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Abstract—Analysis is presented of the effect on the instability of a droplet of viscous liquid induced by its self-
charge of such physical factors as corona discharge initiated in its vicinity and self-sustaining due to photoion-
ization, evaporation of the liquid, and field vaporization of the charge. It has been shown that droplets of micron
and submicron size lose their excess charge primarily due to field vaporization. © 2001 MAIK “Nauka/Inter-
periodica”.
1. In a variety of research setups, technical devices,
and technological installations, a problem of great
importance is obtaining the size and charge distribu-
tions of droplets formed as a result of the instability of
the surface of a charged liquid. It is important, for
instance, for obtaining insight into physical processes
taking place in liquid-metal ion sources and liquid
mass-spectrometers; in powerful electrical discharges
between metal electrodes, where the electrodes are
melted and the molten metal dispersed; and in highly
charged droplets dispersing in electrical fields of storm-
clouds, etc. (see, for example, [1–5] and the references
therein). This problem was analyzed both experimen-
tally and theoretically in a number of studies [1]. Nev-
ertheless, some of its aspects still remain unclear, for
example, the observed limits in the distributions of
droplets over their sizes (in the range of small sizes) and
charges (in the range of large charges), in the case of
droplets carrying charges close to the limiting ones in
the sense of Rayleigh’s stability criterion.

A highly charged droplet in an external electrostatic
field (which typically appears in all applications men-
tioned above) is unstable with respect to its self-charge
and polarization charge, and disposes of the excess
charge by ejecting fine highly charged daughter drop-
lets, which are unstable and disperse according to the
same law [1, 2]. This series of cascade dispersions of
the daughter droplets continues until their characteristic
size becomes of a submicron range, at which point the
effect of viscosity is strong enough to damp the build up
of strain in the unstable droplets. Ultimately, the elec-
trostatic instability vanishes when a droplet either splits
into two stable daughter droplets of comparable sizes
[1, 2], or loses its excess charge through field vaporiza-
tion [6, 7].

A highly charged droplet in a gas atmosphere may
lose its charge due to a corona charge initiated in its
vicinity [8, 9].
1063-7842/01/4610- $21.00 © 21205
In connection with the aforesaid, it is interesting to
follow the evolution of a highly charged droplet levitat-
ing in the electrostatic field of a plane capacitor in air
under atmospheric pressure, as in Millikan’s experi-
ments on measurement of the electron charge, or in
experimental verification of the stability criterion of a
droplet with respect to its self-charge [1] (Fig. 1).

2. Consider a small droplet of an incompressible liq-
uid having radius R, viscosity ν, density ρ, and surface
tension σ and carrying an electrical charge q0 equal to
the limiting one in the sense of Rayleigh’s stability cri-
terion, which is placed in an electrostatic field E0

directed opposite the gravitational acceleration: E0 || –g.
Since the droplet is unstable with respect to its charge,
it will stretch along the field E0 and take a shape close
to a spheroid [1, 2]. Depending on the viscosity, the

mg

g0E0*

E0*g

Fig. 1. Schematic of a setup for levitation of a charged drop.
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droplet will either disperse into a large number of fine
highly charged daughter droplets (at µ ≡ ν(ρ/Rσ)1/2 !
1) [1, 2], or split (at µ ≥ 1) into two droplets of compa-
rable sizes [10, 11] (the possibility of the charge loss
owing to the field vaporization is not considered at this
point). In both cases, the characteristic droplet disper-
sion times are functions of the droplet viscosity (of
parameter µ). In the qualitative consideration below we
assume that the characteristic droplet dispersion time is
determined by the characteristic build up time τ0 of the
spheroidal deformation (i.e., the rise time of the ampli-
tude of the principal unstable mode), and, for both dis-
persion paths mentioned above, has the same order of
magnitude. According to [12], the dependence of τ0 on
µ (or ν) is a simple linear function

(1)

where ζ0 is the amplitude of the initial virtual spheroi-
dal deformation.

If ζ0 has a thermal nature, then ζ0 ~ 0.1 nm [12].
Then, it is not difficult to find from (1) that, for a drop
with R = 10 µm, ρ = 103 kg/m3, and σ = 0.073 N/m, the
time τ0 ≈ 100 ms, but τ0 ≈ 0.4 ms for a droplet with
R = 1 µm.

After a time τ0, in accordance with the above-said,
the droplet disperses along one path or the other. How-
ever, there arises a question as to whether the droplet
may unload its charge before the time τ0 elapsed by
some faster physical mechanism, such as field vapor-
ization of charge or as a result of a corona discharge ini-
tiated in the droplet vicinity.

3. Since the droplet is in air containing ions of both
signs generated due to natural radiation at a rate of
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Fig. 2. Relation between the droplet radius R and the
strength Ec of the electrostatic field induced near the droplet
surface by Rayleigh’s critical self-charge of the droplet.
~10 cm–3 s–1 [13], then during the time of spheroidal
stretching of the droplet τ0 a free electron or a negative
ion can appear in its immediate vicinity (where its elec-
trostatic field is high) initiating a corona discharge
that is self-sustaining due to photoionization [14]. The
charge of the drop will be neutralized by this corona
discharge, and the spheroidal drop will regain the
initial spherical shape. Let us find the characteristic ini-
tiation time τ∗  of the corona discharge and compare it
with τ0.

The condition for levitation in the electrostatic field
E0 of a plane capacitor of a droplet carrying charge q0
approximately equal to the critical one by Rayleigh’s
stability criterion imposes a limitation on the magni-
tude of E0. Rayleigh’s criterion of instability with
respect to self-charge relates the droplet radius and the
self-charge

(2)

The condition for levitation of the droplet in the
gravitational field and the field E0 has the form

and, taking into account criterion (2), changes to

(3)

It is seen from formula (3) that the field strength 
required for levitation depends on the droplet size, and,
in the size range of interest (10–4 ≤ R ≤ 10–2 cm), is low
compared with the field strength Ec due to the self-
charge of a spherical droplet near its surface

(4)

Taking this into account, in our qualitative estima-
tion of the corona discharge initiation conditions we
neglect the field E0 in comparison with the field due to
the self-charge of the droplet. Figure 2 demonstrates the
dependence of Ec on R for a water droplet.

The critical value of the corona discharge initiation
field E∗ we take to be equal to the field at which the
effective electron multiplication factor in the avalanche
produced by the electric field in the droplet vicinity is
greater than unity. Since the process takes place at
atmospheric pressure, for qualitative estimations we
take E∗  ≈ 20 kV/cm [14].

It is seen in Fig. 2 that in the range of droplet sizes
r < 200 µm the field strength in the vicinity of the drop-
let exceeds E∗  and, consequently, the necessary condi-
tion for the corona discharge initiation is satisfied. Nev-
ertheless, one should keep in mind that for discharge
initiation at least one free electron is needed in the near-
est vicinity of the droplet, where E ≥ E∗  However, free
electrons produced in the near-earth layer of the atmo-

q0
2/16πσR3 1.≥

4
3
---πR3ρg q0E0=

E0*
1
3
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Ec q0/R
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TECHNICAL PHYSICS      Vol. 46      No. 10      2001



DEVELOPMENT PATHS OF THE INSTABILITY 1207
sphere as a result of natural radiation at the low rate of
~10 cm–3 s–1 [13] are trapped by neutral atoms and mol-
ecules in a time of ~10–8 s s producing negative ions.
Therefore, the probability of a collision between a
droplet and a free electron is very low.

It is known [14] that, in high electrical fields, E+ >
90P V/cm (where P is the pressure in torr), the negative
ion decomposes releasing an electron. The concentra-
tion of negative ions near the earth’s surface under nat-
ural conditions is 500–800 cm–3 [13]. Therefore, the
probability of a collision between a droplet and a nega-
tive ion, resulting in the decomposition of the ion and
release of an electron is many orders of magnitude
higher than the probability of the occurrence of a free
electron in the near vicinity of the droplet.

However, it should be kept in mind that, under the
conditions of the experiment discussed, the stationary
ion concentration between the capacitor plates is sub-
stantially less than near the earth’s surface because the
capacitor field  drives the ions to the electrodes. The

value  at R ~ 10 µm is of an order of a few V/cm.
The mobility δ of the most ions in air at atmospheric
pressure does not exceed several cm2/V s [13]. This
means that the drift velocity of the ions in the field 
in a setup with the interelectrode distance of an order of
a few centimeters will be several cm/s, while the char-
acteristic time of the ion escape to the electrode does
not exceed one second. This means that the ion concen-
tration n in the space between the electrodes will be
determined by the rate of ion generation due to natural
radiation and will not exceed a value of n ~ 10 cm–3.
Then the density j of the ion flux between the elec-
trodes, defined by the relation

will not be high, and, consequently, the probability of a
collision of the levitating droplets with a negative ion
and initiation of the corona discharge will also be low.

The characteristic time for collision with a negative
ion after insertion of a droplet into the capacitor, i.e.,
the discharge delay time, is defined by the relation [8, 9]

(5)

where s is the collision cross section.

According to the above, at atmospheric pressure a
negative ion decomposes in a field E+ ≥ 70 kV/cm. Such
a field around the droplet extends to a distance of

from its center. This means that the cross section of an
inelastic collision of the droplet with a negative ion has

E0*

E0*

E0*

j nδE0,=

τ* nsδE0*( ) 1–
,≈

r E+
2– 16πσR34≤
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the form

Substituting this relation into expression (5) and
taking into account criterion (2) we find that

Substituting the values of the physical parameters
involved in this expression, it is easy to find that for a
drop of R = 10 µs under the specified conditions, the
time τ∗  amounts to several hours, and to make it shorter
n should be increased considerably. Consequently, the
initiation of a corona discharge in the vicinity of the
droplet that is unstable with respect to its self-charge
cannot influence the conditions for droplet dispersion.

4. If the initial radius of a droplet carrying Ray-
leigh’s limiting electrical charge is small enough for the
electrical field at the droplet surface due to its charge to
be as high as ~ 1–10 V/nm, then field vaporization of
the charge from the droplet surface will occur [6]. This
process will decrease the charge below the Rayleigh’s
limit, making the droplet stable. It is seen in Figs. 2 and
4 that such field strengths near the droplet surface are
typical for droplets of submicron size (2R < 0.1 µm).

According to the existing concepts of the formation
of size distribution functions of the daughter droplets
emerging as a result of a series of cascade dispersions
under electrostatic instability conditions [1–3], the
smallness of the droplets capable of further separation
is limited due to viscosity; this limit being R > 1 µm for
water droplets and R > 0.1 µm for droplets of liquid
metal. For water droplets with R > 1 µm the role of the
field vaporization, as seen in Fig. 2, appears negligible;
nevertheless, under certain conditions it can be appre-
ciable. For instance, analysis of the dispersion pattern
of a highly charged drop with R ≈ 1 µm indicates that,
at the final stage of spheroidal stretching where charge
redistribution over its surface and the growth of the
self-charge field take place near the extreme points or
vertices of the droplet, field vaporization can take place.
We note that the build up of the spheroidal deforma-
tions starts as soon as the droplet’s charge exceeds the
critical value defined by (2), whatever the viscosity
value; however, for viscous drops, the spheroidal
stretching, according to (1), will be less. Let us consider
this point in more detail.

4.1. The electric field strength E = 4πκ near the sur-
face of a conductor in a vacuum is determined by the
surface charge density κ and in the case of an ellipsoid
is given by the known expression

(6)

where a, b, and c are the semiaxes of the ellipsoid.

s E+
1– 16π3σR3.=

τ*
3E+
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The highest surface charge density is found at the
point of maximum surface curvature. In the case of a
prolate spheroid (a > b = c), this takes place at the
spheroid vertices (x = ±a, y = 0, z = 1). Here the field
strength is

(7)

As follows from Eq. (7), the maximum electrical
field strength of a charged droplet in the shape of pro-
late spheroid depends only on the charge value and the
semi-minor axis length b and does not depend on the
droplet volume. In Eq. (7) b can be expressed in terms
of the eccentricity e = (1 – b2/a2)1/2 of the prolate sphe-
roidal droplet

It is convenient to rewrite the last expression in the
form

(8)

where q0/R2 is the self-charge field strength of initial
spherical droplet near its surface.

The plot of function (8) is given in Fig. 3. It is seen
that, at sufficiently large eccentricities, the field
strength E near the vertices of a spheroidal drop may
exceed its value near the surface of a spherical drop by
more than an order of magnitude. However, according
to the existing concepts [1, 2] a droplet starts to give off
the excess charge by ejecting highly charged fine
daughter droplets already at e2 ≈ 0.7; therefore, the pos-

E q0/b2.=

E q0/R2 1 e2–( )1/3
.=

E

q0/R2
------------- 1 e2–( ) 1/3–

,=
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Fig. 3. Enhancement factor of the electrostatic field near the
vertices of a charged prolate spheroidal droplet as a function
of the square of the droplet’s eccentricity e2.
sibility large eccentricity (a large stretching of the drop-
let) should be verified.

4.2. A charged droplet of an ideal conductive incom-
pressible liquid in a vacuum is unstable, if the following
condition is satisfied

(9)

where l is the mode number of capillary oscillations of
the droplet.

If inequality (9) is valid for l = 2, the principal mode
loses stability, and the droplet will stretch acquiring a
shape close to a spheroid. As the eccentricity e2 of the
stretching droplet increases redistribution of the self-
charge surface density occurs, rising at the droplet’s
vertices according to formula (6) until the modes higher
than the principal one become unstable at the droplet’s
vertices [15]. The superposition of the unstable higher
modes having substantially higher build up rates [16]
leads to the formation of protrusions at the vertices of
the stretching droplet. The tips of the protrusions eject
daughter droplets taking off the excess charge of the
parent droplet. In this way the instability of a charged
droplet is relieved when µ ≡ ν(ρ/Rσ)1/2 ! 1.

When the condition µ > 1 is fulfilled, the instability
build up rates of all the modes become lower, but vis-
cosity dampens the buildup rates of higher modes to an
especially large degree, so that these rates become
lower than the build up rates of the principal mode [16].
Therefore, within the characteristic rise time of the
amplitude of the principal mode τ0 (defined as a recip-
rocal of the buildup rate), the ejecting protrusions at the
vertices of a highly viscous droplet do not form, and the
droplet continues to stretch out until it is separated into
two droplets of comparable sizes [10], or, according to
the above, if the drop is small enough, until the field
strength near the droplet’s vertices becomes high
enough for the field vaporization of ions to be possible.

In estimating the field strength E causing charge
vaporization, it should also be taken into account that it
is the field in the immediate vicinity of the point at the
surface, where the vaporization takes place. This means
that small-scale perturbations of the shape of the drop-
let’s vertex (related to the instability of the higher
modes that, however slowly, still grow) increase the
field strength above that given by formula (8) [15–17].
Figures 4a and 4b illustrate the enhancement of the
external field near the tip of a small-scale spheroidal
protrusion as a function of the square of eccentricity e2,
which was calculated using the expressions defining the
field strength of a spheroid in a small vicinity of its ver-
tices for a flattened spheroid

q0
2/4 l 2+( )πσR3 1,≥

E
E0
-----

e3

1 e2+( ) e earctan–( )
--------------------------------------------------, e2 a2

b2
----- 1–= =
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and for a prolate spheroid

where a and b are the semi-major and semi-minor axes
of the spheroid, and E0 is the uniform field external to
the spheroid.

If a small hemispherical protrusion at the vertex of a
charged prolate spheroidal droplet is considered, then
E0 will be the self-charge field of the droplet, which, as
seen in Fig. 4, is further enhanced in the vicinity of the
small-scale protrusion at the droplet’s vertex.

4.3. An order of magnitude of the characteristic time
τq of the charge loss by a droplet, caused by the field
vaporization of a single or clustered ion from the
droplet’s surface, can be estimated using the formula
[6, 19, 20]

(10)

where β characterizes the probability of the ion vapor-
ization; η is the amount of ions at the droplet’s surface
that can be field-vaporized; Q is the activation energy of
the field vaporization of an ion; zq is the ion charge; z is
the atomic number; E is the electrical field strength near
the droplet’s surface; k is Boltzmann’s constant; T is the
absolute temperature; and h is Planck’s constant.

It is seen from expressions (10) that due to large val-
ues of η and the factor (kT/h) the characteristic time τ0
of the field vaporization of charge may be extremely
short, even if β ! 1. For instance, as shown in the
Appendix to this paper, the activation energy of the
field vaporization of a Na+ ion from NaI solution is
equal to 1.78 eV, and the exponential factor is β ≈ 10–10

at E ≈ 1 V/nm. However, a droplet of a 0.1 M NaI solu-
tion [19] of a radius in the micron range has on its sur-
face η ≥ 105 NaI molecules capable of releasing a Na+

ion via field vaporization. Proceeding on the assump-
tion that only one tenth of the NaI molecules is under
the action of the high field at the droplet’s vertices, it
can easily be found that τq ≤ 1 µs. For a NaCl molecule
under the same conditions τq ≤ 1 ms. According to [20],
for a droplet of R = 1 µm, the characteristic field vapor-
ization time of a clustered ion enclosed in a solvate
sheath consisting of 6–12 neutral molecules, is of the
same order of magnitude. However, the activation
energy of this process is much higher than for vaporiza-
tion of an ion without the solvate sheath (see the
Appendix). According to formula (1), for a droplet of
radius R = 1 µm the time τ0 of spheroidal stretching pre-

E
E0
-----

e3

1 e2–( ) arthe e–( )
--------------------------------------------, e2 1

b2

a2
-----,–= =

τq βηkT
h
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 
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,∼

β Q z3 q 3E( )1/2
–

kT
-------------------------------------– ,exp=
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ceding the loss of charge as a result of splitting is 0.4 ms
or considerably larger than τq for NaI and of the same
order of magnitude as τq for NaCl solution.

Thus, the field vaporization of charge from the sur-
face of viscous droplets of micron and submicron sizes
occurring in a very short time can influence their size
and charge distribution functions obtained after a series
of cascade separations of the parent droplet ejected
from the surface of a charged liquid as a result of elec-
trostatic instability [1].

5. One more mechanism, affecting the size distribu-
tion of droplets produced as a result of charge-induced
dispersion of a liquid, is the thermal evaporation of the
liquid with the self-charge remaining unchanged. We
note that the probability of thermal vaporization of an
ion from the surface of a charged droplet at E ! 1 V/nm
is many orders of magnitude less than for a neutral mol-
ecule. Such a conclusion can be easily drawn from
comparison of amounts of neutral molecules and ions at
the surface of a droplet carrying Rayleigh’s limiting
charge.

Let us estimate the rate of decrease of the droplet
radius as a result of evaporation into the ambient gas on
the basis of the Hertz–Knudsen equation, on the
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Fig. 4. Enhancement factor of the external electrostatic field
near the tips of a hemispheroidal protrusion at the surface of
a conductive droplet as a function of its eccentricity e for
(a) a flattened spheroid, and (b) a prolate spheroid.
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assumption that in the course of the evaporation the
droplet temperature remains constant and equal to the
gas temperature. The following expression for the
dependence of the drop radius on time [19] is easily
obtainable,

(11)

where R∗  is the initial drop radius, v  is the mean ther-
mal velocity of the vapor molecules, n∗  is the concen-
tration of the saturated vapor, n∞ is the vapor concentra-
tion a large distance away from the droplet, ρ is the
droplet density, χ is the evaporation factor, and m is the
molecular mass of the evaporating liquid.

The characteristic evaporation time τe (the time it
takes for a substantial decrease of the initial drop radius
to occur) can be obtained from expressions (11) and has
the form

(12)

For a water droplet at R∗  = 1 µm; ρ = 103 kg/m3; m =
3 × 10–26 kg, v  = 590 m/s; χ = 4 × 10–2 [19], n∗  = 5.45 ×
1023 m–3; and n∞ = 0, according to [12], we have τe ≈
8 ms. This figure indicates that evaporation can play a
role in the instability caused by the self-charge of larger
droplets, for which the time τ0 is comparable with the
time interval τe, in which the droplet size decreases
appreciably due to evaporation. For drops with the
radius R ≤ 1 µm the role of evaporation is insignificant.

CONCLUSION

A comparison between the various characteristic
times (the instability realization time of a highly
charged droplet with respect to its self-charge τ0; the
time τ∗  it takes for a self-sustaining corona discharge to
be initiated in the droplet vicinity; the characteristic
time τe of the mass loss by a droplet through evapora-
tion; and the characteristic time τq of the charge loss by
a droplet due to field vaporization) shows that the drop-
lets of electrolyte solutions of micron and submicron
size lose their excess charge predominantly as a result
of field vaporization.

APPENDIX

On the Field Vaporization of an Ion without a Solvate 
Sheath from an Electrolyte Solution

Following a suggestion by Iribarne and Thomson
[20], the field vaporization ions and charged clusters
from electrolyte solutions is assumed to be governed by
the same physical mechanism as the field vaporization
of ions from a metal surface considered theoretically
for the cases of field ion microscopy [6] and liquid-
metal ion sources [21]. In particular, the vaporization

R R* α t, α v χm n* n∞–( )/4ρ,≡–=

τe R*/α .≈
rate constant K of metal ions under an electrical field
due to thermal activation to energies above the Schottky
barrier (arising due to the electrical field E near the
metal surface) is described by the Arrhenius law [6]

(1A)

where k is Boltzmann’s constant; ω is the oscillation
frequency of an atom; T is the absolute temperature; q
is the ion charge; and z is the atomic number.

The activation energy Q of the ion vaporization in a
virtual thermoionic cycle in expression (1A) is deter-
mined taking into account the following contributions
[6]: (i) the sublimation energy Λ absorbed by a neutral
atom vaporized from the metal surface; (ii) the ioniza-
tion energy J of an atom; and (iii) the energy ϕ given
away by the electron returned to the metal, which is
equal to the electronic work function of the metal. The
second term in the numerator of the exponent index
describes lowering of the activation energy because of
the Schottky effect.

According to the above consideration, the field
vaporization of ions or ion clusters from an electrolyte
solution, can also be described using an expression of
the form (1A) [20, 22], where kT/h is substituted for ω
(h is Planck’s constant), and the activation energy of the
ion vaporization from the metal surface Q is replaced
by the change of enthalpy ∆H+ accompanying the tran-
sition of an ion or an ion cluster from the solution into
a vacuum, which is taken to be equal in absolute value
to the enthalpy change for solvation of an ion (or final-
izing the solvation of a clustered ion) in the solution. As
shown in [20], for clustered ions ∆H∗  as a function of
the number n of neutral atoms in a cluster is a nonmo-
notonous function, and at a certain value of n = n∗  has
a minimum, where ∆H∗  = 2.32 – 2.73 eV. This value of
the activation energy of field vaporization of clustered
ions provides good agreement between the theory and
the experiment at E = 1 V/nm. However, for single ions
the vaporization activation energy ∆H∗  calculated by
the solvation energy is two or three times higher than
the above values [22, 23]. This means that for the theory
to agree with experiment the electrostatic field strength
near the solution surface should be an order of magni-
tude higher or as high as is necessary for the field
vaporization of metal ions (E ≥ 10 V/nm) [17, 22, 24].
However, this conclusion appears somewhat premature
because, in practice, the field strength E ≥ 10 V/nm
required for the field vaporization of ions from the sur-
face of solid or liquid metal can only be achieved with
specially prepared ion emitting tips having the apex
radius of ~1 µm. Attainment of the field strength
~10 V/nm in mass spectrometers with an electrohydro-
dynamic injection of substances to be analyzed into the
discharge chamber through a capillary tube ~100 µm in

K ω Q z3 q 3E( )1/2
–

kT
-------------------------------------– ,exp=

Q Λ J ϕ ,–+≡
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diameter is hardly possible (the theory of these mass
spectrometers was developed in [19, 20, 22]). Besides,
not all possible ways of the field vaporization of ions
from solutions were considered in [19, 22, 24].

In real (nonideal) solutions, not all the solute mole-
cules are dissociated; a fraction of dissociated mole-
cules are dependent on the concentration of solution
components, solution temperature, and the peculiarities
of intermolecular interaction [23]. In this connection,
consider, by way of example, the likelihood of field
vaporization of a positive ion Na+ from an aqueous
solutions of Na–NaI and NaCl salts. The activation
energy of the field vaporization of a Na+ ion from the
solution is calculated according to the virtual ther-
moionic cycle based on neutral molecules of NaI and
NaCl in the same way as it is done in the case of the
field vaporization of ions from a metal surface [6].
However, in distinction from [6], we shall consider not
the extraction by the field of an ion from the surface of
a solid metal, but the process of breakup by the field of
the neutral molecule of NaI or NaCl salt found at the
surface of the electrolyte solution in the region of a high
electric field into Na+ and I– (Cl–) ions, with transfer of
the Na+ ion into the gaseous phase. If Λ is the sublima-
tion energy of a molecule; D is the energy of dissocia-
tion of a molecule into two neutral atoms, Na and I (Cl);
J is the ionization energy of a Na atom; L is the electron
affinity for I or Cl atom; and ϕ is the electronic work
function for water; then the activation energy of the
field vaporization of a Na+ ion from the electrolyte
solution has the form

(2A)

In other words, the salt molecule sublimated from
the solution dissociates into two neutral atoms, the Na
atom is then ionized and its electron and the I (Cl) neu-
tral atom return to the solution, where the electron asso-
ciates with an I (Cl) atom to form a negative ion. It
should be remembered that the whole thermochemical
process described is virtual, while occurs in reality is
the breakup by the field of the salt molecule into a Na+

ion and a negative I– (Cl–) ion directly at the solution
surface. According to [25], for a NaI molecule Λ =
2.08 eV and D = 3.76 eV, and for a NaCl molecule Λ =
2.39 eV and D = 4.22 eV. Besides, according to the data
in [25, 26], the ionization potential of Na atom is J =
5.14 eV, the electron affinity for I and Cl atoms is L =
3.06 and 3.61 eV, respectively. The electronic work
function for water is given in [27] as ϕ = 6.13 eV. Sub-
stituting these values into formula (2A) we find that the
activation energies of the field vaporization of the Na+

ion from the electrolytes based on aqueous solutions
NaI and NaCl are QNaI = 1.78 eV and QNaCl = 2.01 eV.
It can be seen that in both cases the energy Q calculated
using (2A) is less than the vaporization energy of a sin-
gle (unsolvated) Na+ ion calculated with the use of its
hydration (solvation) energy according to the concepts
developed in [19, 20], which is equal to 4.18 eV

Q Λ D J ϕ– L.–+ +=
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[22, 23]. It is also seen that the calculated Q values are
close to the activation energies of the field vaporization
from the solution of clustered ions, obtained according
to the Iribarne–Thomson concept, which are in a range
of 2.32–2.73 eV [28].

To obtain the vaporization rate V of Na+ ions from
the solution surface using the reaction rate constant
defined by formulas (1A) and (2A), it is necessary to
multiply the reaction rate constant by the number of
nondissociated salt molecules found at the solution sur-
face under the action of a high electrical field (nonuni-
form over the solution surface). In this case, the dimen-
sion of V is s–1, giving the number of vaporized ions per
second. If V is multiplied by the ion charge, then an
expression for the ion current I due to field vaporization
is obtained. The reciprocal of V represents the charac-
teristic time τq of the field vaporization of ions from the
solution surface.
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Abstract—In view of the fact that various gravitating and charged bodies may have singular points on their
surface, the problem of the effect of these singularities in the mass distribution on the behavior of potential
arises. The analytic representation for gravitational and electrostatic potentials of a uniform elliptic cone in
terms of ordinary integrals is derived. Generally, these integrals are somewhat more complicated than the ellip-
tic ones; however, they reduce to elementary functions in the case of a circular cone. The arbitrariness in the
way of truncating a cone manifests itself in the possibility of adding various harmonic polynomials. However,
the singularity of potential in the vicinity of the vertex of a cone is of an objective and unique character. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The practical significance of calculations of the
gravitational and electrostatic potentials for various
bodies is well known. In some cases, potentials may be
represented in an elementary form or even in terms of
well-known functions. This may be exemplified by the
figures of equilibrium for celestial bodies [1–3], non-
uniformities of the Earth crust in gravimetry and geod-
esy, asteroids of an irregular shape, and various pointed
contacts in electrostatics [4]. Another example in which
the potential is expressed in an elementary form is a
rectangular prism [5].

We consider a somewhat more complicated exam-
ple, specifically, a uniform elliptic cone. In comparison
with the case of a rectangular prism, the complication
is the fundamental uncertainty of the potential for an
infinitely extended gravitating or charged body. Indeed,
the divergence of the potential in this case can be com-
pensated by adding a quadratic function in Cartesian
coordinates in contrast to the constant additive for pris-
matic bodies. The aforementioned fundamental uncer-
tainty manifests itself in the arbitrary choice of the
coefficients of the quadratic function. However, as a
result of this uncertainty, the problem of determination
of the potential does not lose its significance, since the
local conditions in the vicinity of the vertex are defined
by the Laplace and Poisson equations and are indepen-
dent of the manner of truncation of a body at large dis-
tances.

In mathematical physics, little attention has been
given to the field behavior in the neighborhood of the
singular points of the body surface. One of the few
papers, [6], is devoted to studying the field singularity
in the vicinity of the vertex of a pyramid (various cones
may be considered as limiting cases of pyramids).
1063-7842/01/4610- $21.00 © 21213
However, in [6], the Dirichlet problem is formulated
and solved; i.e., in contrast to our case of a uniformly
charged insulator, the field of a conductor is considered.

BASIC FORMULAS

To be specific, we assume that gravitating or
charged matter fills the region

(1)

where x, y, and z are the Cartesian coordinates; a, b, and
c are some positive parameters (we assume a ≥ b); and,
henceforth, the matter density as well as the gravita-
tional interaction constant are taken to be equal to unity.

Let us first select the functions satisfying the
Laplace and Poisson equations in the upper half-space
only. This is done similarly to the well-known formulas
for the potential of a uniform ellipsoid. We introduce
one of the so-called sphero-conical coordinates λ as a
root of the equation

(2)

the value of this root lies in the interval (–b2, c2) [2].
Topological considerations show that λ is defined
uniquely and continuously in all space. The extreme
values of the above-mentioned interval are attained
only in two cases. The value λ = –b2 is attained in the
sector

(3)

x2

a2
----- y2

b2
-----

z2

c2
---- 0, z 0,><–+

x2

a2 λ+
-------------- y2

b2 λ+
-------------- z2

c2 λ–
--------------–+ 0,=

y 0,
x
z
-- 

 
2 a2 b2–

c2 b2+
----------------.<=
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The largest value λ = c2 is attained asymptotically in
the plane z = 0; i.e.,

(4)

Generally, λ is an even function with respect to each
of the coordinates x, y, and z. Let us introduce the quan-
tities

(5)

where Ds = , and define the
function

(6)

inside the cone and

(7)

outside it.
It may be easily verified that the function U(x, y, z)

and its first derivatives are continuous in all the exterior
half-space. After implicit differentiation of λ(x, y, z), we
verify that the Laplace equation ∆U = 0 and Poisson
equation ∆U = –4π are satisfied inside the cone.

In the lower half-space, we can easily define the har-
monic function

(8)

which coincides with U at z = 0. However, the only
incorrectness, namely, the difference between normal
derivatives, still takes place. Indeed, in view of (4), we
obtain at z = 0

(9)

where A =  and B = , and ∂W/∂z = 0
at the same points.

In order to correct this, we have to add to U and W
the potential corresponding to a simple layer in the
plane z = 0 with the surface density

(10)

where ∂U/∂z is given by (9).

c2 λ–
z

------------------
z 0→
lim x2

a2 c2+
---------------- y2

b2 c2+
----------------+ 

 
1/2–

.=

Ja λ( ) πabc
sd

a2 s+( )D s( )
------------------------------,

b
2–

λ

∫=

Jc λ( ) πabc
sd

s c2–( )D s( )
------------------------------,

b
2–

λ

∫=

Jb λ( ) 2πabc
D λ( )

----------------– Ja λ( )– Jc λ( ),–=

a2 s+( ) b2 s+( ) c2 s–( )

U Ja 0( )x2 Jb 0( )y2 Jc 0( )z2+ +[ ]=

U Ja λ( )x2 Jb λ( )y2 Jc λ( )z2+ +[ ]=

W Ja c2( ) x2 z2–( ) Jb c2( ) y2 z2–( ),+=

∂U
∂z
-------

4πabc
AB

---------------- x2

A2
------ y2

B2
-----+ ,–=

a2 c2+ b2 c2+

σ 1
4π
------∂U

∂z
-------,=
In order to simplify the calculations, we first find the
potential of the layer with the density

(11)

defined inside the ellipse x2/A2 + y2/B2 = 1 in the same
plane.

The corresponding potential has the form

(12)

where l is the positive root of the equation x2/(A2 + l) +
y2/(B2 + l) + z2/l = 1.

This potential is a combination of well-known
potentials of a uniform triaxial ellipsoid and ellipsoidal
homothetic layer in the case of their ultimate oblate-
ness.

Along with Φ, we consider the potential Φ(q) that
differs from the former in replacement of A and B by Aq
and Bq, where q is an arbitrary similarity factor. After
simultaneous integration of the corresponding density
σ(q) and the potential with respect to q, we first arrive at

(13)

which differs from Eq. (10) only in a constant factor.
We perform the corresponding integration for the
potential up to some finite Q in order to avoid formal
divergence. The integral with respect to q, specifically,

(14)

is transformed by the substitution of variable s = q2 with
the corresponding substitution in the lower integration
limit. Then, the lower integration limit Λ is defined as
the root of the equation

(15)

ν 2
π
--- x2

A2
------ y2

B2
-----+ 

  1 x2

A
2

------– y2

B2
-----– 

 
1/2–

,=

Φ AB 1 x2

A2 s+
-------------- y2

B2 s+
-------------- z2

s
----+ + + 

 

l

∞

∫=

× ds

A2 s+( ) B2 s+( )s
----------------------------------------------,

σ q( ) qd

0

∞

∫ x2

A2
------ y2

B2
-----+ ,=

Φ q( ) qd

0

Q

∫ AB q2 qd∫=

× 1 x2

A2q s+
---------------- y2

B2q s+
----------------- z2

s
----+ + + 

  sd

A2q s+( ) B2q s+( )s
----------------------------------------------------

l q( )

∞

∫

x2

A2 Λ+
---------------- y2

B2 Λ+
---------------- z2

Λ
----+ + q2.=
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After integration with respect to q, we obtain

(16)

Φ q( ) qd

0

Q

∫ AB=

× Q2 q2 u( )–( )/2 x2/ A2 u+( ) y2/ B2 u+( ) z2/u+ +( ) Q/q u( )ln+

A2 u+( ) B2 u+( )u
---------------------------------------------------------------------------------------------------------------------------------------------------- u,d

v

∞

∫

where q(u) =  and v
is the root of the equation resulting from (15) by substi-
tution of q by Q.

The asymptotic behavior at large Q, specifically,

(17)

is important for us.

From (17), it follows particularly that

(18)

and

(19)

The logarithmic factor in combination with u–3/2

[see formula (16)] is somewhat more inconvenient. We
can get rid of the logarithm using the integration by
parts; i.e.,

(20)

x2/ A2 u+( ) y2/ B2 u+( ) z2/u+ +

v z2Q 2– z2 x2

A2
------ y2

B2
-----+ 

  Q 4– …+ +=

ud

A2 u+( ) B2 u+( )u
------------------------------------------------

v

∞

∫

=  ud

A2 u+( ) B2 u+( )u
------------------------------------------------

0

∞

∫ 2z
ABQ
------------ O Q 3–( )+–

q2 ud

A2 u+( ) B2 u+( )u
------------------------------------------------

v

∞

∫ x2 z2–

A2 u+
--------------- y2 z2–

B2 u+
---------------+ 

 

0

∞

∫=

× du

A2 u+( ) B2 u+( )u
------------------------------------------------ 2zQ

AB
---------- O Q 1–( ).+ +

1
u
--- 1

A2 u+
--------------- 1

B2 u+
---------------+ + 

  Q
q u( )
-----------ln

v

0

∫ 
 
 

× A2 u+( ) B2 u+( )u( ) 1/2–
du

=  2
D u( )
------------ 1

A2 u+
--------------- 1

B2 u+
---------------

1

q2 u( )
---------------+ +

v

∞

∫–

× A2x2

u A2 u+( )2
------------------------- B2y2

u B2 u+( )2
-------------------------+

 
 
  du

D u( )
------------.
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Thus, we obtain the asymptotic representation

(21)

where the omitted terms, besides the corrections van-
ishing at Q  ∞, are the functions that are harmonic
in the entire space, and, hence, may be disregarded.

Thus, the potential of a cone is given by

(22)

where H is the right-hand side of (21).

INTEGRAL REPRESENTATION 
IN COMPLEX PLANE

The formulas obtained take a more compact form
after complex integration with respect to variables s or u.

We will take all the integrals with respect to u along
the loop L enclosing the origin from the left with both

branches extending to ∞. The  sign changes to the
opposite on the lower branch. Then, repeating the
aforementioned integration by parts, we obtain

(23)

where D1(u) = .

We note that the additive πi to the logarithm in the
right-hand side of (23) is required to compensate for the
imaginary terms that would appear otherwise as a result
of extending this logarithm to the lower half-plane in
tracing the path around the point u = 0, which is a sin-
gular point for the function q(u).

The formulas take a more symmetric form if we use
the substitution u = s – c2 in Eq. (23) and perform com-
plex integration in (6)–(8). Finally, (22) yields the fol-

1
AB
------- Φ q( ) qd

0

∞

∫ x2 z2+

A2 u+( )u
-----------------------

y2 z2+

B2 u+( )u
-----------------------+

0

∞

∫–=

+
x2 y2+

A2 u+( ) B2 u+( )u
-------------------------------------------- du

q2 u( )D u( )
-------------------------- …,+

U x y z, ,( ) abcH x y z, ,( ) z 0≥( ),–

W x y z, ,( ) abcH x y z, ,( ) z 0≤( ),–

u

H
1
2
--- q2 u( ) q u( )ln πi+[ ]

D1 u( )
---------------------------------------------- u,d

L

∫–=

A2 u+( ) B2 u+( )u
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lowing expression for the total potential outside a cone
at z > 0:

(24)

Here, S = x2/(a2 + c2 + u) + y2/(b2 + c2 + u) + z2/u, where
T(λ) is the integration path enclosing the point b2 from
the left with both branches extending to s = λ; T1(λ)
similarly encloses the point c2 from the left with both
branches extending to –∞.

Expression (8) for W has a rather simple form, but
we do not present it here.

Inside the cone, the only difference in comparison
with (24) is that λ is substituted by zero.

Using formula (24), we can easily verify that the
Laplace’s equation is satisfied. The continuity of ∂V/∂z
at z = 0 can also be easily verified by means of the sub-
stitution s = c2 + z2ξ2.

We emphasize that a statement similar to the
Maclaurin–Laplace theorem for ellipsoids [7] follows
from expression (24), since in the exterior region, the
result depends, besides constant factors, only on the
combination of A2 and B2. We note also that the same
results may be obtained by separation of the variables
in the sphero-conical coordinates. The variables r =

 and µ can serve as these coordinates.
Indeed, expression (24) decomposes into the finite sum
of pairs of functions of λ with the factors r2 and r2lnr.
This may be easily verified using the formulas

and

V
πabc

2
------------- x2

a2 s+
------------- y2

b2 s+
------------- z2

s c2–
-------------+ + 

  sd
D s( )
------------

b
2–

λ

∫=

+
abc

4
--------- S Sln

a2 c2 u+ +( ) b2 c2 u+ +( )u
-------------------------------------------------------------------- ud

L

∫

=  
πabc

2
------------- x2

a2 s+
------------- y2

b2 s+
------------- z2

s c2–
-------------+ + 

  sd
D s( )
------------

T λ( )
∫

+
πabc

2
------------- x2

a2 s+
------------- y2

b2 s+
------------- z2

s c2–
-------------+ + 

 

T1 λ( )
∫

× x2

a2 s+
------------- y2

b2 s+
------------- z2

s c2–
-------------+ + 

  sd
D s( )
------------.ln

x2 y2 z2+ +

x2 a2 λ+( ) a2 µ+( )r2

a2 b2–( ) a2 c2+( )
--------------------------------------------, y2 b2 λ+( ) b2 µ+( )r2

a2 b2–( ) b2 c2+( )
--------------------------------------------,= =

z2 c2 λ–( ) c2 µ–( )r2

a2 c2+( ) b2 c2+( )
-------------------------------------------=

x2

a2 s+
------------- y2

b2 s+
------------- z2

s c2–
-------------+ +

s λ–( ) s µ–( )r2

a2 s+( ) b2 s+( ) s c2–( )
-------------------------------------------------------.=
THE CASE OF THE CIRCULAR CONE

The case in which b  a is of a particular interest.
Since, in our formulation of the problem, any harmonic
polynomial can be added to the potential in the entire
space, we can change the form of (7) by adding a closed
integration path enclosing the points s = –a2 and s =
−b2. Indeed, the Laplacian of the additional polynomial
with respect to x, y, and z is reduced to the integral of a
total derivative of a single-valued function over a closed
path, and, hence, is equal to zero. As a result of this
modification, the integration path passes now just
above the real semiaxis from –∞ to λ and just below the
real semiaxis when passed in the opposite direction,
which yields doubling of the integral. There is also a
method for simplifying the evaluations of integral (23)
at a = b. Using the substitution s = c2 – t2, we obtain the
integration path passing somewhat higher than the
entire real axis. This path may be lifted to perform inte-
gration over both sides of the imaginary axis t as far as

singular points allow. The singular points are i  and

i . The contributions to the integral over the
paths on either side of the imaginary axis higher than
the latter point cancel each other. Hence, the integration
path is virtually closed. Then, we use the well-known
rule for the changing of the logarithm value when
changing the singular point. The upper singular point
should be passed around along a circle of a small radius
ε in order to take into account the singularity resulting
from the denominator a2 + c2 + t2 (it is convenient to
reduce the degree of the denominator in one of the
terms by integration by parts). Finally, the exterior
potential of a cone takes the form

(25)

and the interior one,

(26)

where the polar coordinates r and θ are used, and the
constant θ0 is the apex angle of a cone.

λ

a2 c2+

Ve

πr2 θ0 θ0cossin
2

2
--------------------------------------=

× 3 θ0 1–cos
2( ) a θ0 r 2 θ

2
---sinln–ln–sinln–ln 

 

– 3 θ0 3 θ
θ0sin

2

2
---------------+cos–cos

2

Vi

πr2 θ0 θ0cossin
2

2
-------------------------------------- 3 θ0cos

2
1–( ) a θ0 -sinln–ln

=

– r 2
θ
2
---

 3 θ0 3 θ θsin
2

2
------------+cos–cos

2
–cosln–ln

– πr23 θ0 θ0sin
2 θ0 θ0

θ0

2
-----tancossin

2
+cos

2 πr2 θ,sin
2

–
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We also note that the terms proportional to r2(2cos2θ –
sin2θ) in expressions (25) and (26) can be added or sub-
tracted with an arbitrary constant factor. However,
expressions (25) and (26) apparently can be easily
derived using the theory of spherical functions [7]. For
instance, one can easily verify that the Laplace and
Poisson equations in the polar coordinates as well as the
matching conditions at the boundary θ = θ0 are satis-
fied.

CONCLUSION
The potential of a real cone truncated at a certain

finite distance naturally differs from those described by
our formulas. However, inside the remaining part of a
cone, the difference between the functions (with its first
derivatives) is continuous, satisfies the Laplace’s equa-
tion, and is bounded at the vertex of a cone. Therefore,
the difference is a harmonic function and can be
expanded in the ordinary series of spherical functions.
In particular, the truncation can be considered as a self-
similar process of increasing the retained part to an infi-
nite size. As follows from the consideration of dimen-
sionalities, such a way of determining the potential
yields a single-valued result accurate to a harmonic
polynomial of the second degree. The resulting limiting
function increases at large distances no faster than
r2lnr. Therefore, this function has to coincide with our
expressions (25) and (26) to the additive harmonic
polynomial of second degree.

The formulas in this paper can yield a meaningful
result only for the calculations in some volume rather
than on individual surfaces. The only exception is the
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
singularity in the vicinity of the vertex of a cone. Spe-
cifically, except for an arbitrary linear function of coor-
dinates, the principal part of the potential should have
the form f(θ, ϕ), where f is a function of the angular
coordinates θ and ϕ.

The expressions obtained have a rather compact
form and may be used in various problems of mathe-
matical physics, in particular, in the theory of figures of
equilibrium of celestial bodies.
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Abstract—An electrodynamic model that describes the dispersion of magnetostatic surface waves in fer-
rite/superconductor structures is suggested. On its basis, a new approach to determining the microwave sheet
resistance RS of superconducting films in a magnetic field is elaborated. The values calculated (RS = 0.20–
0.96 mΩ) agree with results obtained by the Tauber method. For YIG/YBCO structures, the controllable phase
shift is about 1.5π when the depth of magnetostatic wave penetration into the YBCO film varies from 2.0 to
0.8 µm. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The propagation of electromagnetic waves in fer-
rite/superconductor films is of particular interest for
both fundamental research and applications. Specifi-
cally, the films can be used in microwave devices that
are capable of controlling the phase and the propaga-
tion velocity of a signal [1, 2]. As ferromagnetic mate-
rials, yttrium iron garnet (YIG, Y3Fe5O12) films are usu-
ally used. In these films, excited magnetostatic surface
waves (MSSWs) propagate with low microwave loss
[3]. The combination of YIG films and high-tempera-
ture superconductors (HTSCs) makes it possible to
considerably improve the performance of microwave
devices and provides an additional means for control-
ling microwave propagation [4].

It is the aim of this work to study the effect of the
depth of magnetostatic wave (MSW) penetration into
the superconducting film on the MSW phase shift in the
YIG/YBCO structure, to set a correlation between the
penetration depth and the HTSC critical current, and to
analyze the results of the microwave experiment on the
magnetooptic visualization of the HTSC field profile.

To investigate MSW propagation in ferrite/super-
conductor structures, one must (1) analytically charac-
terize the interaction of electromagnetic waves with the
layered YIG/VBCO system, (2) derive expressions that
fit experimental data, and (3) carefully study the prop-
erties of the HTSC films using appropriate local diag-
nostic tools (i.e., take the spatial distribution of super-
conductor parameters).

In this work, we use a complex approach to studying
the behavior of HTSC films in a magnetic field. Our
approach combines the electrodynamic simulation and
experimental observation of the MSW dispersion in the
1063-7842/01/4610- $21.00 © 21218
layered ferrite/superconductor structure. Also, we mea-
sured the parameters of the as-deposited films using
magnetooptic imaging. It is shown that the microwave
sheet resistance of the YBCO films subjected to an
external magnetic field can be determined by compar-
ing MSW theoretical and experimental dispersion char-
acteristics.

PHYSICAL MODEL OF MSW PROPAGATION 
AT THE FERRITE/SUPERCONDUCTOR 

INTERFACE

Consider an MSW propagating in a layered super-
conductor–insulator–ferromagnetic (SIF) structure
shown in Fig. 1, where B and g are the constant mag-
netic field and the MSW vectors, respectively. Let the
crystallographic c axis of the YBCO lattice coincide
with the x direction and the axes a and b, with the y and
z directions, respectively. Thus, the axis c runs normally
to the substrate surface.

When considering wave processes in a supercon-
ductor, one should remember that the London penetra-
tion depth λL of the magnetic field is a tensor (for detail,
see [5]):

(1)

The penetration depth is a highly anisotropic param-
eter and depends on a variety of factors, such as the cat-
ionic and oxygen composition of the film, structure
ordering, the presence of weak links, etc. In [5, 6], the

λL

0 λ c λ c

λab 0 λ c

λab λ c 0

.=
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penetration depths λc and λab were studied as a function
of the YBCO film composition. The spread of these val-
ues is significant; the most reliable value of the ratio
λab/λc for good YBCO films varies from 4 to 6.6. As a
result, the diagonal elements of the conductivity tensor

(2)

(where ω is the circular frequency and µ0 is the perme-
ability of a vacuum) turn out to exceed off-diagonal ele-
ments by about six orders of magnitude. Hereafter, the
latter are set equal to zero.

The ferromagnetic medium will be described by the
permeability tensor [7]

(3)

where

γ is the gyromagnetic ratio, H0 is the internal magnetic
field, and M0 is the saturation magnetization.

A solution to the wave process at the ferromagnetic–
superconductor interface is found from the first two
Maxwell equations

(4)

In terms of the two-fluid model, the total current
density in a superconductor is the sum of the current
densities in the superconducting and normal phases: J =
JS + JN. Represent the respective current densities as

(5)

where σS and σN are the conductivities of the supercon-
ducting and normal phases.

With the mutual arrangement of the magnetizing
field and the wave vector in Fig. 1, a so-called magne-
tostatic surface wave (MSSW) appears in the structure
[7]. In the coordinate system adopted, the condition
∂/∂z = 0 is valid for MSSWs. A solution can then be
obtained in the form of two, TE (Ex, Hx, Hy) and TM (Hz,
Ex, Ey), independent modes.

Consider the transverse electric (TE) mode, since
just this mode corresponds to the MSSW. Expressing
the magnetic field components Hx and Hy through the

σS
1

λT
2 iωµ0

------------------=

µ
µ iµa 0

iµa– µ 0

0 0 1 
 
 
 
 

,=

µ
ωH ωH ωM+( ) ω2–

ωH
2 ω2–

---------------------------------------------, µa

ωωM

ωH
2 ω2–

-------------------,= =

ωH γH0, ωM 4πγM0,= =

curlE iωµ0H , curlH– iωε0 J.+= =

JS σSE, JN σNE,= =
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electric field component Ez, we come to the equation
for the superconductor

(6)

Similarly, for the ferromagnetic film and for free
space, we obtain

(7)

(8)

The partial solution for each of the media are written
as follows:

(9)

for the ferromagnetic film (0 < x < L),

(10)

for the air gap (L < x < (L + t)),

(11)

for the superconducting film [(L = t) < x < (L + t + d)],

(12)

for the free space x > (L + t + d), and

(13)

for the free space x < 0.

∂2Ez

∂x2
----------

∂2Ez

∂y2
---------- ω2ε0– µ0 iωµ0σn+–(–+

+ iωµ0σ33 )Ez 0.=
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Ez A k f x L–( )( )exp (B k f x–( )exp+( ) iky–( ),exp=
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Fig. 1. CIF layered structure.
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Using the usual boundary electromagnetic condi-
tions—the equality of the tangential components of the
vectors E and H at the interfaces—we can obtain the
dispersion relation. It is transcendental and rather com-
plicated, so that the ω vs. k dependence cannot be rep-
resented in the explicit form:

(14)

where

and s = ±1 defines the direction of wave propagation.
Formula (14) is the dispersion relation for the spe-

cific case t = 0, d  ∞ (see Fig. 1). In going to the
limit cases of a free ferromagnetic film (σs = 0, σn = 0)
and a film screened by a perfect metal (σs = 0, σn  ∞),
expression (14) transform into the Damon–Eshbach [8]
and Sashadri [9] equation, respectively.

The equations were solved numerically. The graphs
for the MSSW spectrum are shown in Fig. 2. They are
constructed for two penetration depths taken from the
range where the possibility of their variation is the
highest. As follows from Fig. 2, the change in the pen-

2kL–( )exp  = 

sµe 1 s
µ
µa

-----+ + 
  sµe

k
ks

---- 1 s
µ
µa

-----– 
 – 

 

sµe 1 s
µ
µa

-----–+ 
  sµe

k
ks

---- 1 s
µ
µa

-----+ 
 – 

 
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µe

µ2 µa
2–

µa

-----------------=

2.85
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Fig. 2. Theoretical dispersion properties of MSSWs in the
HTSC/YIG layered structure. jc = (1) 3 × 109 and (2) 7 ×
109 A/m2.
etration depth from 2.0 to 0.8 µm (which corresponds to
the change in the critical current density jc from 3 × 109

to 7 × 109 A/cm2 in an external magnetic field of
570 Oe) gives an MSSW phase shift of 20% at a fre-
quency of 3 GHz. The fact that the MSSW dispersion
relations are sensitive to the field penetration depth
allows the sheet resistance and the penetration depth to
be measured from the phase shift under an applied mag-
netic field. In addition, this effect seems to be promis-
ing for microwave devices that control the phase shift
and the propagation rate of a signal.

EXPERIMENTAL STUDY 
OF MSW DISPERSION

We conducted a series of experiments on measuring
the dispersion properties to check the validity of the
model results for MSSW propagation. Figure 3 shows
the waveguide part of a special measuring mockup. The
mockup consists of the input and output microstrip
microwave transducers, an epitaxial YIG film grown on
a GGG substrate (so-called spin-wave guide), and an
HTSC film. The YIG film waveguide is placed on the
transducers and the HTSC film. In the experiments, the
YIG film was magnetized by a uniform constant mag-
netic field tangent to the ferromagnetic film surface and
normal to the MSW propagation direction. To perform
cryogenic measurements, the mockup was placed into
a liquid-nitrogen vessel. Three HTSC films were stud-

Input

Output

GGG substrate

YIG film

YBCO film

Microstrip
transduser

B
–

Fig. 3. Measuring mockup for studying the MSW disper-
sion.
Parameters of the YBCO films under study

Film no.
jc, A/m2

TC, K d, nm σN, Ω–1 λL, nm RS, mΩ
T = 15 K T = 77 K

1 2.7 × 1010 7.2 × 109 89 500 6.5 × 106 670 1.26

2 1.2 × 1010 3 × 109 89 500 6.5 × 106 930 2.95

3 9.8 × 1010 2.6 × 1010 94 500 6.5 × 106 370 0.20
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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ied (see table). The measurements were carried out in
three stages. First, using the cryogenic measuring
mockup, we studied the dispersion properties of the
MSSWs in several Y3Fe5O12/YBa2Cu3O7 (YIG/YBCO)
layered structures. Then, microbridges were patterned
by lithography on the YBCO films and examined by
magnetooptic (MO) imaging. The numerical process-
ing of the MO images makes it possible to obtain the
current density distribution and to determine the critical
current density jc of the microbridges. Finally, the Lon-
don penetration depth was determined by an indepen-
dent technique from the values obtained.

After the microwave measurements, we plotted the
dispersion properties of the MSSW propagating in the
YIG/YBCO structure (Fig. 4). Here, the theoretical
dependences ω(k) are depicted by the continuous
curves. When calculating the theoretical dependences,
we used the values of λL and σN for the HTSC films, as
well as their thickness. One of these parameters can be
used as an adjustable parameter. In our experiments, the
field penetration depth in the superconducting film
served as an adjustable parameter. For the conduction
σN of the normal phase, we took the literature value
6.5 × 106 Ω–1. Note that the numerical values used are
typical of superconducting films with different super-
conducting properties. Using the value of λL obtained
by fitting, we calculated the other parameters of the
superconducting films. The sheet resistance of the
superconducting films was estimated by the formula

(15)

which is valid for d ≤ 2λL [10].
At a frequency of 3 GHz and for a tangent magnetic

field H = 570 Oe, RS for the different YBCO films was
found to vary between 0.2 and 1.6 mΩ .

Thus, the experiments performed allowed us to deter-
mine the parameters of the HTSC films under the mag-
netic field (see table). Their values are consistent with
experimental data obtained by other techniques [11, 12].

MAGNETOOPTIC INVESTIGATION 
INTO THE ELECTROPHYSICAL PARAMETERS 

OF THE YBCO FILMS

We determined the magnetic field penetration depth
as follows. The basic parameters of the superconduct-
ing film that define the penetration depth are critical
current density and current density distribution over the
cross section of the film. The latter in the microbridge
was studied with the MO technique described in detail
in [13–15]. In the superconductor, the current density
distribution was simulated with the Been model
[16, 17]. Figure 5 shows the current density distribu-
tion, where curve 1 depicts the Been model distribution.
The actual current density distribution (curve 2) taken
from one of the YBCO microbridges was obtained by

RS d( ) ωµ0( )2λL
4

d
-----σN ,=
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numerically processing the MO images of the bridge
when the current induced by the external magnetic field
passed through it. Figure 5 shows also the microbridge
region that corresponds to the vortex lattice penetrating
toward the bridge center. In this case, the penetration
depth is given by

(16)

where B0 is the external magnetic induction.

At d < 2λL, the London equation yields, along with
formula (16), the expression

(17)

λ⊥
B0

µ0 jc

----------,=

λ⊥
2λL

2

d
---------.=

0 2000
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k, 1/m
4000 6000 8000
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2

Fig. 4. Experimental dispersion characteristics. Curve num-
ber corresponds to film number.
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Fig. 5. Theoretical and experimental distributions of the
current density over the cross section of the superconduct-
ing bridge.
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Fig. 6. Results of the MO imaging of the HTSC bridges.
Expression (17) was analyzed in [18].
Thus, the critical current density and the London

penetration depth turn out to be interrelated. One can
determine the field penetration depth, knowing the crit-
ical current density and the current density distribution
in the film. The joint use of expressions (16) and (17) is
consistent with the physical nature of the vortex struc-
ture in a superconductor, and the procedures to derive
these expressions are not in conflict.
With such an approach, we studied a series of the
films that were previously incorporated into the SIF
layered structure on which the dispersion characteris-
tics were measured.

Figure 6a demonstrates the MO image from a part of
microbridge 1. This sample is homogeneous and does
not contain visible defects. Using the MO images and
calibration measurements, we obtained the spatial dis-
tributions of the magnetic field and current density in
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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the bridge (see Figs. 6b and 6c; the curves on the right
and on the left were taken at magnetic fields of 20 and
60 Oe, respectively), as well as the temperature depen-
dences of the critical current density in the films stud-
ied. The dashed lines refer to the theoretical depen-
dences for jc that were constructed with the Been
model. The continuous lines demonstrate the experi-
mental dependences obtained by the numerical analysis
of the MO images. From the experimental data on the
current density distribution in the microbridges and the
numerical simulation, we determined the penetration
depths for the films considered and constructed their
temperature dependences.

The theoretical and experimental temperature
dependences of the penetration depth for the micro-
bridges are shown in Fig. 7. They can be described by
the relationship [10]

(18)

where Tc is the critical temperature. The literature val-
ues for the parameter γ, which governs the run of the
temperature dependence, vary from 1.5 to 2.0. It
depends on the presence of weak links (SNS, SIS, etc.)
in a superconductor [19, 20].

Our results are best approximated with γ = 6. A rea-
son for such a large discrepancy between our data and
those cited in the literature may be associated with the
fact that the films investigated have an ordered structure
and a small concentration of weak links identified pre-
viously in [5, 19, 20]. Such highly oriented defect-free
epitaxial films exhibit a slight temperature dependence
of λL in the low-temperature region and a drastic jump

λL T( ) 1
T
Tc

----- 
  γ

–
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Fig. 7. Theoretical and experimental temperature depen-
dences of the London penetration depth for microbridges 1
and 2. Dashed curve 3 corresponds to formula (18) at γ = 2.
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near the critical temperature. For these films, the
parameter γ is relatively large.

CONCLUSIONS

The table lists several physical parameters of the
films that were obtained by MO imaging and by mea-
suring the MSSW dispersion in the CIF structure. From
these results, the following conclusion can be made.

(1) The temperature dependence of the critical cur-
rent density, as well as their analysis, indicate that the
YIG/YBCO films grow epitaxially or have a highly
ordered structure. At the same time, the films offering
high superconducting properties (film 3 in the table)
exhibit a relatively large magnetic field penetration
depth (≈930 nm). A possible explanation for this fact is
that the YBCO films have a mosaic structure with dif-
ferently oriented blocks (along with the basic (001)
phase, the YBCO films contain (100)-oriented blocks).
Another reason may be the presence of superconduct-
ing inclusions of another cationic composition that
increase the effective penetration depth.

(2) The difference between the superconducting
parameters in the HTSC films is the reason for the sig-
nificant modification of the MSW dispersion when the
waves cross the ferrite/superconductor interface. The
decline in the critical current density in the HTSC film
from 7 × 109 to 3 × 109 A/m2 (which corresponds to the
change in the field penetration depth from 0.8 to 2.0 µm
under an applied field of 570 Oe) causes a phase shift
of about 20% for the MSW at the YIG/YBCO interface.
In the measuring mockup used in this work (Fig. 3), the
phase shift was about 1.5π at a spacing between the
microstrip transducers of 7.25 mm.

(3) Among the YBCO films studied, film 3 (see the
table), which offers the high superconducting parame-
ters, is of special interest. Its cationic composition devi-
ates from the stoichiometric 1 : 2 : 3 proportion and is
close to 2 : 3 : 5. The fact that Y2BaO3Cu5Oz HTSC
films have high superconducting properties has been
reported previously (see, e.g., [12]). This work supports
the assumption that YBa substitutional cation defects
present in the lattice stabilize the HTSC phase and
improves the superconducting parameters of the YBCO
films.

Thus, we performed the MO and microwave inves-
tigation of the electrophysical parameters and the struc-
ture of the HTSC films. The results obtained by these
methods are shown to correlate. It has also been dem-
onstrated that the propagation of MSWs at the
YIG/YBCO interface can be controlled both electri-
cally and magnetically. The use of HTSC films and
their thermostatic control at cryogenic temperatures
reduce microwave loss during MSSW propagation and
open up possibilities for MSW-based devices with
unique parameters.
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Abstract—The probabilities and the effective cross sections of collision-induced one-electron charge exchange
between singly charged and four-charged heavy Xe, Cs, Ba, Pb, Bi, and U ions at energies E > 0.1 keV/u are
calculated by a method of multichannel normalization in the impact parameter representation. The cross sec-
tions are rather large with a maximum σm ≈ 10–15 cm2 at relative energies Em ≈ 10–30 keV/u. For collision ener-
gies E < 10 keV/u, the cross sections sharply decrease with growing resonance defect of the reaction. At high
energies E > 1 MeV/u, the charge exchange proceeds largely by the capture of inner shell electrons of the ionic
targets. The charge exchange cross sections calculated for low-charged Xe, Cs, Ba, Pb, Bi, and U ions are com-
pared with available theoretical and experimental data. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Charge exchange and ionization that occur when
heavy low-charged ions like Bi+, U4+, etc. collide with
atoms and ions are of great interest for the production
of long-lived ion beams in accelerators, ion thermonu-
clear fusion, and other applications [1–3]. Processes
that change the charge state of the ions when they col-
lide with atoms and molecules of a residual gas at ener-
gies E = 1–100 MeV/u define the lifetime of ion beams
in accelerators, and ion–ion Coulomb interaction tak-
ing place in the beam at energies E = 1–10 keV/u spec-
ifies the beam quality (i.e., the ion loss). Available
experimental and theoretical data for the effective cross
sections of charge exchange and ionization that occur
when heavy low-charged ions collide with each other
are very scarce [1, 3]; therefore, relevant calculations
are of great interest.

For heavy atoms or ions with a charge q < 10 and a
number of electrons of about 50–100, the interaction
cross section is most convenient to calculate using the
Thomas–Fermi statistical method [4] or Monte Carlo
method of classical trajectories [5]. As far as we know,
however, such calculations have not been performed for
the systems under study. Estimations carried out by
other techniques are known only for a few reactions [3].

In this article, we consider one-electron charge
exchange during a collision of heavy low-charged ions,

(1)

at relative energies E ≥ 1 keV/u. Charge exchange is
known to be a complex process involving particle redis-
tribution, as a result of which the ionic and atomic com-
positions before and after the collision differ. There-
fore, these reactions are more difficult to study theoret-

XA+ YB+ X A 1–( )+ Y B 1+( )+,++
1063-7842/01/4610- $21.00 © 21225
ically than electron–atom collisions. For example, the
parameters of electron–atom collision can today be
estimated with an accuracy of 10–30%. At the same
time, to calculate the cross sections of ion–atom colli-
sion even up to a factor of 2 is a challenge, especially if
the collision involves particle redistribution. This is
associated with a number of fundamental difficulties
arising in describing such processes: the nonorthogo-
nality of the wave functions of the initial and final states
of the entire system, different interaction potentials
before and after the collision (so-called post–prior dis-
crepancy), the presence of Coulomb interaction
between resulting ions in the final channel and its
absence in the initial channel upon ion–neutral colli-
sion, etc. (see, e.g., [1]).

In this work, we suggest a method of multichannel
normalization in the impact parameter representation to
calculate the probabilities and the effective cross sec-
tions of one-electron charge exchange (1). The method
uses the relationship between the quasi-classical and the
quantum-mechanical charge exchange amplitudes that
was obtained in [6, 7] and adequately describes charge
exchange between light atoms and ions [7, 8]; therefore, it
seems to be promising for the characterization of charge
exchange processes during heavy ion collisions.

In what follows, we report preliminary results for
the cross sections of charge exchange between singly
charged and four-charged ions in the relative energy
range E * 1 keV/u for the reactions

(2)

(3)

where X = Xe, Cs, Ba, Pb, Bi, or U.

X1+ X1+ X0+ X2+,++

X4+ X4+ X3+ X5+,++
001 MAIK “Nauka/Interperiodica”
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Low-charged ions of these atoms are today of great
interest for ion thermonuclear fusion [2]. Unless other-
wise stated, we use the atomic unit system e = me = " = 1.

RELATIONSHIP BETWEEN THE QUASI-
CLASSICAL AND QUANTUM-MECHANICAL 

AMPLITUDES OF CHARGE EXCHANGE

In [6–8], the charge exchange between the nlm com-
ponents of a target and a resulting ion has been consid-
ered:

(4)

where n, l, and m are the principal, orbital, and mag-
netic quantum numbers, respectively, and the relation-
ship

(5)

between the quasi-classical, a(r, v ), and the quantum-
mechanical, f(k, v ), exchange amplitudes has been
derived in the Brinkman–Kramers approximation (the
first-order modification of the perturbation theory
[1, 9]). (Here, v  is the relative velocity of the colliding
particles and p is the impact parameter.)

In (5), integration is over the plane P, given by

(6)

where kv is the scalar product of the vectors and ω is
the resonance defect, i.e., the difference between the
binding energies of an optical (captured) electron in the
initial, 0, and final, 1, state:

(7)

The resonance defect can be both positive and neg-
ative. The vector k in Eqs. (5) and (6) is related to the
momentum transfer vector Q as

(8)

Expression (5) has been obtained under the assump-
tion that the trajectory of the incident ion is straight and
takes into account the translational factor exp(ivr) of
the electron being captured. According to (5), the radial
part of the exchange amplitude for the n0l0m0 – n1l1m1
transition has the form

(9)

Xq A n0l0m0( ) X q 1–( )+ n1l1m1( ) A+,+ +

a r v,( ) 1

v 2π( )2
------------------ f k v,( )eikrd2k
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kv ω– v 2
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k Q
v
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v
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a ρ v,( ) 4
v
---- k kCl0m0
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0

∞
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× J∆m kρ( )Fn0l0
k2 ω/v v /2–( )2+( )

× Fn1l1
k2 ω/v v /2+( )2+( ),
where

(10)

(11)

 is the Legendre polynomial, and Jm(x) is the Bessel
function.

The functions F for the initial and final states are
defined by the radial integrals

(12)

(13)

where jl(x) is the spherical Bessel function and V(r)
characterizes the interaction of the resulting ion X(q – 1)+

with an optical electron whose radial functions P(r) are
normalized as

(14)

In the impact parameter representation, the
exchange cross section is given by

(15)

where W(ρ, v ) = |a(ρ, v )|2 is the exchange probability.

HYDROGEN-LIKE APPROXIMATION

For the charge exchange of nuclei on hydrogen-like
systems,

(16)

expressions for the probabilities and the cross sections
can be obtained in the closed analytical form by using

Clm
2l 1+( ) l m–( )!

l m+( )!
-------------------------------------- 

 
1/2
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Z1 Z0 n0l0m0( ) Z1 n1l1m1( ) Z0+ +
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the H-like wave functions of an optical electron in the
initial and final states:

(17)

where (r) is the radial wave function of a hydrogen
atom and the Coulomb interaction potential has the
form V(r) = –Z1/r.

For the exchange from the ground 1s0 state,

(18)

to the final state 1s ≤ nl ≤ 3d, the exchange amplitudes
a(ρ, v ) are

(19)

(20)

Pnl
z r( ) Z1/2Pnl

H Zr( ),=

Pnl
H
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Here, Kn(r) are the Macdonald functions with the
asymptotics

(21)

Formula (19) for the resonance exchange probabil-
ity (the resonance defect ω = 0) coincides with that
obtained in [9] for the charge exchange of protons on
hydrogen atoms in the ground state, as well as with the

formula [10] (up to a factor of /2) obtained by the
strong coupling method for two levels. The above ana-
lytic formulas for the probability amplitudes can be
used for estimating the probability distribution and
exchange cross sections over the quantum numbers l
and m. They can also be applied for estimating the mul-
tielectron capture probability when multiply charged
ions collide with atomic and ionic targets.

For n0 – n1 transitions,

(22)

(that is, for those averaged over the quantum numbers l
and m), the summation of the exchange probabilities is
impossible even in the hydrogen-like approximation. In
this case, however, one can take advantage of the prop-
erties of the quantum amplitude for the n0 – n1 transi-
tions. The radial part of this amplitude has the form [8]

(23)

[k is given by (8)].

Using relationship (5) with the amplitude (k,

v ) and also the fact that the resonance defect for reac-
tion (22) depends on the quantum numbers l and m only
slightly, one obtains for the exchange probability aver-
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aged over l and m1

(24)

The exchange cross section for the n0 – n1 transition
calculated with the quantum [expression (23)] or quasi-
classical [expression (24)] amplitude coincides with the
result obtained in [12]:

(25)

Formula (25) is the Brinkman–Kramers approxima-
tion and is applied for estimating the charge exchange
cross sections at high collision energies E > 25 keV/u
(v  > 1 a.u.).

EXCHANGE PROBABILITY NORMALIZATION 
IN THE IMPACT PARAMETER 

REPRESENTATION

The exchange probabilities and cross sections calcu-
lated by formulas (9)–(15) are often one order of mag-
nitude higher than those found experimentally. This is
especially true when the relative velocities are low, v  <

. The reason is that relationship (5) has been
obtained in the first order of the perturbation theory.
Therefore, it can violate the condition of flux conserva-
tion for incident and scattered particles. In other words,
the unitarity of the scattering matrix is violated, hence,
larger (greater than unity) transition probabilities. This
weakness is usually removed by applying more accu-
rate computing procedures, such as the method of
strong coupling between atomic states or the method of
charge exchange probability normalization in the
impact parameter representation (see, e.g., [1, 10]).

1 Such a procedure of calculating the amplitudes averaged over the
magnetic and orbital quantum numbers is common in the theory
of atomic collisions. For example, it was used in [11] to calculate
the probabilities of the transitions between highly excited atomic
levels.
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In this work, we use a method of multichannel nor-
malization of the exchange probability for the 0–1 tran-
sition in the form

(26)

where the summation in the denominator is over all
possible final exchange channels j for the resulting ion
X(q – 1)+, including the exchange into the state 1 under
study.

The physical meaning of formula (26) is straightfor-
ward: if the probabilities W01 are small, the normalized

probability is also small,  ≈ W01. Even if the unnor-
malized probabilities W01 are large (W01 @1), the nor-

malized value remains small,  ≤ 1. Generally
speaking, the sum in the denominator of (26) should be
complemented by the probabilities of ionization chan-
nels occurring. These channels arise upon colliding
heavy particles. However, in the low-energy region,
where the effect of normalization is essential, the ion-
ization is negligible in comparison with the charge
exchange (see, e.g., [1]) and is not considered in the
article.

The total cross sections of charge exchange for mul-
tielectron systems are difficult to calculate with formu-
las (9)–(15) and (26) even in a narrow energy range. It
is necessary to estimate the wave functions and matrix
elements of many excited nl states of the X(q – 1)+(nl) ion,
whose contributions to the total cross section may be of
the same order. In addition, one should take into
account the possibility of inner shell electrons of the
target being captured [13]. Note also that the energies
of the excited levels in heavy ions are unknown in most
cases. At the same time, for a number of applications, it
is necessary to estimate the total exchange cross sec-
tions without resort to the numerical evaluations of the
energy levels and the radial wave functions. This can be
accomplished with the multichannel normalization
method suggested and using hydrogen-like wave func-
tions for electrons captured.

The wisdom of using H-like functions is the follow-
ing. First, it is known [1] that the electron capture in the
highly excited (hydrogen-like) states of a resulting ion
makes a great contribution to the total cross section of
charge exchange. At large collision energies, the
exchange cross sections depend largely on the capture
of inner shell electrons of the target, which are located
near the unscreened nucleus and are also hydrogen-
like. Second, the use of the hydrogen-like functions
considerably simplify the calculation of the exchange
total cross sections, i.e., those averaged over the quan-
tum numbers m and l. This is associated with the special
form of exchange matrix elements, which are the Fou-
rier components of the wave functions of an optical
electron [12]. In this article, the problem of normalizing

W01
N ρ v,( )

W01 ρ v,( )
1 W0 j ρ v,( )

j

 

∑+
-----------------------------------------,=

W01
N

W01
N
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the probabilities and cross sections in the impact
parameter representation with H-like wave functions is
solved by using the CAPTURE program, described in
the next section.

NUMERICAL CALCULATION OF EXCHANGE 
PROBABILITIES AND CROSS SECTIONS

The probabilities and the cross sections of charge
exchange were calculated with the CAPTURE program
by using formulas (9)–(15) and (26) and hydrogen-like
functions (17) with the effective charge

(27)

where lnl is the binding energy of an electron in the ini-
tial or in the final state and n is the principal quantum
number.

Generally speaking, one can use H-like wave func-
tions with an integer charge Z (as a rule, this charge cor-
responds to the spectroscopic symbol of an atom or an
ion) and the effective quantum number

(28)

Functions with the effective (noninteger) quantum
numbers n* were used, for example, to calculate the
dipole and quadrupole matrix elements in the Bates–
Damgaard tables [14]. For the charge exchange prob-
lem, approximations (17) and (27) with the integer n
are necessary, since they allow the analytical averaging
over the orbital and magnetic quantum numbers l and
m, thereby greatly simplifying the procedure of calcu-
lating the probabilities and the cross sections.

In (13), the interaction potential V(r) is taken in the
form of Coulomb potential V(r) = –Z*/r, where Z* is
the effective charge (27) of the resulting ion X(q – 1)+.
The program allows the normalization over an arbitrary
number of the channels; in practice, however, j < 50
final states with the principal quantum numbers n will
suffice. Both total and partial (with respect to the prin-
cipal quantum number n) probabilities and cross sec-
tions (i.e., those averaged over the orbital, l, and mag-
netic, m, quantum numbers of the initial and final
states) can be calculated.

In the CAPTURE program, the unnormalized prob-
abilities W01 (26) of one-electron charge exchange [are
multiplied by the factor 0.295N, where N is the number
of equivalent electrons in the capturing target shell and
the numerical coefficient 0.295 provides the correct
asymptotics of the cross section at large energies [1].

In Figs. 1–10, the exchange probabilities and cross
sections calculated with the CAPTURE program by
formulas (9)–(15), (17), (26), and (27) are compared
with experimental data and with results obtained by
other techniques. Figures 1–3 show the probabilities
(more exactly, the values of ρW(ρ)) of charge exchange
for protons and α on hydrogen and lithium atoms. In
the case of hydrogen atoms H(1s) (Figs. 1, 2), the elec-

Z* n 2lnl,=

n* 2lnl/Z
2( ) 1/2–

.=
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tron capture probabilities calculated by the multichan-
nel normalization method agree well with those
obtained by the method of strong coupling of molecular
states and by the classical approach.

The variation of the capture probabilities for elec-
trons from different target shells when the α particles
collide with the Li atoms is demonstrated in Fig. 3 for
the velocities v  = 0.8, 1.3, and 2.0 atomic units (a.u.)
(1 a.u. ≅  2.2 × 108 cm/s). For v  = 0.8 a.u., the 2s outer
shell electron is captured most probably at v  = 1.3 a.u.,
the capture probabilities for the 2s and 1s electrons are
nearly the same; and at v  > 2.0 a.u., the 1s inner shell
electrons are captured most probably. For the reaction
He2+ + Li(1s22s), the total cross section of the exchange

0 2 4 6 8 10 ρ

0.2

0.4

0.6

0.8

1.0
ρW(ρ)

0 2 4 6 8 10 ρ

0.5

1.0

1.5

2.0
ρW(ρ)

Fig. 1. Calculated probabilities ρW(ρ) of the 1s electron of a
hydrogen atom being captured by a proton (H+ + H(1s) 
H + H+) in all final states of the resulting H atom as a func-
tion of impact parameter ρ. The relative velocity v  = 1 a.u.
Dotted curve, classical calculation [15]; dashed curve,
method of strong coupling between molecular states [16];
and continuous curve, multichannel normalization method
(this work).

Fig. 2. The same as in Fig. 1 for He2+ + H(1s)  He+ +
H+ reaction.
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calculated from formulas (9)–(15), (17), (26), and (27)
is in satisfactory agreement with experimental data
[17, 18] and other calculations.

Figure 4 depicts the probabilities of outer shell elec-
trons being captured in all states of resulting Bi0+ and
U3+ ions upon Bi1+ + Bi1+ and U4+ + U4+ collisions at the
relative velocity v  = 1 a.u. In these figures, the values
of ρW(ρ) correspond to the integrand in (15) and have
a maximum at the impact parameters ρ ≈ 2.2a0 and
3.8a0, where a0 is the Bohr radius. As for the normal-
ized exchange probabilities, W(ρ)  const at ρ  0:
W(ρ = 0) = 0.87 and 0.97 for the Bi1+ and U4+ ions,
respectively. At ρ  ∞, they exponentially drop
according to the asymptotic behavior of Macdonald
functions (21).

0 2 4 6 8 10
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0.1

ρW(ρ)

0.2

0.3

0.4

0.5

0.6

0.7
v  = 2.0 a.u.

0

0.2

0.4

0.6

v  = 1.3 a.u.

0

0.4

0.8

1.2

1.6

2.0

2.4

2.8
v  = 0.8 a.u.

0.8

1.0

Fig. 3. Variation of the probabilities of capturing the outer
shell, 2s, and the inner shell, 1s, electrons of a lithium atom
Li(1s22s) upon collision with He2+ ions. Continuous
curves, capture of the 2s electron; dotted curves, capture of
the 1s electron (this work).
The charge exchange total cross sections for the sin-
gly charged and four-charged ions are given in Figs. 5
and 6, respectively, and the table lists their values as a
function of relative energy E [keV/u] ≅  25v 2 [a.u.]. The
table also shows the resonance defects ω for the charge
exchange reactions considered. From Figs. 5 and 6, it
follows that the cross sections are rather large, despite
the Coulomb character of the interaction between the
colliding ions, and peak at E ≅  10–30 keV/u, that is, at
v  ≅  1 a.u. For the X1+ + X1+  X0+ + X2+ collisions, the
maximal cross sections are σm ≈ 0.5–3.0 × 10–15 cm2,
while for the X4+ + X4+  X3+ + X5+ collisions, σm ≈
5–8 × 10–16 cm2. At E < 10 keV/u, the cross sections
rapidly decrease with increasing resonance defect ω
and become dependent on the electron shell configura-
tion in the colliding ions.

For the four-charged ions (Fig. 6), the exchange
cross sections were calculated in a wider energy range.
Unlike Fig. 5, where the cross sections were calculated
under the assumption that only the outer shell electron
of the target is captured, the sections in Fig. 6 were esti-
mated with regard for all inner shell electrons, which
contribute significantly at high collision energies. The
cross section of charge exchange on neutral uranium
atoms is also given for comparison (Fig. 6, curve 1). As
was expected, the section is large (≈1.1 × 10–14 cm2) at
low energies and is nearly independent of the collision
energy. This value is well fitted by the conventional
expression for cross section when multiply charged

0 2 4 6 8 ρ

0.5

1.0

1.5

2.0

ρW(ρ)

2.5

3.0

Fig. 4. Probabilities ρW(ρ) of capturing the inner shell elec-
tron for the reactions Bi+ + Bi+(6p2)  Bi0+ + Bi2+ and
U4+ + U4+(5f 2)  U3+ + U5+ in all final states of the
resulting Bi0+ and U3+ ions as a function of impact param-
eter ρ. The relative velocity v  = 1 a.u. Continuous curve,
bismuth ion collision; dotted curve, uranium ion collision
(this work).
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ions exchange charge with neutral atoms at low ener-
gies [1]:

(29)
σ const≈ 10 15– cm2 q

IA/Ry( )3/2
------------------------;=

E/q1/2 10 keV/u,<

10–1

E, keV/u

10–21

σ, cm2

100 101 102

10–20

10–19

10–18

10–17

10–16

10–15

10–14

5

4

3

2
1

Fig. 5. Cross section of charge exchange between heavy sin-
gly charged ions vs. relative collision energy E. (1) Ba1+ +
Ba1+, (2) U1+ + U1+, (3) Bi1+ + Bi1+, (4) Xe1+ + Xe1+, and
(5) Cs1+ + Cs1+ (this work).
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where IA is the ionization potential of a neutral target
atom, 1 Ry = 13.606 eV. For the U4+ + U0+  U3+ +
U1+ collisions, estimate (29) yields σ ≈ 1.4 × 10–14 cm2.

In the method suggested, the exchange cross sec-
tions severely depend on the resonance defect ω. At rel-
atively low energies, E < 20 keV/u, the sections sharply
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103 104 105

10–22

10–23

Fig. 6. Cross section of charge exchange between heavy
four-charged ions vs. relative collision energy E. (1) U4+ +
U0+, (2) Bi4+ + Bi4+, (3) Xe4+ + Xe4+, (4) Pb4+ + Pb4+, and
(5) U4+ + U4+ (this work).
Calculated cross sections (cm2) of ion–ion collisions (2) and (3) vs. relative energy E

E, keV/u

Colliding ions

Xe+ + Xe+ Cs+ + Cs+ Ba+ + Ba+ Bi+ + Bi+ U+ + U+ Xe4+ + Xe4+ Pb4+ + Pb4+ Bi4+ + Bi4+ U4+ + U4+

ω = 11.6 ω = 19.3 ω = 4.79 ω = 9.40 ω = 5.44 ω = 13.0 ω = 26.5 ω = 12.1 ω = 19.0

0.1 3.7–19 6.4–22 3.5–18 2.1–18 2.7–18 8.7–18 4.8–19 1.1–17 1.2–19

0.2 4.6–18 1.0–20 3.5–17 1.3–17 2.7–17 3.7–17 4.2–18 4.4–17 5.1–18

0.4 3.4–17 1.5–19 1.9–16 8.0–17 1.5–16 1.1–16 2.1–17 1.3–16 1.2–17

0.8 1.4–16 2.0–18 6.2–16 2.9–16 5.0–16 2.5–16 6.9–17 2.8–16 5.3–17

1.0 2.0–16 4.3–18 8.3–16 4.0–16 6.8–16 3.1–16 9.6–17 3.4–16 7.8–17

2.0 5.0–16 3.6–17 1.6–15 8.8–16 1.4–15 5.1–16 2.2–16 5.3–16 2.0–16

4.0 9.0–16 1.6–16 2.4–15 1.5–15 2.1–15 6.7–16 4.3–16 6.8–16 3.9–16

8.0 1.3–15 4.3-16 2.7–15 1.9–15 2.6–15 7.4–16 6.3–16 7.3–16 5.8–16

10 1.4–15 5.4–16 2.7–15 2.0–15 2.6–15 7.5–16 6.9–16 7.6–16 6.2–16

20 1.5–15 8.1–16 2.1–15 1.9–15 2.2–15 7.5–16 8.0–16 7.3–16 7.3–16

40 1.2–15 7.8–16 1.1–15 1.4–15 1.3–15 6.9–16 8.0–16 6.8–16 6.9–16

80 7.4–16 4.3–16 2.5–16 6.7–16 4.2–16 5.7–16 6.1–16 5.9–16 6.1–16

Note: Resonance defect ω is given in eV; 3.7–19 means 3.7 × 10–19.
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decrease with increasing ω (Figs. 5, 6). They are the
smallest for reactions with the greatest ω (such as
Cs1+ + Cs1+, Pb4+ + Pb4+, or U4+ + U4+ with ω = 19.3,
26.5, and 19.0 eV, respectively), while for reactions
with the same resonance defects, they are roughly equal
(Fig. 5, curves 1 and 2; Fig. 6, curves 4 and 5). At high

10–17
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σ, cm2

E, keV/u
101 10210–1

10–16

10–15

10–18

Fig. 7. Cross section of charge exchange upon Xe1+ + Xe1+

collision vs. relative collision energy E. Circles, experiment
[3]; continuous curve, this work.

100

σ, cm2

E, keV/u
101 10210–1

10–17

10–16

10–15

Fig. 9. Cross section of charge exchange upon Ba1+ + Ba1+

collision vs. relative collision energy E. Circles, classical
trajectory method [21]; continuous curve, this work.
collision energies, the exchange cross sections are
almost independent of ω and depend largely on the
electron shell configuration in the target atom. At E >
1 MeV/u, where the capture of inner shell electrons of
the target prevails, the exchange cross sections for the
reactions U4+ + U4+  U3+ + U5+ and U4+ + U0+ 

10–19

100

σ, cm2

E, keV/u
101 10210–1

10–20

10–21

10–18

10–17

10–16

10–15

1

2

***

Fig. 8. Cross section of charge exchange upon Cs1+ + Cs1+

collision vs. relative collision energy E. Circles, experiment
[19]; stars, experiment [3]; (1) this work and (2) calculation
by the method of atomic orbitals [20].
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E, keV/u
101 10210–1

10–16

10–15

10–17

Fig. 10. Cross section of charge exchange upon Bi1+ + Bi1+

collision vs. relative collision energy E. Circles, experiment
[22]; continuous curve, this work.
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U3+ + U1+(i.e., for ion–ion and ion–atom collisions) vir-
tually coincide (curves 1 and 5), although the targets
have the different number of electrons. The equality of
the charge exchange cross sections in ion–ion and ion–
atom collisions at high energies follows from the theory
of charge exchange on multielectron systems [1, 13]
and is essential to the understanding of the process.

A more detailed comparison of the cross sections
calculated with available experimental and analytical
data is given in Figs. 7–10. In Figs. 7 and 8, the sections
calculated for the Xe1+ + Xe1+ and Cs1+ + Cs1+ reactions
are compared with experimental data from [3]. Note the
large cross sections of ion–ion charge exchange and
their quasi-constant values at low energies (data
obtained by the team headed by Prof. E. Salzborn in the
University of Gissen, Germany) for the collision Cs1+ +
Cs1+ (stars in Fig. 8) and also the large values of the
recently measured cross sections for the Xe4+ + Xe4+

and Bi4+ + Bi4+ collisions. These data for the cross sec-
tions of ion–ion charge exchange have not yet been
properly explained. Possibly, such behavior is associ-
ated with the presence of metastable ions in the beams.
The cross sections of charge exchange between unex-
cited and excited cesium ions,

at E = 0.25 keV/u was estimated at σ ≈ 3.8 × 10–18 cm2,
which is several orders of magnitude higher than the
cross section of charge exchange on cesium ions in the
ground state,

at the same energy (Fig. 8).
This point invites further investigation and is omit-

ted in this article.
The exchange cross sections for the Ba1+ + Ba1+ and

Bi1+ + Bi1+ collisions are shown in Figs. 9 and 10. At
E > 1 keV, our results agree with experimental data and
calculations made by the method of molecular orbitals
(Fig. 9) and by the classical method (Fig. 10). It should
be noted that, unlike the method used in [21], our pro-
cedure cannot calculate the cross section of charge
exchange for a particular value of the spin of a target
atom or a resulting ion. It yields only cross sections
averaged over all (except principal) quantum numbers.

Thus, the cross sections of charge exchange
between heavy low-charged ions calculated by the
probability normalization method in the impact para-
meter representation are in fairly good agreement with
available experimental data and other calculations. Our
method provides relatively accurate (up to a factor of
2 or 3) values of the sections at energies E > 1–
10 keV/u. More comprehensive conclusions are diffi-
cult to make, since data on the cross sections for the

Cs1+ Cs1+ 5 p56s( )[ ] * Cs0+ Cs2+++

ω 7.8 eV=( )

Cs1+ Cs1+ 5 p6( ) Cs0+ Cs2+++

ω 19.3 eV=( )
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systems under study are very scarce. However, it has
been demonstrated that the cross sections of charge
exchange in ion–ion collisions may be large because of
a great number of electrons in the colliding systems and
also because of small resonance defects. New experi-
ments and detailed calculations of the cross sections of
charge exchange and stripping are necessary in order to
gain full information on the collision parameters of
low-charged multielectron ions.

CONCLUSION

Using the method of multichannel normalization in
the impact parameter representation, we made prelimi-
nary calculations of the cross sections of charge
exchange between heavy low-charged ions. In the
energy range E > 1–10 keV/u, the cross sections are in
qualitative agreement with some experimental data and
calculations performed by other authors. At lower ener-
gies, the normalization method proves to be inaccurate,
since it ignores Coulomb repulsion of colliding ions,
resonance defect vs. internuclear spacing dependence,
and other effects. One advantage of the method is that
the total cross sections of charge exchange between
heavy multielectron atoms and ions can be calculated
with regard for the capture of inner shell electrons of
the target and the capture into excited states. Definite
conclusions on the applicability of the probability nor-
malization method can be drawn after further detailed
calculations have been made and compared with new
experimental data and results obtained by other meth-
ods.
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Abstract—A theory of interatomic collision cascades in an infinite medium subject to inelastic energy loss
(ionization slowdown) of particles is developed. Emphasis is on the angular and energy distributions of primary
ions and cascade atoms upon slowdown. Analysis is performed under the assumption that single scattering of
the particles follows the hard ball law, and the electronic stopping power of the medium is determined by the
Lindhard formula. It is shown that the inclusion of slowdown directly in solving the Boltzmann transport equa-
tion radically changes the angular and energy spectra of the ions and cascade atoms obtained when the slow-
down is ignored. Moreover, slowdown is the factor responsible for the anisotropy of the angular distributions
of low-energy primary ions and cascade atoms. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The available theories of sputtering amorphous
materials under linear cascade conditions are based on
solving the Boltzmann transport equation [1–4]. Sput-
tering analysis usually ignores inelastic loss of the atom
energy [5–12]. One can distinguish three basic mecha-
nisms of inelastic energy loss. First, energy loss due to
collisions with atomic electrons (ionization slowdown).
For atomic particles, this loss can be considered almost
continuous. Second, the energy is lost when the atoms
cross the target boundary because of the surface poten-
tial barrier. Third, discrete energy loss when the atom is
knocked out.

Sigmund [5, 6] has suggested the procedure that
approximately takes into consideration the ionization
slowdown of the atoms. Its essence is that the energy
distribution of sputtered atoms (obtained when a solu-
tion of the Boltzmann transport equation ignores slow-
down) is refined by multiplying by the factor ν(T0)/T0.
This factor is the fraction of the initial energy T0 of the
atom that is spent on interatomic collision cascades. In
other words, according to Sigmund, taking account of
ionization slowdown is reduced to multiplying the final
result by a constant factor that depends neither on the
energy nor on the sputtered atom direction. Later, Wil-
liams suggested the way to accurately take into consid-
eration ionization slowdown upon calculating the
amount of displaced atoms [13, 14]. He showed that the
total number of the displaced atoms turns out to be
finite if ionization slowdown is considered directly in
solving the transport equation (when this phenomena is
not considered, the total number of the displaced atoms
becomes infinite). As for the second and third mecha-
nisms of inelastic loss, they also can accurately be taken
1063-7842/01/4610- $21.00 © 21235
into consideration (see, e.g., [1]). However, none of the
present-day theories uses these accurate procedures
[5−12].

Interatomic collision cascades can be described
most simply in the case of an infinite medium with a
uniform distribution of ion sources. The problem thus
stated has been solved to theoretically derive the angu-
lar and energy spectra of sputtered atoms [6–8] (the so-
called steady-state spectra [1]). For inverse-power
interatomic potentials (V(r) ∝  r–1/m) in the absence of
slowdown, the steady-state spectrum of sputtered
atoms is proportional to 1/T2 – 2m (at T  0) [1, 2, 6]
and is nonintegrable at m ≤ 1/2. Under such conditions,
the total sputtering coefficient becomes infinitely large;
therefore, the steady-state spectrum approximation
without considering inelastic energy loss is inapplica-
ble to the sputtering problem thus stated. Usually, the
divergence of the atom energy distribution is removed
by introducing a phenomenological surface potential
barrier into the final result (obtained by solving the
transport equation without considering the surface bar-
rier) [15]. It can however be expected that the problem
of energy spectrum divergence for the recoil atoms will
not arise if inelastic energy loss is properly taken into
consideration. Moreover, of great interest is the anisot-
ropy of the angular distribution of the recoil atoms. It is
known that the angular distribution of cascade atoms
isotropizes as the particle energy diminishes. This cir-
cumstance is behind the isotropic cascade approxima-
tion in Sigmund’s theory of sputtering [2].

Thus, the effect of inelastic energy loss on the
energy and angular distributions of the recoil atoms still
remains unclear. In this work, we try at least partially to
bridge the gap by correctly taking into account the ion-
001 MAIK “Nauka/Interperiodica”
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ization slowdown of the atoms directly while solving
the Boltzmann transport equation.

STATEMENT OF THE PROBLEM
According to the Sigmund–Roosendaal–Sanders

model [6–8], we assume that an ion source is uniformly
distributed over an infinite target so that one particle of
energy T0 is emitted in the direction W0 per unit time in
a unit volume. Then, the differential flux densities of
both sputtered ions, Nion(W , T), and recoil atoms,
Nrec(W , T), depend on the particle motion direction W
and their energy T and are independent of the space
coordinates (steady-state spectrum [1]). The unit vector
W of the particle velocity is reckoned from the direction
W0 of primary ion emission. Then, the angular depen-
dences of Nion(W , T) and Nrec(W , T) are characterized
by the cosine of the angle Θ between the vectors W and
W0 (0 < Θ < π):

(1)

where W0W is the scalar product of the unit vectors.
Inelastic energy loss for the ions and the atoms will

be described in terms of the well-known continuous
slowdown model [16]. Assuming also that the recoil
atoms interact only with target atoms at rest (linear cas-
cade conditions [1–4]), we can write for Nion(µ, T) and
Nrec(µ, T) the set of Boltzmann transport equations [1]

(2)

(3)

Here, ( ) is the total probability of a moving
atom (ion) of energy T being elastically scattered by an

atom at rest per unit path length, (W', T '  W,
T) is the probability of a moving atom (ion) being elas-
tically scattered from the state (W', T ') to the state (W,

T) per unit path length, (W', T '  W, T) is the
probability that an atom (ion) of energy T ' moving in
the direction W' knocks out an atom of energy T in the
direction W per unit path length, and (T) is the
electronic stopping power of the medium for an ion

N ion W T,( ) N ion µ T,( ), N rec W T,( ) N rec µ T,( ),≡ ≡
µ Θcos W0W,= =

wel
ia T( )N ion

=  W'd T'w1
ia W' T ' W T, ,( )N ion µ' T ',( )d∫∫∫

+
∂

∂T
------ εion T( )N ion µ T,( ){ } δ 1 µ–( )

2π
--------------------δ T T0–( ),+

wel
aa T( )N rec W' T ' w1

aa W' T ' W T,,( ){dd∫∫∫=

+ w2
aa W' T ' W T,,( ) } N rec µ' T ',( )

+
∂

∂T
------ εat T( )N rec µ T,( ){ }

+ W' T'w2
ia W' T ' W T,,( )N ion µ' T ',( ).dd∫∫∫

wel
aa wel

ia

w1
aa ia( )

w2
aa ia( )

εion at( )
(atom) of energy T. The parameters Nion(µ, T) and
Nrec(µ, T) define the angular and energy distributions of
the primary ions and recoil atoms, respectively. Note
that the atoms can be both knocked out by the primary
ions and generated in atomic collisions. The probability

of atomic collisions is specified by the parameter 
in (3).

As follows from Eq. (2), calculating the primary ion
flux density Nion(µ, T) is an independent problem that
in no way is related to solving the equation for the
recoil atoms. On the contrary, in order to find Nrec(µ, T),
it is necessary to calculate Nion(W, T), which is involved
in the inhomogeneity term in Eq. (3). The situation is
somewhat simplified if the primary ions are of the same
sort as target atoms (self-sputtering). In this case, along
with Eq. (2) for Nion(µ, T), we can also obtain the closed
equation for the flux density of all the atoms (of both
emitted by the source and cascade-generated):

(4)

Hereafter, we consider only self-sputtering. In this
case, the stopping powers (T) and (T), entering
into Eqs. (2) and (3), as well as the scattering probabil-
ities of the ions and atoms, coincide:

(5a)

(5b)

(5c)

Here, n0 is the concentration of the atoms of the
medium, σel(T) is the total cross section of atom elastic
scattering, dσ1/dW is the differential cross section of
atom elastic scattering, and dσ2/dW is the differential
cross section of recoil atom scattering. The presence of
the δ function in Eq. (5b) is a consequence of the energy
and momentum conservation laws under elastic colli-
sion of particles [17].

Adding Eqs. (2) and (3) termwise in view of (5a)–
(5c), we arrive at the equation for Nat(µ, T):

(6)

It is important that it is the quantity Nat(µ, T), given
by (4), that should be used in describing atomic colli-

w2
aa

Nat µ T,( ) N ion µ T,( ) N rec µ T,( ).+=

εion εat

εion T( ) εat T( ) ε T( ),= =

w1 2( )
ia …( ) w1 2( )

aa …( )=

=  n0

dσ1 2( )

dW
-------------- W'W; T '( )δ T T ' W'W( )2–( ),

wel
ia T( ) wel

aa T( ) n0σel T( ).= =

n0σel T( )Nat µ T,( ) n0 T ' W'
σ1d
Wd

-------- WW'; T '( )




d∫∫d

T

T0

∫=

+
dσ2

dW
--------- WW'; T '( )




δ T T ' WW'( )2–( )Nat µ' T ',( )

+
∂

∂T
------ ε T( )Nat µ T,( ){ } δ 1 µ–( )

2π
--------------------δ T T0–( ).+
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sion cascades upon self-sputtering, since the recoil
atoms of the target and the primary particles emitted by
the source are indistinguishable. As for the primary ion
flux density Nion(µ, T), it, as is seen from (2) and (5a)–
(5c), satisfies the equation

(7)

As before, the parameter Nion(µ, T) defines the angu-
lar and energy spectra of only the primary ions emitted
by the source when the masses of the ion and the target
atom equal each other (cascade processes are ignored).
The difference between Nion(µ, T) and Nat(µ, T) shows
how the slowdown affects the rate of atom multiplica-
tion in the cascades.

SOLUTION TO THE BASIC 
INTEGRO-DIFFERENTIAL EQUATIONS

Before proceeding to solve Eqs. (6) and (7), it is
necessary to determine the form of the elastic scattering
cross sections dσ1 and dσ2, as well as of the electronic
stopping power (T) of the medium. Usually, two
kinds of elastic scattering cross section are used for
theoretically describing atom scattering and knockout.
The first is the Lindhard scattering cross section for
inverse-power interatomic potentials (V(r) ∝  r–1/m) [18].
No doubt, these cross sections most adequately charac-
terize single scattering of atoms, but sometimes they
greatly complicate the solution of the transport equa-
tion. For example, one fails to obtain an analytic solu-
tion of the Boltzmann transport equation with Lindhard
cross sections if ionization slowdown is taken into con-
sideration. The second type is the cross section of hard
ball scattering. While this kind of cross section ignores
the fact that the single scattering of atoms is highly
anisotropic, it considerable widens the scope of analyt-
ically solvable problems [1, 9, 11]. In what follows we
assume the single scattering of the atoms follows the
hard ball law; that is,

(8)

(η(x) = 1 or 0 at x > 0 or < 0, respectively).

As follows from (8), the hard ball cross section is
energy-independent. As for the electronic stopping

n0σel T( )N ion µ T,( ) n0 T ' W'
σ1d
Wd

-------- WW'; T '( )d∫∫d

T

T0

∫=

+ δ T T ' WW'( )2–( )N ion µ' T ',( )

+
∂

∂T
------ ε T( )N ion µ T,( ){ } δ 1 µ–( )

2π
--------------------δ T T0–( ).+

ε

dσ1

dW
--------- W'W; T( )

dσ2

dW
--------- W'W; T( ) σ

π
--- W'W( )η W'W( );= =

σel T( ) σ=
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power of the medium, its value  for moderate-
energy atoms is found from the Lindhard formula [19]

(9)

Here, R0 is the total inelastic range of an atom with an
energy T0. The solutions of Eqs. (6) and (7) are rou-
tinely sought in the form of the expansion in Legendre
polynomials Pl(µ) [20]:

(10)

The angular moments (T) and (T) are
related to Nion(µ, T) and Nat(µ, T) as

(11)

As follows from (15), the zero moments (T)

and (T) specify the energy spectra of the scattered
ions and the recoil atoms, respectively, regardless of the
direction of particle motion. Substituting expansions (10)
into Eqs. (6) and (7), one easily obtains the integro-dif-

ferential equations for the angular moments (T)

and (T):

(12)

(13)

where (T) is given by (9).
Basically, Eqs. (12) and (13) allow the calculation of

all the angular moments (T) and (T). We will
restrict our analysis by finding only the first two angular
moments (l = 0, 1). This will suffice to visualize the

ε T( )

ε T( )
2 T0T

R0
-----------------, R0 R T0( )≡ Td

ε T( )
-----------.

0

T0

∫= =

N ion µ T,( ) 2l 1+
4π

--------------N ion
l( ) T( )Pi µ( );

l 0=

∞

∑=

Nat µ T,( ) 2l 1+
4π

--------------Nat
l( ) T( )Pl µ( ).

l 0=

∞

∑=

N ion
l( ) Nat

l( )

N ion
l( ) T( ) 2π µPl µ( )N ion µ T,( );d

1–

1

∫=

Nat
l( ) T( ) 2π µPl µ( )Nat µ T,( ).d

1–

1

∫=

N ion
0( )

Nat
0( )

N ion
l( )

Nat
l( )

n0σN ion
l( ) T( ) n0σ

T'd
T'
-------Pl T /T'( )N ion

l( ) T'( )
T

T0

∫=

+
d

dT
------ ε T( )N ion

l( ) T( ){ } δ T T0–( ),+

n0σNat
l( ) T( ) 2n0σ

T'd
T'
-------Pl T /T'( )Nat

l( ) T'( )
T

T0

∫=

+
d

dT
------ ε T( )Nat

l( ) T( ){ } δ T T0–( ),+

ε

N ion
l( ) Nat

l( )



1238 MARINYUK, REMIZOVICH
energy spectra of the ions and atoms [ (T) and

(T)], as well as the anisotropy of the angular distri-
bution of the particles. In fact, it is seen from (10) that
the mean cosine of the angle of multiple scattering of
the ions and atoms depends on these two angular
moments of the functions Nion(µ, T) and Nat(µ, T):

(14)

Obviously, if 〈cosΘ〉T is close to unity, the angular
distribution of the particles is highly anisotropic and
many terms must be left in expansions (10). On the con-
trary, if 〈cosΘ〉T is much less than unity, the distribution
is almost isotropic and the functions Nion(µ, T) and
Nat(µ, T) depend largely on their zero angular moments.

Let us replace the angular moments (T) and

(T) by new unknown functions Fl(ξ) and Φl(ξ) as
follows:

(15)

Substituting (15) into Eqs. (12) and (13) and taking
into account the explicit form of stopping power (9)
yields the integro-differential equations for Fl(ξ) and
Φl(ξ):

(16)

(17)

Here, the singular terms δ(1 – ξ) on the right of Eqs. (16)
and (17) [these terms correspond to the terms δ(T – T0)
in Eqs. (12) and (13)] are replaced by the equivalent
boundary conditions

(18)

Now we divide the equations for F0(ξ) and Φ0(ξ) by
ξ and those for F1(ξ) and Φ1(ξ) by ξ2 and differentiate
the results with respect to ξ. In this way, we reduce inte-
gro-differential equations (16) and (17) to ordinary dif-
ferential equations of second order, which are easy to
solve [21]. Eventually, we find for Fl(ξ) and Φl(ξ) (l =
0, 1)

(19a)

N ion
0( )

Nat
0( )

Θcos〈 〉 T
ion( ) N ion

1( ) T( )
N ion

0( ) T( )
------------------, Θcos〈 〉 T

at( ) Nat
1( ) T( )

Nat
0( ) T( )

------------------.= =

N ion
l( )

Nat
l( )

N ion
l( ) T( ) = 

R0

2 T0T
-----------------Fl ξ( ), Nat

l( ) T( ) = 
R0

2 T0T
-----------------Φl ξ( ),

ξ T /T0 1.≤=

Fl ξ( ) = 2ξ ξ'd

ξ'2
-------Pl ξ /ξ'( )Fl ξ'( ) n0σR0( ) 1– Fl ξ( )d

ξd
----------------,+

ξ

1

∫

Φl ξ( ) = 4ξ ξ'd

ξ'2
-------Pl ξ /ξ'( )Φl ξ'( ) n0σR0( ) 1– Φl ξ( )d

ξd
---------------.+

ξ

1

∫

Fl ξ 1=( ) 1, Φl ξ 1=( ) 1.= =

F0 ξ( ) 1 λξ 2J 2( ) ξ ; λ( ),–=
(19b)

(20a)

(20b)

Here,

(21)

(22)

and Γ(a; y) is the incomplete gamma function [22].
The dimensionless parameter λ characterizes the

relative contributions of the slowdown and scattering
processes to the angular and energy distributions of the
particles. For λ ! 1, the slowdown prevails and the
atoms are deflected by small angles up to their stop. As
a result, knocking-out is absent (Fl ≈ Φl ≈ 1 and λ ! 1).
Conversely, at λ @ 1 (weak slowdown), the atoms are
scattered by large angles and, hence, can effectively
produce atomic collision cascades.

THE EFFECT OF SLOWDOWN 
ON THE ANGULAR AND ENERGY 

DISTRIBUTIONS OF PRIMARY IONS 
AND CASCADE ATOMS

Let us analyze first the angular and energy distribu-
tions of the particles in the absence of slowdown
( (T) = 0). To do this, it is necessary to proceed to the
limit R0  ∞ (λ  ∞) in expressions (19), (23), and
(24), as follows from Eq. (9):

(23a)

(23b)

F1 ξ( )

=  2 λ 1–( )
λ2

--------------------
λ2ξ2 2λξ– 2+

λ2
------------------------------------ λ 1 ξ–( )–{ } ,exp+

Φ0 ξ( ) 1
12
------ λ2 6λ 6+ +( ) λ2ξ2 6λξ 2+ +( )=

–
λ
12
------ξ2 λ2ξ2 8λξ 12+ +( ) λ 4+( ) λ 1 ξ–( )–{ }exp[

+ λ2 6λ 6+ +( )J 2( ) ξ ; λ( ) ] ,

Φ1 ξ( ) 1
3
--- λ 3+( ) λξ 1+( ) λ

3
---ξ3 λξ 4+( )–=

× λ 1 ξ–( )–{ }exp λ 3+( )J 3( ) ξ ; λ( )+[ ] .

λ n0σR0,=

J n( ) ξ ; λ( ) td

tn
---- λ t ξ–( )–{ }exp

ξ

1

∫=

=  λn 1– eλξ Γ 1 n; λξ–( ) Γ 1 n; λ–( )–[ ] ,

ε

N ion µ T T0; R0 ∞<,( )

=  
1

4πn0σ
---------------- 1

T
--- 3µ 1

T0T
------------- …+ + 

  ,

Nat µ T T0; R0 ∞<,( )

=  
1

4πn0σ
----------------

2T0

T2
--------- 3µ

2 T0

T3/2
------------- …+ +

 
 
 

.
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Formula (23b) coincides (up to a factor) with the
result obtained by Roosendaal and Sanders for low-
energy ions and the energy-independent Lindhard cross
section (m = 0) [7, 8]. From (23a) and (23b), it follows

that the energy spectra (T) of the scattered ions and

(T) of the recoil atoms are nonintegrable (they
diverge as 1/T and 1/T 2, respectively) in the absence of
slowdown. In addition, expressions (23a) and (23b)
imply that the anisotropy of the angular distributions of
both the scattered ions and recoil atoms disappears if
the particle energy is low (that is, at T  0). In fact,
in the absence of slowdown, the mean cosine of the
multiple scattering angle for both the ions and atoms is
given by [in view of (14)]

(24)

The perfect isotropy of the ions and atoms at T  0
is explained by the fact that, in the absence of slow-
down, the particles may have the energy T = 0 only if
they undergo an infinite number of collisions.

Here, the following circumstance is noteworthy. In
the absence of slowdown, the energy spectra (23a) of
the scattered ions (∝ 1/T) and the energy spectra (23b)
of the recoil atoms (∝ 1/T2) were derived under the
assumption that the cross sections are energy-indepen-
dent. For the energy-dependent Lindhard cross sections
(m ≠ 0) in the absence of slowdown, the energy spectra

are (T; m) ∝  1/T1 – 2m and (T; m) ∝  1/T2 – 2m

[1, 2, 6, 7]. As for the anisotropy of the angular distri-
butions in the absence of slowing down, it disappears
with decreasing energy for any value of m in the
Lindhard cross section (0 ≤ m ≤ 1) [7, 8]. Hence, it is
because of the neglect of the ionization slowdown of
the atoms that the low-energy atom distribution per-
fectly isotropizes and does not depend on the cross sec-
tion kind.

Now let us turn to expressions (15), (19), and (20) to
see how the inclusion of slowdown affects the angular
and energy distributions of the scattered ions and recoil
atoms. These expressions are valid in the entire interval
0 < T < T0. Figures 1 and 2 show the energy spectra of

the recoil atoms, (T), and scattered ions, (T),
that were calculated according to (15), (19), and (20),
as well as the energy dependences of the mean cosines,

 and , calculated from (18), (19),
(23), and (24) for several λ. For comparison, the same
curves for purely elastic scattering (λ  ∞) are also
depicted. It is seen that the effect of the slowdown is
most pronounced when the particle energy is low. The
smaller λ (the stronger slowdown), the slower the rise

in the curves (T) and (T). In addition, the
slowdown noticeably affects the anisotropy of the
angular distributions of the particles in the entire energy

N ion
0( )

Nat
0( )

Θcos〈 〉 T
ion Θcos〈 〉 T

at T
T0
----- R0 ∞( ).= =

N ion
0( ) Nat

0( )

N ion
0( ) Nat

0( )

Θcos〈 〉 T
at( ) Θcos〈 〉 T

ion( )

Nat
0( ) N ion

0( )
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range 0 < T < T0. Note that, in the case of purely elastic
scattering, the angular and energy distributions of the
scattered ions and recoil atoms tend to their ultimate
values rather slowly (cf. curves for λ = 10 and λ = ∞).

1

0 0.2

N(0)(T), arb. units

T/T0

0.4 0.6 0.8

2

3

4

5 3

2

1

1

2

3

0.2

0 0.2

〈cosθ〉T, arb. units

T/T0
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0.8

1.0 1

2
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Fig. 1. Energy spectra of scattered ions, (T) (dashed

curves), and recoil atoms, (T) (continuous curves) cal-

culated from (15), (19), and (20). The energy is given in
units of T0. λ = (1) 5 and (2) 10. Curve 3 shows the absence

of slowdown (λ = ∞, (T) ~ 1/T, and (T) ~ 1/T2).

N ion
0( )

Nat
0( )

N ion
0( )

Nat
0( )

Fig. 2. Mean cosines of the multiple scattering angles for

the ions  (dashed curves) and recoil atoms

 (continuous curves) [calculated from (18),

(19), (23), and (24)] vs. reduced energy T/T0. λ = (1) 1 and
(2) 10. The dash-and-dot curve shows the absence of slow-

down (λ = ∞,  =  = ).

Θcos〈 〉 T
ion( )

Θcos〈 〉 T
at( )

Θcos〈 〉 T
ion( ) Θcos〈 〉 T

at( )
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Of primary importance is, however, the low-energy
range, since the energy spectra of the atoms diverge and
the anisotropy of the angular distributions disappears
just at low energies of the particles. For T/T0  0, we
obtain from expressions (15), (19), and (20)

(25)

(26)

As follows from (25) and (26), ionization slowdown
radically changes the energy and angular spectra of
both primary ions and recoil atoms. With slowdown
taken into consideration, the low-energy spectra beco-
me convergent; that is, nonintegrable energy spectra (23a)
and (23b) transform into integrable spectra (25) and
(26). The Nion(µ, T ! T0) and Nat(µ, T ! T0) vs. energy

curves vary as 1/ . Moreover, when slowdown is
ignored, the inclusion of cascading changes the propor-
tionality of the low-energy spectrum of the particles
from 1/T to 1/T 2 [1]. With slowdown taken into
account, the energy spectra of both particles become

proportional to 1/ . Finally, ionization slowdown
prevents the particles from being perfectly isotropic.
Indeed, according to (14), (25), and (26), the mean
cosines of multiple scattering angles for the low-energy
ions and atoms are

(27)

The value of  is larger than

 at any λ. This means that the angular dis-
tribution of the low-energy cascade atoms is always
more isotropic that of the low-energy primary ions. As
follows from (27), the angular distributions of both
low-energy particles are considerably anisotropic at
λ ≈ 1. In this case, the slowdown makes cascade isotro-
pization difficult and a larger number of terms must be
left in expansions (10) for Nion(µ, T) and Nat(µ, T). As
λ increases, the angular distributions of the low-energy
ions and recoil atoms become more and more isotropic.

At large λ, the mean cosines  and

 tend to zero but remain finite for λ as large
as desired. In other words, even if slowdown is weak,
the angular distributions of the ions and recoil atoms
remain anisotropic as the particle energy decreases.

N ion µ; T  ! T0( )

≈
R0

2 T0T
----------------- 1 3µ2 λ e λ– 1–+( )

λ2
--------------------------------- …+ + 

  ,

Nat µ; T  ! T0( )

≈
R0

2 T0T
----------------- λ2 6λ 6+ +

6
--------------------------- 3µλ 3+

3
------------ …+ + 

  .

T

T

Θcos〈 〉 T 0→
ion( ) 2 λ e λ– 1–+( )

λ2
---------------------------------,=

Θcos〈 〉 T 0→
at( ) 2 λ 3+( )

λ2 6λ 6+ +
---------------------------.=

Θcos〈 〉 T 0→
ion( )

Θcos〈 〉 T 0→
at( )

Θcos〈 〉 T 0→
ion( )

Θcos〈 〉 T 0→
at( )
CONCLUSION

Based on the solution of the Boltzmann transport
equation in the infinite medium approximation (with an
ion source uniformly distributed over the medium), we
showed that the inclusion of ionization slowdown in the
equation radically alters the energy and angular distri-
butions of both primary ions and recoil atoms. Using
the energy-independent cross section of hard ball scat-
tering and assuming that the masses of the ions and the
atoms equal each other, we obtained the following
results.

(1) With slowdown taken into consideration, the
divergent energy spectra of the primary ions and recoil
atoms (varying as 1/T and 1/T 2, respectively) become

integrable (both spectra vary as 1/  at T ! T0). Thus,
the low-energy distributions of the ions and atoms are
governed by the energy dependence of the particle scat-
tering cross section and also by that of the electronic
stopping power (T) of the medium.

(2) With slowdown taken into consideration, the
low-energy (T ! T0) parts of the spectra of both parti-

cles vary as 1/ . This is an indirect support of the fact
that, in the presence of slowdown, the number of atoms
per cascade initiated by one primary ion is finite
[13, 14].

(3) slowdown prevents the low-energy angular dis-
tributions of both particles from being perfectly isotro-
pic. In the absence of slowdown, the angular distribu-
tions tend to become isotropic at T/T0  0. Moreover,
it is slowdown that is responsible for the anisotropy of
the angular spectra of the ions and recoil atoms.

Since atomic cascading is a basic mechanism of
sputtering [2, 3], the above theoretical considerations
clearly demonstrate the need for taking into account
ionization slowdown in analysis of the angular and
energy spectra of sputtered atoms.
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Abstract—The problem of calculation of the heat flux from a spherical particle in a molecular gas is consid-
ered. The results of numerical calculations for the collision integral similar to that in the BGK model are pre-
sented under the condition of purely diffuse reflection of gas molecules from the surface of a particle. © 2001
MAIK “Nauka/Interperiodica”.
Study of the heat-transfer process in the intermedi-
ate range of the Knudsen number is still one of the top-
ical problems of the kinetic theory of gases. However,
in theoretical studies of this phenomenon, the transla-
tional degrees of freedom are only taken into account,
whereas most experiments are performed for molecular
gases which requires allowance for internal degrees of
freedom [1]. The contribution of particular kinds of
motion is defined by the pattern of the energy spectrum.
As is well-known (see, e.g., [2]), the energy level spac-
ing for rotational degrees of freedom is defined by the
relation "2/2J (J is the moment of inertia of a molecule)
and is comparable to the thermal motion energy kT for
the lightest gases only. For example, "2/2Jk = 85.4 K
for hydrogen molecules. For heavier molecules, this
constant is substantially smaller. This makes it possible
to neglect the discrete character of the rotational energy
and consider the rotational degrees of freedom classi-
cally. Vibrational degrees of freedom are excited at
temperatures of ~103 K, and, hence, they can be consid-
ered totally frozen.

Consider a spherical particle of radius R uniformly
heated to a temperature Tw. We assume that the particle
is placed in a gas with a constant temperature T0. The
temperature difference ∆T = Tw – T0 is assumed to be
sufficiently small in order to linearize the problem. We
introduce a spherical coordinate system with the origin
at the center of the particle. The state of the gas sur-
rounding the particle is described by the equation [3]

(1)

Here, C = V  is the dimensionless proper
velocity of the translational motion of gas molecules; I
is the integral collision operator; ϕ is the correction to

Cr
∂ϕ
∂r
------

C2 Cr
2–

r
------------------ ∂ϕ

∂Cr

---------+ I ϕ[ ] .=

m/2kT0
1063-7842/01/4610- $21.00 © 21242
the equilibrium (Maxwellian) distribution function

where

for mono-, di-, and polyatomic gas, respectively; Ji are
the principal moments of inertia for a molecule; and ε
is the total kinetic energy of its translational and rota-
tional motions.

In view of the lack of reliable models for the poten-
tial of intermolecular interaction, we restrict ourselves
to the analogue of the BGK model [4]:

(2)

where s is the number of degrees of freedom for gas
molecules; κ and χ are the coefficients of thermal con-
ductivity and thermal diffusivity; and ξ is the s-dimen-
sional vector of the dimensionless velocity. The first
three components of this vector {ξ1, ξ2, ξ3} = C
describe the translational motion and the other (s – 3),

the rotational one with ξi =  in both cases.
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m
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--------------- 
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We take the purely diffuse reflection of gas mole-
cules from the particle surface

(3)

as the boundary condition on the particle surface.

The density difference of gas molecules ∆n is
defined by the condition of the lack of mass gas motion,
which is equivalent to

(4)

This yields

(5)

The desired heat flux is given by the expression

and, on account of the energy conservation law, can be
represented in the form

The dimensionless variable Q can be evaluated at
any point, e.g., on the surface of a particle. In view of
(3) and (5), this yields

(6)

It is clear that the influence of a small particle on the
distribution function for molecules in a gas is negligi-
ble, and the correction ϕ in the range of integration in
(6) can be considered equal to zero. Thus, the augend
describes the heat flux in the free-molecule mode. This
result depends neither on the form of the collision inte-
gral nor on the method for solving the problem.

In the gas-dynamic limit, i.e., at Rν @ 1, the distri-
bution function for molecules incident on the particle is
described by the Chapman–Enskog distribution

which yields

(7)
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and, in view of the definition of ν, corresponds to

In this sense, the solutions of the problem consid-
ered for mono-, di-, and polyatomic gases coincide with
each other.

In order to calculate the heat flux for the intermedi-
ate values of the Knudsen number, one has to solve
Eq. (1). Turning to the variable

we represent it in the form

(8)

Considering F as a given function, we write the set
of the characteristic equations:

The first equality

is solved straightforwardly and gives the characteristic

(9)

We choose

as the second equation.
Substituting

found from formula (9) into this equation, we arrive at

This results in

(10)
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The arguments of the function F mean that one has

to take r1 and µ)  as r and µ, respec-
tively. Taking into account the structure of expression (10)
and the discontinuity of the distribution function along

the characteristic r  = R, we divide the variabil-
ity domain for the variables (r, µ) into three ranges: I for

µ ∈  [–1, 0]; II, µ ∈  [0, ]; and III, µ ∈

[ , 1].

In order to distinguish the distribution functions in
the aforementioned ranges, we denote them by the cor-
responding indices.

It is clear that the condition (3) describes the distri-
bution function in range III and corresponds to

(11)

Besides that, the desired solution has to be bounded.
For µ > 0, this condition is satisfied a priori and makes
it possible to determine the distribution function in
range I:

(12)

The values of the function in range II are determined
by the continuity condition for this function at the
boundary between ranges I and II, i.e., at µ = 0:

(13)

The solution to Eq. (8) satisfying these conditions
can be represented in the form

(14)

where

 is the Heaviside step function,
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The substitution of (14)–(17) into the definition (2)
results in a set of integral equations in Mi. The integra-
tion with respect to the components of the generalized
velocity, corresponding to the rotational degrees of
freedom, is performed analytically. In order to do this,
the distribution function should be regarded as a vector

(18)

Then, the integration may be represented in the form
of the scalar product

Besides that, in view of (4), M3 = 0. Finally, the
problem reduces to the set of two integral equations
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(19)

where

In this case, the relation (6) takes the form

We search for the solution of this set of equations in
the form of a series in terms of the Chebyshev polyno-
mials. Having limited ourselves to its first K terms, we
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The expansion coefficients are defined by the condition

The constant γ is chosen in accordance with the
requirement that most of interpolation points are in the
basic domain of variability for the distribution function.

The results obtained are shown in Fig. 1. The
curves 1, 2, and 3 correspond to mono-, di-, and poly-
atomic gas, respectively. The open circles denote the
results of direct numerical integration of the model
kinetic equation under consideration for the atomic
gas [5].

It is worth noting that most authors present the
results in the form of the ratio between Q and the gas-
dynamic solution Q∞. Figure 2 shows that such a repre-
sentation of the results does not reflect the actual depen-
dence of the heat flux on the particle size and results in
an incorrect conclusion [6] about the same behavior of
the experimental data for mono- and polyatomic gases.
The general character of the curves is in agreement with
the data presented in [6] and the results of further exper-
iments [7].

Note also that the idea of transforming the Boltz-
mann equation into a set of integral equations in the dis-

Mi r( ) A j
i T j ρ r( )( ),
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∑=

ρ 1 2 γ r2 R2––( ).exp–=

T j ρl( )Tk ρl( )
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2
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2K 2+
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0.1

0–1

Q(T0/∆T)

–2–3 1 2 lnRν

0.3

0.9

0.5

0.7

1

2

3

Fig. 1. The dependence of the heat flux on the particle size.
Open circles show the values of Q for the collision integral
in the case of an atomic gas [5].
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tribution-function moments was used when considering
similar problems in [8–10]. The variational method was
used in [8, 9] to solve the obtained system. The trial
function was chosen according to the condition of exact
asymptotic behavior of the macroscopic parameters in
the gas-dynamic domain. Finally, the heat flux was
described by the relation q = C1/r2, which is actually
satisfied due to the energy conservation law. The tem-
perature and density fields were defined in the form T =
C2/r and n = C3/r, respectively. These formulas are only
valid relatively far from the particle. The constants Ci

were calculated with the condition that the correspond-
ing functional takes the minimum value. In [10], the

0.1

0–1

Q/Q∞

–2–3 1 2 lnRν

0.5

0.7

0.9

0.3

Fig. 2. The curves for the ratio of Q to the gas-dynamic
solution (7).
Galerkin method was used, but the trial function was
chosen in a similar way.

The use of the Chebyshev polynomials allows one to
avoid the additional integration required in the Galerkin
method. This decreases the calculation time and makes
it possible to take into account a larger number of poly-
nomials.
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Abstract—A model for calculating an arc discharge with the vaporizable graphite anode used in production of
fullerenes has been proposed. Calculations with the use of this model give a clue to the dependence of fullerene
formation efficiency on the kind of buffer gas used. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the physics of gas discharge there is practically no
theoretical or experimental studies on arcs with vapor-
izable anodes. Such arcs are of interest for a new direc-
tion in plasma technologies dealing with the deposition
of coats and, especially, as a basic method for the pro-
duction of fullerenes. It is known that for the fullerenes
to form in an arc discharge, a buffer gas should be
present. In a vacuum discharge or at a low buffer gas
pressure no fullerenes are formed. It is thought that the
buffer gas is necessary for taking away the excess of
vibrational energy from the growing carbon cluster.
However, this explanation encounters some problems
when trying to take into account the kind of gas used.

In [1] the fullerene formation process in three inert
gases (helium, neon, and argon) was studied. The
experiments have shown that with the increasing
molecular weight of the gas, from helium to argon, the
content of fullerenes in the soot diminished, whereas
the arc current necessary for achieving a certain rate of
anode erosion increased. The proposed explanation of
the observed effects as due to collisions of pairs of
buffer gas atoms with carbon clusters appears inconclu-
sive. With heavier gases, quenching of the vibrational
energy should be more efficient, but experimental data
attest to the contrary.

However, the effect of the buffer gas on the fullerene
formation efficiency could be of a different nature. Per-
haps, the buffer gas is not acting through elementary
reactions, but rather is affecting the parameters of the
gas stream with an admixture of carbon ejected from
the interelectrode gap. Indeed, in lighter helium the car-
bon ions have higher mobility and easily escape from
the discharge. It can be surmised that for the plasma to
be highly ionized they should be confined to the inter-
electrode gap. This can be achieved using the drop in
potential of the positive anode [2]. In this case the
anode is heated more intensively and the erosion rate is
higher. In heavy buffer gases the mobility of carbon
1063-7842/01/4610- $21.00 © 21247
ions is lower, their escape to the electrodes less inten-
sive, and the same rate of anode erosion is reached at a
much higher current. However, with the rising current
the speed of the gas-plasma jet increases [3], decreasing
the efficiency of the fullerene formation [4].

This speculative argumentation can only be proved
or disproved by calculations and such calculations will
be the subject of the present work.

A Physical Model of the Arc Discharge

The fullerene arc, in an optimum regime for the pro-
duction of fullerenes [5], burns between graphite elec-
trodes of a diameter 2r0 = 0.6 cm in an interelectrode
gap of L ~ 0.6 cm, in an atmosphere of inert buffer gas
held at a pressure of ~100 torr containing carbon vapor-
ized from the anode. The arc current is variable in a
range of 50–150 A; the voltage across the gap is about
20 V. Such an arc is a typical low-temperature thermal
emission discharge, because in the experiment no spots
have been detected on the electrodes.

The most closely related process that has been given
theoretical treatment is a high-current arc at atmo-
spheric pressure in inert gases [6]. It was shown that in
argon the drop in potential of the anode is negative,
whereas in helium it could be positive. Calculations
were carried out for high current densities (j ~ 300–
500 A/cm2), at which the arc column could be consid-
ered stabilized by radiation. The anode temperature
was assumed to be low enough for erosion of the anode
material and emission of electrons from the anode to be
negligible.

It is evident that in a fullerene arc the assumptions
used in [6] are not valid. Therefore, it is necessary to
adopt an arc model that would account for the specific
features of the process and be simple enough, because
it should become a component part of a general algo-
rithm for calculation of the fullerene formation process.

The system of equations was written under the fol-
lowing simplifying assumptions.
001 MAIK “Nauka/Interperiodica”
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The problem is one-dimensional, i.e., the arc param-
eters are independent of the distance from the discharge
axis. The removal of energy and particles in the radial
direction is not taken into account despite the fact that
the diameter of the electrodes is close to the interelec-
trode separation. Accurate solution of the two-dimen-
sional problem is extremely difficult.

The buffer gas in the interelectrode gap is immobile
and not ionized. Because the ionization potential of car-
bon is less than that of inert gases, for electron temper-
atures that are not too high this assumption is quite
acceptable. It is also supported by measured spectra of
the fullerene arc [5], which contain no lines of the
buffer gas ions.

The carbon concentration is much less than the con-
centration of buffer gas atoms. This assumption does
not cover all the regimes of practical interest, especially
those using heavy buffer gases, but is quite sufficient
for deriving qualitative relationships and significantly
simplifies the calculations.

The flow of carbon atoms is directed from the anode
to the cathode, which corresponds to the experiment in
[5], because the weight of carbon deposited on the cath-
ode (cathode deposit) is comparable to the weight of
soot deposited on the walls of the plasma reactor. The
accommodation coefficient for the carbon atoms and
ions on the cathode is equal to unity. The carbon flows
in the gap are described in terms of diffusion and mobil-
ity; there is no convection of carbon.

The plasma in the greater part of the gap is in the
state of local thermodynamic equilibrium (LTE).

System of Equations

The system of equations describing the fullerene arc
should comprise equations for the transfer of energy;
the current; the heavy component in the plasma vol-
ume; and the boundary conditions at the cathode and
anode, which simulate solution of the problem in the
layer adjacent to the electrode. As the electrodes repre-
sent active elements of the process (electrons are emit-
ted from the cathode and carbon is vaporized from the
anode), it is also necessary to take into account the bal-
ance equation for the energy and particles at the anode
and cathode, and the heat transfer in the bulk of the
electrodes.

The electron current in the plasma bulk has field and
diffusion components

(1)

where µe is the electron mobility determined by Cou-
lomb collisions, Pe = nTe is the electron pressure, n is
the plasma density, Te is the electron temperature, and
the x-axis is directed from cathode (x = 0) to anode
(x = L).

The electron transfer through the interelectrode gap
is determined by the balance of forces for electrons and

Je µe nE
dPe

dx
---------– 

  ,=
ions and atoms of carbon. The buffer gas concentration
in the gap is assumed to be constant and its velocity
equal to zero.

(2)

(3)

(4)

Here and in all subsequent formulas, subscripts in small
letters have the following meanings: e—electrons; i—
ions; a—carbon atoms; and g—atoms of the buffer gas.
The first subscript by the mobility symbols denotes the
particle scattered, and the second denotes the scatterer;
Na is the concentration of carbon atoms; and V is the
velocity of the components.

In calculations of the mobility of carbon atoms in
the buffer gas an empirical Fuller–Schletter formula [7]
is used. The mobility of ions in their own gas µia is
determined by resonant recharging. For carbon no data
are available; however, a comparison with ions, whose
other properties are close, O+ and N+, gives an estimate
of the cross section at σia ~ 3 × 10–15 cm2. The ion
mobility in the buffer gas is determined by polarization
effects and is calculated following [8].

The estimates have shown that, as a rule, the scatter-
ing lengths responsible for the resonant recharging are
large and the corresponding terms can be left out. Then,
excluding electric field E from (2) and (3), we get the
following expression for the total flow J of the atoms
and ions of carbon in the gap:

(5)

Preliminary calculations have shown that the last
term in Eq. (5) is also insignificant.

The equation for the energy transfer by electrons has
the form

(6)

The energy transfer to ions when the heavy compo-
nent temperature T is different from the electron tem-
perature Te is given by

(7)

where Qei is the Coulomb cross section;  is the ther-
mal velocity of electrons; and Ma is the mass of the car-
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bon atom. Compared to this quantity, the energy trans-
fer in a highly ionized plasma to atoms of both species
is negligibly small.

According to [9], the total radiation intensity in a
bremsstrahlung and recombination continuum is

(8)

where Eg is the ionization energy of the lower excited
state.

The product jeE is determined from the transfer
equation for the electron current (1)

(1')

in the highly ionized plasma the product Den ~  and
almost independent of n.

The energy transfer equation for the heavy compo-
nent has the form

(9)

where κ is the heat conductivity of the heavy compo-
nent determined mainly by the buffer gas; dependence
of the heat conductivity on the gas temperature is
neglected.

The system of equations describing the plasma vol-
ume is complemented with a condition for local ther-
modynamic equilibrium (LTE)

(10)

where Eion is the ionization potential of carbon atoms.
Boundary conditions for the energy transfer equa-

tions are formulated from the following considerations.
From the experimentally observed anode erosion rates
[5], anode temperature and the plasma concentration
near its surface can be estimated. These estimates show
that the plasma concentration is close to values typical
of the LTE plasma. Under these conditions detailed
treatment in the first approximation of the region of
nonequilibrium ionization, as distinct from the condi-
tions of a nonemitting and erosionless anode consid-
ered in [6], appears unjustified. It is assumed that up to
the anode the plasma may be considered to be LTE
plasma.

Therefore, the boundary condition for Eq. (6) is
specified directly at the anode in the form

(11)

A boundary condition for Eq. (9) can be formulated
as an energy balance at the anode surface. This happens
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in the following way. The anode is heated by the inci-
dent flow of plasma electrons, by heat conduction in the
buffer gas, whose temperature is decreasing along the
path from plasma to the anode, and by radiation from
the heated cathode. Heat is taken away from the anode
with the flow of vaporized carbon atoms radiating from
its surface and by way of heat conduction in graphite. If
the anode potential barrier is negative, a considerable
amount of energy will be lost due to thermal electron
emission. If the anode potential drop is positive, then
this channel of energy loss is not available. It is impos-
sible to account for the sign of the anode barrier in a
general calculation, but the assumption of a positive
anode drop is fairly reasonable; therefore, the energy
loss due to emission current from anode is not consid-
ered.

Thus, the energy balance equation at the anode has
the form

(12)

Here, κgr is the heat conductivity of graphite; χ = 4.6 eV
is the work function; H ~ 7.2 eV is the evaporation heat
of graphite. A and K denote quantities relating to the
anode and the cathode, respectively. The temperature
derivatives in the gas

and in graphite

correspond to the anode surface.

The boundary condition at the cathode end of the
LTE plasma region defines a relation between the
energy brought to the region of nonequilibrium ioniza-
tion by electrons emitted from the cathode, which
passed through the near-cathode potential drop ϕK and
the energy flow in the LTE region

(13)

where jes is the current due to emission from the cath-
ode, which is related to the electron current as

(14)
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where  is the energy lost because of excitation of
atoms; this quantity is approximately estimated as

 = jiEion.

Consider the balance equation for carbon particles.
The flow of carbon atoms from the anode arises due to
the difference between the carbon concentration near
the anode NA and the equilibrium concentration NS(TA)
corresponding to the pressure of saturated carbon vapor
at the anode temperature TA. Hence,

(15)

where  is the thermal velocity of carbon atoms at
the anode temperature.

At the cathode we have

(16)

The ion current to the cathode ji is assumed to be the
Bohm’s current, with the plasma concentration corre-
sponding to the cathode end of the LTE region

(17)

where γi = 0.7 is a numerical factor given by the theory
of near-electrode layer [10].

This derivation of the ion current to cathode does
not take into account variations of the plasma concen-
tration in the region of nonequilibrium ionization [10].
However, these variations are insignificant and,
besides, cannot be accounted for accurately having no
reliable information on the rates of direct and step ion-
ization of carbon.

The system of equations is complemented with the
energy balance at the cathode

(18)

Equation (18) accounts for the cathode heating due
to the current of carbon ions from the plasma, the
reverse current of electrons from the plasma, the heat
conduction in the buffer gas and the thermal emission
from the anode. It also accounts for the cathode cooling
due to electron emission producing the arc current, heat
conduction in the graphite, and the radiation of heat
from the cathode surface. Besides, the cathode absorbs
the energy JH transferred from the anode.

It is assumed in the calculations that the current den-
sity jes, due to electron emission from the cathode, is
determined by the cathode temperature TK and follows
the Richardson formula. Generally speaking, the emis-
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sion current is enhanced due to the Schottky effect and
the effect of the hollow cathode [11]. The effect of the
hollow cathode on a developed porous surface of cath-
ode deposit in a fullerene arc was noted in [5]. In the
calculation, these factors are taken into account by
increasing the emission current tenfold over the value
given by the Richardson formula. The calculation
results proved to be insignificantly affected by this
increase.

The Solution Technique

The operating parameters that have to be specified
are the emission current, which is nearly equal to the
total current, and the buffer gas pressure. All other
quantities are calculated. The solution process consists
of two alternating iterative procedures. The first proce-
dure is the solving of the system of algebraic equations
(5), (10), and (14)–(18) (balance equations at the cath-
ode and the cathode-end boundary of LTE plasma and
the equation for heavy component transfer integrated

from 0 to L) under fixed TA, TeA, dT(K)/dx, and d /dx.
This system of equations can yield parameters of the
gas and plasma near the electrodes, i.e., the quantities
nK, NK, ϕK, nA, and NA. Iterations are necessary because
the system includes a transcendental equation, the
Sakha condition, from which the electron temperature
near the cathode TeK is determined.

The second procedure consists in solving boundary-
value problems (6) and (9) together with the heavy
component transfer equation (5) and the Sakha condi-
tion. The boundary conditions for Eq. (6) are specified
in the form Te(x = 0) = TeK at the cathode and as Eq. (11)
at the anode. The value of TeK is assigned a result of the
first iteration. The boundary conditions for Eq. (9) are
specified in the form T(x = 0) = TK at the cathode and as
Eq. (12) at the anode.

In every iteration step Eq. (9) is solved directly by
the sweep method as a linear boundary problem of the
second order. The result is a gas temperature curve cor-
responding to a given iteration step. Then Eq. (6) is
solved, written in terms of concentration n (rather, of
dimensionless quantity η = (n*/n)2, where n* is a char-
acteristic unit for n). This is explained by the fact that n
is exponential in Te, and since variation of n along the
gap is known only with an accuracy of the previous iter-
ation step, the divergence is unavoidable. Use of the
quantity η makes the equation more involved, but, on
the other hand, the temperature at every point of the gap
is now calculated as a logarithm of n and successive
runs rapidly converge.

Because the parameters TA, TeA, and dT(A)/dx appear
in the boundary conditions not explicitly but in combi-
nations, solutions of the boundary problems give their
new values, which are substituted when the first itera-
tion procedure is run again. Alternation of the first and

Te
K( )
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second procedures is repeated until the discharge
parameters are reproduced with required accuracy.

In order to solve the balance equations at the cath-
ode and anode, it is necessary to know the value of the
electrode temperature derivative at the surface. It is
determined by solving the heat conduction problem in
graphite. A one-dimensional problem is considered,
i.e., the temperature is assumed to be independent of
the distance to the discharge axis. Then, the heat condi-
tion equation, taking into account the evolved energy
and cooling due to radiation from the lateral surface,
has the form

(19)

Temperature dependences of the heat conductivity
κgr and the specific resistance of graphite ρ are obtained
from data on reactor graphite [12].

Equation (19) is integrated in quadratures of the
form x = x(T, dTK, A/dx). The derivative dTK, A/dx on the
electrode surface is calculated for a condition that the
temperature of the cooler Tcool = 300 K is achieved at a
point xcool corresponding to the distance from the cooler
to the electrode surface, and is calculated by dividing
in two.

Variations of the temperature T(x) and the quantity
dTK, A/dx(TK, A) for xcool = 2 cm are shown in Figs. 1
and 2. Actually, the arbitrariness in the choice of xcool is
not important. The role of the heat condition in the
energy balance at the cathode at TK ~ 2600–2800 K is a
minor one. Regarding the anode, at TA ≥ 3700 K and
xcool ≥ 2 cm the derivative dTA/dx is almost independent
of xcool.

Calculation Results and Comparison 
with an Experiment

The calculations have shown that for each gas there
exists a minimum value of the arc current density,
below which the solution does not exist. At currents
slightly higher than the minimum value, the solution is
formally obtainable but physically appears unrealistic,
because the electric field strength near the cathode
boundary of the LTE region changes sign, becoming
negative. Therefore, the critical current density is con-
sidered to be the value at which EK = 0. Values of the
critical current density for various gases are given in the
table.

Shown in Fig. 3 are distributions along the gap of
the electron temperature Te, temperature of the heavy
plasma components T, concentrations of carbon atoms
N and ions n, and the plasma potential V for an arc in
helium at a pressure of 100 torr and current 80 A (j =
284 A/cm2). The point x = 0 is at the cathode surface;
the interelectrode gap is 6 mm; the cathode potential is
V = 0; and U is the total voltage between the electrodes.

πr0
2 je

2ρ 2πr0σT4 πr0
2κgr

d2T

dx2
---------.–=
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It is seen that the difference between the electron
temperature and the temperature of the heavy compo-
nent is significant only near the electrodes. Throughout
greater part of the gap, the plasma is close to complete
thermodynamic equilibrium. A gas temperature of T ~
5000–5600 K measured in [13] in a fullerene arc under
similar operating parameters is somewhat lower than
the calculated values. This discrepancy, in our opinion,
can be explained as follows. In [13] the temperature
was determined from relative intensities of the lines in
emission hands of C2 molecules. In the center of the arc
column the concentration of C2 is small and the temper-
ature determined in [13] without the Abelian correction
corresponds to the discharge periphery, where it is
obviously lower because of the boundary effects.

The concentration of carbon atoms fairly monoto-
nously decreases from anode to cathode by more than
an order of magnitude. At the same time, gradients of

1000

0 0.5
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x, cm
1.0 1.5 2.0
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3000
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5000

Fig. 1. Temperature distribution along the graphite elec-
trode. I = 80 A (j = 284 A/cm2); 2r0 = 6 mm.
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Fig. 2. Dependence of the logarithmic derivative of the tem-
perature inside graphite on the surface temperature.
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the concentration of charged particles are large, espe-
cially near the electrodes. Large values of the diffusion
component of electron current caused by concentration
gradients affect the potential distribution. In the near-
cathode region of the plasma, where the diffusion cur-
rent is flowing towards the cathode, the electric field is
considerably stronger than near the anode, where the
directions of the field and diffusion components coin-
cide. The cathode potential drop is small (ϕK ~ 3 V) and
the anode potential drop (ϕA ~ Te) is positive.

The above qualitative characteristics of the distribu-
tion of plasma parameters in the interelectrode gap have
been observed for neon and argon as well. In Fig. 4 data
for argon at a pressure of 100 torr and a current of
102 A (j = 361 A/cm2) are shown.

A similar local probing of the fullerene arc has not
yet been implemented; therefore, comparison of calcu-
lations with experimental results is possible only for
integrated characteristics: arc voltage and the anode

erosion rate q = JMaπ .r0
2

2

0 1

V, V

x, mm
2 3 4 5 6

4
6
8

10
12

U

1014

n, Na, cm–3

1015
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1017 3

4

3

4

0

T, Te, eV

0.4

0.8

1.2

1

2

Fig. 3. Distribution along the interelectrode gap of the elec-
tron temperature (1), temperature of the plasma heavy com-
ponent (2), concentrations of carbon atoms Na (3) and ions
n (4), and the plasma potential V. Helium. PHe = 100 torr,
I = 80 A, L = 6 mm.
Figure 5 shows dependences of the anode erosion
rate in helium on current, pressure, and interelectrode
separation. The solid curves are calculation results, and
the broken lines are experimental curves from [4]. It is
seen that the theoretical and experimental curves of q
versus I are in good agreement (Fig. 5a). The calculated
curve of q as a function of helium pressure (Fig. 5b) is
seen not to have a minimum. The origin of the maxi-
mum in the erosion rate at pressures of 400–500 torr
observed experimentally in [4] is not quite clear. Possi-
bly, it is related to the different shape of the arc attach-
ment to anode at high pressures. Calculations for small
interelectrode separations (L < 3 mm), where a drastic
increase of erosion is observed in the experiment, are
not possible, because the adopted assumptions are not
valid in this case.

Quantitative characteristics of some calculated
regimes for different gases are given in the table. All
calculations were carried out for the buffer gas pressure
of 100 torr, electrode diameter 2r0 = 0.6 cm, and the
interelectrode separation of L = 0.6 cm. In the table the
current values used in the calculation are given, as are
the value of the near-cathode potential drop ϕK, the total
arc voltage U, the maximum values of the electron tem-

perature , the gas temperature Tmax, the surface
temperatures TA, and the anode erosion rate. Also given
here are the available experimental data: content of
fullerenes in the soot α determined from absorption
spectra of solution in toluene [5] and the ratio of the
rates of the cathode deposit growth and the anode ero-
sion, mc/q.

It can be seen that the calculated data on the anode
erosion rate for helium are in satisfactory agreement
with the experiment and give a qualitatively true
account of the experimental observation that with
heavier buffer gases the same rate of anode erosion is
reached at higher currents. The reason is evident: in a
heavier gas the carbon mobility is lower and the trans-
port from anode to cathode is impeded. This is evident
in the experiment as well: in helium mc/q = 0.4, whereas
in heavy gases mc/q ~ 0.1. The most considerable dif-
ference between the theory and experiment is observed
in the arc voltage in helium and the rate of erosion for
heavy gases.

Calculation of the Near-Anode Layer and Discussion 
of Results

The difference in the arc voltages calls for a more
detailed consideration of the nonequilibrium ionization
layer near the anode. It is known [6, 10] that the layer
width is about ξ ~ 2Lion, where

(20)

is the ionization length and βion is the ionization con-
stant.

Te
max

Lion
µia TeA T A+( )

βionNa

--------------------------------=
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If βion is calculated by the Gurevich-Pitaevskii for-
mula [10], an estimate of the ionization length for
helium will be Lion ~ 0.03–0.05 cm and for argon Lion is
less than 0.01 cm. The electric field strength E in the
anode layer can be estimated by formula (1') assuming
that the electron concentration varies monotonously
from nA at the anode end of the LTE plasma to the elec-
tron vapor concentration n*

A corresponding to a given
anode temperature. Such an estimate for helium gives a
field strength of E ~ 100–200 V/cm and an anode drop
of ϕa ~ ξE ~ 5–10 V. For argon E ~ 10 V/cm and ϕA is
on the order of a few tenths of a volt. Therefore, the cal-
culated arc voltage in helium should be increased by 5–
10 V to bring U in agreement with the experiment.

Naturally, this arbitrary addition of the layer to the
LTE plasma region is not quite conclusive because the
gas temperature in the layer can vary significantly [6]
and in the case of intensive emission from the anode the
electron concentration profile can be nonmonotonous.

2
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2 3 4 5 6
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6
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2 2

0
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Fig. 4. Same as in Fig. 3 for argon. PAr = 100 torr, I = 102 A,
L = 6 mm.
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Therefore, for helium, a calculation for the entire arc
was made explicitly taking into account the layer of
nonequilibrium ionization.

The system of energy balance equations for the
plasma components was complemented with a similar
system for the layer and a balance equation for ioniza-
tion–recombination. The calculation procedure was
modified in the following way.

The gas temperature and its derivative in the heat
condition equation (9) for the LTE plasma were joined
with an analytical solution of the same equation for the
layer. The analytical solution was obtained using the
following premises. In the absence of electron emission
from the anode the plasma concentration could have
been found from Eq. (10)

(21)d2n

dx2
--------

βionNaT
Dia Te T+( )
---------------------------- n

nA
2

-----– nA
2 n2–( )=

1

0 5

q, mg/s

L, mm10

2

3

(c)

1.5

1.0
50 PHe, torr100

2.0
(b)

150

2

0
50 I, A80

3

(a)

907060

1

Fig. 5. Dependence of the anode erosion rate for arc in
helium. (a) Dependence on the arc current, PHe = 100 torr,
L = 6 mm; (b) dependence on helium pressure, I = 80 A,
L = 6 mm; (c) dependence on the interelectrode separation,
PHe = 100 torr, I = 80 A.
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with boundary conditions n(x  –∞) = nA and n(ξ) =

 = 4je/ . Here, the origin of coordinates at the
boundary of LTE plasma near the anode and the anode
surface has a coordinate ξ.

Assuming weak temperature variation, Te ≈ TeA, the
solution of Eq. (21) has the form

(22)

where

(23)

The layer boundary was considered to be at a posi-
tion x1, where the ratio n(x1)/nA is close to unity, say 0.9.
This criterion was used for determining the layer width,
which is numerically equal to ξ ~ 2Lion.

nA
0( ) VTe

n
nA

-----
1 ε 2 ξ x–( )/Lion–( )exp–
1 ε 2 ξ x–( )/Lion–( )exp+
------------------------------------------------------------,=

ε
nA nA

0( )–

nA nA
0( )+

--------------------.=

0.2
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T, Te, eV

0.4 0.50.2 0.3 0.6
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1.0

1.2

Te

T

Fig. 6. Distributions of the electron and gas temperatures in
the LTE region. PHe = 100 torr, I = 80 A, L = 6 mm. Calcu-
lated taking into account the nonequilibrium ionization
region near the anode.
Equation (9) lends itself to analytical integration
with the concentration given by Eq. (22). The integra-
tion results are too cumbersome to be given here.

Equation (22) was considered applicable up to point
x', where concentration n becomes equal to that of the
electron gas retained by the anode potential. The calcu-
lation procedure for the potential profile to the right of
x' was similar to the above estimation, except that the
potential and the position of point x' were determined in
a self-consistent manner. Parameters of the solution
thus corrected are marked by an asterisk. It is seen that
the arc parameters changed insignificantly. Distribu-
tions of the plasma potential and the concentration of
plasma components along the interelectrode gap also
changed very little. The only significant difference is
seen in the profile of the gas temperature (Fig. 6), which
varies markedly in the near-anode layer. In the regime
of Fig. 6 the anode barrier ϕA is 4.8 V, in agreement with
the rough estimates above.

With neon and argon the anode barrier is low and the
calculated arc voltages are in good agreement with the
experiment. The systematic discrepancy between cal-
culated and measured anode erosion rates in heavy
gases can be partially explained by underestimation of
the anode evaporation heat H. Increasing H from 7.2 to
7.5 V reduces the erosion rate in argon from 0.73 to
0.45 mg/s. Another possible reason for this discrepancy
could be the overestimated mobility of the carbon
atoms, because the Fuller–Schletter formula (as well as
other relevant formulas) gives a fair description of
experimental data at temperatures not higher than
1000°C.

So, the model proposed for calculating the fullerene
arc is in satisfactory agreement with the experimental
data, adequately describes the major physical relation-
ships, and can be incorporated in a general algorithm
for calculating the fullerene formation in arc discharge.
Table

Charac-
teristics

Helium Neon Argon

calculation experiment calculation experiment calculation experiment

Imin, A 48 75 85

I, A 50 80 80* 80 85 85 102 105

ϕK, eV 3.0 1.8 1.6* – 3.1 – 3.6 –

U, V 8.8 11.1 12.1* 21.5 13.4 14 13.7 14

Tmax, eV 0.77 0.99 1.08* – 1.20 – 1.26 –

, eV 0.84 0.93 1.08* – 1.20 – 1.26 –

TA, K 3865 4160 4144* – 4216 – 4385 –

g, mg/s 0.55 2.32 2.46* 1.20 0.96 0.14 0.70 0.11

α, % – – – 9.7 – 4.3 1.8

mc/q – – – 0.41 – 0.10 – 0.12

Te
max
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CONCLUSION

It necessary to emphasize that the fullerene arc is a
very specific kind of gas discharge. It is radically differ-
ent from both the low-voltage arc with a thermal-emis-
sion cathode [10] and the high-current arc at atmo-
spheric pressure [14]. This is illustrated in Fig. 7 show-
ing the dependence on current of some calculation
parameters of the arc for an electrode diameter of
0.6 cm. It is seen that the carbon concentration in the
gap rises with current while the plasma concentration is
decreasing. The arc voltage rises with current, and it is
not due to the growth of near-anode potential, which,
on the contrary, decreases with current, but is the result
of increasing voltage across the arc volume.
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Fig. 7. Dependences of the current on the carbon concentra-
tion, plasma concentration, total voltage drop and the near-
cathode potential drop. Helium. PHe = 100 torr, L = 6 mm.
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Calculation of the arc burning in a vapor of the
anode material is of interest not only for fullerene pro-
duction but also for a comparatively new branch of
plasma technologies: the deposition of coatings of
anode material in vacuum arc.
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Abstract—Two types of cold cathodes (the hollow and magnetron) of a duoplasmatron used for the production
of proton beams are comparatively studied. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A facility for producing short-lived “medical” radi-
onuclides based on a proton linear accelerator is pres-
ently under construction at the Sukhumi Physicotechni-
cal Institute [1]. The accelerator injector will be based
on a duoplasmatron with a cold cathode, which has a
substantially longer service life than a hot cathode. This
study is aimed at choosing the proper type of cold cath-
ode. The main parameters under investigation are the
cathode service life, the energy and plasma-forming
gas consumption, and the source emissivity.

There are three types of cold cathodes used in
plasma ion sources: the hollow cathode, the magnetron
cathode, and the Penning cell. Since the latter is diffi-
cult to incorporate into the duoplasmatron, we studied
only the hollow and magnetron cathodes.

CATHODE DESIGN

There is a variety of hollow cathode designs. When
choosing the proper cathode design, we took into
account the parameters and operational data of the cath-
ode. The use of a hollow cathode in a duoplasmatron is
described in [2]. It consisted of a barrel-like cavity
placed into a longitudinal magnetic field to ensure a
longer path length for the emitted electrons. The opera-
tion of a duoplasmatron with a hollow cathode in the
injector of a linear accelerator was described in [3]. The
cathode consisted of three in-series tubes with different
cross sections. The plasma-forming gas was supplied
into the first tube. The plasma jet flowing out of the last
tube underwent magnetic contraction. In our opinion,
the disadvantages of a source with this type of a cathode
are the high discharge ignition voltage (up to 2 kV) and
the low gas efficiency. Better characteristics were
achieved using a hollow cathode with an increased (by
setting additional ribs) emission surface [4].

Based on this idea, we designed a hollow cellular
(HC) cathode. It is a 10-mm-long metal cylinder 17 mm
in diameter with 37 holes 2 mm in diameter. The cylin-
der is placed in the cathode housing.
1063-7842/01/4610- $21.00 © 21256
The cathode housing is a stainless-steel cylindrical
cup. At one of its ends, there is a 10-mm-diameter aper-
ture. The plasma-forming gas (H2) is supplied through
the other end. The components of the magnetron cath-
ode are also set in this housing. One of the versions of
a magnetron cathode was previously successively used
in the source of negative hydrogen ions [5]. It was an
inverted coaxial magnetron with an increased (as com-
pared to the noninverted magnetron) emission surface
area.

We improved the design of this magnetron cathode
by decreasing its size, modifying the magnet system,
and using a multichamber scheme. Using diaphragms
to divide the hollow cathode into several separate
chambers enabled us (i) to decrease the cathode size
keeping the emission surface unchanged, (ii) to
increase the gas efficiency, and (iii) to ensure the stable
operation of the plasma generator. For a single-cham-
ber magnetron cathode, jumplike transitions of the dis-
charge to the anomalous glow or arc discharge mode
resulted in the disruption of the operation of the entire
plasma generator. In a multichamber magnetron cath-
ode, such transitions are suppressed almost completely.
The discharge disruption in one of the chambers of the
magnetron cathode does not affect the operation of the
other chambers because, as soon as at the next pulse,
the normal discharge mode is restored. The reason for
this is that (i) deionization in a small volume proceeds
more rapidly than in a large volume and (ii) breakdown
is easier to develop in a large chamber than in several
small chambers connected in parallel (Fig. 1). As a
result, the operation of the entire plasma generator is
stable, without transitions to the anomalous glow or arc
discharge modes.

The HC cathode and the inverted coaxial multi-
chamber magnetron (ICMM) cathode were compara-
tively studied while operating in a duoplasmatron. The
parameters under investigation were the plasma-form-
ing gas consumption, the discharge voltage and current,
and the source emissivity.
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of a plasma source with (a) a single-chamber and (b) multichamber magnetron: (1) modulator, (2) ballast resistors,
(3) magnetron cathode, (4) magnetron anode, (5) intermediate electrode, (6) emitting electrode (anode), and (7) cathode dia-
phragms.
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Fig. 2. Schematic of a plasma source with (a) an ICMM and (b) HC cathodes: (1) anode magnet pole, (2) ring permanent magnet,
(3) emitting electrode diaphragm, (4) intermediate electrode, (5) cathode magnet pole, (6) ICMM cathode, (7) magnetron anode,
and (8) HC cathode.
SOURCE DESIGN
To investigate cold cathodes, the duoplasmatron

design was substantially modified. The source consists
of two chambers (gas discharge cells) connected in a
series (Fig. 2). The plasma generator with a cold cath-
ode is placed in the first cell. The second (duoplasma-
tron) cell provides the compression (contraction) of the
plasma with the help of both its intrinsic pressure and a
nonuniform magnetic field; then, the plasma is expelled
into the expander. The second cell is of the same shape
as the former duoplasmatron. In this cell, the electro-
magnet was replaced with an FeBa ring magnet (with
an induction on the axis of ~1100 G). The cathode
housing, in which either the HC or ICMM cathode
components are installed, is placed in the first chamber.
The housing is placed into an FeBa ring magnet identi-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
cal to the first, which creates a nonuniform magnetic
field in the duoplasmatron cell. Thus, in both cells, the
magnetic field on the axis is almost the same. While
operating with an HC cathode, the ring magnet was
replaced with a duralumin ring of the same size.

The volume of the gas discharge chamber in the
source with a cold cathode was decreased by a factor of
7 (from 56 to 8 cm3) as compared to the initial version
with a hot cathode.

The pulse duration and the repetition rate ranged
within 0.1–1 ms and 1–10 Hz, respectively. The electro-
magnetic valve enabled pulsed puffing of the plasma-
forming gas (H2) into the source [6].

In our comparative studies, the simplest two-elec-
trode ion-optical system was used to extract, form, and
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accelerate hydrogen ion beams. In this case, the source
operates in a mode with higher (more) stress (with a
return electron current and a weak beam compensation
and focusing) than with other ion-optical systems.

EXPERIMENTAL RESULTS

The plasma-forming gas consumption was esti-
mated by the change in the pressure in a 1-l reference
vessel for a certain number of operating cycles. The ref-
erence vessel was filled with hydrogen and connected
to the source. The pressure in the reference vessel was
constantly measured with a gauge. The plasma-forming
gas was puffed through an electromagnetic valve into
the duoplasmatron, which operated in the optimum
mode. The pressure in the vessel was kept within 1–
1.2 atm (standard operating pressure range of the
source). The number of pulses was recorded with an
electronic counter. After the complete operating pres-
sure range had been passed several times, the average
pressure change was determined.

The plasma-forming gas consumption per pulse was
determined by the formula ∆pV/n, where ∆p is the pres-
sure change, V is the volume, and n is a number of
pulses. The estimated consumption amounts to 30–
50 torr cm3 per pulse (depending on the operation
mode) for a duoplasmatron with an HC cathode and no
more than 10–12 torr cm3 per pulse for a duoplasmatron
with an ICMM cathode. The discharge characteristics
depend on the cathode type. For the HC cathode, the
discharge current reaches 175 A at a voltage of 120–

50
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Fig. 3. Beam current vs. the accelerating voltage for (1) Ip =
60 A and Up = 350 V and (2) Ip = 22 A and Up = 500 V; pV
value is minimum.
130 V, whereas for the ICMM cathode, the discharge
current reaches 230 A at a voltage of 400 V.

We note that, in the source with an HC cathode, the
discharge voltage strongly depends on the plasma-
forming gas consumption. It increases up to 400 V or
drops to 50 V for gas shortage or excess, respectively.
In either case, the source generates an ion beam. Hence,
with an HC cathode, it is possible to operate in both the
glow and arc discharge modes.

When the HC cathode was placed in the longitudinal
magnetic field, the parameters of the source did not
changed as compared to the case without a magnetic
field. This means that the electrical screening of the
wall of this type of a hollow cathode is quite sufficient.

In the source with an ICMM cathode, the discharge
voltage changes within the 300–500 V range, depend-
ing on the plasma-forming gas consumption. The
source generates an ion beam only when operating in
the glow discharge mode; a transition to the arc mode
terminates the ion beam generation.

The ignition voltage for the HC and ICMM cathodes
is approximately the same (500–800 V).

In both cases, low-frequency oscillations (at a fre-
quency of several MHz) in the discharge current were
observed. However, for the HC cathode, in addition to
the current oscillations, numerous sharp jumps and
kinks occurred in the discharge current waveforms,
which badly hampered the start-up of the source and
worsened its stability.

Usually, the ion beam was extracted, formed, and
accelerated at a constant extraction voltage of ~40 kV.
Depending on the discharge current in the source, the

ion beam current (H+, , and ) attained 100–
180 mA. The ion beam current was measured by a
Faraday cup with a 60-mm-diameter aperture [7],
which, due to the beam divergence and lack of addi-
tional focusing, intercepted only about one-third of the
total beam current.

In the source with an ICMM cathode, the beam cur-
rent attained 100–150 mA at a discharge current of 50–
60 A. For the HC cathode, the same beam currents were
attained at a discharge current of 20–40 A.

Figure 3 shows the beam current versus the acceler-
ating voltage for the ICMM cathode. For the HC
cathode, the dependence is the same. The linear depen-
dence indicates that the source emissivity is not satu-
rated. The diameter of the source emitting opening is
1.2 mm, so the density of the emission current is higher
than 35 A/cm2.

The measurements of the beam composition showed
that the proton fraction is equal to 50–70 and 60–80%
for the HC and ICMM cathodes, respectively. This dif-
ference is explained by the higher discharge current in
the source with an ICMM cathode. The mass analyzer
resolution did not allow us to evaluate the fraction of
heavy ions possibly produced due to the sputtering of
the source electrodes.

H2
+ H3

+
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At particle energies of 40 keV, the estimated nor-
malized beam emittance is equal to ~9.4 × 10–5 rad cm.

It should be noted that the HC cathode is eroded
more rapidly than the ICMM one. Even when the dur-
alumin cylinder of the HC cathode was replaced with a
tantalum one, it was still (although more slowly) sput-
tered due to the bombardment by the discharge ions.
Indeed, for the HC cathode, the bombardment influ-
ences only the cathode head, whereas, for the ICMM
cathode, the ions bombard the entire cathode inner sur-
face, whose area is several times larger than that of the
HC cathode head.

CONCLUSION

Our study has shown that both HC and ICMM cath-
odes can be used in plasma sources. The duoplasmatron
emissivity is nearly the same in both cases; however,
the other source parameters, such as the gas efficiency,
voltage, and discharge current (energy consumption),
differ greatly. Thus, the gas efficiency of the duoplas-
matron with an ICMM cathode is three times higher
than with an HC cathode. In generating hydrogen ion
beams with the same currents, the energy consumption
of the HC cathode is substantially less than that of the
ICMM cathode. In the latter case, however, the proton
content in the beam is larger due to the higher discharge
current.

In the duoplasmatron with an ICMM cathode, the
stray oscillations are not so intense as for the HC cath-
ode. Consequently, the stability of duoplasmatron oper-
ation and the beam quality are higher for the ICMM
cathode.

The service life of the duoplasmatron with any of
these cathodes is much longer compared to that with a
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
hot cathode and amounts to several thousand hours.
The HC cathode erodes more rapidly than the ICMM
cathode. However, the design of the HC cathode is sim-
pler than that of the ICMM cathode.

We have chosen the ICMM cathode because the ion
source in the injector of a linear proton accelerator
should combine the high gas efficiency, high emissivity,
high beam stability, and high proton content in the
beam.
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Abstract—La0.67Ca0.33MnO3 epitaxial films are grown by laser evaporation on (LaAlO3)0.3 + (Sr2AlTaO6)0.7
substrates. The films have single-crystalline mosaic blocks (grains), which are distinctly oriented in both the
azimuth direction and the substrate plane. During the heat treatment of the manganite films in the oxygen atmo-
sphere, their microstructure is improved both in the bulk and in the intergranular regions. The maximal value
of the temperature coefficient of resistance for the heat-treated La0.67Ca0.33MnO3 films increases by nearly two
times, while the magnetoresistance increases by no more than 10%. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Perovskite-like manganites (La, Nd)1 – xRxMnO3,
where R = Ca, Sr, Ba, Pb, or Sn, have received much
attention, because they are candidate materials for
heads reading information from magnetic disks and for
bolometers [1, 2]. Anomalously high values of magne-
toresistance (MR) and temperature coefficient of resis-
tances (β) are observed at temperatures close to the
temperature TC of ferromagnetic phase transition. In
(La, Nd)1 – xRxMnO3, the value of TC depends on x [3].
Also, it sharply drops at a deficiency of oxygen [4] and
increases in a magnetic field and under conditions of
hydrostatic compression [5, 6]. Among perovskite-like
manganites, those for which TC is close to 300 K are of
special interest. The maximal values of MR and β for
La0.67Ca0.33MnO3 (LCMO) solid solution films of sto-
ichiometric composition are observed in the tempera-
ture interval 255–275 K [1, 5]. In silver-doped LCMO
films, the peak in the MR(T) curve shifts toward higher
temperatures by 20–30 K [7]. It has been found [2, 5]
that heat treatment in oxygen considerably affects the
parameters of La1 – xRxMnO3 films and bulk ceramic
crystals. To date, however, a correlation between the
microstructure of La1 – xRxMnO3 films and the tempera-
ture and magnetic-field dependences of their resistivity
has not been adequately studied. For example, the
effect of grain boundaries on the parameters of thin
ceramic and epitaxial films has not been clearly estab-
lished. In [5], it was noted that crystallites may be
shunted by the surrounding regions, while in [1] it was
reported that intergranular regions serve as an addi-
tional resistance series-connected to the grain resis-
tance.
1063-7842/01/4610- $21.00 © 21260
In this work, we analyze mechanisms responsible
for variations of LCMO epitaxial film properties during
heat treatment in oxygen.

EXPERIMENT

The method of laser evaporation (Compex 100 KrF,
λ = 248 nm, τ = 30 ns) was used to grow LCMO films
on polished (LaAlO3)0.3 + (Sr2AlTaO6)0.7 (LSATO) sub-
strates with (100) orientation. An initial ceramic
LCMO target was evaporated at an oxygen pressure
P0 = 0.5 mbar. The laser emission density on the target
surface was 2.0 J/cm2. LCMO films with a thickness
d = 150 nm were grown on the LSATO(100) at a tem-
perature Ts = 780°C. After the structure and the electri-
cal parameters of the films have been studied, they were
heat-treated in the oxygen atmosphere (T = 850°C, P0 =
1 atm, t = 60 min).

The structure and the phase composition of the
LCMO films were investigated with X-ray techniques
(Philips X’pert MRD, CuKα radiation, ω/2θ and
φ scans, rocking curves). To determine the lattice
parameters of the manganite films in the substrate
plane, a||, and along the normal to the substrate, a⊥ , the
substrate during recording of the diffraction pattern was
fixed so that the plane made by the incident and
reflected beams was perpendicular to either the (001) or
(100) plane of LCMO. The surface morphology was
examined with the NanoScope-IIIa atomic force micro-
scope.

The resistance of the LCMO films was measured by
the Van der Pauw method with the hp 4263A LCR
meter at a frequency of 100 Hz both in and without a
magnetic field (H = 0.4 T). The magnetic field was
directed normally to the LCMO film plane. The resis-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Morphology of the LCMO/LSATO(100) film surface (150 nm); the grain boundaries in the manganite film are decorated
by characteristic pits. (b) The surface morphology of the same film after oxygen heat treatment; the free surface of the LCMO film
exhibits steps with a height multiple of the unit cell parameter (AFM images).
tivity of the manganite films was calculated from the
relationship ρ = (πd/ln2)R [8]. Four silver contacts
were evaporated onto the films from a tungsten boat.

RESULTS AND DISCUSSION

The heteroepitaxial films of perovskite-like oxides
grown by laser evaporation usually consist of single-
crystalline grains separated by low-angle boundaries
[9, 10]. A basic reason for the azimuth misorientation of
the grains is a lattice mismatch between the film and the
substrate. The choice of LSATO(100) as a substrate
was dictated by the extremely small difference between
the lattice parameters of LSATO and LCMO. The
parameter of the LCMO pseudocubic unit cell is
3.870 Å [4], and that of the LSATO cell is 3.869 Å [11].
Also, these materials have close thermal expansion
coefficients.

As follows from the data shown in Fig. 1a, the as-
prepared LCMO films consist of 50- to 100-nm grains.
Since the regions adjacent to the grains have an excess
free energy, the grain boundaries are clearly decorated
by characteristic pits.
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
The X-ray diffraction patters recorded when the
plane made by the incident and reflected beams was
normal to LCMO(100) contain only (n00) reflections
from LCMO and LSATO (Fig. 2a). When the plane
made by the beams was orthogonal to the (101) plane
of the substrate, the patterns had only (n0n) reflections
from LCMO and LSATO (Fig. 2b). The half-height
width of the X-ray peaks from the manganite film was
two or three times as large as that for the single-crystal
substrate (inset in Fig. 2a). The patterns in Figs. 2a and
2b imply that the films grown were free of precipitates
that have the cell parameters differing from those of
LCMO. The φ scans of the (111) reflection from LCMO
show four equidistant peaks (in every 90°) with the
half-widths (0.21° ± 0.02°) nearly coincident with
those for the single-crystal substrate. This fact indicates
that the azimuth misorientation of the crystallites in the
LCMO film does not exceed several hundredths of a
degree. From the X-ray data (ω/2θ and φ scans), we
found that the orientation relation between the as-pre-
pared manganite film and the substrate is
(100)[010]LCMO || (100)[010]LSATO and also deter-
mined the unit cell parameters for the as-prepared



 

1262

        

BOŒKOV 

 

et al

 

.

                     
LCMO film: a⊥  = 3.833 ± 0.004 Å and a|| = 3.866 ±
0.004 Å. The difference between a⊥  and a|| indicates
that the LCMO films are subjected to tensile mechani-
cal strains in the substrate plane. The effective lattice

parameter is aeff = (a⊥  × )1/3 = 3.855 Å. Comparing
the value of aeff with the dependence of the lattice
parameter of bulk ceramic LCMO samples on the
charge state of manganese ions [12], we can conclude
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Fig. 2. (a) X-ray diffraction pattern (CuKα, ω/2θ) taken
from the LCMO/LSATO(100) film when the plane made by
the incident and reflected beams is orthogonal to the sub-
strate plane (∆ refers to CuKβ peaks from the substrate). The
inset shows a part of the diffraction pattern from the same
film obtained with the four-crystal Ge(220) monochroma-
tor. (b) X-ray diffraction pattern (CuKα, ω/2θ) taken from
the LCMO/LSATO(100) film when the plane made by the
incident and reflected beams is orthogonal to the (101)
plane of LSATO (∆ refers to CuKβ peaks from the sub-
strate).
that the relative concentration of Mn4+ ions in the films
is about 40%. After oxygen heat treatment, the unit cell
parameters of the LCMO film, as well as its orientation
relative to the preferential directions in the substrate,
remain unchanged.

However, the heat treatment in oxygen substantially
changed the surface morphology of the manganite film
(Fig. 1b). After the treatment, the surface pits decorat-
ing the boundaries of the single-crystal mosaic blocks
disappeared; instead, ~30-nm-high hills with a density
of 109 cm–2 emerged.

The X-ray data in combination with the results of
manganite film surface study before and after the heat
treatment suggest that the grain boundary structure in
the LCMO film appreciably depends on the nonstoichi-
ometry of the phase adsorbed on the growing film sur-
face. The nonstoichiometric composition of the
adsorbed phase may be a reason why the film of a mul-
ticomponent perovskite-like oxide has the mosaic
structure in the case of its homoepitaxial growth as
well. Nonstoichiometric inclusions are accumulated at
the boundaries of growing nuclei. In this situation, the
intergranular regions may have a composition other
than that inside the single-crystalline grains. During
high-temperature annealing, the secondary recrystalli-
zation of the LCMO film may take place, which
changes the microstructure both inside and between the
grains. If the azimuth misorientation of the grains is
small, the recrystallization displaces the nonstoichio-
metric phase to the free surface, causing dislocations to
appear at the grain boundaries. The driving force of this
process is the minimization of the free energy of the
grain boundaries. The improvement of the grain bound-
ary microstructure during heat treatment explains why
the characteristic pits, decorating the grain boundaries,
disappear and hills arise (Fig. 1b). Special studies using
a four-crystal Ge(220) monochromator did not reveal
macroprecipitates in the annealed LCMO films. The
absence of reflections from side crystalline phases
(inset in Fig. 2a) may indicate the amorphous structure
of the hills.

Direct evidence that the grain microstructure in the
LCMO films is improved during heat treatment is a
decrease in the half-width of the rocking curve for the
(200) reflection from LCMO (inset II in Fig. 3b).

To explain the temperature dependence of the resis-
tivity of oxide manganites at T < TC, we used a model
that includes double charge exchange in the Mn+3–O–2–
Mn+4 chain [13], as well as the polaronic mechanism of
conduction [14, 15]. At a Mn+4 concentration of ≈40%,
the (La, Ca)MnO3 solid solution has the highest value
of TC [12], while the resistivity is minimal when the con-
centration of Mn+4 manganese ions is about 33% [16].

The ρ(T) curve for the LCMO films has a distinct
peak. For the as-grown films, it is observed at TR ≈
256 K (Fig. 3a). The value of ρ drastically drops at T <
TC because of an increase in the effective mobility.
TECHNICAL PHYSICS      Vol. 46      No. 10      2001



VARIATION OF THE ELECTROPHYSICAL PROPERTIES 1263
According to the Zener theory, spin ordering on manga-
nese ions at the temperature of ferromagnetic phase
transition stimulates charge exchange between Mn+3

and Mn+4 ions, which is accompanied by a sharp
increase in their effective mobility. This is the reason
for the sharp drop of ρ. In the interval TR + 70 K > T >
TR, the ρ(T) curve is well approximated by the depen-
dence

(1)

where ρ0 is a temperature-independent parameter; k is
the Boltzmann constant; and EA = 0.083 or 0.055 eV,
respectively, before and after heat treatment in oxygen.

After heat treatment, the resistivity of the LCMO
film (at T = TR) decreased roughly by one third and the
peak in the ρ(T) curve shifted toward higher tempera-
ture by 8–10 K. This high-temperature shift was also
observed when the resistivity was measured in a mag-
netic field (the inset in Fig. 3a). The rise in the film con-
ductivity during heat treatment can be related both to
the improvement of the microstructure in the bulk of
the grains and to the decrease in the resistivity of the
intergranular layers. The appreciable dependence of the
electrophysical properties of the LCMO films on the
microstructure of the grain boundaries follows from the
fact that the parameter aeff for the heat-treated films
does not change in parallel with the changes in the ρ(T)
curve. In other words, the curve changes but the Mn+4

ion concentration inside the grains remains the same.
A sharp minimum in the temperature dependence of

the magnetoresistance for the LCMO films, MR =
[R(H = 0.4 T) – R(H = 0 T)]/R(H = 0.4 T), was observed
at a temperature approximately 10 K lower than TR

(Fig. 3). This minimum almost coincides with the posi-
tion of the peak in the β(T) curve (Figs. 3a, 3b). For the
heat-treated films, the temperature interval where the
values of |MR| and β are the highest is much narrower
than for the unannealed films. One reason why the tem-
perature interval of the highest |MR| for the as-grown
LCMO films is wider than for the annealed ones is
stoichiometry breaking at the grain boundaries. The
secondary recrystallization of the LCMO/LSATO films
improves their stoichiometry in the bulk and primarily
at the grain boundaries. The annealed manganite films
become more uniform in composition. Unlike |MR|, the
maximal values of the temperature coefficient of resis-
tance for the annealed LCMO films (β = 14 × 10–2 K–1)
were almost twice as large as those for the unannealed
films (β = 8 × 10–2 K–1).

Thus, heteroepitaxial LCMO films obtained by laser
evaporation have a mosaic structure. The microstruc-
ture of single-crystal grains and intergranular layers
depends on the substrate material and growth condi-
tions. Oxygen heat treatment improves the microstruc-
ture of both grains and intergranular regions. The struc-
ture improvement is accompanied by a sharp increase
in the maximal value of the temperature coefficient of

ρ ρ0 EA/kT( ),exp∼
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
resistance. The secondary recrystallization of the
LCMO films makes their composition more uniform,
thereby narrowing the temperature interval where MR
and β are the highest.
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Abstract—A new dc plasma source for MBE growth of GaAsN layers is suggested. The efficiency of nitrogen
incorporation, crystal perfection, surface morphology, and luminescent properties of the epilayers vs. operation
conditions of the source are studied. © 2001 MAIK “Nauka/Interperiodica”.
(In)GaAsN semiconductors MBE-grown on a GaAs
substrate are candidates for active layers in long-wave
injection lasers [1, 2]. Recently, 1.3-µm InGaAsN
quantum-well face-pumped [3] and surface-emitting
[4] lasers have been designed. Moreover, 1.52-µm
luminescence from InGaAsN/GaAs quantum dots has
been observed [5].

Nitrogen is difficult to incorporate into the growing
epitaxial structure because of the high binding energy
of N2 molecules. Therefore, molecular nitrogen cannot
be activated at temperatures typical of arsenic-contain-
ing compound deposition. In MBE, rf plasma sources
are usually used today for generating active, i.e., capa-
ble of being incorporated into the growing film, nitro-
gen radicals. However, problems, such as a low degree
of nitrogen activation and surface damage due to
plasma ions still remain to be solved. Therefore, it
would be desirable to have alternative sources for grow-
ing good InGaAsN/GaAs heterostructures by MBE.
One of these sources is a dc plasma source.

Basically, a dc plasma source can reproducibly pro-
vide a high efficiency of nitrogen activation. The low
power consumption and cost of the dc sources render
them very attractive for using in noncommercial epitax-
ial equipment. Yet, little is known about the properties
of (In)GaAsN/GaAs structures grown with a dc plasma
source [6].

This work represents the systematic investigation of
GaAsN layers MBE-grown on a GaAs substrate with a
new, so-called dc constricted plasma source (CPS) [7].
The nitrogen incorporation efficiency, crystal perfec-
tion, surface morphology, and optical properties of the
layers depending on plasma source operating condi-
tions are reported.

The structures were grown in the Intevac Gen II
MBE equipment provided with solid sources of Ga, In,
and As evaporation; ion and cryogenic sorption pumps;
and a standard RHEED system. First, an AKhT
GaAs(100) substrate was covered by a 0.1-µm-thick
buffer GaAs layer at 580°C. Then, the process was
1063-7842/01/4610- $21.00 © 21265
interrupted for 5 min. Within this time, the substrate
temperature dropped to 450°C and a nitrogen plasma
was initiated and stabilized. Next, a 0.35-µm-thick
(In)GaAsN layer was deposited under certain operating
conditions of the CPS. The final step was the deposition
of a 20-nm-thick GaAs cap. The deposition rate was
1 monolayer/s, and the arsenic pressure measured by an
ion transducer, 2.5 × 10–5 torr. The Siemens D5000
X-ray diffractometer was used to evaluate the amount
of nitrogen incorporated and to study the structure of
the layers grown. Photoluminescence was excited by a
20-mW 514.5-nm Ar+ laser and detected by a cooled
Ge photodiode.

In a CPS, a plasma is initiated in a gas flowing into
the MBE growth chamber. The degree of ionization is
low; that is, the ion concentration is much smaller than
the concentration of neutral radicals. Yet, a consider-
able amount of atoms and molecules may be in the
excited state and incorporated into the growing film.
The nitrogen flow rate F in the source and the direct
current I passing through the discharge chamber of the
source are parameters that control the flow of active
radicals and, hence, the nitrogen amount in the growing
film. The nitrogen flow rate was precisely controlled by
the Tylan (Millipore) FC-2950M mass controller. The
plasma was initiated and controlled with the Glassman
ER-series dc voltage source (100 mA, 3 kV).

First of all, we determined the range of input param-
eters (gas-flow rate and direct current of the source).
While the maximal values of I and F are equipment-
limited (100 mA and 5 sccm, respectively), their mini-
mal values depend on physical processes taking place
in the discharge chamber. To each given nitrogen flow
rate, there corresponds a minimal current value Imin at
which the plasma still exists. In other words, we can
select the minimal nitrogen flow rate for a given cur-
rent. In Fig. 1, the experimental Imin vs. F curve (contin-
uous line) shows the sharp rise in Imin at low values of F
(0.2–0.8 sccm), while at large flow rates (1–5 sccm),
Imin remains nearly unchanged.
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It was also found that there exists a critical current
value that characterizes the temporal stability of the
plasma source. If the operating current is smaller than
some value Is related to the nitrogen flow rate, the
plasma may be quenched several minutes after its initi-
ation. The Is vs. F dependence is shown in Fig. 1 by the
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Fig. 1. Minimal value of the current, Imin, at which the
plasma gradually disappears and the current Is at which the
plasma may exist for a long time vs. nitrogen low rate F.
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Fig. 2. Rocking curves about the (004) reflection that were
taken from the 0.35-µm-thick GaAsN films. (h) 1.5 sccm,
10 mA; (j) 1.0 sccm, 10 mA; and (n) 1.5 sccm, 7 mA. The
inset shows the SIMS profile of the nitrogen concentration
(1.5 sccm, 7 mA).
dashed curve. It is qualitatively similar to the Imin(F)
dependence, but the difference between the curves,
which specifies the range of temporal instability,
increases with decreasing flow rate. We believe that this
phenomenon can be explained by the fact the operating
flow rate randomly fluctuates. Although a sharp drop in
the flow rate is hardly probable, this deviation can
quench the plasma if the instantaneous flow rate
becomes smaller than the minimal value for a given cur-
rent. Obviously, the range Imin–Is is inappropriate for the
growth of thick layers. However, such conditions may be
used for growing quantum-well structures.

A series of films with different nitrogen flow rates
and source currents was grown to estimate the nitrogen
incorporation efficiency vs. CPS operating conditions.
The nitrogen concentration and structure perfection
were determined by high-resolution X-ray diffraction.
The rocking curves about the (004) and (224) reflec-
tions were taken. Figure 2 shows typical (004) rocking
curves for the samples grown with different values of I
and F. As either parameter increases, the diffraction
peaks shift toward larger angles, as follows from the
results for the samples grown with the same F
(1.5 sccm) and different I (7 and 10 mA) and with the
same I = 10 mA but different F (1.0 and 1.5 sccm).

From the difference between the angular positions
of the (004) peaks, one can determine the composition
of the compound if the degree of stress relaxation is
known. Specifically, for two limiting cases (pseudo-
morphic growth and complete stress relaxation), the
same position of a diffraction peak corresponds to the
nitrogen concentrations differing roughly by a factor
of 2. Assuming the pseudomorphic growth of the films
in Fig. 2, we estimated the nitrogen concentration at
1.5–2.0%. Calculations within the Matthews–Blakeslee
model of mechanical equilibrium [8] show that the crit-
ical thickness of films with such a nitrogen concentra-
tion varies between 98 and 130 nm, which is much
smaller than the thickness of our GaAsN layers
(0.35 µm). Hence, one can assume complete or partial
stress relaxation.

To determine the extent of relaxation, we performed
measurements near the (224) asymmetric reflection.
The difference between the angular positions of the
substrate and the epilayer in the (224)+ and (224)–

reflections allowed us to calculate the lattice mismatch
in the growth direction (∆a/a)⊥  and in the growth plane
(∆a/a)||. Closed circles in Fig. 3 depict experimental
data for the lattice mismatch (∆a/a)|| as a function of
(∆a/a)⊥ . Throughout the experimental range, the value
of (∆a/a)|| remains surprisingly small. Even if (∆a/a)⊥  is
as large as 1.1% (the nitrogen concentration is about
2.7%), the lattice constants of the film and the GaAs
substrate diverge by no more than 0.1%. These findings
suggest pseudomorphic growth conditions in spite of
the considerable nitrogen concentration in our films.
This statement is also corroborated by the excellent
agreement between the values of (∆a/a)⊥  derived from
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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the (224) and (004) reflections (open circles in Fig. 3).
Similar results have recently been obtained in studying
thick MOCVD-grown GaAsN layers [9]. The reason
why misfit dislocations do not develop and thus the
thick GaAsN/GaAs layers grow pseudomorphically
still remains unclear. These layers call for further inves-
tigation by transmission electron microscopy.

In general, during epitaxial growth of GaAs, nitro-
gen atoms may incorporate both into the Group-V atom
sublattice, forming the GaAsN solid solution, and into
interstices of the lattice because of the small atomic
radius of nitrogen. In the former case, the lattice con-
stant decreases in comparison with that of pure GaAs.
In the latter case, the lattice constant remains the same
or slightly increases. Because of this, the incorporated
nitrogen concentration determined by X-ray diffraction
(i.e., from data for the lattice constant) must be refined
by secondary ion mass spectroscopy (SIMS). The inset
in Fig. 2 shows the SIMS profile of the nitrogen in the
sample grown with F = 1.5 sccm and I = 7 mA. The
mean nitrogen concentration is 2.08 × 1020 at./cm3, or
Y = 1.15%. The value of Y obtained from the X-ray dif-
fraction data is 1.19%, in excellent agreement with the
SIMS data. Thus, there is no reason to assume that the
nitrogen is incorporated into the interstices of the layers
grown with the use of the CPS.

In Fig. 4, balls are data points for the nitrogen con-
centration as a function of flow rate and constant cur-
rent. The concentration depends sublinearly on both I
and F, that is, tends to saturation when one of the con-
trol parameters rises.

It should also be noted that the films grown at the
minimal plasma-stabilizing current (Is) exhibit a non-
zero nitrogen concentration. Since a high nitrogen con-
centration in the layers is sometimes undesirable, the
least possible value of the nitrogen concentration in the
GaAsN layers MBE-grown with the CPS was studied in
greater detail. Clearly, the nitrogen concentration in the
layer grown at I = Is is minimal for a given flow rate.
Moving along the Is(F) curve toward higher flow rates,
we see that the nitrogen content drops although the flow
rate rises. This is explained by the decrease in the cur-
rent. The minimal nitrogen content, 0.84%, was
observed in the sample grown under the maximal flow
rate (3.5 sccm) and a relatively low current of 7 mA,
which is close to Is for the given F. Layers with still
lower nitrogen concentrations could not be grown
under our experimental conditions because of the tem-
poral instability discussed above. Also, we can con-
clude that current is a more efficient composition-con-
trolling parameter than nitrogen flow rate when this
nitrogen plasma source is applied.

At the same time, the CPS provides the nitrogen
incorporation efficiency as high as 3.7% (I = 45 mA,
F = 0.7 sccm). A flow rate of 1 sccm corresponds to an
atomic flux of 9.27 × 1017 nitrogen atoms per second.
When distributed within a solid angle of 2π, this flux
gives an atomic flux density fN = 3.69 × 1014 at./(cm2 s)
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
at a distance of 20 cm between the CPS aperture and the
substrate. At the same time, a growth rate
of 1 monolayer/s is equivalent to fCa = 6.26 ×
1014 at./(cm2 s). The nitrogen incorporation efficiency
ηin depends on the efficiency of nitrogen activation in
the plasma source and on the growth-condition-related
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sticking coefficient of active nitrogen particles ηst. The
nitrogen concentration in a thick layer is given by

(1)

For 100% activation and a 100% sticking coeffi-
cient, a flow rate of 1 sccm would provide a nitrogen
concentration as high as 57%:

(2)

However, the experimentally found nitrogen con-
centrations for F = 1 sccm are only 1.22 and 2.56% at
currents of 10 and 20 mA, respectively (Fig. 4). Com-
bining expressions (1) and (2) with the experimental
data, we calculated the incorporation efficiency as a
function of applied current (Fig. 5). The efficiency is
seen to vary in proportion with the current. Note that a
change in the flow rate affects ηin insignificantly.

Since all the samples were grown under identical
conditions (substrate temperature, growth rate, and
arsenic pressure), we can assume the constancy of the
sticking coefficient for all the samples. Thus, the cur-
rent dependence of the sticking coefficient reflects the
current dependence of the efficiency of activation
although we do not assume a sticking coefficient of
100%. The strong current dependence of the efficiency
of activation seems to be quite natural. The current is
directly proportional to the flow density of charged par-
ticles (electrons and ions), which are accelerated by the
electric field in the plasma-initiating chamber and acti-
vate neutral gas particles by collision.

The data in Fig. 4 demonstrate that various values of
the source parameters (F and I) may result in the same
nitrogen concentration. For example, the combinations
7 mA, 1.5 sccm and 10 mA, 1 sccm give Y about 1.2%,
as shown in Fig. 2. However, the crystal perfection of
these two GaAsN layers is different. The rocking
curves about the (004) reflection show that the peak for
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Fig. 5. Nitrogen incorporation efficiency vs. source current.
the sample grown at 10 mA, 1 sccm is much wider
(400 arc sec) than when the sample was grown at 7 mA,
1.5 sccm (60 arc sec). We found that the crystal was
more perfect (the diffraction peak was narrower) when
the flow rate was higher. For example, even the sample
with the higher Y = 1.5% that was grown at 10 mA,
1.5 sccm has the peak narrower (about 100 arc sec) than
the sample grown at 10 mA, 1 sccm. It is believed that
a basic reason for the peak broadening is nitrogen flow
rate fluctuations, which modulate the film composition
during the growth. The Y vs. F dependence is strongly
nonlinear. Thus, even small changes in the flow rate
may cause great composition inhomogeneities when
flow rates are low. Conversely, flow rate fluctuations
may be ignored in the saturation region of the Y(F)
curve (high flow rates).

We also studied the surface morphology of the films,
combining RHEED and Nomarski optical microscopy.
In Fig. 4, the surface morphology map according to the
operation conditions of the plasma source is shown. A
strong correlation between the current applied during
the growth and the surface condition. In the layers
grown at low current values (10 mA or lower, Y = 0.8–
1.5%), the surface was always smooth and regular. The
RHEED pattern remains two-dimensional (diffraction
fringes) throughout the growth process. The surface of
the layers grown at moderate current values (20–
30 mA, Y = 2.1–3.1%) is still smooth (except the sam-
ple grown at 30 mA, 0.7 sccm), but the RHEED pattern
contains spots and fringes. Finally, the sample grown at
the highest current (45 mA, Y = 3.7 sccm) has the milky
surface, and the RHEED pattern was three-dimensional
(spots).

It should be emphasized that, during the high-cur-
rent growth, the RHEED pattern did not change gradu-
ally as the film thickened. The spots appeared from the
very beginning of the GaAsN growth. This means that
the surface morphology does not depend on the strain,
as in high-strained InGaAs layers [10]. According to
the RHEED patterns, the morphology depends largely
on the current applied, not on the lattice mismatch
(nitrogen concentration). We suppose that such behav-
ior is associated with an increase in the current of ions
bombarding the surface during the high-current growth.

To check this supposition, we grew two thick
InXGa1 – XAs1 – YNY layers lattice-mismatched with
GaAs, using the conditions 7 mA, 1.5 sccm (Y = 1.2%
or 0.0012) and 20 mA, 1 sccm (Y = 2.6% or 0.0026).
The addition of In allows the mismatch strain to relax;
therefore, its effect on the surface morphology can be
excluded from consideration. The In source tempera-
ture was taken such that the In content in the layers was
roughly 4 and 8%. While the X-ray diffraction curves
confirmed lattice match in the two samples, the
RHEED patterns during the growth and the surface
morphologies greatly differed. The RHEED pattern
from the first sample had fringes, and its surface was
mirror-smooth. The RHEED pattern taken from the sec-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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ond layer had spots from the very beginning, and the sur-
face was also mirror-smooth. These data are consistent
with the results on the surface morphology of the above-
mentioned GaAsN films grown without adding In.

The bandgap of the GaAsN films was estimated
from data for room-temperature photoluminescence
(PL). Neither high-temperature treatment in the growth
chamber nor post-growth rapid thermal annealing were
performed. Closed circles in Fig. 6 show the PL peak
vs. nitrogen concentration. The continuous curve is the
approximation of the data points by a second-order
polynomial. At low nitrogen concentrations (<1.5%),
the shift of the peak toward larger wavelengths is esti-
mated as 200 meV/%. In the sample with the highest
nitrogen content (Y = 3.7%), the PL peak is at 0.93 eV
(1.33 µm). Note that our experimental data for PL in the
low-nitrogen (Y < 1.5%) samples are in good agreement
with the bandgap value measured by the absorption
method in strained GaAsN films grown by MOCVD [9]
(open circles in Fig. 6). However, in the high-nitrogen
(Y > 2%) films, the PL peak is noticeably shifted (up to
70 meV) from the absorption maximum toward larger
wavelengths. We believe that this shift is due to compo-
sition fluctuations, since strongly localized states asso-
ciated with greater-than-average nitrogen concentra-
tions are largely responsible for the PL signal at low
and moderate excitation densities.

We also found that the PL intensity in the GaAsN
layers depends on the CPS current stronger than on the
net nitrogen content, as shown in Fig. 6 (inset). This
well correlates with the effect of the current on the sur-
face morphology discussed above. Presumably, the sur-
face damage induced by fast ions causes a large number
of defects that act as nonradiative recombination cen-
ters. As a result, the PL intensity heavily drops in com-
parison with pure GaAs, especially at high current val-
ues. The optical quality of thin (In)GaAsN films (quan-
tum wells) grown with a CPS calls for further
investigation.

Thus, we studied a series of GaAsN films grown by
MBE with a CPS (constricted plasma source), which is
a new type of sources generating active nitrogen. It was
found that the resulting nitrogen concentration is con-
trolled by both the nitrogen flow rate and the applied
current, the latter being a more powerful controlling
parameter. The CPS provides a practically reasonable
nitrogen concentration, up to 3.7%. Even if the nitrogen
concentration is high, the GaAsN layers 0.35 µm thick
are elastically strained. The nitrogen concentration in
thick GaAsN films is minimal at the lowest value of the
current from the temporal stability range. Room-tem-
perature PL is observed throughout the composition
interval. However, both the PL intensity and the surface
morphology of the films degrade when the source cur-
rent increases. This is explained by the fast-ion irradia-
tion of the surface. At low nitrogen concentrations, the
position of the PL peak well correlates with the band-
gap value (absorption maximum). For high concentra-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
tions of nitrogen, the PL peak is noticeably shifted
toward larger wavelengths because of composition
fluctuations.
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Abstract—The results of the studies on the transformation of the frequency of laser radiation in polyimide
films doped by C70 are presented. The nonlinear susceptibility (χ(3)) of polyimide 6B films with various con-
centrations of C70 is studied by third-harmonic generation. At a wavelength of 1064 nm, the value of χ(3)(–3ω;
ω, ω, ω) is 9 × 10–13 esu. The effect of the nonlinear variation in the refractive index of the fullerene-containing
films on the phase matching between the pumping and third-harmonic waves is analyzed. The third harmonic
of the Nd : YAG laser radiation was generated with the efficiencies 6 × 10–6 and 10–6 in the films with the C70
concentration of 0.5 and 0.2%, respectively. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Interest in the fullerene-containing structures is
related to their various practical and scientific applica-
tions (optical confinement, high-temperature supercon-
ductivity, optoelectronics, etc.). Fullerene-containing
materials are used in optoelectronics owing to their fast,
large, and intrinsically electronic nonlinear optical
response. Such a response is determined by the large
polarizability of delocalized π electrons. Nonlinear
optical characteristics of fullerene solutions and films
were studied in numerous works (see, for example,
[1−6]). Note the studies on the transformation of the
laser-radiation frequency in such media [7–11]. The
studies of nonlinear susceptibilities responsible for the
stimulated four-photon light scattering [1, 3, 4] were
supplemented by the investigation of the spectral
dependences of χ(3) determining the transformation of
the laser-radiation frequency in these media [2, 10, 11].
The value of the nonlinear susceptibility χ(3)(–3ω; ω, ω,
ω) is rather large in the vicinity of the Nd : YAG laser
line. In particular, thin C60 films exhibit a strong peak in
the dispersion curve of the cubic susceptibility in the
vicinity of the Nd : YAG laser line, which was inter-
preted as related to a three-photon resonance with the
excitonic state T1u. The value of χ(3) at this wavelength
was 8.7 × 10–11 esu [11]. Hoshi et al. [7] reported on an
even larger value: χ(3) = 2 × 10–10 esu. At the same time,
there are no data regarding the effect of the nonlinear
contribution to the refractive index of the medium on
the phase matching of the pumping and third-harmonic
waves in the course of the third-harmonic generation
(THG). Note also that there are insufficient data on the
phase mismatching of the interacting waves in the
media considered under various focusing conditions.
1063-7842/01/4610- $21.00 © 21270
Below we present the results of the studies of THG
(λ = 354.7 nm) by the radiation of a picosecond
Nd : YAG laser in polyimide films containing 0.2 and
0.5% of C70. We determined the efficiency of transfor-
mation and χ(3), and analyzed the effect of the nonlinear
contribution to the refractive index on the transforma-
tion of the laser-radiation frequency.

EXPERIMENTAL

The output parameters of the Nd : YAG laser were as
follows: pulse duration, 35 ps; pulse energy, 2 mJ; and
wavelength, λ = 1064 nm. The radiation was focused by
a lens with a 25-cm focal length onto the fullerene
films. The spatial distribution of the focused beam was
close to Gaussian. The pumping radiation was detected
by an FD24K photodiode connected to a V4-17 digital
voltmeter. The radiation of the third harmonic (λ =
354.7 nm) was separated from the pumping beam by an
UFS-2 color-glass filter and directed into a DFS-452
spectrograph equipped with a photomultiplier (PMT)
FÉU-106. The signal was digitized by a V4-17 digital
voltmeter.

We paid special attention to avoiding saturation of
the photomultiplier. The absolute values of the transfor-
mation efficiency were measured by two methods.
First, we calculated the number of TH photons arriving
at PMT based on the value of the PMT signal, its ampli-
fication, and the efficiency of the photocathode. Know-
ing the parameters of the calibrated filters and the losses
in the spectrograph, we could calculate the number of
TH photons generated in the fullerene-containing film.
The transformation efficiency was determined as the
ratio of the TH energy to the energy of the pumping
radiation. The latter was detected by a photodiode cali-
001 MAIK “Nauka/Interperiodica”
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brated by a calorimeter. The second method employed
generation of the second and third harmonics in KDP
crystals. TH radiation passed through the film and its
energy was measured by a calorimeter. After that, the
energy of TH radiation was attenuated by calibrated fil-
ters. Knowing the losses in the spectrograph, we calcu-
lated the calibration factor between the TH energy and
the signal measured by PMT. These two methods yield
slightly differing absolute values of the efficiency of
transformation into the third harmonic.

Experiments used polyimide 6B films with a thick-
ness of 1 µm doped with C70. Fullerene-containing
polyimide films were deposited onto quartz substrates.
The concentrations of C70 in the films were 0.2 and
0.5 wt %.

RESULTS AND DISCUSSION

Figure 1 shows a plot of the TH intensity versus the
intensity of the pumping beam (Iω) for the film with the
fullerene concentration of 0.5%. The slope of this curve
obeys a cubic law up to Iω = 5 × 1010 W/cm2. Further
increase in the intensity leads to a deviation from the
cubic law. In the case of the film with a fullerene con-
centration of 0.2%, the slope of the curve I3ω(Iω) was
2.8 for almost the entire range of the intensity variation.
The maximum transformation efficiencies were 10–6

and 6 × 10–6 for the films with fullerene concentrations
of 0.2 and 0.5%, respectively. For the films with two
concentrations of fullerene (0.2 and 0.5%), the ratio of
the TH intensities measured at various intensities of the
pumping radiation (Iω < 5 × 1010 W/cm2) obeys a qua-
dratic law with respect to the concentration. The exper-
iments were carried out at an intensities of the pumping
beam below the threshold of the optical breakdown of
the fullerene-containing film (Iω = 4 × 1011 W/cm2).

We observed no THG in the fullerene-free polyim-
ide 6B film in the entire range of variation of the pump-
ing intensity. We also tried to detect the radiation of the
second harmonic (λ = 532 nm). None of the samples
exhibited second harmonic generation (SHG). In this
connection, note that Hoshi et al. [12] studied SHG in
C70 films within the framework of the mechanisms
(electroquadrupole and magnetodipole) allowing gen-
eration of an even harmonic in centrosymmetrical
media, which is forbidden under electrodipole approx-
imation. Apparently, the reason for the absence of SHG
in our experiments is the small concentration of
fullerene in the polyimide films in comparison with that
in the aforementioned study and in the works [7, 9]
(experiments with pure C60 and C70 films).

Based on the results obtained, we propose the fol-
lowing interpretation of the nonlinear optical transfor-
mation in the polyimide films doped with fullerenes.
The optical properties of aromatic polyimides [13]
determined by excitation of π electrons can substan-
tially be modified by introducing fullerenes into their
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
matrix. Interest in such systems is related to studies of
the effect of inverse saturation [14] and the similarity of
the mechanisms of the nonlinear response in fullerenes
and aromatic hydrocarbons. C70 represents a medium
with double conjugated bonds and delocalized elec-
trons and exhibits a large value for the induced dipole
moment. The presence of conjugated π electrons
accounts for high hyperpolarizability of these media.

One can use such a medium as a nonlinear one for
effective transformation of the laser-radiation fre-
quency. However, this is possible only in the case of
phase matching between the pumping and generated
waves. In our experiments, we focused the pumping
radiation by a lens with the focal length f = 25 cm and
the value of the confocal parameter was b = 23 mm at
the length of the nonlinear medium l = 1 µm. Therefore,
the experiments met the condition of weak focusing
into the center of the nonlinear medium (l ! b). In this
case, the intensity of the third harmonic (I3ω =
n3c|E3ω|2/8π) generated by the lower mode of the Gaus-
sian pumping beam is given by a relatively simple for-
mula [15]

(1)

Here, γ = 24π3χ(3)(–3ω; ω, ω, ω)/( cλ1); ∆(l, r) =
2b/l – α – β; α = 2l∆k is the normalized value of the

phase mismatch; β = 72π3l∆χkI10exp(–2k1r2/b)( cλ1);
∆k = 3k1 – k3; ∆χk = χ(3)(–ω; ω, ω, –ω)/2 – n1χ(3)(–3ω;
3ω, ω, –ω)/n3 is the difference of the Kerr nonlinearities
responsible for the variation in the refractive indices at
the fundamental frequency and the frequency of the
harmonic in the field of the fundamental radiation; λi,
ki, and ni are the wavelength, the wave number, and the
refractive index at the frequency of the ith radiation;

I3ω γ2l2I10
3 6k1r2/b–( ) ∆ l r,( )sin

2

∆2 l r,( )
-------------------------.exp=

n1
3/2n3

1/2

n1
2

10–2

10–3

10–1

I3ω, arb. units

Iω, 1011W cm–2
100

10–1
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Fig. 1. The TH intensity versus the intensity of the pumping
radiation for a film with 0.5% of C70.



1272 GANEEV et al.
and I10 is the maximum intensity in the focal plane of
the beam.

Expression (1) is valid in the case of relatively weak
self-action (|β| ! b/l) leading to a nonlinear variation in
the value of the phase mismatch. To describe THG with
stronger self-action and the position of the beam waist
outside the nonlinear medium, we employed more
complicated expressions taking into account the varia-
tion in the wave fronts of the interacting beams (self-
focusing and self-defocusing) [15]. The calculations of
the efficiency of the energy conversion used the integra-
tion of formula (1) over the transverse coordinates and
time.

It is known that the phase synchronism (∆k = 0) can
be achieved only if the frequency of the generated radi-
ation falls into the region of the anomalous dispersion
of the medium [16]. Both C70 and polyimide 6B exhibit
normal dispersion at λ = 354.7 nm. However, our
experiments were carried out at such a concentration of
C70 that the estimated value of the parameter α did not
exceed 0.05. This means that the phase mismatch and
linear absorption of C70 must not substantially affect the
process of frequency transformation. The dependence
of the intensity of the generated harmonic on the con-
centration of C70 must be almost quadratic which was
nearly the case in experiments. At low intensities of the
fundamental radiation, the dependence of the TH inten-
sity on the fundamental-harmonic intensity is cubic
(dashed line in Fig. 1). Based on this curve, we calcu-
lated the third-order nonlinearity responsible for THG
in the films with 0.5% of C70 to be 9 × 10–13 esu.

Earlier, Meth et al. [10] and Kajzar et al. [11]
reported on THG in C60 films. Rigorously speaking, the
difference in the positions of the excitonic transitions in
C60 and C70 in the vicinity of the TH wavelength does
not enable one to compare the nonlinear susceptibilities
of these media. Note that the experiments on harmonic
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Fig. 2. The normalized transmittance versus the position of
the plate with polyimide film doped by C70 (0.5%) for the
scheme with a limiting diaphragm.
generation by the radiation of a Nd : YAG laser in solu-
tions and films made of C70 [11, 17] yielded the
third-order nonlinear susceptibilities of 10–13 and 2.6 ×
10–11 esu, respectively.

It follows from formula (1) that an increase in the
intensity of the fundamental radiation leads to a
decreasing slope of the intensity dependence of the TH
intensity due to the effect of Kerr nonlinearities respon-
sible for variation in the refractive index of the nonlin-
ear medium at the fundamental and TH frequencies in
the field of the fundamental radiation (solid line in
Fig. 1). The difference in the Kerr nonlinearities |∆χk|
was estimated to be 8 × 10–11 esu. This means that the
nonlinearities responsible for the self-action are larger
than the nonlinearity responsible for THG by almost
two orders of magnitude. For weak focusing into the
center of the nonlinear medium without using the meth-
ods for compensating the effect of Kerr nonlinearities,
the known expressions [16] predict that the transforma-
tion efficiency will not exceed 1.3 × 10–5. Thus, the
transformation efficiency obtained in our experiments
(6 × 10–6) is close to the upper limit that can be achieved
without using the methods for compensating for the
effect of Kerr nonlinearities. The transformation effi-
ciency can be substantially increased by various com-
pensation techniques (e.g., introduction of additional
phase mismatch and the changes in the focusing of the
pumping radiation).

Note that the decrease in the slope of the I3ω(I1ω)
curve with increasing intensity of the fundamental radi-
ation can also be related to the effect of the nonlinear
absorption. However, we did not observe significant
nonlinear absorption in polyimide films doped by
fullerenes in the intensity range studied.

To determine the value of the Kerr nonlinearity
responsible for the variation in the refractive index at
the fundamental frequency, we carried out independent
measurements of the nonlinear contribution to the
refractive index. We measured the nonlinear refractive
index n2 by using the Z-scheme [18] to determine its
value and sign. Figure 2 shows a typical T(Z) curve
enabling one to determine the sign and the absolute
value of the nonlinear refractive index of the film with
0.5% of C70. The measurements of n2 of a fullerene-free
polyimide film under the same conditions yielded no
nonlinear contribution to the refractive index.

For the film with 0.5% of C70 and the wavelength
λ = 1064 nm, the nonlinear refractive index was deter-
mined to be n2 = –1.4 × 10–9 esu. The value of the Kerr
nonlinearity corresponding to this nonlinear contribu-
tion to the refractive index is χ(3)(ω; ω, ω, –ω) = 1.5 ×
10–10 esu which is in reasonable agreement with the
results of the analysis of the I3ω(I1ω) curves. Thus, an
increase in the intensity of radiation must lead to an
increasing difference between the refractive indices of
the medium at the pumping and TH wavelengths and,
hence, to an increasing phase mismatch. This, in turn,
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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results in a slower increase in I3ω as a function of I1ω
than predicted by the cubic law. The same effect was
observed in experiments. Such a phenomenon was
observed earlier in the case of strong focusing in gas
media when the high-frequency Kerr effect leads to a
phase mismatch and slows down the increase in TH
intensity with the intensity of the pumping beam
[19, 20]. Note the opposite effect consisting in an addi-
tional increase in the harmonic intensity with an
increase in the intensity of the pumping beam owing to
compensation of the phase mismatch in the media with
positive n2. This can be used for optimizing the phase
matching in THG [20].

Figure 3 shows a plot of TH intensity versus the
position of the film with 0.5% of C70 relative to the
focal point (Z = 0). A slight asymmetry of I3ω(Z) can be
related to a nonlinear contribution to the refractive
index. In front of the focal point, self-defocusing of the
fundamental radiation must lead to a decreasing diver-
gence of the radiation and, hence, to a higher efficiency
of THG in comparison with the zone lying behind the
focal point. However, the calculations at the given ratio
of the confocal parameter to the length of the nonlinear
medium yield a nearly symmetric curve (solid line in
Fig. 3). The growth of the intensity of the pumping
beam must lead to a broadening of this curve. At higher
intensities, a dip in the central part of the curve makes
the position of the beam waist outside the nonlinear
medium more preferable.

CONCLUSIONS

We have studied the generation of the third har-
monic of picosecond radiation of a Nd : YAG laser in
polyimide films. For the first time, the nonlinear sus-
ceptibility χ(3) of polyimide films with various concen-
trations of C70 was studied by the THG technique. The
nonlinear susceptibility of the polyimide film with
0.5% of C70 was 9 × 10–13 esu. The effect of the Kerr
nonlinearity on phase matching of the pumping and TH

0.2

–1.5 –1.0

I3ω, arb. units

Z, cm
–0.5 0 0.5 1.0 1.5

0

0.4

0.6

0.8
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Fig. 3. The TH intensity versus the position of the film with
0.5% of C70 relative to the focal point (Z = 0).
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waves accounts for the deviation of the I3ω(Iω) curves
from the cubic law. The maximum efficiency of trans-
formation into the third harmonic was 10–6 and 6 × 10–6

for the films with 0.2 and 0.5% concentrations of
fullerene molecules, respectively.
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Abstract—The feasibility of effective wide-band acoustooptic interaction in the short-wave part of the micro-
wave range by means of nonperiodic multielement piezoelectric transducers is analyzed. The variation of the
pitch or the period of the transducer sections is discussed. The impedance of a piezoelectric element with an
arbitrary number of transformable layers and the acoustic power radiated from each of the piezoelements of the
transducer are calculated. A 13-section transducer designed for a center frequency of 9 GHz is considered as an
example. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In this work, we analyze the use of variable-pitch
multielement electroacoustic piezoelectric transducers
(MEATs) in deflectors operating in the short-wave part
of the microwave range. Impetus to writing this article
has been given by the erroneous statement that “the use
of the MEATs makes it possible to substantially extend
the bandwidth of acoustooptic interaction and improve
the diffraction efficiency” [1]. Another reason is work
[2], where acoustooptic (AO) interaction in lithium nio-
bate crystals was experimentally studied in the fre-
quency range of 7.5–10.5 GHz. The data obtained in
[2], as well as the prospects for using this phenomenon
in applications, have stimulated us to check whether
nonperiodic MEATs can really improve the AO interac-
tion efficiency at the above frequencies.

It is known [3–5] that the variation of the MEAT fre-
quency generates scanning acoustic waves, allowing
self-tuning to “the Bragg angle” in AO devices. Such
transducers, which are nonperiodic structures, have
been carefully analyzed in [6–13]. However, self-tun-
ing with the conventional transducers does not com-
pletely satisfy the Bragg law. This generates a need for
limiting the MEAT length in order to compensate (cor-
rect) for the discrepancy by the acoustic beam diver-
gence. Thus, the actual MEAT length turns out to be
insufficiently long for a high AO efficiency to be
reached in a wide frequency band. Efforts to design
periodic MEATs, which could provide perfect self-tun-
ing at microwaves, have failed, as far as we know.
Moreover, piezoelements based on conventional piezo-
electric films (CdS, ZnO, or AlN) cannot be equally
effective in a frequency band as wide as desired. This,
naturally, narrows the passband of the acoustooptic
device as a whole.

The idea of a variable-pitch multielement transducer
has been put forward in [1]. The chain of argument was
1063-7842/01/4610- $21.00 © 21274
as follows. For a periodic multielement transducer, the
Bragg condition is given by [7]

(1)

Here, ΘB(f) is the Bragg angle between the wave vector
of light and the acoustic wave front, f is frequency, Θ0i

is the angle between wave vector of the incident light
and the end face of an acoustic line, m is the number of
a spatial harmonic of an exciting electric field, i is the
number of a possible direction of the incident light
(i = 1 or 2), and αm is the angle between the front of the
mth partial elastic wave and the end face of the MEAT
acoustic line. The angle α is given by [7]

(2)

where ϕ(f) = ϕ0(f) + 2πm is the phase shift per MEAT
period for the mth spatial harmonic, ϕ0(f) is the phase
shift between neighboring piezoelements, and l is the
MEAT period.

Based on these formulas, the authors of [1] con-
cluded that “precise self-tuning in a given bandwidth
(i.e., the variation of αm in strict accordance with the
variation of ΘB) is possible only if the phase shift per
period ϕm(f) or the period l changes with frequency. In
the latter case, the system becomes nonperiodic.”

As for the former possibility, it is beyond question
and has been studied in detail in the works cited above.
The latter statement, however, provokes objections: a
change in the period l(f) does not necessarily mean that
the transducer becomes nonperiodic. What actually
happens is that its length changes with the number of
the elements retained. The transducer must remain peri-
odic, having another period. Otherwise, the expansion
of the electric field in an MEAT becomes impossible
and formulas (1) and (2), invalid. Obviously, such a
transducer cannot be designed for a complex-spectrum

αm Θ0i– 1–( )iΘB f( ).=

αm v acϕm f( )/2πfl[ ]arcsin ,=
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signal, since the transducer must have different periods,
remaining periodic at the same time.

Certainly, a nonperiodic MEAT where the pitch
along its length varies according to some law, including
a law meeting Bragg condition (1), can be suggested. In
[1], such a possibility is considered only qualitatively,
so that the question of pitch variation law remains open.

The variability of l(f) following from (1) and (2)
should be perceived as the feasibility of a sectioned
transducer consisting of MEAT sections with different
periods. Each of the sections acts as an independent
MEAT having its own center frequency and passband.
It can be assumed that the combination of the sections
will provide the MEAT operation in a given frequency
band with a desired efficiency. Physically, it is clear that
the AO efficiency can be improved by lengthening the
sections; in this case, however, it is necessary to have a
larger number of the sections, since the frequency band
of self-tuning for each of them (subband) shrinks in this
case. The periods of the sections are defined by formu-
las (1) and (2) and also by the center frequencies of the
subbands, and the section lengths depend on the sub-
band width. To provide a high AO efficiency, the piezo-
elements in each particular section must operate in a
sufficiently narrow operating subband to which this
section is tuned; otherwise, “sound” will uselessly be
generated also by sections whose period is inappropri-
ate for a given frequency. Thus, the minimal bandwidth
where real piezoelements can operate specifies the sub-
band width and, hence, the number of sections and the
maximal AO efficiency.

Hereafter, we assume that the photoelastic medium
is an X-cut lithium niobate crystal and that the center
frequency of the operating band is 9 GHz. The wave-
length of light in a vacuum is set to be equal 0.63 µm.
Without loss of generality, the damping of the elastic
waves is assumed to be zero. The transducers will be
considered as quasi-steady-state chains of lumped-
parameter piezoelements with a constant phase shift
between neighboring elements and a negligibly small
impedance of wires. The fact that the wavelength of an
electromagnetic wave far exceeds the linear size of the
chain validates our quasi-steady-state representation.
For example, the length of a 13-section ≈10-GHz
MEAT consisting of 1345 elements is ≈4.9 mm.

In what follows, we will find the frequency depen-
dences of the AO efficiency when “sound” is generated
by both sectioned MEATs and various nonperiodic
MEATs with a smoothly varying pitch. Also, we will
consider nonperiodic MEATs that are modifications of
a periodic opposite-phase transducer.

PITCH VARIATION LAW

First, we will select the periods for different sections
of a sectioned transducer. From (1) and (2), it follows
that, if the angle Θ0 of incidence of light is constant, the
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
MEAT period must depend on frequency as

(3)

Given the center frequencies of the subbands and
the angle of incidence Θ, one can easily calculate the
periods of all the sections. For self-tuning at least in one
of the sections to take place in a frequency band as wide
as possible, the period of this section must obey the
condition [7]

(4)

where f0 is the center frequency.
We will restrict our analysis by a sectioned trans-

ducer whose prototype is a periodic opposite-phase
device [7]. For this and also for inphase transducers, it
was shown [8] that

(5)

(where km = |ϕ0/π + 2m|), as follows from (4).
Such a period will be referred to as optimal. Note

that formula (5) cannot yield the periods for different
sections, since one should find from (1) a new angle of
incidence Θ0 for each new frequency. If a period l is
found by formula (5) and then the angle Θ0 for one of
the sections is found by (1), the value of l for the other
sections must be determined from (3) assuming Θ0 =
const.

Consider an X-cut LiNbO3 crystal (n0 = 2.2, v ac =
6.57 × 103 m/s) as a photoelastic medium. For λ0 =
0.63 µm in the case of an opposite-phase (OP) MEAT
(km = 1), we obtain, from (5), l = 1.9 and 3.076 µm for
frequencies f0 = 8.9 and 7 GHz, respectively. From (1),
we obtain, respectively, Θ0 = 0.39 and 0.302 rad. For
these constant angles, frequency dependences (3) will
take the form shown in Fig. 1. Both curves are seen to
have a minimum: at f0 = 8.9 GHz (lmin ≈ 1.9 µm) and
≈7 GHz (l ≈ 3.1 µm). Clearly, self-tuning in the greatest
possible frequency band will take place in the section
near the minimum of the l(f) curve, since here the
period required depends on the frequency only slightly.
The sections operating at other frequencies must have a
larger period according to the curve in Fig. 1. The
widths of the self-tuning subbands for the other sec-
tions will increasingly shrink with distance from the
minimum because of the growing slope of the l(f)
curve. The recovery of the frequency subband width of
these sections by their shortening is impossible,
because the AO efficiency will degrade in this case.
Therefore, for the MEAT passband to remain
unchanged, it is necessary to increase the number of
sections, since those operating far away from f0 will
decrease the subband width at a fixed length of the
device.

Figure 1 shows that the upper curve requires much
larger periods in the sections. For example, at 9 GHz,

l
v ac ϕm f( )

2πf Θ0i 1–( )iΘB f( )+[ ]sin
-----------------------------------------------------------------.=

dαm/df( ) f f 0= 1–( )i dΘB/df( ) f f 0= ,=

l kmn0v ac
2 / f 0

2λ0=
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the lower curve implies that the period must be 1.9 µm,
while from the upper curve, it follows that the period
must be 3.5 µm. The latter size is preferable from tech-
nology considerations. Therefore, we will address to
the upper curve in subsequent analysis.

The periods in particular MEAT sections can be
found only if the widths and center frequencies of the
subbands are known. The frequency properties of the
piezoelements play a crucial role here. In a given sec-
tion, the elements must operate mostly in an appropri-
ate frequency band. The implementation of such piezo-
elements is of special importance in creating sectioned
MEATs.

Now consider an MEAT with the smooth variation
of the pitch l(x) along the transducer. A high AO effi-
ciency can be attained in this case if the device has a
sufficiently large number of elements. Then, to each of
the spectral components of the signal, a group of the
elements with an appropriate pitch will correspond,
hence, a desired AO efficiency. It is obvious that the
pitch must not considerably change within a group just
because the total number of the elements is large. It fol-
lows that the distribution of the resulting acoustic field
(induced by all the groups) resembles the case of a sec-
tioned transducer. The only difference is that the prob-
lem of pitch selection disappears, because the distance
between the sections smoothly varies. Clearly, the pitch
at the center of a group must be found from formula (3),
as for sectioned MEATs.

In [1], it was suggested to relate the functions l(x)
and l(f). However, the form of the former function is
still unclear. For the nonperiodic MEATs with a
smoothly varying pitch, we will use a linear relation-
ship between the frequency and the longitudinal coor-
dinate. The algorithm for deriving this relationship is as
follows. The operating frequency range of an MEAT
consisting of M elements is subdivided into M – 1 inter-
vals, each corresponding to a particular pair of neigh-
boring elements. Let the number of a specific frequency
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Fig. 1. MEAT period vs. frequency. Θ0 = (1) 0.3 and
(2) 0.39 rad.
interval coincide with the “continuous” number of the
first element of the corresponding pair. From formula (3),
a desired value of l for the lower bound of each of the
intervals is found and taken as the center distance of the
corresponding pair of the elements. We omit other ways
of specifying the l(x) function. Note only that the above
procedure does not yield the optimal form of l(x), since
the curve l(f) is of variable slope: k = dl/df. As a result,
the efficiency of MEAT operation in various frequency
ranges will be different. It seems that the higher the
slope k(f), the lower the AO efficiency. Appropriate cor-
rections to the l(x) function are needed to improve the
frequency response of the AO device.

IMPEDANCE OF PIEZOELEMENT

To predict the MEAT performance, it is required to
find the frequency dependence of the impedance ZΣ of
an individual piezoelectric element. From this depen-
dence, one can estimate the acoustic power radiated
from each of the elements and, hence, the efficiency of
AO interaction for a particular MEAT version.

To construct a desired frequency response of the
transducer, we will consider a model of multilayer
piezoelement shown in Fig. 2. Piezoelectric layer 1 is
sandwiched in infinitely long media: photoelastic crys-
tal 2 and passive load 3. Between these media and the
piezolayer, there are sets of intermediate transformable
layers. The bottom layers are assigned numbers 2m,
where m = 1, 2, …; M is the number of a layer reckoned
from the acoustic line. The top layers are assigned num-
bers 3n, where n = 1, 2, …; N is reckoned from the pas-
sive load. The figures 2 and 3 in the numbering mean
that the associated layers are arranged on the side of the
2nd and 3rd media. The layers with the numbers 2M
and 3N are assumed to be metallic electrodes that are in
direct contact with the piezoelectric and will be referred
to as “underlayer” and “overlayer.”

Let us assume that the longitudinal normal of the
crystalline piezoelectric layer is directed along the x
axis perpendicularly to the end face of the photoelastic
acoustic line. Such a situation occurs, for example,
when a ZnO film thus oriented due to the hexagonal
axis generates a longitudinal wave. The underlayer,
overlayer, all intermediate layers, and acoustic line are
assumed to be isotropic (their longitudinal normal is
aligned with the x axis). This condition is met when a
longitudinal elastic wave propagates in a LiNbO3
acoustic line along the X axis of the crystallographic
coordinate system. Under such conditions, the equa-
tions describing electromechanical processes in the
piezoelectric become scalar.

Proceeding as in [14, 15], one can obtain the equa-
tion for dimensionless impedance of a piezoelement:

(6)
ZΣ ω( )ωC0 δΣ jτΣ+ j– j

k2

β1h1( )
---------------+= =

× e
jβ1h1–

1–( )u1+' e
jβ1h1 1–( )u1–'+[ ] ,
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where C0 is the static capacitance of the piezolayer; δΣ
and εΣ are the active and reactive components of the
impedance, respectively; k is the electromechanical
coupling coefficient; (β1h1) is the universal independent
variable (the product of the wave number in the piezo-
electric, β1, by its thickness h1); and  and  are the
dimensionless complex amplitudes of the direct and
backward waves of mechanical displacement, respec-
tively, in the piezoelectric:

where u1 is the dimensional complex amplitude of
mechanical displacement.

From the conditions at the piezoelectric boundary,
we have

(7)

(8)

Here, Z2M is the acoustic resistance resulting when the
wave impedance Z20 of the acoustic line is affected by
the sequence of M layers below the piezoelectric
(Fig. 2), and Z3N is the acoustic resistance resulting
when the wave impedance Z30 of the acoustic line is
affected by the sequence of N layers above the piezo-
electric. If damping is absent, each of the underlying
layers affects the resistance by the law

(9)

where Z2, m0 is the acoustic wave impedance of layer
no. 2m; Z2m is the acoustic resistance of the layer with
the same number at its boundary facing the piezoelec-
tric; Z2, m – 1 is the impedance of the preceding layer at
the same boundary, a2m is the normalized thickness of
the layer,

and v 1 and v 2m are the sound velocities in the associated
layers.

For the top layers, the law of resistance modification
has the form of (9) with the subscript 2m replaced by
3n. In the absence of the passive acoustic load, one can
put Z30 = 0.

Thus, the algorithm for calculating the normalized
impedance δΣ + jτΣ of the piezoelement is as follows.
First, the values of Z2M and Z3N are found from (9) by
iteration. Then, the system of algebraic equations (7)
and (8) is solved and the dimensionless amplitudes 

and  found are substituted into (6). Eventually, we

u1+' u1–'

u1' u1Z10εω/eD0,=

Z2M

Z10
--------- 1– e

jβ1h1–
u1+'

Z2M

Z10
--------- 1+ e

jβ1h1u1–'+ j,–=

Z3N

Z10
-------- 1+ u1+'

Z3N

Z10
-------- 1– u1–'+ j.=

Z2m

=  Z2 m0,
Z2 m 1–, a2mβ1h1( )cos jZ2 m0, a2mβ1h1( )sin+
Z2 m0, a2mβ1h1( )cos jZ2 m 1–, a2mβ1h1( )sin+
-------------------------------------------------------------------------------------------------------,

a2m

v 1

v 2m

---------
h2m

h1
--------,=

u1+'

u1–'
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obtain the active and reactive components

(10), (11)

The active resistance δΣ = δac + δload load, where δac
and δload are the resistances that excite an acoustic wave
in the acoustic line and in the passive layer, respec-
tively. If acoustic loss in the layers is absent, these
parameters can be found in the following way.

The piezoelement is connected from above and from
below to the complex acoustic resistances Z3N and Z2M

(Fig. 2). The former arises when the intermediate layers
affect the acoustic wave impedance of the passive load,
and the latter is the result of transformation of the wave
impedance of the acoustic line. The respective powers
absorbed by these resistances are

Then, passing to the dimensionless displacement,
we easily come to

(12)

δΣ RΣωC0, τΣ xΣωC0.= =

Pload ReZ3N( )ω2 u1 x 0=( ) 2/2,=

Pac ReZ2M( )ω2 u1 x h1=( ) 2/2.=

δac

δΣ
------

Pac

Pac Pload+
------------------------=

=  
ReZ2M( ) u1' x h1=( ) 2

ReZ2M( ) u1' x h1=( ) 2
ReZ3N( ) u1' x 0=( ) 2

+[ ]
----------------------------------------------------------------------------------------------------------------.

a

b

c

h1

h2m

d–

x

21

2m

2M

3N

1

3n h3n

31

3

Fig. 2. Piezoelement model. (a) Passive load, (b) overlayer,
(c) underlayer, and (d) photoelastic medium.
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Here, (x = h1) =  +  and (x = 0) =

 + . If the passive load is absent (that is, Z30 = 0),
we have ReZ3N = 0 and accordingly δac = δΣ. Similarly,
we can write

ACOUSTIC POWER RADIATED 
BY A PIEZOELEMENT

Consider a multielement transducer with M ele-
ments that electrically represents a series connection of

u1' u1+' e
jβ1h1–

u1–' e
jβ1h1 u1'

u1+' u1–'

δload

δΣ
---------

=  
ReZ3N( ) u1' x 0=( ) 2

ReZ2M( ) u1' x h1=( ) 2
ReZ3N( ) u1' x 0=( ) 2

+[ ]
----------------------------------------------------------------------------------------------------------------.

1

2

3

Fig. 3. Design of a multielement transducer: (1) interdigita-
tion; (2) metal; and (3) piezoelectric.
two groups of elements connected in parallel within
either group (Fig. 3). The acoustic line is covered by a
thin-film metallic interdigital structure. On this struc-
ture, in turn, piezoelectric and metal strips are depos-
ited. An ac voltage is applied to the interdigitation. The
tangential electric fields between the wires in the piezo-
electric are shunted by the metal strip. The normal
fields between the metal strip and the wires cause a
sequence of opposite-phase piezoelements to appear.
Odd elements enter one group, and even elements fall
into the other. Let the χth element have the impedance
Zχ. Then, the impedance of the odd elements is given by

(13)

and that of the even elements,

(14)

The total impedance is

(15)

Consider the simplest case where an MEAT repre-
sents a termination of a transmission line with a wave
impedance Z0. We assume that the generator is matched
with the line; i.e., its internal resistance is also Z0. Then,
it can be shown the acoustic power radiated from the
χth piezoelement is expressed by the formula

Zod
1 1–( )χ–( )

2Zχ
---------------------------

χ 1=

M

∑
1–

=

Zev
1 1–( )χ+( )

2Zχ
---------------------------

χ 1=

M

∑
1–

.=

ZΣ Zod Zev+ RΣ jXΣ.+= =
(16)Pχ
4Z0Pal 1 1–( )χ+( )/2[ ] Zev

2 1 1–( )χ–( )/2[ ] Zod
2+{ }

Z0 ZΣ Zk+ + 2 Zχ
2

----------------------------------------------------------------------------------------------------------------------------Re Zχ( ),=
where Pal is the power released in the matched termina-
tion and Zc is the impedance of contact wires connect-
ing the MEAT and the transmission line.

From this formula, it follows that the Pχ vs. Z0
dependence has a peak at a so-called optimal value of
the wave impedance:

(17)

Thus, the optimal wave impedance of the transmis-
sion line must equal the absolute value of the MEAT
impedance in view of loss. A line with such an imped-
ance will also be called optimal. This line can be
matched with a standard 50-Ω line in a wide frequency
band, for example, using a Chebyshev step junction.
With such a way of electromagnetic power delivery to
the MEAT, there is no need for reactive matching ele-
ments and the transducer can operate in a wide fre-
quency band.

Analysis based on these formulas has shown that
narrow-band piezoelements suitable for the use in
MEAT sections are easy to implement. It turns out that

Z0 opt, ZΣ Zc+ .=
the thickness of the piezoelectric, the metal type, and
the thickness of the underlayer can be the same for all
sections. In this case, desired center frequencies of the
subbands can be provided by varying only the thickness
of the overlayer. A piezoelement using an X-cut
LiNbO3 acoustic line, a 0.32-µm-thick ZnO film, a
0.16-µm-thick aluminum underlayer, and a gold over-
layer (with a thickness of 0.48–0.61 µm) can operate in
a frequency band of ≈3% and tuned in the range of 8–
10 GHz by varying the overlayer thickness. The table
lists the basic parameters of the 13-section MEAT with
a total number of such piezoelements M = 1345. The
center frequencies of the subbands, the number of the
elements in a section, the thicknesses of the overlayer,
and the periods l calculated from formula (3) for Θ =
0.3019 rad are presented. The width of the piezoele-
ments was taken equal to 50 µm. The total length of the
sections was ≈4.9 mm. The last column lists the width
of the frequency dependence of the 3-dBm AO effi-
ciency (ηAO) for each of the sections.
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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Table

Section no. Center frequency f0 
of subband, GHz

Number M of ele-
ments in a section Period l, µm Overlayer thick-

ness P, 0.1 µm
Subband width, 

MHz

1 8.16 112 3.278 6.153 275

2 8.41 110 3.329 5.932 230

3 8.612 108 3.379 5.766 200

4 8.804 107 3.435 5.616 180

5 8.97 106 3.489 5.484 165

6 9.13 105 3.546 5.379 155

7 9.272 103 3.605 5.275 140

8 9.404 102 3.663 5.187 135

9 9.53 101 3.724 5.101 125

10 9.65 100 3.786 5.024 120

11 9.77 98 3.854 4.949 120

12 9.88 97 3.921 4.881 100

13 9.98 96 3.986 4.821 100
Figure 4 depicts the frequency dependence of the
absolute value of the impedance for this MEAT. It was
calculated with formula (17) in view of (13)–(15). The
run of the curve depends primarily on the reactance
1/ωCΣ of the MEAT total capacitance. The active com-
ponent makes the curve slightly oscillate. It follows
from this figure that the optimal wave impedance in this
case is Z0, opt = 1.6–1.7 Ω .

The frequency dependences of the acoustic power
radiated by individual piezoelements in the sections are
shown in Fig. 5. The calculations were performed with
formula (16) and relationships (12)–(14). The power
released in the matched termination was taken to be
equal to Pal = 1 W and the ohmic loss resistance, Rloss =
0.1 Ω . The figure at each of the curves is the number of
an element for which the calculations were made. The
acoustic power at the peaks is seen to roughly equal to

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
f, GHz

1.6

1.7

1.8

1.9
|ZΣ + Zk|, Ω

Fig. 4. MEAT impedance absolute value vs. frequency.
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500 µW. Thus, a section with ≈100 elements radiates an
acoustic power of ≈50 mW at the center frequency of
the subband.

It should be noted that the curves have approxi-
mately equal half-power bandwidths for all sections.
The fact that the curves approach each other with
increasing frequency is explained by the narrowing of
the self-tuning bandwidth because of an increase in the
period, as follows from the curve in Fig. 1, and also by
an increase in the slope of this curve. The calculated
distribution of the radiated power over the elements is
illustrated in Fig. 6 for three center frequencies (8.37,
9.36, and 9.84 GHz) of the subbands. It is seen that the
acoustic signal at any of these frequencies comes
largely from elements of one section. Sections immedi-
ately adjacent to the radiating section emit much
weaker power. As the frequency grows, the MEAT

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
f, GHz

0

0.1

0.4

0.6
Acoustic power, mW

0.2

0.3

0.5 i = 50 162 276 283 490 595 700 802
903

1103

1104
1200

1297

Fig. 5. Acoustic power radiated from individual piezoele-
ments vs. frequency.
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region exciting elastic waves moves toward greater ele-
ment numbers.

CONCLUSION

We discussed the principles of creating nonperiodic
MEATs that provide self-tuning to the Bragg angle in
acoustic devices. Relationships necessary for the anal-
ysis of the AO interaction efficiency as a function of fre-
quency were derived for various nonperiodic MEATs
with opposite-phase adjacent elements. Formulas for
calculating the impedance of piezoelements with an
arbitrary number of passive layers, including rear,
acoustic, and absorbing loads, were obtained. These
relationships, which are easily programmable on a
computer, are of independent value, since they can be
used in designing microwave piezoelectric transducers
with desired properties. Among them are plate-like
transducers, where several coupling layers are placed
between the piezoelectric and the acoustic line. Formu-
las for calculating the acoustic power radiated from an
MEAT element were deduced for the case when the ele-
ments or groups of the elements differ in frequency
properties. The geometry of a 13-section wide-band
MEAT with narrow-band elements that is designed for
the operation in the short-wave part of the microwave

0.0001

1 401

Acoustic power, mW

Element number
801 1001 1201

0

9.84 GHz

601201

0.0002

0.0003

0.0004

0.0005

0.0006

9.36 GHz

f = 8.37 GHz

Fig. 6. Acoustic power per element vs. element number.
range was demonstrated. The dependence of the radi-
ated acoustic power on the frequency and on the ele-
ment number was shown.
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Abstract—The transmission of a TE microwave field with a frequency ω through Γ, T, and X waveguide junc-
tions filled with a ferromagnetic is considered. These junctions are known to have bound states with below-cut-
off frequencies. A probing microwave radiation with a frequency Ω applied to the scattering region generates
magnetic oscillations with frequencies ω + nΩ (where n = 0, ±1, ±2, …), which resonantly combine with the
bound waveguide states. This effect provides for a new method of studying bound waveguide states and effi-
ciently controlling the transmission of microwave radiation. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
It is well-known [1] that TE electromagnetic waves

propagating through a planar waveguide of constant
width may be represented in terms of scalar potential
Ψ(x, y),

(1)

which satisfies the Helmholtz equation

(2)

(where  is the Hamiltonian operator) with ψ|s = 0 on
the waveguide walls. The velocity of light is assumed to
equal unity. Equation (2) coincides with the
Schrödinger equation that describes ballistic electron
transport in electron waveguides [2].

If the waveguide is curved (as shown in Fig. 1a), the
Helmholtz equation has an additional bound solution
(state) with a TE frequency below the cutoff frequency
of the propagating TE waves: ω2 < (π/d)2 [3], where d
is the waveguide width. This bound state is localized
near the waveguide bend. Such bound states, as partic-
ular solutions of Eq. (2), have been originally found for
Γ waveguide junctions [4, 5] and T and X waveguide
junctions [6, 7] (Figs. 1b–1d). These states are illus-
trated in Fig. 2. In [8, 9], the bound states were theoret-
ically and experimentally studied as applied to TE
modes in microwave Γ waveguides. When a probing
radiation field was applied to the center of the
waveguide bend, the reflected power of the microwave
field propagating in the waveguide showed a resonant
minimum from which the frequency of coupled electro-
magnetic oscillations was found [8]. The spatial field
structure of localized bound states was also found. Dif-
ferent bound states have also been observed in dielec-

E x y,( ) ikẑΨ x y,( ), B x y,( ) ẑ∇Ψ ,–= =

∇ 2 ω2+[ ]Ψ 0=

∇

1063-7842/01/4610- $21.00 © 21281
tric waveguides artificially created in two-dimensional
photon crystals [10].

However, these bound states by no means affect the
propagation of TE waves in waveguides. Earlier [11,
12], we proposed a technique for combining bound
states with ballistic transport of electrons in
waveguides, using a radiation field with a frequency
that is tuned to the resonance between the Fermi energy
of electrons being transported and the energy of a

(a)

(c) (d)

(b)

3

2

1 1 4

3

2

2

1

y

x

Fig. 1. Waveguide structures that support the bound states
illustrated in Fig. 2. (a) Curved waveguide; (b) Γ, (c) T, and
(d) X waveguide junctions. (1–4) Waveguide arms (shaded
regions are those to which the probing field is applied).
001 MAIK “Nauka/Interperiodica”
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bound state. As a result, a small-amplitude radiation
field is capable of producing deep resonance dips in the
waveguide transmittance. A similar approach is consid-
ered in this paper for TE waves propagating in Γ, T, and
X waveguide junctions. However, in a linear medium,
electromagnetic fields do not interact. Therefore, a
medium is necessary that would cause such an interac-
tion. In this paper, we consider a waveguide filled with
a magnetically ordered material of magnetization M.
Then, the interaction of the magnetic component of the
probing field with the magnetic moment of the ferro-
magnetic will produce magnetic oscillations with fre-
quencies ω + nΩ , where n = 0, ±1, ±2, … and Ω is the
frequency of the probing field. If the frequency of one
of these harmonics coincides with that of the coupled
oscillations, one can expect resonance interaction
between the TE wave traveling through the junction and
the bound state of the waveguide. Thus, by tuning Ω to
the resonance between the propagating microwave
radiation and the coupled electromagnetic oscillations,
one may observe resonance anomalies in the transmis-
sion of microwave radiation through curved
waveguides. This resonance technique for controlling
the transmission of microwave radiation and studying
the bound states may also be of applied value.

DYNAMICS OF THE MAGNETIZATION

The equation of motion for magnetic moment M in
impressed electromagnetic fields [13] is written as

(3)∂M
∂t

-------- g M H m( ) H e( )+( )×( ),=

(a) (b)

(c) (d)

Fig. 2. Spatial structures of the electric field of the bound
states in the waveguide junctions shown in Fig. 1.
where H(e) is the applied magnetic field consisting of
the constant field H0 and variable magnetic field of the
probing radiation aligned with the z axis, and H(m) is the
magnetic component of the microwave field propagat-
ing in the waveguide (H(m) lies in the xy plane).

It is convenient to introduce the complex amplitudes

(4)

in terms of which Eq. (3) takes the form

(5)

For harmonic oscillations, ξ+ = M+/M is small. Then,

Accordingly, Eq. (5) can be written in the linear
approximation as

(6)

Let the probing microwave field have the simplest
form, H(e)(r, t) = H0 + λ cosΩt, and be directed along
the z axis. We assume that the alternating component of
this field acts only in the waveguide region occupied by

the bound state. Consider the amplitude (t) =

eiωt that describes the field rotating counterclock-
wise with a circular frequency ω in the xy plane.

If the probing field is absent (λ = 0), the coupling

between magnetization oscillations ξ+(t) = eiωt and
the microwave field propagating in the waveguide is

expressed in terms of the susceptibility [13] as  =

χ(ω) , where

(7)

In general, when λ ≠ 0, we substitute ξ+(t) = eiωt

into Eqs. (6) to obtain

(8)

A solution to Eq. (8) can be sought in the form

M± Mx iMy, H±
m( )± Hx

m( ) iHy
m( ),±= =

∂M+

∂t
---------- igH e( )M+– igMzH+

m( ),+=

∂Mz

∂t
----------

1
2
---ig H+

m( )M– H–
m( )M+–[ ] .–=

Mz M 1
M+M–

2M2
---------------– 

 ≈ M 1
1
2
--- ξ+

2– 
  .=

i
∂ξ+

∂t
-------- gH e( )ξ+ gH+,–=

1
2
---

∂ ξ+
2

∂t
-------------– gIm H+

m( )ξ–( ).=

H+
m( )

H+
0( )

ξ+
0( )

ξ+
0( )

H+
0( )

χ ω( ) g
ω gH0+
--------------------.=

ξ+
1( )

i
∂ξ+

1( ) t( )
∂t

------------------ ω gH0 gλ Ω tcos+ +( )ξ+
1( ) t( ) gH+

0( ).–=

ξ+
1( ) t( ) F t( ) i ω gH0+( )t– i

gλ
Ω
------ Ωtsin– .exp=
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Substituting it into Eq. (8) yields

(9)

Since we consider forced oscillations, F0 = 0. There-
fore, the solution to Eq. (8) can again be represented in
terms of susceptibility χ(t), which is now a periodic
function of time:

(10)

As follows from (10), the susceptibility χ+(t) is a
periodic function of time, with its period being equal to
that of the applied probing field. Therefore, the solu-
tions for the probing field and the magnetization have
the form of a superposition of TE modes of different
circular polarizations with frequencies ω + nΩ , where
n = 0, ±1, ±2, …:

(11)

Then

where χ(±)n(t) is the response of magnetic system (10)
to the magnetic field rotating with a frequency ω + nΩ
counter- or clockwise (the plus and minus subscripts,
respectively).

As follows from (10), the susceptibility χ(±)n(t) has
the period 2π/Ω. Therefore, we represent it as a Fourier
series over this period:

(12)

F t( ) F0 igH+
0( )+=

× i ω gH0+( )τ i
gλ
Ω
------ Ωτsin+ τ .dexp∫

ξ+
1( ) t( ) χ+ t( )H+

0( ),=

χ+ t( ) ig i ω gH0+( )t– i
gλ
Ω
------ Ωtsin–exp=

× i ω gH0+( )τ i
gλ
Ω
------ Ωτsin+exp τd∫

=  g i
gλ
Ω
------ Ωtsin– 

 
Jm

gλ
Ω
------ 

 

ω gH0 mΩ+ +
------------------------------------ imΩt( ).exp

m

∑exp

H+ t( ) hnei ω nΩ+( )t h̃ne i ω nΩ+( )t–+{ } ,
n

∑=

ξ+ t( ) ξn t( )ei ω nΩ+( )t ξ̃n t( )e i ω nΩ+( )t–+{ } .
n

∑=

ξn t( ) ξ +( )n t( )hn, ξ̃n t( ) χ –( )n t( )h̃n,= =

χ +( )n t( )einΩt χ +( )nmeimΩt,
m

∑=

χ –( )n t( )e i– nΩt χ –( )nme i– mΩt,
m

∑=
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where

(13)

The best way to calculate χ(±)nm is to make advantage
of the fact that, as follows from Eqs. (8) and (10), χ+n(t)
satisfy the equations

(14)

Substituting expansions (12) into Eqs. (14), we
arrive at the system of algebraic equations for χ(+)nm:

(15)

EQUATIONS FOR ELECTROMAGNETIC 
FIELDS

Let us write the Maxwell equations in a magnetic
medium:

(16)

Solutions to (16) in view of (11) will be sought such
that the electric field is directed along the z axis, the
magnetic field H(m) lies in the xy plane, and both fields
are functions of x and y. We represent Ez in terms of
complex fields Ψn as

(17)

It is convenient to introduce the Cauchy derivative

χ +( )nm
Ω
2π
------ χ +( )n t( )ei n m–( )Ωt,

0

2π/Ω

∫=

χ –( )nm
Ω
2π
------ χ –( )n t( )e i– n m–( )Ωt.

0

2π/Ω

∫=

i
dχ +( )n

dt
-------------- ω nΩ gH0 gλ Ω tcos+ + +( )χ +( )n g,–=

i
dχ –( )n

dt
-------------- gH0 ω nΩ–– gλ Ω tcos+( )χ –( )n g.–=

λ
2
---χ +( )n m 1–, H0 ω/g mΩ/g+ +( )χ +( )nm+

+
λ
2
---χ +( )n m 1–, δnm,=

λ
2
---χ –( )n m 1–, H0 ω/g mΩ/g––( )χ –( )nm+

+
λ
2
---χ –( )n m 1+, δnm.=

B m( ) H m( ) 4πM, ∇ E×+
∂B m( )

∂t
-------------,–= =

∇ H m( )× 4πj
∂E
∂t
-------, ∇ B m( )+ 0, ∇ E 0.= = =

Ez x y t, ,( ) Im Ψn x y,( )ei ω nΩ+( )t

n

∑ .=

∂
∂u
------

1
2
--- ∂

∂x
------ i

∂
∂y
-----– 

  ,=



1284 BULGAKOV, SADREEV
with which the following useful relationships can be
written:

(18)

It is also useful to reduce Maxwell equations (16) to
the second-order differential equations

from which one more equation follows:

Since the impressed current is zero (j = 0), we have

(19)

Next, we combine the equation ∇ (H(m) + 4πM) = 0
and (18) to obtain

Substituting representation (11) for H+ and ξ+ into
this formula, we come to

(20)

where

(21)

is the permeability.

∇ M×( )z 2MIm
∂ξ+

∂u
-------- 

  2MRe i
∂ξ+

∂u
--------– 

  ,= =

∇ M 2Re
∂ξ+

∂u
-------- 

  ,=

∇ H m( )×( )z 2Im
∂H+

m( )

∂u
------------- 

  2Re i
∂H+

m( )

∂u
-------------– 

  ,= =

∇ H m( ) Re
∂H+

m( )

∂u
------------- 

  .=

∇ ∇ E×× ∂∇ B m( )×
∂t

-----------------------,–=

∇ B m( ) 4πM–( )× 4πj
∂E
∂t
-------,+=

∇ ∇ E×× 4π∂j
∂t
-----– 4π∇ ∂M

∂t
--------

∂2E

∂t2
---------.–×–=

∇ 2E ∂2E

∂t2
--------- 4π∇ ∂M

∂t
--------×–– 0.=

Re
∂H+

m( )

∂u
------------- 4πM

∂ξ+

∂u
--------+ 

  0.=

Re µ +( )n t( )
∂hn

∂u
--------ei ω nΩ+( )t





n

∑

+ µ –( )n t( )∂h̃n

∂u
--------e i ω nΩ+( )t–





0,=

µ ±( )n t( ) 1 4πMχ ±( )n t( ),+=

µ ±( )nm δnm 4πMχ ±( )nm+=
From expansions (12),

hence,

(22)

Now consider the second Maxwell equation

With Eqs. (11) and (17), we obtain

or

(23)

Substituting this equation into (22), we have

(24)

Formula (24) is a system of linear algebraic equa-
tions that relates ∂hn/∂u and Ψn:

(25)

where h = (…h1, h0, h–1, …) and Y = (…Ψ1, Ψ0,
Ψ−1, …).

Relationship (24) allows us to write a closed equa-
tion for Ψn. In fact, in view of Eqs. (18), Eq. (19) takes
the form

(26)

Re
∂hn

∂u
--------ei ω nΩ+( )tµ +( )nm

nm

∑




+
∂h̃n

∂u
--------e i ω mΩ+( )t– µ –( )nm





0,=

∂hn

∂u
--------µ +( )nm

n

∑ ∂h̃n

∂u
-------- 

  *µ –( )nm* .
n

∑–=

∂Ez

∂t
-------- 2Im

∂H+

∂u
---------- 

  .=

Im ei ω nΩ+( )t i ω nΩ+( )Ψn 2
∂hn

∂u
-------- 

 –




n

∑

– 2
∂h̃n

∂u
-------- 

  e i ω nΩ+( )t–





0=

i ω nΩ+( )Ψn 2
∂hn

∂u
-------- 

 – 2
∂h̃n

∂u
-------- 

  *.–=

1
2
---

∂hn

∂u
-------- 

  µ +( )nm µ –( )nm*+[ ]
n

∑

=  
i
4
--- µ –( )nm* ω nΩ+( )Ψn.

n

∑

∂h
∂u
------ ÂY,=

∇ 2Ez

∂2Ez

∂t2
----------– 8πM

∂
∂t
-----Im

∂ξ+

∂u
--------– 0.=
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As follows from (11),

Substituting this relationship into (26), we obtain, in
view of (17),

or

With the expression for (∂ /∂u)* from (23), we
eventually derive the closed equation for Ψn:

(27)

where the derivatives (∂hn/∂u) are defined through Ψn

by Eq. (25).
Let us check that, in the limit λ  0, Eq. (27)

describes the well-known problem of microwave prop-
agation through a magnetic medium [14]. As follows
from (10) and (13), the susceptibility matrix is dia-
gonal:

Accordingly, Eqs. (24) and (27) take the form

∂ξ+

∂u
-------- ei ω nΩ+( )tχ +( )nm

∂hn

∂u
-------- 

 




nm

∑=

+ e i ω nΩ+( )t– χ –( )nm
∂h̃n

∂u
-------- 

 




.

Im ei ω nΩ+( )t δnm ∇ 2Ψm ω nΩ+( )2Ψm+( )




nm

∑

– 8πMi ω mΩ+( )χ +( )nm

∂hn

∂u
-------- 

 

+ 8πMie i ω nΩ+( )t– ω mΩ+( )χ –( )nm
∂h̃n

∂u
-------- 

 




0=

∇ 2Ψm ω mΩ+( )2Ψm 8πMi ω mΩ+( )
n

∑+ +

× χ –( )nm* ∂h̃n

∂u
-------- 

  * χ +( )nm

∂hn

∂u
-------- 

 – 0.=

h̃n

∇ 2Ψm ω mΩ+( )2Ψm 4πM ω mΩ+( )
n

∑+ +

× ω nΩ+( )χ –( )nm* Ψn 8πMi ω mΩ+( )
n

∑–

×
∂hn

∂u
-------- 

  χ +( )nm χ –( )nm*–( ) 0,=

χ +( )nn
g

gH0 ω nΩ+ +
----------------------------------, χ –( )nm

g
gH0 ω– nΩ–
----------------------------------.= =

1
2
---

∂hm

∂u
--------- 

  µ +( )m µ –( )m*+[ ] i
4
---µ –( )m* ω mΩ+( )Ψm,=

∇ 2Ψm ω mΩ+( )2µ –( )mΨm+

– 2i ω mΩ+( ) µ +( )m µ –( )m–( )
∂hm

∂u
--------- 

  0,=
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where

Combining the last two equations, we obtain the
equation given in [14]:

(28)

where µ(±)m = µ ± µa.

Let us turn back to the case when a waveguide is
filled with a magnetic and is subjected to a local radia-
tion field with a frequency Ω . Consider the simplest
spatial inhomogeneity in the probing field when it is
uniform in the region of the bound state and vanishes
outside. In order to derive the boundary conditions at
the interface, we invoke one more Maxwell equation

(29)

where the magnetic induction can also be represented

as a series in hm and  by virtue of (11).

Substituting these series for the magnetic induction
B+ and expansion (17) of the electric field Ez in Ψn(x, y)
into Eqs. (29) yields the equations

(30)

(31)

where the matrix µ is defined by Eqs. (21).
From these two equations, one readily deduces the

expressions for Cauchy’s derivatives:

(32)

Equation (22), which follows from the equation
∇ B = 0 (where B is the scalar product), can be extended
to the nonuniform case as follows:

(33)

If the medium is inhomogeneous along the x axis,
Eq. (33) can be used to show that the jumps at the inter-

µ ±( )m 1 4πMχ ±( )mm.+=

∇ 2Ψm ω mΩ+( )2µ2 µa
2–

µ
-----------------Ψm+ 0,=

∂Bx

∂t
---------–

∂Ez

∂y
--------,

∂By

∂t
---------

∂Ez

∂x
--------,= =

h̃m

∂Ψn

∂y
---------- ω nΩ+( ) µ +( )mnhm µ –( )mn* h̃m*+( ),

m

∑=

∂Ψn

∂x
---------- i ω nΩ+( ) µ +( )mnhm µ –( )mn* h̃m*+( ),

m

∑=

∂Ψn

∂u
---------- i ω nΩ+( ) µ –( )mn* h̃m*,

m

∑–=

∂Ψn

∂u*
---------- i ω nΩ+( ) µ +( )mnhm.

m

∑=

∂hn

∂u
--------µ +( )nm

∂µ +( )nm

∂u
-----------------hn+

 
 
 

n

∑

=  
∂h̃n

∂u
-------- 

  *µ –( )nm*
∂µ –( )nm*

∂u*
-----------------h̃n*+

 
 
 

.
n

∑–
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face satisfy the equation

or, by virtue of Eqs. (32),

(34)

Equation (23), which follows from the third Max-
well equation in (16), is satisfied everywhere:

(35)

The electric field must be continuous at the inter-
face. Otherwise, as follows from (32), the fields hm

would be singular. Hence, Eq. (35) gives one more
boundary condition:

(36)

If the interface is perpendicular to the y axis,
Eqs. (32), (33), and (35) yield the similar boundary
conditions

(37)

It is convenient to represent the equation for the gen-
eralized vector Y in the matrix form:

(38)

where

(39)

Then, Eqs. (24) and (27) take the more compact
form

(40)

(41)

respectively, where

Combining Eqs. (40) and (41) gives the closed equa-
tion for Ψ:

(42)

∆ hnµ +( )nm

n

∑
 
 
 

∆ h̃n*µ –( )nm
*

n

∑
 
 
 

–=

∆
∂Ψn

∂u
----------

 
 
 

∆
∂Ψn

∂u*
----------

 
 
 

.=

∂h̃n

∂u
-------- 

  * ∂hn

∂u
--------

i
2
--- ω nΩ+( )Ψn.–=

∆h̃m* ∆hm.=

∆
∂Ψn

∂u
----------

 
 
 

∆
∂Ψn

∂u*
----------

 
 
 

,–=

∆h̃n* ∆hm.–=

∂Y
∂u
-------- L̂–h̃*,

∂Y
∂u*
--------- L̂+h,= =

L̂ –( )nm ω nΩ+( )µ –( )mn* ,–=

L̂ +( )nm i ω nΩ+( )µ +( )mn.=

L̂+ L̂––( )dh
∂u
------ 1

2
---L̂–P̂Y,–=

∇ 2Y L̂–P̂Y 2 L̂+ L̂–+( )dh
∂u
------–+ 0,=

P̂ idiag ω nΩ+( ).=

∇ 2Y L̂–P̂Y+

+ L̂+ L̂–+( ) L̂+ L̂––( ) 1–
L̂–P̂Y 0.=
Using the matrix

and the equality

we rewrite Eq. (42) as

(43)

In this case, boundary conditions (34) and (36) take
the form

(44)

For the interface orthogonal to the x axis, the latter
boundary condition means that ∂Ψ/∂y is continuous at
the interface; hence, it is satisfied automatically. The
former boundary condition in (44) is easily taken into
account in Eq. (43), which also includes the interface

where  exhibits a jump. It can easily be checked that
Eq. (43) is also consistent with boundary conditions (37)
for the interface orthogonal to the y axis. This conclu-
sion is important, because it allows us to solve Eq. (43)

everywhere, including the interfaces at which  is
discontinuous.

Γ, T, AND X WAVEGUIDE JUNCTIONS

Consider Γ, T, and X waveguide junctions with the
interfaces shown in Fig. 1. The shaded regions are those
to which the probing field λ cosΩt is applied. We
assume that the probing radiation is weak and its mag-
netic field crosses the two-dimensional waveguide
orthogonally, i.e., along the z axis. In our calculations,
we will use the following values typical of ferromag-
netic materials: M = 1700 G and g = 2 × 107 CGS. Let
us introduce the dimensionless quantities

(45)

where c is the velocity of light.
When the probing field is absent, the equation for

the microwave field in terms of the dimensionless quan-
tities takes the form

(46)

D̂ L̂–
–1

L̂+
1–

–( ) L̂–P̂ L̂+ L̂–+( ) L̂+ L̂––( ) 1–
L̂–+( )P̂{ }=

L̂–
1–

L̂+
1–

–( )∆̂ 4
∂

∂u*
---------L̂–

1– ∂Y
∂u
-------- 4

∂
∂u
------L̂+

1– ∂Y
∂u*
---------,–=

4
∂

∂u*
---------L̂–

1– ∂Y
∂u
-------- 4

∂
∂u
------L̂+

1– ∂Y
∂u*
--------- D̂Y+– 0.=

∆ L̂–
1– ∂Y

∂u
-------- L̂+

1– ∂Y
∂u*
---------–

 
 
 

0,=

∆∂Y
∂u
-------- ∆ ∂Y

∂u*
---------.=

L̂±

L̂±

r̃ r/d , ω̃ dω/c, Ω̃ dΩ/c,= = =

H̃0 gH0d/c, λ̃ gλd/c, m gMd/c,= = =

∇ 2Ψ k2Ψ+ 0,=

k2 ω̃2 2µ+µ–

µ+ µ–+
-----------------,=
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For a typical centimeter-wave waveguide with the
width d = 1 cm subjected to a constant magnetic field

H0 = 1000, formulas (45) yield m ≈ 1,  ~ 1, ω = 3 ×
1010 s–1, and  ~ 1.

NUMERICAL SOLUTIONS

Our numerical analysis of the scattering of an inci-
dent microwave radiation in a magnetic-filled
waveguide relies on system (43) of second-order linear
differential equations for amplitudes {Ψn}. The bound-
ary conditions specify the asymptotic behavior of the
electromagnetic waves far away from the scattering
region (waveguide diffraction conditions). A typical
scattering scenario considers an incident wave only in
one arm of the waveguide junction that will referred to
as the first one. The scattered field penetrates into all the
waveguide arms.

System (43) was numerically solved on a square
mesh, which is natural for the waveguide junctions
under study (Fig. 1). Since the probing radiation field is
applied only to the region of scattering (the shaded

region in Fig. 1), the operator  is no longer diagonal
in this region, and the propagating microwave field
mixes with coupled electromagnetic oscillations in the
waveguide structure. In the waveguide arms (i.e., far
from the scattering region), Eq. (43) is the Helmholtz
equation and describes TE waves with frequencies ω +
nΩ in a perfect ferromagnetic [see Eq. (28)]. The
waveguide diffraction problem is solved by joining a
solution to Eq. (43) in the scattering region and all TE
waves outside it. The problem is almost the same as that
of ballistic electron transport in electron waveguides.
The basis for the numerical solution of this problem in
the steady-state case was set by Ando [15]. A generali-
zation to the dynamic problem of electron scattering
was given in our previous paper [12].

Let us define the transmission coefficient Tij as the
ratio of the output power in the ith waveguide arm to the
input power in the jth waveguide arm, where i and j are
the respective numbers of the input and output arms.
Clearly, if there is no probing field,

as follows from the energy conservation law.
However, when the probing field is applied, the elec-

tromagnetic power may be derived (or transmitted) as
the microwave field passes through the junction. Thus,
G defines the absorbed power of the probing field.

The power can be calculated in terms of the Poynt-
ing vector

µ± 1 4π m

H̃0 ω̃±
-----------------.+=

H̃0

ω̃

L̂±

1 G+ Tij

j

∑ 1,= =

P c
4π
------E H.×=
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With representations (11) and (17), this equation
yields after time averaging

(47)

Figure 3 shows the resonant distribution of the pow-
ers  for all the waveguide junctions considered
above. It is clearly seen that the resonant mixing of the
localized bound states causes the vortex structure of the
power fluxes. The lower right panel in Fig. 3 demon-
strates how the nodal lines of the second bound state of
the X junction affect the power-flux pattern. These
effects were also considered for ballistic electron trans-
port through electron waveguides [12].

In order to find the power flux of the microwave field
in the waveguide arms (outside the scattering region),
we represent hm in terms of Ψm using Eq. (38). Consider
waveguide arm 1 (Fig. 1) to be the input and integrating
over its cross section of unit width, we obtain the time-
averaged power from (47) as

(48)

The power flux in the other waveguide arms are cal-
culated likewise. As a result, we find the transmission
coefficients

Figures 4a and 4c plot the frequency dependences of
the transmission coefficient for the TE wave passing
through the Γ waveguide junction when the frequency

of the probing field is  = 0.4. The thin lines refer to
the zero probing field. These figures clearly show the
resonant transmission of the TE wave at  = 1.204.
Accordingly, the frequency of the bound electromag-

netic oscillations in the Γ junction is  =  –  =

0.804. At  = 1, m = 1, and the frequency of the bound

oscillations  = 0.804, formulas (45) yield  = 0.92,
which is close to the theoretical value 0.9291π2 for a Γ
junction [4]. The bandwidth of the resonance dip in the
transmission coefficient T12 is proportional to the prob-
ing field amplitude squared, as naturally follows from
the dynamic perturbation theory.

Figure 4b plots the absorbed power of the micro-
wave field versus frequency. It is seen that absorbed
power (48) exhibits the resonant behavior due to the
dynamic addition of the bound state. Note that, at cer-
tain frequencies of the probing field, the absorbed
power exceeds unity. This means that, when passing
through the scattering region, the microwave field takes

Π x
c

8π
------Re Ψmh̃m Ψm*hm–{ } ,

m

∑=

Π y
c

8π
------Im Ψmh̃m Ψm*hm–{ } .

m

∑=

Π

W1
icL
16π
--------- L̂+[ ] m

1–
L̂–[ ] m

1–
–( )Im Ψm*

∂Ψm

∂x
----------- 

 
 
 
 

m

∑ .–=

Tij W j/Wi.=

Ω̃

ω̃

ω̃b ω̃ Ω̃
H̃0

ω̃b kb
2
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Fig. 3. Fluxes of the electromagnetic field power in the case of the resonance addition of the localized states. The lower right panel
illustrates the addition of the second bound state to the X junction, which is antisymmetric with respect to the x  –x and y 
–y reversals.
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Fig. 4. Coefficient of the TE mode (n = 1) transmission through the Γ junction and the absorbed power G versus frequency at  = 1
and m = 1. Thick line, resonance probing field with λ = 0.1; thin line, no probing field.

H̃0
a small portion of the power of the probing radiation.
Figures 4c and 4d refer to a Γ junction that guides the
microwave field in the direction opposite to that consid-
ered in Figs. 4a and 4b. The Poynting vector is not
invariant under the y  –y reversal. Therefore, as fol-
lows from Figs. 4b and 4d, the frequency behavior of
the absorbed power depends on the direction the output
arm of the Γ junction. Accordingly, the transmission
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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Fig. 5. Same as in Fig. 4 for the T junction at  = 1, m = 1,  = 0.4, and λ = (thin line) 0 and (thick line) 0.2. (a) Total transmission
coefficient; (b, c) coefficients of transmission to waveguide arms 3 and 4, respectively; and (d) coefficient of probing radiation
absorption.

H̃0 Ω̃

Fig. 6. Same as in Fig. 4 for the X junction at  = 1, m = 1,  = 0.5, and λ = (thin line) 0 and (thick line) 0.2. (a) Reflection
coefficient; (b, c) coefficients of transmission to waveguide arms 2(3) and 4, respectively; and (d) coefficient of probing radiation
absorption. The probing field is tuned to excite the fundamental bound state of the electromagnetic field in the structure.

H̃0 Ω̃
coefficients, which are defined as the output-to-input
microwave power ratio, are also not invariant. The
difference in the absorbed power is, however, small,
about 1%.
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Figures 5–7 show similar effects for the T and
X junctions. Figure 7 illustrates the possibility of reso-
nantly controlling the transmission of the microwave
field through the X junction via the resonance addition
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Fig. 7. Same as in Fig. 6 at  = 1, m = 1,  = 0.4, and λ = (thin line) 0 and (thick line) 0.15. The probing field tuned to excite the
first bound state with the frequency above the cutoff frequency of the waveguide arms.

H̃0 Ω̃

0.5
of the second bound state with the eigenfrequency ωb =
1.91. For a hollow waveguide X junction, the frequency
of the second bound state is ωb = 606.91. The range of
w ≥ 1.95 includes the second passband for the electro-
magnetic waves, hence, the specific behavior of the
absorbed microwave power at these frequencies. Recall
that, because of the high permeability of ferromagnet-
ics, all the frequency responses (the frequencies of the
bound states and frequency transmission thresholds) of
the waveguide junctions are significantly shifted
towards the low-frequency region.
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Abstract—Combined transaxial mirrors are studied. In the areas of motion of charged particles, the fields of
these mirrors are symmetric relative to the axis and mid-plane representing the plane of symmetry for the elec-
tric field and the plane of asymmetry for the magnetic one. An image equation is inferred and simple relation-
ships between the linear and angular dispersions with respect to mass and energy are obtained. Aberration prop-
erties of the mirrors in the directions parallel to the mid-plane are considered. Expressions for the coefficients
of the third-order geometric aberration corresponding to the beam divergence angle in the mid-plane are
obtained. These expressions are especially simple when both object and image are located in the principal
planes of the mirror. The aforementioned coefficients are expressed via parameters characterizing the mirror
under the first-order approximation. © 2001 MAIK “Nauka/Interperiodica”.
Theoretical studies of the focusing and dispersive
properties of the electrostatic transaxial systems in the
case of a curvilinear axial trajectory of a beam of
charged particles were reported earlier (see, for exam-
ple, [1–3]). This study is devoted to the transaxial mir-
rors with combined static electric and magnetic fields.
In the cylindrical coordinates R, Ψ, and Y, these fields
are described by the scalar potential ϕ(R, Y) and the
vector potential A with only one nonzero component
AΨ(R, Y). The Y axis and the Y = 0 plane coincide with
the axis of symmetry of the field and the mid-plane,
respectively. The mid-plane represents the plane of
symmetry for the electric field and the plane of asym-
metry for the magnetic one. The axial trajectory of a
beam of charged particles moving in the vicinity of the
mid-plane belongs to this plane.

Figure 1 shows an example of the transaxial mirror
with combined electric and magnetic fields. This mirror
represents a concave two-electrode transaxial mirror
with two-plate electrodes. The plates of the first 1 and
second 2 electrodes simultaneously serve as the screen
and poles of the magnet, respectively. Curve 3 is the
axial trajectory; ϕ1 and ϕ2 are the electrostatic poten-
tials of the first and the second electrode, respectively.
The field-generating surfaces facing the mid-plane are
parallel to this plane. The plates of the neighbor elec-
trodes (screen and poles) are separated by curvilinear
slits the projections of which onto the mid-plane repre-
sent fragments of concentric circles centered at the axis
of symmetry of the field. For convenience, we use sca-
lar magnetostatic potential for calculating the distribu-
tions of the magnetic field strength. This potential
equals zero at the screen of the magnet and at the mid-
plane. The upper and lower plates of the second elec-
trode (poles of the magnet) have the magnetostatic
1063-7842/01/4610- $21.00 © 21291
potentials C and –C, respectively. The electric and mag-
netic field strengths rapidly decrease when moving
from the boundary between electrodes (screen and
poles) toward the axis of symmetry. In the area R1 – R >
3d, the trajectories of particles are virtually rectilinear.
Here, R1 is the radius of the center of the slit separating
the plates of electrodes (screen and poles), δ is the slit
width, and d/2 is the distance of the field-generating
surfaces from the mid-plane. The absence of grids or
holes in electrodes at the beam path is one of the main
advantages of the mirror proposed. Owing to this, the
number of secondary and scattered particles distorting
the spectrum is insignificant.

Let us consider the electron–optical properties of
the transaxial mirror with combined electric and mag-

Y

R1

R

C

–C
d

3
1

2

ϕ1

ϕ2 δ

Fig. 1. Transaxial mirror with combined electric and mag-
netic fields.
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netic fields using the constancy of the total energy of a
charged particle and the generalized momentum PΨ
corresponding to the cylindrical coordinate Ψ:

(1)

Here, m and e are the mass and the charge of a particle,
respectively, and c is the speed of light in vacuum. Let
us introduce the curvilinear orthogonal coordinates x, y,
and s so that s and y axes coincide with the axial trajec-
tory of the beam of charged particles and Y axis, respec-
tively, and x axis belongs to the mid-plane and is
orthogonal to the tangent to the axial trajectory of the
beam.

Let us expand variables x and y in series with respect
to their values and their first derivatives over s in the
object plane, relative energy spread in the beam (ε0),
and relative mass spread (γ) [3]. Subscript 0 corre-
sponds to the values of the variables in the object plane.
Primes denote differentiation with respect to s. Let the
expansions be accurate to the terms of the second order
of smallness. In the expansion of x, we also take into
account the spherical aberration of the third order rela-
tive to the beam divergence angle α in the mid-plane. 

The quantities RAΨ are equal in the object and image
areas outside the region of the field of the mirror. These
quantities are related to the magnetic flux N through a
circle of the radius R located in the mid-plane and cen-
tered in the origin of the cylindrical coordinates (see,
for example, [4]):

(2)

Under the first-order approximation, it can be
deduced from expressions (1) and (2) that, in the image
plane,

(3)

Subscript 1 corresponds to the values of the vari-
ables in the plane of the Gaussian image where Kα = 0.
We introduced the notation b = rcosσ, where r = r(s) is
the R coordinate of the particle moving along the axial
trajectory and σ is the angle between the radius vector
r and the tangent to the axial trajectory counted
counter-clockwise from the radius vector. Under the
first-order approximation,

(4)

Then it follows from formula (3) that

(5)

Here, Kx is the linear magnification in the x direction of
focusing and Kε and Kγ are the linear dispersions with

PΨ mR2Ψ̇ e
c
--RAΨ+ const.= =

RAΨ
N
2π
------.=

x'
x1 b0x0' x0–+

b1
--------------------------------.=

x1 x0Kx Kεε0 Kγγ.+ +=

x'
b0x0' Kx 1–( )x0 Kεε0 Kγγ+ + +

b1
---------------------------------------------------------------------------.=
respect to energy and mass, respectively. Expression (5)
can also be rewritten as

(6)

where Γx is the angular magnification, fx = –1/  is the

focal length of the mirror,  and  are the angular
dispersions with respect to energy and mass, respec-
tively.

Based on the equality of the coefficients at x0, , ε0,
and γ in the right-hand sides of expressions (5) and (6),
we obtain

(7)

and write the image equation as

(8)

It follows from formulas (7) and (8) that the image
equation and the simple relationship between the linear
and angular dispersions with respect to energy obtained
for the electrostatic transaxial mirror (see, for example,
[2]) remain valid for the transaxial mirror with com-
bined electric and magnetic fields. However, a simple
relationship between the linear and angular dispersions
with respect to mass obtained in this work for a transax-
ial mirror with combined electric and magnetic fields is
a new result.

It follows from the relationship between the linear
and angular dispersions (7), that the equality to zero of
one of the angular dispersions implies equality to zero
of the corresponding linear dispersion in any plane of
the image area.

Of larger interest is the case when the object is
located in the principal plane of the transaxial mirror

 corresponding to the x direction of focusing and
the conditions of stigmatic focusing are met (Kα = Mβ = 0).
Then, the stigmatic image is located in the other princi-
pal plane . In this case, σ0 = σ1 = 90° and b0 = b1 = 0
(Fig. 2). The schematic drawing, representing a projec-
tion onto the mid-plane, shows the effective reflecting
surface, axial trajectory, angle of deflection of the beam
in the field of the mirror θ, and the principal planes 

and  of the concave transaxial mirror. The principal
planes of any transaxial mirror pass through the axis of
symmetry of the field 0 and are orthogonal to the inci-
dent and reflected beams. The case of the concave mir-
ror is of special interest, since the object and the image
can be real and located outside the field of the mirror. In
the case considered, the linear magnification in the
mid-plane Kx equals +1 and the linear magnification in
the direction orthogonal to the mid-plane My equals +1

x' x0' Γ x

x0

f x

-----– Kε' ε0 Kγ' γ,+ +=

Kx'

Kε' Kγ'

x0'

Γ x

b0

b1
-----, Kε Kε' b1, Kγ Kγ' b1= = =

1
b1
----- 1
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-----–

1
f x
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Hx0
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Hx0
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or –1. The linear dispersions with respect to mass and
energy equal zero at any values of the angular disper-
sions (see formulas (7)). Simple expressions for the
coefficients of the second-order geometric and chro-
matic aberrations in  plane of the transaxial mirror
with combined electric and magnetic fields are repre-
sented in the same way as those for the electrostatic
transaxial mirror [1–3]. There is no second-order spher-
ical aberration in  plane for both directions of
focusing (Kαα = Kββ = Mβα = 0). For the x direction of
focusing, other coefficients of the second order are rep-
resented as

(9)

Let us find a simple expression for the coefficient of
the third-order spherical aberration Kααα . This aberra-
tion corresponds to the beam divergence angle α in the
mid-plane. Let us use the formula [1]

(10)

and the equality [3]

(11)

Here,  is the angular spherical aberration of the
second order. It follows from formulas (10) and (11)
that

(12)

If the angular dispersion with respect to energy
equals zero, the system considered (b0 = b1 = 0) also
exhibits zero coefficients of the second-order chromatic
aberration in the x direction of focusing (see (9)). If the
system is telescopic in both directions of focusing
(  =  = 0), then neither geometric aberrations of
the second order nor spherical aberrations of the third
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order related to the angle α are observed for the x direc-
tion of focusing.

A more detailed study of the properties of the tran-
saxial mirror with combined electric and magnetic
fields implies consideration of the specific electron–
optical and ion–optical systems with high-quality
focusing. In particular, a compact combined mirror
with  = 0 is of substantial interest for mass spectrom-
etry. Such a mirror exhibits focusing of the first order
with respect to energy in any plane of the image area.
By varying electric, magnetic, and geometrical charac-
teristics, one can obtain the conditions of focusing for-
mulated in this paper in the case of large dispersion
with respect to mass. A magnetic transaxial mirror
allows nondispersive deflection of the beam and high-
quality focusing which is substantial for the systems of
beam transport.
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Abstract—The atomic-hydrogen-initiated ejections of materials from the surface of solids (ZnS, Ni) prelimi-
nary treated with dissociated carbon dioxide are revealed. The glow of a crystalline phosphor and the dynamic
effect of the reaction are observed in the dissociated carbon dioxide medium. It is found that the observed vari-
ations in the dynamic effect of the reaction are unrelated to changes in the reaction rate. These effects are used
to elucidate the mechanism of heterogeneous radical recombination on the surface of solids (Al2O3, ZnS, Ni)
in dissociated carbon dioxide. It is revealed that, under the experimental conditions, the reaction rate is inde-
pendent of the chemisorbed radical concentration, because the reaction involves radicals entrapped into the pre-
cursor state with a short lifetime at the surface. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that, upon collision with a solid surface,
a molecule incoming from the gaseous medium can
occur in a weakly bound precursor state in which this
molecule diffuses over the surface until it forms a stron-
ger bond or is desorbed [1, 2]. This weakly bound state
with a short lifetime at the surface can represent either
a physical adsorption state or an intermediate “excited”
chemisorption state in which the rearrangement of all
chemical bonds and the relaxation over all the possible
degrees of freedom have not had time to occur. The pre-
cursor states provide an increase in the chemisorption
cross section as compared to direct capture of gas mol-
ecules by adsorption centers. When migrating over the
surface, the precursor molecules can be involved in
chemical reactions with other molecules. The capture
of molecules incoming from the gaseous medium into
the precursor state results in the formation of two chan-
nels of heterogeneous chemical reactions. In the first
case, the precursor molecules react with chemisorbed
molecules. In the second case, the precursor molecules
undergo an interaction with other precursor molecules.
These channels of reactions can compete with reaction
channels in which chemisorbed molecules either react
with each other (the Langmuir–Hinshelwood mecha-
nism) or react with molecules incoming from the gas-
eous medium (the impact Eley–Rideal mechanism).

The occurrence of additional channels and stages of
the heterogeneous reactions involving precursor mole-
cules, as compared to the reactions governed by the
Langmuir–Hinshelwood and Eley–Rideal mechanisms,
leads to an increase in the rate of the chemical reaction
and, most likely, can be one of the chief causes for cat-
1063-7842/01/4610- $21.00 © 21294
alytic acceleration of the chemical reactions in the gas
phase by solids.

In order to investigate experimentally the chemical
processes involving precursor gas molecules, it is nec-
essary within the framework of the relaxation measure-
ment method to modulate the flow of materials directed
to the catalyst surface with the time resolution ∆t ! τ,
where τ is the lifetime of reacting molecules in the pre-
cursor state (τ < 10–5 s). Unfortunately, these methods
remain to be devised. For this reason, the reactions
involving precursor molecules have not been ade-
quately studied (a review of the papers discussing the
participation of precursor molecules in heterogeneous
reactions is given in the monograph by Krylov and
Shub [3]).

The majority of the works concerned with the eluci-
dation of the possible mechanisms of heterogeneous
chemical reactions occurring at the solid–gas interface
have been performed at relatively low pressures (see,
for example, [4]). At a low pressure of the gas involved
in the chemical reaction on the solid surface, the con-
centrations of the precursor and chemisorbed mole-
cules are rather low. In this case, judging only from the
experimentally observed kinetic parameters, it is
impossible to distinguish the reaction channel through
which the precursor molecules react with chemisorbed
molecules from the reaction channel in which the mol-
ecules incoming from the gaseous medium react with
chemisorbed molecules. The currently available facili-
ties make it possible to distinguish experimentally the
channels of heterogeneous reactions involving precur-
sor molecules from other reaction channels only in the
case of sufficiently high pressures of the gases involved
in these reactions on the solid surface. To accomplish
001 MAIK “Nauka/Interperiodica”
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this, the reaction channel in which precursor molecules
react with chemisorbed molecules should make a sub-
stantial or dominant contribution to the reaction rate.
The fulfillment of this condition can be checked against
the measured dependence of the reaction rate on the
concentration of chemisorbed molecules. However, as
far as we know, this dependence has been analyzed in
only few works.

The aim of the present work was to investigate the
dependence of the rate of the heterogeneous chemical
reaction proceeding at the solid–gas interface on the
concentration of chemisorbed particles involved in this
reaction (by the example of adsorption and heteroge-
neous recombination of radicals incoming from disso-
ciated carbon dioxide).

EXPERIMENTAL

In the experiments, we used the modulated flows of
reactants and the simultaneous recording of the kinetic
curves N(t) of their adsorption and the dynamic effects
of reaction (DER) F(t) = Pr(t) – P = GJ(t), where t is
the time, Pr is the gas pressure on the surface of the cat-
alyst, P is the gas pressure on the walls of the vessel, G
is the coefficient, and J is the rate of the heterogeneous
reaction [5, 6].

The measurement scheme and the facilities used
were described earlier in [7]. The gas at pressure P =
30 Pa was continuously pumped through a vacuum
chamber. The adsorption measurements were carried
out using a piezoelectric quartz balance. A layer (d ≈
0.1 mm) of the material to be studied was coated onto
both surfaces of the piezoelectric element. The
dynamic effects of the reaction were measured using an
automated balance with a magnetic suspension [7, 8].
In this case, a layer (d ≈ 0.1 mm) of the studied material
was coated onto the upper surface of the balance pan
which was positioned near the piezoelectric element.

The experiments were performed with hydrogen
and carbon dioxide of spectroscopic purity. Carbon
dioxide was produced by thermal decomposition of
CaCO3 and was passed through a column filled with sil-
ica gel. The dissociation of gas molecules into radicals
was achieved with a high-frequency electric discharge
in the gas. The radical concentration in the reactor was
equal to n ≈ 1014 cm–3. The samples were prepared in
the form of ultradisperse powders of aluminum oxide
and nickel with spherical particles 100 nm in diameter
and in the form of a finely disperse ZnS–Cu phosphor
with a specific surface of ≈1 m2 g–1. With the aim of
cleaning the sample surface from adsorbed contami-
nants, the samples were held in an atomic–molecular
hydrogen mixture at a temperature of 400 K for 1.5 h.
The surface finish quality of the ZnS–Cu phosphor was
checked against the intensity I and the spectrum of rad-
ical recombination luminescence (RRL) excited in the
course of the surface chemical reaction [9]. In order to
modify the surface state of solids, carbon dioxide was
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
replaced by hydrogen and the sample was treated with
atomic hydrogen. After the replacement of one gas by
the other, the reactor was washed with a molecular flow
for 5 min, and then, the discharge was switched on.

RESULTS AND DISCUSSION

The results obtained are as follows (in “blank”
experiments when the studied material was not coated
onto the piezoelectric elements, the effects described
below were not observed).

After switching on the discharge in carbon dioxide,
the piezobalance frequency f decreases as a result of the
adsorption of CO and O radicals on the surface of sol-
ids. The discharge switching off is accompanied by an
increase in the frequency f due to recombination des-
orption of “weakly” adsorbed radicals. In the case of
zinc sulfide and nickel, the frequency f does not regain
its initial value, which indicates the second “stable”
form of the radical adsorption. No stable radical
adsorption occurs at the surface of aluminum oxide.
After the replacement of carbon dioxide by hydrogen
and switching on the source of atomic hydrogen in the
case of zinc sulfide and nickel, the piezobalance fre-
quency f increases jumpwise due to the ejection of the
chemisorbed material from the solid surface. After
ejection of the material and switching off the discharge,
hydrogen molecules are readily captured into dangling
chemical bonds on the surface. For Al2O3, this effect is
not observed for the lack of strongly bound CO and O
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Fig. 1. Time dependences of (1–4) the piezobalance fre-
quency and (1', 3') the dynamic effect of the reaction in dis-
sociated carbon dioxide for nickel after switching on (↑ )
and switching off (↓ ) a radical source in (1, 3, 1', 3') carbon
dioxide and (2, 4) hydrogen (1, 2, 1') prior to and (3, 4, 3')
after treatment of the sample in dissociated carbon dioxide
for 20 min. T = 295 K.
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radicals on the surface. Figure 1 shows the adsorption
curves for nickel (curves 1, 3) and the curves corre-
sponding to the cleaning of its surface from adsorbed
particles by hydrogen atoms (curves 2, 4) before
(curves 1, 2) and after (curves 3, 4) prolonged treatment
of the sample in dissociated carbon dioxide.

The mass ejections from the surface of solids in an
atomic hydrogen medium are brought about by the for-
mation of volatile hydrides in the course of heteroge-
neous chemical reaction. It is quite possible that, in the
adsorbed layer, there occur chain reactions initiated by
hydrogen atoms and the sputtering of adsorbed mole-
cules at the expense of the energy released in acts of
chemical conversions on the surface (analogs of these
presumed effects are described in [10–12]).

In this work, we observed for the first time the radi-
cal recombination luminescence, the dynamic effect of
reaction, and the surface sputtering when placing solids
in the dissociated carbon dioxide medium (earlier [6, 7,
9, 13], these effects were experimentally investigated
by the example of heterogeneous reactions of recombi-
nation of hydrogen, oxygen, and nitrogen atoms).

Upon prolonged treatment (for several tens of min-
utes) or heating of the samples to the temperature T =
400 K in dissociated carbon dioxide, no considerable
changes in the dynamic effect of the reaction are
observed (Fig. 2, curves 1', 3'). The dynamic effect of
the reaction in dissociated carbon dioxide is several
times less than that in atomic hydrogen, all other factors
being the same. Note that the kinetic curves F(t), which
were measured after switching on and switching off the
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Fig. 2. Time dependences of (1, 3) the change in the
piezobalance frequency, (1'–3') the dynamic effect of the
reaction, and (11–31) the RRL intensity for the ZnS–Cu
phosphor after the first switching on the discharge in carbon
dioxide and subsequent dark pauses. T = (1, 1', 11, 3, 3', 31)
295 and (2', 21) 400 K.
radical source in dissociated carbon dioxide, have a
nearly rectangular shape in all the cases, whereas simi-
lar curves F(t) measured in atomic hydrogen contain
portions of smooth variations stemming from the
changes in the sample temperature in the course of the
surface exothermic reaction [7]. This result is explained
by the fact that, in the carbon dioxide medium, the rate
of establishment of the thermal equilibrium between
the catalyst surface and the gas is considerably higher
than that in hydrogen. This conclusion is confirmed by
the fact that, upon heating of the sample in the carbon
dioxide medium with the use of the light of an incan-
descent lamp, the curves F(t) also have a nearly rectan-
gular shape.

After short-term treatment (of the order of a minute)
of solids in atomic hydrogen (in the case of ZnS and Ni,
the strongly adsorbed CO and O radicals are removed),
the dynamic effect of the reaction remains unchanged.
The cycles of alternate two-minute treatment of the
samples with dissociated H2 and CO2 gases were per-
formed up to 10 times. For nickel, the f(t) and F(t)
curves measured many times in both media coincided
with each other, respectively. For ZnS, the f(t) curves
only slightly change in shape from experiment to
experiment. The reproducibility of the results obtained
attests the cleanliness of the experiments, the purity of
the initial surface of the sample, and the chemical sta-
bility of nickel in these corrosive media. For aluminum
oxide in the atomic hydrogen medium, the piezobal-
ance frequency f is characterized by a continuous irre-
versible decrease. This is associated with the absorp-
tion of hydrogen atoms by crystals and, most likely, the
high imperfection of the crystal lattice of the studied
samples.

For the ZnS–Cu phosphor samples untreated with
atomic hydrogen, the RRL intensity decreases to zero
with time after first switching on the discharge in car-
bon dioxide. As the phosphor temperature increases to
T ≈ 400 K, the phosphor exhibits a weak steady-state
glow. After switching off the discharge, no phosphor
persistence is revealed (T = 293–400 K). A similar
behavior of the radical recombination luminescence of
the ZnS–Cu phosphor is observed upon its excitation
by atomic oxygen. For comparison, we should note
that, in the case when the ZnS–Cu phosphor is excited
by atomic hydrogen, there occurs a steady-state bright
glow (T = 293–400 K), whereas after switching off the
discharge, the phosphor exhibits a long recombination
afterglow due to the occurrence of trapping centers in
the bulk of the crystalline phosphor. These results can
be explained by the fact that the oxygen atoms chemi-
sorbed from the gaseous medium bring about the RRL
quenching, because they serve as centers of radiation-
less recombination of electrons and holes created in
acts of radical recombination on the phosphor surface.
Moreover, the band bending in the course of oxygen
atom chemisorption hinders the migration of holes
from the surface into the bulk (as evidenced by the lack
of afterglow), which stimulates radiationless recom-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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bination of electrons and holes on the defect-rich sur-
face of the phosphor.

The first contact between dissociated carbon diox-
ide and solids pretreated in atomic hydrogen for 1.5 h is
accompanied by changes in the surface state of these
solids, which affects the dynamic effect of the reaction.
Below, this effect will be considered by the example of
zinc sulfide.

In the case of ZnS subjected to preliminary pro-
longed treatment in the atomic hydrogen medium, the
dynamic effect of reaction and the intensity of radical
recombination luminescence in the dissociated carbon
dioxide medium increase by more than one order of
magnitude. For the ZnS–Cu phosphor samples prelim-
inarily treated in atomic hydrogen, the bright RRL with
characteristic recombination luminescence is observed
in dissociated carbon dioxide (the glow spectrum con-
sists of a band with a maximum at λmax = 530 nm). At a
temperature T ≈ 300 K, the RRL intensity monotoni-
cally decreases to zero with time. As can be seen from
Fig. 2, the F(t) curves have a rectangular shape and the
f(t) dependence corresponds to the surface sputtering
due to the radical recombination reaction (Fig. 2,
curves 11, 1', and 1, respectively). Under the same con-
ditions but at a temperature T ≈ 400 K, the crystalline
phosphor exhibits a relatively stable glow (which
decays in the course of the RRL excitation within a few
ten minutes); in this case, the temperature variation
does not affect the dynamic effect of reaction and the
shape of the F(t) curve (curves 21, 2'). No phosphor per-
sistence occurs upon switching off the discharge. After
“dark” pauses of the “discharge switching on–switch-
ing off,” the dynamic effect of reaction first increases
by a factor of five or eight and then decreases irrevers-
ibly; however, the F(t) curve remains rectangular in
shape (curves 3').

A drastic increase in the dynamic effect of reaction
and the RRL intensity in the dissociated carbon dioxide
medium after the prolonged treatment of the phosphor
in atomic hydrogen is associated with the change of the
state of its surface (owing to the occurrence of anionic
vacancies, superstoichiometric metal, etc. as the result
of reduction of zinc sulfide by hydrogen atoms [6]).
Judging from the f(t) dependence (curve 1) the cleaning
of the surface from adsorbed particles in the course of
the reaction dominates over their chemisorption; that is,
an increase in the reaction rate is unrelated to the
increase in the concentration of chemisorbed radicals.

After the first dark pause, during which the adsorp-
tion of CO2 molecules prevails, the RRL intensity
decreases (curve 31). Reasoning from this circum-
stance, it can be assumed that the adsorption of CO2
molecules results in RRL quenching (probably, due to
the band bending and the formation of radiationless
electron–hole recombination centers). At the sample
temperature T ≈ 400 K, the cleaning of the surface from
CO, O, and CO2 adsorbed particles in the course of the
reaction dominates over their chemisorption, which
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
provides a relatively stable glow of the phosphor
(curve 21). A comparison of the RRL curves (11, 31)
shows that, after the dark pause, the rate J of heteroge-
neous radical recombination remains unchanged.
Therefore, the increase observed in the dynamic effect
of reaction after the first dark pause (curve 3') is
explained by the change in the coefficient G in the
expression F = GJ, which, in turn, results from the
increase in the kinetic energy of the translational
motion of molecules (products of the reaction) [5, 6]
due to the change in the surface state of ZnS in the
course of the dark pause, as judged from the capture of
CO2 molecules into dangling chemical bonds on the
surface. The change in the surface state leads to the fact
that the recombination desorption of radicals weakly
bound to the surface prevails in the course of the second
dark pause (curve 3). After this pause, the RRL inten-
sity does not decrease, but the dynamic effect of reac-
tion decreases and the concentration of chemisorbed
radicals increases.

According to the results obtained, the rate of radical
recombination on the surface of solids (Ni, Al2O3, ZnS)
in the dissociated carbon dioxide medium does not
increase as the concentrations of the strongly and
weakly chemisorbed radicals increase. This can be
explained by the fact that the reaction involves radicals
entrapped into the precursor state whose concentrations
are small compared to the concentrations of chemi-
sorbed radicals.

Let us now assume that the reaction of radical
recombination proceeds through an impact mechanism.
According to the experimental data, the reaction rate is
independent of the chemisorbed radical concentration
N. Therefore, we can assume that a reaction channel
dominates provided it involves chemisorbed radicals of
one sort (for example, CO) whose concentration N1 is
rather small: N1 ! N (for example, O + CO + Z 
O + COZ  CO2 + Z. The cross section of this reac-
tion can be estimated at σ = J(jN1)–1 = 1016 (1018 ×
1012)–1 cm2 = 10–14 cm2, where j is the flux of radicals
impinging on the surface. Such an anomalously high
value of σ cannot be used in the description of the reac-
tions involving both particles incoming from the gas-
eous medium and chemisorbed particles (the impact
Eley–Rideal mechanism). Therefore, the above
assumption is not true.

CONCLUSION

Thus, the catalytic acceleration of the radical recom-
bination reaction in dissociated carbon dioxide by sol-
ids is explained by the trapping of radicals (incoming
from the gaseous medium) into the mobile precursor
state, which provides an increase in the effective cross
section of the reaction. Unfortunately, judging only
from the results obtained in this work, it is impossible
to decide between two possible variants: (1) the reac-
tion predominantly proceeds through the channel in
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which precursor radicals recombine with precursor rad-
icals, and (2) the reaction involves precursor radicals
(for example, O atoms) and chemisorbed radicals (CO),
whose concentration is small compared to the concen-
tration of chemisorbed radicals of the first sort
(O atoms).

We revealed a nontrivial effect of the drastic
increase in the rate of heterogeneous recombination of
CO and O radicals at the surface of zinc sulfide under
the conditions when the cleaning of the surface from
chemisorbed radicals in the course of the reaction dom-
inates over their chemisorption. This result is in close
agreement with the data obtained in [7, 14], according
to which the chemisorbed H and O atoms at n ≈
1014 cm–3 inhibit the surface, thus preventing the reac-
tions of their recombination.

As follows from the results obtained in this study
and the data available in the literature [1–3, 7, 14], the
investigation into the mechanism of participation of the
precursor molecules in surface chemical transforma-
tions cannot be reduced to the determination of one of
the kinetic parameters of the heterogeneous reactions
and requires solving the basic problem on the mecha-
nism of catalytic activity of solids.
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Abstract—A new concept for a device for protecting an alternating-current network is offered. It is based on a
combination of a superconducting limiter of a short-circuit current and a circuit breaker. A high-temperature
superconductor in the form of a pile of plane rings is used as the active element of the limiter. The test results
of a model of such a limiter are obtained in the steady-state short-circuit regime. The characteristics of compos-
ite silverless materials used for design of the breaker are given. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The possibility of using superconductors as active
elements for short-circuit (sc) current limiters has long
attracted researchers’ attention [1, 2]. However, high
costs of both the devices and the coolant (liquid helium)
for low-temperature superconductors have hampered
their wide use. The discovery of high-temperature
superconductivity has regenerated interest in investiga-
tions in this field, because the high temperatures of the
transition to the superconducting state (90–120 K)
allow one to use liquid nitrogen as a coolant [3–8].

The simplest current limiter is based on the transi-
tion of a superconductor from the superconducting
state, in which the resistance equals zero, to the normal
state with a finite conductivity value, when the current
exceeds the critical value. In the emergency case
accompanied by an increase in the circuit current, the
presence of an additional ballast resistance (equal to
zero in the normal regime) softens the sc regime. The
advantage of using a superconducting active element is
that the element (unlike a mechanical disconnector) has
a very short response time [2] and higher reliability. It
should be noted that the behavior of a superconducting
active element in the overload regime was mainly
investigated in the publications on current limiters [4–
8]. In this work, we offer a new concept for the protec-
tion apparatus, in which most attention is paid to the
combination of a circuit breaker (the contacts are made
of composite materials without silver [9–13]) with a
current limiter based on a high-temperature supercon-
ductor (HTSC).
1063-7842/01/4610- $21.00 © 21299
COMBINATION OF A BREAKER 
AND A SUPERCONDUCTING CURRENT 

LIMITER

Let us consider the load of a superconducting cur-
rent limiter connected in series with a breaker (switch).
In the absence of a current limiter, the switch’s ability
to protect the load is determined by the critical value of

the power , which, when reached, trips the switch.
In the presence of a current limiter, the total power in
the sc regime Wex is redistributed between the limiter
and switch

The critical power , at which the current lim-
iter is overwhelmed, is determined by the resistivity of
a superconductor in the normal state, its mechanical
strength, and specific features of the limiter design. In
the combined system of a switch and current limiter, the
power released in the switch is lower than that without
a superconducting limiter. Hence, the critical power

value for the switch  may be decreased:

(1)

Expression (1) is valid for  > . If  <

, all the power in the sc regime is released in the
superconducting current limiter. The practical impor-
tance of expression (1) is that it is possible to reduce the
requirements on the circuit breaker in the combined
system of the current limiter and switch. Therefore, for
such switches cheaper contact materials can be used,
for example, silverless composites consisting of copper
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with small additions of superdispersed diamonds [9–
13]. Another advantage of such a combined system is
the higher operation reliability, because the HTSC ele-
ment protects both the switch and the load.

A CURRENT LIMITER BASED ON HTSC

Presently, several concepts of current limiters exist
[3]. The so-called resistive and inductive limiters are
the most widespread [4]. In resistive current limiters, a
superconductor is directly included in the circuit with
the protected load [4, 7, 8]. Limiters of such a type
require the development of a technological process for
manufacturing contacts between the HTSC and the cur-
rent lead. In inductive current limiters, an active super-
conducting element, usually made in the form of a ring
or a cylinder, is inductively coupled to the load [4–7].
To produce such limiters the following factors should
be taken into account: the large dimensions of devices,
in which the superconductor screens the magnetic field;
and the possibility of destruction of superconducting
elements under ponderomotive forces at a high current
density. In devices of both types, the heat released in the
short-circuit regime should be effectively removed
from a superconductor.

9

10

8

1

3
4

6
7

52

Fig. 1. Circuit diagram for HTSC ring tests in the sc regime:
(1) external network transformer (50 Hz); (2) load;
(3) sc regime simulation switch; (4) current limiter, which
consists of core 5 made from transformer steel (µ = 100),
primary winding 6 (23 turns), and superconducting ring 7;
(8, 9) voltmeters measuring the voltage drop across the load
and limiter, respectively; and (10) ammeter measuring the
circuit current.

Table 1.  Results of bench tests of materials at direct and
alternative currents

Material

Switching wear,
g/cycle × 106 RJ, mΩ

anode (+) cathode (–) current

Cu–Cd–Cdia –1.2 –4.4 11.9 24.0

Cu–Cd–Nb–Cdia –0.5 –1.6 8.8 15.7

Cu–Cd–C –2.5 –3.6 23.3 2.3

Ag–15CdO –0.6 –0.7 1.2 1.2
High-temperature superconductors in the form of a
hollow cylinder screening the primary winding field are
often used in inductive current limiters [4]. An iron core
is set inside the superconductor. In devices of this type
the space factor is about 0.6. For effective heat removal,
the thickness of the cylinder walls should not exceed
~2 mm [4, 5]. The cylinder is exposed to considerable
loads under the ponderomotive forces, according to the
data in [4], with axial compression up to ~1500 N, and
pressure on the outer surface at 0.2 bar, which is close
to the ultimate stress of ceramic HTSC. For this reason,
most designs need a band to unload the active element.

In this work, we modified the design of an inductive
current limiter. High-temperature superconductors
were made in the form of a pile of thin rings with rela-
tively large radial size. The rings were separated by a
gap equal to the ring thickness of ~2 mm. This allowed
one to increase the HTSC volume and, hence, the oper-
ating power of the limiter. Calculations showed that a
fivefold increase in the radial size (up to 10 mm) allows
one to abandon a band, because the axial load on a
superconducting ring is distributed over a larger area
than in the case described above [4], and the tension on
a unit length of the superconducting pile of rings is also
less. The space factor in this design is close to unity,
since the magnetic circuit and set of rings are separated
only by a wall of a styrofoam cryostat. An additional
advantage of this design is that the value of the operat-
ing current of the limiter can be varied in a wide range
by a change in a number of rings.

The Bi1.8Pb0.3Sr1.9Ca2Cu3Ox HTSC [14] was synthe-
sized from Bi2O3, PbO, SrCO3, CaCO3, CuO according
to ceramic technology at temperatures of up to 840°C
for up to 250 h with multiple intermediate millings. The
small-angle Debye powder patterns showed that the Bi-
2223 phase is dominant. The resistivity measurements
by the four-probe method have shown that the transi-
tion to the superconducting state begins at

The superconducting rings for the measurements
were prepared from this powder in a special mold. The
pressed rings were finally annealed in a uniform tem-
perature field. The rings obtained had an outer diameter
of 10 cm, an inner diameter of 8 cm, and a thickness of
2–6 mm. The critical current density Jc of the dummy
rings determined by the four-probe method was
150 A/cm2 at 77 K (according to the criterion of
1 µV/cm).1 

The rings were tested at a frequency of 50 Hz using
the circuit shown in Fig. 1. The measurements showed
the following results. At a circuit current of 1 A, the
voltage drop across the load was Ur = 19 V, the voltage

1 Investigations on optimization of the final annealing of the rings
aimed at increasing the critical current density are currently being
conducted.

TC 113 K, TC ρ 10 6–  Ω cm<( ) 105 K,= =

ρ Tc( ) 2 mΩ cm.≈
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drop across the limiter was USC = 0 (<10 µV). In the sc
mode, the current was 9 A, the voltage drop across the
limiter was USC = 17 V (the ring current density was
760 A/cm2), and the voltage drop across the load, Ur ≈
0 (the voltage drop at the leads was ≈2 V).

The I–V characteristic of one of the rings is shown
in Fig. 2. It was measured by the inductive method
using the circuit in Fig. 1. It is seen that the active ele-
ment has a rather high overload ability; i.e., it can oper-
ate in a steady-state regime without being overwhelmed
at currents much higher than the critical ones. The
power released in the ring is ~150 W (20 W/cm3) and is
effectively removed by liquid nitrogen. The experi-
ments with a set of rings have shown that the threshold
current of the limiter is additive with respect to the crit-
ical currents of separate rings.

Note that the experimental results were obtained in
the steady-state regime. Naturally, in a quasi-pulse
mode, in which the protecting device will operate (we
mean the actuation time of the breaker), it is possible to
achieve higher characteristics of the limiter [6, 7], at
least by a power of ~2 kW per one superconducting
ring.

Thus, in our view, the offered design of a supercon-
ducting current limiter with an active HTSC element in
the form of a set of plane rings is promising, as well as
the design, in which the active element is made as a
thin-walled cylinder [4, 5].

INTERRUPTING COPPER-BASED 
CONTACTS

The current limiter is used as a protection mecha-
nism; its main contacts operate in the long-term switch-
on mode and, hence, the main requirement is a low
value and long stability of the transitional resistance
(RJ) in the symmetric contact pair.

The main obstacle in using copper as a basic mate-
rial for interrupting contacts used in air is its rather high
oxygen affinity. Attempts to reduce oxidation of the
copper matrix and, thus, the value of RJ are carried out
by both doping the material with different additions and
introducing a reducing agent (more often graphite).

Contacts of a copper–graphite system have a com-
mon drawback: low hardness and strength. Therefore,
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
they cannot usually be used in devices with multicycle
shock loading.

It has been suggested to introduce carbon in the
form of a relatively cheap diamond powder (obtained
by explosive synthesis) with the main fraction <1 µm in
size [9, 10]. In this case, the chemical nature of the
addition is the same, while the mechanical characteris-
tics of the composite are radically improved. When
solid refractory particles of diamond are introduced
into the matrix, the durability to welding increases, and
the material is additionally strengthened. Diamond
increases the erosion durability of the contacts by cool-
ing the arch base (due to the high thermal conductivity
of diamond), leading to the quenching of the arc.
Refractory metals additionally introduced into the com-
posite reduce the value of RJ, and increase its stability,
and bolster its mechanical and electrical durability of
contacts (Tables 1 and 2).

Up to currents of 1000 A, ∆T values are within a nor-
malized range. Similar data are obtained for ac contac-
tors (I = 20, 40, 100 A): the absolute T values of contact
pairs ranged from 315 to 342 K.

The processing behavior of powder composites
[11, 12], their oxidation in air at temperatures close to

0
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Fig. 2. Typical steady-state current–voltage characteristic of
the HTSC ring measured at 77 K for the stimulated sc
regime.
Table 2.  Typical results of the temperature excess of the parts of dc apparatuses

Rated parameters
of apparatus

∆T, K

upper terminals lower terminals mobile contacts stationary contacts

250 A, 110 V 32.6–36.5 25.6–26.0 41.2–43.7 40.6–45.1

870 A, 770 V 46.2–49.7 35.3–40 63.7–66.1 72.1–74.7

600 A, 1500 V 55.7–57.7 41.8–42.6 66.9–69.6 62.6–63.4

600 A, 1500 V – – 69.7–71.5 73.8–74.9
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the working temperature of contacts (330–390 K) [13],
and tests in industrial apparatuses have shown that the
contact elements of copper-based powder composites
considered have the necessary service properties and
are capable of providing the reliable operation of com-
munication apparatuses.

The critical power of the electrical contact  can
hardly be tested experimentally or estimated theoreti-
cally. As a rule, it is possible to indicate only an approx-

imate value of . For the contact pair described in
this paper, a power of ~30–50 kW can be considered
critical. The current limiter with a set of ten HTSC rings
allows one to decrease the critical power of a switch by

a value of  ~ 20 kW which is comparable with the

value of . According to our estimates, the com-
bined device (current limiter + switch) will be able to
operate at currents of 100–1000 A to protect unique
equipment at industrial enterprises, transport, and dur-
ing dangerous processing.

Further investigations on the development of a pro-
totype of the sc network protector based on a supercon-
ducting current limiter and a breaker with silverless
contacts include the following: (i) improvement of the
critical parameters of the HTSC rings; (ii) design of an
operation element based on silverless contacts; and
(iii) study of the behavior of the limiter in the pulse
regime.
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Abstract—Secondary-ion mass spectrometry is applied to determine the elemental composition of thin dia-
mond-like films produced on silicon substrates by high-vacuum deposition from ion beams. Qualitative analysis
and comparison of the results with the data gained for graphite and pyrocarbon standard samples indicate a high
chemical purity for the diamond-like coatings obtained. © 2001 MAIK “Nauka/Interperiodica”.
Thin carbon layers produced on various substrates
have long since attracted considerable interest because
of their unique physical and chemical properties. Due
to their chemical inertness, high wear resistance, and
transparency in the visible range, diamond-like films
are widely used as protective antireflection layers for
optical elements and chemical utensils. Another impor-
tant use of the diamond-like films is as a working layer
on disks for magnetic recording [1].

Recently, special attention has been drawn to poly-
crystalline diamond films on flat substrates [2]. Some
of their properties, such as hardness, thermal conduc-
tivity, and transparency, are close to those of natural
diamond. Varying the production conditions, one can
change, within wide limits, the band gap, the impurity
concentration, and the conductivity of the diamond
layer. This circumstance makes the diamond coatings
attractive for the manufacturing of high-power semi-
conducting devices.

One more area of application for the diamond-like
films has been opened in connection with the discov-
ered negative electron affinity of the (111) surface of a
natural semiconducting diamond of the IIb type [3].
This feature of the diamond surface basically permits
the production of a diamond-based autoemission cath-
ode ensuring stable operation under a technical vacuum
in comparatively low electric fields.

Presently, diamond-like coatings are studied most
vigorously in the trends concerned with the manufac-
ture of semiconducting devices and with the challenge
to increase stability of the field current produced by
“cold” electron sources [4]. Carbon coatings intended
for these purposes are mainly produced by chemical-
vapor deposition either in a glow discharge [5] or with
a hot filament [6] in hydrogen or a hydrocarbon gas (the
most common choice is methane). To attain the struc-
tures of required purity, ultrapure gases (up to
1063-7842/01/4610- $21.00 © 21303
99.999%) should be mixed in perfectly precise ratios
(no more than 1% of CH4 content in H2 is acceptable)
under precise control of the substrate temperature.
Even in the conditions specified, it is difficult to keep
control of the elemental composition of the films since
the deposition method under discussion implies a com-
paratively high pressure in the working chamber (about
50 torr), for which a forevacuum pump suffices. This
method of pumping inevitably involves residual gas
molecules and the vacuum oil components enter the
film, making an unacceptable impurity concentration in
the film. For comparatively thick carbon coatings
(beginning with several microns) prepared on the flat
substrates, these impurities are of little consequence
[7]. However, in thin films (of several monatomic lay-
ers) deposited on apexes with less than 1 µm radius of
curvature for investigating the emission properties of
carbon coatings, the presence of impurity atoms cannot
be tolerated. It should also be noted that it is impossible
to gain an atomically clean substrate surface prior to the
chemical vapor deposition because of an insufficiently
high residual vacuum in the system.

From this point of view, the method of choice for
obtaining thin carbon coatings is the deposition from an
ion beam [8]. The major advantages offered by this
technique are the following: the experiment can be car-
ried out in ultrahigh vacuum conditions, the degree of
which is limited only by the high-vacuum pump coping
with the gas from the ion source; the parameters
responsible for the film structure, in particular, the
energy of the deposited particles and the radiation dose,
can be easily controlled; ultrapure coatings are obtain-
able by means of the mass separation of the ion beam;
and, finally, ion bombardment provides for a prelimi-
nary cleaning of the substrate surface.

Until now, diamond films prepared by the ion-beam
deposition on plane substrates have been mainly inves-
001 MAIK “Nauka/Interperiodica”
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tigated by means of the Auger-electron spectrometry
(AES). It is known however that the secondary-ion
mass spectrometry (SIMS) offers a considerably higher
sensitivity [9] and, thus, perfectly complements the
AES technique. In this paper, we apply the SIMS
method to the study of the mass composition of thin
diamond-like films produced on silicon substrates by
ion-beam deposition. The chemical purity of the coat-
ings was analyzed in order to give further insight into
the charge transport and electron-field emission mech-
anisms when such layers are deposited on tungsten
autoelectronic cathodes [4, 10].

EXPERIMENTAL SAMPLES

Thin diamond-like films to be studied were obtained
by ion deposition on flat substrates of (100)-oriented
silicon single crystals. The setup employed is described
in detail in [11]. Carbon layers were grown at room
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Fig. 1. Mass-spectra of (a) graphite and (b) pyrocarbon
samples subjected to ion sputtering (Ar+, 8 keV) for
15 min. The primary ion beam current is 5 Å.

Parameters of the diamond-like films deposition

No. Deposition 
time

Ion current, 
µA

Ion energy, 
eV

1 2 h 45 min 22 90

2 4 h 10 min 31 200
temperature under vacuum conditions at a pressure of
10–8 torr. Deposition conditions for the samples under
investigation are listed in the table. According to the
data of the scanning electron microscopy (JEOL JXA-
6400 microscope), the films are polycrystalline with an
average crystallite size of 8 µm. For a detailed analysis
of the resultant film structure refer to [12]. The conduc-
tivity of the films did not exceed 10–7 Ω/cm at room
temperature. The mass elemental composition of the
carbon films was qualitatively studied by the SIMS
method on a Polyus-4 (MC7201M) spectrometer. For
the sake of lowering the operating pressure, vacuum
conditions were produced with an oil-free pumping
system based on a NORD-100 magnetic-discharge
pump. The residual pressure was not higher than
10−7 torr. For primary ions we used Ar+ with an energy
of 8 keV, and the ion-beam current was maintained at
5 µA with a beam diameter of 2 mm. The sputtering
time amounted to 15 min.

RESULTS AND DISCUSSION

For accurate interpretation of the data concerning
the diamond-like coatings, the samples of pure graphite
and pyrocarbon were studied first. The corresponding
mass spectra are shown in Fig. 1. The spectra were
obtained from the bulk of the samples at a distance from
the surface equal to the etching depth. Two peaks
related to stable carbon isotopes with masses of 12 and
13 u are evident. Here, the peak attributed to the less
abundant 13C isotope stems mainly from the ion com-
plex CH+. It is interesting to note that each of the spec-
tra obtained for carbon materials indicates the presence
of two-charge ions 12C2+. There are also peaks associ-

ated with hydrocarbon complexes of Cn  type and
carbon compounds with oxygen and with the OH
group. The presence of 14N+ and 1H+ ions is reasoned by
the composition of the residual gas in the SIMS work-
ing chamber (air, water vapor). A pronounced peak cor-
responds to the primary 40Ar+ ions and to 27Al+ ions
contained in the material being sputtered from the cold
cathode during the ion source operation. Ions of alkali
metals exist in the spectra as a result of contamination
of the working chamber with these substances and due
to their low ionization potential. The presence of oxy-

gen in the form of O+ and  ions and in carbon com-
pounds that arise in connection with the materials under
study should also be noted. In particular, oxygen and to
some extent nitrogen may appear in graphite and pyro-
carbon samples as a consequence of their prolonged
exposure to atmospheric pressure. This is also related to
the ability of graphite to accumulate a considerable
amount of substance, which penetrates into the inter-
layer space between the atomic nets constituting the
carbon crystal. On the whole, with the exception of
chemical elements and compounds introduced by the
setup or experimental conditions, the carbon materials

Hm
+

O2
+
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under study can be considered as highly pure, with
small quantities of hydrogen and oxygen present.

The spectra measured for the diamond-like films are
shown in Fig. 2. Note the already mentioned presence
of two-charge 12C2+ ions, which is possibly related to
the hybridization state of the valence electrons in car-
bon atoms. The most important difference of the spec-
tra from those of graphite and pyrocarbon is the
absence of oxygen (atomic mass of 16) and oxygen-
bearing compounds, CO and CO2. This result is true
both for the bulk of the film and for its surface thus indi-
cating the small adsorption ability of the diamond-like
surface. The spectra also contain a typical group of four
peaks attributed to carbon 12C+, carbon isotope 13C+,

and complex CH+, as well as to C  and C . Here,

the peak corresponding to the ion residual C  cannot
be resolved from the possible peak of the two-charge
28Si2+ ions. The presence of silicon can be explained by
the small thickness of the carbon layer on the Si(100)
substrate and by the structure of the diamond-like layer
composed, according to the scanning electron micros-
copy, of separate crystallites. Therefore, 28Si+ and SiO+

ions appear in the secondary ion beam as a result of the
sputtering of the material from the intervening space
between crystallites, since the diameter of the primary
ion beam (2 mm) far exceeds the size of each separate
crystallite, which is ~8 µm at most. These two sorts of
single-charged ions yield intense spectral peaks corre-
sponding to atomic masses of 28 and 29 u. Note that the
other two stable silicon isotopes, 29Si and 30Si, have an
appreciable natural abundance, comparable with that of
the main isotope, 28Si. The relative values are 4.667%
for 29Si, 3.05% for 30Si, and 92.28% for 28Si. The peaks
attributable to these isotopes can also be seen in the
spectra, but their amplitudes are determined by various
CnHm compounds with the same mass numbers and
thereby do not correlate with their natural occurrence.
The relative intensity of the peak associated with sili-
con oxide in the spectrum measured for sample 2 is sig-
nificantly below that of the peak observed in the spec-
trum for sample 1. This is explained by the higher sur-
face density of crystallites in sample 2, being in
accordance with the deposition conditions and con-
firmed by the data of microscopic analysis. The pres-
ence of a peak corresponding to an atomic mass of 40
in both spectra cannot be uniquely attributed to SiC
since it coincides with another intensive peak due to
40Ar+ primary ions.

According to our data, the diamond-like films con-
tain oxygen only in the bound state, specifically, in
compound with silicon, which is indicated by the mass
spectra displaying no oxygen-related peaks except for
those corresponding to SiO. These peaks are due to the
sputtering of the material from the intervening space of
the diamond crystallites, since the SiO2 layer covering
the Si substrate surface is usually very thin (~100 Å).

H2
+ H3

+

H2
+

TECHNICAL PHYSICS      Vol. 46      No. 10      2001
Segregation of Si atoms at the diamond grain bound-
aries [13] may be a result of the diffusion through the
growing film. According to [13], this process is hin-
dered by a silicon carbide layer built up at the sub-
strate/film interface; but in our case, the formation of
such a layer is doubtful. This conjecture is in agreement
with the results of [14] concerning an AES study of
quasi-amorphous diamond films, with crystallite size of
20–50 Å, produced on a Si(100) substrate by cathode
sputtering of graphite. The data outlined above suggest
that the resulting diamond-like films are pure within the
accuracy provided by the SIMS method. The only
impurity is represented by hydrogen, which arises in
the beam of duoplasmatron operating on propane, since
we dispensed with mass separation of the beam. It is
likely that, in the resultant coatings, hydrogen plays its
customary role saturating the carbon dangling bonds on
the crystallite surfaces and especially in the intervening
space, which is presumably filled with amorphous car-
bon. As confirmed by the data obtained in [15], no oxy-
gen is contained in the carbon films produced by the ion
beam deposition in ultrahigh vacuum conditions, in
contrast to the films obtained by other methods [14].

In summary, the ultrahigh vacuum deposition from
an ion beam was used to obtain thin diamond-like car-
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Fig. 2. Mass-spectra of the diamond-like films on silicon
substrates for (a) sample 1 and (b) sample 2. Deposition
conditions are the same as in Fig. 1.
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bon coatings on single-crystal Si(100) substrates. The
elemental composition of the resultant films was stud-
ied with the SIMS technique. The main results of this
study are as follows: within the accuracy of the SIMS
measurements, no impurities are detected in the films,
except for hydrogen, which is present in the ion beam
during the film deposition; the uniform spread of
hydrogen over the layer thickness favors the above
hypothesis about its origin; unlike the diamond-like
films obtained by other methods, the coatings are oxy-
gen-free; ion-beam deposition of particles with an
energy within 200 eV yields a carbon coating without
silicon carbide at the interface of the Si substrate and
diamond-like film.
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Abstract—To date, only one solid crystalline form of protein has been discovered and studied. At the same
time, we have experimentally found that the solid protein phase may have fundamentally different properties,
as well as various types and scales of symmetry, depending on condensation conditions in the water–protein
system. The key issue here is the condensation kinetics. For example, in an open system under the equilibrium
conditions (low process rate), the equilibrium long-range crystalline protein lattice forms at the microlevel. In
a nonequilibrium (high process rate) protein–water system, an autowave process with nonlinear irregular
dynamics is established and a polyfilm solid phase with a set of three-dimensional dissipative nanostructures
occurs. The type and scale of symmetry change. The crystal order at the microlevel disappears, and the material
becomes amorphous. A new allotropic modification of the solid nonequilibrium protein film arises. This mod-
ification has the highly ordered (on the nano- to macroscale) superlattice with straight, helical, chiral, mirror,
or rotation symmetry. This kind of protein has been identified both in vitro and in vivo and has been called “pro-
tos.” © 2001 MAIK “Nauka/Interperiodica”.
The study of protein structuring and gelling by the
methods of colloidal chemistry has shown that the
properties of the solid phase of protein depend on the
condensation rate [1]. For example, the rapid evapora-
tion of the solvent causes a heterogeneous system with
the polydisperse structure to form. This system is ther-
modynamically unstable and has specific properties.

At the same time, if the solvent is evaporated slowly,
the protein crystallizes into the solid phase with a rigid
gel-like framework. However, only one of these protein
solid phases has attracted the interest of researchers
[2, 3]. Today, this equilibrium crystalline form of pro-
tein is widely investigated at the microscopic and meso-
scopic (atomic and molecular) levels by the methods of
X-ray diffraction analysis, NMR spectroscopy, com-
puter simulation, etc. Note once again that the solid
crystalline protein phase is formed when the solvent is
removed slowly [3]. This form serves as the basis for
constructing models of protein self-organization [4, 5].

Comparison studies of the nonequilibrium solid-like
(polyfilm) protein phase (its morphology, symmetry,
and other properties [6, 7]) and the in vivo behavior of
the crystalline solid phase of protein have not yet been
performed. To bridge this gap, we extended our pio-
neering (as early as in 1976) investigation [7] into
allotropic solid-like protein films by using advanced
methods for material modification [8], including poly-
mers [9].
1063-7842/01/4610- $21.00 © 21307
Our goal was to obtain the protein solid phase under
different condensation conditions. Two identical sub-
strates (glass or plastic) were covered by equal amounts
of the protein–water mixture (with components taken in
different proportions). One of the systems was made
open, while the other was screened by cover glass. In
the open system, unlike the closed one, the condensa-
tion and stabilization of protein proceeded in air and
under the same thermodynamic conditions: at room
temperature and atmospheric pressure. After compac-
tion, the structure and symmetry of the resulting mate-
rial were examined with optical, polarization, scanning
electron (JEOL), and confocal scanning laser micro-
scopes. In addition to this, we analyzed the specimens
by X-ray diffraction, determined their magnetic sensi-
tivity, took I–V characteristics from the liquid and solid
protein phases under nonequilibrium conditions, and
studied laser-induced fluorescence and birefringence.

When studying the nonequilibrium protein form,
which was stabilized in the open water–protein system
in air, we have found the self-assembly of multiple
slug-shaped films made of protein clusters. Moreover,
previously unknown phenomenological and other prop-
erties of the protein films have been discovered [6, 7,
10, 11].

The final solid phase has been found to consist of the
polyfilm solid material and three-dimensional dissipa-
tive nanostructures with nucleation, fractal geometry,
001 MAIK “Nauka/Interperiodica”
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as well as autocatalytic and self-complementary prop-
erties. Regular cellular geometric structures with the
cells having mussel-shaped vortex cores are produced.
In each of the cells, free-surface step cascade vortices
of opposite vorticity form. Other specific features are
treelike forms with dichotomy, helices in helices
(superhelices) (Fig. 1), and tubes in tubes. Films on
films frequently exhibit the so-called “porcupine” sym-
metry, like Langmuir–Blodgett films [11, 12], and
resemble a nested structure (some successively smaller
elements fitted one into another). In these structures,
one can distinctly see similarity, size invariance, and
alternating density.

(a)

(b)

Fig. 1. (a, b) Three-dimensional nonequilibrium imperfect
multilayer protein films with cells having a vortex core.
As has been found, the above phenomenology of the
nonequilibrium protein film in the open system is based
on a certain type of constant-scale symmetry (discrete
spontaneous symmetry) that is related to defect forma-
tion in the film. The order in the structures and the sym-
metry type were visualized on the nano- (100–200 nm)
and macroscales with optical, polarization, and electron
microscopes (Figs. 2–4). However, at the microlevel,
the material turned out to be disordered, as follows
from X-ray diffraction data.

The X-ray data showed [13] that long-range order in
the protein form we are interested in is absent. Ordering
was observed only at distances of 10.5 and 4.33 Å
(Fig. 5).

Discrete rotation symmetry (according to the Weyl
classification) specified the general order of the super-
lattice in space and time, causing nucleation. We found
straight (90°) rotation (repeating) parallel symmetry in
the radial and transverse directions, which specifies the
arrangement of three spatial cells of invariant scales.

Helical and chiral rotation symmetries form the
mussel-shaped core in each of the cells. The core is
halved by a straight defect passing through its center, so
that bilateral (mirror) symmetry occurs. The pattern
known as superhelix (with an angle of rotation of 30° to
40°) appears. The pitch of the superhelix depends on
the order of quantization of the axis between two vorti-
ces and shows up as discrete rotation symmetry with
the vectors of rotation parallel to each other (Fig. 6).

The equilibrium material does not have such a com-
plex morphology at either the nano- or the macrolevel.
In other words, the self-assembly (self-organization) of
the three-dimensional protein structure has not been
observed.

Experiments have shown that the drying of the pro-
tein condensate in the closed water–protein system
results in the formation of two-dimensional birefrin-
gent nets made of filaments (Fig. 6).

When observed in the optical microscope, the crys-
talline protein specimens prepared for X-ray diffraction
analysis under the equilibrium conditions appear (at the
macrolevel) either as a defect-free block or as a mate-
rial with a small density of defects in the open-book
form.

Further investigations have indicated that the films
are magnetically sensitive [12] and birefringent [5, 6]
and exhibit laser-induced fluorescence [15]. Also, their
I–V characteristics are similar to those of high-resistiv-
ity semiconductors [14].

Thus, it has been established that one can radically
modify the properties of solid protein by varying the
material preparation conditions. Not only the thermo-
dynamic but also the kinetic conditions should be var-
ied in this case.

For example, the rates of the chemical reaction and
water evaporation, as well as the dynamics of conden-
sation and polymerization, in the open and closed sys-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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tems greatly diverge. It is known that multilayer epitax-
ial films grow only if the deposition rate is high [16].

However, in the open water–protein system, protein
gelling during its condensation (water evaporation)
takes place at relatively low rates. Yet, the process
results in the formation of multilayer epitaxial films (a
pile of films) with helical vortices, nonlinear irregular
dynamics, and self-sustained oscillations. Such behav-
ior of gels is typical of film self-assembly during the
condensation of inorganic and polymeric sols [17]. The
sols were obtained by merely evaporating the solvent at
a moderate process rate [17].

These findings have not found adequate explanation
for a long time. They ran counter to the conventional
theoretical concepts whereby high process rates are
necessary for turbulent dynamics with vortex structures
and epitaxially growing films to occur. This phenome-
non has been accounted for only recently. It has been
shown [18] that, when condensing and passing to the
gel state, various high-viscosity liquids or colloidal sus-
pensions acquire pronounced elastic properties, which
are responsible for specific turbulence called “elastic
turbulence” [18]. This type of turbulence appears at
moderate process rates.

The results obtained in [18] give an insight into why
our experiments, carried out since 1976 [6, 7], have
consistently demonstrates self-sustained oscillations
and irregular nonlinear dynamics in the case of the non-
equilibrium condensation of protein in an open water–
protein system. These phenomena have been recently
substantiated theoretically in terms of turbulent dynam-
ics in high-viscosity materials, among them protein
solutions.

It is essential that such specific behavior of protein
is observed only if it condenses in an open system,
which is far from equilibrium, and is strongly adherent
to the substrate. Only then can one obtain the allotropic
nonequilibrium protein modification at the gel–liquid

Fig. 2. Free-surface step vortices with opposite vorticities
observed in the optical microscope (×400). Discrete (spiral
and chiral) symmetries are seen.
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
crystal phase transition. This modification changes the
fundamental properties of protein, namely, the type and
scale of symmetry.

As follows from the X-ray diffraction data, the
structure of the allotropic nonequilibrium modification
of protein, which results when protein condenses in
vitro in the open system, changes on the microscale and
the local atomic order transforms into the amorphous
state. At the same time, ordering takes place on the
other scales. As for the closed system, where the kinet-
ics is slower, the long-range order appears irrespective
of the scale.

These findings are consistent with the new methods
for material modification. Here, the kinetic, rather than
thermodynamic, conditions play a key role. “The poly-
condensation process can be directed toward the forma-

JEOL 20 kV 10 µm × 430 38mm

Fig. 3. Electron diffraction pattern from the nonequilibrium
slug-shaped protein films. JEOL scanning electron micro-
scope, ×10000. Scale division is 10 µm.

Fig. 4. Division of the core by a straight defect running
through the core center. The occurrence of mirror (bilateral)
symmetry is seen. Quantization of the axis between two
vortices with the formation of rotation symmetry with an
angle of 30°–40°. Optical microscope, ×800.
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tion of the amorphous, macrocrystalline, polycrystal-
line, or epitaxial material by varying the kinetic condi-
tions” [19].

Thus, our experiments with protein confirm the
statement that the obtaining of the amorphous materials
“is directly related” to conditions for their deposition
[20–22]. From the microscopic viewpoint, this fact
seems to be rather unexpected although it is consistent
with the concept that polymers condense into the
glassy, instead of the crystalline, state [23].

At the same time, this protein material can be con-
sidered as macrocrystalline, because the lattice scale in
it is of crucial importance. In this state, not only the
highly structured superlattice but also the high anisot-

1
2

Fig. 5. X-ray diffraction pattern from the nonequilibrium
film of protein (lysozyme). Long-range order is absent.
Ordering at distances of 4.33 and 10.5 Å.

Fig. 6. Equilibrium protein phase in the form of two-dimen-
sional nets. Three-dimensional nets and three-dimensional
polyfilm structures with helical or mirror symmetry are
absent. The material was prepared in the water–protein sys-
tem closed by cover glass. Optical microscope, ×400.
ropy of the material are visualized. As follows from the
examination in the optical, polarization, and scanning
electron microscopes, the superlattice forms when the
anisotropic epitaxial films with the characteristic types
of discrete anisotropy (helical, chiral, mirror, and por-
cupine) grow. The establishment of one or other type of
symmetry depends on the film size but remains the
same at the nano- and macrolevel. It can be said that
such an order is to some extent consistent with
Schrödinger’s prediction that biologic crystals are ape-
riodic in most cases.

Our observations also agree with a variety of litera-
ture data that suggest some relationship between the
nano- and macrostructures during the self-assembly of
the films [24–28]. For example, it has been shown [29]
that a supermolecular size-dependent lattice may form.
In this case, the nanostructures serve as an intermediary
in going to the macroscopic organization, relating the
noncovalent surface chemistry and the amorphism of
the material at the microlevel [29]. Polyfilm epitaxial
growth, typical of such structures, depends on whether
the films are of unlike charge [16]. These factors all
contribute to the formation of the large-scale substruc-
tures [24–29].

The above data explain the fact that another type of
short-range order arises when protein condenses in the
closed system. This order is scale-invariant, hence, the
absence of the epitaxial films and the meso- and mac-
rolevel symmetries.

Under the nonequilibrium conditions, the phase
transition qualitatively changes: the gel passes into the
liquid crystal. The latter phase features nonlinearity and
irregularity, which set new relations between the ele-
ments. A new symmetry at all the scale levels occurs.
These changes cover the morphology and the symmetry
of the system as a whole (short-range and long-range
orders, as well as macroinhomogeneities and defect
subsystems).

The reason for the appearance of the new (discrete
helical) symmetry—a basic phenomenon for any bio-
logic structure—is the turbulence of the liquid flow.
This is related to the spatial behavior of inertial parti-
cles [30]. The phenomenon is due to the discrete non-
uniform charge distribution in the vortex zone, which
causes magnetic fluctuations [28].

In the case of colloidal media, including protein, the
fluctuations are explained by aggregate kinetics in col-
loids, which is made difficult by collective excitations
or discrete self-forces [31, 32], as well as by charged
particle adsorption/desorption [33]. Hence, the large-
scale epitaxial growth of the slug-shaped films [23].
The same properties are inherent in the liquid crystal
phase. Therefore, it can be said that the films are inter-
related, i.e., form a quantum-size cluster. By a quan-
tum-size cluster, we mean the specific state of a mate-
rial where the consistency of an aggregate depends on
its size [34].
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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Our experimental data count in favor of such inter-
related behavior of the aggregates in the condensed film
of protein. They show the presence of geometrically
related quantum dots, defects, as well as the formation
of fractal structures (Figs. 1a, 2), all conclusively indi-
cating that we are dealing with cluster systems [34]. It
is known that the nucleation of three-dimensional clus-
ters (non-Euclidean geometry) in such structures is
physically associated with strains and elastic stresses,
which may originate from structure defects (disloca-
tions and disclinations) or because of small changes in
the bond lengths and angles [35].

Moreover, experiments have demonstrated that the
restructuring of protein is accompanied by changes in
its mechanical, electrical, magnetic, and optical proper-
ties.

These observations also correlate with data obtained
with the new method for modifying and studying the
structure of noncrystalline materials, including poly-
mers. This method allows one to control the structure-
dependent properties of materials [8]. It is known, for
example, that structure modification within intermedi-
ate-range order, which is typical of semiconducting
glasses, affects the mechanical and phase-transition
properties of the material.

Modifications on the short-range-order scale,
observable in films, radically change nearly all proper-
ties [8]. This has been supported by our experiments,
which showed that the morphological, electrical, mag-
netic, and optical properties of protos dramatically dif-
fer from those of crystalline protein. An example is spe-
cific optical properties depending on morphological
variations due to macroinhomogeneities [8]. Further-
more, the similarity between the I–V characteristics of
amorphous carbon films and amorphous films of pro-
tein seems not to be accidental [27].

The adhesion of the film to a solid substrate and the
dependence of the self-assembly process on the wetta-
bility and temperature of the substrate [36]—the funda-
mental properties of protos—are also absent in protein
crystals. To date, it has been established that the wetta-
bility in a solid–film–liquid system is a measure of the
energy of interaction in it and is a structure-sensitive
parameter that allows the characterization of the sur-
face of a solid substrate and a film applied [36, 37].

All the literature data for the phenomenology of the
protos modification, as well as for its symmetry, polar-
ization, optical, electrical, etc. properties, have been
corroborated by our in vitro and in vivo experiments.
This seems to be natural, since protein is expected to
behave in a similar way under similar kinetic conditions
for condensation in the protein–water system. In the in
vitro experiments, we provided the nonequilibrium
conditions (open system), which are typical of the ani-
mate nature, and obtained the solid protein form identi-
cal to that in biological objects.

Of particular interest is the fact that, according to the
literature data, it is microscopically amorphous materi-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
als that show the self-organization property under non-
equilibrium conditions [37]. Here, the role of short-
range order in the atomic structure becomes minor: the
geometrical properties of the structure depend on the
morphology.

Because of this, we suggested (in 1983) the method
for determining the protein topology. With this method,
one can easily determine the symmetry and the config-
uration of aggregates, knowing the size and parameters
of the multilayer protein piles self-organized at the
nano- and macrolevels. This method makes it possible
to distinguish between the normal and pathological
behavior of protein during its self-organization.

Using this method (which characterizes the material
on the qualitative basis), investigators can detect
in vitro (at the macro- and mesolevels) adherent multi-
film structures, discrete helical symmetry of vortices,
and the other types and scales of symmetry in normal
protein, comparing the data obtained with the in vivo
behavior of protein. In this way, they can check that the
self-organization of protein proceeds similarly under
biotic and abiotic conditions. More reliable and exact
identification requires quantitative information. How-
ever, even qualitative data are very convincing, demon-
strating distinct changes at different pathologies:
hemophthalmia, cataract [38], and carcinoma, as will
be reported in [39].

DISCUSSION

Our experiments have shown that the complex phe-
nomena described above are observed only in one allo-
tropic modification of protein, protos, which results
in vitro when protein condenses in the nonequilibrium
open water–protein system. We will briefly summarize
the most important results. 

It has been found that the supermolecular three-
dimensional aggregation of protein at the meso- and
macrolevels is accompanied with the symmetrization
of the material (discrete helical, chiral, and mirror sym-
metries). The last type of symmetry is associated with
self-similar self-complementary dissipative fractal
nanostructures, which can multiply by division. This
demonstrates the autocatalytic properties of this active
structure, generating self-sustained oscillations with
nonlinear irregular dynamics.

The behavior and properties of this system seem to
be basic and common for the condensation of various
materials under nonequilibrium conditions. Self-
assemblies of liquid crystal films, nonequilibrium
nanostructures of inorganic and organic semiconduc-
tors and superconductors [27, 40], etc. are examples.

During condensation, the system also exhibits dis-
crete helical and mirror symmetries, vorticity, nonuni-
form distribution of various material phases, film for-
mation, and the appearance of fractal dissipative three-
dimensional cluster nanostructures, all showing up
from the nano- to macrolevel. In this system, the above-
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listed phenomena distinctly correlate with the collec-
tive behavior of electrons.

It is well known that the condensation of a material
leads to an increase in the electron density and electri-
cal conductivity. In some cases, the insulator–metal
transition, typical of superconductors, takes place [23].
The surprising thing is that such a transition was
observed in the protein film.

Based on the data obtained, we suppose that the
entire set of the complex and poorly studied phenom-
ena reflects the universal behavior of materials upon
condensation under nonequilibrium conditions with
nonlinear irregular dynamics. These effects are neces-
sarily related to electron collectivization, which gives
rise to electron conduction and superconductivity. In a
system with strongly bound electrons, molecular orbits
due to the self-organization and ordering of various
magnetic phases arise. The material ordering extends to
larger scales and higher levels up to the macrolevel.

Thus, only one allotropic modification of protein
offers the capability for biological self-organization,
which assembles macrostructures with the levels of
energy and electrical conductivity needed to gain and
store information on a living organism.

In-depth comparative analysis of this poorly studied
protein modification and the other crystalline from of
protein is of crucial importance for biology and medi-
cine.

It is not improbable that the crystalline equilibrium
allotropic protein modification results either under
pathological (more equilibrium) conditions or when the
physicochemical properties of protein are considerably
modified. In this case, instead of self-organization, nec-
essary for the living activity, pathological processes
develop. One can assume, in particular, that some dis-
eases are associated with the appearance of the crystal-
line allotropic protein modification in vivo. An example
is cataract, or the crystallization of the protein in the
crystalline lens in one’s lifetime [38].

Based on our experiments, we hypothesize that a
malignant tumor is a state with the changed protein
phase or modification (liquid- or solid-crystal). Cer-
tainly, this hypothesis must thoroughly be checked.

CONCLUSIONS

(1) The method for structure modification of the
protein solid phase by altering the kinetic conditions in
the water–protein system proved to be efficient. With
regard for the basic role of carbon in protein films, the
question arises as to whether the phenomena observed
are associated with the pronounced tendency of carbon
films to such allotropic modifications.

(2) Two solid forms of the protein allotropic modifi-
cation, crystalline equilibrium and polyfilm nonequi-
librium dissipative, are discovered. The latter, called
protos, exhibits the nonlinear turbulent dynamics. Both
forms possess various short- and long-range atomic
orders and, consequently, various types and scales of
symmetry, and, hence, much different morphological,
electrical, optical, magnetic, etc. properties.

(3) In the dense phase of the nonequilibrium protein
film, new previously unknown symmetries in the self-
organization of protein under biotic and abiotic condi-
tions appear. The nonequilibrium form of self-assem-
bly (self-organization) loses short-range order, typical
of its crystalline form. In the protos phase, local order
in the protein crystals disappears at the microlevel. The
material becomes amorphous or quasi-amorphous. A
new type of symmetry that extends from the nano- to
macrolevel arises. This symmetry gives rise to a highly
ordered superlattice (or a macrocrystal) and possibly to
the glassy phase of the liquid crystal.

(4) Our data on the symmetry and three-dimensional
geometry of the allotropic nonequilibrium protein film
open wide opportunities for the application of this pro-
tein modification in biology, medicine, and device tech-
nology. In particular, this form of protein can be used in
liquid-crystal and polymer-based devices, which
become more and more competitive with metal and
semiconductor devices [24]. In medicine and biology, it
can be applied in diagnostics tests for qualitatively and
quantitatively characterizing the normal and pathologi-
cal processes of protein self-organization.
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Abstract—It is proposed to use the Tornado closed magnetic confinement system with microwave plasma heat-
ing for creating a pulsed source of multicharged ions. The plasma losses in closed confinement systems are
determined by the diffusion across the magnetic field, which substantially increases the plasma lifetime as com-
pared to mirror confinement systems. A plasma heating scenario with the successive switching-on of two oscil-
lators is proposed: an oscillator operating at a frequency of 2.45 GHz produces the initial plasma, which is then
heated at a frequency of 15 or 53 GHz. It is shown that it is possible to achieve the distribution of ions over
charge states with a maximum at Ar16+ at a plasma density of 2 × 1013 cm–3. The extracted ion current in this
case can attain 1 A. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Presently, the most commonly used multicharged
ion (MCI) sources are those using magnetic mirror con-
finements system for confining a plasma heated by
microwaves at the electron cyclotron resonance (ECR)
frequency (ECR sources). Such devices make it possi-
ble simultaneously to maintain the high plasma elec-
tron temperature required for the multiple ionization of
gas atoms; to confine the plasma long enough for the
high ionization states of ions to be produced; and to
extract the ions from the plasma in the form an ion
beam, which can then be transported over distances of
tens of meters. Ideally, the plasma losses in this con-
finement system are determined by the plasma outflow
along the magnetic field through the magnetic mirrors,
where an extractor is installed. The longitudinal plasma
losses limit the lifetime of the plasma ions and, conse-
quently, the highest available ionization state.

The use of closed magnetic confinement systems for
confining the plasma in MCI sources seems to be attrac-
tive from the standpoint of increasing the plasma life-
time. In an ideal closed magnetic confinement system,
magnetic field lines do not leave a certain bounded vol-
ume and do not meet any components of the confine-
ment system (the vacuum chamber, etc.). The plasma
lifetime in a closed confinement system can be signifi-
cantly longer as compared to straight confinement sys-
tems (by a factor on the order of the ratio between the
longitudinal loss rate in a simple confinement system
and the diffusion rate across the magnetic field in a
closed confinement system). The evident disadvantage
of closed confinement systems is that the process of ion
extraction is rather complicated. This problem can be
1063-7842/01/4610- $21.00 © 21314
resolved with closed confinement systems of the Tor-
nado type [1, 2]. These systems allow one to use an aux-
iliary coil that partially destroys the closed magnetic
confinement structure for a given time without radically
affecting the global plasma lifetime and to produce a
controlled plasma flow depending on the magnetic field
of the auxiliary coil. Thus, it becomes possible to con-
trol the plasma flow to the extractor and to regulate the
ion lifetime within certain limits.

In this paper, we propose to use the Tornado closed
confinement system for creating an ECR source of mul-
ticharged ions. A scenario for ECR plasma heating is
proposed and the distribution of ions over charge states
is calculated for the Tornado-322 device, which is now
under testing [3]. It is shown that, by the end of the
magnetic field pulse, it is possible to achieve the distri-
bution of ions over charge states with a maximum at
Ar+16 at a plasma density of ~1013 cm–3. The plan of
experiments on ECR plasma heating in the Tornado
confinement system is discussed.

THE TORNADO CONFINEMENT SYSTEM

About forty years ago, the possibility of creating a
system in which the magnetic field was closed and
increased toward the periphery was demonstrated. A
device permitting the creation of such a field can be
used as a magnetic confinement system for confining a
hot dense plasma. This confinement system was named
Tornado.

The magnetic field in the Tornado device is pro-
duced by two oppositely directed currents that flow
through geometrically similar spherical concentric
001 MAIK “Nauka/Interperiodica”
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helical conductors connected in poles by straight-line
conductors (Fig. 1).

If the ratio of the currents flowing through the heli-

cal conductors is equal to m0 = Iout/Iin = ,
where Rin and Rout are the radii of the inner and outer
spherical surfaces, then there is a spherical separatrix of

radius Rs =  enveloping the inner helical coil.
The separatrix divides the magnetic field of the confine-
ment system into two regions. The magnetic field lines
inside the separatrix surround the conductors of the
inner coil and do not leave the volume bounded by the
separatrix. The volume inside the separatrix is used to
confine a plasma. This volume includes a region of a
lower magnetic field (Fig. 2) which is surrounded by a
magnetic barrier. The magnetic barrier is located near
the spherical separatrix. The magnetic field of the con-
finement system has a regular and stable structure [2, 4]
(Fig. 3).

The eight-turn coils of the Tornado-322 are installed
in a vacuum chamber. The diameters of the outer and
inner coils are equal to 350 and 298 mm, respectively.
The coils are made of thin-walled stainless-steel tubes
18 mm in diameter and are filled with wires insulated
from the tube wall. Such a configuration permits us to
avoid breakdowns between turns, because the magnetic
field is produced by the current flowing through the
conductors situated inside the tube. Since the insulated
wires are separated by the tube from the vacuum vol-
ume, the residual gas pressure in the chamber can reach
10–8 torr. The copper wires are cooled by nitrogen
vapor, which increases their conductivity by a factor of
4.5 as compared to that at room temperature. Five cur-
rent-carrying wires inside the tube are insulated from
each other and are connected in series. As a result, an
electric current of 38 kA is sufficient to produce the
magnetic field with a duration of 15 ms and a strength
of 2.8 T in the barrier.

PLASMA LIFETIME IN THE TORNADO 
CONFINEMENT SYSTEM

In [2, 5, 6], results are presented from an indepen-
dent series of experiments on studying plasma confine-
ment in the different modifications of the Tornado con-
finement system. The experimental results allow one to
draw the following conclusions: the confinement sys-
tem is closed; the charged-particle lifetime in it is max-
imum when the coil current ratio is close to the theoret-
ically predicted value m0; the plasma losses (for a
plasma electron temperature of 2–5 eV) are mainly
determined by the classical cross-field diffusion and
electron–ion recombination; and relatively strong per-
turbations of the magnetic field in the confinement sys-
tem increase the plasma losses insignificantly as com-
pared to the classical diffusion losses.

For example, in the Tornado-II device (Rin = 10 cm)
[5], at a plasma density of 2 × 1012 cm–3, a barrier mag-

Rin/Rout

RinRout
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
netic field of 0.1 T, and a pulse duration of 2 ms, the
measured plasma lifetime scaled as the square of the

magnetic field and the inverse electron density:  ~

B2 . In the Tornado-X device [6], at electron densi-
ties Ne ≤ 1014 cm–3, a magnetic-field pulse duration of
2 ms, and barrier magnetic fields B ≤ 0.1 T, the mea-
sured plasma lifetime also scaled as the square of the
magnetic field, which corresponded to the classical
cross-field diffusion. Hence, the plasma lifetime in the
confinement system in this regime can be represented as

(1)

Here, R is the characteristic diffusion length (for a spe-
cific confinement system, the minimum between the
value of Rin/k, where k is the number of coil turns, and

the magnetic barrier width Rb ≈ Rs – Rin);  is the
cross-field diffusion coefficient Te and Ti (in eV) are the
electron and ion temperatures, respectively; 〈Z〉  is the
mean ion charge; B (in T) is the barrier magnetic field;
A ≈ 3 × 10–12; and χ is a constant factor allowing for a
correction related to the complicated configuration of
the magnetic field in the confinement system. By com-
paring formula (1) with the calculated lifetime [7], the
factor χ was chosen to be 1/6.

τ i
D

Ne
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τ i
D R2

D⊥
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χR2B2Te
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Fig. 1. The general view of the Tornado confinement sys-
tem.
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When the magnetic field in the Tornado-X device
was increased to above 0.1 T, this had little or no effect
on the plasma lifetime because of the plasma loss due
to bulk electron–ion recombination. In this case, the
plasma lifetime is

(2)

where kR is the recombination coefficient.

From the standpoint of plasma confinement, the
advantage of closed confinement systems over straight
ones can be expressed as the ratio between the plasma

τ i
R kRNe( ) 1–

,≈
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Fig. 2. Radial profiles of the magnetic induction B in the
Tornado-322 device (1) in the equatorial plane [3] and (2) in
the direction toward the pole (r is the distance from the cen-
ter of the device; the current is 38 kA).
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Fig. 3. Magnetic field structure in the Tornado-322 device.
The characteristic traces of the intersections of magnetic
field lines with the meridional plane of the device are shown
inside the separatrix: (1–4) the regions of “combined” mag-
netic field lines and (5) the regions of “individual” magnetic
field lines. The outer circle is the separatrix trace.
lifetimes (for straight confinement systems, we use the
expression for classical confinement [8], which is gen-
erally used in calculating multicharged ion sources)

(3)

This advantage is most pronounced with high mag-
netic fields. For example, in the Tornado-322, at a mag-
netic field of ~2 T and an electron temperature of 1 keV,
ratio (3) is equal to 104.

We emphasize that, in this paper, we assume that the
plasma losses are determined by the classical cross-
field diffusion and recombination even at substantially
higher temperatures than those in [5, 6].

PLASMA HEATING

The ECR heating of the electron component is the
most efficient method for creating a strongly nonequi-
librium plasma with parameters that are optimum for
producing multicharged ions, namely, a plasma with
hot electrons (whose temperature is close to 1 keV) and
cold ions (whose temperature is only a few electron-
volts). Unfortunately, experimental data from which it
might be possible to estimate the efficiency of the ECR
heating in the Tornado device are still lacking (such
experiments are planned for the immediate future). The
magnetic field structure in this confinement system is
very complicated; hence, a detailed theoretical analysis
of microwave absorption is impossible at this stage of
the research. However, some inferences about the pos-
sibility of plasma heating can be made based on general
considerations.

The longitudinal launching of microwaves (when
the wave vector is parallel to the magnetic field) is most
efficient with respect to microwave absorption in small
experimental devices. However, the specific features of
the magnetic field structure in the Tornado device make
such launching impossible.

Estimates show that, at nonlongitudinal launching,
the single-pass absorption of cyclotron microwaves is
low (the optical thickness of the plasma for normal
waves is small). A substantial increase in microwave
absorption may be achieved due to the multipass wave
traveling (because the vacuum chamber containing the
confinement system is a microwave cavity) or, proba-
bly, to the absorption at the upper hybrid resonance fre-
quency.

The strongly inhomogeneous magnetic field of the
confinement system allows us to expect microwave
absorption in the plasma over a wide frequency range.
In this paper, we assume that the microwave power is
totally absorbed by the plasma if there is a resonance
region inside the separatrix and that the incident micro-
wave radiation is totally absorbed regardless of the
plasma density (provided that the weak reflection con-
dition Ne < Ncr is satisfied; i.e., the plasma density is less

τ i
D

τ i
C

-----
R2v ei

D⊥
ef

------------- R2B2

Te

------------.∼≈
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than the critical plasma density for a given pumping
microwave frequency).

MCI PRODUCTION IN THE PLASMA 
OF THE TORNADO CONFINEMENT SYSTEM

The duration of the magnetic field pulse in the Tor-
nado-322 device coincides with the plasma lifetime by
an order of magnitude. Hence, in order to calculate the
distribution of ions over charge states (DICS), we
should solve a set of time-dependent differential ioniza-
tion-balance equations for ions (in all charge states),
electrons, and neutral atoms. The DICS was calculated
for an argon plasma within a zero-dimensional model:
the densities and temperatures of all particles were
assumed to be uniform throughout the entire volume of
the device.

The density Ni of ions in the ith charge state is deter-
mined by the processes of ionization, recombination,
charge exchange with neutrals, and the rate of cross-
field plasma diffusion

(4)

where ki, i + 1 are the electron-impact ionization con-
stants calculated by the formula

Here, εi is the ionization energy of the ion in the ith
charge state (in electron volts) and Te is the average
electron energy. The values of the parameters Ci are

tabulated in [9];  =  +  is the sum
of the rate constants of photorecombination and dielec-
tronic recombination:

the values of the factors Arad, Xrad, Cj, and Ej are tabu-

lated in [10, 11]; and  is the rate constant of
charge exchange of ions with neutrals [12]:

Here, ε0 is the ionization energy of neutral atoms and Ti

and Mi are the temperature and mass of ions, respec-
tively. In numerical simulations, the temperatures of
ions with different charges were assumed to be equal,
because the energy equalization times of different ion

∂Ni

∂t
--------- ki 1 i→– Ni 1– ki i 1+→ Ni– ki 1 i→+

R Ni 1++(=

– ki i 1–→
R Ni )Ne ki 1 i→+

CX Ni 1+ ki i 1–→
CX Ni–( )N0

Ni

τ
-----,–+

ki i 1+,
C2 1 C1 εi/Te+( )

C3 εi/Te+
-------------------------------------------

εi

Te

----- 
 

C4 εi

Te

-----– 
  cm3 s 1–( ).exp=

ki 1 i→+
R ki 1 i→+

RR ki 1 i→+
DR

ki 1 i→+
RR Arad 1.16Te( )

Xrad–
 cm3 s 1–( ),=

ki 1 i→+
DR 1

Te
3/2

-------- C j

E j

Te

-----– 
   cm3 s 1–( ),exp

j 1=

3

∑=

ki 1+ i,
CX

ki i 1–→
CX 1.43 10 6– i1.17ε0

2.76– Ti

Mi

------ cm3 s 1–( ).×=
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
components are much shorter than the ion lifetime in
the confinement system. The cross-field diffusion time
was taken to be the same for ions in all charge states and
was calculated by formula (1).

The gas-density equation has the form

(5)

where, I is the power of the neutral gas source in the
confinement system.

The electron balance equation has the form

(6)

The electron temperature is determined by the
microwave power P absorbed in the plasma; energy
losses due to collisional heating of ions, ionization, and
electron–ion recombination; and diffusion electron
losses:

(7)

where V is the confinement system volume and νei is the
frequency of electron–ion collisions.

The ion energy balance is described by the equation

(8)

where the terms on the right-hand side allow for the fol-
lowing processes:

describes the heating of ions due to collisions with elec-
trons and their cooling in collisions with neutral atoms
(here, the gas temperature T0 is assumed to be time-
independent and v i0 is the frequency of ion-atom colli-

sions); PIR = T0ko → 1NeN0 – Ti N1Ne describes the
production of ions with temperatures equal to the neu-
tral temperature due to neutral gas ionization and their
cooling due to the recombination of singly charged
ions;
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describes the energy exchange between ions and neu-
trals during charge exchange; and

describes the energy loss associated with ion diffusion.

RESULTS OF DICS CALCULATIONS

The optimum frequency for plasma heating in the
confinement system under study lies in the range f =
30–60 GHz. The radiation at these frequencies will be
absorbed near the separatrix, where the magnetic field
strength is between 1.07 and 2.14 T. Presently, appro-
priate high-power gyrotrons are produced at the Insti-
tute of Applied Physics (see Tables 1 and 2).

Since the plasma lifetime in the confinement system
coincides with the duration of the magnetic field pulse
by an order of magnitude, the time of resonance plasma
heating is limited by the duration of the magnetic field
pulse (Fig. 4). This is a decisive factor determining the
possibility of achieving the DICS with a high average
charge.

As an example, the production of multicharged ions
in the Tornado-322 device was calculated for the case
of ECR plasma heating by a gyrotron operating at a fre-
quency of F = 53 GHz and a power of P = 25 kW. The
maximum microwave pulse duration of such a gyrotron
attains 200 ms (see Tables 1 and 2), which makes it pos-
sible to heat the plasma throughout the entire magnetic

Ploss
NiTi

τ
----------–=

Table 1.  Best Russian gyrotrons operating in the continuous
mode [13] (updated list)

Frequency, 
GHz

Output 
power, kW

Magnetic 
field, T Magnet type

30 25 0.55 Nsa

37.5 20 1.45 SCMb

83 20 3.2 SCM

Note: a and b refer to a “warm” solenoid and a superconducting
magnet, respectively.

Table 2.  Russian gyrotrons [13] (updated list)

Frequency, GHz Output power, kW Pulse duration, s

28 500 0.1

53 500 0.2

83 500 2

100 2100 3 × 10–5

110 1300 10–4

110 6000 2

140 550 3

140 500 2

168 500 0.7
field pulse. The critical plasma density for the given
gyrotron frequency is fairly high: Ncr = 3.47 × 1013 cm–3.
Therefore, it is possible to maintain a sufficiently high
plasma density in the device under the condition of
weak microwave reflection Ne < Ncr; to achieve the high
values of the confinement parameter Neτ; and, conse-
quently, to obtain the DICS with a high average charge.
In calculations, we used the model radiation absorption
diagram presented in Fig. 4.

Figure 4 shows the time dependence of the magnetic
field strength in the magnetic barrier of the Torna-
do-322 (for the limiting parameters of the available
magnetic-field capacitor banks C = 33 mF, U = 5 kV,
and W = 413 kJ). The figure also shows the time depen-
dence of the density of Ar16+ ions calculated from
Eqs. (4)–(8) for the initial neutral gas pressure in the
device P0 = 6 × 10–5 torr. Figure 5 demonstrates a DICS
with the highest average ion charge for the same initial
conditions. This DICS is formed at the time when the
density of Ar16+ ions is maximum (Fig. 4), i.e., after the
microwave pulse has finished. Owing to a high
absorbed power, the electrons that acquired an energy
of Te ~ 1–3 keV continue to efficiently strip multi-
charged ions during a certain period of time after
switching off the microwave power because the plasma
lifetime in the confinement system is fairly long. In the
regime presented in Figs. 4 and 5, the maximum elec-
tron density in the discharge during ECR plasma heat-
ing is {Ne(t)}max = 2.1 × 1013 cm–3 < Ncr; i.e., the condi-
tion of weak microwave reflection is satisfied.

EXTRACTION OF THE ION BEAM

To extract the ion beam from the Tornado device, we
propose to use an auxiliary coil disconnecting the mag-
netic field lines as is shown in Fig. 6.

For the DICS shown in Fig. 5, the maximum current
associated with the cross-field diffusion of Ar16+ ions is
equal to 1.5 mA/cm2. Rough estimates show that, when
the auxiliary coil is used, the density of the extracted
ion current can substantially exceed this level. Let us
estimate by the order of magnitude of the saturation ion
current that can be extracted from the confinement
system

(9)

Here, 〈Z〉  is the average ion charge, Vs is the ion acous-
tic velocity, and the quantity Smax characterizes the
maximum cross section of the magnetic flux tube
formed by the field lines that can be “uncoupled” by the
auxiliary coil. We estimate Smax by the following for-
mula:

Is e Z〈 〉 NiVsSmax eNe

Z〈 〉 Te

Mi

---------------Smax.≈ ≈

Smax S0

Bin

Bb
-------

Φ∞

Φ0
-------,∼
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where S0 is the area bounded by the inner helical coil in
the equatorial plane of the confinement system; Φ0 is
the characteristic magnetic flux through this area; Φ∞ is
the “uncoupled” magnetic flux; and Bin and Bb are the
magnetic field strengths in the inner part of the device
and in the barrier, respectively (their ratio is Bin/Bb ~
0.25). For estimates, we take Φ0/Φ∞ ~ 10–4. This is jus-
tified if the auxiliary extracting coil has no effect on the
structure of the magnetic field as a whole. Under this
assumption, for the plasma density Ne = 2 × 1013 cm–3

and the electron temperature Te = 1 keV, the maximum
extracted ion current (9) is approximately equal to 1 A.

POSSIBLE APPLICATIONS OF AN ECR MCI 
SOURCE BASED ON THE TORNADO 

CONFINEMENT SYSTEM

The parameters of the DICS (the average charge and
ion current) that can be achieved, according to calcula-
tions, with an ECR MCI source based on the Tornado-
322 device are presently the record parameters among
all types of MCI sources. The possibility of achieving
the record average charges and ion currents and a wide
range of the DICS parameters that can be obtained with
an ECR MCI source based on the Tornado-322 device
make this ion source very attractive for various applica-
tions, e.g., for accelerators of heavy ions.

One possible application of the proposed source is
to use it as an ion source for the medical accelerator of
heavy ions in Chibo (Japan) [14]. This medical acceler-
ator requires a pulsed source of argon ions with a rela-
tively high average charge of +8 to +9, an ion current of
10–100 mA, a repetition rate of 2 Hz, and a power con-
sumption that is not too high (PB < 100 kW). To comply
with these technical requirements, the ECR MCI source
based on the Tornado-322 device should be optimized
as follows. To reach an average ion charge of +8 to +9,
it is necessary that the confinement parameter be Neτ ~
6 × 109 cm–3 s (at an electron temperature of Te ~
300 eV). Here, τ is, in fact, the duration of the magnetic
field pulse for an optimized device, because the plasma
lifetime in this device is substantially longer. The value
of τ can be reduced several times as compared to the
magnetic field pulse shown in Fig. 4 by reducing the
capacitance of the magnetic-field capacitor bank (τ ∝

). In this case, τ will be as low as several millisec-
onds and the required plasma density will be on the
order of 1012 cm–3. At the reduced capacitance of the
capacitor bank, along with the τ value, the magnetic
field in the confinement system will be reduced by the

same factor (B ∝  ). This will allow one to use a
lower frequency microwave source (e.g., a klystron) for
ECR plasma heating instead of an expensive gyrotron.
The microwave frequency f should satisfy the condition
Ncr(f) ≥ 1012 cm–3.

C

C
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Calculations show that the required DICS can be
achieved at a klystron frequency of 15 GHz (the reso-
nance magnetic field is Br = 0.54 T) and a power of
2 kW. The supply voltage of the magnetic-field capaci-
tor bank should be U = 5 kV. The capacitance of the
capacitor bank should be decreased 16 times as com-
pared to the existing capacitance C ≈ 2 mF. In this case,
the duration of the magnetic field pulse will be approx-
imately 4 ms and the barrier magnetic field will be
0.7 T. At a repetition rate of 2 Hz, the power consump-
tion of the capacitor bank will be 50 kW. Figure 7
shows the DICS calculated for the given parameters of
the ECR source. The maximum plasma density during
ECR heating is {Ne(t)}max ≤ 2.2 × 1013 cm–3, which is
below the critical plasma density for a frequency of
15 GHz (Ncr = 2.79 × 1012 cm–3). The maximum current
associated with the diffusion loss of Ar8+ and Ar9+ ions
is ~0.5 mA/cm2. With an auxiliary coil, the maximum
ion current that, according to formula (9), can be
extracted from the confinement system is on the order
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t, ms
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Fig. 4. (1) Magnetic field pulse in the Tornado-322 device,
(2) the calculated time dependence of the density of Ar16+

ions, and (3) the model radiation absorption diagram used
in numerical modeling at a frequency of 53 GHz, power of
25 kW, and duration of 6 ms (t is time; the residual gas pres-
sure in the camber is P0 = 6 × 10–5 torr).
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Fig. 5. DICS calculated for F = 53 GHz, P = 25 kW, and the
same initial conditions as in Fig. 4 (Ni is the density of argon
ions and Z is the ion charge number).
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of 100 mA. Hence, the DICS that can be obtained in the
given modification of the ECR ion source based on the
Tornado-322 device is suitable for use in the Chibo
medical heavy-ion accelerator.

5

3

4

1

2

Fig. 6. Disconnecting of magnetic field lines in the confine-
ment system with the help of an auxiliary extracting coil:
(1) outer helical coil, (2) inner helical coil, (3) separatrix,
(4) auxiliary coil, and (5) equatorial plane.

0
2

Ni, 1010 cm–3

Z4 6 8 10 12 14 16

1

2

3

4

5

6

7

Fig. 7. Calculated DICS in a source optimized for the med-
ical heavy-ion accelerator in Chibo (Japan); F = 15 GHz,
P = 2 kW, and the initial gas pressure in the device is P0 =
1 × 10–5 torr (Ni is the density of argon ions and Z is the ion
charge number).
Presently, we consider a hypothetical possibility of
using the ECR ion source based on the Tornado-322
device in the heavy-ion accelerator at CERN. This
accelerator requires a pulsed source of multicharged
lead ions (from Pb25+ to Pb27+). The ion current should
be ~10 mA at a pulse duration of 100 µs and a repetition
rate of 1 Hz. The power consumption can be several
hundreds of kilowatts. Unfortunately, exact calcula-
tions of the DICS in a lead plasma are still impossible
because of the lack of data on the ionization and recom-
bination cross sections for lead ions. However, the
record parameters of the calculated DICS for the test
gas (argon) allow us to expect that the proposed ion
source can also be successfully optimized for use in the
heavy-ion accelerator at CERN.

CONCLUSION

In this paper, we have proposed to use the Tornado
closed magnetic confinement system with microwave
plasma heating for creating a source of multicharged
ions [15]. Plasma losses in closed confinement systems
are determined by cross-field diffusion, which substan-
tially increases the plasma lifetime as compared to
straight mirror confinement systems. Among the advan-
tages of the Tornado confinement system, we mention
the possibility of producing high magnetic fields up to
2 T (which makes it possible to heat and confine a
plasma with a high electron density), the possibility of
using an auxiliary coil for extracting ions, and a rela-
tively low cost of the confinement system.

It is proposed to use the plasma heating scenario
with the successive switching-on of two oscillators: an
oscillator operating at a frequency of 2.45 GHz pro-
duces the initial plasma, which is the heated at a higher
frequency of 15 or 53 GHz. The DICS for the Torna-
do-322 pulsed device was calculated for an argon
plasma by numerically solving a set of zero-dimen-
sional time-dependent differential ionization balance
equations for ions in all charge states with allowance
for cross-field plasma diffusion, ionization, photore-
combination, dielectronic recombination, and charge
exchange with neutral atoms. It is shown that it is pos-
sible to achieve the DICS with a maximum at Ar16+ at a
plasma density of 2 × 1013 cm–3. The extracted ion cur-
rent in this case can attain 1 A.

Thus, the ECR MCI source based on the Tornado
confinement system is a very promising and easily
available source, which can be created in the nearest
future.
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Abstract—Mechanisms behind the narrow bell-shaped temperature dependences of the fluxes of ions and mol-
ecules being desorbed from the surface at low emitter temperatures have not been discovered so far. A model
is suggested that allows the consideration of the narrow low-temperature peaks of various nature (associated
ion peaks, dimer peaks, and those appearing under nonequilibrium surface ionization) from the unified view-
point. It is believed that multimolecular complexes form on the surface and then disintegrate into fragments by
the mechanism of monomolecular reactions with subsequent ionization of the fragments on the emitter surface.
© 2001 MAIK “Nauka/Interperiodica”.
Upon studying surface ionization, the temperature
dependences of the desorbed ion current are usually
used to determine the ionization potentials V of atoms
[1] and polyatomic particles [2]. In the latter case,
either the initial portions of the curves or the peak cur-
rent values are taken into consideration.

In [3, 4], the phenomenological description of reac-
tion product ionization taking place on the surface dur-
ing the monomolecular disintegration of polyatomic
particles has been reported. This approach has made it
possible to account for the bell-shaped temperature
dependences of the polyatomic ion current j(T) at high
temperatures (1300–2000 K) and determine the ioniza-
tion potentials, energy of activation of surface disinte-
gration, the number of effective degrees of freedom,
ion–surface interaction potentials [5], etc. However,
along with the relatively broad high-temperature j(T)
peaks (with a half-width ∆j = 600–800 K), there exist
extremely narrow j(T) peaks (∆j = 100–200 K) at low
temperatures. The latter are observed, for example, in
the case of associated ions [6] and ionized dimers [7].
Similar narrow temperature curves of the ion current
have been obtained by the author in studying the non-
equilibrium surface ionization of the products of ace-
tone peroxide exothermic disintegration. Analysis of
these peaks according to [3, 4] has failed, since the cal-
culated number of degrees of freedom exceeded the
actually available by one order of magnitude. In this
work, an attempt to analyze the narrow temperature
dependences of the polyatomic ion current in terms of
the concept of multimolecular complexes and mono-
molecular disintegration is undertaken.

In [3, 4], the theory of monomolecular reaction in
the gaseous phase was applied to the heterogeneous
disintegration of polyatomic molecules with their sub-
sequent ionization by the surface ionization mecha-
nism. The justification of this theory was based on the
1063-7842/01/4610- $21.00 © 21322
principle of detailed balancing. In the gaseous phase,
molecules are activated by collisions, whereas at the
surface, molecules being adsorbed become excited
when striking surface atoms. The lifetime of active
molecules on the surface is negligible compared with
the time of their de-activation, since the activation of an
adsorbed molecule takes place only when the oscilla-
tion amplitudes of surface atoms are large, which is sta-
tistically of a low probability. Medium-amplitude
atomic oscillations on the surface cause neither activa-
tion nor de-activation of the adsorbed molecules. For
the rapid disintegration of the molecules, the experi-
mental bell-shaped temperature dependences are
described in terms of the statistical theory of monomo-
lecular reactions, which gives the following expression
for the rate constant [8]:

(1)

Here, F = const, E is the activation energy of the reac-
tion (surface reaction in our case), and s is the total
number of vibrational degrees of freedom of a molecule
(for polyatomic molecules, s = 3n – 6). The parameter
s is used when kT @ hν, where ν is the oscillation fre-
quency of the molecule. In the opposite case, i.e., kT !
hν (all our experiments fall into this range), the effec-
tive number of degrees of freedom b [8] is taken instead
of s. Usually, b = (1/4 – 1/3)s [3, 4]. Then,

(2)

The rate constant km is proportional to the number of
activated adsorbed molecules that disintegrate into
fragments ionizing on the surface. An expression for
the current j(T) of ions being desorbed from the surface

km F
E

kT
------

s 1– E
kT
------– 

 exp .=

km D
E

kT
------

b E
kT
------– 

  .exp=
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can be obtained by multiplying km by the degree of sur-
face ionization α (α ! 1) [4].

This expression will be given later. Note only that
the preexponential in the expression for j(T) is the same
as in (2). As follows from (2), it is the preexponential
that governs the descending branch (trailing edge) of
the bell-shaped curves km(T) and j(T) is the same as in
(2). As follows from (2), it is the pr; hence, it defines the
half-width. As was already mentioned, the preexponen-
tial in (2) cannot describe the narrow temperature
dependences. The parameter b is proportional to the
number of degrees of freedom for a disintegrating mol-
ecule or its fragment; hence, it is invariable for a given
object. Consequently, the base of the power function in
the preexponential must have a temperature depen-
dence stronger than 1/kT to describe the narrow peaks
in the temperature curves. Trimolecular reactions offer
such an example. It is known [9] that they feature a neg-
ative temperature coefficient. The disintegration of a
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
trimolecular complex is qualitatively explained within
the theory of activated complex.

Let us assume that surface molecules form molecu-
lar complexes of two, three, four, etc. molecules at rel-
atively low temperatures. This is a typical behavior of
both atomic and molecular gases on the surface
[10, 11]. The formation of multimolecular complexes
on the surface may go in parallel with the dissociation,
substitution, and association of the constituent mole-
cules; in other words, the forming complex may be acti-
vated. Let us find the temperature dependence of the
preexponential of the rate constant for some reaction
(dissociation or disintegration) of this complex. Fol-
lowing the same line of reasoning as in [9], where the
expression for the rate constant of a trimolecular reac-
tion (hence, for the disintegration of a trimolecular
complex) was derived, we write the general expression
for the disintegration of a multimolecular complex
AN  A1 + … + AN, relying on the concepts of the the-
ory of activated complex:
(3)

kN
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 exp–
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∏
N

--------------------------------------------------------------------------------------------------------------------------------------------------------------------e
E

kT
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,

where µ# is the reduced mass; mA is the mass of mole-
cule A; N is the number of molecules in complex AN;

n is the number of atoms in molecule A; , , , Ix,
Iy, and Iz are the principal moments of inertia of the acti-
vated complex (#) and its constituent molecules,
respectively; Q# and QA are the statistical sums; σ# and
σA are the symmetry factors; ν# and νi are the oscilla-
tion frequencies; and g# and gA are the electron multi-
plicities.

The upper limit of the product in the numerator
takes into account that one oscillation of the complex
AN passes to the reaction coordinate. Equation (3) is
written for the transition gas-phase complex without
considering the specific features of a multimolecular
complex on the surface. In particular, it ignores the fact
that the surface gas may be two-dimensional, some ori-
entation of the molecules may limit their rotation on the
surface, etc. However, such detailing is yet premature.

Let us separate out factors in Eq. (3) that depend and
do not depend on temperature (the product of the latter

Ix
# Iy

# Iz
#

is designated by G). Then, Eq. (3) can be written as

The temperature dependence of kN is specified by
the second factor. Bearing in mind that we are dealing
with the low-temperature range, we omit the ratio of the
vibrational components, since

if hν# @ kT and hνi @ kT,
and obtain the simple qualitative result:

(4)

Now consider the monomolecular disintegration of
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a multimolecular complex. For the monomolecular dis-
integration of molecules or fragments of a multimolec-
ular complex, the temperature dependence of the
monomolecular reaction rate constant km [see (2)]
becomes stronger because of the temperature depen-
dence of kN (4). Physically, the multimolecular complex
has a significant binding energy (because of its many
bonds), which can be statistically redistributed in favor
of some fragment, causing, first, the disintegration of
the multimolecular complex (kN) and, second, the
monomolecular disintegration of this fragment (km).
Thus, since the processes in the multimolecular com-
plex are primary, the preexponential of its rate constant
(which has its own temperature dependence) will enter
the power function of the preexponential of the mono-
molecular reaction rate constant km as the base. Then,
for the rate constant of the monomolecular disintegra-
tion of the multimolecular complex, we obtain

(5)

Now, taking into account subsequent ionization
(that is, multiplying (5) and (2) by the degree of surface
ionization α), we come to the dependences of the ion
current on temperature and electric field:

(6)

for the ions desorbed from the multimolecular complex
and

(7)

for one-molecule disintegration. Here, g is the particle
flux onto the surface, A and B are constants, E is the
energy of surface disintegration activation, e is the
charge of an electron, eϕ is the work function on the
surface, F is the field strength, and kT is the surface
temperature.

As follows from (6), for a multimolecular complex
consisting, for example, of five molecules, the exponent
of the preexponential increases by one order of magni-
tude compared with that in (7); hence, the trailing edge
of the bell-shaped temperature curve is extremely steep
and the half-width of the curve jN(T, F) is very small.

Formulas (6) and (7) describe the bell-shaped tem-
perature curves for the ion current. By equating the
first- and second-order derivatives of j(T) and jN(T)
with respect to 1/kT to zero, we determine the values of
the temperature Tm that corresponds to the peaks in the
curves, and the values of T1 and T2 at which the curves

km N, C
1

kT
------ 

 
3N 4– b

e
E

kT
------–

.≈

jN T F,( ) egA
1

kT
------ 

 
3N 4–( )b

≈

× e ϕ eF V–+( ) E–
kT

------------------------------------------------exp

j T F,( ) egB
E

kT
------ 

 
b e ϕ eF V–+( ) E–

kT
------------------------------------------------exp=
j(T) and jN(T) have inflections. Eventually, we have
from (7) [3]

(8)

(9)

The dependence b(F) found experimentally and
Eq. (7) allow the value of E to be found from current
values for two fields [3].

Designating (3N – 4)b = b* in (6), we arrive at

(10)

The value of b is determined using (10) and the pre-
exponential exponent in (6):

(11)

The ionization potential is given by Eq. (8) as
before, because this equation involves the value of Tm at
the maximal current ion, not the width of the curve
jN(T). With b determined from (11), the ionization
potential cannot be uniquely found from (8), since N is
not defined independently. Yet, we can find the order of
N and V, because the spread of the ionization potentials
for polyatomic molecules of certain types is 1 to 2 eV.

At N = 1 and in view of (10) and (11), Eq. (6) passes
to initial equation (7) up to the constant factor (Eb).
Indeed, the exponent of the preexponential in (6)
becomes negative at N = 1. However, the value of b
determined from (11) at N = 1 is b = –b*, since b* is
positive, as follows from (10). For Eqs. (6) and (11) to
be used independently for all N, we separate out the
numerical factor E(3N – 4) from the constant C in (6),
insert it in the base of the preexponential in (6), and
write the absolute value of the exponent. In so doing,
Eq. (6) at N = 1 will be identical to Eq. (7). Eventually,
for Eqs. (6) and (10), we will have, respectively,

(12)

(13)

Taking account of the above-mentioned specifics of
the transition complex on the surface will change the
coefficient before N in Eqs. (12) and (13), leaving the
structure of the equations unchanged.

To conclude, our model makes it possible to con-
sider the narrow low-temperature peaks of ions of vari-
ous nature (associated ion peaks, dimer peaks, and
those appearing under nonequilibrium surface ioniza-
tion) from the unified viewpoint. It is believed that mul-
timolecular complexes form on the surface and then
disintegrate into fragments by the mechanism of mono-

bkTm e V ϕ– eF E+–( ),=

b Tm/T1 1–( ) 2– .=

b* Tm/T1 1–( ) 2– .=

b
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3N 4–
----------------.=

jN T F,( ) ev D
E
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 
3N 4– b

≅

× e ϕ eF V–+( ) E–
kT

------------------------------------------------,exp

b
b*

3N 4–
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molecular reactions with subsequent ionization of the
fragments on the emitter surface.
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Abstract—The problem of the transformation of a plane monochromatic wave by a finite-duration sequence
of periodic rectangular pulses of the dielectric permittivity and magnetic permeability is solved exactly with
integral equations. The expressions for the transformed component of the electric field at any point in space at
an arbitrary time are derived and analyzed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the theory of wave processes, an important place
is occupied by the study of the parametric modulation
of media. Thus, of particular interest is the investigation
of the transformation of electromagnetic waves in a
medium whose parameters are periodically modulated
in time. This problem has been extensively discussed in
the specialized literature (see, e.g., [1–3]). In a certain
spectral region, the changes in the electric and magnetic
properties of a medium, caused by the changes in its
dielectric permittivity and magnetic permeability, can
be regarded as being jumplike [4]. This fact motivates
theoretical interest in the problem of the transformation
of electromagnetic waves in a medium modulated in
time by a periodic sequence of rectangular pulses of the
dielectric permittivity and magnetic permeability.

It should be noted that, according to the analysis of
[1–3] and some other papers, analytic studies of the
transformation of waves by periodically time modu-
lated media are usually carried out only approximately
under a number of simplifying assumptions. Harfoush
and Taflove [5] carried out an approximate analytic
investigation of the transformation of a plane wave by a
medium that occupies a half-space and whose conduc-
tivity is harmonically modulated in time. However,
their analysis was based on the methods of perturbation
theory and was thereby restricted to small modulation
depths. In addition, they considered the idealized case
in which the parameters of the medium were modulated
over an infinite time interval. In this context, it is of
interest to investigate the transformation of electromag-
netic waves by media whose physical parameters
change periodically over a finite time interval.

In this study, we obtain an exact solution to the prob-
lem of the transformation of a monochromatic electro-
magnetic wave in an unbounded medium modulated in
time by a finite-duration sequence of periodic rectangu-
lar pulses of the dielectric permittivity and magnetic
permeability. We assume that the repetition rate of the
pulses as well as their amplitude and duration are all
1063-7842/01/4610- $21.00 © 21326
arbitrary and that the pulses of the dielectric permittiv-
ity and magnetic permeability have the same duration.

We derive and analyze exact expressions for the
transformed component of the electric field at any point
in space at an arbitrary time.

AN ELECTRIC FIELD IN A PERIODIC 
STEPWISE-MODULATED MEDIUM

We assume that, at the instant t0 = 0, the parameters
of an unbounded medium start to vary in time accord-
ing to an arbitrary law. In [6], it was shown that the evo-
lution of the electromagnetic field in such a medium is
described by the integral Volterra equation of the sec-
ond kind:

(1)

where E(x, t) is the electric component of the electro-
magnetic field, K(t, t', x, x') is the kernel of the integral
equation, and F(t, x) is the free term. The integral equa-
tion (1) can be solved by the resolvent method [7] as
follows:

(2)

where R(t, t', x, x') is the resolvent of Eq. (1).

If, at the instant t0 = 0, the dielectric permittivity and
magnetic permeability change in a jumplike manner,
then the kernel and resolvent of Eq. (1) can be
expressed in difference form:
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(3)

where m = , a = , v 1 = c/ , ε0 and
µ0 are the dielectric permittivity and magnetic perme-
ability of an unperturbed medium (for t < 0), ε1 and µ1
are the dielectric permittivity and magnetic permeabil-
ity of a perturbed medium (for t > 0), c is the speed of
light in free space, and δ(t) is the Dirac delta function.

Let the dielectric permittivity and magnetic perme-
ability of a medium change according to the law

(4)

where τ1 is the duration of each pulse, τ2 is the repeti-
tion rate of the pulses, and T = τ1 + τ2 is the modulation
period of the parameters of the medium.

We can show that, for any time interval during
which the parameters of the medium remain constant,
the electric field is described by the formulas

(5)

where E0(t, x) is the initial electric field and Rn(t, t', x,
x') and Kn(t, t', x, x') are the resolvent and kernel of the
integral equation (1). The structure of the resolvent and
kernel remains the same regardless of the number n of
the jump in the parameters of the medium.

Based on the last assertion and the structure of for-
mulas (3), we can readily deduce the kernel and resol-
vent for an arbitrary time interval during which the
parameters of the medium remain constant. Thus, for
the time intervals (n – 1)T < t < τ1 + nT (n = 1, …, N),
over which the dielectric permittivity and magnetic per-
meability take on new values, the kernel and resolvent
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are described by formulas (4), whereas, for the time
intervals

over which the parameters of the medium take on their
initial values (in what follows, we will call these time
intervals the “rest intervals”), the kernel and resolvent
are equal to zero:

(6)

TRANSFORMATION OF A PLANE WAVE 
BY THE PERIODIC STEPWISE MODULATION 

OF AN UNBOUNDED MEDIUM

Let E0(t, x) be the electric field of a plane monochro-
matic wave of unit amplitude, E0(t, x) = ei(ωt − kx), where
k = ω/v 0. We insert E0(t, x) into formulas (5) to deter-
mine the transformed electric field for the time interval
after the first jump in the parameters of the system:

(7)

Here,

(8)

where

Substituting expressions (4) and (6)–(8) into formu-
las (5) and using mathematical induction, we arrive at
the following recurrence relations for the evolution of
the electric field over each time interval after the second
jump in the parameters of the medium (n = 2, …, N):

(9)

Here,
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where

From formulas (7)–(10), we can see that, because of
the modulation of the parameters of an unbounded
medium, the originally monochromatic wave splits into
a forward monochromatic wave and a backward mono-
chromatic wave. The wavenumbers of the new waves
coincide in absolute value with the wavenumber of the
original wave, and their amplitudes and frequencies are
piecewise constant functions of time.

Now, we consider the electric field at the end the
sequence of N modulating pulses as a function of the
number n of pulses. To do this, we must analyze the
expressions for the coefficients An and Bn. We rewrite
these expressions as a system of two recurrence rela-
tions:

(11)

Here, we introduced the parameters

which are independent of the number of the period.
We also introduce a new notation for the amplitudes,

an = An  and bn = Bn , and represent expressi-
ons (7)–(10) in matrix form:

(12)
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where

Using mathematical induction puts the matrix recur-
rence relation (12) in the form

(13)

We raise the matrix to a power n to obtain [8]

where Un(x) is the nth order Chebyshev polynomial of
the second kind and I denotes the unit matrix.

The components of the matrix relation (13) give the
following expressions for the amplitudes of the forward
and backward waves over the time interval after the
(n + 1)th jump in the parameters of the medium:

(14)

The amplitudes of the forward and backward waves
were estimated numerically for the values of a and m
such that ε ≈ 1 and m ≈ 1. Our computations showed
that the periodic stepwise modulation of the dielectric
permittivity and magnetic permeability of the medium
may lead to a situation in which the amplitudes of the
forward and backward waves exceed in absolute value
the amplitude of the original wave at the expense of the
time variation of the dielectric permittivity (Figs. 1, 2)
and/or magnetic (Figs. 3, 4) permeability.

By examining the ratios an + 1/an and bn + 1/bn as func-
tions of the number n of pulses, we can reveal an impor-
tant feature of the behavior of the amplitudes of the for-
ward and backward waves from pulse to pulse. We
carry out the corresponding manipulations with the
matrix relation (13) to see that the ratios have the form

(15)

where Fn = an/bn.

We assume that the amplitude of the backward wave
is nonzero (in other words, we exclude from consider-
ation the trapping of the backward wave). In this case,
we can divide the first of equalities (1) by the second
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one to arrive at the following recurrence relation for Fn:

(16)

Let us analyze relation (16). For the first period, the
ratio has the form

Fn 1+

h*– f Fn+
f * hFn–

--------------------------.=

F1
a1
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f
h
---–= =

=  
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Fig. 1. Absolute value of the amplitude An of the forward
wave as a function of the relative change a in the dielectric
permittivity for m = 1.1, t1 = 1, and t2 = 5 and for different
numbers of pulses perturbing the parameters of the
medium: n = (1) 3, (2) 4, and (3) 5.

0.25 0.50 0.75 1.00 1.50 m

1

2

3

4

5

123

1.25

Fig. 3. Absolute value of the amplitude An of the forward
wave as a function of the relative change m in the magnetic
permeability for a = 0.85, t1 = 1, and t2 = 5 and for different
numbers of pulses perturbing the parameters of the
medium: n = (1) 3, (2) 4, and (3) 5.
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The square of the absolute value of this ratio is
equal to

(17)

Since 4a2m2 (amτ1) > –4a2m2, we have |Fn| > 1.
According to the theory of conformal transformations
[9], the linear-fractional function (16) maps the exterior
of a unit circle onto itself. Consequently, if |F1| > 1, then
a fortiori |Fn| > 1. This indicates that the amplitude of

F1
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-----------------------------------------------------------------------------.=
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3

Fig. 2. Absolute value of the amplitude Bn of the backward
wave as a function of the relative change a in the dielectric
permittivity for m = 1.1, t1 = 1, and t2 = 5. Curves 1, 2, and
3 refer to the same numbers of perturbing pulses as in Fig. 1.
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Fig. 4. Absolute value of the amplitude Bn of the backward
wave as a function of the relative change m in the magnetic
permeability for a = 0.85, t1 = 1, and t2 = 5. Curves 1, 2, and
3 refer to the same numbers of perturbing pulses as in Fig. 3.
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the forward wave is always larger in absolute value than
the amplitude of the backward wave.

CONCLUSION

We have considered the transformation of a plane
monochromatic electromagnetic wave by a finite-dura-
tion periodic stepwise modulation of the dielectric per-
mittivity and magnetic permeability of an unbounded
medium. We have shown that, at any point on the posi-
tive time axis, the transformed electric field is the sum
of the electric fields of the forward and backward
monochromatic waves, whose wave numbers coincide
in absolute value with the wave number of the original
wave and whose amplitudes and frequencies are piece-
wise constant functions of time. For the rest intervals,
there is a certain range of parameter values of the
medium and a certain range of frequencies of the orig-
inal wave in which the amplitude of the forward wave
is larger in absolute value than the amplitude of the
backward wave. Our numerical calculations show that,
over the rest intervals, the amplitudes of the forward
and backward waves can exceed in absolute value the
amplitude of the original wave.
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Abstract—A study is made of the evolution of a spatially localized perturbation in the form of a Gaussian
packet during two-stream instability in a plasma. It is shown that, on the whole, the moving perturbation is
decelerated and its shape is distorted; moreover, the higher the group velocity of the packet, the higher the decel-
eration rate. © 2001 MAIK “Nauka/Interperiodica”.
The multistream (in particular, two-stream) instabil-
ities of parallel electron beams in a vacuum and in
plasma are a striking example illustrating the instability
of nonequilibrium electron distribution. In the simplest
cases, the dispersion relation describing the linear stage
of the multistream instability can be solved and ana-
lyzed exactly. This analysis is given in many textbooks
and monographs on plasma physics (see, e.g., [1, 2] for
two-stream instability and [3] for multistream instabil-
ity). A fairly comprehensive review of the literature on
two-stream instability can be found in [4].

However, multistream (in particular, two-stream)
instabilities are of interest not only from a methodolog-
ical point of view. Thus, Fedorchenko et al. [5] experi-
mentally investigated the excitation of high-frequency
oscillations during multistream instability of a system
of parallel electron beams. Additionally, in microwave
devices such as vircators, reflex klystrons, and
Barkhausen–Kurtz oscillators with a decelerating field,
two-stream instability can develop in colliding beams
(for vircators, the possible onset of two-stream instabil-
ity was pointed out in [6]).

The linear stage of the two-stream instability is usu-
ally analyzed by linearizing the basic equations under
the assumption that the initial perturbations of the sys-
tem depend on the coordinate and time as ∝ exp[i(kz –
ωt)]. In other words, the initial perturbation is assumed
to be distributed uniformly over the interval from –∞ to
+∞, which corresponds to a system of infinitely long
beams and, generally speaking, to the infinitely high
energy of the perturbation.

In this context, it is of interest to study how two-
stream instability develops when the initial perturba-
tion is localized in space. As a matter of fact, the idea of
investigating the characteristic features of the develop-
ment of various instabilities in the case of spatially
1063-7842/01/4610- $21.00 © 21331
localized perturbations is not new (see, e.g., [7, 8]).
However, from a methodological standpoint, it is some-
what difficult to analyze such perturbations by expand-
ing them in harmonic waves [7], because the energy of
a localized perturbation is finite (this is evidenced by
the convergence of the corresponding integral), while
each harmonic component of the perturbation has infi-
nite energy. That is why, in my opinion, the simplest
and most illustrative way of studying the instability of
spatially localized perturbations is that which does not
involve the Fourier analysis of the perturbations. As
will be shown below, this approach provides a fairly
simple analytical examination of two-stream instabil-
ity. 

We start with the traditional equations [3]

(1)

(2)

(3)

where nα and vα are the density and velocity of the αth
electron beam, e and m are the charge and mass of an
electron, and E is the electric field.

Equation (1) is the continuity equation for an elec-
tron beam, Eq. (2) is the equation of motion, and Eq. (3)
is Gauss’s law. For simplicity, we assume that parallel
electron beams propagate against the background of
immobile ions with density Ni, which serve merely to
provide the charge and current neutralization of the
unperturbed electron beams.

∂nα

∂t
-------- ∇ nαvα⋅+ 0,=

∂vα

∂t
-------- (vα ∇ )vα⋅  = 

e
m
----E,+

∇ E⋅ 4πe mnα Ni–
α
∑ 

 
 

,=
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We direct the z-axis along the propagation direction
of the beams and assume that the system is uniform in
transverse directions. In this case, Eqs. (1)–(3) consti-
tute a set of one-dimensional equations for the densities
and the projections of the velocity and electric field
onto the z-axis. We represent the unknowns in the equa-
tions as

(4)

(5)

(6)

We can see that the perturbation is spatially local-
ized and is described by a harmonically modulated
Gaussian function with the parameters χ (which has
units of inverse length and determines the spatial width
of the perturbation) and Vg (which is the group velocity
of the perturbation). In the theory of wavelets, the func-
tion describing the perturbation coincides (to within a
normalizing factor, which is unimportant for our pur-
poses here) with the Gabor function [8]; in [7], this
function is referred to as a Gaussian packet. The plot of
this function is shown in Fig. 1.

In what follows, we assume that the perturbation
amplitudes in representations (4)–(6) are small and
omit the tilde from the perturbed quantities. We substi-
tute representations (4)–(6) into the basic equations
and, to the first order in the small perturbation ampli-
tudes, obtain

(7)

(8)

(9)

nα Nα ñα i kz ωt–( )[ ] χ 2 z Vgt–( )2–[ ] ,expexp+=

v α Vα ṽ α i kz ωt–( )[ ] χ 2 z Vgt–( )2–[ ] ,expexp+=

E Ẽ i kz ωt–( )[ ]exp χ2 z Vgt–( )2–[ ] .exp=

nα 2χ2 z Vgt–( )Vg iω–[ ] Nαv α nαVα+( )+

× 2χ2 z Vgt–( )– ik+[ ] 0,=

v α 2χ2 z Vgt–( )Vg iω–[ ]

× v αVα 2χ2 z Vgt–( )– ik+[ ] e
m
----E,=

E 2χ2 z Vgt–( )– ik+[ ] 4πenα .
α
∑=

Fig. 1. Instantaneous shape of a perturbation in the form of
a Gaussian packet.
Solving Eqs. (7) and (8) with respect to vα and nα
yields

(10)

(11)

We insert these expressions for vα and nα into
Eq. (9) to arrive at the desired dispersion relation

(12)

where ωpα = (4πe2Nα/m)1/2 is the Langmuir frequency
of the αth beam.

Now, we proceed to an analysis of the dispersion
relation (12). First, note that, when deriving this disper-
sion relation, we failed to completely eliminate the
dependence on the coordinate and time. However, this
circumstance is usually associated with the expansion
of functions in a series of the basic localized func-
tions—wavelets [8, 9]—and makes it possible to ana-
lyze the processes in the {z, t} and {k, ω} spaces simul-
taneously.

Note also that, for unlocalized perturbations
(χ  0), the dispersion relation (12) passes over to
the familiar dispersion relation for harmonic perturba-
tions.

In the case of two parallel beams with arbitrary
unperturbed densities and velocities, Eq. (12) contains
many parameters, so that its analysis, although straight-
forward, is very lengthy. Here, we examine only the
particular case of two counterpropagating identical
beams with the same values of ωpα = ωp and Vα = V. For
such beams, the two-stream instability of a traditional
harmonic perturbation is absolute in nature. We investi-
gate the onset of the instability at different characteris-
tics C = z – Vgt = const of the perturbation envelope. In
this case, the dispersion relation has the form

(13)

We can readily see that, at the top of the envelope
(C = 0), the instability develops in the same way as in
the case of a harmonic perturbation. However, at the
other parts of the envelope, the instability growth rates
can differ substantially from those in the case of a har-

v α
e
m
---- E

2χ2 z Vgt–( ) Vg Vα–( ) i kVα ω–( )+
---------------------------------------------------------------------------------------,=

nα
e
m
----

Nα E 2χ2 z Vgt–( )– ik+[ ]

2χ2 z Vgt–( ) Vg Vα–( ) i kVα ω–( )+[ ] 2
----------------------------------------------------------------------------------------------.–=

1
ωpα

2

2χ2 z Vgt–( ) Vg Vα–( ) i kVα ω–( )+[ ] 2
----------------------------------------------------------------------------------------------

α
∑ ,–=

1
ωp

2

2χ2 z Vgt–( ) Vg V–( ) i kV ω–( )+[ ] 2
----------------------------------------------------------------------------------------–=

–
ωp

2

2χ2 z Vgt–( ) Vg V+( ) i kV ω+( )–[ ] 2
-----------------------------------------------------------------------------------------.
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monic perturbation. Since Eq. (13) is a quartic equation
in the variable ω, we are dealing with the four roots

(14)

where

In expression (14) and below, the first root is identi-
fied by the plus signs in front of and under the square
root, the second, by the minus and plus signs, the third,
by the plus and minus signs, and the fourth, by the
minus signs. The imaginary parts of the roots,
Im(ω1, 2, 3, 4), calculated as functions of the position C
on the envelope of the perturbation under the natural
assumption k2 @ χ2 are illustrated graphically in Fig. 2.

Figure 2a refers to a nonpropagating (Vg = 0) pertur-
bation with a certain value of k. At the top of the enve-
lope, the second and third roots vanish, ω2, 3 = 0, while
the first and fourth roots ω1, 4 undergo a jump equal to
the doubled instability growth rate for a harmonic per-
turbation. The growth rates increase with distance from
the top, because the evolving perturbation acquires the
nature of a uniform harmonic perturbation, so that the
effective width of the envelope of the evolving pertur-
bation increases (this effect is known as the spreading
of a Gaussian packet).

For a perturbation with a low group velocity (0 <
Vg < V), the dependence of Im(ω1, 2, 3, 4) on C is some-
what different from that in the previous case. From
Fig. 2b, we can see that the leading edge of the pertur-
bation grows slower than the trailing edge. As a result,
first, the centroid of the perturbation is displaced
toward the trailing edge, indicating the deceleration of
the perturbation; and, second, the leading edge of the
perturbation becomes flatter than the trailing edge.

The leading edge of a perturbation with a suffi-
ciently high group velocity (Vg > V) can even decay,
while its trailing edge can grow at a very high rate
(Fig. 2c). If the two beams under consideration are in
an electrodynamic system of the carcinotron type, in
which case we have Vg < –|V | < 0 < V (Fig. 2d) and the
characteristics C are positive at the trailing edge of the
perturbation, then the perturbation is also decelerated
and its shape is deformed.

Although the above features of the evolution of a
spatially localized perturbation were revealed in the lin-
ear approximation, they cannot be established in terms
of a harmonic perturbation. These features can be
described by expanding a spatially localized perturba-

ω1 2 3 4, , , 2iCVg=

± k2V2 ωp
2 4χ2C2V2– 4iCχ2kV D±+ + ,

D = ωp
4 4ωp

2
k2V2 16C2χ4ωp

2
V2– 16iCχ2ωp

2 kV2+ + .
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tion in harmonic waves, but this way is far more lengthy
because it involves the calculation of integrals like the
Duhamel’s convolution.
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Abstract—Contact interaction in an atomic force microscope is considered in terms of the thermodynamic
approach. It is shown that hysteresis observed when a sample is probed in the vertical direction is due to the
surface energy–work thermodynamic cycle. The force of sample–tip interaction is calculated for the case when
the tip is a paraboloid of revolution. Fluctuations of the basic thermodynamic parameters are found. The role
of electrocapillary forces is considered. A new method of spectroscopy in the lateral force mode is suggested.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Interest in the physics and chemistry of microcon-
tacts has greatly quickened in the past few years. In par-
ticular, much attention is given to such surface phenom-
ena as adhesion, wetting, friction, and adsorption. New
domains of science, namely, electrochemistry, tribol-
ogy, optics, and lithography of microcontacts, have
appeared. To a great extent, this is due to the advent of
new-generation multimode scanning probe micro-
scopes (SPMs).

It is the aim of this work to thermodynamically
describe a number of typical processes occurring in the
SPM probe–sample system. Note at once that we use
methods of equilibrium thermodynamics, which, gen-
erally speaking, apply to infinitely slow (reversible)
processes. Actually, however, the irreversibility of the
processes taking place in this system may be so high
that such a description will cause considerable errors.
Yet, the thermodynamic approach appears to be suffi-
ciently informative, since it allows researchers, first, to
find general relations between various contact proper-
ties and, second, to study different equilibrium states of
the system. Specifically, with this approach, the run of
the process can be elucidated.

THERMODYNAMIC CYCLE 
IN THE PROBE–SAMPLE SYSTEM

Under atmospheric conditions, the sample under
study is always covered by a thin layer of adsorbed
moisture [1–3]. The tip of an atomic force microscope
(AFM) “adheres” to the sample due to capillary forces,
causing force hysteresis when the sample is probed in
the vertical direction (Fig. 1). The distance from the
surface at which the probe adheres to the surface is 10–
50 nm. In a vacuum, the hysteresis is usually weak or
even absent. If the interaction is hydrophilic, the capil-
1063-7842/01/4610- $21.00 © 1335
lary force holds the tip in continuous contact with the
surface and varies insignificantly during scanning,
because the tip–sample distance remains practically
constant. If the interaction is hydrophobic, the tip must
penetrate through the adsorbate to image the surface.
Generally, the specific energy of adhesion is estimated
from the well-known expression Ua = σ(1 – cosθ),
where σ is the surface tension of a liquid film and θ is
the wetting angle.

Let an adsorbed water film exist between the tip and
the surface (Fig. 2). The internal energy of the isolated
film is given by

(1)

where T is temperature, S is entropy, p is pressure, V is
volume, σ is the surface tension of the film, ω is surface
area, F is the elastic force due to liquid film deforma-
tion, and z is the deformation.

If the pressure and temperature are constant,

(2)

where G is the Gibbs thermodynamic potential.

dU TdS pdV– σdω Fdz,–+=

dG d U TS pV+–( ) σdω Fdz,–= =

AB

C

D

E
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P

Fig. 1. Interaction force vs. distance when the tip
(1) approaches and (2) moves away from the sample.
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Under thermodynamic equilibrium, dG = 0 and for-
mula (2) can be recast as

(3)

Expression (3) is the condition of a thermodynamic
cycle when the work of the AFM probe is converted to
the surface energy of the film and vice versa. In the state
diagram (Fig. 1), the cycle is shown by the closed
curve.

Consider this phenomenon in greater detail. At the
initial stage, the probe approaches the surface. Once it
touches the film (point B in Fig. 1), its tip becomes par-
tially wetted and the additional force component due to
hydrophilic attraction arises (Fig. 2b). This force can do
a small mechanic work, drawing the probe into the con-
tact region (portion BC). As the pressing force increases
further, the probe touches the surface (Fig. 2c; portion
CD in Fig. 1).1 Then, as the probe moves away from the
surface, the AFM scanning system does work to break
the contact (portion CE). As the probe–surface distance
grows, the probe completely detaches from the surface
(portion EA) and the system returns to its initial state.
The area enclosed by the curve ABCE in Fig. 1 is obvi-
ously the work of this cycle:

Let us assume that the interaction is hydrophobic
(θ = π/2, Ua = σ). Then, if the probe is displaced by dz,
the contact surface area is changed by dω. For a para-

1 For solid surfaces, the slope of this portion depends on the canti-
lever stiffness.

σdω Fdz.=

W F z F z.d

C A→
∫–d

A C→
∫=

(a) (b)

(c)

1

2

z

0

F

F

Fig. 2. Schematic representation of the contact in an AFM.
(a) Initial instant of the contact, (b) meniscus formation, and
(c) dipping of the tip into the liquid film. Arrows indicate the
coordinate axis and the direction of the force. (1) Probe and
(2) film.
bolic tip, the interaction forces and the contact stiffness
are given by

(4a)

(4b)

where R is the radius of curvature of the tip.

Several consequences following from formulas (4a)
and (4b) are worthy to note. The adhesion (detachment)
forces become equal to F(0) = 2πRσ, which coincides
with the result in [4]. The associated contact stiffness is
K(0) = 2πσ. For H2O (T = 300 K, σ = 0.07 J/m2) and R =
20 nm, we have F(0) = 8.8 nN and K(0) = 0.44 N/m.
These data are typical of most experiments [1–3].
Knowing the detachment force and the contact stiff-
ness, one can determine the critical displacement
amplitude of the cantilever:

(5)

where n shows by how many times the cantilever stiff-
ness differs from the contact stiffness (n = Kc/K(0),
where Kc is the cantilever stiffness). Note that for soft
cantilevers and hard contacts, n  0; that is, ε0 
R. In this case, expression (5) is conveniently used to
find the radius of curvature of the tip.

Finally, it should be noted that other thermodynamic
cycles related, for example, to heat exchange, adsorp-
tion, etc. may proceed in the probe–sample system. To
make certain of it, it will suffice to change the pressure
or temperature when the force curves in the AFM cell
are measured. The measured curves will have a more
complex shape.

FLUCTUATIONS OF BASIC THERMODYNAMIC 
PARAMETERS

In the best AFM designs, the force resolution attains
1 pN and the distance resolution is 1 pm (in the vertical
direction). It is believed that the resolution is adversely
affected by electrical noise, mechanical drift, seismic
vibrations, and thermal fluctuation of the cantilever
[5, 6]. We will show that the resolution is also basically
limited by fluctuations of interaction force, displace-
ment, contact area, and surface tension.

Let us write the expression for the minimal mechan-
ical work that is done by the AFM probe interacting
with the liquid film:

F σdω
dz
------- 2πσ R2 2zR+ ,= =

K
dF
dz
------- 2πσ R

R 2z+
---------------,= =

ε0
R

n 1+
------------,=

Wmin ∆G σ∆ω– F∆z+=
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(6)

The probability that the system is in the appropriate
thermodynamic state is found from expression (6) and
Gibbs distribution

(7)

With (7), one can calculate the fluctuations of all
parameters of interest. Consider two basic cases.

(1) Independent variables are ∆z and ∆σ. In terms of
these variables, the total differentials of the contact sur-
face area and interaction force have the form

Substituting these expressions into formula (6) and
making straightforward rearrangements, we obtain the
expression for the minimal work:

(8)

With regard for (7) and (8), the final expression for
the thermodynamic state probability is

(9)

From (9), it follows that the variables selected are
statistically independent; that is, the equality 〈∆σ, ∆z〉  =
0 holds. Comparing the expression obtained with the
normal distribution f ~ exp(–x2/2〈x2〉), we find the fluc-
tuations of the surface tension and displacement:

(10a)

(10b)

Since the fluctuations are positive, the minus sign in
(10a) means that ∂σ/∂ω < 0.

(2) Independent variables are ∆ω and ∆F, which also
are statistically independent; that is 〈∆ω, ∆F 〉  = 0. Fol-
lowing the above line of reasoning, we come to the fol-
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lowing expressions for the fluctuations of the contact
surface area and interaction force:

(11a)

(11b)

Now we perform numerical estimations, consider-
ing the detachment of the cantilever. From expressions
(4a), (4b), (10b), and (11b) at z = 0, the rms deviations
of the displacement and force are

(12a), (12b)

For H2O at T = 300 K, 〈∆z〉  = 0.1 nm and 〈∆F 〉 =
0.043 nN. The values are consistent with experimental
data obtained in [7].

From (12a) and (12b), it follows that the rms devia-
tions of the displacement and force do not depend on
the probe size at z = 0 (on the film surface). It was
shown above that the detachment force varies as the
radius of curvature R. Therefore, the effect of the fluc-
tuations will be enhanced for ultrasharp (R < 10 nm)
tips.

ELECTROCAPILLARITY

It is well known that the surface tension of an elec-
trolyte severely depends on the applied voltage and the
concentration of charged ions [8]. Let there exist a
potential difference between the tip and the sample.
Then, the expression for the Gibbs potential takes the
form

where Q is the total charge of the ions and ϕ is the
potential difference.

From the condition of thermodynamic equilibrium,
we find the detachment force

(13)

where E is the field strength and C is the capacitance
per unit area of the contact.

Note that formula (13) can also be obtained if the
solution of the Lippmann equation [8] is substituted for
the surface tension in expression (4a).

From (13), it follows that the surface tension is max-
imal if the voltage across the electrodes is zero. If the

potential difference is ϕ = , the detachment
force vanishes. Thus, electrocapillary phenomena and,
hence, adsorption can be studied with an AFM.

∆ω( )2〈 〉 kT
∂ω
∂σ
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 
F

,–=

∆F( )2〈 〉 kT
∂F
∂z
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 
ω
.=

∆z〈 〉 kT
2πσ
----------, ∆F〈 〉 2πσkT .= =

dG σdω Fdz Qdϕ ,––=

F 0( ) σdω
dz
------- QE– 

 
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2πR σ Cϕ2

2
----------– 
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SPECTROSCOPY IN THE LATERAL-FORCE 
MODE

The lateral-force mode of atomic force microscopy
(this mode is also called scanning frictional microscopy
[9]) is used for high-resolution studies of solids, specif-
ically, of their tribological properties. In this mode, the
cantilever moves over the surface with a constant veloc-
ity v 0 and its torsion due to shear forces is measured.
We suggest a new method of spectroscopy that mea-
sures the total scanning energy (or the specific scanning
energy, i.e., the energy per image area). Obviously, this
parameter must distinctly correlate with thermody-
namic parameters, such as surface energy, heat capac-
ity, heat of sublimation, heat of fusion, etc.

When imaging, the cantilever spends energy that is
expressed through the frictional loss power as

where T0 is the scanning time; F|| is the shear force;

∆U = ∆Q + Wk is a change in the internal energy

of the probe–sample system within a time ∆t; ∆Q is a
heat increment; and ∆Wk are the contributions to the
energy of interaction due to interatomic (for example,
Van der Waals or magnetodipole) interactions, changes
in the volume and shape of contacting bodies, phase
transitions (melting or sublimation), chemical reac-
tions, and wear. If the temperature of the system
remains constant during scanning, ∆U obviously equals
the change in the free energy.

In experiments, this spectroscopic method is accom-
plished by repeatedly scanning the same surface area at
various normal loads. To exclude the effect of surface
inclination, imaging must be carried out in two, nor-
mal- and lateral-force, modes. Such investigations are
easy to perform with commercial multimode micro-
scopes from the NT-MDT company (Russia) [10].

U P t, Pd

0

T0

∫ ∆U
∆T
--------

∆ 0→
lim v 0 f ||,= = =

∆
k∑
CONCLUSION
In this work, the thermodynamic analysis is applied

to processes taking place in the AFM probe–sample
system for the first time. It is assumed that an adsorbed
water film exists between the hydrophobic tip and the
sample. Expressions for the interaction force, contact
stiffness, and fluctuations of the basic parameters are
obtained. The method for determining the thermody-
namic characteristics in the AFM lateral-force mode is
suggested.

Another important issue omitted in the article is
thermodynamics of magnetic force microscopy
(MFM). The basic difficulties in describing the interac-
tion in MFM are associated with the fact that the mag-
netic field may cause substantial distortions in the true
distribution of magnetic forces over the sample surface.
In general, when the cantilever with a magnetization J
moves in a magnetic field H, the area of the magneto-
mechanical hysteresis loop is given by W =

dz dH.
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BRIEF COMMUNICATIONS
A Static Model for Completely Polarized Ceramics
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Abstract—A model for completely polarized ceramics kept under a longitudinal compression stress σ has been
advanced. The model is built upon the condition of the complete and partial stability of the domain polar c axes
with due regard to the nonuniform distribution of the axes after 90° and 180° domain switches. By using this
model, the ceramics piezoelectric coefficient d33, its dependence on the longitudinal compression stress σ, and
the relative numbers of 90° and 180° domain switches induced by the action of the stress σ were determined.
© 2001 MAIK “Nauka/Interperiodica”.
1. A CERAMICS MODEL
We consider polarized ferroelectric ceramics of the

∞*m point symmetry group with single-domain crys-
talline grains, whose polar c axes are aligned with the
allowed directions of the spontaneous polarization vec-
tor Ps that are closest to the direction of a polarizing E
field [1]. Let a unit sphere be taken as the geometric
static image of the polarized ceramics and let the sphere
surface be covered with the ends of the polar c axes of
the domain ranged in their density, which lead out of
the center of this sphere. Piezoelectric ceramics can be
treated as a system of N-numbered single-domain crys-
talline grains polarized to saturation. Then, in the case
of completely polarized ceramics, all the polar c axes of
the domain are distributed in the upper part of the ori-
entation sphere within a solid angle 2π(1 – cosθ)
around the path of the E vector [2]. Taking into account
all the possible 90° and 180° domain switches, the
domains with polar axes making an angle θ = 54°44′
with the path of the polarizing E vector will be farthest
from the field [1–4]. Considering the geometric con-
straint on the angles γc, γa, and ψ [2],

(1)

The conditions for the 90° and 180° switches of the
domain polar axes were found from that of the c axes
complete and partial stability about the path of the
polarizing E vector.

The condition

(2)

is satisfied for the complete stability zone of the polar c
axes.

Substituting Eq. (1) into Eq. (2) gives

(3)

analyzing inequality (3), we find that the complete sta-
bility zone of the c axes is located in the region

(4)

γacos γc ψ.cossin=

γc γa 0≥cos–cos

γc γc ψcossin–cos 0≥

0° γc 45°.≤ ≤
1063-7842/01/4610- $21.00 © 21339
In the initial state, the a axes of all the crystal grains
with the given angles γc show a uniform circular distri-
bution, and the a axes nearest to the E field are grouped
in a quadrant of this circle with ψ ranging between –45°
and 45°. Within the complete stability zone of the c
axes, the a axes are closest to the polarizing E-field
direction (ψ = 0). In the case of completely polarized
ceramics, the partial stability zone of the c axes implies
a region where, in fulfillment of inequality (2), crystal-
grain a axes are most distant from the polarizing E-field
direction (ψ = 45°). The partial stability zone of the
polar c-axes extends over a range

(5)

for which, after all the possible domain switches [5],
the c-axis density is

(6)

The piezoelectric coefficient  was calculated
by the integration over the orientation sphere taking
into account the probability density of the c axes and by
averaging over all crystal grains (or domains). For
instance, in the case of disk-shaped ceramics, it was
done by the formula

(7)

where

(8)

and θ is the angle between the Z and Z ' axes.

45° γc 54°44 ′,≤ ≤

ρc'' 3N /2π( ) 1 4 γccot( )arccos–( )/π( ).=

d33
theor

d33
theor 1/N d33 θ( )3N /2π θsin θd ϕd

ϕ 0°=

2π

∫
θ 0°=

45°

∫=

+ 1/N d33 θ( ) 3N /2π( )
ϕ 0°=

2π

∫
θ 45°=

54°44 ′

∫
× 1 4 γccot( )arccos /π–( ) θdθdϕ ,sin

d33 θ( ) d15 d31+( ) θ θ d33 θcos
3

+sin
2

cos=
001 MAIK “Nauka/Interperiodica”



1340 MINCHINA, YANKOVSKIŒ
2. THE CERAMICS MODEL SUBJECTED 
TO A LONGITUDINAL COMPRESSION 

STRESS σ
Consider a piezoceramic plate in a principal crystal-

physics XYZ coordinate system, where the polarization
vector P is aligned with the OZ axis. Let us impose a
uniaxial mechanical stress σ to the plate. The polar c
axes show a preferred orientation, arranged on the
upper part of an orientation sphere within a solid angle
θ. With due regard for all the possible 90° and 180°
domain switches of the polar c axes, they show a non-
uniform distribution in the complete and partial stabil-
ity zones. In the case of the stress σ33 applied to the
ceramics, the complete stability condition for the c axes
can be written as

(9)

where γc is the angle between the E-field vector and the
domain c axis; γa is the angle between the a axis nearest
to the E-field vector and this vector; σc is the coercive
stress; σ is the applied stress; and

(10)

Inequality (10) yields the angular boundaries of the
complete stability zone of the polar c axes when the
longitudinal stress σ is applied to the ceramics. The
condition for partial stability of the polar c axes, when
the a axes are most distant from the path of the polariz-
ing E field (ϕ = 45°), has the form

(11)

Equation (11) can be brought into the form

(12)

Under the action of the longitudinal stress σ, the
piezoelectric coefficient d33 changed by a value of

∆ , which was computed by integrating over the ori-
entation sphere of the polar c axes and averaging the
piezoelectric constants , , and  over all the
crystal grains with the formula:

(13)

γccos γacos σc/σ,≥–

0 γc σc/σ( ) 2/2( )arccos( ) 45°.–≤ ≤

γccos 2/2( ) γcsin σc/σ.≥–

45° γc 54.733° σc/σ( ) 2/ 3( )( )arcsin–≤ ≤ .

d33
T

d33' d31' d15'

∆d33
T 1/N d33 θ( ) 3N /2π( )

θ 0°=

2/2( ) σc/σ( )45°( )arccos

∫
ϕ 0°=

2π

∫=

× θdθdϕsin

+ 1/N d33 θ( ) 3N /2π( )

θ 0°=

54°44 ′ 2/ 3( ) σc/σ( )arccos–

∫
ϕ 0°=

2π

∫

We separated the contributions from the 90° and
180° domain switches by formula (8) (for instance, in
the case of the complete stability zone of the c axes, the
c-axis density is equal to ρ90° = N/π and ρ180° = N/2π for
the 90° and 180° switches, respectively). Then, the rel-
ative numbers of the 90° and 180° domain switches
(A90° and A180°, in percent) induced by the stress σ were
obtained for a given σ [6]. In the final form, the formula

for the piezoelectric coefficient  of a ceramic plate
exposed to a stress σ is written as

(14)

where the piezoelectric coefficient d33 is obtained
from (8).

CONCLUSIONS

(1) A static model for completely polarized ceram-
ics has been advanced. It is based on the condition of
complete and partial stability of the c axes with due
regard for their nonuniform distribution after 90° and
180° domain switches.

(2) A static model was considered for completely
polarized ceramics exposed to a longitudinal compres-
sion stress σ.

(3) On the basis of this model for ceramics, the
piezoelectric coefficient d33 was calculated, and its
behavior as a function of the longitudinal compression
stress σ, as well as the stress-induced relative numbers
of the 90° and 180° domain switches, were determined.
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Abstract—The amplitude–time characteristics of the emission from a one-barrier flash KrCl excimer lamp and
conditions for the maximum luminosity in the UV spectrum range are reported. The best result is achieved for
a Ne : Kr : Cl2 = 50 : 1 : 1 (torr) mixture. When the lamp is excited by the combined Fitch circuit, the pulse half-
height duration 107 ns and the power density E(0,0) = 1.1 kW/cm2 are attained. © 2001 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Interest in UV lamps excited by a pulse discharge in
inert gases, halogens, and their mixtures has quickened
in recent years [1–9]. It is believed that the lamps emit
in the wavelength range shorter than 250 nm, and their
power density (luminosity) is as high as tens of kilo-
watts per square centimeter; therefore, they seem to be
promising for microelectronics technology. In this
work, the amplitude–time characteristics of the emis-
sion from one-barrier flash KrCl excimer lamps and
conditions for the maximum luminosity in the UV
spectrum range are reported.

EXPERIMENTAL

The design of the excimer lamp emitter is shown in
Fig. 1. The discharge is ignited in the gap between inner
high-voltage electrode 1 and an insulating barrier (a
ceramic with ε ≈ 1000) made as a tube with an inner
diameter of 7.8 cm. From the outside, the ceramic tube
is covered by an electrode that is grounded during oper-
ation. The inner electrode was made of a stainless steel
wire that has the shape of a rod or a helix with different
pitch and diameter. The discharge gap can be varied
between 2.6 and 3.6 cm. The emission was extracted
through a 1-cm-thick quartz window with a transmis-
sion coefficient of 80% at the wavelength 200 nm. At
the exit from the lamp, the beam diameter was 8 cm and
then linearly increased with distance from the exit win-
dow. The discharge type depended on the high-voltage
electrode configuration and the value of the product pd.
Under the optimal (in terms of maximum output power)
conditions, an initially multiple-spark discharge trans-
forms into a discharge consisting of many cones with
their bases at the ceramic wall of the lamp. Although the
discharge is inhomogeneous, the illuminance E(x, r) at
the exit from the lamp smoothly varies along the radius
r and has a bell-shaped distribution. The axial illumi-
1063-7842/01/4610- $21.00 © 21341
nance E vs. distance x from the exit window is shown
in Fig. 2.

Two circuits to feed the lamp were used (Fig. 3): the
Fitch voltage-doubling circuit and sometimes a circuit

1

2 3 4 5 6 7

8

Fig. 1. Design of the KrCl flash lamp. 1, inner (high-volt-
age) electrode; 2, insulator; 3, seal; 4, ceramic tube; 5, outer
electrode; 6, working volume of excilamp; 7, flange; and
8, quartz exit window. Arrows indicate the direction of
emission. Light grey regions show the typical form of the
discharge.
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10 15 20 25

40

60

80

Fig. 2. Axial illuminance E vs. distance from the exit
window.
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Fig. 3. Feed circuits for the KrCl flash excilamp: HVF, high-voltage feed; PD, peaker (industrial switch); R, discharge resistor;
C−C2, storage capacitors; Tr, thyratron; EL, excilamp; and PT, pulse transformer. The Fitch circuit is on the right, and the circuit
with the pulse transformer, on the left.
with a pulse transformer (with a transformation ratio of
2 to 3). The capacitors C, C1, and C2 were fed by a con-
trollable high-voltage (to 25 kV) feed source (HVF in
Fig. 3). The Fitch circuit (on the right) included a KVI-
3 storage capacitor battery (C1 and C2) with an impact
capacitance of ≈2.2 nF, a discharge resistor R, a TGI-
1000/25 thyratron (Tr), a feed circuit, a thyratron-trig-
gering generator, and a peaker PD (RU-26 or RU-47
industrial switch). The total inductance of the capacitor
battery wires and the excilamp is made as low as possi-
ble in order to cut the leading edge of the voltage pulse
at the peaker. A choke is inserted at the point A in the
capacitor discharge circuit. The choke can also be con-
nected parallel to the lamp (between points B and C).

c

250 ns

b

a

Fig. 4. Typical waveforms of the (a) current, (b) voltage,
and (c) light pulses. The Fitch circuit; discharge-initiating
voltage 20 kV.
Our circuit includes the same components as the
Fitch circuit plus a high-voltage pulse transformer
(PT).

In addition, we used a combined Fitch circuit, where
the pulse transformer was connected after the peaker
PD in the conventional Fitch circuit in order to increase
the high-voltage amplitude at the excilamp.

The current and voltage values were measured with
a resistive shunt and a capacitive voltage divider (with
a voltage ratio of 5 × 103). The signals from the shunt
and the divider were applied to a TDS-220 double-
beam storage oscilloscope. The flash power in a given
wavelength range was determined with an FÉK-22
SPU vacuum photodiode with a known spectral sensi-
tivity in the visible and UV ranges. The signal from the
photodiode was applied to a pulse voltmeter or an oscil-
loscope. The spectral composition of the emission was
monitored with calibrated light filters.

The working mixtures were prepared directly in the
lamp by successively delivering a halogen (Cl2 or HCl),
an inert gas (Xe or Kr), and a buffer gas (Ne or He).

RESULTS AND DISCUSSION

In the optimal mixtures, the percentage of the emis-
sion with λ < 260 nm exceeded 90%, which is typical
of KrCl excilamps.

In the experiments, we were confronted with the
question as to which of the feed circuits is best suited to
obtaining stable and high-power emission pulses. It
turned out that the output flash power is the highest
when the voltage applied to the barrier is as high as pos-
sible (which is provided by using the modified Fitch
circuit).

Figure 4 shows the waveforms of the (a) voltage, (b)
current, and (c) light pulses that illustrate the operation
of the conventional Fitch circuit. It is seen that the base
widths of the current and emission pulses coincide.

In a number of the experiments, the emission power
of the excilamp was unstable. The basic reason for the
instability was the time spread in the lamp breakdowns
relative to the instant the voltage at the Fitch circuit out-
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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put was maximal (at point D). The spread in the flash
power of the lamp may be as high as 50%. However,
one can reduce the instability to 10%, using the PD and
varying the pressure of the gas mixture.

The insertion of sharpening capacitors (85–400 pF)
parallel to the lamp did not increase the pulse voltage.
This is because of the self-capacitance of an excilamp.

The discharge type in the lamp depended on the
high-voltage electrode diameter and also on the partial
pressures of the mixture components. The dependence
on the Kr and halogen pressures is strong, while the
dependence on the buffer gas (helium or neon) pressure
is much weaker.

Under similar conditions for mixture excitation
(similar values of U0, C1, and C2), the emission inten-
sity is the highest when Ne is used as a buffer gas. This
is explained by the fact that the conductivity of a neon-
containing plasma is higher than that of a helium-con-
taining plasma, as in KrCl and XeCl excimer lasers.

As the Cl2 partial pressure is increased to 2 torr or
higher, the quenching process KrCl* + Cl2  Kr +
Cl + Cl2 causes the emission yield to drop. Moreover,
when the chlorine concentration increases, a volume
discharge becomes difficult to initiate.

Figure 5 shows the dependence of the flash illumi-
nance from the KrCl lamp on the pressure of Ne intro-
duced into the chamber during operation. In the Cl2-
containing mixtures, the output power increases only if
a small amount of Ne is added, while in the mixtures
with HCl, Ne additions up to a pressure of 1 atm slowly
raise the output power.

Figure 6 demonstrates the output power density of
the KrCl excimer lamp vs. the number of flashes in the
Kr : Cl2 = 50 : 1 mixture at various pressures. As fol-
lows from this figure, the lifetime of the mixtures can
be increased by raising the Cl2 concentration; in this
case, however, the discharge becomes more inhomoge-
neous and the emission yield drops. The lifetime of the
KrCl lamp can be increased further by making the
working mixture in the chamber slowly flow, by using
special coatings applied on the inner surface of the
lamp to decrease the halogen loss due to the heteroge-
neous reactions, and/or by expanding the buffer volume
of the lamp [4, 5].

The best result was achieved in the case of the Ne :
Kr : Cl2 = 50 : 1 : 1 (torr) mixture when it was excited
with the combined circuit at the impact capacitance
C1 = 2.2 nF and U0 = 23 kV. With such parameters, the
pulse half-height duration 107 ns and the pulse power
density E(0,0) = 1.1 kW/cm2 were attained.

The total power radiated into the solid angle 4π was
estimated at 400 kW. With an energy of 2.32 J stored in
the storage capacitor and with regard for the fact that
only one third of the total energy is spent to excite the
gas mixture, the efficiency of the KrCl lamp is esti-
mated at 5% (relative to the power radiated into the
solid angle 4π).
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
To conclude, we note that the general problem of
obtaining a high pulse power of spontaneous emission
from gas mixtures containing a heavy inert gas and a
halogen (Kr + Cl2 or HCl in our case) is split into two
partial problems: to provide a high output of the emis-
sion from a discharge plasma and to provide the maxi-
mal efficiency of extracting the output from the work-
ing volume (emitter). It seems that the efficiency of the
KrCl lamp obtained in this work can be improved by
further optimizing the feed circuit and the lamp design
(for example, by using special optical elements: mir-
rors, lenses, etc.).
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Fig. 5. Illuminance from the KrCl flash lamp vs. pressure of
buffer Ne introduced into the lamp during operation. Fitch
circuit, U0 = 23 kV, C1 + C2 = 8.8 nF. Kr : HCl = (1) 50 : 1
(153 torr) and (2) 20 : 1 (63 torr); Kr : Cl2 = (3) 40 : 1
(121.5 torr) and (4) 80 : 1 (123 torr).
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Fig. 6. Power density of the KrCl excilamp emission vs. the
number of flashes in the binary mixture Kr : Cl2 = 50 : 1 at
a pressure of (1) 105 and (2) 153 torr. Fitch circuit, U0 =
26 kV, C1 + C2 = 8.8 nF.
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Abstract—Under the action of the gravitational wave, the length of an optical resonator and, therefore, its res-
onance frequency change. In conventional resonators, this frequency shift is too small to be detected. We pro-
pose a method that provides a very high resonance frequency-versus-resonator length slope. As a result, a grav-
itational wave with an intensity of 10–21 can shift the resonance frequency by more than 10 kHz, which can eas-
ily be detected. © 2001 MAIK “Nauka/Interperiodica”.
Facilities for detecting gravitational waves (GWs)
that are presently under development [1–4] rely on the
laser interferometry. They expect to measure a small
phase shift between two laser beams propagating in the
two orthogonal arms of the interferometer. This phase
shift occurs, because the arm lengths of the interferom-
eter experience oscillations under the action of the GW
at the GW frequency with one arm becoming longer
and the other becoming shorter. As follows from realis-
tic theoretical estimates, near the Earth, the intensity h
of the GWs emitted by certain astrophysical objects is
on the order of 10–21, which is expected to produce the
relative change of |∆L/L| = h/2 ~ 10–21 in the interferom-
eter arm length L. Since the modern laser interferome-
try is capable of measuring absolute displacements of
up to 10–16 cm, detection of the GWs requires a suffi-
ciently long L. For example, the most ambitious LIGO
project uses 4-km-long interferometer arms [4].

Another possibility of detecting GWs relies on the
use of an optical resonator. As is known, the resonance
frequency f0 of an optical resonator is determined from
the condition that its length L measures an integer num-
ber of half-wavelengths or, in other words, the phase
advance through the optical resonator equals an integer
number of π:

(1)

where c is the velocity of light and m is an integer.

The length of the optical resonator and, conse-
quently, its resonance frequency slightly change under
the action of the GW. As follows from condition (1), the
shift δf in the resonance frequency of the optical reso-
nator is proportional to the change in its length:

(2)

2πf 0L/c mπ,=

δf f 0 ∆L/L f 0h/2.= =
1063-7842/01/4610- $21.00 © 21345
At f0 = 3 × 1014 Hz and h ~ 10–21, Eq. (2) predicts
δf ~ 10–7 Hz, i.e., in a conventional resonator, the shift
in the resonance frequency due to the action of the GW
is prohibitively small and it cannot be detected in prac-
tice.

This paper proposes a new method, which produces
a much stronger relation between the change in the
length of the optic resonator and the shift in the reso-
nance frequency that is provided by Eq. (2). This
method, referred to as the than phase shift method, was
developed in order to significantly improve the charac-
teristics of optical gyroscopes [5]. It consists of placing
a special phase shifter into the optical resonator. In this
case, the resonance frequency f1 complies with the
requirement

(3)

instead of condition (1). Here, ϕ(f) is the phase-versus-
frequency response of the phase shifter, which
describes the phase advance through the phase shifter at
the frequency f.

Assuming that ∆L and ∆f in (3) are small and
expanding ϕ(f) into power series about f1, we obtain the
following quadratic equation relating ∆L and ∆f:

(4)

where ϕ' and ϕ'' are the first derivative (the slope of the
phase response) and second derivative of the phase with
respect to frequency at the point f1 of the unperturbed
resonance.

The analysis of solutions to Eq. (4) have shown that,
when the phase shifter’s frequency–response slope is

(5)

2πf 1L/c ϕ f 1( )+ mπ,=

ϕ ''∆ f
2
 + 2 ϕ ' + 2π L + ∆L( )/c[ ]∆ f

+ 4πf 1∆L/c 0,=

ϕ ' 2πL/c,–=
001 MAIK “Nauka/Interperiodica”
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the shift in the resonance frequency is proportional to
the square root of ∆L within the relative error of
~|∆L/L |1/2:

(6)

Hence, when ∆L and ϕ'' have different signs, a small
change in the length of the optical resonator with a
phase shifter causes its resonance frequency to split
into two frequencies: f1 ± ∆f. When ∆L and ϕ'' have the
same signs, formula (6) gives imaginary values for ∆f
which means that the resonator does not support reso-
nance oscillations. To estimate the frequency shift from
formula (6), one should know the value of ϕ'', which
may differ in a wide range for different phase shifters.
For a crude estimate, one may assume that ϕ'' ~ ϕ'/f1 ~
L/cf1. As a result, we obtain

(7)

which is much greater than the frequency shift (2) of
the conventional resonator. Therefore, a small change
in the length of the optical resonator with a phase
shifter whose slope complies with Eq. (5) creates
(when ∆Lϕ'' < 0) two resonances separated by 2∆f. This
frequency difference can be used to find the change in
the resonator length from (6) and, therefore, the GW
intensity. Note that Eq. (6) also remains valid when
condition (5) is slightly violated until the second term
in Eq. (4) becomes equal to the first one in the order of
smallness. This occurs when ϕ' changes by ~|∆L/L|1/2/c.
Hence, condition (5) may be satisfied within the rela-
tive error of ~|∆L/L|1/2 and the property ∆f/f1 ~ |∆L/L|1/2

will still be valid.
The main problem in implementing the method pro-

posed above is the development of a phase shifter with
the negative frequency-response slope complying with
condition (5) in a certain small frequency range. In
optics, such phase shifters may be developed based on
media with anomalous dispersion, in which the wave
number and, hence, the phase advance through the
phase shifter decrease with increasing frequency. In a
usual dielectric, the anomalous dispersion is accom-
panied by strong absorption and is almost unused in
practice. Therefore, one should study active (amplify-
ing) media, in which the anomalous dispersion is
observed at the frequencies near the amplification line

∆f 4πf 1∆L/cϕ ''–( )1/2.±≈

∆ f f 1 ∆L/L 1/2 f 1h
1/2

10 kHz,∼ ∼ ∼
[6], or periodic structures, which are also known [7] to
be capable of exhibiting low-loss anomalous disper-
sion.

Thus, we proposed a method, which significantly
improves the sensitivity of the optical resonator’s reso-
nance frequency to change in its length. The method is
intended for the use in gravitational-wave detectors. It
can also be used in various optical sensors based on the
measurement of the shift in the resonance frequency of
the optical resonator. For example, laser gyroscopes use
Sagnac’s effect [8]: rotation of a ring optical resonator
causes a small relativistic change in its optical length.
The resultant small frequency change is used to calcu-
late the rate of rotation. Our estimates [5] show that this
method provides an orders-of-magnitude increase
in the sensitivity of the gyroscope such that it becomes
possible to measure angular velocities lower than
10−9 deg/h. Therefore, a more accurate experimental
verification of certain fundamental physical principles
and geophysical hypotheses becomes feasible (see [9]
for details).
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