [4]. The solution for
the time Fourier transform of the vibrational velocity
has the form

(3)

ρ
∂2

v i r t,( )

∂t
2

----------------------- λ iklm∇ k∇ lv m r t,( )–  = λ iklm∇ k jlm r t,( ),

σik r t,( ) λ iklm ∇ lv m r t ',( ) jlm r t ',( )+[ ] t ',d∫=

v i
ω R( )

ict
2

2
-------∇ m

x' y'dd

R R'–
2

-------------------- jkm
sω R'( )

∞–

∞

∫=

× 2NiNk δik–( ) ∂2

∂ω2
---------H0

2( ) ω R R'–
cl

----------------------- 
 





+
R R'–

2

cl
2

-------------------- NiNk δik–( )H0
2( ) ω R R'–

cl

----------------------- 
 
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Here, R is the projection of the radius vector onto the

xy plane; Ni = (R – R')i/ |R – R' |;  is the zero-order
Hankel function of the second kind; cl and ct are the
velocities of longitudinal and transverse acoustic waves
in the medium, respectively; and

(4)

where the superscript s denotes the symmetrical part of
a tensor. The primed coordinates are restricted to the
localization region of the dislocation array, and the
unprimed coordinates specify the AE detection point.

Let us consider the case of large distances from the
dislocation ensemble. In the wave zone, where ω|R –
R' |/cα @ 1 (α = t, l), the Hankel function in Eq. (3) can
be approximated by its asymptotic expression for large
values of the argument and |R – R' | can be replaced by
|R | = R. In accordance with [4], we obtain

(5)

where n is a unit vector along R, (n) = ninknm, and

(n) = (δik – nink)nm.
An asymptotic expression for the Fourier transform of

the stress tensor can be found by substituting Eq. (5) into
Eq. (2) and taking into account that the tensor jik(R, t)
vanishes outside the dislocation array and, therefore, the
second term in Eq. (2) is equal to zero. Integration with
respect to time is reduced to division by iω in accordance
with the properties of the integral transformations [7].
The elastic moduli tensor for an isotropic medium is [4]

As a result, we obtain

(6)

+ δik 2NiNk–( ) ∂2

∂ω2
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∫exp
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2ct
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σil
ω R( ) ρct

2 ω
2πR
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π
4
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 – jkm
sω R'( ) x' y',dd

∞–

∞

∫exp
P

where

This solution is valid for all frequencies ω satisfying
the condition ωR/cα @ 1. Since the distance from the
dislocation array to the acoustic-radiation measurement
point is assumed to be large but finite, the wave zone
approximation becomes invalid for frequencies close to
zero.

Now, we consider the case where ω|R – R' |/cα is
small. The Hankel function can be replaced by its
small-argument expansion, in which the dominant con-
tribution for ω  0 comes from the terms involving
the logarithm of the argument

We will keep only the first two terms when calculat-

ing the second derivative of  in Eq. (3) and only the
first term in calculating the Hankel function itself. In
the derivative, we neglect the constant terms, retaining
only the terms that involve the frequency logarithm.
The vibrational velocity of elements of the medium is
obtained to be

(7)

where γ = ct /cl.
The stress tensor is found, as in the preceding case,

by substituting Eq. (7) into Eq. (2). Taking into account
that jii(R) = 0 for dislocations moving in their slip
plane, we obtain

(8)

With R – R' replaced by R, Eqs. (7) and (8) become
large-distance approximations. We note that, for an
arbitrary dislocation flux tensor, the elastic fields in
Eqs. (7) and (8) are not wave fields. Indeed, a function
describes a wave if its argument has the form t – R/cα.
According to the retardation theorem [7], the Fourier
transform of such a function contains the factor
exp(−iωR/cα). Equations (7) and (8) do not contain this
factor, in contrast to Eqs. (5) and (6), which represent a
superposition of longitudinal and transverse waves. The
reason for this difference is that the condition ω|R –
R' |/cα ! 1 implies not only that the frequency is low,

Ψiklm
l( ) n( ) cl

2δik 2ct
2
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t( ) n( ) ct

2
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but also that the characteristic distance from the dislo-
cation array (the origin of perturbations) to the detec-
tion point of the elastic fields is small in comparison
with the wavelength of the acoustic radiation. There-
fore, the elastic fields exhibit no wave properties in this
approximation.

3. ACOUSTIC EMISSION CAUSED BY AN EDGE 
DISLOCATION BREAKING AWAY 

AND SLOWING DOWN

3.1. The Wave Approximation

Let us investigate the acoustic radiation field (at
large distances from the dislocation cluster, ωR/cα @ 1)
produced by a dislocation which is originally at rest and
then breaks away.

As shown in [4], AE occurs only if dislocations are
in a nonsteady state of motion. Acoustic emission
caused by a dislocation breaking away has two compo-
nents; one of them is due to the fact that the dislocation
starts moving (and, therefore, the dislocation flux jik

becomes nonzero), and the other is associated with fur-
ther nonuniform motion of the dislocation. Under the
usually realized plastic-deformation conditions, the
dominant contribution to AE is due to the appearance
and vanishing of the dislocation flux rather than to
accelerated dislocation motion [8]. For this reason, we
will consider only the former AE component and the
velocity of a moving dislocation will be assumed to be
constant in what follows.

Let time zero correspond to the instant at which the
dislocation starts moving. In the coordinate frame cho-
sen, the dislocation glides along the x axis in the xz
plane. In this case, only two components of the flux
density tensor are nonzero,

(9)

Here, b is the magnitude of the Burgers vector of the
dislocation, v  is the dislocation velocity after its break-
ing away, θ(t) is the Heaviside function, and δ(y) is the
delta function. The Fourier transform of Eq. (9) is

(10)

Substituting Eq. (10) into Eqs. (5) and (6), we find
the spectral components of the elastic fields. For the
nonzero components, we introduce the notation Σµ(R,
t) with µ = 1, 2, …, 5, where Σ1 = σxx , Σ2 = σxy , Σ3 = σyy,
Σ4 = v x, and Σ5 = v y . When integrating over R', we take
into account that the dislocation flux density vanishes at
infinity. Since the problem has cylindrical symmetry, it
is convenient to introduce cylindrical coordinates
(polar radius R and polar angle ϕ) in the xy plane. In this
case, nx = cosϕ, ny = sinϕ, and the elastic-field compo-

jxy R t,( ) jyx R t,( ) bv θ t( )δ y( )δ x v t–( ).= =

jxy
ω R( ) bδ y( )θ x( )e

iωx/v–
.=
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nents are found to be

(11)

where the (ϕ) functions describe the angular
dependence of the elastic fields [4].

In the case where a uniformly moving dislocation
comes to rest, the solution can be shown to be exactly
the same. We note that Eq. (11) for the AE fields of a
dislocation that starts moving becomes identical to the
expressions derived in [4] for the AE fields that are pro-
duced in the process of annihilation of two edge dislo-
cations moving toward each other if the velocity v  in
Eq. (11) is replaced by the difference between the dis-
location velocities v 2 – v 1. Indeed, the problem of dis-
location annihilation is reduced to our problem if we go
over to a uniformly moving coordinate frame in which
one of the two dislocations is at rest. In this coordinate
frame, the velocity of the other dislocation is v 2 – v 1
and its AE is not affected by the dislocation at rest.

Knowing the spectral components of the elastic
fields given by Eq. (11), we can find the Fourier trans-
form of the acoustic energy flux density [6]:

According to the multiplication theorem [7], the
Fourier transform of the product of two functions is the
convolution between their Fourier transforms:

(12)

The normalization factor in Eq. (12) corresponds to the
normalization of the Fourier transforms in Eq. (4).

The AE energy density % is related to the energy
flux density through the continuity equation

(13)

In order to find the AE energy spectrum, we replace
the differentiation with respect to time in Eq. (13) by
the factor iω and integrate over the volume. Using
Gauss’s theorem, the second term in Eq. (13) can be
transformed into an integral over the lateral surface of a
cylinder whose axis coincides with the z axis (the nor-
mal to the bases of this cylinder is perpendicular to the
energy flux density vector Pk, which lies in the xy
plane). As a result, we find the spectrum of the differen-
tial acoustic energy (per unit dislocation length) emit-
ted into an elementary angle dϕ:

Σµ
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2
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4πR ω
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π
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Substituting Eqs. (11) and (12), we arrive at a final
expression,

(14)

It is seen from Eq. (14) that the AE intensity
decreases with increasing frequency, which is usually
observed in experimental AE spectra of moving dislo-
cations [3]. However, at frequencies ω close to zero, the
AE energy in Eq. (14) tends to infinity, which is physi-
cally meaningless. This implies, as indicated above,
that the wave approximation becomes invalid for low
frequencies.

Let us consider the modification of this approxima-
tion for low frequencies. Substituting the Fourier trans-
form of the dislocation flux density given by Eq. (10)
into Eqs. (7) and (8) and replacing R – R' by R, we find
that the Fourier transform of the vibrational-velocity
vector of the medium is proportional to 1/ω and the
Fourier transform of the stress tensor is proportional to
1/ω2. The convolution between these functions varies as
1/ω2; therefore, the AE energy dEω, which is propor-
tional to this convolution divided by iω, varies as 1/ω3.
In this approximation, the AE intensity tends to infinity
at low frequencies. We do not present the corresponding
calculations here, because they reinforce the statement
that the linear theory of elasticity is inadequate for the
description of elastic fields near the dislocation core.

3.2. The Case of Small Distances
from the Dislocation Array

In the case of (ω|R – R'|/cα) ! 1, the Fourier trans-
form of the vibrational velocity of elements of the
medium can be found by substituting Eq. (10) into
Eq. (7). Upon integrating with respect to the primed
coordinates, we obtain an expression involving the inte-
gral sine and integral cosine of the argument ±(iω/v )(x
± iy), which hamper further calculations. For this rea-
son, we seek a solution in the form of a power series.
Expanding the exponential in a Maclaurin series and
taking the integrals, we obtain

(15)

dE
ω ϕ( ) ρb

2
v

2

8πω
---------------=

× e
iωR/cl–

γ4
2ϕsin

2
e
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iωR
v

---------- 
 

k

e
iϕk

kk!
--------------------------
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∞

∑+







.

P

In what follows, the dislocation velocity is assumed
to be small, such that ωR/v  @ 1. Since a power-law
function increases faster than does a logarithmic func-
tion, we neglect the first term in square brackets in
Eq. (15) and keep only the largest of the remaining
terms. For this purpose, we consider the function qk/kk!,
with q being large. For small values of k, this function
increases with k; however, it goes to zero as k  ∞.
Using the Stirling formula for large values of k, it can
be shown that this function reaches its maximum at k ≈
q, the maximum being eq/( ). In each of the two
sums in Eq. (15), we retain only this maximum term
and, after simple algebra, obtain the following asymp-
totic expression for the vibrational velocity of the
medium in the case where the dislocation velocity is
small:

(16)

In a similar manner, we find

(16a)

An asymptotic expression for the stress tensor can
be derived by substituting Eq. (10) into Eq. (8), inte-
grating the power series term by term, and determining
the maximum term. As a result, the nonzero compo-

nents of the stress tensor  are found to be

(17)

In order to find the Fourier transform of the acoustic
energy flux density, we first calculate the Fourier trans-
form of its third time derivative,

because the Fourier transforms of the lower order deriv-
atives and of the function itself have an indeterminate
form of the (∞ – ∞) type. The expression obtained
should be divided by (iω)3 and substituted into Eq. (13).
Proceeding in the same manner as in the preceding
case, the spectrum of the differential AE energy is
found to be

(18)
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4. ACOUSTIC EMISSION 
OF AN EDGE DISLOCATION PERIODICALLY 

TRAVELING FROM ONE EQUILIBRIUM 
POSITION TO ANOTHER

Now, we consider the AE of a dislocation breaking
away and coming to rest periodically. It is assumed that
an edge dislocation moves with a constant velocity v
from one minimum of the Peierls energy profile to
another (separated by a distance a, the spatial profile
period), where the dislocation comes to rest, and, after
some time, the process is repeated (with a period T)
many times (Fig. 1; N is the number of repetitions). In
this case, the dislocation flux density tensor has the
form

(19)

and its Fourier transform is

(20)

4.1. The Wave Approximation

Substituting Eq. (20) into Eqs. (5) and (6), we find
the spectral components of the elastic fields:

(21)

This expression differs from Eq. (11) only in the
number of terms describing an elementary act of the
dislocation breaking away or coming to rest with allow-
ance for the delay time of each of these events.

In calculating the convolution between v k and σik, it
is convenient to multiply the corresponding compo-
nents in Eq. (21) together and, removing the square
brackets, integrate each term separately. The final result
differs from Eq. (14) only by an additional factor

(1 + e–iωa/v), which can be calculated using
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the familiar formula for the sum of the first N terms of
a geometric progression. Thus, we obtain

(22)

One usually calculates the modulus of the spectral
density when processing experimental data. This quan-
tity is

(23)

Here, the radicand is the result of superposition of
longitudinal and transverse waves that are emitted
when the dislocation breaks away or comes to rest.
Because of this factor, the spectral density |dEω(ϕ)/dϕ|
oscillates with a period of ∆ω = 2πclct /R(cl – ct). This
period is fairly small, because ωR/cα ! 1. However, the
radicand in Eq. (23) is reduced to a constant at certain
values of the observation angle (ϕ = 0 or π/2).

The factor |sinωTN/2 | is a bounded, rapidly oscilla-
tory function of ω at large values of N; therefore, we
replace it by the period average of the sine modulus
equal to 2/π.

The AE energy is zero at ω = (πv /a) + (2πv /a)k,
when |cosωa/2v | vanishes. The positions of these min-
ima in the energy spectrum could be used to determine
the time (a/v ) it takes for a dislocation to pass from one
equilibrium position to the next. However, in an actual
experiment, especially when the temperature and the
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Fig. 1. Time dependence of the edge dislocation velocity
(schematic).
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intensity of external perturbations experienced by a dis-
location are not high, the transition time a/v  is much
shorter than the residence time in an equilibrium posi-
tion T – a/v. In this case, the cosine in the numerator in
Eq. (23) varies much faster than does the sine in the
denominator and, therefore, can also be replaced by its
period average.

However, |cos(ωa/2v )| becomes a slowly varying
function when the residence time is very short and the
jumplike motion of the linear defect is rather continu-
ous. Let us estimate the critical hopping frequency fc
above which the dislocation motion ceases to be peri-
odic. The dislocation velocity averaged over a period T
(Fig. 2) is 〈v 〉  = a/T = af. This value should be close to
the hopping velocity v  when the dislocation motion
becomes unceasing. Since v  cannot exceed the velocity
of sound in the given material, the maximum average
velocity is 〈v 〉  = cα and, therefore, fc = cα /a. The spatial
period of the Peierls energy profile in a crystal is com-
parable to the lattice parameter, ~5 Å. The velocity of
sound in solids is ~5 km/s. Therefore, fc ~ 1013 Hz and,
in what follows, we will assume that the frequencies are
far below this value.

Thus, the AE spectrum of a periodically hopping
edge dislocation can be represented in the form

(24)

This expression goes to infinity at frequencies ω =
(2π/T)k (where k is an integer), i.e., in the case where
the frequency is an integral multiple of the hopping
cyclic frequency of the dislocation. In actuality, this
only means that the AE intensity sharply increases at
the frequencies indicated above, as is the case with res-
onances in dissipative media in comparison with non-
dissipative ones (the energy dissipation is not included
in our model).
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Fig. 2. Schematic illustration of silicon plate loading for the
introduction of edge dislocations.
PH
4.2. The Case of Small Distances 
from the Dislocation Array

It can be shown that, as in the wave-zone approxi-
mation (Subsection 4.1), the Fourier transform of the
differential AE energy of a dislocation periodically
hopping from one equilibrium position to another is
identical to that of a dislocation once breaking away
[Eq. (18)] and differs only in its having an additional
harmonic factor (which is the same as that obtained in
Subsection 4.1). The modulus of the AE spectral den-
sity in this case is

(25)

Therefore, in both cases, one can determine the dis-
location hopping frequency 2π/T from the positions of
the maxima (especially of the first, most pronounced,
maximum) in the experimental AE spectrum.

On the whole, as before, the AE spectral density
falls off with increasing frequency.

If there is an array of parallel dislocations moving
with the same velocity (Fig. 1), the total AE energy can
be found as the sum of the AE energies produced by
each of them. In this case, Eqs. (24) and (25) should be
multiplied by the dislocation density and integrated
with respect to the coordinates R and ϕ. This eliminates
the coordinate dependence, but the frequency depen-
dence remains the same. Therefore, the shape of the AE
spectrum will not change; only the AE intensity will
increase in this case.

If the hopping frequencies of dislocations are
slightly different, then the peaks of the AE spectrum
will be broadened and only a characteristic hopping fre-
quency can be determined from them.

5. AN EXPERIMENTAL SPECTRUM 
OF ACOUSTIC EMISSION PRODUCED
BY MOVING EDGE DISLOCATIONS

IN SILICON
Below, we compare our calculations with an exper-

imental AE spectrum in a dislocated silicon plate of
(111) orientation. Dislocation motion was caused by
passing a direct current of density 1.3 × 105 A/m2 along

the  direction (Fig. 2) at a temperature of 370 K.
The sample preparation and experimental technique are
described in detail in [9, 10]. Here, we discuss the
applicability of the results obtained above to the exper-
iment in question.

Our predictions are made for an isotropic medium.
Silicon crystals are well known to be weakly anisotro-
pic, and (111) plates of diamond-like semiconductors
are elastically isotropic [11].

The criterion for the smallness of the distance of an
AE detector from the array of dislocations was the
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smallness of the quantity ωh/cα in comparison with
unity, where h is the half-thickness of the plate (h =
200 µm). The highest AE intensity was observed in the
frequency range 0–2 Hz, which is far below fc; the
velocity of transverse acoustic waves in silicon is
roughly 5 km/s, and the velocity of longitudinal acous-
tic waves is ~9 km/s [12]. Thus, we have ωh/cα ~
10−8 ! 1, which corresponds to the short-distance
approximation described by Eq. (25).

The medium was assumed to be infinite in space. If
a medium has a surface, then a transient AE appears
when a dislocation reaches the surface. In the experi-
ment in question, the electric current caused disloca-

tions to slip in the (111) plane along the  direc-
tion; therefore, we can assume that dislocations did not
glide to the upper and lower surfaces. At the electric-
current strength used, the mean dislocation velocity did
not exceed several micrometers per day [12], and, dur-
ing the AE detection (~7 min), dislocations could not
also reach the end faces of the plate, because there were
no linear defects near the end faces (Fig. 2). Therefore,
the transient AE can be neglected in the experiment
under discussion.

Indeed, the experimental AE spectrum (Fig. 3) is
consistent with the theoretical predictions, except for
the absence of a sharp increase at low frequencies in it,
which can be attributed to the imperfection of the math-
ematical model used. On the whole, the AE intensity
falls off with increasing frequency and the envelope of

110[ ]

2

1

0 0.5 1.0 1.5
f, Hz

1

dA
ω
, a

rb
. u

ni
ts

0

1

Fig. 3. (1) Fourier transform dAω of an AE signal taken dur-
ing electric-current annealing of dislocated silicon plates
(average dislocation density in the sample 5 × 106 cm–2) for
a current density j = 5 × 105 A/m2 at T = 303 K and (2) the
envelope of the AE spectrum.
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rapid oscillations (curve 2 in Fig. 3) exhibits three
clearly identifiable peaks whose positions correspond
to frequencies that are multiples of the characteristic
hopping frequency of dislocations.

6. CONCLUSION

Thus, we have investigated the spectral characteris-
tics of acoustic emission produced by straight edge dis-
locations which once or periodically break away and
come to rest. It was shown that, in both the wave zone
and at small distances of the AE detection point from
the dislocation cluster, the AE intensity sharply
decreases with increasing frequency. In both cases,
periodically interrupted motion of linear defects gives
rise to additional peaks in the AE spectrum, whose fre-
quencies are multiples of the characteristic hopping fre-
quency of dislocations. The calculated AE spectra were
shown to agree qualitatively with the experimental data
obtained in single crystals of silicon; therefore, the fre-
quency and time characteristics of the dislocation
motion can be determined from the experimental AE
spectra of the material.
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Abstract—A theoretical model describing the nucleation of misfit dislocations (MD) in interfaces between
films and plastically deformed substrates with disclinations is proposed. The ranges of the parameters (dis-
clination strength, density of the disclination ensemble, film thickness, and degree of misfit) within which
MD nucleation is energetically favorable are found. It is shown that at certain strengths of disclinations and
densities of their ensemble the critical thickness of the film on a plastically deformed substrate with discli-
nations can exceed that on an undeformed defect-free substrate by a few times. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Thin-film heterostructures enjoy broad application
in present-day micro- and nanoelectronics. The stabil-
ity of the properties of heterostructures, which is of
prime importance for their successful use in technol-
ogy, depends substantially on the presence of defects
and stress fields in the films (see, e.g., reviews [1–5]
and monographs [6, 7]). For instance, the difference in
the crystal lattice parameters between the substrate and
film materials gives rise to the formation of internal
stresses in the films, more specifically, of misfit
stresses which considerably affect the evolution of the
structure and functional properties of the films. In par-
ticular, if the film thickness is in excess of a certain
critical value, the misfit stresses become partially
accommodated through the formation of misfit dislo-
cations (MDs) in the interface separating the substrate
and the film [1–16]. Such MDs disrupt the interface
coherence, which can quite frequently degrade the
functional properties of heterostructures. Recently,
methods for increasing the critical film thickness on
substrates were proposed based on the concept of for-
mation of thin buffer layers of a given structure
between films and substrates (see, e.g., [17–20]). An
alternative method of increasing the critical thickness
of films on substrates is proposed and studied theoret-
ically in this paper. This method consists essentially in
a preliminary plastic deformation of the substrate with
the formation of edge dislocation walls and stress
fields which suppress MD nucleation and, accordingly,
increase the critical thickness of a film.
1063-7834/02/4407- $22.00 © 21298
2. DISCLINATIONS IN PLASTICALLY 
DEFORMED SUBSTRATES

Plastic deformation of a crystal is frequently accom-
panied by the formation of edge dislocation walls in
them (small-angle grain boundaries) [21, 22]. For
instance, dislocation walls of one type form when the
substrate is bent. Such walls actually represent small-
angle grain boundaries, each of them crossing the sub-
strate to terminate at the opposite free surface of the lat-
ter. Dislocation walls (small-angle boundaries) in sub-
strates can substantially affect the misfit stress relax-
ation processes in epitaxial layers deposited on them. In
particular, the formation of dislocation walls of one
type in a plastically deformed substrate is capable of
narrowing the ranges of the parameters (the film thick-
ness and the degree of misfit) within which MD forma-
tion in the interface separating the film and the substrate
is energetically favorable. To calculate the critical
parameters for MD nucleation at the boundary between
a plastically deformed substrate (containing dislocation
walls) and a film, one has to determine the stress fields
generated by the dislocation walls in the film. At dis-
tances in excess of the separation between neighboring
dislocations in dislocation walls, the disclination com-
ponent provides a major contribution to the stress fields
of such dislocation walls. Therefore, to simplify the
calculation of the stress fields created in a film by edge
dislocation walls, we will approximate each such wall
by a wedge disclination (which bounds the wall) near
the film–substrate interface (Fig. 1). Generally speak-
ing, each finite dislocation wall is bounded by two dis-
clinations. The second disclination bounds the disloca-
002 MAIK “Nauka/Interperiodica”
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tion wall near the free substrate surface opposite to that
on which a film is deposited. The stress fields of the sec-
ond disclination are screened efficiently by the (near-
est) free surface and, therefore, do not affect, in any
way, dislocation nucleation in the film.

3. A FILM ON A SUBSTRATE 
WITH DISCLINATIONS: MODEL

Let us consider a system consisting of a semi-infi-
nite substrate with disclinations and a film of thickness
h (Fig. 1). The film and the substrate are assumed to be
elastically isotropic solids with equal shear moduli G
and equal Poisson ratios ν. We assume that the disclina-
tions in the substrate are of the wedge type, have the
same strength ω, and are the same distance p apart,
forming two infinite orthogonal rows at a distance d
from the substrate surface (Fig. 1). We shall also
assume that the substrate and film lattices are of the
same type, the two basis vectors of each lattice lie in the
interface plane and are pairwise parallel, and that the
parameters of each lattice corresponding to these basis
vectors are equal. (For instance, the crystal lattices of
the GexSi1 – x/Si system are mutually oriented as
(001)[110] || (001)[110].) In this case, the boundary
separating the substrate and film lattices is character-
ized by a two-dimensional dilatation misfit f deter-
mined from the relation f = 2(a1 – a2)/(a1 + a2), where
a1 and a2 are the lattice parameters of the substrate and
the film, respectively.

When a film grows coherently on a substrate, the lat-
tice misfit between the different phases and the discli-
nations in the substrate give rise to the formation of
elastic strains in the film. For certain values of the
parameters of the system (misfit f, film thickness h, dis-
tance d from the disclinations to the film–substrate
interface, separation p between the disclinations, and
disclination strength ω), the interface can transform to
a semicoherent state characterized by MD nucleation
(Fig. 2). To find the conditions favoring MD nucleation,
we compare the energy of the system in the coherent
state (without MDs) with that after a first single MD has
formed in the system. In doing this, we assume that the
positions of the disclinations in the substrate are fixed
and are not affected by the MD nucleation. Within this
model, the MD is an edge dislocation with the Burgers
vector b = (blel), where el is a unit vector parallel to the
x2x3 plane and forms an angle ϕ with the x2 axis. This
MD line lies on an m axis related to the coordinates x2

and x3 through the expressions x2 =  – msinϕ and

x3 =  + mcosϕ, where  and  are constants
(Fig. 2).

In the case of a film growing coherently on the sub-
strate, the energy W0 of the system is a sum of the
energy W f of proper film strains associated with the
presence of a misfit, proper energy War of two orthogo-
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0

x2
0

x3
0

PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
nal rows of disclinations, and the energy War – f with
which the disclination rows interact with the misfit
stresses:

(1)

The energy W of a system with a single MD can be writ-
ten as

(2)

where Wd is the proper MD elastic energy, W f – d is the
interaction energy between the MD and the misfit
stresses, War – d is the interaction energy between the
MD and the disclination rows, and Wc is the MD core
energy. (All the energies are reduced to a unit MD

W0 W
f

W
af

W
ar f–

.+ +=

W W
f

W
ar

W
ar f–

W
d

+ + +=

+ W
f d–

W
ar d–

W
c
,+ +

ω ω ω ω

x2x3

x1

x2
0

h

d

Film

(plastically
deformed)

Substrate

Fig. 1. Misfit dislocation in the interface between the film
and a plastically deformed substrate. Wedge disclinations
(triangles) bound dislocation walls of deformation origin.
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Fig. 2. Two coordinate frames on the plane. The Burgers
vector of a dislocation is directed along the l axis, and the
dislocation line coincides with the m axis.
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length.) For an MD to nucleate at the film–substrate
interface, the energy W of the system with the MD must
be less than the energy W0 of the system without
the MD:

(3)

To determine the ranges of parameters within which an
MD can nucleate, we calculate (in the next section) the
quantities Wd, W f – d, War – d, and Wc entering into
Eq. (3). As already pointed out, these quantities are the
corresponding average linear energy densities per unit
MD length. We note that the linear densities of the
proper energy of an MD, its interaction energy with the
elastic misfit stress field, and the MD core energy are
the same at any point of the MD line. At the same time,
the linear interaction energy density between the MD
and a disclination row is different at different points of
the MD line. Therefore, in our subsequent calculation
of War – d, we average this energy density over the MD
line.

4. THE ENERGY OF A DISLOCATION
IN A THIN-FILM SYSTEM 

WITH DISCLINATIONS

The proper energy Wd (per unit MD length) of an
MD lying in the film–substrate interface is given by
[23]

(4)

where b is the magnitude of the MD Burgers vector b
and D = G/[2π(1 – ν)].

The elastic interaction energy W f – d (per unit MD
length) between the MD and the misfit stress fields is
[23]

(5)

The average interaction energy War – d (per unit MD
length) between the MD and two disclination rows is
given by [24]

(6)

where

is the component of the stress tensor generated by the

two disclination rows; (x1, x2) and (x1, x3) are
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the stresses generated by disclination rows parallel to
the x2 and x3 axes, respectively; and 〈…〉m denotes aver-
aging over the coordinate m along the MD line. To cal-
culate the energy War – d, we present the stresses

(x1, x2) and (x1, x3) in the form

(7)

where σkk(x1, xk) is the component of the stress tensor
generated by a disclination of strength ω with a line

(x1 = −h – d, xk = 0). The stress (x1, xk) can be
expressed through the stress function χ(x1, xk) of this
disclination as [25]

(8)

Using Eqs. (6)–(8) and the expression [22]

(9)

for the stress functions χ(x1, x2) and χ(x1, x3), we obtain

(10)

where

(11)

Summation of the series in Eq. (11) yields

(12)

The energy Wc of the dislocation core is approximately
equal to Db2/2 [21].
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Equations (3)–(5) and (10) yield the following nec-
essary condition for MD nucleation:

(13)

5. THE CRITICAL PARAMETERS OF FILMS
ON SUBSTRATES WITH DISCLINATIONS

To determine the ranges of parameters within which
MD nucleation in the film–substrate interface is ener-
getically favorable, we consider first the situation in
which the projection of the MD line on the plane con-
taining the disclination network is parallel to one of the
disclination rows; i.e., ϕ = sπ/2, where s = –1, 0, 1, 2. In
this case, we have

for ϕ = ±π/2 and

for ϕ = 0 or π. Hence, in the case under study, the ranges
of the f and h parameters in which an MD can nucleate

at the film–substrate boundary depend on the  (or

) coordinate of the MD line relative to the disclina-

tion network. The values of  and  will be calcu-
lated below from the condition of the minimum of the
energy War – d.

Figure 3 plots the g( /p) relations (k = 2, 3) for var-
ious values of d/p and h/p. As seen from Fig. 3, for any

values of d/p and h/p, the maxima of the g( /p) func-

tions lie at points  = ( j + 1/2)p and their minima are

at  = , where j and  are integers, k = 2 if ϕ = 0 or
π, and k = 3 for ϕ = ±π/2.1 Hence, the energy War – d

passes through a minimum at  = ( j + 1/2)p for bl =

+b and at  =  for bl = –b. Substituting into Eq. (13)

two different pairs of equalities [(  = p/2, bl = +b) and

1 Differentiation of Eq. (12) yields the same result.
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(  = 0, bl = –b), with k = 2 if ϕ = 0, π and k = 3 for
ϕ = ±π/2], we obtain the following relations for the
critical values of the misfit:

(14)

(15)

In Eqs. (14) and (15), f + and f – are the maximum and
minimum values of the misfit f at which an MD with ϕ
being a multiple of π/2 and bl equal to +b and –b,
respectively, can nucleate in the film–substrate inter-
face.

Figure 4 displays plots of f +(h/b) and f –(h/b) in the
h/b vs. f coordinate frame for different values of ω.
Nucleation of MDs with bl = b is energetically favor-
able for f > f +(h/b) (region I in Fig. 4). MDs with bl =
−b can form for f < f –(h/b) (region III). Nucleation of
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MDs of both signs is energetically unfavorable for
f−(h/b) < f < f +(h/b) (region II). If the substrate has no
disclinations (ω = 0) (Fig. 4a), MDs can nucleate in a
film of thickness h larger than the certain critical value
hc given by the intercept of the f +(h/b) (for f > 0) or f –

(h/b) (for f < 0) curve with a horizontal line f = const.
For ω > 0, the f +(h/b) curve passes through a minimum
(f0), and for f < f0, the critical film thickness is given by
the intercept of a horizontal line f = const with the f –

(h/b) curve. As a result, for f < f0 and f ≈ f0, the presence
of disclinations in the substrate brings about a substan-
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Fig. 4. Phase diagram of the system plotted in the (h/b, f)
coordinate frame for the case of the MD Burgers vector par-
allel to the disclination network lines with parameters d =
20b, p = 250b, and (a) ω = 0°, (b) ω = 1°, and (c) ω = 3°.
The lower and upper curves of f – and f +, respectively, sep-
arate region I, where MDs with bl = +b can nucleate, region
II, where MDs do not nucleate, and region III of possible
nucleation of MDs with bl = –b. The values of f + and f – are
normalized against 1/[8π(1 + ν)].
P

tial increase (by a few times) in the critical thickness hc

compared with that for a film on a defect-free unde-
formed substrate. The critical thickness of a film
reaches its maximum value h0 for f  f0, f < f0.
A comparison of Figs. 4b and 4c indicates that the
value of h0 for ω = 1° is larger than that for ω = 3°.

Figure 5 presents the phase diagram of the system in
the (h/b, 8π(1 + ν)f ) coordinates for different distances
d from the disclinations to the interface and different
distances p between the disclinations. As seen from
Fig. 5, an increase in d or a decrease in p shifts region
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Fig. 5. Phase diagram of the system plotted in the (h/b, f )
coordinate frame for the case of the MD Burgers vector par-
allel to the disclination network lines with parameters ω =
2° and (a) d = 5b, p = 100b, (b) d = 5b, p = 300b, and (c) d =
50b, p = 100b. The notation is the same as in Fig. 4.
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II, where MDs do not nucleate, toward larger misfits,
while, at the same time, bringing about a decrease in h0.

Now, we consider the case where the projection of
the MD line onto the plane containing a disclination
network is not parallel to any of the disclination rows
(ϕ ≠ nπ/2, where n is an integer). To analyze this case,

one has to calculate the quantities 〈g(  – msinϕ)〉m

and 〈g(  + mcosϕ)〉m entering into Eq. (14). In view
of the periodicity of the function g(t), as well as accept-
ing the conditions sinϕ ≠ 0 and cosϕ ≠ 0, we obtain

(16)

Substituting Eq. (16) into Eq. (13), we obtain the fol-
lowing two equations for the minimum ( f '+) and max-
imum ( f '–) values of the misfit f for which the nucle-
ation of MDs with ϕ ≠ nπ/2 and bl equal to +b and –b,
respectively, is possible in the film–substrate interface:

(17)

(18)

As follows from Eqs. (17) and (18), an increase in ω
or d or a decrease in p shifts the f '+(h/b) and f '–(h/b)
curves toward larger values of f.

To find the ranges of parameters within which MDs
with any Burgers vector (either parallel or not parallel
to the disclination network rows) do not nucleate, the
f −, f +, f '–, and f '+ were plotted vs. h/b in the same coor-
dinate frame (not displayed here). It was found that the
parameter region in which MDs with a Burgers vector
oriented arbitrarily in the interface plane do not nucle-
ate coincides with the region where nucleation of MDs
with Burgers vectors parallel to one of the disclination
rows is not possible (region II in Fig. 4b).

6. CONCLUSION

Thus, we carried out a theoretical study of the con-
ditions favoring nucleation of misfit dislocations in thin
films on plastically deformed substrates containing dis-
clination ensembles. It was shown that disclinations
present in the substrate affect the ranges of the parame-
ters (film thickness h and misfit f) in which film growth
without MD nucleation is energetically favorable. For
certain values of f (depending on the disclination

x2
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g x2
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strength ω, distance p between the disclinations, and
distance d from the disclinations to the interface), the
critical thickness of a film on a substrate with disclina-
tions substantially exceeds the critical thickness of a
film grown on an undeformed defect-free substrate.
Increasing the parameter d or ω or decreasing the
parameter p shifts the (h, f) region in which MDs do not
nucleate toward larger values of f. The results obtained
indicate a possibility of effectively increasing the criti-
cal thickness of single-crystal films through prelimi-
nary plastic deformation of their substrates.
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Abstract—The mechanism of dynamic polygonization of a crystal is investigated in the case where only a sin-
gle slip system is operative. The analysis is based on the evolution equation of the density of geometrically nec-
essary dislocations (GNDs) generated by the crystal bending. The formation of vertical tilt walls of edge dislo-
cations is treated as the synergetic process of GND self-organization. The spacing between these walls and the
local crystal misorientation associated with them are determined. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Plastic deformation of crystals is usually accompa-
nied by the emergence of crystallographically misori-
ented domains (blocks, fragments). The misorientation
can be both small (a few minutes of arc) and as large as
tens of degrees. The mean size of fragments may also
vary over a wide range, from hundreds of nanometers
to several millimeters. On the whole, the fragment sizes
decrease and their misorientation increases with
increasing plastic deformation. The formation of mis-
oriented domains in a deformed crystal is a result of
local (or overall) elastic bending and twisting of the
crystal during its plastic deformation. Dislocational
relaxation of bends (their plastic accommodation) gives
rise to plastic rotations of local crystal domains relative
to one another. The geometrically necessary disloca-
tions (GNDs) [1] involved in the accommodation are
usually concentrated at the boundaries of crystal frag-
ments. The higher the density of GNDs of one sign at
the boundaries, the higher the crystallographic misori-
entation of the corresponding crystal fragments.

In this paper, we consider a mechanism of dynamic
polygonization (DP) of a crystal during its bending at
the initial stage of plastic deformation (easy-glide
stage) when only one slip system is operative. The DP
is the formation of vertical walls of dislocations per-
pendicular to the dislocation slip plane [2, 3]. Unlike
the static polygonization (which is the formation of
misoriented block dislocation structures in a crystal at
elevated temperatures [4, 5]), the DP is observed at low
and moderate temperatures. The DP is also called slip
polygonization, because the formation of walls of dis-
locations in it does not involve diffusive dislocation
climb, in contrast to the case of static polygonization. A
dynamic polygon structure in the form of a periodic
system of tilt walls of dislocations arises, for instance,
in the crystal regions adjacent to the grips of the testing
machine, because the crystal is bent in those regions
1063-7834/02/4407- $22.00 © 21305
[3]. First, we consider the formation of such dislocation
structures in terms of energy and geometry. Then, we
analyze the DP in terms of dislocation kinetics, which
allows us to find the conditions of the formation of
dynamic polygon structures and calculate the spacing
between adjacent walls of dislocations in these struc-
tures as a function of the microscopic parameters that
determine the evolution of the dislocation network in
the deformed crystal. In terms of kinetics, the formation
of dynamic polygon structures is the synergetic process
of self-organization of GNDs [6].

2. POLYGONIZATION OF BENT CRYSTALS 

When a crystal is bent, GNDs can be distributed ran-
domly (Fig. 1a) or form a system of dislocation walls
with an average spacing Λ between them (Fig. 1b) or all
GNDs can make up a single tilt wall (Fig. 1c). The dis-
location distribution in the form of a single wall corre-
sponds to a minimum energy of the dislocation array.
Indeed, in an elastically bent crystal, the GND density
is ρ = 1/bR [7], where b is the Burgers vector and R is
the bending radius of the crystal. The total number of
dislocations in the crystal is equal to N = 4ρLl0, where
2l0 is the crystal height and 2L is its width. If the dislo-
cations are distributed at random, then their total
energy, equal to the sum of the self-energies of the dis-
locations and their interaction energy, is given by [8] 

(1)

Here, µ is the shear modulus, ν is the Poisson ratio, and
r0 is the effective radius of the dislocation core. If the

Es Aρ 1

r0ρ
1/2

-------------, Aln
µb

2

2π 1 ν–( )
-----------------------.= =
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GNDs form a system of n = 2L/Λ vertical walls
(Fig. 1b) or a single tilt wall (Fig. 1c), their total energy is 

(2)

with hn and h1 being the spacings between dislocations
in walls and in the single tilt wall, respectively. Using
the relations ρ = (hnΛ)–1 = (2h1L)–1, the differences in
energy between the three states of the dislocation array
are found to be

(3)

From Eqs. (3), it follows that Es > En > E1; that is, the
dislocation array in the form of a single wall has a min-
imum energy. As seen from Eqs. (1) and (2), this result
is due to the fact that the dislocation interaction energy

En Aρ
hn

r0
-----, E1ln Aρ
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2
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Fig. 1. Distribution of (a–c) virtual and (d) real dislocations
in a bent crystal.

Fig. 2. Spacing between dislocation walls Λ plotted as a
function of the bending radius R using the experimental data
from [2] for a Zn crystal.
PH
decreases with decreasing spacing between disloca-
tions in the order ρ–1/2 > hn > h1. The misorientation of
the corresponding crystal fragments increases in the
reverse order: ωs < ωn < ω1, where ωs = bρ1/2, ωn = b/hn,
and ω1 = b/h1. The elastic strain of a bent crystal is ε =
y/R = ω, where ω is the bending angle and y is the dis-
tance from the neutral axis (Fig. 1a). Substituting R–1 =
bρ into this expression, we obtain a relation between
the strain, bending angle, and GND density: ε = ω =
bρy. This relation corresponds to the case where the
plastic deformation is proportional to the dislocation
density characterized by the mean free path y. The real,
rather than virtual, GNDs are in the slip planes
(Fig. 1d). Therefore, in the case of plastic bend relax-
ation (Fig. 1d), the shear strain is equal to γp = ε/m =
bρx', where m is the orientation factor of the slip planes
and x' is the mean free path of dislocations in them. Put-
ting the mean free path of dislocations equal to l = x' =
l0/2m, we obtain the Ashby relation [1] ρ = γp/bl
between the GND density and plastic strain. Here, l ~ l0

characterizes the size of the bending region. The mean
magnitude of the plastic crystal misorientation is ωp =
γp = bρl = l/R. When the plastic bending is localized in
the form of a system of vertical dislocation walls with
average spacing Λ between them (Figs. 1b, 1d), the
mean free path of dislocations is Λ; therefore, the local
crystal misorientation associated with each wall is ωn =
b/hn = bρΛ = Λ/R, because ρ = 1/hnΛ. Figure 2 shows
the dependence of Λ on the bending radius R based on
the experimental data from [2] for a Zn crystal. This
dependence is seen to be linear; therefore, the crystal
misorientation ωn associated with the formation of tilt
walls, as well as the dislocation density in these walls,
does not vary with Λ and R. It is obvious that the tilt
angle ωn and the spacing hn between dislocations in a
tilt wall are determined not only by the geometric and
energetic factors. Furthermore, as we will see later,
these parameters are mainly determined by kinetic
factors.

3. THE EVOLUTION EQUATION 
OF GEOMETRICALLY NECESSARY 

DISLOCATIONS 

From the energies and geometric parameters evalu-
ated above, one can infer in which direction the GND
array will evolve. However, the parameters of the
resulting polygon structures remained undetermined.
Furthermore, the estimations made above ignore the
effect of the crystal structure on the dislocation mobil-
ity in the broad sense, i.e., not only on the velocities of
dislocations but also on their immobilization at insur-
mountable obstacles, with the consequence that when
immobilized, dislocations cease to take part in the
redistribution of dislocations in the crystal. In terms of
the kinetic mechanism, the spatial and temporal evolu-
YSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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tion of the GND density is described by the equation
[9– 12] 

(4)

where Jx and Jy are the dislocation fluxes in the disloca-
tion slip plane and along the normal to it, respectively;
S(ρ) is a term describing the generation of dislocations
and their immobilization and annihilation; and t is time.
According to the Ashby relation, the GND generation
rate is  = /bl = (u/l)ρ, because  = bρu, where u is
the dislocation velocity. In the case of dynamic
polygonization, we have Jy = 0 and, therefore, Eq. (4)
can be written in the form 

(5)

The second term on the right-hand side of Eq. (5)
describes the process of dislocation immobilization
due to the formation of dipoles from edge dislocations
of the same sign; hd is the spacing between parallel
slip planes (trapping range) at which dislocations can
trap one another. The flux Jx(x) can be spatially inho-
mogeneous because GNDs can be nonuniformly dis-
tributed over the slip planes and produce long-range
stresses [8, 9]: 

(6)

where R0 ≈ ρ–1/2 is a characteristic cutoff of the local
dislocation interaction. In the case of thermally acti-
vated dislocation motion, the nonlocal dislocation dif-

fusion flux is  = uρ[(∂lnu/∂τ ]τd, where
∂lnu/∂τ = V/kT, V is the activation volume, and T is the
temperature. It is assumed that τd ! τ, where τ is the
bending stress applied to the crystal. We also take into
account the drift component of the dislocation flux

 = uρ. Substituting the total flux into Eq. (5), we
arrive at the evolution equation for the GND density:

(7)

Linearizing Eq. (7), it can be shown that near the
critical points ρ1 = 0 and ρ2 = 1/hdl, the region of stabil-
ity of the dislocation density against fluctuations of the
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form exp(ωt + iqx) is determined by the equation
ω(q) = ω1(q) + iω2(q), where 

(8)

From the condition ∂ω1/∂q = 0, we find the critical

wave vectors q1, 2 = ; the corresponding critical
frequencies are

(9)

From the above equations, it follows that the disloca-
tion density is unstable against convective fluctuations.
In addition, the initial, zero density of GNDs is unstable
with respect to long-wavelength fluctuations with λ1 =
2π/q1  ∞, whereas the equilibrium dislocation den-
sity ρ2 is stable against fluctuations with λ2 =
(2π/3)(hdl)1/2 provided that ω1(q2) < 0, i.e., in suffi-
ciently thick (l > lc) crystals. For example, for
µV/2π(1 – ν)kT = 5 × 103, hd/b = 5, and b = 0.3 nm, we
have lc ≈ 0.3 mm.

4. POLYGONIZATION KINETICS 

Equation (5), which describes the GND density evo-
lution, is a nonlinear integral differential equation. In
the preceding section, we used the differential expan-
sion of the integral in Eq. (6) and approximated the evo-
lution equation by the pure differential equation (7). In
this section, a solution to this equation is found by tak-
ing into account only the first gradient term in parenthe-
ses in Eq. (7). This solution will allow us to describe the
dynamics (kinetics) of the formation of a polygon
structure and calculate its parameters. We seek a solu-
tion to Eq. (7) in the form of ρ = ρ(z, t), where z = x –
Ut, with U being a constant velocity. Substituting the
total derivative ∂ρ/∂t = ∂'ρ/∂'t – U∂ρ/∂z into Eq. (7), we
obtain 

(10a)

In what follows, we assume that U = u. Using the rela-
tion ∂'ρ/∂'t = (∂ρ/∂γ) , where  = bρu, and introducing
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P

the dimensionless variables 

(10b)

we represent Eq. (10a) in the dimensionless form 

(11a)

In the case of a self-similar solution Ψ(Γ, Z ') =
φ(Γ)ϕ(Z '), where Z ' = φ–1/4Z, the variables φ(Γ) and
ϕ(Z ') are separated and Eq. (11a) is reduced to two
equations:

(11b)

A solution to the first equation has the form φ(Γ) =
1 – exp(–Γ). Substitution of ϕ = ψ2/3 into the second
equation and single integration gives

(12)

Integration of Eq. (12) using the substitution ψ =
(7/5)3/2f 6 leads to an elliptic integral of the first kind,

F(θ, k) = Z '/2 , where f = cosθ and k = 2–1/2.
In  terms of the Jacobian elliptic function cn(x, k), a
solution to Eqs. (10a) and (11a) can be written in the
following compact form using the notation introduced
above:

(13a)

Here, Γ = (hd/b)γ, ρm = (7/5)ρ2, z = x – Ut, Λ'(Γ) = [1 –

exp(–Γ)]1/4, and  = 2 F(π/2, k)Λ0.

This solution describes the evolution of the GND
density (as a function of crystal deformation) in the
form of a uniformly moving space-modulated disloca-
tion structure of period Λ' depending on the amount of
deformation. For the modulus equal to k = 2–1/2, the
Jacobian elliptic function can be approximated by a
trigonometric cosine to within 10% and Eq. (13a) takes
the form

(13b)

where Λ(Γ) = Λm[1 – exp(–Γ)]1/4, with Λm = 2π Λ0.
Figure 3 shows the dislocation structure as described by
Eq. (13b) for different values of the dimensionless
deformation Γ. It is notable that an increase in the
deformation leads to an increase in the dislocation den-
sity in dislocation walls, and the spacing between walls
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also increases, from the fluctuation wavelength λc =

(2π/3)  ≈ 1 µm to Λm = 20 µm (l = 5 mm, hd/b = 5).

Using the relation ρ = b–1∂ω/∂z, the misorientation
of the crystal associated with the formation of a poly-
gon structure can be written as

(14)

Figure 4a shows the space variation of the tilt angle
ω(z) in the crystal described by Eqs. (13b) and (14) for
Γ  ∞. It is seen that the formation of each disloca-
tion wall leads to crystal misorientation characterized
by tilt angle ωn = (3/8)bρmΛm. With increasing defor-
mation, the tilt angle increases as ω(Γ) = ωn[1 –
exp(−Γ)]5/4. Since each dislocation wall is a pileup of
dislocations of the same sign, its formation causes
stresses which, according to Eqs. (6) and (13b), are
equal to

(15)

Figure 4b shows the distribution of internal stresses in
a polygon structure described by Eq. (15) for Γ  ∞.
It is seen that the stress reaches a maximum value near
dislocation walls and vanishes in the walls themselves.

In closing, we present qualitative estimates of the
parameters of the polygon dislocation structure. The
spacing Λm between dislocation walls was estimated
above. Using the parameters indicated above, we obtain
ρm = 1.8 × 107 cm–2 and ωn = 3 × 10–4. These estimates
are consistent, in order of magnitude, with the data pre-
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sented in Fig. 2 and taken from [2] (ωn = Λ/R = 9 × 10–4).

As for the internal stresses, Eq. (15) gives  ≈ 10–8µ.
This value seems to be underestimated, which could be
due to the approximation of the internal stresses by
Eq. (6).

Thus, using the kinetic approach, we investigated
the formation of dislocation polygon structures in bent
crystals and calculated the parameters of these struc-
tures and their dependence on crystal deformation.
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Abstract—Methods of dynamic nanoindentation were used to study unstable modes of plastic flow in micro-
and submicrovolumes of the Al–3% Mg alloy. It was established that, depending on the rate of loading and
dimensions of the deformed region, various regimes of unstable plastic deformation are realized. In the course
of deformation, the irregular deformation curve (corresponding to a random process) reveals a quasi-periodic
behavior with a characteristic amplitude of hardness oscillations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Unlike purely elastic deformation, plastic deforma-
tion in crystalline solids is always nonuniform in space
and time because of the discrete nature at the atomic
level. The character and magnitude of macroscopic
effects caused by this fundamental discreteness are
mainly determined by microscopic mechanisms of ele-
mentary acts of plasticity and by the degree of their
cooperative character. The registered macroscopic
manifestations of the instability of the mechanical
behavior of a sample also substantially depend on its
geometry and sensitivity and resolution of the appara-
tus used.

The effects that have been best studied to date are
the regularities and the nature of instability of irrevers-
ible deformation in macroscopic samples upon uniaxial
compression or tension, such as the Savart effect, which
manifests itself in the form of deformation jumps in a
soft testing machine (known from 1837) and the
Portevin–Le Chatelier effect, which causes load jumps
in a hard testing machine (studied from the beginning
of the 20th century) [1–12]. Several main mechanisms
of the irreversible microscopic mechanical instability
have been revealed, such as (1) dynamic aging in the
process of deformation, caused by the interaction of
moving dislocations with mobile impurity atoms; (2)
the formation and development of localized shear
bands and slip bands, twins, kink bands, etc.; (3) phase
transitions induced by deformation; and (4) the genera-
tion and growth of pores, cracks; etc.

When studying processes of deformation instability,
two aspects are usually distinguished: (a) the dynamics
of an individual isolated event and (b) statistical and
correlational regularities of a large number of such
events. In both cases, special methods and devices that
would ensure high spatial and time resolution unattain-
able with standard testing devices are required to cor-
1063-7834/02/4407- $22.00 © 21310
rectly analyze the dynamics of the process. In this
work, we undertook special measures to enhance
space–time resolution, data throughput, and the mem-
ory of the registering apparatus.

In the last decade, in view of the sharply increased
interest in nonlinear dissipative systems and processes
of self-organization in them, the processes of deforma-
tion instability have also been considered from the
viewpoint of the theory of dynamic systems [2, 11, 12],
which made it possible to substantially improve the
understanding of the nature of the mechanical proper-
ties of materials. The interest in these problems is not
only due to fundamental reasons, but also is caused by
purely pragmatic ones, since the character of plastic
flow (stable or unstable) and the degree of correlation
between individual load jumps, their amplitudes, and
frequencies substantially affect the applied deformation
force, the microscopic geometry (degree of roughness)
of the surface of the sample, and the susceptibility to
failure upon forming pressure for many practically
important materials.

Another group of factors that cause interest in col-
lective phenomena in systems of defects is related to
the involvement of a nanoscopic scale in physical mate-
rials science and in nanotechnologies, which requires
allowance for the specific behavior of materials in sub-
micron volumes. It is well known that the constancy of
mechanical properties manifests itself in a limited
range of specimen dimensions and deformation rates;
as a result, the material behavior in nanovolumes can-
not be derived, as a rule, from data obtained on macro-
scopic samples. In this connection, the main purpose of
this work was to investigate the regularities of deforma-
tion in the Al–3 wt % Mg alloy (on local deformation
with small loads of 10–3 to 10 N), whose behavior in
macrovolumes (in particular, the transition from the
uniform to discontinuous (jumplike) flow mode, as well
002 MAIK “Nauka/Interperiodica”
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as the nature and statistic characteristics of ensembles
of jumps) has been well studied on macroscopic sam-
ples [2–12].

In order to localize the deformation zone to several
nanometers and, simultaneously, to continuously regis-
ter the load and the deformation, we chose the method
of nanoindentation. This method makes it possible to
study fine details of the deformation dynamics both on
the level of isolated deformation jumps and for the
entire statistic ensemble of a large number of jumps.
However, commercial nanotesters, which usually pos-
sess a very high resolution in depth (to 0.1 nm in the
best samples), have too low a time resolution, which is
insufficient to correctly investigate fast processes in the
deformation zone.

In a relatively narrow range of loads and strain rates,
the investigation of the kinetics of the local deformation
of aluminum alloys was performed in [13, 14], where a
transition from the stable to an unstable regime was
revealed after some critical value of the indenter-pene-
tration depth h was achieved. However, it should be
taken into account that as h grows, the relative rate of
deformation  decreases. This follows from the expres-
sion  = dh/hdt that is usually employed for estimation
of the average value of  under an indenter [15, 16].
For this reason, it is necessary to understand what in
reality affects the transition from one mode of deforma-
tion to another, i.e., whether this is the size factor,
strain-rate factor, or a combination of both. The small
time resolution of the apparatus used in [13, 14] pre-
vented the authors from observing fine details in fast
jumps and from classifying them. Finally, neither the
shape nor the statistics of jumps were analyzed in those
works; therefore, one cannot judge the mechanisms and
the origin of jumps and the degree of their correlation
at various stages of local deformation.

The aim of this work was to experimentally investi-
gate and discuss these problems.

2. EXPERIMENTAL

The main principles and methods of investigation of
materials during continuous local deformation (nanoin-
dentation or depth-sensing testing) have repeatedly
been described previously (see, e.g., [17–25]). How-
ever, to investigate fast dynamic processes, these meth-
ods had to be improved to enhance their time resolu-
tion.

One feature of our setup is a horizontal arrange-
ment of the mobile rod, which permitted us to decrease
the mass and, consequently, the inertia of the mobile
parts of the setup. The rod was mounted on an elastic
suspension, ensuring its translational motion without
friction. The total rigidity of the suspension was
10−4 N/µm; this permitted us to realize a “soft” scheme
of loading, which is more sensitive to deformation
jumps than the “rigid” scheme. At one end of the rod, a

ε̇
ε̇

ε̇
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standard Berkovich diamond indenter was attached; at
the middle portion of the rod, a capacitance sensor of
translation was mounted. The loading was made using
a magnetoelectric drive in which a mobile coil inter-
acted with an immobile dc ring magnet. By changing
the amplitude, duration, and shape of current pulses in
the coil, which were specified by a computer, we could
vary the parameters of the loading pulse applied to the
indenter.

The signal from the force and translation sensors
were applied to a decade analog-to-digital converter
and were subsequently processed on a personal com-
puter. The above-described method and the setup
ensured the measurement of the dynamics of the pro-
cess of micro- and nanoindentation in a range of loads
P from 1 to 300 mN, penetration depths h from 1–5 nm
to 10 µm, and times from hundreds of microseconds to
hundreds of seconds. The maximum resolution of the
setup was 1 nm in depth, 0.1 mN in force, and 50 µs in
time. To perform measurements at greater loads, a spe-
cial attachment was used which permitted us to obtain
forces to a maximum value Pm = 15 N with a depth res-
olution of 20 nm upon indentation.

All the experiments were carried out using indenta-
tion with force linearly increasing in time P = µt. The
variation of the loading time t from 5 to 200 s and of the
maximum force of the indenter penetration Pm between
10 mN and 15 N permitted us to change the rate of the
force increase µ by a factor of more than four orders of
magnitude in a range from 0.1 to 1500 mN/s.

The samples of the Al–3% Mg alloy were spark-cut
from commercial sheet products in the form of parallel-
epipeds 3 × 5 × 40 mm in dimension. The side faces of
the samples were polished using a paste with 5-µm
grains to remove a layer 50–100 µm thick. Then, the
samples were annealed at 450°C for 2 h and quenched
in water, which gave a grain size of 200–250 µm.
The  final surface finish was performed using elec-
tropolishing.

3. RESULTS

In the process of the experimental investigation,
more than 1000 files containing primary information on
pair functions P(t) and h(t) were accumulated; using
these data, other dependences, e.g., P–h diagrams
(Fig. 1), were subsequently constructed. It follows
from the entire body of the data obtained that three
regimes of flow are typical; they are characterized by
(1) a smooth (to an accuracy of the setup noise), (2)
irregular discontinuous (jumplike), and (3) ordered
steplike growth of h in time (see corresponding insets
a–c in Fig. 1). In the limiting cases (at very low or very
high loading rates), only one or two instead of three
types of kinetic curves could be realized. Under con-
ventional conditions, successive changes in the regime
of flow from the first type to the second and then to the
third type were observed, which could be related to the
2
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interchange of the physically different stages of
indenter penetration into the sample. These transitions
could occur sharply or gradually, by means of a com-
petitive replacement of one type of behavior by another
(inset b in Fig. 1), which caused a change in the course
of all the other dependences constructed on the basis of
the primary data (Figs. 2–6).

Since the fast variations of the quantities h, , ,
etc. took place against the background of their global
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Fig. 1. Typical P–h diagram obtained upon indentation of
the Al–3% Mg alloy under conditions of a linear increase in
the force at a rate µ = 12.5 mN/s. The maximum value of the
force is Pm = 2.5 N. The insets show typical kinetic curves
of indenter penetration in the depth–time coordinates: (a)
the initial stage of penetration, when a change from a
smooth to a jumplike regime of deformation occurs; (b) the
intermediate stage, when the jumplike irregular mode of
flow is replaced by a regular steplike mode; and (c) the final
stage of the regular steplike growth of h.
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Fig. 2. Variation of the amplitude of jumps ∆h as a function
of depth 〈h〉  for (1) irregular and (2) regular jumps of unsta-
ble plastic deformation (Pm = 250 mN, µ = 1.25 mN/s).
P

variation in the course of the indenter penetration into
the sample, in what follows we will distinguish their
instantaneous values and values averaged over intervals
involving several local variations. The latter are desig-
nated by characters in angular brackets. In contrast to
the stage of irregular jumps, in all strain-rate regimes
that lead to deformation in ordered steps, a linear
growth of the depth of jumps ∆h was observed with
increasing 〈h〉  (Fig. 2), which means the constancy of
the ratio ∆σ/〈σ〉  = ∆H/〈H〉  at a fixed value of µ (here σ =
H = 0.0379P(t)/h2(t) is the average contact stress at the
surface of the indent equal to the Meyer hardness H).
As µ changed by four orders of magnitude, ∆H/〈H〉
changed by a factor of less than two. The ordered
regime appeared after the penetration depth achieved a
certain critical value hc, which also only weakly
depended on the rate of growth of the load at the
indenter µ (Fig. 3). The 〈P〉  = f 〈h〉  dependence in this
case became close to quadratic, for which reason the
smoothed value of the hardness 〈H〉  became virtually
independent of 〈h〉  (Fig. 4).

In contrast to uniaxial compression or tension in a
rigid testing machine such as an Instron device, the

rates 〈 〉  ≠ const and 〈 〉  ≠ const are not constant upon
nanoindentation. In the process of indenter penetration

into the sample, they decrease (〈 〉  weakly and 〈 〉
strongly) and oscillate, similar to other variables, about
the average (in each stage) values. It follows from
Figs. 5 and 6 that again three regions can be distin-

guished in the (t), (〈h〉), and (〈h〉) dependences:
one with a smooth variation (to an accuracy of the setup
noise), one with irregular discontinuous (jumplike)
variations, and one with ordered quasi-periodic varia-
tions. In this connection, it is necessary to clarify, apart
from the obvious effect of the size factor, the effect of
the rate factors. It is seen from Fig. 6 that for the transi-
tion into the regime of ordered jumps, two coupled con-
ditions should be fulfilled: 〈h〉  > hc and 〈 〉  < .
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Fig. 3. Variation of the critical depth of indents hc corre-
sponding to the establishment of the regime of formation of
regular jumps as a function of the rate of increase in the
force µ.
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4. DISCUSSION

The existence, in the general case, of three stages in
the kinetics of the indenter penetration obviously
entails a change in the conditions and mechanisms of
plastic flow with an increase in 〈h〉  and simultaneous
decrease in 〈 〉 . In view of the absence of jumps with
an amplitude reliably exceeding the level of noise in the
channel of the depth measurement at small h, it is diffi-
cult to answer with certainty whether or not there are
jumps in the very beginning of the process of indenter
penetration into the sample. In setups with enhanced
vibroprotection (as compared to this work), sharp
changes in h were observed at h ≈ 5–10 nm and small
loading rates even in plastic materials such as Al and Cu
[26, 27]. In this case, the P(h) dependence at the stage
of retardation of the growth rate of h was close to purely
elastic in accordance with the Hertz law P ~ h3/2 [26,
27] and during the jump in h the magnitude of P
remained virtually unaltered; i.e., the material suffered
deformation without hardening, as does a Newtonian
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0 2

H
, G

Pa

h, µm

1.5
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4 6 12108
0.5

Fig. 4. Correlation between the hardness H and the penetra-
tion depth h (Pm = 2.5 N, µ = 12.5 mN/s).
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liquid. The authors of [26, 27] relate the generation of
such jumps (with an amplitude ∆h ~ 10–20 nm) to the
generation and evolution of small dislocation pileups or
slip lines containing ∆h/b ≈ 102 dislocations (b is the
Burgers vector), which seems to be quite reasonable. It
cannot be ruled out that in our case as well, i.e., in the
Al–3% Mg alloy, such jumps took place at small h but
were masked or were too rare and refined by the setup
vibrations to a level comparable with the noise level.

At h > 50–200 nm (depending on the magnitude of
µ), the amplitude of jumps became much higher than
the noise level, which permitted us to reliably identify
the jumps and analyze their parameters. Of course, this
does not eliminate the fundamental problem of the role
of noise in the dynamics of a potentially unstable sys-
tem subject to a jumplike relaxation of metastable
states. The operation speed of our setup permitted us to
determine the real duration of the front edges of such
jumps: at h > 100 nm, it was tf = 10–4 to 10–3 s. In com-
bination with the depth of the jump ∆h = 10–100 nm,
this gives an estimate for the average dislocation veloc-
ity in pileups of about ∆h/tf ≈ 10–4 m/s, which agrees
with the conventional concepts of the mobility of dislo-
cations near the yield strength. We emphasize that the
magnitude of tf found is a physical characteristic of the
process of deformation of a given material rather than a
reflection of transient processes in the mechanics or
electronics of the nanoindentation device, whose dura-
tion was less than tf . As was mentioned above, the tran-
sition to the stage of ordered jumps was accompanied
by changes in various parameters of the deformation. In
particular, each individual jump became more smooth,
the deformation rate at the front decreased, and the
deformation rate at the plateau increased (see inset c to
Fig. 1). The amplitude of jumps normalized to the cur-
rent values of 〈h〉  became close to constant in this case.
These features indicate a change in the mechanism of
instability.
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Fig. 5. Dependence of the linear rate of indenter penetration on (a) the time t and (b) current depth of the indenter penetration h.
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Note that this by no means should be due to changes
in the conditions of motion of individual dislocations.
The change in the type of kinetic curves of the indenter
penetration may be related to changes in the character of
collective processes in their system. For example, upon

1
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3

0.3

0.2

0.1

0
4 8 12

h, µm

ε, s–1.

Fig. 6. Variation of the rate of relative deformation  as a
function of the current depth of the indenter penetration h in
the region where the change in the regimes of plastic flow
occurs at various rates of the force growth µ: (1) µ = 125,
(2) 50, and (3) 12.5 mN/s. The maximum load was the same
in all cases (Pm = 2.5 N).

ε̇

PH
uniaxial deformation, the manifestations of the Portevin–
Le Chatelier effect are quite various and, in particular, as
in this work, the irregular discontinuous (jumplike)
curves are replaced by quasi-periodic ones as the defor-
mation rate decreases. A dynamic analysis shows that
upon uniaxial deformation, this tendency is related to the
transition between the dynamic regimes of a determinis-
tic chaos and self-organizing criticality [28].

As is known, in Al–Mg alloys there exists a range of
strain rates  in which the strain-rate dependence of the
flow stresses has a negative slope [4, 8, 11], which pro-
vides conditions for the development of a self-oscillat-
ing process. The microscopic cause for such a behavior
is the deformation aging, i.e., blocking of gliding dislo-
cations by impurity atoms [1, 4–12] in a certain range
of velocities of moving dislocations. The dynamic and
statistic characteristics of steps carry information on
the mobility of impurity atoms and dislocations and on
the correlations between them; these problems will be
the subject of another paper. As is seen from Fig. 7, the
development of instabilities for the process of loading
on the whole resembles a random process. However, at
the stage of regular jumps, the phase trajectory acquires
a form characteristic of nonlinear periodic oscillations
(see inset to Fig. 7), which makes it possible to recon-
struct the N-like curve of the strain-rate sensitivity of
hardness (or average flow stresses under the indenter).
Note that the amplitude of the loop in the phase dia-
gram of these ordered oscillations upon nanoindenta-
tion is much smaller than that for irregular oscillations
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Fig. 7. Phase portrait of the process of the indenter penetration for the entire cycle of penetration (the arrow indicates the direction
of the change in H with increasing current depth of the indenter penetration h). The inset displays a portion of the phase trajectory
consisting of five successive pulsations at the stage of regular jumps; the solid line shows the reconstruction of the N-like depen-
dence of the hardness H on the rate of relative deformation .ε̇
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and agrees in order of magnitude with the range of 
instability of flow given in [10] for macroscopic sam-
ples deformed by uniaxial compression. No better coin-
cidence appears to be possible, since the concrete shape
of the experimental loop depends not only on the prop-
erties of the material but also on the scheme of loading,
the geometry of the sample, and the inertial properties
of the testing machine. Indeed, the experimentally
detected rates  are underestimated in any case, since
according to the testing scheme and calculation
method, they refer to the entire loaded region (upon
nanoindentation) or to the entire sample (upon uniaxial
tests). It is obvious that the greater the locally deformed
volume of the material (e.g., in the head of a dislocation
pileup) differs from the sample volume, the greater the
averaging of  and the greater it differs from the local
value  that determines the position of the “working
point” at the strain-rate dependence. From this view-
point, a nanotester, without doubt, ensures a greater
locality, i.e., a greater closeness of the measured mag-
nitude of  to , than in the case of tests in a machine
of the Instron type, as well as (in view of the smaller
mass of moving parts) smaller distortions of the time
characteristics of the jumps.

The above results and the discussion leave little
doubt that the regular jumps are a result of deformation
aging and can be considered a manifestation of the
Portevin–Le Chatelier effect under conditions of con-
tinuous nanoindentation (or of the Savart effect, since
the nanotester employed represents a soft testing
machine).

5. CONCLUSION

Thus, it was shown in this paper that under the con-
ditions of continuous nanoindentation (or microcontact
interaction) in Al–3%, Mg can develop two types of
instability of plastic deformation controlled by differ-
ent mechanisms. Upon the transition from disordered
discontinuous (jumplike) deformation to ordered defor-
mation that develops when two interrelated conditions
are fulfilled, i.e., 〈h〉  > hc and 〈 〉  < , the normalized
depths of the jumps ∆h/〈h〉  and the normalized hardness
∆h/〈h〉  acquire constant values only weakly depending
on the rate of the indenter penetration into the sample,
which corresponds to the appearance of repeated limit-
ing cycles in the phase diagram.
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Abstract—The evolution of the distribution of nanodefects that are formed under the effect of tensile stresses
existing at the surface of polished foils of molybdenum was studied. The nanodefects form four statistical
ensembles in which the size distribution is determined by the maximum of the configurational entropy. The
energy of formation and the average size of nanodefects in adjacent ensembles differ by a factor of three. When
the concentration of nanodefects in one of the ensembles reaches a thermodynamically optimum value of ≈5%,
part of the nanodefects annihilates and the other part becomes transformed into nanodefects of the next (higher)
hierarchical level. The application of a load to the sample studied continuously generates nanodefects that form
the first (lowest-level) ensemble, which leads to periodic oscillations in the concentrations of nanodefects in all
four ensembles. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigations using scanning tunneling microscopy
(STM) show that, on the polished surface of metals
such as Cu, Au, Mo, and Pd, defects that have the shape
of a pyramid indent of nanometer size are formed under
the effect of tensile stresses [1–8]. These defects are
transformed and annihilate upon the motion of material
bands in directions parallel to the dislocation slip
planes [5, 8, 9].

In [8], the size distribution of nanodefects was con-
sidered on the basis of a model of reversible coales-
cence (aggregation) of atomic “steps” formed at sites
where dislocations emerge onto the crystal surface. In
this model, the energy of formation of a nanodefect is
proportional to the dimensions y of its walls: E = y∆U0,
where ∆U0 is the energy of aggregation of atomic steps.
Therefore, the expression for the canonical distribution
of the thermodynamic probability of fluctuations of
energy at a constant volume [10, 11] is

(1)

where m is the number of degrees of freedom and β ≡
1/kBT was rewritten in the form [8, 12]

(2)

Here, n(y) is the concentration of nanodefects with wall
lengths y, n0 ≡ Caβ(∆U0)2/2, and Ca is a normalizing
constant.

f E( ) β βE( )m 1–

Γ m( )
-------------------- βE–( ),exp=

n y( ) n0y
2 βy∆U0–( ).exp=
1063-7834/02/4407- $22.00 © 1316
Expression (2) describes the experimental size dis-
tributions in objects such as nanodefects at the surfaces
of loaded foils of metals (copper, gold, and molybde-
num [8]), carbon-black particulates in compounded
rubbers [12], or supramolecular formations at the sur-
face of glassy polymethyl methacrylate [13]. This gave
grounds to conclude that the above objects form statis-
tical ensembles and that their size distributions are
specified by the maximum of entropy [8, 12].

In [9], the nanodefect-size distribution was
described by the Poisson distribution. In [11], it was
shown that both descriptions are equivalent. The choice
depends on what we are more interested in: energy fluc-
tuations or fluctuations of the number of particles. In
the first case, the distribution of fluctuations is
described by the expression for the canonical distribu-
tion of the thermodynamic probability (Eq. (1)); in the
second case, by the expression for the Poisson distribu-
tion.

Detailed investigations of the distribution of nano-
defects on the surfaces of stressed copper foils [9]
showed that, to more correctly describe the experimen-
tal distributions, one should use the sum of distribu-
tions (2)

(3)

where n0i and ∆U0i are the normalization constant and
the energy of aggregation for the ith distribution,
respectively.

n y( ) n0iyi
2 βyi∆U0i–( ),exp

i 1=

n

∑=
2002 MAIK “Nauka/Interperiodica”
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Such a description implies that the aggregate of
nanodefects consists of a few statistical thermodynamic
ensembles with different intrinsic energies ∆U0i. The
idea of the existence of several statistic ensembles was
confirmed in [8]. The set of nanodefects on the surface
of stressed copper samples proved to form a multilevel
hierarchical system in which nanodefects of the (i +
1)th rank are formed at the expense of nanodefects of
the ith level. This work continues that cycle of investi-
gations. Its aim is to clarify to what extent the phenom-
enon of the existence of a hierarchy of statistical
ensembles of nanodefects on the surface of stressed
metals is common on the whole. As is known, copper
refers to fcc metals; in this work, we investigate the dis-
tributions of nanodefects on the surface of a bcc metal,
namely, molybdenum.

2. EXPERIMENTAL

We investigated the profiles of surfaces of rolled
molybdenum (99.96%) foils approximately 60 µm
thick. The samples were cut using special knives along
the rolling direction, polished using a GOI paste, and
washed in ethyl alcohol and acetone. Auger spectros-
copy showed that the surface of the samples was cov-
ered by a carbon layer ≈2 nm thick.

The topograms of the surface of stressed samples
were recorded in an atmosphere of dried nitrogen using
an RTP-1 scanning tunnel microscope [1]. The observa-
tion window was 10 × 10 µm.

Because of the sample creep under a load, the obser-
vation window shifts relative to the measuring tip in the
STM. As a result, the defect images become distorted.
To minimize the distortions, the magnitude of the ten-
sile stress was chosen such that, while recording a sin-
gle topogram (≈40 min), the image of the surface region
under study be displaced no more than 0.3% of the win-
dow size (10 × 10 µm). This condition was satisfied at
a load of 800 MPa, at which the rate of creep was  ≈
1 × 10–6 s–1. The uniaxial tensile stress was applied to
the samples using a special spring device [1].

Figure 1 schematically displays a typical nanodefect
formed on the surface of molybdenum. It has the form
of an “indent” of a pyramid whose vertex is directed
into the sample and whose opposite walls are parallel to
dislocation slip planes in the bcc lattice, i.e., {110} and
{112} [5]. The depths of such “indents” is ≈10 nm. The
apical angles group near two values, ≈50° and 90°. No
preferential orientation of the defect walls relative to
the surface and the direction of tension was observed.

The depth of nanodefects in each scan was mea-
sured manually. The distance between two sequential
scans was 100 nm. Thus, only those nanodefects were
detected whose size l in the direction perpendicular to
the scanning direction exceeded 100 nm. “Coarse” nan-
odefects (l > 200 nm) crossed scans several times; their
depth in successive scans was, as a rule, different. This

ε̇
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was explained by the fact that the length of dislocations
that emerged onto the surface was less than 100 nm.
Therefore, the different sections of a coarse nanodefect
were considered to be independent.

Since the average value of the apical angles of the
nanodefects was ≈70°, the length of their walls was
estimated as

(4)

The magnification of the image in the direction per-
pendicular to the plane of the surface was 2.5 × 106

(25 nm/cm). This permitted us to investigate nanode-
fects with a depth from 5 nm. The number of nanode-
fects in the topograms was from 1000 to 5000, depend-
ing on the time passed after loading; this ensured our
obtaining sufficiently reliable statistic distributions of
nanodefect sizes.

3. NANODEFECT-SIZE DISTRIBUTION

The nanodefect-depth distribution was described by
the expression

(5)

following from Eq. (3) with allowance for (4).
According to the model of aggregation [8], the mag-

nitude of the parameter β∆U01 for the first term in
Eq. (5) is independent of time and the ratio ∆Ui /∆Ui + 1
for neighboring terms in (5) is equal to three. In the
framework of this model, we sought the best coinci-
dence between the calculated and experimental distri-
butions by choosing a proper value of the parameter
β∆U01 and coefficients n0i.

We analyzed 30 topograms obtained at various time
moments (from 1 to 184 h; time to rupture was 186 h)
after applying a tensile stress of 800 MPa. For example,
Fig. 2 displays the nanodefect-depth distribution
obtained 60 h after loading. It is seen that the distribu-
tion found using Eq. (5) (solid curve) satisfactorily

y
2d

35°cos
----------------- 2.4d .≈ ≈

n d( ) n0idi
2

2.4βdi∆U0i–( )exp
i 1=

n

∑=

a

b

Fig. 1. Cross sections of nanodefects with depths of 7–
10 nm on the surface of molybdenum. The apical angles are
(a) ≈50° and (b) 90°.
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P

describes the experimental data. It turned out that the
nanodefect-depth distributions on the surface of
stressed molybdenum are also equally well described at
other time moments. The number of terms in the sum
(5) (i.e., the number of constituting elementary distri-
butions), depending on the time after the application of
the tensile stress, varied from two to four.

Since we were forced to use up to five adjustable
parameters in those calculations (four n0i and ∆U01), we
tried to make sure the four elementary distributions of
nanodefects in an independent way. To this end, one
and the same topogram was analyzed at magnifications
of 2.5 × 106, 8.3 × 105, and 2.8 × 105 (25, 8.3, and
2.8 nm/cm, respectively).

It follows from Eq. (2) that the position of the distri-
bution maximum dmi is related to the energy of forma-
tion of nanodefects as

The parameter 2.4β∆U01 ≈ 0.038 is approximately
0.038 per lattice parameter or ≈0.286 nm–1; hence, the
position of the maximum of the first elementary distri-
bution should correspond to ≈7 nm. This distribution is
the most intense, and the position of its maximum
determines the position of the maximum of the total
experimental distribution. The maximum of the total
distribution obtained at a magnification of 2.5 × 106

turned out to be located at ≈8 nm (Fig. 2).

With decreasing magnification, the finest nanode-
fects cease to be visible. In accordance with the aggre-
gate model, as the magnification decreases by a factor
of three (to 8.3 × 105), the experimental distribution
should represent a sum consisting of the second, third,
and fourth distributions. The position of the second ele-
mentary distribution should be at dm2 = 2 × 3/(β∆U01) =
3dm1 = 21 nm. The maximum of the total distribution
was found to be at ≈25 nm (Fig. 3a).

After processing the topogram obtained at the mag-
nification of 2.8 × 105, the distribution shown in Fig. 3b
was obtained. According to the aggregate model, it
should consist of two elementary distributions: third
and fourth ones. Its maximum is at ≈70 nm, whereas
according to the aggregate model, the maximum of the
third elementary distribution should be located at dm3 =
2 × 9/(β∆U01) = 9dm1 = 63 nm. The size distribution is
described by expression (2) and is specified by the max-
imum value of the configurational entropy.

It is of interest to find the average depth of defects
〈di 〉  that form the ensembles. It follows from (2) that
this depth is related to β∆U0i as

(6)

dm
2

β∆U0i

---------------.=

di〈 〉 1.25
β∆U0i

---------------.≈
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For nanodefects that form the first ensemble, it was
equal to ≈11 nm; for the defects of the second ensem-
ble, to ≈32 nm; for the third ensemble, ≈95 nm; and for
the fourth ensemble, ≈285 nm.

4. OSCILLATIONS OF THE CONCENTRATION 
OF NANODEFECTS

Figure 4 depicts fragments of the topograms
recorded at time moments of 64, 87, 88, and 117 h after
the application of tensile stresses. It is seen that the con-
centration of defects first grows (Figs. 4a, 4b), then
decreases (Fig. 4c), and then again increases (Fig. 4d).

A detailed analysis shows that not only the total con-
centration of defects suffers oscillations with time, but
their concentrations in each of the four ensembles also
oscillate (Fig. 5). The oscillation period was ≈21 h. The
concentration oscillations in successive ensembles
occur in counterphase: an increase in the concentration
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
of coarse nanodefects always occurs at the expense of a
decrease in the concentration of finer defects.

Thus, the kinetics of defect formation has an hierar-
chical character: the nanodefects of the (i + 1)th rank
are formed from the nanodefects of the ith rank. For
example, it is seen from Fig. 5 that the nanodefects of
the third rank begin to accumulate when the concentra-
tion of nanodefects of the second rank reaches a maxi-

mum value of . In turn, the nanodefects of the fourth
rank begin to accumulate after the concentration of
nanodefects of the third reaches its maximum value

.

It was found in [8, 14, 15] that the processes of accu-
mulation of nanodefects on the surface of copper foils
and of cracks in granites under the effect of mechanical
stresses also have an hierarchical character; i.e., the
nanodefects and cracks form a number of hierarchical

C2
cr

C3
cr
(a) (b)

(c) (d)

Fig. 4. Fragments of topograms of the surface of a molybdenum sample obtained at various time moments after loading: (a) 64, (b)
87, (c) 88, and (d) 117 h.
2



1320 BASHKAREV et al.
statistical ensembles. Thus, the hierarchy of defect for-
mation in loaded materials exists not only in metals but
also in other solids.

In order to clarify the origin of the appearance of
oscillations, we calculated the fraction of the surface
layer occupied by nanodefects when their concentra-
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Fig. 5. Time dependences of the concentration of nanode-
fects that form (a) second, (b) third, and (c) fourth ensem-
bles.
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tion for a certain of the four hierarchical ensembles had

the maximum value . In calculations, we assumed
that in each ensemble the nanodefects have a depth 〈di 〉 .
The width of the defects, i.e., the length of the segment
along the sample surface in the direction of scanning,
was estimated as h ≈ 2〈d〉  ≈ 1.4d and their
length was accepted to be equal to the distance between
the scans ls ≈100 nm. The volume of a nanodefect was
calculated as Vd ≈ lsd2. The volume of the layer occu-
pied by the nanodefects of the ith ensemble was esti-

mated as Vs ≈ L2〈di 〉  – 〈dj 〉 , where L is the
dimension of the observation window (100 µm) and the
index j labels the ensembles except for the ith one. The
calculations show that the maximum value of the con-
centration of nanodefects in the surface layer of molyb-

denum was  = (5 ± 1)% for each of the four ensem-
bles.

It was shown in [8] that the value of 5% corresponds
to a thermodynamically optimum concentration of nan-
odefects in the surface layer at which the entropy
reaches its maximum value ∆S ≈ 3kB. With such a con-
centration, the average spacing between two neighbor-
ing defects 〈Y 〉  is greater by a factor of e (e is the base
of natural logarithms) than their average size 〈y〉  [8]:

(7)

Numerous investigations of the process of accumu-
lation of cracks that are formed in solids (polymers,
metals, ionic crystals, glasses, and rocks) under the
effect of mechanical stresses [16–18] showed that when
the concentration of cracks in the bulk of a solid reaches
a value at which relation (7) is valid, the cracks begin to
coarsen. The above results show that the criterion for
coarsening (7) is valid not only for cracks but also for
nanometer-sized defects on the surface of Cu and Mo.

Using this criterion, the phenomenon of oscillations
of the concentration of nanodefects formed in the sur-
face layer of molybdenum may be explained as follows.
Under the action of a stress, a dislocation emerges onto
the surface of a metal. As a result of aggregation of
atomic steps, nanodefects of the first rank are formed
on the surface. Their concentration grows until it
reaches a thermodynamically optimum value ≈0.05. At
this level, conditions arise that are favorable for the
defect coarsening because of the maximum disorder in
the arrangement of nanodefects. Then, part of the nan-
odefects annihilate, while the others become deeper by
a factor of about three and form an ensemble of nano-
defects of the second rank. The concentration of the
defects of the second rank grows, reaches 5%, and then
part of them disappears, whereas the other part is trans-
formed into nanodefects of the third rank, etc. This pro-
cess is thermodynamically favorable, since the energy

Ci
cr

35°tan
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of aggregation of new coarse defects is only one-third
of the energy of formation of the old, finer defects.

An applied mechanical stress causes the formation
of new and new portions of nanodefects of the first
rank. Therefore, after the transformation of part of them
into nanodefects of the second rank, their concentration
again begins growing and the process is repeated cycli-
cally.

The frequency of oscillations of concentration ν,
according to the theory of consecutive reactions [19], is
related to the rate constant k1 of the reaction of forma-
tion of defects of the first rank as

(8)

Under our conditions (room temperature, a stress of
800 MPa), we have ν ≈ 1.3 × 10–5 and k1 ≈ 1.6 × 10–4 s–1.
If the nanodefects are produced under the effect of ther-
mal fluctuations, the energy of activation for their gen-
eration is

The rate of steady-state creep of the sample is  ≈ 1 ×
10–6 s–1, which means that the energy of activation for
steady-state creep is greater by 10 kJ/mol:

5. MECHANISM OF COARSENING
OF NANODEFECTS

In [5, 8, 9], the formation of nanodefects was
explained by the emergence of dislocations onto the
surface of the sample from closely spaced sources. It
follows from the results described above in this paper
that the dislocation sources in the surface layer of
loaded molybdenum form aggregates which are located
in a delocalized manner and also form four statistical
ensembles. The distribution of the sources over the
number of emitted dislocations in each of the ensem-
bles is described by Eq. (2) (with a replacement of the
parameter y by the number of emitted dislocations).

The average size of the nanodefect walls in the
ensemble of the first rank is 〈y1〉 ≈ 26 nm; they are
formed as a result of emission of 〈y1〉/a ≈ 87 (a is the lat-
tice parameter of molybdenum) dislocations by aggre-
gates of dislocation sources of the first rank. The follow-
ing ensemble consists of dislocation aggregates of the
second rank emitting 3y1/a ≈ 260 dislocations; the third
ensemble consists of aggregates emitting ≈780 disloca-
tions; and the fourth ensemble consists of aggregates
emitting ≈2300 dislocations.

The load applied to the sample produces dislocation
sources at a rate equal to the creep rate. The aggregates
of the first rank are formed from them at a rate that is
two orders of magnitude greater; then, aggregates of the

k1 12ν .≈

U01 kBT k0/k1ln kBT 10
13

/k1ln 100 kJ/mol.≈= =

ε̇

U0 kBT 10
13

/ε̇ln 110 kJ/mol.≈=
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second rank arise; then, aggregates of the third rank
appear; etc.

6. CONCLUSION

Thus, it was established in this work that nanode-
fects on the surface of loaded molybdenum form four
statistical ensembles. The size distributions of nanode-
fects in each ensemble is specified by the maximum
value of the configurational entropy and is described by
the expression for the canonical distribution of energy
fluctuations (2). After the application of a tensile stress,
the concentration of nanodefects of the first rank that
form the first-rank ensemble begins to grow. When it
reaches a thermodynamically optimum value of ≈5%,
part of them annihilate and the other part are trans-
formed into nanodefects of higher rank. The stress
applied to the sample continuously generates nanode-
fects that form the first-rank ensemble, which leads to
periodic oscillations of the concentration of nanode-
fects in all four ensembles.
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Low-Frequency Internal Friction of Polycrystalline 
ZrO2–4 mol % Y2O3 in the Temperature Range 273–373 K

G. A. Marinin, G. Ya. Akimov, V. N. Varyukhin, and O. N. Potapskaya
Donetsk Physicotechnical Institute, National Academy of Sciences of Ukraine, Donetsk, 83114 Ukraine

e-mail: akimov@host.dipt.donetsk.ua
Received July 16, 2001; in final form, November 25, 2001

Abstract—The specific features in the low-frequency internal friction, structure, and phase composition of
polycrystalline ZrO2–4 mol % Y2O3 are investigated in the temperature range 273–373 K. It is demonstrated
that the low-frequency internal friction exhibits two peaks upon heating and cooling. The former peak is
observed at a temperature of approximately 293 K, and the latter peak is revealed at 313 K. It is assumed that
the peak observed in the low-frequency internal friction at a temperature of 293 K is attributed to relaxation
dissipation of energy during motion of twin boundaries in the monoclinic phase, whereas the peak at 313 K is
associated with relaxation processes due to displacement of the boundaries of tetragonal T ' domains. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigations into the internal friction of tetragonal
polycrystalline ZrO2–3 mol % Y2O3 [1, 2] and stabi-
lized cubic ZrO2–10 mol % Y2O3 [3] (with the use of a
torsion pendulum [2, 3]) have revealed no anomalies in
the internal friction in the temperature range 273–
373 K. However, reliable data on the low-frequency
internal friction in ZrO2–4 mol % Y2O3 polycrystals,
including those with a high content of the monoclinic
phase, are unavailable.

The purpose of this work was to investigate the low-
frequency internal friction of polycrystalline ZrO2–
4 mol %Y2O3 with an increased content of the mono-
clinic phase (≈40%).

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The low-frequency internal friction was investigated
using an inverse torsion pendulum [4] with vibration
frequencies f = 10–24 Hz and strain amplitudes in the
range from 10–5 to 2.5 × 10–6. These amplitudes corre-
spond to shear stresses ranging from ≈0.8 to 0.2 MPa.
Free damped vibrations were recorded on a photo-
graphic film, which made it possible to analyze the
amplitude dependence of the low-frequency internal
friction. The quantity Q–1 = ∆/π was used as a measure
of low-frequency internal friction. Here, ∆ is the loga-
rithmic decrement, which was determined from the
change in the amplitude from A0 to 0.9A0 in all portions
of the damping oscillogram. The error in measuring Q−1

was no more than ±5%, and the error in measuring the
vibration frequency did not exceed ±1%. Repeated
measurements were performed on the same sample
1063-7834/02/4407- $22.00 © 21323
with a constant inertial system of the pendulum. In this
case, the frequency satisfies the relationship f 2 =
Gω/KL, where Gω is the dynamic shear modulus, K is a
constant that depends on the sample diameter and the
moment of inertia of the pendulum, and L is the dis-
tance between the clamps. Heating and cooling were
performed at a rate of 0.05–0.1 K/min. The temperature
was measured with copper–constantan differential ther-
mocouples.

The samples used in the experiments were prepared
according to the technique described in [5]. The final
stage of the preparation of ZrO2–4 mol % Y2O3 ceram-
ics was hot isostatic pressing in an argon atmosphere
for 4 h under a pressure of 0.2 GPa at a temperature of
1753 K with subsequent cooling under high pressure.
After hot isostatic pressing, we obtained a solid bar of
polycrystalline ZrO2–4 mol % Y2O3 with a density of
≈6.0 g/cm3 (≈100% of the theoretical density). In order
to examine the low-frequency internal friction, samples
1 × 1 × 60 mm in size were cut from the solid bar with
the use of a diamond disk. The samples thus obtained
were not subjected to polishing and heat treatment.

X-ray powder diffraction analysis of the solid bar
and samples intended for low-frequency internal fric-
tion measurements was performed according to the
standard technique [6]. The analysis demonstrated that
the process of fabrication of the sample from the solid
bar brought about changes in the phase composition of
the surface layer of the sample. The amount of the mon-
oclinic (M) phase increased from ≈8% in the solid bar
to ≈35–40% in the sample at the expense of a decrease
in the transformed tetragonal (T) phase, whereas the
amount of the cubic (F) phase remained unchanged
002 MAIK “Nauka/Interperiodica”
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(≈20%). Therefore, the surface layer underwent a con-
ventional mechanically activated martensite transfor-
mation T  M [7].

3. RESULTS AND DISCUSSION

Figure 1 shows the micrograph of the fracture sur-
face of the sample under investigation, which was
obtained using a scanning electron microscope. Large-
sized grains (more than 2 µm) of the cubic F phase can
contain tetragonal T ' domains formed upon hot isostatic
pressing in the course of rapid cooling under pressure
due to the martensite transformation F  T ' (T ' is the
tetragonal nontransformed phase). According to the
data of x-ray powder diffraction and polarized light
microscopy [8], this transformation is not observed in
large-sized grains only in the case of slow cooling and
at Y2O3 contents greater than 6 mol %. Medium-sized
grains (up to 1 µm) and small-sized angular grains (up
to 0.5 µm) belong to the tetragonal phase, whereas
spherical grains are revealed in the monoclinic phase,
which is formed as a result of the T  M transforma-
tion [9].

The temperature dependences of the low-frequency
internal friction Q–1 and the shear modulus Gω ~ f 2

upon cooling and heating of the sample in the tempera-

Fig. 1. Scanning electron micrograph of the fracture surface
of the sample under investigation.
PH
ture range 273–373 K are displayed in Fig. 2. All the
experimental points presented in Fig. 2 were averaged
over several measurements.

The main feature of the low-frequency internal fric-
tion in ZrO2–4 mol % Y2O3 ceramics is as follows: the
internal friction exhibits peaks at temperatures of
293 and 313 K, and the shear modulus Gω ~ f 2 notice-
ably decreases (increases) in the vicinity of 293 K.

Another important feature is that the anomalies in
Q–1 and f 2 are observed upon both heating and cooling
without a pronounced hysteresis. A decrease in the
measurement frequency from 24 to 10 Hz is accompa-
nied by a shift in the temperature of the low-frequency
internal friction peak from 293 to 283 K and an increase
in the peak height (Fig. 2). This makes it possible to
determine the relaxation time τ from the resonance
condition ωτ = 1 (where ω = 2πf) and to calculate the
activation energy H1 from the curve lnτ = F(1/T). The
calculations demonstrate that the activation energy for
this peak is estimated to be H1 ≈ 0.6 eV.

A weakly pronounced peak of the low-frequency
internal friction is observed in the vicinity of 313 K.
The frequency dependence of this peak was not ana-
lyzed in the present work. The activation energy H2 for
this peak was determined from the frequency and tem-
perature at the maximum of the low-frequency internal

.
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Fig. 2. Temperature dependences of the low-frequency
internal friction Q–1 and the square of the torsional fre-
quency f 2 upon heating and cooling.
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friction with the use of the Werth–Marx formula
derived for relaxation phenomena associated with the
atomic and molecular rearrangements [10]. According
to the estimates, H2 ≈ 0.7 eV.

Earlier investigations into the internal friction of tet-
ragonal polycrystalline ZrO2–3 mol % Y2O3 [1, 2] and
stabilized single-crystal cubic ZrO2–10 mol % Y2O3 [3]
at vibration frequencies f ≈ 1.4 kHz [1], f ≈ 3 Hz, and
f ≈ 3.06 kHz in the temperature range 273–600 K
revealed a broad maximum of the internal friction in the
temperature range 380–480 K. The activation energy
for this peak was estimated to be H3 ≈ 1 eV [2, 3]. The
low-frequency portion of this peak was also observed
for polycrystalline ZrO2–4 mol % Y2O3 (Fig. 2).

As was shown above, the distinctive feature of the
studied material is that it involves the cubic, tetragonal,
and monoclinic phases simultaneously. In order to
transform these phases, the changes in stress, tempera-
ture, and time should be considerably larger than those
used during low-frequency internal friction measure-
ments. The structure of ZrO2–4 mol % Y2O3 after hot
isostatic pressing consists of large-sized (≈3 µm) and
small-sized (≈0.5 µm) grains (Fig. 1). In the course of
the sample preparation for measuring the low-fre-
quency internal friction, mechanical treatment brings
about the martensite transformation T  M, which is
accompanied by twinning [7].

Weller and Shubert [2] discussed the origin of a
broad peak in the temperature dependence of the inter-
nal friction in the temperature range 380–480 K and
proved that this peak could not stem from dissipation of
energy during motion of twin boundaries in the mono-
clinic phase under applied stresses (σ ≈ 1 MPa), as was
assumed by Shimada et al. [1]. According to the data
obtained in [2, 3], the maximum of dielectric loss is
observed at the same temperatures. This can be caused
only by thermally activated orientation of electric (elas-
tic) dipoles , where the prime denotes the
negative charge and the point indicates the positive
charge. Electric dipoles of the vacancy–substitutional
impurity type are formed upon substitution of Y3+ ions
for Zr 4+ ions in the ZrO2 structure. In this case, there

are two Y3+ ions for every oxygen vacancy  instead
of the O2– oxygen ion by virtue of the electroneutrality
of the crystal [11, 12]. Sukharevskiœ et al. [11] demon-
strated that oxygen vacancies substantially stabilize the
high-temperature ZrO2 phases.

A sharp relaxation peak of the low-frequency inter-
nal friction can appear at temperatures close to 273 K
due to stress relaxation during motion of coherent twin
boundaries formed upon martensite transformation
from the cubic phase to the tetragonal phase. The nature
of this peak was discussed earlier in works devoted to
the investigation of manganese–copper alloys [13–15].
The activation energy for this peak was determined
from the frequency shift: H ≈ 0.50 ± 0.05 eV [15]. This

(VO
..

YZr' )
.

VO

..
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is in good agreement with the energy necessary for the
shift of coherent boundaries of polysynthetic twins
under shear stresses of ≈0.5 MPa [15]. The specific fea-
ture of the aforementioned peak is that it shifts toward
low temperatures and increases in height with a
decrease in the vibration frequency of the pendulum
used in the experiments.

Reasoning from the available data and the experi-
mental results obtained in this work, we can assume
that, for the ZrO2–4 mol %Y2O3 sample containing
≈40% M, 40% (T + T '), and 20% F, the first peak
observed in the low-frequency internal friction at
approximately 293 K is attributed to dissipation of
energy during motion of twin boundaries in the mono-
clinic phase under applied stresses. The second peak
revealed in the low-frequency internal friction in the
vicinity of 313 K, most likely, can be associated with
the relaxation of applied stresses due to displacement of
the boundaries of tetragonal T 'domains.

In order to verify the above assumptions, the low-
frequency internal friction was measured in tetragonal
polycrystalline ZrO2–3 mol % Y2O3 which was not sub-
jected to hot isostatic pressing (the grain size was
approximately equal to 0.5 µm, and the density was
≈6.05 g/cm3) but was mechanically treated for low-fre-
quency internal friction measurements in the same
manner as the ZrO2–4 mol % Y2O3 sample. After
mechanical treatment, the ZrO2–3 mol % Y2O3 sample
contained ≈6% M phase. However, no noticeable
anomalies in the low-frequency internal friction were
revealed in the temperature range 273–373 K, except
for the low-temperature portion of the peak in the vicin-
ity of 380 K, which is in agreement with the available
data [1–3].
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Planar Hall Effect in Ferromagnets
É. M. Épshteœn

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 
pl. Vvedenskogo 1, Fryazino, Moscow oblast, 141190 Russia

Received July 6, 2001

Abstract—The planar Hall effect in a ferromagnetic conductor is considered within a simple two-liquid hydro-
dynamic model. It is shown that, even in the simple case of an isotropic Fermi surface in the absence of thermal
spread, the magnitude of the Hall effect is comparable to that in semiconductors because of the presence of two
groups of conduction electrons with their spins parallel and perpendicular to the quantization axis, respectively.
In addition to the planar Hall field, a spin flux parallel to this field arises, with the consequence that the extent
of spin polarization of the conduction electrons varies along the Hall field direction (planar spin Hall effect).
© 2002 MAIK “Nauka/Interperiodica”.
The emergence of the novel field of magnetoelec-
tronics called “spintronics” [1] was accompanied by the
development of new magnetometry methods, because
the conventional methods, such as torque and vibrating-
sample magnetometry, are inefficient in the case of
small samples [2]. Recently, a method based on the pla-
nar Hall effect (PHE) became popular. This effect was
first predicted and experimentally investigated in semi-
conductors in [3–5]. In investigations of ferromagnetic
metal films, the PHE has been employed for a fairly long
time [6–8], but in recent years, the techniques based on
this effect have been further developed [9–11].

In ferromagnets, the PHE, as well as the conven-
tional three-dimensional Hall effect, is determined by
the magnetization of the sample rather than by an exter-
nal magnetic field [7], which means that the anomalous
Hall effect is dominant over the ordinary one. The
external magnetic field only changes the direction and
magnitude of the magnetization vector (in single-
domain samples).

Another characteristic feature of the PHE that we
analyze in this paper is associated with the origin of this
effect in ferromagnets. The PHE is one of the so-called
“spread” kinetic effects, which are due to the presence
of several groups of carriers that differ in the parameter
controlling their interaction with external fields; among
such effects are the magnetoresistive effect (magne-
toresistance), Ettingshausen effect, Peltier effect,
Maggi–Righi–Leduc effect [12], acoustomagnetoelec-
tric effect [13], and some photoinduced effects [14].

In nonmagnetic metals, the spread effects are due to
Fermi surface nonsphericity and/or the presence of car-
riers of several types [12]. In a simple single-band
spherical model, these effects are caused by the thermal
spread in the Fermi distribution and their magnitude is
proportional to the small parameter (kBT/EF)2.

In ferromagnets, we have a completely different sit-
uation. Even in the simple model mentioned above, due
1063-7834/02/4407- $22.00 © 21327
to the s–d exchange, the conduction band is split into
two subbands with electron spins parallel and antipar-
allel to the quantization axis chosen (spin up and spin
down), respectively. The electrons in these subbands

have different momenta, pF↑ =  and

pF↓ = , respectively, where m is the
effective electron mass (independent of spin in the
spherical Fermi surface model used here), µB is the
Bohr magneton, Bex is the exchange field, and EF is the
Fermi energy reckoned from the bottom of the unsplit
conduction band. Electrons with different spin orienta-
tion have different partial mobility, because the relax-
ation time of degenerate electrons depends on the
Fermi momentum (e.g., in the case of acoustic-phonon
scattering, the relaxation time varies in inverse propor-
tion to the Fermi momentum). Therefore, the spread in
partial mobilities necessary for the occurrence of the
PHE can be much larger than the thermal spread.
Asymmetry in the up- and down-spin electron scatter-
ing is also introduced by specific magnetic scattering
mechanisms, such as scattering by domain walls and
magnetic impurities.

It should be noted that the microscopic theory of the
PHE in ferromagnetic metals has long since been devel-
oped using the density matrix method [15]. However,
the general expressions derived within this approach do
not clarify the spread nature of the PHE, in particular,
the relation of this effect to the exchange splitting of the
conduction band. Therefore, it is of interest to treat the
PHE within a simple model, which, of course, cannot
give a quantitative description of actual ferromagnets
but will give insight into the fundamental qualitative
features of this effect. Furthermore, such a model pre-
dicts the planar spin Hall effect, which shows itself as
conduction electron spin polarization varying in magni-
tude along the PHE field direction and is due to the fact
that the electric current of electrons with a certain spin

2m EF µBBex+( )

2m EF – µBBex( )
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orientation is accompanied by a spin flux (and a mag-
netic-moment flux).

We will calculate the PHE field in a ferromagnetic
conductor within a simple hydrodynamic approxima-
tion, starting from the equations for the partial current
densities j(α) for the two electron spin directions:

(1)

where the spin index α takes on two values, ↑  and ↓ ;
σ(α) and R(α) are the partial conductivities and (anoma-
lous) Hall coefficients, respectively; E is the electric
field; and Ms is the saturation magnetization. The mag-
netization vector Ms lies in the xy plane: Ms = {Msx ,
Msy , 0} = {Mscosϕ, Mssinϕ, 0}. The sample is termi-
nated in a power source along the x axis and is open-cir-
cuited along the y and z axes; therefore, the total current

density j =  satisfies the boundary conditions
jy = jz = 0.

From the equations

(2)

the PHE field is found to be

(3)

where det |σik | is the determinant of the conductivity
tensor.

Solving Eq. (1) for j(α) and summing over the spin
index, we find the components of the conductivity ten-
sor.

For 4πR(α)σ(α)Ms ! 1, in calculating to the lowest
order in the magnetization, we obtain

(4)

We introduce the partial mobilities µα = σ(α)/enα
(with nα being the up-spin and down-spin electron con-
centrations) and assume, intending to make only an
order-of-magnitude estimate of the effect, that the par-
tial anomalous Hall coefficients, as well as the ordinary
Hall coefficients, are inversely proportional to the cor-
responding concentrations, R(α) = r/ecnα, with the Hall
factor r taking into account the anomalous values of
these coefficients (the anomalous Hall effect will be

j α( ) σ α( ) E 4πR
α( ) j α( )Ms[ ]+( ),=

j α( )
α∑

σxxEx σxyEy σxzEz+ + j,=

σyxEx σyyEy σyzEz+ + 0,=

σzxEx σzyEy σzzEz+ + 0=

Ey

σyxσzz σyzσzx–
det σik

------------------------------------ j,=

Ey 8π2
Ms

2
2ϕsin=

×

R
α( )2σ α( )3 σ α( )

R
α( )σ α( )2

α
∑ 

 
 

2

–
α
∑

α
∑

σ α( )

α
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 
 

3
-------------------------------------------------------------------------------------------.
PH
dominant over the ordinary Hall effect if r @ 1). Then,
Eq. (4) takes the form

(5)

where

(6)

with n = n↑ + n↓ being the electron concentration. From
Eqs. (5) and (6), it follows that the PHE field vanishes
when µ↑ = µ↓, because we have used the isotropic
model and neglected the thermal spread in the Fermi
distribution.

In the case where the electrons are mainly scattered
by acoustic phonons, we have [5]

(7)

where k↑ , ↓ = pF↑ , ↓ /" is the Fermi wave vector and l is
the mean free path of electrons, which is independent of
kα (for the scattering mechanism chosen). In the spher-
ical Fermi surface approximation, Eq. (5) takes the
form

(8)

The spin flux density along the PHE field is propor-
tional to the current-density difference of the up-spin
and down-spin electrons:

(9)

From Eqs. (1) and (2), to the lowest order in the mag-
netization, we obtain

(10)

Introducing the carrier spin polarization

(11)

(which differs from the corresponding expression used
in the theory of tunneling magnetoresistance [16],
where the densities of states at the Fermi level stand for
the corresponding electron concentrations), Eq. (10)
can be written as

(12)
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the x axis gives rise to a spin polarization difference ∆P
along the y axis. The spin diffusion flux caused by this
difference counterbalances the flux Jsy in the steady
state.

In order to determine the difference ∆P, we find the
spin polarization distribution along the y axis, which is
described by the time-independent diffusion equation

(13)

where P0 is the equilibrium polarization, D is the diffu-
sion coefficient of electrons, and τs is the spin relax-
ation time (for the sake of simplicity, D and τs are
assumed to be the same for both spin orientations).

Solving Eq. (13) and equating the diffusion fluxes at
the boundaries –"DnP'(0) and –"DnP'(Ly) to the flux
Jsy, where Ly is the sample dimension along the y axis,
we obtain

(14)

where ls =  is the spin relaxation length and α =

.

The difference in the spin polarization is

(15)

where v s =  is the spin relaxation velocity. The
quantity ∆P is the measure of the planar spin Hall
effect.

In the three-dimensional geometry, the spin Hall
effect was considered by Hirsch in [17], where possible
experimental measurements of the spin polarization
difference were also discussed. However, in [17], this
effect was considered in paramagnets, where it is due to
spin–orbit coupling. As follows from the analysis pre-
sented above, the spin Hall effect in ferromagnets is
universal and accompanies the ordinary (charge) Hall
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effect and other galvanomagnetic and thermomagnetic
effects.
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Abstract—The dependences of the antiferromagnetic resonance frequencies on the constant magnetic field H
and constant electric field E are calculated for a KNiPO4 crystal with spontaneous electric polarization and anti-
ferromagnetic order. It is demonstrated that the KNiPO4 crystal is characterized by an exchange-enhanced
effect of the electric field E on the antiferromagnetic resonance frequencies. This effect is not revealed in the
magnetoelectric materials studied earlier. It is established that oscillations of both magnetization and electric
polarization exhibit resonance response at antiferromagnetic resonance frequencies. The expressions for these
responses in alternating magnetic and electric fields are presented. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Our interest in the KNiPO4 compound is dictated by
two characteristic properties [1, 2]. First, KNiPO4
belongs to the class of materials without a center of
symmetry, which gives rise to spontaneous electric
polarization P. Second, KNiPO4 contains magnetic
atoms of the transition element Ni, which leads to anti-
ferromagnetic ordering (the Néel temperature TN ≈
25 K). The interaction of the polarization P and the
antiferromagnetic vector L with each other and with
elastic strains (by virtue of the piezoelectric effect and
magnetostriction) suggests a wide variety of magnetic,
electrical, and acoustical properties of this compound.

The symmetry of KNiPO4 orthorhombic crystals is
represented by the space group Pna21with a preferred
screw axis 21 along which the polarization vector P is
aligned. The unit cell of the crystal contains four Ni2+

ions located in the fourfold position 4a [3, 4]; conse-
quently, the magnetic structure of this compound is
generally described by four magnetic sublattices. A
symmetry analysis of the possible exchange magnetic
structures was carried out in [3] (see also the mono-
graph [4]). It turned out that the magnetic component of
the thermodynamic potential involves approximately
50 different invariants due to the low symmetry of the
crystal. In order to decrease the number of invariants,
we restrict our consideration to the specific case of only
one exchange structure observed in this material as
judged from the available experimental data [1, 2]. This
structure can be adequately described in the framework
of the two-sublattice model with vectors M1 and M2.
Sublattice I is formed by Ni2+ ions with indices 1 and 4,
and sublattice II is composed of Ni2+ ions with indices 2
1063-7834/02/4407- $22.00 © 21330
and 3 (Fig. 1). Instead of vectors M1 and M2, it is con-
venient to use their linear combinations, namely, the
antiferromagnetic vector

(1)

and the ferromagnetic vector

(2)

Within this model, the component of the thermody-
namic potential of KNiPO4, which depends on the com-
ponents of vectors M, L, and P, has the following form
[3, 4]:

(3)

Formula (3) is written in the coordinate system in
which the axes X, Y, and Z are chosen along three pre-
ferred crystallographic axes: Z || 21 (21 is the twofold
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screw axis), X ⊥  mx, and Y ⊥  my (mx and my are the two
mutually perpendicular mirror planes); χ⊥  and χ|| are
the magnetic susceptibilities in the magnetic fields
H ⊥  L and H || L, respectively; Kyy and Kzz are the
anisotropy constants; Dyz and Dzy are the constants of
weak ferromagnetism; dαβγ stands for the constants of
the magnetoelectric effect; kαβγ stands for the antiferro-
electric constants; κ is the polarizability of the crystal
along equivalent directions X and Y; and M0 is the nom-
inal magnetization of each sublattice. It is assumed that
the polarization along the Z axis remains equal to its
spontaneous magnitude.

Compared to the expressions representing the ther-
modynamic potential F of other two-sublattice antifer-
romagnets, formula (3) has two specific features. The
first feature is that it involves the invariants responsible
for the weak ferromagnetism (the terms with Dyz and
Dzy) and for the magnetoelectric effect (the terms with
dαβγ). These effects cannot occur simultaneously in
crystals with a center of inversion. The second feature
of formula (3) is that it involves terms that contain only
the components of vectors P and L (the invariants with
kαβγ). They describe the mutual effect of these vectors
without participation of vector M (the product kαβγPα =
δKβγ can be considered a correction to the tensor of the
anisotropy constants Kβγ responsible for the orientation
of vector L, and the product kαβγLβLγ = δEα is the cor-
rection to the electric field E responsible for the change
in vector P).

The effect of the terms with dαβγ and kαβγ [see for-
mula (3)] on the magnetostatics and electrostatics of
KNiPO4 was analyzed earlier in [3, 4]. It has been dem-
onstrated that, in the case when |L | is constant and

, (4)

the vector L at an equilibrium state deviates spontane-
ously (H = 0) from the X axis through a certain angle

 –  (Fig. 2). Such a deviation of vector L from

the X axis gives rise to the weak ferromagnetic moment

(5)

and the magnetoelectric polarization

(6)

However, it follows from the experimental data [1,
2] that, instead of inequality (4), the reverse inequality
holds for KNiPO4. For this reason, attempts to obtain an
exotic state in which the weak ferromagnetism and
magnetoelectricity coexist at H = 0 have been unsuc-
cessful. Nonetheless, such an unusual form of the ther-
modynamic potential F [see formula (3)] should mani-
fest itself in the specific properties of the crystal. One
manifestation is revealed in the dependence of the ΘL

kxxz
2 κ Kzz Dyz

2 χ⊥–( )>

π
2
---

 ΘL


My χ⊥ DyzL ΘLsin=

Px α xyHy, α xy χ⊥ dxyx ΘL.cos= =
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angle on the magnetic field H || Y. This dependence can
be described by the following equation [3]:

(7)

The corresponding components of vectors M and P are
determined as follows [3]:

(8)

The interrelation of the quantities Px, My, and ΘL

implies that the specific features of the magnetic and
electrical properties of KNiPO4 can manifest them-
selves not only in constant but also in alternating fields
h(t) and e(t), which can enhance these features in the
vicinity of the resonance frequencies of oscillations of
L and M.

2κkxxz
2 ΘLcos

3
Kzz Dyz
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2
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=  Dyzχ⊥ Hy/2M0.
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1 2
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4

Fig. 1. Exchange magnetic structure of KNiPO4. The “plus”
and “minus” signs correspond to different sublattices,
M1 ↑↓  M2.

M H Y

X

L

P0

Z

ΘL

Fig. 2. Rotation of vector L in the XZ plane in response to
the magnetic field H || Y.
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In particular, it follows from relationship (7) that the
solution cosΘL ≠ 0 (ΘL ≠ π/2) is actually valid only
when inequality (4) holds.

The results of the calculations of the frequency
spectrum for linear oscillations of M and L and the
analysis of their possible excitation in alternating fields
h(t) and e(t) are given below. It is assumed that the
eigenmodes of P correspond to considerably higher fre-
quencies. This allows one to use the quasi-static
approximation

(9)

Here, κ is the same electric susceptibility as in formula
(3) and

(10)

is the effective electric field acting on vector P in the
sample. According to formula (3), this field is deter-
mined by the external field E and the magnetoelectric
interaction parameters dαβγ and kαβγ; that is,

(11)

The interrelation of the components of vectors P, E, M,
and L, which is defined by expressions (9) and (11),
was used in solving the equations of motion for M [for-
mula (1)] and L [formula (2)].

2. INITIAL EQUATIONS
AND THEIR SOLUTIONS

In general, the motion of vectors M and L, which
corresponds to potential (3), should be described by the
equations proposed in [5]. These equations adequately
describe the behavior of M and L within the models
with (ML) ≠ 0 (χ|| ≠ 0). In the case when the deviations
of M and L from their equilibrium values Meq and Leq
are small,

(12)

these equations have the form

(13)

where γi are constants. However, since our calculations
are performed in the framework of the equimodulus
model in which the magnetization magnitude of the
sublattices remains unchanged, we assume that, in the
set of equations (13), γ1 = γ2 = γ3 ≡ γ, which corresponds
to the Landau–Lifshitz equations [4, 5] (where γ is the
gyromagnetic ratio).
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The set of equations (13) yields the most interesting
results in the case when the magnetic field H is oriented
as H || Y and the electric field E is directed as E || X or
E || Y.

2.1. Frequencies and Susceptibilities 
in the Fields H || Y and E || X

In these fields, the oscillation eigenfrequencies have
the following form:

(14)

Here, (Ex) and (Ex) are the corrections for the
electric field,

(15)

cosΘL is the real root of Eq. (7), and the ϕ angle is
determined from the equation

(16)

where

(17)

is the exchange field responsible for antiferromagnetic
ordering.

Relationships (15) account only for the corrections
which contain the factor HE [defined by expression
(17)] and, in this sense, are exchange-enhanced (see,
for example, [6]). As a rule, the antiferromagnetic res-
onance spectrum is characterized by an exchange
enhancement of the effects corresponding to the terms
involved in expression (3) for the F potential which
contain no components of vector M [formula (2)]. In
particular, no exchange enhancement occurs in the con-
ventional magnetoelectric interaction described by the
terms with dαβγ in expression (3); as a consequence, its

contribution to (Ex) and (Ex) does not enter
into formulas (15). The exchange-enhanced contribu-
tion of the field E to the antiferromagnetic resonance
frequency is made by only the antiferroelectric interac-
tion, which is absent in crystals with a center of sym-
metry. Special attention should be given to an important
result following from formula (15): the aforementioned
exchange enhancement vanishes when cosΘL = 0 and
sinΘL = 0, i.e., at the beginning and the end of the rota-

ω1
2 γ2

4M0
2 χ⊥

1–
Kzz Dyz

2
–( ) ϕ ΘLsin

2
cos

2 ∆ω1
2

Ex( ),+=

ω2
2 γ2

4M0
2 χ⊥

1–
Kyy Dzy

2
–( ) ϕcos

2(=

+ χ⊥
1– ϕsin D32 ϕ ΘLcoscos+( )

2
) ∆ω2

2
Ex( ).+

∆ω1
2 ∆ω2

2

∆ω1
2

Ex( ) ω1
2

H 0,( ) ω1
2

H E,( )–=

=  γ2
HEκkxxzEx 2 ϕcos

2
+( ) ϕ 2ΘL,sincos

2

∆ω2
2

Ex( ) ω2
2

H 0,( ) ω2
2

H E,( )–=

=  γ2
HEκkxxzEx ϕ 2ΘL,sincos

2

ϕsin Hy 2DzyM0 ϕ ΘLcoscos+( )/2HE,=

HE χ⊥
1–
M0=

∆ω1
2 ∆ω2

2

HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002



HIGH-FREQUENCY PROPERTIES 1333
tion (Fig. 2). The first case corresponds to the magnetic
field H = 0.

The second feature of the frequency spectrum (14)
is related to the magnetic field

(18)

This field satisfies the condition cosΘL = 1 (sinΘL = 0).
As was noted above, under this condition (Ex = 0), the
reorientation of vector L from the X axis to the Z axis
(Fig. 2) is completed, which corresponds to the second-
order phase transition. The soft mode attributed to this

transition is associated with the frequency . How-
ever, if we take into account the corrections for the elec-
tric field Ex without exchange enhancement, the fre-

quency  at Hy = Hcr will remain finite,

(19)

In the case when terms of this type are included in
expression (7), the value of cosΘL = 1 can be reached
only when Hy  ∞ (the effect of a smeared phase
transition).

The frequencies ω1 and ω2 [formulas (14)] corre-
spond to the resonance magnetic m(t) = (M(t) – Meq)
and electric p(t) = (P(t) – Peq) responses to high-fre-
quency magnetic h(t) and electric e(t) fields; that is,
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(20)

In addition, we present the following expressions for
the response of vector L to the magnetic h(t) and elec-
tric e(t) fields:

(21)

It should be noted that χl and αl are not conventional
tensors of the magnetic and magnetoelectric suscepti-
bilities; they have a different symmetry and can be
transformed as the products LαHβ and LαEβ, respec-
tively.

The following components of the tensors χm, χl, αm,
α p, αl, and κ proved to be substantially nonzero:
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2.2. Frequencies and Susceptibilities 
in the Fields H || Y and E || Y

For cosΘL ! 1, we have

(25)ω1 2,
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Note that, in contrast with the preceding case when
E || X, the exchange-enhanced contribution of the elec-

tric field E || Y to the frequencies  is nonzero even

at ΘL =  (i.e., when Hy = 0). By contrast, it vanishes

when Hy  Hcr.
For sinΘL ! 1, we obtain

(26)

In this case, the susceptibilities are virtually identi-
cal to the susceptibilities in the fields H || Y and E || X.

3. RESULTS AND DISCUSSION

When analyzing the high-frequency properties of
KNiPO4 in alternating magnetic and electric fields, we
tried to answer the following questions.

(i) How much does the constant electric field E
affect the antiferromagnetic resonance frequencies?

(ii) What is the magnetic response (i.e., the ampli-
tude of oscillations of vector M) at antiferromagnetic
resonance frequencies upon excitation by alternating
magnetic h(t) and alternating electric e(t) fields?

(iii) What are the factors affecting the amplitude of
the resonance oscillations of vector P (i.e., the electric
response) at antiferromagnetic resonance frequencies
in the fields h(t) and e(t)?

The answer to the first question follows from an
analysis of formulas (15) and (25), according to which
the exchange can enhance the effect of the electric field
E. For specific estimates, we can consider, for example,
the ratio

(27)

As follows from formula (3), the combination of
parameters κkxxzEx has the meaning of the anisotropy
field being induced by the electric field Ex in the direc-
tion of the bisectrix of one of the angles formed by the
axes X and Z. Moreover, in the vicinity of the critical
field Hy ≈ Hcr at sinΘL ! 1, the smallness of κkxxzEx

with respect to 2M0Kzz is partly compensated for by the
large value of , which enhances the effect of the
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field Ex on the antiferromagnetic resonance frequencies
ω1 and ω2.

It is expedient to investigate experimentally the shift
in the antiferromagnetic resonance frequencies in the
electric field E under the conditions of the spin-reorien-
tation transition. The matter is that, under standard con-
ditions, this shift is insignificant compared to the width
of the antiferromagnetic resonance line and its observa-
tion is a very difficult task (see, for example, the results
of experiments on Cr2O3 [7–9]). However, it should be
kept in mind that the magnitude of the exchange-
enhanced contribution ∆ω(E) in the vicinity of Hcr
decreases with a decrease in the value of sinΘL.

An important inference drawn from the theory is as
follows. The existence and manifestation of the
exchange-enhanced contribution ∆ω(E) to the antifer-
romagnetic resonance frequency is determined to a
large measure by the direction of the electric field.

For example, under the condition E || X, the afore-
mentioned contribution appears only in the magnetic
field Hy ≠ 0. As the magnetic field Hy increases, the
exchange-enhanced contribution ∆ω(E) also increases
from zero (at Hy = 0), reaches its maximum, and then
tends to zero when Hy ≥ Hcr (more precisely, when
Hy  ∞).

At the same time, the exchange-enhanced contribu-
tion at E || Y satisfies the inequality ∆ω(E) ≠ 0 even in
the magnetic field Hy = 0 but vanishes again if the non-
exchange-enhanced contribution (26) at Hy ≥ Hcr is
ignored.

Analysis of relationship (22) and (23) provides the
answer to the second question. The magnetic response
m(t) to the alternating magnetic field h(t) is described by

the components (ω) involved in relationship (22).
They contain no new information as compared to the
standard expressions for the high-frequency magnetic
susceptibility of two-sublattice antiferromagnets [10].

Relationships (23) describe the magnetic response
m(t) to the alternating electric field e(t) and the electric
response p(t) to the alternating magnetic field h(t). The

component  is of the maximum value and has a sin-
gularity only at the antiferromagnetic resonance fre-
quency ω1:

(28)

χαβ
m

α xy
m

α xy
m α yx

p iγχ⊥ HEκkxxz

ω1 ω–
------------------------------- iχyy

m ω( )κkxxz

HE

HA
z

-------,≈ ≈=
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where  = 2M0Kαα is the so-called anisotropy field in

the α direction. Compared to the component (ω),

the component  contains not only the small param-

eter kxxz but also the factor  @ 1, which
increases the chance of revealing this signal experimen-
tally. It is worth noting that the effect is expected to be
maximum in weak fields Hy ! Hcr when sinΘL ≈ 1.

Formulas (24) describe the resonance electric
response p(t) to the field e(t) at the antiferromagnetic
resonance frequencies ω1 and ω2. For small values of
Hy (Hy ! Hcr) and sinΘL ≈ 1, the maximum component
κxx(ω) with a singularity at the frequency ω1 can be rep-
resented as

(29)

In the vicinity of the critical value Hy ≈ Hcr, when
cosΘL ≈ 1, the maximum component

(30)

has a resonance singularity at the frequency ω2.

Compared to the component (ω) [see formula (28)],
the component κxx(ω) [see formula (29)] has an excess
degree of the small parameter kxxz . However, this small-
ness can be partly compensated by the fact that, in the
case of p(t), the dominant electrical component of the
electromagnetic response is recorded, rather than the
magnetic component as in the case of m(t) oscillations.

4. CONCLUSIONS
The results presented above allowed us to draw the

following conclusions:
(1) It should be expected that, at the antiferromag-

netic resonance frequencies ω1 and ω2, both the high-
frequency magnetic and high-frequency electrical
properties of KNiPO4 exhibit resonance features.

HA
α

χyy
m

α xy
m

HE/HA
z

κ xx ω( )
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ω1 ω–
---------------------------------------.–=

κ yy ω( )
2γχ⊥ HE κkyyz( )2

ω2 ω–
---------------------------------------=

α xy
m
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(2) Both types of resonance signals (magnetic and
electric responses) can be excited by alternating mag-
netic h(t) and alternating electric e(t) fields.

(3) The exchange-enhanced effect of the electric
field Ex on the antiferromagnetic resonance frequencies
takes place.

(4) The maximum shift in the antiferromagnetic res-
onance frequencies in the electric field Ex can occur in
the vicinity of the critical magnetic field Hy ≈ Hcr ≈
105 Oe.
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Abstract—Stochastic resonance is investigated theoretically in a thermally activated system of small magnetic
particles with easy-axis anisotropy. Calculations are performed within a discrete-orientation model using a
quasi-adiabatic approximation. The output power of thermal noise of superparamagnetic particles is calculated
and the magnitude of the noise suppression effect in the presence of a radio-frequency field is estimated at dif-
ferent temperatures. Estimates for actual iron samples are made with allowance for a spread in the particle sizes
and easy-axis orientations. © 2002 MAIK “Nauka/Interperiodica”.
1. The phenomenon of stochastic resonance, in
which the magnitude of the response of a modulated
multistable system (having several stable states) passes
through a clearly defined peak as the noise uniformly
increases, has been well studied theoretically [1] and
has found wide practical use. The response to an exter-
nal weak periodic signal is usually characterized by the
signal-to-noise ratio at the output of the system. In [2],
the response of a system was characterized by the
amplitude of the output periodic signal and the possible
amplification of weak periodic signals was investi-
gated. Such a description of stochastic resonance is
convenient and allows one to elucidate the physical
nature of the phenomenon when considering, for exam-
ple, the modulation effects in small magnetic particles.
In this case, the response of the system to an external
weak radio-frequency (RF) field can be determined,
e.g., by the components of the dynamic susceptibility
of the system. If a system consists of single-domain
particles with easy-axis anisotropy (which can be con-
sidered to be bistable elements, with two stable states
corresponding to the two opposite orientations of their
magnetic moments along the easy axis), then stochastic
resonance can occur in the system. The smallness of
these particles leads to the phenomenon of superpara-
magnetism; when thermally activated, the magnetic
moment of a particle can surmount the potential barrier
between the two minima and reverse its direction along
the easy axis. The internal noise in this case is caused
by these thermal reversals of the magnetic moment, and
the noise level is determined by the temperature [3].
The case of quantum fluctuations of magnetization (due
to tunneling magnetization reversal) under stochastic-
resonance conditions at very low temperatures was
considered in [4]. Investigation of this micromagnetic
problem is not only of academic interest; it is also a
matter of practical importance, because small magnetic
1063-7834/02/4407- $22.00 © 21336
particles possess specific properties and determine the
characteristics of materials for magnetic recording and
storage of information, ferrofluids, cluster structures,
pigment dyes, some catalysts, etc.

2. In this paper, a decrease in intensity of thermal
magnetization fluctuations is considered as a result of
stochastic resonance in an ensemble of magnetic sin-
gle-domain particles with easy-axis anisotropy placed
in an RF field. Calculations are carried out within a dis-
crete-orientation model in which the magnetic moment
of a superparamagnetic particle can have only two ori-
entations corresponding to the minima of a double-well
potential. The magnetic energy of a particle with uniax-
ial anisotropy in the problem at hand can be written as

(1)

where the first term describes the interaction of the par-
ticle’s magnetic moment with the anisotropy field (K is
the anisotropy constant, v  is the particle’s volume) and
the second term is the interaction energy with an exter-
nal ac magnetic field (M is the saturation magnetiza-
tion); H and Ω are the amplitude and frequency of the
external ac field, respectively; and Θ is the angle
between the magnetization vector and the easy axis.
The discrete-orientation model is adequate in the case
of a high potential barrier, Kv  @ kT, where T is the tem-
perature. Therefore, the magnetic moment of a particle
does not diffuse continuously over the sphere but rather
undergoes random discontinuous changes from one ori-
entation along the easy axis to the other. Furthermore,
calculations in this model are valid only in the quasi-
adiabatic limit, where the frequency of the external ac
field is lower than the frequency of the superparamag-
netic-particle local magnetic-moment relaxation to one
of the two directions along the easy axis. The conve-
nience of the discrete-orientation model is that this

E –Kv Θcos
2 µ0MHv Θ Ωt( ),coscos–=
002 MAIK “Nauka/Interperiodica”
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approximation allows one to pass from the cumber-
some Fokker–Planck equation [5] describing the mod-
ulated stochastic dynamics of the particle’s magnetic
moment (which is solved by numerical methods) to a
much simpler master equation for the transition rates
[1, 3] which can be solved analytically.

When considering stochastic resonance, the modu-
lation by an external field is usually assumed to be
weak in comparison with the height of the potential bar-
rier, µ0MH ! K. This case is of interest, because a weak
periodic signal does not induce transitions of the sys-
tem from one state to another in the absence of noise.
The time-averaged spectral function of the system,
defined for positive frequencies ω, consists of two parts,
one of which is a Lorentzian function, corresponding to
chaotic thermal changes in the orientation of the mag-
netization of superparamagnetic particles, and the other
is a δ-function peak, describing the periodic motion of
the vector M at the external-signal frequency Ω [3]:

(2)

Here, W0 = 2α0exp(–Kv /kT), A = µ0MHv /kT, α0 =

2ηγ2K/ (1 + η2γ2M2), γ is the gyromagnetic ratio,
and η is the Gilbert damping constant [6]. The total out-
put power can be found by integrating Eq. (2) with
respect to ω from zero to infinity:

(3)

Here, the first term describes the output noise power
and the second term is the output signal power. It is seen
that the noise intensity of the system decreases by an
amount equal to the signal intensity; that is, the energy
of chaotic motion is transformed into the energy of reg-
ular motion, which is the stochastic-resonance effect.

3. The ratio of the output noise power of the modu-
lated system to the noise power of the system in the
absence of modulation is equal to

. (4)

Figure 1 shows the temperature dependence of Pn/P for
a modulated superparamagnetic iron particle (K = 4 ×
104 J/m3, M = 1.72 × 106 A/m, v  = 10–24 m3, H =
103 A/m) for different values of the external-field fre-
quency. It is seen that the degree of noise suppression
increases with decreasing modulation frequency. Equa-
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tion (4), derived in the discrete-orientation approxima-
tion, allows one to determine the ranges of the internal
and external factors (temperature, particle size, modu-
lation frequency) within which the degree of suppres-
sion of thermal noise is maximum. In an actual system
consisting of a large number of superparamagnetic par-
ticles, there is always a spread in particle size, which
decreases the above-mentioned effect. Figure 2 shows
the temperature dependence of the reduced average
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Fig. 1. Temperature dependence of the ratio of the output
noise power Pn of an iron superparamagnetic particle
placed in an RF field to the noise power P in the absence of
an RF field for the external-field frequency Ω equal to
(1) 105, (2) 106, and (3) 107 s–1.

Fig. 2. Temperature dependence of the ratio of the output
noise powers Pn/P of an ensemble of iron superparamag-

netic particles (K = 4 × 104 J/m3, M = 1.72 × 106 A/m, v0 =

10–24 m3, H = 103 A/m) averaged over particle sizes in the
case of a normal size distribution characterized by parame-
ter D equal to (1) 0.01, (2) 0.1, and (3) 0.3.
2
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output power of a modulated system of iron particles in
the case where the particle size (volume) distribution is
normal and described by the Gaussian

(5)

If the easy axes of superparamagnetic particles are ori-
ented at random, this can be taken into account by aver-
aging the scalar product of the vectors M and H in
Eq. (1) over the angle Θ. As a result, the expression for
the dimensionless amplitude A = µ0MHv /kT of the
external modulating field in Eq. (2) will contain an
additional factor,

(6)

In this case, we can neglect the RF field components
perpendicular to the easy axes, because these compo-
nents do not give rise to stochastic resonance.

The effect of suppression of thermal noise in a cer-
tain temperature range and the corresponding increase
in the output signal magnitude considered in this paper
can be observed in the satellite structure of Mössbauer
spectra of superparamagnetic particles placed in an RF
field [7].
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Abstract—Single crystals of the new compound Cu5Bi2B4O14 are grown and its structural, magnetic, and res-
onant properties are investigated for the first time. It is found that the Cu5Bi2B4O14 crystal synthesized has a

triclinic symmetry with space group  and the unit cell parameters a = 10.132 Å, b = 9.385 Å, c = 3.458 Å,
α = 105.443°, β = 97.405°, γ = 107.784°, and Z = 1. At a temperature of 24.5 K, the crystal undergoes a magnetic
phase transition to the magnetically ordered state. The assumption is made that the ferrimagnetic structure of
the Cu5Bi2B4O14 crystal consists of two ferromagnetic sublattices coupled through the antiferromagnetic
exchange interaction. The unit cell of the crystal contains five copper ions, of which one ion belongs to the first
sublattice and the other four ions form the second sublattice. Analysis of the resonant and magnetic static prop-
erties demonstrates that the Cu5Bi2B4O14 crystal exhibits an easy-axis magnetic anisotropy. The direction of the
easy axis coincides with the c axis of the crystal, whereas the a and b axes are the hard magnetic axes with sat-
uration fields approximately equal to 25 and 10 kOe, respectively. © 2002 MAIK “Nauka/Interperiodica”.

P1
1. INTRODUCTION

The discovery of high-temperature superconductiv-
ity gave impetus to active research into oxocuprates.
Although oxocuprates possess neither superconductiv-
ity nor even metallic conductivity, their crystal struc-
ture involves fragments that are similar to those of high-
temperature superconductors and determine the mag-
netic properties of the former compounds in the case of
superexchange interactions. In his monograph, Wells
[1] noted that bivalent copper should form a larger vari-
ety of magnetic structures than is observed for any
other chemical element. The great diversity of the mag-
netic properties of copper oxide compounds can be
illustrated using the oxocuprates studied in our earlier
works. In particular, CuGeO3 is a chain spin-Peierls
magnet with the transition temperature TSP = 14 K [2,
3], LiCu2O2 is a two-dimensional antiferromagnet with
a damaged ladder structure and the magnetic phase
transition temperature TN = 24 K [4], and Bi2CuO4 is a
three-dimensional antiferromagnet characterized by the
four-spin exchange interaction and the Néel tempera-
ture TN = 41 K [5]. For CuB2O4 [6–9], the magnetic
states at temperatures below 20 K are described by a
complex phase diagram, including the transition
between the commensurate and incommensurate struc-
tures. This paper reports on the first results of investiga-
1063-7834/02/4407- $22.00 © 1339
tions into the structural, magnetic, and resonant proper-
ties of a new oxocuprate which we found in the ternary
CuO–Bi2O3–B2O3 system.

2. GROWTH OF SINGLE CRYSTALS

Earlier, Zargarov et al. [10] performed physico-
chemical investigations into the ternary CuO–Bi2O3–
B2O3 system and revealed two copper oxide com-
pounds, namely, 2Bi2O3 · CuO · B2O3 and Bi2O3 ·
2CuO · B2O3, which crystallize in the orthorhombic
crystal system. We also studied the CuO–Bi2O3–B2O3
system and found a new compound with the chemical
formula Cu5Bi2B4O14.

Single crystals of Cu5Bi2B4O14 were grown by spon-
taneous crystallization from a molten mixture contain-
ing 22 mol % Bi2O3, 50 mol % CuO, and 28 mol %
B2O3. Dark green crystals of different shapes were
mechanically removed from the crucible. A number of
crystals had a perfect faceting typical of bulk skewed
prisms, whereas the other crystals had a flatter shape
with a less pronounced faceting. Crystals of a particular
type could be predominantly grown by varying the ratio
of the initial oxides in certain limits. It turned out that
crystals of both types exhibited identical x-ray diffrac-
tion patterns.
2002 MAIK “Nauka/Interperiodica”
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X-ray diffraction analysis was performed both with
powders of ground crystals on a DRON-2 diffractome-
ter and with small-sized high-quality single crystals on
a CAD4 automated diffractometer (MoKα radiation). It
was found that the crystals synthesized have a triclinic

symmetry with space group P . The unit cell parameters
are as follows: a = 10.132 Å, b = 9.385 Å, c = 3.458 Å,
α = 105.443°, β = 97.405°, γ = 107.784°, and Z = 1.

The magnetic susceptibility and the magnetization
were measured on a SQUID magnetometer in magnetic
fields up to 40 kOe and on a vibrating-coil magnetom-
eter in fields up to 30 kOe in the temperature range 4.2–
300 K at different orientations of the magnetic field
with respect to the crystallographic axes.

3. EXPERIMENTAL RESULTS

Figure 1 displays the temperature dependences of
the magnetic susceptibility and the reciprocal of the
magnetic susceptibility for a sample composed of a set
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Fig. 1. Temperature dependences of the magnetic suscepti-
bility and the reciprocal of the magnetic susceptibility for
the Cu5Bi2B4O14 crystal.
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Fig. 2. A geometric shape of the Cu5Bi2B4O14 samples and
the magnetic field orientations used in the measurements.
P

of single crystals oriented in a random manner. In the
temperature range 170–300 K, the magnetic suscepti-
bility is adequately described by the Curie–Weiss law
χ = C/(T – Θ) with the following parameters: C =
2.01 × 10–3 K cm3/g and Θ = +17.4 K. The effective
magnetic moment is estimated as µeff = 0.81µB. Judging
from the positive paramagnetic Curie temperature, this
compound predominantly undergoes a ferromagnetic
exchange interaction, which is rarely observed in oxo-
cuprates [11, 12].

The temperature and field dependences of the mag-
netization of the single crystals under investigation
were measured at different magnetic field orientations.
Figure 2 shows a geometric shape of the single-crystal
samples; in this figure, the magnetic field orientations
used in the measurements are designated as M1–M5.
The samples used in these experiments have the form of
plates elongated in one direction. The longer edge of
the plate is oriented along the c axis of the crystal. The
largest and elongated lateral faces lie in the (010) and
(100) crystallographic planes, respectively. The mag-
netic field orientation M1 coincides with the c axis of
the crystal, the orientation M2 is perpendicular to the
(010) face, and the field orientation M3 is aligned with
the (010) plane and is perpendicular to the orientation
M1. The field orientations M4 and M5 coincide with the
shorter edges of the crystal.

Figure 3 depicts the field dependences of the mag-
netization measured at T = 5 K. For the field orienta-
tions M1–M3, the magnetization linearly increases to
saturation and remains virtually constant with a further
increase in the magnetic field strength. The saturation
magnetizations at the orientations M1 and M2 coincide
with each other and amount to 17.1 emu/g at T = 5 K.
The saturation magnetization at the orientation M3 is
equal to 16.6 emu/g. The saturation fields at the orien-
tations M1, M2, and M3 are approximately equal to
350 Oe, 8 kOe, and 23 kOe, respectively. The field
dependences of the magnetization at the orientations
M4 and M5 exhibit a nonlinear behavior. Since the
magnetization directions M4 and M5 are close to the
directions M3 and M2, respectively, the field depen-
dences of the magnetization for the directions M4 and
M5 are characterized by the saturation fields which are
approximately identical to those for the directions M3
and M2. The specific feature of the field dependences is
that they are anhysteretic to within the experimental
error of the magnetization measurement.

The temperature dependences of the susceptibility
χ = M/H (Fig. 4) were measured in magnetic fields cor-
responding to the initial linear portions of the field
dependences of the magnetization. For all the magnetic
field orientations used in the measurements, the suscep-
tibility varies only slightly with an increase in the tem-
perature from 4.2 to 24 K and decreases drastically with
a further increase in the temperature, which corre-
sponds to a magnetic phase transition.
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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The magnetic resonance measurements were per-
formed on a pulsed magnetic spectrometer in the tem-
perature range 4.2–80 K. The frequency–field depen-
dences of the magnetic resonance measured at T =
4.2 K for the magnetic field orientations M1, M2, and
M3 are plotted in Fig. 5. The frequency–field depen-
dence at the orientation M1 exhibits a linear behavior
and is characterized by an energy gap at approximately
36.5 GHz. For the other two orientations of the mag-
netic field, the frequency–field dependences can be
divided into two portions. In weak fields, an increase in
the magnetic field strength is accompanied by a
decrease in the magnetic resonance frequency from a
value determined by approximately the same energy
gap as for the orientation M1. Then, beginning with a
certain magnetic field, an increase in the magnetic field
strength leads to an increase in the magnetic resonance
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Fig. 5. Frequency–field dependences of the magnetic reso-
nance measured at T = 4.2 K for different orientations of the
external magnetic field: (1) M1, (2) M2, and (3) M3.
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Fig. 6. Crystalline and hypothetical magnetic structures of
Cu5Bi2B4O14.
PH
frequency. The approximation of both portions in the
frequency–field dependence of the magnetic resonance
indicates that, for these two orientations of the mag-
netic field, the softening of the vibrational mode occurs
at the same field strengths at which the magnetization
reaches saturation.

4. DISCUSSION

The crystal structure of Cu5Bi2B4O14 is shown in
Fig. 6. The unit cell contains one formula unit. The cop-
per ions occupy four nonequivalent positions, which
are designated as Cu(1)–Cu(4) (Fig. 6). The oxygen
environment of each copper ion has the form of a dis-
torted, strongly elongated octahedron (also depicted in
this figure). The distances from the copper ion to the
apical oxygen ions in the octahedron vary from 2.58 to
2.82 Å for different nonequivalent positions. Therefore,
in order to evaluate the exchange interactions, it is suf-
ficient to consider only the oxygen environment of the
octahedron base in which the Cu–O distances for dif-
ferent positions lie in the range 1.78–2.08 Å. Note that,
in this case, the octahedron base is not a regular square
and the degree of its distortion differs for different non-
equivalent positions.

Let us now consider the exchange interactions in
terms of the Anderson–Goodenough–Kanamori theory
[13]. It should be noted that all the exchange bonds
allowed by the Cu5Bi2B4O14 structure occur through
one oxygen ion; contrastingly, the exchange bonds in
Bi2CuO4 [5] and CuB2O4 [9] occur through two oxygen
ions and bismuth or boron ions. The crystal structure of
Cu5Bi2B4O14 admits the formation of approximately
90° exchange bonds between the Cu(2) and Cu(3) ions,
for which the base squares of the oxygen environment
share a common side. There exists also an approxi-
mately 90° exchange bond between the Cu(2) and
Cu(4) ions, for which the base squares of the oxygen
environment share a common site. Moreover, the Cu(1)
and Cu(2) ions are coupled by the exchange interaction
through the oxygen ion located at a common site of
their base squares. However, in the latter case, the bond
angle θ is equal to 113.7°.

The estimation of the exchange integrals for these
bonds according to the formulas taken from [13] gives

(1)

Here, B is the parameter of the ligand–cation electron
transfer over the σ bonds, C is the parameter of the
ligand–cation electron transfer over the π bonds, J int is
the intraatomic-exchange integral, and U is the energy
of oxygen–copper electron excitation. The above esti-
mates were made using the standard parameters B =
0.02, C = 0.01, U = 2.2 eV, and J int = 1.6 eV for Cu2+

J23 4/3BCJ
int

+5 K,= =

J24 BCJ
int

+3 K,= =

J12 2B
2

U 1/3J
int

–( ) θcos 6.2 K.–= =
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ions [14]. The paramagnetic Curie temperature Θ cal-
culated in the molecular-field approximation using the
exchange integrals obtained is equal to +3.6 K. This
result is in qualitative agreement with the positive para-
magnetic Curie temperature (Θ = +17.4 K), which was
determined experimentally.

Reasoning from the results of analyzing the
exchange interactions, we can propose the following
magnetic structure of the Cu5Bi2B4O14 crystal (Fig. 6).
The crystal has a ferrimagnetic structure consisting of
two magnetic sublattices. In this structure, the Cu(1)
ions belong to the first magnetic sublattice and all the
other copper ions form the second magnetic sublattice.
Judging from the proposed magnetic structure, the sat-
uration magnetization can be estimated from the exper-
imental effective magnetic moment µeff = 0.81µB,
which was determined from the high-temperature por-
tion of the temperature dependence of the magnetic
susceptibility. The saturation magnetization thus calcu-
lated (σ = 7.6 emu/g) differs significantly from the exper-
imental saturation magnetization (σ = 17.1 emu/g)
obtained from the field dependences of the magnetiza-
tion measured at T = 5 K (Fig. 3). Under the assumption
that the proposed ferrimagnetic structure is incorrect
and that the Cu5Bi2B4O14 crystal has a ferromagnetic
structure, the saturation magnetization σ estimated
from the same experimental effective magnetic
moment is equal to 12.7 emu/g, which also differs sub-
stantially from the experimental value. However, we
carried out the calculation for the proposed ferrimag-
netic structure with the use of the effective magnetic
moment µeff = 1.89µB, which is characteristic of copper
ions. In this case, the effective magnetic moment was
estimated from the experimental value g = 2.18. As a
result, we obtained the saturation magnetization σ =
18.1 emu/g, which is close to the experimental value.
Note that the reason for the considerable difference
between the experimental and theoretical effective
magnetic moments remains unclear.

The temperature of the magnetic phase transition
can be most precisely determined from the experimen-
tal temperature dependence of the magnetization in the
weak external magnetic field H = 20 Oe (Fig. 4). In this
case, the true magnetization of the sample in the mag-
netic field (m = σ + χH) differs only slightly from the
spontaneous magnetic moment σ. Therefore, it can be
assumed that the drastic increase observed in the true
magnetization at T = 24.5 K corresponds to a magnetic
phase transition.

Thus, we believe that, at temperatures below TC =
24.5 K, the Cu5Bi2B4O14 crystal is a collinear ferri-
magnet.

Furthermore, the field dependences of the magneti-
zation indicate that the ferrimagnetic structure of the
studied crystal exhibits an easy-axis magnetic anisot-
ropy with the easy axis aligned along the c axis of the
crystal (the orientation M1). Since our attempts to
determine the crystallographic indices of the small
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
crystal face have been unsuccessful, we cannot argue
that the orientations M4 and M5 coincide with the a and
b axes of the crystal. However, the a axis is at least close
to the directions M3 and M4 and the b axis is close to
the directions M2 and M5. Hence, reasoning from the
triclinic symmetry of the Cu5Bi2B4O14 crystal and the
field dependences of the magnetization for the orienta-
tions M2–M5, we can assume that the a and b axes are
the hard magnetic axes with saturation fields approxi-
mately equal to 25 and 10 kOe, respectively.

The initial linear portion in the field dependence of
the magnetization at the orientation M1 is most likely
associated with the domain structure of the crystal. The
formation of a single-domain structure at this orienta-
tion is observed in a saturation field of 350 Oe. It can be
assumed that the crystal has a predominantly strip
domain structure with antiparallel orientations of the
magnetic moments along the c axis in adjacent
domains. Therefore, upon magnetization along the M2
and M3 directions perpendicular to the c axis, the initial
portion of a rapid increase in the magnetization due to
transformation of the domain structure is absent in the
field dependences. For these orientations, an increase in
the magnetic field strength immediately leads to rota-
tion of the magnetic moments. Note that the magnetic
moments of the adjacent domains rotate to meet each
other toward the magnetic field direction and the
domain structure is retained until the rotation ceases.
For the magnetic field orientations M4 and M5, the pro-
jection of the magnetic field onto the c axis is nonzero
and a rapid increase in the magnetization in the initial
portions of the magnetization curves is caused by the
displacement of the domain boundaries.

The above model of magnetic anisotropy in the
Cu5Bi2B4O14 crystal is confirmed by the results of the
magnetic resonance measurements. The magnetic reso-
nance data are in qualitative agreement with the avail-
able data on the ferromagnetic resonance in a uniaxial
ferromagnet [15]. The theoretical dependences con-
structed for the easy and hard magnetization directions
under the assumption of a uniaxial ferromagnet are
depicted by the solid lines in Fig. 5. Upon magnetiza-
tion along the direction of easy magnetization, the fre-
quency–field dependence exhibits a linear behavior
and, in this specific case, can be described by the rela-
tionship [15]

(2)

Note that the experimental data for the magnetic field
orientation M1 are well represented by this formula at

 = 11.8 kOe and the gyromagnetic ratio γ =
3.05 MHz/Oe (the g factor is equal to 2.18). The param-
eter  determines the energy gap in the magnetic res-
onance spectrum and, most likely, is a combination of
the anisotropy fields for the a and b axes.

Upon magnetization along the M2 and M3 direc-
tions close to the hard magnetic axes b and a, the vibra-

ω γ Ha' H+( ).=

Ha'

Ha'
2
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tional frequencies in the initial portions of the fre-
quency–field dependences decrease with an increase in
the magnetic field strength. These portions correspond
to a state in which the direction of the spontaneous
magnetic moment does not coincide with the magnetic
field direction and rotates gradually toward the latter
direction with an increase in the field strength. The
rotation is completed in a magnetic field equal to the
anisotropy field in the corresponding direction. With a
further increase in the magnetic field strength, the
direction of the spontaneous magnetic moment coin-
cides with the magnetic field direction. In this case, the
frequency–field dependence can be represented in the
following form [15]:

(3)

For both directions (M2 and M3), the experimental
data in these portions of the frequency–field depen-
dences are adequately described by relationship (3) at
anisotropy fields Ha1 = 7.5 kOe and Ha2 = 22.5 kOe.
These fields are close to the saturation fields deter-
mined for the orientations M2 and M3 from the mag-
netic measurements.
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Abstract—This paper reports on the results of experimental investigations into the threshold power of the onset
of nonlinearity of magnetoacoustic vibrations in planar structures (such as a ferrite film–dielectric substrate
structure) in the range of phase matching of the higher bulk magnetostatic and acoustic modes. Under the exper-
imental conditions, the wavelength of the higher bulk magnetostatic modes is of the order of 1 µm and shorter.
On this basis, the energy of these vibrations with respect to the origin of the magnetostatic wave spectrum is
determined by the energy of the inhomogeneous exchange interaction. The standing magnetoacoustic waves are
examined in conventional yttrium iron garnet films with free surface spins in which, under standard conditions,
only dipole magnetostatic vibrations are excited in planar resonators. Consideration is given to the threshold
power of the onset of precession instability of the dipole exchange acoustic modes which, as was shown earlier
by the authors, are excited in the range of the phase matching of the exchange and acoustic modes. A compar-
ative analysis is performed for the threshold powers of dipole magnetostatic, exchange acoustic, and dipole
exchange acoustic modes. It is demonstrated that the threshold power of the instability of magnetostatic modes
decreases significantly when the natural frequencies of the dipole modes coincide with those of the exchange
acoustic modes.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Longitudinal and transverse excitations of spin
waves were examined in the first works concerned with
the effect of magnetoacoustic interactions on nonlinear
processes in bulk crystals [1, 2]. In particular, Turner
[1] revealed that the threshold power of longitudinal
excitation increases in the range of phase matching of
the secondary spin and elastic waves. This effect was
attributed to the increase in the relaxation parameter of
the secondary spin waves [1]. In film samples, the mag-
netoelastic interaction gives rise to a large variety of
effects due to the multimode behavior of the magnetoa-
coustic excitation spectrum. For example, Zil’berman
et al. [3] experimentally investigated the longitudinal
excitation of spin waves with the use of a microstrip
transducer and observed the reactive effect of an elastic
system on the threshold of spin wave excitation. The
coupling between acoustic and spin waves led to a
change in the dispersion curves, a decrease in the group
velocity at certain frequencies, and an increase in the
residence time of spin waves in the excitation range,
which resulted in a decrease in the threshold excitation
power of the spin waves.

It should be noted that ferrite films are convenient
objects for analyzing dipole magnetostatic waves
which most frequently serve as a source of excitation in
nonlinear processes. The first and second ranges of the
parametric excitation of spin waves correspond to the
ranges of three-magnon decay and four-magnon scat-
1063-7834/02/4407- $22.00 © 21345
tering of the dipole magnetostatic waves, respectively.
The thresholds of the parametric excitation of spin
waves coincide with the threshold powers of the mag-
netostatic wave instability toward three-wave decay or
four-wave scattering processes. In planar structures, the
coupling of acoustic modes with long-wavelength
dipole magnetostatic modes makes it possible to
observe the effect of the magnetoelastic interaction not
only with the participation of exchange magnetostatic
waves but also in the case when the primary magneto-
static wave or wave products of its decay (dipole mag-
netostatic waves) are coupled with the elastic system.
In particular, Zil’berman et al. [4] observed a decrease
in the threshold of the parametric instability of the
dipole magnetostatic mode in the range of the phase
matching with a Lamb mode in the film plane. The
observed decrease in the instability threshold was
explained by the distortion of the dispersion curve,
which, in turn, could lead to decay of the dipole mag-
netostatic mode into secondary magnetostatic modes
collinear with respect to the primary magnetostatic
mode. It is worth noting that the magnetoelastic cou-
pling of exchange spin waves in the case of their phase
matching with acoustic waves is considerably stronger
than the magnetoelastic coupling of dipole magneto-
static waves. In this respect, the purpose of the present
work was to investigate magnetoelastic effects with the
participation of exchange magnetostatic modes.
002 MAIK “Nauka/Interperiodica”
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2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

The experiments were carried out with planar struc-
tures, namely, yttrium iron garnet films on a gadolinium
gallium garnet substrate. The film thickness ranged
from 2 to 10 µm. The total thickness of the planar struc-
ture was approximately equal to 450 µm. The measure-
ments were performed in the standing-wave mode, i.e.,
with the use of ferromagnetic resonance. Samples were
prepared in the form of disks or squares. The localiza-
tion of magnetostatic vibrations in the film plane was
achieved using an inhomogeneous magnetic field with
a “magnetic well” profile. Yttrium iron garnet films
with free surface spins were grown according to the
standard epitaxial technique. The absence of surface-
spin pinning was checked against the spectrum of
excited vibrations. In the presence of surface-spin pin-
ning, the exchange excitations should manifest them-
selves in the spectra of the studied films [5].

In the absence of magnetoelastic effects, the yttrium
iron garnet films under investigation exhibited typical
dipole spectra of magnetostatic vibrations. The excited
vibrations differed from one another in the distribution
of ac magnetization over the film plane. In the case of
circular-disk resonators or magnetostatic vibrations
localized by the cylindrical-magnetic-well method, the
spectrum represented as a function of the magnetic field
contained a set of nearly equidistant vibrations. In the
experiment, the separation between these vibrations in
P

the magnetic field was equal to 8–15 Oe and was deter-
mined from the expression πMd(π/D), where M is the
saturation magnetization of the ferrite film, d is the
thickness of the ferrite film, and D is the diameter of the
localization region of vibrations in the film plane.
When the spectrum was represented as a function of the
magnetic field, a change in the excitation frequency led
to a gradual shift in the spectrum as a whole. For films
with free surface spins, the distribution of ac magneti-
zation over the film thickness for higher bulk modes is
symmetric with respect to the midplane of the film and
the integral of overlap of the ac magnetization distribu-
tion with an external exciting electromagnetic field or
with a field of dipole magnetostatic modes is equal to
zero. As a consequence, these modes were not excited
in the absence of the magnetoelastic interaction. The
acoustic resonances were eliminated from the spectrum
through the destruction of an acoustic resonator formed
by the opposite surfaces of the planar structure, for
example, through mechanical rough grinding of one
surface of the structure.

3. RESULTS AND DISCUSSION

In our recent work [6], we demonstrated that the
magnetoacoustic excitation spectrum is strongly dis-
torted in the range of the phase matching of the higher
bulk magnetostatic and acoustic modes. The ac magne-
tization distribution of normal magnetoacoustic modes
over the film thickness becomes asymmetric due to
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Fig. 1. (a) Spectra of magnetoacoustic vibrations in a circular-disk resonator in the range of magnetic fields corresponding to the
phase matching of the higher bulk and transverse acoustic modes at chosen excitation frequencies. The localization length of vibra-
tions is approximately equal to 400 µm. The thickness of the yttrium iron garnet film is about 6 µm. (b) Frequency dependence of
the threshold power of the external exciting electromagnetic field at which the vibrations shown in panel (a) become unstable. Des-
ignations: d = high-intensity vibration with a dominant dipole energy and e = exchange acoustic vibration.
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strong magnetoelastic coupling. As a result, dipole
exchange acoustic vibrations with comparable ratios of
the dipole, exchange, and acoustic energies are excited
in the ranges of frequencies and magnetic fields which
correspond to the phase matching of the spin and acous-
tic waves. In the present work, we investigated the non-
linearity threshold of these vibrations. Analysis was
performed in the initial portion of the spectrum in
which three-magnon decays were forbidden according
to the law of conservation of energy.

Figure 1a displays the experimental vibrational
spectra represented as a function of the magnetic field
in the range of the magnetoelastic matching of the
exchange spin and transverse acoustic waves at four
frequencies. The high-intensity vibration corresponds
to the second radial lowest bulk dipole mode. In the
absence of the magnetoelastic interaction, only this
vibration is excited in the given range of magnetic
fields. The vibration with a lower intensity is attributed
to the exchange acoustic mode. In the spectrum, the
location of the exchange acoustic vibration changes at
regular intervals with variations in the frequency. For
both vibrations (hereafter, they will be referred to as the
dipole vibration and the exchange acoustic vibration,
respectively), the energies involve all three main com-
ponents, namely, the dipole, exchange, and acoustic
energies. At a frequency of 3781.9 MHz, when the exci-
tation conditions for the dipole and exchange acoustic
vibrations coincide, there occurs excitation of two
dipole exchange acoustic vibrations.

The threshold powers of the onset of nonlinear pro-
cesses associated with the vibrations under investiga-
tion are presented in Fig. 1b. The threshold power of the
onset of nonlinearity was determined by three methods.
In the first case, the threshold power PS (shown in the
figures) was taken to be equal to the microwave gener-
ator power at which the magnetic susceptibility (deter-
mined as the ratio of the absorbed power to the micro-
wave generator power) began to decrease. In the second
case, the threshold power Pf was taken as the micro-
wave generator power at which the spectrum of the
echo signal exhibited satellites whose frequencies dif-
fered from the excitation frequency by approximately
10 MHz. In the third case, the threshold power Pi  was
taken as the power at which the echo pulsed signal was
split. The threshold powers Pf and Pi  almost coincide
(to within 1 dB), whereas the power PS is approxi-
mately 3 dB less than the powers Pf and Pf. It is clearly
seen from the figure that, despite the lower intensity, the
exchange acoustic vibration in the vicinity of the dipole
vibration possesses a smaller nonlinearity threshold as
compared to that of the dipole vibration. The smaller
nonlinearity threshold can be explained by the fact that
the decay of the exchange acoustic waves is enhanced
through the violation of the dispersion law due to mag-
netoelastic coupling. The distortion of the dispersion
curves in the range of the phase matching of the
exchange spin and acoustic waves favors the decay into
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
normal modes of the magnetic film resonator. As a
result, this leads to a decrease in the effective relaxation
parameter of the secondary waves and, hence, to a
decrease in the nonlinearity threshold which is propor-
tional to the relaxation parameter. A similar effect was
observed by Zil’berman et al. [4], who proved that the
collinearity in the propagation of the secondary waves
and the primary wave brings about a decrease in the
secondary-wave energy in the excitation range, which,
in turn, leads to a decrease in the effective relaxation
parameter of the secondary waves and in the nonlinear-
ity threshold of the primary waves. The minimum non-
linearity threshold was observed at a maximum hybrid-
ization of the dipole magnetostatic mode with the
exchange acoustic mode in the case of highly efficient
excitation of the primary magnetostatic wave when the
conditions for decay into secondary waves were readily
attained upon distortion of the dispersion curves.

In the preceding case, the interaction between the
dipole fields of the dipole magnetostatic and exchange
acoustic vibrations is so strong that it leads to a charac-
teristic divergence of the vibrational modes. For the
spectra shown in Fig. 2, the relaxation parameters of
vibrations and the efficiency of their interaction corre-
spond to the situation when no divergence of the vibra-
tional modes occurs and the location of the modes
smoothly varies as if one mode passes through another
mode. However, as in the case presented in Fig. 1, the
nonlinearity threshold of the dipole exchange acoustic
vibration decreases.

Earlier [6], we revealed that both the exchange
acoustic and dipole exchange acoustic modes can be
excited well away from the range of the phase matching
of the exchange spin and acoustic waves. As a conse-
quence, the distortion of the dispersion curves also
occurs well away from the point at which the wave
numbers of the exchange spin and acoustic modes coin-
cide exactly, even though, in this case, the observed
spectral distortions are less pronounced. Let us eluci-
date how the magnetoelastic interaction affects nonlin-
ear processes. The experimental magnetostatic wave
spectra represented as a function of the magnetic field
are depicted in Fig. 3. According to our calculation, the
range of the phase matching of the exchange spin and
acoustic waves is located at a distance of approximately
20 Oe from the origin of the magnetostatic wave spec-
trum. This calculation is confirmed experimentally: the
most efficient excitation of exchange acoustic vibra-
tions is observed in this spectral range. However, these
vibrations are excited at a distance of approximately
50 Oe from the magnetic field which corresponds to the
matching of the spin wave resonances and acoustic
modes. For the situation illustrated in Fig. 3, we ana-
lyzed the experimental frequency dependences of the
nonlinearity threshold powers of the radial dipole
vibrations (6,1,0), (5,1,0), and (4,1,0). In the spectral
range under investigation, the excitation of the
exchange acoustic modes is very weak and the reso-
nance curve of the dipole magnetostatic vibrations
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Fig. 2. (a) Spectra of magnetoacoustic vibrations in a circular-disk resonator in the range of magnetic fields corresponding to the
phase matching of the higher bulk and transverse acoustic modes at chosen excitation frequencies. The localization length of vibra-
tions is approximately equal to 600 µm. The structure parameters are the same as in Fig. 1. The dipole coupling of vibrations is
slightly weaker and their divergence does not exceed the width of the resonance curve as compared to those in Fig. 1. (b) Frequency
dependence of the threshold power of the external exciting electromagnetic field at which the vibrations shown in panel a become
unstable.
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Fig. 3. Spectra of magnetoacoustic vibrations in a circular-disk resonator at different excitation frequencies. The localization length
of vibrations is approximately equal to 600 µm. The structure parameters are the same as in Fig. 1. Arrows indicate the excitation
of exchange acoustic vibrations.
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remains almost unchanged when the resonance mag-
netic field of the exchange acoustic vibration coincides
with the resonance field of one of the aforementioned
dipole vibrations. However, it is experimentally found
that, when the resonance fields of these vibrations coin-
cide, the nonlinearity threshold decreases by 5–7 dB.
Therefore, even a very weak excitation of exchange
acoustic vibrations enhances decay processes, which is
accompanied by a decrease in the nonlinearity thresh-
old of the dipole modes. As a result, under the condition
when the resonance field of these vibrations coincides
with the resonance field of the dipole magnetostatic
vibration, the resonance curve of the latter vibration
remains virtually undistorted; however, the nonlinear-
ity threshold of the dipole magnetostatic vibration
decreases by approximately 6 dB.

4. CONCLUSION
Thus, it has been demonstrated that, when the exci-

tation conditions for the dipole magnetostatic and
exchange acoustic modes coincide, the nonlinearity
threshold of the dipole exchange acoustic vibrations
excited in the range of the phase matching of the
exchange spin and acoustic waves can decrease by 10–
14 dB compared to the nonlinearity threshold of the
dipole magnetostatic vibrations, even though the
former vibrations are characterized by a lower effi-
ciency of excitation. The observed decrease in the non-
linearity threshold can be explained by the distortion of
the dispersion curves for the secondary modes due to
their coupling with the acoustic modes. This favors the
conservation of energy and momentum in the course of
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four-magnon scattering attended by excitation of the
normal modes of the planar structure. In the case when
the excitation conditions for the dipole magnetostatic
mode and one of the exchange acoustic modes coin-
cide, the nonlinearity threshold of the dipole magneto-
static vibration decreases well away from the range of
the phase matching of the exchange spin and acoustic
waves, even though noticeable distortions of the vibra-
tional spectrum are virtually absent. In turn, despite the
substantially smaller amplitude of the exchange acous-
tic magnetostatic vibrations, their nonlinearity thresh-
old can be 5–7 dB less than the nonlinearity threshold
of the dipole magnetostatic vibrations.
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Abstract—Two phases, paramagnetic and ferromagnetic, were shown by the magnetic resonance method to
coexist below the temperature TC in La0.7Pb0.3MnO3 single crystals exhibiting colossal magnetoresistance. The
magnetic resonance spectra were studied in the frequency range 10–78 GHz. The specific features in the behav-
ior of the spectral parameters were observed to be the strongest at the temperatures corresponding to the max-
imum magnetoresistance in the crystals. The concentration ratios of the paramagnetic and ferromagnetic phases
in the samples were found to be sensitive to variations in temperature and external magnetic field. This behavior
suggests realization of the electronic phase separation mechanism in the system under study. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The interest of researchers in impurity-containing
perovskite manganites stems primarily from the phe-
nomenon of colossal magnetoresistance (CMR). The
CMR phenomenon has application potential. At the
same time, numerous experimental studies have
revealed structural, magnetic, and electronic properties
in manganites which are no less exciting from the phys-
ical standpoint. It was found that the materials of this
family have a very rich phase diagram [1, 2] which
includes regions of the antiferromagnetic, ferromag-
netic nonconducting, and ferromagnetic metallic states,
as well as regions with orbital and charge ordering. In
many cases, these phases are microscopically inhomo-
geneous. This inhomogeneity has been proved experi-
mentally by scanning tunneling microscopy [3], elec-
tron diffraction [4], neutron scattering [5], NMR [6],
optical methods [7], etc. We note that the inhomoge-
neous state manifests itself the strongest in the concen-
tration and temperature ranges where the CMR effect is
observed. In addition to the experimental confirmation
of the coexistence of phases in materials of this class,
considerable progress has been reached in theoretical
substantiation of the tendency to phase separation [8].
There is, however, still a long way to go for the pattern
of these phenomena to be completely understood; this
would require extending the search for materials with
phase separation and for experimental methods of their
investigation.

Because any of the phase separation scenarios pres-
ently discussed [8] assumes the coexisting phases to
reside in different magnetic states, magnetic resonance
could prove to be of use. It is known that even an insig-
nificant inhomogeneity in magnetic materials notice-
1063-7834/02/4407- $22.00 © 21350
ably affects the magnetic absorption spectra. While
magnetic resonance spectra of manganites have been
studied by various groups of authors [9–11], interest
was mainly focused therein on the paramagnetic (PM)
state. As for the results covering the temperature range
near the magnetic phase transition, they exhibit a con-
siderable scatter and are often interpreted from differ-
ent standpoints.

Our studies of La0.7Pb0.3MnO3 crystals exhibiting
the CMR phenomenon revealed an effect of dc and ac
transport current on conductivity in the microwave fre-
quency range [12, 13]. The character of the response of
this system to an electric current suggests that the
mechanisms of the CMR and of the electric-current
effect have the same nature and can be qualitatively
interpretted in terms of the phase separation model. The
existence of the two-phase paramagnetic–ferromag-
netic state in single-crystal La0.7Pb0.3MnO3 received
supportive evidence from studies of magnetic reso-
nance spectra [14].

We present here the data obtained in an experimen-
tal investigation of magnetic resonance in
La0.7Pb0.3MnO3 crystals exhibiting CMR.

2. EXPERIMENTAL

All experimental studies were performed on single-
crystal La1 – xPbxMnO3 samples grown by spontaneous
crystallization from a solution in melt. A characteristic
feature of the technology employed was that PbO and
PbF2 were used as the solvent while simultaneously
providing the required amount of Pb in the crystals. The
composition of the batch consisting of La2O3, MnO2,
and the solvent was chosen so as to obtain a Pb concen-
002 MAIK “Nauka/Interperiodica”
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tration of x ~ 0.3. The crystals were grown in a platinum
crucible. The technological regime chosen permitted
one to grow crystals with an average size of 5 × 5 × 5
mm. X-ray diffraction analysis of the single crystals
obtained confirmed that the structure and the lattice
parameters correspond to x ~ 0.3. The samples prepared
for the study were plates measuring 4 × 2 × 0.1 mm
whose face coincided with one of the principal symme-
try planes of the crystal and whose plate surfaces were
polished. The external magnetic field was always
applied along the sample plane. The electrical resistiv-
ity ρ and the magnetoresistance ∆ρ/ρ0 = (ρ(0) –
ρ(H)/ρ(0)) × 100% of the samples were measured by
the standard four-probe method. The magnetic reso-
nance spectra were measured with a 10-GHz spectrom-
eter operating in the traditional arrangement with rf
modulation of the magnetic field and with a spectrom-
eter with frequency ν tunable within the range 24–
80 GHz and with a pulsed magnetic field.

3. RESULTS AND DISCUSSION

The La0.7Pb0.3MnO3 single crystals grown by us had
a ferromagnetic (FM) phase transition temperature TC ≅
360 K. The maximum magnetoresistance in a magnetic
field H = 10 kOe was 20% at T ~ 330 K (Fig. 1a).

The main feature in the magnetic resonance spectra
of the crystals under study is the presence of two well-
resolved absorption lines within a broad temperature
interval below the Curie point TC. The temperature
behavior of the absorption line parameters for the fre-
quency ν = 10 GHz is shown in Figs. 1b and 1c. We
believe that the line denoted by F is due to resonance
from the crystal regions in the FM state. The F line
appears only below the temperature TC. The decrease in
the resonance field Hr with decreasing temperature is
associated with anisotropic interactions, namely, with
increasing magnetic crystallographic anisotropy and
shape anisotropy. As the temperature drops below TC,
line P observed in the PM state of the sample (T > TC)
changes its position only insignificantly and its reso-
nance field Hr does not depend on the sample shape and
the orientation of the external magnetic field in the
crystal. The slight increase in Hr in the temperature
range 340–350 K may be associated with a change in
the g factor caused by local lattice distortions. Such dis-
tortions initiated by strong electron–phonon coupling
were observed to exist in a number of impurity-contain-
ing perovskite manganites near the transition to the FM
state [1]. Figure 2 shows spectra recorded at different
microwave-radiation frequencies at T = 320 K.

That the P and F lines are due to resonance absorp-
tion in the PM and FM regions, respectively, is convinc-
ingly argued for by the behavior of their frequency vs.
field relations (inset to Fig. 2). Studies performed on
spherical samples reveal a comparatively low magnetic
crystallographic anisotropy (the effective anisotropy
field does not exceed 100 Oe even at T = 80 K); there-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
fore, the frequency vs. field dependences for the
absorption lines of ferromagnetic resonance should be
determined primarily by shape anisotropy. For the
geometry of our experiment (with the external mag-
netic field parallel to the sample plane), one can write

(1)

where ω = 2πν is the circular frequency, γ = (gµB/") is
the gyromagnetic ratio, and Meff is the effective magne-
tization, which, in the general case, is different from the
true value M0 because of the crystallographic anisot-
ropy and possible magnetic inhomogeneity of the crys-
tal. For the PM regions, we have a simple relation,

(2)

ω
γ
---- Hr Hr 4πMeff+( )[ ] 1/2
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Fig. 1. Temperature dependences (a) of the electrical resis-
tivity ρ and magnetoresistance ∆ρ/ρ0 in a magnetic field
H = 10 kOe and of (b) the resonance field and (c) linewidth
of the ferromagnetic (F) and paramagnetic (P) absorption
lines in the magnetic resonance spectrum (ν = 10 GHz).
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Indeed, the frequency vs. field relations for the two
observed absorption lines in the spectrum are in full
agreement with Eqs. (1) and (2) (inset to Fig. 2).
Because the intrinsic magnetic crystallographic anisot-
ropy is small, we succeeded in moving the FM and PM
absorption line resonance fields apart by properly
choosing the sample shape and geometry of the experi-
ment, thus permitting reliable separate measurement of
the lines to be made. The temperature behavior
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Fig. 2. Magnetic resonance absorption spectra recorded at
different microwave frequencies ν at T = 320 K. Inset: fre-
quency vs. field plots of the two lines observed in the mag-
netic resonance spectrum at T = 320 K; the solid line is a
plot of Eq. (1), and dotted lines are linear extrapolations of
the relations.
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Fig. 3. Ferromagnetic-to-paramagnetic absorption line
intensity ratio If /Ip in the magnetic resonance spectrum
plotted vs. microwave radiation frequency; T = 300 K.
P

4πMeff(T) derived from the temperature dependences
of the resonance field Hr(T) of the ferromagnetic reso-
nance line with due account of Eq. (1) is almost identi-
cal to that of the magnetization 4πM0(T) found from
static measurements.

In addition to the proof of the existence of a two-
phase paramagnetic–ferromagnetic state, this study
produced another important result; namely, we demon-
strated the possibility of controlling the phase volume
ratio in a sample by means of an external magnetic
field. This is illustrated by Fig. 2, which shows that an
increase in the microwave radiation frequency ν and,
hence, in the magnitude of the external magnetic field
H brings about an increase in the intensity of the FM
absorption line and a decrease in that of the PM line.
Figure 3 plots the FM-to-PM line intensity ratio If /Ip as
a function of the microwave radiation frequency at
which the magnetic resonance spectra were measured.
This situation can be considered to be a control of the
phase volume ratio through proper variation of the
external magnetic field. An increase in H gives rise to
an increase in the FM phase volume and a decrease in
the PM phase volume in a sample. One should note,
however, that other factors, for instance, variation of the
magnetization M0, can also contribute to the intensity of
the ferromagnetic resonance absorption line. However,
the frequency vs. field dependence for the FM line is fit-
ted well by Eq. (1) with a constant value 4πMeff ≈ 2 kOe
(see inset to Fig. 2); hence, the FM regions were mag-
netized to saturation in the magnetic fields for which
the measurements were carried out. We also analyzed
the temperature behavior of the FM and PM absorption
line parameters recorded at different microwave radia-
tion frequencies. We focused our attention on the tem-
perature dependence of the resonance line intensities.
The intensity was calculated as the area under the
absorption curve. Because of a partial overlap of the
spectral lines, we assumed the absorption lines to have
a Lorentzian shape. Figure 4 shows temperature depen-
dences of the FM-to-PM line intensity ratio obtained
when measuring magnetic resonance spectra at 10 and
78 GHz. Note the smooth course of the If /Ip tempera-
ture dependence, except the region of T ~ 310–350 K,
where peak-shaped features are observed. The higher
the frequency at which the spectra are measured, the
stronger these features are. Interestingly, the peak in the
If /Ip temperature dependences lies in the temperature
region where the magnetoresistance ∆ρ/ρ0 is the largest
(Fig. 1a).

The mechanisms responsible for the formation of
the heterogeneous state and the role played by this state
in the CMR phenomenon are fundamental problems in
the study of inhomogeneous states in manganites. It is
believed that the complexity of the (x, H, T) phase dia-
gram of these materials results from the spin, charge,
and orbital subsystems being strongly coupled. At some
specific doping levels, the subsystem interaction ener-
gies responsible for the formation of these phases
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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become comparable and the inhomogeneous state with
phase separation can be the ground state. The variants
that are mainly discussed in the literature are as follows.

(i) Phase separation into regions with different elec-
tron densities. The inhomogeneities typically measure
a few nanometers in this case, i.e., a few lattice con-
stants [15, 16].

(ii) An alternative mechanism involves phase sepa-
ration into regions with equal electron concentrations,
i.e., into antiferromagnetic (or PM) regions with local-
ized electrons and FM regions with itinerant carriers
[17]. It is assumed that this phase separation can be
caused by a random distribution of impurity ions in the
crystal lattice, which produces a random change in the
magnitude of the exchange integral. This makes the
ordered (homogeneous) state unstable in the vicinity of
the phase transition to the FM state. The clusters form-
ing in this case can reach micron size. In the case of an
inhomogeneous impurity distribution, this scenario
does not reduce to a trivial chemical separation of a
sample into phases having, for instance, different Curie
temperatures TC. At the same time, this variant cannot
be disregarded in the more general context of phase
separation in manganites.

The magnetic resonance method used by us here to
study inhomogeneities in La0.7Pb0.3MnO3 samples is of
an integral character, and, therefore, the problem of the
size of inhomogeneities and of the topology of the inho-
mogeneous state remains open. It is believed that the
first scenario of electronic phase separation operates at
low concentrations x, although estimates [15] do not
exclude the possibility of this mechanism being also
operative at higher concentrations. Nevertheless, phase
separation associated with a random impurity-ion dis-
tribution appears to be a more realistic process for x ~
0.3 compositions; this can be supported experimentally.

Our experimental data suggest an inference of fun-
damental significance, namely, that the heterophase
state in La0.7Pb0.3MnO3 is sensitive to the strength of an
external magnetic field. This is a persuasive argument
in support of the electronic phase separation mecha-
nism, because the effect of external magnetic field can-
not be expected to be strong in the case of chemical
inhomogeneity. Indeed, in the latter case, the sample
would actually be a multiphase system with a different
TC for each phase. Obviously enough, in such a sample,
the FM and PM phases should coexist in the vicinity of
the transition from the PM to the FM phase (which is
also observed experimentally in our case), but the TC

point in each region should not depend on the external
magnetic field. Another point of interest is that all the
features in the magnetic resonance spectra of the two-
phase PM–FM system are observed in the region of the
peak in the temperature dependence of magnetoresis-
tance. This suggests a relation between the phase sepa-
ration and the manifestation of the CMR effect in the
materials under study. It is known that the CMR finds a
straightforward interpretation in terms of the percola-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
tion mechanism [8]. At the same time, the origin of the
peaks in the temperature dependences of the FM-to-PM
absorption-line intensity ratio If /Ip in the magnetic res-
onance spectrum remains unclear. If our suggestions
that the main contribution to If /Ip is from the magneti-
zation M0 of the FM phase and from the volume ratio of
the FM and PM phases are correct, one could expect the
relations to be smooth. It can be conjectured that in the
temperature region where the features are observed, the
two-phase state has a complex topology. The energies
governing the ground state of the crystal are apparently
in a delicate balance; this entails, as a consequence, a
high sensitivity to variations in temperature and exter-
nal magnetic field.

4. CONCLUSION

Thus, our experimental study of magnetic resonance
spectra in La0.7Pb0.3MnO3 crystals exhibiting CMR
revealed the existence of two magnetic phases below
TC. The analysis of the frequency vs. field dependences
of absorption spectra permitted their identification as
the PM and the FM phase. Studies carried out over a
broad frequency range showed the mixed phase state to
be sensitive to the magnitude of an external magnetic
field. This finding, as well as the specific features in the
behavior of the magnetic resonance parameters
observed in the CMR region, suggests that the mecha-
nism of electronic phase separation is operative in this
system.
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Abstract—The elastic matching of phases in the vicinity of the morphotropic phase boundary in xPbTiO3–
(1 − x)Pb(Zn1/3Nb2/3)O3 crystals is investigated in an external electric field with strength E || [001]. The field
dependences of the unit cell parameters of the monoclinic phase are determined experimentally in the range
0 ≤ E ≤ 2 MV/m. The results obtained are used in analyzing specific features in the electromechanical properties
of xPbTiO3–(1 – x)Pb(Zn1/3Nb2/3)O3 crystals (0.08 & x & 0.09), in which the monoclinic phase is intermediate
between the rhombohedral and tetragonal phases and can coexist with these phases. A correlation between the
optimum volume concentrations of domains or twins in different two-phases states is revealed and interpreted
for the first time. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelectrics and related materials containing
intermediate phases have been extensively investigated
over the last decade. It is found that the intermediate
ferroelectric phase 3m, which is revealed in PbZrO3

crystals [1, 2] and in (Pb1 – xSrx)ZrO3 solid solutions [3],
is thermodynamically stable in a narrow range of tem-
peratures T at a molar concentration x  0 and coex-
ists with one of the adjacent phases, namely, the
paraelectric phase m3m or the antiferroelectric phase
mmm. The intermediate ferroelastic phase 2/m can be
induced under hydrostatic compression or upon ther-
mocycling [4] in KCN crystals that undergo the m3m–
mmm first-order phase transition. In Cr3B7O13Cl, the

phase —the sole antiferroelectric phase in crystals
with a boracite-type structure [5]—is induced in an

electric field or under mechanical stresses in the –
mm2 two-phase state. Owing to their unique piezoelec-
tric and dielectric properties and the intermediate
phases revealed recently in the vicinity of the morpho-
tropic boundary, considerable attention has been
focused on ferroelectric solid solutions with a perov-
skite-type structure, such as Pb(Zr1 – xTix)O3 (PZT) [6–
13], xPbTiO3–(1 – x)Pb(Zn1/3Nb2/3)O3 (PT–PZN) [7, 8,
14–19], and xPbTiO3–(1 – x)Pb(Mg1/3Nb2/3)O3 [20, 21].
It is experimentally found that these solid solutions
contain intermediate monoclinic ferroelectric phases
[10, 11, 17, 20, 21] which can coexist with one of the
ferroelectric (tetragonal 4mm or rhombohedral 3m)
phases in certain ranges of temperatures T and molar
concentrations x (for example, the 3m–m and 4mm–m
two-phase states in Pb(Zr1 – xTix)O3 ceramics [12]) or
electric field strengths E (in PT–PZN crystals [17, 18]).

42m

42m
1063-7834/02/4407- $22.00 © 21355
In our previous work [13], we theoretically investi-
gated the specific features in the elastic matching of
phases in Pb(Zr1 – xTix)O3 solid solutions and estab-
lished a correlation between the phase boundaries in the
refined x–T diagram [12] and the interfaces in crystal-
line grains. It was demonstrated that the 3m–4mm, 3m–
m, and 4mm–m interfaces are oriented along the zero
mean strain planes (ZMSP); as a result, the elastic and
electrostriction energies of the interacting phases
decrease to zero. The zero mean strain line calculated in
[13] for the coexisting phases 4mm and m is nearly par-
allel to the experimental 4mm–m phase boundary in the
x–T diagram [12]. This manifestation of the elastic
interaction between the phases in the Pb(Zr1 – xTix)O3
solid solutions and the experimental data obtained in
[17, 18] for PT–PZN crystals stimulated our investiga-
tion into the specific features in the heterophase states
of these crystals in the vicinity of the morphotropic
boundary in an external electric field E. The aim of the
present work was to elucidate how the intermediate
monoclinic phase affects the elastic matching of the
phases and the electromechanical interactions in PT–
PZN crystals in the concentration range 0.08 & x &

0.09.

2. POLYDOMAIN (TWINNED) PHASES
AND THEIR ELASTIC MATCHING

It is assumed that a mechanically free crystal of PT–
PZN undergoes a first-order phase transition in certain
ranges of molar concentrations x and electric field
strengths E. The axes OXj of a Cartesian coordinate sys-
tem (X1X2X3) are oriented parallel to the crystallo-
graphic axes of a perovskite cell in the paraelectric
phase Pm3m. In the chosen coordinate system, the ori-
entations of domains (components of the mechanical
002 MAIK “Nauka/Interperiodica”
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twins) are specified by the basis vectors (ai , bi, ci) of the
unit cells. Four types of 71° (109°) domains in the
rhombohedral phase are described by the basis vectors
of the unit cells (ari , bri , cri) and the volume concentra-
tions nri (i = 1–4). The basis vectors (ari , bri , cri) are ori-
ented (with due regard for the angles of shear ωr [12,
22] of the perovskite cell) along the following direc-

tions [23]: ([100], [010], [001]) for i = 1, ([ ], [010],

[ ]) for i = 2, ([ ], [ ], [ ]) for i = 3, and

([010], [ ], [ ]) for i = 4. The volume concentra-
tions nri are expressed in terms of the parameters 0 ≤
ur ≤ 1 and 0 ≤ gr ≤ 1 as follows: nr1 = (1 – ur)(1 – gr),
nr2 = (1 – ur)gr, nr3 = ur(1 – gr), and nr4 = urgr . The tet-
ragonal phase contains 90° domains of two types. For

100

001 010 100 001

100 001
P

these domains, the basis vectors (atj , btj , ctj) are ori-
ented along the directions ([100], [010], [001]) (j = 1)
and ([010], [001], [100]) (j = 2) and the volume concen-
trations are equal to nt and 1 – nt, respectively. The
monoclinic phase is assumed to be separated into
domains of four types [17] with the basis vectors
(amk , bmk , cmk) (Fig. 1) and the volume concentrations
nmk, where cmk || [001] and k = 1–4. The volume concen-
trations nm1 = fmvm, nm2 = (1 – fm)vm, nm3 = fm(1 – vm),
and nm4 = (1 − fm)(1 – vm) are expressed through the
parameters (the volume concentrations of the mechani-
cal twins) fm and vm varying in the interval [0, 1].

The distortion matrices of the rhombohedral, tetrag-
onal [13], and monoclinic phases can be written in the
following form:
(1)

(2)

(3)

Nr

µa µ 2gr 1–( ) µ 2ur 1–( ) 2gr 1–( )
µ 2gr 1–( ) µa µ 2ur 1–( )

µ 2ur 1–( ) 2gr 1–( ) µ 2ur 1–( ) µa 
 
 
 
 

,=

Nt nt

εa 0 0

0 εa 0

0 0 εc 
 
 
 
 

1 nt–( )
ϕ tcos 0 ϕ tsin–

0 1 0

ϕ tsin 0 ϕ tcos 
 
 
 
  εc 0 0

0 εa 0

0 0 εa 
 
 
 
 

,+=

Nm v m

ηa 0 η 2 f m 1–( )
0 ηb 0

0 0 ηc 
 
 
 
 

1 v m–( )
ϕabcos ϕabsin– 0

ϕabsin ϕabcos 0

0 0 1 
 
 
 
  ηb 0 0

0 ηa η 2 f m 1–( )
0 0 ηc 

 
 
 
 

.+=
The distortions of individual domains are expressed in
terms of the unit cell parameters ar and ωr for the rhom-
bohedral phase; at and ct for the tetragonal phase;
am, bm, cm, and ωm for the monoclinic phase; and a0 for
the cubic phase as follows: µa = arcosωr/a0, µ =
arsinωr/a0, εa = at/a0, εc = ct/a0, ηa = amcosωm/a0, ηb =
bm/a0, ηc = cm/a0, and η = amsinωm/a0. The angles ϕt =

 + )] and ϕab =  +

)] in formulas (2) and (3) characterize the rotation of
the crystallographic axes (see [13, 24]) of contiguous
domains in the tetragonal and monoclinic phases for
εa ≠ εc and ηa ≠ ηb, respectively. Further analysis of
matrices (1)–(3) will be performed according to the for-
mulas taken from [1, 24] for the purpose of revealing
the possible elastic matching of phases along the zero
mean strain plane and of determining the optimum vol-
ume concentrations of domains (for example, nt, opt and

 in the tetragonal phase) or twins (for example,

vm, opt and  in the monoclinic phase).

[2εaεc/(εa
2

arccos εc
2

[2ηaηb/(ηa
2

arccos

ηb
2

nt opt,'

v m opt,'
3. RESULTS OF CALCULATIONS
AND DISCUSSION

3.1. Planes of zero mean strains in two-phase
states. The calculated optimum volume concentrations
of different-type domains or twins in PT–PZN two-
phase crystals in the vicinity of the morphotropic
boundary are listed in Table 1. The numerical estimates
were obtained from the data on the perovskite unit-cell
parameters measured at room temperature in [17] (the
rhombohedral and monoclinic phases at x = 0.08) and
[22] (the tetragonal phase at x ≈ 0.09). Analysis of the
experimental data demonstrates that the unit cell
parameters of the tetragonal phase (at = 0.4037 nm and
ct = 0.4080 nm at E = 0 [22]) are in good agreement
with the perovskite unit-cell parameters estimated by
extrapolating the curves am(E) and bm(E) (taken from
[17]) to the unit cell parameters am(E ') = bm(E ') ≠ cm(E ')
which correspond to the possible transition from the
monoclinic phase to the tetragonal phase. Our numeri-
cal estimates were made using polynomial extrapola-
tion of the dependences am(E) and bm(E) for PT–PZN
crystals with x = 0.08 and led to the following results:
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 1. A schematic drawing of the domain structure induced by the electric field E || [001] in the monoclinic phase of xPbTiO3–
(1 – x)Pb(Zn1/3Nb2/3)O3 crystals in the vicinity of the morphotropic phase boundary. fm = |OK |/ |OL | and vm = |LS |/ |LV | are the
volume concentrations of twins formed by domains of the (1, 3) and (1, 2) types, respectively. The hatched plane represents the
domain wall parallel to the (010) plane of the perovskite cell.

X3

X1

X2

O K L

S

V

1 2

3 4

am cm
am(E') = bm(E') ≈ 0.4030 nm, cm(E') ≈ 0.4090 nm, and
E' ≈ 3.0–3.5 MV/m. It is worth noting that the estimates
for E' closely coincide with the experimental field
strengths E'' ≈ 2.5–4.0 MV/m [14] at which the tetrag-
onal phase is induced.

As follows from the calculations of the optimum
volume concentrations of domains or twins, the values
of nt, opt , , vm, opt, and  change by less than
1% even in the case when the concentration parameters
ur , gr, and fm substantially vary in the interval [0, 1].
The virtual constancy of the aforementioned optimum
concentrations is due to the fact that the shear distor-
tions of perovskite cells in the rhombohedral and mon-
oclinic phases affect the formation of planar unstrained
interfaces insignificantly. This is determined by the off-
diagonal elements of the matrices ||Nr || and ||Nm ||, which
depend on the parameters ur, gr, and fm [see formulas
(1) and (3)] and are small in magnitude as compared to
the diagonal elements of these matrices.

It can be seen from Table 1 that the elastic matching
of the phases along the zero mean strain plane can
occur at two optimum volume concentrations, for
example, nt, opt and . These concentrations in the
interval [0, 1] are determined from the equation [1, 24]

(4)

where aq are the coefficients expressed through the ele-
ments of the distortions matrices (1)–(3). It is assumed
that, upon a field-induced transition from the mono-
clinic phase to the tetragonal phase, an increase in the
electric field strength E should be attended by an

nt opt,' v m opt,'

nt opt,'

aqnt
q

q 0=

6

∑ 0,=
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increase in the volume concentration of domains with
Ps1 ↑↑  E || OX3 (in this case, the bulk density of the
electrostatic interaction energy wes, 1 = –(Ps1E) [26] has
the lowest value). Hence, it follows from the field
dependences represented in Table 1 that the depen-
dence nt, opt(E) has a physical meaning and, in the limit-
ing case, leads to the following result: nt, opt(E')  1.

Unlike the dependence (E), the calculated depen-

dence (E) gives physically meaningless results

(E')  0 and will be ignored in the subsequent
discussion.

3.2. The influence of the monoclinic phase on the
electromechanical properties of xPbTiO3–(1 –
x)Pb(Zn1/3Nb2/3)O3 crystals. The results obtained in
analyzing the elastic matching of the rhombohedral and
monoclinic phases make it possible to interpret the
experimentally observed features in the electromechan-
ical characteristics of PT–PZN crystals with x = 0.08 in
the vicinity of E = E0 = 1.5 MV/m [15, 17, 18, 27]. The
calculated optimum concentrations of twins in the
monoclinic phase vm, opt ≈ 1 and  ≈ 0 (Table 1)
indicate that the domain structure becomes consider-
ably simpler. As a result, the basis vectors bmk over the
whole crystal are oriented parallel to either of the two
axes OX1 (k = 3, 4) or OX2 (k = 1, 2). In an external elec-
tric field E ≥ E0, the displacements of domain (twin)
walls, which are aligned parallel to the (010) plane
(Fig. 1) and separate the twins with bmk || OX1 and bmk ||
OX2, are accompanied by strains that arise from the
nonequality of the unit cell parameters am ≠ bm and can
affect the electromechanical properties of the crystals.

nt opt,

nt opt,'

nt opt,'

v m opt,'
2
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Table 1.  Elastic matching of phases in xPbTiO3–(1 – x)Pb(Zn1/3Nb2/3)O3 crystals in the electric field E || [001]

Coexisting phases and constant volume 
concentrations of different-type domains x E, MV/m

Optimum volume concentrations of domains 
or twins for elastic matching of phases along

the zero mean strain plane

Rhombohedral (ur = gr = 0) and tetragonal 0.09 0 nt, opt = 0.620 or  = 0.380

Rhombohedral (ur = gr = 1/2) and
monoclinic (fm = 1/2)

0.08 0 vm, opt = 0.775 or  = 0.225

5 vm, opt = 0.801 or  = 0.199

10 vm, opt = 0.873 or  = 0.127

15 vm, opt = 0.980 or  = 0.020

20 vm, opt > 1 or  < 0 (ZMSP is absent)

Monoclinic and tetragonal (vm = 1 and
fm = 1/2 with an increase in E; nt = 1 and
fm = 1/2 with a decrease in E)

0.08–0.09 Phase transition with an increase in E

0 nt, opt = 0.438 or  = 0.562

5 nt, opt = 0.461 or  = 0.539

10 nt, opt = 0.519 or  = 0.481

15 nt, opt = 0.588 or  = 0.412

20 nt, opt = 0.762 or  = 0.238

30–35 nt, opt ≈ 1 or  ≈ 0

Phase transition with a decrease in E

20 vm, opt = 0.429 or  = 0.571

15 vm, opt = 0.274 or  = 0.726

10 vm, opt = 0.245 or  = 0.755

5 vm, opt = 0.224 or  = 0.776

0 vm, opt = 0.217 or  = 0.783

Note: The concentrations nt, opt and  for the rhombohedral–tetragonal phase transition were calculated in [25] before the intermedi-

ate monoclinic phase was found in the PT–PZN system. The coexistence of the rhombohedral and tetragonal phases in PT–PZN
crystals with x = 0.08 in a certain range of electric fields E was observed in the recent work [19]; however, the concentrations
nt, opt(E) and (E) have not been calculated, because reliable data on the experimental dependences ar(E), ωr(E), at(E), and ct(E)

are unavailable.
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v m opt,'

v m opt,'
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According to the simplest evaluations, which are based
on the concepts of elastic displacements of 90° domain
walls in crystalline grains of BaTiO3 ferropiezoelectric
ceramics [28], the strains induced at an electric field

E ≈ E0 are estimated as  ≈ (am – bm)/bm ≈ 0.6%. This
value is comparable to the piezoelectric strain ξ33(E0) ≈
0.5% determined experimentally in [27] for the PT–
PZN crystal. In our opinion, the displacements of the
{100}-type domain walls and subsequent simplifica-
tion of the domain structure lead to the fact that the
characteristic jumps in the field dependences of the
piezoelectric coefficient d31(E) and the elastic compli-

ance (E) measured by the resonance method in the

ξ jk
i

s11
E

P

crystal [15] occur in the vicinity of E = E0. At the same

time, no jumps in the permittivity (E) are observed
at E ≈ E0 [15]. This can also be attributed to the simpli-
fication of the domain structure in the monoclinic
phase.

The displacements of the interphase boundaries also
affect the piezoelectric properties of PT–PZN crystals.
According to [16], the strain of a crystal along the OX3
axis due to displacement of the (001) boundaries along

the same axis can be represented as  = zmδrm,
where zm is the volume concentration of the induced
monoclinic phase and δrm = (cm – ar)/ar is the coeffi-
cient dependent on the unit cell parameters of the coex-

ε33
σ

ξ33 rm,
∆
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isting phases. Note that, in all the domains involved, the
basis vectors cmk are oriented parallel to the OX3 axis
and the basis vectors cri are nearly parallel to the OX3
axis. The contribution of the displacements under con-
sideration to the piezoelectric coefficient d33 in the elec-
tric field E || OX3 can be evaluated from the formula

(5)

The calculation with the use of formula (5) involves
problems, because experimental data on the kinetics of
the induced rhombohedral–monoclinic phase transition
and the electromechanical constants for single-domain
monoclinic PT–PZN crystals are unavailable. However,
we can make the following assumptions: (i) zm = 0 at
E = 0, (ii) zm = 1 at E = 2.0 MV/m (both conditions cor-
relate with the experimental data obtained in [17, 18]),
(iii) zm(E) is a linear function, and (iv) ar(E) is constant.
On this basis, we calculated the field dependence
∆d33, rm(E) (Fig. 2, curve 1). For comparison, the exper-
imental dependences d33, D(E) (curve 2) and d33, P(E)
(curve 4) and the calculated dependence d33, rr(E)
(curve 3) are also plotted in Fig. 2. As is seen from this
figure, there is a clear correlation between the field
dependences ∆d33, rm(E) and d33, D(E) and a correlation
between the dependences ∆d33, rr(E) and d33, P(E).
Whatever the phase symmetry and the features in the
domain structure, the contributions ∆d33, rm and ∆d33, rr

in strong electric fields can amount to as much as 50–
90% of the measured piezoelectric coefficients d33, D(E)
and d33, P(E), respectively. The similarity of the curves
d33, D(E) and ∆d33, rm(E) (Fig. 2, curves 1, 2) can be asso-
ciated with the similarity of the curves ξ33(E) [27] and
cm(E) [17] or δrm(E). The peaks observed in the curves
d33, D(E) and ∆d33, rm(E) in the vicinity of E = E0 stem
from the maximum slope of the curves ξ33(E) and
cm(E), respectively. Noheda et al. [17] also emphasized
the similarity of the field dependences ξ33(E) and cm(E);
however, no consideration was given to the piezoelec-
tric and other properties of PT–PZN crystals.

The dependence ∆d33, rm(E) calculated from for-
mula (5) becomes incorrect at E > E0 due to neglect of
the aforementioned simplification of the domain struc-
ture in the monoclinic phase, the nonlinear depen-
dence zm(E), and the jump in the dependence cm(E).
The simplification of the domain structure affects the
elastic, piezoelectric, and dielectric properties of the
monoclinic phase and, consequently, brings about
variations in the internal mechanical and electric fields
and in the conditions of displacement of the interphase
boundary. The jump in the unit cell parameter cm at
E ≈ E0 leads to a change in the matrix element Nm, 33
[see formula (3)] and to redistribution of the internal
fields, which also affects the displacement of the inter-
phase boundary.

∆d33 rm, dξ33 rm,
∆

/dE=

=  dzm/dE( )δrm zm dδrm/dE( ).+
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Durbin et al. [18] made the assumption that the
monoclinic and tetragonal phases can coexist in the
absence of the electric field E, which is confirmed by
the results of our calculations (Table 1). Moreover, the
interphase boundaries can be oriented along the zero
mean strain plane upon both the direct and reverse
phase transitions over a wide range of electric field
strengths E. Upon the field-induced transition to the tet-
ragonal phase, the formation a single-domain state (i.e.,
nt, opt  1) in the vicinity of E = 3.0 MV/m can also
affect the field dependences d33(E) and other electrome-
chanical characteristics of PT–PZN crystals.

3.3. Comparison with the available data for
Pb(Zr1 – xTix)O3 solid solutions. A comparison of the
results of calculations for the zero mean strain planes in
PT–PZN crystals (Table 1) with those obtained in our
previous work [13] for Pb(Zr1 – xTix)O3 solid solutions
indicates that the concentrations nt, opt (or ) for the
rhombohedral–tetragonal phase transition at E = 0 dif-
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Fig. 2. (1, 3) Calculated and (2, 4) experimental field depen-
dences of the piezoelectric coefficient d33(E) and the contri-
bution ∆d33(E) of the displacement of the interphase bound-
aries to the piezoelectric coefficient of the 0.08PbTiO3–
0.92Pb(Zn1/3Nb2/3)O3 crystal: (1) ∆d33, rm(E), (2) d33, D(E)
(upon induced rhombohedral–monoclinic phase transition),
(3) ∆d33, rr(E), and (4) d33, P(E) (in the rhombohedral
phase). The dependence ∆d33, rm(E) (curve 1) is calculated
from formula (5). The dependences d33, D(E) and d33, P(E)
(curves 2, 4) are constructed according to the data (taken
from [27] and [14]) on the strain ξ33(E) measured in an
increasing electric field. The dependence ∆d33, rr(E) (curve 3)
is calculated in terms of the model concepts [16] regarding
the displacement of (001) domain walls in the rhombohe-
dral phase in which individual domains are characterized by
the molar concentration xd ≠ 0.08 [25] due to composition
fluctuations and other factors.
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Table 2.  Relation between the optimum volume concentrations of domains (twins) and the mutual orientation of the sponta-
neous polarization vectors of domains in the coexisting phases

Condition
for optimum volume 

concentrations

Condition for angles formed
by the spontaneous polariza-

tion vectors of domains

Constraints imposed on 
the Miller indices of the 
zero mean strain plane

Range of applicability of conditions (6)–(9)

(6) α ≈ (PMc, a, ^ PMc, b) ha ( 1; hb ! 1 For conditions (6) and (7): 300 ≤ T ≤ 550 K, 
0.45 ≤ x ≤ 0.46 (according to numerical esti-
mates obtained in [13]), E = 0

(7) π/2 – α ≈ (PMc, a, ^ PMc, c) ha ( 1; hc ≈ 1/4

(8) α ≈ (PMc, d, ^ PMc, e) kd ( 1; he ! 1 For conditions (8) and (9):
T ≈ 300 K, 0.08 ≤ x ≤ 0.09, 0 ≤ E ≤ 1.0 MV/m(9) π/2 – α ≈ (PMc, d, ^ PMc, f ) kd ≈ hf ( 1/4

Note: The spontaneous polarization vectors of individual domains in the rhombohedral and tetragonal phases are specified, according to [7],
in the perovskite axes as PRh || [111] and PTg || [001], respectively. In the monoclinic phase of Pb(Zr1 – xTix)O3, the spontaneous
polarization vector PMc, i || [hihi1] (where 0 < hi < 1) rotates from [111] to [001]. In the monoclinic phase of PT–PZN, the rotation of the
spontaneous polarization vector is characterized by the following sequence of vector orientations: PMc, d || [1kd1]  PMc, g ||
[1kg1]  PMc, f || [hf 01]  PMc, e || [he01], where kd @ kg and hf @ he.
fer only slightly (by less than 10%). This can be
explained both in terms of the approximate equality of

the spontaneous strain ratios /  = (εa – 1)/(εc –
1) for the perovskite cells in the tetragonal phases of
PT–PZN crystals and Pb(Zr1 – xTix)O3 solid solutions in
the vicinity of the morphotropic boundary and by the

weak effect of shear spontaneous strains (  = µ) in
the unit cells of the rhombohedral phases on the internal
mechanical fields. The electric field E affects the unit
cell parameters am and cm of PT–PZN crystals [17] and,
hence, changes the anisotropy of the spontaneous

strains  = ηa – 1,  = ηb – 1, and  = ηc – 1.
Eventually, this results in noticeable changes in the
concentrations vm, opt and nt, opt or  and 
(Table 1). As regards the interphase boundaries, which
are the zero mean strain planes in Pb(Zr1 – xTix)O3 crys-
talline grains [13] and PT–PZN crystals, their orienta-
tions calculated according to the formulas taken from
[24] are close to those of the {0kl} planes in the perov-
skite cell. The specific features in the temperature, con-
centration [10, 12], and field [17] dependences of the
unit cell parameters and the domain structures of the
monoclinic phases [12, 13, 17] are governed by the dif-
ferent ratios of the Miller indices k/l.

The optimum volume concentrations of domains or
twins that correspond to the zero mean strain plane in
the vicinity of the triple points satisfy the conditions

(6)

(7)

for Pb(Zr1 – xTix)O3 crystalline grains and

(8)

(9)

ξ11 t,
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nt opt, Rh Tg–( ) v m opt, Rh Mc–( )v m opt,' Tg Mc–( ),≈

nt opt,' Rh Tg–( ) v m opt, Rh Mc–( )nt opt, Mc Tg–( )≈
PH
for PT–PZN crystals.1 Let us associate the optimum con-
centration nt, opt(Rh – Tg) with the angle α = (PRh, ^ PTg)
between the spontaneous polarization vectors of indi-
vidual domains in the rhombohedral and tetragonal
phases and place the right-hand sides of relationships
(6) and (8) in correspondence with the angles between
the spontaneous polarization vectors PMc, a , PMc, b , … of
domains in the monoclinic phase. As a result, we
observe a correlation between the optimum concentra-
tions and the mutual orientations of the aforementioned
vectors (Table 2). A similar correlation can be observed
in the case when the concentrations nt, opt(Rh – Tg) are
replaced by the concentrations (Rh – Tg) from
relationships (7) and (9) and the angle α is replaced by
π/2 – α. It should be noted that the equality of the
angles presented in Table 2 is achieved despite the dif-
ferent trajectories [111]  [001] described by the tips
of vectors PMc, a [7] in Pb(Zr1 – xTix)O3 and PT–PZN. In
this case, there is a certain correspondence between the
thermodynamic parameters T, x, and E and the Miller
indices ha , hb , …, hf , and kd: all the above quantities
vary in sufficiently narrow ranges. In general, the
revealed correlation considerably extends the notion of
the monoclinic phase as a bridge between the tetragonal
and rhombohedral phases [10]. However, this correla-
tion has defied comprehensive analysis, because exper-
imental data on the electrostriction coefficients and the
spontaneous polarization of the single-domain phases
in the studied solid solutions at different T, x, and E are
unavailable.

The largest (peak) piezoelectric coefficient d33, sup ≈
3000 pC/N was observed upon induced rhombohedral–

1 Relationships (6)–(9) are represented in the form A ≈ BC. The
two-phase states are given in parentheses (I – II), where I and II
are the coexisting single-domain and polydomain phases, respec-
tively. The optimum concentrations are calculated for a particular
type of domains or twins of phase II (see Table 1 and [13]). For
brevity, the coexisting phases are designated as follows: Mc is the
monoclinic phase, Rh is the rhombohedral phase, and Tg is the
tetragonal phase.

nt opt,'
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monoclinic phase transition in Pb(Zr0.53Ti0.47)O3 disor-
dered crystals [9]. This is approximately 15 times larger

than the experimental value of  obtained for fer-
ropiezoelectric ceramics [6] and is almost eight times
larger than the theoretical value of d33, PZT obtained for
a single-domain crystal of the same composition in the
absence of an electric field [29]. However, the piezo-
electric coefficient d33, sup is approximately four times
smaller than the maximum piezoelectric coefficient
d33, max for the PT–PZN crystal with x = 0.08 (Fig. 2,

curve 2). The differences in the moduli d33, sup, ,
and d33, PZT can be attributed to both the presence of the
monoclinic phase in the samples studied in [9] and the
effects associated with the motion of interphase and
domain (twin) boundaries in the electric field E || OX3.
It is quite possible that one of the reasons for the differ-
ence between the moduli d33, sup and d33, max lies in the

difference between the elastic compliances  of these
crystals in the vicinity of the morphotropic boundary. In

actual fact, the compliance  of the PT–PZN crystal
even in a weak field E [14] is approximately four times

larger than the compliance  estimated in [30] for the
Pb(Zr0.5Ti0.5)O3 single-domain crystal. The decrease in

 and other components of the elastic compliance
tensor suggests an increase in the rigidity of the crystal,
affects the displacement of interphase boundaries in the
electric field E [16], and leads to a decrease in the con-
tribution of these displacements to the piezoelectric
coefficients dij and other electromechanical constants.
Another reason for the difference in the piezoelectric
properties of the induced monoclinic phases lies in the
different ways of reorienting the spontaneous polariza-
tion vector PMc of domains in Pb(Zr1 – xTix)O3 and PT–
PZN solid solutions [7, 17] and manifests itself in dif-
ferent shapes of the curves d33(E) [9] and d33, D(E)
(Fig. 2, curve 2). At present, for lack of experimental
data on the monoclinic phases, it is difficult to establish
the main reason for the above differences. Experimen-
tal investigations of this problem and the problem con-
cerning the influence of different physical factors on the
electromechanical properties of PT–PZN and
Pb(Zr1 − xTix)O3 heterophase solid solutions are of spe-
cial interest.

4. CONCLUSIONS

Thus, the results obtained in the present work can be
summarized as follows.

(1) For PT–PZN crystals, the field dependences of
the unit cell parameters of the monoclinic phase prede-
termine the formation of rhombohedral–monoclinic
and monoclinic–tetragonal interphase boundaries ori-
ented along the zero mean strain plane over a wide
range of electric field strengths E. The domain struc-

d33 PZT,
*

d33 PZT,
*

s33
E

s33
E

s33
E

s33
E
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tures of the coexisting phases are characterized by the
optimum volume concentrations of domains or
mechanical twins of particular types, which provide
complete relaxation of internal mechanical stresses.

(2) The specific features observed earlier experi-
mentally in the behavior of the piezoelectric coefficient

d31(E), the elastic compliance (E), and the unit cell
parameter cm(E) of the monoclinic phase in the vicinity
of E = 1.5 MV/m are associated with the simplification
of the domain structure of PT–PZN crystals upon an
induced rhombohedral–monoclinic phase transition. In
this case, the displacements of the interphase bound-
aries in the electric field E || [001] can make a consid-
erable contribution ∆d33 to the piezoelectric coefficient
d33 of these crystals and the similarity of the calculated
dependence ∆d33, rm(E) and the experimental depen-
dence d33, D(E) is closely allied to the similarity of the
field dependences of the strain ξ33(E) and the unit cell
parameter cm(E) over a wide range of electric fields E.

(3) Although the domain structures in the mono-
clinic phases of PT–PZN and Pb(Zr1 – xTix)O3 solid
solutions differ in symmetry and the spontaneous polar-
ization vectors of the domains in these phases rotate in
different directions, both systems are characterized by
similar correlations between the optimum volume con-
centrations of different-type domains (twins) and the
mutual orientation of the spontaneous polarization vec-
tors of individual domains in the rhombohedral, tetrag-
onal, and monoclinic phases.
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Abstract—The effect of a magnetic field on the average photorefractive sensitivity of an undoped LiNbO3 crystal
is studied by phase-mismatched second-harmonic generation. The experimental data obtained show the photore-
fractive sensitivity to reverse sign as the external magnetic field exceeds B1 = –0.38 ± 0.04 T. The magnetic field is
oriented perpendicular to the crystal optical axis and to the plane of laser radiation polarization. The variation of the
photorefractive sensitivity is associated with paramagnetic iron centers, whose photoionization probability depends
on the direction of their magnetic moment relative to the optical axis. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The variation of the refractive index of a crystal
induced by laser radiation is associated with photovol-
taic currents, the photorefractive effect, thermal effects,
and other phenomena [1–5]. The photorefractive prop-
erties of crystals are used in holographic storage devices
and for solving wave conjugation problems. On the
other hand, the same properties place a constraint on the
application of crystals in nonlinear-optics devices,
whose operation requires stability of the optical param-
eters. The photorefractive parameters of crystals can be
controlled by doping them with specially chosen ions,
by properly varying the operating temperature, and by
the application of an external electric field. One more
possibility is based on varying the photorefractive prop-
erties in a magnetic field [6–10]. The main mechanism
underlying the influence of the magnetic field is associ-
ated with the Hall effect, which is connected closely
with the diffusion, drift, and photovoltaic currents.
Other mechanisms have also been proposed [9, 10].

The photorefractive properties of crystals are studied
primarily by the holographic and interference methods.
One can also employ nonlinear-optics techniques for this
purpose. Second harmonic generation (SHG) is most fre-
quently used; it has been applied to advantage in study-
ing optical homogeneity [11] and temperature-induced
phase mismatch in lithium niobate crystals [12]. This
communication reports on an experimental investigation
of the effect of a magnetic field on the SHG kinetics in
an undoped lithium niobate crystal (see also [10]).

2. EXPERIMENT

Assuming constant pumping, the SHG intensity in a
crystal can be written as [13]

(1)I2ω A Iω( )2 π L/λω( )∆n( )sin
∆n

----------------------------------------
 
 
 

2

,=
1063-7834/02/4407- $22.00 © 21363
where Iω and I2ω are the pump and SHG intensities,
respectively; A is a constant parameter determined by
the properties of the crystal; L is the crystal length; λω
is the pump radiation wavelength; ∆n = |nω – n2ω|; and
nω and n2ω are the refractive indices at the pump and
second harmonic (SH) frequencies, respectively. As is
evident from Eq. (1), if the geometry of wave interac-
tion (the propagation direction and polarization of the
radiation) remains unchanged, the SHG intensity I2ω
depends only on the difference between the refractive
indices ∆n.

Let us assume that, at the initial moment of genera-
tion, we have ∆n = ∆n0 and π(L/λω)∆n0 = (2m + 1)π/2
(here, m is an integer), which corresponds to a local
maximum in SHG intensity; then afterwards, ∆n =
∆n0 + δn. The photoinduced changes in the refractive
index will be due to several mechanisms: δn = δnpr +
δnpv + δntr + …, where δnpr are the changes associated
with the photorefractive effect, δnpv originates from the
photovoltaic currents, and δntr reflects the thermally
induced changes. Thus, the kinetics of the SHG inten-
sity I2ω is determined by the variation δn.

Let us introduce a parameter of SH conversion η =
I2ω/(Iω)2 and let η1 = η(∆n = ∆n0); then, for ∆n0 @ δn or
m @ 1, we obtain

(2)

The condition ∆n0 @ δn is satisfied in most cases,
except in the phase-matching region, where m = 0.
Hence, using phase-mismatched SHG in an experiment
will make relations (1) and (2) more accurate because
Iω @ I2ω. Furthermore, the crystal used in the experi-
ment is undoped lithium niobate whose region of max-
imum photorefractive sensitivity lies in the blue-green

η
η1
----- π L

λω
------ 

  δncos
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2

.=
002 MAIK “Nauka/Interperiodica”



 

1364

        

GRISHACHEV

    
spectral region and at shorter wavelengths. While the
SH falls into this region of maximum sensitivity, the
laser radiation does not. If the phase-matching condi-
tions are met, the SHG intensity reaches the level of the
order of the pump intensity, which gives rise to substan-
tial optical distortions and, in the cases of prolonged
illumination, may bring about crystal coloring accom-
panied by an appreciable drop in transmission and by
saturation of the I2ω(Iω) relation. To avoid such distor-
tions, we used phase-mismatched SH, whose intensity
cannot reach critical levels and for which Eqs. (1) and
(2) are valid under prolonged crystal illumination.

We note that δn in Eq. (2) is determined by the dif-
ference between the refractive indices at different
wavelengths. The change in the refractive index at one
wavelength can be isolated using a special experimen-
tal geometry. In crystals such as LiNbO3 [1, 2], refrac-
tive-index changes for the extraordinary ray (e) are sev-
eral times larger than those for the ordinary ray (o);
therefore, if collinear interaction ee  o or oo  e
is studied, the change in the refractive index of the ordi-
nary wave can be neglected.

The experimental investigation of the I2ω kinetics
was done in the optical arrangement used to measure
the SH conversion coefficient in the case where the
pump wave crossing the LiNbO3 crystal is transformed
through the ee  o interaction. The geometry of the
experiment is shown in Fig. 1. We made use of a YAG :
Nd3+ solid-state pulsed Q-switched laser operating at
the wavelength λω = 1.06 µm with the pulse length τp ≈
10 ns, average pulse energy W0 = 2 mJ, beam diameter
2R = 0.8 mm, and pulse repetition frequency f = 25 Hz.
One pump mode was isolated in the radiation. The SH
was discriminated with absorbing color filters and a
monochromator. The pump intensity was measured
with a photodiode; the SH intensity, with a gated PM
tube in each laser pulse. The lithium niobate crystal was

Eω

kω; k2ω

Y

C

X
B

Z

Eω

kω

0

LiNbO3

E2ω(ee→ο)

Θ

Fig. 1. Mutual orientation of the crystal under study
(LiNbO3) and external electric and magnetic fields. C is the
direction of the optical axis; Θ = 6°; Eω and E2ω are the
electric-field vectors for the laser beam and SH wave,
respectively; and B is the external magnetic-field induction
vector.
P

5.93 × 5.93 mm in cross section and L = 15.87 mm
long. The crystal was of high optical quality and was
employed for frequency conversion of the radiation of
this laser. The field of the electromagnet was perpendic-
ular to the polarization plane and to the crystal optical
axis, and its induction did not exceed 1.5 T.

3. RESULTS

The database of each measurement consisted of
300000–400000 values of the Iω(N) and I2ω(N) intensi-
ties and magnetic field induction B(N) in relative units
(here, N is the laser pulse number). This database was
used to calculate the conversion parameter η(N) and the
energy of the laser radiation transmitted through the

crystal W(N) = W0 (i)/ , where  = W0/τp

was determined in the experiment. The η(N) and W(N)
data were employed to construct the η(W) relation,
which was subsequently smoothed. The smoothed rela-
tion made it possible to find the maximum (ηmax) and
minimum (ηmin) values. After this, the final relation
(η/η1) = (η – ηmin)/(ηmax – ηmin) was derived. This
method of data processing results in the appearance of
negative experimental values for the quadratic η(W)/η1
dependence given by Eq. (2) and permits one to do
without two additional parameters in the fitting proce-
dure. The magnetic field was maintained constant dur-
ing the experiment. To reduce the effect of laser insta-
bility, the values of η(N) were averaged over 100 adja-
cent points. The results of the experiment are presented
in Fig. 2 for various magnetic field strengths.

The measurements were performed without thermo-
statting of the sample; the influence of thermal effects
(thermally induced variation of the refractive index,
thermal expansion of the crystal, etc.) was reduced by
preliminarily illuminating the sample by laser pulses
for 30–60 min. This time interval was excluded from
the subsequent consideration. This gives us grounds to
maintain that the crystal temperature remained constant
to within ±0.1°C during the measurements. The tem-
perature variations associated with random thermal
sources were excluded by smoothing the experimental
relation (the form of the functional relation was known,
which improved the accuracy of approximation). After
the experiment, the induced changes in the refractive
index persisted for a long time (a few days) and the
optical parameters of the crystal were recovered, albeit
incompletely, by illuminating the crystal with white
light from an incandescent lamp for several hours. This
permitted us to resume the experiments in one to two
days, but the crystal did not recover to the initial state;
therefore, the initial phase of the experimental relations
in Fig. 2 is not the same. After a series of experiments,
optical distortions formed in the transverse plane of the
sample, which were seen in daylight as a transparent
ring 2–3 cm in diameter around the beam.

Iωi 1=
N∑ Iω

0
Iω

0
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Fig. 2. Dependence of coefficient η normalized against its maximum value η1 on laser radiation energy W passed through the crystal

plotted for various values of the dc magnetic field B. Points are experiment, and the line is fitting by the {cos[π(W – Ws)/Wp]}2

function.
The experimental values of (η/η1) can be approxi-
mated by the relation {cos(π(W – Ws)/Wp)}2, where Ws

and Wp are fitting constants. By comparing the approxi-
mating function with Eq. (2), one can derive the average
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
photorefractive sensitivity of the crystal in the linear
approximation in the absorbed energy density [2, 3]:

(3)Sp
πR

2

αW p

-----------
λω

L
------ 

  .=
2
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Here, α is the absorption coefficient of the pump radia-
tion and (αWp/πR2) is the absorbed energy density
required to change the refractive index difference by
0.5δn0 = (λω/L). The quantity δn0 = 3.35 × 10–5 corre-
sponds to the change in η in a full period and can be
used to estimate photorefraction in the crystal for each
experiment. The data presented in Fig. 2 is used to cal-
culate the Sp(B) relation, which is normalized to the

average photorefractive sensitivity  with no mag-
netic field present (Fig. 3). Attempts at approximating
the Sp(B) relation by various functions show that the
best fit to the experiment is obtained with the function

(4)

where S =  = (3.8 ± 0.6) × 10–10 cm3 J–1,
B1 = 0.38 ± 0.04 T, and B0 = 0.16 ± 0.02 T are the fitting

parameters. The value  = 0.19 character-
izes the magnetic contribution to Sp(B). The average

photorefractive sensitivity  of the crystal with no
external magnetic field applied is of the order of 2 ×
10−9 cm3 J–1; this value fits the measurements of the

Sp
0

Sp B( ) S
B1

B0
----- 

 sinh
B
B0
----- 

 sinh+
 
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0
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Fig. 3. Dependence of photorefractive sensitivity Sp nor-

malized against photorefractive sensitivity  in a zero

magnetic field on a dc magnetic field B. Points are experi-
ment, and the line is fitting by the {  +

} function.
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P

holographic sensitivity in the visible spectral region
and the data on photorefraction obtained by interfer-
ence and holographic methods in undoped lithium nio-
bate covered in review papers [1–3]. Reversing the sign
of the magnetic field entails reversal of the sign of the
average photorefractive sensitivity; as a result, at B =
−B1, the optical distortions present with no magnetic
field applied become cancelled. We note that the mag-
netic field induction B = –B1 at which the photorefrac-
tion is compensated was calculated from other experi-
mental data and confirmed in subsequent experiments
(Fig. 4).

4. DISCUSSION OF RESULTS

The experimental relations (Figs. 2, 4) reveal ran-
dom oscillations of the conversion parameter about the
values given by Eq. (2). This behavior can be assigned
to the random heat sources which surround the sample
and are likewise of a random nature. In addition to such
random events, one observes regular variations corre-
sponding to the reverse course of the parameter kinetics
(Fig. 2, B = 0.47 T) or variations repeating after the
same pulse numbers (Fig. 2, B = 0 and –0.62 T). Such
a behavior can be related to photoinduced scattering of
the coherent laser radiation from optical inhomogene-
ities in the crystal, including thermal ones [3].

The crystal under study has a low dark conductivity;
therefore, the effect of magnetic field on the photovol-
taic current, diffusion, and drift of carriers may be
neglected. This finds explanation in the ratios of the
characteristic times corresponding to the experiment
and to the crystal properties; namely, τp ! ( f )–1 ! t !
τM, where τp = 10–8 s is the laser pulse duration, ( f )–1 =
0.04 s is the pulse spacing, t = 1.6 × 104 s is the duration
of the experiment, and τM = 1010 s is the dielectric relax-
ation time. The short laser pulse duration results in a
short total illumination time τpt f = 4 × 10–3 s; under
these conditions, the photoconductivity plays a signifi-
cant role. Hence, when describing the effect of a mag-
netic field on optical distortions, the photoconductivity
can be neglected. The intrinsic conductivity does not
affect the processes occurring during an experiment
(t ! τM). In earlier studies [6–9], the effect of a mag-
netic field on the photorefractive sensitivity was inves-
tigated by holographic techniques in heavily doped
crystals, which possess a high photorefractive sensitiv-
ity in the spectral region of interest. As a result, the
main contributions to the formation of the holographic
grating are made by the photovoltaic effect and the
associated transport phenomena. In our experiment, the
currents are low; therefore, the effect of a magnetic
field is assigned to the magnetic-field-induced change
in the asymmetry of the impurity ion photoionization
rather than to the Hall effect. However, the contribution
to the total variation in the refractive index from the
effects associated with charge transfer is long lasting.
This manifests itself in the formation, after a series of
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 4. SHG kinetics in an external magnetic field with induction B = –0.38 T cancelling the intrinsic photorefraction. Points are
experiment, and the line is fitting by a linear function.
experiments, of transparent rings of optical inhomoge-
neity, which persists for a long time. The main contri-
bution is due to the mechanism of local ion charge
exchange first considered in [14].

The photorefractive properties of lithium niobate
are determined by impurities, which are present even in
a pure crystal. The paramagnetic ions revealed by EPR
in an undoped crystal [15] are primarily Fe2+ (~3 ×
1016 cm–3), as well as Mn2+, Cr3+, and Ti3+ (<1015 cm–3).
The photoinduced variation of the refractive index in
lithium niobate is assigned to charge exchange of the
photorefractive centers Fe2+  Fe3+ + e–. The charge
system thus formed acts on the optical properties of the
crystal through the electrooptical effect. The Fe2+ pho-
toionization energies are typically Eg = 3.1–3.2 eV [1,
2], and the magnetic moments are µ(Fe2+) = 5.4µB and
µ(Fe3+) = 5.9µB [16], where µB is the Bohr magneton.
The laser photon energy at the fundamental frequency
is "ω = 1.165 eV. The Eg/"ω ratio coincides in order of
magnitude with the experimental ratio B1/B0 which
determines the influence of atomic characteristics on
the asymmetry of the photoionization process.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
Photorefractive properties are related to asymmetry
in the photoionization process, whose probability
depends on the relative orientation of the laser radiation
polarization, optical crystal anisotropy, and external dc
fields [3]. In steady-state conditions, the probability of
this process depends on the direction of the photoelec-
tron momentum and can be written in the form Ψ(θ) =
Ψ0{1 + f(ϑ)}, where Ψ0 is the symmetric part of the
photoionization probability and f(ϑ) is a function of
direction of the photoelectron momentum relative to
the optical axis ϑ  characterizing the asymmetry of the
process. For optically uniaxial crystals, this function
should meet the following requirements: | f(ϑ)| ! 1 and
f(0) = –f(π). If the process is one-dimensional, it will
suffice to introduce two photoionization probabilities,
more specifically, along (Ψ+) and counter to the optical
axis (Ψ–), which are defined by the equations

(5)

where ξA is the asymmetry parameter which character-
izes the asymmetry in the photoionization probability
and is defined as the ratio of the nonsymmetric to sym-
metric part of the probability. The photorefractive sen-

Ψ± Ψ0 1 ξ A±{ } ,=
2
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sitivity is proportional to the asymmetry parameter,
Sp(B) ~ ξA. Recalling the approximation (4) of the
experimental relation Sp(B), we obtain

(6)

where  is the asymmetry parameter with no mag-
netic field applied.

The magnetic field B1 corresponds to the effective
local internal field responsible for the asymmetry in the
iron ion potential. This follows from the shape of the
magnetic-field dependence of photorefractive sensitiv-
ity, Eq. (4), because Sp(B = –B1) = 0. The energy corre-
sponding to field B1 is µ(Fe2+)B1 = 1.2 × 10–4 eV and
characterizes the asymmetry of the ion potential in the
local crystal lattice field. This energy is much smaller in
magnitude than the thermal vibration energy at room
temperature kT = 2.6 × 10–2 eV, which becomes mani-
fest in the independence of the processes involved and
in the additivity of the photoionization probabilities.

The B1 field is of an electrical origin, but it acts as an
effective magnetic field in the presence of an external
magnetic field. An external magnetic field can change
the condition of ionization of the photorefractive cen-
ters. This field gives rise to an elastic orientational dis-
tortion of electronic shells without an attendant elec-
tric-charge displacement, which induces an additional
asymmetry of the potential. When properly oriented, an
external magnetic field cancels the potential asymmetry
caused by the internal field.

The experiment reveals an apparent contradiction in
the measured data and the experimental geometry hav-
ing different symmetries. For instance, the experimen-
tal dependence of photorefractive sensitivity on mag-
netic field given by Eq. (4) includes only an odd func-
tion, which is the hyperbolic sine, while the
experimental geometry has a mirror symmetry with
respect to the plane in which the optical axis and the
pump wave vector lie (Fig. 1). This contradiction finds
ready explanation in the fact that the magnetophotore-
fractive effect depends not only on the orientation of the
iron ion magnetic moment relative to the optical axis
but also on the orientation of the laser beam polariza-
tion plane and wave vector with respect to the optical
axis and magnetic moment, which appears only natural.
In the absence of an external magnetic field, the photo-
refractive sensitivity is nonzero; hence, there is an
asymmetry in secondary photoionization of the impu-
rity ions which depends on both the orientation of the
optical axis and the directions of the photon momentum
and polarization. An external magnetic field introduces
an additional asymmetry into the already asymmetric
process of photoionization, which is due to the mag-
netic moments being oriented primarily along the exter-
nal magnetic field. Thus, the symmetry of the photoion-
ization process is determined by the directions of four

ξ A B( ) ξ A
0
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sinh+
 
 
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,=
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PH
vectors, more specifically, those of the optical axis,
external magnetic field, and laser radiation wave vector
and polarization.

It should be pointed out that the results of a study of
the magnetophotorefractive effect performed in the
same conditions and on the same sample as in this work
can be found in [10]. The only difference is in the crys-
tal orientation relative to the external magnetic field and
the pump radiation polarization. The optical axis and
the magnetic-induction vector were perpendicular to
the pump polarization plane (the case of phase-matched
SHG, oo  e). The magnetic field amplified the pho-
torefractive effect. The study was carried out only for
one value of the field because of the inherent complex-
ity of interpretation of the results obtained. In the case
of the oo  e interaction, the SH intensity is compa-
rable with that of the pump radiation and the two inten-
sities vary along the length of the crystal; therefore, in
this study, the crystal was rotated through 90° about the
laser beam axis. As a result, the SH intensity decreased
to a level barely discernible to the eye, which permitted
us to neglect its influence and assume the pump radia-
tion to be constant over the crystal length.

Thus, the technique of measuring photorefractive
parameters proposed here is based on the kinetics of the
phase-mismatched SHG intensity and permits one to
determine photorefractive sensitivity in high-quality
crystals. To improve the sensitivity of the technique,
crystals of large length are needed. Crystals with a high
photorefractive sensitivity may be much shorter. The
main requirement for the crystals to be studied is that
they be of high quality and homogeneity.

The experimental results presented in this commu-
nication reveal that a magnetic field noticeably affects
the photorefractive processes of undoped lithium nio-
bate. This effect is assigned to the enhancement of
asymmetry in the photoionization of the magnetic
impurity, namely, of the iron ions present in small
amounts in the crystal. The magnetic-field-induced
changes in photorefractive sensitivity in crystals with a
high content of magnetic impurities (Fe2+) can reach
quite high levels, which suggests the possibility of con-
trolling hologram recording parameters and stabiliza-
tion through proper variation of the magnetic field. This
effect can also be used to stabilize the operation of non-
linear-optics devices, in which the effect of photore-
fractive parameters places a constraint on the applica-
tion of such crystals.
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Abstract—The behavior of the energy bands and the band gap width of a compressed insulator crystal is stud-
ied. The conduction band energy at the center of a face of the Brillouin zone first increases and then abruptly
decreases upon an increase in compression, resulting in a collapse of the forbidden gap and in an insulator–
metal (IM) transition. A model proposed for the mechanism of this transition interprets it to be a phase transition
of order two and a half. The compression ratio and pressure at which an IM transition occurs in neon under
pressure are predicted on the basis of nonempirical calculations of the valence and conduction bands. A simpli-
fied model suitable for calculating the metallization effect in more complex crystals is proposed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In the past 15–20 years, considerable progress has
been made in studying the properties of crystals sub-
jected to ultrahigh pressures. This is due to the fact that
the experimental investigations of substances under
high pressures were carried out on setups containing
diamond-anvil cells (DAC) [1]. In this way, pressures
of the order of megabars can be attained without a loss
in the precision of measurements.

For a number of substances, a sequence of structural
phase transitions and the nature of magnetic transfor-
mations have been established and electronic-structure
transformations of the insulator–metal type (metalliza-
tion) have been detected. Investigations have been car-
ried out on a wide class of materials including ionic
crystals, oxides, silicate glasses, metals, and (in recent
years) crystalline structures formed by rare-gas atoms.
Of special interest are studies of metallization in com-
pressed rare-gas crystals (RGC), since these crystals
are pressure-transmitting media in experimental setups
and remain transparent in the optical range under
megabar pressures. The change in the type of chemical
bonds in the pressure range p < 0.1 Mbar was thor-
oughly traced for the first time for cesium [2].

The progress made in DAC technology necessitated
considerable correction to the values of metallization
pressure. For example, the metallization pressure in Xe
varied from 0.33 Mbar [3] to 1.32 Mbar [4] and
1.5 Mbar [5]. Simultaneous calculations of the band
structure predicted the metallization pressure for Xe to
be in a wide range from 0.82 to 2.0 Mbar [4]. As a rule,
the authors themselves indicated the reason for this dis-
crepancy (the muffin-tin approximation to the APW
potential, local exchange, basis, etc.). Similar calcula-
tions for Ne predict the metallization pressure to be in
1063-7834/02/4407- $22.00 © 21370
the interval from 10 to 1300–1500 Mbar [6–8]. The
two-orders-of-magnitude difference cannot be attrib-
uted to the approximations used; this difference rather
indicates the inapplicability of the methods used. Such
approaches are based on a statistical approximation
(similar to the Thomas–Fermi approximation) for the
exchange-correlation potential, which is well substanti-
ated only for crystals with a large number of electrons
in the atom. In recent years, substances containing ele-
ments with a small atomic number Z were classed into
a special class of low-Z materials. These include solid
neon, hydrogen, helium, their solid solutions, etc. [1].
Low-Z materials are employed in investigations in the
high-pressure range, since they possess a high com-
pressibility (ensuring a large change in atomic spacing)
and a simple electronic structure.

What is the phase-transition mechanism? At what
points does the energy band gap vanish? What are the
degrees of compression and pressures at which the
insulator–metal (IM) transition occurs? These ques-
tions must be answered in principle in the course of the-
oretical investigations. For this purpose, exact band cal-
culations appropriate for high degrees of static com-
pression are required.

This imposes the following requirements on the
computational methods used in analyzing the band
structure and the equation of state [9] (and, ultimately,
the metallization effect): these methods (1) must be free
of fitting parameters, (2) must not involve approxima-
tions to the crystal field potential which are difficult to
control upon varying pressure, (3) must use basis func-
tions suitable for any degree of compression up to the
metallization pressure, and (4) should not assume that
the overlap integrals of localized basis orbitals are
small.
002 MAIK “Nauka/Interperiodica”
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It is expedient to use as a basic approach the Har-
tree–Fock method, which is clearly formulated, suffi-
ciently accurate, and is not so complicated as to prevent
its realization on modern computers.

Band calculations are usually made for T ≠ 0 disre-
garding the electron–phonon interaction. Anharmonic
effects (at T ≠ 0) and electron–phonon interaction are
generally beyond the framework of the adiabatic
approximation and are due to nonadiabatic interactions
between quasiparticles. In this paper, we will not con-
sider the many-particle effects in the band structure.

We will discuss the results of analysis of the band
structure of neon under pressure. The theory for calcu-
lating conduction and valence bands is presented in
[10–12] and [13], respectively. Here, we will study the
applicability of the Hartree–Fock method modified by
us in [12] and the method of hole bands modified in
[14] for high pressures. In the framework of the one-
electron theory, metallization can be interpreted as an
electron topological transition [15].

The present work aims at finding answers to the fol-
lowing three important questions. (1) What is the role
of the second- and higher order corrections in overlap
integrals to the energy bands? (2) Is it necessary to
exactly calculate the energy of filled bands in order to
find the crystal potential? (3) What is the microscopic
mechanism of the IM transition in terms of the band
structure?

We analyzed the behavior of the energy bands and
the forbidden gap using different models, including
those that are simple in comparison to the comprehen-
sive cluster approach [10, 16]. Using simplified mod-
els is dictated by the exact cluster calculations being
cumbersome. This article contains the following. In
Section 2, the results of calculations of the band struc-
ture of solid neon are presented. The behavior of the
band gaps upon an increase in compression is consid-
ered in Section 3. The mechanism leading to metalliza-
tion is proposed in Section 4. The obtained results are
discussed in Section 5.

2. THE BAND STRUCTURE

In the Hartree–Fock method, the exact (one-parti-
cle) Hamiltonian of the crystal is used. This is espe-
cially important for calculating the band structure
under pressure, since a model for the crystal potential
that is valid for normal pressure may become inapplica-
ble under high pressures. The only approximation made
in the Hartree–Fock method is the choice of a trial func-
tion in the form of one or several determinants con-
structed from one-electron functions. For a crystal
composed of atoms with filled electron shells, we can
confine our analysis to the one-determinant approxima-
tion without any loss of generality [17]. In analogy with
the Hartree–Fock method, hole bands are defined as the
energy difference of systems of 2L – 1 and 2L electrons.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
The theory of band structure used by us here is
described in detail in [10–13]. We will write only the
equations and expressions for the potentials of hole
bands and conduction bands. The nonlinear set of the
Hartree–Fock equations has the form

(1)

where εs is the energy of an electron of an isolated
atom, Ekν is the band energy to be determined, csν(k)
are variational parameters, and

(2)

is the one-particle crystal potential, in which

(3)

Here,  is the overlap integral for orbitals s and s' of
atoms l and n; the second term in Eq. (3) is the potential
in the LCAO method taking into account the exchange
of electrons from different atoms. Corrections ∆V (1)

and ∆V (2) depend on the overlapping of orbitals through
the matrix

(4)

where I is the unit matrix and S is the matrix of overlap

integrals with elements . The crystal potential of the
cluster-expansion hole band (CEHB) method1 contains
the same terms as does the potential given by Eq. (3) in
the Hartree–Fock method, except the last term ∆V (2).

The conduction band (or the excess electron energy)
is calculated using the equation

(5)

where g' is a reciprocal-lattice vector and ag'(k) is a
parameter to be found. The crystal potential in the
OPW method has the form

(6)

(7)

1 The methods for calculating conduction bands (OPW) and hole
bands using the cluster expansion [17] are denoted as CEOPW
[10] and CEHB [13].
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where VC is the form factor of the Coulomb interaction
potential between an excess electron and the remaining
electrons of the crystal, m* is the mass of a band elec-
tron, Ω0 is the unit-cell volume, ρ is the Fourier compo-
nent of the electron density in the crystal,

(8)

Vex is the form factor of the exchange interaction poten-
tial, VPK is the form factor of the Phillips–Kleinman
potential given by

(9)

and Is(q) and 5ts(q) are the Fourier transforms of the
atomic orbitals ϕls = |ls〉  and of the elements of matrix
5, respectively:

The Phillips–Kleinman potential in the CEOPW
method given by Eq. (9) contains the coefficients of
wave functions csv(k) and energies Ekv of the filled
bands of the crystal. In the standard OPW method, csv =
δsv , Ekv = εs (εs is the energy of an isolated atom), and
5 = 0 (S = 0); i.e., only the first term is retained. Solv-
ing the secular equations for systems with a one-elec-
tron potential in the approximation of two-particle,
three-particle, etc. clusters [17], we can obtain the band
energy of an electron (CEOPW [10]) and a hole (CEHB
[13]) with the accuracy required in each method.

Figure 1 shows the filled bands (with negative
energy) and the conduction band (positive energy) of
neon in symmetric directions of the Brillouin zone (BZ)
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P

for different degrees of compression (from zero to a
compression close to metallization).

The analysis was carried out on the basis of several
models using different sets of control parameters (over-
lap integrals S): (1) the standard LCAO (for filled
bands) and OPW (for conduction bands) methods with-
out orthogonalization of atomic functions (S = 0)
(model 1); (2) the CEHB [13] and CEOPW methods
with orthogonalization of atomic functions to the first
order in S (model 2); and (3) the CEHB and CEOPW
methods with orthogonalization of atomic functions in
two-particle cluster (TPC) approximation [10], which
implies a partial summation of the entire series in S
(model 3).

In all three models, the wave functions and energies
involved in the Phillips–Kleinman potential were cal-
culated using the corresponding modification of the
CEHB method (models 1–3) or were taken to be equal
to their atomic analogs (models 1a–3a).

The band structure of an uncompressed crystal is
that typical of an insulator (Fig. 1a). The lowest two
filled (nondegenerate) bands are mainly formed by the
1s and 2s electronic states and, for k = 0, have the sym-
metry of the s states of an isolated atom (Fig. 1 shows
the 2s band). Under a compression u = ∆V/V0 ≤ 0.9, the
1s band virtually does not differ in energy from the 1s
energy level of the neon atom (–891.18 eV). The upper
filled band originates mainly from the 2p levels.

The forbidden gap (which is referred to as the fun-
damental gap at point Γ, k = 0) separates the filled
bands from the conduction bands: a 3s-like lower band
(having a single branch) and a 3p-like band (having two
branches, one of which is doubly degenerate and the
other is nondegenerate). For low degrees of compres-
sion, the lowest conduction band is almost parabolic in
shape with m* = 0.82me (me is the electron mass). The
conduction bands exhibit strong dispersion even in the
uncompressed crystal and overlap considerably on the
energy scale.

The experimental value of the fundamental gap
Eg(Γ) in neon under atmospheric pressure is 21.4 eV
[18], while the value calculated in model 3 is 25.32 eV.
The difference is due to the application of the one-elec-
tron approximation, which leads to exaggerated values
of the forbidden gap. In [19], the energy of the crystal
polarization caused by a hole was estimated to be E =
0.75 eV in calculating the band structure of uncom-
pressed neon; taking into account this polarization, we
have Eg(Γ) = 24.57 eV.

In Figs. 1b and 1c, the symbols indicate the calcu-
lated conduction bands at symmetry points of the Bril-
louin zone in models 1a–3a in which the electron ener-
gies in an isolated atom are used in the Phillips–Klein-
man potential. The largest spread in energies obtained
in different models is observed at point X. For all
degrees of compression, the following regularity can be
seen: the orthogonalization to the first order in S
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 1. Band structure of neon for the compression ratio ∆V/V0 equal to (a) 0, (b) 0.7, and (c) 0.77. Solid curves correspond to ener-
gies calculated in model 3. Dark symbols correspond to the conduction band energy in models 1a (squares), 2a (triangles), and 3a
(circles). Light symbols correspond to the valence band energy in models 1 (squares), 2 (triangles), and 3 (circles).
decreases E( ) by 25% as compared to its value given
by the standard OPW method for u = 0.7 and by 130%
for u = 0.77. However, the inclusion of cluster expan-

sion increases E( ).

Let us analyze the effect of the energies of filled
bands on the conduction bands in the OPW method.
The substitution of the energies of filled bands into the
Phillips–Kleinman potential (in model 3) decreases

E( ) by more than 50% for u = 0.77 (as compared to
the result obtained in model 3a). In contrast to model 3,
the employment of the Bloch functions and energies of
the filled bands in the Phillips–Kleinman potential in
models 1 and 2 increases the energies of the conduction
bands (as compared to the results obtained in models 1a
and 2a).

It can be seen from Fig. 1 that a difference in the
computational models is manifested for large compres-
sions (in the vicinity of the metallization point of the
crystal). This allows us to investigate the role of the
pointlike-core approximation and of the cluster expan-
sion in the formation of the band structure, as well as
the effect of the energies of filled bands on the behavior
of the conduction bands under pressure. According to

X4'

X4'

X4'
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the results of calculations, the contribution of the clus-
ter expansion is the largest among the above-mentioned
effects.

Figure 2 shows the results of calculations of the
lower conduction bands of neon at all symmetry points
and symmetry directions of the Brillouin zone. These
bands are calculated using the cluster expansion (taking
into account all orders in S) in model 3a. It can be seen
from Fig. 2 that the forbidden-gap collapse can occur
only at points L and X (the centers of BZ faces), at
which the energy decreases upon an increase in com-
pression. At the remaining points (Γ, K, W, U), the
energy (and, hence, the band gap) increases with com-
pression. These results confirm the estimates obtained
earlier [19].

3. THE BEHAVIOR OF BAND GAPS 
IN THE VICINITY OF METALLIZATION

Since the insulator–metal (IM) transition is inter-
preted as the collapse of the forbidden gap, we will ana-
lyze in detail the behavior of the relevant bands and the
variation of the gap between the valence bands and
empty bands.
2
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Ev (Γ15) (CEHB method) and Ec(Γ1) (the results obtained in all models coincide to within the graphic error), and the dotted curve
corresponds to the largest overlap integral Sσ (see the right-hand scale).

Sσ
Figure 3 shows the energies of upper valence bands
Ev (Γ) at point Γ and of the lower conduction band Ec at
points Γ, X, and L (the energies of the conduction band
are calculated in different models, see Section 2). The
energies Ev (Γ) and Ec(Γ) increase with the compres-
sion ratio u = ∆V/V0, while the energies Ec(X) and Ec(L)
decrease abruptly, starting from u ~ 0.6 in models 2 and
3 (but not in model 1). It can be seen from Fig. 3 that
P

there is no IM transition at all in model 1, while the
metallization compression ratio um (corresponding to
the IM transition) in model 3 is minimum; this model
apparently describes the metallization effect most cor-
rectly. The same conclusion is confirmed even more
visually in Fig. 4. As before, the smallest value of um is
obtained in model 3. The compression ratio corre-
sponding to the IM transition in model 3 is um = 0.78 ±
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 4. Band gaps of neon between points L, X, and Γ of the Brillouin zone as functions of the compression ratio. Solid curves cor-
respond to indirect gaps Ec(L) – Ev (Γ15) in models 1–3 and 3a; dashed curves correspond to Ec(X) – Ev (Γ15) in models 1–3; and
the dot-and-dash curve corresponds to the direct gap Ec(Γ1) – Ev (Γ15) in model 3. Vertical lines correspond to theoretical metalli-
zation compression ratios u1 [19], u2 [6], and u3 [8].
0.01, which is very close to the estimate obtained in
[19]: um = 0.77 ± 0.02 (denoted by u1 in Fig. 4). Other
calculations of the metallization compression (u2 [6], u3
[8]) give higher values for this quantity. The metalliza-
tion compression ratio um for neon calculated by us in
different models falls in the interval 0.80 ± 0.03. This
rules out the contingency in determining the metalliza-
tion point and confirms the reliability and accuracy of
our results.

Thus, the metallization compression can be calcu-
lated quite accurately in the band theory (the spread in
the values of this quantity amounts to 1–3%). However,
in view of the fast (almost exponential) increase in
pressure with the compression ratio, the determination
of the pressure p becomes complicated. This hampers
the determination of the equation of state of a crystal
for high pressures [9].

A typical feature is a sharp decrease in the energy of
lower conduction bands upon an increase in compres-
sion (see Figs. 3, 4). The reason for this energy decrease
for an excess electron is the repulsion of the lower
branches of the conduction band (branches Λ1, ∆1; see
Figs. 1b, 1c). As a result, the energy of these branches
at points L and X decreases abruptly, while the energy
at the remaining symmetry points of the Brillouin zone
(Γ, W, K, U) increases with the compression ratio as
before. The steep ascent of the upper valence band to
point Γ (see Fig. 3) also facilitates the collapse of the
indirect gap E(L, X) – E(Γ). The descent of the conduc-
tion bands at points L and X does not depend on the
model used for band calculations, but the value of the
metallization compression is sensitive to the choice of
the model. For example, in the model taking into
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
account only Sσ ≠ 0 to the first order, the IM transition
occurs at point X (and not at L), while for S ≡ 0, metal-
lization is absent altogether (see Figs. 3, 4).

4. THE MECHANISM OF THE INSULATOR–
METAL TRANSITION IN NEON

The structure of the form factor of the potential in
the secular equation in the first order in the overlap inte-
gral S and in the exact cluster theory (cf. the potentials
in [10] and [19]) leads to the conclusion that the role of
the terms containing the overlap matrix 5 in the exact
theory increases as the wave vector k approaches the
BZ boundary. The strong difference between the results
of calculations in the vicinity of the BZ boundary with
S ≡ 0 and to the first order in S does not necessitate the
inclusion of higher order terms in S (matrices 5 and P
differ from S insignificantly). This difference is due to
the mixing of two lower conduction bands and the form
factor V, which increases significantly with pressure
(Fig. 5). This effect is manifested most strongly at the
BZ boundary. Let us illustrate this statement using an
fcc lattice as an example.

The calculated Ekc dispersion curves show that a dis-
tinguishing feature in the behavior of energy bands
under strong compression is the emergence of a mini-
mum in the symmetric directions at points L and X of
the BZ boundary for an fcc lattice. As the compression
ratio ∆V/V0 increases, the Ekc curves ascend at different
rates. The lower conduction band at the BZ boundary
relatively decreases, and a part of this band (near points
L and X) ultimately overlaps on the energy scale with a
part of the valence band near point Γ, indicating the
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onset of an insulator–metal transition. Such a situation
may emerge under two different circumstances. First,
the lowest and the next-to-lowest conduction bands
may be separated by a gap and a minimum at point L (or
X) emerges in the lowest band irrespective of the behav-
ior of the next band. Second, the lowest two conduction
bands have the same symmetry and ascend at different
rates under compression; the lower band “catches up”
with the next band, and the minimum of the lower band
is a part of the next band, which ascends more slowly.

Let us consider the second possibility in greater
detail. We will show (using a simple two-band model)
that this situation is of general nature and can be real-
ized not only for neon (in the fcc phase) but in all cases
where there are energy bands moving at different veloc-
ities.

Calculations show [2] that repulsion of bands takes
place in compressed metallic cesium. In this case, band
repulsion occurs at points X and L of the Brillouin zone
of a bcc lattice and also leads to a phase transition of
order two and a half. In contrast to neon, however, this
transition is not an insulator–metal transition [15].

For the sake of definiteness, we consider point L. The
set of equations for conduction bands under pressure
(see, for example, [20]) can be reduced to a set of two
equations; i.e., we can effectively take into account only

two waves, one with g = 0 and one with g = (111). The

reduced excess potential due to compression that mixes
these bands can be written as

(10)

π
2
---

V V u( ) V 0( ).–=

1

2
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Fig. 5. Dependence of the form factor of potentials on the
compression ratio u = ∆V/V0: VL = V(k + (–1, –1, –1); k) for
k = (0.5, 0.5, 0.5) (curve 1) and VX = V(k + (–2, 0, 0); k) for
k = (1, 0, 0) (curve 2).
P

Then, the set of equations has the form (in atomic
units)

(11)

Solving the secular equation of this set, we find that,
in the case of large compressions V ≥ Es (Es is the gap
between the first and second conduction bands), the
lowest conduction band in the vicinity of metallization
has the energy

(12)

where E0 is the effective energy of the lowest conduc-
tion band at point L and x = |k – kL |is the wave number
along the [111] direction. The coefficients a and b can
be easily determined (a is always positive).

Expression (12) leads to the following two conclu-
sions: (1) in the vicinity of the metallization point, we
have b ≈ a(p0 – p), where p0 is a certain pressure of the
order of the pressure corresponding to the IM transi-
tion, and (2) the free term E0 – V in Eq. (12) is a func-
tion of pressure p (or compression), which decreases
upon an increase in pressure (since potential V
increases, see Fig. 5) and can become negative. The
function Ec(x) of Eq. (12) describes the evolution of the
lowest conduction band upon an increase in p from a
curve with a single peak at point L (for small p < p0) to
a curve with two peaks positioned in direction Λ at

points kM = kL ±  and a minimum at point L. The
phase-transition mechanism is not associated with the
inclusion of S and is universal in nature, although the
inclusion of S considerably affects the magnitude of
compression (or pressure) corresponding to metalliza-
tion.

We note that, in this model, the density of states in
the conduction band at point L has a singularity |p0 –
p |1/4 [21] which differs from the van Hove singularity
|p0 – p |1/2. This circumstance can serve as an experi-
mental confirmation of a certain model of the conduc-
tion bands.

5. DISCUSSION

Let us consider quantitative manifestations of the
inclusion of the Abarenkov–Antonova cluster expan-
sion (CE) for the orthogonalizing matrix for com-
pressed neon. First, we will analyze the effect of the CE
on the localized basis functions.

In the two-particle cluster approximation [17], the
orthogonalized atomic orbitals χls are constructed from

1
2
---k2

E– 
  ak Vak g++ 0,=

V*ak 1/2 k g+( )2
E–( )ak g++ 0.=

Ec1 E0 V– ax
4

– bx
2
,+=

b/2a
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nonorthogonal atomic orbitals ϕls:

(13)

where 5 = I – (I + S)–1/2, l and l' are the vectors of the
direct lattice, and index s labels the orbitals of an iso-
lated atom. Orthogonalization that takes into account
the CE [first row in Eq. (13)] differs from orthogonal-
ization to the first order in S [the term proportional to S
in the second row in Eq. (13)] by (a) the substitution 5

in the off-diagonal block of matrix 5ll'  S ll' (i.e.,

for l ≠ l') and (b) the presence of diagonal blocks 5ll ~
S2 + O(S4), which are disregarded in orthogonalization
to the first order in S.

In the case of neon, the contribution from the cluster
expansion to the elements of the off-diagonal block 5ll'

is small (1–2% for u = 0–0.8). This is due to the small-
ness of the overlap integrals for neon as compared to
other RGCs [12]. The relation between the diagonal
and off-diagonal blocks is approximately the same (the

values of  constitute 25–30% of  for u ~ 0.7–
0.8) for all RGCs. In some cases (e.g., while calculating
the exciton states), the excited states of electrons in the
atom must be included in the basis. In this case, the
overlap integrals are large even for neon (S3s2p =
−0.0503, S3s3s = 0.527) for u = 0 [22] and the necessity
of the cluster expansion becomes obvious.

Although the value of 5ll is an order of magnitude
smaller than 5ll' for small compressions (u < 0.5), the
diagonal block constitutes approximately 25% of the
off-diagonal block even for u ~ 0.75. Furthermore, the
larger quantities 5l'l in Eq. (13) are multiplied by small
“tails” of the functions centered at neighbor sites, while
the smaller quantities 5ll are multiplied by the function
ϕls centered at the same site. For this reason, both
blocks make comparable contributions to function χ.
This effect also occurs in the density matrix of a solid.

Let us estimate the effect of the CE on the conduc-
tion band. In this case, dispersion curves depend on the
CE through the elements of matrix 5ss'(k) appearing in
the crystal potential in Eq. (6). These curves are dis-
placed relative to those obtained in the lowest order
approximation in S by a quantity which is independent
of the wave vector k and increases with compression.
This quantity is given by

(14)

χ ls ϕ ls ϕ l's'5 ll'[ ] s's
l'l

s'
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,
h

∑≈=
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where h is a vector of the direct lattice. However, in the
equations of the OPW method, 5ss' is multiplied by
functions of the wave vector; therefore, the CE contri-
bution to the band energies depends on the point of the
Brillouin zone. The largest contribution comes from the
cluster expansion at points X and L of the Brillouin
zone for compressions higher than u ~ 0.7 (Fig. 1).

The refining of Eq. (5) of the OPW method with the
help of orthogonalization of atomic orbitals and cluster
expansion (CEOPW method) reveals the problem asso-
ciated with the linear dependence of the OPW basis
functions, leading to the emergence of parasitic roots.
The measure of the linear dependence of the OPW basis
functions is the magnitude of Gram’s determinant,
which is the determinant of the matrix constructed from
the overlap integrals for different OPWs [23]. The
application of the cluster expansion reduces the value
of Gram’s determinant by one or two orders of magni-
tude for u = 0.7–0.8 (in the vicinity of the metallization
point), facilitating the emergence of parasitic roots.
This can be avoided by using rougher models (e.g., with
S = 0), but these models do not guarantee correct values
of the metallization compression. Consequently, know-
ing the features of parasitic roots [24], one must sepa-
rate them from solutions having a physical meaning.

The inclusion of the cluster expansion in calcula-
tions of only conduction bands leads to an increase in
the band energies and band gaps. The inclusion of the
CE in the calculations of filled bands leads to a decrease
in the band gaps. In addition, the substitution of the
filled-band energies calculated with the CE in the Phil-
lips–Kleinman potential (model 3) reduces the conduc-
tion band energies, this effect being the strongest at the
center of a BZ face (Fig. 1). The balance of the above-
mentioned three tendencies gives the metallization
compression u = 0.78 ± 0.01 in model 3.

Let us consider possible simplified models suitable
for calculation of the properties of complex crystals,
namely, models with the following simplifications:
(1) orthogonalization of wave functions to the first
order in S and (2) substitution of the energy of electrons
of isolated atoms for the electron energies in filled
bands in the Phillips–Kleinman potential.

The dependence on the variable atomic spacing
through the overlap integrals is present explicitly in
matrices 5 and P and implicitly in the variational
parameters cα and in the hole band energy Ek, which are
calculated separately for each value of pressure. The
table illustrates the effect of varying S on the band
energy at the center of the BZ (point Γ) and at its
boundaries (points X, L, K, W). For the compression
ratio ∆V/V0 = 0.6, a change in Sσ by a few percent intro-
duces a change in energy of the same order of magni-
tude at high-symmetry points X and L on the BZ bound-
ary and an order-of-magnitude smaller energy change
at the BZ center and at less symmetric points K and W.
For ∆V/V0 = 0.75, the change in energy amounts to tens
of percent (40% at point X and 68% at point L), remain-
2
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ing insignificant at points Γ, K, W, and U. The last five
rows of the table show that as we approach the metalli-
zation point, the values of the derivatives dE/dS
decrease, remaining negative at points X and L.

The increase in the role of wave function overlap-
ping at the BZ boundary casts a shadow of doubt over
the confinement of the theory to the lowest order in S.
However, considering that the structure of the form fac-
tor of the potential as a function of overlapping is com-
pletely the same in the lowest order in S and in the exact
cluster theory (cf. the potentials in [19] and in [10–12]),
we have no grounds to complicate the theory by intro-
ducing higher order terms in S for describing the insu-
lator–metal transition in neon and more complicated
crystals. As in the simplified model in [19], the calcula-
tions based on a more exact model 3a confirmed that
the energy bands at points Γ, K, W, and U are not
affected by a change in the overlap integrals. As regards
the replacement of the energies of valence bands in the
Phillips–Kleinman potential by atomic levels, calcula-
tions (based on models with letter “a” and without it in
their labels) show that the magnitude of the metalliza-
tion compression changes insignificantly.

6. CONCLUSIONS

Thus, the calculations show unambiguously that the
metallization compression ratio is not sensitive to the
details of the model used; however, the pressure corre-
sponding to the insulator–metal transition is extremely
sensitive to the model used even for neon in view of the

Effect of variation of Sσ on energy bands at symmetry points
of the Brillouin zone for different compression ratios

∆V/V0 0.6 0.7 0.75

|Sσ| 0.043 0.064 0.079

|∆Sσ| 0.002 0.003 0.004

ζ 4.6 4.7 5

ηΓ 0.20 0.26 0.29

ηX 4.12 11.90 39.54

ηL 4.69 18.29 67.93

ηK 0.44 2.38 4.42

ηW 0.59 0.98 1.19

dEΓ/dS 0.35 0.467 0.55

dEX/dS –10.55 –16.45 –7.425

dEL/dS –10.30 –11.13 –7.45

dEK/dS 1.60 –7.17 –9.58

dEW/dS 2.20 3.13 –3.25

Note: EZ is the conduction band energy at point Z, ηZ =

 × 100%, and ζ =  × 100%.

Energy values are in electronvolts, η and ζ in percent, and
Sσ are dimensionless.

EZ S ∆S+( ) EZ S( )–

EZ S( )
----------------------------------------------------

∆Sσ
Sσ

----------
P

exponential form of the equation of state and can
amount to 3 to 10 Mbar for neon according to our cal-
culations [9].

The calculations based on a more exact model, 3a,
for symmetry directions in the Brillouin zone allow one
to draw a further conclusion. These calculations indi-
cate the upper boundary for the metallization compres-
sion in the Hartree–Fock method used by us. The met-
allization compression ratio um = ∆V/V0 = 0.83 obtained
in this model still differs significantly from the metalli-
zation compression ratio um > 0.94 [7, 8].

In [7, 8], the band structure and metallization of Ne
under pressure were investigated. In [7], the Kohn–
Sham equations with the exchange-correlation correc-
tion for a homogeneous electron gas and with a correc-
tion for the electron self-action were solved. The 1s
electrons of atoms were included in the rigid core. The
potential created by these electrons was taken into
account in the muffin-tin (MT) approximation. The
energies and wave functions of 1s electrons were
assumed to be equal to their atomic counterparts. The
direct gap (19.5 eV) calculated in [7] for normal pres-
sure turned out to be close to the experimental value
21.4 eV [18]. However, the metallization pressure was
found to be anomalously high ( pm = 1580 Mbar, um =
∆V/V0 = 0.98). Hama [7] explained such a high metalli-
zation pressure (a) as a consequence of the MT approx-
imation used, (b) the inadequacy of the rigid-core
approximation, and (c) the possible structural pressure-
induced phase transitions disregarded in [7].

The first two explanations were refuted by Boettger
[8], who did not use the MT approximation and did not
divide electrons into core electrons and valence elec-
trons. Boettger employed the Kohn–Gaspar–Sham
local-density approximation to the exchange potential
and the method of linear combination of Gaussian-type
orbitals developed by him earlier. The obtained value of
metallization pressure pm = 1340 Mbar was not
regarded as anomalous for Ne in [8] and was explained
(a) by the collapse of more distant energy bands as
regards the principal quantum numbers (each band was
assumed to be formed by a single electron shell of the
atom) and (b) by strong repulsion between 1s electrons
upon a decrease in the distance between the atoms,
which makes the Ne crystal rigid.

A common feature of publications [7] and [8] is the
application of a local-density approximation for the
exchange potential, which cannot be controlled under
high pressures. In our opinion, the anomalously high
values of pm obtained in [7, 8] and the closeness of the
results of calculations in those papers are associated
precisely with this circumstance.

Our calculations based on a nonlocal exchange
potential do not lead to an anomalously high value of
metallization pressure for neon but do match the result
that was obtained in [6] (10 Mbar) and corresponds to
the Herzfeld criterion [25] predicting um ~ 0.8 for the
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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entire series of RGCs; this was confirmed experimen-
tally for Xe. Consequently, methods based on the statis-
tical approximation may be inapplicable to crystals
with a small atomic number Z (low-Z materials),
including light cryocrystals.
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Abstract—The valence state of copper ions and the phase composition of copper monoxide CuO subjected to
bombardment by He+ ions and explosive shock waves are studied by the methods of x-ray photoelectron spec-
troscopy (XPS) and x-ray emission spectroscopy (XES). Measurements of photoelectron Cu 2p and emission
O Kα spectra revealed a decrease in the concentration of Cu2+ ions and partial reduction of CuO to Cu2O as a
result of both ion bombardment and shock-wave loading. The concentration of the Cu2O phase attained values
of 10–15%. The Cu2O phase is revealed by the XPS and XES methods even at concentrations lower than its
threshold concentration for detection by x-ray diffraction measurements. This points to the effectiveness of XPS
and XES techniques in studying nanocrystalline materials and defect structures containing finely dispersed
inclusions. A model for the emergence of Cu2O due to the formation of charged clusters under the action of
stress waves is proposed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-intensity external effects, such as bombard-
ment by high-energy ions, the action of shock waves,
and considerable plastic strains, may change the charge
(valence) states of ions in compounds of transition met-
als and cause phase transformations associated with
such changes. Complex compounds may experience a
deviation from the local stoichiometric composition,
decomposition, and segregation of impurities. These
effects are responsible for changes in the physical and
chemical properties of the initial compound and the for-
mation of new phases. Information on such processes is
important for creating new materials, as well as for
explaining the behavior of a material under extreme
conditions.

Under the action of external agents, oxides can
experience partial reduction or oxidation accompanied
by a change in the valence of the cation. Copper mon-
oxide CuO can serve as an example of such a system.
This compound has become an object of intense inves-
tigations in connection with high-temperature super-
conductivity, since CuO forms the chemical basis of
HTSC cuprates and possesses properties similar to
those of the semiconductor phases of HTSC com-
pounds [1]. In addition, CuO is of interest for practical
application as a photosensitive material, a catalyst, and
1063-7834/02/4407- $22.00 © 21380
a gas sensor [2–4]. The effect of ion bombardment on
the properties and phase composition of CuO has been
investigated by a few authors [5–7]. There are practi-
cally no publications devoted to the effect of shock
waves on the electron structure and properties of CuO.
For this reason, study of the effects of ion bombardment
and shock-wave loading of CuO is of considerable
interest.

Analysis of systems subjected to intense external
effects is complicated by a lack of clarity as to the type
of transformation involved, as well as by a small
amount or high dispersity of newly formed phases. The
application of standard methods of x-ray phase analysis
(XPA) based on x-ray diffraction measurements is
hampered in view of diffraction line broadening due to
finely dispersed inclusions and high lattice stresses.
Effective methods for studying such complicated defect
systems are x-ray photoelectron spectroscopy (XPS)
and x-ray emission spectroscopy (XES). These meth-
ods make it possible to determine the charge (valence)
state of ions and the type of variation of the chemical
bonds and to detect new phases [8]. In the present work,
the XPS and XES methods were used for studying
changes in the valence state of Cu ions and phase trans-
formations in copper monoxide (CuO) irradiated by
helium ions or subjected to the action of spherical isen-
tropic shock waves [9–11].
002 MAIK “Nauka/Interperiodica”
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Copper monoxide is a comparatively stable oxide
with a decomposition temperature exceeding 1000°C
under atmospheric pressure. It was proved by us earlier
[5–7] that CuO is reduced to Cu2O as a result of bom-
bardment by high-energy ions or electrons, as well as
under intense plastic strains (pressure-induced shear).
According to x-ray diffraction measurements, new
phases are formed in CuO for fluences F ≥ 3 × 1017 cm–2

of He+ ions (E = 4.65 MeV). However, changes in the
electrical and optical properties, as well as in the lattice
parameters, are observed for lower fluences (~1017 cm–2).
In the present work, we concentrate our attention on
CuO samples subjected to bombardment with ions and
to shock-wave loading in which the formation of new
phases cannot be detected by the standard x-ray diffrac-
tion methods.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

Polycrystalline samples of CuO were obtained from
CuO powder of 99.8% purity by annealing in air at
1220 K for 50 h. The sample of Cu0.99Li0.01O used was
prepared using the method of solid-phase reactions,
carried out at 970 K for 24 h (using an appropriate mix-
ture of CuO and Li2CuO3) followed by annealing at
1220 K. The CuO single crystal was grown from a solu-
tion in melt. According to x-ray diffraction measure-
ments, the obtained samples had a single phase, a mon-
oclinic lattice, and unit-cell parameters typical of CuO:
a = 0.4689 nm, b = 0.3423 nm, c = 0.5128 nm, and β =
99.58°. The parameters of the Cu0.99Li0.01O sample
were a = 0.4686 nm, b = 0.3416 nm, c = 0.5124 nm, and
β = 99.60°.

Bombardment by He+ ions was carried out on a
U-120 cyclotron at the Ural State Technical University.
The energy of He+ ions was 4.65 MeV, the beam flux
density was 1.2 × 1012 cm–2 s–1, the fluence F was varied
from 1017 to 3 × 1017 cm–2, and the temperature at which
the bombardment was carried out did not exceed 370 K.
In the case of a single-crystal sample, the natural face
(110) was exposed to radiation. The thickness of the
irradiated samples was 1–2 mm.

The loading of CuO by converging spherical isen-
tropic shock waves was carried out at the All-Russia
Research Institute of Technical Physics, Russian Fed-
eral Nuclear Center, by detonation of a hexogen-con-
taining explosive layer with an RDX-based composi-
tion, having a thickness h = 8 mm, placed on the surface
of a hermetic steel casing containing a CuO sphere of
diameter 49 mm with an initial density constituting
~70% of the theoretical value. The spherical billet
(prior to its explosive compression) was prepared by
static compression of CuO powder followed by fritting
[10, 11]. During explosive loading, the pressure on the
outer surface of the CuO sphere was ~20 GPa for a load
pulse duration of 1.5 µs. The pressure at the front of a
converging spherical shock wave in the central part (of
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
radius ≤1 mm) of the sphere exceeded 200 GPa. The
experimental setup for explosive loading by converging
spherical shock waves is described in [9, 10]; the results
of investigation of a material subjected to bulk com-
pression are presented in [10, 11].

Samples for spectral investigations were cut from
different spherical layers of a loaded sphere character-
ized by the relative radius r/r* (r is the radius of the
layer under investigation, and r* is the radius of the
CuO sphere after loading). As a converging spherical
shock wave propagates to the center of a sphere, the
radial and tangential components of stresses at the front
of the converging shock wave increase considerably.
The temperature and the plastic strain also increase.
These factors can lead to decomposition of the material
under investigation, stimulate redox reactions for cer-
tain values of the layer radius, and facilitate the forma-
tion of new phases [12, 13]. It was shown in [14] that a
nanocrystalline microstructure with a crystallite size of
10–100 nm formed in spherical layers with r/r* > 0.5 as
a result of explosive loading of CuO carried out accord-
ing to [9, 10]. In deeper layers, the crystallites had a
larger size due to the annealing being performed at an
elevated temperature after loading. The crystallite size
was estimated using scanning tunneling microscopy.
The obtaining of nanocrystalline CuO (by using load-
ing with spherical isentropic shock waves) and its
microscopic structure are considered in greater detail in
[14].

The x-ray Cu 2p photoelectron spectra were
obtained on a Perkin Elmer PHI 5600 ci Multitechnique
System x-ray photoelectron spectrometer with excita-
tion by monochromatized Al Kα radiation (energy of
exciting photons of 1486.6 eV). The samples (single
crystals or pressed pellets) were crushed in a high vac-
uum (preparation chamber) before recording. The frac-
ture of samples in vacuum ensured a clean surface free
of external impurities that were not present in the pre-
pared sample. The resolution of the spectrometer was
0.3–0.4 eV.

The x-ray O Kα emission spectra were obtained by
the primary technique on a JCXA-733 x-ray microana-
lyzer. The instrumental broadening was ~0.5 eV.

3. RESULTS AND DISCUSSION

3.1. X-ray Diffraction Measurements

The x-ray diffraction measurements of the irradiated
samples indicate a certain broadening of diffraction
lines. A slight increase in parameter b is observed for
polycrystals. The Cu2O phase could not be seen on the
diffraction patterns of irradiated samples for F < 3 ×
1017 cm–2. The nanocrystalline samples obtained from
explosive loading display a considerable broadening of
diffraction lines and a certain change in the lattice
parameters [14]. No new phases were observed on the
diffraction patterns of shock-wave loaded samples for
0.6 < r/r* ≤ 1.
2
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3.2. X-ray Cu 2p Photoelectron Spectra

X-ray photoelectron spectroscopy is a powerful tool
for investigating the state of oxidation of metal atoms.
The valence state of ions determines the binding energy
of electrons in inner shells and the form of the spec-
trum.

Figure 1 shows the x-ray Cu 2p photoelectron spec-
tra of a CuO single crystal and a Cu0.99Li0.01O polycrys-
tal bombarded by He ions (F = 1 × 1017 cm–2), as well
as of a CuO sample subjected to the action of spherical
isentropic shock waves (r/r* = 0.75). The spectra of
standard CuO and Cu2O samples are also shown for
comparison. In addition, the spectrum of standard CuO
in the form of solid lines is superimposed, for the sake
of visualization, on the spectra of all samples subjected
to the shock-wave action or irradiation. The Cu 2p pho-
toelectron spectrum of a Cu0.99Li0.01O sample before
irradiation coincided with the spectrum of undoped
CuO. The photoelectron spectra of irradiated samples
were recorded from the fracture surface perpendicular
P

to the irradiated surface. We did not strive to trace the
variation of the spectrum over the depth of the sample,
since the measuring-beam diameter (~0.1 mm) was
much larger than the projective mean free path of He+

ion, amounting to 10.4 µm according to estimates
obtained using the “Transport of Ions in Matter”
(TRIM) program. The choice of position of the beam
on the fracture surface was determined by the condi-
tions of the most intense signal and the minimum dis-
tance from the irradiated surface.

The Cu2O spectrum has a spin-doublet form; i.e., it
contains Cu 2p3/2 and Cu 2p1/2 lines with a binding
energy of 932.5 and 952.3 eV, respectively. The CuO
spectrum is characterized by peaks at higher values of
binding energy (M1 and M2 peaks) and satellites S1 and
S2. According to the concept of charge transfer from
oxygen ions to a metal [15], the fundamental lines M1

and M2 are due to electron configurations 2p53d10L of
the final state of the electron system, while the satellite
structure S1 and S2 is associated with the multiplet
970
Binding energy, eV

In
te

ns
ity

, a
rb

. u
ni

ts

960 950 940 930

S2
M2 S1

CuO

1

2

Cu2O

3

M1

Fig. 1. X-ray Cu 2p photoelectron spectra of (1) a CuO single crystal, (2) a Cu0.99Li0.01O polycrystal irradiated with He+ ions, and
(3) a CuO sample subjected to the action of spherical isentropic shock waves. The solid curve shows the spectrum of the initial sam-
ple. The spectra of standard samples of monocrystalline CuO and polycrystalline Cu2O are also shown.
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nature of electron states in the Cu2+ ion and corresponds
to the 2p53d9 configuration. Here, L denotes a hole in
the 2p shell of oxygen ions appearing as a result of
charge transfer to the 3d shell of copper ions.

After the effect of shock waves or bombardment by
He ions, the spectra experience certain changes; the
intensity of the satellite structure decreases, and peaks
M1 and M2 are slightly displaced towards lower ener-
gies. The decrease in the intensity of the satellites in
samples subjected to external effects indicates a
decrease in the concentration of Cu2+ ions as compared
to the initial state; i.e., it indicates a reduction process.
It can be seen from Fig. 1 that the decrease in the inten-
sity of the satellites is observed in all samples subjected
to irradiation or the action of shock waves, indicating a
partial reduction of the samples. After the bombard-
ment by ions, reduction is observed both for single
crystals and for polycrystals. It should be noted that
doping with Li does not hamper the reduction process,
in spite of the fact that this doping formally leads to the
formation of Cu3+.

If the Cu2O phase is formed as a result of external
action on CuO, the x-ray Cu 2p photoelectron spectrum
of an irradiated sample or of a sample subjected to
explosive loading can be represented as the sum of the
spectra of the initial components (CuO and Cu2O). The
normalization of the spectra can be carried out assum-
ing that the satellites of the charge-transfer transition
have the same intensity, i.e., by normalizing to the
amount of the CuO phase. In this case, the difference
spectrum must reflect the Cu2O phase. In Fig. 2a, such
a procedure is carried out for a CuO sample irradiated
by He+ (spectrum 1 in Fig. 1), while Fig. 2b shows the
spectrum of a CuO sample subjected to the action of
shock waves (spectrum 3 in Fig. 1). The difference
spectrum coincides with the spectrum of Cu2O in the
position of the peak. Hence, it follows that we have
indeed singled out the contributions from monovalent
copper ions in the Cu2O phase and that the changes in
the Cu 2p photoelectron spectra of the samples after the
external action are mainly associated with the forma-
tion of Cu2O. The contribution from monovalent cop-
per is estimated from the relative intensity of the nor-
malized spectra of CuO subjected to external effects
and of the standard CuO sample. The concentration of
monovalent copper for the irradiated sample amounts
to ~6%. In the case of the shock-wave loaded sample
(r/r* = 0.75), the concentration of Cu+ ions is approxi-
mately 7% of the total amount of copper.

3.3. X-ray O Kα Emission Spectra

Measurements of x-ray emission oxygen Kα spectra
of CuO subjected to intense external effects confirm
and supplement the results of photoelectron investiga-
tions. The O Kα emission spectra emerge as a result of
the electron transition O 2p  O 1s and reflect the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
distribution of the O 2p partial states of oxygen in the
valence band. These spectra are different for CuO and
Cu2O oxides [8]. It can be seen from Fig. 3 that the O
Kα spectrum of the bivalent-copper oxide CuO has a
more intense peak A at 526 eV as compared to peak B
at 524.5 eV. Partial reduction of CuO, i.e., the transition
from CuO to Cu2O, reduces the relative intensity of
peak A. This makes it possible to use the O Kα spectra
to identify the oxides of monovalent and bivalent
copper.

Indeed, for CuO samples irradiated by He+ ions with
a fluence of 3 × 1017 cm–2, for which the Cu2O phase
can be clearly seen on the diffraction patterns, the O Kα
spectra exhibit a considerable suppression of peak A
and an increase in the height of peak B (Fig. 3). An
approximation of such a spectrum under the assump-
tion that CuO and Cu2O spectra make additive contri-
butions leads to an estimate of the concentration of the
Cu2O phase at approximately 20%. The method of
detection of the Cu2O phase through the measurement
of O Kα spectra is found to be more sensitive than the
measurement of x-ray diffraction patterns. This can be
seen for CuO bombarded by electrons with an energy at
5 MeV and a fluence of 3 × 1018 cm–2 (Fig. 3). Diffrac-
tion measurements do not reveal the presence of the
Cu2O phase in this sample. However, the O Kα spectra
show that the sample contains approximately 3% Cu2O.

The measurements of x-ray emission O Kα spectra
were also used in studying phase transformations in
CuO subjected to loading by spherical isentropic shock
waves. Figure 4 shows the emission O Kα spectra for
five CuO samples cut from spherical layers of a com-
pressed sphere lying at different depths (having differ-
ent relative radii). Samples 1–5 correspond to the rela-
tive radii r/r* = 0.5, 0.6, 0.7, 0.9, and 0.95, respectively.
It can be seen from Fig. 4 that with decreasing sample
number, i.e., with decreasing distance from the center
of the sphere, peak A decreases and peak B increases,
indicating an increase in the amount of Cu2O. The
description of the experimental spectra by the additive
sum of the spectra for CuO and Cu2O makes it possible
to estimate the concentration of the Cu2O phase. In the
extreme outer sample 5, the Cu2O phase was not
detected. As we approach the center of the sphere, the
Cu2O concentration increases and amounts to 7, 9, 12,
and 17% for samples 4, 3, 2, and 1, respectively. For
these samples, thorough x-ray diffraction measure-
ments were made in order to reveal a second phase. The
measurements were made on a STADY-P diffractome-
ter in the transmission mode with a large statistics of
counts. Cu2O traces were revealed only for samples 1
and 2. The diffraction patterns for the remaining sam-
ples contained only the lines of the monoclinic CuO lat-
tice with slightly increased parameters [14]. Thus, the
phase analysis of the nanocrystalline system Cu–O car-
ried out on the basis of the x-ray O Kα emission spectra
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Fig. 2. (a) X-ray Cu 2p3/2 photoelectron spectra of a CuO sample irradiated by He+ ions and of a standard CuO sample and the
“difference” spectrum compared with the Cu 2p3/2 spectrum of Cu2O. The intensities of the first two spectra are leveled out accord-
ing to the satellite structure. (b) The same for a CuO sample subjected to the action of shock waves.
proves to be more effective than the x-ray diffraction
methods.

The results presented in Fig. 4 were obtained three
months after the explosive loading of the sphere and
opening of the hermetic casing. Approximately
1.5 years later, measurements of the O Kα spectra were
repeated. After 1.5-year holding, the spectra of all the
samples were found to be virtually the same as the
spectrum of pure CuO. This means that the finely dis-
persed phase of Cu2O embedded into the nanocrystal-
line phase of CuO is not stable under conventional
holding conditions. The return to the CuO composition
(oxidation of Cu2O) occurs not only on the surface but
also in the bulk of the sample. This follows from the O
Kα spectra obtained from the fracture of the samples.
The instability of nanocrystalline powders, which are
nonequilibrium systems with a high reactivity, is well
P

known [16]. In the present case, this effect is apparently
also associated with the metastable nature of nanocrys-
talline material even if the sample is in the compacted
high-density state as in our experiments. It should be
noted that a certain amount of excess oxygen could be
diluted in the CuO lattice after the shock-wave loading
and decomposition of some part of CuO in deeply lying
layers of the sphere. The possibility of obtaining a solid
solution of oxygen in CuO under an elevated pressure
is reported in [17].

It was mentioned above that the changes in the Cu
2p photoelectron spectra of CuO may be associated
with a decrease in the Cu2+ concentration, changes in
the chemical bond, and the formation of new phases
containing copper ions with a different valence. In our
opinion, a possible reason for a distortion of photoelec-
tron spectra could be the formation of clusters and com-
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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Fig. 3. X-ray O Kα emission spectra of CuO samples bombarded with (1) electrons and (2) ions. Experimental spectra are shown
by light circles, and calculated spectra are shown by solid curves. Dark circles correspond to the spectra of the standard CuO and
Cu2O samples.
plexes containing copper ions with an intermediate
valence. The possibility of the formation of such clus-
ters in CuO was demonstrated in [1]. According to that
publication, random factors or external effects (includ-
ing irradiation by charged particles and plastic defor-
mations) lead to the formation of electron (CuO4)7– and
hole (CuO4)5– clusters in CuO. The existence of such
clusters was established experimentally [1, 5] from the
emergence of absorption bands in the IR spectra of
CuO. Such bands were also observed by us in CuO sub-
jected to shock-wave loading. The electron and hole
clusters have an extra electron or hole as compared to
the unperturbed cluster (CuO4)6–, which determines the
electron structure of CuO and is a structural element of
CuO and HTSC cuprates. The excess charge is smeared
over the entire cluster. In the case of an electronic clus-
ter, the effective valence of the cation decreases. If the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
concentration of electronic clusters is high enough,
they can serve as the centers of formation of the
reduced phase Cu2O. Thus, the emergence of electronic
clusters, which are electronic defects, and the subse-
quent formation of the reduced phase on their basis can
serve as the microscopic mechanism of formation of
Cu2 in CuO upon irradiation by charged particles or
loading by shock waves and under intense static plastic
deformations.

In addition to the reduction of CuO to Cu2O under
high-intensity external effects, the formation of solid
solutions and intermediate phases, such as Cu4O3, is
also possible. This compound is known to be a very rare
mineral (paramelaconite) that cannot be synthesized in
pure form [18]. The existence of Cu4O3 and a number
of other copper oxides was substantiated by the thermo-
dynamic analysis carried out in [19]. An analysis of the
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Fig. 4. X-ray O Kα emission spectra of CuO samples subjected to the action of shock waves for r/r* equal to (1) 0.5, (2) 0.6, (3) 0.7,
(4) 0.9, and (5) 0.95. Experimental spectra are shown by circles, and calculated spectra are shown by solid curves.
emission spectra of CuO subjected to the action of
shock waves revealed that the O Kα spectrum for one of
the samples could not be described by the additive sum
of the spectra of Cu2O and CuO; however, that spec-
trum turned out to be unstable and, after some time,
reverted to a form similar to the spectra of other sam-
ples in Fig. 4. It cannot be ruled out that immediately
after cutting of the compressed sphere, this sample con-
tained a certain amount of unstable Cu4O3.

A comparison of the results of investigations for
CuO samples irradiated by charged particles and sub-
jected to shock-wave loading shows that the reduction
process takes place in both cases. The reduction in this
case is not a conventional temperature-controlled pro-
cess, since in both cases the temperature is not high.
Under the conditions of shock-wave loading, this state-
ment is true for the outer layers of the sphere with
r/r* > 0.5 [10, 11]. During the bombardment with ions,
the substrate with samples was cooled with water and
the temperature was monitored by a thermocouple. The
cause of phase transformations in this case could be
P

stress waves leading to “loosening” of the crystal lat-
tice, the emergence of charged defects, and the dis-
placement of oxygen atoms (which are more mobile in
CuO [20]). Stress waves are noticeably intensified near
the center of the sphere upon its loading by converging
spherical shock waves. Similar waves are also formed
at the end of collision cascades in the case of bombard-
ment with ions [21]. Direct experiments on the reduc-
tion of CuO at room temperature by shear under pres-
sure confirm our assumption [5, 6]. The microscopic
mechanism of the redox processes generated by stress
waves in the Cu–O system may be associated with the
formation of electron and hole clusters.

4. CONCLUSIONS

Thus, we have demonstrated the effectiveness of the
methods of x-ray photoelectron and x-ray emission
spectroscopy in the study of the charge state of cations
and phase transformations in CuO as a result of intense
external effects such as irradiation with high-energy
ions and explosive shock-wave loading. The applica-
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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tion of XPS and XES opens new opportunities in the
study of nanocrystalline materials and defect structures
containing finely dispersed inclusions for which the
application of classic x-ray diffraction methods is
insufficient. The XPS and XES methods mutually con-
trol and supplement each other, ensuring quantitative
estimates of the concentration of copper ions of various
valences and the concentration of various phases in the
Cu–O system.

We have demonstrated the possibility of the reduc-
tion processes in CuO proceeding as a result of ion
bombardment and shock-wave loading for much lower
fluences and amplitudes of pressure (plastic strains) in
the shock wave front than those at which new phases
can be detected using the standard XPA methods. The
main factor acting on these processes is the high-inten-
sity stress waves. The common microscopic mecha-
nism of the reduction of CuO as a result of irradiation
with ions and shock-wave loading may be the forma-
tion of electronic clusters with a formally lowered
valence of the cation, which serve as nuclei for the for-
mation of reduced phases.

It is found that the Cu2O phase formed in nanocrys-
talline CuO after shock-wave loading is unstable. At the
same time, finely dispersed inclusions of Cu2O emerg-
ing in CuO single crystals and polycrystals after their
bombardment with ions remain relatively stable for
several years.

It should be noted that the developed methods of
analysis of the Cu–O system with the help of x-ray pho-
toelectron and x-ray emission spectroscopy are applica-
ble not only to copper oxides but also to compounds of
other transition metals.
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Abstract—This paper reports on the results of investigations into the phase composition of HgI2 microcrystals
formed in the bulk and on the surface of different nanocrystalline matrices: pressed, finely dispersed (with a
specific surface of more than 210 m2/g) aluminum oxide powders; porous borosilicate glasses with pore radii
ranging from 2 to 20 nm; and Al2O3–HgI2 and SiO2–HgI2 nanocrystalline composites. The results of spectro-
scopic analysis (diffuse reflection, absorption, and luminescence spectroscopy) are complemented by the data
of atomic-force microscopy (AFM) and x-ray diffraction. The experimental results indicate that nonequilibrium
modifications, namely, the high-temperature yellow phase and the orange phase metastable in bulk crystals at
all temperatures, can be stabilized in HgI2 nanoparticles at room temperature. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

In recent years, considerable interest has been
expressed by researchers in manifestations of quantum-
well effects in optical spectra of semiconductors [1]. A
large amount of experimental data has been accumu-
lated to date. However, these data should be analyzed
with due regard for the fact that a decrease in the size of
particles can be accompanied by a change in their crys-
tal structure. In particular, this is indicated by the ten-
dency of small-sized particles to crystallize in the cubic
modification for CdS and CdSe [2] and in the hexago-
nal modification for CuBr [3]. Earlier [4], we demon-
strated the possibility of stabilizing nonequilibrium
phases in HgI2 and PbI2 nanocrystals. In the present
work, we continued these investigations and examined
the growth kinetics of HgI2 crystal nuclei on the surface
of nanocrystalline matrices. Moreover, we analyzed the
possibility of forming metastable modifications of
small-sized HgI2 crystals. According to Bube [5], HgI2
crystals can occur in the red tetragonal α modification,
which is stable at temperatures below 134°C, and in the
high-temperature yellow orthorhombic β modification.
It is also known that HgI2 crystals can exist in the
orange modification, which is metastable over the
entire temperature range covered (15–134°C) [6].

2. SAMPLE PREPARATION

The experiments were performed with the following
samples.
1063-7834/02/4407- $22.00 © 21388
(1) Composites xHgI2–(1 – x)Al2O3 were prepared
by mechanical mixing of chemically pure HgI2 with a
finely dispersed Al2O3 powder (with a specific surface
of more than 210 m2/g) under standard conditions. This
powder was predominantly composed of nanoparticles.
Pores between nanoparticles could serve as a matrix for
mercuric iodide whose mole fraction x varied from 1 to
0.05. Silicon dioxide was also used as a nanocrystalline
adsorbent. Since the adsorbent surface readily absorbed
water, powders of Al2O3 and SiO2 prior to mixing were
heat treated for a few hours at T = 200°C in order to
remove water from the pores. A number of prepared
mixtures were also heat treated at T = 100°C.

(2) Composites xHgI2–(1 – x)Al2O3 and xHgI2–(1 –
x)SiO2 were prepared by the mixing of components
preliminarily dried under vacuum.

(3) Microcrystals of HgI2 were formed in the bulk
and on the surface of different matrices: (i) pellets of
nanocrystalline Al2O3 were pressed under a pressure of
0.2–0.7 MPa and filled with mercuric iodide through
diffusion in the course of direct contact between the
pellets and HgI2, and (ii) porous borosilicate glasses
with pore radii ranging from 2 to 20 nm either were
filled with mercuric iodide through diffusion or were
saturated using a HgI2 solution in acetone [4].

The formation of HgI2 crystal nuclei on the surface
was investigated as mercuric iodide escaped from the
bulk of the HgI2-filled matrices.
002 MAIK “Nauka/Interperiodica”
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3. RESULTS AND DISCUSSION

3.1. The composites prepared in an air atmosphere
(both subjected and not subjected to preliminary heat
treatment) have a pink color whose intensity depends
on the mole fraction of HgI2. It is found that, as the con-
centration x in these composites decreases, the temper-
ature of the structural phase transition from the red
modification to the yellow modification of mercuric
iodide increases (T0 = 134°C is the temperature of the
α  β transition for pure bulk crystals) and reaches
T = 154°C for mixtures with x = 0.1 (see table).

According to Newkirk [7], the phase transition tem-
perature can increase to 154°C for HgI2 particles when
their radius becomes less than 20 µm. Newkirk [7]
attributed the considerable shift of the interphase
boundary to size-dependent superheating processes and
assumed that the surface nucleation spontaneously
occurs in more homogeneous small-sized particles.
Maskasky [8] also observed an increase in the temper-
ature of the structural phase transition in small-sized
AgI crystals (from 147°C in bulk crystals to 168°C in
microcrystals with a decrease in their size to 260 nm).

Taking into consideration the results obtained in [7],
it can be assumed that, as the concentration x in the
aforementioned mixtures decreases, the relative num-
ber of particles with small sizes increases and the mean
size of crystallites in the mixtures with x = 0.1 does not
exceed at least 20 µm.

3.2. Upon the mixing of powders preliminarily dried
in a cell evacuated to a pressure of ~10–3 mm Hg, the
color of xHgI2–(1 – x)Al2O3 and xHgI2–(1 – x)SiO2
composites depends on the HgI2 concentration: at room
temperature, the composites with a mole fraction x <
0.2 are yellow, whereas the composites with x > 0.2
have a pink color. The samples prepared in an air atmo-
sphere do not change color with a decrease in the HgI2
concentration and remain pink at x < 0.2. Analysis of
the low-temperature (T = 77 K) luminescence spectra
demonstrated that the spectra of the pink mixtures
always involve a luminescence band in the range of
533 nm, which, as is known [9], is associated with the
exciton emission in α-HgI2. This band is absent in the
luminescence spectra of the yellow mixtures. The yel-
low color of the mixtures with x < 0.2 is retained as long
as they remain under vacuum. In an air atmosphere, the
color gradually changes and, within hours, the compos-
ites become pink and a band in the range of 533 nm
appears in their low-temperature luminescence spectra.
This process is substantially accelerated upon grinding
of the samples.

It can be assumed that grinding of the samples with
high concentrations x and the filling of pores of the
nanocrystalline powder with HgI2 lead to the formation
of composites containing HgI2 particles of different
sizes. Some part of HgI2 is incorporated into the small-
est sized pores not filled with water. Apparently, in
order to prepare composites with a large fraction of
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
small-sized pores filled with HgI2, the mixing should be
performed under vacuum and at low HgI2 concentra-
tions. As was noted above, it is these composites that
are yellow in color. Upon contact of these composites
with air, when HgI2 particles are displaced from the
smallest sized filled pores, the composites change color
to red. We believe that the yellow color of the compos-
ites stems from the fact that mercuric iodide in the
smallest sized pores occurs in the form of the yellow β
phase. In this case, the change in color in air implies
that an increase in the particle size is attended by the
transformation from the β modification to the α modi-
fication. It is reasonable that the transformation to the
stable phase should be accelerated under deformation,
which is actually observed upon grinding of the mix-
tures.

An increase in the HgI2 concentration in the mix-
tures results in an increase in the fraction of filled large-
sized pores, which are filled with excess mercuric
iodide that has remained after saturation of the small-
sized pores. This circumstance is responsible for the
pink color of the composites with x > 0.2. The low-tem-
perature luminescence spectra of the pink mixtures
contain a band associated with the exciton emission in
α-HgI2, whereas the yellow mixtures do not exhibit
luminescence. This does not contradict the proposed
interpretation, because the edge luminescence, as is
known, is absent in β-HgI2.

3.3. The yellow HgI2 phase also formed on the sur-
face of the nanocrystalline Al2O3 powder pressed into
pellets 11 mm in diameter and 0.5 mm thick. One sur-
face of the pellet was brought into contact with a poly-
crystalline powder of the red modification of HgI2. The
growth of HgI2 crystal nuclei was observed on the
opposite surface. The contact was accomplished in
small-sized closed vessels at temperatures of 30, 55,
and 100°C.

After contact with the red modification of HgI2 for
two weeks at T = 30°C, the pellet remains colorless.
However, in an air atmosphere, the pellet slowly

Temperatures (°C) of the α  β phase transition in mercu-
ric iodide in the composition of xHgI2–(1 – x)Al2O3 mixtures

Mole frac-
tion x of 

HgI2 in the 
mixture

Al2O3

finely dispersed (specific surface
is more than 210 m2/g)

coarse-
grainedwithout 

heat
treatment

with
preliminary 

heat
treatment

with
preliminary

grinding

1 134 134 134 134

0.5 140 140 144 137

0.25 144 144 149 139

0.1 154 – – 139
2
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changes color. There arise yellow island formations
which progressively cover the pellet surface. Examina-
tion of the fractures revealed that the pellet in the bulk
remains white and a yellow color appears in the frac-
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Fig. 1. Diffuse reflection spectra of the surface of an Al2O3
pellet at room temperature after contact with α-HgI2 (for
three weeks at Tcont = 55°C) at different times of storage in
air: (1) two hours, (2) two days, (3) two weeks, and (4) five
months. The dashed line represents the diffuse reflection
spectrum of yellow β-HgI2 at T = 17°C (according to the
data taken from [5]). The solid arrow indicates the location
of the absorption edge for α-HgI2 at room temperature, and
the dashed arrow shows the location of the absorption edge
for β-HgI2 at T = –69°C [5].

Fig. 2. AFM image of the surface of the HgI2-filled Al2O3
matrix within one month after contact. The scanned area is
7000 × 7000 nm2.
PH
tures only after the time needed for mercuric iodide to
escape from the pores. This effect is observed within
four or five days for pellets held at a temperature of
55°C and within a few hours for pellets held at 100°C.
In these cases, too, the pellet, as a rule, remains color-
less before exposure to air. The rates of saturation of
pellets with HgI2 and the subsequent formation of yel-
low particles on the surface increase with an increase in
the pressure of pellet pressing.

Let us now consider the evolution of particles on the
surface of pellets placed in air. Within a few hours (for
pellets pressed at P = 7 MPa and filled with HgI2 at T =
55°C), larger sized red particles are formed among yel-
low formations. These are crystals of the red HgI2 mod-
ification whose number and size increase with time.
Note that this process on the contact surface proceeds
at a higher rate and is substantially retarded in a closed
vessel in HgI2 vapors.

In order to identify the crystal structure of the parti-
cles formed as mercuric iodide escapes from the bulk to
the surface, we analyzed the diffuse reflection spectra
of the surface of the studied pellets.

Figure 1 shows the diffuse reflection spectra of the
layer formed on the surface of a pressed Al2O3 pellet
after contact with the red HgI2 modification at different
stages of the layer evolution. It can be seen that, at the
first stage (when the surface is almost completely cov-
ered with yellow particles), the diffuse reflection spec-
trum (curve 1) is characterized by the absorption edge
of the yellow β-HgI2 modification. At the stage when
the red crystals are formed on the surface, the diffuse
reflection spectra (curves 2, 3) exhibit two features
associated with the absorption edges of both HgI2 mod-
ifications. In the case when the yellow particles are vir-
tually absent in the surface layer, the diffuse reflection
spectrum (curve 4) shows a feature corresponding to
the absorption edge of the red α-HgI2 modification. It
should be noted that the last spectrum almost coincides
with the diffuse reflection spectrum of the frozen β
phase (dashed curve in Fig. 1) [5].

The new formations on the structurally inhomoge-
neous surface of the pellet containing yellow particles
and larger sized red crystals were investigated by scan-
ning probe microscopy with the use of an atomic-force
microscope (AFM) (Fig. 2). The sizes of yellow parti-
cles are estimated at 40–150 nm. The large-sized parti-
cles elongated in shape with a size of ~1.5 µm are also
clearly seen in Fig. 2.

It should be emphasized that, after contact with mer-
curic iodide, the HgI2-filled Al2O3 matrix, like porous
glasses with a pore size of 2–10 nm, remains colorless
prior to the escape of HgI2 from the bulk to the surface.
We can propose two possible variants of filling of the
matrix in the bulk: (i) the matrix is filled with colorless
ions Hg2+ and I–, and (ii) the matrix is filled with HgI2
nanoparticles whose absorption edge, owing to the
quantum-well effect, is considerably shifted toward the
YSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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high-energy range as compared to that for bulk crystals.
The latter assumption is confirmed by the experimental
data on size effects in the optical spectra of HgI2 in
porous glasses [4].

The formation of yellow HgI2 particles on the sur-
face and their transformation into the red α modifica-
tion with an increase in size is also observed in borosil-
icate glasses (with a pore size of 2–10 nm) preliminar-
ily filled with HgI2 in the same manner (through
diffusion in the course of direct contact between porous
glasses and HgI2).

3.4. The microstructure of the pressed Al2O3 pellets
prior to and after diffusion of HgI2 was investigated on
a Rigaku D/max x-ray diffractometer (CuKα radiation,
λ = 0.15418 nm). Upon normal incidence of x-rays, the
maximum depth of the studied layer was equal to
120 µm for Al2O3 and 2.4 µm for HgI2. In the case of
small angles, the maximum depth was smaller by a fac-
tor of 100. The scattering intensity was recorded in the
ranges of small (0.03°–4°) and large (up to 140°)
angles.

According to x-ray diffraction analysis, the pure
(unfilled) matrix involves 95% amorphous material and
5% θ-Al2O3 crystals 5.6–7.2 nm in size. The maxima in
the size distribution of pores are observed at 6, 18, 38,
84, 134, and 230 nm. As can be seen from Fig. 3, an
increase in the pressure leads to a twofold or threefold
increase in the fraction of small-sized pores (especially,
with sizes of 38 and 84 nm). The pore shape is far from
spherical. More likely, the pores resemble elongated
holes or channels.

The filling of pores with HgI2 results in an increase
in the intensity of all the scattering peaks (Fig. 4). For
30- to 90-nm pores, the intensity increases by a factor
of approximately two for the samples pressed at a max-
imum pressure and by a factor of four to eight for the
samples prepared at a minimum pressure. This corre-
sponds to the filling of 0.5% of the pores in the matrix
prepared at a pressure of 7 MPa and 1–2% of the pores
in the matrix with a looser structure. The observed shift
of the scattering peaks toward the large-angle range
implies a decrease in the distance between scattering
centers by 6–30%. This shift either can indicate that
small-sized pores are filled initially or can characterize
the mean size of crystalline grains or amorphous HgI2
nuclei in large-sized pores.

It is found that the volume of the crystalline phase
consisting predominantly of the tetragonal α-HgI2
modification (Hg2I2 is also present) accounts for only
0.001% of the sample volume or 1.2% of the total HgI2
content in the matrix. Consequently, most mercuric
iodide in the pores is in the amorphous or finely crystal-
line (with a grain size of less than 5 nm) state.

The absence of reflections attributed to the orthor-
hombic modification (the size of yellow formations is
as large as 150 nm) suggests that the β-HgI2 modifica-
tion formed on the matrix surface also predominantly
PHYSICS OF THE SOLID STATE      Vol. 44      No. 7      200
occurs in the amorphous state or has a texture with
directions of the crystallographic planes that give no
reflections.

3.5. In order to refine the parameters of microstruc-
tural elements forming the surface relief of the pressed
Al2O3 matrices, we obtained a number of AFM images
of the initial surface of the matrix (Fig. 5) and the sur-
face of the HgI2-filled matrix (Figs. 6, 7).

The initial matrix has a porous surface whose relief
changes in a random manner with the height difference
∆ ~ 4 nm (Fig. 5b). Examination of the AFM images
and their cross sections at different points on the matrix
surface revealed the presence of a large number of oval
pores with a characteristic lateral mean size of ~40 nm.
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Fig. 3. Comparison of the scattering profiles for the unfilled
Al2O3 matrices pressed at P = (1) 0.2 and (2) 7 MPa. Curve 3
is the difference between curves 1 and 2.
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Fig. 4. Comparison of the scattering profiles for (1) unfilled
Al2O3 matrix and (2) HgI2-filled Al2O3 matrix pressed at
P = 7 MPa. Curve 3 is the difference between curves 1 and 2.
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The characteristic lateral size of the smallest sized
pores is approximately equal to 15–20 nm. These
results are for the most part in agreement with the x-ray
diffraction data obtained for the Al2O3 matrix. More-
over, elongated holes (channels) with a width of more
than 50 nm are observed on the matrix surface; how-
ever, their number is substantially less than that in the
matrix bulk.

The surface relief of the HgI2-filled matrix differs
significantly (Figs. 2, 6, 7). The structure of the surface
predominantly covered with yellow formations consists
of uniformly arranged oval particles (Fig. 6a) with a
characteristic size of 40–150 nm. As was noted above,
spatially oriented elongated particles (columns) with a
characteristic size of ~1.5 µm and a mean length-to-
width ratio of 1.25 are also observed on the surface of
the HgI2/Al2O3 samples (Fig. 2). The AFM image of the
surface of the HgI2/Al2O3 pellet composed predomi-
nantly of red crystals after holding in air for several
months is displayed in Fig. 7. Nanometer-sized steps
are clearly seen on the surface of the formed crystals. It
can be assumed that these steps have a deformation ori-
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Fig. 5. AFM image of the surface of the initial Al2O3

matrix. The scanned area is 220 × 220 nm2. (a) Constant-
height map and (b) characteristic cross section with the
height difference ∆ ~ 3.6 nm.
P

gin and arise from dislocations generated under the
action of stresses [10].

Thus, the experimental data on the kinetics of for-
mation of the crystalline HgI2 phase on the surface of
pressed Al2O3 matrices and the analysis of the phase
composition of HgI2–Al2O3 and HgI2–SiO2 composites
demonstrate that mercuric iodide in small-sized parti-
cles can occur in the form of the high-temperature yel-
low β phase at temperatures substantially less than the
temperature of the α  β phase transition. This phase
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Fig. 6. AFM image of the surface of the HgI2-filled Al2O3

matrix. The scanned area is 940 × 940 nm2. (a) Half-tone
image, (b) constant-height map, and (c) characteristic cross
section with the height difference ∆ ~ 6.6 nm.
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remains stable in 150- to 200-nm particles. At larger
sizes, the β modification transforms into the red α mod-
ification that is stable at these temperatures.

In our earlier work [4], we revealed that the metasta-
ble orange HgI2 modification is formed on the surface
of HgI2-filled porous glasses as mercuric iodide
escapes from the pores. The same result was obtained
by Agekyan et al. [11] for HgI2 in a polymeric matrix.
It seems likely that, depending on the nucleation condi-
tions, mercuric iodide can nucleate in different metasta-
ble modifications. The formation of the yellow modifi-
cation on the surface of different matrices and, in par-
ticular, on the surface of porous glasses, i.e., matrices
identical to those studied in [4], indicates that the sub-
strates, their structure, and geometry do not play a deci-
sive role. It is quite possible that the formation of a par-
ticular metastable modification depends on the method
of filling the matrix bulk with HgI2 and, as a conse-
quence, on the rates of formation and growth of nuclei,
the content of defects in nuclei, and the degree of devi-
ation from stoichiometry.

It can be assumed that, in all the cases under consid-
eration, the stable crystalline phase HgI2 grows through
the sequential formation of two nonequilibrium modifi-

500

1000
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2000

nm

Fig. 7. AFM image of the surface of the HgI2-filled Al2O3

matrix. The scanned area is 2000 × 2000 nm2.
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cations: the yellow phase at the first stage and then the
orange phase. Note that, in order to reveal the presence
of HgI2 on the matrix surface and to identify the orange
modification, the authors of [4, 11] used luminescence
spectroscopy; however, as was noted above, the yellow
β phase of mercuric iodide does not exhibit lumines-
cence.

4. CONCLUSION
Thus, the experimental results obtained in the

present work demonstrate that the crystal structure of
small-sized HgI2 particles is dependent on size. The
estimates were made for the maximum sizes of parti-
cles occurring in the metastable β modification.
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Abstract—The interaction of aluminum with the ( ) rhenium surface was studied experimentally within
a broad temperature range, 300–2000 K. Surface aluminide (SA) ReAl with a concentration of adsorbed Al
atoms NAl = 1.6 × 1015 cm–2 was found to form. It was shown that aluminum escapes from the surface by ther-
mal desorption at temperatures from 1300 to 1600 K, with the desorption activation energy changing abruptly
from ~3.6 to ~4.2 eV when passing through the concentration corresponding to the SA. © 2002 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Elements which behave as classical metals in the
condensed state exhibit essentially nonmetallic proper-
ties when in the form of individual atoms or molecules.
For instance, intermetallides and high-melting com-
pounds formed by transition metals with beryllium and
aluminum turn out to be close in terms of their proper-
ties to silicides, sulfides, and borides [1, 2] while differ-
ing strongly from classical metal alloys.

This does not come as a surprise, because the inter-
action of an impurity atom, say, Si, P, or Al, with a high-
melting metal is dominated by the dimensions of the
atom, which determine its capacity of incorporation
into the lattice; by its electronegativity, as a generalized
characteristic describing electron transfer from or to the
impurity; and, finally, by the structure of the outer
terms, i.e., the number of electrons and empty orbitals
suitable for chemical bonding [3]. The atoms of Si, Al,
and S are very close in size [2] and have similar diffu-
sion parameters in transition-metal lattices [2], and the
silicides, aluminides, and sulfides they form are fre-
quently isostructural [2, 4, 5].

It appears unquestionable that this similarity should
also become reflected in the behavior of Al layers
adsorbed on the surface of high-melting compounds. In
particular, one should expect the formation of surface
chemical compounds whose properties would be simi-
lar to those of the surface silicides, carbides, and sul-
fides.

2. EXPERIMENTAL

The studies were carried out in the ultrahigh vacuum
(P ~ 10–10 Torr) high-resolution Auger spectrometer
1063-7834/02/4407- $22.00 © 21394
described in [6]. The sample was an ac-heated poly-
crystalline rhenium ribbon measuring 1 × 0.02 ×
40 mm. The ribbon was cleaned by alternately heating
in an ultrahigh vacuum at 2500 K and in an oxygen
environment (  ~ 10–6 Torr); after the cleaning, the

ribbon produced only rhenium Auger electron peaks.
The cleaning was accompanied by texturing, with the

( ) face emerging onto the surface with a work
function eϕ = 5.15 eV (the figure typical of this face
[7]). X-ray diffraction measurements showed the
degree of the face orientation relative to the surface to
be 99.9%, and STM images revealed the average grain
size to be ~20–30 µm. The ribbon temperature was
measured with a micropyrometer and, in the region
where pyrometry could not be used, by linear extrapo-
lation of the dependence of the temperature on the
heater current.

The aluminum was deposited on all of the ribbon
surface simultaneously from a custom-designed large-
area source, whose operation was based on preliminary
dissolution of aluminum in the bulk of a high-melting
metal followed by aluminum desorption. After proper
aging, no Auger electron peaks besides the ones due to
aluminum were found in the spectra of the deposited
layers. We used the Al Auger electron peak with E =
68 eV and the Auger electron triplet of rhenium with
E = 162–177 eV, and the peak-to-peak amplitude was
taken for the Auger signal intensity. The Auger peak of
metallic aluminum did not overlap with any substrate
Auger electron peak. To study desorption, an auxiliary
Re ribbon was mounted beside and parallel to the oper-
ating Re ribbon, as was done in [8].

PO2
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3. RESULTS AND DISCUSSION

3.1. Deposition of Aluminum on Rhenium 
at Various Temperatures

Figure 1 presents the variation in Auger signals of
the adsorbate and substrate obtained during Al deposi-

tion on ( )Re at a constant flux at two different
temperatures, 300 and 1300 K. Deposition at room tem-
perature results in a gradual decrease in the substrate
Auger signal down to zero, which indicates the forma-
tion of a continuous multilayer adsorbate film. In the
initial deposition stages, up to 80 s, the aluminum
Auger signal grows linearly, after which the rate of this
growth slows down. The height of the Auger peak of
rhenium decreases by a factor of ~1.5; that of alumi-
num, by ~60 units. The linear growth of the Auger peak
in the initial stage apparently reflects the accumulation
of all aluminum atoms falling on the surface in the first
adsorbed layer, and the inflection corresponds to the
beginning of growth of the second layer on the surface.

Deposition of Al on rhenium at elevated tempera-
tures occurs in a radically different way. As seen from
Fig. 1, deposition at 1300 K results initially in the same
growth of the aluminum Auger signal in the case of
deposition at room temperature, which means that each
aluminum atom striking the surface remains on it in the
first adsorbed layer. However, the situation changes

after a characteristic concentration  has been
reached; now, the surface coverage remains constant
despite the continuing arrival of Al atoms. These curves
resemble very much, in character, those produced by
the surface silicides forming in the deposition of silicon
on W and Re [9, 10]. By analogy, we call the adsorption

state with  the surface aluminide (SA). The SA can
also be obtained by heating an aluminum film two or
three layers thick at 1250–1300 K for one to two min-
utes.

3.2. Annealing of Aluminum Films of Various 
Thicknesses on Rhenium

Curves 1 and 2 in Fig. 2 illustrate the effect of
annealing of a multilayer aluminum film deposited on
rhenium at room temperature. The surface concentra-
tion of aluminum in the film is ~(8–10) × 1015 cm–2 (the
rhenium Auger peak is ~15 times smaller than that of
aluminium). The film was annealed in steps 30 s long at
each temperature.

Up to 900 K, the film remains stable, after which the
Auger peak of rhenium starts to grow monotonically;
that of aluminum, to decrease. No aluminum is left on
the surface at 1500 K.

For comparison, Fig. 2 also presents the variation of
the adsorbate and substrate Auger signals when a sub-
monolayer aluminum film, whose thickness is approxi-
mately one-half the SA thickness (with rhenium
screened 1.2 times), is annealed. The film remains sta-
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NAl*

NAl*
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ble up to 1300 K, after which the decrease in height of
the aluminum Auger peak follows the same curve as in
the case of a thicker film. This similarity shows that the
mode of escape of aluminum from the rhenium surface
is the same for substantially different surface concen-
trations.
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Fig. 1. Auger peak intensity of (1, 2) aluminum and (3, 4)
rhenium plotted vs. time of aluminum adsorption at a con-
stant flux and for temperature equal to (1, 4) 300 and (2, 3)
1300 K; νAl = 1.6 × 1013 cm–2 s–1.
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Fig. 2. Auger peak intensity of (1, 3) aluminum and (2, 4)
rhenium plotted vs. temperature for stepped (100 K) anneal-
ing of Al films with surface concentration NAl equal to (1,

2) (8–10) × 1015 and (3, 4) 0.7 × 1015 cm–2; time at each
temperature is 30 s.
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3.3. The Absolute Concentration of Aluminum Atoms
in the Surface Aluminide

In view of the absence of a reliable reference for the
surface coverage of metals by aluminum, we calculated
the absolute concentration of Al atoms in the SA using
the data on the surface concentration of silicon in the

silicide on ( )Re [10]. We first had to determine
the coefficient of elemental sensitivity of aluminum
with respect to silicon. We could not use reference data,
for instance, from [11], because the Auger electron
spectrum presented there features not only the peaks of
aluminum but also those of oxygen; this could lead to
considerable errors caused by the differences in the
coefficients of elemental sensitivity for metallic and
oxidized aluminum. Our data are listed in the table.

We use the following relations for the intensity of
Auger signals from thick films:

(1)

where n is the atomic concentration in the film, λ is the
mean free path, k is the elemental sensitivity coeffi-
cient, and T is the spectrometer transmission, which
remains constant during the experiments.

Next, we apply Eq. (1) to thick silicon and alumi-
num films and divide one of the two relations obtained
by the other:

(2)

Assuming the mean free paths for the Auger elec-
trons of both elements to be equal, we obtain

(3)

The 30% scatter originates first of all from the errors
reported in the reference data on the mean free paths.

Now, we calculate the surface concentration of alu-
minum in the SA. For surface compounds, we can use
the relation [12]

(4)

where N is the surface concentration of the adsorbate.
Applying Eq. (4) to Auger signals for the SA and the
surface silicide recorded on the same scale and dividing
one relation by the other yields

(5)

Substituting the values from the table and from Eq. (3),
we obtain

1010

I nλkT ,=

kSi/kAl ISi/IAl( ) nAl/nSi( ) λAl/λSi( ).=

kSi/kAl 282/260( ) 6/5( ) 1 1.3 0.4.±≈××=

I kNT ,=

NAl NSi IAl/ISi( ) kSi/kAl( ).=

NAl NSi 1.2 0.4±( ).=
P

Thus, the atomic concentrations of silicon and alu-
minum in the SA and the surface silicide on rhenium

are similar and, hence,  = (1.6 ± 0.5) × 1015 cm–2

[10].

3.4. Desorption of Aluminum from the Rhenium Surface

To construct a consistent physical scenario of the
interaction of aluminum with the rhenium surface, one
has first to isolate the dissolution of aluminum in the
bulk of the metal from its thermal desorption. This was
achieved in the following experiment. We used an aux-
iliary Re ribbon identical to the operating one, mounted
at an angle of 45° to the sample surface at a distance of
~15 mm from it. One could produce the same adsorp-
tion states on it as on the operating ribbon, and the rib-
bons were arranged geometrically so that their operat-
ing surfaces intercepted the same aluminum fluxes
from the source. The experimental setup is shown sche-
matically in Fig. 3a. A multilayer aluminum film was
deposited on the auxiliary ribbon. Then, the operating
ribbon was cleaned by heating to T = 2200 K and main-
tained afterwards at T = 300 K, whereas the auxiliary
ribbon was heated in steps. In desorbing from the latter
film, the Al atoms accumulated on the clean surface of
the operating ribbon, where they were analyzed by
Auger electron spectroscopy (AES). The ribbon
arrangement used in the experiment permitted about
1/30 of all the adsorbate atoms desorbing from the aux-
iliary ribbon to be collected on the surface of the oper-
ating ribbon.

Figure 3b presents the results of this experiment. No
aluminum desorption is observed to occur from the sur-
face for T < 1200 K. At higher temperatures, the
amount of desorbing adsorbate increases, and, at T >
1500 K, no new adsorbate atoms impinge on the surface
of the operating ribbon, which attests to the completion
of desorption. The amount of adsorbate atoms trans-
ferred from the auxiliary onto the operating ribbon, as
calculated from geometrical considerations, coincides
to within good accuracy with the measured values pre-
sented in Fig. 3b.

Let us compare the data in Figs. 2 and 3b. Aluminum
is seen to start desorbing only at T  > 1200 K; hence, the
decrease in its surface concentration at lower tempera-
tures can only result from its dissolution. Because the
SA is thermally stable up to 1300–1350 K, it decom-
poses apparently only through thermal desorption.
Moreover, it appears reasonable to suggest that it is the
thermal desorption of the newly arriving aluminum

NAl*
Auger signal intensities of the substrate, silicon, and aluminum for various adsorption states on the rhenium surface (all data
are on the same scale)

IRe (pure) IAl (SA) ISi (SS) IRe (with SA) ISi (multilayer) IAl (multilayer)

40 118 125 26 282 260

Note: SA is surface aluminide, and SS is surface silicide.
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atoms that accounts for the constancy of the surface
concentration corresponding to the SA when Al is
deposited on Re at 1300 K. This essentially distin-
guishes the system under study from the Si/W(100) and

Si/Re( ) adsorption systems, where the stability of
the surface silicides is due to dissolution of excess sili-
con atoms in the bulk of the metal substrate [9, 10].

3.5. Kinetics of Aluminum Escape
from Rhenium at Various Temperatures

Let us consider in more detail how aluminum
escapes from the rhenium surface. Figure 4 illustrates
the effect of annealing of a deposited aluminum film
with NAl = 3 × 1015 cm–2 (i.e., approximately twice the
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Fig. 3. (a) Experimental setup for the study of desorption
and (b) increase in the aluminum Auger signal on the sur-
face of the operating ribbon under stepped (in 100-K steps)
annealing of an auxiliary ribbon coated by an aluminum
multilayer film with NAl = (8–10) × 1015 cm–2; time at each
temperature is 30 s.
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SA concentration) performed at 1300 K. We readily see
that the aluminum Auger signal fairly rapidly (in
~100 s) reaches the level corresponding to the SA and
that in the subsequent 300 s, the coverage decreases fur-
ther by ~15–20%. A comparison with the data in
Fig. 3b suggests thermal desorption to be the most
probable mechanism of adsorbate removal.

Using the Arrhenius relation for the lifetime of an
adsorbed aluminum atom, we can estimate the activa-
tion energy for desorption of Al when its surface con-
centration is in excess of that in the SA. This energy is
Edes ~ 3.6 eV. Interestingly, this value is considerably
higher than the aluminum sublimation energy from its
melt (Esub = 2.9 eV [13]); this suggests that even at con-
centrations in excess of that in the SA the aluminum
atoms are strongly attracted by the substrate on which
they are adsorbed.

Figure 5 presents data on the destruction of the SA
at 1500 K (apparently, through desorption). The alumi-
num Auger signal drops by more than ten times in 25 s.
Based on the desorption time, one can estimate the des-
orption energy from the Arrhenius relation (Edes =
4.2 eV). The narrow temperature interval of desorption
comes as a surprise: the SA remains stable at 1300 K
for hundreds of seconds but decomposes rapidly at
1500 K. This essentially discriminates the surface com-
pound of aluminum from the similar compounds of sil-
icon or sulfur with a rhenium surface, whose tempera-
ture interval of desorption is quite broad, ~500 K.

We note that when the SA forms, the activation
energy for its removal from the substrate (in our case,
through thermal desorption) jumps by ~0.6 eV. Similar
jumps were also observed to occur in the formation of
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Fig. 4. Auger peak intensity of (1) aluminum and (2) sub-
strate plotted vs. time of isothermal annealing at 1300 K of
an aluminum film with NAl ~ 3 × 1015 cm–2 (about twice the
SA concentration).
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other surface compounds, for instance, of the surface
silicides of W and Re [9, 10] or of the surface carbides
on W and Ta [14, 15].

It is of interest to compare our results with the data

from [16], wherein aluminum adsorption on ( )Re
was also studied and the coverages were calibrated by
LEED. The coverage estimated in [16] as a monolayer
produced a double-humped peak in the temperature
dependence of the desorption rate with maxima at
~1400 and 1550 K, while the half-monolayer coverage
corresponded to a single-humped peak in the range
1350–1450 K. The desorption activation energies
derived by us from the above data correlate well with
the figures obtained in our experiments, which permits
one to identify the half-monolayer in [16] with the SA.
It turns out that the aluminum monolayer dealt with in
[16] does not have a clear-cut physical meaning, which
stresses once more the hazard associated with extrapo-
lating LEED data to high-temperature processes.

Thus, high-temperature adsorption of aluminum or
annealing of an aluminum film at T = 1250–1300 K
results in the formation of an SA with an aluminum con-
centration NAl = 1.6 × 1015 cm–2, which is close to the
ReAl stoichiometry with respect to the surface rhenium
atoms. After the SA formation, all the aluminum atoms
striking the surface apparently desorb from it. The SA
can be decomposed by thermal desorption at T >
1400 K, the desorption activation energy jumping from
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Fig. 5. Auger peak intensity of aluminum plotted vs. time of
isothermal annealing at 1500 K of an aluminum film with
the concentration NAl = 1.6 × 1015 cm–2 corresponding to
the SA.
P

~3.6 to ~4.2 eV when one crosses the concentration
corresponding to the SA.
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Abstract—The growth of GaN islands on the substrate surface covered with an AlN buffer layer is theoretically
investigated at the stages of nucleation and Ostwald ripening in the temperature range 480–1000°C. The fol-
lowing inferences are made from analyzing the results obtained. (1) At temperatures T > 650°C, the growth of
islands is controlled by the chemical reaction of formation of GaN molecules around the periphery of the island
surface. Islands nucleated at these temperatures are characterized by a large spread in their sizes. (2) At tem-
peratures T < 600°C, the island growth is governed by the surface diffusion of nitrogen atoms. Islands nucleated
at these temperatures are virtually identical in size. (3) In the temperature range 600–650°C, the mechanism of
island growth gradually changes over from the mechanism associated with the surface diffusion of nitrogen
atoms with a large mean free path to the mechanism determined by the diffusion of gallium atoms with a smaller
mean free path. The supersaturation, flux, and size distribution functions of GaN nuclei are calculated at differ-
ent substrate temperatures. The phase diagrams describing the evolution in the phase composition of GaN
islands with variations in temperature are constructed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, serious effort has been made in
GaN-based electronics, first, to prepare high-quality
epitaxial layers on foreign substrates (SiC, Al2O3, and
GaAs) [1] and, second, to grow GaN nanocrystals on
polycrystalline substrates (SiO2 and metals) [2]. In this
respect, detailed knowledge of the nucleation and
growth of GaN island films is necessary for solving
both problems. In our previous work [3], we analyzed
the early stages of nucleation of GaN films formed on
the surface of AlN buffer layers at substrate tempera-
tures ranging from 480 to 1000°C. At the initial stage,
the number of islands is so small that the supersatura-
tion ξ and, correspondingly, the critical radius Rcr of
islands remain unchanged in the course of growth. As
the number of nuclei on the substrate surface increases,
they begin to absorb the material arriving at the sub-
strate; as a consequence, the supersaturation decreases
and the critical radius Rcr of nuclei increases. The rate
of change in the supersaturation ξ is determined by the
growth mechanism of individual islands. At the nucle-
ation stage, the distribution of islands depends on the
mechanism of their growth [4, 5]. After the nucleation
stage, under certain growth conditions, islands can
undergo an Ostwald ripening, during which they inter-
act with each other through a generalized diffusion field
of adatoms on the surface [4, 5]. This stage is character-
1063-7834/02/4407- $22.00 © 1399
ized by a universal island size distribution that depends
on the growth mechanism and the flux of atoms arriving
at the substrate. With knowledge of the growth mecha-
nism of islands, it is possible to control efficiently the
size distribution and the composition of islands [5].
Over the last decade, experimental investigations into
the early stages of heteroepitaxial growth of GaN films
have attracted the particular attention of many research-
ers [6]. However, possible growth mechanisms of GaN
films have not been analyzed theoretically.

In this respect, the aim of the present work was to
investigate theoretically the nucleation and growth of
GaN islands at the stages of nucleation and Ostwald
ripening.

2. THE POSSIBLE MECHANISM AND KINETICS 
OF NUCLEATION OF GaN ISLANDS

For a theoretical consideration of GaN nucleation, it
is necessary to construct a system of equations describ-
ing the evolution of islands of stoichiometric composi-
tion [4]. A theoretical treatment for multicomponent
stoichiometric compounds has only been accomplished
for the stage of Ostwald ripening [5]. Later, the nucle-
ation theory was developed for single-component com-
pounds and compounds forming a continuous series of
solid solutions [4]. In [4], the authors generalized the
system of equations describing the nucleation of single-
2002 MAIK “Nauka/Interperiodica”
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component compounds to the case of nucleation of a
multicomponent stoichiometric compound. By omit-
ting intermediate mathematical manipulations, the final
form of this system can be represented as

(1)

(2)

Here, ξ(t) is the supersaturation at the instant of time t;
ξ(0) is the supersaturation at the instant of the onset of
multiple nucleation; τGaN = (τGaτN)/(τGa + τN); τGa and
τN are the lifetimes of gallium and nitrogen atoms on a
substrate, respectively; Nsa = C0GaC0NN0; C0Ga and C0N
are the equilibrium concentrations of gallium and nitro-
gen, respectively; N0 is the equilibrium number of GaN
molecules on the substrate; g(i, t) is the island size dis-
tribution function; and Vi is the growth rate of an island
consisting of i atoms (molecules). It can be seen that,
for a multicomponent compound, unlike a single-com-
ponent compound, a number of parameters are deter-
mined by the properties of nitrogen and gallium. Meth-
ods of solving this system are outlined in [4]. Here, we
give the final result obtained at short lifetimes τ and
steady fluxes of deposited atoms. For a multicompo-
nent compound, the solution has the following form:

(3)

(4)

(5)

(6)

(7)

(8)
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Here,

H is the work of formation of an island, ϕk is the auxil-
iary function for all possible values of the coefficient k,
Γ ~ ic, ic is the number of atoms in a critical nucleus, I(t)
is the flux of new-phase islands formed by the instant of
time t, N(t) is the number density of islands nucleated
by the instant t, and ξ(t) is the supersaturation at the
instant t. The appropriate relationships for H and Γ are
available in [4]. It is seen that the physical meaning of
a number of parameters entering into these equations
for multicomponent compounds differs from that for
single-component compounds. In order to determine
the quantities involved in relationships (3)–(8), it is
necessary to establish the coefficient k which depends
on the growth mechanism of islands. This mechanism
determines the coefficient k and, hence, the behavior of
I(t), N(t), and ξ(t) and the distribution functions g(ρ, t).
According to the results obtained in [4, 5], at k = 0, the
growth of islands occurs through the surface diffusion
of atoms (molecules) in the case when the mean free
path of the atoms (molecules) over the surface satisfies
the condition λs @ R, where R is the mean radius of the
island base. At k = 1/2, the growth of islands can pro-
ceed through either the surface diffusion (λs ! R) or the
incorporation of atoms (molecules) into islands, i.e.,
when the island growth is limited by the chemical reac-
tion over the surface around the periphery of the island.
The situation when k = 1 will not be considered in the
present work, because, according to [5], this corre-
sponds to the growth of nuclei in convectively stirred
systems. At k = 2, the islands can grow either through
the evaporation–condensation mechanism or (if the dif-
fusion occurs in the gas phase) due to the chemical
reaction during which atoms add throughout the lateral
surface of the island. Let us now predict the possible
mechanisms of the growth of islands at different sub-
strate temperatures. The height h of disk-shaped islands
at which the mechanism of mass transfer changes over
from the diffusion-controlled mechanism in the gas
phase to the mechanism associated with the surface dif-
fusion was determined in [5]. The relationship for this
height, as applied to GaN, takes the form

(9)

Here, βGa and βN are the specific boundary fluxes of gal-
lium and nitrogen atoms, which determine the rates of
attachment of the atoms to a nucleus; ωi is the atomic
volume of the ith component; βi = Nsiγi exp(–Eai /kBT);
γi is the frequency of normal vibrations of atoms of the

ρ i
1/ k 1+( )

, ξ0
JGaJNτGaτN

Nsa

--------------------------- 1,–= =

h
B kBTτN s,

ωN 2mNπN0

--------------------------------≈

× 1
βNC0N mNωNτGa s,

βGaC0Ga mGaωGaτN s,

--------------------------------------------------+ 1
βNC0N
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1–

.

HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002



MECHANISM AND KINETICS OF EARLY GROWTH STAGES 1401
ith sort on the surface of GaN islands; Eai is the adsorp-
tion energy for atoms of the ith sort on the GaN surface;
Nsi is the number density of atoms of the ith sort on the
GaN surface; mN is the atomic mass of nitrogen; mGa is
the atomic mass of gallium; and kB is the Boltzmann
constant. If the mean height of islands on the substrate
satisfies the inequality he > h, the island growth occurs
by the evaporation–condensation mechanism. Other-
wise, the islands grow through surface diffusion. Our
estimates demonstrate that, at T > 480°C, the growth of
GaN islands occurs through the surface-diffusion
mechanism, because, in this case, he ! h. The growth
of GaN islands is limited by the mean radius of islands
R [4, 5] at which there occurs a crossover of the mech-
anism of island growth. The mean radius R is defined
by the expression

(10)

where N0 ~ 1/B2 is the number of adsorption sites on the
substrate surface (B is the lattice parameter of the sub-
strate) and

(11)

Here,  is the generalized diffusion coefficient (for
GaN, this coefficient characterizes the velocity of
motion of the island boundary); C0i is the equilibrium
concentration of adatoms of the island material on the
substrate; pi are the reduced stoichiometric coefficients
(for GaN, pi = 1/2); Dai is the diffusion coefficient of the
ith component; λsi is the mean free path of atoms over

the surface; and  is the generalized specific boundary
flux, which is represented in the form

(12)

Here, pi stands for the reduced stoichiometric coeffi-
cients (taken from [4]) and βsi are the specific boundary
fluxes of gallium and nitrogen atoms, which were deter-
mined in our earlier work [3]. Note that formula (10)
can be used for the estimates only in the case when
λN @ R and λGa @ R. Otherwise, if λN ! R and λGa !

R, according to [5], the coefficient  should be com-
pared directly with the generalized diffusion coefficient

. For GaN, the diffusion coefficient  is determined
by the expression

(13)
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If the mean radius of islands in the experiments
meets the condition Re @ R, the growth is limited by the
diffusion of atoms over the surface. For Re ! R, the
growth is controlled by the rate of attachment of gal-
lium and nitrogen atoms to the surface of islands along
their periphery. With the aim of estimating the radii R,
we calculate the mean free paths of nitrogen atoms λN
and gallium atoms λGa according to the formula λ =
(Daiτi)1/2. It turns out that, as the substrate temperature
increases, the values of λN and λGa approach each other
and become comparable at T > 700°C (Fig. 1a). Wid-
mann et al. [6] demonstrated that the diameter of
islands nucleated during the molecular-beam epitaxial
growth of GaN on the AlN surface is equal to 15–
20 nm. It can be seen from Fig. 1a that the diffusion
length of nitrogen atoms on the GaN surface is smaller
than the experimentally found size of GaN islands over
the entire temperature range, whereas the diffusion
length of gallium atoms becomes smaller than the
experimental size only at temperatures above 700°C.
This should manifest itself in a crossover of the mech-
anism of the GaN growth, which, at T > 750°C, is asso-
ciated with the incorporation of gallium and nitrogen
atoms into the crystal structure of islands. King et al.
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Fig. 1. Dependences of (a) the diffusion length of gallium
(λGa) and nitrogen (λN) atoms and (b) the characteristic
time t0 of attachment of an atom to the surface on the growth
temperature.
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[7] experimentally observed the change-over from the
Stranski–Krastanov mechanism of island growth to the
Frank–van der Merve mechanism in the course of
molecular-beam heteroepitaxy of GaN at temperatures
above ~800°C.

In the case when the growth is controlled by the rate
of attachment of gallium and nitrogen atoms to the sur-
face of islands along their periphery, the growth rate of
islands in the form of a flat disk can be represented in
the form [5]

(14)

where h is the height of the island, R is the radius of the
island, Rcr is the critical radius of the island, σ is the
nucleus–natural vapor interfacial tension, and νs is the
molecular volume of the chemical compound.

It should be noted that, in the general case, the island
height at the multiple nucleation stage and the subse-
quent stage of Ostwald ripening ceases to be constant
and equal to the height of a monoatomic step [5]. In [5],
it was proved that, at the stage of Ostwald ripening, the
height and the radius of disk-shaped islands vary with
time in a similar manner.

Let us assume that, at the nucleation stage, the
height and the radius of islands also vary in a similar
manner and that the derivative dlnh/dt changes rather
slowly [8]. Hence, it follows that the equation

(15)

represents the nucleation process with sufficient accu-
racy.

By rewriting this equation for the number i of parti-
cles involved in nuclei and taking into account that
h ~ R, we obtain the relationship

(16)

where  and  are the mean concentrations of
nitrogen and gallium on the substrate, respectively.
Relationship (17) is derived by ignoring the effect of
the surface tension and under the condition R @ Rcr,
which is satisfied at the multiple nucleation stage [4].

Next, we rewrite Eq. (16) in the following form:

(17)

(18)
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where ξGaN is the GaN supersaturation. For a multicom-
ponent system, the supersaturation ξGaN can be repre-
sented as

(19)

where

is the equilibrium constant for the chemical reaction of
formation of an island of the compound with composi-
tion s (introduced in our recent work [3]),  is the
mean concentration of the ith component in the multi-
component system on the substrate surface, and t0 is the
characteristic time of the growth of an island of the
multicomponent compound.

The calculations of the island growth at the substrate
temperature T = 600°C demonstrate that the growth rate
of nuclei is controlled by the surface diffusion when
λi @ Ri. In this case, we have

(20)

where

(21)

According to the estimates, the characteristic time t0 is
approximately equal to 105 s. At the substrate tempera-
ture T = 650°C, the growth rate can be determined from
expression (18) at the time t0 defined by the relationship

(22)

where  is the diffusion coefficient determined from
formula (13). At this temperature, the characteristic
time t0 is estimated at ~106 s.

It follows from expressions (17) and (20) that, at
large supersaturations ξ, the growth rates of nuclei are
quite reasonable (of the order of one or two monolayers
in a second). At small supersaturations, no growth of
nuclei occurs and the growth mechanism of nuclei can
change only after the formation of a transition layer. In
this situation, the nuclei will grow because the charac-
teristic time of their growth becomes shorter. The char-
acteristic time t0 was estimated from formulas (18),
(21), and (22) at different growth temperatures. It was
found that the time t0 considerably decreases with an
increase in the growth temperature (Fig. 1b).
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Now, we construct the time dependences of the flux
I(t) of GaN nuclei (Fig. 2), the size distribution func-
tions f(R, t) of GaN nuclei (Fig. 3), and the time depen-
dences of the number density N(t) of GaN islands
(Fig. 4) at different substrate temperatures.

The supersaturation calculated from expression (19)
at temperatures of 600–750°C is relatively large and
corresponds to reasonable fluxes of nuclei. On the other
hand, the number iGaN of GaN molecules in a critical
nucleus at the same supersaturation is very small
according to the calculation from the relationship [4]

(23)

Here,

and σst is the surface tension per unit length of a cylin-
drical island. For a smaller supersaturation, we obtain
reasonable numbers of molecules in a critical nucleus
but the fluxes of nuclei become close to zero over the
entire range of temperatures. It should be noted that the
physical meaning of the supersaturation in multicom-
ponent systems (in which the crystal nuclei are stoichi-
ometric in composition) differs from that in single-
component systems. For single-component systems,
the supersaturation is defined as the difference between
the mean concentration and the equilibrium concentra-
tion in vapors of the same composition. For multicom-
ponent systems, the supersaturation is defined as the

iGaN a/ ξ 1+( )ln
2

.=

a σs/kBT( )2νsπ/h, σst hσ,∼=
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Fig. 2. Time dependences of flux I of GaN nuclei at two
temperatures: (a) 600 and (b) 750°C.
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difference between the product of the concentrations of
material vapors, whose composition differs from the
island composition, and the equilibrium constant for
formation of nuclei. During the formation of new-phase
nuclei in single-component systems, the supersatura-
tion, as a rule, is less than unity (i.e., ξ < 1). At larger ξ,
the system appears to be in the metastable region,
which results in spinodal decomposition [4]. The high
value of ξ in the course of the formation of GaN nuclei
can be explained by introducing the notion of a Ga–N
transition layer between the GaN solid nucleus and the
gas phase. The chemical reaction proceeding between
gallium and nitrogen on the nucleus surface results in
the formation of a Ga–N transition layer whose proper-
ties differ from those of the GaN solid phase. In the
general case, the transition layer can be formed on the
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P

substrate surface where the nuclei grow. The interfacial
tension between the GaN solid phase and the Ga–N
transition layer should be less than the standard surface
tension of GaN [9]. It is these properties of the Ga–N
transition layer that determine the growth rate of a
nucleus. Upon formation of the transition layer, the
supersaturation ξ becomes less than unity and the GaN
critical nucleus has a reasonable size. Therefore, in the
general case, the parameters available in the literature
must be corrected for the formation of a Ga–N transi-
tion layer. Our estimates demonstrate that, for nucle-
ation of GaN (T < 700°C), the high value of ξ is actually
underestimated by virtue of the formation of the Ga–N
transition layer, which, in turn, leads to correct results
for the fluxes of nuclei.

The time dependences of the flux I(t) and the num-
ber density N(t) of nuclei and the nucleus size distribu-
tion functions f(R, t) at different temperatures are dis-
played in Figs. 2–4. It should be noted that nuclei
whose size varies over a wide range are formed at T >
700°C (Fig. 3c), whereas islands with a particular size
(10–15 nm) predominantly nucleate at T < 600°C
(Fig. 3a). An increase in the temperature from 600 to
700°C brings about a substantial decrease in the flux I
(Figs. 2a, 2b) and the number density N(t) of nuclei on
the substrate (Figs. 4a, 4b).

3. OSTWALD RIPENING IN AN ENSEMBLE 
OF GaN ISLANDS

The Ostwald ripening is the late stage of the first-
order phase transition. For the growth mechanism with
k = 1/2 and steady flux of the atoms arriving at the sub-
strate, the stage of Ostwald ripening is absent. The Ost-
wald ripening can occur only provided the power of the
external source of nitrogen and gallium atoms varies
with time according to the relationship gi(t) = g0i nt n – 1,
where g0i is the power of the source of nitrogen and gal-
lium atoms at the initial instant of time and n is the
exponent of the decrease in the source power. The nec-
essary conditions for Ostwald ripening to proceed are
considered in detail in [4, 5]. Since we established that
k = 1/2, the changes in the mean critical radius  and

the mean height  of islands with time can be described
by the following formulas [4, 5]:

(24)

(25)

Here,  and  are the mean radius and the mean
height of islands in an ensemble by the time of onset of
Ostwald ripening, respectively, and the constant A3 is
given by

(26)
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where  is the generalized specific boundary flux,
which is defined by expression (12).

Earlier [3], we demonstrated that, in addition to
GaN islands, liquid gallium islands can also occur on
the substrate surface. As a consequence, the equilib-

rium concentrations C0 in the expression for  differ
from those determined from the data on the evaporation
of the compounds not interacting with each other.
According to [5], these concentrations can be found
from the solution of the following system of equations:

(27)

where Q0N and Q0Ga are the total initial relative amounts
of nitrogen and gallium on the substrate and in new-
phase nuclei by the time of onset of the Ostwald ripen-
ing stage, JGa and JGaN are the amounts of the material
in liquid gallium and GaN nuclei by the time of com-

pletion of the Ostwald ripening stage,  is the disso-
ciation constant for GaN on the substrate surface, and
kGa formally replaces the rate constant of the chemical
reaction for single-component compounds.

By analogy with the calculations described in [5],
we solve the system of equations (27) for JGa taken
equal to zero and obtain a line dividing the plane of the
Q0N–Q0Ga phase diagram into two parts. Above this line,
the islands are present, whereas below it, the islands are
absent. In order to determine the region of existence of
GaN, the quantity JGaN should be taken equal to zero
and the system of equations (27) should be solved by
expressing JGaN in terms of Q0N and Q0Ga. Then, taking
into account the physically reasonable roots for JGaN,
we obtain

(28)

Analysis of the phase diagrams for GaN island films
formed at the stage of Ostwald ripening (Fig. 5) shows
that an increase in the temperature leads to changes in
the regions of existence of the phases involved. It
should be noted that the phase diagram reflects only a
thermodynamic tendency of the process. Moreover, liq-
uid islands consisting of pure gallium do not necessar-
ily occur in the coexistence region of Ga and GaN and,
quite probably, Ga can contain GaN impurities.
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For Q0N = Q0Ga, the specific boundary flux  can be
represented in the form

(29)

Finally, we estimate the constant A3 for GaN. In the
case when Q0Ga = Q0N, we obtain A3 ~ 10–33 m3 s–1 at
T = 650°C, A3 ~ 10–29 m3 s–1 at T = 850°C, and A3 ~
10−28 m3 s–1 at T = 1000°C. Hence, it follows that the
growth rate of GaN islands substantially depends on the
temperature.

4. CONCLUSIONS

Thus, the results obtained in the present work allowed
us to draw the following conclusions. (1) At high temper-
atures (T > 700°C), the growth of islands is controlled by
the chemical reaction of formation of gallium nitride.
The nuclei formed in this case are characterized by a
large spread in their sizes. (2) At lower temperatures
(T < 600°C), the island growth is limited by the surface
diffusion of nitrogen atoms. The islands nucleated at
these temperatures are virtually identical in size. (3) In
the temperature range 600–700°C, the growth of islands
occurs through a combined mechanism.
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