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Abstract—A regression model of an ion—atom collision cascade (and eventually of a displaced atom cascade)
resulting under ion sputtering of amorphous and polycrystalline materials is devel oped. The model allows the
description of the elastic scattering of atomic particles in a solid using various particle interaction potentials.
Based on this model, we cal culate the sputtering yields for materials with atomic numbers Z, = 22—79 and the
sputtering ratesfor several multicomponent targets. The results of statistical simulation within the model devel-
oped are compared with experimental data for the sputtering of amorphous and polycrystalline materials. It is
shown that our model fits the experimental data up to the statistical error and adequately characterizes the ion
sputtering process. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The sputtering of single-component amorphous and
polycrystalline targets by ion bombardment isthe most-
studied field of the physics of material sputtering [1]. It
is assumed that the direct knocking-out of atoms from
their equilibrium positions in a solid prevails in this
case. The available models for ion sputtering of single-
component rely on the Sigmund mechanism of physical
sputtering by fast ions or atoms[2]. Within this mecha-
nism, the density of a cascade of moving displaced tar-
get atoms is described by the distribution function that
meets the linearized Boltzmann equation well known
from the particletransfer theory. Giventheinitial veloc-
ities and positions of atoms that are decelerated by
means of random collisions in an infinite medium, a
solution of this equation makes it possible to calculate
the atom flux through an arbitrary plane. By taking the
target surface as this plane and introducing the param-
eter E,,, the atom—target binding energy, one can deter-
mine the escape probability of the displaced atoms, as
well as their energy and angular distributions. An ele-
mentary event here is a cascade of ion—atom collisions,
which causes a displaced atom cascade and makes sur-
face atoms leave the target under certain conditions.
Such a sputtering mechanism is considered to be the
most probable at ion energies to 1-3 eV and appliesto
the ion—plasma sputtering of single-components mate-
rials.

Today, due to the progress in microel ectronics tech-
nology, investigations into ion and ion—plasma sputter-
ing of multicomponent materials are becoming more
and more urgent. To these materials, sputtering yield as
a parameter characterizing the process cannot be
applied because of a depleted layer formed on the sur-
face. In this case, the efficiency of sputtering should be

described in terms of the target sputtering rate along the
depth or a change in the target weight.

The statistical simulation of particle scattering upon
ion—atom collisions [3-8] allows researchers to quanti-
tatively estimate the sputtering rate of multicomponent
targets. However, the numerical simulation of an ion—
atom collision cascade and the entire cascade of dis-
placed atoms requires the computer RAM to have an
extremely large capacity so asto store huge data arrays
of time-varying parameters in different phase spaces
(coordinates of cascade particles, their momenta, free
path lengths for cascade particles of each sort, etc.).
Such a calculation is impossible even with modern
computers.

As areasonable trade-off in this situation, we sug-
gested to mathematically simulate a cascade of ion—
atom pair collisions with the subsequent description of
the bombarding ion trgjectory and the energy imparted
to target atoms. In essence, this simulation studiesindi-
vidual cascade chains and extends the results to the
entire atom—atom collision cascade. Such an approach
combinesthe easy computing procedure (the entire cas-
cade of pair ion—atom collisions and its individual
chains are simulated by the Monte Carlo method) and
the correct generalization of the simulation results for
the displaced atom cascade by regression analysis. This
allowed us to develop a regression model for an ion—
atom collision cascade taking place upon ion sputtering
of amorphous and polycrystalline single- and multi-
component materials.

REGRESSION MODEL OF ION-ATOM
COLLISION CASCADE

Consider the form and the application of our model
in detail. The trgjectory of abombarding ion in the tar-
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get and momenta gained by target atoms as a result of
pair ion—atom collisions are calculated by the Monte
Carlo statistical simulation method adapted to particle
scattering during ion—atom collisions [9]. When
describing the elastic interaction of atomic particlesin
solids, one must bear in mind the empirical rule accord-
ing to which collisions causing an appreciable scatter-
ing occur at distances on the order of half the equilib-
rium spacing between adjacent atoms. With so small
distances, long-range attracting forces, responsible for
binding forces in solids, can be neglected. By order of
magnitude, these distances equal the sizes of colliding
atomic particles. Therefore, pair ion—atom collisionsin
solids are usually simulated within the model of quasi-
rigid balls [10], in which the elastic parameters involved
in atomic particle scattering are calculated with real
potentials of interatomic interaction. Note that this
model typically provides relatively high rates of statisti-
cal simulation. For apotential of interatomic interaction,
we chose the Born—Mayer potential modified [3, 4] for a
widerange of colliding partners (Z, = 2-80).

In asimilar way, the trajectories of target atoms of
various sort displaced by a bombarding ion (primarily
displaced atoms) are simulated and their energy losses
in each event of pair atom—atom collision with second-
ary displaced target atoms are calculated. The trajecto-
ries of various branches of the cascade of the primarily
displaced atoms are simulated until their energy
becomes smaller (because of atom—atom collisions)
than the binding energy between atoms of certain sort
or until the trajectories cross the target surface. The
ratio of the number of displaced atoms in a cascade
branch simulated that crossthe surface to the number of
bombarding ions defines the probability of these atoms
escaping the surface, P,.. Its value depends on the
atomic weight, atomic number, and initial energy of a
bombarding ion, as well as on the atomic weight,
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Fig. 1. Sputtering yield in view of the occupancy of the
dshell vs. target atomic number Z, at Ar* bombardment
(E=0.5keV) [1].
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atomic number, binding energy, and concentration of
the target components.

As was noted, the simulation of subsequent
branches of the displaced atom cascade is difficult
because of the limited capabilities of modern comput-
ers. However, regularities obtained in smulating ion—
atom cascade branches can be extended to all subse-
quent branches of the displaced atom cascade by using
regression analysis. Clearly, the branches of the prima-
rily displaced (by a bombarding ion) atoms involve a
greater number of collisions and a higher initial energy
than the subsequent atom—atom branches. Therefore,
the escape probability for atoms crossing the surfacein
each of the subsequent atom—atom branches is lower
than the simulated value P, for the primarily displaced
atoms. The smaller theinitial energy and the number of
atom—atom collisionsin any of the secondary branches,
the smaller its contribution to the escape probability.

Quantitatively, the ion-induced escape probability
P (for single-component targets, P, coincides with the
ion sputtering yield S for multicomponent targets, it
characterizes the rate of ion sputtering V,¢) can be cal-
culated from the formula

Pis = Cn(Zo) PchiaWaaa (1)

where C,(Z,) isthefactor characterizing the shell struc-
ture of target atoms, P, is the simulated escape proba-
bility for aprimarily displaced atom (it is calcul ated by
the Monte Carlo method), W, is the factor characteriz-
ing the degree of regression of the ion—atom collision
cascade, and W,, is the factor that characterizes the
degree of regression of the atom—atom collision cas-
cade.

From experimental studies [1], it follows that sin-
gle-component targets made of Group | materials (Cu,
Ag, and Au) feature the highest sputtering yield
(Fig. 1). These atoms have the occupied d shell (Z, =
18), which is assumed to define the binding energy of a
target atom. To take into account the shell structure of
the atoms in cal culating the ion-induced escape proba-
bility P,;, we approximated the factor C.(Z,) normal-
ized to Cu atoms (Z, = 29) in (1):

0.117,-2.19 for
-0.02Z2,+1.12 for
0.216Z,—-856 for Z, = 41-47, (2
-0.01z,+1 for Z, = 48-73,
0.148Z,-10.49 for Z, = 73-79.

Thefactors W, and W, characterizing the degrees of
regression of the ion—atom and atom—atom collision
cascades were determined with different regression
models and checked against experimental data on sput-
tering yields for a variety of single-component targets
and on rates of sputtering multicomponent targets by
noble gas ions with various energies. Eventually, we

Z, = 22-29,
Z, = 30-41,
Cn(Za) =
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obtained

no
Wia = DLD

(K;—0.5]j/n;)

: (©)
ji=1

where n, isthe maximal number of collisions of abom-

barding ion in the ion—atom collision cascade, j is the

serial number of ion—atom collisions (1<j <n), and K,

is the regression coefficient for a branch of the ion—

atom collision cascade, and

n
_ @ |:|j |:l(K,a—O.Sj/na)
Waa - . HTaD ’ (4)
j=1
where n, is the maximal number of collisions of adis-
placed atom in the atom-atom collision cascade, j isthe
seria number of atom—atom collisions (1 <j <ny), and
K., is the regression coefficient for a branch of the
atom—atom collision cascade.

The regression coefficients K,; and K,, were deter-
mined by comparing the energy dependence of the
sputtering yield P, (E;) obtained from the statistical
simulation of the trajectories of the ions and primarily
displaced atoms with experimentally found energy
dependences of the sputtering yield for Ti, Cu, Nb, Ag,
Ta, and Au targets subjected to noble gas ion bombard-
ment [1]. Representing K,; as a function of the atomic
number Z; of a bombarding ion and its energy E;, and
K4 as afunction of the atomic number of the target Z,
and the energy E; of the bombarding ion in the form

Kia(Za E)) = A(ZJ)E + B(Z,),

Ki(Z, E) = C(Z)E; + D(Z),
one can generalize the results and determine the numer-
ical values of the expansion coefficients A(Z,), B(Z,),
C(Z), and D(Z)). The dependences A(Z,) and B(Z,) for
atoms with Z, = 22—79 and Ar* ions with energies E; =
2501000 eV are depicted in Fig. 2.

With such arepresentation, for the sputtering of tar-

gets with Z, < 80 by Ar* ions with energies E; = 100—
1000 eV, K, and K,; are given by

)

Ko(Zs E)) = (=237 x 10°Z,—0.0016)E;
+(0.0705Z, + 0.3582), (6)
K,.(Z, E) = 2.0.

Thus, by calculating the regression coefficients for
the cascade branches K; and K,, as functions of given Z;
and E; and Z, and E;, respectively, the factors W,, and
W,,, which characterize the degrees of regression for
the ion—atom and atom—atom cascades, can be found
from (3) and (4). Then, having calculated the escape
probability P, (the probability of the primarily dis-
placed atom leaving the surface) by the Monte Carlo
method and having taken into account the coefficient
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Fig. 2. Expansion coefficients A and B vs. Z,,.

Cn(Z,) [see (2)], characterizing the shell structure of tar-
get atoms, one can evaluate the escape probability P;g
(the probahility of target atoms leaving the surface by
the action of a bombarding ion) given by (1). For sin-
gle-component targets, P, coincides with the ion sput-
tering yield S, and for multicomponent targets, with the
rate of ion sputtering V.. Note that in the latter case, Vg
is governed by the sputtering rate of the component
having the lowest P,

DISCUSSION

Our regression model of ion—atom and atom—atom
collision cascades taking place during ion sputtering
allowsthe calculation of the sputtering yields and rates
for awide variety of targets and bombarding ions. The-
oreticaly, the rate of sputtering single-component tar-
gets can be estimated from the sputtering yield S, which
is found within the Sigmund model or with the empiri-
cally refined Matsunami formula[11]. However, asfol-
lows from the comparison with experimental data [1],
the Sigmund model applies at relatively high energies
of bombarding ions (E; = 1 keV), which are of minor
importance in ion—plasma sputtering problems. Com-
paring the results of the statistical ssmulation in terms
of our model with the experimental data for sputtering
amorphous and polycrystalline single-component
materials showsthat our model fairly accurately fitsthe
experimental data (within a statistical experimental
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Fig. 3. Sputtering yield for the components of the YBCO
ceramic vs. E within the regression model.
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Fig. 4. Sputtering rate V of the YBCO ceramic vs. presput-
tering time t. Sputtering by Ar* ions. The discharge voltage
and current density are 160V and 4 mA/cm?, respectively.

error of 10% [1]) for the sputtering yields and ratesin a
wide range of bombarding ion energies.

Sputtering of multicomponent targets, specifically,
complex oxides of high-temperature superconductors,
isamore complicated processthan sputtering of single-
component targets. Experiments on the sputtering of
multicomponent targets [12] show that at the early
stage of the process, the composition of the sputtered
atomic flux differs from the stoichiometric composition
of the target and varies with time. At this stage, the
composition of the target surface is other than the sto-
ichiometric composition of the target volume. Due to
diffusion processes, the thickness of the nonstoichio-
metric layer may be about 10 nm. During the process,
the composition of the sputtered atom flux becomes
constant and coincident with the stoichiometric compo-
sition of the target; that is, the sputtering process
becomes steady-state. It is known that the greater the
bombarding ion flux, i.e., the higher the target sputter-
ing rate, the faster the steady-state regime is set. How-
ever, in anumber of processes of thin-film evaporation,
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the sputtering rate islimited by the growth dynamics of
afilm on a substrate. Therefore, if the evaporation rate
islow, the instant the steady-state conditions are estab-
lished must be detected with a high accuracy.

By way of example, let us consider the sputtering of
the high-temperature superconducting ceramic
Y Ba,Cu;0; by Ar* ions and compare our calculations
of the sputtering rate with experiments[12]. The calcu-
lations show (Fig. 3) that the Y atoms in the YBCO
ceramic are the most difficult to sputter: under the con-
ditions of target presputtering, the selective sputtering
yield of Y in the Y Ba,Cu,0; system Sygeo = Pic[See
(2)] isroughly half aslarge asthose of Baand Cu. This
is associated largely with the high binding energy of Y,
E, =20eV [13]. Thus, the sputtering rate of Y specifies
the “sluggishness’ of the YBCO target sputtering
(Fig. 4), while the Baand Cu atoms have time to adapt
to the escape of the Y atoms from the surface. When
ionsor atoms bombard targets of complex composition,
the kinetic energy of theincident particlesis unequally
distributed among the components, since atoms with vari-
ous atomic weights and binding energies participate in the
collison cascades. As the energy of incident ions grows,
sputtering takes place via collisions between atoms that
gained an extra energy from the incident ions rather than
directly viaion—atom collisions.
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On Acoustic Radiation Accompanying Vibrations
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Abstract—The dispersion equation relation for the spectrum of capillary oscillations of acharged dropletin a
compressible ambient has been derived. It has been shown that such oscillations in the case of droplets, whose
sizes and charges are typical of dropsin clouds, fogs, or raindrops, cause the generation of sonic and ultrasonic
wavesinthe ambient. An expression for thetotal intensity of the acoustic radiation generated by asingledropl et
has been obtained. © 2001 MAIK “ Nauka/Interperiodica” .

1. Investigation of the interaction between capillary
oscillations of a charged drop and a field of acoustic
oscillations generated in an ambient compressible
medium is of interest in awide arearange of scientific
problems and practical applications, from the peculiar-
ities of sound propagation through clouds and fogs to
the problems of ultrasonic coagulation of liquid-drop
systems and acoustic or electrostatic levitation of large
drops in advanced technologies for producing high-
purity materials or high-precison measurements of
physicochemical properties (see, for instance, [1-8]
and references therein). Nevertheless, some issues
associated with the problem in question still remain
unclear. For example, in most considerations of the
applications of the problem of interaction between
acoustic waves and the liquid-drop systems, the drops
were only assumed to be either sound-scattering
objects without internal degrees of freedom or as
sources or sinks of water vapor. At the sametime, itis
known [2] that the frequencies of capillary oscillations
of water drops considered as an ideal liquid, when the
droplets have sizes typical of clouds or fog (that is,
from a few micrometers to several tens of microme-
ters), correspond to ultrasonic range oscillations, and
for raindrops (with the of aradius larger than 250 pum)
coincide with the frequencies correspond to of audible
sound waves. If a drop is viscous, has an electrica
charge, and the equalization rate of its the electrical
potential over thedrop isfinite, thenitsmotionsrelative
to the ambient accompanied by deviations of its shape
from spherical will cause an additional drift shift of the
frequency spectrum of the capillary oscillations toward
a region of lower acoustic frequencies [9-12]. The
above-said means that liquid drops in natural liquid-
drop systems are capable of both absorbing and gener-
ating sound or ultrasound. This is confirmed by the
known distortion of the frequency spectrum and strong
attenuation of sound by fog and also by the practice of
reducing the high-frequency noise abatement of jet

engines in a high-frequency band of the sound spec-
trum by injection of aliquid-drop aerosol into the com-
bustion chamber.

2. We shall solve a problem on of acoustic radiation
of avibrating drop with the radius R of an incompress-
ible ideal electroconductive liquid having density p,;
and surface tension y and carrying an dectricd charge Q.
We assume the ambient medium to be ideal, compress-
ible, and specified by the sound speed V and density p,.

We write the equation for the media interface per-
turbed by the capillary wave motion in the form

r(e,t) = R+§(0,1),

where ¢(0, t) isthe small perturbation of the drop sur-
faceand |¢| < R

We assume the wave motions in the drop and the
ambient to be of a potential type with the velocity
potentials Y4 (r, t) and Y,(r, t), respectively.

The mathematical formulation of the problem of
calculation of the spectrum of capillary oscillations in
the system described and the intensity of the generated
acoustic radiation induced by them, in an linear approx-
imation linear with respect to &/R, has the form [13]

Ay, =0, D
r=R aa—q:1 = 6a_ll:2 (3
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Ap—p; == (;Iil"'pz ;“F (6,1) o
_ 2 1, ¢
=V[3-z@+ e
r = 0: |y <oo, (6)

where Ap is the pressure differential across the drop—
media interface, Fy(O, t) is the pressure exerted by of

theelectrical field at on theinterface, and L istheangu-
lar component of the Laplacian in spherical coordi-
nates.

In addition, let us suppose the potential W(r, t) at
infinity would meet Sommerfeld's radiation condition

We viky, = o5 ™

We assume the dependence of potentialsy;(r, t) and
Wo(r, t) on timeto be periodical: Yy, Y, ~ exp(iwt). In
this case, the wave Eq. (2) transformsinto Helmholtz's
equation

[ — 00!

AP, + K'Y, = 0, k=w/V. (8)

3. Excluding from consideration the radial cen-
trosymmetrical motion of the drop (asimpossiblein an
incompressible liquid) and the trandlational (which is
not realized in this coordinate system) motions of the
drop, we shall seek solutions of Egs. (1) and (2) for the
potentials Y4 (r, t) and Y,(r, t) in the form

Wy(r,t) = ZAnr”Pn(u)exp(ioot), )

M = cosO,

Wo(r.t) = Y B (kr)Py(w)exp(iaat),  (10)

where P, (L) is the Legendre polynomials, and hff) x)
is the second Hankel’s spherical function.
Substituting formulas (9) and (10) into Eg. (3) we
relate the coefficients A,, with B, by the expression
ANR?
k[ohP (kr)/d(kr)]

Differentiating the dynamic boundary condition (5)
with respect to time and taking into account the kine-
matic boundary condition (4), we obtain

Oy, W
ot* ot*

r=RB, =

(11)

— P2 1

(12)
(2 L)—a-t— - ——Fq(O t) =

GRIGOR’EV, GAIBOV

For the time derivative of the pressure on the drop
surface produced by the electrical field with respect to
time we have (see Appendix)

oF, _

9 —

ot 4T[£R

z An(n—1)R"P, (1) exp(iwt). (13)

Substituting formulas (9)—«11) and (13) into
Eq. (12), we arrive at adispersion equation relation for
the capillary oscillations in the system under consider-
ation in the following form

2 _ o 1Y Q’ _
@ = (n-1) R3[4nsyR3 (n+ 2)}
) S (19
) { (PlP(KR) ;}
kRh®,(kR) —(n+ )hP(kR) N

When differenting Hankel’s spherical function with
respect to its argument, we used the formula [14]

d h(z)( ) — h(z)l( ) (n+1)h(2)( )

In the case where V — oo, that is, if the ambient
medium is assumed to be incompressible, expression
(14) is reduced to the known dispersion equation [15]
for capillary oscillations of an ideal incompressible
electroconductive drop immersed in an ideal incom-
pressible dielectric medium. The latter equation hasthe
form

_(h+n(n-1)y
pon+(n+1)pR

2
W= Q 3
4meyR

—[(n+2)-W],
(15)

4. To elucidate the meaning of the roots of disper-
sion equation (14), let uswriteit for the principal mode
of the capillary oscillations (n = 2) of the drop using the
relations between Hankel's spherical functions and
trigonometric functions [3] as follows

hP(x) = ja(X) =iyn(x),

. _ 3

2(x) = %‘E—%Sn(x)—x—zcos(x),
3 3.

Yo(X) = E—X—3+%COS(X)—X—Zsm(x).

Here j,(x) and y,(x) are the spherical cylindrical func-
tions of thefirst and second kinds, respectively. Thedis-
TECHNICAL PHYSICS  Vol. 46
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persion equation (14) for the principal mode of the drop
oscillations has the form

w = L(w-4)

puc (16)

[ (palp)[3R0IV +i(3+ RV 1]
CIRW/V + R’ V3 +i(9-4Rw’IV?) 2

Numerical analysis of thisequation showsthat it has
five roots. If one takes p; = 1 glcmd, p, = 1.3 x
10%g/em?, V = 3.3 x 10* cm/s, R = 0.01 cm, y =
72 dyn/cm, W=1 (this correspondsto capillary oscilla-
tionsin air at atmospheric pressure of awater drop car-
rying a charge equal to a quarter of the limiting onein
the sense of Rayleigh’'s stability criterion), then the

value of thefiverootswill be: wS” = (2.1 x 10* +i2.5 x
1012 s @i = (21 x 104 +i25x 101) s oY =
(6.5 x 10° +i3.7 x 106) s1; W = (—6.5 x 106 + i3.7 x

109 st Y =i6 x 106sL. The first two roots corre-
spond to the drop oscillations with frequencies approx-
imately equal to those defined by relation (15) at n = 2.
These oscillations are attenuated very dlowly on
account of the loss of the energy take-off being spent
for the excitation of longitudinal ultrasonic wavesinthe

ambient. These waves have the frequencies m(ll) and

0s? and are described by relation (10). The second pair

of the roots corresponds to quickly attenuated oscilla-
tions of the compressible medium in a close vicinity of
the drop surface, and the oscillation frequencies are of
the same order asthe frequencies of natural oscillations
of the medium in a volume equal to the drop volume;
that is, these roots correspond to a vortex motion of the
medium near the drop surface. The fifth root corre-
sponds to fast aperiodic decay of the perturbations of
the external medium'’s density near the drop surface.
From the above-said it followsthat in view of astudy of
acoustic oscillations generated by the oscillations of an
incompressible drop the first two roots of Eq. (16) are
of interest.

To derive an analytical expression for the damping
factor n corresponding to thefirst two roots of Eqg. (16),
weshall seek asolution of Eq. (16) intheform w=wy, +
in, where, according to the results of the numerical cal-
culations given above, N << wy. Let us substitute w =
Wy + in into Eq. (16) and, using alinear approximation
of various powers of w with respect to n, equate the
imaginary component of the obtained expression to
zero. As a result, for the damping factor we find the
expression

5 6
_ PRy 17
n=——. (17)
81p,V
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At p, < py, for wy, we have ooé = 8y/p,R%[15], and
for the damping factor of the principa mode of the cap-
illary oscillations of the drop related to the generation
of acoustic waves we obtain

_6.3pyy°
IRV
Namely, the principal mode of oscillationsis associ-
ated with inducing the acoustic waves.

5. Let usfind the total intensity of the acoustic radi-
ation produced by a vibrating drop using the known
expression [13]

| = pZva_st, (18)

where the upper bar symbolizes the magnitude aver-

aged over the oscillation period, that is, v? isthe mean
value of the square of the vel ocities of medium particles
in the acoustic wave; integration is performed over a
closed surface encompassing the origin of coordinates.

For the integration surface we take a sphere with
radius R,, where R, > A, in which A is the oscillation
wavelength. Then in expression (10) the terms dimin-
ishing quickest with increasing R, can be dropped. To
do this, let us represent Hankel’s spherical function in
the form of a series in negative powers of its argument
asfollows[14]

h?(x) = i"* "X exp(=ix)

3 m(|r2r:r—mr31|)l (21X

m=0

(19)

Now, at large distances r away from the drop (at
kr > 1, when the sum in formula (19) may be replaced
by unity), expression (10) for the velocity potentia in
the ambient, with alowance for formulas (11) and (19),
takes the form

0, i i""*ANRP, (1)
2 HZZthff_)l(kR) —(n+1)h?(KR)

1
X —
kr

that is, the dependence of individual partial waves on
theradial coordinate is determined by spherical waves.
Inasmuch as v = Re[grad(,)], the velocity, in alinear
approximation with respect to r1, can be represented in
the form

(20)
exp[—i (knr _wnt)] ’

o sn+2 n
ANR'P
= nzzszhn 1(KR) = (n+ 1) (kR)

(21)
X 1'eXp[—I(an’ —(A)nt)] Enn
r O
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that is, in the approximation used, the velocity has only
the radial component.

Taking into consideration that (Re[Z] ) = |2°/2, we
see that to find the square of the velocity of particlesin
the acoustic wave involved in formula (18), it is neces-
sary to perform the scalar multiplication of relation (21)
by its complex-conjugate expression which can be
obtained from relation (21) by changing the sign before

AnAnMNP, (1) Pr(H) R'R”
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the imaginary unity and replacing the second Hankel’s
spherical functions h{? with thefirst ones h{", because

h® and h{" are complex conjugated functions. Ulti-

mately, for the mean value of the square of the particle
velocities in an acoustic wave we abtain the following
expression

R 100 ®
Y ‘Zzgz[thgzzl(kR) —(n+ 1)h? (kR)] [kRh( ; (KR) — (m+ 1)h( (kR)] r*

Substituting formula (22) into expression (18) and
taking in the account orthogonality of the Legendre
polynomials, for the total intensity of the acoustic

2 22
An“R™"

(22)

radiation under the constant from a vibrating drop of
constant volume we abtain

TR D RN (k) —(n + DR R () — (m = DR (kR

The expression obtained for the intensity of acoustic
radiation of avibrating drop is not quite convenient in
practical use because it involves peak values A, of the
velocity potential that are unknown under experimental
or natural conditions. To remove them, we expressathe
perturbation of a spherical drop in the form of a series
in the Legendre polynomials

&(r 1) = 5 CiPn(H)exp(int). (24)

Now, substituting formulas (9) and (24) into the
kinematic boundary condition (4), it is not difficult to
express unknown peak values A, in terms of the ampli-
tudes C,, of capillary oscillations of a drop, which can
be easily evaluated under experimental and natural con-
ditions, asfollows

|A,] = |Co(w/nR"H|. (25)

Now, using expression (23) subject to formula (25),
it is possible to obtain numerical estimates for various
situations encountered in liquid-drop systems of natural
origin.

6. Let us evaluate the intensity of acoustic radiation
of aweakly charged raindrop (W= 0.01) of aminimum
possible size with R =0.025 cm (according to [16], the
sizes of raindrops vary from 0.025 to 0.25 cm, droplets
of smaller sizes pertain to a drizzle, and larger drops
falling through air disintegrate because the action of
aerodynamic forces overcomes the surface tension; see
aso [12]). We assume that the drop’s oscillations
vibrating on account of excitation occur in the principal

(23)

mode of its oscillations (n = 2) with the amplitude C, =
0.1R. A reason for the development of oscillations of
thedrop could beits (the drop’s) collisionswith smaller
and dower flying droplets, aswell asthe hydrodynamic
attraction between drops of comparable sizes (in the
last case, the amplitude of the oscillations may be of an
order of R). In the case considered, y = 72 dyn/cm,
p;=1glemd, w,=6.1x10°s? k,=0.2cm™, k,R=4.6 x
103, In addition, we take p, = 1.3 x 1073 g/lcm?, V =
3.3 x 10* cm/s. Eventually, from formula (23) and (25)
itisnot difficult to find

4mn pZVCg R'w’

= - . 52.2x 107" erg/s. (26)
k,Rh? (k,R) —3h (k,R)|

Let us note that, for a drop of the size and charge
considered above, only thefirst four modeswill radiate
in the acoustic range, and their radiation intensity
decreases with the mode number growth (by more than
an order of magnitude in going from one mode to the
next).

Assuming that in a cubic kilometer of space occu-
pied by rain there are 3 x 10 drops of the sizes chosen
above (roughly onedropin 3cm?), it isnot complicated
to find that the total intensity of the acoustic radiationis
associated with the principal mode (n = 2) of capillary
oscillations of the drops in a volume of 1 km?® is
=0.66 erg/sat afrequency of w, = 6.1 x 10°s ™. Such an
intensity corresponds a sound level of =22 dB at the
boundary of aradiating object volume and roughly cor-
responds to the sound level of a quiet human voice.
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The frequency of capillary oscillations of the drop
decreases with increasing drop charge according to
(15). Simultaneoudly, k, and k;R will decrease, and,
consequently, the radiation intensity will also decrease.
For instance, at W = 1, the intensity | at w, = 5.3 x
10°st will be=7.6 x 1076 erg/s, and the sound level at
the boundary of a radiating object one cubic kilometer
involumeis=17 dB.

Substitution into formula (26) k, expressed in terms
of w, and w, expressed in terms of R allows oneto find
that the intensity | of acoustic radiation of from a drop
is inversely proportional to R2. This means that the
acoustic radiation of large drops, other things being
equal, will be substantially weaker. For instance, for the
largest raindrop with R=0.25 cm and at W = 0.01, the
intensity of acoustic radiation associated with the prin-
cipal mode and occurring at a frequency of 190 s* is
barely =1.8 x 10717 erg/s. Calculation of the sound level
under the same conditions as in the example above
gives avery small magnitude of =1 dB. The human ear
does not perceive such alevel of sound. The sound pro-
duced by the capillary oscillations of large dropsis per-
ceived by the human ear only at large amplitudes of the
drop’s oscillations comparable with theradius R. Inthis
case, the sound level isthe same asthat produced by the
capillary oscillations of droplets with R=0.025 cm in
the example above. It should aso be noted that, to the
range of frequencies of acoustic oscillations perceived
by the human ear, there are more than forty of the first
frequencies of capillary oscillations of adrop with R =
0.25 cm; however, their intensity isaslow asmentioned
above.

It is interesting to note that the dependence of the
acoustic radiation sound intensity, induced by a vibrat-
ing drop, on the sound speed in a medium V, the
medium density p,, and the frequency w, of the capil-
lary oscillations of a drop has the same form as the
dependence on the same parameters of the damping
factor n of capillary oscillations of a drop defined by

expression (17); namely, | ~n ~ p2m§v5. This can be
easily verified by substituting the expression for k;, in
terms of w, and V into (26). The similarity of these
dependencies mentioned above is explained by the fact

that the attenuation of capillary oscillations of adropis
associated with the radiation of acoustic waves.

The obtained estimates are also valid for cumuli. As
for fogs with amean droplet radii of about 10 ym, they
can radiate sound wavesin an audible wavel ength range
only if the charges of isolated individual dropsare close
to thelimiting onesin the sense of stability with respect
to their self-charge (when W — 4) [9, 15].

CONCLUSION

The total acoustic radiation produced by capillary
oscillations of drops in liquid-drop systems of natura
TECHNICAL PHYSICS Vol. 46
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origin may exceed the hearing threshold of the human
edar.

APPENDIX

Let us caculate the partia time derivative with
respect to time of the pressure of an electrical field on
the surface of an incompressible electroconductive lig-
uid drop perturbed by a capillary wave motion.

The pressure of an electrostatic field with the
strength E(©, t) in a medium with the permittivity € is
defined by the relation

_ £
Fo(@1) = o-E”

The sought for derivative dF/dt can be easily repre-
sented in the form

OF4(O, 1) _
at -

However, to use thisformulain the considered case,
it is necessary to find an expression for the strength of
the electrical field strength in the vicinity of the surface
the spherical droplet perturbed by the wave motion.

We shall seek the potential ® of the field induced by
the disturbed charged dropl et in the ambient space, tak-
ing into account that the potential should be aharmonic
function

€ 0E(0O, )
4HE(®’ t ot -

AD =0,
(A1)
r—ow:d—0
and satisfy the condition
r=R+& @ = const (A2

at the interface.
We represent the potential ® in the form

® = B+ 3,

where @, is the potential of an unperturbed spherical
droplet and d® is the additive an addition to the poten-
tial arising from the surface perturbation.

Then the problem formulated in (A1) and (A2) takes
the form

A(D, +5P) = 0, (A3)

_ . _Q

r=R+& ®y+0d = R

Due to the smallness of the surface perturbation

amplitude (|§] < R), let us expand the boundary condi-

tion (A4) in a seriesin the vicinity of point ¢ = 0 and,

neglecting terms of the second order of smallness, we
obtain

(A4)

r=R ¢0+6CD+E(%CDO =2

= (A5)
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Now the problem splits: the problem of finding ®

AD, = 0,
Chro - Q. (A6)
r=R® ==
and the problem of finding A®
A(BD) = 0, (A7)
= R 5D+ E(—%CDO - 0. (A8)

From Eg. (A8), taking into account that the solution
to the problem (A7) isknown, ®(r) = Q/r, it follows

—Rsb=_s9q = - Q
r=R: 0D = EarCDO = &E, = Est' (A9)
We shall seek d®d in the form of a series
n+1
Pn(1). (A10)

dD = ZDn%%

~ Substituting expression (A10) into formula (A9)
gives

r=R 3P = ZDnPnu = E;%z'

From this expression it is easy to find the coeffi-
cientsD,

11

= R%IEPn(u)sinG)d@. (A1)
0

Let us note that the coefficients D,, are small values,
of the same order as«¢.

Now let usfind the field strength in the drop vicinity
r=R+&E =-V® = -V(d,+0P).

Referring this expression to the interfacer = R+ &
and expanding the relation derived into a series in the
vicinity of the unperturbed boundary, in the linear
approximation with respect to |§|/R we find

El, o= | V(B 80)-ERVD,| . (A1)

r=R

Taking into account that the pressure of the electri-
cal field at the drop surface to within the first-order per-
turbations is expressed in terms of only of the radial
component of thefield strength accurate up to infinites-
imal quantities of thefirst order, wewrite an the expres-
sion for the radial component of E substituting corre-
sponding components of the vectors [@ , O(0P), and

GRIGOR’EV, GAIBOV

(a/or)([® o) into (A12) asfollows

Q 2Q
Elr:R+E |:S 2 Ran(n+1)Pn(U) ER n.
r=R
At this stage of consideration, it is possible to also
find an expression for the partial time derivative of the

field strength at the dropl et surface with respect to time,
namely

2Q0%
I x UEOR NS

The derivative 0D, /0t can be found from (A1l) as
follows

JE
ot

1

9D, _ Q 0%

Tl ERZ-I 5¢ Po(H)du.
]

From (A4) and (A9) it isnot difficult to obtain

- ‘I

6lil

Pn(H)dp

%zz_[AmmRm‘le(u)Pn(u)dueXp(—i wt)
i (A14)

1

= ng3 Z MA,,exp(—iwt) RmJ’ Prm(H) Pr(p)dpt

— 1
= —gn(:nexp —iwt),

where C, = RVA,.

Let us also then take into account that, according
to (A4),

R = ai S CPo(l)nEexp(-it). (A15)

Substituting formulas (A15) and (A14) into expres-
sion (A13), wefinaly find

T = 253 n(n+ DCP (W exp(w)

2Q .
—?Z nC,P,(K) exp(—wt)

- %Z n(n—1)C,P, (M) exp(—iwt).

4
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Then we obtain arelation for the sought derivative
with respect to time of the field pressure at the drop’s
surface in the form

OFg _ £ 0E" _ &, 0E
ot 81t ot 8 ot

gD

_ 200
- e Rz D,(n+ Py (W) -0

x %%z n(n—1)C,P. (1) exp(—icot)
ER'Z 0

Let us eliminate terms of the second order of small-
ness that are proportional to the products D,C,, and EC,
as perturbations of the second order. Then

atq = Q Z”(” 1)C,Py(1) exp(-iwt).

ACKNOWLEDGMENTS

The work was supported by grant 00-15-9925 of the
President of the Russian Federation.

REFERENCES

1. N. A. Fuks, Mechanics of Aerosols (Akad. Nauk SSSR,
Moscow, 1955).

2. J.W. Strutt (Lord Rayleigh), The Theory of Sound (Mac-
millan, London, 1896; Gostekhteorizdat, M oscow,
1955), Vol. 2.

TECHNICAL PHYSICS Vol. 46 No.11 2001

1357

3. H.L.Greenand W. R. Lane, Particulate Clouds: Dusts,
Smokes and Mists (Spon, London, 1964; Khimiya, Le-
ningrad, 1969).

4. Won-Kyu Phim, Sang Kun Chung, M. T. Hyson, et al.,
IEEE Trans. Ind. Appl. 1A-23, 975 (1987).

5. V. Sh. Shagapov, lzv. Akad. Nauk SSSR, Fiz. Atmos.
Okeana 24, 506 (1988).

6. L. G. Kachurin, Physical Principles of Influence on
Atmospheric Processes (Gidrometeoizdat, Leningrad,
1990).

7. PV.R. Suryanarayanaand Y. Bayazitoglu, Phys. FluidsA
3, 967 (1991).

8. A.L.Yarin, G. Brenn, O. Kastner, et al., J. Fluid Mech.
399, 151 (1999).

9. A.l. Grigor'ev, Zh. Tekh. Fiz. 55 (7), 1272 (1985) [Sov.
Phys. Tech. Phys. 30, 736 (1985)].

10. S. O. Shiryaeva, M. |. Munichev, and A. |. Grigor’ev, Zh.
Tekh. Fiz. 66 (7), 1 (1996) [Tech. Phys. 41, 635 (1996)].

11. S. O. Shiryaeva, Zh. Tekh. Fiz. 69 (8), 28 (1999) [Tech.
Phys. 44, 894 (1999)].

12. A.l. Grigor'ev, V. A. Koromysov, and S. O. Shiryaeva,
Zh. Tekh. Fiz. 70 (7), 26 (2000) [Tech. Phys. 45, 840
(2000)].

13. L. D. Landau and E. M. Lifshitz, Mechanics of Continu-
ous Media (Gostekhteorizdat, Moscow, 1953).

14. Handbook of Mathematical Functions, Ed. by
M. Abramowitz and I. A. Stegun (Dover, New York,
1971; Nauka, Moscow, 1979).

15. S. O. Shiryaeva, A. |. Grigor'ev, and |. D. Grigor’eva,
Zh. Tekh. Fiz. 65 (2), 1 (1995) [Tech. Phys. 40, 117
(1995)].

16. L. T. Matveev, Course of General Meteorology. Atmo-
sphere Physics (Gidrometeoizdat, Leningrad, 1983).

Trandated by N. Mende



Technical Physics, Vol. 46, No. 11, 2001, pp. 1358-1366. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 71, No. 11, 2001, pp. 12—20.

Original Russian Text Copyright © 2001 by Zharov, Grigor’ev.

GASES AND LIQUIDS

On the Capillary Vibration and Stability of a Charged Bubble
in a Dielectric Liquid
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Abstract—The capillary vibration and stability of acharged bubble against infinitesimal volume and shape per-
turbations when the bubble is immersed in a viscous incompressible dielectric liquid are studied. The range of
physical parameters where the noncentrosymmetric radial and axisymmetric surface motions of the bubble are
unstable is found. Asymptotic analytical expressions for the damping constant of the axisymmetric capillary
vibration in the low- and high-viscosity approximations are derived. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Investigation into the capillary vibration and stabil-
ity of charged bubbles in a liquid is of both scientific
and applied interest [1]. Researchers come up against
the problem of charged bubbles when studying acoustic
and hydrodynamic cavitations, electrical discharge in
liquids[2, 3], flotation and electroflotation [4], filtering
[5], optical breakdown in liquids[6], bubbling [7], and
heat exchange [8]. This problem also arises in the tech-
nology of separating salts of heavy metals from water
solutions by electrical discharge [9] and in cavitation-
assisted fusion of light nuclei [10, 11].

Microbubbles appearing in these applications are
often charged. Charging can be associated with differ-
ent mechanisms. In the case of electrical discharge, a
plasma-filled cavity forms. If the characteristic times of
diffusion for charge carriers of opposite sign in the
plasma are different and smaller than the characteristic
time of recombination, a part of the charge will remain
on the cavity walls; that is, the cavity will be charged.
For bubbles arising in the chamber of an electrohydro-
dynamic pump, the settling-out of electronegative
impurity molecules, which isresponsible for electrical-
to-mechanical energy conversion [12], seems to be a
more plausible mechanism of acquiring an excessive
charge. Thus, two basic mechanisms of bubble charg-
ing can be distinguished: (1) the settling-out of ions
coming from the interior of the bubble to its walls and
(2) the settling-out of ions from the surrounding liquid
or impurity ions on the bubble walls. Inthe former case,
the amount of charge depends largely on the recombi-
nation-to-diffusion time ratio; in the latter, on the capa-
bility of the interface to adsorb ions of the liquid or
impurity ions. In either case, the amount of charge on
the bubble may be significant and affect its stability.

(1) Let abubble of radius R, and charge Q acquired

by either of the two ways form in aliquid of density p,
viscosity v, and permittivity €. The bubble contains a

perfect gas under a pressure Py, that obeys the poly-
tropic law with a polytrope index y and also a saturated
vapor under a pressure P,,. Let the liquid pressure
around the (immobile) bubble be P,, and the surface
tension at the liguid—gas interface be o.

In the general case, such abubbleisnonequilibrium
and moves under the action of the resulting pressure
[13]

Ro", @ 20

P(R) = Pv*Poripd * o R

Pa, (1)

where R is the current radius of the bubble executing
centrosymmetric vibration. If P(R) > 0, the bubble
expands; if P(R) <0, it shrinks; and if P(R) = 0, the bub-
bleisin the equilibrium state.

We will solve the boundary-value problem of the
arbitrary motion of the charged bubble wall in the lig-
uid. It isnatural to assume that the motion of the bubble
boundary will cause motions in both the liquid and the
gas—vapor mixture. However, in view of the actual den-
sities of liquids and gases, the gas motions can be
neglected in the first order of smallness. In fact, using
the Cauchy—L agrange integral, we find that the motion
of the medium changes the pressure by a value dP ~
pdad/ot, which is proportiona to the density of the
medium. Since the density of aliquid is three orders of
magnitude larger than that of a gas in most cases, the
contribution from the change in the gas density to the
pressure balance at the interface can be neglected.
Therefore, we will consider only the motion of the sur-
rounding liquid. The gas inside the bubble will be con-
sidered immobile.

Mathematically, the problem stated is represented
by the continuity equation for the liquid [14]

divu = 0 2
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and Navier—Stokes equation
du
ot
where the parenthesized vectors mean the scalar prod-
uct.
At the interface, described by the equation

+(UV)u = —%DPwAu, 3)

F(r,t) = r=R(t)-&(3.9,1), (4)
the boundary conditions
dF _ OF _
a = at +uVF = 0, (5)
t(nD)u+n(tV)u = 0, (6)

P+P,+2pvn(nV)u-P,-P,—P, =0, (7)

should be satisfied. Here, T and n are the vectors tan-
gential and normal to the bubble surface, respectively;
P, is the pressure due to the surface tension; P is the
gas pressure in the bubble; and Py, isthe electrical pres-
sure.

Set (2)—(7) should be complemented by the equation
of state for the gas-vapor mixture in the bubble

P(V) = Py+Py, (8)

condition of the bubble volume constancy during shape
variations due to vibration

fav = %T[Rs(t) ©
\%

and condition for the center-of-mass immobility

frav =0, (10)

where integration is over the bubble volume.

Recall that wewill consider both theradial vibration
of the bubble, which is attended by a change in itsvol-
ume, and the vibration due to the deviation of the bub-
ble shape from spherical with the bubble volume
remaining unchanged [see Eq. (9)].

(2) Set (2)«10) completely describes the motion of
aliquid near an immobile gas—vapor bubble; hence, its
solution yields the complete spectrum of possible
vibrations of the immobile bubble in the liquid. The
problem stated is essentialy nonlinear; therefore, we
will linearize it with respect to the deviation of its shape
from spherical, §(3, ¢, t) and the field velocity in the
liquid, u(r, t) (both parameters are of the same order of
smallness).

Continuity equation (2) is initialy linear. The
Navier—Stokes equation after linearization takes the
form

Ju 1

— = —=VP+VAu.
p

ot (1D
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The linearization of the kinematic boundary condi-
tionyields
dR  d¢

= Pe—t = = .

r = R(t) i u,

Upon linearization, it will suffice to take dynamic

boundary condition (6) on the spherical surface of the

bubble r = R(t). For this surface, the radia unit vector e

serves as the normal vector n. As the tangential vector

7, one should take successively the polar unit vector ey
and the azimuth unit vector .

For t = ey, we obtain

(12)

r= RO e T

(13)

For t =&,

du, 1 0u, U, _
3r rsngoe T 0.

The linearization of the dynamic boundary condi-
tion yields

r = R(t): (14)

9
F=R(t) +&: P+Po—zpva—‘f—Pv—Pg—Pq:o.(ls)

The condition of the constancy of the bubble volume
when its shape is other than spherical due to vibration
isgiven by

£dQ = 0, (16)
|

and the condition of the center-of-mass immobility
takesthe form

Iz edQ = 0, (7)

where Q is solid angle.

(3) To scalarize the linearized set of equations (2)
and (11)—17), we decompose the vector velocity field
into three mutually orthogonal components: potential,
poloidal, and toroidal [15]:

u = Ny (r, t) + Noo(r, t) + NaWs(r, t),  (18)
where the projectors N; and their Hermitean conjugates
N/ are selected as follows:

N, =V, N,=Vxr, Ng=Vx(Vxr),
+ + + (19)
N; ==V, N, =rxV, N;y=(rxV)xV.

Then, we can write the orthogonality condition for
these operatorsin the form

NN, =0 a jzi. (20)
In view of (19), continuity equation (2) takes the
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form
Nju = 0. (21)

Substituting (18) into (21), taking into account
orthogonality condition (20), and bearing in mind that
N; N, = —A, we come to the equation for the potential
function:

Ay, = 0. (22)

The solution of (22) for theliquid (at r > R) iseasily
obtained as the seriesin spherical functions:

© m=n
nm(t)

Wy(r,t) = z z el

n=0m=-n

In expression (23), we separate the zero-mode
(n=0) terms that correspond to the radial vibration of
the bubble boundary and to the changes in the bubble
shape that do not alter its volume:

Yom(9,0). (23)

_ Caolt)
Py(r,t) = _9.?__
=S St (24)
z Z nnnll Youm(3, 9) = (r) lIJ(S)

=1m=-n

where l.|J(r) describes the radial vibration and

¢ describes the changes in the shape at constant vol-

ume.
With regard for (24), expression (18) can berecast as

u = N (r, t) + N (r, 1)

+ NoW,(r, t) + Nas(r, t).

This form will be used in the subsequent analysis.
Before proceeding to the scalarization of the Navier—
Stokes eguation, we represent the pressure in the liquid
asthe sum of two termsresponsible for theradia vibra-
tion [superscript (r)] and for the changes in the shape
[superscript (s)] (by analogy with the potential compo-
nent ), of the velocity):

(25)

P =pP"+pY (26)
Let usintroduce the function H:
VH = %VP. 27)

Assuming that a change in the pressure does not
affect the density of the liquid in (27), wefind in view
of (26)

P-p, PY+pO_p
P p

_ P(") P P(S)

P

H =

(28)
= H(r) + H(S)

ZHAROV, GRIGOR’EV

Substituting (25) into Navier—Stokes equation (11)
and using (20) and (27), we arrive at three equations for
the scalar functions:

~ aLlJ(") allJ(S)
A T ()
%”-:-i =vay; | =23, (30)

Substituting (28) into (29) and taking into account
the orthogonality of the spherical functions (i.e., equat-
ing the terms proportional to various spherical func-
tions) yields

aw(f)
() — _
P"' = P,—p—— 3 (31)
an(S)
(s) _ -p
P = p—k-. (32)

Theformer equation correspondsto theradial vibra-
tion, and the other describes the changesin the shape at
constant volume.

The solution of Eq. (30) limited at r — o has the
form [16]

© m=n .
Cln H[ Yome
nzOm—z—n "

j =23,

where k,(2) isthe modified spherical Bessel function of
the 3rd kind and Sis the eigenvalue having the dimen-
sion of frequency.

To scalarize the boundary conditions, we will take
advantage of the expressionsfor the velocity field com-
ponents in the spherical coordinate system [15]:

(33)

an(") al-lJ(S) 1
U= Tt ot rlaWs
_ 109 1 09, 190Wg
Y =733 "Sno oo rar s (39

by = L, 1 00Uy
® " rsnd 00 09 rsindar0U 99Dy
where A, isthe Laplacian angular part.

The substitution of (34) into scalarized kinematic
boundary condition (12) yields

at ot at at AQ%

From Eq. (35), which relates the scalar functions U,
and the surface perturbation &, and relationships (23)

r = R(t): (35)
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and (33), it readily follows that & can be represented as
the infinite series in spherical functions:

© m=n

E = z z an(t)Ynm-

n=0m=-n

Note that condition (16) (the constancy of the vol-
ume during capillary vibration) yields Zy(t) = 0 and
condition (17) (the center-of-mass immobility),
Z;(t) = 0. Therefore, summation in (36) must start
with n = 2. Since (35) is related to (23) and (33), one
can conclude that summation in the series for the func-

tions P¢¥ and 5 also must start with n = 2. Thus,

(36)

g = gzm:j_nznm(t)vnm, @)
0=y z v 0.0, @
Wy = i mzn Corks QFDY e’ (39)

In view of (37)—«39) and the orthogonality of the
spherical functions, expression (35) can be written in
the form of two equalities that describe the centrosym-
metric capillary vibration of the bubble (taking place at
the varying volume) and the axisymmetric capillary
vibration of its shape at constant volume:

al.IJ(r)
r= R(t) =5 (40)
0F _ WP 1
The substitution of (34) into (13) and (14) yields
2 zmﬁ v,
(42)
ro0 0o _

T aq%'a?m% =0
Li%ﬁdﬁm+az S22+ D)o
sndapgorr O 5.2 o

(43)
0 Do b _
‘raagé‘rﬂr% =0

These equations must be solved on the spherical sur-
facer = R(t) of the bubble.
TECHNICAL PHYSICS Vol. 46
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Let us apply the operator (1/sind)(dsind/08) to
Eq. (42) and the operator (1/sind)(0/0¢) to Eq. (43) and
then combine the equations to obtain

_ o, 9’ by 1 @4
r = R(t): ZatD

Applying the operator (1/sm3)(6/6¢) to Eq. (42
and the operator (1/sind)(0sind/03d) to Eq. (43) and
then subtracting the equations, we obtain

_a_BI_J_QD =0
orUrtd '

The Laplacian and electrical pressures, likethe pres-
surein the liquid, can be represented as the sum of two
terms [17]. The first one is proportional to the zero-
order spherical function, and the other is the seriesin
spherical functions starting with the second-order func-
tion:

r = R(t): (45)

© m=n

R(t)z z (n=1)(n+2) )

2m=-n

X Zom(t) Yam = PS + PY,

_ 20
=T

© m=n

_ &
P 1
T gmeRY(t) T AR (t)z 2 (=D

n=2m=-n (47)
X Zyn(t) Yom = Pg + P

Inview of (34), (46), and (47) and the orthogonality
of the spherical functions, Eq. (15) is split into two
equations:

2,,(r)

ar? (48)

)
r = R(t): P+ PP —2pv

—Py—P,—P{ =0,

r = R(t): P +pPY

49)
1 0 _p© — (

Eventually, the problem being solved is subdivided
into two problems: determination of the centrosymmet-
ric radial vibration of the bubble and finding the spec-
trum of capillary waves on the surface of the constant-
volume bubble.

(4) (i) Consider the former problem. Substituting the
expression lIJ(r) = C(l)o(t)/r into kinematic boundary
condition (40) and determining the constant Cg, (t), we
obtain

0 - _RU(OAR()
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Subgtituting (50) into dynamic boundary condition
(48) and taking into account (1), (31), (46), and (47), we
arrive at the equation for the radial motion of the bub-
bles:

R(t)d R(t) + 2%‘3@?)5

(51)
L 4V dR(t) 1
TRO dt

Equation (51) isan ordinary nonlinear second-order
differential equation. It follows from the equations of
linear hydrodynamics and coincides with the well-
known Raleigh equation (which is derived from the
nonlinearized Navier—Stokes equation) up to the coeffi-
cient beforethefirst-order derivative squared (this coef-
ficient does not influence stability analysisin the linear
approximation). The study of the radia motions of a
bubbleinaliquid (see, e.g., [13]) involvesthelineariza-
tion of Eq. (51) in the vicinity of the equilibrium state
(point of rest), which meets the condition P(R) = 0. In
this case, the bubbleradiusisgiven by R(t) = R+ dR(t),
where OR(t) is of the first order of smallness. Then,
Eq. (51) isrecast as

F’(R(t)) = 0.

d5R(t) 4Vd5R(t)
dt? R dt

The characteristic equation for ordinary linear dif-
ferential equation with constant coefficients (52) has
the form

_1dP(R)
p dR

5R(t) = 0. (52)

2, 4v, 1dP(R) _
R)\+R)\ 5 dR =0, (53)
hence,
_2v 4 + LdP(R)
A= Rzi = pR IR (54)

It is seen from (54) that the radial motion of the bub-
ble (~eM) can be both stable and unstable depending on
the magnitude and sign of the derivative dP(R)/dR (the
sign of thisderivative depends on a specific equilibrium
state of the bubble). In-depth stability analysis for the
radial motion of the bubble has been described in [13],
and we will not dwell oniit.

(ii) Now let us find the spectrum of the capillary
vibration of the bubble shape at constant volume. In our
stability analysis, we will assume that the surface per-
turbation & and the potential function §{¥ exponen-
tialy vary with time (e%). Because of this, we put
Z.(t) = Z.e3and C., (t) = C. e in (37) and (39).
Bearing in mind that dR(t) in the expression R(t) = R +
OR(t) is atime-varying quantity of first order of small-
ness, we refer boundary conditions (41), (44), and (49)

ZHAROV, GRIGOR’EV

to the equilibrium state r = R. Then, substituting (37)—
(39) into (41) yields

n+1 n n+1
San+(Rn+2)Cnm (n+D), Q[I%Cnm = 0. (55)

With regard for the recurrencerelations for modified
spherical Bessel functions of the 3rd order,

dkn(2)
—= = k(@) —kna(2),
d’k,(2) n(n—1) 2 (50)
il R s NORSUC!
the substitution of (38) and (39) into (44) gives
2(n+2)C DS+2(n—1)(n+l)E
Rn+3 EC RZ 0
(57)

OS2 S OSH|ce -
xknﬂ/;%+R£kn+laﬂF%}Cnm—0.

Finally, the substitution of (38) and (39) into (49) in
view of (32), (46), (47), and (56) leads usto

(n-1) Q*
R? [O(MZ) 4n8R3}an

p [S+ 2v(n+ 1)(n + 2)}

n+1

2pvn(n+1)a[ H[F%
e = 0

Equations (55), (57), and (58) make up a set of uni-
form linear equations for the unknown coefficients Z,,,

Ck and C2 . This set will have anontrivial solution

if and only if its determinant equals zero, which leads
to the dispersion relation

2vS§(n+1)(2n+1 2v(n+2)(n-1

<4 2vY( RZ( )%J, ( Rg( )E

+(n+1)(n—1)(n+2)0(
pR’

+@%Sz_2v$(n+1)(n+2)(n—l)
R R’

(58)

n 2v(2n+ 1)
%_ R U

(59)

L (n+1)(n- 1)(n+2)and<n+1(J_'lR)
pR’ Yk (R >

2001
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where
Q2
4me(n+2)R®

Equation (59) describes the spectrum of the capil-
lary vibration of the bubble surface at constant volume.
This equation must be analyzed numerically; however,
analytical expressions can be derived in the asymptotic
approximations of low- and high-viscous liquids.

(5) Consider the case of alow-viscousliquid. Mod-
ified spherical integral-order Bessel functions of the
3rd kind are given by [16]

a, = 0—

k(2) = "Zez Z kf?; k&),(z 2"

If the viscosity of the liquid is so low that v < R?S,

the argument z = JSV'R of the spherical cylindrical
function is much greater than unity (z> 1). Then, from
(60), one readily obtains the asymptotic relation

n+1(z) u Dllj
o Tz tooo

Substituting (61) into (59) and leaving the terms of
first order of smallness with respect to viscosity, we
come to the dispersion relation

245, 4v(n+ 1) 2/ _2vm
§‘+D = = DSZ+%+ R el

(62)
y (n+1)(n-21)(n+2)a,
pR’
Directing the viscosity to zero in (62), we deduce
the expression for the frequency of the capillary vibra-
tion of the bubble in perfect liquid:

+1 1)(n+2 .
gz 4 [(MFD(=D)(n+2)a, _ sicoy,
pR
It follows from (63) that the bubble is unstable
against deformation at constant volume if a, < O.
Within our model, this condition should be met jointly

with the condition P(R) = O; thus, we arrive at the set of
equations

(60)

(61)

= 0.

(63)

2
LSSO’
anie(n+ 2)R

3y 2
20
PR = Py Pul e

Equation (64) implies that the bubble becomes
unstable when the electrical pressure equals the Lapla-
cian pressure and the pressure of the gas—vapor mixture
equalsthe pressurein theliquid. Physically, such acon-
clusion is quite obvious: if the pressure of the mixture

a, = 0—
(64)
-P, = 0.
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in the bubble exceeds the pressure in the liquid, any
thermal perturbation of the surface shape is eliminated
because of the pressure drop between the bubble and
the liquid; if the pressure drop has the opposite sign,
any thermal perturbation of the surface shapewill grow.

In view of the circumstance that the second modein
(64) may lose stahility first, one easily obtains the con-
dition of bubble instability against shape variation:

Py
Poo - PV.

2
1l6meoR,

In a viscous liquid, surface shape variations will
decay because of viscous energy dissipation. Thus, the
frequency of the surface vibration of thebubblein avis-
cous liquid can be represented in the form S= +iwy, +
0S, where 8Sis of first order of smallness with respect
to viscosity. Substituting this expression into (62) yield
the correction to the frequency

v(n+2)(2n+ 1).

5S = =

(65)

This correction defines the damping constant for the
surface vibration of the bubble in alow-viscous liquid,
which was calculated long ago by Lamb [18].

(6) For the case of ahigh-viscousliquidv > R?S, the
argument of the cylindrical function tends to zero.
Then, only the higher-order terms of the singular part in
series (60) must be left:

K (z) = - 0N (2n-1)!
O ey i (66)
L_ (2n-2) odl Ao
(n—2)121(22)"" 2" 002D
k(2= TE O _(n+2)  (2n+1)
(2 = % E{n+1)!(2z)”+l+ n!(22)" (67)
(2n)! 01loo
T e
From (66) and (67),

Substituting (68) into (59) yieldsthe dispersionrela-
tion for the capillary vibration of the bubble at constant
volume for a high-viscous liquid:

<24 2vS(n+2)(2n +1)
R (2n+1)

0. (69)

o N
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From (69) at VR > wy, one readily obtains

22
_ R 2n+1 nln
= _ O===,
2T T g 0 )
S, = _2v(n+2)(2n°+1) | iy

R Ly

It follows from (70) that the bubble becomes unsta-
ble (i.e, S=0) when a, < 0, or w; < 0 (asfor the case
of low viscosity), but the instability increment here is
small, since wy, < VR Itisworth noting that theingtability

increment for acharged bubbleisinversely proportional to
the viscosity, asfor acharged viscous drop [19].

2n+1

At oog >0, both roots of (70) are negative and define

the damping constants of the capillary vibration of the
bubble surface. The first root is much larger and is of
greater interest from the physical point of view (as for
the case of waves on the planar surface of aviscouslig-
uid [20]), since vibrations related to the second root
rapidly decay.

(7) The conclusions following from the asymptotic
considerations are supported by numerical calculations.
They were performed by jointly using Egs. (59) and

ReS
3,
0
1
3L 2
3

ZHAROV, GRIGOR’EV

P(R) = 0 written in dimensionless variableswhere R, =
p =c = 1andal the physical parameters are expressed
in terms of their characteristic scales:

%O, R, Q* = JRo,

v*=J@, S"=F.
P PR

In this basis, the problem is characterized by three
dimensionless parameters: the Rayleigh parameter W =
Q?/(161¢), the parameter that describes the pressure in
the bubble B = Py/2, and the parameter that definesthe
pressure in the liquid B= (P, — Py)/2. Depending on
the values of these parameters, the equation P(R) = 0
has one or two solution or does not solutions at all, as
follows from (1) and Descartes' rule of signs [13]. If
B> 0 and the other two parameters are arbitrary

(region A), we have one solution. In region B (B, <
B< 0 and the Rayleigh and gas parameters are smaller

than their critical values), two equilibrium states arise.
Finally, in region C (where B< Brg, W> W, and 3 >

B, no solution is found.

P* = R =

ImS

Fig. 1. Complex frequency vs. Rayleigh parameter forn=2,y=1, $ = 0.2, and ;= 1. v = (1) 0.005, (2) 0.06, and (3) 0.1.

ReS

ImS
1
25+
2
O Il
0.5
2 B
25 +F
1

Fig. 2. Complex frequency vs. parameter 3 that characterizes the gas pressure in the bubbleforn=2,y=1, W= 0.1, and = 1.

v = (1) 0.05and (2) 0.3.
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ReS
2 L
0.3 w
O 1
2
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1
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ImS

1
3 L

2
O 1

0.3 w
2
3+
1

Fig. 3. Sameasin Fig. 1 for Bj=-0.5and v = 0.1. Equilibrium states with a (1) smaller and a (2) larger radius.

ReS
2k
0.3 B
0 |
2
2L
1

Fig. 4. Same asin Fig. 2 for W= 0.05, B7=-0.5, andv = 0.1.

ReS
2 L
-0.8 0 /
0 ' Po
O
oL 7

-2.5

ImS

2.5

i

2
0.3 B

2
?

Equilibrium states with a (1) smaller and a (2) larger radius.

ImS
1
2 F
0.8 2 0
_0. B
0 : .
2
2k
1

Fig. 5. Complex frequency vs. parameter Bjthat characterizesthe pressureintheliquidforn=2,y=1, W=0.2,=1,andv =0.1.

Equilibrium states with a (1) smaller and a (2) larger radius.

In region A, the frequencies of the surface vibration
and the damping constant decrease with increasing W.

At acertain critical value of W= ¥/B/B, , the damping
constant vanishes and then becomes negative, turning
to the instability increment (Fig. 1). The instability
increment decreases as the viscosity grows. In this
range, the stability of the bubble considerably depends
on theinitial pressure of the gas. When the gas pressure
decreases, the rea part of the complex frequency also
(asinthe case of increasing Rayleigh parameter) passes

TECHNICAL PHYSICS Vol. 46

No. 11 2001

through zero, causing instability, as follows from the
curves S= SR(B)) (Fig. 2).

In region B, the bubble is absolutely stable against
surface perturbations. For example, when the Rayleigh
parameter grows, the capillary vibration frequency and
the damping constant decrease for the equilibrium bub-
blewith alower radius and, conversely, increase for the
bubble with a larger radius (Fig. 3). The reason is that
when the Rayleigh parameter grows, two solutions of
the equation P(R) = O converge at a boundary point
between regions B and C and then disappear. An
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ReS

0.5

ZHAROV, GRIGOR’EV

ImS

Fig. 6. Complex frequency vs. viscosity for n =2, y=1, and W= 0.05. B7= (1, 2) 0.6 and (3) -0.6. B =

3, equilibrium state with alarger radius.

increase in the gas pressure also does not affect the
shape stability of the bubble, asis seenin Fig. 4.

In region B, an increase in both the pressure in the
liquid and the Rayleigh parameter does not affect the
shape stability. As follows from Fig. 5, an increase in
the pressure in the liquid decreases the frequencies and
the damping constant for the equilibrium bubble with
both asmall and alargeradius. However, for 7= 0, the

larger-radius equilibrium state disappears, while the
smaller-radius one passes to region A and soon
becomes unstable.

The complex frequency vs. viscosity behavior is simi-
lar for any of the regions and equilibrium states. Specifi-
caly (Fig. 6), thecapillary vibration frequenciesdrop with
increasing viscosity. The damping constant first linearly
increases in the low-viscodity range and then garts to
decrease, which is in good quditative and quantitative
agreement with the above asymptotic cdculations.

CONCLUSION

The bubble becomes unstable against shape varia-
tion only if the pressurein the liquid exceeds the pres-
sure of the saturated vapor—gas mixture in the bubble.
Conversely, the bubbleis unstabl e against volume vari-
ation only if the pressure in the liquid is lower than in
the bubble. The charge on the bubble significantly
diminishes the critical pressure in the liquid at which
shape instability occurs. The more viscous the liquid,
the smaller the instability increment. The effect of vis-
cosity on the damping constant is different in low- and
high-viscous liquids. In the former case, the damping
constantsfor the surface and radial components|linearly
increase. At a high viscosity, the damping constant for
the surface component starts to decrease, while that for
the radial component continues growing.
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Abstract—The exact solution of the equation for steady-state diffusion of a three-component mixture is pre-
sented for a closed system of two capillary-connected bulbs. The solution, obtained in the whole range of con-
centrations, makes it possible to compute the concentration profiles of the components and the distribution of
the mixture density over the capillary. It is shown that an extremum of the mixture density may arise inside of
the capillary when the components greatly differ in diffusion coefficients. Specifically, when the mixturein the
lower bulb is denser than in the upper one and the stratification of the system is stable, an inverse density gra-
dient region may occur in the capillary, this region being unstable against gravitational convection. © 2001

MAIK “ Nauka/Interperiodica” .

Free convection in an inhomogeneous three-compo-
nent gas mixture in the gravity field when the mixture
at the bottom is denser than at the top was discovered in
1966. As has been demonstrated in pioneering works
[1-3] and subsequent experimental studies [4, 5], the
convection shows a number of intriguing features.

(1) In passing from stable to convective diffusion,
the component fluxes grow several tens or several thou-
sands times.

(2) The convection rate reaches amaximum at a cer-
tain pressure (=3 MPa) and then is reduced nearly to
zero as the pressure further increases.

(3) The anomal ous separation of the mixture when a
heavy component penetrates through the capillary
faster than alight one has been observed.

(4) Three convection conditions—monotone, oscil-
latory, and random—have been observed.

(5) The recurring kinetic phase transition has been
discovered: during a single event of three-component
mixing, the conditionsin the two-bulb system alternate
in the order stable diffusion —» convection — stable
diffusion — convection — stable diffusion as the
difference in component concentrations decreases.

To find reasonsfor the anomal ous convection, asys-
tem of equations for three-component steady-state dif-
fusion through a capillary was solved in the case when
one of the components has a low concentration [5].
However, for finite concentrations of the components,
the solution turns out to be physically unreasonable: the
concentration profile of one of the components shows
an extremum in the capillary. In this paper, the exact
solution for a system of equations for steady-state
three-component diffusion throughout the concentra-
tion range is presented for a closed system of two cap-
illary-connected bulbs.

We consider steady-state diffusion of a three-com-
ponent mixture of ideal gases through along capillary:
L > R, where L and R are the capillary length and
radius, respectively (Fig. 1). For definiteness, the com-
ponents will be numbered by subscriptsi = 1, 2, and 3
so that m; <m, < m,, where m is the molecular weight
of theith component.

Let the concentrations of the components and the
pressures in the bulbs be kept constant. Then, three-
component steady-state diffusion through the capillary
is described by the system of equations

T = const; ¢ =1, n)cu =0;
ZI iZII

div(ncu;)) = 0; i =

3
SCu—u
Z DIJ(uI u])

i=1

where T is the gas temperature; n is the gas density,
which varies along the capillary due to the barotropic

1, 2; (1)

—grad(c); i =1,2,

1 2

r
ZR‘ ,
z
C 1 C2i

0
0

r
z

Fig. 1. Diffusion through the capillary: (1, 2) bulbs.
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effect and gravitation; ¢; is the molar concentration of
the ith component; u; is the vector of the averaged
velocity of the ith component; and Dj; is the coefficient
of interdiffusion for theith and jth components. Thelast
equation in (1) is known as the Stefan-Maxwell equa-
tion. System (1) is complete, becauseit involvestwelve
independent equations and twelve unknowns (c;, U;).

Since the capillary is long and the gas as a whole
does not move in it, the components of the mixture be
uniformly distributed in the transverse direction, so that
one should solve the one-dimensional diffusion prob-
lem. The averaging of system (1) over the capillary
cross section yields the following system of equations
(the temperature equation is omitted):

ZCi =1, aniui = 0;

Y @)

ncu, = const; = j, 3

dc;

3

% —u) = ——
z Dij(UI uj) dzy |
j=1

where J; is the total flux of the ith component through
the capillary, Sisthe channel cross-sectional area, and
ji = ncu; isthe ith component flux density.

The boundary conditionsfor system (2) are given by

=12,

C1(0) = Cyy, ¢(0) = Cyy, cy(L) = Cyy, 3)
Cy(L) = Cy,
where C, is the component concentrations (i = 1, 2 is

the component number and k = 1, 2 isthat of the bulbs).

In view of the notation introduced into (2), one can
transform the Stefan—-Maxwell equation to
° dc

1, . . dg . _
n_Dij(CjJi—CiJj)——dz, =12 (4)

j=1
Taking into account that j; = const and j3 =—(j; + ),
we get the system of linear inhomogeneous equations

with constant coefficients for two independent concen-
trations:

dCl 0l 10 +C,j ol _1p._ :J_l
dz cl 2ED12 Dlp 2 1ED12 Dyl Dy’ )
o0l _10,9% .0l 1p. =2
' 2ED12 sz dz C2] 1ED12 sz Dy’

where |; are arbitrary constants of integration that
should be determined from the boundary conditions.

The solution of a system of linear inhomogeneous
equations is the sum of the particular solution of the
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inhomogeneous system, Cg;, and the general solution of
the homogeneous system, c,;:

Ci = Cgi * Coi

The general solution of the homogeneous system
can be written as

Coi = ZAlieSZ- (6)

we will obtain
S=0 S =A. @)

Substituting (6) and (7) into the initial system of
equations yields the expressions for the coefficients A;
eventually, the general solution of the homogeneous
system can be written as

_ Dl )\z
coi(2) = j,K, + 3= - =0 ,
01(2) = J1K4 D, 14]
(8)
Dl )\z

Cp(2) = j.K,+ ,
2(2) = K, D, 24]

where K; are constants of integration.

The partial solution of the inhomogeneous system
can be found as alinear function of z

. B
Cri(2) = _Jlle

B D,(1-B)
~ A(Dy3—Dy)

The genera solution of inhomogeneous system (5)
isthe sum of the partial solution of the inhomogeneous
system, c;, and the general solution of the homoge-
neous system, cy;. The constants of integration K; and j;
should be determined from boundary conditions (3).
The fluxes j; cannot be expressed in terms of the con-
centrations at the ends of the channels, and the values
of K; are obtainable from the first and second boundary
conditions (3) in the form of

1 10 0l
+ -
= tbufh; o P Calhy

(9)

Cra(2) = 12

1m
D,41] 10

= X(Clljz +Cpojy).

The flux densities j; can be found by numerically
solving the set of the penultimate and last equations
TECHNICAL PHYSICS Vol. 46
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THE EXACT SOLUTION OF THE EQUATION FOR DIFFUSION

from boundary conditions (3). The resulting solution
can be used to calculate the mixture density profile in

the capillary:

p(@) = 3 nmai(2), CED

here, we neglect the diffusion barotropic effect because
of its smallness in a continuous medium. Substituting
concentrations (8) and (9) into (11) and differentiating
the resulting expression, we obtain the position z,, of
the density extremum in the capillary:

Zo A
E VB E 12
— InG - p TR 12)
k[ - 5peme b~ p M
wherepV =) . m;j;isthedensity of the massflux from

the bulb containing the denser mixture to that with the
mixture of lower density.

The extremum is due to the exponential termin (8),
which becomes a constant when

i, oy Js
D23 D13 D12
in this case, the density extremum is absent.

To clarify the type of the extremum, one must cal cu-
late the second-order derivative of the density with
respect to the z coordinate:

_0,

a4
20H|
_dz 27 (13)
- ovQ J1 + I s O
PVIB,,Dy; ' DDy DDl

The value of the second-order derivative at the
extreme point is obviously nonzero; hence, this is an
extremum, rather than an inflection. However, we can-
not predict the sign of the second-order derivative; in
other words, both the maximum and the minimum of
the mixture density may occur in the capillary.

Natice that only the density of the mixture may
show an extremum: the concentration of the compo-
nentsis a monotonic function of z, decreasing from the
bulb with a higher concentration to that with a lower
one. Thus, the concentration profiles in [5] are incor-
rect.

For diffusion in a vertical capillary (in the gravita-
tional field), the density extremum in the capillary may
result in the convection instability of the diffusion pro-
cess even when the lower density mixture is at the top.
The experimental investigations into the convective
instability of diffusion of various three-component gas
mixtures through a vertica capillary have been
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_P_
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026+ (b)
0.24
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: 0.16 T
0 0.5 L0 0 0.5 1.0

z/L

Fig. 2. Ar<0.7 He + 0.3 R12) mixture (R12 is Freon used
in rf plasma etching). (a) Concentration profile along the
capillary and (b) density profile of the three-component
mixture at n = 1. z, was caculated with (12). je =

-4.238 x 10° m/sand j, = 4.247 x 107° m/s.

1.0k | 0.380
|
- Zex
|
05 , 0.365
|
|
11
0 0.5 1.0 0.350

Fig. 3. Sameasin Fig. 2 for N;—0.38H, + 0.62CO,) mix-
ture, j, =-2512x 10> m/s, and N, =2.896x 10 m/s.

reported in [5]. Thediffusion instability showed up asa
significant rise in the flux of the components through
the channel as compared with molecular diffusion. The
compositions of the mixtures and the concentrations of
the components for which the instability appeared were
listed in [5].

The profiles of the density in the capillary were cal-
culated with (8) and (9) for several mixtures used in the
experiments [5] (see Figs. 2-5). Convection has been
experimentally observed in these mixtures.

The capillary length L has no effect on the shape of
the concentration and density profiles; therefore, all the
computations were performed for the unit length. For
the same reason, we can obtain the concentration and
density profiles for any segment of the z axis (Figs. 2—
5) if the proper concentrations are kept in the bulbs.

The stability against gravitational convection is
always disturbed [5] when the density extremum in the
capillary occurs (Figs. 2-5). Thus, in the process of dif-
fusion in athree-component mixture, gravitational con-
vection is due to the minimum of the mixture density
inside the capillary. Here, two points are noteworthy.
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(b)

0.5 1.0

Fig. 4. Same as in Fig. 2 for Ar—(0.7 He + 0.3 Freon 12)
mixture. j,, = —4.829 x 10° m/s and jy = 4.833 x

107 mys.
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Fig. 5. Same asin Fig. 2 for Ar—0.7N, + 0.3CO,) mixture.
je = —2.944 x 10° m/s and in, =3041x 107° mis.

First, the density extremum inside the capillary is the
original cause of the convection; however, once the
convection has arisen, the above formulas become
invalid. The density profilewith an extremum will reap-
pear if the convection stops. Second, the relative change
in the density (pmin/Pmax) fOr the gas mixtures shown in
Figs. 2-5 ranges between 0.72 and 0.94. For a1-m-long
vertical capillary, the relative change in the density due

ALEKSANDROV

to gravitation is specified by the Boltzmann factor

pmin — U mg 1 m
pmax - expD_ KT o

which is equal to 0.9995 for the heaviest gas (Freon).
Thus, we can assert that the change in the density due
to three-component diffusion predominates in the case
of avertical capillary aswell. The shorter the capillary,
the less the relative change in the density due to gravi-
tation; at the same time, the change due to three-com-
ponent diffusion remains constant. Moreover, since the
explicit expression for the density (pressure) profile
along the capillary has not been used in the solution, it
can easily be extended for avertical capillary by multi-
plying by the barometric Boltzmann factor. In the gen-
eral case, the exponent in the Boltzmann factor depends
on the vertical coordinate; however, since the relative
change in the density is small, one can roughly use the
average molecular weight of the mixture in the capil-
lary.

The occurrence of the density minimum isdueto the
presence of the third component in the mixture. For this
minimum to arise, the diffusion coefficients of the com-
ponents must significantly differ.
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Abstract—A general solution to the problem of the steady-state spherical expansion of acurrent-carrying mul-
ticomponent plasmainto avacuum is derived. It is shown that, in vacuum arc discharges, the main force accel-
erating the cathode material, which becomes a plasma at distances of 1 to 300 um from the cathode surface, is
the electron pressure gradient force maintained by Joule heating. It is established that ions of different charges
move with the same hydrodynamic vel ocity, which is uniquely determined by the mass and mean charge of the
ions and the maximum electron temperature in the cathode region. © 2001 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

A distinctive feature of electric dischargesin avac-
uum is rapid phase transitions of the cathode material
from a solid state to liquid, gaseous, and plasma states
(the plasma state is divided into the three substates. a
dense nonideal plasma, a moderately rarefied plasma,
and a collisionless plasma). In such discharges, the
originally immobile cathode material is progressively
accel erated to vel ocities of about 108 cm/s and, over the
acceleration distance, the particle density decreases
from N 0107 to <10 cm=3[1].

Currently, inthe literature, there is considerable dis-
cussion of the mechanism for ion acceleration. A uni-
fied viewpoint regarding the region where the accelera-
tion rate is the highest is lacking: the three candidates
are (i) the region of anonideal plasmawith avery high
density or even of agaswith asolid state (metallic) den-
sity [2, 3], (ii) the region of the hydrodynamic flow of a
collisional ideal plasma[4—7], and (iii) theregion of the
collisionless motion of plasma particles [8-10]. Of
course, the mechanism for ion acceleration should dif-
fer between the three regions of different particle den-
sities. In the first region, the acceleration is thought to
be primarily due to the energy release at the hydrody-
namic and electromagnetic discontinuities that arise
from phase transitions of the cathode material during
thedischarge[2, 3]. In the second region, aquasineutral
plasma jet is thought to be accelerated by the pressure
gradient force maintained by the Joule heating when
the current flows through the plasma[4—7]. In the third
region, the ions of different charges are thought to be
accel erated independently [8, 10] (in the stage of colli-
sionless plasma motion) by an anomalous electric field
that may be generated in a certain part of the interelec-
trode gap as a result of the possible formation of a
potential hump between the anode and the cathode and

is directed toward the anode [8]. Because of this, the
velocity of the ions of the same mass m but of different
charge numbers Z, is approximately equa to V, O
(2Z,eAdP/m)Y2, where A® is the potential difference
across the accel eration region.

Over adistance of several micronsfrom the cathode,
the plasma parameters are impossible to measure; con-
sequently, the relative importance of different accelera-
tion mechanisms can only be evaluated from the results
of measurements at larger distances. It is well known
[1, 11] that, in low-current (I, < 300 A) vacuum arcs,
the ion composition and vel ocity areindependent of the
length | and geometry of the interelectrode gap, pro-
vided that the gap is long enough (I = 0.3-1 cm). This
fact gives an upper estimate of the distances over which
the cathode material isionized and accelerated. That is
why the results of measurements of theion velocities at
distancesr = 1 cm from the cathode surface can serve
as acheck on the validity of theoretical ideas about ion
acceleration in the cathode region. It should be noted
that, for high currents (I, > 300 A) and short current
rise times, the ions can be additionally accelerated out-
side the cathode region [12, 13] because of the com-
pression of the plasma by its own magnetic field.

The experimental data available on the ion veloci-
ties are contradictory: first, the absolute values of the
ion velocities measured in experiments with the same
cathode material are different and, second, in some
experiments [9, 14], the ion velocities are observed to
increase with ion charge, while this is not so in other
experiments [15-17]. The model calculations for a Cu
cathode [6] also do not exhaustively clarify the situa-
tion. According to these calculations, the velocity of
Cu?* ions is higher than that of Cu* ions by about 10—
15%. Conversely, in [9, 14], the velocity of Cu?* ions
was observed to be higher by 25-30%, and the vel ocity

1063-7842/01/4611-1371$21.00 © 2001 MAIK “Nauka/Interperiodica’



1372

of Cu ions, by 45-50%. On the other hand, the exper-
iments of [15] revealed no dependence of the velocity
of theseions on their charge.

This paper is devoted to constructing a theory that
describesthe acceleration of amulticomponent gas-dis-
charge plasma and makes it possible to calculate the
velocities of ions of different charges for any cathode
material. The question of what might be the dominant
acceleration mechanism is answered by comparing the-
oretical predictions with the experimentally observed
interrelations among the parameters of the plasma jet,
without making any referenceto the parametersthat are
derived indirectly from experimental measurements.

EQUATIONS OF ION MOTION

It iswell known [1] that, in the cathode region of a
vacuum arc, the plasma exists in the form of a set of
individual microjets emitted from cathode microspots
(i.e., emission centers or current cells) with a diameter
of about a = 1-3 ym and a current of about | = 1-10A.
The acceleration of amicrojet can be studied in a one-
dimensional approximation. As was shown in [18], the
results obtained in this way agree well with the results
computed for the jet axis from a two-dimensiona
model. We consider the spherical expansion of aplasma
from aspherical surface of radiusr, [Jainto acone hav-
ing asolid angle Q.

L et a multicomponent plasma be composed of elec-
trons and severa ion species with the same mass m but
with different charge numbers Z,. The equation of
motion of the ions of species k has the form

Vi _  d(N,T,)
dt dr

do
—ZeNy— + z Ry + Reer (1)
j

MmN dr

where N, and V, are the density and velocity of theions
of speciesk, theion temperature T, isassumed to bethe
same for al ion species, ® isthe electric potential, r is
the distance from the center of the sphere, and d,/dt =
V. d/dr in a steady state.

The ion—€lectron and ion—on frictional forces are

described by the relationships
Ree = 0oZi FMeNe(Ve—V)/Te, 2
R = ZZif, fimNL(V, -V, )/, ©)

where the quantities

3 /mT¥ o= 3./mT¥?
° 42me'N,InAT T 4 mE*N, InA

arethe characteristic electron—ion and ion—on collision
times in the case of singly charged ions [19]. The rest
of the notation in formulas (2)—(4) isasfollows: m,, N,
T., and V, are the mass, density, temperature, and veloc-

(4)
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ity of the electrons, respectively; N, = ), N, is the
total ion density; f, = N\/N, istherelative fraction of the
ions of speciesk () , fi =1); InA isthe Coulomb log-

arithm; and o, = 0.51, 0.44, and 0.40for Z,=1,2,and 3
[19] (inwhat follows, we neglect the dependence ay(2)
and set a, = 0.45; we aso assume that InA = 4).
Because of the plasma quasineutrality, we have N, =
%kzk N, = [ZIN,, where [Z[F ZJ Z, fisthemeanion
charge number.

When collisions between the particles are suffi-
ciently frequent, the plasma can be described in the
hydrodynamic model. In this case, it is convenient to

use the equation of ion motion in terms of the hydrody-
namic velocity

V= ZNKVK/M = kavk (5)

and the diffusion-like equations for the relative (diffu-
sive) ion velocities U, = V, — V[19, 20]. This diffusion
approximation implies that dV,/dt = dV/dt; in other
words, the terms proportional to duU/dt can be
neglected in comparison with the terms proportional to
U,/t, which are present in the expression for the fric-
tiona forces [19]. The equation for the hydrodynamic
velocity V can be obtained by summing the equations of
motion (1) for all ion species and taking into account

the relationship Z z Ry =0
]

dv _  d(N.T,) do
mN, @ " ar [(Z[EeN, ar +R.. (6)
Here,
Nej 3
Rezsze:e ej’ o = eNgTe
o
7 O, [ZTim,

is the plasma electric conductivity, [(Z2[= kZﬁ fo] =

I/Sisthe absolute value of the current density, and S=
Qr? is the cross-sectional area of the jet. Since, in a
steady state, the mass and charge fluxes along a plasma
jet, G = mNLVS and | = eNg(V, — V)S reman
unchanged, the electron-to-ion velocity ratio is V/V =
const = 1/n > 1 and the current strength can be repre-
sented as

I = eNVS/n, (7

where n = [Z[&G/ml is the dimensionless erosion coef-
ficient, which is only weakly dependent on the cathode
material, N = 0.05-0.1 [1]. We sum up the equation of
inertialess € ectron motion,

do

_ANTD) e,

dr ea_Re = Ov (8)
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and Eq. (6) in order to arrive at the equation of plasma  exchange rate is described by the expression

motion
dv _  d(p.+p.)
MmNt = ar ©)
where p. = N.T, and p, = N, T, are the electron and ion

pressures, respectlvely

From Eg. (9), we can see that the main mechanism
for plasma acceleration is associated with the pressure
gradient, whichismaintained at asufficiently high level
by the current that flows through the plasma and
heatsit.

The equations for the diffusive velocities can be
derived from Egs. (1) by substituting into it the acceler-
ations dV,/dt = dVv/dt which follow from Eq. (6). Tak-
ing into account the inequality mJ/t, < nv/t,, wefinally
arrive at the following set of linear algebraic equations
for therelative ion velocities U,

dInf do
S ZZifi(U; -V = 03—+ (Z—~ ey
j 0
(10)
z; DeEZDJDT

+[Il.
O EZD]]G Dm

In order to solve these equations, we must take into

account thefact that they are linearly dependent, so that
one of them should be replaced with the equation

f U = 0,
Zkk

which isadirect consequence of relationship (5).

(11)

HEAT BALANCE EQUATIONS

As the current flows through the plasma, the Joule
heat is almost completely (to within terms on the order
of my/m) deposited in the electron gas because of the
stochastization of the electron current velocity V.—Vin
electron—-on collisions [19]. As a result, the electrons
are heated and the plasma becomes thermally nonequi-
librium (T, > T,) and only afterward a fraction of the
Joule heat is transferred from the electrons to the ions
due to heat-exchange processes. Consequently, without
allowance for heat conduction, the heat balance equa-
tions for the electrons and ions can be written in the
form [19]

2ped [NE L _QT, (12
3. d, [OP

where y = 5/3 is the adiabatic index and the heat
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3ZTmN,
Qr = ———(Te—T.).

~— (14

We take into account relationships d/dt = V. d/dr,
d/dt = Vvd/dr, and V, > V and sum up Egs. (12) and (13).
As a result, we arrive at the following heat balance
equation in terms of only the electron temperature:

d I P _ 26)

dr ENvD 30T, (15)

HYDRODYNAMIC ION VELOCITY

In order to solve for the hydrodynamic velocity of
all ion species, we turn to the cold ion approximation
(T, = 0); aswill be shown below, this approximation is
valid by virtue of the inequality [(Z[T, > T,. Taking into
account the relationships d/dt = Vd/dr and N, = CZ[N,
and using expression (7) and Egs. (9) and (15), we
obtain the equations

2 O
‘(’j—v - a’(1—f)/%’— 1, (16)
r D/s
dT, _ 2T,
dar
. g W
XDD/——IDf— y— l) /[V 14,

where V= (YZO/m)Y? isthe local speed of sound and
f(T, 1) = el/(50TQr).

Itiseasy to seethat, at the spherical surface at which
theion velocity isequal to the local speed of sound, the
denominator of the right-hand sides of Egs. (16) and
(17) vanishes. Consequently, for the solution to be con-
tinuous, the numerators of the right-hand sides of both
these equations should also vanish at this surface. We
thus arrive at the requirement f(T,, r) = 1. Denoting the
radius of this critical surface by r = rjand the electron

temperature at this surface by T and taking into

account relationships (4), we can rewrite the require-
ment as

el _ @0 g’
5T,0(T,)Qr, [EQr, U0

where Cy= 0.1 eV (cm/A)?5.

Under the approximate equality [(Z2[= [Z[3, expres-
sion (18) passes over to the expression obtained previ-
ously in[7, 22].

We also introduce the dimensionless coordinate x =
r/rpand the dimensionless temperature © = TJ/Tjand

=1, (18
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Fig. 1. Profiles of the Mach number and relative electron
temperature along the plasma jet.

define the Mach number M = V/Vjas the ratio of the
local ion velocity to the speed of sound V[ =
(YyZO{m)¥2 at the critical surface. Taking into account

relationships (18) and ¢ O T2, we have f(T,, r) =

©™52x1 at an arbitrary surface, in which case Egs. (16)
and (17) become

dM _ 2M . 52 21
- X (1-07"x)/I(M O -1), (29
dO _ 20[1P, 201 o521
- x Dl]gM C] IDG X
(20)

2,21 2 -1
-sM%e H(Me™-1).

The boundary conditions for these equations have
theformM =1and © =1 at x= 1. Thederivatives at the
surface x = 1 that are required to solve Egs. (19) and
(20) can be found by applying I'Hdpital’s rule to their
right-hand sides: dM/dx = 1.88 and d®©/dx = 0.75. One
can seethat Egs. (19) and (20) contain no parameters of
the cathode jet, so that the solutions M(x) and @(x) are
universal functions of the dimensionless distance r/r;

[7]. The profiles of the solutions M(x) and ©(x) over
distances x < 20 from the cathode surface are shown in

Table
r/rs M TJT.
1 1 1
10 2.78 0.63
102 3.25 0.26
103 3.42 0.10
10 3.52 0.03
10° 3.57 0.01
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Fig. 1, and some of the values of the solutions at longer
distances x are given in the table.

Taking into account the fact that the critical surface
islocated at asmall distance from the spherical surface
from which the plasmais emitted (Ar = rp—ry= 0.2rg
[7,22]), wecan set r0ry, Oa, wherea= 1-3 pmisthe
diameter of a cathode microspot [1]. From thetable, we
can see that, in this case, the Mach number attains its
limiting value M,;,, = 3.5 at distances larger than 1 mm
from the emitting surface. Since, in all of the published
experiments, the ion velocities were definitely mea-
sured at larger distances, the ion velocity in a vacuum
arc over the main part of the interelectrode gap can be
set equal to

Vim = My (y 20T, /m) Y%= (20 Z0oT . /m) 2. (21)

The electron temperature T at the critical surface

can be calculated from relationship (18). However, a
unified viewpoint regarding the diameter of a
microspot, a [ rp and the current | emitted by the

microspot is still lacking. That is why theoretical ideas
about the ion acceleration mechanism should be veri-
fied by comparing theoretical predictions with the
experimentally observed interrelations among the
parameters of the cathode plasma jet. This can be done
by using relationship (21), which contains exclusively
the parameters that can be measured experimentally.

Wieckert [6] showed that, in the case of a copper
cathode, the ion composition becomes essentially fixed

near the maximum of the electron temperature T,
which corresponds approximately to the temperature at

thecritical surface, Tg = Try(seeFig. 1). Consequently,
in the region r/rj> 1, the ion composition can be
assumed to be unchanged. For the same reason, the

electron temperature values To" obtained by Anders

[23] for the fixed ion composition are close to the tem-
perature T Figure 2 compares the ion velocity calcu-

lated from relationship (21) for the values of To= T5"

and [Z[Otaken from [23, 24] with the velocities mea-
sured in four series of experiments with cathodes made
of different materials. The closed sguares, open trian-
gles, and open circles correspond to the ion velocities
measured in the experiments of E.M. Oks's group by
the methods of short-time current jump [15, 16], cur-
rent break [16], and current pulse modulation [17],
respectively. The crosses show the results of earlier
measurements carried out by Davis and Miller [9, 10]
with the help of an energy analyzer. From Fig. 2, wecan
seethat theion velocities measured by Davisand Miller
are systematically lower (by 30-50%) than those cal cu-
lated theoretically or recorded by Oks's group. As was
mentioned in [16], a possible cause of this discrepancy
is that, in the experiments of Davis and Miller [9], the
discharge chamber was kept at an insufficiently high
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vacuum so that theions could have been decelerated by
the residual gas.

The results calculated from relationship (21) agree
well with the data from measurements by the current
jump method in experiments with Mg, Al, Ti, Cu, Pb,
Bi, and Zr cathodes [15], the discrepancy being at most
10% (Fig. 2). For the same cathode materials, the dis-
agreement between the experimental results obtained
by the current break method [16] and relationship (21)
amounts to 20-30%. The ion velocities measured by
the current pulse modulation method [17] for 41 cath-
ode materialsdiffer, on average, fromthe calculated ion
velocity by 10%, in which case the vel ocities measured
in experimentswith the six lightest cathode materials—
C, Mg, Al, Si, Ca, and Ti—systematically exceed (by
50-80%) the calculated velocity and the velocities
measured by the other methods. The reason for such a
large discrepancy is till unclear. Presumably, light
ions, whose gyrofrequency w=eB/mcishigh, weresig-
nificantly affected by the generated magnetic field B,
which additionally accelerated them outside the cath-
ode region at high currents | ;. = 400600 A (at which
some of the experiments of [17] were carried out).

Figure 3 displays the ion velocities calculated from
Eq. (21) for 75 conducting cathode materials. For 50 of
these materials, the vel ocities were cal culated using the
data available from the measurements of the ion com-
position and the electron temperatures derived from it
[23]. For the remaining 25 materials, the values of [Z[]
and T, were predicted in [23] on the basis of the period-
icity in properties of the chemica elements. That is
why the velocities V,;,,, obtained for these 25 materias
are merely the ion velocities that might be expected in
experiments with vacuum arc cathodes made from the
corresponding materials. Figure 3 clearly shows that
the ion velocity depends not only on the ion mass m,
which increases monotonically (by afactor of 30) with
atomic number, but also on the electron temperature
and mean ion charge, which both vary periodically by a

factor of three, To® = 1.5-4.5 eV [23] and (Z[= 1-3

[23, 24]. One can see that, except for the six lightest
cathode materials mentioned above, the calculated ion
velocity agrees fairly well with the experimentally
measured velocities. We can thus conclude that the pri-
mary mechanism by which the ions reach the observed
velocities is the gasdynamic mechanism. Now, let us
estimate the e ectron density rangeinwhich theionsare
accelerated in a vacuum arc. Taking into account the
fact that the critical surfaceis close to the emitting sur-
face and turning to expression (7) for the current
strength, we can approximately set | = eN.Va2/n. For
typica parameter values of aplasmamicrojet (I = 1-3 A,
a = 1-3 um, and n = 0.05-0.1 [1]), this approximate
expression and the relationship V=V, /M, = (2-6) %

10° cm/syield N, = 10'°-10% cm3, which agrees with
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Fig. 2. Comparison of the calculated ion velocity (solid
line) with the ion velocities measured in the experiments of
[15] (squares), [16] (triangles), [17] (circles), and [9, 10]
(crosses).
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Fig. 3. lon velocity calculated from relationship (21) as a
function of the atomic number of the cathode material (solid
curve) and ion velocities measured by the current jump
method [15, 16] (squares) and by the current pulse modula-
tion method [17] (circles).

the estimates N, = 10'®-10%° cm~3 obtained in [22, 23]
for aregion where the ion composition is frozen. From
thetable, we can seethat theions are accel erated prima-
rily over distances of about r = (1 — 100)a from the
emitting surface and that the electron density over these
distances decreases to N, = 101-10'¢ cmr3,
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Fig. 5. Profiles of the relative diffusive velocities of differ-
ent ion species along the plasmajet for [Z0= (a) 1.5, (b) 2,
and (c¢) 3. The numerals above the curves show the ion
charge number.

DIFFUSIVE ION VELOCITY

Equation (10) implies that the main reasons for the
deviation of the velocities v, = V + U, of different ion
species from the hydrodynamic velocity V are (i) the
effect of the density gradient of aparticular ion species,
(i) the dependence of the acceleration ratein an electric

KRINBERG

field on the difference Z, — [Z[)and (iii) the dependence

of theion—electron frictional forceon Z; — [Z2Aswas
shown above, f, = const in the region r > r; Conse-
quently, the diffusive velocities U, are different mainly
because of the difference of the charge of a particular
ion species from the mean ion charge. In order to solve
Egs. (10), we switch to the dimensionless velocities
u, = U;/U, and represent the equationsin standard form:

Zbk]u] = Fkl (22)
i

Y _ryn9¢

Fu(xX) = xX’"M(Z,— [ZD) Ix
—3/2|:| Zi D (23)

+5FMt "L ———1,

0 X0

[ZZ 1/2 T+ 3/2
U, = O 2T 2Me T V,, (24)

5n OmO Or 0

where by = ZiZ{f, (k# ) and by = Zfy, — Zi [Z20
When deriving Egs. (23) and (24), we used relation-

ships (4), (7), and (18) and introduced the dimension-
less potential ¢ = e®/T In [7, 22], it was shown that

this potential can also be written as ¢ = 1 + 5/6n(M? —
1) + 5/2(© —1) and that, by virtue of Egs. (19) and (20),
its gradient is an explicit algebraic function of M, ©,
and n. Figure 4 presents the dependence ¢(x) calcu-
lated for the values n = 0.05 and 0.1, which bound the
main range of n values under consideration.

Equations (22) and (23) imply that the relative dif-
fusive ion velocities u, are uniquely determined by the
universal functions M(x) and ©(x) and the relative ion
content (i.e., the relative ion fractions f, and the corre-
sponding values of [Z[and [Z?[) and that they areinde-
pendent of the ion mass, current, and the characteristic
dimension of a plasma microjet. The calculations
showed that acceleration by the potential gradient
d¢/dx [the first term on the right-hand side of Eg. (23)]
contributes only about 20-25% of the velocity u, (this
contribution coincides with the corresponding estimate
made by Hantzsche [18] for a Cu cathode). Thus, we
can conclude that the difference in diffusive ion veloc-
ities originates primarily from different frictional
forces acting between the electrons and different ion
species. Figure 5 shows the rel ative diffusive vel ocities
u(x) of different ion species that were obtained by
solving Egs. (11) and (22) for n = 0.1 and the threetyp-
ical ion charge distributions: (a) f, = 0.5, f, = 0.5, f; =
0.001, [(Z[= 1.5, and [Z2(= 2.5 (for cathodes made from
Mg, Mn, and Sn); (b) f, =0.15, f, = 0.7, f; = 0.15, [Z[F 2,
and [Z2[= 4.3 (for cathodes made from Ti, Cu, Cr, Pt,
andAu); and (¢)f,=0,f,=0.2,f;=0.6,f,=0.2, Z[ 3,
and (22 9.4 (for cathodesmade from Nb, Ta, W, and Hf).
No. 11
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The profiles calculated for n = 0.05 differ from those
shown in Fig. 5 by less than 5%. We can see that the
larger the mean ion charge, the smaller the difference
U, —U; intherelative diffusiveion vel ocities. The reason
for thisisthat the ion—ion frictional force (3) increases
in proportion to (Z,Z,)?. Consequently, the differencein
therelative velocities isthe largest, u, —u; = 10-103, at
[(Z[= 1.5 (Fig. 5a).

It should be noted that the differencesin the absolute
ion velocities, Vi -V, = U, — U; = (u, — u)U,, depend
largely on the quantity U, 0 T->. The ion temperature
T.(X) can be found from Eqg. (13) and expression (14).

Using the above dimensionless variables and defining
the dimensionless ion temperature as ©, = T,/T[j we
arrive at the equation do,/dx + p@, = q, where p =
2[2M?(©3?M?x — 1) + 9(M? — O)n/a ] [3O¥°M3x3(M? —
)] and g = 6n(0,@Y2M??). Formally, the solution to
this equation can be written in terms of definite inte-
grals of the functions p(x) and q(x). The solution sim-
plifies substantially in the region x > 2, where M? > ©,
in which case the product ©@¥2M? = 4-6 can be assumed
to vary gradually over the entire region x = 2-1000 (see
table and Fig. 1). For the most typical value of the ero-
sion coefficient, n = 0.1, we have 9n/a, =2 and p(x) =
4/(3x), and the solution takes the form ©,(x) =
4(©Y2M2x)L. If we approximately set ©V2M? = 4, the
solution ©,(x) = 1/x can be extended to the region 2 =
x =1, provided that the electron and ion temperatures at
the critical surface x = 1 are the same. Then, we have
T.(X) = T(rdr). A comparison with Fig. 1 shows that
the ion temperature decreases more sharply than the
electron temperature. Substituting the ion temperature
into Eq. (24) yields

Ug=3x 10‘3LZDV

Y2 32" %

nue X
where 1 = nmym, and m, is the proton mass.

Fromthe profilesshownin Fig. 5 and relationship (25),
we can see that, even in the limiting case in which the

ion chargeislarge, theion massissmall (Z22./u 01),
and the erasion coefficient islow (n = 0.05), the diffu-
sive velocities do not exceed the value U, = uU, [
1072V while the hydrodynamic velocity is about V =
(1-3)V Consequently, in all possible cases, the veloc-
ities of different ion speciesin low-current vacuum arcs
should differ by less than 1%. This conclusion agrees
completely with the results that were obtained experi-
mentally in [15-17] and showed no dependence of the
ion velocities on the ion charge. In early experimental
works [9, 14], it was observed that ions with larger
charges were accelerated to higher velocities. Bugaev
et al. [16] explained this fact as being due not to the
accel eration but rather to the decel eration of ions by the
residual gas: the results of their measurements revealed

(25)
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that theionswith asmaller charge are decelerated more
strongly than theions with alarger charge.

Note that the presence of the potential hump (Fig. 4)
is often regarded as an argument in favor of significant
ion acceleration under the action of the electric field,
which gives rise to differences in the ion velocities. In
actuality, a humped potential profile serves merely to
maintain plasma quasineutrality and a constant elec-
tron-to-ion current ratio and plays a relatively minor
roleinion acceleration.

DISCUSSION OF THE RESULTS

The above theoretical investigation of the character-
istic features of the acceleration of a multicomponent
current-carrying plasma (with afixed ion composition)
during its expansion into vacuum and a comparison of
the theoretical results with a large amount of experi-
mental datamake it possible to draw the following con-
clusions.

(i) The cathode material is accelerated primarily
after the phase transition to a plasma state. The plasma
produced is accelerated during the gasdynamic expan-
sion into vacuum over distancesr < 100a (wherea=1—
3 um is the diameter of an emission center) from the
cathode surface. Over these distances, the electron den-
sity decreases from about N, [ 108-10%° to J10“—
10 cm3. In the main acceleration stage, the ions
acquire more than 70% of their velocity and, accord-
ingly, more than 90% of their energy. Of course, in the
initial stage of motion (at V < V[), the cathode material

can also be accelerated during phase transitionsto alig-
uid metal and then to asuperdense gas[2, 3]. However,
in this initial acceleration stage, the ions acquire no
more than 20% of their final velocity.

(i) In the acceleration region, the ions move with
the hydrodynamic velocity, which is determined by the
ion mass, mean ion charge, and the maximum electron
temperature in the cathode region. The calculated
velocities to which the ions are accelerated agree well
with the extensive data from experiments with cathodes
made of different materials.

(iii) The velocities of different ion species differ
only dlightly (by less than 1%) from the hydrodynamic
velocity of the plasma jet.
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Abstract—A description of thefinal phase of the plasmafocusis proposed based on the classical plasma phys-
ics concept. It is shown that, taking into consideration the cumulative plasma heating and the occurrence of a
shock wave reflected from the axis, it is possible to qualitatively explain the experimentally observed phenom-
ena, such as current disruption, the generation of a strong electric field, and other accompanying effects. If a
weak poloidal magnetic field isinitially present in the plasma column, then thisfield can increase in magnitude
to avalue comparable to the azimuthal magnetic field. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A detailed review of the current state of the experi-
mental and theoretical research on high-power pulsed
dischargesis presented in [1-3] (see also the literature
cited therein). The physics of a number of processesis
now well understood. However, some effects observed
after the plasma implosion at the axis of the system,
such as asharp decrease in the plasma conductivity and
the generation of different types of radiation, are till
poorly understood. There are different points of view
on the physics of the processes occurring in this phase.
The best developed are the model of thermonuclear
neutron generation in a deuterium plasma with allow-
ance for the axial outflow of particles from the high-
temperature region [2] and the model describing the
generation of hard radiation due to the acceleration of
particles in the induced electric field [3]. The deuteron
spectra and the neutron yield calculated in [3] are in
good agreement with the experimental data. In that
paper, however, the cumulative plasma heating and the
possible occurrence of a shock wave reflected from the
axis were not taken into consideration. In the present
paper, it is shown that, taking these factors into consid-
eration, we can explain, at least qualitatively, the exper-
imentally observed phenomena, such as current disrup-
tion (without invoking microscopic instabilities), the
generation of an dectric field, and other accompanying
effects. Furthermore, the proposed model describes the
increase in the magnitude of an initially weak longitu-
dinal magnetic field to a value comparable to the azi-
muthal magnetic field of the pinch.

PHY SICS OF THE PROCESSES OCCURRING
IN A PINCH AFTER THE ARRIVAL OF A SHOCK
WAVE AT THE SYSTEM AXIS

Experiments show [1, 4] that a pinch discharge
begins with a gas breakdown near an insulator, where a
plasma current-carrying shell is formed. Under the
action of the electrodynamic force, the shell is acceler-

ated toward the system axis and drives the neutral gas.
As the converging shock wave approaches the system
axis, the current-carrying shell collapses [5]. The tem-
perature and pressure at the front of the wave grow,
whereas the density remains constant and equal to the
density at thefront of astrong shock wave. The collapse
is followed by the appearance of a reflected shock
wave, which propagates in the direction opposite to the
nonsteady plasma flow.

For the process to develop as described above, the
plasma column should be axially uniform. However,
the highest plasma parameters have been obtained in
the plasma column constrictions, where the plasma
gjectioninthelongitudinal direction playsanimportant
role. Thisistypical of the plasma focus, in which the
current-carrying shell takes the shape of a funnel with
the throat facing the system exit. However, in this case
too, theimplosion process turns out to be similar to that
considered above if the angle between the axis and the
tangent to the current-carrying shell islessthan the crit-
ica angle a, = arcsinlly, where y is the adiabatic
index [6].

The plasma temperature in the compression phase
of the current-carrying shell isnot high because of great
ionization and radiation losses and is on the order of ten
electronvolts [4]. For this reason, the el ectron magneti-
zation factor islow (Wl < 1, where w, = eH/mcisthe
electron cyclotron frequency and T, is the electron scat-
tering time) and the current and the electric field are
simply related by Ohm'’s law. In the course of implo-
sion, the plasma temperature increases substantially
and, in high-power discharges, reaches several kilo-
electronvolts. As a result, the magnetization factor
becomes much higher than unity and the conduction
conditions change significantly. As was shown in [7],
Ohm’s law in its simple form is applicable to a high-
temperature plasmaonly if the equilibrium conditionis
satisfied:

OP = (1/c)J xH, (1)
where P is the plasma pressure.

1063-7842/01/4611-1379%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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It followsfrom Eq. (1) that the density of the current
flowing across the magnetic field is equal to

J = ¢[H x OP]/H? 2

and is fully determined by the plasma pressure gradi-
ent. A specific feature of the reflected shock wave aris-
ing in the final phase of the focus [5] isthat the plasma
pressure varies severalfold near the shock front and var-
iesonly dlightly far from the shock. As aresult, behind
the front of the reflected shock wave, the density of the
current driven by the pressure gradient is small and
does not substantially contribute to the total discharge
current. It is believed that a small charge separation
(such that the plasmaremains quasineutral) givesriseto
the Hall electric field [7]

Ey = (1/eNg)I xH = (W, T /o oH)I xH,

3
|En| = weeTeEo,

where Ey = J/0r and 0, = 107TS” is the transverse

conductivity of the unperturbed plasma. Thisfield bal-
ances the electrodynamic force acting on the electrons
and restores the plasma current across the magnetic
field. Inthis case, theions are assumed to bein equilib-
rium with the Hall field, which is not obvious a priori
for a high-temperature plasma.

Hence, we can expect that the propagation of the
reflected shock wave is accompanied by both awavein
which the conduction current is suppressed and the
generation of the displacement current. However,
because of the high value of the discharge current, the
induced electric field isfairly high, so that the ions and
the Hall electric field begin to play an important rolein
the electric conduction. Indeed, at w,T, > 1 the elec-
trons drift in the radial direction under the action of the
crossed electric and magnetic fields and only rare colli-
sions lead to their displacement along the vector E,
contributing insignificantly to the longitudinal current
density. Over atimet < T, = 21w, (where w, = eH/mc
istheion cyclotron frequency), the ions do not yet drift
and the el ectrons drift with respect to theions, thus pro-
ducing the radial electric current J, = eNg(CE,/H, —U;;),
where U;, isthe radial ion velocity. This current results
in charge separation. The produced space charge den-
sity isegual to

p = —[0J,dt. (4)

Substituting this expression into the equation [1TJ E =
4mip we obtain for the radia electric field

E, = 4neNAr, 5)
where

Ar = I(CEZ/Hq, —U,,)dt.

ZHUKOV et al.

In principle, thisfield can restore the plasma current
across the electric field. Evidently, the electric field in
this case must be equal to the Hall field.

To analyze the further evolution of the system, we
use the equation of ion motion

N.mdU,/dt = eN.E + (eN./c)U; xH
_Dpi_(meNe/Te)(Ui_Ue)-

In a sufficiently powerful discharge, the plasma
behind the front of the reflected shock wave is strongly
heated and the inequality wgT, > 1 is satisfied in this
region. As aresult, the Hall electric field (3) is high. At
the sametime, we can assume that the pressure gradient
and thefriction force are small as compared to the elec-
tric force and, thus, can neglect them. In experiments,
the following condition is also satisfied: w, > wy,
where w,,; = (4me?N/m)¥? is the ion plasma frequency.
Then, using Eq. (5), we obtain for the radial component
of theion velocity

(6)

du; /dt = wAr. )

According to this equation, the ions are continu-
ously accelerated by a strong electric field. As aresullt,
the degree of charge separation, the strength of the
radial electric field, and, consequently, the longitudinal
current decrease, which is equivalent to an increase in
the plasma resistivity across the magnetic field. Owing
to self-induction, the longitudinal electric field will be
generated in the plasma; thisfield will keep the constant
longitudinal current. However, since the radia ion
velocity in this case increases with time, the electron
drift velocity also should increase in order to keep the
constant degree of charge separation. The latter is pos-
sible only if the radial electric field decreases and E,
increases. It is obvious that this process will be non-
steady and theions will substantially contribute to it.

Since the induced longitudinal electric field is con-
siderably higher than the critical Dricer field Ey =
41N InA/T,, almost all the plasma electrons in the
region of alow magnetic field near the plasma column
axis should become runaway. However, since the accel-
eration occursin adense quasineutral plasma, the max-
imum current produced by the beam of runaway elec-
trons is determined by the condition of self-limitation
of the current by its proper magnetic field and is equal
to the limiting Alfvén current [8]

I, = mc/eBy = 17y KA, )
where y = (1 — B2 is the relativistic factor and 3 =
vic.

If we equate the classical expression for the current
I, = Tr%eN,V to the Alfvén current, then we obtain the
following expression for the beam radius:

ra = 2clwyey™, 9)

TECHNICAL PHYSICS Vol. 46 No.11 2001
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where wy, = (4Te?NJ/m,)Y? is the electron plasma fre-
quency.

The limiting beam current at electron energies of
several hundreds of kiloelectronvoltsisequal to severa
tens of kiloamperes and is significantly less than the
pinch current. However, its cross sizeis very small and,
consequently, the azimuthal magnetic field of the beam
Hy = 0.21,/r, is high; it is much higher than the pinch
magnetic field in this region. As a result, the magnetic
field profile change significantly, which makes the
problem more complicated.

Depending on the radia profiles of the current and
magnetic field, the evolution of the system can substan-
tidly differ from that discussed above. In the case of
strong skinning (& <€ r), the skin depth increases
because the plasma resistance in the skin layer
increases as the reflected shock wave propagates
through it. Because of the suppression of the longitudi-
nal current, a strong electric field is generated in the
layer. The electrons are accelerated by thisfield and are
deflected by the magnetic field of the pinch toward the
plasma column axis. As a result, a hollow electron
beam with arelatively low energy is formed. The cur-
rent of this hollow beam is on the order of 1, = r/Argl,,
where Ar is the thickness of the beam wall.

Approximate equations describing the processes
occurring in the plasma focus after the plasma implo-
sion at the axis can be derived from Maxwell’s equa-
tions and the equations of ion motion. In cylindrical
coordinates, these equations can be written in the form

0E,/or = 1/cdH,/at, (10)
1/ro/ar(rH,)
= 4TUc{ 04/(1 + i T2) (B, + W Th X E;)  (11)

+eN.U,,+ V4r [DE, /ot + J,}.

The longitudinal current density is equal to the sum
of the densities of the electron conduction current, the
ion current, the displacement current, and the electron
beam current J,. Differentiating Eq. (5) with respect to
time, we obtain for the radial current density

J; = eNgU;, —eNCE,/H, + 1/4ToE,/dt = 0. (12)

Neglecting the pressure gradient and the friction
force behind the shock front, we obtain for the ion
velocity components

du,/dt = e/mE, —wU;,,

13
du, /dt (13)

e/mE, + w,U;,.

The initial conditions can be obtained taking into
account the fact that, after the suppression of the con-
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Quialitative picture of thetime behavior of the current, elec-
tric field components, and the radial ion velocity behind the
front of the reflected shock wave in the plasmafocus for the
case in which the electron conduction current exceeds the
ion current.

duction current, it is substituted with sum of the dis-
placement current and the Hall current:

(—eNCE,/H, + l/4T[6EZ/0t)t1 =
Ea(ri,ty) = 0, Up(ry,ty) = Up(ry, ty) = 0, (14)
tiri/vy,

000,

where v, isthe velocity of the diverging shock wave.

Since the shock waveisweak, itsvelocity iscloseto
the speed of sound. The exact initial distributions of the
plasma density and the azimuthal magnetic field are
unknown. The magnetic field distribution can be
approximated by either a function increasing linearly
toward the boundary of the plasma column or a func-
tion depending more strongly on theradius. The plasma
density in the diverging shock wave is minimum at the
axis and decreases with time.

An analysis of the obtained set of equations allows
usto draw anumber of qualitative conclusions concern-
ing the character of the processes occurring in the
plasma focus. Since the radia drift current is high, we
can assume that the Hall electric field E, = wTEy
arisesin the plasmacolumn almost instantaneously and
the pinch current isrestored. However, theionsare then
accelerated by this field and, consequently, the radia
electric field and the longitudinal Hall current decrease.
The resistance of the current channel increases. As a
result, the longitudinal electric field E, is generated.
The maximum value of this field E,,, is limited by a
value at which the total longitudinal pinch current
(without taking into account the Hall current) is equal
to its initia value. If the conduction electron current

J, = 0 E/ w215 is higher than theion current, then we

have E,,, = ZoogetereoEo. The time behavior of the cur-

rents and electric fields for this case is qualitatively
shown in the figure. As aresult, the ions execute radial
oscillations. Since the radia electron drift velocity is
proportional to E,, the electrons are displaced toward
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theinterior of the current column at avelocity that var-
ieswith time and, consequently, theion oscillation half-
periods are different.

If theion current is higher than the electron longitu-
dinal current, then the Hall electric field disappearsin a
certain time on the order of the ion cyclotron period.
The ions drift begins, and the polarization current

J, = (N.mc*/H?)IE/ot (15)
makes a major contribution to the pinch current. It is
assumed that, since the plasma flows freely out of the
constriction region, there are no conditions for the
appearance of an appreciable pressure gradient that is
sufficient for the longitudinal pinch current to be
restored. This is equivalent to a significant increase in
the longitudinal resistance of the pinch. In the general
case, since the plasmain the current channel isradialy
nonuniform and the processes are nonlinear, the onset
of turbulent motion with the generation of abroad spec-
trum of high-frequency pulsation at frequencies on the
order of the ion plasma frequency is expected.

Similarly to the electrons, a fraction of the ions in
the plasma column execute betatron oscillations near
the pinch axis, thereby continuously gaining longitudi-
nal energy. Since the magnetic field increases strongly
in this region, the ion beam is produced in the channel
of the accelerated electron beam. The generated field
can vary periodically, so that the energy of the acceler-
ated particles is modulated and the high-energy parti-
cles propagate in the form of bunches with a duration
on the order of theion oscillation period [9].

One of the most important characteristics of the
plasma focus is a fairly high hard X-ray and neutron
yield. Itisfound experimentally that hard X radiationis
produced when the accelerated electron beam interacts
with the anode material. The delay time of radiation
with respect to the instant of the maximum pinch com-
pression (20-30 ns) agrees satisfactorily with the prop-
agation time of the reflected shock wave.

Theneutronyield per pulsein adeuterium discharge
is~10% at a discharge current on the order of 1 MA. It
is found experimentally that neutron radiation is spa-
tially anisotropic. In the proposed physical model, two
groups of ions contribute to neutron radiation. Theions
of the first group gain their energy in the course of
implosion and in the generated electric field. They
interact with the pinch plasma over along period until
they lose their energy via Coulomb collisions. Theions
of the second group form a high-energy ion beam flow-
ing out of the constriction region; the energy of these
ionsiseE,L, whereL isthe constriction length. Thision
flow generates radiation by interacting with a target
formed by both the cumulative plasmajet and the resid-
ual gas. Qualitatively, thismodel providesasatisfactory
explanation for the radiation anisotropy and the large
length of the neutron source [1].

ZHUKOV et al.

ENHANCEMENT OF THE LONGITUDINAL
MAGNETIC FIELD AND FORCE-FREE
CONFIGURATIONS IN THE PLASMA FOCUS

It is evident that a weak longitudinal magnetic field
on the order of severa oersted cannot substantially
affect the final plasma parameters in the plasma focus.
However, after the collapse of the current-carrying
shell, the longitudinal magnetic field increases and
becomes on the order of the azimuthal magnetic field
[10-12]. For this reason, the role of the magnetic field
in the further evolution of the plasma focus is still
poorly understood and a study of the possible mecha
nisms for this process is of considerable interest.

If the condition 4TtA?/c? < r(t)/v (t) (where Axisthe
plasma layer thickness and v (t) is the velocity of the
current-carrying shell) is satisfied in the phase of the
shell collapse, then the longitudinal magnetic field is
frozen in the plasma and the magnetic flux in the
plasma column is conserved. The strength of the longi-
tudinal magnetic field at the instant of maximum com-
pression is H, = Hy(ry/r,)?, where Hy is the initial mag-
netic field strength and ry and r; are the initial and final
radii of the plasma column, respectively. When the cur-
rent-carrying shell is compressed starting from alarge
radius, the resulting magnetic field can befairly strong.
Thus, forry=5cm, r, =0.2cm, and H, = 1 Oe, thefina
magnetic field strength is equal to H, = 625 Oe.

After theinstant of implosion in a high-temperature
plasma, the pressure in the shock wave reflected from
the axis levels off and the poloidal magnetic field con-
tinuesto increase. Indeed, if we neglect theinertia, then
the vector of the current density in amagnetized plasma
is determined by the expression

J =3+ 3y = 6(EH)/H*H +c[H XDP]/HZ( |
16

Since the pressure behind the shock-wave front lev-
els off, it cannot maintain the initia current in the
plasma column. Hence, we may assume that the propa
gation of the reflected shock wave is accompanied by
the suppression of the transverse (with respect to the
magnetic field) component of the initial conduction
current J = (1/4m)0E,/ot.

Asinthe case considered above, theinduced electric
field E; in amagnetized plasma causes the particles to
drift in the radial direction and does not produce an
appreciable current along the E vector. Since the elec-
trons begin to drift earlier than the ions and the density
of the electron drift current eN.cE/H isfairly high, the
separation of chargesin the plasmaleadsto the genera-
tion of the Hall electric field, which restores the pinch
current. However, if the ion cyclotron frequency w is
much higher than the ion scattering frequency v;, then
theionsalso beginto drift and the Hall electricfield dis-
appears.

The main contribution to the transverse pinch cur-
rent in this stage comes from the polarization current,
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whose density is determined by expression (15). The
polarization current is high only if the electric field is
strong enough, which is equivalent to a substantial
increase in the pinch resistance across the magnetic
field produced by the transverse current. In this case,
the plasma drifts in the crossed electric and magnetic
fields. Since the plasmaflowsfreely out of the constric-
tion region, the drift cannot give rise to an appreciable
pressure gradient in thisregion and, thus, the transverse
current cannot be restored. The plasmatendsto aforce-
free state. It follows from expressions (15) and (16)
that, in this case, the poloidal current component
decreases and the azimuthal component increases
because the contributions from the polarization current
to these components have opposite signs. Conse-
guently, the poloidal magnetic field behind the front of
the reflected shock wave continues to increase. From
expression (16) for the parallel current density, it fol-
lows that the longitudinal and azimuthal magnetic
fluxes are related to each other and, under certain con-
ditions, either magnetic flux can be sustained at the
expense of the energy of the other.

Hence, in a high-temperature plasma, the transverse
current in the constriction is restored because of the
rotation of the magnetic field vector and the transition
of the plasmato the force-free state.

During the transition, afairly strong electric field is
induced in the constriction. The plasma particles are
accelerated in this field and can gain a substantia
energy over one cyclotron period. Asaresult, afraction
of the magnetic field energy dissipates and transforms
into the thermal energy of the plasma particles.

CONCLUSION

According to the predictions of our model, which
arein qualitative agreement with experimental data, the
following basic effects should be observed after the
pinch plasmaimplosion: anincreasein the ohmicresis-
tance of the pinch, resulting in the generation of a
strong longitudinal electric field; the generation of
superthermal electromagnetic radiation at frequencies
on the order of theion plasma frequency; the formation
of an electron beam and the acceleration of the plasma
ions, accompanied by the emission of neutron and hard
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X radiation; and the modulation of the energy and den-
sity of the accelerated particles at the frequencies of
electromagnetic radiation. If aweak poloidal magnetic
field is initially present in the constriction, then this
field should increase in magnitude to a value compara-
ble to the azimuthal magnetic field of the pinch.

The results of this study confirm the acceleration
mechanism for neutron generation in pinches proposed
by Trubnikov [3].

REFERENCES

1. V. A. Burtsev, V. A. Gribkov, and T. I. Filippova, Itogi
Nauki Tekh., Ser. Fiz. Plazmy 2, 80 (1981).

2. V.V.Vikhrev, Fiz. Plazmy 12, 454 (1986) [Sov. J. Plasma
Phys. 12, 262 (1986)].

3. B. A. Trubnikov, Fiz. Plazmy 12, 468 (1986) [Sov. J.
Plasma Phys. 12, 271 (1986)].

4. V.V.Vikhrev and S. I. Braginskii, in Reviews of Plasma
Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow,
1980; Consultants Bureau, New York, 1986), Vol. 10.

5. JP. Somon, in The Physics of High Energy Density, Ed.
by P. Caldirola and H. Knoepfel (Academic, New York,
1971; Mir, Moscow, 1974).

6. S.1.Anisimov, A. L. Velikovich, N. G. Koval'skii, et al .,
Pis'ma Zh. Eksp. Teor. Fiz. 41, 191 (1985) [JETP Lett.
41, 231 (1985)].

7. S. |. Braginskii, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1963), Vol. 1.

8. F.Benfordand D. L. Book, in Advancesin Plasma Phys-
ics, Ed. by A. Simon and W. B. Thompson (Wiley, New
York, 1969, 1971; Mir, Moscow, 1974), Vols. 3, 4.

9. D. A. Frank-Kamenetskii, Course on Plasma Physics
(Atomizdat, Moscow, 1964).

10. G. Herziger, in Proceedings of the 16th International
Conference on Phenomena in lonized Gases, Dussel-
dorf, 1983, p. 259.

11. R. K. Rout and A. Shyam, Plasma Phys. Controlled
Fusion 31, 873 (1989).

12. A. Sestere, R. Robouch, and S. Podda, Plasma Phys. 22,
1039 (1980).

Translated by N. Larionova



Technical Physics, Vol. 46, No. 11, 2001, pp. 1384-1388. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 71, No. 11, 2001, pp. 37-41.

Original Russian Text Copyright © 2001 by Naumov.

GASDISCHARGES,
PLASMA

Unsteady Motionswith a Uniform Defor mation
in M agnetohydrodynamics

N. D. Naumov
Received March 23, 2001

Abstract—The conditions for the existence of unsteady motions with a uniform deformation are analyzed for
straight and toroidal plasma columns with elliptical cross sections. The time dependence of the semiaxes of the
elliptical cross sections of these plasma configurations are determined. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

There is keen interest in the development of meth-
ods for constructing unsteady solutions to the MHD
equations. A very efficient instrument for this purpose
is a self-similar approach [1], which makes it possible
to reduce the problem of solving a set of partial differ-
ential equations to that of integrating a set of ordinary
differential equations. Self-similar solutions to the
MHD equations have been obtained earlier [2—6] for
unstable plasmamoationsthat belong to the class of such
motions of continuous mediawhose vel ocities are pro-
portional to the distance from the center of symmetry.

However, in all of the cited papers, studies were
made of one-dimensional plasmamotions. Here, asalf-
similar approach isapplied to solve the MHD equations
for two-dimensional motions with a uniform deforma-
tion. The time-dependent problem for a straight plasma
column with an elliptica cross section is solved
exactly, and an analogous problem for a thin toroidal
plasma columnwith an elliptical cross section issolved
approximately. The solutions obtained describe how
the transverse dimensions of the plasmacolumn change
with time as both the external magnetic field and the
electric current flowing through the plasma change.

BASIC EQUATIONS

In an ideal conducting fluid model, macroscopic
plasmamotions are described by the MHD equations|[7]

OB = 0, %?:DX[VXB], (1)
op _
S TOpV =0, (2
dv _av _ 11
.afa+wwv_—&m4mﬁxmxmw$

where p, V, and p are the density, velocity, and pressure
of the plasma, respectively. Let S be a quantity that

remains constant during plasma motion. We multiply
Eq. (1) by OSand transform the resulting equation to
0B

DSE = [0OSOx[VxB] = -001 Sx[V xB]]

= BO(vVIg -V OB IIS) - (B ST DV.
Taking into account the relationships

- _0S _1dp
VIS = 5 pdt’
we can arrive at the following consequence of the con-
dition for the magnetic field lines to be frozen in the
plasma:

v =

dB S _
@ p 00 )

which implies that the quantity B - [0Sp aso remains
unchanged during the plasma motion.

Thisresult isvery useful in analyzing the conditions
under which the plasma experiences motions with a
uniform deformation. In particular, it is obvious that,
for an axisymmetric plasma column, S = ¢ is a con-
served quantity. Since motions with a uniform defor-

mation are such that p = poagla2 (whereaistheradius
of the column), we have
BDS _ &B,
P rpoag
One can readily verify that the quantity r/a is con-
served, because, for the class of motions in question,
the plasma velocity is equal to V, = ar/a. As aresult,
from Egs. (4) and (5), we can see that the quantity aB,,
is aso aconstant of motion. This condition is satisfied
for B, = 2lr/ca?. Hence, we can conclude that a cylin-
drical plasma column in which the current density is
uniformly distributed over the cross section can experi-

ence one-dimensional motions with a uniform defor-
mation.

()
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A STRAIGHT PLASMA COLUMN WITH AN
ELLIPTICAL CROSS SECTION

A steady solution to Egs. (1)—(3) for aplasmacylin-
der with an elliptical cross section over which the cur-
rent density j is distributed uniformly was obtained by
Gajewski [8]:

__4m 2
8 = (%), ©)
p= %pQEl—gg—;fE, ©)

where A = b/aistheratio of the semiaxes b and a of the
elliptical cross section and Q is a constant quantity. In
thissolution, the magnetic field isa superposition of the
external -quadrupole confining field and the field of the
plasma column [9]:

B = By+B;, By = k(y, x,0), (8)
_ _Am
1~ C()\ + 1)(_y! )\Xv 0) (9)

Since expressions (6) and (9) give a different repre-
sentation of the external magnetic field,

_ AT A1)
CA+1)(\*+ 1)(y’ %0,

we can compare expressions (8) and (10) to obtain the
relationship

ATGA(N —=1) = ck(A + 1)(A* +1). (11)

If wetreat relationship (11) asan equation for A, we
find that it has positive roots under the conditionj =, =

ck+/22 + 10./5/41 Consequently, the plasma column
can be in a steady state only when the plasma current
density is no less than the critical density j, which is
determined by the gradient of the external magnetic
field. Otherwise, the external field would disrupt the
column.

Substituting expressions (6) and (7) into Eq. (3)
yields the relationship

(10)

0

21°
2 )
mpc Q
where | is the electric current flowing in the plasma
column.

Using relationships (11) and (12), we can determine
the semiaxes of the elliptical cross section of the plasma
column:

h? =

(12)

1-v 1+v

, b=a ,
i Y

where we introduced the notation v = kl/mtpcQ and, for
definiteness, assumed that A > 1.

a=h (13)

TECHNICAL PHYSICS Vol. 46 No.11 2001

1385

SELF-SIMILAR SOLUTION

In the case of motion with a uniform deformation,
the density and velocity of the plasma of a straight col-
umn with an elliptical cross section have the form

b .
p = P H(L=E"-n?), V = (8€,bn,0),

where H(X) is the Heaviside step function and & = x/a
and n = y/b are self-similar variables.

For the class of motions under consideration, these
variables are conserved, d¢/dt = dn/dt = 0. In relation-
ship (4), we successively set S, =n and S, = € in order
to arrive at the following conditionsfor the current den-
sity to be uniform:

az[k+ a_c(;“+ b)} = C,,
2 41 4
b [m K| =c.

where C, are constants to be determined from theinitial
conditions.

Conditions (14) imply that, in the general case, the
plasma can experience motions with a uniform defor-
mation when the gradient of the external magnetic field
and the current in the column,

__1 & _Cp _C- b ]
K= Zpba o T 4B:la+cztﬂ (15)

are both time-dependent.

In order to determine these time dependences
explicitly, we must integrate the following set of ordi-
nary differential equations, which follow from the
Euler equation (3):

bb = G, (16)

where the current | is given by expression (15) and the
rest of the notationisF =Q —plC, and G = Q — ulIC,,
with 1 = Utcagbyp,. An analytic solution to Egs. (16)
can be constructed when F and G are time-independent,
i.e.,, when the current flowing in the plasma column is
constant. From expressions (15), we can see that thisis
the caseif theratio A = b/a of the semiaxes of the cross
section of the plasma column remains unchanged dur-
ing the plasma mation.

aa = F,

MOTIONS WITH A UNIFORM DEFORMATION

We assume that, at t = 0, the plasma column isin a
steady state, i.e., the semiaxes a; and b, of the cross sec-
tion of the column are given by expressions (13) with
the replacement k = ky and p = p,. For F = G =0, we

arrive at the simplest time dependence of the semiaxes:
a=a(l+wt), b= by(1+wt), a7

where w is a constant.



1386

Solution (17) describes the self-similar plasma
motion when the gradient of the external magnetic field
changes according to the law k = ky/(1 + wt)2. Thistime
dependence stems from the fact that the condition C; =
C, leads to relationship (11). Accordingly, for w = 0,
solution (17) passes over to the above steady solution to
Egs. (1)—3).

One can readily see that, under the condition F =
A2G, the nonlinear law of the evolution of thetransverse
dimensions of the plasmacolumn can be evaluated ana-
Iytically. Under this condition, the ratio A istime-inde-
pendent when a = a,f and b = b,f, where the function f
satisfies the following equation, which is a conse-
guence of Eqg. (16) and conditions (14):

ff=r. (18)
Here, we have used the notation
_1 _lpa2f
[)\aobo(lJr}\) K} R YENNE

For positive values of ', Eq. (18) describes a self-
similar expansion of the plasma column; for negative
values, it describes the compression of the column,
which may be preceded by a preexpansion, provided

that fo =u>0:

t = TAJ/merf(ut) —erf(Ju’t> = Inf)].

This result can be obtained from Eg. (18) by setting

I = —1/2t2 By the time t = t, = T./mAerf(ut), the
plasma column expands to the largest transverse
dimensions characterized by the quantity f, = A =
exp(u?t?). At later times (t > t,), the plasma column is
compressed according to the law

t = t,+ TAJ/merf(Ju’t’ = Inf).

When fo =—u <0, the plasma column immediately
begins to be compressed:

t = TAJ/mef(Ju’t’>=Inf) —erf(ut)].

In these formulas, erf(x) is the probability integral
[10]. The solution obtained corresponds to the follow-
ing time dependence of the gradient of the external
magnetic field:

‘= M[%_LDE_E}

f2 kTIN2+1 A+1)

For arbitrary initial conditions, the set of differential
equations (16) can be solved numerically. The charac-
teristic feature of these equations is that its solution is
unstable (even in the linear stage of the motion). We set

NAUMOV

a=afl+a)andb=Dby 1+ ) and retain terms up to
first order in a and B in expressions (15) to find

K = ko[l—a—B—%(l—vz)},

= loH -

wherey=a —[3 and v = kgl /Ttp,cQ.

After linearizing Egs. (16), we obtain the following
equation for the difference between therel ative changes
in the semiaxes:

19
2vyD (19)
1+v

4yko
micpy(1-v3)°

This result shows that, in the model adopted here,
the plasma column is unstable against motions with a
uniform deformation.

A TOROIDAL PLASMA COLUMN
WITH AN ELLIPTICAL CROSS SECTION

For a spatialy bounded, axisymmetric plasma con-
figuration, steady solutions to Egs. (1)—3) can be con-
structed by using the Shafranov equation for the mag-
netic surfaces[11]. A specific example of asteady solu-
tion isthetoroidal configuration [12]

W= %wo[rzzz_'_/\zl(rz_Rz)z}

where Risthe radius of the magnetic axisand Y and A
are constants such that

- _ 1oy -
T 21 oz’ By = 0, 20)
_ 10y osdn
27 2mr or’ ndljJ = Ao

For athin plasma column, this solution coincides (to
within first-order terms) with the above solution for a
straight column with an elliptical cross section. In fact,
near the magnetic axis, we have

W= 3WRIZ + (A= 1),

whereq =r — R (in this case, the small parameter isthe
ratio of the transverse dimension of the column to the
radius of the magnetic axis).

We set ), = 81/cRA and A = A2 + 1. Then, within

the adopted accuracy, we obtain from expressions (20)
41 jA’q

B, = ————, 21

11 (21)

4mn_jz

cCA%+1
No. 11

TECHNICAL PHYSICS Vol. 46 2001



UNSTEADY MOTIONS WITH A UNIFORM DEFORMATION

2| 2 q2 ZZD
nc’(@+b*)-  a

Taking into account relationship (12), we can see
that expressions (21) and (22) are equivalent to expres-
sions (6) and (7).

Note that the magnetic field (21) corresponds to a
uniform distribution of the density of the current flow-
ing in the plasma column in the direction opposite to
that of the vector g,. It is easy to find the components of
the external magnetic field:

R

Bor = kzo, By, = kRIn<

5

To within first-order terms, these expressions coin-
cide with expressions (21) for the confining magnetic
field.

SELF-SIMILAR APPROXIMATION

The self-similar approach may be applied to con-
struct an approximate unsteady solution to Egs. (1)—3)
for a toroidal plasma column with an elliptical cross
section. In my earlier paper [13], an analogous proce-
dure was used to describe the dynamics of an electron
ring.

In the absence of the longitudinal mation of the
plasma and for By, = 0, Egs. (2) and (3) for an axisym-
metric plasma distribution take the form

ap . 10ropV, N opv,

at r or oz - % (23)
% -1 (E_l-a_Bzﬂ_l-a_p (24)
dt  4mpll?az 2arl por’

dv, _ 1 a_BZ_}a_BrZD_la_p (25)
dt — 4mpld"ar 209z0 poz

For the class of motions under analysis, the density
and velocity of the plasmaof atoroidal column havethe
form

R . :
p =P H(1-E-n), V. =ak V,=bn, (26
where p; = pgaghy/ab and & = g/a and | = z/b are self-
similar variables.

One can readily see that, to first-order accuracy, the
results obtained above for a straight plasma column
with an elliptical cross section also apply to athin tor-
oidal column with a uniform current density distribu-
tion. However, in the model of an unstable plasma col-
umn, theseresults are applicable only to theinitial stage
of the motion.

In order to construct amodel of astabletoroidal col-
umn, we choose the following expression for the
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plasma pressure:

2p1QDl q __szé

In the steady state, this expression coincides with
expression (22). Note that, in the familiar Kapchinskii—
Vladimirskii model, the pressure of a charged particle
beam is described by a similar expression.

We substitute expressions (26) and (27) into Eqgs. (24)
and (25) and take into account conditions (14). Thus,
we arrive at the following set of equations describing
the evolution of the semiaxes of the elliptical cross sec-
tion of the toroidal plasma column:

c1 SN S o
b_QE’_ IF,

(27)

4= Q——ul (28)

inwhich, as before, the current | is given by expression
(15).

Analytical results can be obtained for small oscilla-
tions of the column about the steady state. Linearizing
Eqgs. (28) and using expressions (19), wefind

2
w

(1-v)

2

(1+v)°
where we introduced the notation «? = Tta,(cQ/1,)>.
Equations (29) and (30) can be solved in a standard
way. First, we calculate the eigenfrequencies w, =
and 0, = (1 + vd)/(1 —Vv?) = Q. Then, we derive the
following expressions for the relative changes in the
semiaxes.

a+

S[(1-v +v?)a +VB] = 0, (29)

B+ S[(L+v+V)B-vp] =0,  (30)

a

B = A,sinwt—A,(1-v)’sinQt.
Here, the constant quantities A have the form

A, (1+v)’sinQt— A,sinwt,

Ay = =B+ Bo),

Ao = 7= [8(1-v)"+ Bo(1+V)].

According to expressions (19), the motion with a
uniform deformation of interest to usis governed by the
time evolution of both the external magnetic field gra-
dient and the current flowing in the plasma column:

1
k = ko[l—Alglv +\—}—v‘%

xsinQt—A, —lmsinwt ,
v
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| = |0|:1—4V%A15ith— i sinoo%}.

2
1+v

Obvioudly, the results obtained in this section pro-
vide the basis for constructing a model of a straight
plasma column with an elliptical cross section that is
stable against motions with a uniform deformation.
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Abstract—The condition for yield drop existence in stress—strain curves for crystals with an initially low dis-
location density is derived. A new theory that radically differs from the well-known Alexander—Haasen model
is proposed to describe the stressed state of the crystal near the lower yield point. © 2001 MAIK “ Nauka/ I nter-

periodica” .

INTRODUCTION

The plastic deformation of low-dislocation crystals,
primarily of semiconductors, is characterized by
Kinetic curves with the nonmonotonic behavior at the
transition to the developed plastic flow. The peak in the
stress—strain curve (the so-called sharp yield point) may
cause the brittle fracture of the material. Because of
this, the prediction of such behavior has received much
attention.

To describe the initial stage of plastic deformation,
various models of elasticplastic transition that are
based on the kinetics of dislocation multiplication have
been proposed. Most commonly used is the linear mul-
tiplication law [1, 2]

do _ , oo
dt - ApTE' (1)

Here, p is the dislocation density, 1. is the effective

stress (T, = T — a./p), T is the applied stress, a is the
coefficient of Taylor hardening, and A isthe proportion-
ality coefficient dependent on the mechanism of dislo-
cation multiplication. In the model [1], the exponent n
in (1) coincideswith that in the stress dependence of the

dislocation velocity V, V = Bt (n = m), whilein model
[2], it differs by unity (n = m + 1). According to the
experimental data for semiconductor crystals [3-8], B
has the Arrhenius form, B = Vyexp(-E/kT), and m= 1
for silicon [6].

In what follows we will discuss the results of active
stressing tests (at a constant strain rate, € = const). The

construction of stress—strain curves, i.e., the depen-
dences of the applied stress on the strain € (or on the

time t, € = €t), with the use of Eq. (1) does predict,
under certain conditions, the nonmonotonic behavior of

1(€) in the transition region between the elastic and
plastic branches of the stress-strain curve, which isin
gualitative agreement with experimental data. A repre-
sentative curve is shown in Fig. 1. Once the stress peak
at the end of the elastic region (the upper yield point t,)
has been passed and a sufficiently high density of
mobile dislocations has been generated, intense plastic
flow starts and the stress decreases to the lower yield
point T,. Then, the stress slowly grows due to hardening

by the fields T, = a./p of newly born dislocations. The

upper and lower yield points are characteristic parame-
tersthat are convenient to measure. Their dependences

on temperature T, strain rate €, initial dislocation den-
sity po, €tc., are of great interest [2, 5, 9]. Theoretical
analysis of these dependences can be useful for the
identification of plastic flow mechanisms.

T, arb. units

T F-—----

u

1 1 1 1 1 1
0 €, arb. units

Fig. 1. Typical stress-strain curve.
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Recently, promising techniques for obtaining the
stress—strain curves by simulating the dynamics of dis-
location ensembles on the mesoscopic level have
appeared [10]. Nevertheless, the approach based on
phenomenological equation (1) is still of interest
because of its clearness. Since comparatively simple
models, such as Eq. (1), provide the adequate qualita-
tive description of many (but by no means al) features
of plastic deformation in real materials, they have been
widely used as the basis for interpreting experimental
data for as long as forty years. However, the complete
analysis of the stress-strain curves by varying the
whole set of the parameters near the yield drop is still
lacking within these models. The calculations avail able
[1, 11] are of great importance, but they are basically
unable to comprehensively solve the prablem. In this
study, we bridge this gap with new analytical solutions
for the type of models mentioned above. Among the
early approaches, the classical Alexander—Haasen [2]
analysis of the upper yield point with neglect of the
effect of hardening and their model for the lower yield
point should be mentioned. As will be demonstrated
below, the result of Alexander and Haasen for the lower
yield point isvalid only in anarrow range of low hard-
ening. This, in particular, makes the determination of
conditionsfor yield drop existence impossible. We will
find these conditionsin our study.

The emphasiswill be on the smplest case (n=m=1)
of the Johnston—Gilman dislocation multiplication
model [1], which, according to [5], fitsthe experimental
datafor silicon best of all. The technigue is then gener-
alized to modelswith arbitrary n and m, while the qual-
itative conclusions following from this study remain
valid in an even more general case.

SCALE ANALY SIS OF THE MODEL

We will proceed from Eq. (1), which describes the
variation of the dislocation density p, and from the
expression for the total strain rate €, which is the sum
of the elastic and plastic contributions:

ldt

Sdt
Here, Sis the combined elastic modulus of a sample
and atesting machine and b isthe Burgersvector of dis-
locations. We assume that the coefficient of dislocation
multiplication wisrelated to the coefficient Ain Eq. (1)
as A = wB. For the sake of simplicity, let us turn to
dimensionless variables and represent the dependences
on most parameters as scale factors. To do this, we will
express the stress in units of 1,; dislocation density, in
units of p4; time, in units of t;; and hardening, in units
of a

= g¢—pbV. 2

D'SSDI/(n +1)
OB ’

T, =

PETUKHOV

(Nn—=m+1)/(m+ 1)

1o ED
PL= bRl OB ’

t1 — (WB)—ll(n + 1)(és)—n/(n+ 1)’

a= iEE](HHl_n)/(Z(n+1))Dm(m+2)/(2(n+l))
NG BsE

To simplify the formulas, we will use the previous
notation for the dimensionless variables, since only
they appear in the subsequent discussion. The equa
tionswill then take the following form:

p = p(t-asp)’, 3)

t=1-p(t-aJlp)”. @)

The scale transformation performed provides in
simple terms the first approximation of the dependence
of the plastic flow characteristics on most parameters,
since their number has been reduced to two: a and the
dimensionlessinitial dislocation density p,. Moreover,
as will be shown below, many of the parameters, for
instance, the upper yield point, depend on the parame-
ters a and p, only dlightly (logarithmically). Thus, the
very separation of the scale factorsin the explicit form
explains much of the deformation kinetics, for exam-
ple, the similar temperature dependences of t, and T,
which are defined by the Arrhenius factor B involved in
1,, and also the dependence of 1, and 1, on the strain

rate €:

. 1/(n+1)

T, 01,0 ¢ E D

0__ & |
P T+ 1

Now we embark on studying the deformation kinet-
ics predicted by Egs. (3) and (4), starting from the sim-
plest yet illustrative case.

m=n=1: LOW HARDENING

As was noted, the experimental data [3—6] indicate
that for silicon (the best-studied semiconductor mate-
rial), the stress dependences of the dislocations vel ocity
and rate of their multiplication are nearly linear. There-
fore, the case m = n = 1 deserves particular consider-
ation. The scale factors are then given by

T, = §E. t, = —__-—.—1 = 1'/\/@8
1 WBv 1 /\/Slv—_st 1 b S y
and
a B o™
= D 1

In the case under study, Egs. (3) and (4) can be
reduced to one closed equation. To do this, we combine

these equations to get the relationship T + p = 1,

a

TECHNICAL PHYSICS Vol. 46 No.11 2001
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which, after integrating with respect to time, becomes
T=t—p + py. Substituting this expression into (3), we
arrive at the eguation with excluded t:

p = p(t—p+py—avp). (5)

Let usfirst consider the low-hardening range. With
a=0, Eq. (5) takesthe form

p=p(t—p+pg). (6)

The solution of this equation is

poexp 5t + P
1+pod(t)

p(t) =

where
t
J(t) = J’exp%t'2+potgdt'.
0

Ininitially low-dislocation crystals, py << 1. In that
event, we can disregard the term pgt in the exponentsin
(7). Assuming that, in view of small p,, the denomina-
tor in (7) noticeably deviates from unity only at t > 1,
we can approximate the integral J(t) by the asymptotic
expression J(t) = exp(t%/2)(1 + Vt2)/t.

Since the exponential exp(t?/2) strongly varies with
tatt> 1 (it changes by afactor of e whent ischanged
by &t = 1/t < 1), the denominator in (7) changes from
nearly unity to alarge value within a narrow range in
thevicinity of t =t,, wheret, isdefined by the condition
Pod(ty) = 1. Asaresult, p(t) abruptly changes from

p(t) = poexp(t’/2), t<t, (8)

to
p(t) =t(1-1/t%), t>t,. (9)

The change in the character of the solution at t > t,
can qualitatively be explained by the fact that it asymp-
totically tends to the quasi-stationary value at large t,
when the time derivativein Eq. (6) issmall andp=tin
the principal order and, accordingto (9),p=t—p/p=
t — 2/t in the next order. Nontrivia hereis only the cir-
cumstance that the transition range is narrow, on the
order of 1/t, < 1, and can be considered as akink in the
kinetic curvesatt =1t,.

The time dependence of stress1(t) =t — p(t) shows
apeak followed by a monotonic decrease. The vicinity
of the peak up to t =ty will be called the region of sharp
yield point. Beyond this range, the stress drops
smoother: 1(t) = 1/t. In the region of sharp yield point,

TECHNICAL PHYSICS Vol. 46

No. 11 2001

1391

the stress can be approximated with the use of (8)
for p(t):

T(t) =t — poexp(t°/2). (10)
The position t, of the peak is given by the equation
T=1-t,poexp(t3/2) = 0. (11)

For In(l/py) > 1, Eq. (11) can be solved by iterations
with any required accuracy. Restricting ourselves to
double iteration, we have

(12)

0 1 Oy
L=[and—L 0"
Po.2In(1/p0)
The substitution of t, into (10) yieldsthe upper yield
point:

T, = t,—1/1,
_ _In2In(1/py) +1 (13)
= ,/2In(1/py) m .

Let us trace how the results change at the presence
of hardening. As long as the hardening coefficient is
small, the change is noticeable only at comparatively
larget (t > ty) intheregion of quasi-stationary behavior.
In Eq. (5) rewritten as

t = p+aJp+plp, (14)

the two last terms are small and can be substituted by
the solution of the zeroth approximation p = t. This

yidldsp=t—a./t — Utand

T = t—p=aJt+1/t. (15)

Unlike the case of zero hardening, dependence (15)
has aminimum and growsast — co. The minimum is
located at t = t, = (2/a)?® and corresponds to T, =
3(a/2)?3. This is the solution for the lower yield point
similar to that obtained by Alexander and Haasen [2].
Its specific feature is the independence of T, from the
initial dislocation density p,. The properties of the
lower yield point have been thoroughly discussed else-
where (see, eg., [5, 11]). However, the applicability
range of the Alexander—Haasen solution has not been
adequately studied.

From the derivation of the solution, it is evident that
itisvalid only if the minimum falls into the quasi-sta-
tionary regiont, > t,, i.e., ata< 2/t3> < 1. With higher
hardening  coefficients, the Alexander—Haasen
approach is inapplicable and the description of the
lower yield point should be revised.

The bound of the quasi-stationary region aso
depends on a, while dlightly, and will be denoted ast,
instead of t,. We will proceed from the circumstance

that only the quasi-stationary region of the stress—strain
curve, t > t,, is severely distorted by hardening. The
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0 2/32 1 2

Fig. 2. Location of thelower yield point vs. hardening coef-
ficient for aninitial dislocation density pg=10"". The Alex-
ander—Haasen solution t; = (2/a)?* and the yield drop limit
t, are aso shown.

effect of hardening on the stress—strain curve, and in
particular on the shape of theyield drop, at t <t issub-
stantially weaker and becomes essential at considerably
higher a (specifically, this shows up in the dight a
dependence of T,,; see below). Therefore, T(t) monoton-

ically decreases between t, and t,, whereas at a > 2/t3°
and t > t,, it monotonically grows; hence, the stress—
strain curve passes through a minimum in the vicinity
of t,.

Thus, the position of the minimum on the stress-
strain curve is defined by the position of the boundary
of the quasi-stationary deformation region. Taking into
account the term with p in (14) in terms of the pertur-
bation theory, one obtains the approximate time depen-
dence of the dislocation density in the quasi-stationary
mode:

o(t) = (/1 +a’la—ai2)’ - —L
t+a’/4

The boundary t, can approximately be found as the

point of intersection between time dependences of p (8)
and (16):

Po&P(t2/2) = (Wt + 824 —a/2)’ -

(16)

1
t+a’l4

In passing from the Alexander—Haasen solution t; =
(2/a)?® to the solution t, = t, defined by Eq. (17), the
effect of the hardening coefficient a on the location of
the minimum becomes much weaker. Thus, for the
hardening coefficient a > 2t;>~, the lower yield point
can be estimated by the substitution of the valuet =t
which is minimal for the quasi-stationary region, into
1(t). Eventually,

=ty — (Jt, + ald—a/2)’ + —=

t,+a’l4

(17)

(18)

PETUKHOV

- -

NS O L, = |
T
-

i Z <7 3(a2)

1+

|
|
1 -~
|
|

L 1
0 2/t5” 1 2 3 a

Fig. 3. Upper and the lower yield points vs. hardening coef-
ficient, py = 10°. The Alexander—Haasen solution T, =
3(2/a)2’ and approximation (18) are also shown.

Since t, is pg-dependent, the lower yield point [see
(18)] also depends on the initial dislocation density,
thereby qualitatively differing from the solution
obtained by Alexander and Haasen [2]. To illustrate
this, Fig. 2 showsthe a dependence of t, obtained by the
numerical solution of Eg. (5). It is evident that the
boundary t, of the yield drop is the lower barrier for t,
within a wide range of a. As aresult, the minimum in
this range lies close to t,, so that t, is a satisfactory
approximation for the location of the minimum.

Figure 3 depicts the a dependences of the upper and
lower yield points 1, and 1, obtained by numerically
solving Eq. (5). It is clearly seen that, beyond the nar-
row applicability range of the Alexander—Haasen
dependence, solution (18) (curve 1) better fitsthe lower
yield point. Note also the aforementioned weak depen-
dence of the upper yield point T, on a.

m=n = 1. CRITERION FOR YIELD
DROP EXISTENCE

As a grows, the maximum 1, and the minimum t
approach each other and the height 1, — 1, of the yield
drop decreases as shown in Fig. 3. At a critical value
a = a., the maximum and minimum merge together and
the stress—strain curve becomes monotonic. Thus, the
criterion for yield drop existence is the inequality
a<a.. Let uscaculate the value of a.. It is convenient
to proceed from the approximated variant of Eq. (5)

where the term a./p dominates: p = p(t — a./p). Its
solution can be written as

t?/2
_ _ Poexp( )2’ (19)
a
|1+ 5Poda(t)|
TECHNICAL PHYSICS Vol. 46 No.11 2001
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where

t

3(0) = [ep(tIad = exp(t2/4)%%1 + t%g.
0

This solution, in particular, indicates that, as in the
case of low hardening, the time dependence abruptly
changesin the vicinity of thet, point, given by the con-

dition (a/2) /poJa(ta) = 1. At t < t,, p(t) = peeXp(t¥2),
asbeforein the casea =0, and is nearly independent of
the hardening. At t > t,, p(t) = (t> — 4)/a?, which agrees
with (16) in the limit 1 < t < a? considered. We can
thus conclude that, as long as the stress-strain curve
peaks within the region t, < t,, its height and position
are affected by hardening only dlightly. However, with
anincreasein a, the quasi-stationary region approachest,
and the peak may disappear. Let us trace how this
occurs.

The equation defining the extreme points of T(t),

T=1-pt—p-ap)=0,suggeststhat p =1 at the
extrema. This equation can be rewritten as

t = p(t) +a/p(t) + 1/p(t).

At a< a, the curves corresponding to the right- and
the left-hand sides of the equation intersect at two
points representing the maximum, t,, and the minimum, t;,
of stress—strain curves. With anincreasein a, t,, and t,
approach and merge together when thet curve becomes
tangent to the t dependence in the right-hand side of
Eg. (20):

(20)

+__6.1__i|:|d_p—1+ a 1

1= = —=
2./p pHdt

2o (21)

Here, we take into account that p = 1 at the extreme
points. Expressing p. in terms of a, from (21), p, =
(2/ay)??, and using Eq. (20), we obtain t, = 3(a/2)¥ +
(2/a)?®. Substituting these relationships into (19)
yields the critical condition in the form

arp” 2
IN(L/poc) = é%ﬁ +Sin(a/s4) +3. ()

Figure 4 illustrates the agreement between this for-
mula and the numerical solution. It is evident that the
lower the initia dislocation density, the wider the
domain of yield drop existence. In order to trace the
dependences on the other parameters, one should return
to the dimensional variables and write the critical con-
dition in the form

34 o 14
O wWT B . a,.
Jo8) L&D
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—

Fig. 4. Yield drop existence limit [expression (22)] for
a(pg); circles show the results of numerical simulation.

Disregarding the logarithmic dependence, which is
conditioned by the normalizing factor p, included in pg,
one can conclude that a decrease in the temperature and
an increase in the strain rate € favor the yield drop
appearance.

GENERALIZATION

Qualitatively, the stress—strain curves retain their
features in the more general case of arbitrary mand n.
Let us briefly list them bearing in mind the complete
analogy with the case of m=n =1 considered in detail.
To describe the vicinity of the upper yield point, it will
suffice to calculate the first correction to elastic behav-
ior. In the zeroth approximation, p=0andt=1.,=t.In
the next approximation,

p=poexp(t""Y/(n+1)),

T=t—pot" "exp(t"* M (n+1)). (24)

The extreme points are found from the equation
1=0i.e,

(23)

T = a/p+1/p"™ (25)
When the hardening is low and the stress-strain
curve peaks within the region of low dislocation den-

sity, one can omit the term a./p in Eq. (25), substitute
t for 1, and express p(t) by (23). As aresult, Eq. (25)
becomes

Poexp(tn*H(n+ 1)) = 1/tT. (26)

The equation can be solved by iterations. To find the
first approximation, we substitute t, = 1 into the right-

hand side and obtain t; = [(n + 1)In(1/py)] Y™+ 9. Then,
substituting t, = t; into the right-hand side of (26) yields

the next approximation, t, = t,[1—m(n + 1)/t] "1 ]¥0+D,
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Fig. 5. Upper and lower yield points vs. initial dislocation
density. Hardening coefficient a = 3 and 4. The inset shows
the experimental dependences for silicon [12] (T = 800°C

and £ =1.2x104s).

to which we restrict ourselves. The insertion of this
solution into (25) specifies the upper yield point as

_np(tu) = tu - 1/t3
—[min(ty) + 1]/t}.

T, =t
v (27)

It isalso not difficult to obtain the generalized crite-
rion for yield drop existence. For this purpose, we will

solve the equation for extreme points, T = a./p +
1/p¥™ combined with the bifurcation condition

. a 1
1T=0= —— ,
2Jp "
mp
which generalizes (21).
Hence,
2_m 2
_nQ2pme —t = [ﬁcfﬂ]
Qacrﬁ] v = tc"' m 020 (28)

To yield the criterion in the basic logarithmic
approximation, i.e., up to terms on the order of unity,
which are small compared with the major contribu-
tions, the time dependence of p can iteratively be
approximated by expression (23) with the substitution
of quantities (28). Finally, we have

2(n+1)

~_1 m+ 2 ey e
In(poe) = =m0 OO0 (29)
2m

+ In2e™
m+ 2

U2 0

PETUKHOV

In addition to the p, dependence of a., this formula
also relates the criterion for yield drop existence to the
exponents m and n, which characterize the stress sensi-
tivity of the dislocation velocity and the kinetics of their
multiplication.

CONCLUSIONS

Let us outline some qualitative conclusions com-
mon to the models of the type considered above.

(1) In crystals with aninitially low dislocation den-
sity, the stress—strain curves display a sharp transition
to the quasi-stationary behavior. Thetransitionregionis
so narrow that one can speak of thetransition “point” (t,
or t,). This point is as important for characterizing the
deformation Kkinetics as the upper and lower yield
points are.

(2) At some critical hardening coefficient a = a., the
maximum and the minimum on the stress—strain curve
merge together and disappear, rendering the curve
monotonic. Thelower theinitial dislocation density, the
larger the value of a.. Experimentally, it may be more
convenient to vary theinitial dislocation density p, with
the other parameters fixed. The yield drop decreases
with increasing p, and disappears as the critical value
Po. IS exceeded. The qualitative correlation of the
behavior predicted by the model under discussion with
the experimental data for silicon [12] is evident from
Fig. 5.

(3) The quasi-stationary region of the stress—strain
curve is independent of the initia didocation density p,.
If the lower yield point falls into this region, it is also
po-independent. Thisistrue, however, only for the lim-
ited interval of hardening coefficient. When the upper
limit of thisinterval is exceeded, the lower yield point
approaches t,—the point of transition to the quasi-sta-
tionary mode—and beginsto depend on theinitial dis-
location density. Such a situation takes place near the
region of yield drop existence, i.e., when the minimum
of the stress—strain curve is near the yield drop. Thisis
confirmed by the experimental data for silicon [12]
(Fig. 5), which show that t, depends on p, near the point
where 1, and t, merge.

The shift of the lower yield point towards larger
times and, therefore, higher dislocation densities can
also beresponsiblefor the experimentally observed fact
[12] that the internal stresses exceed their effective
value near the lower yield point vastly larger than pre-
dicted by the expression 1, = 2t/m, following from the
Alexander—Haasen theory [2].
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Abstract—Calculations of a photon emission pulse generated on the back side of ametallic sample laser-irra
diated on its front side are performed. A detailed comparison with experimental data is made. © 2001 MAIK

“ Nauka/Interperiodica” .

In thiswork, we pursue studies of mechanolumines-
cence in metals [1-12]. In experiments [8-12],
mechanical stresseswere induced by asingle laser shot
with a beam diameter much smaller than the diameter
of the sample. Theirradiated spot on the surface rapidly
heats up, and the temperature distribution varying in
time and space arises because of the finite thermal con-
ductivity of the sample. Asaresult, mechanical stresses
that also vary in space and time appear. Processes tak-
ing place on the back (nonirradiated) side of the sample
were considered. It has been found that luminescence
from the metal surface is excited when the stresses
approach the yield point but the temperature remains
nearly unchanged [11, 12]. However, as follows from
experiments [10-12], the dynamics of a luminescence
pulse differs from that of the stresses and the rate of
their change; namely, the luminescence decays when
the stresses and the rate of their rise continue increas-
ing.

According to the dislocation mechanism of photon
emission, when metals deform, the rate of mechanolu-
minescence must depend on the initial dislocation den-
sity and the number of dislocations crossing the surface
due to strain [13-15]. Both statements have been con-
firmed experimentally [9, 16, 17]. It has been shown
that the deformation or failure of a sample having a
high dislocation density is attended by intense emission
and the topography of its surface considerably changes,
because many didocations cross the surface. If the dis-
location density in a sample being deformed is small
(al other things being equal), theemissionisweak or is
not detected at all and the surface relief changesinsig-
nificantly.

The aforesaid allows usto assume that the dynamics
of an emission pulse correlates with the dynamics of
didlocations crossing the surface. The latter can be cal-
culated by assuming that dislocations crossing the sur-
face change the emitting area of the sample surface.

Then, we have

aN _
a = —AeN. (1)

Here, N is the dislocation density, € is the relative
change in the back surface area due to thermal stresses,

€ is the rate of change of the back surface area, t is
time, and A is a constant. In our early experiments
[11, 16], we studied luminescence from the back side
of copper samples irradiated by a laser shot. The sam-
pleswere 0.5-mm-thick copper diskswith adiameter of
30 mm. The 10.6-ym 1.5-ms laser shot was focused
into aspot of diameter 1 mm. The minimal laser energy
was selected so that luminescence was reliably
detected. The energy applied to the samplewas 0.6 J. At
the center of the spot, the maximal stresses exceeded
theyield point of copper only slightly, while at its edge,
they only approached it by the end of the luminescence
pulse [11]. Such conditions allow us to calculate € and

€ inthelinear approximation by invoking equations of

the classical elasticity theory, which gives averaged val-
ues of strains and stresses. Integrating Eq. (1) yields

N = Noexp(-Ag), )

where N, is the initial density of dislocations. We
assume that the strains are symmetric about the laser
beam center. Let us express the changes in the surface
area through displacements:

r=r+U,, zZ=2z+U, 3
Here, r and z are the positions of surface points before
deformation, U, and U, arethe positions of the displace-

ment vector, and r' and Z are the positions of points on
the surface being deformed:

dL' = J(dr)?+(dz)’ = %Haair%dr; 4

1063-7842/01/4611-1396%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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dS = dL'r'd¢ = %H

= %_ + 1'
r
Since rdrd¢ = dS the relative change in the surface

area takes the form

dS-dsS _ 10
ds rar(U) ©)

The displacement U isfound from equations derived
in[11]:

(r +U,)drd¢
5 ®)
a(rU,)Hrdrdq).

€

U, 1 9, _2(1+po(aT)
AU, . +—1_ (divU) = T-2u or -
1 2(1+)a(aT)
AU, * 1-2u0z (d u) = 1-2u o0z’

where [ is the Poisson’'s ratio, a is the thermal expan-
sion coefficient, r and zare cylindrical coordinates, T(z,
r, 1) is the temperature distribution in the sample, T =
kt/cpa?is dimensionless time, k is the thermal conduc-
tivity, tistime, c isthe heat capacity, p isthe density of
the material, and a is the sample thickness.

From Eg. (7), it follows that the time and spatial
temperature distributionsin the sample set under irradi-
ation are needed in order to calculate the displacements
and, accordingly, the change in the back surface area.
The temperature distribution within the laser spot is

Esinn—T <1
fy=g T  ° )
T1>T1,,

where 1, = kty/cpa? and t, is the shot duration. The tem-
perature distribution in the sample is given in [1]. For
T <T,, it hastheform

T(rz1) = 2 OIJ@

2. MT na

sm———%:os——exp o

ZDD

)\4+E%—
To

X
I:II:II:H___H:IQI:I

9)
e + A% sin X

To

+2

2

S (NP + 2

o o
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for > 1y,

T(r,z1) = qo ora’ IJl%\ aD‘JO

Uexp —)\2 ! D%xp%\

)\4+T[—"’2l
To

O

X

o o o

(10)

(0727
. cosE—1

+2 [(nznz+)\) }
o (N2 + 237+ 12

T0

x [exp[(nzn2 + )\Z)aﬂ + 1} A.

I

Here, q, is the energy flux absorbed by the sample and
Iy is the radius of the laser spot on the surface. The
boundary conditions for Egs. (7) are

o,n, = 0, (11)

where g;, is the stress tensor and n is the normal to the
surface.

Set (7) with boundary conditions (11) was solved by
using the thermoel astic potential of displacements and
Love functions [18]. Eventually, the desired solution
for U, on the back side of the sampleis obtained in the
form

U, = B[R oL
0

X (Fy(\T,T0) = Fo(A, T, T0)) FAdA.
Here, B =2a(1 + W)(qorea/K). For T < 1,

(12)

Fi(AT,Tg) =
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smT[—T—E os— —exp(-A T)ED

+2 1

k=148 + A2)§(4k2n2 +2%)%+ s
T

g4k2n2 +A )smn—r—E os Y

To To
[l
]
—eXp(—(4k2T[2+)\2)T)%|j
O
O
[l
_2sinhA
P11 = Gy

1

+

K=1((2k + 1)°TC + A® )[((2k+2)2T[2+)\) +52%
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——%:os— — exp(—((2k + 1)°1¢ + AT

for 1 > 1,
0
0
_ _SnhA T 1
FATT0) = gy, .
0

. *;%
x (exp(-A°T) + exp(-A*(1 —1y)))

00

+2 1

K=1(aK2r8 + A2)§(4k2ﬂ2 +A)%+ 52%
T

x (exp(—(4Kk*Te + A1)

+ exp(—(4K°TC + A°) (1 -1p)))

oo o

2sinhA 1
F(MT.T0) =GR oAty

. 1

K22k + 1)’ + )\Z)E((Zk +1)%2 + AY)% + EE
T

x (exp(—((2k + 1)*1C + A*)1)

+exp(—((2k+ 1)°1¢ + %) (1 -1))).
Thus, substituting (12) into (6), we obtain

(1) = B[HA IR 1) .

—F,(\, T, o)A dA.

To continue calculations, we express d€/dt, or €, as

e(r,1) = BIJ %\ Jo%rm Qo Fi(A,T,T0) »
14

_EFZ(A,T,TO)%\Zd)\,

where 3, = Bk/cpa?. The derivatives of F;(A, T, To) and
F,(A, T, Tp) with respect to 1, are not given here, since
they are derivatives of the elementary functions. Fig-
ures laand 1b show the experimental curves | ,(t) and

llum(t), as well as the dependences g(t) and € (t) calcu-
lated from (13) and (14), respectively, and averaged
over acircleof radiusr = 1 mm. Theradius on the back
side is taken to be equal to the radius of the laser spot,
because the material structure changes within this
radius (as follows from the examination of the metallo-
graphic sections[9]). The constant A in expressions (1)
and (2) is determined in the following way. According
to the dislocation mechanism, mechanoluminescence
on the metal surface is initiated when mobile disloca-
tions emerge on the surface. Hence, the maximal lumi-
nescence intensity will be observed at the instant the
greatest number of the dislocations appear on the sur-
face. At thistime instant, the second-order time deriva-
tive of expression (2) must vanish. Mathematically, this
condition iswritten as
€
A= i (15)
€

where € and € aretaken at theinstant of maximal lumi-
nescence intensity and averaged over acircle of radius
r=21mm.

In our experiments, the mechanoluminescence
intensity peaks at t = 0.7 ms. For the sample under

TECHNICAL PHYSICS Vol. 46 No.11 2001
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Fig. 1. (@) Waveforms of theirradiating pulse (the numbersindicate the power absorbed by the sample) and the pul se of mechanolu-
minescence initiated on the back side of the sample, (b) calculated relative stress-induced change in the back surface area and the
rate of its change vs. time, (c) calculated time variation of the number of dislocations emerging on the surface within a circle of

radiusr = 1 mm, and (d) calculated photon emission pulse.

study,

A = 500 x 10°. (16)

Figure 1c shows the time variation of the number n
of dislocations in the plastic zone within a circle of
radiusr =1 mm. The plot is obtained from (1) in view

of (14) and (16). It follows that, aslong as € < 0, the

number of the dislocations grows, while at € > 0, it
decreases (the dislocations emerge on the surface). We
assume that for € > 0, the number of newly generated
defects is negligible compared with the number of dis-
locations crossing the surface; then, the continuity con-
dition

ON , . .

— 4+ =

ot divj = 0, 17)
(j is the flux density of dislocations emerging on the
surface) must be met.

The second term in Eq. (17) can be estimated as
divj 0L, (18)
o

where &, is the plastic zone depth.

Thus, the flux density of dislocations emerging on
the surface can be represented, with regard for (17) and
TECHNICAL PHYSICS Vol. 46

No. 11 2001

(18), inthe form

oN
tot’

When moving, each of the dislocations interacts
with 1/a atomswithin aunit length (aisthe lattice con-

stant). The expression for the photon flux from a unit
surface area has the form

jn=-0 (19)

Ny = nj/a

wheren isthe probability of emitting aphoton. In view
of (1), (2), and (19),

Ny, = nd@ " NoEexp(—Ae). (20)

For copper, a=3.61 A [19], N, = 10 m2, §,= 2.5 x
10#m[20], and n = 10°[14].

The calculated time dependence of the photon flux
is depicted in Fig. 1d. It should be noted that knowing
the sensitivity of the optical detector and its position
relative to the light-emitting surface and bearing in
mind that the mechanoluminescence spectrum of cop-
per has two lines with peaks at =1.7 and =2.1 eV [1],
one can experimentally estimate the emission pulse
intensity. From such estimates, the peak of the lumines-
cence intensity |, (Fig. 1a) equals=1.5 x 107 ph/s, or
=5x 102 W. Thus, the experimental and analytic spec-
tra (Figs. 1a, 1d) can be compared by shape, duration,
delay relative to the beginning of theirradiation (stress-
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ing), and amplitude. It is seen that the spectra are in
fairly good agreement. Thus, we may draw the conclu-
sion that the dynamics of aluminescence pulsefromthe
back side of ametal sampleirradiated by alaser shot on
its front side correlates with the dynamics of disloca
tions emerging on the surface.
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Abstract—The possibility of controlling the efficiency of second harmonic generation by femtosecond pulses
is demonstrated. By the phase shift in a certain cross section of the medium, switching from the low-efficient
to the high-efficient generation state (and vice versa) is realized. The switching contrast in terms of the conver-
sion efficiency is up to 4 (or more) and in terms of the peak intensity at the center of the pulseit isas high as 9.
A new class of optical switches based on this effect is suggested. © 2001 MAIK “ Nauka/l nterperiodica” .

The problem of efficient second harmonic genera-
tion (SHG) by femtosecond pulses has remained unre-
solved to date[1] in spite of thelong-standing effortsin
this field [24]. The reason is known to be the self-
action of wavesthat is caused by the cubic nonlinearity
of amedium. For femtosecond pulses, the effect of this
nonlinearity becomes comparable to that of quadratic
nonlinearity. The self-action produces an additional
phase shift of the interacting waves, violating the opti-
mal phase relations. As aresult, energy transfer to the
second harmonic does not occur.

By using the SHG invariants (the quantities that
retain their value during the wave interaction), it was
shown [5] that the generation efficiency in the case of
phase and group matching is defined by the ratio of the
dimensionless constants characterizing the quadratic
and cubic nonlinearity. The efficiency depends on this
ratio monotonically: the higher the effect of the cubic
nonlinearity, the lower the generation efficiency.

A qualitatively new feature of the SHG process
appears if the generation proceeds in the absence of
phase matching. It has been shown [6] that, in this case,
two stable generation modes are possible. Conse-
guently, wave self-action at certain conditions causes
the spontaneous periodic switching of the generation
process to the high-efficient state (brunch), where a
generation efficiency as high as60% isachieved [7]. In
this paper, we show that SHG can be controlled by
switching the process from one stable state to the other
by inducing a phase shift between the interacting waves
in acertain cross section of the medium. It isimportant
that at specific conditions, the contrast between these
states is high. This offers the possibility of implement-
ing an optical switch (processor) with a potentialy
small switching time, which is determined by the tran-
sition time of cubic nonlinearity. Thus, with the elec-
tronic mechanism of nonlinearity, the switching
between the states may take from 10 to 50 fs (or less).

If it is assumed that the diffraction length far
exceeds the length of a nonlinear medium, the set of
dimensi onless equations describing the process of SHG
by a femtosecond pulse with regard to its self-action
hastheform [2]

0A, . 0°A, ¥
—a—z-l + |D1———ar]21 +iyAr Ae B

+iogA|A°+2/A") = 0, O<zsL,

0A,, 0A, Ao m (D
—a—z—+van+|D26n2+|yA1e +i0,A,

x (2|A*+|A%) = 0, @, = 2a, = 2a.

Here, n isthe dimensionlesstimein the coordinate sys-
tem related to the basic wave pulse; zisthe normalized
longitudinal coordinate;
.
b~ -0s2k
0w;

are the coefficients describing the second-order disper-
sion; k; and @; are the dimensional wave number and
the angular frequency of jth wave, respectively; yisthe
coefficient of nonlinear coupling between the interact-
ing waves; Ak = k, — 2k, is the dimensionless mismatch
between the wave numbers; ; are the wave self-action
coefficients; and A are the complex amplitudes of the
harmonics (j = 1, 2) normalized to the maximal ampli-
tude of the first harmonic in the initial section of the
medium (z = 0). The parameter v is proportional to the
difference of the reciprocals of the group velocities for
the second and first harmonics, and L, is the length of
the nonlinear medium.

At the entrance into the nonlinear medium, the ini-
tial distribution of the fundamental frequency pulseis

1063-7842/01/4611-1401$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Variation of the SHG efficiency (1) without and (2—
4) with switching at different points of themediumat a = 8,
y=4,Ak=-235,andv = 0for_(a) D, = D, = 0.0000625,
andT=4and(b)D;=D,=10and T =0.1.

set in the form

A(z=0,n) = An),
where L, is the dimensionless time for which the pro-

O<n<lL, 2

9
0.7 -
0.6
0.5 4
3
0.4
03 2
02+
1
0.1F
1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 z

Fig. 2. SHG efficiency for a = 16, y = 4, Ak = -2.0, D; =
D, =0.001, v =0, and T = 10 (1) without switching into the
high-efficient state and with the introduction of the phase
shift Ag = (2) -3, (3) —1.5, and (4) —2.5 in appropriate sec-
tions of the medium. The sections where the phase shift is
introduced correspond to the bifurcation of the curves.

LYSAK, TROFIMOV

cess is considered; the amplitude of the second har-
monic in this section is equal to zero: A,(z=0,n) =0.

In physical experiments, the initia distribution of
the fundamental wave pulse Aq(n) is usualy approxi-
mated by the Gaussian pulse:

Ao(n) = Ayexp(—((n—LJ/2)/1)/2). ©)

For our parameter normalization, the dimensionless
amplitude at the fundamental frequency isA;p = 1.

The SHG process in the presence of wave self-
action has a number of invariants [5]. Their values
should be controlled upon the computer simulation of
SHG. We used conservative difference schemes that
retain the values of the invariants.

The efficiency of energy transfer from the funda-
mental harmonic to the second harmonic was eval uated
as

L, L,
0(2) = [|Az ) dn / [lamla. @
0 0

We carried out numerical experiments including
group matching between the interacting waves (v = 0).

It is known that the transfer (conversion) efficiency
O(2) first smoothly increases from zero to a certain
maximal value. In this case, the generation occurs
within the first matching region where the phase differ-
ence between theinteracting wavesislessthan 1t Then,
the efficiency oscillates near its mean value. The mean,
in turn, is defined by the values of the problem param-
eters and rapidly drops with an increase in the self-
action (the parameter o).

A considerable increase, as well as a considerable
decrease, in the conversion efficiency within a specified
distance from the entrance into the medium can be

0
1.0r

0.8

0.6

AN w AN

04

0.2

N~ W

0 0.2 0.4 0.6 0.8 1.0 z

Fig. 3. SHG efficiency for a = 10, y=4, Ak =-2.35, v =0,
D; = D, =0.0000625, and T = 4 (1) without switching into
the high-efficient state and upon introducing (2) the phase
shift A¢ = —1; (3-6) double phase shift A¢p =—1 and 11, and
(7) triple phase shift A¢p = —1, 1, and Ttin appropriate sec-
tions. The sections where the phase shift is introduced cor-
respond to the bifurcation of the curves.
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Fig. 4. Dependences of the spatial distributions of the efficiency (ontheright) and of theintensity of thefirst, 11(2) =|A((z n = Lt/2)|2

(continuous curves), and second, 15(2) = [Ax(z, n = Lt/2)|2 (dotted line), harmonics at the center of the pulse (on the left) on the posi-

tion of the switching point and the phase shift sign at the switching point. z= (a) 0.05, (b) 0.22, (c) 0.32, and (d) 0.5. Figures near
the curvesindicate the phase shift at the switching point. a = 10, y = 4, Ak = -2.35, v = 0, D; = D, = 0.0000625, and T = 4.

achieved by shifting the phases of the interacting waves
inside the medium if the cubic nonlinearity dominates
over the quadratic one. In this situation, the sign of the
shift may sometimes effectively control the conversion
efficiency. Note that we accomplished the phase shift
between the interacting waves by simultaneously intro-
ducing the equal phase A = const into thefirst and sec-
No. 11

TECHNICAL PHYSICS Vol. 46 2001

ond harmonics. It is this value A¢ that is given in the
figure captions.

It should be emphasized that if the dimensionless
coefficients characterizing the quadratic and cubic non-
linearities differ insignificantly (a ~ 2y), the switching
only maintains the conversion efficiency at ahigh level
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1,(1p)

Fig. 5. Variation of the pulse shape during its propagation inward to the medium (&) without switching, with switching at the point
z = 0.05 for the phase shift equal to (b) 1 and (c) —1, and with switching at the point z = 0.5 for the phase shift equal to (d) 1 and
(e -1.a=10,y=4,Ak=-2.35v =0, D; = D, =0.0000625, and T = 4.
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THE BISTABLE MODE OF SECOND HARMONIC GENERATION

I(Iy)

1.0

1405

(d)

0.8

0.6

0.4

0.2

10 -10

0

10
t

Fig. 5. (Contd.)

without increasing it. This conclusion holds both for
sufficiently long pulses (Fig. 1a) and for short pulses
(Fig. 1b), which are substantially affected by the sec-
ond-order dispersion. The advantage of the switching to
the high-efficient state, in this case, is that the conver-
sion coefficient depends on the length of the medium
only dlightly.

Themost interesting practical caseiswhen the cubic
nonlinearity greatly overrides the quadratic one during
second harmonic generation by femtosecond pulses. In
this case, the switching provides a high efficiency of
generation at Ak # 0. Thisisillustrated in Fig. 2, where
the variation of the conversion efficiency as the pulse
propagates along the medium without switching
(curve 1), as well as for single and double switching
(curves 2-4), is shown. The first switching greatly
increases the conversion efficiency (curves 1 and 2 in
Fig. 2). Depending on the section taken to perform the
second switching, the conversion efficiency can be
degraded (curve 3) or kept at the level achieved
(curve 4).
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Note that similar results are also observed for other
a andy, particularly, for a = 10 and y = 4. However, the
switching efficiency for these parameters is somewhat
lower, because a higher energy should be transferred to
the second harmonic under the conditions of phase
matching. This statement isillustrated by Figs. 3 and 4,
where the results of computer simulation for a = 10,
y=4, Ak =-2.35, D, = D, = 0.0000625, and T = 4 are
presented. At some pointsinside the medium (the bifur-
cation points of the curves), the switching was per-
formed at different phase shifts that maximize the effi-
ciency (Fig. 3) or deviate (increase or decrease, Fig. 4)
the efficiency from its nonperturbed value (when the
phase shift is absent). The wave phase was varied near
the entrance to the medium and in itsinterior.

Asfollows from Fig. 3, the conversion efficiency as
high as 90% can be achieved by introducing a phase
shift between the interacting wavesin properly selected
sections of the medium. It is significant to emphasize
that the maximal difference in the efficiency values
upon reversing the phase shift is observed for switching
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points within the first quarter of the interval (Fig. 4).
The efficiency is the highest for the positive shifts and
the lowest, for the negative shifts.

Too early (Fig. 4a) or too late (Fig. 4d) switching
considerably reduces the phase-shift effect at the
switching point. It is important that in the former case,
the conversion efficiency at the end of the interval
decreases. In the latter case, conversely, the efficiency
increases regardless of the direction of the shift. In both
cases, the difference in the efficiency values at the end
of the interval for the switched waves is small. There-
fore, the switching contrast must be small as well.
However, for the early switching, there is a domain in
the middle of the interval where the switching contrast
is high. When the switching point tends toward the end
of the interval, the contrast decreases and becomes
insignificant for the latest switching.

However, the variation of the pulse shape during its
propagation inside the medium implies that only the
early switching (Fig. 4a) can retain the shape of the
propagating pulses; as a result, the same generation
mode is observed throughout the pulse width (Figs. 5b,
5¢). In this case, the essential (several-fold) difference
between the peak intensities of thefirst and second har-
monics can be achieved (Figs. 5b, 5c; section z = 0.6).
In the absence of switching (Fig. 5a), as well as when
the switching islate (Figs. 5d, 5€), the uniform genera-
tion mode and the appropriate contrast (the ratio of the
intensities) are observed only in the area nearest to the
pulse center due to self-focusing. The pulses break into
several subpulses. As aresult, the maximum attainable
contrast of generation efficiency is reduced compared
with the case of the early switching.

In closing, let us draw some conclusions from the
results on SHG by femtosecond pulses with regard to
wave self-action. First, to achieve a high generation
efficiency, the condition of phase matching, used in the
case of SHG by longer (picosecond or still longer)
pulses, should be abandoned. Second, by introducing
the phase shift between the interacting wavesin certain
sections, the generation efficiency up to 80% (or more)
can be achieved. Third, when providing a high genera-
tion efficiency, one can control the second harmonic
pulse shape. In particular, both a Gaussian pulse and a
pulse that has a dip in the intensity distribution along

LYSAK, TROFIMOV

the axis can be realized. Hence, different modes of the
second harmonic can be generated.

Fourth, by switching generation modes, we can real -
ize bistable generation with the generation efficiencies
and peak intensities of the harmonics differing by sev-
eral times. This enablesthe development of anew class
of optically bistable systems that offer high efficiency
and switching rate in the femtosecond range if an addi-
tional phase shift is introduced in the same time scale.
As a result, an optical processor based on the above
principle can be designed.

It is also worth noting that modulation instability
may prevent the achievement of high-efficient SHG by
femtosecond pulses with a very high intensity. How-
ever, this effect is beyond the scope of this studly.
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Abstr act—A periodic multielement piezoel ectric transducers operating in the high-frequency part of the micro-
wave range are studied theoretically. The efficiency of interaction between a plane light wave and the acoustic
fields excited by the transducers with antiphase adjacent elements is calculated as a function of frequency.
Structureswhere the pitch varies gradually or stepwise and the piezoel ectric elements are wide- or narrow-band

are analyzed. © 2001 MAIK “ Nauka/Interperiodica’ .

INTRODUCTION

The purpose of thispaper (seealsopart | in[1]) isto
compare aperiodic and periodic multielement el ectroa-
coustic transducers (MEATS) in terms of the efficiency
of acousto—optical (AO) interaction under the condition
that tuning to the Bragg angleisprovided in agiven fre-
guency band. We study antiphase MEATS, in which
adjacent elements are excited with a phase shift ¢, =
1irad. Three types of aperiodic MEATS are considered:
(i) MEATs with a gradually varying pitch and wide-
band piezoelectric elements, (ii) those with a gradually
varying pitch and narrow-band piezoelectric elements,
and (iii) sectionalized transducers with narrow-band
piezoelectric elements. As areference periodic MEAT,
we use an antiphase transducer. This transducer is
known (see Ref. [5] in[1]) to produce a partia acoustic
wave (usually employed for the interaction with inci-
dent light) that is moreintense than that produced by an
inphase transducer. We assume that the divergence of
the incident light in the plane of AO interaction is sig-
nificantly smaller than the divergence of the acoustic
wave. This situation occurs in deflectors. Acoustic
oscillations excited by variable-pitch MEATSs in a pho-
toelastic medium have complex spatial amplitude and
phase distributions. Therefore, wewill first derive afor-
mula for the AO interaction efficiency in the general
case of a sectionalized transducer.

AO INTERACTION EFFICIENCY
OF AN APERIODIC (VARIABLE-PITCH)
TRANSDUCER

As is known, upon AO interaction, light diffraction
is due to the variation of the permittivity € of the
medium. For isotropic diffraction, this variation is
related to the strain S by the formula Ae = —€?pS[2],
where p is the photoelastic constant. Therefore, to find
theintensity of the diffracted light, one should know the
distribution of the strain amplitude and phase on the

surface of the medium. Consider a sectionalized
MEAT, which isthe most complex device among those
addressed in this paper. Figure 1 shows the distribution
of the strain amplitude S over the x coordinate in the
transducer plane and aso the basic parameters. The
transducer contains n sections, having M; elements
each; i isthe section no.; v; isthe element no. in theith
section; and |; and L; are, respectively, the period and
the length of the elementsin the ith section. The strain
amplitude is constant over the surface of each of the
piezoel ectric elements and equals zero between the ele-
ments. The oscillation phases of adjacent elements are
shifted by an angle ¢. Assume that the power P,; of the
acoustic wave excited by each of the elements is
known. Using the Umov vector, we can express the
strain on the surface of a piezoelectric element in terms
of the emitted acoustic power:

S = 2P,/(pvHLy), (1)

where H isthe width of the piezoelectric element.

The distribution §xX) over the MEAT plane can be
represented through the Fourier integral asacontinuous
plane-wave spectrum, the amplitude of each of the
plane waves being equal to g(k,)dk,, wherek, isthe pro-
jection of the wave vector k on the x axis. The density
g(k,) of this spectrum is given by the Fourier transform

a(k) = 5 [s09e™ o, @

One can writek, = (21YA\)siny, where A\ isthe acous-
tic wavelength and y is the angle between the normal to
the transducer plane and the direction of the wave vec-
tor of the elementary wave. Then, expression (2) gives
the value of g(y), referred to as the angular spectrum.

Thus, AO interaction between the plane optical
wave and the diverging acoustic beam amountsto inter-
action between the plane waves. The diffracted light is

1063-7842/01/4611-1407$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Strain vs. x coordinate for the sectionalized transducer.

produced only by the elementary component of the
angular spectrum that satisfies the Bragg condition. If a
weakly diverging optical beam is directed so that it sat-
isfies this condition at the center frequency f, at the
midpoint of alobe of theangular spectrum, adiffraction
maximum will be observed at this frequency.

The light intensity in the diffraction maximum is
actually finite, because the region of AO interaction is
limited, which causesthelight beam to diverge. The AO
interaction thusinvolves those components of the angu-
lar spectrum falling into afinite angular interval Ay. As
aresult, the amplitude of the diffracted light becomes
finite.

If the frequency differs from f,, another component
of the acoustic angular spectrum will meet the Bragg
condition and the amplitude of the diffraction light will
decrease amost in proportion to the decrease in the
spectrum density g(y).

Thus, the AO interaction efficiency up to a constant
factor can be found from expression (2) as the squared
magnitude of the angular spectrum. This expression
should use the angle yg(f) that specifies the direction of
the elementary wave satisfying the Bragg condition for
given frequency f and direction ©, of the incident light:

Ye(f) = ©g—

For the strain distribution S(x) (Fig. 1), formula (2)
can berecast as

Og(f).

n M (a;tLly)

g(y) - ZHZ z J- Sm —i(Xi— 1o —Jksnvxdx

i=1lvi=1

where X, isthe serial number of the vth element in the
ith section; a,; is the coordinate of the left edge of the
vith element; and S,; is the coordinate-independent
strain on the vth element in the ith section, which can
be found from formula (1) if the power P,; of elastic
oscillations excited by this element is known.

Integrating the above formula and taking the square
of the magnitude, we obtain

1(f)

lo

Nao

sinl; jr, 2 ®)
s sten s e

where(f) istheintensity of the diffracted light, 1, isthe
intensity of the incident light, K is a proportionality
coefficient, and

i, f
V_Sl [©o—

ac

M= Og()I,

@y = (=1 + Zsin[ @, - O ()] 2.
ac
Under the assumption that the AO interaction is
weak (Nao < 1), K can be estimated by comparing for-
mula (3) for asingle piezoelectric element (n= M, = 1,
O, = ©p) with the Gordon formula[3]:

K = 1®M,/2A\2H cos’ Op.

A SINGLE PIEZOELECTRIC ELEMENT
AND A PERIODIC MEAT

In order to compare aperiodic MEATs with conven-
tiona transducers and to revea their advantages and
disadvantages, we calculated the AO efficiencies of a
single piezoel ectric element and of amultielement peri-
odic antiphase structure in the frequency range of 8-
10 GHz. The lengths of the transducers were chosen
such that the AO efficiency varied within =3 dB in the
above range. We assumed that the transducers com-
prised wide-band piezoel ectric elements made of Z-ori-
ented zinc oxide (0.09 um) with copper sublayer
(0.2 pm) and overlayer (0.8 pm). As a photoelastic
medium, we took X-cut lithium niobate, in which the
transducer excited longitudinal elastic waves. Figure 2
plotsthe frequency dependence of the conversion factor
for the case when the piezoel ectric element terminates
the optimal transmission line. The conversion factor is
No. 11
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Fig. 2. Conversion factor vs. frequency for a single zinc
oxide piezoelement (h = 0.09 um). The wave impedance of
the transmission lineis Zy = 0.38 Q.
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Fig. 4. AOinteraction efficiency vs. frequency for aperiodic
MEAT at M =135and | = 1.9 pm.

seen to vary from —8.3 to —7.3 dB in the frequency
range of 8-10 GHz. In our calculations, the transverse
size of the piezoel ectric element was 50 pm and itslon-
gitudina dimension (in the direction of the incident
light) was set equal to 15 pm. Figure 3 shows the AO
efficiency nao(f) of the single piezoelectric element at
a microwave power of 1 W and an angle of light inci-
dence ©, = O3 (f, = 9 GHz) = 0.197 rad. The efficiency
Nao reaches its maximum (0.085%) at 9 GHz, decreas-
ing to 0.045% at the bounds of the frequency range.

We considered two versions of periodic antiphase
MEATSs. Thefirst version had the period of 1.9 ym; the
second, 3.5 um. The lengths of the elements were equal
to 0.71, i.e, 1.33 and 2.45 pum, respectively. To provide
self-tuning near 9 GHz, the angles ©, were set equal to
0.392 and 0.3019 rad, respectively, according to for-
mula(3) in[1]. In thefirst case, theworking point at f =
9 GHz was at the minimum of the curvel(f); in the sec-
ond case, the working point lay at its high-frequency
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Fig. 3. AO interaction efficiency vs. frequency for asingle
piezoelectric element at L = 15 pm and P, = 0.03 W.
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Fig. 5. AOinteraction efficiency vs. frequency for aperiodic
MEATa&M=7,1=35um,and Z;=85Q.

slope [1, Fig. 1]. For both transducers to provide the
above bandwidth, we had to use 135 elements in the
first transducer and only seven elements in the second
one. The power emitted by the piezoelectric elements
was calculated by formula (16) in [1] at P, = 1 W. We
also assumed that the transmission lines have the opti-
mal wave impedances which we estimated at Z; o =
8.5Q and 85 Q. Theresulting no(f) curves are shown
in Figs. 4 and 5, respectively. The former has the dou-
ble-humped shape typical of an antiphase MEAT with
the optimal period. The maximal AO efficiency reaches
4.3%. The latter curve has the single-humped shape
With Nao, mex = 0.4% at 9 GHz.

Thus, the optimum-period (1.9 um) MEAT provesto
be much more efficient for an AO deflector than asingle
piezoelectric element or the MEAT with the nonopti-
mal period (3.5 um). The only advantage of the latter
MEAT is that it is easier to fabricate because of its
longer period and smaller number of elements. How-
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Fig. 6. AO interaction efficiency vs. frequency for an aperi-
odic MEAT with wide-band piezoelectric elements at M =
135, 1 = 1.9 pm, and P, = 0.186 W.

ever, its low diffraction efficiency makes the applica-
tion of this MEAT unpromising.

AN APERIODIC MEAT WITH A GRADUALLY
VARYING PITCH AND WIDE-BAND
PIEZOELECTRIC ELEMENTS

We considered two versions of these aperiodic
transducers. They differed in the distribution 1(x). Both
distributions were obtained by the algorithm described
in [1]. For the first version, the angle of light incidence
was O, = 0.393 rad; for the second, 0.3019 rad. The
pitch versus frequency dependences for the two ver-
sions satisfy formula (3) in [1] and are shown in Fig. 1
therein. The lower curve with a minimum at 9 GHz
refersto the first version; the upper curve, to the second
one. The pitch values are noteworthy. In the first ver-
sion, the pitch variesinsignificantly. It equals=1.91 ym
at the ends of the transducer and 1.89 pm in its central
part. The maximum variation in the pitch is=1%. In the
second version, the pitch increases along the transducer
from 3.22 to 4.15 pm. Its maximal variation was found
to be =25% of the average value. The elements’ lengths
were always equal to 0.71;, where |; is the pitch next
after the ith element. Also note that both transducers
involved the wide-band piezoelectric elements similar
to those applied previously and that the photoelastic
medium was lithium niobate as before. Both MEATS
terminated the optimal transmission lines, providing a
conversion factor of —7.3 dB. Thus, 0.186 W of 1 W of
the electromagnetic power was converted into acoustic
waves. We assumed that this power was distributed
among the elements in proportion to their area.

Figures 6 and 7 depict the AO interaction efficiency
vs. frequency for thetwo MEATswith agradually vary-
ing pitch. As expected, the curvein Fig. 6, obtained for
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Fig. 7. AO interaction efficiency vs. frequency for an aperi-
odic MEAT with wide-band piezoelectric elements at M =
135, 1 = 3.22-4.15 ym, and P, = 0.186 W.

135 elements, is double-humped as for the periodic
MEAT with the same number of elements (Fig. 4). The
AO interaction efficiency decreased by as small as
=0.15% compared with the periodic MEAT at the same
bandwidth.

Our calculations show that increasing the number of
the elements with the maximum difference in the pitch
along the transducer remaining unchanged narrows the
Nao(f) curve at alevel of 3 dB and increasesits height.
However, these changes are slower than in the periodic
MEAT. For example, a M = 1000, the transmission
bandwidth of the periodic MEAT shrinks to 0.65 GHz
at a 32% AO efficiency, while that of the aperiodic
MEAT, to 0.95 GHz at a 10% efficiency. Note that the
Nao(f) curvefor the aperiodic MEAT with alarge num-
ber of elements exhibits strong oscillations on both
sides of the central double-humped part.

Thus, at alarge number of wide-band elements, the
aperiodic (variable-pitch) MEAT operating near the
minimum of the I(f) curve (see formula (3) in [1]) has
the significantly lower AO interaction efficiency and
the dightly wider bandwidth than the periodic MEAT.

Figure 7 shows the same curve for the second ver-
sion of the aperiodic MEAT considered in this section.
The MEAT consists of 135 elements. The curve is
asymmetric (single-humped) and strongly oscillates. Its
upper part resembles an exponential with anharmonic
oscillations imposed on it. The swing of these oscilla-
tionsis=0.13% in the central part and exceeds 0.5% at
the left edge. The efficiency attains =0.9% near
8.4 GHz and dropsto =0.32% at 9.5 GHz. The width of
the left-most peak at a level of 0.45% is =0.6 GHz.
Increasing the number of the elements, while keeping
the maximum pitch variation unchanged (within the
range from 3.22 to 4.15 um) increases the number of
the oscillations and dlightly decreases their amplitude.
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The left-most peak dlightly increases, while the right-
most one remains nearly the same. For example, at M =
300, the number of the oscillations is 10, whileat M =
1000, it is greater than 30. The height of the left-most
maximum becomes 1.04 and 1.2%, respectively, and its
half-height width is 0.45 and 0.3 GHz. The amplitude
of the oscillations at M = 1000 decreases in the central
part of the curve to 0.1%.

Thus, aperiodic MEATSs with a gradualy varying
pitch and wide-band piezoelectric elements cannot
improve the AO interaction efficiency if the bandwidth
must be kept constant.

A SECTIONALIZED MULTIELEMENT
TRANSDUCER

The center frequency, period, and number of theele-
ments in each of the sections were chosen as follows.
First, the material and the thicknesses of the layers
incorporated into the piezoelectric elements were
selected so that a =3% operating band was provided.
Then we used the program for calculating the AO inter-
action efficiency of the periodic MEAT. Initialy, the
center frequency of the first subband was tentatively
specified, the period was estimated by formula (3) in
[1], and Nnao(f) for various MEAT lengths was con-
structed. The total acoustic power emitted by the trans-
ducer was set equal to 0.1 W. The relative half-height
width of the resulting curve was=3%. Then, we refined
the center frequency of the first subband so that its
lower limit was placed at 8 GHz. Thefinal values of the
center frequency, period, and number of the elementsin
the first section were 8.12 GHz, 3.27 um, and 112,
respectively. The subband width and the maxima AO
efficiency appeared to be equal to 275 MHz and 0.037,
respectively.

When finding the center frequency, period, and
number of elements for the next subband, we selected
its length in such away as to provide a 0.037 AO effi-
ciency, which automatically defines the subband width.
Theresulting nao(f) curve was then matched to that for
the previous section at the half-height level. Asaresult,
the range 8-10 GHz was covered by a 13-section trans-
ducer with atotal of 1345 elements.

After finding the center frequencies of the subbands,
the overlayer thicknesses were chosen such that the
piezoel ectric elements can operate at these frequencies.
To thisend, we used the program based on formulas (6)—
(9) in [1] to calculate the conversion factor. We
assumed that the piezoel ectric €l ements terminate opti-
mal transmission lines. The parameters of all the
13 sections are summarized in the table in [1].

To calculate the AO interaction efficiency versusfre-
guency, we developed the following algorithm. Given
the material constants of the piezoelectric element lay-
ers and their dimensions, the impedances of the piezo-
electric elements were calculated for each of the fre-
guencies and then the power emitted by each of the ele-
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Fig. 8. AO interaction efficiency vs. frequency for a 13-sec-
tion transducer. The sections are spaced at 1 pm.

ments was evaluated. We assumed that the
sectionalized MEAT terminates the optimal transmis-
sion line. The output power at the matched load was
assumed to be 1 W. The AO interaction efficiency was
calculated from formula (3). The program generated a
plot of n o versus frequency.

First of al, we studied the effect of the intersection
spacing t; (Fig. 1). To this end, t; was varied from O to
1000 pm. The spacing was assumed either to be con-
stant or to vary along the MEAT by the rule similar to
that governing the pitch variation. In both cases, the
efficiency no(f) exhibited significant oscillations with
the amplitude increasing with frequency. The number
of the oscillations was equal to the number of the sec-
tions, and their swing depended on the distance t;. Ini-
tialy, at small t;, the swing decreased with increasing t;,
achieving its minimal value at t; = 1 um. Subsequently,
it steadily grew asthe dips between the maximabecame
deeper. Even at t; = 5 um, the minimal efficiency was
close to zero. Figure 8 showsthe curve at t; = 1 pm. It
can be seen that the first maximum of n,o reaches
=1.5%; the third, =2.2%:; the fourth and fifth, =1.9%;
the sixth, =2.5%; the seventh, =2.2%; the eighth,
=2.5%; the ninth, tenth, eleventh, and twelfth dightly
oscillate near =2.4%; and the thirteenth is =3.5%. All
the minima are close to =1.3%. All the oscillations
except for the last maximum fall into the 3-dB-wide
range. The mean value of n,g appearsto be small: even
smaller than that of a single section. This fact can be
attributed to the shunting effect of idle elements, which
do not generate elastic waves at the given freguency.
They act as an additional spurious capacitor connected
to the active elements. This effect also decreases the
electroacoustic conversion factor even if the optimal
transmission line is used.
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Fig. 9. AO interaction efficiency vs. frequency for the
13-section transducer. The intersection spacings are equal
to the gaps between the preceding elements. The additional
inductance L4q = 0.03 nH, and Z, = 0.5 Q.

The efficiency n,o can significantly be improved by
connecting an additional inductance coil with an induc-
tance L4 in series with the sectionalized transducer in
order to at least partially compensate for the capaci-
tance of the transducer and/or by using a transmission
line with a lower wave impedance Z,. For example, at
L = 0.035 nH and Z, = 0.35 Q, the AO efficiency
increases to ~15% at 8.2-8.4 GHz and to ~6% at
9.8 GHz. One can vary the shape of the n,o(f) curve by
varying L4 and Z,, i.e., by moving one or another part
of the curve up or down. Figure 9 shows the AO effi-
ciency calculated at L4y =0.03nH and Z,=0.5Q. The
plot contains 13 peaks as before, the highest ones (the
sixth and thirteenth) reaching 12.8%; the third and
eighth, ~12%. The deepest minimum, ~4.5%, lies
between the twelfth and the thirteenth peaks.

Emphasize the basic result of the above analysis. the
sectionalized MEAT alows oneto increase the AO effi-
ciency, while retaining the bandwidth wide. This con-
clusionisvalid eveniif the pitchesin the sections arefar
away from the minimum of expression (3).

A significant disadvantage of the derived function
Nao(f) isits strongly oscillating behavior. The oscilla-
tions near the upper limit of the frequency range con-
sidered are higher than 3 dB. One can attempt to sup-
press the oscillations by selecting appropriate center
frequencies of the subbands and numbers of the ele-
mentsin the sections. This point, however, will be omit-
ted in thisarticle.

AN APERIODIC MEAT WITH NARROW-BAND
PIEZOELECTRIC ELEMENTS

We analyzed the case when I(X) is described by the
lower curveinFig. 1in[1], for whichl =19 ymat f, =

GRIGOR’EV et al.

9 GHz. Thevalue of | for aparticular element number x
was calculated by the algorithm described in [1]. The
angle of light incidence was assumed to equal
0.393 rad, the frequency was varied from f; = 7.5 GHz
to f, = 10.5 GHz, and the number of elements M was
between 6 and 2802. The program used for calculating
Nao could also compute the pitch versus e ement num-
ber X, the impedances Z,, and the powers P, ,. The
thicknesses of the ZnO plezoel ectric (h, = 0. 3193 jm)
and of the Al sublayer (h, = 0.15965 pum) were the same
for all the piezoelectric elements. The Cu overlayer
thickness hy was chosen for each of the elements so that
their frequencies were distributed within the above
range. As a preliminary, we calculated the frequency
dependencies of the conversion factor n(f) for various
thicknesses of the overlayer when the piezoelectric ele-
ment was connected with the oscillator via the optimal
transmission line. These dependences were used to find
the frequencies f,; at which n, acquire the maximal
values and the bandwidths where these values dropped
by no more than 3 dB. Using the frequencies, we con-
structed a piecewiselinear approximation for the
thickness h; versus fi,; dependence: h; = A + B;fyg,
where A, and B; are coefficients and j is the number of
the frequency interval to which they refer. The range
7.5-10.5 GHz was divided into six intervals. The entry
to the program were thus six pairs of coefficients A; and
B,. In this frequency range, the overlayer thickness
changed from ~0.38 to ~0.2 um. For each of the six
intervalsto contain an integer number of elements, their
total number must be a multiple of 6. Our calculations
also showed that the bandwidth of the piezoel ectric ele-
ments varies from 898 to 776 MHz as h; grows in this
thickness range.

Thus, only some of the piezoel ectric elements could
operate at a given frequency. At the lower frequency
limit, acoustic waves were excited by ~24% of the ele-
ments; at the higher frequency limit, by ~28%. The
acoustic power was calculated from formula (16) on
assumption that P, = 1 W and the wave impedance Z,
is equal to the magnitude of the MEAT impedance.

The AO interaction efficiency was shown to gradu-
aly increase with M from 0.26% at M = 12 (Z o =
352 Q) to 21% at M = 2802 (Z; o = 1.52 Q). Accord-
ingly, the bandwidth of AO interaction decreases from
310 ~0.7 GHz. At 138 elements (Z, oy = 30.77 Q), the
maximal N o Wwas found to be 2.74% and the bandwidth
was 2.45 GHz. Only at M = 252 (Z; o, = 16.85 Q) did
the bandwidth decrease to 2 GHz and the maximal effi-
ciency reach 4.6%. Figure 10 shows the no(f) curve
for the last case. The curve is asymmetric and double-
humped, which is associated with the lower electro-
acoustic conversion factor and the wider bandwidth of
the piezoel ectric elements designed for the higher fre-
guency portion of the range.

Thus, we can conclude that, if the bandwidth of AO
interaction is ~2 GHz, the application of narrow-band
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piezoel ectric elementsin the aperiodic MEAT istolittle
avail. For example, for aMEAT with wide-band piezo-
electric elements, we have Nag, mex = 4.0% at M = 138,
while for asimilar MEAT with narrow-band elements,
Nao, max = 4.6% at M = 252.

COMPARISON OF PERIODIC
AND APERIODIC MEATs

In order to correctly compare the performance of
different MEATS, one should keep in mind that, in the
above analysis, the el ectromagnetic power is applied to
the transducer via a transmission line with the optimal
wave impedance equal to the magnitude of the MEAT
impedance. When narrow-band piezoelectric elements
are used, their center frequencies are distributed in the
specified frequency range. As a result, only few ele-
ments operate at a particular frequency, the remaining
elements acting as a shunt capacitor, which decreases
the electroacoustic conversion factor. This decrease
occurs, because the capacitive contribution to the mag-
nitude of the impedance increases. Therefore, the mag-
nitude of the reflection coefficient in the optimal trans-
mission line increases, causing the electromagnetic
power consumed by the transducer and, hence, the
acoustic power emitted by its elementsto drop.

It should be noted that the only valid approach to
separating the effect of MEAT aperiodicity and the fre-
guency properties of the piezoelectric elements from
other factors affecting the AO interaction efficiency is
to compare the performance of the transducers matched
to the transmission line.

1413
Nao X 1072
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4 L
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2 L
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0 1 1 1 J
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Fig. 10. AO interaction efficiency vs. frequency for an ape-
riodic MEAT with narrow-band piezoelectric elements at
M =252 and Z;=16.85Q.

If an inductance is series-connected to the MEAT to
compensate for its capacitance, the coefficient N,
increases almost to unity (assuming that lossis negligi-
ble). The resulting RLC circuit has a low unloaded
Qfactor: Qp = wLy/Rs, Where L,y is the resonant
inductance and Ry is the MEAT total radiation resis-
tance. Asis known, at VSWR = 1, the loaded Q factor
Q. equals Q2. Having calculated the MEAT imped-
ance, we can estimate Q,. In our case, it approaches 4
or 5. Thus, one might expect that a series inductance
can provide the wide-band (2.25-1.8 GHz) matching of
the transducer to the optimal transmission line at f, =

Multielement transducers at f, = 9 GHz: periodic and with gradually varying pitch

MEATRe | o heEE | i [ eeeeenad | vew | AOSdesy
2-GHz-wide AQO interaction band
PW 132 0 8.67 ~19 4.2
PW 132 0.15 0.9 1.0 18
APW 138 0 8.21 195 4.0
APW 132 0.15 1.07 1.0 16
APN 252 0 16.85 18 4.6
APN 354 0.21 1.34 1.0 184
0.7-GHz-wide AO interaction band
PW 1002 0 114 ~20 10.5
PW 1002 0.02 0.12 1.0 170*
APW 1700 0 0.67 19.5 8.5
APW 1700 0.012 0.07 1.0 43
APN 2802 0 152 175 21
APN 2802 0.03 0.22 1.0 100*

Note: For the abbreviations, see the text.
* Data obtained in the small-signal approximation.

TECHNICAL PHYSICS Vol. 46 No.11 2001



1414

9 GHz. Clearly, the resulting decrease in the AO effi-
ciency at the bounds of the operating frequency range
and the decrease in the AO interaction bandwidth can
easily be avoided by changing theangle ©, of light inci-
dence.

The table summarizes nao ma Calculated for the
periodic MEATSs with the wide-band piezoelectric ele-
ments (PW) and for the aperiodic MEATs with the
wide-band (APW) and narrow-band (APN) piezoelec-
tric elements. The each of these MEATS, two ways to
apply the electromagnetic power to the transducer are
indicated. In the first case, the MEAT terminates the
optimal transmission line. In the second one, the MEAT
is series-connected to resonant inductance that com-
pletely compensates for the MEAT capacitance at afre-
guency fy. In thefirst case, the VSWR iswithin 17-20;
in the second case, it approaches unity. The table also
lists the resonant inductances and the respective wave
impedances of the transmission lines for which the cal-
culations were performed. In the matched variant, the
wave impedance equal s the sum of the MEAT radiation
resistance and the loss resistance (the latter was taken
to be 0.1 Q. The table compares the MEATS that pro-
vide AO interaction in the 2- and 0.7-GHz-wide fre-
quency ranges.

Of the wide-band MEATSs considered here, the peri-
odic transducer, in both the matched and mismatched
versions, seems to be the best. This design requires the
least number of the elements, when providing almost
the same AO efficiency as the other two. Also, the
matched version of the periodic transducer offers the
highest efficiency among the transducers that provide
AO interaction in the 0.7-GHz-wide frequency range.
The higher AO efficiency of the mismatched aperiodic
MEAT with the narrow-band piezoelectric elements is
presumably due to the difference in the VSWR, since
the wide- and narrow-band piezoel ectric elements have
different impedances.

CONCLUSION

This paper theoretically analyzes the possibility of
using aperiodic multielement piezoel ectric transducers
in Bragg acousto—optical deviceswith aweakly diverg-
ing light beam.

GRIGOR’EV et al.

A sectionalized antiphase transducer with narrow-
band piezoelectric elements is capable of significantly
increasing the AO efficiency in awide frequency band
even if the periods in the sections are far from optimal.
However, their no(f) curves exhibit oscillations,
which may exceed 3 dB. Moreover, increasing the
number of the elements in the sectionalized transducer
decreases the magnitude of its electrical impedance,
making its matching to the transmission line difficult.
The situation is aggravated by the fact that the piezo-
electric elements do not all operate at agiven frequency
and the idle elements introduce a reactance.

The analysis of the antiphase MEAT with the pitch
gradually varying along the transducer by the law that
islinearly related to the required frequency dependence
of the period gave the following results. If the acoustic
power is emitted by the elements simultaneously and
uniformly throughout the frequency range, the trans-
ducer’saperiodicity only decreasesthe AO efficiency at
agiven bandwidth. Asfor the aperiodic MEAT with the
narrow-band piezoel ectric elements, at a given band of
AOQ interaction, it requires a much (2-3 times) greater
number of the elements than the periodic MEAT, the
AO efficiency being amost the same. Anincreaseinthe
number of the elements by an order of magnitude for a
given frequency range of the elements decreasesthe AO
interaction bandwidth. The resulting increase in the AO
efficiency does not exceed the associated increase
observed for the periodic MEAT with the same AO
bandwidth. However, the number of the elements is
much smaller.
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A High-Power Vircator Based on an Ironless Linear Induction
Accelerator of Electrons

V. D. Selemir, A. E. Dubinov, B. G. Ptitsyn, A. A. Evseenko, V. A. Letyagin,
R. K. Nurgaliev, A. V. Sudovtsov, and A. V. Yachny

Sarov Institute of Experimental Physics, Sarov, Nizhegorodsk oblast, 607190 Russia
e-mail: dubinov@ntc.vniief.ru
Received December 4, 2000

Abstract—A high-power vircator that is based on the Korvet ironlesslinear induction el ectron accel erator built
around radial pulse-forming lines is implemented for the first time. Results on the computer simulation and
experimental optimization of the vircator are discussed. The experimentally found parameters of the vircator
are the following: cathode current 35 kA (at alimit current of 19 kA), microwave pulse base widths 40 and
18 ns, and peak microwave power more than 500 MW. © 2001 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Microwave oscillators with a virtual cathode (VC),
including vircators, form a basic class of oscillatorsin
ultra-high-power relativistic high-current microwave
electronics. They have been reviewed in [1]. Current
vircators are based on high-voltage nanosecond oscilla-
torsthat are built around single and dual pulse-forming
lines [2, 3], inductive energy storage devices with
plasma current interrupters [4, 5], or magnetic explo-
sion generators[6, 7].

Ironless linear induction accelerators (LIAS) that
exploit radial pulse-forming lines [8] are more promis-
ing for feeding the vircators than the above-mentioned
sources. The advantage of such LIAs is that they can
generate high-voltage pulses of both polarities and
operatein the pulse-train mode. Also, inthese LIAS, the
cathode and the anode can be grounded simultaneously.
This enables new types of vircators to be designed that
cannot be implemented with conventional feeders, for
example, a cyclotron-resonance vircator [8].

In Section 1 of this work, we for the first time
describe a conventional vircator based on the Korvet
ironless LIA. In Section 2, we report the results on the
computer simulation of this vircator. Section 3 is
devoted to measuring the microwave characteristics of
the vircator and its optimization.

1. KORVET LIA AND VIRCATOR
ON ITS BASIS

The Korvet ironless LIA, earlier used as an injector
for the well-known L1A-10 accelerator [9], consists of
four modules, each representing three functionally cou-
pled units: an inductor unit, a GIN-500 pulse voltage
generator that chargesthe capacitor of theinductor unit,
and a generator that forms pulses triggering the

switches of the inductors (switch-triggering generator,
STG). The modules have their own designs and el ectri-
cal circuits. The inductor unit, in its turn, comprises
three series-connected sections built on radial linesthat
are insulated by high-resistivity deionized water. The
lines are parallel-connected to one GIN-500 through
the charge circuit. A separate switch is made by the tho-
rus-shaped grounded body, which has a break in its
inner diameter with a circular high-voltage electrode
inside. Along the perimeter of one of the exit gaps, the
radial line of the inductor is closed on its inner radius
by means of a multichannel circular switch. The other
exit gap is connected to aload through the same switch.
The multichannel switch isformed by ten separate gas-
filled 500-kV gaps of the trigatron type. The gap oper-
ation time spread is no more than 2 ns. Near the axis of
the inductor unit, a polyethylene accel erating tube sep-
arating the vacuum space of the accelerating path from
the deionized-water-filled inductor spaceisplaced. The
inner diameter of the accelerating tube is 380 mm.

Idedlly, the unloaded inductor with uniform lines
generates rectangular pulses of the accel erating voltage
whose amplitude is close to the value of the charging
voltage. The base width of thefirst pulsewas20ns. The
second and third pulses with alternating polarity had
40-ns-wide bases. The parameters of the inductor unit
were as follows:. voltage 500 kV, charging pulse with
520 ns, peak amplitude of the accelerating voltage
1.5 MV, and short-circuit current 180 KA.

The capacitor of the inductor unit was charged by
the modified Arkad’ ev—Marx GIN-500 generator [10].
Five cascades of the GIN-500 included 1K-100-0.25
capacitors, gas-filled 100-kV trigatron switches, liquid
resistors, and conductive lines. Transformer oil was
used asan insulator. Thetime spread of GIN switching-
on was about 3 ns at a constant voltage of 100 kV. The

1063-7842/01/4611-1415%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Vircator based on one module of the Korvet LIA.
1, vacuum space of the accelerator; 2, cathode; 3, high-volt-
age electrode of the inductor unit; 4, deionized water;
5, gas-filled controllable gap; 6, anode grid; 7, anode; 8, vir-
tua cathode; 9, microwave horn.
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Fig. 2. Computer simulation of thevircator: (a) geometry of
theregion stimulated and (b) instantaneous phase portrait of
the beam.

dielectric strength safety margin of the gas-filled gap
was 2. The electrical loop of the GIN was screened by
its metallic body, which was connected to the inductor
unit by the 500-kV coaxial lead provided with the filter
to suppress pulses that run back through the lead upon

SELEMIR et al.

switching the inductor wires. The energy content of one
GIN-500is6.25 kJ; pulse current, 50 kA; and charging
voltage, 100 kV.

An STG consists of adual pulse-forming line, acon-
trollable gap, a sharpener, and a charging capacitor. An
external electrode acts also asthe case of the dual form-
ing line.

The vircator was built around one module of the
Korvet LIA (Fig. 1). Thedeviceintegrates coaxia cath-
ode and anode, the latter enclosing the former. The
cathode represents the cathode holder (thin-walled
(0.2 mm) stainless stedl tube), to which asteel wirewas
welded on the anode side. Graphite cylinders 20 mmiin
diameter and 40 mm long acting as emitters were
screwed on the substrate. A total of 8, 10, or 12 closely
spaced emitterswere arranged on the substrate, produc-
ing a cathode with an outer diameter of 72, 92, or
112 mm, respectively.

The anode was a 380-mm-long hollow cylinder with
adiameter of 160 mm. A metallic ring was inserted in
the cylinder, and a square-mesh (3 mm on aside) anode
grid made of nichrome wire (0.3 mm in diameter) was
stretched over it by electric arc welding. Moving the
ring with the anode grid along the axis of the vircator,
one can vary the anode—cathode spacing. In this work,
this spacing was varied between 8 and 13 mm.

The anode wasterminated by aconical horn antenna
with an opening angle of the emitting horn of 10°.
The diameter of the exit window that separates the
vacuum space of the vircator from the environment
was 700 mm. The window was made of sheet organic
glass. The residual pressure in the vircator was kept at
(3-5) x 10 torr.

With the inductor unit charged to the maximal
extent, the voltage extracted from the diode of the vir-
cator was 900 kV. In this case, the diode current was
50 kV, whichisseveral timeshigher than thelimit beam
current in the anode plane behind the grid (estimated at
1520 kA).

The currents passing in the vircator were measured
with three Rogowski loops, as shown in Fig. 1.

The radiated microwave energy per pulse was mea-
sured with a wide-band calorimeter. The radiated
microwave power was determined with hot-carrier
semiconductor detectors [1].

2. COMPUTER SIMULATION
OF THE VIRCATOR

The computer simulation of the vircator was per-
formed with the software suite based on the Karat
2.5-dimensional PIC code [12]. The geometry of a
region being simulated and its dimensions are shown in
Fig. 2a: atubular cathode with outer and inner diame-
ters of 72 and 32 mm, respectively; an anode with a
diameter of 160 mm; and the anode—cathode spacing
varying from 7 to 18 mm. Such a geometry is roughly
identical to the vircator that was based on the Korvet
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LIA and studied in this work. It was assumed that a
900-kV 40-ns pulse is applied to the diode, with the
pulse shape meeting the previously recorded wave-
form. Under these conditions, the diode current was as
high as=35 kA.

Figure 2b shows atypical instantaneous phase por-
trait of aparticle ensemble. It is seen that avirtual cath-
ode (VC) is formed in the system and its oscillations
generate microwave radiation. Electrons leaving the
diode are reflected from the V C space charge and oscil-
late in the potential well produced by the cathode, grid,
and VC. The simulation shows that the appearance of
the VC coincides with the generation of microwave
radiation and the timeinstant theV C collapses, with the
instant the generation ceases.

Our goal was to compare the results of simulation
with experimental data. We believed that, in the case of
good agreement between the simulation and experi-
ment, we could optimize the parameters of the vircator,
for example, increase the extracted power or obtain the
desired frequency.

Figure 3 shows atypical simulated waveform of the
extracted power for a cathode—grid spacing of 12 mm.
The maximum of the peak power is observed at a spac-
ing between 12 and 14 mm, in agreement with experi-
mental data (see below). The values of the peak power,
400-500 MW, are aso consistent with experimental
findings.

Thus, the simulation of the vircator based on the
Korvet LIA suggests that the device can generate high-
power microwave pulses. The agreement between the
analytical and experimental results gives promise that
the given model can be used to tentatively optimize the
system.

3. EXPERIMENTAL STUDY
OF THE VIRCATOR

The goal of our early experiments was to find the
cathode that provides the maximal energy of the micro-
wave radiation (among three available cathodes con-
sisting of 8, 10, and 12 emitters). The maximal value of
the microwave energy detected by the calorimeter was
found for the eight-emitter cathode with a diameter of
72 mm.

The next series of experiments was aimed at deter-
mining the optimal spacing d between the end face of
the cathode and the grid. The spacing was varied
between 6 and 14 mm with astep of 1 mm. Noradiation
was observed for spacing of 6 and 14 mm. For the other
spacings, the energy W per microwave pul se measured
with the calorimeter is listed in Table 1 (the average
energy of three pulsesisgiven for each of the spacings).
It followsfrom Table 1 that the curve W(d) has anarrow
peak, which agrees with experimental data obtained
elsewhere (seg, e.g., [13]).

To determine the peak power of a microwave pulse,
we recorded pulse envelopes, using the semiconductor
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Fig. 4. Experimental envelope of the microwave signas
coming from semiconductor detector (short cathode).

detectors, and compared them with the calorimetric
data. A typical envelope obtained for the spacing d =
10 mm is shown in Fig. 4. The peak microwave power
obtained at the optimal spacing d = 10 mm was found
to be roughly 150 MW.

Table 1. Results of experiments on varying the cathode—grid
spacing

d, mm W, J
7 0.63

8 0.96

9 121

10 1.37
11 1.15
12 0.69
13 0.09
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Fig. 5. Synchronized waveforms of the (1) cathode current
and (2) microwave pulse for the longer cathode.

In another series of experiments, we tried to reduce
lossesin the waveguide sl ots where the Rogowski loops
were inserted. The cathode length was increased to
130 mm, al other design features remained the same.
As before, we calorimetrically measured the micro-
wave energy, varying the cathode-grid spacing (the
average energy of three pulsesfor each spacing) from 7
to 19 mm. The results are listed in Table 2, where the
values of the peak power are aso given. Note that the
microwave pulses become shorter nearly twice: 20 ns
(against 40 nsfor the shorter cathode).

From Table 2, it is seen that both the energy
absorbed by the calorimeter and the peak power of the
pulses are maximal when the cathode—grid spacing
equal 12 mm. In this case, the peak power reaches
520 MW.

Table2. Resultsof experimentson varying the cathode—grid
spacing

d, mm W, J P, MW

0.92 180

8 1.45 285
1.58 310

10 2.16 425
1 2.50 490
12 2.65 520
13 2.48 485
14 2.44 480
15 2.32 455
16 1.79 350
17 1.64 320
18 1.30 255
19 0.73 145

SELEMIR et al.

The data obtained lend optimism to the possibility
of vircator optimization in terms of the radiation out-
put. One can further extend the cathode and place the
anode grid at the very edge of the anode cylinder so as
toformtheVCimmediately in the horn. Here, however,
there is alimitation: the extension of the cathode elec-
trode will lead to a considerable increase in the diode
inductance. This may decrease the diode current down
to the lower limit.

Finally, one more series of experiments were tar-
geted at determining the starting current of microwave
generation. It is generaly accepted that this current
coincides with the ultimate beam current in the drift
region of the vircator. To determine the starting current,
we synchronized the signals coming from the cathode
Rogowski loop and from the semiconductor detectors
with regard for the timeit takes for the microwave radi-
ation to propagate from the VC to the detector. Super-
posing the signals, we found that the starting current of
microwave generation is | = 19 kA (Fig. 5), which is
approximately equal to the flight current.

CONCLUSION

Thus, we implemented a high-power vircator based
on the ironless LIA using radial pulse-forming lines
and studied its performance.

The parameters of the vircator are as follows:. cath-
ode current 35 kA, starting (limit) current 19 kA, base
width of microwave pulses 18 ns, and peak power more
than 500 MW.

The radiation was extracted into the environment.
Power measurements were performed with a micro-
wave calorimeter and hot-carrier semiconductor detec-
tors. The results of simulation using the Karat code are
in agreement with experimental data.
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Abstract—Experimental and theoretical studies on the self-modulation mode of generation in a high-power
BWT with the electrodynamic system representing a slightly corrugated waveguide are presented. The BWT is
fed by an electron beam with the energy 150 keV and the current 150 A. The system operates at the Ey;; mode
with the mean frequency 8.7 GHz. Dynamic chaosis obtained by athree-fold increase in the length of the inter-
action space in comparison with the prototype exhibiting stationary generation. The stationary generation was
changed to periodic sinusoidal self-modulation and then to chaotic self-modulation as the current increases
from 6 to 60 A. The generation mode is simplified when the current ranges from 70 to 90 A and becomes com-
plicated again for the current exceeding 100 A. Experimental observations are in good agreement with the
results of simulation predicting a certain simplification of the self-modulation mode at the currents 70-90 A
owing to the effect of high-frequency space charge. Under the conditions of chaotic generation, the mean power
was as high as 2 MW at the relative spectral width of the signal 4% and the total duration of the microwave

pulse 10 ps. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The nonlinear dynamics of backward-wave tubes
(BWTS) has attracted much attention [1-6], since these
devices exemplify a distributed self-oscillation system.
Ginzburg et al. [7, 8] have demonstrated that compli-
cated (including chaotic) modes of generation in such
systems are a possibility when the values of the super-
criticality parameter are large. Since a BWT is a con-
ventional device of high-power relativistic electronics,
studies of the multifrequency processesin oscillators of
this type can be of practical interest for the generation
of high-power periodically modulated or noise-like sig-
nals. To date, however, self-modulation generation has
been observed only in the experiments with special
breadboard models of wesakly relativistic milliwatt
BWTs [9-11]. Recently, the team at the Institute of
Applied Physics, Russian Academy of Sciences, has
begun to study self-modulation generation in high-
power BWTs using a Saturn microsecond accelerator
[12]. In these experiments, as an experimental model,
we use aBWT of design that istypically used to gene-
rate relativistic electrons: a slightly corrugated wave-
guide with an evanescent taper at the cathodic end
where the radiation is extracted at the collector [13].

Self-modulation generation in a high-power BWT
was first observed in [1], where the length of the work-
ing space was roughly one and a half times larger than
the length corresponding to stationary generation. The
problem of mode selection by transverse index was
solved by taking the lower H;; mode as the working
one. This made it possible to avoid the synchronous
interaction of the electronic beam with other transverse

modes. However, in this case, the working point is in
the range of small group velocities (0.2¢). On the one
hand, this provides an increased coupling impedance
and favors self-modulation generation; on the other
hand, the extraction of the microwave energy from the
working space becomes difficult and the risk of reflec-
tions from the output of the working space grows.
Because of these features, the microwave fields inside
the interaction space were high and the output power of
self-modulation generation in the BWT was limited at
aleve of 50-100 kW (for a microsecond pulse dura-
tion) by microwave breakdowns[1].

The purpose of our further studies was to obtain
self-modulation generation at megawatt levels of the
mean output power. The excitation of the E; mode
strongly coupled with the electron beam provided the
excess of the working current over the starting value
that was sufficient to trigger self-modulation genera-
tion. Also, the relatively high group velocity of the
working mode (0.4c) favored the extraction of the radi-
ation from the working space and provided a high out-
put power in the absence of breakdowns. Notethat Ilya
kov et al. [14] studied stationary generation at the Ey,
working mode in a microsecond BWT excited in the
Saturn accelerator. The authors of [14] considered the
mechanisms limiting the duration of microsecond
pulses and applied severa techniques (including the
use of oxygen-free copper for manufacturing the elec-
trodynamic system) that made it possible to increase
the output power to 5 MW at a pulse duration of up to

10 ps.
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Note that the operation at the E,; mode poses the
problem of mode selection by transverse index. Indeed,
the periodic and particularly chaotic self-modulation
modes require that the injection currents substantially
(ten or more times) exceed the starting one. In the gen-
eral case, the starting conditions are satisfied for anum-
ber of transverse modes other than the working mode.
Theoretical analysis of the competing modes with dif-
ferent transverse indices showed the possibility of self-
modulation generation at one of the modes if the other
are nonlinearly suppressed [15].

Inthe early BWT model with the E,; working mode,
where the length of the interaction space was one and a
half times larger than the space of stationary genera
tion, deep periodic self-modulation was observed [2].
Under the self-modulation conditions, the radiation
power (0.5 MW) was limited by microwave breakdown
in the slow-wave structure produced by the electro-
chemical method. To provide the chaotic generation
mode, the length of the slow-wave structure was further
increased so that thetotal length of the interaction space
became three timeslarger than the length of the station-
ary BWT. In addition the BWT electrodynamic system
was made of oxygen-free copper by the specia tech-
nique [14] to improve the el ectric strength. Under these
conditions, we succeeded in observing both periodic
and chaotic self-modulation by varying the injection
current. The mean power of the output radiation was no
lessthan 2 MW at a pulse duration to 10 ps.

This work is devoted to the theoretical and experi-
mental study of self-modulation processes at the Ey
mode in a high-power BWT. In Section 1, we simulate
the nonstationary processes in the model BWT, using
the equations for a Slowly varying field amplitude and
the relativistic equations of motion of electrons. BWT
modelswith asingletransverse mode synchronouswith
the electron beam and those taking into account the
excitation and competition of several modes were ana-
lyzed. In Section 2, we present the experimental results
on the observation of self-modulation (including cha-
otic) generation in a high-power BWT. These results
are in good agreement with the theoretical prediction.

1. NUMERICAL SIMULATION
OF NONSTATIONARY PROCESSES IN BWT

AModel of BWT the S ow-Wave Structure of Which Has
a Single Made Synchronous with the Electron Beam

Assuming that the electron beam excites a single
mode in the corrugated waveguide, we can describe the
multifrequency processesin a BWT by three self-con-
sistent equations. the equation for the synchronous
wave amplitude [7, §],

e'?dg,, 1)
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and the relativistic equations of electron motion taking
into account the effect of the beam space charge field:

9 _ 1 1
d J1-y? 1oy

)

0

R EAZ i9)+i f i SD 3
a7 = Rel (¢, 1)exp(id) IGZ nPneXp(in )%()

with the boundary and initial conditions given by
Alz=1 =0, Ali=o = A(Q),
B0 = F0(0,2M), V|20 =Y o

Here, A= eEJ/(mcw) is the dimensionless amplitude of
the synchronous (—1)st harmonic of the radiation field;
T=w(t—2/vp)/(1/By + UBy) and { = wz/c arethe dimen-
sionlesstime and longitudinal coordinate, respectively;
| is the dimensionless length of the interaction space,
¥ = wt — hzis the phase of the electrons relative to the

synchronous harmonic of the field; J = el|Z)/(2 BS mc?);
Z isthe coupling impedance for thisharmonic [16]; | is
the beam current; y is the relativistic mass factor of the
electrons; w is the synchronism frequency; v, = BgCis
theinitial translation velocity of the electrons, v, = B,C
isthe group velocity of thewave; o = leg/(mcw?b) isthe
space charge parameter; f, is the reduction coefficient
for the nth harmonic of the space charge field; and p,, =

(4)

(Um 0" exp(—d)dd, isthe nth harmonic of the space

charge density. The reduction coefficient f,, of the space
charge was varied so as to provide the best agreement
with the experimental results. The optimal value of f,
was found to be f; , = 0.55, which is about two times
smaller than the values estimated from the formulaf, =
1 — exp(—2ngd), where d is the distance between the
beam and the waveguide wall and g = w/(cfyy) is the
transverse wave number. We assume that the waveguide
is smooth and that the distance d is substantially
smaller than the mean radius of the waveguide, so that
one can neglect the curvature of the waveguidewall and
of the electron beam.

The numerical simulation of Egs. (1)—(3) was car-
ried out for various values of the beam current for tube
parameters close to those used in experiments. The
length of the interaction space was 62.3 cm, the mean
radius of the waveguide, 1.38 cm; the corrugation
period, 1.73 cm; the radius of the electron beam,
0.67 cm; and the energy of the electrons, 150 keV. The
coupling impedance and the starting current were cal-
culated for the given geometry of the electrodynamic
system using the resultsin [16]. For the E;; mode, the
starting current was 6 A at the working frequency
8.7 GHz and the coupling impedance 0.5 Q. The simu-
lation included the first two harmonics of the space
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Fig. 1. Simulation of the nonstationary processes in a BWT with the coupling impedance 0.47 Q and the particle energy yy = 1.3.
The plots of the radiation power versus time (left column), the spectra of the output radiation (middle column), and the phase por-
traits (right column) at the injection currents (a) 7, (b) 30, (c) 55, (d) 70, (e) 90, and (f) 120 A.

chargefield, since the allowance for the next harmonics
led to insignificant corrections.

Figure 1 shows the time dependences of the output
power, the output signal spectra, and the phase portraits
for various values of the beam current. To construct the
phase portraits, we took the time dependence of the out-
put signal amplitude |A(O, t)| and plot points corre-
sponding to the states of the system at various time

instants on the plane (JA(O, t)|, JA(O, t —ty)]). Here, tyy
isthe delay time, which was set approximately equal to
a quarter of the self-modulation period. Figure la
shows the setting of stationary generation at | = 7 A.
The increase in the current complicates the self-modu-
lation mode, as well as the spectra and the phase por-
traits. In particular, self-modulation is periodic at the
current 30 A (Fig. 1b) but loses periodicity and
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becomes chagtic at the current 55 A (Fig. 1¢). The com-
parison of the corresponding spectra and phase por-
traits confirms the transition to chaotic generation. In
the chaotic mode, the width of the spectrum isabout 3%
and the mean efficiency is 10%. Note that the further
increase in the current with the coupling impedance
remaining unchanged suppresses self-modulation
owing to the space charge effect (cf. with [8, 9]). Spe-
cifically, modulation becomes sinusoidal again at the
current 70A (Fig. 1d). However, astheinjection current
grows still further at a given reduction coefficient for
the space charge parameter, the complicated character
of self-modulation returns (Figs. le, 1f). The genera
tion mode is quasi-period at the current 90 A (Fig. le)
and chaotic at the current 120 A (Fig. 1f). At the current
30 A, the self-modulation period is 7 ns or 90 dimen-
sionless units (Fig. 1b). When the current exceeds 70 A
and the system passes through the region of chaotic
modulation, the period of self-modulation almost dou-
bles (13 nsor 170 dimensionless units) (Fig. 1d). Asthe
characteristic time scale of self-modulation grows, the
delay time used in constructing the phase portraits also
increases from 2 nsin Figs. la-1cto 3 nsin Figs. 1d—
1f. Figure 2 shows the autocorrelation function for the
injection current 120 A given by

—_ lT n| _ A
K(tea) = T{(IA(O,t)I |A) -

x (JA(O, t' + tgg)| — A dt,

where T is the redlization time and | A | is the modulus of
thefield amplitude averaged over theredizationtime[17].

The typica decay time of the autocorrelation func-
tion for the chaotic mode at the given current is 50 ns,
which corresponds to the width of the fundamental
band in the spectrum shown in Fig. 1f (0.02 GH2z).

Smulation of Nonlinear Mode Competition

As follows from the dispersion relations for the
€l ectrodynamic system with the above parameters, syn-
chronous interaction with three lower waveguide
modes, Hy;, Eq;, and H,,, may occur at aworking volt-
age of 150 kV (Fig. 3). For the H,; and Ey; modes, the
points of synchronism correspond to the excitation of
the backward waves, whereas the frequency of syn-
chronism for the H,; mode is close to the cutoff fre-
guency. The starting currents for the H,; and Ey; modes
calculated according to [16] are 6 and 27 A, respec-
tively. The calculation of the starting current for the H,;
mode within the theory of orotron with a variable lon-
gitudina field structure [18] yielded the value 13 A.
Thus, the Ey; mode exhibits the larger coupling imped-
ance and the smaller starting current in comparison
with the other modes.

In the experiments, we observed the excitation of
only one of theworking modes (E,;) with the center fre-
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Fig. 2. Autocorrelation function calculated from the results
of numerical simulation for the current 120 A.
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Fig. 3. Dispersion diagram of the BWT with the dlow-wave
structure parameters close to the experimental values.

quency 8.7 GHz. Nevertheless, the self-excitation con-
ditionswere al so satisfied for the other modes, sincethe
working current wasincreased to 120 A in order to pro-
vide chaotic generation. The absence of the compo-
nents related to the excitation of the other modesin the
spectrum and in the radiation pattern can be explained
by the nonlinear competition of modes. Indeed, the
results of simulation (see below and also [15]) show
that the nonlinear competition of the modes at substan-
tidly differing coupling impedances may lead to one-
mode self-modulation generation even if the self-mod-
ulation thresholds are overcome for each of the modes.

Let us demonstrate the suppression of the parasitic
mode in the competition of two transverse modes: Ey;
and H,, . With neglect of the high-frequency field of the
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Fig. 4. Time dependences of the magnitudes of the (1) Eg;
and (2) Hy, wave amplitudes under the conditions of mode
competition at the current 120 A. (a) The coupling imped-
ances of the waves are close to the real values: |Z]=0.5Q
and |Z,| = 0.15Q (p, = 0.75, p, = 0.09, v = 0.9, and J = 107%).
(b) The coupling impedance of the Ey; wave is decreased
ten times.
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Fig. 5. Complete oscillogram of the microwave signal at the
current 120 A.

space charge, mode interaction in arelativistic BWT is
described by the system of equations

2m2n

0A; 0A, ] -i9,
F_W = —2T[2J'J.e d1910d820,
00
oA, A,  Jp, o
0fo _0Pg _ _“Pacp 9
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dd, 1 1
dvs _ - , (6)
a 1-y? 1-vd
L‘Sz = \)E 1 —_ 1 H
0 Oh-y? Ji-yH
g_z’ = Re(A exp(id,) + VA,exp(id),)).

Here, we use the normalized variables: { = w,Z/cisthe
longitudinal coordinate, T = wy(t—2/v)/(1/By + 1/B,) is
time, 9, , = w, Lt —h; ,zarethe phases of the electrons
relative to each of the waves, A; , = eE; ,/(mcw, ,) are
the amplitudes of the waves, v, , = 3, ,C are the group

velocities of thewaves, J =el|Z,}/(2mc2B5), z, , arethe
coupling impedances of the waves, p, = (B, +

B2 M(Bo + Bi'), P = [Zdw(Zylox), and v = wyley,
The boundary and initial conditions for system (6) are
given by

A1,2|z:| =0, A1,2|T:o = Ay(Q),
V12lr20 = 91,2,0(0,2M), Y[z-0 =Y o

We performed the numerical simulation of Egs. (6)
for a BWT with the parameters close to those used in
the experiments. Figure 4 shows the results of simula-
tion for the injection current 120 A. As follows from
Fig. 4a, the H;; mode is suppressed by the nonlinear
competition with the Ey; mode, having the larger cou-
pling impedance and the smaller starting current. With
the given parameters, chaotic generation is observed for
the Ey; mode. A substantial decrease in the coupling
impedance Z, of the working mode E, |eads to compli-
cated self-modulation generation at the H,; mode if the
Ey; mode is not excited (Fig. 4b). Thus, the simulation
confirms that one-mode self-modulation generation at
the working mode E,; is a possibility if the parasitic
mode is nonlinearly suppressed. Note that, generally
speaking, the injection current for the latter mode also
far exceeds the starting current.

(7)

2. EXPERIMENTAL STUDY
OF SELF-MODULATION GENERATION

Electron beams with a pulse duration to 10 ps were
produced by the Saturn pulsed accelerator based on a
hot-cathode magnetron injector gun. Under the work-
ing conditions, the accelerating voltage was as high as
150 kV and the injection current was varied from 10 to
140 A. The hot cathode worked in the space-charge-
limited-current mode. The current was controlled by
redistributing the potentials among the three electrodes
of the electron gun.

The electrodynamic system represented a dlightly
corrugated axisymmetric waveguide with the parame-
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Fig. 6. Experimental oscillograms of the output power (left column), radiation spectra (middle column), and phase portraits (right
column) at the injection currents (a) 10, (b) 30, (c) 55, (d) 70, (e) 90, and (f) 120 A.

tersmentioned in Section 1. To increase the breakdown
strength [14], we maintained the temperature of the
electrodynamic system at 500°C.

After passing the vacuum-tight window, the radia-
tion was detected in an anechoic chamber. The receiv-
ing horn was placed at the maximum of the radiation
pattern for the working mode Eg, . The envelope of the
output signal was recorded by a crystal detector with a
response time of no more than 2 ns and by Hewlett—
Packard and Tektronix digital oscilloscopes with a
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bandwidth of 500 MHz and a digitization period of no
more than 1 ns. Thus, the entire envelope of a high-fre-
guency pulse could be memorized for the subsequent
examination of its fragments. The heterodyne method
was used to take the spectrum of the output radiation.
The oscilloscope aso recorded the difference signal
during the microwave pulse, and then the spectrum of
the signal was reconstructed. The output power was
measured both from the calibrated damping in the
channel and from the energy of the microwave pulsefor
more accurate measurements. In the latter case, a spe-
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Fig. 7. Autocorrelation function corresponding to the oscil-
logram obtained at the current 120 A.

cia calorimeter [19] enabled the determination of the
pulse energy and, hence, power with the accuracy
+10%.

As mentioned in the previous section, we observed
the excitation of only one working mode E;; with the
center frequency 8.7 GHz. Figure 5 shows a typica
oscillogram in the chaotic modulation mode at the
injection current 120 A. The self-modulation is seen to
cover virtually the entire microwave pulse with a dura-
tion of about 10 ps. However, the more detailed analy-
sis of the envelope shows that the character of self-
modulation varies during the pulse, which can be
related to minor changesin the voltage. As aresult, the
coupling impedance dlightly also varies within the
pulse. In addition, the electrodynamic system inevita-
bly exhibits parasitic reflections from the collector end,
which, as known, lead to the strong frequency depen-
dence of the output power, the dependence varying with
voltage [6].

In connection with this, we analyzed the bifurcation
values of the current, using the central fragments of the
oscillograms with the fixed peak voltage (=150 kV) of
the =500-ns-wide pulse. Figure 6 shows these frag-
ments together with the corresponding spectra and the
phase portraits on the (JA(O, t)], |JA(O, t —tyy)]) plane. It
is seen that stationary generation, observed at currents
smaller than 7 A (Fig. 6a), changes to self-modulation
asthe current increases (Figs. 6b—6f). At 30 A, the self-
modulation is near-sinusoidal with the period 8 ns
(Fig. 6b). Then, the self-modulation becomes more and
more complicated and finally chaotic at 50 A (Fig. 6¢).
At currents exceeding 50 A, the self-modulation mode

GINZBURG et al.

takes asimpler form. Specifically, the processis quasi-
harmonic with the period 14 nsfor currents from 70 to
90 A (Figs. 6d, 6e). Finaly, the self-modulation
becomes chaotic again with arelative spectral width of
about 4% when currents exceed 100 A (Fig. 6f). Note
that the bifurcation values of the current and the char-
acteristic periods of self-modulation are in good agree-
ment with the results of simulation. It follows from the
numerical simulation that the self-modulation modes
alternate with increasing injection current because of
the space-charge effect. Note aso that the autocorrela-
tion function (Fig. 7) constructed from the oscillograms
shown in Fig. 6f isin good agreement with that based
on the results of simulation at the injection current
120 A (Fig. 2).

The experimental results exhibit the good pulse-to-
pulse reproducibility except for the trailing edge of the
voltage pulse. The leading and trailing edges of the
microwave pulse are not mirror-symmetric presumably
because of microwave breakdowns that arise when the
electrodynamic system is bombarded by positive ions
of the beam. At accelerating voltages above 150 kV, the
microwave pul se becomes much shorter. Therefore, we
can admit that, at injection currents exceeding 100 A,
the power of self-modulation generation is limited by
microwave breakdown. At the injection current 50 A
and the voltage 150 kV, the calorimetrically measured
power of self-modulation generation was 1 MW, in
other words, the electron efficiency reached 10%. The
power of chaotic generation was about 2 MW at the
current 120 A.

ACKNOWLEDGMENTS

We are grateful to M.I. Petelen, E.B. Abubakirov,
N.F. Kovalev, and M.1. Yalandin for the helpful discus-
sions.

Thiswork was supported by the Russian Foundation
for Basic Research (grant no. 00-02-16412a).

REFERENCES

1. N.S. Ginzburg, N. I. Zaitsev, E. V. llyakov, et al., Pis ma
Zh. Tekh. Fiz. 24 (20), 66 (1998) [Tech. Phys. Lett. 24,
816 (1998)].

2. N. S. Ginzburg, N. I. Zaitsev, E. V. llyakov, et al., 1zv.
Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., No. 5, 60
(1999).

3. M. I. Ydandin, V. G. Shpak, S. A. Shunailov, and
M. R. UI'maskulov, Pis ma Zh. Tekh. Fiz. 25 (10), 19
(1999) [Tech. Phys. Lett. 25, 388 (1999)].

4. N. M. Ryskin and V. N. Titov, Izv. Vyssh. Uchebn.
Zaved., Prikl. Néelin. Din. 6 (1), 75 (1998).

5. 1. V. Pegd’, Izv. Vyssh. Uchebn. Zaved., Fiz. 39 (12), 62
(1996).

6. B. Levush, Th. M. Antonsen, A. Bromborsky, et al.,
IEEE Trans. Plasma Sci. 20, 263 (1992).

7. N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva,
Izv. Vyssh. Uchebn. Zaved., Radiofiz. 21, 1037 (1978).

TECHNICAL PHYSICS Vol. 46

No. 11 2001



10.

11

12.

CHAQOTIC GENERATION IN A MEGAWATT BACKWARD-WAVE TUBE

N. S. Ginzburg and S. P. Kuznetsov, in Relativistic High-
Frequency Electronics. Problems of Radiating Power
and Frequency Rise (Inst. Prikl. Fiz. Akad. Nauk SSSR,
Gorki, 1981), pp. 101-144.

B. P. Bezruchko, L. B. Bulgakova, S. P. Kuznetsov, and
D. I. Trubetskov, in Lectures on Microwave Electronics
and Radiophysics: 5th Winter School-Workshop for
Engineers (Saratovs. Gos. Univ., Saratov, 1980), Vol. 5,
pp. 25-77.

V. P. Bezruchko, S. P. Kuznetsov, and D. I. Trubetskov,
in Nonlinear Waves. Stochasticity and Turbulence (Inst.
Prikl. Fiz. Akad. Nauk SSSR, Gorki, 1980), pp. 29-36.

V. P. Bezruchko, S. P. Kuznetsov, and D. I. Trubetskov,
Pis'ma Zh. Eksp. Teor. Fiz. 29, 180 (1979) [JETP Lett.
29, 162 (1979)].

N. I. Zaitsev, E. V. llyakov, G. S. Korablev, et al., Prib.
Tekh. Eksp., No. 3, 138 (1995).

TECHNICAL PHYSICS Vol. 46 No.11 2001

13.

14.

15.

16.

17.

18.

19.

1427

N. F. Kovalev, M. |. Petelin, M. D. Raizer, et al., Pis ma
Zh. Eksp. Teor. Fiz. 18, 232 (1973) [JETP Lett. 18, 138
(2973)].

E. V. llyakov, G. S. Korablyov, I. S. Kulagin, et al., IEEE
Trans. Plasma Sci. 26, 332 (1998).

N. S. Ginzburg, N. I. Zaitsev, E. V. llyakov, et al., lzv.
Vyssh. Uchebn. Zaved., Radiofiz. 41, 1565 (1998).

N. F. Kovalev, Elektron. Tekh., Ser. 1: Elektron. SVCh,
No. 3, 102 (1978).

E. S. Venttsel’, Theory of Probability (Nauka, Moscow,
1964).

N. S. Ginzburg, N. A. Zavol’skii, V. E. Zapevalov, et al.,
Zh. Tekh. Fiz. 70 (4), 99 (2000) [Tech. Phys. 45, 480
(2000)].

N. I. Zaitsev, E. V. llyakov, Yu. K. Kovneristyi, et al.,
Prib. Tekh. Eksp., No. 2, 153 (1992).

Translated by A. Chikishev



Technical Physics, Vol. 46, No. 11, 2001, pp. 1428-1432. Trandlated from Zhurnal Tekhnicheskor Fiziki, Vol. 71, No. 11, 2001, pp. 81-84.

Original Russian Text Copyright © 2001 by Naumov.

ELECTRON AND ION BEAMS,
ACCELERATORS

On the Propagation of a Paraxial Beam
of Charged Particles
in an External Electromagnetic Field

N. D. Naumov
Received November 17, 2000

Abstract—A small-angle approximation method as applied to a curvilinear beam of relativistic particles
in mutually orthogonal uniform magnetic and nonuniform electric fields is elaborated. Analytical solutions
to the paraxial equation for curvilinear beams of charged particles are obtained. © 2001 MAIK “ Nauka/Inter-

periodica” .

INTRODUCTION

The necessity for analyzing the motion of charged
particle fluxes in external electromagnetic fieldsis dic-
tated by practical problems of electron—on optics, mass
spectroscopy, etc. [1-3]. One method for theoretically
treating the dynamics of charged particle beams is the
paraxial theory. This theory allows one to find the
geometry of beam-forming electrodes that provide the
flux of required configuration, aswell asto consider the
direct formulation of the problem when the parameters
of an external electromagnetic field in which the beam
propagates are given.

In general the case, when the beam axisis a spatia
curve, the equations of the paraxial theory are rather
complicated [4]. As has been shown in [5] for anonrel-
ativistic beam, simpler expressions arise if the beam
axisis aplane curve. In this paper, the approach of [5]
is generalized to the relativistic case. A narrow beam
with a small ratio of its transverse size to the radius of
curvature is considered. In this case, analytical results
accurate up to first-order terms in this small parameter
are obtained.

FORMULATION OF THE PROBLEM

To be specific, let us assume that the beam propa-
gates perpendicular to the zaxisin mutually orthogonal
nonuniform electric field E = E,&, + Eyg, and uniform
magnetic field B, = Bye,. The propagation of the beam
is convenient to consider in a curvilinear coordinate
system (x, g, {):

X = X(s)+qgn +b.

The curve X(9) is the beam axis in the plane z = 0,
sisthe path length for axial particlesreckoned fromthe
point of beam injection; t, n, and b = +e, are the vectors
of the Frenet trihedral for the curve X(s). The direction

of the vector b depends on the direction of the external
electric field.

The beam axis position given by the trajectories of
axial particlesisdefined by the solution of therelativis-
tic equation of motion for a single particle in an exter-
nal field. Substituting the expression for particle
momentum p = mut into this equation of motion, we
obtain

E
muu' = yeEy, Kk = ye 22—9. (1)

mu u

Here, E; are the components of the external electric
field at the beam axis. Eqo(X(S)) = Egit + Epon, ¥ =

&+ u?/c, and Q = eb [By/mc. The prime denotes diif-
ferentiation with respect to s. In order to determine the
characteristics of the curvilinear beam of charged parti-
cles moving in an external electromagnetic field, one
has to find the trgjectory equation for a particle with
injection conditions different from those for an axial
one. The difference is that the particle is injected at
some distance away from the axis and at an angletoit;
in addition, theinitial kinetic energy of the particle does
not coincide with that of an axia particle. The kinetic
equation in the small-angle approximation [6] can be
used to take into account effects like thermal straggling
of the particles and multiple elastic scattering by gas
molecules.

TRAJECTORY EQUATION

A trgjectory equation for a charted particle in an
external electromagnetic field may be found by the
Maupertius principle. In relativistic mechanics, this
principle iswritten in the form [7]

5IBnAd| + SA ¥ = o.
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Here, A = J/(E —e®)?m?c? — ¢, E isthetotal particle
energy, ® and A are the potentials of the external field,
and | isthe path length. Cal culations similar to those for
a nonrelativistic particle in a potential field [8] alow
one to find the trajectory equation

dodxg _ 2
mAGIE a0 = dl B}

It is easy to check that the quantity mA(x(l)) is the
absolute value of the particle momentum. In particular,
A(X(s)) = ufor axial particles.

In order to find an approximate tragjectory equation
in the vicinity of the curve X(s), one should represent
the particle momentum in the form

m/\c(ij_>|( = mul(1+A)t+qgn]. 3

For near-axial trgjectories, the values of kqand A are

small. Substituting expression (3) into Eqg. (2) and omit-

ting second-order terms, we arrive at the set of ordinary
differential equations

(E ed)E,, + /\[

_ Yeg

Wy U 2 KO
q*G‘“kq*H‘*;ﬂA muzq, (@]

rard )\—Kq kg +‘r’nglq )

Here, k =k + Q/u, I =1+ 1/y?, and g; are the compo-
nents of the external electric field

Eeq« = (Eox + 910)t + (Egz + g20)N
in the vicinity of the curve X(x).

PARAXIAL EQUATION

In order to obtain the paraxial equation in the closed
form, it is necessary to find the explicit form of the
function A. As has been found recently [5], the func-
tions g, have the form

01 = Epp+KEp, 0, = KEp—Egy. (6)

The substitution of expression (6) for g, into Eq. (5)
makes it possible to represent the latter in the form

e d
y d qE021

N+TEN =
u
which is more convenient for mtegrati on.

In view of relationships (1), we arrive at the expres-
sionfor A

A= Kq+Cl,
u

where C = ug (Ao — Kglo)/Yo IS a constant.
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Subgtituting the obtained equation for A and the
expression (6) for g, into (4), we finaly find, in view
of (1),

1 2 " |2
U Gea Ko U, U
g+ =g+ v ATRvy
c (7)
KO _
+—=vk+-—==0.
UZH/ Y
The curvature of the beam axisisk = X"+ Y"2.

Thus, the trgjectory equation for a particle injected into
the external field under consideration in the vicinity of
the curve X(s) has been obtained up to first-order terms.

The angle g, = a between the injection direction and
the beam axis, aswell asthe distance g, of theinjection
point to the beam axis, areinitial conditionsfor Eq. (7).

Theinitia kinetic energy T of aparticle definesthe con-
stant C appearing in (7):

D 1
C= E(AO_KOQO)- Ao = B(T_W)v ©
2 4
- w_mc
D=W W

where W = yymc? istheinitial kinetic energy of an axial
particle.

Generally, numerical methods should be used to
solve the differential equation obtained. Anaytical
results may easily be found for a beam with a constant
curvature of the axis. Such beams are used in mass
spectroscopy [3]: the beam axis configuresinto acircu-
lar arc in both a sector magnetic field and the electric
field of acylindrical capacitor.

In a sector magnetic field, the beam curvatureisk =
1R, where R = mcuy/eB, isthe circle radius. Since k =
0 and the particle velocity is constant in this case,
Eq. (7) issubstantially simplified:

q'+kq+kh, = 0. 9)

Then, the path of acharged particle in a sector mag-
netic field is given by

q = (Go*+AoR)cosy + R(asing —A,),

where ) = R.

For the beam in the nonuniform €electric field of a
cylindrical capacitor, k = Kk = /R, where Ris the radius
of a circle described by axia particles with a kinetic

energy W= (A + /A>+4m’c*)/2. Here, the constant
A =eU/In(b/a), where U isthe voltage across the capac-
itor and a and b are the inner and outer radii of the
capacitor plates, respectively.



1430
Inthis case, Eq. (7) iswritten in the form
q" + KT [k(a—0o) + ARl = 0,

whichissimilar to (9).

The solution of this equation defines the path of a
relativistic particle in the field of a cylindrical capaci-
tor:

q = Qo+ AgR(cosp —1) + aR,siny,

where ) = gRyand Ry = R/ /2 — A/W.

KINETIC EQUATION

Now let us turn to the kinetic equation

f 1 f
v B+ et v X BIR S = L

for a curvilinear beam of charged particles. Here,
f(x, p) is the distribution function and I is the elastic
collision integral.

(10)

We write Eq. (10) in the curvilinear coordinates,
taking p = mu[(1 + A)t + an + 3b]. In the case of anar-
row beam, the angles a and 3, along with A, are small.
Asaresult, up to first-order terms, we find

Lf+ |:KG —r +kg) + eygl}af
U mu’qloA
€yg of D
2 KOy or _
[m 9-Ka- BH_ A }00( 0

where x? is the mean square of the scattering angle per
unit path length and

0,40 .50
L= <9S+O(<9q+I3

uo x°gd® ., 9°p

00 "udp 4Lpg? gpt)

In order to simplify Eq. (11), one should turn from
A to the new variable p = (A —kqg)u?/y. Finally, in view
of (1) and (6), we find the kinetic equation for a curvi-
linear paraxial beam of relativistic particles:

2 12
Lf — [0( +B< +-+UU+_9__Dq
Y yu

Ko k079t _
+u28<y+yﬂ}ao( 0.

Analytical solutions of Eq. (12) can be found for
beams with a constant curvature considered above. In
particular, the method proposed in [5] can be employed
to find the Green's function.

(12)

NAUMOV

PARAXIAL REPRESENTATION

Let us return to the paraxial equation again. The
proper time of an axial particle,

may be used asalongitudinal variableinstead of s. This
means the transition to the parametric representation of
the particle path. Then, Eq. (7) iswritten in the form

KDz uliv [y O
q+[%k+ u? DYUCD}q

+CS/k+;<-E =

where the dot denotes differentiation with respect to T,

u=X ,and w = u. In this notation, the path curvature
takes the form k? = |u x w|?/L.

(13)

For a uniform electromagnetic field, u Ow — (u O
w/yc)? = kuQ and Eq. (12) is reduced to
G+ = +kK+KDZq+C5/k+KD= (14)

V

Equations (13) and (14) have to be solved jointly
with the equation of motion for an axia particle

mw = eyEq, + g[u x By .

For anonrelativistic particle, y = 1, the variableu is
equal to the axid particle velocity v and the parameter 1
coincides with the particle motion time. Because of
this, Eq. (13) takes the simpler form

q+[(2k2+K2)v2+VV—|‘-2V}q+C(k+ K) =0, (15

wherev = X (the dot means differentiation with respect
to time).

The expression for path curvature changes corre-
spondingly: k? =|v x v P/v e,

For T=mc? + K and W = mc? + K, expressions (8)
in the nonrelativistic limit are recast as

K 0o
0Kk, O

Equation (15) has to be supplemented by the equa
tion of motion

2K
C= WO()\O_KOqO)! Ao =

mv = eE, + g[v x Byl .
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A BEAM IN AN ELECTRIC FIELD

The solution of Eq. (15) can be found for beamsin
uniform fields, where v . = 0. In auniform electric field
Eo = Eg, the beam axis in the cross section is a seg-
ment of parabola

Y = wX?/2visin’® — Xcotg.

Here, X = vgtsing, w = eEy/m, @ is the angle between
thevector of the electricfield and theinjection direction
for axial particles with the initia velocity v, =

/2K /m, and the longitudinal coordinate sis paramet-
rically represented as
1

—[v(wt — V,C0SQ)

S:ZW

t—v,COSQ+ VD}

2 . 2 W
+ +
vo%oscp sin“@ln Vo(1—cosq)

where v = /v +wt(wt — 2v,cosg) isthe velocity of
axia particles.

In this case, the beam axis curvature is k = K =
wv,sing/ve. Therefore, Eq. (15) takes the form

2
q‘+3v§sin2(pvi4q =Q, Q= —2CWsin(pﬁ3). (16)
v v

The solution of Eq. (16) may be found with the
method of variation of constants [9]. First, one has to
find the functions g, and g, representing two indepen-
dent solutions of the homogeneous equation corre-
sponding to Eq. (16). It iseasy to check that these func-
tions satisfy the condition

010, — 610, = Co,
where C, is a constant.

Then, the solution of theinhomogeneous equationis
calculated using the functions g, and q,:

q-= %B:l - %J%Qd% + %%32 + CiJ%Qd%-

The constants C; are defined by the initial condi-
tions.

One of the solutions of the homogeneous equation
corresponding to (16) should be found in the form of a
power law of v. Thisyidldsq, = v —2v{sing/v. Using
condition (17), wefind the second independent solution
g, = (Wt — vcosg)/v. Eventually, for abeam in an elec-
tric field, we have

(17)

q= %[(QO +aVgt)(vy—wtcose) _)‘OVOWtZSin(p] '
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A BEAM IN MUTUALLY ORTHOGONAL
FIELDS

A trochoid,

X = Vt—ésintp[Vcoscp— vesin(y + @)],

Y = d{vocos(y + 0) + Vsiny]

isthe path of anonrelativistic charged particlein mutu-
aly orthogonal uniform electric and magnetic fields.
Here, V = cEy/By, Y = wt, and w = eBy/2mc. Asin the
previous problem, @ is the angle between the electric
field vector and the direction of particle injection. For
brevity sake, we here omit the relation between sand t,
which may be represented viathe elliptic integral of the
second kind.

Thisimplies that the velocity of an axia particleis
defined by the expression
vZ = vi+4Vsing[Vsing + v cos(P + @)] .
The beam axis curvature is k = w1 + p)/v, where
p = vO(vO-2Vsing)/v2.
Asaresult, Eq. (15) for abeam in mutually orthog-
onal fieldsiswritten in the form

4+ w’(1+3p%)q

2
Vo V.o oo (18)
+ prvg\(ﬁ 2qowv—c2)ang = 0.

Unfortunately, an analytical solution of Eq. (18)
cannot be found for an arbitrary value of the initia
velocity of axial particles. The exception is the specific
case v, = 2Vsing, when the beam axisis a segment of a
cycloid

_ Vg :
X = Vt+z)[sn2cp—sn2(w+¢)],

-V _
Y = Zoo[ cos2@— cos2(Y + )] .

In this case, a characteristic feature of the particle
motion in the vicinity of the beam axisisthat the parti-
cle path does not depend on theinitial energy:

q= qocoqu+2a\a/)sincpsin Y,

where | = arccos(cosp— 2ws/V) — @.

The practical importance of the method developedis
in the possibility of estimating the parameters of a cur-
vilinear beam of relativistic particles propagating in an
external electromagnetic field. These estimates are
valid when the beam is not yet significantly broadened



1432

due to effects like thermal straggling of the particles
and multiple elastic scattering by gas molecules.

1

2.
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Abstract—The use of high-frequency field harmonics honsynchronous with the beam for focusing and accel-
erating charged particles in periodic resonant structures is discussed. Conditions for effective acceleration of
particlesin thetransverse and longitudinal fields of a high-frequency undulator arefound. A specific implemen-
tation of particle focusing and acceleration, as well as the numerical calculation of deuterium ion dynamicsin
anew type of alinear accelerator, are reported. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

In[1, 2], the dynamics of nonrelativistic ion beams
in alinear accelerator where the particles are acceler-
ated in thefield of aperiodic electrostatic undulator and
in an alternating rf field has been considered. It has
been shown that the superposition of the fields of the
electrostatic undulator and of the periodic rf resonator
in which waves synchronous with the beam are absent
(such a resonator will be referred to as an rf undulator
for brevity) provides the simultaneous accel eration and
focusing of the beam particles. An undulator accelera-
tor can be made compact if the same el ectrodes are used
to excite the rf field in the accelerating channel and the
periodic electrostatic field, that is, if the rf undulator is
structurally integrated with the electrostatic undulator.
Tentative mock-up experiments[3] have shown that the
implementation of these devices may face serious prob-
lems associated with rf breakdown when the rf and the
electrostatic fields of large amplitude are generated
simultaneoudly. In addition, the effective operation of
an undulator accelerator requires the use of a high-
power high-voltage dc source along with an rf genera
tor. Our technique for focusing and accelerating the
beam using nonsynchronous waves makesit possible to
omit the electrostatic fields.

It istheaim of thiswork to formulate basic demands
for an rf undulator to provide the effective acceleration
and focusing of ion beams with low injection energies.

EQUATION OF MOTION

The field excited in a periodic resonator will be
found as a periodic solution of the Maxwell equations
with given boundary conditions. Under the assumption
that the cross size of the resonator is much smaller than
the wavelength of the rf field, the Fourier series coeffi-
cients for the field can be calculated with the electro-
static approximation to the problem. In this case, the

longitudinal and transverse components of the electric
field can be represented as the sum over the spatial har-
monics:

Ej = z En o(% y)sin(h,z+ a)cos(wt),

()
E, = zEn,Z(x, y)sin(h,z + a) cos(wt),

whereh, = h, + 2rm/D, hy, = u/D, U isthe phase advance
of the field per period, and D isthe structure period.

Consider the equation of motion for anonrelativistic
ion beaminfield (1), assuming that the particle velocity v
differsfrom the phase velocity of all harmonics: v, , =
wh,n=0,1,2, ....

In general, the interaction of the particles with non-
synchronous harmonics of the rf field does not change
the average energy of the beam but causes fast oscilla-
tions in the longitudinal and transverse directions. In
further analysis, it is necessary to make a distinction
between a longitudinal undulator, for which the trans-
verse components of the field are absent [E,, (0, 0) = 0],
and a transverse undulator, for which the longitudinal
component field at the axis vanishes [E, ,(0, 0) = Q].
Accordingly, the parameter a in sum (1) should be set
equal to zero in the former case and 12 in the | atter.

As has been shown in [2], even in the absence of
synchronism between the beam particles and the spatial
harmonics of the wave, effective beam—field interaction
takes place if

v = wlk,, @)

wherek, = (h, £ h))/2 (k,#h,Zh;n=0,1,2,p=0,1,2).
The parameter k, defines the wave number of the

combined wave resulting when the fields of the nth and
pth harmonics are added. In fact, introducing a slowly

1063-7842/01/4611-1433%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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varying phase Y = [k,dZ — wt and coordinate R = (X,
Y, Z) and averaging over the fast longitudinal and trans-
verse oscillation [2, 4], one comes to the equation of
motion in the smooth approximation:

R _ @
_d—tz = aRUeffv 3

where the function Uy depends on the amplitudes of
the harmonics of the nonsynchronous waves.

Introducing the dimensionless amplitude of thefield
harmonics

eA
2Ttmc2En(D’ 2’

reduced particle velocity 3; dimensionless coordinates
& = 2T\, p = 21TIX/A, and n = 21Y/A; and dimension-
less time T = wt, one can write the equation of motion
in the form

NG

d
P - v @
where
Ugr = U+ U, + U, )
_1 2] 1 1
U = =) (&) + : (5a)
$T 62 R e
U, = 1 Z |:én ze nDep,
, = =
16hp+hn:2kD @) O (5
x cos(2y + 2a),
-1 Lenep
Us = 5 z %——AT)%COS(ZQJ). (5¢)

lh,—hy = 2k \5n

Here, A; = (h, * k)/k,. In the expression for U,, the
sum is taken only over the harmonics for which h, +
h, = 2k, in the expression for U, over the harmonics
for which |h, —h,| = 2k,. The function U can be con-
sidered as the effective potentia function that specifies
the Hamiltonian of the beam—wave system and helpsto
study the 3D beam dynamicsin the smooth approxima-
tion. From Eq. (4), it follows that the existence of an
absolute minimum of Uy isthe necessary condition for
beam focusing and acceleration. The longitudinal
bunching and acceleration of the beam are possible if
the particle velocity iscloseto the vel ocity 3 = wy/ck, of
a synchronous particle whose phase | = i remains
constant or slowly varies with the longitudinal coordi-
nate. The variation of (3 can be written as

dBs _ 0
ot - aeYerlv=vp=on=o ©6)

MASUNOV

From this expression, one can find the law of varia-
tion of the structure period D(§) and the range for the
phase Y of the combined wave where the acceleration
of the particlesisthe most efficient.

ANALY SIS OF BEAM DYNAMICS

By way of example, let us consider the problem of
accelerating and focusing of a ribbon-shaped beam in
the slot channd of a plane rf undulator. Figure 1 shows
three possible electrode arrangements in this accel erat-
ing system for 4 = 1t An alternating-sign field along the
beam path can be generated by applying an rf potential
U, = zU,coswt to a regularly (periodically) arranged
transverse electrodes (“rods’). Depending on the differ-
ence between the phases of U, applied to adjacent elec-
trodes, alongitudinal (Fig. 1a) or atransverse (Fig. 1b)
undulator can be implemented. Under the assumption
that thefield in the narrow slot channel depends only on
the longitudinal coordinate Z and the transverse coordi-
nate Y, the amplitudes of the electric field harmonicsin
the longitudinal undulator are given by

E.. = E,ocosh(h,Y), E,, = E,,sinh(h,Y). (7)
For the transverse undulator,
En. = E,osSinh(h,Y), E,, = E,ccosh(h,Y). (8)

Now we find conditions for the focusing and accel-
erating of aribbon beam, using expressions (7) and (8)
for the field amplitudes. In analyzing the function Ug; it
would suffice to leave the first two harmonics with n =
Oand 1insum (5) if the contribution from all other har-
monicsisassumed to be negligibly small. We start with
the study of a periodic structure using the L = 0 mode.
Inthis case, if the beam particle velocity iscloseto 3 =
2D/A, the expression for U can be written as

Ug = 8[e° + gelcoshgi';]D
)
+ 2¢e,e, cosh EZBHDCOS(ZLIJ)]

From (9), we come to the equation that describesthe
variation of the particle velocity:

dB _ & . [2N0
It 2[3 cosh g0 sm(qu).

The acceleration and self-focusing of the particles
are possible if the phase of a synchronous particle Y
that isin the combined wavefield liesin theintervals of
[174, V2] and [5174, 3172]. In this case, according to (9),
the focusing condition for al particles being acceler-
ated will be met near the axis of the system (n/f3s < 1)
if the amplitude of the first harmonic equals or exceeds
that of the zero one (e, = gy).

It is interesting to compare this result with another
possibility of acceleration in the rf undulator where the

(10)
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field is generated at the mode pu = 1t If the particle
velocitiesin the beam are close to B = D/A, we have

1[eocosh EB 0 + € Zcosh LN

Ugr = DBS
+ 3e,e,cosh %Ecos( 2L|J)]

(11)

instead of (9).

In (11), the second term in sum (5a), which is
responsible for the interaction of the beam with the
counterpropagating wave and whose contribution to the
effective potential Uy is negligible, is omitted for sim-
plicity. Then, the equation for longitudinal motion can
be written in the form

%3 eoel mo
= COShEBQSﬂ(ZlIJ),

that is, acceleration is possible at the same phases of the
synchronous particle as before but the acceleration rate
for a given structure period is four times higher. One
more important advantage of the rf undulator operating
at the 4 = tmode is that the transverse focusing of the
particles is possible for any ratio of the amplitudes of
the zero and first field harmonics. Thisis easy to check
by analyzing the form of potential function (11) as a
function of the coordinatesn and (.

Note that all the above results are valid for both
types of the undulators. However, the transverse undu-
lator is easier to design and implement. In fact, at low
velocities of the ion beam, the spatia period D of the
undulator rapidly increases with energy. For given val-
ues of the rf potential on the electrodes, it is difficult to
provide the constancy of the field harmonic amplitudes
at the axis of the system under such conditions. In the
transverse undulator, the channel aperture can be made
constant. This allows one to easily keep the maximal
value of the accelerating field amplitude throughout the
accelerator length for given electrode potentials.

In a plane undulator, the electrodes can be arranged
in such away (Fig. 1c) that the condition

Eny(¥:0) = E,(y, 0) (13)

for themode p = Ttis satisfied in any cross section of the
channel. In thiscase, U, = U; =0in expression (5) and
the effective potential U isindependent of the particle
phase. This means that the acceleration equals zero but
the undulator can be considered as a device providing
the transverse focusing of a ribbon-shape beam
throughout its length.

(12)

NUMERICAL SIMULATION
OF THE ACCELERATOR

To exemplify the efficiency of acceleration in an rf
undulator, we numerically simulated the dynamics of a
ribbon deuterium ion beam. The energy of injection of
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Fig. 1. Arrangement of electrodes in a planar rf undulator
(the phase advance L = T0).
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the unmodulated ribbon beam is W,, = 150 keV; the
operation mode in the transverse rf undulator, g = T,
and the operating wavelength, 1.5 m. The structure
period D = BA, where [ is found from Eq. (6). The
accelerator comprises the buncher of length L, = 0.7 m
and the basic section of length L = 1.8 m. In the
buncher, the field harmonic amplitude smoothly grows
as E(2 = E,,sn(z2L,) and the phase Y linearly
decreases from 172 to 3178. At this acceleration stage,
the field amplitude remains unchanged, E = E,,, and
the synchronous particle phase is Y = 317/8. The first-
to-zero field harmonic amplitude ratio x = e,/e, was
selected such that the particlelosseswere aslow as pos-
sible. The gain in the particle energy W and the coeffi-
cient K of current transmission depend on E,,,.. In our
case, W= 1.1 MeV and K = 64% for E, 5 = 150 kV/cm
and X = 0.6. As the amplitude of the fundamental har-
monic increasesto E,,, = 250 kV/cmat ¥ = 0.3, wefind
the final energy W = 1.37 MeV and K = 63.5%. Obvi-
ously, the acceleration rate can be increased and K can
be made larger by using specia optimization tech-
niques and by choosing more appropriate parameters of
the buncher. However, even this example implies that,
if the initial particle velocity is low, the system sug-
gested compares well with conventional rf-focusing
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accelerators and sometime outperforms them in effi-
ciency of acceleration.

CONCLUSIONS

We have shown that an rf undulator can effectively
bunch, accelerate, and focusion beams. Accelerationis
possiblein both longitudinal and transverserf field. The
rf system suggested compares well with RFQ accelera
torsin rate of acceleration. By varying the field ampli-
tude and the period of the rf undulator, one can provide
the effective longitudinal bunching of the beam at the
frequency equal to the doubled frequency of therf field.
In this case, arelatively high capture efficiency for the
particles to be accelerated is attained.

A plane rf undulator of special geometry can be
used for the focusing of ribbon-shaped unmodulated
beams. Finally, an rf undulator offers wide possibilities
for accelerating neutralized ion beams, that is, those
consisting of oppositely charged particles (for example,
D* and D). Asfollowsfrom Egs. (6), (10), and (12), the
phase of the synchronous particle ), does not depend
on the charge sign. Therefore, positively and negatively
charged ions can be accelerated in a single bunch [5].
Thismeansthat the use of neutralized beamstacklesthe

MASUNOV

space-charge-related problem of limited beam inten-
sity. Asfollowsfrom the numerical simulation, all basic
data obtained by analyzing the beam dynamics in the
smooth approximation are close to those that are based
on the exact calculation of the beam dynamics in the
polyharmonic field of an rf undulator. For the ion ener-
gies considered, the difference in the output integral
beam characteristics is within 5%.
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Abstract—Resullts of investigation of carbon films deposited with the use of gas-phase chemical reactionsin
the plasma of adc discharge are presented. Films obtained at different parameters of the deposition process var-
ied widely in their structure and phase composition, from polycrystalline diamond to graphite-like material.
Comparative study of the structure and phase composition of the films using Raman spectroscopy, cathodolu-
minescence, el ectron microscopy, and diffractometry, as well as the obtained field el ectron emission character-
istics, have shown that the threshold value of the electric field strength for electron emission decreases with a
decrease in the size of diamond crystallites and growth of the fraction of non-diamond carbon. The lowest
threshold fields (lessthan 1.5 V/um) are obtained for films consisting mainly of graphite-like material. A model
based on the experimental datais proposed, which explains the mechanism of field el ectron emission in carbon

materials. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Various carbon materials are being considered now
for use as efficient cathodes based on the phenomenon
of field electron emission. This emission process needs
no cathode heating and produces a beam of electrons
with low initial velocities, which considerably simpli-
fies the design of high-vacuum electronic devices. One
of the most attractive applications of such “cold” cath-
odesisflat cathodoluminescent displays.

The possibility of using diamond materials as elec-
tron sourcesis based on their intrinsic property of neg-
ative electron affinity (NEA), which has been predicted
theoretically and discovered experimentally both in
single diamond crystalsand in polycrystalline diamond
films prepared by the method of gas-phase chemical
deposition (GPCD) [1-5]. The occurrence of NEA
depends mainly on the type of interatomic electronic
bondsinthe material and istypical not only of diamond
but also of other wide band semiconductors [6-9]. In
particular, emitters with a surface having NEA require
considerably lower electric field strengths for initiating
field electron emission, 1-10V/um, compared with val-
ues of 10°-10* V/um typical of the most metals and
semiconductors.

It is evident that for obtaining stable electron emis-
sion the field emission cathode should be made of a
material having high enough electron conduction.
However, the problem of the synthesis of n-type semi-
conducting diamonds is still unresolved. On the other
hand, in polycrystalline diamond films the electrical
conductivity can be due to various structural defects,
which introduce a set of additional levels into the for-
bidden gap of the diamond [5-11] or produce extended
formations of non-diamond carbon [12, 13]. Many
studies indicate that defects significantly improve the
emissive properties of GPCD-grown diamond films (up

to concentrations at which formation of an amorphous
material begins) retaining as its essentia feature the
diamond-type hybridization of the valence electron
bonds of carbon atoms. In such emitters the threshold
electric-field strength for electron emission isfound in
the range from 2 to 20 V/um [5, 12-15].

On the other hand, it is well known that the field
electron emission is also observed in carbon having a
graphite-like type of chemical bond between atoms.
Crystalline graphite belongs to the semimetals, it has a
high conductivity and a rather large electronic work
function (about 4 eV) corresponding to positive elec-
tron affinity. However, in some cases the emission
parameters of cathodes based on graphite-like materials
are close to the parameters of diamond field-emission
cathodes and can even considerably exceed them,
exhibiting higher emission current density and, at the
same time, lower threshold values of the electric field
strength [16-18]. Moreover, recently, alarge number of
papers have been published reporting low-voltage field
emission from carbon nanotubes [19-22], though, for
materials consisting of carbon fibers having a similar
structure, such observations had been made much ear-
lier [23, 24].

S0, the published dataindicate that the possession of
diamond structure is not absolutely necessary for effi-
cient carbon field emitters. From the practical point of
view, the production of nondiamond carbon materials
appearsto be asimpler task, but, in order to produce on
their basis the “cold” cathodes, additional studies are
necessary to elucidate the mechanisms of field emis-
sion. With this purposein mind, in thiswork, acompar-
ative study is carried out of the emissive, structural and
other specific properties of carbon films grown by
GPCD.

1063-7842/01/4611-1437$21.00 © 2001 MAIK “Nauka/Interperiodica’
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MATERIALS AND PROCEDURES

Studied in thiswork were films deposited on silicon
substrates (p-Si(100), p = 10 Q cm, 20 x 20 mm) by
gas-phase chemical deposition using a mixture of
hydrogen and methane activated by a dc arc discharge,
in an installation described in detail elsewhere [25].
Prior to the deposition process al substrates were
nucleated with diamond crystallites of nanometer size
using ultrasonic treatment in a suspension of ultra-fine
diamond in alcohol. The deposition processwas carried
out at a gas-mixture pressure of 8.9-9 kPa. The deposi-
tion time for all the samples studied in this work was
45 min. By varying the substrate temperature in the
range from 850 to 1100°C and the methane concentra-
tion in the gas mixture from 0.5 to 10% carbon films
containing different amounts of diamond and non-dia-
mond phases were obtained.

The morphological and structural characteristics of
the obtained films were studied using electron micros-
copy and atomic force microscopy, as well as electron
diffraction and Raman scattering. Data on electronic
properties of the films were obtained from cathodolu-
minescence (CL) studies.

Electron emission properties of the carbon films
were studied using two procedures. In the first proce-
dure the dependence of the emission current on the
applied electric field strength was measured. For this
purpose the sample was placed in a chamber pumped
down to a vacuum of 107 Pa. The sample holder could
be cooled to the liquid nitrogen temperature or heated
to +350°C. The anode in the form of a tungsten rod
5mm in diameter with a flat and polished end face
could be displaced relative the cathode with amicrome-
ter screw. The electric field strength in the gap between
the anode and cathode was taken to be equal to E = V/d,
where V is the potential difference between the anode
and cathode separated with a vacuum gap of width d.
The accuracy of positioning the anode relative to the
cathode was 5 pm. Measurements of the current-volt-
age characteristics (IVC) were carried out automati-
cally in arange of voltage between the anode and the
cathode from 100 to 1500 V and with the maximum
current not exceeding 2 mA.

The second procedure was used for studying the
electron emission and provided data on the spatia dis-
tribution of emission centers. The sample was placed in
aholder and displaced with amicrometer screw relative
to the fixed anode having the form of atransparent el ec-
trically conductive film of indium oxide deposited on a
glass plate. The conductive film was coated with an
electron-excited phosphor a few micrometers thick.
The separation between the anode and cathode being
relatively small (from 50 to 500 pm), the areawhere the
phosphor luminescence occurred due to electron bom-
bardment could be considered coinciding with the
regions of field electron emission. To prevent excessive
ablation of the phosphor by incident electrons the mea-
surements were carried out in the pulsed mode. The
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voltage pulse duration was about 1 s, the pul se repeti-
tion rate varied from 30 to 500 Hz, the peak voltage
could be regulated between 200 and 2000 V. The
obtained pattern of emission centers was registered
using a video or photographic camera. The measure-
ments using this procedure were carried out at room
temperature.

RESULTS

1. The Phase Composition and Structural Properties
of the Carbon Films

The films obtained under conditions described
above were continuous and had an approximately equal
thickness (about 1 pm). The surface morphology
depended markedly on the deposition conditions. This
dependence, as shown by eectron and atomic force
microscopy, was essentially the same as described in
other studies (see, for example[26]). The phase compo-
sition of the films determined by Raman spectroscopy
(using 488 nm line of a argon laser) also varied in
accordance with known data [27-29]. Figure 1 shows
typical Raman spectra of the studied GPCD-grown
films. Spectrum 1 is that of a film deposited at a sub-
strate temperature of T, = 950°C and methane concen-
tration (k) of about 1%. A feature of thisfilmisan inten-
sive narrow “diamond” line at 1330 cm™ testifying to
the predominantly diamond-like type of the constituent
carbon. A wideline at about 1580 cm is due to carbon
in the form of amorphous graphite and the line at
1350 cm™ to graphite in the form of nanocrystals of a
sizelessthan 10 nm [27]. Films having in their Raman
spectra the 1330 cm line consisted mainly of faceted
crystals with a characteristic diamond cut. Spectrum 2
in Fig. 1 was obtained from a film deposited at T, =
850°C and k = 2% and contained characteristic lines at
1140 and 1470 cm™, whose simultaneous presence in
the Raman spectrum correlated with the decreasein the
size of diamond crystalitesin a GPCD film down to a
few nanometers [28]. Such films, as arule, had a mir-
ror-like surface. Spectrum 3 in Fig. 1 was obtained
from afilm deposited at T, = 1050°C and k = 8%. This
spectrum featured an intensive line at a frequency of
1575 cm! and arelatively weak line around 1350 cmr™.
The spectral shape practically coincided with Raman
spectra of microcrystalline graphite with crystallites
about 30 nmin size [29].

In Raman spectra of the films prepared at different
parameters of the GPCD growth the relative intensities
of the lines, their width, and, to some extent, spectra
positions varied in accordance with variations of the
phase composition, size of crystallites and the degree of
amorphism of the constituent diamond and graphite.
For the sake of convenience, in what follows, the films
with Raman spectra containing a distinct “diamond”
line around 1330 cm are called “polycrystalline dia-
mond” films; films having lines in their spectra at fre-
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quencies 1140 and/or 1470 cm™ are referred to as
“nanocrystalline diamond” films; and, finally, films
with spectrasimilar to spectrum 3in Fig. 1 arerefereed
to as “graphite-like” films.

The expediency of this classification has been
proven in cathodoluminescent studies (electron energy
in the beam of 25 keV). GPCD films, which had differ-
ent sets of linesin their Raman spectra, also had differ-
ing CL spectra. Shown in Fig. 2 are the CL spectrafor
the samefilms asin Fig. 1. The spectra of polycrystal-
line diamond films (spectrum 1 in Fig. 2) contained
well-known lines due to various structural defects and
nitrogen and silicon impurities in the diamond (see, for
example [30]). The relative line intensities of the CL
spectrawere different for different points at the surface
of diamond crystallites, as described in [31], and varied
with variation of the deposition conditions. For nanoc-
rystalline films the CL intensity was typically lower
than the sensitivity threshold of the measurement setup
(spectrum 2 in Fig. 2). Such alow CL intensity can be
due, in part, to a high rate of nonradiative recombina-
tion in diamond films with high concentration of struc-
tural defects. This is indicated by enhanced light
absorption in the visible part of spectrum in nanocrys-
talline diamond films[32]. Finally, GPCD films, whose
Raman spectra contained a narrow “graphite” line, typ-
icaly had two CL lines at around 330 and 500 nm. In
different samples of these graphite-like films variation
were observed in the relative intensities and positions
of these line over the ranges 310-340 and 490-530 nm,
respectively. CL linesin about the same spectral ranges
were observed earlier in diamond GPCD films[32, 33]
but no interpretation of their origin has yet been sug-
gested.

Conclusions concerning the phase composition of
GPCD films made on the basis of the Raman and CL
spectra have been corroborated by electron-diffraction
studies and high-resolution electron microscopy data.
Electron diffraction patterns of the polycrystalline and
nanocrystalline films were typical of polycrystalline
diamond. Electron diffraction patterns from graphite
GPCD films had anumber of specific features. Figure 3
displays an electron diffraction pattern of such film,
clearly showing reflections corresponding to the crystal
lattice of graphite. The arched shape of the line corre-
sponding to eectrons reflected from the basal plane of
graphite indicates that the predominant orientation of
the (0001) crystallographic planes of graphite isin a
direction perpendicular to the substrate surface. Possi-
ble deviation from this direction does not exceed +20°.

This crystall ographic orientation of the near-surface
layer of graphite films was revealed with high-resolu-
tion electron microscopy. Clearly seen in the images of
the film surface obtained by this technique are the par-
ald linesat separations equal to theinterplanar spacing
of graphite (~0.34 nm). Some crystallites in the film
had a cross-sectional dimension less than 10 nm,
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Fig. 1. Raman spectra, Irg(V), of (1) polycrystalline dia-
mond, (2) nanocrystalline diamond, and (3) graphite-like
films grown by GPCD.
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Fig. 2. Cathodoluminescence spectra, I (A), of (1) poly-

crystalline diamond, (2) nanocrystalline diamond, and
(3) graphite-like films grown by GPCD.
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whereas their dimension along the basal plane could be
in excess of 1 um.

2. Field Emission Properties of Carbon Films

Asdemonstrated in this study, practically all carbon
films grown by GPCD under the conditions specified
above emitted electrons when a potential difference
was applied between the film cathode and the anode.
For polycrystalline diamond films, according to earlier
experiments [1-15], the threshold value of the electric-
field strength in the cathode-anode gap for the field
electron emission to occur (Ey, = V/d) was lower for
films with greater amounts of the non-diamond carbon

1120 1010

0002

Fig. 3. Electron diffraction pattern of a graphite-like film
grown by GPCD.
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Fig. 4. Current—voltage characteristics of the field emission
current from (1) polycrystalline diamond, (2) nanocrystal-
line diamond, and (3) graphite-like films grown by GPCD.

The emission current density | is given in mA/cm?.

OBRAZTSOV et al.

phase; simultaneously, the emission current density
increased. The minimum value of Eth for such films
was about 4V/um. For example, in Fig. 4 acurrent—vol-
tage characteristic is given of the same polycrystalline
diamond film (curve 1) whose characteristic are shown
inFigs. 1 and 2 (curve 1). Figure 5 shows (1) the distri-
bution of emission centers registered at 8 V/um for the
same film. In this case, though the integrated emission
current measured while registering the 1IVC was fairly
stable, in observations with the use of an luminescent
screen considerable instability was detected of the
emission current from individual emission centers.

The tendency to lower threshold field values and
higher emission currents continued with the decreasein
the diamond crystallites in GPCD films down to sized
corresponding to nanocrystalline films. A current—vol-
tage characteristic of one of such films, whose Raman
and CL spectraare shown in Figs. 1 and 2, can be seen
in Fig. 4 (curve 2). Nanocrystalline films had a much
higher density of emission centers (up to 10° cm™)
(Fig. 5b) and, at the same time, higher emission stabil-
ity as regards both the average current density and the
emission from individual centers.

Finally, inthe case of graphite-likefilmsthe electron
emission was observed at applied eectric field
strengths of less than 1.5 V/um. The current-voltage
characteristic in Fig. 4, curve 3, was obtained for a
graphite film, the Raman and CL spectra of which are
presented in Figs. 1 and 2, respectively. The emission
current density in graphite filmswas 1 mA/cm? at elec-
tric field strengths aslow as 4 V/um. Simultaneoudly, a
substantial increase in the emission stability and den-
sity of emission centers was observed. The latter was
estimated as not lower than 10°-107 cm, taking into
account that the average size of the phosphor grains
was about 1.5 pm. A corresponding image of the lumi-
nescent screen at an electric-field strength of 8V/umis
shown in Fig. 5¢.

Figure 6 shows current—voltage characteristics of
the field emission current obtained for a graphite-like
film at room temperature (1), at liquid nitrogen temper-
ature (2), and at 300°C (3). Some decrease of the emis-
sion current density and increase of the threshold elec-
tric field strength at lower emitter temperatures can be
due to residual gas molecules adsorbed at its surface
[34]. More appreciable changes of the current density
were observed at el evated temperatures. A possible rea-
son for the decrease of the emission current density
could be an intensive degassing of the highly porous
carbon film. Simultaneously, a noticeable increase in
the signal-to-noise ratio was observed, especially in the
range of low currents. It should be noted, however, that
these temperature variations of the current density refer
only to arelatively small region of the IVC around the
threshold emission values. Variation of the temperature
of the carbon cathode over the entire temperature range
studied had only aweak effect on the threshold el ectric-
field strength, which remained below 1.5 V/um.
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Fig. 5. Luminescence from a cathodol uminescent-phosphor screen under irradiation by electrons emitted from (&) polycrystalline
diamond, (b) nanocrystalline diamond, and (c) graphite-like films grown by GPCD on 20 x 20 mm substrates.

Thus, the above experimental data indicate that the
electron emission properties as well as the structura
and morphological features of the obtained polycrystal-
line and nanocrystalline diamond films are in good
agreement with the published data. Using the GPCD
technique, films of graphite-like carbon material were
grown whose structural and morphological properties
have not been described earlier. Note that in studies by
the same methods of the field electron emission from
different samples of graphite and vitreous carbon prac-
tically no emission current at field strengths up to
20 V/pm was detected.

DISCUSSION

The above comparative studies have established that
among different carbon materials (from polycrystalline
diamond to graphite) produced using the same GPCD
technique the best field emission parameters (lowest
threshold electric field strength, highest emission cur-
rent and density of emission centers) have the films
consisting mainly of plate-like crystallites, in which
carbon atoms are arranged in atypically graphite struc-
ture in the form of a few paralel layers oriented pre-
dominantly at a normal to the substrate surface. This
sort of field electron emission can be due to enhance-
ment of the electric field at the tips on the surface, asit
occursin tip cathodes [7]. However, for the considered
carbon films the required enhancement should be no
less than 5000, which means that even with small trans-
verse dimensions of the graphite-like tip structures
(1-5 nm) their length should be at least afew microns.
Direct observations of the film surface using electron
microscopy and atomic force microscopy give no evi-
dence of tips of thislength.

In addition, with such small-size emitting tips the
electric field strength near the surface, which depends
on the surface distribution of the free charge carriers,
should be appreciably affected by features of the
atomic structure of the material. Thisis especially true
of graphite, whose conductivity is determined by a
small overlap of the electronic prr-orbitals orthogonal
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Fig. 7. Energy band diagram of the field electron emitter
based on graphite-like film: (1) graphite-like carbon;
(2) carbon  with modified electronic configuration;
(3) vacuum.
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to the basal crystallographic planes of graphite. It can
be supposed that for the carbon atoms located at the
very edge of such planes the electric configuration will
be different, resulting in other than sp? hybridization of
the bonds. At the same time, instead of a continuous
spectrum of electric states, as in graphite, a forbidden
zone can arisein the electronic spectrum of such atoms.
A similar effect isobserved in different carbon clusters,
with the forbidden zone having awidth from Oto 5 eV
[6, 35-37].

The occurrence of the forbidden zone in the density
of electric states can explain the features of the CL
spectrum of graphite-like films (Fig. 2): the CL band
around 3.6 eV could be due to the radiative recombina-
tion of the electron—hole pairs taking place in the near-
surface region under the action of the electron beam.
The long-wavelength CL band in this case can be due
to transitions of electronsfrom the E, level to the Fermi
level E¢ in the graphite-like part of the film.

Whatever the nature of the above bands in the CL
spectrum, their very presence indicates the principally
important fact of modification of the electric properties
of part of carbon atoms comprising graphite-like films.
This modification causes, in particular, emergence of
energy levels separated by agap of about 4 eV. Itisevi-
dent that such atoms are localized on the surface of
GPCD films and form an extremely thin layer. In this
case the energy band diagram of this film can be sche-
matically represented by a region having the band
structure of graphite with an adjacent thin film having a
forbidden gap (E,—E,) of awidth of about 4 eV (Fig. 7).
In accordance with the characteristics common to all
wide band semiconductors [6-9], it can be expected
that the energy level corresponding to an electron in a
vacuum, E,,., would be lower than the bottom of the
upper band E,; i.e., the electron affinity would be nega-
tive. In this case the only reason for the threshold el ec-
tric-field strength for electron emission to be non-zero
would be the need to overcome a potential barrier at the
interface between the modified near-surface region and
the graphite clusters comprising the rest of the GPCD
film. The relatively weak temperature dependence of
the observed electron emission, especially at low tem-
peratures (Fig. 6), confirmsits field-related nature.

This mechanism can also explain the low-voltage
electron emission in other carbon materials with graph-
ite-type structure, such as carbon nanotubes [20, 21].
Indeed, these clusters also consist mainly of sp?-coordi-
nated graphite-like carbon. The carbon atoms|located at
the end of such atube should have a modified-electron
configuration, which may lead to NEA or, at any rate,
to a considerable reduction of the work function, thus
favoring the electron emission. It should be noted that
experimental data give evidence of electron emission
only from “open” carbon tubes having at their ends
atoms with dangling electronic bonds [20, 21].

An analogous emission mechanism can aso be
effective in the polycrystalline diamond films, which
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always contain a fraction of graphite-like carbon at
intercrystalline boundaries. According to tunnel
microscopy data, the field electron emission centersin
such films are localized precisely at these boundaries
[12].

CONCLUSION

In this study of carbon films grown by GPCD an
extremely efficient field electron emission has been
observed at athreshold electric field strength of about
15 V/pm, with high emission current density
(1 mA/cm?) and high density of emission centers (105
107 cm). These films consist of plate-like crystallites
of graphite, whose basal planes are oriented perpendic-
ular to the substrate surface. The surface layer of atoms
has a modified electronic configuration, which signifi-
cantly reduces the electronic work function thus
increasing the efficiency of the field electron emission.
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Abstract—An ion-beam method to modify the track membrane surface is suggested. An ion gun based on a
magnetron sputterer is devel oped. Thisgun providesion energiesintherange of 5 eV—-1keV, ion current density
up to 0.8 mA/cm?, and an ion beam aperture of 90 mm. After the track membrane surface has been irradiated
by argon ions with an energy of 50-100 eV, the angle of surface-water contact decreases from 65°-75° to
10°-25°. If theirradiating ion energy is 300-800 €V, the angle of contact increases from 65°-75° to 90°-100°.

© 2001 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Many important service parameters of membranes
used in the separation and purification of biopolymer
solutions, such as selectivity, capacity, and possibility
of regeneration, to agreat extent depend on the wetting
ability of the membrane surface [1]. However, the pro-
duction of polymer-based track membranes (TMs) with
a desired wetting ability is sometimes difficult. There-
fore, the membrane surface is modified in different
ways to make it more hydrophilic. Currently, emphasis
is on surface modification by processing in a glow-dis-
charge low-temperature plasma. For example, the TM
surface was modified by gaseous monomer polymer-
ization or by processing with argon or oxygen ionswith
an average energy of 4.5 eV in ahigh-frequency plasma
[2-4].

Of great practical interest is TM modification by
argon ionswhose energy iscontrollably varied between
5 eV and 1 keV. Physical desorption from the surface
has been observed at an ion energy up to 10 eV; and
chemical desorption, from 25 to 50 eV. Thus, at ener-
gies below 50 eV, the polymer surface is purified and
activated due to physicd and chemical desorptions;
accordingly, the angle of contact decreasesto 30°—40° [5].

At higher ion energies, 0.1-1.0 keV, surface harden-
ing or the formation of a graphitized layer may take
place because of partia destruction, break, or cross-
linking in polymer linear chains, aswell asthe genera-
tion of active radicals[6].

A topical problem is also TM surface modification
by embedding particles or applying a metal layer 10 to
1000 A thick. These processes are successfully accom-
plished by ion-beam or ion—plasma processing of mate-
rials [7]. Both types of ion processing have been con-
sidered in a variety of works, among which [5, 7, 8],

where methods of surface cleaning, ion etching, andion
sputtering for obtaining film coatings have been dis-
cussed, are of the greatest interest.

At the same time, ion processing as applied to TM
surface modification is poorly studied and has not been
considered in those papers. That is why this point calls
for specia theoretical and experimental (in terms of
process equipment and control tools) investigation.

Briefly, the advantages of ion-beam surface modifi-
cation are high processing uniformity over large areas,
high reproducibility, and the possibility of precisely
controlling the process. In addition, the method is easy
to implement and environmentally safe.

In this work, we apply ion-beam methods and
equipment to modify the surface of TMs and study
hydrophilic-hydrophobic balance on them at ion ener-
giesupto 1 keV.

EXPERIMENTAL EQUIPMENT
Magnetron Sputterer

lons to modify samples were generated with a mag-
netron sputterer, a planar disk-shaped magnetron with a
target diameter of 200 mm. Depending on the operating
mode, the samples were placed 50-150 mm away from
the target to ensure the uniform irradiation of the mem-
brane over acircular areaof diameter 80 mm. The sam-
ple was biased negatively or positively according to
which ions, argon or oxygen (or nitrogen), were used
for irradiation. In this operating mode of the magne-
tron, the flux of the sputtered cathode material is negli-
gibly small compared with theion flux. If it was neces-
sary to irradiate the sample by ions of agas and a sput-
tered metal, the magnetron operated in the mode when

1063-7842/01/4611-1444%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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ion irradiation and metal deposition were carried out
simultaneously.

The design of the magnetron allows irradiation by
argon, nitrogen, or oxygen ions with an average energy
of 300 eV, aswell asto apply metal layers of thickness
from several hundredths of a millimeter to several mil-
limeters in the ion-deposition mode.

The ion flux density g; produced by the magnetron
source can be varied between 10 and 5 x 10" cm? s2.,
Thus, with such a magnetron source, the surface can be
modified by both the desorption of adatoms and the
application of metallic coatings.

lon Gun Built Around the Magnetron Sputterer

The magnetron was used as the basis for developing
an ion gun that extracts ions from the near-cathode
plasma cloud, accelerates them, collimates the beam,
and uniformly irradiates the sample with a diameter of
50 to 80 mm. Theion beam cross section has adiameter
of 90 mm. Structurally, the ion-flux-controlling system
is a monolithic unit that has three insulated grids
arranged in such away that the ion density is maximal
and uniformly distributed within the beam. The unit is
mounted and adjusted above the magnetron sputterer.

The design of the magnetron-based ion source is
schematically in the figure. After several accelerations

1445
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Magnetron-based ion gun; 1, magnetron sputterer; 2, insu-
lator; 3, chamber base; 4, screen; 5, anode; 6, grounded
grid; 7, extracting grid; 8, decelerating grid; and 9, sample.

and collisions, electrons knocked out from target 1 by
incident ions are collected by grounded anode 5 and
grid 6, connected to the anode. Since the radius of grid
meshes is smaller than the Debye radius, a resulting
plasmacloud isconfined to thegrid. If anegative poten-

Table 1. Measurements of the wetting angles on ion-beam-modified surfaces

Runno.|l, mA|U,V| Uy, V |lI;, mA| My i i; |t,min M, @, deg|@,, deg Comments
1 100 | 280 | —100 | 0.06|W Ar* w 3 |F-42Teflon| 75 13 | W layerisseen
2 100 | 280 | 100 | 0.06|W Ar* W 3 |PETP 71 16 "

3 100 | 280 | —100 | 0.06|W Ar* w 3 |PETP-I 75 19 "
4 100 | 280| —100 | 0.06|W Ar* w 3 |PETP-TM 69 22 "
5 100 | 280 | 100 | 0.06|W Ar* W | 10 |F-42Teflon| 77 11 | Semitransparent W layer
6 100 | 280| —100 | 0.06|W Ar* W | 10 |PETP 68 11

7 100 (280 | —100 | 0.06|W Art W | 10 |PETP-I 73 23 "
8 100 | 280 | 100 | 0.06|W Ar* W | 10 |PETP-TM 69 23

9 100 |{280| 25| 04 |W Ar* w 1 |F-42Teflon| 74 37

10 150 |250| -25| 0.5 |Ti Art Ti 3 |F-42Teflon| 75 24

11 150 |260| 25| 0.5 |Ti Ar* Ti 6 |F-42Teflon| 74 11

12 150 {280 -100| 1 |Ti Ar* Ti | 20 |PETP-I 72 20

13 150 | 280 | —100 1 Ti Art Ti | 20 |F-42Teflon| 75 10

14 150 |280| 100 | 1 |Ti Ar* Ti | 20 |PETP 74 17

15 150 {280 -100| 1 |Ti Ar* Ti | 20 |PETP-TM 65 19

16 150 | 350| -10| 0.5 |Al,Oz|Ar* Al 1 |F-42Teflon| 73 25

17 150 | 280 1035 |Ti O,N,e|Ti | 20 |F42Teflon| 74 16

18 150 | 280 10| 35 |Ti O,N,e | Ti | 20 |PETP- 73 23

19 150 | 280 10| 35 Ti O,N,e|Ti | 20 |PETP-TM 70 27

Note: | and V, magnetron current and voltage; |, ion current;

U,, sample potential; M4, cathode material; i, type of irradiating particles

(ionsor electrons); i4, attendant atoms and ions; t, irradiation time; M, target (sample) material; @ and ¢;, wetting angles before and
after irradiation, respectively; PETP-TM, PETP-based TM; PETP-I, PETP film preirradiated by siliconions
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Table 2. Wetting angles measured on the TM samplesirra-
diated by the ion-gun-produced Ar ion beam

S?%%Ie E, eV |J, mA/cm?| t, min d(g,g (;[gg épég
M 0.05 800 0.85 15 76 | 35 96
M 0.1 70 | 45 | 101
M 0.2 68 | 68 | 102
Ar 74 | 25 | 102
M 0.05 600 0.65 15 76 | 35 96
M 0.1 72 | 52 98
M 0.2 69 | 57 | 100
Ar 74 | 36 95
M 0.05 500 0.55 15 72 | 45 96
M 0.1 70 | 63 99
M 0.2 68 | 60 | 102
Ar 70 | 64 98
M 0.05 300 0.55 5 68 | 32 98
M 0.1 71 | 60 | 100
M 0.2 70 | 58 | 103
Ar 73 | 64 | 101
M 0.05 100 0.3 15 72 | 44 75
M 0.1 70 | 67 101
M 0.2 73 | 98 | 102
Ar 75 | 42 65
M 0.05 50 0.12 10 68 | 15 42
M 0.1 73 | 18 56
M 0.2 69 | 17 58
Ar 74 | 21 48
M 0.05 10 0.08 10 65 | 20 51
M 0.1 73 | 17 68
M 0.2 70 | 19 65
Ar 72 | 23 63
M 0.05 10 0.03 15 74 | 16 69
M 0.1 71 | 13 65
M 0.2 70 | 18 66
Ar 73 | 20 58

Note: M 0.05, M 0.1, and M 0.2 are PETP-based TMs with pore
diameters of 0.05, 0.1, and 0.2 um; Ar, 10-um-thick PETP-
based film preirradiated by an Ar ion beam with a flux den-
sity ga; = 1.3x 108 cm™ 571 EistheAr ion energy; Jisthe
ion current density; t is the irradiation time; and ¢, ¢, and
@, are the wetting angles beforeirradiation, 1 h after irradi-
ation, and 2 days after irradiation.

tial U, isapplied togrid 7, placed behind grid 6, one can
extract positive ions from the plasma. These can be
noble gas (most often argon) ions or those of a metal
sputtered. If grid 7 is biased positively, negative ions
can be extracted and directed toward the sample. These
can be ions of oxygen, nitrogen, or other gaseous

PRONIN et al.

admixturesintroduced into argon and capable of gener-
ating negative ions. The ions accelerated in the first
intergrid gap are decelerated by the field of grid 8, to
which apotential U, isapplied. It can be positive or neg-
ative relative to the ion sign. By varying the potential
applied to grid 8, one can control theion energy at sam-
ple 9. The energy and sign of the ions can additionally
be controlled by applying a control potential U, to the
sample.

EXPERIMENTAL STUDY
OF MODIFICATION

In experiments, we studied the effect of irradiation
by argon and metal ions on the angle of surface-water
contact. The measurement procedure has been devel-
oped in the Shubnikov Institute of Crystallography,
Russian Academy of Sciences|[8, 9].

As samples, we used an F-42 teflon film, a poly(eth-
ylene terephthalate) (PETP) film, and a PETP-based
track membrane. When argon ion irradiation was com-
bined with irradiation by metal ions, 0.05- to 0.15-pm-
thick films of aluminum, titanium, tungsten, or molyb-
denum were deposited.

In experiments where the ion beam was formed by
the magnetron source alone, we observed how the sur-
face condition is affected by nonmonoenergetic ions
with energies from 25 to 100 eV, i.e., energies that are
sufficient for removing surface contaminants by physi-
cal and chemical desorptions.

These experiments showed the decrease in the wet-
ting angle from the initial value 65°-75° to 10°-20°
when the argon irradiation alone was used. However,
the combined processing by argon and metal ions was
shown to give the same effect. Thismeansthat the com-
bined irradiation does not offer any advantagesin terms
of the wetting angle.

The processing of the sample surface by electrons
and negative nitrogen and oxygen ions produced from
residual air inthe chamber or from nitrogen and oxygen
impurities present in technical-grade argon aso
decreased the wetting angle to 15°-25°.

In all the above cases, the attained values of the wet-
ting angle (10°-25°) did not decrease further upon
increasing the irradiation time or the ion energy up to
300 eV. It should be noted that the wetting angles are
the smallest for the surface-modified teflon films (10°—
15°), while for the PETP films and PETP-based TMs,
the angles equal 15°-25°. We measured the wetting
angles on the samples modified vs. time of exposure to
the atmosphere and found that for the teflon and PETP
samples, the wetting angle is restored to the initia
value 65°—75° within 5 and 1-2 days, respectively.

The experimental data are listed in Table 1. From
this table, it follows that the most optimal parameters
for TM surface modification by irradiating by energeti-
cally inhomogeneous ions are average energy of about

TECHNICAL PHYSICS Vol. 46
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100 eV, ion flux density g,, ~ 10* cm™ s, and irradi-
ation time of 10-15 min.

Next, we studied PETP-based track membranes
irradiated by the argon beam generated in the ion gun
and having pores with diameters of 0.05, 0.1, and
0.2 um, as well as the 10-um-thick PETP film prepro-
cessed with an argon beam with g, = 1.3 x 108 cm? s,
Theion energy was varied between 10 and 800 eV; and
the current density, between 0.05 and 0.8 mA/cm?
which corresponds to irradiation doses of 0.3—
0.6 C/cm?. The samples were 40 and 60 mm distant
from the control grid of theion gun. The residua pres-
surein the chamber was kept at 0.1-0.5 Pa. Theion cur-
rent density near the TMswas measured with a Faraday
cup. The associated experimental data are summarized
in Table 2.

From Table 2, it follows that when the TMs are pro-
cessed by argonionswith an energy of 300-800 eV, the
surface becomes more hydrophobic. The wetting angle
increases from 65°—75° to 90°-100° presumably because
of the graphitization of the membrane surface[6].

For ions with lower energies (50-100 eV), con-
versely, the surface acquires pronounced hydrophilic
properties. the wetting angle decreases to 15°-30°.
However, within 1 or 2 days of storage in air at room
temperature, the wetting angles turns back to theinitial
value 65°-75° and the surface becomes hydrophobic

again.

CONCLUSION

It is suggested to use ion-beam irradiation for the
modification of the TM surface by varying its hydro-
philic—hydrophobic balance. The magnetron-based ion
gun developed generates ions with energies from 5 eV
to 1 keV and a current density up to 0.8 mA/cm?. The
ion beam aperture is 90 mm.

The TM surface processing by energetically inho-
mogeneous ions with their energy varying between 50

TECHNICAL PHYSICS Vol. 46 No.11 2001
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and 100 eV results in the pronounced hydrophilicity of
the surface: the angle of surface-water contact
decreases from 65°—75° to 10°-25°.

Conversely, the processing of the surface by
monoenergetic argon ionswith energies of 300-800 eV
that are generated by the ion gun enhances the hydro-
phobicity of the surface: the wetting angle increases
from 65°-75° to 90°—100°.
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Abstract—A condition that should be met in the design of both amplitude and temporal detectorsfor the muon
track azimuth to be uniquely recovered is analytically found. An optimal agorithm for muon track reconstruc-
tion with an amplitude Cerenkov detector is elaborated. The optimization involves not only the design of the
detector but also statistical methods for estimating auxiliary muon track parameters. An original procedure for
computing the confidence interval of the muon track parameters is suggested. This procedure is based on the
algorithm used for solving the nonlinear programming problem. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The role of stationary deepwater muon detectors in
locating muon and neutrino sources is difficult to over-
estimate[1, 2]. For this purpose, avertical string of four
modules is used. However, such a string cannot
uniquely reconstruct the muon track [1]. In this work,
we show that the muon tracks can be uniquely recon-
structed by using asymmetric detectors consisting of ho
less than six modules. However, the number of the
modules per detector should be minimized to reduce
the detector cost. Unlike a string, the detecting system
suggested in thiswork consists of six modules arranged
at the vertexes of two equilateral triangles. The planes
of the triangles are parallel to each other, and their cen-
ter line is normal to their planes. The triangles are H
apart, and the lower one is rotated through an angle of
60° about the center line. The triangles are inscribed
into acircle of diameter D.

We succeeded in revealing the general condition for
the unigque reconstruction of the muon track azimuth.
This condition should be met in both the amplitude and
temporal detectors. It turned out that the detector must
contain no less than three modules with nonzero verti-
cal coordinates without regard to the position of the ori-
gin of reference system. In addition, the projections of
the modules onto the horizontal plane must not lieon a
straight line with a slope of 1.

Along with the muon path reconstruction technique,
this work also considers various methods for the esti-
mation of statistical errors introduced into the muon
path parameters calculated. The need for error estima:
tion isdueto the fact that the signal coming from a pho-
toelectron multiplier (PEM) is of a statistical nature. It
is shown that when the similarity method (SM) is com-
bined with the least squares method (LSM), the muon
track is reconstructed almost without displacement.

The effect of the detector size on the reconstruction
accuracy is studied.

To date, the problem of confidence interval calcula-
tion as applied to both amplitude and temporal detec-
tors has not been touched upon in the literature [1, 2].
In thiswork, we suggest an origina procedure to deter-
mine the confidence interval for the muon path param-
eters by directly solving a set of inequalities obtained
from the Poisson distribution of the PEM signals.
Mathematically, this problem is reduced to a nonlinear
programming problem that does not have the general
solution algorithm. We elaborated a numerical algo-
rithm to solve this problem and performed appropriate
computations.

In our case, asfor the case of a string [1], the prob-
lem of recovering the coordinates of arelativistic muon
from its Cerenkov radiation is solved under the follow-
ing assumptions: the muon path isa straight linein the
recording region and the detector modules are mathe-
matical points.

MUON TRACK RECONSTRUCTION
ALGORITHM

The muon path reconstruction method adopted in
this work is based on the solution of a set of nonlinear
equations derived by comparing the amplitudes of
responses from various PEMs of the Cerenkov detector.
The amplitude A of the response from the ith PEM is
given by

A, = n;cosf;, D

where [3; isthe angle between the normal to the window
of theith PEM and a Cerenkov photon path and n; isthe
flux of Cerenkov photonstraveling the distance R, from
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the muon track. The flux n; is expressed as [2]
N = noexp(-RI/R,)/(21R)). 2

Here, R, isthe distance within which the flux is attenu-
ated e times and n, is the number of generated photons
per unit muon track length. Let usplacetheorigin at the
center of the upper triangle of the modules and direct
the z axis vertically. The muon straight path can be
described by four independent parameters: © and @,
zenith and azimuth angles of the direction vector a of
an arbitrary trgjectory, respectively; and x, andy; , coor-
dinates of the point of intersection of the muon path
with the plane z= 0. Then, the shortest distance spacing
between the path and the ith detector is

= [(2) (a2 +a) + (x,—x) (s + &)
+(yi-yY) (@ +ad) +2(y,-Y)a(a? ()
—a (% — X)) + 2a,a,0x, - x) 2] .

Here, X, y°, 2’ are the Cartesian coordinates of the

radius vector ri0 that defines the location of the ith
PEM. Note that the desired parameters ©, @, x;, and y;
enter into expression (3) nonlinearly. It should also be
stressed that for modules that have the coordinate z” = 0,
the replacement @ — T/2 — @ remains the associated |

unchanged. For modules with z # 0, this statement is
valid if

Y= X+ Y= Xy (4)

This means the fundamental indistinguishability of

these paths not only by amplitude but also by temporal

detectors satisfying Eq. (4), since the reconstruction

algorithm for the latter is also based on expression (3).

Therefore, any detector that uniquely recovers the
parameter ¢ of any muon path must have no less than

three modules for which ziO = 0 and the projections of
these modules onto the plane ziO # 0 must not satisfy
straight-line equation (4).

The symmetry @ —= 11— @ in the solution of the

muon path equation, which has been found for a string
[1], failsfor the detector under study.

For R, we have

R = [ =) + (Vo) + (-0, ()

where the Cartesian coordinates of the point emitting a
photon that enters a PEM are given by

Xg = (ax/a,—ax/a, +z —z,)/(ala,—a)a)), (6)
Ve = (ayi/a,—ayila, + 2 —z)/(ala,—aja)), (7)
zs = (azla,—azla,+x —x,)/(a/a,—a,/al). (8)
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Here, a,, a,, and a, are the Cartesian coordinates of
the direction vector a for a Cerenkov photon.

Formulas (6)—(8) follows from the equations for the
muon and Cerenkov photon trajectories.

The spherical angles ©' and ¢ of the photon trajec-
tory are related to the spherical angles © and @ of the
muon trgjectory as

cos@' = cos@cosa—sin@sinacosmpio, 9
sin(¢ —@) = siny’sina/sin®’, (10)

cos(@ — @) = (cosa — cos@cos®')/(sin@sin®'),(11)
cosa = 1/n, (12

wherenistherefractive index of the medium and lIJiO is

the angle between the plane passing through the muon
path and the z axis and the plane containing both muon
and photon trgjectories.

If ShE@ =0,
cos(@ —@) = cosy’. (13)
It iseasy to check that
0
cos\;
2 N 2 2 2 2\ 12 (14)
= (_ayA2+axBZ)/[(ax+ ay)(AZ + BZ+ CZ)] ’
A, = Zajla, +y -y, (15)
B, = —Za/a,— X, + X, (16)
C, = (W -yala,+(x-x)ala,.  (17)

Thesignof sin lIJio depends on the sign of the mixed
product

(a[nin,]) = Cy(a +aj)/a,—a,B,—aA, (18)

(bracketed vectors mean the vector product, and the
vector parenthesis meansthe scalar product), wherethe
vectors n; and n, specify the lines of intersection of the
above-mentioned planes with the plane normal to the
muon path (n; lies in the plane that contains the muon
path and the z axis).

The amplitudes of the responsesfrom theith and jth
PEMs arerelated as

AI/A; = RjcosBexp((R;—R)/Ry)/(RicosB;). (19)

The parameters ©, @, X;, and y; of the muon path are
found by solving the set of nonlinear equations (19).
The four necessary equations are obtained as follows.
For each muon path, the modules were numbered in
order of decreasing humber of photons recorded. Tak-
ing the ratios of the signals from the first four modules
to the signal from the fifth module (in the new number-
ing), we come to the desired set of equations. It should



1450

be emphasized that, in general, a set of nonlinear equa-
tions may have different number of roots: from zero to
infinity. Set (19) was solved numerically by the Newton
method. As the first approximation, we used a straight
line connecting the modul e of the upper triangle and the
module of the lower triangle that recorded the greatest
number of photonsfor agiven muon path. With thisini-
tial approximation, one may expect that the starting
point of the iterative processis near the proper solution.
If the solution thus found satisfies new set (19) where
the fourth moduleis replaced by the sixth one, the false
solution is excluded. We performed direct test calcula-
tions, which showed that this agorithm quickly and
uniquely reconstructs the true path. It appears that the
quickness of path reconstruction is associated with the
proper selection of the initial approximation.

STATISTICAL ESTIMATION OF THE ACCURACY
OF MUON TRACK RECONSTRUCTION
BY AMPLITUDE DETECTOR

To statistically estimate the accuracy of muon track
reconstruction, we used the expression [2] for the aver-
age amplitude at the entrance of the ith PEM:

A = Cyexp(Hi/(Rysina))/l;,

where C, = 8.57 (m photoel ectron).

This amplitude served as the parameter of the Pois-
son distribution of the signal A; at the exit from the ith
PEM. Attemptsto find the solution of set (19) from the
amplitudes A; recorded sometimes failed. In this case,
the estimation was performed either with the SM,

6

_ ol
Z(Aj—Aj)(lllj—ll(Rosma))a—X’k =0, (21

i=1

where x, = ©, @, X, or y; and the summation is over all
sixth PEMs (since just this number of PEMs are neces-
sary to uniquely determine the muon track parameters
in this design of the detector), or with the modified SM
(MSM) where two sets like set (21) are used and the
summation is over two fives of PEMs needed for the
unique reconstruction of the trgjectory. In the latter sit-
uation, thetrajectory parameters are estimated from the
half-sum of the close solutions of these two sets or with
the LSM [2] by minimizing the functional

(20)

6
S = 3 (A= Alor) ID(A), (22)
i=1
2y _ 3 2
D(AY) = 4A’+6A7 + A. (23)

Theinitial approximations for the trajectory param-
eters to solve the similarity equations were found by
random drawing [3] and satisfy the inequalities

AM < A", o, X,y < AT (24)

KINCHAKOV

where the confidence interval limits A™ and A™
were taken with a confidence coefficient of 0.99 [4].

The confidence coefficient was selected in such a
way that it covered the PEM signals with the maximal
deviation from the average level. Then, for a detector
having less than six modules, the initial approximation
may be far from the proper solution and close to other
roots of set (19); in this case, we will obtain biased sta-
tistical estimates.

To conclude this section, we put forth our method
for finding the confidence interval of the muon path
parameters. It is based on the solution of the related
nonlinear programming problem. Given the confidence

coefficient a' and average amplitude A; (20) at the
entrance of theith PEM, one can find [4] the confidence

intervals (A™", A™) and, hence, the corresponding

intervals (I, I™) in (20). To find the confidence
intervals for the muon path parameters, it is suggested

to iteratively look for the maximum of the objective
function

F= S 0™ 5™ 5

— MO ) VINA™ =1,

where N is the total number of the detector modules,
provided that

lmln !'nax(mm) mln, Xmax) < |Imax’

i SI| (Xj
ji=123,A4.

The relationship between the parameters|; [see (3)]
and the parameters x, = ©, @, X, or y; of the muon path
is nonlinear and nonmonotonic, which greatly compli-
cates the procedure of finding the confidence interval.
The nonmonotonicity of thel; vs. x; relationship makes

us consider all possible sets of the variables x| and
xJrnin ininequalities (26) and take those maximizing the
objective function F at each of theiteration steps. Basi-
cally, such a problem is a problem of nonlinear pro-
gramming that does not have the general solution algo-
rithm. One can expect that generally an increase in the
number N of the detector modules would shrink the
confidence interval.

Since the unique reconstruction of the muon track
requires the operation of all detector modules, it was
assumed that all of them respond to muon transit.
Also, each of the modules was assumed to have only
one PEM.

(26)

RESULTS OF CALCULATION

Unless otherwise stated, the caculations discussed
bel ow were performed for the detector of diameter D=5m
TECHNICAL PHYSICS Vol. 46
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Table 1. Confidence intervals vs. confidence coefficient a' for the muon tragjectory parameters for two trajectories
;@Jﬁ%‘ o F Oriny 18 | O, 1 | @iy a0 | G rad | ™™ m | X7, m | v, m | 7™, m
1 0.9 0.88 0.064 117 0.16 4.83 10° 131 10° 11.9
0.99 0.90 0.126 157 0.05 113 0.73 304 0.13 36.4
2 0.9 0.94 10° 0.86 0.064 4.78 0.28 18.3 10° 2.80
0.99 0.82 0.020 1.38 10° 6.07 10° 31.6 10° 24.2

and height H = 15 m. We consider first the computed
confidence intervals for the trajectory parameters. A
program intended for finding the maximum of objective
function (25) (provided that inequalities (26) are met)
was the complex combination of the gradient method
and Monte Carlo method. To verify the program, we

specified the parameters X" and x™, from which

I™ and 1™ was calculated. Then, the parameters

specified were recovered with the method suggested.
Table 1 lists the confidence interval limits for two sets
of themuon trgjectory parameters: (1) © = 20°, p=45°,
X, =3.0m,andy, =3.0mand (2) © = 10°, p=45°, X,
=1.0m, and y;, = 2.0 m. The confidence intervals are
relatively wide presumably because of the low ampli-

tudes A at the entrance to each of the PEMs (hence,
A™ and A™ significantly differ from A;) and the
small number of modules in the detector considered.

Next, let us consider the computation of the effec-
tive area over which the bundle of trajectories with the
parameters © and @ is reconstructed:

Sy = IP(G)(le Y1, ©, @)dS, (27)
S

where Sis the areanormal to the bundle; P, isthe tra-
jectory detection probability of the detector,

6
Pe = [P

i=1

(28)

and
P, = 1—exp(-A) (29)

isthe probability of detecting at |east one photoel ectron
by a module.

The effective areas Sy; over which the bundle of tra-
jectorieswith various angles © and @ arelisted in Table 2,
and Table 3 givesthetrack detection probabilities of the
detector depending on the parameters © and x; = ;.
The detection probability of the detector is seen to con-
siderably decrease with increasing distance to the
detector center, becoming negligibly small for x, =y, =
4 m, and slightly drop with increasing ©. The effective
area Sy of reconstruction of a planar tragjectory bundle
decreases with an increase in © and is almost indepen-
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dent of @. The latter result is quite predictable, sincethe
given design of the detector is fairly symmetric with
respect to thisangle.

Table 4 summarizes the dtatistical estimates
(obtained by the SM, MSM, and L SM) for the parame-
ters of the two real trgjectories. Firgt, it should be noted
that thereliability of statistical estimates (necessary for
gualitative analysis to be valid) is achieved when the
sample volume N, is no less than 100 events (see the
third and fourth rowsin Table 4). One can argue that the
LSM, compared with the SM and the MSM, gives, in
general, more biased estimates of all the muon track
parameters, excluding ¢, which is adequately restored
by this method for both trgjectories. The two other
methods restore @ much worse. The SM gives less
biased estimates of the track parameters compared with
the MSM. It was found that detectors of this configura-
tion may provide nearly unbiased estimates for some of

Table 2. Effective area Sy of reconstruction of the planar
bundle of muon trajectoriesvs. © and @ (H =5 m)

©, deg @, deg St M?
10 45 12.1
30 45 10.6
50 45 6.2
10 145 12.1
30 145 10.7
50 145 6.78

Table 3. Probability P of muon track detection vs. parame-
ters © and x; =y, of themuon trajectory

O, deg X =Yy, M Pe)
10 0.5 0.421
30 0.5 0.293
10 1.0 0.339
30 1.0 0.245
10 2.0 0.152
30 2.0 0.107
10 40 0.0132
30 4.0 0.00628
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Table4. Statistical estimates for the parameters ©, @, x;, and y; of the muon trajectory and the associated rms deviations og,
O Oy, and oy, for two trajectories reconstructed by the SM, MSM, and LSM

Ny O,deg | @ deg X, M Yy M | Og, deg | Og deg | Oy, M oy ,m Note
- 10 45 1.0 20 - - - - Real track parameters
100 7.32 719 0.825 2.02 0.96 345 0.0806 | 0177 |[SMH=5m
900 105 79.3 11 29 0.32 0.91 0.021 0.05 MSM H=5m
100 9.16 78.6 0.997 2.74 1.00 2.90 0.0662 | 0153 |MSMH=5m
400 30.4 54.5 0.848 2.36 2.86 5.20 0.135 0206 |LSMH=5m
- 20 70 3.0 4.0 - - - - Real track parameters
100 19.2 101.0 1.53 221 1.65 5.16 0.114 0141 |SMH=5m
100 119 91.1 1.56 2.20 0.589 2.84 0.986 0.138 |MSMH=5m
200 6.51 929 2.81 241 0.622 351 0.187 0235 |MSMD=10m
400 39.2 60.4 0.89 17 3.18 7.15 0.137 0207 |LSMH=5m

the real track parameters when the SM and LSM algo-
rithms are combined (cf. thefirst, second, and fifth rows
in Table4). Basically, one can expect that the bias of the
estimates will decrease when increasing number of
modules.

For the second muon trajectory (more distant from
the detector center), the detection probability (for the
detector with D =5 m) isrelatively low (Table 3). Here,
much larger detectors (the ninth row of Table 3) provide
the much less biased estimate of the parameter x, and

the much smaller rms deviation o, (cf. the eighth and

ninth rows). However, the estimate of © becomes
noticeably worse, although theinitial estimate obtained
by the SM is nearly unbiased (cf. the sixth and seventh
rows). When the detector dimensions grow, the esti-
mate of y; improves and that of ¢ remains the same.

CONCLUSION

We considered the asymmetric (nonstandard) con-
figuration of an amplitude detector with the least possi-
ble number of modules necessary for the unique recon-
struction of the muon track. It was established analyti-
caly that the unique recovery of the muon track
azimuth is possibleif the detector has no lessthan three

modules with the coordinates ziO # 0 and the coordi-

nates x° and y° of themodulesdo not lieon the straight

line given by (4). This statement holds for both ampli-
tude and temporal detectors. The effective simple algo-
rithm for the unigue reconstruction of the muon track
was el aborated.

Both the design (dimensions) of the detector and the
procedure for statistically estimating the muon track
parameters recovered were optimized. Direct computa:
tions showed that the SM is preferable for statistically
estimating the parameters ©, x,, and y, . The parameter
@ of the muon path is best estimated with the LSM. The

detector with D = H = 5 m seems to be quite adequate
for muon track reconstruction provided that the detec-
tion probability for a given track is no less than 0.1
when the SM and the L SM are combined. For trajecto-
riesfar away from the detector, the bias of the statistical
estimates for the parameters x, and y; can be decreased
by increasing the detector dimensions. Basicaly, the
estimates can also be improved by increasing the num-
ber of the modules.

The original procedure for finding the confidence
interval for the muon track parameters was devel oped.
It is based on the agorithm used to numerically solve
the related nonlinear programming problem. Within
this approach, the objective function was constructed
and the effective algorithm for its maximization (pro-
vided that the set of inequalities following from the
Poisson distribution of signas applied to PEMs) was
found. With this method, the confidence intervals for the
muon track parameters were found for two trajectories.
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Abstract—Heat exchange between an air plasma and alow-heat-capacity spherical body made from a refrac-
tory (tungsten) or fusible (aluminum) material is studied under conditions when the body exhibitsthe properties
typical of either athermally thin or thermally thick body. The problem is solved for an unperturbed plasmatem-
perature of 500020000 K, a pressure of up to 1 atm, and a body (particle) size of 10 um to 1 cm. The model
devel oped accountsfor the possible phase transitions at melting and boiling. It is shown that, under proper phys-
ical conditions, arefractory particle can relax to a steady thermal state (in various aggregate states). This prop-
erty can be used in plasma sputtering of refractory coatings, which requires the preparation of a spatially
homogeneousthermal state of the sputtered macroparticles that underwent a metal—liquid phase transition.

© 2001 MAIK “ Nauka/lnterperiodica” .

In[1], heat exchange between an argon plasma and
a metallic or dielectric particle emitting thermoelec-
trons was studied. The efficiency of heat exchange was
shown to be affected by electron and ion charge transfer
and particle charging. Being of a quantum nature, the
heat exchange mechanisms are related to the absorption
of plasma electrons by a spherical particle, neutraliza-
tion of the plasma ions arriving at the particle surface
(Auger neutralization), and thermionic emission from
the surface. The main objective of that paper was to
determine the possibility of increasing the rate of the
plasma processing of refractory particles heated up to
high temperatures. The particle size was assumed to be
consistent with a thermally thin body model. In this
case, the thermal state of a particle has noimpact on the
thermal state of the surrounding plasma. Such a particle
represents a body with alow heat capacity.

In this paper, following the physical formulation of
the problem similar to that of [1], we study heat
exchange between an air plasma and a low-heat-capac-
ity spherical body made from arefractory (tungsten) or
fusible (aluminum) material under conditionswhen the
body exhibits the properties typical of either a ther-
mally thin or thermally thick body. In this case, unlike
[1], it is necessary to solve the boundary value problem
for nonsteady heat conduction. The problem is solved
for an unperturbed plasmawith atemperature of 5000
20000 K, a pressure of up to 1 atm, and a particle size
of 10 um.

It is shown that, under proper physical conditions, a
refractory particle can relax to asteady thermal state (in
various aggregate states). Thisis due to the switching-
on of the two basic cooling mechanisms that limit the
temperature growth, namely, radiation and thermionic
emission. With aninitial density of thetotal energy flux

onto the body ranging up to 10 MW/m?, the major fac-
tor limiting the temperature is radiation; at higher
energy flux densities, thermionic emission prevails.
Thisfact can be used, in particular, in plasma sputtering
of refractory coatings, which reguires the preparation
of a spatially homogeneous state of the sputtered mac-
roparticles that underwent a metal-iquid phase transi-
tion. Conditions under which a fusible particle can
relax to a steady state are determined by radiative cool-
ing. Thermionic emission does not contribute signifi-
cantly until the particle undergoes aliquid—vapor phase
transition.

Thethermal interaction isgoverned by electron, ion,
neutral, and radiative heat-exchange mechanisms,
which depend on the electric field in the double layer
region [1]. Theinteraction between the plasmaparticles
and the body is of a quantum nature. The electrons
absorbed by the body give up an energy on the order of
the work function, and the ions (in the process of sur-
face Auger neutralization [2]) give up an energy on the
order of the difference between the ionization energy
and the work function. In both cases, the transferred
energy is on the order of several eectronvolts. The
model under consideration accounts for the possibility
of phase transitions at melting and boiling.

The problem is formulated as follows. The thermal
state of a spherical body is determined by the solution
to the well-known boundary value problem for the
time-dependent heat conduction equation

oT _ ,°T , 2077
ot ~ Py Tror @)

T(Ov R) = TO! (2)
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T(t,0) <o, ©)

A9T

5 =q-= qu- (4)

r=R

Thekey point in problem (1)—(4) is boundary condi-
tion (4), which determines the energy exchange
between the body and the plasma.

The total thermal flux from the plasma onto the
body is affected by the charge state of the conducting
body receiving energy from the plasma. The thermal
and charge states of the plasmaand the body are related
to each other. Therefore, in the general case, we should
solve a self-consistent problem. However, in the model
inwhich aMaxwellian plasmaisassumed to bein equi-
librium at infinity and under conditions such that the
electric field is screened by a thin boundary layer with
asize on the order of the Debye length, which is much
less than the plasma particle mean free path, the ther-
mal and electrodynamic problems can be separated.
When calculating the energy fluxes by the kinetic the-
ory, one can employ the well-known solution to the
electrodynamic problem for the distribution functions
of electrons, ions, and neutral particles. From the phys-
ical standpoint, it is convenient to represent the expres-
sionsfor the energy fluxes[1] in aclearer form—asthe
product of the fluxes of charged particles by their mean
energy that is transferred to or taken away from the
body.

The energy fluxes g, depend on the plasma compo-
sition. The composition of the air plasmais determined
by the equation of the model chemical reaction

+MyN + MyoNO +M_,0; + M _.O0" (5)
+M,-NO" +M .N;+M_.N"+M.e,

where M+ is the mole number of the model air “mole-

cules’ O;_gNy e and My is the mole number of the kth
plasma component.

The equilibrium composition of the unperturbed
isothermal plasmaat given external plasma parameters
(pressure p, temperature T, and parameter (3) is calcu-
lated by solving a system of nonlinear algebraic equa-
tions for the molar fractions of the plasmacomponents.
The system consists of the equations for conservation
of matter (the numbers of O* and N* ions and elec-
trons), equations for the constants of chemical equilib-
rium, and the Dalton equation.

For the known plasma composition, the densities
of the energy fluxes g, onto the body can be determined
by the following formulas, which are similar to those
of [1].

KURYSHEV, SAKHIN

1. For the electrons, we have
Oe = Jo(2KT.+ ed, + ed) —J;(2kT, + ed,),

-_1 0ed’
Jeo = 4nevTeexpD—k—TeD,
+ g 2 0 eCDtD
Je - eTseXpD_k_Tsmf (6)
_[8KT,
Te — Tl'me ’

O = 2N (20,
where J, is the flux of the plasma electrons onto the

body, J; is the flux of the thermoemission electrons
specified by the Richardson formula, v 1, isthethermal

velocity of the plasma electrons, the quantities ®*

accounts for the possible change in the electric field
polarity, ¢.isthefloating potential of the body, ®, isthe
work function, e> 0 isthe absolute value of the electron
charge, and n(x) isthe Heaviside step function.

2. For the ions of the kth species, we have
O = Ju(2kT.+ed" +e(l,—d,) —2kT)),

-_1 nebn
J = 4nkVTkeXpD—kTeD, (7)

BKT,
Ve Tm

where J, isthe flux of theions of the kth species onto
the body, v+ isthe thermal ion velocity, and |, is the

ionization potential of the corresponding plasma com-
ponent.
3. For the neutral particles, we have
1

‘J; = Z_nkVTkv (8)

O« = Ji(2kT.—2KTy),

where J, is the flux of the neutral particles of the kth
species onto the body and v, is the thermal velocity

of neutral particles.

Formulas (6)—(8) are derived under the assumption
that all the electronsincident on the body are absorbed.
The possible thermionic emission and the neutraliza-
tion of theionsincident on the body (Auger ionization)
[2] are also taken into account. Neutral particles are
reflected diffusely from the body surface.

The floating potential of the body ¢, is determined
from the condition that the ion charge flux is equal to
the charge flux of the plasma electrons and thermoe-
mission electrons. The energy flux density of thermal
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radiation from the hot body is given by the Stefan-Boltz-
mann formula. Phase transitions are incorporated in the
mathematical model by introducing an artificial heat
capacity, which alows one to account for the phase
transition energies.

The boundary value problem (1)—8) can be solved
numerically. However, for a spherical body at g, A, a =
const, under physical conditions corresponding to suf-
ficiently large thermal loads, one can a so use an analyt-
ical solution to problem (1)—(4). This solution has the
form

_a, . .- _90g3_ 2 ot
9

= 1Sin(AX)
LN sin(A)

S(Xv tl) =

The spectrum of the problem satisfies the transcen-
dental equation tan(A,) = A, which has the following
approximate solution: A; = 4.49340946, A, =
7.725351837, A\; = 10.90412166, A, = 14.0661939,

A Oay = a_lk’ o, = g+ TIK,

k=567,...

Using solution (9), we determine the increase in the
body temperature AT,, over a sufficiently small time
step tge, at Which we can assume g, A, a = const. Then,
for the temperature profile we obtain

AT, = T(t, + tyep X, Gn) = T(to X, 0hn),

On = q(t), T(ti g, X) = To+ ZATn- (1o
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Semianalytic solution (9)—10) has obvious advan-
tages over numerical solutions. This solution allows
one to control the validity of the model of athermally
thin or thermally thick body for any point inside the
body and substantially reduce the computation time
without knowing the exact temperature profile. A com-
parison between the semianalytic and numerical solu-
tions shows that they agree well under thermal loading.
Only when passing to a steady thermal state, in which
the total energy flux onto the body vanishes (i.e., upon
switching off thermal loading), approximate solution (9)—
(10) fails to describe the flattening of the temperature
profile over the bulk of athermally thick body, whichis
evident from the physical meaning of this solution.

As an example, Figs. 1 and 2 show the calculated
time evolution of the energy parameters specifying the
character of the plasma-—solid energy exchange for a
spherical aluminum body with aradius of 0.1 mm at a
plasma pressure of 102 atm and plasma temperature of
10*K (Fig. 1) and atungsten body with the same radius
at a plasma pressure of 1 atm and temperature of 2 x
10*K (Fig. 2). Curves 1 show the temperature of the
body surface with (dashed) and without (solid) taking
into account the solid-iquid phase transition; curves 2
show the total energy fluxes onto the body surface; and
curves 3-5 show the contributions from ions, el ectrons,
and radiation, respectively. The contribution of the neu-
trals to the total energy flux is negligible under the
given conditions. The body temperature is normalized
to the melting temperature, and the energy fluxes are
normalized to the total initial fluxes. As follows from
Figs. 1 and 2, the relaxation to the steady thermal state
is determined by the switching-on of radiative cooling
(for aluminum) or thermionic emission (for tungsten).
To distinguish between the curves in Fig. 2, the total
energy flux carried by the plasma electrons and ther-
moemission electrons is assigned the minus sign. Gen-
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eraly speaking, the phase transition should manifest
itself as the straight portion on the curve. The absence
of such a portion in Figs. 1 and 2 is related to the
smooth switching-on of the artificial heat capacity
accounting for the phase transition energy. The phase
transition is more pronounced in Fig. 1. The aimost-
zero initial contribution of the electron component in
Fig. 2 is due to the negative floating potential of the
body (about —8.5 V), which suppresses electron heat
conduction. Under the given conditions, an aluminum
body is described by the model of a thermally thin
body. For a tungsten body, the temperature difference
between the surface and the center is about 200 K.

KURYSHEV, SAKHIN
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Abstract—This work, which relates to the area of biotechnology, touches upon the problem of decreasing
nanoel ectronic and nanooptic components and creating 3D controllable nanomechanic structures. The role of
radiation chemical processes in controlling material transport, as well as the growth of membranes and fibers,
isdemonstrated with abiocell. The fibers are viewed as waveguides that direct control pulses. It isassumed that
such waveguides make it possible to produce 3D neural networks. © 2001 MAIK “ Nauka/Interperiodica” .

Self-assembling clusters are attracting more and
more interest in the field of nanotechnology [1, 2]. Let
us consider the effect of wave processes in nanoelec-
tronic technologies by invoking the fundamental prin-
ciple of wave—particle dualism. It isknown that atomic
oscillation in a substance may play an essential role in
the creation and operation of ananoel ectronic structure.
In inorganic crystals under steady-state conditions,
thermal atomic oscillations generate standing waves,
which do not transfer energy. During light-assisted
crystal growth (photon) energy is transferred by wave
processes, which significantly affect masstransfer. The
energy of electromagnetic wavesis used for the synthe-
sis of compound substances in radiation chemistry.
Whilein the nature, a photon flux stimulates photosyn-
thesis, radiation chemistry uses the action of photons
for the conformation and polymerization of hydrocar-
bons [3]. It appears that the life activity and growth of
cellsin living organisms are al so accompanied by wave
phenomenal4]. If so, thisisthe only example of aself-
organized cluster system in the nature.

We will consider aliving cell as a self-controllable
growing structure. The cell (Fig. 1) consists of a mem-
brane, a nucleus, and a cytoplasm that contains dis-
solved organic compounds and a number of organelles
(mitochondria, ribosomes, etc., which are not consid-
ered here). The recent advancesin genetics have shown
that polyatomic molecules of the nucleus, molecul es of
deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA), bear hereditary information and control all
stages of cell division [5]. Two basic stages in the cell
life are distinguished: division and growth. The nuclear
structures at these stages differ: before the cell is
divided, the DNA molecules twist to form complexes
(chromosomes). Cell division begins with the division
of chromosomes. During the growth, the DNA com-
plexes untwist and the DNA molecules are uniformly
distributed in the nucleus. The chemical mechanism

behind geneticinformation transfer during the cell divi-
sion and the mechanism of protein synthesis with the
participation of DNA and RNA have been studied in
detail [5, 6]. These mechanisms are based on a contact
(chemical adsorption) reaction. One can also read

_ +
O\P/O R
O/IC 2
H,C{
*>cH, K
H,C 1
< I 3
o000

‘\OOOO
q)@??????@
8686 bbb

Fig. 1. Schematic representation of the cell: 1, phospho-
lipid; 2, intercellular liquid; 3, membrane protein; 4, lipid
layer of membrane; 5, circularly polarized wave (pulse);
6, DNA acid; 7, cell nucleus; 8, cytosine; and 9, guanine.
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Fig. 2. Model of electromagnetic-pul se-induced (a) confor-
mation and (b) polarization of the phospholipid membrane.

information from the nucleic acids using radiation tech-
niques (X-ray diffraction, laser spectroscopy, €tc.), but
the interpretation of associated data is very cumber-
some. However, within the cell as a self-controllable
system, the radiation read-out technique can operate in
real time and provide on-line control of the cell activity.
L et usconsider the control efficiency of thismechanism
as applied to material transfer and membrane growth.

Wewill start with the oscillation properties of DNA.
A DNA molecule comprises a chain of atomic groups
that twisted into a helix and are bonded by relatively
weak hydrogen bonds (Fig. 1). These moleculesfeature
steady-state torsional oscillation with an amplitude up
to 1 A and a frequency in the range of 50-200 cm
(submillimeter waves) [7]. Moreover, phosphatic
groups, nitrogen bases of DNA, and adsorbed proteins
possess electric dipole moments [6]. The rotational
moments of these dipoles may cause electromagnetic
waves. Under steady-state conditions, the diffraction of
these waves by a periodic structure generates a standing
wave that does not transfer energy [8]. Under unsteady
conditions, electromagnetic pulses (solitons) that prop-
agate along the molecular chain may arise [9]. Thelife
activity and growth of the cell arejust an unsteady pro-
cess. Reasons for such unsteadiness may be the evolu-
tionary untwisting of the DNA chains (see the cell life
stages described above) or a change in the membrane
potential because of a change in the ionic composition
of the intra- or intercellular liquid. Consider the latter
case (Fig. 1). A change in the potentia (@) affects the
polar molecular groups of DNA with the resulting

GRIGOR’EV
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I
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-1 + hw— 11-1

Fig. 3. Electromagnetic-pulse (photon)-induced polariza-
tion of the photoreceptor membrane of vertebrates (planar
model). (a) Membrane: (1) cis- (1, rhodopsin; 2, lipid) and
(1) trans-configurations. (b) Rhodopsin conformation:
(2) rhodopsin, (3) retinol, and (4) glycoprotein; (1) cis- and
(1) trans-configurations.

change in the frequency of the DNA-induced torsional
oscillation (the quantum transition known as the Stark
effect takes place). The membrane contains globular
protein, ion channel (Fig. 1), which also has polar
groups with a certain oscillation frequency. Eventualy,
frequency-modul ated coupling between the protein and
DNA occurs. This coupling will change the function of
the membrane protein and may, for example, restorethe
normal potential by blocking the channel for potassium
ions. If the unsteadiness is due to the DNA structure
evolution, the variation of the coupling frequency will
cause achangein the steady-state value of the potential.
This may encourage material transfer to the cell and,
thus, its growth.

The radiation chemical process of lipid membrane
growth at the stage of cell growth can be represented as
follows. It has been assumed that this process involves
specia transporting proteins [10]. Also, the dynamic
conformational theory of membranes has been put for-
ward [4, 6]. It seems likely that DNA radiation quanta
make the groups of polar molecules rotate (the confor-
mation of the molecules takes place), and the mem-
brane becomes locally polarized. Because of this, its
electrochemical properties are slightly modified. In
particular, the strength of attraction of transporting pro-
tein (albumin) cations from the intercellular liquid may
alter. Albumin transports molecules of lipids, peptides,
and other building blocks of the cell. The model under
consideration is consistent with the today’s cell physi-
ology concepts [10] and complements them.
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At the current stage of our investigation, the behav-
ior of individual moleculesin the electromagnetic field
generated in the cell isimpossible to describe in detail.
We can only suggest general rules and elaborate simple
models.

The oscillations of the molecules are not arbitrary.
They oscillate with a strictly defined frequency, and
adjacent molecules oscillate synchronously with each
other. For example, a photon pulse from the DNA gua-
nine group (Figs. 1, 2) is in a phase correspondence
with the oscillations of the upper, lower, and side phos-
pholipid molecules of the membrane. An elementary
electroneutral phospholipid cell consists of eight mole-
cules with the various instantaneous directions and
phases of oscillations (Fig. 2). The energy of this pulse
will be transferred to the molecule whose oscillation
phase differs from that of the pulse (phonon or soliton)
to the greatest extent at the instant the pulse meets the
cell. Therefore, only one of the molecules will change
its configuration and the system will no longer be elec-
troneutral. For example, the phospholipid polar centers,
the negative one of the phosphatic group and the posi-
tive one of the amino group, will interchange relative to
the outer surface of the membrane (Fig. 2b). This
causes the local polarization of the membrane. The
polarized state is retained until the excitation relaxes
viaachemical reaction or heat evolution.

This model resembles the conformation of rhodop-
sin molecules in the eye photoreceptor [10, 11]. The
conformation (bend) of a rhodopsin molecule (Fig. 3)
under the action of a photon takes placein the nonpolar
retinol part and relaxes with the formation of a polar
glycoprotein “tail.” Then, the resulting pulse (soliton)
propagates along a nerve fiber. Thus, our mode of
membrane polarization by a radiation quantum applies
to various moleculesin awide range of quantum energy
(from 0.01to 1 V).

The conformation induced by electromagnetic field
results in size effects (Fig. 2a). Consequently, it may
affect the diffusion through the membrane (through
both the lipid layer and the protein ion channels). Pro-
tein deformation due to solitons has been studied by
Davydov [9].

It should also be noted that compound molecules
may relax by passing from one energy level to another;
i.e., they operate as frequency converters in electronic
devices (for example, rhodopsin converts 1-eV photons
to 0.01-eV solitons)

Once the mechanism of local control in the DNA
molecule-membrane lipid system with surrounding
lipid molecules has been described, we turn to the cell
as awhole, which comprises several millions of mole-
cules. For epithelia cells, which have anearly spherical
shape (symmetry), our mechanism applies to any sec-
tion of the membrane. Other cells, however, have an
extended form with a length-to-diameter ratio of 1000
or more (muscular and nervefibers). Here, a section per
nucleus may far exceed the size of the nucleus (the
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fibers may have several nuclei). Therefore, the case in
point is the radiation mechanism for controlling the
growth of 3D structures. The fibers grow largely in the
longitudinal direction, acting as waveguides that trans-
fer control actions concentrated at their ends. Thus, a
growing cellular structure is capable of transferring
control actions at large distances. This fact favors the
development of a radiation chemical process for the
synthesis of artificial neural networks.

CONCLUSIONS (HY POTHESES)

(1) DNA molecules of the nucleus and membrane
molecules of the cell are coupled by millimetric elec-
tromagnetic waves that correspond to the torsional
oscillations of the molecules.

(2) Control of thecell lifeactivity isakin to the oper-
ation of a feedback generator where the membrane
potential isthe power supply and aDNA moleculeisan
element specifying the oscillation frequency.

(3) Electromagnetic waves, photons with an energy
of 0.01 eV, polarize molecules of polar dielectrics,
which are proteins, lipids, and polypeptides of the cell
membrane. The polarization stimulates the electro-
chemical and radiation chemical synthesis of the cell
materials and favors cell growth.

(4) Radiation chemical control allows the growth of
3D fiber structures, such as neural networks, where the
fibers guide control actions.
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Abstract—The cross section of the absorption of electromagnetic radiation by a cylindrical metal particle is
calculated. The calculation is performed in the low-frequency limit, in which the contribution of eddy currents
to the absorption dominates, and for comparatively small particles (with radii of =10 nm), which allows us to
neglect the skin effect. The case when the mean free path of electrons in the metal bulk substantially exceeds
the radius of the cylindrical particle is considered in detail. The specific absorption cross sections for spherical
and cylindrical particles are compared. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The electromagnetic properties of small metal parti-
clesmay essentially differ from those of massive metal-
lic samples[1]. If thelinear size R of ametallic sample
is on the order of the electron mean free path A or
smaller than A, the interaction of electrons with the
boundary of the metallic sample substantially influ-
ences the behavior of the electrons in an external elec-
tromagnetic field, hence, the specific optical properties
of the sample (metal particle). Therefore, one of the
basic optical characteristics, namely, the absorption
cross section, shows a nontrivial dependence on the
ratio RIA for R < A. At room temperature, in metals
with ahigh conductivity (aluminum, copper, silver, etc.),
the electron free path A lies in the range 10-100 nm.
The sizes of particles studied experimentally range
within several nanometers; i.e., the case R < A takes
place.

The behavior of electronsin an external electromag-
netic field in view of the interaction between the elec-
trons and the boundary of the sample can be described
in terms of the classical kinetic theory of conduction
electrons in metals [2]. In this case, no constraints are
imposed on the relation between the electron free path
and the size of the sample.

The equations of macroscopic electrodynamics are
valid only in the case of massive samples (R > A).
Therefore, the well-known Mie theory, explaining the
interaction of an electromagnetic wave with metal bod-
ies in the framework of macroscopic el ectrodynamics,
fails to describe the aforementioned size effect.

In[3, 4], the theory of interaction between an elec-
tromagnetic radiation and a spherical particle has been
developed. Similar resultsin thelimitingcaseR<< A a
low frequencies (far-IR region) were found earlier
[5, 6]. Inthe paperscited, the solution to the Boltzmann
kinetic equation for conduction electronsin ametal was
used. Another approach to the problem has been pro-

posed and is being developed in [7, 8]. Recent interest
in the problem of interaction between an electromag-
netic radiation and nonspherical particles[9] should be
noted. In early articles[10-12], an attempt was made to
take into account quantum-mechanical effects in the
problem, which is of particular importance at low tem-
peratures.

In this paper, the distribution function describing the
linear response of conduction electrons in a metal cyl-
inder to the variable magnetic field of a plane electro-
magnetic wave is calculated by the kinetic method.
Special attention is given to the case when the electron
free path substantially exceeds the radius of the cylin-
der, R < A (free-electron regime). With the distribution
function obtained, the dependences of the absorption
cross section on the radius and frequency are found and
compared with the absorption cross section for a spher-
ical particle.

MATHEMATICAL MODEL
AND CALCULATION

Consider a cylindrical particle of a honmagnetic
metal with aradius R and length L (L > R) in the field
of an electromagnetic wave with a frequency w
bounded above by the near-IR range (w < 2 x 10%° s).
We assumethat the direction of the magneticfield inthe
el ectromagnetic wave coincides with the cylinder axis.
The nonuniformity of the external (wave) field and the
skin effect are neglected (we assume that R < g, where
o isthe skin depth). In the frequency range considered,
the contribution of electric dipole polarization currents
is small compared to that of eddy currents induced by
the external magnetic field [3]. Therefore, the effect of
the external electric field is disregarded.

The common physical assumptions are also used:
conduction electrons are considered as a degenerate
Fermi gas and their behavior in an externa variable

1063-7842/01/4611-1460$21.00 © 2001 MAIK “Nauka/Interperiodica’
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magnetic field is described by the Boltzmann equation
in the relaxation time approximation. The boundary
conditions imply the diffuse reflection of electrons
from the inner cylinder surface (i.e., an electron may
equiprobably be reflected at any angle between 0°
and 90°).

With these assumptions, the absorption of the elec-
tromagnetic wave energy can be described as follows.
A uniform periodic magnetic field H = Hgexp(—iwt)
induces an eddy electric field in the particle. Because of
the symmetry of the problem, thisfield is defined by the
Maxwell equation

- _fooH
HXE = e D
and can be represented in the form
_1.,0H_ o
E = 2Cr 3 2|c x Hyexp(—iwt), ()]

wherer istheradius vector (the origin of coordinatesis
at the axis of the particle) and c isthe velocity of light.

The eddy electric field acts on conduction electrons
of the particle and causes adeviation f, of their distribu-
tion function f from the equilibrium Fermi distribution
function fy:

2
(L) = fo@) + fa(rv), €=, (3

wherev and m are the vel ocity and mass of an electron,
respectively.

Thisresultsin the generation of the eddy current

| = eI f2d (mV) = 2%e mIVfld v (4)

(h is the Planck constant and e is the electron charge)
and also in energy dissipation in the bulk of the particle.

Theenergy Q dissipating per unit timeisgiven by [13]
= _ S 43, _ l . % 3
Q= eJ’ReE Rej)d’r = 2Re_[j (E*dr. (5

Here, the bar denotes time averaging and the asterisk,
the complex conjugation. In (4), the standard normal-
ization of the distribution function f, which implies that
the density of electron states equals 2/h?, is used. Fur-
ther, the step function [14]

M, O<e<g;

fo(e) = B(g;—¢) = b (6)

] £f<€l

whereg; = (mv ¢ )2 isthe Fermi energy, isemployed to
approximate the equilibrium function fy(€).

The problem is reduced to finding the deviation f; of
the distribution function from the equilibrium function f,
due to the action of eddy field (2). In the linear approx-
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imation with respect to the external field, thefunction f;
satisfies the kinetic equation [2, 14]

ofg _ 1,
o€ - 7 (7)

T

—iwf, +qu——+evEE

Here, the time dependence [ f; ~ exp(—iwt)] is assumed
to be stationary and the collision integral istaken in the
relaxation time approximation

f
(dfy/dt)gy = —, (8)
where T isthe relaxation time. The vectorsin parenthe-
ses mean the scalar product.

In order to uniquely determine the function f, it is
necessary to specify its boundary value on the cylindri-
cal surface of the particle. For the boundary condition,
we take the diffuse reflection of electrons from the sur-
face[2]:

_ Ord = R
f(r,v) =0 a Eer[vD<0| 9

where r; and v are the projections of the electron
radius vector r and velocity v on a plane perpendicular
to the cylinder axis.

Solving Eg. (7) by the method of characteristics
[15], we obtain

f, = A(exp(—vt) —1)/v, t20, (10)
where
v =11T-iw,
11)
3ty ewrdf |
= e(vIE)5= 0 = ZIC%FE[V x 1] (Hoexp(—iwt).

Note that v and A are constant along the path (char-
acteristic). The parameter t' is the time of electron
motion along the path from the boundary to a point r
with avelocity v and is given by

D2+ (R=rA)vA IvE (12)

The meaning of t' follows from the following geo-
metrical considerations. Projecting the obvious vector
equality r =r, + vt', wherer, is the radius vector of an
electron at the instant of its reflection from the surface
of the particle, onto the plane perpendicular to the cyl-
inder axis, weobtainr;=rq; + vt', wherethe vectorsr ,
I'on, and v are the components of the initial vectorsin
the projection plane. Having squared both sides of the
last equation and solved the resulting equation for t', we
arrive at formula (12).

Relationships (10)—(12) uniquely define the solu-
tionf, of Eq. (7) with boundary condition (9). This
makes it possible to calculate current (4) and dissipated
power (5).

t = {ro0g+[(ro v
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Integrals (4) and (5) are convenient to evaluate in
cylindrical coordinates both in the coordinate space (rp,
a, and r,; the Z axis is the polar axis; the vector Hy is
paralel to the Z axis) and in the velacity space (v, ¢,
and v,; the v axisisthe polar axis). The cylinder axis
coincides with the Z axis. Field (2) in the cylindrical
coordinates has only the ¢ component:

By = 3¢

Correspondingly, current (4) also has the ¢ compo-
nent alone (the lines of the current are closed circlesin
planes perpendicular to the Z axis with the centers on
the Z axis):

E = Ey6y; roHyexp(—iwt). (13)

jo = 2e J’v¢e(v EE)—(exp(—vt) 1)d’v

= E,2¢’HH v¢6(s &) (1—exp(—vt))d’v

DqD
V2T

= E,2¢’H 1D2DIJ'IVDS|H (1)

Ch vEpdd
X (V= Vi =V3)

000 (14)

(1 exp(-vt))vdvdody,

Vs — f[l
Vi2m

_ 2120
= Ey2e oho 5 Ehﬂ,[_[
X(l—exp(—vt))sm ¢dvdo.

Indeed, using the properties of the & function, we
have

5(e-z) = 28(vi+vi-vi)

= Z5[vi-(vi-v2)]
= Z8(v,~ vi-vi(v.+ Jvi-vD)]
1 2 . 2
= ———[5(v,~ Jvi-vD)
mfvi-v? f
+8(v,+ Vi V)]

In view of the symmetry of the problem, integration
over the whole range of the velocities v, is replaced by
integration over the positive half-range and theresult is
doubled. Let us rearrange (12) by introducing the nota-
tion & = rz/R and using the relation r ; B/ = rpvcosp.
We find

t' = R(Ecosh + A/1—E%sin“d)/v .

ZAVITAEV et al.

In terms of the new variables
N =&cosh + J1—E%sin‘d and z= VB%’—M%, (15)
f

expression (14) takes the form

Vi2m

J¢_2EhDeE¢ VJ’J’

B eIzt

Further, we will consider in detail the case when the
field frequency w and the frequency of electron colli-
sionsinthe bulk of ametal 1/t are small compared with
thefreguency of collisions of electronswith the particle
surface. In other words, consider the case |z] < 1. Then,
the expression for the current j, can be represented in
the form

3
V?—VZD (16)

sm ¢dde¢

Vi2m

is = 2Em] e’E
b b Vj'_[ )

/\/Vf VEI
Vv
xn f
74

sn’odv dé.
)

Finding the mean dissipated power Q by formula (5)
and dividing it by the mean energy flux cHa/8min the
wave, we obtain the absorption cross section o:

1|38T[ 1581'[[]2[[‘@

IRe(1¢E¢)dr = ZDC

><ezmo“DHoexp(—lmt)—zvfD lary, oeXp (- wt)

(bd] 231 °
R2mL vi2n L2 (18)
O .2
_!'J)'Jo’rmdrmdadr Ij'mnsm ddvdd
3.2 2 2 51 2n
2Ttmeh3(::)3va _[E dEInsnd)dd)

Integral (18) iscalculated in the explicit form. To do
this, we make the substitution of the integration vari-
ablep — n informula (15) and obtain

(19)

2
¢ +ldn-

2 1 2_
E . d(cosp) = ”ZT

Eventually, the cross section ¢ is calculated in the

cosd = E
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following way:

3. 22 2 2m

2nme(oLv RIE dEJ’(ECOSd)

3.22 2

+J1-826in’¢)sin’pdd = ani“’ LviR
C

x jz?’dz [(Ecosp + J1-E%sn’¢)sin’pdo

(20)

+J’(Ecos¢ +J1-E%sin‘d)sin’pdo

2 2 2
2n3mew LViR

h*c®

IE dg

[}Wl GRS e s F

0 dn
2 an’e® U oon’e

1-¢
€= =E I,
1- .
JE”J mg U on% Dn}

Then, we change the order of integration:

1+¢& 1-¢
J’di[f an(..)+ [ an(. )}
1+&

1 1 2 1
= 2{{dnl£dz£3(...)+{dnnlldzz3(...)}

2 1

= 2J’dn .f deg®(...).

n-1

(21)

Since

Idzz( )= jdzz( )=z

we have
_ 4’ @’ LviR " (4-1)%n
h3C3 _[ 24
16113m2e2m2 LViR
15h°c°®
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The electron concentration in ametal is given by
3
_ S0 4T[Vf
n= 2EhD 3
hence,

5= 2TPE’LR’ noo 22)

5¢° my ¢

DISCUSSION

The classical cross section for a cylinder is calcu-
lated in the following way:

0w 18nJR (j,E5)dr
_ 18 )
= 5 J(zoE¢)(E d’r
_18 (Hw) (23)
T . —iw .
2cH 202 Hyexp(—iwt) e Hoexp(—iwt)

rent ’Riznl _ re’nRiTL
2w TU e N4T 00
IIIdedeadr - T 3 e
4mc

000
where 2, = (ent)/mis the static metal conductivity.

Let us compare the absorption cross sections for a
cylinder calculated by the classical way and by the
kinetic method. We have

0y _ 4R,
0, b5tV

2mc

(24)

By analogy, the classical absorption cross section
for asphereis

8 e’ nTRyW
15mc®

The ratio of the specific (per unit volume) classical
absorption cross sections for a cylinder and a sphere of
the same radii is equal to

(25)

0 =

O 1,1

= 1.25. (26)

0,2

Compare the absorption by spherical and cylindrical
particlesin the low-temperature case. The estimates for
aspherical particle can be obtained from [3]:

203 2
_ 2me’Rjw
On1 = ’

23, 2
e R,w
5mc’v

Oz = (27)
"2 Emcdy,

Inthis case, the ratio of the specific absorption cross
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sections for a cylinder and a sphere of the same radii is

ollF!
Oz

= 16. (29)

Thus, the exact kinetic calculation yields a substan-

tial correction to the classical result.

o u
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Abstract—A physicomathematical model and a BEAM2HD program for the dynamic simulation of one- and
two-beam high-dose ion implantation into multilayer and multicomponent targets are developed. The number
of target layers is no more than three, and the number of sorts of atoms in each of the layers is no more than
seven. The simulation is performed by the Monte Carlo method. Numerical results for the formation of
Cx . 3Ny _ 4 superhard layers by two-beam high-dose implantation of nitrogen ions into the SisN,/C/SisN,/S
system are presented. © 2001 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Currently, ion range in solids is ssimulated by two
basic methods. One isthe Monte Carlo approach [1-4],
which considers the motion of each of the ions sepa-
rately; the other is based on a solution to the integro-
differential equations for particle transfer [5-8]. The
Monte Carlo method is flexible and allows exact calcu-
lations for multilayer and multicomponent targets,
including intricately shaped targets. This makesit pos-
sible to simulate, for example, advanced VLS| pro-
cesses or the interaction of a plasma with the vacuum
chamber surface. However, most conventional methods
for implantation simulation (including those mentioned
[1-8]) above) apply when the implantation doseis low.
Hence, a number of high-dose-related effects, such as
implant accumulation, cascade mixing, target sputter-
ing, and target swelling, are ignored. Meanwhile, high-
dose implantation has gained widespread acceptance
for synthesizing compound materials used in micro-
electronics and other branches of the industry.
Recently, dynamic simulation programs that are an
extension of the well-known TRIM [4] and
MARLOWE [1] statistical programs have been devel-
oped for taking into consideration some of the high-
dose effects. A disadvantage of these programs is the
impossibility of simulating simultaneous multibeam
implantation. It might be expected, however, that the
structure rearrangement and the formation of new
phases during simultaneous and successive implanta-
tion processes radically differ.

In this work, we describe the Monte Carlo—based
BEAM2HD program, which lets us simulate ion decel-
eration in amorphous solids. Specificaly, it makes it
possible to simulate one- and two-beam high-dose ion
implantation into multilayer and multicomponent tar-
gets. The number of target layers must not exceed three,
and the number of sorts of atoms in each of the layers

must be ho more than seven. The potentialities of this
program for predicting sputtering yield and implant
profiles are discussed, and the effect of high doses on
the implant profiles is studied. Sputtering yields are
determined with the BEAM2HD program for energies
from 1to 300 keV at the normal incidence of argonions
onto the silicon surface. The 150-keV nitrogen ion con-
centration across the target is cal culated for doses from
45x 10" to 1 x 10 cm.

We suggest amodel! for theformation of C, _ 5N, _ 4
superhard layers by high-dose two-beam implantation
of nitrogen ions into the Si;N,/C/Si;N,/S system.
Using the BEAM2HD program, we caculate the
implant distribution in this multilayer system, deter-
mine the erosion depth for each of the layers, and find
nitrogen ion energies and doses optimal for the forma:
tion of a near-stoichiometric (C;N,) layer.

THE MODEL
Scattering and Deceleration

When simulating the deceleration and sputtering of
incident ions and recoil atoms, the BEAM2HD pro-
gram considers the nuclear and electron decelerations
separately. For the nuclear sputtering, the binary-colli-
sion approximation is used, while the electron deceler-
ation is viewed as a continuous process. The angles of
sputtering by nuclel are estimated by the approximate
formula [4], and electron energy losses are calculated
within the Lindhard—Scharff—Schiott theory [13]. The
approach suggested includes the high-dose effects
[14, 15], namely, target surface sputtering, implant
scattering by previously embedded atoms, and target
swelling.

Our model gives a chance to describe one- or two-
beam implantation. Either beam is characterized by the
initial energy, ion weight and charge, dose, and the

1063-7842/01/4611-1465%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Caculated and measured sputtering yields for sili-
con irradiated by normally incident argon atoms. (a, b) Cal-
culated values [12] for Ug = 7.8 and 3.9 €V, respectively.
(c, d) Results of this work: (c) calculation according to
[15, 16] (Ug = 4.63 eV); (d) calculation according to [17]
(Ug=7.8eV). Datapoints: (1 [18], B [19], O [20], @ [21],
V [22], ¥ [23], < [24], and @ [25].

number of trajectoriesto be simulated. Each of the tra-
jectories is assigned a “pseudoparticle”’ that is some
integral of the implanted dose by analogy with the
TRIDY N [11] and HIDOS [12] programs. The trajecto-
ries of either beam are simulated in turn. The target
thickness (the region being simulated) is initialy
divided into 100 equal dynamic layers, and during
implantation, achange in the target compoasitioniscon-
sidered in the frame of approaches elaborated in
[11, 12]. At the initial stage, each of the target layers
(dynamic, not physical) may contain up to seven diffe-
rent components.

Target Swelling and Sputtering

Target swelling and sputtering during high-doseion
implantation are described in detail in our previous
works [14, 15]. If a pseudoparticle (a trgjectory being
simulated) stops in some deep-seated (dynamic) layer,
this layer swells and its thicknessis expressed as

—16
aa) = PED(a), @

KOMAROV

where Nimp(A—?’) isthe atomic density of the implant.

If thetotal dose of thisimplant is D;r,, and N, trajec-
tories are simulated, then the dose AD;,,, = Diny/Ny is
assigned to each of the trgjectories.

The draw of ion—ecoil atom collisions and the sto-
ichiometry change in each of the dynamic layers have
been comprehensively described in [15].

The thickness of a layer sputtered from the target
surface per pseudoparticle is given by
_ Y(Ey)

Aip = AD;,, 10 °(A), )

Ntarget

where Nta,ga(/lr3) isthe atomic density of the target and
Y(Ey) isthe sputtering yield.

The sputtering yield was estimated from the empir-
ical formula[16, 17], which appliesfor all the available
experimental datain awide energy rangefor the normal
incidence of the beam. Below, however, we will show
that under the assumption of the normal irradiation of
thetarget and alinear cascade, the Sigmund formulafor
Y(Ep) [18] would be more appropriate for the specific
energy interval and ion—atom combinations.

RESULTS AND DISCUSSION
Souttering of S by Ar lons

Figure 1 compares the experimental sputtering
yields obtained in [19-26] (see also [12]) with the cal-
culated data obtained with the HIDOS [12] and
BEAMZ2HD programs. In [12], the surface binding
energy for silicon was set equal to U, = 7.8 eV. We used
the same value for the cal culation according to [ 18] and
avalue U = 4.63 eV [17] for the calculation according
to [16, 17]. In both cases, the agreement between the
calculation and the experiment is the best for high ener-
gies. Throughout the energy range, good agreement
between the values of Y cal culated with the BEAM2HD
program and the experimentally found values is
observed when the empirical formula from [16, 17] is
used. However, when the energy of silicon-sputtering
argon ionsliesin theinterval 5 < E <50 keV, Y calcu-
lated according to [18] better agrees with the experi-
mental data. As follows from Fig. 1, the HIDOS pro-
gram [12], which includes complete collision cascades
dueto aprimary ion under the condition T > Ug (T isthe
energy imparted to the target atoms) gives a conserva-
tive estimate of the sputtering yield in the low-energy
range. At the same time, the empirical formula[16, 17]
provides fairly accurate values of Y in the energy range
0.1-300 keV. One can assume that the HIDOS program
[12] underestimates the nuclear stopping cross section
at low beam energies (E < 10 keV), since adecrease in
the surface binding energy for silicon from 7.8 to
3.9 eV does not result in satisfactory agreement with
the experiment in this energy range (curvesa and b in
Fig. 1).
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High-Dose Implantation of N into S

The formation of Si;N, buried layers in SOI tech-
nology by ionimplantation requires high doses of nitro-
gen [27-34]. In this case, the thickness of the top sili-
con layer is of crucia importance. If the high-dose
effects considerably affect the concentration profiles or
theion range, theion energy should be adjusted so asto
attain arequired implant depth.

Figure 2 shows the distributions of nitrogen ions
(the energy 150 keV, the doses between 4.5 x 10'7 and
1 x 10'® cm™) in silicon that were obtained with the
BEAM2HD program, HIDOS program [12], and Pear-
son-1V calculation [34]. The experimental data[33] are
also presented for comparison. The shape and width of
the profiles simulated are seen to be nearly independent
of the ion dose. The projected ion range, however,
decreases amost linearly with dose in the range of 5 x
10Y7—1 x 10% cm2, which we are interested in. At a
dose of 1 x 10'® cm (the nitrogen content 65 at. %),
the peak of the profile shifts by (5% (24 nm). The basic
reason for such a shift is sputtering. The sputtering
yield determined from formula (4) in our earlier work
[14] is Y(Ep) = 0.119 atom/ion. The peaks of the calcu-
lated concentration profiles of nitrogen are roughly 8%
higher than those of the HIDOS profiles. The projected
ion range obtained in our work (R, =321 nm for adose
of 1 x 108 cm?) dightly differsfrom (1318 nm reported
in [12]. This discrepancy may be due to the different
values of the nuclear stopping cross sections, not to the
different thicknesses sputtered, because the sputtering
yieldsin [12] and in our work are nearly the same: Y =
0.12 and 0.119, respectively.

High-dose nitrogen implantation changes the stop-
ping power and causes target swelling. It is expected
that the projected range and the profile width must
decrease with depth because of the progressively
increasing atomic density. However, both effects are to
a great extent shaded by target swelling (34 nm after
irradiation with adose of 1 x 10 cm).

Figure 2 a'so compares the calculated (curve 1) and
experimental [33] (curve 8) profiles of 150-keV nitro-
genions (for adose of 4.5 x 1017 cm). It is seen that
the peaks of the calculated and experimental profiles of
nitrogen implanted into silicon are, asawhole, in good
agreement. However, the calculated concentration pro-
file of the nitrogen is much narrower and its peak is
25% higher. This discrepancy to some extent can be
explained by the too high density of SiXNy precipitates
taken in the calculations (3.19 g/cm? [35]). However,
the basic reason for the discrepancy isthe fact that none
of the programs BEAMZ2HD, TRIDYN [11], and
HIDOS[12] takesinto account the radiation-stimul ated
diffusion of nitrogen implanted into silicon. At so high
doses, this diffusion considerably broadens the peak
and, accordingly, decreases the volume concentration
near the peak. The difference between the analytical
profile (curve 9) based on the Pearson-1V distribution
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Fig. 2. Nitrogen profiles across the silicon target calculated
for variousimplant doses. Continuous curves are the results

of thiswork for doses (1) 4.5 x 10%, (2) 5 x 10%7, (3) 7.5 x
10, and (4) 1 x 10 cm?; dashed curves are the results of
[12] for doses (5) 5 x 107, (6) 7.5 x 10%, and (7) 1 x
108 cm 2 (8) experiment [33] for adose of 4.5 x 1017 cm™2;
and (9) Pearson-1V [34] for adose of 4.5 x 1017 cm™.

[34] and the experimental profile (curve 8) is aso
accounted for by the fact that the simulation ignores
radiation-stimulated diffusion.

Thus, the changes in the ion range and in the profile
width are small even for adose of 1 x 108 cm2, For this
dose, the layer-by-layer sputtering causes surface ero-
sion to adepth of 26 nm. Basically, the results obtained
are consistent with those of the theoretical [12] and
experimental [33] works. For the more adequate
description of the interaction between ion beams and
solids during high-dose ion implantation, radiation-
stimulated diffusion and the formation of new phases
should be taken into account along with target sputter-
ing, target swelling, and a change in the target density.

Smulation of the Formation
of C;N, Superhard Layers

We put forward a model for the formation of
C«_ 3Ny _ 4 superhard layers by simultaneous high-
doseimplantation of nitrogeninto the Si;N,/C/Si;N,/Si
multilayer system. The Si;N, layers below and above
the carbon film serve as barriers for nitrogen diffusion
from this film. In addition, they act as seeds for the
growth of the C;N, phase, which has the same crystal
lattice as SigN,. Figure 3 shows the results of simula:
tion for simultaneous high-dose implantation of nitro-
gen into the Si;N,/C/SigN,/Si system. The density of
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Fig. 3. Depth distribution of nitrogen implanted into the
SigN,4/CISizN4/Si multilayer system (two-beam implanta-
tion).

Si;N, wastaken to be equal to 3.19 g/cm? [35]; and that
of the carbon film (the diamond structure), to
3.516 g/cm?®. The thicknesses of the nitride and carbon
layers were selected so as to fit the capabilities of our
experimental equipment. By simulating the formation
of the uniform concentration profile of nitrogen in the
carbon film with a near-stoichiometric (4/3) ratio, we
solved two problems.

(1) From the solution of the inverse problem [36]
(polyenergetic ion implantation), we obtained the
approximate values of the energies and doses needed
for producing the uniform nitrogen profile with a vol-
ume concentration of nitrogen in the carbon film of
2.35 x 10?2 cnr3. Two-beam implantation conditions
were considered.

(2) With the BEAM2HD program (Fig. 3), we
refined the energy and dose for either beam, as well as
calculated the net concentration profile of the nitrogen
in the carbon film. The energy values were determined
from the condition of the complete stopping of the
nitrogen ions in the carbon. The integral doses were
derived from the condition that the net nitrogen profile
in the carbon is uniform and that the nitrogen concen-
tration corresponds to a near-stoichiometric (4/3) com-
ponent ratio.

Asfollowsfrom Fig. 3, thetotal nitrogen concentra-
tions in the peaks dlightly exceed 2.35 x 10?3 cm2 (for
the given parameters of either beam). One can assume
that the peaks will be smeared and decreased if radia-
tion-stimulated diffusion is included. The sputtering of
the layers causes surface erosion to a depth of 45 nm at

KOMAROV

a net (double-beam) implant dose Dj,, = 2.85 x

108 cm2. To take into account carbon deposition from
the residual gases in the chamber [37], and, hence, the
resulting decrease in the nitrogen ion range, the energy
of both beams was taken to be excessively too high. In
Fig. 3, the net concentration profile of the nitrogen in
the carbon film extends to 50 nm to alow for the
above factor.

To summarize, we note that the BEAM2HD pro-
gram used in this work allows the prediction of the
sputtering yield and the depth of sputtering-related ero-
sion for each of the layers, aswell asthe implant profile
for one- and two-beam high-dose ion implantation into
multilayer and multicomponent targets.

CONCLUSION

A physicomathematical model and a BEAM2HD
program for the simulation of one- and two-beam high-
dose ion implantation into solid multilayer and multi-
component targets are developed. The program makes
it possible to take into account the scattering of
implanted ions by previously embedded impurity
atoms, target sputtering due to various ion beams, and
target swelling. The output data of the program can be
represented in the form of tables and graphs that illus-
trate the distribution of implanted ionsin the target, ion
ranges, distribution of implantation-induced vacancies,
and distributions of the implantation energy losses due
to collisions with electrons and nuclei. With the
BEAMZ2HD program, the profiles of the nitrogen atoms
in the Si;N,/C/Si;N,/Si multilayer system are found,
the erosion depth for each of the layers is determined,
and the nitrogen atom energies and doses optimal for
the formation of the inhomogeneous layer close to
C5N, in composition are suggested.
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Abstract—The ion—optical properties and other characteristics of various versions of a double-focusing mass
separator are studied. In these designs, theion transit path is shortened by appropriately selecting the geometry
of theion—optical system. The resolving power of the separating systemsis determined with allowance for sec-
ond-order aberrations. © 2001 MAIK “ Nauka/Interperiodica” .

In microprobe equipment where a beam of doubly
charged helium ions is used as a primary beam, there
appears the need for its purification by removing ion
impurities of hydrogen and other gases. The resolving
power of an associated mass separator must be about 200.
Such a high value is difficult to achieve in conventional
achromatic-focusing separators because of a high ion
energy spread in the beam obtained from gas-discharge
ion sources [1].

In anumber of works [2—4], systems with direction
and velocity focusing have been suggested. In these
double-focusing separators, the optical arms of the
energy analyzer are made shorter owing to the use of
electrostatic lenses. Additional focusing devices can
however be eliminated if ion—optical systems generat-
ing a parallel ion beam between the electrical and mag-
netic stages (see figure) are applied. By appropriately
selecting the geometric and physical parameters of the
energy and mass analyzers, three out of four optical
arms of the separation system can be eliminated.

L et us confirm the aforesaid by considering an ion—
optical system comprising atoroidal capacitor (energy
analyzer) and a mass analyzer producing a permanent
magnetic field.

RADIAL FOCUSING OF THE BEAM

To determine the focusing of an ion beam in the
radial plane, we must find the deflection of an ion with
arbitrary initial conditions from the central trgjectory
near the aperture diaphragm of the beam-forming
system.

In the linear approximation, the expression for ion
beam broadening in the image plane of a double-focus-
ing system has the form

Yk = @11Yo + 812Yo + 8130 + Aygllg, (1)

where y, is the ion displacement in the image plane in
units of the central trgjectory radius in the mass ana-

lyzer and vy, Yy, €, and [, are the initial (at the exit
from the ion source) displacement of theion in units of
the central trgjectory radius, ion direction, and relative
changesin its energy and momentum, respectively.

The coefficients g; entering into expression (1) can
befound from the results of [5], where thefocusing and
dispersion properties of double-focusing systemswith-
out intermediate focusing between the electrical and
magnetic stages have been estimated for the beam
entering and leaving the system normally to the planes
of both analyzers.

Since we use a sector nonuniform magnetic field as
amagnetic stage, the results of [5] are applicableif the
field index n in the expressions for a; is set equal to
zero. Then, we have

le " .
ap = ir—(COSﬁd)e— |eﬁ9n@¢)

X (€08~ Indm) + (—y/Nosin/Node) )
X [SiNm + (I + 1) €0SG Il mSiNG ]
N

R \

\J3 4

1 r, Q\Y\
\,\ 7 d=L, +L,

lon—optical system of the mass separator: 1, ion source;
2, energy anayzer; 3, mass analyzer; and 4, aperture dia-
phragm of the beam-forming system.
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_ e| SINYN ¢e "
ap, = ir—{ ﬂo + (1L +1Y) + cos,Nobe

—%'2@5"1@%}(005%—|}{15in¢m)

* (COS,\/E)(I)Q— |;«/E)Sin«/m¢e)

Ilmsind

rEl cosj_ocbe ,,snﬂnp%
D No Jno O

sin. /o,

No
Il mSING

ay, = 1—cosd,+1,snd,,. (5)

©)

X [singy+ (I + 1) cOSPr —

a13—_
m

x (Coshm—Imsing ) +

(4)

x[Sindg + (I + ) cOSP, —

Here, ny = 2 — (r/RY); r. and R, are, respectively, the
radial and axial radii of the equipotential surface lying
in the middle between the electrodes of the toroidal
capacitor; ¢, isthe angle of deflection of theionsin the

electric field; I, and |, are, respectively, the input and
output arms of the energy analyzer intermsof r; r,,is
the central trajectory radiusin the mass analyzer; ¢,,is
the angle of deflection of theions in the magnetic field
of the mass analyzer; and |, and I}, are, respectively,
tr]!e input and output arms of the mass analyzer interms
of r,

L et us determine the parameters of anion beam sep-
arator built around a cylindrical capacitor and a mass-
analyzing magnet producing a uniform sector magnetic
field. To do this, we will make use of the condition for
direction focusing of ions in a mass-analyzing magnet
producing auniform field and having a parallel beam at
the exit. Thisconditionisknown [5, 6] to havethe form

I' = cotd,, (6)

hence, the output arm |, =0 at ¢,,, = 90°.
Bearing in mind that the electric field parameter
No = 2 for a cylindrical capacitor, assuming that |, =
I, =0, taking into account that |, =0at ¢,,,=90°, and

using the condition for direction focusing of the ions
(ay, = 0), we find for the double-focusing system:

1
I' = —cot./2¢.. 7
iy e ()
The angle of deflection for the ions in the electric
field of the energy analyzer isfound from the condition
for velocity focusing. Taking into account that e = 23 +
TECHNICAL PHYSICS Vol. 46
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vandu=B+y (B =(AV)/Vandy=(Am)/maretherel-
ative changes in the ion velocity and mass), we write
the condition for velocity focusing for ions of the same
mass (Y = 0) in theform

2a,;+ay, = 0. (8)

Substituting the expressions for the coefficients a;5

and a,, into (8) and having regard to the fact that ny = 2,
Il =1, =1, =0,and ¢,,=90°, we obtain

+2§n4§¢e
-2

It follows from (9) that with /2, < T, velocity
focusing is provided if the electric and magnetic fields
deflect the ions in the opposite directions.

Then, we have

+1=0. )

sin./2¢, = “/é or

Substituting this value of ¢, into (7) yields the
length of the input arm of the energy analyzer: I, =

1./2.

If the radii of the central tragjectories of the ionsin
both fields are the same, for example, 100 mm, the

parameters of the separator are asfollows: |, = 70 mm,
$.=31°50, I, =0, I, =1, =0,and ¢,,=90°. Itiseasy
to check that for these vaJ ues of the parameters, the
coefficient a,,, which specifies the geometric magnify-
ing power of the system, equals unity.

In an energy anayzer built around a cylindrical
capacitor, axial focusing of the ion beam is absent; to
improve the aperture ratio of the separator, it is there-
fore necessary to employ a capacitor for which R, # .
For a spherical capacitor, for example, R, = r, and the
electric field parameter ny = 1. Then, the conditions for
direction and velocity focusings take the form

k., = cot¢,, (10)
+2sing.+1 = 0. (11

From condition (11) for velocity focusing, we find
the angle of deflection of the ions in the energy ana-
lyzer, ¢, = 30°, bearing in mind that the beam is
deflected in the opposite directions in the energy and
mass analyzers. For this value of ¢., we determine the
length of theinput arm of the energy analyzer from con-
dition (10) for direction focusing: I, = /3. If it is
assumed that r, = r,, = 100 mm, the parameters of the
separator are l, =173.2mm, $.=30° I, =0, I, =1}, =
0, and ¢,,,=90°. For these values of the parameters, the
coefficient a;;, and hence, the geometric magnifying
power of the system, equals 0.5.

¢, = 31°50'.
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AXIAL FOCUSING OF THE BEAM

In a separator consisting of a cylindrical capacitor
and a mass-analyzing magnet producing a uniform
field, axial focusing isabsent if theion beam entersinto
the system and leaves it normally to the boundaries of
the electric and magnetic fields. This is because the
axial component of the electric field of the energy ana-
lyzer and the radial component of the magnetic field of
the mass analyzer are absent in this case. With a spher-
ical capacitor used as an energy anayze, axial focusing
in the electrical stage takes place.

Theion—optical properties of such aseparator inthe
axial plane are convenient to estimate with the expres-
sion for the axial deflection of theion with arbitrary ini-
tial conditions from the central path near the aperture
diaphragm of the beam-forming system:

z = b1z + bz, (12)
where 7 is the axial deflection of the ion in the image
plane of the two-field system expressed in units of r,,
Z, is the initial axial displacement of the ion beam in
units of r,, and z, is the initial angle of axial diver-
gence.

The coefficients by have been obtained by the matrix
method [7]. For the given separator, they are

r .
bll = recosq)e_q)man)e’ (13)

m

e . C
bip = =(1:c08¢, + SiNe) + ¢ COSPe —lePmSiNGe. (14)
m
Specificaly, if the angle of axia divergence of the
beam at the exit from the ion source is z, = 0 and the
exit dit height ishy = 2zy/r,, = 0.1 mm, the height of the
beam near the aperture diaphragm is h, = 2r z =
0.08 mm.

SECOND-ORDER ABERRATIONS
AND RESOLVING POWER

L et us estimate the resolving power of either version
of the double-focusing separator. By definition, the
resolving power of a mass separator is given by

m _ Dn

Am — 2d’
where D,, is the mass dispersion and d is the beam
width near the aperture diaphragm.

The mass dispersion is defined by the coefficient
a4 D, = (rpdu4)/2. Since a,, = 1 for both designs of the
separator, D, = r/2.

According to (1), the beam width near the aperture
diaphragm is given by

(15)

d = 28y nZo+ 285, mZo + 2(2833 + a4)B.  (16)

KUZEMA, MORDIK

Since our separator features direction and velocity
focusings (that is, a;, = 0 and 2a,3 + a4, = 0), d =
28,11 Zy- Since 2z, = S)/r,, (S, isthewidth of theexit dlit
of theion source), we haved = a;;,S;. Then, the resolv-
ing power of the separator with allowance for second-
order aberrationsis given by

m _ M'm
Am 2(2a11$1+2ab.)’

(17)

where Z ab. isthe sum of second-order aberrations.

To estimate the image broadening due to second-
order aberrations, we constructed a nine-dimension
matrix of ion transfer from the ion source to the aper-
ture diaphragm in the radial plane and computed the
aberration coefficients for the two designs of the sepa-

rator. For the ion beam parametersy, =5 x 104, y, =

2x 1073 and 3 =1 x 1072, thetota contribution of sec-
ond-order aberrationsto the beam width at the exit from

the mass separator is ) ab. =0.037 mm for the system

with the cylindrical capacitor and 0.044 mm for the sys-
tem with the spherical capacitor. Then, the respective
values of the resolving power are 182 and 266 if the exit
dlit of theion sourceis S, = 0.1 mm.

Thus, the separator based on a spherical capacitor
offersthe higher resolving power. However, the dimen-
sions of thisversion are somewhat larger because of the
longer arm of the energy analyzer.

With this separator incorporated into the equipment
for measuring the ion—optical properties of ion sources
[8], researchers could measure the relative content of
He™* ionsin ion beams used in microprobe devices.
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Abstract—The frequency dependence of the permittivity of water in calcium kaolinite (clay) ismeasured. It is
shown that two mechanisms contribute to dipole relaxation of water. One refers to water in the free volume of
poresin the clay. The other is associated with bound water covering the porous surface. Experimental data are
treated in terms of afractal model of the medium. The frequency dependence of the permittivity in awiderange
of water content in the clay is accounted for theoretically. © 2001 MAIK “ Nauka/Interperiodica” .

The physical effects observed when water interacts
with clay materials play a decisive role in construction
engineering, geodesy, oil-extracting industry, and other
branches of theindustry. Information on the interaction
between near-surface water molecul es and the molecu-
lar structure of aluminais of crucial importance. Water-
saturated clays containing a great amount of bound
H,O are widely used in construction engineering. The
effect of clay saturation by large amounts of water is
also exploited in many domains of technology. Yet,
clay—water interaction at the molecular and mesoscopic
levels has been poorly understood.

Dielectric spectroscopy [1] provides important
information on water—alumina interaction at the meso-
scopic level. We obtained the low-frequency spectrain
the clay—water system for different H,O concentrations
(12, 33, 52, 75, and 92%) at 22°C. Clay (calcium
kaolinite) was madein the Laboratory of Disperse Sys-
tems (Kiev, Ukraine) headed by academician
Ovcharenko [2]. For measurements, a 0.2-mm-thick
pellet made by pressing was placed in a vacuum cham-
ber preevacuated for 48 h. Saturation by water was car-
ried out in a desiccator arranged over saturated salt
solutions for 48 h. The measurements were performed
with the Shlumberger low-frequency dielectric spec-
trometer in the frequency range of 10“-10° Hz using a
doubl e-electrode titanium measuring cell with an inner
diameter of 30 mm. The temperature of the cell was
thermostatically controlled with an accuracy of
+0.1°C.

Figure 1 shows the frequency dependence of the
imaginary part of the permittivity. These data will be
interpreted within amodel of fractal medium[3]. Inthis
model, a conducting medium (water) filling pores in
clay is described in terms of recap (resistance + capac-
itance) elements. A recap is a self-smilar RC network
(Fig. 2) comprising Foster circuits [3]. To produce a
recap with an impedance in the form Z(jw) = C,(jw)™

(0 £ v £ 1), the components of a self-similar RC net-

work must obey the relationships
Rn — Cn

Rn +1 - Cn +1

where a and b are frequency-independent constants.

Below, we will show that clay contains bound water
and water filling the free volume. Hence, the equivalent
circuit of the medium can be represented as two paral-
lel-connected recaps (Fig. 3). The conductivity of the
resulting recap is given by [3]

G(w) = Cy(jw)" + Cy(jo)™, (D)

where C;, C,, n, and m are constants.

These constants depend on the ratio Ina/lnb and
define the self-similarity (fractality) of the medium. To

:b,

loge"
61

—10+

-12

—14 I I
-2 0 2 4

logf

Fig. 1. Imaginary part of the permittivity vs. frequency for
a water content of (O) 92, (@) 75, () 53, (M) 33, and
(<) 12%. Continuous curves are obtained analytically.
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Fig. 2. Recap element formed by self-similar Foster cir-
cuits.

I\\

O— —O

ANN
1I

Fig. 3. Equivalent circuit of the clay—water system. |, bound
water; |1, water in the free volume.
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Fig. 4. Exponents (0) 1 —n and (@) 1 —mvs. water content
in the sample.

calculate these parameters, a detailed fractal model is
needed (in this work, it is omitted). Therefore, we will
calculate them by approximating the experimental data
with theoretical formulas using the least squares
method (the first approximation). Following the fre-
quency dependence of theimaginary part of the permit-
tivity €" (Fig. 1), we relate the conductivity G(w) and
£"(w) as

e"(w) = —Re[jG(w)}, ()

Gyw

LUNEV et al.

where C, is the capacitance of a spectrometer cell.

In view of formulas (1) and (2), the expression for
€"(w) can be written as

n _ A B
S(f) - fl—n+fl—m’ (3)
where
A = Ciexp(n/2) _ Cycos(mmn/2)
T C 1-n ' - C 1-m °
o (2m) o (2m)

Here, f isthelinear frequency in hertz (w = 2mf). Using
the least squares method, we found the parameters A, B,
1—-n, and 1 — m, approximating the experimental data
by formula (3). Asfollowsfrom Fig. 1, our theory ade-
quately approximates the experimental data. Figure 4
showsthe exponents 1 —n and 1 —mvs. humidity. If the
humidity exceeds 33%, the exponents1 —nand 1 —m
are amost humidity-independent within the experi-
mental error and the accuracy of the least squares
method. Since in thisrange, 1 —n = 1, the term A/f1-"
in (3) corresponds to Debye relaxation. Consequently,
this contribution should be assigned to water filling the
free volume. On the other hand, the exponent 1 — m
noticeably differsfrom 1 (1—m= 0.4). Thisimpliesthat
the contribution B/f*~™Min (3) isdueto bound water, i.e.,
to water covering the porous surface of the clay. The
fundamental difference between bound water and water
inthefree volume has been notedin[2]. Thisdifference
stems from interaction between water and the porous
surface and from the fractal properties of the pores
[3, 4]. At ahumidity of 12%, the exponent 1 —n sharply
drops, while 1 — m changes insignificantly (Fig. 4). We
therefore can assume that water isalmost entirely inthe
bound state at this value of the humidity.

Thus, from our experimental data, it followsthat the
frequency dependence of the permittivity of a saturat-
ing fluid is significantly affected by the fractal geome-
try of the pores.
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Abstract—It is shown that the Navier—Stokes equation for the description of the hydrodynamic properties of
structures in dg -dimensional media can be obtained with the principle of least action. The analysis of the solu-
tion to the equations obtained is exemplified by a quasi-one-dimensional flow. © 2001 MAIK “ Nauka/Interpe-
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Earlier, a way to investigate the dissipative proper-
ties of highly inhomogeneous structures was suggested
(see, for example, [1, 2]). It was assumed that there
exists the hypothetical analogy between such structures
and structures that are homogeneous in some geometric
space where the principal matrix has a dimensionality
d-=d+¢. Here,d=1, 2, or 3and thevalue of € depends
on the properties of the filler. It was aso assumed that
the properties of the matrix can be equivaently
described by formally replacing the space of dimen-
siondlity d- by some metric Riemann space with the
metric tensor components other than unity.

This work, where we logically elaborate upon the
previousinvestigations, is devoted to the hydrodynamic
description of the motion of liquids and gases in spaces
with a fractional dimensionality. Our approach is in
many ways similar to that adopted in[1] to characterize
thermal conduction in guasi-one-dimensional struc-
tures.

To deduce the equations of hydrodynamics in an
arbitrary space of dimensionality dg, we proceed asfol-
lows. Asis known [3], the Navier—Stokes equation has
the form

pdv/dt = —OP+nAv+ 0 (0 0O). (D)

Here, p is the density of the liquid; P is the pressure;
v isthe velocity of agiven element of the liquid (dv/dt =
ov/ot + (v - O)v); and n and ¢ are the first and second
viscosities, respectively.

In any space, the scalar quantities p, n, {, and P are
invariant unlike the vectors. In adg-dimensional space,
the pressure gradient can be expressed as AP using
fractional differentiation, where the operator of frac-
tiona differentiation A is defined as [4]

[

A f = J’(iku)l+‘°‘fkeikxd3k/(2n)3. )

Here, the subscript a means x, y, or z. It follows from
definition (2) that the operator A is a normalizable lin-
ear operator. The sum of two last termsin Eqg. (1) can
be obtained by taking the variational derivative of the
functional

L{v} =—(12)
3
x J'[Kl(a Vi19x)% + Ky(av,/9x)7 d’, )
where K, and K, are constants.
Representing the Navier—Stokes equation as
pdv/dt = —OP +ydL/dv, 4

where y is a phenomenological dissipation coefficient,
we come to Eq. (1) with

(=YK, ()

It was assumed hypothetically [4] that a space of a
fractional dimensionality de is equivalent (isomor-
phous) to some continuous Riemann space with a cer-
tain metrics. Based on this assumption, we substitute

n =yKy,

L{v} =—(uz)j[KlevF+Kz(v:)z]g”dgx (6)

for expression (3). Here, g is the determinant of the
metric tensor for this metric space (see below) and

v, isthe kth covariant derivative of the velocity v.

Since v, = avi/axk + T, v, where T is the
Christoffel symbol, Eq. (6) yields

L{v = (U2 [{K@v'/ox"+ v (@v'Iox + r‘k%%

+g K, [(010X) (g™ v )] Y 9P dx.

1063-7842/01/4611-1475%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Varying Eq. (7) with respect to v/, we obtain
5L = J’{ K, (8/0x)[g"*(av*/axX + v )]o v
—KyTi@vax + iy vP)sv'g”
+ K,(0/0x)[(1/g") (810X (g2 v )18 v' g} d®x.
Hence, Eq. (4) isreduced to
i[OV At + v (avIax + T v )]
—AP+1n(0/0x)[g"*(dv*/aX + Ky )]
—Nrviax + rgvP)g”?
+2g"(0/10x)[(1/g™)(810X) (9" gisv )]

To obtain the complete system of equations, the con-
tinuity equation

aplot +g2(al0x)(g"*v') = 0 )

should be added to Eq. (8).

It was hypothesized that the physical properties of
complex structures can be described in terms of frac-
tional -dimension spaces specified by a certain metrics.
To exemplify the use of Egs. (8) and (9), we shall con-
sider a quasi-one-dimensional flow. Let the metric be

di* = g(x)dx* + dy* + dZ’,

(8)

(10)
where

9(x) = G = (X/Lo)" (11)

is the only other-than-zero component of the metric
tensor. Here, € < 0 isthe true fractional dimensionality
of the space, L, is some characteristic size, and v is a
factor responsible for the fulfillment of specific condi-
tions. The meaning of v is as follows. Let a quasi-one-
dimensional structure be specified in a continuous met-
ric space and let its prototype in our real world be, say,
afir-tree. Then, the lengths of the structure and its pro-
totype calculated with metrics (11) must be equa as
scalar values. From this condition, v is determined.
Such arequirement, in principle, meetsthe reality. Fur-
ther, we shall write simply € instead of the product ev.
For metrics (11), only one Christoffel symbol is not
zexro:

M = —«(1/29)0g/ox = —&/2x. (12)

Then, Eq. (8) for the component v* takes the form
g(x)p[av/at + v*(av /0x) (1 —e/2x)]
= —AP+ng"[0°v 10X + (e/2x)dv 10X
+e(1-g)v*/2x%]
+&g7(0/0x)[g™(0(v"g")/0x)].

(13)

GLADKOV

In the case of an incompressible liquid, by virtue of
Eqg. (9) we obtain

(0/0x)(g"*v") = ©; (14)
hence, the term proportional to & in Eq. (13) disappears.

Equation (14) yields

VX - CX_S/Z,
where C = const.

Let us solve Eg. (13) simultaneously for small
velacities, when the term v*(0v*/0x)(1 — €/2X) can be
neglected (small Reynolds numbers); for the steady-
state case; and for small €. Putting v* = v, we have

*VX19X + (e/2X)V 1ax + e(L—€) v /2X°

[

= (1nLg) I (ik) " *P e dk/2m,

(15

(16)

where, in the right-hand side, we used definition (2),
which determines the action of the linear operator of
fractional differentiation on a scalar function and P, is
the Fourier transform of pressure P(x).

To solve the egquation obtained, let us assume that
the pressure varies according to the law

P(x) = Pycosax, a7

where a is a constant having the dimension of recipro-
cal length.

This means that the Fourier transform is given by
b = _2Py(@+K+y)
k (az I+ y2)2—4a2k2’

whereyissomeformally introduced quantity providing
the convergence of the integral.

For such P,, we calculate the integral in the right-
hand side of EqQ. (16). In fact,

(18)

J= (yPolnan)I(ik)(“g)
- (19)
eikx(a2+ k2+y2)dk
(a2+ I(2_'_\/2)2_46‘2k2'
Integral (19) is easy to calculate using the theory of

residues. Eventually (after passing to thelimity — 0),
we obtain

J = —(Pa' "*InL%)sin(ax—mg2)e™ . (20)

The solution of homogeneous equation (16) for
small € leads to

v(x) = A"+ Bx 2. (21)

Now if we fix X, setting it equal to some value Xy,
and draw a plane perpendicular to that of Fig. 1a, we

X
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apparently obtain the picture shown in Fig. 1b. A one-
dimensional structure of “holes’ from which the liquid
flowsout is clearly seen. This structure, roughly speak-
ing, is a Cantor set where holes of different diameters
can be considered as points, the largest hole corre-
sponding to the basic trunk.

Next, solving Eq. (16) by the method of variation of
constants, we find in view of Eq. (20)

v(x) = AX 4+ BX Y2+ DX /(1 —€/2)]

xIxssin(ax—TWZ)dx (22)

—D[X*?I(1+¢/2)] J’xl”’zsin(ax— ne/2)dx,

where D = (Pya/n)(a/Ly)se™ *#),
In the absence of pressure (P, = 0), solutions (22)

and (15) must coincide. This means that we should set
A=0andB=C. Findly,

v(X) = CX?+ D[x' /(1 —¢/2)]

xIxssin(ax—TWZ)dx (23)

—D[X*?I(1+¢/2)] J’x“”zsin(ax—ns/Z)dx.
If e =0in Eq. (23), we obtain the natural result

Ve-o(X) = C—(Py/an)sinax. (24)

The limiting case, i.e., EQ. (24), confirms the valid-
ity of the mathematics and Eq. (23), which implies that
in quasi-one-dimensional structures, the flow rateisnot
constant in the absence of external factors(in particular,
pressure). The explanation of thisistrivial: the interac-
tion between different parts of d--dimensional struc-
tures always exists. Note that our theory (in particular,
guasi-homogeneous) is also of applied value, since the
hydrodynamic flow of liquids aong randomly
branched pipelines with a gradually decreasing radius
has not been amenable to theoretical treatment.

The only condition required for the mathematical
characterization of the physical properties of such sys-
temsistheir similarity in some range of the space scale.
The suggested heuristic physical description of such
complex branched systems may be useful in many
applications.

In fact, results obtained by this method can be used
in those fields of science and technology that are seem-
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Fig. 1. (a) Schematic representation of a structure with € >
0 and (b) itsview in the A section at x = const.

ingly far from hydrodynamics, for example, in fiberop-
tic technology, which deals with branched optical
fibers, and in the theory of crystallization.

CONCLUSION

We suggested the way to describe hydrodynamic
phenomena in spaces of arbitrary dimensionality and
applied d:-dimensiona hydrodynamic equation (8) to
the quasi-one-dimensional case as an example.
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Abstract—An electrostatic spectrograph based on an energy analyzer in the form of a truncated cylinder is
designed. The parameters of the device can vary in awide range. The position of the focal lineisfound for the
beam energies differing by one order of magnitude. The linear and specific energy dispersions are determined.
The performance of the spectrograph suggested is compared with that of a conventional spectrograph with two
planar electrodes. © 2001 MAIK “ Nauka/Interperiodica” .

The energy spectrum of charged particle beams is
usually determined with a plane capacitor. Capacitor-
based spectrographs are widely used for finding elec-
tron spectra, particularly, in studying the ion and atom
fluxes emitted by ahot plasma(see, e.g., [1]). When the
capacitor operates under the mirror conditions with the
45° entrance anglefor the central beam path, first-order
angular focusing is observed in the dispersion plane
provided that the source and the detectors are placed on
the lower capacitor plate [2]. The disadvantages of the
plane capacitor are (1) the absence of focusing in the
plane normal to the dispersion plane, (2) the need for
placing the detectors immediately on the capacitor
plane, and (3) the fact that the plane capacitor, being
opened on the sides, has the self-field of scattering and
is subjected to external fields.

A mirror analyzer in theform of atruncated cylinder
[3] is free of these disadvantages. It is the aim of this
work to study its operation in the spectrograph mode
(Fig. 1) and to compareits parameters with those of the
plane capacitor. Our analysisrelies on formulas derived
in [3]. In the 2D approximation, the expression for the
potentia distribution between the flat and cylindrical
€l ectrodes was more conveniently written as

@(x, y) = V/b{ 102 — arctan[(a° — X* — y*)/(2axX)]} , @
a=.p(2-p), b=rm2-actan[(1-p)/a],

where V is the potentia difference between the elec-
trodes and p isthe interel ectrode spacing aong the nor-
mal (the segment height).

Hereafter, p, X, y, and other geometric parameters
are expressed in terms of the radius of curvature R of
the cylindrical electrode. Note that in [3], the expres-
sion for the proportionality coefficient b, which is
responsible for the value of the potentia difference
between the electrodes, wasin error. Yet, thiserror does

not influence the form of the formulas derived in the
work cited. The values of the parameters cal culated for
a segment of height p are merely valid for an analyzer
with the (2 — p)-high segment.

In this work, we study the performance of a trun-
cated-cylinder energy analyzer operating as a spec-
trograph whenitsdimensionsarevaried in awiderange
(0.2 < p/R < 1.8) and the energy spread of the beam is
as high asone order of magnitude. Asfor the plane mir-
ror configuration, the entrance angle of the central
beam path is set equal to 8, = 45° and the source is
assumed to be placed on the planar grounded electrode.
Conditions for first-order focusing in the dispersion
plane are considered. For these conditions, Fig. 2 dem-
onstratesthed, vs. €V/e and h; vs. eV /e curves, where d,
is the entrance—exit length of the central paths for the
beams with various energies; h; is the shortest spacing
between the detectors and the planar electrode; e and €
are the particle charge and energy, respectively; eVieis
the electrostatic field force; and i is the channel no.
Both d, and h, grow with segment height and rapidly
diminish with decreasing energy. Starting from eV/e =
3, the focal point of the beam fals on the planar elec-
trode of the spectrograph.

Under the angular focusing conditions, the linear
energy dispersion is D = L/(2cos’6,), where L is the
analyzer base (source—detector distance), for any elec-
trostatic analyzer [4]. For the entrance angle 6, = 45°,
DizLi:di+hi'

To estimate the specific dispersion, which is the
measure of the resolving power and is defined as the
ratio of the linear dispersion to the highest aberration
term, we calcul ated the second-order aberration coeffi-
cientsin the dispersion plane. For atruncated cylinder,

1063-7842/01/4611-1478%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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(a)
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(b)

Fig. 1. Electrostatic spectrograph of charged particles in the form of atruncated cylinder. (a) Cross section and (b) the dispersion
plane showing the central beam trajectories in the truncated cylinder with a segment height p = 0.4R. The analyzer force eV/e is
(2) 0.5, (2) 0.75, (3) 1.0, (4) 2.0, and (5) 5.0. Curve 6 isthe focal line, at which the detectors are placed.

they are given by
C,/R = 3/2[(h, + h)(cot6, — tanBy)/sin’ 6, — dtan’ 6]
—abe/(eV) cosseolsineo{ 1-2[be/(eV)sing] 2}

+ 8/a’[be/(eV)] **sin’6,cos°0,

)

Xm

x J’x(2a2 +3x°) Jarctan(x,/a) — arctan(x/a)dx.
0

The formulasfor L (the entrance—exit length for the
central tragjectory of the beam), h, + h (the sum of the
distances from the sources and the detector to the elec-
trode plane), and x,,, (the coordinate of the point where
the central trajectory turns) are given in [3]. The maxi-
mal energy of the charged particles at which the turn
point of the central trgjectory lies on the cylindrical
electrode is independent of the segment height:

€max = eV/sinzeo.

©)

At the entrance angle 6, = 45°, €, = 2 €V, which
corresponds to an analyzer field force eV/e = 0.5.

Figure 3 shows the aberration coefficients calcu-
lated by formula (2) for different geometries of atrun-
cated cylinder, as well as the second-order aberration
coefficients for a plane mirror when the interelectrode
spacing equals the cylinder radius. The latter are given
by the ssimple anaytic form [2] C, = 2dp/R (p is the
interelectrode spacing). It is seen that if the segment
height p > R, the aberration coefficients vanish at high
energies in the analyzer force range eV/e = 0.7-1.1.
However, their energy dependencein thisrangeisvery
sharp: when the analyzer operates in the spectrograph
mode at energies € = (0.5-2.0) eV, the aberration coef-
ficient in the dispersion plane reaches the value C, =
(100 — 10)R. Therefore, if the segment height exceeds
the cylinder radius, the anadyzer can operate as a spec-
trograph only in the narrow energy range€ = (0.2-0.5) eV.
In this case, the maximum distance x,,, between the tra-
jectories and the planar electrode is much smaller than
p; that is, the analyzer aperture is used inefficiently.

TECHNICAL PHYSICS  Vol. 46

No. 11 2001

If p < 0.3R, the distance between the foca line and
the planar electrode is small, 0.01 < h/R < 0.1, and the

energies detected differ only by afactor of 2 or 3.
Based on the aforesaid, we selected an analyzer with
the distance between the cylindrical and planar elec-
trodesp = 0.4R. For this geometry, the beam central tra-
jectories for a tenfold difference in the beam energies

di/R

hi/R

Fig. 2. d/R vs. eV/e (continuous curves) and hj/R vs. eV/e
(dashed curves), where d; is the entrance—exit length of the
central pathsfor the beamsand h; isthe spacing between the
detectors and the planar electrode. The interelectrode spac-
ingp=(1) R (2) 1.8R, and (3) 0.2R.
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Fig. 3. Aberration coefficients in the dispersion plane (con-
tinuous curves) and coefficients that define the beam spread
in the vertical plane (dashed curves) vs. analyzer force for
p=(1)R (2) 1.8R, (3) 0.2R, and (4) 0.4R. Curves5refer to
the plane capacitor.

are depicted in Fig. 1. At high energies, € = (0.4-
2.0) eV, the focal line is outside the field, unlike the
case of a plane capacitor.

The linear energy dispersions for both (truncated-
cylinder and plane-mirror) analyzers are nearly the
same. The specific dispersions & = D/C, in the low-
energy channels are also amost coincident. However,
in the high-energy channels, € = (2-1) eV, the specific

OVSYANNIKOVA, FISHKOVA

dispersion of the truncated cylinder is 1.3-3.0 times as
large as that of the plane mirror, for which = 0.5 for
each of the channels.

It is known that a plane mirror analyzer does not
provide focusing in the vertical plane (normal to the
dispersion plane). Therefore, the image width in the

focusisAy = C,tany, where C, = d and y isthe angular
half-aperture of the beam in the vertical plane.

We calculated the coefficients C, for the truncated
cylinder analyzer by numerically solving the second-
order differential equations derived in [3]. The numeri-
cal results are depicted in Fig. 3 by the dashed curves.
At high energies, these coefficients are much smaller
than for the plane mirror analyzer. Hence, the beam is
focused inthe vertical plane. At low energies, this effect
isinsignificant.

It should be noted that focusing in the vertical plane
and the lower aberration in the dispersion plane
increase the luminosity of the spectrograph. Thisis of
specia importance for the identification of hot-plasma
high-energy components, since the particle flux density
rapidly drops with energy. An increased luminosity
improves the identification of the high-energy spectra
of the particles detected.

Thus, a double-electrode electrostatic spectrograph
in the form of atruncated cylinder was designed and its
optimal geometry wasjustified. It offersalower aberra-
tion level in the dispersion plane compared with aplane
capacitor and the focusing effect in the vertical plane.
In addition, our analyzer having the planar and cylindri-
cal electrodes is closed on the sides, which eliminates
the self-field of scattering and excludes the penetration
of external fields.
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Abstract—A changein the free energy of agrain boundary isanalyzed in the case when lattice vacancies come
to the boundary and are then delocalized in its disordered atomic structure. It is shown that the free energy of
the boundary is minimized at some excess atomic volume Avy, = Av§ , whose value depends on the energy of
vacancy formation in the crystal lattice and the boundary energy. The formation of ametastablelocalized grain-
boundary vacancy as aresult of thermal fluctuations of the density in agroup of ny = Q, /Av, atoms (Q, isthe
vacancy volume), followed by the jump of an adjacent atom into this vacancy, is taken as an elementary event
of grain-boundary diffusion. Expressions for the activation energy of diffusion and the diffusion coefficient are

derived for equilibrium (Av, = Av§ ) and nonequilibrium (Avy, > Av} ) grain boundaries. © 2001 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

In spite of avariety of papers on experimental and
theoretical investigation into diffusion along disordered
grain boundaries (which are ordinary grain boundaries
with the misorientations far from specific angles [1]),
commonly accepted concepts of mechanisms behind
self-diffusion along them are till lacking [2, 3]. In
recent years, interest in this problem has quickened
because of anomalously high coefficients of diffusion
along grain boundaries that were discovered in submi-
crocrystalline materials obtained by high-rate plastic
deformation [4]. It has been shown [5, 6] that coeffi-
cients of self- and heterodiffusion in submicrocrystal-
line materials may be one order of magnitude (or even
more) higher than in the coarse-grain state. These
anomalies of grain-boundary diffusion are assumed to
be associated with the nonequilibrium structure of
grain boundaries [4].

In this work, we suggest a unified approach to
describing diffusion along equilibrium and nonequilib-
rium grain boundaries with the disordered structure.

MODEL

Wewill consider agrain boundary (GB) asathin (of
thickness &, ~ (2-3)a,, were a,, is the interatomic spac-
ing) layer of an amorphous material sandwiched in mis-
oriented grains. It isobviousfrom genera considerations
that the GB specific free energy depends on the volume
occupied by GB atoms. If the number of the atoms
remains unchanged, thereis some GB volume at which
the energy is minimal. With thisin mind and assuming,

in the first approximation, that the GB energy and vol-
ume are uniformly distributed among GB atoms, the
free energy F,, of a GB atom can be expanded in powers

of (v,— V1), where v, isthe GB atomic volumeand v

isthe atomic volume for the minimal-energy boundary.
Up to second-order terms, we can write

Fo = Fo+ 3K(vo— Vi)’ (®)

where the coefficient k' is related to the compression
coefficient /K, = «(1/v,,)(0v,/op) by the relationship

K =K/ vy . The second term in the right-hand side of

(1) describes the elastic energy of the GB atom. Note
that the linear termin (1) is absent.

Consider how the GB energy changes when the
boundary captures vacancies from the volume. The
jump of a lattice vacancy to the boundary means that
one GB atom is removed and a GB vacancy arises. If
the atomic structure does not rearrange by relaxation,

such an unrelaxed vacancy has an energy F, = FS, —

Fp, where FS: isthe free energy of vacancy formation

inthe crystal |attice. However, the computer ssimulation
of usual boundaries [7-9] shows that vacanciesin dis-
ordered atomic structures are unstable and are rapidly
delocalized, that is, “smeared” as aresult of relaxation
displacements of atoms within a region measuring sev-
eral tens or hundreds of interatomic spacings. In terms
of our model, vacancy delocalization increases the

excess volume (v, — vg) and, according to formula

1063-7842/01/4611-1481$21.00 © 2001 MAIK “Nauka/Interperiodica’
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(2), raises the elastic energy of GB atoms. If the con-
centration C,, of lattice vacancies at a GB is sufficiently
high, elastically strained regions due to vacancy delo-
calization overlap and one can assume that eventualy
the elastic energy will be uniformly distributed and
depend only on the deviation Av,, of the atomic volume

Ve) =
C,V,Vp . The associated change AE? in the GB elastic
energy per unit area can be written as

AED = Ko Po

2\/3[{/_3

Without considering the contribution from the con-
figurational vibrational entropy, the total change AF of
the GB free energy as a result of the relaxation of the
GB atomic structure and vacancy delocalization (at

Vv, fromitsinitial value vg; that is, Av, = (v, —

2
—CoBH(CoV V) - ©)

C,Vy < 1)isgiven by

BF = ~Cydo(Fi ~F) +38KCove. (3

From the condition d(AF)/d(C,v},) = 0, one can find
the “equilibrium” excess atomic volume Avy =

C! v,vp, a which the GB energy is minimal:

(chrf )Vb

Avy =
KoV

(4)

At Av, < Avyg , the absorption of a lattice vacancy
by a GB is energetically favorable (the vacancy flux is

directed toward the boundary), whileat Av, > Avy , the
energetically favorable process is the injection of
vacanciesinto the grain volume (the associated mecha-
nism is discussed below). A GB at which the excess
atomic volume equals Av; will be referred to as an
equilibrium boundary.

Now consider the mechanism of GB self-diffusion.
Let GB atoms have some excess volume Avy,. Thermal
fluctuations may locally increase the density of the GB
material. It is easy to check that if the fluctuations cover
agroup of n, atoms, where n, = Q /Av,, and decrease
the atomic volume v, to vg , an unrelaxed vacancy of
volume Q, will appear (hereafter, we assumethat Q, =

vg). Inthis case, the elastic energy of atoms covered by

the fluctuations is released and the free energy
increases by the energy of the unrelaxed vacancy

(F. — F2). Hence, within this mechanism, the activa-

PEREVEZENTSEV

tion energy of GB vacancy generation can be expressed

Fo = Fo —Fp Vbo(vb vy’
b
5)
KAV
= (Fl—Fo) -5

The expression for the free energy of activation of

GB diffusionisobtained if the activation energy Fﬁm of

GB atom jump into the resulting vacancy is added
to (5):

KAV

Fi = For+Fon = (Fli—Fo+ Fun) ==, (6)

COEFFICIENT OF DIFFUSION ALONG
EUILIBRIUM AND NONEQUILIBRIUM GRAIN
BOUNDARIES

Let us calculate the coefficient of diffusion for an
equilibrium grain boundary. Since the excess atomic
volume Av,, isdefined by expression (4) in this case, we

obtain from (4) and (6) (at v/ vy 01)
FCI‘ _ FO 2Fb
vf ;+ vm_ (7)

Consequently, the expression for the coefficient of
diffusion along an equilibrium GB is given by

Fa =

0 b
_ O va Hb + 2Hmv|:|
Dy = Dy, eXpp KT il €S)
where
S +25,
Dy, = Z—babe@(p%Sf VD )

Here, z, isthe coordination number; v, isthe frequency
of atomic oscillations at the boundary; k is the Boltz-
mann constant; HS; , HY , and HY,, are the enthalpies;

r

., S, and S, are the entropies in the associated
expressionsfor thefreeenergy (F =H -TS). Asfollows
from (8), the energy of GB diffusion activation Q, =
(HS — HY +2H®, )2 isrelated to the enthalpy of lat-
tice vacancy formation H{; . Expressing H}; through
the energy of volume diffusion activation Q, (H}; =

Q,— H}.., where H; . isthe enthalpy of activation of

vacancy migration in the crystal lattice), one can relate Q,
and Q, as

Q, + (2HY, -

0 = HVm) —Hp
b 2 .

(10)
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L et us estimate the parameters entering this expres-
sion. We will usetheir typical values: Q, = 18kT,, (T, is

the melting point) [2], Hp = yov /8, 01.3KT,, (ys is
the GB specific surface enthalpy), yea. O 4KT,, [10],
8, 03a,, and HS,, [0(0.45-0.50)Q, = (8.1-9.0)KT,,, [11].

Since literature data for HBm are lacking, we will

assume that its contribution to the energy of GB diffu-
sion activation (by analogy with volume diffusion) is

0.45-0.50; that is, H®,,, 0(0.45-0.5)Q, 0(4.0-4.5)KT,,,
Substituting these values to (10) yields Q, = (9.1-
10.5)KT,,. Thus, expression (10) is in good agreement
with the well-known empirical relationship Q, = Q,/2.

The preexponential Dy, is still harder to estimate,

sincereliable literature data on the parameters entering
(9) are absent. A rough estimation can be made if we

put & 02k [12], S O(Sa2)/5, [0.66k (Sha2 = 2kis
the entropy per unit surface area of the boundary [10]),
S, 00587 O1k z, 06, a 03 x 108 cm, v, ~
10" 1/s. Then, Dy, = 1.7 x 1072 cm?s, which coincides
with experimental valueof D, by order of magnitude[2].

The activation energy of diffusion along a nonequi-
librium boundary (a boundary at which atoms have an
excess volume Av, > Av} is obtained by substituting
Av,=AvE +Av, (where AV, isthe nonequilibrium
excess volume of an atom) into (6). The expression for

the coefficient of diffusion D,, along a nonequilibrium
GB isthen given by

02kt U

where Dy, is the coefficient of diffusion along an equi-
librium boundary.

y
D} = Dyexplte il (11)

Thus, at Av, > 0, the diffusion coefficient for anon-
equilibrium boundary exceeds that for an equilibrium
boundary. In particular, with T = T./2, K, = 2G(1 —
M)/3(1 — 2u) (where G is the GB shear modulus and p
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is Poisson’sratio), Ga, 50KT,, and pt 01/3, the coef-
ficient D, exceeds D, by one order of magnitude at

Av, 02 x 102v,. Note that the value of Av,, depends

on the concentration of nonequilibrium defects (vacan-
cies, dislocations, etc.) that arrive at the boundary dur-
ing either deformation or post-deformation recovery
processes. The effect of nonequilibrium defects on GB
diffusion will be considered in subsequent publications.
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Abstract—The electrical and optical characteristics of alongitudina dc glow discharge in a cylindrical dis-
charge tube in mixtures of helium with saturated water vapor at room temperature are investigated. In the UV
range, a broad band with a maximum at A5 = 309.6 nm and AA = 9 nm prevails. The H, 656.3-nm, Hg 486.1-nm,
and Hel linesin the range 440-670 nm are the main diagnostic spectral lines. The helium partial pressure and
the glow discharge current are optimized to achieve the maximum intensities of the 309.6-nm band and Hel and
HI spectral lines. The results obtained are of interest for the development of an ecologicaly safe radiation
source based on the products of the decomposition of water molecules and clusters in plasma. © 2001 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

L ow-temperature plasmas of rare gas mixtures with
asmall admixture of water vapor are selective radiation
sources based on the products of the decomposition of
water molecules (mainly OH radicals) [1, 2]. The cre-
ation of an ecologically safe lamp based on the OH(A—
X; 0-0) 306.4-nm transition pumped by aglow or an RF
dischargewasreported in[3]. In He(Ar)/H,O mixtures,
the intensity of the OH(A—X) band increases with
increasing water-vapor partial pressure from 1 to 130 Pa
At larger water-vapor concentrations, when (H,0),,
(OH),,, and (OH),, - (H,0),, cluster molecules begin to
play an important role, the discharge emission has not
been studied, although the cluster plasmais of interest
for lamp development [4].

In this paper, we present the results of studies of the
emission from adc glow discharge in the water vapor—
helium plasmas at P(H,0) = 2.0-2.5 kPa.

EXPERIMENTAL

A glow discharge was ignited in a quartz tube with
aninner diameter of 7 mm and an anode—cathode spac-
ing of 50 mm. The design of the discharge tube is
described in [5]. The power deposited in the discharge
was 40-60 W and the discharge current varied within
therange 2-50 mA. Saturated water vapor at room tem-
perature (T = 17-21°C) was produced by evaporating
distilled water from areservoir placed in the lower part
of a 10-1 buffer chamber. The discharge tube with open
endswas placed in the upper part of the buffer chamber.
The pressure of the saturated water vapor varied within
the range 2.0-2.5 kPa. The intensity of the emission
band was determined as the area below the spectrum
curve corrected for the relative spectral sensitivity of
the recording system. The residual air pressure in the
buffer chamber did not exceed 10-15 Pa. The spectral

resolution was 0.2 nm. The plasma emission intensity
was measured with an accuracy of 7-10%.

ELECTRICAL AND OPTICAL
CHARACTERISTICS

A dc glow discharge in a He/H,O mixture at
P(He) = 1-16 kPawas quite homogeneous over thedis-
charge tube length. As the helium partial pressure
increased, the diameter of the discharge plasma
decreased from 4-5 to 2 mm. The norma mode of the
discharge was obtained at currents Iy, = 30 mMA,
whereas at low currents, the discharge operated in the
subnormal mode (Fig. 1). In the normal mode, the igni-
tion voltage and quasi-steady discharge voltage
increased with helium partial pressure. In our experi-
ments, the U, values were one order of magnitude

I, mA

Fig. 1. (1, 4) Current—voltage characteristics and (2, 3) the
power deposited in a longitudina glow discharge vs. the
discharge current for P(He)/P(H,0) = (1, 2) 16/2.5- and
(3, 4) 1.0/2.5-kPa mixtures.

1063-7842/01/4611-1484%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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higher and |, values were one order of magnitude
lower than those in [3], athough the discharge tube
geometry and the power Py, = |4U, were approxi-
mately the same.

The UV and visible emission spectra from the
plasma are shown in Fig. 2. The main constituents of
the UV spectrum of He/H,O plasma are a broad band
with a maximum at A, = 309.6 nm and two weaker
bands with A, = 286 and 262 nm. The most intense
band has afine structure with peaks at 307.0, 309.6 (the
main one), 312.4, and 315.2 nm. The closest to the
recorded peaks are the edges of the OH(A—X; 0-0)
306.4-nm (R-branch), OH(A-X; 0-0) 308.9-nm (Q-
branch), OH(A-X; 1-1) 312.2-nm, and OH(A-X; 2-2)
318.5-nm bands [6-8]. In [9], the broad emission band
in the wavelength range 300-310 nm with peaks at
307.0, 308.3, and 309.1 (the main one) nm was also
recorded in an RF discharge in water vapor at P(H,0) =
100 Pa and was assigned to the spontaneous decay of
(H,0), cluster molecules, athough no justification for
such an assignment was presented. The edges of the
286- and 262-nm bands correlate to the well-known
transitions of OH radicals: OH(A-X; 1-0) 281.1-
282.9nm, OH(B-A) 278 nm, and OH(A-X; 2-0)
260.9-262.2 nm. The experiments with a glow dis-
charge in He/H,O = (0.5-16)/2.5-kPa mixtures show
that, in the VUV spectral region, the emission is con-
centrated in a broad band with A, = 185 nm. A
decrease in the water-vapor partial pressure to 0.1—
0.2 kPa shifts the maximum of the VUV band emission
from 185 to 180 nm, which almost corresponds to the
edge of the OH(C-A) 179-nm emission band [3]. It is
seen that the recorded peaks of the UV emission corre-
late with edges of the most intense bands of the OH rad-
ical and are dlightly shifted to the long-wavelength side
of the spectrum. Thus, the characteristic emission of a
plasma of saturated water vapor can be attributed to the

emission of (OH)3 hydroxyl dimers. At elevated water
vapor pressures, a rapid hydration of OH dimersto the
cluster molecules like (OH)3 - (H,0),,, (Where m = 1)

occurs [10]. In a saturated water vapor plasma, the
excited OH radicals are produced viathe reaction

e+ (Hzo)m—> H_ E(Hzo)m_l + OH*

When OH and OH* radicals collide, the creation
and subsequent hydration of (OH)3 dimers can occur.
In the 300- to 400-nm wavelength range, the bands
belonging to the 2* molecular nitrogen system (nitro-
gen is present in the gas mixture as aminor admixture)
were observed. In the visible region (440-680 nm), the
Hqy Hg, and H, spectral lines, as well as the
Hel 667.8-nm, 587.6-nm, 501.0-nm, and 447.1-nm
lines, were observed. These spectral lines can be used
to measure the n, and T, values by the emission spec-
troscopy. The intensity of the Hel 667.8-nm line is
much higher than that of the Hel 587.6-nm line,
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Fig. 2. (8) UV and (b) visible emission spectra from the
plasmaof a He/H,0O mixture.

J, arb. units
1.0~ /
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Fig. 3. Intensities of the emission bands with Ay =
(1) 309.6 and (2) 337.1 nm for a glow discharge in a
He/H,O mixture vs. the helium partial pressure for
P(H,0) =25 kPaand |, = 50 mA.

although, according to the table data [11], the ratio of
their intensities should be 0.12. The upper levels corre-
sponding to these lines have the same energy (g, =
23.07 eV), whereas the energies of the lower levels g,
are quite different (21.22 and 20.96 eV, respectively) [11].

Theincreasein the intensity of the Hel red line may
be related to the depopulation of the lower level in col-
lisions with water molecules and the products of water
dissaciation in the discharge.
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Fig. 4. Intensities of the helium and hydrogen line emission
from a glow discharge in a He/H,O mixture vs. the helium
partial pressure for P(H,O) = 2.5 kPa and |y, = 50 mA:
(1) Hel 667.8-nm, (2) Hy 656.3-nm, (3) Hel 587.6-nm,
(4) Hel 501-nm, (5) Hp 486.1-nm, and (6) Hel 491-nm lines.
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Fig. 5. Intensities of (a) the bandswith A, = (1) 309.6 and
(2) 337.1 nm and (b) (1) the Hel 667.8-nm, (2) Hy 656.3-nm,
and (3) Hg 486.1-nm spectral lines for a glow discharge in
the He/H,0 = 8.0/2.5-kPamixturevs. the discharge current.

In the range P(He) = 1.04.0 kPa, when the dis-
chargeis quite uniform along the discharge tube radius,
the intensity of the emission band with A, = 309.6 nm
dlightly decreases with increasing helium partial pres-
sure (Fig. 3). The intensity of the admixture molecular

SHUAIBOV et al.

emission in the N,(C-B; 0-0) 337.1-nm band, which
has a broad maximum at P(He) = 8 kPa, is one order of
magnitude lower than that of the 309.6-nm characteris-
tic band. As the helium partia pressure increases, the
plasma column contracts and the intensity of the
309.6-nm band significantly increases and reaches its
maximum at P(He) = 8 kPa.

Figure 4 showsthetypical dependences of theinten-
sities of helium and hydrogen linear emission from a
glow dischargein a He/H,O mixture on the helium par-
tial pressure. For the H, line, the emission intensity as
afunction of the helium partia pressure, J = f(P[H¢e]),
has aminimum at P(He) = 4.0 kPa; the intensity of this
spectral line is approximately one order of magnitude
higher than that of the Hg line. The intensity of the Hg
line steadily decreaseswith helium partial pressure. For
the Hel 667.8-nm, 501.0-nm, and 491.1-nm lines, the
dependence J = f(P[He]) has amaximum at P(He) = 4—
8 kPa, whereas for the Hel 587.6-nm line, the intensity
steadily increases up to P(He) = 16 kPa. The depen-
dences of the intensities of the band with A, =
309.6 nm and the Hel 667.8-nm spectral line on the
helium partial pressure are qualitatively the sameinthe
helium pressure range 4-16 kPa. This indirectly indi-
cates that, at elevated pressures of a He/H,O mixture,
the excited helium atoms play a significant role in the
production of the excited OH radicals and (OH)* -based
clusters.

Figure 5 presents the typical dependences of the
intensities of the characteristic bands of water vapor
plasma and admixture molecules (N,) and the intensi-
ties of HI and Hel spectral lines on the discharge cur-
rent. For the band with A, = 309.6 nm, the depen-
denceis amost linear at low currents, whereas at |, =
15-20 mA, theintensity increases more rapidly. For the
337.1-nm band, the dependenceislinear over the entire
range of the discharge currents. The most intense spec-
tral linesarethe Hel 667-nm and HI 656.3-nm lines; the
dependences of their intensitieson | 4, are almost linear.
The emission intensities of other Hel lines (A = 587.6,
506.1, and 491 nm) are 10-50 times lower than that of
the Hel red line; the dependences of their intensities on
the discharge current are similar.

CONCLUSIONS

The results of investigations of a longitudinal dc
glow discharge in He/H,O mixtures at P(H,O) =
2.5 kPa can be summarized as follows.

() In the wavelength range 200400 nm, the emis-
sion band with A, = 309.6 nm and width AA =9 nmis
the most intense.

(ii) The H, 656.3-nm and H 486.1-nm lines, as well
asthe Hel 667.8-nm, 587.6-nm, 501.0-nm, and 491.1-nm
lines, can be used to determine the plasma density n,
and temperature T, by the emission spectrascopy.
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(iii) The maximum intensity of the 309.6-nm band is
attained at ahelium partial pressure of 8 kPa; inthedis-
charge current range 20-50 mA, the intensity increases
nonlinearly with the current without any tendency to
saturate.

(iv) A simple UV radiation source based on the char-
acteristic band with A, = 309.6 nm and operating in the
regime of the dow replacement of the P(He)/P(H,0) =
8.0/2.5 kPa gas mixture at 14, = 50 mA can be created.
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