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Abstract—Methods for calculating the spectral properties of multilayer anisotropic structures are described.
The structures comprise plane-parallel polarizing gratings made of linear conductors. The conductors in adja-
cent gratings are arbitrarily directed. The methods employ mathematical approaches used in the interference
optics of multilayer isotropic structures. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optical Fabry–Perot interferometers employ semi-
transparent mirrors based on continuous metal films.
For measurements in the long-wavelength range
(including millimeter and submillimeter waves), one
cannot use multibeam interferometers and interference
filters with the reflectors made of continuous films,
since such films exhibit a high absorption of electro-
magnetic waves in the skin layer [1]. Fabry–Perot inter-
ferometers designed for measurements in the micro-
wave range use the reflectors representing periodic
gratings made of linear conductors to minimize the
absorption [2–7].1 As a rule, such gratings operate in
the long-wavelength approximation, when the period of
the conductors l is much smaller than the wavelength of
the incident beam λ. If l/λ ! 1, the grating represents
an effective polarizer, since it reflects the E wave and
nearly completely transmits the H wave.2 In microwave
Fabry–Perot interferometers of high spectral resolu-
tion, the incident electromagnetic wave must be the E
wave for both gratings.

Conventional multilevel microwave interferometers
usually use polarizing gratings with identically directed
conductors. The general theory of diffraction by multi-
layer gratings [8, 9] also considers only systems with
the identical orientation of the grating conductors.
However, it is expedient to consider multilayer interfer-
ence structures (systems) in which the conductors of
neighboring gratings make an angle with each other.
Figure 1 shows such a structure containing N plane-par-
allel gratings. The advantage of the systems with non-

1 Along with the term “grating,” one can also use the term “one-
dimensional grid,” which is a matter of the production technol-
ogy.

2 It is generally accepted that the incident wave is E(H) polarized if
the electric (magnetic) field strength vector is aligned with the
conductors.
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parallel (crossed) conductor gratings is the possibility
of gradually varying the spectral properties of the mul-
tilayer structure by merely varying the crossing angle
without replacing the gratings.

The purpose of this work was to present two rather
general methods for calculating the spectral properties
of the multilayer anisotropic structures with crossed
gratings operating in the long-wavelength approxima-
tion. The consideration is restricted to the normal inci-
dence of the radiation.

STATEMENT OF THE PROBLEM 
AND PRELIMINARY REMARKS

Consider the general case of a multilayer anisotro-
pic structure consisting of N arbitrarily crossed plane-
parallel gratings with linear conductors (Fig. 1).
Assume, for simplicity, that the gratings reside in a
homogeneous isotropic medium with a refractive index
of 1. Let us number the gratings from left (first) to right
(Nth). The X0Y plane of the Cartesian coordinates XYZ
coincides with the plane of the first grating and the 0Z
axis is directed to the Nth grating. Let αn ∈  [0, π] be the
counterclockwise-counted angle between the 0X axis
and the direction of the nth grating conductors and dn be
the spacing between the nth and (n + 1)th gratings (in
the latter case, the subscript n varies from 1 to N – 1).

Finally let  and  (  and ) be the amplitude
transmission (reflection) coefficients of the nth grating
for the E- and H-polarized waves, respectively. If the
nth grating operates in the long-wavelength approxima-
tion, these coefficients represent the amplitudes of the
fundamental undamped harmonics of the infinite dif-
fraction spectrum of the grating. The relationships

between the coefficients are as follows:  = 1 + 

τn
E τn

H ρn
E ρn

H

τn
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E
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Fig. 1. Multilayer structure with N arbitrarily crossed gratings.
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and  = 1 + . Below, we will not specify the geom-
etry and the transverse dimensions of the conductors,
which govern (at a given wavelength) the explicit form
of the coefficients [7–10] and consider the problem for
the general case.

Let a plane monochromatic linearly polarized elec-
tromagnetic wave be incident from the left (Z < 0) on
the multilayer structure. The amplitude of the electric
field E0 of the wave has nonzero x and y components,
and the wave vector is k. We assume that the aperture
of the gratings and the width of the incident wave front
are much larger than the wavelength λ, which allows us
to neglect the diffraction effects. We are looking for the
amplitude of the electric field EN of the wave transmit-
ted through the multilayer structure.

In what follows, we will present two independent
but physically equivalent computing methods and
begin with the method of direct summation of multiple
reflections. We extend the Vlasov–Caballero method of
recurrence formulas [11–13] to our anisotropic struc-
tures. Then, we will consider the method of boundary
conditions for interfering fields, which generalizes the
(direct) matrix methods that are applied for analyzing
multilayer isotropic coatings [11–13].

Prior to describing the methods, note that in interfe-
rence optics, a wave incident on a multilayer isotropic
structure at an arbitrary angle is represented as the
superposition of mutually orthogonal TE and TM com-
ponents (or, in other words, s and p polarizations) that
interfere independently. The independent interference
of the TE and TM waves is inherent in isotropic media.
This statement in terms of E- and H-polarized compo-
nents apparently applies also to multilayer anisotropic
structures based on identically oriented gratings. How-
ever, an arbitrarily oriented polarizing grating is char-
acterized by the transmission and reflection matrices
(Jones matrices [14]), which are generally off-diagonal.

τn
H ρn

H
 In our coordinate system XYZ, the explicit form of
the Jones matrices for the nth grating in an N-grating
structure can be derived in the following way. First, we
consider the grating in a new coordinate system X'Y'Z'
obtained by rotating the initial system around the 0Z
axis through an angle αn so that the conductors become
parallel to the 0X' axis. In the new coordinates, the
Jones matrices of the grating are

and

Under such a rotation, the Jones matrices transform as

where 

is the rotation matrix. With this in mind, the transmis-
sion matrix )n of the nth grating in the XYZ coordinates
is explicitly represented as

(1)

)N'
τn

E 0

0 τn
H
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Fig. 2. To the method of recurrence formulas. For clearness, off-normal incidence of the wave is shown.
The reflection matrix 5n is derived from )n by sub-

stituting  for  and  for .

It follows from expression (1) that the off-diagonal
elements of the matrices )n and 5n equal zero only at

αn = 0, π/2, and π (recall that  ≠ , since | | ! 1

and | | ≈ 1 in the long-wavelength limit). Therefore,
multilayer anisotropic structures based on arbitrarily
crossed polarizing gratings, where at least one of the
equalities α1 = α2 = … = αn = … = αN  does not hold,
do not allow one to reduce the vector problem of inter-
ference to corresponding independent scalar problems.
The reason is the interrelation between the mutually
orthogonal components of the transmitted and reflected
fields. Hence, the computing methods for multilayer
structures can be extended to crossed polarizing grat-
ings if the transmission and reflection matrices of the
gratings are correctly applied instead of the scalar
Fresnel reflection and transmission coefficients used in
the conventional methods of multibeam interference
optics.

THE METHOD OF RECURRENCE 
FORMULAS (SUMMATION 

OF MULTIPLE REFLECTIONS)

Separate a subsystem of a multilayer N-grating sys-
tem (Fig. 1) containing gratings with the numbers from
1 to n. Let us denote the transmissions and reflection

matrices of the isolated n-grating subsystem as  and

 for a wave incident from the left (kz > 0) and 

and  for that incident from the right (kz < 0).3

Apparently, in the general case,  ≠  and  ≠

. Now the subsystem is supplemented by the (n +
1)th grating characterized by the transmission and

3 The term “isolated” means that the subsystem is bounded on both
sides by a semi-infinite space so that there are no gratings with
numbers exceeding n.
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reflection matrices , , , and .
Below, we use leftward and rightward arrows as the
superscripts of the grating matrices for generality,

assuming that  =  ≡ )n + 1 and  =

 ≡ 5n + 1 at normal incidence [see (1)]. To deter-

mine the transmission,  and , and reflection,

 and , matrices of the new subsystem, which
contains (n + 1) gratings and is considered indepen-
dently of the remaining (N – n – 1) gratings of the initial
system, we represent it as a multibeam (Fabry–Perot)
interferometer with two anisotropic mirrors (Fig. 2). The
n-grating subsystem and the (n + 1)th grating act as the
first and the second anisotropic mirrors, respectively.

Let a wave with an amplitude E0 be incident on the
interferometer from the left. First, we calculate the vec-
tor amplitude of the transmitted wave Etr. It obviously
represents the superposition of the vector amplitudes of
the partial transmitted waves formed by multiple reflec-
tions from the mirrors. For the case of normal incidence
and the infinite number of the partial waves, we per-
form the summation of the field amplitudes (as for the
interferometer with isotropic mirrors) in view of their
matrix transformation. Using the scheme shown in
Fig. 2 and assuming that the phase factor is given by
exp(ikzz), we arrive at 

(2)

where γn = kzdn and I is the identity matrix.
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One can transform the infinite matrix sum in (2)
based on the theorem for the expansion of the resolvent
of a linear bounded operator in the Neumann series.
According to this theorem, the following formula is
valid for an operator A with a norm ||A|| < 1:

We consider the product  as the oper-
ator A and assume that the above condition for the norm
is met.4 Then, expression (2) can be rewritten as

(3)

The expression preceding the vector E0 in the right-
hand side of (3) is nothing but the transmission matrix
of the subsystem consisting of (n + 1) gratings for the
wave incident from the left.

Repeating the above procedure for the amplitude of
the reflected wave and also for the case of incidence
direction reversal (kz  –kz), we obtain the matrix
expressions

(4)

(5)

Thus, we derived the recurrence relationships for
multilayer anisotropic structures containing an arbi-
trary number of crossed polarizing gratings. The recur-
rence process for an N-grating structure involves N – 1
steps, at each of which the number of the polarizers n is
increased by unity from 2 to N and the intermediate
variants of the n-grating system are calculated with for-
mulas (4) and (5). Note that the expressions obtained do
not admit the rearrangement of the matrices, since, in
the general case, the commutative law of multiplication
here fails.

THE METHOD OF BOUNDARY CONDITIONS 
(DIRECT MATRIX METHOD)

Consider another approach to analyzing the interfer-
ence of the waves in the multilayer system. Let the
apertures of the mirrors and the width of the incident
wave front be infinitely large. Then, the field between
neighboring gratings can be represented as the field of
two waves propagating in the opposite directions along

4 The condition  < 1 means that two successive

reflections (respectively, from the left and right mirrors of the
interferometer) lead to a decrease in the modulus of the wave
amplitude, which is physically evident.
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the 0Z axis (Fig. 3). In this case, the field strengths of
all the waves are related through the boundary condi-
tions written as the continuity conditions for the total
field vector crossing the surfaces of the gratings. We
can represent the above conditions for the nth grating in
terms of the transmission and reflection matrices:

(6)

where γn = kzdn.

Equation (6) allows a clear physical interpretation:
the wave field En is the superposition of the field trans-
mitted through the nth grating, En – 1, and the field
reflected from the grating,  (the same also holds for

the wave ). Here, we assume that the phases of the
waves propagating between the nth and the (n + 1)th
gratings are reckoned from the surface of the latter.
Expression (6) can conveniently be rewritten in the
matrix form

(7)

where the matrix Mn is given by

By sequentially applying boundary conditions (7) to
the surface of each of the gratings in the N-grating
structure, we obtain the relationship between the ampli-
tudes of the incident, E0; reflected, ; and transmitted,
EN, waves:

(8)

(note that for n = N, one must formally put γN = 0).
Introducing the notation

we find the solution of the initial problem:

As in the case of the isotropic structures, the direct
matrix method possesses the advantage over the
method of recurrence formulas: according to (7) and
(8), a change in the parameters of any nth grating or in
the distance dn does not necessitate the recalculation of
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the partial products  and ,
which saves the computation time. Unfortunately, the
matrix method operates on 4 × 4 Mn matrices, whereas
the recurrence method employs 2 × 2 matrices.

CONCLUSION

We considered two approaches to calculating the
spectral properties of multilayer anisotropic structures
based on crossed polarizing gratings. The solution
methods proposed can also be applied to other anisotro-
pic structures, since our methods do not use the explicit
form of the transmission and reflection matrices of the
polarizers. Note that the methods are valid only in the
plane monochromatic wave approximation. If the spac-
ing between the gratings is comparable to the period of
the conductors, the interference pattern is affected by
higher harmonics and the methods become inapplica-
ble.

Finally, it should be noted that the general formal-
ism of the approaches makes it possible to consider
small-angle incidence (one can neglect the finiteness of
the apertures of the gratings in this case, which reduces
the effective number of interfering beams). Strictly
speaking, the dependence of the elements of the trans-
mission and reflection matrices on the angle of inci-
dence should then be taken into account. However, for
small angles, such a dependence introduces a correc-
tion factor on the order of ϕ into the amplitude trans-
mission coefficient of the anisotropic structure (ϕ is the
angle between the wave vector and the normal to the

M jj n 1–=
1∏ M jj N=

n 1+∏

...

... ...

...1 n–1 n N

E'0
z

E'n–1 E'n

E0 En–1 En EN

dn–1

Fig. 3. To the method of boundary conditions.
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
grating) and a correction factor on the order of ϕ2 into
the energy transmission coefficient. Thus, if ϕ ! 1, the
calculations can be performed in the same way as for
normal incidence, with the z component of the wave
vector being equal to |k|cosϕ.
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Abstract—Magnetic effects in a degenerate atomic Fermi gas, such as the exchange enhancement of the para-
magnetic susceptibility and the existence of the phase transition to the ferromagnetic state with the spontaneous
polarization of the atomic spins, are discussed. The propagation of spin waves in the atomic system is consid-
ered. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A degenerate atomic Fermi gas is a unique object for
experimentally simulating perfect Fermi gas and study-
ing its quantum statistic. Unlike an electron Fermi gas
in metals or in a plasma, where strong interaction
effects cause nonideality, the atomic gas, where Van der
Waals interaction alone is present, seems to be an excel-
lent model of perfect quantum gas.

Once atomic Bose systems had been successfully
cooled and the Bose condensate had been obtained [1],
experiments on cooling Fermi systems, specifically,
K40, were performed. A total of 7 × 105 K40 atoms were
cooled down to the degeneracy temperature, i.e., below
300 nK [2]. Ultracold atoms produce a low-density
ensemble where interparticle interaction is weak and
can be controlled via the so-called magnetic-field
Feishbach resonance [3]. Such behavior of cooled
Fermi atoms is also observed in Bose systems [4].
Among new features predicted for Fermi systems are
the flaky structure of the spatial distribution [5], the
suppression of elastic and inelastic collisions [6, 7], and
the existence of zero sound at low temperatures [8].
Finally, the possibility of the phase transition to the
superfluid state for Cooper pairs is discussed [9].

However, we should bear in mind magnetic phe-
nomena in atomic gases that are far from degeneracy
(T ≈ 4 K) but in which quantum effects are appreciable,
providing the basis for the quantitative characterization
of a physical event having no classical analog. Boltz-
mann gases where macroscopic quantum effects are
observed have been called “quantum gases” [10]. The
term “quantum” as applied to a Boltzmann gas merely
means that the thermal de Broglie wavelength λ much
exceeds the atomic size a and at the same time is much
less than the mean interparticle spacing; that is,

where n is the density of a spin-polarized atomic gas.
For such gases, in particular for spin-polarized

hydrogen and 3He↑ , collective magnetic phenomena

n 1/3–
 @ λ  @ a,
1063-7842/01/4612- $21.00 © 21494
like spin waves have been observed [11–14]. The mag-
netic effects in spin-polarized Boltzmann gases have
been treated ab initio [15], as well as within the phe-
nomenological theory of Fermi liquid [10]. In the
former case, not only a term taking into account atom
spin correlation was introduced into the quantum
kinetic equation but also the exchange interaction con-
stant was derived in a natural way. In addition, the fun-
damental reason for the Heisenberg-type term appear-
ing in the equation was elucidated.

The magnetic effects remain appreciable for colder
systems as well. Moreover, they may be a basic mech-
anism violating the ideality of an atomic gas. There-
fore, these effects should be considered in detail even in
a degenerate atomic gas. In fact, strong Coulomb inter-
action, observed in an ensemble of charged particles, is
absent in atom systems; hence, weak effects of spin cor-
relation begin to play a more significant part. The spin
correlation effects arise because of exchange interac-
tion, which is a consequence of the interference redis-
tribution of the atomic gas density when Van der Waals
interaction is weak. Thus, the spin correlation effects
and collective excitations, which have been observed in
quantum Boltzmann gases at T ≈ 4 K, will show up
more vividly in a degenerate Fermi gas. Moreover, they
may give rise to even more intriguing magnetic effects,
such as the second-order phase transition to the ferro-
magnetic state.

EXCHANGE INTERACTION

Consider the interaction of two neutral atoms at
temperatures such that the thermal de Broglie wave-
length of the atom is comparable to the mean interpar-

ticle spacing: "/  ~ n–1/3, where m is the mass of
the atom and the temperature is expressed in units of
energy. In this case, the atom indistinguishability prin-
ciple should be taken into account in the quantum
mechanical calculation of the interaction energy. Since
Van der Waals interaction is weak, the perturbation the-
ory basically applies. However, the wave properties of

2mT
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the atoms will substantially affect the resulting interfer-
ence redistribution of the atom concentration in the
space. Therefore, it is more appropriate to invoke the
exchange perturbation theory (EPT), which has been
specially tailored for such systems [16]. According to
the EPT, the first-order correction to the energy is given
by

(1)

where 〈Φ| is the nonsymmetrized wave function of an
ensemble of noninteracting particles, which is merely
the product of the wave functions of individual parti-
cles; |Ψ〉 is the antisymmetrized wave function (or the
coordinate part of the antisymmetrized wave function if
a perturbation does not contain spin operators in the

explicit form); and  is the interaction operator.
In our case, the interaction operator is taken in the

form of the Suserland potential

(2)

where c is the Van der Waals constant, a is the range of
repulsion forces between the atoms (a ~ 10–8 cm), and
r is the center-to-center distance of the atoms.

In the center-of-mass coordinate system, the wave
function for two noninteracting atoms is written as

where z = rcosθ is the coordinate along the z axis, con-
necting the nuclei; f is the scattering amplitude, which
depends on the direct interaction of the atoms (that is,

); k = p/" is the wave number; p is the momentum of
the relative motion of the nuclei.

The wave function including the permutation of the
atom centers is given by

Then, the coordinate part of the diatomic function is
either symmetric or antisymmetric,

(3)

since the associated spin part is either symmetric or
antisymmetric. In the experiments, K40 atoms have only
two spin states:

where j is the total atom spin and jz is the projection of
the total atom spin onto the z axis. Therefore, the asso-

ε 1( ) Φ V̂ Ψ〈 〉 ,=

V̂

V̂

c

r6
----, r a>–

+∞, r a,<





=

Φ r( )| 〉 e
ikzz f θ( )eikr

r
--------,+=

V̂

Φ' r( )| 〉 e
ikzz–

f π θ–( )eikr

r
--------.+=

Ψ r( ) e
ikzz e

ikzz–
f θ( ) f π θ–( )±( )eikr

r
--------,+±=

j
9
2
---; jz

9
2
---== and j

9
2
---; jz

7
2
---==  2[ ] ,
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ciated symmetric or antisymmetric function will corre-
spond to two possible states with a total spin of the
diatomic system J = 9 or J = 8, respectively:

(4)

where the subscripts I and II are atomic numbers, |χs〉 =
|J = 9; Jz = 8〉 , and |χa〉  = |J = 8; Jz = 8〉 . Thus, in expres-
sion (3), the upper and lower signs correspond, respec-
tively, to the |χa〉  and |χs〉 states.

Let the probability of the interatomic spacing being
r in a Boltzmann gas be defined by the function

where N is the normalizing factor.
Then, the averaged correction to the interaction

energy is found by modified formula (1),

(5)

which is equivalent to averaging using the density
matrix in the coordinate representation. The correction
to the energy will then have the well-known form

(6)

where K is the direct contribution and A is the exchange
contribution. The latter term specifies the energy split
due to the Van der Waals potential and at the same time
depends on the atom spin orientation. For A, we find

(7)

where b = c/T, In(k) are the integrals taken by the sad-

dle-point method,  is the amplitude averaged over the

angular variables (  and a are of the same order of
magnitude),

and ρ is the mean interatomic spacing (ρ > n–1/3).
For a given temperature T0 at ka > 1 and ρ @ a, we,

using the approximate values of the integrals, obtain

(8)
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Here, (6b/k)1/7 = r0 is the effective radius of exchange
interaction. Since the superscripts and the subscripts in
(3) and (6) stand for the antisymmetric spin part |χa〉  =
|J = 8; Jz = 8〉  and the symmetric spin part |χs〉  = |J = 9;
Jz = 8〉 , respectively, expression (6) can be recast using
the explicit form of the spin operators. Since the eigen-

value of the operator  is

(9)

and takes two values:  = 81/4 at J = 9 and 45/4 at
J = 8, one can conventionally introduce the operator

whose eigenvalues are +1 and –1 for the antisymmetric
and symmetric functions, respectively. Then, this oper-
ator can replace ±1 in expression (6):

or

(10)

where

Thus, the spin-interaction-related addition to the
energy operator for the atomic gas can be introduced:

(11)

Evaluations of the exchange interaction constant
will be given for temperatures below T0 = 1/2 ×
10−16 erg. The point is that the mechanism of exchange
interaction in gases may be very effective at certain
relationships between the basic scattering parameters
(thermal de Broglie wavelength, Van der Waals con-
stant, and atom concentration) unlike condensed media
where the exchange interaction depends on the thermal
motion of interacting atoms only slightly. The constant b

equals 5 × 104c, where c = 6EB( )6, k ≅  1/aB, and aB

is the Bohr radius. The radius of the potential barrier in
the Suserland model is usually taken near the Van der
Waals minimum: a ≅  5aB, where r0 = 8aB. At such val-
ues of the parameters, we obtain A ≈ several T0 from (8).
When the temperature increases by one order of magni-
tude, the saddle-point in the integrals entering into (7)
turns out to be lower than the potential barrier height
(r0 < a) and the calculation becomes invalid. The

ĵI ĵII

ĵI ĵII⋅ 1
2
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ĵI ĵII

P̂I II,
1
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ε0 K
7
2
---A.+=

Ĥ
2
9
---A ĵi ĵ j.

i j<
∑–=

aB
2

exchange integral vs. temperature dependence can be
approximated as

where x is the Van der Waals-to-thermal energy ratio.
It is obvious that the interaction is the most effective

at x = 3/2. Thus, in the temperature interval considered,
the exchange interaction of two atoms splits the energy
according to the alignment of the atom spins, the state
with the parallel spins being energetically more favor-
able. Therefore, spontaneous magnetization or at least
the enhancement of the paramagnetic susceptibility of
the atom ensemble in a magnetic field could be
expected.

THE EFFECT OF EXCHANGE INTERACTION 
ON THE FERMI ENERGY AND ON THE TOTAL 
ENERGY OF AN ENSEMBLE OF DEGENERATE 

GAS ATOMS

Exchange interaction in an ensemble of degenerate
gas atoms acts in two opposing directions. First, spon-
taneous polarization in an atomic gas changes the
Fermi level position, thus increasing the mean kinetic
energy of the atoms. Second, as was shown, exchange
interaction, which causes the alignment of the spins,
decreases the system energy. Thus, the equilibrium
polarization of the spins results from two competing
processes: nonforce exchange, or the interference redis-
tribution of the atomic concentration, and exchange
interaction as such. The former is due to the Pauli
exclusion principle and sets the antiparallel spin orien-
tation. The latter decreases (increases) the energy if the
spins are parallel (antiparallel) by a value ∆E = A. This
is taken into account in the Landau theory of Fermi liq-
uid as applied to electrons in metals by introducing the
Landau phenomenological function [17].

Let us estimate first the change in the Fermi energy
in the presence of the spontaneous polarization of
power α:

(12)

where n is the atom concentration.
The Fermi energy including the polarization is given

by

(13)

The kinetic energy without the temperature correc-
tions is

(14)

Then, the total energy with regard for the exchange

A T0x3/2e x– ,≈

n+ n–– αn, n+ n–+ n,= =

εF
+ εF 1 α±( )2/3, εF

"
2
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------- 3π2n( )2/3

.= =

T
3
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---nεF 1 α–( )5/3=

+
3
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1
2
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interaction is given by

(15)

The minimum of (15) in the weak interaction
approximation 2A ! εF is at 

(16)

at A > εF, the potential energy is minimal if α = 1. Thus,
the exchange interaction between free atoms may cause
spontaneous polarization in a degenerate atom system.

ENHANCED PARAMAGNETISM 
IN THE PRESENCE OF EXCHANGE 

INTERACTION

Exchange interaction results in spontaneous polar-
ization, which affects the Fermi level position. Substi-

tuting the operator  for ±1 in (13) yields

(17)

The exchange correction to the energy is given by
(10). Thus, the density matrix in the spin variable is

(18)

Expanding (18) in the small parameter, we obtain

(19)

where

and n0 is the Fermi function.
Consider the effect of an applied magnetic field on

the atom system. In this case, the total change in the
system energy can be written as [16]

(20)

This change has two components. First, the mag-
netic field acts on the magnetic moment of the atom,
which gives the contribution

(21)

where
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µ0*
e"

2mamc
---------------.=
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
Second, the energy spectrum is affected by the
change in the distribution function. The associated
change in the energy is expressed as

(22)

where ( ) is the scalar product.

In view of (20)–(22), we come to

or

(23)

The magnetic moment is
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ĵH

β1 p( ) 2µ0*
2m( )3/2

9n2π2
"

32
------------------------

∂n0

∂E
--------– 

  β1 p'( )∫+=

× 4α
3

-------ε p'( ) 2A p p',( )+ ε'dε',

β1 p( ) 2µ0*
1

12εF
3/2

-------------- 4α
3

-------εF
3/2 2A p( ) εF+

 
 
 

β1 p'( )+≈

β1 p( )
2µ0*

1
1
6
--- 2

3
---α A p( )

εF
------------+ 

 –
--------------------------------------------.=
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(24)

Then, for the magnetic susceptibility, we have [17]

(25)

It is seen that if the ratio A/εF is not small, the mag-
netic susceptibility may have a singularity related to the
transition to the spontaneous magnetization state. In
other words, the paramagnetic–ferromagnetic phase
transition is a possibility. This situation deserves spe-
cial consideration.

ON THE POSSIBILITY 
OF THE FERROMAGNETIC STATE 

OF ATOMIC FERMI GAS

If a system has spontaneous polarization of the
spins, one can comment on the spontaneous magnetic
moment of the entire Fermi system. Let m be the unit
vector in the direction of the spontaneous magnetic
moment. Then, the particle binding energy depends on
the mutual orientation of the spin and m:

(26)

According to this formula, the energy of the atom
with the spin parallel to m is ε0 – κ; accordingly, the
equilibrium distribution function is nF(ε0 – κ) = n+. The
energy of the atom with the oppositely directed spin is
ε0 + κ, and the equilibrium distribution function has the
form nF(ε0 + κ) = n–. The eigenvalues of n+ and n– are
obtained under the action of the operator

(27)

which can be viewed as the equilibrium density matrix.
For excited states (ε > εF), we can put

(28)

where  is the Fermi distribution function.
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Now let us see how the electron energy changes
when m rotates through an angle δθ. In this case, δm =
[δq × m], and we have from (26)

(29)

On the other hand, when m changes, so do equilib-
rium distribution function (27),

and hence the energy:

(30)

Equating (29) to (30) at an arbitrary δθ, we obtain

(31)

Substituting (19) into (31) yields

since 

(32)

(33)

At

(34)

transcendental equation (33) has a nontrivial solution
corresponding to the phase transition to the state with a
uncompensated magnetic moment.

The above condition holds in the temperature range
where the degeneracy of the atomic gas is observed.
Note, however, that the phase transition to the ferro-
magnetic state may take place at much higher tempera-
tures.
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SPIN WAVES IN A DEGENERATE 
FERMI GAS

In the ferromagnetic state, a new type of spin waves
may occur in an atomic Fermi system. For the density
matrix with respect to the spin variable, the associated
kinetic equation has the form

The coordinate and momentum operators for the
atoms are considered to be classical. Taking into
account that only the spin variables are noncommuta-
tive, we come to

We will seek the distribution  =  + δ , where

 is equilibrium function (27) and δ  ~ exp[i(kr –

ωt)], and represent δ  as the sum of two terms, one of
which depends on the spin and the other is spin-inde-
pendent:

Leaving the terms linear in δn, we obtain the sets of
equation for ν and n.

The first set describes the oscillations of the atom
density and the related oscillations of the spin projec-
tions onto the direction of the magnetic field: νz = nm.
Note that in the case of the electron density oscillations,
which are accompanied by the oscillations of the
charge density, it is necessary to consider the resulting
electric fields, which causes high-frequency excita-
tions: ω = µ/" [18]. For an atomic system, the oscilla-
tions of the spin projection lead to the same effect but
are not considered in this work. The second set of equa-
tions describes the oscillations of the transverse compo-
nents and, after introducing the cyclic variables, gives
for ν+ = νx + iνy [18]

where v = ∂ε0/∂p, u = ∂b/∂p, and 2A = J.

Solving this equation by the method of successive
approximations, we obtain the dispersion relation for
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the second-order terms in k [17]:

It turns out that ω ~ "k2ν2b/µ. This relationship is
also valid for a degenerate atomic Fermi gas, where
transverse wave may propagate. In essence, this result
is consistent with those obtained in [10, 15], where sim-
ilar effects have been considered in Boltzmann atomic
gases (or, more precisely, in nondegenerate quantum
gases).

CONCLUSION

The analysis of magnetic effects taking place in
heavily cooled atomic Fermi systems is of importance
for at least two reasons. First, the process of cooling
and confining the atoms proceeds in the magnetic traps
with rather complex configurations of magnetic fields.
Therefore, the behavior of the atomic gas confined by
such a trap in many ways depends on its response to an
applied nonuniform field (paramagnetic effects), as
well as on the ability of the gas to generate the magnetic
self-field (ferromagnetism). Second, the interaction by
itself, causing the spontaneous magnetization of the
atomic gas, may result in nonideality. Consequently,
the atomic gas cannot be considered as an adequate
model of a perfect Fermi system at temperatures lower
than some critical temperature.

In this work, we did not strive to give a comprehen-
sive electrodynamic analysis of macroscopic magnetic
fields in the trap with allowance for the generation of
magnetic fields by an atom system (although such a
description would be of interest). Here, we tried to mac-
roscopically describe the behavior of near-degenerate
interacting atoms and outline possible quantum effects,
like exchange effects in solids, that cause ferromag-
netism in an atomic gas. In more rarefied gases, at least
the exchange enhancement of paramagnetism may be
observed. We also showed that the exchange interaction
constant calculated ab initio is not small compared with
the thermal energy.

Having found the fundamental possibility of the
spontaneous spin polarization of a degenerate atomic
gas in the presence of exchange interaction, we came to
conclusion that force exchange dominates over non-
force exchange, which gives rise to the antiparallel spin
alignment, and that the partial polarization of the spin
may set in the system. Statistically, this circumstances
means that the phase transition of the atomic gas to the
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ferromagnetic state is a possibility. With the atom spins
aligned ferromagnetically, the excitations (spin waves)
observed earlier in Boltzmann gases may propagate.
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Abstract—By the direct numerical integration of the complete set of the Navier–Stokes equations, it is found
that the minimum kinetic energy dissipation principle, or the Helmholtz principle, is realized in some internal
flows of a viscous fluid. Studies are conducted for the Reynolds numbers from 2 to 20. A class of problems
where this principle takes place is considered. © 2001 MAIK “Nauka/Interperiodica”.
In the slow viscous flow dynamics, for which the
nonlinear terms in the Navier–Stokes equations may be
neglected, the Helmholtz variational principle holds.
This principle reads as follows: The mechanical energy
dissipated during the real slow flow of a viscous incom-
pressible fluid within some volume is less than that dis-
sipated during the arbitrary motion of an incompress-
ible fluid with the same velocity distribution on the sur-
face of this volume [1]. In the nonlinear dynamics of
viscous fluid, the principle thus stated does not take
place.

The question arises of whether there are nonlinear
flows where the principal of minimum kinetic energy
dissipation is observed. It turns out that such flows do
exist and their class is fairly wide. It is clear that these
flows have been found by numerical methods, since it
seems unrealistic to solve more or less significant prob-
lem with the aid of analytical methods.

Let us formulate the problem. A viscous incom-
pressible fluid containing one or several rigidly bound
cylindrical particles flows along an infinitely long cir-
cular cylindrical pipe. The pipe and particle axes coin-
cide. The particle moves along the pipe axis with a con-
stant velocity. This velocity will referred to as the
velocity of particle entrainment. This is the velocity of
the coordinate system related to the particle. The type
of particles for which the entrainment problem is
solved is shown in Fig. 1.

Let us write the Navier–Stokes equations in the
cylindrical coordinate system using a stream function Ψ.
We introduce the stream function with the equations

Here, Vr and Vz are the velocities along the radius and
the z axis, respectively. Having eliminated the pressure,
we arrive at the following set of equations in terms of

Vr
1
r
---∂Ψ

∂z
--------; Vz–

1
r
---∂Ψ

∂r
--------.= =
1063-7842/01/4612- $21.00 © 21501
dimensionless variables:

(1)

Here,

is the Stokes operator [2]; Re = (ρRVm)/µ, the Reynolds
number; ρ, the fluid density; R, the pipe radius; Vm, the
mean fluid velocity for z  ±∞; and µ, the fluid vis-
cosity.

The Navier–Stokes set of differential equations has
to be supplemented by boundary conditions. We spec-
ify them in the frame of references where the particle is
at rest. In particular, Ψ = –(1 – r2)2 – 0.5Vr2 (V is the
particle velocity) and ω = –8r2 for z  ±∞. The other
boundary conditions were listed in [3]. The boundary
conditions for ω on solid surfaces involve the Thom-
like conditions [4]. System (1) was approximated by
the method of central differences. The resulting set of

∂2Ψ
∂r2
----------

1
∂r
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∂2ω
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Fig. 1.
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difference equations was solved with the Zaidel
method. In [5], the accuracy of numerical results as
applied to this problem was considered in detail.

For reference, we present the expression for the dis-
sipation energy in the axially symmetric problem in
cylindrical coordinates:

(2)

where

and z1 and z2 correspond to the left and right pipe ends,
respectively.

Consider an important issue that has not yet been
discussed, namely, the numerical differentiation of a
numerical solution of a differential equation. The
resulting error of a numerical solution of a differential
equation is the sum of a systematic error O(hk), the so-
called approximation error, and an accidental error ε
related to inaccurate solutions of difference equations
by iteration. The differentiation of numerical results is
made by dividing a difference of a certain order by hl,
where h is the step of the grid and l is the exponent. In
this case, the error of the final result may become intol-
erably large. Such a situation would take place in our
problem if the numerical results obtained by a scheme
of second order of accuracy were doubly differentiated,
squared, and summed up. The remarkable feature here
is that the presence of the systematic and accidental
errors in the numerical solution of a boundary problem
results in acceptable accuracy of the derivatives. The
author is also familiar with Volkov’s theorem, which
states that, in differentiating the numerical solution of
the Laplace equation, any derivative has the same order
of accuracy as the solution itself [6].

The entrainment problem was solved in the follow-
ing way: particles are entrained by a viscous incom-
pressible fluid flowing in a circular cylindrical pipe
(Fig. 1). The system of coordinates is fixed and related

E
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∂Ur
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Fig. 2.
to the particles. In this system, the flow of the viscous
fluid at the solid particles is considered in the volume
bounded by z1 = L1 and z2 = L2 (Fig. 1). At the ends of
this pipe segment, the pressure gradient across the pipe
cross section is equal to the Poiseuille gradient.

For various shapes of the particles, various Rey-
nolds numbers Re, and various velocities of the parti-
cles, we calculated the dissipation energy by formula (2).
In the left-hand side of Fig. 2, the dependence of dissi-
pation energy on the velocity of the bodies shown in
Fig. 1 is presented. The total force acting on the moving
particle as a function of the particle velocity is shown in
the right-hand side of Fig. 2. The curves were obtained
for Re = 10. Consider the force behavior: at a certain
value of the particle velocity, the total force acting on it
is equal to zero. By definition, this velocity is the
entrainment velocity. Note, however, that a minimum
of the dissipation energy is also observed at a certain
velocity in the left-hand plot. The velocities corre-
sponding to the zero total force and to the minimal dis-
sipation energy coincide within a relative error of
0.04%. The author perceives that a numerical calcula-
tion cannot serve as the proof of the principle stated in
this paper. However, there is no doubt that this principle
is correct, since the coincidence of the minimum of dis-
sipation energy (2) and the zero of the total force acting
on the bodies of certain configurations cannot occur
accidentally, especially if it is taken into account that
both very complex expressions are derived on the spe-
cial ensemble of points (the numerical solution of the
Navier–Stokes equations).

This study was carried out for Reynolds numbers
from 2 to 20. The behavior of the dissipation energy and
the total force acting on the bodies is the same through-
out the range of Reynolds numbers and for various con-
figurations of the bodies. It may appear that the Rey-
nolds numbers selected are too small. However, the
nonlinearity in this problem was observed even for
Re = 1–3. This range of Reynolds numbers was chosen
because the calculations were performed with the
BÉSM-6 computer, whose performance is relatively
low.

Note another fact of interest. As is shown in Fig. 3,
in the Re range considered, the Re dependence of the
dissipation energy is represented by the hyperbola E =
b/Re, where b is a certain constant depending on the
shape of the particles. The deviation of the calculated
data from the inverse proportionality does not exceed
0.1%. As follows from Fig. 3, the Re dependence of the
dissipation energy for such flows obeys the similarity
law.

Axisymmetric and plane problems are not the only
ones for which the minimum energy dissipation princi-
ple is valid. Intuition suggests that this principle takes
place for a viscous fluid flowing in an infinite straight
cylinder of an arbitrary radius if the solid bodies
entrained move with a constant velocity vector, which
is referred to as an entrainment velocity vector, and sta-
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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tionary boundary conditions are held at the ends of the
cylinder. This fact is also correct for the entrainment of
periodical structures.

Let us briefly describe the effect observed in [7]. In
an infinitely long pipe containing a viscous fluid, an
infinitely long rod (cylinder) of different radius is
entrained by the fluid. The minimum energy dissipation
principle has been used to find the velocity of the solid
rod, and the exact formula has been derived for the
velocity of entrainment of infinitely long cylinders of
certain radii. The V(ξ) curve (Fig. 4) shows the veloci-
ties of sufficiently long cylindrical bodies of the same
radii; the dots indicate the velocities found by the direct
numerical integration of the Navier–Stokes equations
[8]. Therefore, an exact formula for the entrainment
velocity may be obtained by applying the minimum
energy dissipation principle to the case when an infinite
circular cylinder is entrained by a viscous fluid flowing
in another circular cylinder. This formula is written as

where b is determined from the equation 4b = (l + b)2ζ2

in view of the relationship l(1 – ζ2) = 8 + bζ2lnζ2 for l.
Applying the same principle to solving a similar

problem of entrainment of an infinite cylinder in an axi-
symmetric wavy pipe would result in the correct result
but for a nonlinear flow. As is seen, the use of the min-
imum energy dissipation principle is the only method to
completely solve a number of problems. Since in the
last two problems the force acting on an body entrained
cannot be equal to zero, the minimum energy dissipa-
tion principle has to be applied to find the entrainment
velocity for the solid body.

2
V
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a
------ 1 ζ2+= =

+ b 1 ζ2+( )ζ2 ζ2 2ζ 2
1 ζ2–( )+ln[ ] /8,
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Fig. 3.
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In [9], some problems related to the Stokes equation
have been considered from the variational standpoint.
In [10], much attention has been given to the viscous
fluid dynamics and the question has been raised as to
whether flows where the Helmholtz principle takes
place exist. However, no answer has been provided.
Both [9] and [10] were published much later than the
author’s papers; however, neither refers to his papers
and results. The author therefore inferred that his early
work “sank” in a number of other papers and decided to
publish it once more after some revision.
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Abstract—Capillary breakup of a viscous magnetic fluid layer subjected to a gradient magnetic field under
hydroweightlessness is studied within the linear theory. The cylinder surface of a current-carrying conductor
serves as the inner boundary of the layer. The outer boundary of the layer is the coaxial interface with an immis-
cible nonviscous fluid of lower permeability. The particular subject of investigation is the effect of the relative
thickness of the layer and that of the magnetic Bond number on the characteristic time of growth of the fastest-
increasing harmonic and on the size of droplets forming under the ultimate conditions of capillary breakup (i.e.,
at large and small Ohnesorge numbers). © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that a liquid sheath covering a fine fila-
ment (one of natural objects having a similar structure,
web [2], was considered by Rayleigh [1]) changes the
initially cylindrical shape of its free surface because of
capillary instability [1]. As a result, droplets regularly
spaced along the filament like beads appear (see Fig. 37
in [2], where tiny satellites between the droplets are due
to the nonlinear capillary breakup of the liquid sheath).
A thin liquid film applied on a wettable solid substrate
(quartz [2] or metallic [3] filaments, as well as synthetic
fibers) behaves in a similar way if one of the principal
radius of curvature of the substrate surface is suffi-
ciently small. It should be stressed that the use of a
fine filament (with a diameter on the order of 10–2 or
10−3 cm) and a rather viscous liquid (honey) [3] are nec-
essary to provide the slow formation of droplets (with a
diameter much less than the capillary constant [4] of the
liquid). Such conditions prevent the droplets from
being detached from the substrate due to the gravity
force.

These experiments were modified by applying a
magnetic fluid layer in the zero-gravity state on a
cooled steel tube with an outer diameter of 2 × 10–1 cm
through which direct current is passed [5, 6]. Under
such conditions, researchers were able to observe (for a
very long time) the final steady-state breakup of the
layer that was much less viscous and much thicker than
that used in [3]. Moreover, one could easily control the
droplet size, varying solely the current, hence, the den-
sity of bulk magnetic forces directed to the axis of sym-
metry.

The perfect fluid model is usually used [see, e.g.,
[7–9] and Refs. therein) for analyzing the capillary
1063-7842/01/4612- $21.00 © 1504
breakup of both cylindrical layers and cylindrical col-
umns of magnetic fluids placed in magnetic fields with
various configurations. When applied to the problem of
capillary breakup for a cylindrical liquid layer during
rest in a magnetic field with circular field lines, such an
approach has made it possible to introduce the critical
magnetic Bond number Bom (equal to unity), which
separates the stability (Bom > 1) and instability (Bom < 1)
regions.

Within the linear theory of stability, the characteris-
tic size of droplets due to the capillary breakup of a con-
tinuous layer depends on the wavelength λ∗  of the fast-
est-growing harmonic of the initial perturbation of the
outer cylindrical boundary of the layer. For a thin cylin-
drical layer of a nonviscous magnetic fluid surrounded
by a stationary gas layer, the relationship between λ∗
and Bom that neglects the gravity force has been
obtained [6–8]. In [9], the capillary breakup of a thin
film of a magnetic Newtonian liquid covering a current-
carrying conductor and having the cylindrical free outer
boundary has been considered. Based on the equations
of the hydrodynamic theory of lubrication, the authors
of [9] have inferred that the viscosity has an effect on
the perturbation increment alone, while the value of λ∗
remains the same as for a thin layer of a perfect liquid.

In this work, the capillary breakup of a cylindrical
viscous magnetic fluid layer surrounded by a nonvis-
cous fluid with a lesser permeability is studied in terms
of the linearized equations of ferrohydrodynamics. The
effect of Bom and the relative layer thickness on λ∗  and
on the characteristic time of growth of the fastest-
increasing harmonic are studied for the extreme cases
(large and small Ohnesorge numbers).
2001 MAIK “Nauka/Interperiodica”
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STARTING EQUATIONS AND STATEMENT 
OF THE PROBLEM

Let a cylindrical layer of an immiscible liquid with
a density ρ and a magnetic susceptibility χ2 be sur-
rounded by a stationary magnetic fluid of infinitely
large volume that has the same density and a magnetic
susceptibility χ2 < χ1. Let also the layer completely
cover a horizontal conductor of radius s and be held on
its surface by bulk forces due to the magnetic field
induced by a direct electric current I passing through
the conductor. We assume that the magnetic suscepti-
bilities depend on the magnetic field magnitude and
introduce a cylindrical coordinate system (r, ϑ , z) such
that the interface is described by the relationship r = a,
where a > s. The azimuth ϑ  will be reckoned from the
direction of the gravity force ρg. The magnetic field is
azimuth, H = (0, H, 0), and is defined as H = I/(2πr) in
both fluids. The densities of the bulk magnetic forces
fj = (fj, 0, 0) in the inner (j = 1) and outer (j = 2) fluids
are given by fj = µ0Mj∇ H, where µ0 = 4π × 10–7 H/m is
the permeability and Mj = χj(H)H is the magnetization.

In hydrostatic equilibrium, the pressures P1 and P2
in the associated regions are given by

(1)

Taking into account that the pressure experiences a
capillary jump P1(a, ϑ) – P2(a, ϑ) = α/a at the cylindri-
cal interface r = a, we find from Eqs. (1)

(2)

where α is the surface tension coefficient.
Now we will state the problem on the stability of

hydrostatic state (2) against small axisymmetric pertur-
bations. Let the equation r = a + ζ(z, t), where |ζ| ! a,
describe the shape of the perturbed interface and the
expressions Pj(r, ϑ) + pj(r, z, t) represent the distribu-
tion of the perturbed pressures at a time instant t. As
before, j = 1, 2 refers to the inner and outer fluids,
respectively. It is assumed that the inner fluid is Newto-
nian (with a dynamic viscosity η1), while the fluid sur-
rounding it is perfect. In our case, the distribution of the
initial magnetic field and the shape of the perturbed
interface are axisymmetric; therefore, magnetic field
lines do not intersect the interface during the develop-
ment of capillary instability, so that the magnetic field H
and the densities of the bulk magnetic forces fj remain
unperturbed. Because of this, the linearized equations
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of ferrodynamics (where it is assumed that η2 = 0) are
written as

(3)

(4)

(5)

Here,

and uj, 0, and wj are the components of the velocity vec-
tor v. Hereafter, we will use η instead of η1.

The impermeability condition, the condition that the
tangential velocity component vanishes on the conduc-
tor surface, as well as the linearized kinematic and
dynamic conditions at the viscous–nonviscous inter-
face are written as

(6)

(7)

(8)

Certainly, only those functions uj, wj, and pj having
a finite value at r = 0 and vanishing at r  ∞ have the
physical meaning.

The magnetic field affects the development of the
capillary instability of the initially cylindrical magnetic
fluid layer only if the magnetic susceptibility experi-
ences a jump at the interface. In this case, the magnetic
forces contribute to balance (8) of normal stresses at the
interface. For this contribution, the integral terms in
Eqs. (2) for the unperturbed pressures are responsible.
Physically, the reason for the nonstationary forces
(induced by the gradient magnetic field that remains
unchanged during the development of capillary insta-
bility) acting on the perturbed interface is straightfor-
ward: When the susceptibilities experience a jump,
these forces appear as a result of the change in the mag-
netic field H(a + ζ) – H(a) ≈ ζdH/dr|r = a in response to
the change in the interface position because of the axi-
symmetric deformation of its initially cylindrical
shape. In this case, the last term in the right-hand side
of linearized dynamic condition (8), which describes
the magnetic-force-induced perturbation of the pres-
sure, depends only on the perturbation ζ(z, t) of the
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interface, whereas the pressure perturbation due to cap-
illary forces (the second term) depends on both ζ(z, t)
and ∂2ζ/∂z2.

As follows from experiments [5–8], capillary and
magnetic forces are of the greatest importance among
various physical forces considered in this problem. It is
just their competition that causes a magnetic fluid layer
either to retain its continuity (Bom > 1) or to breakup
into droplets (Bom < 1). Recall that the magnetic Bond
number Bom = µ0I2(χ1 – χ2)|H = H(a)/(4π2αa), given by
the ratio of the third term in the right-hand side of (8) to
that part of the second term depending only on ζ(z, t),
is the measure of the relative contribution of these
forces.

To simplify the mathematics, we will rearrange the
equations and the boundary conditions. Since the exter-
nal forces are potential, the velocity field is continuous,
and the system is initially at rest, there exists the veloc-
ity potential ϕ2(r, z, t) [10] in the range (a + ζ ≤ r < ∞,
0 ≤ ϑ  ≤ 2π, –∞ < z < ∞) such that

(9)

The motion of a nonviscous magnetic fluid is
described by the Laplace equation

(10)

and the linearized Cauchy–Lagrange integral

(11)

Naturally, the motion of the viscous fluid is vortical.
In the range (s ≤ r ≤ a + ζ, 0 ≤ ϑ  ≤ 2π, –∞ < z < ∞), we
introduce the velocity potential ϕ1(r, z, t) and stream
function ψ(r, z, t). Assuming that

(12)

and following the procedure applied in the problem of
viscous fluid vibration [11], we pass from set (3)–(5),
which describes the vortical axisymmetric motion of
the viscous liquid in the layer adjacent to the conductor
surface, to the equations

(13)

and to the representation of the pressure perturbation in
the form

(14)
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In view of (9), (11), (12), and (14), boundary condi-
tions (6)–(8) can be written as

(15)

In the subsequent derivation of the dispersion rela-
tion, the problem will be stated by (10), (13), and (15)
(that is, in terms of ζ, ϕ1, ϕ2, and ψ).

INERTIAL AND VISCOUS CONDITIONS 
OF CAPILLARY BREAKUP

Within the problem stated, various ultimate condi-
tions of the capillary breakup of the layer are possible.
Physically, they differ by the relative contributions of
the inertial and viscous forces to the growth of the per-
turbations. These conditions also have various charac-
teristic velocities of the fluids and various time scales
that characterize the linear stage of instability develop-
ment.

Before proceeding to the discussion of the ultimate
cases, we note that, irrespective of the instability condi-
tion, our problem has the specific time scale τd = d2/ν.
In essence, it is the characteristic diffusion time of the
vorticity caused by the solid surface (due to liquid par-
ticle adhesion) and diffusing inward to the viscous fluid
layer of thickness d = a – s.

In the theoretical articles available, the capillary
breakup of a magnetic fluid layer is considered for the
case when Eqs. (4) and (5) where j = 1, as well as
boundary condition (8), ignore the contribution from
viscous forces. In this case, according to (8), the pres-
sure perturbation due to capillary forces is on the order
of p∗  ~ αζ∗ /a2 at Bom < 1, where ζ∗  is the characteristic
deviation of the interface from its initial cylindrical
shape. With this estimate, we find from Eq. (4) the char-
acteristic radial velocity of the viscous fluid u∗  ~
p∗ τi/(ρd) and then, from continuity equation (3), the
characteristic longitudinal velocity w∗  ~ u∗ λ∗ /d. Here,
τi is the characteristic time of the linear stage of insta-
bility growth and λ∗  is the wavelength of the fastest-
growing harmonic. On the other hand, from the kine-
matic condition at the interface [the first equation in

r s: 
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(7)], it follows that u∗  ~ ζ∗ /τi. Eventually, we have  ~
ρa2d/α. Thus, the breakup due to the action of capillary

and inertial forces has the time scale τi ~ a .

To write this condition in terms of dimensionless
criteria, let us turn to equations of motion (4) and (5) for
the viscous fluid (j = 1) and to boundary condition (8),
which involves viscous forces. Using our estimated, we
obtain

(16)

Thus, with the condition Z ! δ, where Z = η/
and δ = d/a (0 < δ < 1) is the relative thickness of the
viscous layer, fulfilled, the effect of viscous forces on
the capillary instability development is negligible. The
dimensionless criterion Z (Ohnesorge number) seems
to be first introduced in [12], where experimental data
for the capillary breakup of liquid cylindrical streams
of diameter d injected into a gaseous medium were pro-
cessed. In the modern literature concerned with the
capillary breakup of fine filaments of viscous fluids, the
criterion Z 2 is usually meant by the Ohnesorge number
(see, e.g., [13]).

In this work, we concentrate on the other ultimate
case: the capillary breakup of a cylindrical viscous fluid
layer when inertial forces are small. Let τν be the char-
acteristic time of the linear stage of perturbation growth
under these conditions. As above, we have p∗  ~ αζ∗ /a2,
u∗  ~ ζ∗ /τν, and w∗  ~ u∗ λ∗ /d. According to Eq. (4), the
order of the characteristic radial velocity is governed by
the balance between viscous forces and pressure forces.
From this condition, we obtain u∗  ~ p∗ d/η and then
τν ~ ηa/(αδ), so that the ratio τi/τd in the right-hand
sides of expressions (16) should be replaced by τν/τd ~
(Z/δ)2. Thus, for Z2 @ δ2, the effect of inertial forces on
the capillary breakup of a cylindrical viscous layer is
negligible.

Using the dimensionless parameters Z = η/
and δ = d/a < 1, one can easily check that

(17)

where τ0 =  is some characteristic time of the
problem considered.

From representations (17), it follows that at Z ≈ 1
and δ ≈ 1, the scales of τd, τi, and τν are the same by the
order of magnitude, whereas at Z ! δ (inertial condi-
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ρ ∂w1

∂t
---------

-----------------
τ i

τd

----,∼∼

η ∂u1
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tions) and Z @ δ (viscous conditions), τν ! τi ! τd and
τd ! τi ! τν, respectively.

DISPERSION RELATION

Let us examine the behavior of the partial solutions
having the form

(18)

with time. Here, ζ0 is a constant and k is a specified real-
valued parameter (wave number). Note that the linear
theory of stability of homogeneous states in continuous
media is aimed at finding the function ω = W(k) and
analyzing its behavior in dependence of dimensionless
parameters characterizing a phenomenon studied.

Substituting expressions (18) into Eqs. (10) and (13)
yields

(19)

and boundary conditions (15) take the form

(20)

As follows from the last expression in (20), if the
cylindrical interface experiences a harmonic perturba-
tion with some wave vector k, ζ = ζ0exp[i(kz – ωt)], the
contribution of magnetic surface forces into the balance
between the normal stresses at the interface (hence, the
effect of the magnetic forces on the evolution of this
harmonic) does not depend on k; in other words, this
contribution is the same for any of the harmonics at a
given Bom ≠ 0. Thus, by varying the current passing
through the conductor, one can effectively control the
evolution of the harmonics throughout the wave num-
ber interval 0 < k < ∞.

ζ z t,( ) ϕ j r z t, ,( ) ψ r z t, ,( ), ,[ ]
=  i kz ωt–( )[ ] ζ 0 Φ j r( ) Ψ r( ), ,[ ] ;exp

i 1– , j 1 2,= =

Φ j''
1
r
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1
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ω
ν
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Φ1' s( ) ik
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a
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a
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Table 1.  Dimensionless matrix of the coefficients involved in Eq. (22) for the viscous conditions of capillary breakup

0 I1(x) –K1(x) 0 iI1(y) iK1(y)

0 ixI0(x) ixK0(x) 0 –yI0(y) yK0(y)

iΩδ 0 0 –κK1(κ) 0 0

0 I1(κ) –K1(κ) K1(κ) iI1(σ) iK1(σ)

0 2iκ2I1(κ) –2iκ2K1(κ) 0 –(κ2 + σ2)I1(σ) –(κ2 + σ2)K1(σ)

c61 c62 c63 –iεΩK0(κ) –2iκσ (σ) –2iκσ (σ)I1' K1'

Table 2.  Dimensionless matrix of the coefficients involved in Eq. (22) for the inertial conditions of capillary breakup

0 I1(x) –K1(x) 0 iI1(y1) iK1(y1)

0 ixI0(x) ixK0(x) 0 –y1I0(y1) y1K0(y1)

iΩ1 0 0 –κK1(κ) 0 0

0 I1(κ) –K1(κ) K1(κ) iI1(σ1) iK1(δ1)

0 2iκ2I1(κ) –2iκ2K1(κ) 0 –(κ2 + )I1(σ1) –(κ2 + )K1(σ1)

s61 s62 s63 –iΩ1K0(κ) –2iZκσ1 (σ1) –2iZκσ1 (σ1)

σ1
2 σ1

2

I1' K1'
From (19), we have

(21)

where Il(x) and Kl(x) (l = 1, 2) are the modified Bessel
functions and A1, A2, B, C1, and C2 are arbitrary con-
stants.

The solutions obtained must satisfy boundary con-
ditions (20). Substituting expressions (21) into (20) and
using the recurrence formulas for the Bessel functions
[14], we come to the set of linear homogeneous equa-
tions for ζ0, A1, A2, B, C1, and C2:

(22)

where x = κ(1 – δ), x1 = κ1(1 – δ), κ = ka, and κ1 =

, Re κ1 > 0.

Φ1 A1I0 kr( ) BK0 kr( ), Φ2+ A2K0 kr( ),= =

Ψ r C1I1 mr( ) C2K1 mr( )+[ ] ,=

I1 x( )A1 K1 x( )B– iI1 x1( )C1 iK1 x1( )C2+ + 0,=

ixI0 x( )A1 ixK0 x( )B x1I0 x1( )C1 x1K0 x1( )C2 = 0,–+ +

iωaζ0 κK1 κ( )A2– 0,=

I1 κ( )A1 K1 κ( )B– K1 κ( )A2+

+ iI1 κ1( )C1 iK1 κ1( )C2 = 0,+

2iκ2I1 κ( )A1 2iκ2K1 κ( )B– κ2 κ1
2+( )I1 κ1( )C1–

– κ2 κ1
2+( )K1 κ1( )C2 0,=

αζ 0 1 Bom– κ2–( ) iρωa2I0 κ( ) 2ηκ 2I1' κ( )–[ ] A1+

+ iρωa2K0 κ( ) 2ηκ 2K1' κ( )+[ ] B iρωa2K0 κ( )A2–

– 2iηκκ 1I1' κ1( )C1 2iηκκ 1K1' κ1( )C2– 0,=

κ2 i a2/ν( )ω–
Let the matrix of the coefficients of algebraic
set (22) be designated as ||aij||. The condition

(23)

for the existence of the nontrivial solution of problem
(19), (20) is the dispersion relation from which the
function ω = W(k) can be found.

From (23), it readily follows that the matrix ||aij|| can
be represented in the dimensionless form by multiply-
ing and dividing its columns by some dimensional
coefficients that are defined by the statement of the
problem. In so doing, we do not lose the generality in
subsequent computations of ω = W(k).

For τv taken as the time scale, the dimensionless
form ||cij|| of the matrix ||aij|| is given in Table 1, where

(24)

For τi taken as the characteristic time, the dimen-
sionless form ||sij|| of the initial matrix ||aij|| is given in
Table 2, where

det aij 0=

Ω ωτν, ε Z 2– , y σ 1 δ–( ),= = =

σ κ2 iεΩ– , Reσ 0,>=

c61 1 Bom– κ2, c62– iεΩI0 κ( ) 2κ2I1' κ( ),–= =

c63 iεΩK0 κ( ) 2κ2K1' κ( ).+=

Ω1 ωτi, y1 σ1 1 δ–( ),= =

σ1 κ2 iΩ1/ Zδ( )– , Reσ1 0,>=

s61 1 Bom– κ2, s62– iΩ1I0 κ( ) 2Zκ2I1' κ( ),–= =

s63 iΩ1K0 κ( ) 2Zκ2K1' κ( ).+=
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If Z ≈ 1 and δ ≈ 1, any of the matrices ||cij|| and ||sij||
can be used in the analysis of the dispersion relation
det ||aij|| = 0. On the other hand, for Z @ 1 (Z ! δ),
Table 1 (Table 2) should be employed.

Let Z @ 1, i.e., the perturbation development be
governed primarily by the inertial forces. It is easy to
check that the expressions in the matrix ||cij|| that con-
tain the factor ε are due to the inertial forces involved in
Stokes equations (4) and (5) for the viscous (j = 1) fluid.
Therefore, if the problem is stated in terms of quasi-sta-
tionary Stokes equations (that is, the time derivatives in
Eqs. (4) and (5) where j = 1 are rejected), the elements
of the matrix ||cij|| lose terms containing ε. In this case,
the second column of the matrix becomes proportional
to the fifth one and the third column, to the sixth one, so
that det ||cij|| = 0 at any Ω , κ, and δ. Thus, although the
inertial forces are small (at Z @ 1), they must necessar-
ily be taken into account, because, as follows from the
above considerations, no dispersion relation exists if
the problem is stated in terms of the quasi-stationary
Stokes equations. This situation is akin to the well-
known paradox: if both the linear and nonlinear parts of
the inertial term are rejected from the equation of
motion, the problem of transverse flow around an infi-
nite cylinder moving in a viscous fluid (filling the entire
space) becomes insoluble in the sense that there is no
solution that satisfies the boundary conditions on the
cylinder surface and vanishes at infinity [15, 16].

ULTIMATE CONDITIONS OF CAPILLARY 
INSTABILITY

In the general case, dispersion relation (23) is very
cumbersome and the physically meaningful roots can
be obtained only numerically, whereas the ultimate
conditions admit analytical examination. We will start
with the case Z @ 1 (or ε ! 1) and designate det ||cij|| as
F(Ω , κ; ε, δ). It is easy to see that F(0, κ; ε, δ) = 0, since
at Ω = 0 the second column of the matrix ||cij|| is propor-
tional to the fifth one and the third column, to the sixth
one. Having calculated (Ω , κ; ε, δ), we find that
each of the determinants involved in the expression for

(0, κ; ε, δ) as an individual term has two columns

proportional to each other; hence, (0, κ; ε, δ) = 0.
With the MAPLE suite for symbolic computation, we

have established that the condition (0, κ; ε, δ) ≠ 0
is met for any κ, ε, and δ admitted by the statement of
the problem. Thus, the dispersion relation det ||cij|| = 0
has the two-fold root Ω = 0. The trivial root is no phys-
ical interest.

We can show in a similar way that the equalities
F(Ω , κ; 0, δ) = 0 and (Ω , κ; 0, δ) = 0 hold for any Ω ,
κ and δ ≠ 0. Because of this, the expansion of F(Ω , κ;
ε, δ) in ε begins with the quadratic term. Thus, at ε ! 1,

FΩ'

FΩ'

FΩ'

FΩΩ''

Fε'
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
the existence condition for a nontrivial solution of set
(22) can be written, in the first approximation, as

(25)

Expanding det ||cij|| in the first column, we have

where C31(Ω , κ; ε, δ) and C61(Ω , κ; ε, δ) are the alge-
braic supplements for the elements c31 and c61.

In view of this equality and with the condition δ ≠ 0
met, we find, from (25), the approximate expression for
the root of the dispersion relation:

(26)

This expression will also be used in the subsequent
analysis of the effect of the dimensionless parameters
Bom and δ on the capillary breakup of the layer.

Note that in the limit case (Bom when δ  0),
expression (26) yields

This result follows from the theory of capillary
instability of fine filaments of very viscous liquids and
has been known since the Rayleigh’s time [1, 17–19].

Formula (26) is the principal term in the expansion
of ω in ε for κ ≥ 0 and 0 < δ < 1. From (26), the principal
term in the expansion of ω in δ cannot be found in prin-
ciple, since the function q(κ, δ) is undefined at δ = 0. To
solve this problem, one must set the ordering relation-
ship between det ||cij|| = 0 and ε and, when constructing
the approximate solution of the equation det ||cij|| = 0,
use the expansion of F(Ω , κ; ε, δ) in the asymptotic
sequence of functions containing the products εmδn (m,
n = 1, 2, …). Using the MAPLE suite for ε ! 1 and
δ ~ ε, we obtained

(27)

where

Fεε'' Ω κ ; 0 δ,,( ) 0.=

F Ω κ ; ε δ,,( ) iΩδC31 1 Bom– κ2–( )C61,+=

ω iα
ηa
------q κ δ,( ) 1 Bom– κ2–( ),=

q κ δ,( ) d2C61

dε2
-------------

ε 0=

d2C31

dε2
-------------

ε 0=
 
 
  1–

.=

ω iα
2ηa
----------

1 κ2–( )I1
2 κ( )

κ2I0
2 κ( ) κ2 1+( )I1

2 κ( )–
---------------------------------------------------------.=

F Ω κ ; ε δ,,( )

=  ε2δ P Ω κ,( ) δQ Ω κ,( ) δ2R Ω κ,( )+ +[ ] ,

P Ω κ,( ) 1
2
--- ∂3F

∂ε2∂δ
--------------

ε 0= δ, 0=

i
κ
---Ω3K1 κ( ),= =

Q Ω κ,( ) 1
4
--- ∂4F

∂ε2∂δ2
----------------

ε 0= δ, 0=

i
κ
---Ω3K1 κ( ),= =
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Equating the right-hand side of expression (27) to
zero, we find in the first approximation:

(28)

Note that the denominator of the same formula in

R Ω κ,( ) 1
12
------ ∂5F

∂ε2∂δ3
----------------

ε 0= δ, 0=

1
3κ
------Ω2K1 κ( )= =

× κ2 1 Bom– κ2–( ) 3iΩ 1 2κ2+( )+[ ] .

ω iαδ3

3ηa
-----------κ2 1 Bom– κ2–( ).=
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Fig. 1. Dimensionless increment vs. dimensionless wave
number for the viscous capillary breakup. δ = (a) 0.2,
(b) 0.5, and (c) 0.99. Bom = (1) 0, (2) 0.3, (3) 0.5, and (4) 0.7.
[9], which was derived within the hydrodynamic theory
of lubrication, has the numerical coefficient 2 instead
of 3. Unlike [9], our numerical analysis made it possi-
ble to find the applicability condition for formula (28),
namely, δ ~ ε ! 1.

At Bom > 1, expression (28) yields Imω < 0; that is,

the layer is stable. If Bom < 1, 0 < κ < . In this
case, the layer is unstable, because Imω > 0, but the
magnetic field still stabilizes the range of harmonics

with wave numbers  < κ < 1, which is unsta-
ble at Bom = 0. Thus, the value Bom = 1 should be con-
sidered as critical in accordance with the data available
in the literature.

One can easily show that the harmonic with the

wave number ka =  is the fastest-growing
at Bom < 1. The wavelength and the growth increment
of this harmonic are respectively given by

(29)

Consider the inertial conditions (Z ! δ) of the cap-
illary breakup of the layer. From dispersion relation (23)
and with regard for Table 2, we have

where S31(Ω1, κ; Z, δ) and S61(Ω1, κ; Z, δ) are the alge-
braic supplements to the elements s31 and s61.

With the MAPLE suite, we found that

Thus, if the effect of viscosity is completely
neglected (i.e., within the perfect fluid model), the dis-
persion relation takes the form

(30)

At κ > 0 and 0 < δ < 1, the brace in (30) is positive,
so that the sign of ω2 as a function of κ, Bom, and δ
depends on that of the expression (Bom – 1 + κ2). It is
easy to check that ω2 < 0 at Bom < 1 (the layer is unsta-
ble) and ω2 > 0 at Bom > 1 (the layer is stable). In the
limit cases δ  1 and δ  0, we respectively obtain
from (30):

(31)

1 Bom–

1 Bom–

1 Bom–( )/2

λ*
0  = 2πa

2
1 Bom–
------------------, Imω*

0  = 
αδ3

12ηa
------------- 1 Bom–( )2.

Ω1 i 1 Bom– κ2–( )T Ω1 κ ; Z δ,,( ),=

T Ω1 κ ; Z δ,,( ) S61S31
1– ,=

T
Z 0→
lim

iκ2K1 κ( )
Ω1K1 κ 1 δ–( )[ ]
---------------------------------------=

× I1 κ( )K1 κ 1 δ–( )[ ] I1 κ 1 δ–( )[ ] K1 κ( )–{ } .

ω2 α
ρa2d
------------

κ2K1 κ( )
K1 κ 1 δ–( )[ ]
-------------------------------- Bom 1– κ2+( )=

× I1 κ( )K1 κ 1 δ–( )[ ] I1 κ 1 δ–( )[ ] K1 κ( )–{ } .

ω2 α
ρa3
--------κ2I1 κ( )K1 κ( ) Bom 1– κ2+( ),=
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(32)

Note that in the previous works, dispersion relations
(30) and (31) have not been derived and, accordingly,
have not been used in the analysis of the effect of Bom

and δ on the wavelength of the fastest-growing har-
monic, although a formula similar to (30) follows from
expression (3.88) in [8] (for other dimensionless ω and
layer thickness). In the absence of the magnetic field,
expression (31) differs greatly from the dispersion rela-
tion derived in [20] for the capillary breakup of a per-
fect fluid cylindrical column surrounded by a stationary
gas and used in [8] for the analysis of capillary breakup
of a cylindrical fluid column under weightlessness.

With (32), one can show that, at δ ! 1, the wave-
length of the fastest-growing harmonic is given by the
first formula in (29) and the growth increment for this
harmonic is

Thus, droplets forming under ultimate (viscous and
inertial) conditions of capillary breakup of two differ-
ent thin (δ ! 1) layers have the same characteristic
sizes if Bom < 1. The growth increments for the two har-
monics that characterize the breakup process under
these conditions are conversely much different.

Figures 1 (viscous conditions of capillary breakup)
and 2 (inertial conditions) illustrate how Bom (or,
roughly speaking, the current passing through the con-
ductor) and the relative thickness of the layer affect the
dependence of the imaginary parts of ω (in the dimen-
sionless form) on the dimensionless wave number ka.
The curves in Figs. 1a–1c plot function (26) at the fixed
δ and various Bom, while curves 1–3 in Fig. 2 are con-
structed by formulas (30)–(32) for various Bom. It fol-
lows from Figs. 1 and 2 that at the fixed value of δ and
various Bom, the characteristic growth time (Imω∗ )–1 of
the fastest growing harmonic (responsible for the peak
in the associated curve) increases with Bom. If Bom is
fixed, this time decreases with increasing δ. This means
that the capillary breakup of a thicker layer proceeds
faster under both ultimate conditions for the same cur-
rent passing through the conductor of a given diameter.
Comparing Figs. 1a–1c, one can see that the value of
(Imω∗ )–1 under the viscous conditions is much more
sensitive to δ than to Bom; in other words, the character-
istic growth time of the fastest-growing harmonic
depends primarily on the relative thickness of the layer,
while the effect of the current is significantly weaker.
Under the inertial breakup conditions (Fig. 2), the situ-
ation is reverse: the value of (Imω∗ )–1 depends largely
on the current and the relative thickness of the layer is
of minor importance.

ω2 α
ρa3
--------κ2 Bom 1– κ2+( ).=

Imω*
α

4ρa3
------------ 1 Bom–( ).=
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Figure 3 and 4 allow us to compare the effects of
Bom and δ on the characteristic size λ∗ /a of the droplets
forming under the ultimate conditions of the breakup.
As follows from Fig. 3, at δ ≤ 0.4 and fixed Bom, the dif-
ference between the size of the droplets appearing
under the two conditions is insignificant and the value
of λ∗ /a depends largely on Bom, increasing with it.
Under the viscous conditions at Bom ≤ 0.5, the rise in
λ∗ /a due to the increase in the current is comparable to
that due to the increase in the relative thickness of the
layer (in the entire interval 0 < δ ≤ 1). For the inertial
conditions, however, the characteristic droplet size
grows with δ insignificantly and depends for the most
part on the magnetic Bond number. Figure 3 shows that
the droplets forming under the viscous conditions are
much larger than those produced under the inertial ones
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Fig. 2. The same as in Fig. 1 for the inertial breakup. δ = (1) 1,
(2) 0.5, and (3) ! 1. Bom = 0.3 (continuous curves) and 0.7
(dashed curves).

Fig. 3. Dimensionless wavelength of the fastest-growing
harmonic vs. relative thickness of the layer. Bom = (1) 0,
(2) 0.3, and (3) 0.5. Continuous curves, viscous conditions
of breakup; dotted curves, inertial conditions of breakup.
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when Bom ≤ 0.5 and the layer is thick (δ is close to
unity).

Figure 4 refers to both conditions and shows the
deviation of the λ∗ (Bom) dependences from the analyt-
ical curve described by the first expression in (29).
From curve 1 and dashed line 3, it follows that the max-
imal increase in λ∗ /a for Bom = 0 and the relative thick-
ness varying from δ ! 1 to the limit case δ = 1 (contin-
uous cylindrical column of the fluid) is no more than
5% under the inertial conditions. For the viscous condi-
tions, the increase in λ∗ /a at Bom = 0 (continuous
curves 1 and 3) is 35%. Note for comparison that at

Bom = 0, λ∗ /(2πa) =  under both ultimate conditions
of the capillary breakup of a thin (δ = 0.01) layer. On
the other hand, for Bom = 0 and δ = 0.99, λ∗ /(2πa) =
1.477 for the inertial conditions and 1.912 for the vis-
cous ones.

CONCLUSION

Within the linear theory, we studied the capillary
instability of a viscous magnetic fluid layer covering a
long cylindrical direct-current-carrying conductor.
The outer boundary of the layer is in contact with an
immiscible perfect liquid of density equal to that of
the layer and of magnetic susceptibility lower than
that of the layer. The phenomenon is characterized by
three dimensionless parameters: magnetic Bond num-
ber Bom, Ohnesorge number Z, and relative layer thick-
ness δ.

Two ultimate conditions of the capillary breakup of
the layer were considered: viscous (Z @ 1) and inertial
(Z ! δ). It was shown that in the former case, one must
include inertial forces in the equation of motion for the

2

Fig. 4. Normalized wavelength of the fastest-growing har-
monic vs. magnetic Bond number. δ = (1) 0.01, (2) 0.8, and
(3) 0.99. Continuous curves, viscous conditions of breakup;
dotted curves, inertial conditions of breakup.
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0
 viscous fluid, although they are negligibly small com-

pared with viscous forces; otherwise, the dispersion
relation is absent. Such a situation is akin to the well-
known paradox that arises when the problem of trans-
verse flow around an infinite cylinder moving with a
constant velocity in a viscous liquid that occupies the
entire space is solved in terms of the Stokes equations.

For Z @ 1, the approximate root of the dispersion
relation was found. At Bom = 0 and δ = 1, this root trans-
forms into the classical expression for capillary insta-
bility of a fine viscous fluid filament immersed in a per-
fect liquid. It was shown that the thickness of the layer
has a noticeable effect on the characteristic growth time
of the fastest-growing harmonic under both ultimate
conditions. This effect is most pronounced at Z @ 1. As
the layer thickens, the breakup goes faster. At Z ! δ, the
characteristic size of resulting droplets depends largely
on Bom and is weakly dependent on δ; however, at Z @ 1
and small Bom, the difference in the droplet size as δ
varies from ! 1 to values close to unity grows and may
exceed 30%. For thin layers (δ ! 1), the characteristic
droplet size is independent of the ultimate breakup con-
ditions and is controlled by Bom.
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Abstract—The interaction of microwave radiation with a magnetic fluid that completely fills a waveguide and
is bounded by a dielectric insertion is studied at frequencies between 20 and 40 GHz. The frequency depen-
dence of the alternating interference maxima and minima that are associated with the reflection from the front
and back walls of the dielectric insertion is found. The reason for such a dependence is the variation of the com-
plex magnetic susceptibility of the magnetic fluid. The inverse problem, i.e., the determination of the ferromag-
netic particle diameter and the volume content of the solid phase in the magnetic fluid, is solved based on the
frequency dependence of the reflection coefficient. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The interaction of microwave radiation with a mag-
netic fluid has been considered in a number of papers.
The subject of investigation was the dispersion of the
magnetic susceptibility [1, 2] and how the magnetic
induction dependence of the imaginary component of
the magnetic fluid susceptibility affects the ferromag-
netic resonance characteristics [3, 4]. However, in
[3, 4], the magnetic induction dependence of the real
component of the magnetic susceptibility was ignored.
Such an approach may result in the inadequate treat-
ment of experimental data, particularly, when the mag-
netic fluid parameters are determined with microwave
techniques.

This paper studies the reflection of microwave radi-
ation from a magnetic fluid layer in a waveguide in the
presence of an external steady-state magnetic field.
Experimental data are compared with theoretical anal-
ysis that takes into account the magnetic induction
dependence of both the real and imaginary components
of the fluid magnetic susceptibility. The possibility of
determining the magnetic fluid parameters from the
results obtained is discussed.

THEORETICAL ANALYSIS

We consider the propagation of the TE10(H10) wave in
a waveguide and its reflection from semi-infinite magnetic
fluid layer 3 bounded by dielectric insertion 2 (Fig. 1).

Under these conditions, the expression for the com-
plex reflection coefficient can be written in the form [5]

(1)

R*

=  
2γd L( ) γd γ0–( ) γ γd+( )exp γ0 γd+( ) γ γd–( )+

– 2γd L( ) γd γ+( ) γ0 γd+( )exp γ0 γd–( ) γ γd–( )+
------------------------------------------------------------------------------------------------------------------,
1063-7842/01/4612- $21.00 © 21514
where 

γ0 and γ1 are the propagation constants in the empty and
filled parts of the waveguide, respectively; γd is the
propagation constant of the wave in the dielectric; a is
the size of the wide wall of the waveguide; ε0 and µ0 are
the electric and magnetic constants, respectively; ε and

µ* = 1 +  – j  are the permittivity and the perme-
ability of the medium that fills the waveguide cross sec-

tion, respectively; and  and  are the real and
imaginary parts of the magnetic susceptibility, respec-
tively [6]:

(2)

γ1
2 π2

a2
----- ω2ε0µ0εµ*;–=

χm' χm''

χm' χm''

χm'
γϕML σ( )

ωHn

------------------------
1 η2+( )2

Hn
4 η2 1–( )Hn

2+

1 η2+( )2
Hn

4 2 η2 1–( )Hn
2 1+ +

--------------------------------------------------------------------------,=

χm''
γϕML σ( )

ωHn

------------------------
ηHn

2 1 Hn
2 1 η2+( )+( )

1 η2+( )2
Hn

4 2 η2 1–( )Hn
2 1+ +

--------------------------------------------------------------------------,=

L

1 2 3

Fig. 1. Waveguide filled by the magnetic fluid: 1, unfilled
region of the waveguide; 2, dielectric insertion of thickness L;
and 3, semi-infinite magnetic fluid layer.
001 MAIK “Nauka/Interperiodica”



        

DETERMINATION OF THE MAGNETIC FLUID PARAMETERS 1515

                      
In (2), L(σ) is the Langevin function; Hn is the
reduced magnetic field, Hn = γH/ω; σ is the combined
parameter of the magnetic fluid; Md is the saturation
magnetization of the solid magnetic; V = πd3/6 is the
volume of a ferromagnetic particle; ξ is the damping
constant of the electromagnetic wave in the magnetic
fluid; d is the diameter of the ferromagnetic particles;
and ϕ is the volume content of the solid phase in the
magnetic liquid. For spherical ferromagnetic particles,
it is assumed that the dielectric properties of the mag-
netic fluid are independent of the magnetic field.

Figure 2 shows the analytic dependence of the abso-
lute value of the reflection coefficient R = |R*| on the
frequency of the incident microwave radiation for dif-
ferent external magnetic fields. The magnetic fluid
parameters used in the calculations were Md = 0.48 T,
ϕ = 0.1, and d = 5.5 nm. For the dielectric insertion, ε =
2.1 and L = 37 mm.

As follows from Fig. 2, the R(f) dependence exhib-
its alternate interference maxima and minima (curve 1)
caused by the reflection from the front and back walls
of the dielectric insertion.

In the presence of the magnetic field, both the fre-
quency position and the absolute value of the reflection
minima change. The frequency shift of the reflection
minima is defined mainly by the magnetic induction
dependence of the real part of the fluid magnetic sus-
ceptibility, whereas the absolute value of the reflection
minima varies according to the magnetic induction
dependence of the imaginary component of the mag-
netic susceptibility.

EXPERIMENT

Experiments were carried out with the setup shown
in Fig. 3. The microwave radiation from panoramic
VSWR meter 1 was directed to magnetic fluid 3, which
completely fills the cross section (7.2 × 3.4 mm) of a
70-mm-long waveguide. The fluid was bounded by a
dielectric Teflon insertion. The thickness of the fluid
was such that the electromagnetic wave reflected
largely from the its front (adjacent to the dielectric
layer) wall. The microwave radiation reflected passed
through a directional coupler to detector 4. The signal
from the detector was applied to indicator 5 and then to
recorder 6. The fluid-filled part of the waveguide was
placed between the poles of electromagnet 7, fed by dc
source 8. As a magnetic fluid, we used a kerosene-based
liquid with magnetite particles stabilized by olein acid.
The parameters of the system were Md = 0.48 T, ϕ =
0.25, and ε = 3.

The experimental R(f) dependences are presented in
Fig. 4 for the different values of the external steady-
state magnetic field applied to the magnetic liquid at

η ξ 1
L σ( )
------------ 1

σ
---– 

  , σ
µ0MdV

kT
-----------------H .= =
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
T = 293 K. The alternate interference maxima and min-
ima are observed, as follows from curve 1.

In the presence of the magnetic field, the reflection
minima change their position and absolute value, which
agrees closely with the theoretical predictions. The pos-
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R( f )

f, GHz

1

35 36
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4

Fig. 2. Reflection coefficient of the microwave signal vs,
frequency. The magnetic induction B = (1) 0, (2) 0.5,
(3) 0.75, and (4) 1.0 T.
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7

Fig. 3. Setup for taking the magnetic field dependence of
the reflection coefficient: 1, generator; 2, waveguide;
3, magnetic fluid; 4, detector; 5, indicator; 6, recorder;
7, electromagnet; and 8, dc source.
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Fig. 4. Experimental frequency dependences of the reflec-
tion coefficient. The magnetic field induction B = (1) 0,
(2) 0.25, and (3) 0.5 T.
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sibility of theoretically constructing the dependence of
R on f, as well as of measuring this dependence, gives
us the chance to solve the inverse problem, namely, to
determine the magnetic fluid parameters from this
dependence.

SOLUTION TO THE INVERSE PROBLEM

To solve the inverse problem, the reflection coeffi-
cient was measured at different values of the micro-
wave frequency f. Then, the sum of the squares of the
differences between the experimental values of the
reflection coefficient, Rex( f ), and the theoretical val-
ues, Rtheor( f ), was constructed:

(3)

Here, the diameter d of the ferromagnetic particles and
the volume content ϕ of the solid phase in the magnetic
liquid are the desired parameters of the inverse prob-
lem. Our goal is to find such values of the desired
parameters that minimize the sum S. At the point of
minimum of the sum S, its partial derivatives vanish.
Differentiating S with respect to d and ϕ and equating
the partial derivatives ∂S/∂d and ∂S/∂ϕ to zero, we

S Rtheor f i d ϕ, ,( ) Rexp f i( )–[ ] 2.
i 1=

n

∑=

1 4 5 d, nm2 3
1

2
3

5 

0

–5 

–10

S∂ d∂⁄ 107×

Fig. 5. Partial derivative ∂S/∂d vs. particle diameter. The
number n of the model points in the dependence Rtheor( fi, d,
ϕ) is (1) 5, (2) 10, and (3) 15.

3

2

1
2

0

–2

0.15 0.20 0.250.10 ϕ

S ∂ϕ⁄∂

Fig. 6. Partial derivative ∂S/∂ϕ vs. volume fraction of the
solid phase in the fluid. The number n of the model points
in the dependence Rtheor( fi, d, ϕ) is (1) 5, (2) 10, and (3) 15.
come to the system of two equations

(4)

where Rtheor(f, d, ϕ) are obtained from Eqs. (1) and (2).
Solving system (4), we find the desired parameters d
and ϕ.

The numerical simulation of the solution to the
inverse problem was performed for a magnetic fluid
with d = 5.5 nm and ϕ = 0.1. With these values and
Eqs. (1)–(3), we constructed the sum S where, instead
of data points for the dependence Rexp( fi), a set of model
points Rtheor( fi, d, ϕ) calculated for the magnetic liquid
with the specified parameters d and ϕ was used. Then,
for different numbers n of the model points, the partial
derivatives ∂S/∂d and ∂S/∂ϕ were calculated. Figures 5
and 6 present the dependences ∂S/∂d on the particle
diameter d and ∂S/∂ϕ on the volume content ϕ of the
solid phase in magnetic liquid, respectively, for differ-
ent numbers n of the model points Rtheor( fi, d, ϕ). As evi-
dent from Fig. 5, the partial derivative ∂S/∂d vanishes at
two values of the parameter d; specifically, at n = 5, we
have d = 5.5 nm and d = 2.56 nm. However, as the num-
ber of the points increases, the smaller (spurious) root
of the equation ∂S/∂d = 0 shifts to the left along the d
axis and eventually disappears. The convergence of the
parameters d and ϕ is observed even at n = 2, and the
spurious root disappears at n = 12.

Next, we studied how a random deviation of the
reflection coefficient influences the error in determin-
ing the desired parameters. To do this, a random quan-
tity from the random-number generator of the computer
was added to the theoretical value of the reflection coef-
ficient. For a 5% deviation of the reflection coefficient R
from its theoretical value, the error involved in the
parameters d and ϕ recovered did not exceed 5%.

Using this procedure, the experimental results pre-
sented in Fig. 4 were processed. The solutions of sys-
tem (4) with a set of 12 experimental points yielded the
average diameter of the ferromagnetic particles d =
47 nm and the volume content of the solid phase in the
magnetic liquid ϕ = 0.249.

CONCLUSION

Thus, we experimentally and theoretically studied
the reflection of microwave radiation from a magnetic
fluid layer in a waveguide in the presence of an external
steady-state magnetic field. The position and the abso-
lute value of the alternating maxima and minima in the
R(f) curve were found to vary. The shift of the reflec-
tion minima is due to the magnetic field dependence of
the real component of the fluid magnetic susceptibility,
whereas the absolute value of the reflection coefficient

∂S
∂d
------ = 2 Rtheor f d ϕ, ,( ) Rexp f( )–[ ] ∂R f d ϕ, ,( )

∂d
----------------------------

i 1=

n

∑  = 0,

∂S
∂ϕ
------ = 2 Rtheor f d ϕ, ,( ) Rexp f( )–[ ] ∂R f d ϕ, ,( )

∂ϕ
----------------------------

i 1=

n

∑  = 0,
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varies because of the magnetic field dependence of the
imaginary component of the fluid magnetic susceptibility.

Our measuring approach can be applied to solving
the inverse problem, i.e., to determine the real and
imaginary components of the magnetic susceptibility of
a magnetic fluid, as well as to find magnetic fluid
parameters, such as the diameter of ferromagnetic par-
ticles and the volume content of the solid phase in the
fluid.
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Abstract—Results are presented of a numerical simulation of turbulent flows around pointed circular super-
sonic cones at angles of attack α ≥ 3θc, where θc is the cone half-angle. The problem is solved in the framework
of a locally conical approximation of a set of Reynolds’ equations written in terms of mass-averaged quantities
with the use of a differential one-parametric turbulence model. The numerical solutions are obtained with the
help of an implicit finite-difference unidirectional scheme, with the focus on violation of the symmetry and sta-
tionarity of the separated cross flow. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
The flow of gas around sharp cones at large angles

of attack is accompanied by a cross flow separation
substantially influencing the aerodynamic characteris-
tics of the cone. At moderate supersonic velocities and
large Reynolds numbers the flow separated from the
leeward surface of a slender body becomes asymmetric
producing a considerable lateral force. Available theo-
retical and experimental data give evidence also of a
non-steady-state character of the separated flow, which
can feature oscillations in a wide frequency band from
a few tens to several thousand hertz. Nonsteady pro-
cesses in the gas flows around pointed slender cones at
large angles of attack include low-frequency oscilla-
tions associated with the emergence of von Karman’s
vortex street, high-frequency oscillations caused by the
instability of the free shear layer, and oscillations with
intermediate frequencies caused by interaction between
vortices in the cross flow.

Theoretical studies of the symmetry violation in
separated flows were carried out earlier, mainly, for
laminar flow regimes [1–9]. In works [1, 3, 5] the sym-
metry violation is explained by the convective instabil-
ity, which is due to a distortion of the cone shape in the
tip vicinity. This point of view is confirmed by results
of numerical solution of 3-D Navier–Stokes equations
and experimental data [10]. However, it does not
explain asymmetry of locally conical solutions of the
Navier–Stokes equations [4, 7, 9]. Therefore, the sym-
metry violation of the separated flow is also explained
by an instability of the bifurcational kind related to non-
uniqueness of the stationary solution of the Navier–
Stokes equations [2]. This nonuniqueness for super-
sonic flows has been demonstrated in [8, 9] for the case
of flows around sharp slender cones. Experimental and
1063-7842/01/4612- $21.00 © 21518
theoretical investigations of turbulent flows with an
asymmetric cross flow separation were carried out for
subsonic flow regimes [10, 11]. Results of the calcula-
tions performed with the use of an algebraic turbulence
model are in qualitative agreement with available data
for laminar flows. However, these results, in contrast to
available data, do not demonstrate any noticeable non-
steadiness of the flow.

In this paper, the results of a numerical simulation of
supersonic turbulent flows are presented. The calcula-
tions are performed in terms of a locally conical
approximation with the use of a differential one-para-
metric turbulence model [12].

FORMULATION OF THE PROBLEM 
AND NUMERICAL METHOD

Formulation of the problem of supersonic flow
around pointed bodies in the locally conical approxi-
mation is stated in detail in [13]. In this approximation,
the calculation of a spatial gas flow around a body is
reduced to solving a 2-D problem in a plane normal to
the cone axis. The numerical study is carried out with
the use of a set of Reynolds’ equations written in terms
of averaged characteristics of the turbulent flow, simi-
larly to [14]. However, in distinction from [14], the cal-
culations are performed without assuming flow sym-
metry relative to the plane containing the cone axis and
the mainstream velocity vector. Along the curvilinear
coordinate in the azimuthal direction, related to the
contour of the cone transverse cross section, periodic
boundary conditions are set. The outer boundary of the
calculation region is placed in the undisturbed main-
stream.
001 MAIK “Nauka/Interperiodica”
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The numerical method of solving the problem coin-
cides with that described in [9, 14], except for the pro-
cedure of introducing artificial dissipation in the azi-
muthal direction. In the present study, the coefficient of
artificial dissipation σ decreases monotonously along
the calculation path from the constant value σ0 near the

Fig. 1. Distribution of the pressure coefficient over the cone
surface. M∞ = 1.8; θc = 5°; α: (1) 10°, (2) 15°, (3) 20°.
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cone surface to zero in the undisturbed mainstream
according to the formula

where 0 ≤ ξ ≤ 1 is the normalized transverse coordinate
introduced in such a way that the bow shock wave is
contained in the interval ξ1 ≤ ξ ≤ ξ2.

The calculation results discussed below have been
obtained at ξ1 = 0.3, A = 10.0, and ξ2 = ξ1 + π/A with the
use of a grid that is denser on the leeward side of the
cone and near the cone surface. To construct the grid we
use transformations of the azimuth-oriented curvilinear
and transverse coordinates described in [13]. The dis-
tance between the body surface and the nearest inner
grid node will then be of an order of the dynamic length

of the turbulent boundary layer l∗  = µ/ , where µ
is the gas viscosity coefficient and τw is the friction
stress at the body surface.

The numerical algorithm, including the procedure
for constructing the grid and introducing the artificial
dissipation, is fully symmetrical relative to the plane
containing the cone axis and the mainstream velocity
vector. In the case of smooth solutions, the difference

σ σ0

1 at ξ ξ 1≤
0.5 1 A ξ ξ 1–( )( )cos+[ ] at ξ1 ξ ξ 2≤ ≤
0 at ξ ξ 2,≤






=

ρτw
0.1

2 ϕ
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0.3

3 4

0.1

0.2

0.3

2 ϕ3 4

θ

Fig. 2. Vector lines of the velocity field in the cross flow near the cone leeward side. M∞ = 1.8; θc = 5°; α = 18°.
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scheme provides the second order of accuracy with
respect to both spatial coordinates and the first order
with respect to time. Most of the calculations were per-
formed using a grid containing 60 rays with 150 nodes
on each of them.

CALCULATION RESULTS

The calculation results pertain to the turbulent flow
of a perfect gas with the specific heat ratio γ = 1.4
around sharp circular supersonic cones at a Prandtl
number of Pr = 0.72. The coefficient of molecular vis-
cosity of the gas is calculated using Sutherland’s for-
mula for air. The cone surface is assumed to be heat-
insulated. Reynolds number calculated using parame-
ters of the undisturbed mainstream and the distance
from the cone vortex is Re = 2.5 × 106.

Figure 1 displays the pressure coefficient distribu-
tions over the cone surface with the cone half-angle

Cp

0.2

0

–0.2
0 0.4 0.8

1

2

3

s

Fig. 3. Distribution of the pressure coefficient over the cone
surface. α = 15°; (1) M∞ = 1.8; θc = 5°; (2) M∞ = 3.5,
θc= 5°; (3) M∞ = 1.8, θc = 10°.
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Fig. 4. Variation of the pressure at the cone leeward side.
M∞ = 1.8; θc = 5°; α = 21.25°; s: (1) 0.3; (2) 0.7.
θc = 5° for three angles of attack. Plotted on the
abscissa are curvilinear coordinates in the azimuthal
direction normalized to the cone cross section circum-
ference length. It is seen that the solution is symmetri-
cal at α = 10° and asymmetrical at α = 15° and 20°;
besides, as the angle of attack increases the asymmetry
changes into the opposite one. Here it should be empha-
sized that the asymmetry arises when no disturbance is
present and an entirely symmetrical calculation algo-
rithm is used. Similar to the laminar flow regime [9],
the calculation results demonstrate the nonuniqueness
of the stationary asymmetric solution which turns out to
be dependent on the initial data. As an example, Fig. 2
shows velocity fields of the cross flow past the leeward
side of the cone at an angle of attack of α = 18°. The
upper and lower plots correspond to two stationary
solutions obtained by integration with respect to the
time of solutions for α = 17° and 19°. The vector lines
of the velocity field are plotted on a sphere with its cen-
ter at the cone vertex; θ and ϕ are the spherical coordi-
nates.

Figure 3 demonstrates the dependence of the char-
acter of numerical solution on the mainstream Mach
number and the cone half-angle. In the figure, it is seen
that the symmetry of the numerical solution is restored
as M∞ and θc increase.

The results presented above are in qualitative agree-
ment with the available experimental data [10, 15] on
the flow around an ogive cylinder. Comparison with the
computation results for laminar flows [9] shows that in
the turbulent flow the asymmetry of the separated flow
arises at smaller angles of attack and persists to larger
Mach numbers and cone half-angles.

Further increase of the angle of attack is accompa-
nied by transition from the stationary asymmetric flow
to a nonsteady-state periodic flow. This is illustrated in
Fig. 4, where dependencies of the gas pressure on time
are presented for two points on the leeward side of the
cone symmetrically relative to the plane containing the
cone axis and the mainstream velocity vector (the
points are specified by the azimuth-directed curvilinear
coordinate s expressed in terms of the cone cross sec-
tion circumference length). The pressure and time are

plotted in units of ρ∞  and x/V∞, respectively, where
x is the distance from the cone vertex. Till the time
instant t = 60 the integration is performed with the coef-
ficient of artificial dissipation σ0 = 8. After that, this
coefficient was increased to 10. As seen from the figure,
at a sufficiently weak artificial dissipation the pressure
variation is featured by continuous oscillations at a fre-
quency of f ≈ 0.03V∞/x Hz. The calculations have
shown that this frequency does not change if the time
integration step is reduced or the grid mesh near the lee-
ward cone side is made smaller. Qualitatively, the
results in Fig. 4 fit experimental data [15] for a laminar
subsonic flow around an ogive-cylinder. Increasing the
artificial dissipation dampens the pressure oscillations

V∞
2
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and leads to a stationary asymmetric solution. A more
detailed analysis of the influence of artificial dissipa-
tion on the asymmetry of the numerical solution is
given in [9].

CONCLUSION
The results of the numerical simulation of turbulent

flows around supersonic pointed cones at high inci-
dences demonstrate violation of the flow symmetry
without any disturbance present although an entirely
symmetrical computation algorithm is used. The results
also demonstrate the nonuniqueness of the stationary
asymmetric solution, restoration of the flow symmetry
as the Mach number and the cone half-angle increase,
and transition to a non-steady-state flow with increas-
ing angle of attack.
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Abstract—A model of a space charge layer that may form between cathode and anode plasmas in the presence
of a transverse magnetic field is considered. Collisions are assumed not to affect the motion of electrons in the
gas. It is shown that two solutions differing by cathode plasma parameters may take place. Conditions when the
effect of collisions may be ignored are found. © 2001 MAIK “Nauka/Interperiodica”.
† INTRODUCTION
The generation of intense charged particle fluxes is

of great practical interest. Among the recent advances
in magnetohydrodynamic methods for plasma acceler-
ation, accelerators with a closed drift of electrons in an
electrical discharge in crossed fields seem to be the
most promising.

The theory of closed-drift accelerators that is based
on the diffusion approximation has been comprehen-
sively set forth in many articles [1, 2]. A review of the
current status of the problem is beyond the scope of this
paper. Its basic goal is to report novel theoretical
results, which will probably help to outline ways for
further improving the performance of these accelera-
tors and find new areas for their application.

Closed-drift accelerators are based on the possibility
of generating a strong electric field either in a quasi-
neutral plasma or between plasma regions separated by
a double electric field, the electric field generated being
normal to the applied magnetic field. In both cases, an
“electrodeless” E ⊥  H layer is produced. The “elec-
trodelessness” is a key feature that differentiates an
E ⊥  H accelerator from an electrostatic one and allows
one to generate ion beams with a current density several
hundreds of times higher than in the case of electro-
static acceleration. Apparently, the presence of a strong
electric field in a quasi-neutral plasma has first been
theoretically substantiated by Chapman and Ferraro
[3]. They showed that the injection of a plasma into the
region of a transverse magnetic field H0 causes an ion-
decelerating potential jump ϕa across a length ≈ρα =

mc2/eH0. This length far exceeds the size of the
Langmuir space charge layer for given ion current den-
sity and kinetic energy of the ions (γa = 1 + eϕa/mc2).
This result was obtained without considering electron
diffusion. Therefore, the diffusion approximation
seems to be rather inconsistent and sometimes inade-

† Deceased.

γa
2 1–
1063-7842/01/4612- $21.00 © 1522
quate. In this work, we assume that electrons emitted by
the cathode plasma dominate in the generation of the
E ⊥  H layer and that collisions do not affect their
motion.

Another important feature of these accelerators is
that the ionization probability is so high that under cer-
tain conditions the ion current equals or even exceeds
the consumption of the working medium. When pass-
ing through the E ⊥  H layer with a velocity v g, neutral
atoms from the anode are ionized by electrons with a
probability P(z) = 1 – exp(–χ(z)), where χ(z) satisfies
the equation

(1)

Here, σi(γz) is the ionization cross section of the gas,
γz = 1 + eϕ(z)/mc2, ϕ(z) is the electric field potential,

v 2(z) = (1 – 1/ )c2, and n(z) is the electron concentra-
tion.

Using the continuity equation for electron current
and averaging (1) over z, one can estimate the ioniza-
tion probability P = 1 – exp(–IH/Ig), where IH = Ji  is
the Hall current produced by the electrons [1]; Ji is the
ion current density; and  is the mean Larmor radius
of the accelerated ions, which depends on the mean
strength of the magnetic field in the E ⊥  H layer. IH =
1.5 × 104 A/m, Ig = ev g/σm = 915 A/m, P ≅  1 – exp(–16)

for xenon at ϕa = 300 V,  = 10–2 T, 〈σ i(γz)v (z)〉  = σmv a,

 = (1 – 1/ )c2, and Ji = 5 × 103 A/m2. The very high
ionization probability allows us to assume that the
E ⊥ H layer may contain a narrow region of strong
atom ionization near the anode. Indeed, if the spread of
the initial velocities of the electrons injected from the
cathode plasma is neglected and it is assumed that col-
lisions do not affect the motion of the electrons in the
E ⊥  H layer, the concentration of fast electrons goes

dχ
dz
------

σi γz( )
v g

--------------v z( )n z( ).–=

γz
2

ρi

ρi

H

v a
2 γa

2
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into infinity on the magnetron cutoff surface. There-
fore, all atoms coming from the anode will ionize
within a thin sublayer near the magnetron cutoff surface
The thickness of the sublayer depends on the electron
temperature, which is much less than the potential dif-
ference across the layer.

Note that an E ⊥  H accelerator is not strictly elec-
trodeless. The power and the cross sizes of an ion beam
are always limited, which inevitably causes the edge
effect whose strength is proportional to the ratio of the
layer thickness to the cross size of the beam. Because
of this effect, the production of efficient low-power
accelerators with a slightly diverging ion beam is diffi-
cult.

The magnetic field in the E ⊥  H layer is the super-
position of the applied field and the self-field of the Hall
current. The layer may be paramagnetic or diamag-
netic. Clearly, the ionization probability is the highest
under complete demagnetization conditions, when the
Hall current self-field coincides with the applied mag-
netic field. In this case, the edge effect shows up most
vividly, so that the distortions of the magnetic field con-
figuration and the beam geometry may be intolerable.
Hence, one must find optimal conditions providing a
desired angular divergence of the beam at a sacrifice in
the ionization probability and/or an increase in the ion
velocity spread at the cost of the demagnetization.
Thus, two primary problems result from the aforesaid:
One must (1) find the distribution of the potential, elec-
tric and magnetic fields, as well as space charge densi-
ties of the particles, in the E ⊥  H layer and (2) study the
ionization of the gas flow coming from the anode, using
the solution to the former problem.

It should be emphasized that the two problems are
by no means the only problems in the physics of E ⊥  H
accelerators. Points, such as the stability of the E ⊥  H
layer, the effect of the edge effects and of the magnetic
field configuration on the formation of the ion beam,
the electrostatic stability of the ion beam in the cathode
plasma, etc., deserve further investigation.

In this work, we consider a stationary planar E ⊥  H
layer that is uniform and equipotential on any magnetic
surface in the one-dimensional approximation. The
electrons start from the cathode plasma surface (z = 0),
are accelerated toward the anode plasma boundary (z =
zd), are reflected by the magnetic field from the magne-
tron cutoff surface (z = zc), and return to the cathode
plasma (Fig. 1). Collisions do not affect the motion of
the electrons.

The cathode plasma consists of fast and slow ions
generated by charge reversal. Its quasi-neutrality is pro-
vided by electrons due to gas ionization, secondary
emission from the cathode cavity walls, or artificial
injection.

The anodic side of the layer also contains the plasma
because of the ionization of the gas penetrating through
the anode. The thickness of the E ⊥  H layer is specified
by the magnetron cutoff distance zc, which is usually
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
several orders of magnitude larger than the Langmuir
space charge layer for given ion current density and
potential difference across the layer. Hence, the entire
E ⊥  H layer is quasi-neutral, but the occurrence of the
double electrical layer with a potential jump of about ϕa
in its interior must not be ruled out.

At z ≥ zc, the magnetic field Hy(z) equals the applied
field H0 drops from the magnetron cutoff surface
toward the cathode plasma because of the Hall current
of the fast electrons accelerated in the layer.

Slow secondary electrons generated (at a positive
potential) by the ionization of the gas penetrating
through the anode may move only to the anode, their
direction being perpendicular to the magnetic field.
Therefore, because of the low transverse mobility of the
electrons, a strong electric field that does not violate the
quasi-neutrality may exist in the anode plasma. The
detailed theoretical description of the problem is
impossible within a single article. In what follows, we
therefore will resort to several simplifications and per-
form the analysis on a qualitative basis.

MATHEMATICAL MODEL OF A DOUBLE 
ELECTRICAL LAYER IN A TRANSVERSE 

MAGNETIC FIELD

Consider a double electrical layer between plane-
parallel electrodes to which the plasma layers are adja-
cent. The system is in a transverse magnetic field. The
electric field in the plasma layers is assumed to be infin-
itesimal. Let us suppose that electrons coming to the
layer from the cathode plasma have a current density j0
and an initial energy γn = 1 + eϕn/mc2. Collisions do not
affect their motion. We will look for stationary solu-
tions; i. e., we assume that the settling time (transient
period) is much greater than the magnetic diffusion
time and that the electron current markedly affects the
magnetic field distribution in the layer. It is also
assumed that the magnetic field has an effect only on
the motion of the electrons. The magnetic self-field of
the current jz (but not jx!) is ignored. In this case, the

+
H E

C
z = 0

x y

z

z = zd z = zc
A

Fig. 1. C, cathode; A, anode; z = 0, cathode plasma bound-
ary; z = zd, anode plasma boundary; z = zc, magnetron cutoff
surface; and H and E, magnetic and electric field strength
vectors.
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vector potential of the magnetic field has the single
component Ax(z). Ions enter the layer from the anode
plasma. The ion current density J0 and the electron cur-
rent density j0 are space-charge-limited. The electric
field and the ion velocity both have the single compo-
nent along the z axis. The thermal spread of the particle
velocities is disregarded. After some rearrangements,
the problem can mathematically be stated as [4]

(2a)

(2b)

Here, U = eϕ/mc2, Un = eϕn/mc2, W = eAx/mc2, ξ =
eHy(0)z/mc2, c is the velocity of light, m and e are the
mass and the charge of the electrons, M is the mass of
the ions, dAx/dz = Hy(z), λ = (8πej0)/(b2mc3), Λ =

(4πeJ0 )/(b2mc3 ), b = eHy(0)/mc2, Hy(0) ≠ H0,
Ax(0) = 0, ϕ0(0) = 0, ϕ(d) = ϕa, and ϕa is the anode
plasma potential. The value of λ is other than zero in the
range 0 ≤ z ≤ zc.

The boundary conditions have the form U(0) =
U'(0) = 0 and W(0) = W'(0) = 0. At the point ξc =
eHy(0)zc/mc2, the condition W'(ξc) = H0/Hy(0) is valid.
In addition, the conditions U'(ξd) = 0 and U(ξd) = Ua =
eϕa/mc2 must be met at some point ξd = eHy(0)zd/mc2.
The point ξd is the anodic boundary of the space charge
layer. The boundary conditions at the points ξc and ξd

will be used to determine the parameters λ and Λ.

This problem has been studied for Un = 0 and the
magnetic flux retained in the layer [4]. It has been
shown that the current ion density may exceed the cur-
rent density in a bipolar diode only slightly if the mag-
netic field is absent. The ion current density is the high-
est when the size of the fast electron cloud coincides
with that of the space charge layer.

The assumption that the electrons have some initial
energy will allow us to find a new class of solutions to
the problem. They are similar to the solution obtained
in [3] but are found by directly solving the Poisson
equation without neglecting electron inertia. Before
presenting the results obtained, we will analyze the
above set of equations and derive an important relation-
ship that is an analog of the Child–Langmuir law for the
layer in a transverse magnetic field.

Set (2) has the integral [4], which, by introducing i =

λ/ Λ and dW/dξ = Hy(ξ)/Hy(0) = h, can easily be

d2U

dξ2
---------- = 

λ 1 U Un+ +( )

U Un+( )2 2 U Un+( ) W2–+
-------------------------------------------------------------------------

Λ
Ua U–

---------------------,–

d2W

dξ2
----------

λW

U Un+( )2 2 U Un+( ) W2–+
-------------------------------------------------------------------------.=

M/m 2

2

transformed to the form

(3)

With this integral, the problem is simplified and now
one can use (3) together with (2a) or (2b). For zc > zd, it
is more appropriate to use Eq. (2b) and exclude the
divergence due to the space charge of the ions at the
boundary with the anode plasma.

Now, three cases are possible: zc < zd (i.e., h(ξ) = hc

at ξc < ξ), zc = zd (i.e., h(ξ) = hc and U(ξ) = Ua at ξ = ξc =
ξd), and zc > zd (i.e., U(ξ) = Ua at ξ > ξd). At the point
ξ = ξc, the expression (U(ξ) + Un) + 0.5((U(ξ) + Un)2 –
W2(ξ)) = 0 always holds. In the first case, U(ξc) < Ua

and from (3) at ξ = ξc we have

In the range ξc < ξ ≤ ξd, only the ions exist. Their
current is space-charge-limited; hence, integrating the
Poisson equation from the anode yields (dU/dξ)2 =

4Λ  at ξ = ξc. Joining together the deriva-
tives, we come to

(4)

In the second case, dU/dξ = 0 at ξ = ξc = ξd. Using
Eq. (3), we again arrive at Eq. (4) for Λ.

In the third case, the expression

(5)

holds for the point ξ = ξd.
Since U = Ua at ξ ≥ ξd, Eq. (2b) has an analytical

solution 

 – h2(ξd) = 2λ .

Substituting h2(ξd) from this relationship into (5)
also yields Eq. (4) for Λ.

Thus, irrespective of the sizes of the fast electron
cloud and the space charge layer, the ion current density
is given by Eq. (4). It is an analog of the Child–Lang-
muir law for the layer in a transverse magnetic field and
a consequence of the momentum flux conservation law.
Equation (4) implies that the electric fields at the
boundaries of the cathode and anode plasmas are zero
and the ions are accelerated by the “Ampére” force.

dU
dξ
------- 

 
2

 = h2 1– 4Λ i U Un+( )
U Un+( )2 W2–

2
-------------------------------------+





+

–
Un

2

2
------ Un+





Ua U– Ua–+ .

dU/dξ( )2

=  hc
2 1– 4Λ Ua U ξc( )– Ua i 0.5Un

2 Un+––[ ] .+

Ua U ξc( )–

4Λ
hc

2 1–

Ua i Un 0.5Un
2++

--------------------------------------------------.=

h2 ξd( ) 4Λ i Ua Un+( ) 0.5 Ua Un+( )2 W2 ξd( )–( )+([+

– 0.5Un
2 Un+ ) Ua ]– 1=

hc
2 2 Ua Un+( ) Ua Un+( )2 W2 ξd( )–+
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Given the “demagnetizing” parameter H0/Hy(0),
applied magnetic filed H0, and potential difference Ua,
one can determine the ion current density at Un = 0,
using (4). In view of the definition of Λ and Eq. (4), it
is easy to check that the ion current density is given by

(6)

where

It follows that the ion current density cannot exceed
Jc even in the case of complete demagnetization (when
hc  ∞). Equation (4) allows the elimination of the
parameter Λ from the equations and omit the numerical
joining of the solutions at the interface, in contrast to (4).

E CONDITIONS IN THE DOUBLE ELECTRICAL 
LAYER UNDER A UNIFORM APPLIED 

MAGNETIC FIELD

A solution of set (2) along with expression (3) is
conveniently sought in the functions S(t) = (h(t)2 –

1)/(  – 1), η(t) = ϕ(t)/ϕ0, ϑ(t) = Ax(t)/ϕ0, dϑ/dt = h(t) =
Hy(t)/Hy(0), η(0) = 0, ϑ(0) = 0, and S(0) = 0, using t =
Hy(0)z/ϕ0 as an independent variable. The integral is
taken from t = 0 until η(t) and S(t) reach unity. By vary-
ing i and hc, we made the conditions dη/dt = 0 and (η +
ηn) + 0.5(γa – 1)((η + ηn)2 – ϑ2) = 0 be fulfilled at the

J0

H0
2 Hy 0( )2–

8πM 2eϕa/M 1 i ηn 0.5 γa 1–( )ηn
2++( )

-----------------------------------------------------------------------------------------------------=

=  JcI 1 1/hc
2–( ),

Jc = 
H0

2

8πM 3eϕa/M
------------------------------------, I  = 

1

1 i ηn 0.5 γa 1–( )ηn
2++

------------------------------------------------------------,

ηn

ϕn

ϕa

-----.=

hc
2

1.2

1.0

0.8

0.6

0.4

0.2

0
10–4 10–3 10–2 10–1 100 101

1

2

3

i

hc – 12

Fig. 2.
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points η(t) = 1 and S(t) = 1, respectively. To verify the
solution algorithm and compare our results with those
obtained previously, we first solved the problem for
ηn = 0. From the definition of the parameter I, it follows
that I = 1 and does not depend on i and that the ion cur-
rent density depends only on the demagnetizing param-

eter  – 1 in this case. Figures 2 and 3 plot, respec-

tively, i and I vs.  – 1 (curves 1) for γa = 1 + 4 × 10–4.
The curves coincide with those obtained in [4] and indi-
cate the presence of an uncertainty in i in the range of
solutions where the sizes of the fast electron cloud and
the space charge layer are equal (tc ≅  td). For the given
demagnetizing parameter and ion current density, there
are three allowable values of the space charge layer
thickness and the electron current density. Although the

demagnetizing parameter is small in this range (  –

1 ≅  10–3), the assumption of the constancy of the mag-
netic field (see, e.g., [5]) is incorrect.

Figures 4 and 5 plot, respectively, tc and td/tc vs.

 – 1 (curves 1). Even at  – 1 ≥ 0.1, td/tc < 0.1; i.e.,
the space charge layer thickness becomes much smaller
than the size of the fast electron cloud, or the cutoff
length. Thus, if J0  Jc, the fast electron cloud is sev-
eral orders of magnitude larger than the space charge
layer between the anode and cathode plasmas (zd ! zc ≈
ρa). In this case, we can assume that the magnetic field
does not affect the motion of the electrons in the layer;
hence, the solution must coincide with the well-known
solution for a bipolar diode if it is assumed that the elec-
trons both to and from the anode. Then, the parameter i
must be equal to unity. From Fig. 2 (curve 1), we see

that i  1 when  – 1 ≥ 0.1.

hc
2

hc
2

hc
2

hc
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hc
2
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Fig. 3.

≈



1526 VLASOV et al.
It is worth noting that when  – 1 is large, the ions
are accelerated in a narrow layer of a size much smaller
than ρa. The majority of the ions form in the magnetic
cutoff region at z = zc, i.e., at a relatively large distance
to the layer where the acceleration takes place. There-
fore, when moving to the layer, some ions may reion-
ize. The estimates of the potential drop across the anode
plasma that take into account gas burning-out and the
effect of the magnetic field on the motion of slow elec-
trons of the anode plasma show that the layer–anode
potential difference is on the order of the anode plasma
electron temperature and is thus insignificant provided
that the demagnetizing parameter is sufficiently large.

When solving the problem for ηn = 0, we failed to
find solutions close to quasi-neutral. That is why we
considered the problem where electrons enter the diode
with some nonzero initial energy. For Tc = 2 eV and γa =
1 + 4 × 10–4, ηn = 10–2. Let us evaluate the allowable
range of the parameter i. Accelerated ions with a space

charge density ≈Λ/  enter the cathode plasma from
the layer. For the quasi-neutrality to be established, the
electron space charge density in the cathode plasma
must exceed this value. Hence,

(7)

This problem was solved with the same algorithm,

starting from relatively large values of  – 1. Curves 2
in Figs. 2–5 represent, respectively, i, I, tc, and td/tc vs.

 – 1. At  – 1 ≥ 0.1, we have i  1.1 (Fig. 2). As

 – 1 decreases, i sharply drops, the drop being even
faster than in the case ηn = 0. At tc ≅  td, there are also

three solutions for i but at somewhat higher  – 1. At

hc
2

Ua

i ηn

1 0.5 γa 1–( )ηn+
1 γa 1–( )ηn+

----------------------------------------------.≥

hc
2

hc
2

hc
2

hc
2

hc
2

Fig. 4.
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 – 1 ≥ 0.1, I ≈ 0.9 (Fig. 3) and rapidly grows as td 
tc. At tc ≅  td, there also three solutions for I.

The attempt to solve the problem at  – 1 < 10–3

was a failure. This is associated with the fact that when
ηn ≠ 0, the electron momentum flux at the cathode
changes. According to the momentum flux conserva-
tion law, this requires at least a slight difference in the
magnetic field pressures at the anode and the cathode.

The smaller ηn, the smaller the ultimate value of  – 1.

A specific feature of this range of solutions is that
the longitudinal electron velocity first increases with z,
starting from the initial value –v n, and then drops to
zero, as in the case ηn = 0. In other words, the electric
field strength turns out to be sufficient for the electrons
to be accelerated in the longitudinal direction near the
cathode. This class of solutions is hereafter referred to
as the E layer. Figure 6 depicts typical distributions of
the potential η(t) (curve 1); variable S(t) (curve 2),
which characterizes the variation of the magnetic field;
longitudinal electron velocity v z(t)/v a (curve 3), and
electric field strength (dη/dt)/(dη/dt)max (curve 4).

H CONDITIONS IN THE DOUBLE ELECTRICAL 
LAYER UNDER A UNIFORM APPLIED 

MAGNETIC FIELD

The analysis of the problem for ηn ≠ 0 showed that
there is one more class of solutions that is radically dif-
ferent from the class considered above. If the parameter i
is selected such that it exceeds the value defined by (7)
only slightly, there exist solutions that admit a decrease
in the longitudinal electron velocity with distance to the
anode (v n > v z ≥ 0; Fig. 7, curve 3). In this case,
throughout the layer, except for the vicinity of the
anode, there exists a small excess negative space charge
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whose density is almost constant, as demonstrated by
the electric field distribution (Fig. 7, curve 4). Here, the
size of the fast electron cloud approaches but never
reaches that of the layer. In the narrow near-anode
region, only ions that neutralize the excess negative
charge and provide the fulfillment of the boundary con-
ditions for the electric field exist. This class of solutions
will hereafter be referred to as the H layer. This class,
corresponding to the case considered in [3] and
obtained directly from set (2) without neglecting elec-
tron inertia, shows that the existence of a quasi-neutral
space charge layer is a possibility. Figures 2–5 (curves 3)

plot, respectively, i, I, tc, and td/tc vs.  – 1 for the

H layer at ηn = 10–2. As  – 1 decreases, i somewhat

grows (Fig. 2), while I declines (Fig. 3). At  – 1 ≥ 0,
the size tc of the fast electron cloud nearly coincides
with that of the layer (Fig. 5) and becomes smaller than

the layer thickness when  – 1 decreases. Figure 7
depicts typical variations of η(t) (curve 1) and S(t)
(curve 2) over the layer.

Note that this model is not quite applicable to a dis-
charge in crossed fields, since the ionization takes place
within the cutoff region, while in the region z > zc, the
ions are absent. However, even if all the ions originate
at the point zc, the problem is hydrodynamically
described with the same set of equations; as a result, the
ion current density will grow insignificantly.

GAS IONIZATION IN DISCHARGES 
IN CROSSED FIELDS

The above solutions characterize the properties of
the double layer in a uniform transversely applied mag-
netic field. It has been shown that the problem has only
the two classes of solutions differing by cathode plasma
parameters if the demagnetizing parameter is suffi-

ciently large (  – 1 > 2 × 10–3 for ηn = 10–2 and γa =
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1 + 4 × 10–4). The E-layer conditions are realized at a
sufficiently large concentration of the cathode plasma
(i ≅  1), while the H-layer conditions are observed when
the cathode plasma concentration is much lower (at
ηn = 10–2, i ≈ 0.1 or one order of magnitude lower). One
can set one or the other conditions through the use of
special cathodes, space charge neutralizers, which pro-
duce a cathode plasma with a desired concentration
irrespective of the basic discharge. In this case, a con-
trollable transition of the discharge from the H-mode to
the E-mode is possible. To apply our results in design-
ing closed-drift accelerators, it only remains to deter-
mine the gas ionization probability and to prove that the
neglect of gas–electron collisions is valid.

Consider gas ionization in the E layer when the
demagnetizing value is relatively large and zd ! zc. In
this case, W(0) = 0, W(ξd) = 0, and h(ξd) = h(0) = 1. Inte-
grating Eq. (2b) yields the size of the fast electron
cloud, or the cutoff length:

(8)

where 2K2 = (  – Hy(0)2)/  = (1 – 1/ ) = J0/(JcI).

For 2K1 = 1, the density of the ion current from the
anode plasma J0  Jc at zc  ∞ and the magnetic
field at the cathode Hy(0)  0, as in [3]. Then, the
problem does not have a stationary solution, which may
cause instability.

At a sufficiently high demagnetization at zd ! zc,
Eq. (1) is easy to integrate with the use of the solution
to set (2) and the definition of K. Eventually,

zc

ϕ0 ϕn+( )
H0

----------------------
γa 1+
γa 1–
--------------

yd

1 2K2 1 y2––

-----------------------------------------,

0

1

∫=

H0
2

H0
2

hc
2

χ zc( ) χ02K2 yd

1 y2–( ) 1 2K2 1 y2––( )
-----------------------------------------------------------------

0

1

∫=

=  χ02K2Ψd α( ),

1.0

0.8

0.6

0.4

0 20 30 50 70604010

0.2 2
1

4

3

t

Fig. 7.



1528 VLASOV et al.
where

ϕi is the gas ionization potential, F(α, Θ) is the elliptic

integral of the first kind, and sinα = 2K/ . The
function Ψd(α) is depicted in Fig. 8 (curve 1).

For the ionization probability to be high, the follow-
ing inequality must be met:

(9)

This condition establishes a correlation between the
minimal gas pressure at the discharge anode and the
applied magnetic field. At small 2K2 = J0(JcI), Φd(α)
tends to π/2. This means that the ionization length λi =
1/σing must be less than half the Larmor radius of the
ions in the applied magnetic field (J0 ≅  ngv g, where ng

is the gas concentration at the anode, and I ≅  1). As
J0   Jc, 2K2  1 and Ψd(α) substantially grows.
For example, if α = 1.554(89°), Ψd(α) ≈ 2π, i.e.,
increases roughly fourfold. Hence, the gas pressure can
be lower than in the case of small demagnetization.

Thus, we have found the conditions when the gas
flow almost entirely ionizes near the cutoff. It is easy to
check that they are consistent with the assumption that
electron–electron collisions do not affect the motion of
the electrons. Indeed, collisions with neutrals can be
neglected if the condition 2πρa < λ0 is met (λ0 is the free

path of the electrons) in the E layer at  – 1 > 10–2.
Comparing this condition with (9), we see that both
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χ0 σiJc M/mρa( )/v g, σi 4σmIe 1 Ie–( );= =
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conditions hold simultaneously for most substances in
the gaseous state, because the Larmor radius of the
ions, not of the electrons, enters into condition (9) as
the free path. At λ0 = 0.1λi, both conditions are satisfied

when  > 120.

Consequently, our results adequately describe dis-
charges with closed electron drift under the E-layer
conditions. To find the characteristics of a specific dis-
charge under these conditions, it is necessary first to
determine from Eq. (6) the related demagnetization
value hc for given magnetic field and gas flow density that
satisfy (9). Then, having determined hc, one can find all
the characteristic of the layer, using the above results of
calculation.

For a cylindrical E layer, the situation is possible
when the cathode radius rcath lies in the applied mag-
netic field and the anode radius r < rcath. Then, the elec-
trons move toward smaller radii and the magnetron cut-
off surfaces is located at r < rcath. The azimuth current
arising in the fast electron cloud is now paramagnetic,
unlike the previous case, and enhances the magnetic
field in the region of electron motion. One can readily
show that the size of the fast electron cloud in the limit
case of planar geometry is also given by expression (8)

but with 2K2 = (  – )/  < 1 (Hc is the magnetic
field at the cutoff point zc). Hence, the fast electron
cloud has a finite size during any enhancement of the
magnetic field. The ionization probability is then given
by

where Ψ(α) = (4/π)cosα(F(α, π/2) – F(α, π/4)) and
F(α, Θ) is the elliptic integral of the first kind.
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The curve Ψ(α) is depicted in Fig. 9. At α  π/2,
Ψ(α)  0 and 2K2 and Hc/H0  ∞. Yet, the ioniza-
tion probability may be high if χ0 is appreciable. With
regard for gas burning-out, it can be easily checked that

χ0 = (4v s/v g)((q0/jρ) – 1), where jρ = (v g/2σmρa) ,

v s = , q0 = ngv g/2, and ng is the initial density
of the gas. Hence, χ0 ≈ 200 and χ(zc) = 102πΨ(α) for
4v s/v g ≈ 20 and (q0/jρ) ≈ 10.

Thus, even for Ψ(α) as small as 10–2, the ionization
probability remains high: P(zc) = 1 – exp(–χ(zc)) = 0.95.
The magnetic field grows by several orders of magni-
tude in this case. Thus, it follows the supposition that an
axial magnetic field may spontaneously be excited in
hollow-cathode discharges. Such discharges may be
used in promising inductive storage devices.

Consider now the gas ionization probability in the H
layer. Strictly speaking, it is found by jointly integrat-
ing Eq. (1) and set (2). Since the solutions for the H
layer are close to the solution obtained in [3], we can
take advantage of the fact that the longitudinal velocity
of the electrons is close to that of the ions in this case.
In view of this, integrating Eq. (1) yields

The curves Ψd(α) for Ie = (2) 0.1, (3) 0.07,
(4) 0.025, and (5) 0.004 are shown in Fig. 8. For Ie =
0.07, the ionization probability in the H layer coincides
with that in the E layer for small values of the parameter
2K2 = Jz/(JcI). At higher values of Ie, the ionization
probability in the E layer is larger than in the H layer
and vice versa. This result is obvious, since the ioniza-
tion cross section drops with increasing electron energy
and the ionization within the layer becomes stronger
than in the magnetron cutoff region.

The collisions with the neutrals can be neglected if

the inequality 22πρa/  < λ0 is fulfilled within the
electron path length in the H layer (this path is propor-

tional to 2πρa/ . Comparing this condition with (9),
one can see that these conditions cannot simultaneously
be met at ηn ≅  10–2. Therefore, electron–neutral colli-
sions may play a significant role in the H layer.
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CONCLUSION

When studying the E ⊥  H layer, we obtained the
solutions for the one- and two-dimensional double lay-
ers subjected to a uniform magnetic field. It was shown
that the problem has only two classes of solutions that
differ by cathode plasma parameters if the demagneti-
zation value is relatively large. Also, it was found that
the E-layer conditions are realized when the cathode
plasma density is large and that the collisions of the
electrons does not affect their motion in this case.

The H-layer regime arises when the cathode plasma
density is much lower. In this situation, electron–neu-
tral collisions cannot be ignored. To qualitatively eluci-
date the effect of the collisions, one should bear in mind
that the longitudinal electron velocity in the H layer
decreases from its initial value to zero because of the
force Fz = e(Ez – (v x/c)Hy) generated by the electric and
magnetic fields. In the H layer, this force appears to be
rather small, so that the approximation Ez = (v x/c)Hy

applies. Due to collisions with the neutrals, the compo-
nent v x of the electron velocity changes and the above
approximate equality becomes invalid. An electron
experiences the action of a large accelerating force in
the z direction and is thrown out of the layer to the
anode, moving ballistically, because the thickness of
the layer is much less than the free path of the electron.
Therefore, electron transfer in the H layer is not a dif-
fusion process in the conventional sense. Correct anal-
ysis of the H layer can be performed on assumption that
some fast electrons are merely lost upon collisions.

This article is the last work carried out with the par-
ticipation of Dr. Sci. (Phys.–Math.), Prof. M.A. Vlasov
and is dedicated to his memory.
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Abstract—The nonlinear interaction of waves in a periodic structure placed into a magnetic field is considered.
The structure is comprised of alternate semiconducting and insulating layers. The three-wave interaction tech-
nique is applied to studying the nonlinear processes. It is shown that nonlinear phenomena in media with trans-
lational symmetry and in homogeneous media differ. Conditions for the resonant interaction between the first
and second harmonics are analyzed. It is found that the second harmonic is generated when the interacting first
spatial harmonics both co- and counterpropagate, which is possible only in periodic structures. Resonance
events improving the generation efficiency are discussed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The method of second harmonic generation is used
for the local diagnostics of structures. In the recent
decade, extensive research on the second harmonic
generation in crystals [1–5], thin films [[6–9], periodic
structures [10–13], etc., has been carried out. One
effect observed in inhomogeneous (in particular, peri-
odic) media is the enhanced generation efficiency at
frequencies near the transmission edge. The reasons for
the anomalously high efficiency of the generation of
pump radiation harmonics in a photoionized plasma
have been considered in [14]. Ways to improve the gen-
eration efficiency for waves of different nature in peri-
odic media have been discussed in [15]. In this work,
we study the generation of the second harmonic in a
superconductor superlattice placed into a magnetic
field, using the three-wave interaction method [16–20].
The basic assumption in this method is the smallness of
the nonlinear terms. Its advantage is taking account of
the nonlinear terms acting in different layers of the
structure. We report the method for finding coupling
equations, discuss the nonlinear interaction of waves in
a periodic structure, analyze conditions under which
the first and second harmonics interact with each other,
and explain the considerable enhancement of wave
interaction due to three (cyclotron, Bragg, and nonlin-
ear) resonances.

STATEMENT OF THE PROBLEM. 
COUPLING EQUATIONS

Consider a periodic structure where semiconductor
layers of thickness d1 and insulating layers of thick-
ness d2 alternate. Let the structure be placed into a mag-
netic field H0 parallel to the 0Y axis. The 0Z axis runs
perpendicularly to the boundaries of the layers. We will
assume that the structure is homogeneous in the 0X and
1063-7842/01/4612- $21.00 © 21530
0Y directions and put ∂/∂y = 0, omitting the dependence
on the coordinate y in the equations. Then, the Maxwell
equations are split into equations for two polarizations.
In this work, the polarization with the nonzero Ex, Ez,
and Hy components is studied.

The object of our investigation is the nonlinear inter-
action of the waves in this superlattice. Using the
method suggested in [18] for a homogeneous medium,
one can reduce a set of nonlinear differential equations
to an algebraic set. For an inhomogeneous structure, we
obtain a set of differential equations that are solved
with the Green function [21]

(1)

Here,  is the linear differential operator involving the

terms of the linearized set of equations,  is the trans-

posed operator , f and  are the eigenfunctions of
these operators, v  is the coordinate space where the

operators  and  act, and a and b are the limits of
integration. Asterisk means complex conjugation, and

the writing *( f) denotes the scalar product.
This formula means that the eigenfunctions of the

transposed linear differential operator are orthogonal to
the right-hand side of the set of linear differential equa-
tions. This analytical method has been applied to study-
ing nonlinear wave interactions in periodic structures in
[19, 22, 23].

In our statement, the nonlinear mechanisms are
related to current nonlinearity in the semiconductor
layers. This nonlinearity appears as nonlinear terms in
the equation of carrier motion and in the continuity

f̃ * L̂ f( ) L̃̂ f̃( )* f–[ ] vd

a

b

∫ f f̃ a
b
.=

L̂

L̃̂

L̂ f̃

L̂ L̃̂

f̃ L̂
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equation. The interaction of electromagnetic waves is
described by the Maxwell equations, the continuity
equation, and the equation of carrier motion:

(2)

where the bracketed vectors mean the vector product.
Set (2) is written for the semiconductor layers (here-

after, subscripts 1 and 2 will refer to the semiconduct-
ing and insulating layers, respectively). For the insulat-
ing layers, j = 0 and ε01 should be replaced by ε2. Set (2)
can schematically be written as

(3)

where  is the bilinear column operator that involves
the nonlinear terms of set (2).

curlH1

ε01

c
------

∂E1

∂t
--------- 4π

c
------ j1,+=

curlE1
1
c
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∂H1

∂t
----------,–=

∂v1
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-------- v1grad( )v1+  = 

e
m
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e
mc
------- v1H0[ ] e
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∂n1

∂t
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1
e
---div j1+ 0,=

j1 e n0 n1+( )v1,=

L̂ f Ĥ f f,( ),=

Ĥ
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According to the method developed in [18], the
solution of set (2) can be represented in the form

(4)

where Ck(t) is the slowly varying amplitude of the kth
wave; the components e and hy depend on z, since the
structure is inhomogeneous in the 0Z direction; and e(ad)

and  are the additional fields reflecting the action
of the nonlinear mechanisms.

By virtue of the smallness of the nonlinear terms in
(2), we will assume that the nonlinearity-induced time
variation of the interacting wave amplitudes is slow;
that is,

(5)

The operator  follows from linearized set (2) for
the semiconducting and insulating layers. For the first
layer (Nd ≤ z < d1 + Nd),
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for the second layer (d1 + Nd ≤ z < (N + 1)d),

(7)

Equations for finding the function Ck(t) (coupling
equation) will be found with the Green formula. Con-
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.

sider integration in formula (1) in greater detail. Inte-
grating dx and dt yields the product of the delta func-

tions δ(  – ω)δ(  – kx) in terms of linear operators.
Integrating dz yields the difference in the related field
components at the boundaries of the structure. Since the
fields satisfy the boundary conditions, the integrals of the
linear terms vanish. On the left-hand side of (1), only the
terms involving the additional fields e(ad) are left:

ω̃ k̃x

L δ/δz( )Ckϕk
ad( ) dCk

dt
---------ϕk=

+ Ck'Ck''Ĥ1 ϕk' ϕk'',( )e i ω' ω'' ω–+( )t– ,

kx kx' kx''+=

∑
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where  is the operator consisting only of the nonlin-
ear terms of the semiconducting layer, ϕk is the column
vector involving the components of the field e, and

 is the column vector involving the components of
the field e(ad).

This set of equation is inhomogeneous. For the
semiconducting layer, the nonlinear terms have the
form

(8)

where the parenthesized vectors mean the scalar
product.

To obtain the operator , it is necessary to express
v1 and H1 through E1 and symmetrize the resulting
expression. From equations (2) for the polarization
studied, we find

(9)

When integrating dz in the nonlinear terms of (1),

we split the integral  into the sum of integrals over

structure layers, separating a region of width 2δi (δi  0)
at each of the boundaries:

where d = d1 + d2 is the period of the structure.

Since our structure is periodic, we apply the Floquet
theorem and reduce the integrals of the nonlinear terms
to those over the first period. Then, the periodicity of
the structure will be reflected by the sum

which leads to the conservation law for the Bloch com-
ponent of the wave vector:

(10)
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Here,  is the so-called Bloch wave number, which is
the “average” of the transverse wave numbers kz1 and
kz2 of the semiconducting and insulating layers.

Let us assume that the components of the additional
field obey the same boundary conditions as the linear-
ized ones. Then, if the resonance (synchronism) condi-
tions

(11)

are met, the equation for the amplitude Ck takes the
form [17–19]

(12)

where Wk, k', k'' is the matrix coefficient.

The equations for the amplitudes Ck' and Ck'' are
obtained by permuting the subscripts. It should be taken
into account that, along with relationships (11) and
(12), the parameters k, ω, and kx are related by the dis-
persion relation for an infinite periodic medium placed
into a magnetic field [24]:

(13)

where kz1 =  and kz2 =  are the

transverse wave numbers for the semiconducting and

insulating layers, εf = ε|| + /ε|| is the Voigt permittiv-
ity, and ε|| and ε⊥  are the components of the permittivity
tensor:

(14)

Here, ωp is the plasma frequency, ε0 is the lattice part of
the permittivity, ωH is the cyclotron frequency, and ν is
the effective collision frequency.

In [24], dispersion relation (13) was obtained by
using the transmission matrix that relates the fields at
the beginning and at the end of the period.

For the subsequent discussion, we need expressions
for the fields. Their derivation is straightforward and
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here is omitted. For the first layer (Nd ≤ z < d1 + Nd),

for the second layer (d1 + Nd ≤ z < (N + 1)d),

The coefficients A2, B1, and B2 are found from the
continuity condition for the tangential field components
at the interfaces and the Floquet theorem:

where m12 is the element of the transmission matrix:

(15)

Hy1 A1 kz1zcos A2 kz1zsin+( ),=
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The band structure of the spectrum with allowance
for the finiteness of the velocity of light is depicted in
Fig. 1 (curves 1–8). The calculation was made for a
superlattice where the first layer is InSb (ε01 = 17.8), the
second layer is an insulator (ε2 = 2), d1 = 0.01 cm, d2 =
0.015 cm, and kxd = 2. The transmission bands are indi-
cated by hatching.

The features of nonlinear interaction due to the peri-
odicity of the structure are as follows.

(1) The matrix element and the synchronism condi-
tion are meaningful only in the transmission bands of
the superlattice.

(2) The first two laws are similar to the synchronism
conditions in a homogeneous medium. The third one
represents the law for the Bloch components of the
wave vector. The term (2πn)/d reflects the periodicity of
the structure. This relationship replaces the law for the
z components of the wave vector in homogeneous
media.

(3) The matrix element Wk, k', k'' is complex for a peri-
odic (inhomogeneous) medium and imaginary for a
homogeneous one.

Schematically, the matrix element can be repre-
sented as the sum of four terms of type

(16)f s

ksd1 1– i ksd1sin+cos
ks

------------------------------------------------------,

1

0 1000

ω × 1012, s–1

H0, Oe
2000

2

3

4

1

4

8

2 3

5
6

7

Fig. 1. Dispersion relation. ε0 = 17.8, d1 = 0.01 cm, ε2 = 2,
d2 = 0.015 cm, and kxd = 2.
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where ks = kz1 ±  ±  and fs is a coefficient depend-
ing on the amplitudes of the interacting waves.

The coupling equations have been studied in [20]. It
has been shown that the physical characteristics of the
wave interaction can be obtained by investigating the
dependences of the coefficients Wk, k', k'' on the parame-
ters of the structure.

INTERACTION BETWEEN THE FIRST 
AND SECOND HARMONICS

Let us analyze the interaction of the first and second
harmonics with frequencies ω = 2ω and ω'. In this case,
the synchronism conditions are as follows:

(17)

To determine  and ω', we use the set of dispersion
relations

(18)

kz1' kz1''

ω 2ω', kx 2kx' , k 2k'.= = =

kx'

k'dcos kz1' d1 kz2' d2

ε f 1' ε2

2kz1' kz2'
-----------------

kz1'

ε f 1'
------- 
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+
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2
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'2 ε⊥ 1'
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-------------- 
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2
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Fig. 2. Dispersion relation.
Since εf1 ≠ , kz1 ≠ 2 . Because of this, this set
of equation cannot be solved analytically. The numeri-
cal solution of this set is depicted in Fig. 1 by continu-
ous curves 1–8. The curves lie in the transmission band.
They all break at k' = π/2, since at k' > π/2, k > π; that
is, the second harmonic falls into the opaque band.

Since the sign of the Bloch wave number cannot be
found from the dispersion relation, the specific law for
the Bloch numbers yields the new type of interaction:

(19)

that is, the second harmonic is excited as a result of the
interaction between two first harmonics counterpropa-
gating along the 0Z axis.

Continuous curves 1–14 in Fig. 2 depict the numer-
ical solution of the dispersion relations for the first har-
monics in view of synchronism condition (19).

Now consider the frequency and field dependences
of the matrix coefficient W. Figure 3a shows the W'(ω)
and W'(H) dependences for curve 7 in Fig. 1; Fig. 3b,
the W(ω) and W(H) dependences for the second har-
monic of curve 7; and Fig. 3c, W'(ω) and W'(H) depen-
dences for curve 5. The curves are normalized to the
maximal values. The matrix coefficient depends on
cyclotron, nonlinear, and Bragg resonances.

(i) At ω' = ωH (ω = 2ωH) or ω = ωH (ω' = 2ωH/2), we
are dealing with the cyclotron resonance for the first or
the second harmonic, which leads to infinite values of
W and W'. The divergence of the W'(ω') and W'(H)
dependences in Fig. 3c stems from the increase in the
carrier velocity v1 at ω = ωH [see (9)]. It is apparent that
the divergence is associated with the disregard of dissi-
pation processes. With the dissipation taken into

account, 1/(  – ω2) in (9) should be replaced by

1/(  – ω2 – 2iνω + ν2) ([see (14)].

(ii) The value of W also grows if one of the values of
ks vanishes [see (16)]. The situation when ks vanishes
can be considered as the condition for nonlinear reso-
nance. Note that the real part of the second factor in
(16) vanishes and the imaginary part equals d1 in the
limit ks  0. Therefore, either ReW' (ReW) or
ImW' (ImW) may solely have a maximum. The physical
reason for the enhanced wave interaction is that the
energy of the interacting waves turns out to be small at
kx = 0.

(iii) Bragg resonance is the resonance associated
with the structure period. Its essence is that the field
amplitudes take infinite values at points where

(20)

Solutions for these relationships lie in the forbidden
bands for the first or the second harmonic (since (  +

)/2 > 1 or (m11 + m22)/2 > 1, where the synchronism

ε f 1' kz1'

ω 2ω', kx 2kx' , k
2πn

d
---------± k' k',–= = =

ωH
2

ωH
2

m12' 0 or m12 0.= =

m11'

m22'
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Fig. 3. Frequency and field dependences of the nonlinear coefficients: (a) for curve 7 (first harmonic) in Fig. 1, (b) for the second
harmonic of curve 7 in Fig. 1, and (c) for curve 5 in Fig. 1.
conditions fail. Therefore, the condition for Bragg res-
onance cannot strictly be fulfilled. At the same time, the
field amplitudes within the allowed bands are finite and
depend on how much close the resonance points are to
those meeting synchronism conditions (17) and lying at
the boundary of the bands. Thus, the considerable
increase in the matrix element W at the boundary of the
transmission band is explained by Bragg resonance.

For the curves in Fig. 3, the maxima of ImW(ω) and
ImW(H) and the minima of ImW'(ω') and ImW'(H) are
due to the resonance for the first harmonic (Fig. 3b).
Bragg resonance (Fig. 3c) leads to the increase in
ReW(ω), ReW(H), ReW'(ω'), and ReW'(H). The run of
the curves at the high-frequency edges is explained by
the competition between Bragg and nonlinear reso-
nances.

CONCLUSION

We studied the nonlinear interaction of the waves in
a periodic semiconductor–insulator superlattice placed
into a magnetic field. The nonlinearity is due to the non-
linear free-carrier current in the semiconductor. We
used the three-wave method, which applies to periodic
structures. It was assumed that the nonlinearity is small,
i.e., that the energy of nonlinear interaction is lower
than the energy of the interacting waves. The features of
the nonlinear interaction that arise from the periodicity
of the structure were discussed. The generation of the
second harmonic was considered for the co- and coun-
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
terpropagating first harmonics. It was demonstrated
that the amplitudes of the first and second harmonic
change because of cyclotron, Bragg, and nonlinear res-
onances. The competition between these resonances
gives rise to the complex frequency and field depen-
dences of the nonlinear coefficients. Of special impor-
tance is the fact that for the semiconductor superlattice
placed into the magnetic field, the efficiency of har-
monic generation depends on the magnetic field: the
wave interaction is markedly enhanced at the point of
cyclotron resonance.
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Abstract—The problem of increasing the recording density in magnetic storage devices is considered. It is
shown that nanograined magnetic film media are candidate materials for magnetic data carriers. For these mate-
rials to completely meet the requirements for super-high-density magnetic carriers, appropriate structure order-
ing must be set in the films. To this end, it is suggested to take advantage of the high adsorbability of 3d metal
nanoparticles on high-molecular compounds. To produce the carriers based on these materials with a recording
density of as high as 1010 bit/cm2, nanoparticles of size ≤5 nm should be embedded in a polymer matrix. To do
this, it is necessary to combine chemical and physical methods for nanocomposite production. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

It seems quite realistic that science and technology
of the 21st century will deal with nanometer- or even
angström-size (quantum) objects, since many of the
conventional microelectronic technologies are
approaching or have already reached the fundamental
(classical) limits of miniaturization. This stimulates the
search of alternative lines of attack. Since the properties
of a solid depend on its chemical composition, atomic
structure, and dimensionality, the transition from a 3D
(massive) body to an object whose dimensions in one,
two, or three directions are as small as several inter-
atomic spacings leads to a change in the physicochem-
ical properties of the material. The specific properties
of materials structured on the nanolevel (hereafter
called nanostructured materials) provide the basis for
the development of new-generation electron devices as
microelectronics is now steadily passing from the
micro- to the nanometer scale. An example is the break-
through in the recording density of magnetic storage
devices.

THE TRANSITION FROM MAGNETOOPTIC 
RECORDING TO LONGITUDINAL MAGNETIC 

RECORDING

In 1983, the US Commission on Magnetic Materials
was established with the aim to judge the worldwide
and national levels of research in the field of magnetism
and outline directions of further development. The brief
report of the Commission was issued in 1985 [1]. It was
stated, in particular, that fundamental research on the
physics of magnetic phenomenon is of great impor-
tance, since magnetic materials are “perfect systems for
studying and verifying the basic concepts of the physics
of solids.” On the other hand, it was reported that the
market of devices based on magnetic materials progres-
1063-7842/01/4612- $21.00 © 21537
sively expands. Among new promising applications of
magnetic materials, emphasis was placed on external
magnetooptic computer memories.

This direction is closely related with further
advances in computer technology, whose potentialities
depend on the performance of data writing, storage, and
processing devices. At that time, optical technology
was considered as a very promising way of increasing
the RAM capacity. As alternative materials (carriers for
regenerative magnetooptic storage devices), film alloys
of rare-earth and transition metals were brought to the
fore. The parameters of these films met the require-
ments of RAM designers completely [2, 3]. In these
devices, data writing and reading are carried out with a
laser beam. The recording density is restricted by the
diffraction limit of optical radiations used and amounts
to ≈108 bit/cm2 [4]. The predictions of RAM designers
were to a great extent realized: early in the 1990s, mag-
netooptic memory devices filled their niche in the com-
puter market [5].

Next item on the agenda was to devise still denser
memories. In 1990, the idea of developing magnetic
memory with a record density of ≈1.5 × 108 bit/cm2

based on longitudinal recording was put forward [6]. In
1992, the technology of a magnetic memory with a
record density of ≈1.5 × 109 bit/cm2 was elaborated [7].
The new high technologies required novel materials
whose properties depend on appropriately arranged
structural nanoblocks. Let us consider the requirements
for a magnetic carrier of recording density 1.5 ×
109 bit/cm2.

As is known, magnetically ordered materials consist
of uniformly magnetized regions (domains) and transi-
tion regions (domain walls), where the magnetization
varied from point to point. For a magnetic medium to
be utilized for recording to the maximal extent, domain
walls should be as thin as possible. The wall width W is
001 MAIK “Nauka/Interperiodica”
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defined as W = (A/K)1/2, where A is the exchange
parameter and K is the anisotropy constant. The sim-
plest way to make the wall thinner is to decrease A. This
is easy to do in nanograined film materials where mag-
netic particles are separated from each other by a non-
magnetic spacer. Here, the particle size D is of great
importance, since it specifies the signal-to-noise (S/N)
ratio upon reading data. The value of D is calculated by
the formula [8]

where S is the area per bit. For a record density of 1.5 ×
109 bit/cm2 and S/N = 30–40 dB, D = 10–15 nm.

Now let us determine the basic magnetic parameters
(coercive force Hc, remanent magnetization Mr , and the
shape of hysteresis loop) of the nanograined films with
the particles of the nanometer size. Since in longitudi-
nal magnetic media the magnetization vector lies in the
carrier plane, a large demagnetizing field arises. The
value of Hc should therefore be selected as a trade-off:
on the one hand, it must exceed this demagnetizing
field; on the other hand, the capabilities of the read head
must be taken into account. For the given recording
density, Hc ≈ 3000 Oe. The value of Mr is determined
by the formula [9]

S/N 10 S/D2,log=

a Mrδ h δ/2+( )/πHc[ ] 1/2,=

Z

X

Y

d

a

D
δ

Fig. 1. Distribution of hexagonal grains in the ZX plane. The
arrows indicate the directions of the easy axes of uniaxial
anisotropy.
where a is the width of the transition region between
bits, h is the head–carrier spacing, and δ is the width of
the magnetic layer of the carrier.

For a = 13 nm, h = 20 nm, δ = 10 nm, Mr = 500 G.
The carrier also must have a rectangular hysteresis loop
with a high ratio Mr /Ms, where Ms is the saturation
magnetization. The feasibility of producing nan-
ograined films with such magnetic parameters has been
discussed by Zhu and Bertram [10]. They estimated the
effect of the magnetic film microstructure on magneti-
zation reversal and the hysteresis shape. The thin-film
medium is represented as the planar arrangement of
hexagonal nanograins shown in Fig. 1. Here, δ is the
width of the film, which coincides with that of the
grains; D is the grain size in the ZX plane; d is the inter-
granular spacing; and a = d + D is the lattice constant.
Each of the grains is a single-domain particle where the
magnetization is reversed by the coherent rotation of
the magnetic moment. The calculation involves the
coupled dynamic equations with the Landau–Lifshitz
phenomenological damping parameter. In this model,
the effect of the microstructure on magnetic hysteresis
shows up through exchange and dipole–dipole interac-
tions between the particles (Fig. 2). The inclusion of
both interactions leads to an increase in the ration
Mr/Ms and a decrease in Hc. If, however, the dipole–
dipole interaction is significant, magnetization reversal
causes a vortical domain structure to appear and the
quadratic shape of the hysteresis loop becomes dis-
torted. Strong exchange interaction between particles
widens the transition region between the domains.
Thus, it has been shown that the nanograined films with
an appropriate microstructure can have parameters nec-
essary for high-density memory applications.

Subsequently, such devices have been created. Fig-
ure 3 shows a typical structure of the carrier used in
advanced memories with longitudinal writing [11]. The
carrier consists of several layers of which we are inter-
ested primarily in the Cr underlayer and the Co mag-
netic layer. The grain size in the magnetic layer
depends on the microstructure of the underlayer
(Fig. 4). The underlayer is usually made of Cr and
NiAl. As the magnetic layer, Co-based alloys with Cr,
Ta, Pt, etc. admixtures are employed. With such carri-
ers, a recording density of 3–4 × 103 bit/cm2 [12, 13]
has been attained. Memories with a recording density
of up to 1.5 × 106 bit/cm2 are predicted to appear in the
former half of the current decade [14]. Several years
ago, the problem of creating memory devices with a
recording density as high as ≥1010 bit/cm2 has been
posed [15, 16].

REQUIREMENTS FOR MAGNETIC CARRIERS 
WITH A RECORDING DENSITY 

OF ≥1010 bit/cm2

As a carrier for super-high-density memories, quan-
tum magnetic disks have been suggested [15]. In these
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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disks, bits are single-domain particles in the form of a
column or a strip that are evenly spaced in a nonmag-
netic matrix. The shape and the form of each of the bits
are selected such that their magnetic moments have
only two oppositely directed quantum states of the
same amplitude. The idea of quantum magnetic disks is
by far very promising but requires much investigation
into writing and reading processes and the development
of the reliable technology.

It therefore seems logical to consider the potentiali-
ties of nanograined magnetic films as a medium for
super-high-density (≥1010 bit/cm2) devices. Consider
the requirements for the parameters of the films. Since
the bit size decreases as the recording density grows,
the demagnetizing field in longitudinal-writing media
naturally increases; hence, Hc must be no less than
5000 Oe [16]. To keep the ratio S/N at a high level dur-
ing data reading, the size of the magnetic particles must
not exceed 5 nm. This raises the question as to whether
there is a possibility of obtaining the desired parameters
in the films considered.

It is known that the properties of the nanograined
films depend on the properties of the nanoparticles and
on the interactions between them. Let us see how the
magnetic properties (Ms, Hc, and the Curie temperature
TC) vary as the particle size decreases. The variation of
Ms in nanoparticles was discussed as early as in the
1960s [17]. By comparing the exchange energy, which
is the energy of magnetic ordering, with the energy of
zero-point oscillation, it has been found that the ferro-
magnetic properties of 3d metal particles of size ≤1 nm
disappear at any temperature. Later, the magnetization
of free 3d metal clusters containing from 10 to
300 atoms was measured. The < 1-nm clusters were
found to be magnetized at temperatures between 100
and 200 K [18], and the magnetization may even
exceed Ms of the bulk material [19]. This effect is
related to the increased number of localized 3d elec-
trons in the nanoparticles [20].

In the 1980s, works where the effect of the particle
size on the Curie temperature was considered appeared.
Although Tc of the nanoparticles is lower than in the
bulk material, it was estimated at 500–600 K even for
particles of size 1.0–1.5 nm [21].

As the magnetic particle size decreases, the coercive
force becomes more difficult to measure. A typical Hc

vs. D dependence is shown in Fig. 5 [22]. As the parti-
cle size diminishes from 40 to 20 nm, Hc grows,
because the particles pass into the single-domain state.
On further decreasing D, the coercive force sharply
drops. This is associated with growing thermal fluctua-
tions in the directions of the magnetic moment M of the
particle. The magnetic moment M tends to align with
the direction of easy magnetization, which is defined by
the magnetic anisotropy of the particle. For M to devi-
ate from this direction, it is necessary to overcome the
energy barrier KV (V is the particle volume). The mag-
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
netic moment direction starts to noticeably fluctuate
when the mean thermal energy kBT (kB is the Boltz-
mann constant) becomes comparable to the energy of
anisotropy. At kBTb = KV (Tb is the blocking tempera-
ture), a magnetic particle ensemble subjected to an
external magnetic field and temperature behaves as a
paramagnetic molecular gas with the only exception
that the directions of the magnetic moment of the parti-
cles, not molecules, vary in the particle ensemble. This
phenomenon has been called superparamagnetism [17].
In this case, the temperature dependence of the coercive
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Fig. 2. Hysteresis loop for volume-disordered anisotropy
axes. (a) Exchange interaction between the grains is absent,
δ/a = 0.5, dipole–dipole interaction M/Hk = (1) 0 and (2) 0.4
(Hk is the anisotropy field); (b) M/Hk = 0.4, δ/a = 0.75,
exchange interaction is (1) 0 and (2) 0.15.
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Fig. 3. Carrier for longitudinal writing.
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force is given by [11]

As follows from this expression, the coercive force
can be increased by increasing the temperature of tran-
sition to the superparamagnetic state. To do this, one
must raise the magnetic anisotropy constant of the par-
ticles. This can be done in three ways: (1) by using
materials with a high crystallographic anisotropy (Co–
Sm, Co–Pt, and like alloys), (2) by varying the shape of
the particles (from spherical to elongated [23]), and (3)
by inducing the anisotropy in a particle ensemble via
exchange and dipole–dipole interactions. While the
first two approaches have already been applied in pro-
ducing novel magnetic carriers, the last one has not yet
been implemented. For example, the effect of exchange
and dipole–dipole interactions on the hysteresis loop
has been considered only for the case of a one-layer
nanostructured film [10]. At the same time, the interac-
tion between magnetic particles has received much
attention. Let us address ourselves to the results
obtained in [24].

In [24], the conditions for ferromagnetic ordering in
a set of single-domain particles interacting with each
other are found in the mean field approximation. The

Hc Hc0 1 T /Tb( )1/2–[ ] .=

Magnetic layer

Cr underlayer NiAl underlayer

Fig. 4. Effect of the underlayer structure on the magnetic
layer structure.
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Fig. 5. Coercive force vs. Fe grain size. The particles were
deposited in the (1) O2 and (2) N2 atmosphere.
set is comprised of spherical ferromagnetic particles of
radius D/2 embedded in a solid nonmagnetic matrix.
The distribution of the particles in the matrix is simu-
lated under the assumption that their centers occupy
(with a probability p) the sites of the tetragonal lattice
having the periods d1 (along the X and Y axes) and d2
(along the Z axis, which is the tetrad axis). It is assumed
that the interaction between the particles is magnetic
dipole, the particles are uniaxial, their axes of easy
magnetization are perpendicular to the XY plane, and
the dynamics of the magnetic moment for any of the
particles is described by the stochastic Landau–Lifshitz
equation.

It has been established the ferromagnetic ordering in
this system takes place at d2/d1 < 1. As the radius of the
particles grows, the superparamagnetic–ferromagnetic
phase transition temperature Tl rapidly approaches the
Curie temperature of the bulk material. For example,
for a set of single-domain Co particles (p = 1, d2/d1 =
0.5, and d2 = 3D/2), the ratio Tb /TC changes from 0.25
to 0.7 with D/2 varying from 2.5 to 3.5 nm.

The physical reason for the presence (at d2/d1 < 1)
or absence (d2/d1 ≥ 1) of ferromagnetic ordering in this
system is the competition between magnetic dipole
interactions between the particles. The particles sur-
rounding some arbitrary chosen one can be subdivided
into two groups according to their positions. Those of
the first group produce a mean magnetic dipole field at
the central particle chosen, this field being parallel to
the magnetization vector, while the particles of the
other group produce an antiparallel field. Ferromag-
netic ordering occurs when the particles of the first
group make a major contribution to the total dipole
field, which takes place at d2/d1 < 1.

The result obtained indicates that a certain structure
ordering in a set of interacting magnetic particle sub-
stantially raises the superparamagnetic–ferromagnetic
phase transition temperature. With the beneficial effects
due to the first and second approaches added, one may
expect a significant rise in this temperature even for
≤5 nm particles.

From the aforesaid, it can be concluded that nan-
ograined magnetic films with an ordered arrangement
of the nanoparticles can meet the requirements for lon-
gitudinal recording carriers with a recording density
above 1010 bit/cm2.

FORMATION OF AN ORDERED STRUCTURE IN 
NANOGRAINED MAGNETIC FILMS

Ways for tackling the problem should be looked for
in the new field of chemistry, so called supramolecular
chemistry [25]. The subject of supramolecular chemis-
try is the synthesis and study of molecular ensembles
(including clusters) with the self-organization proper-
ties. While conventional chemistry deals largely with
reactions that break or produce valence bonds,
supramolecular chemistry studies almost exclusively
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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Fig. 6. Au nanoparticles are assembled into the (a) bcc and (b) t-fcc lattice.

(a) (b)
nonvalent interactions, such as weak hydrogen bonds,
electrostatic interaction, etc. The energy of these bonds
are one to two orders of magnitude lower than the
energy of valence ones; however, when combined,
many such bonds may produce associates that are sta-
ble and at the same time readily change their structure.

Metal nanoparticles are highly reactive and have the
developed surface. Accordingly, they are involved in a
variety of spontaneous processes. To improve their sta-
bility is a basic challenge. For this purpose, various sta-
bilizers are employed. One widely used approach is to
stabilize metal nanoparticles with high-molecular com-
pounds. The result is composites where ultradisperse
particles or clusters are randomly distributed in a poly-
mer matrix [26].

In recent years, the ensembles of passivated metal
nanoparticles with the self-assembly properties have
received much attention. Luedtke and Landman [27]
studied the structure, dynamics, and thermal dynamics
of ensembles of alkyl siloxane–passivated gold nano-
particles. The position and the concentration of the
monolayers passivating the faces of the gold nan-
ograins indicated that the monolayers are assembled
like molecular packets of preferred orientation. On
heating, this ordered state reversibly passes to the ran-
dom intermolecular distribution. The equilibrium
arrangement of adsorbed nanograins depends on the
length of a molecular chain involved in passivation. If
passivation is through a chain of Au140(C4H9S)62 mole-
cules, the bcc superlattice forms at room temperature
(Fig. 6a), which transforms into the fcc one on heating.
At T = 300 K, the equilibrium superlattice of
Au140(C12H25S)62 nanograins represents the tetrago-
CHNICAL PHYSICS      Vol. 46      No. 12      2001
nally distorted fcc structure (t-fcc in Fig. 6b). The
strength of the superlattices is due to the interaction
between packet molecules. The superlattice parameters
are a ≈ 2.9 nm for the bcc and a = b ≈ 4.3 nm, c ≈ 5.1 nm
for the t-fcc. Such ordered structures may be stable up
to T = 800–900 K [28].

Subsequently, Yin and Wang [29] produced super-
lattices based on 3d metal nanograins. However, their
technology concealed the danger of oxidizing 3d metal
nanoparticles. To refine the resulting mixture, the metal
particles were extracted by magnetic separation. There-
fore, superlattices based on CoO nanoparticles were
studied. The particles had the form of a tetrahedron (the
edge length ≈4.4 nm) and form the fcc superlattice
(with the parameter a ≈ 12 nm). On heating to 600°C,
the ordered structure breaks down, and a mixture of
Co2C and Co3C nanograins instead of CoO results.

The materials described above were produced by the
chemical method (the solution reduction of the metal
compounds in the presence of stabilizers). This method
is inappropriate for producing purely magnetic materi-
als. Therefore, the need for physical methods (phase
transitions of the first order in the absence of chemical
reactions) to obtain nanograined magnetic films has
emerged. Here, condensation methods have received
the widest acceptance. Their essence is the assembly of
the nanoparticles from individual metal atoms with the
use of molecular or cluster beams. The atoms are then
grouped together to produce a cluster that becomes a
nucleus of the new phase once it has reached a certain
size and exhibited the clear-cut physical interface.

At first glance, the cluster beam technology seems
to be the most adequate solution to this problem. Mate-
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rials thus obtained are thin films where clusters are
embedded in an inert matrix. This technology has been
applied by Perez et al. [30, 31]. They used a low-energy
cluster beam to deposit nanograined films (including
films of 3d metals). The associated setup is depicted in
Fig. 7.

The generation of clusters is the most effective
under nonequilibrium conditions, when the gas con-
denses into the bulk phase by cooling and the process
ceases at the intermediate stage. Such conditions are
the easiest to set when the gas or vapor freely flows out
of a nozzle and expands to form a cluster beam. The tar-
get material is evaporated by a laser shot. Atoms evap-
orated are mixed with a buffer gas flow, and the subse-
quent expansion of the mixture into a vacuum through
a nozzle leads to the formation of clusters. The mass of
the clusters is measured with a time-of-flight mass
spectrometer. Before the measurements, the clusters are
irradiated by an excimer laser, ionized, accelerated, and
directed to the measurement chamber. The neutral clus-
ter flux strikes the substrate placed in the evaporation
chamber.
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Fig. 7. Setup for evaporative deposition of the films from a
neutral cluster beam. I, cluster generation chamber; II, clus-
ter transport tube; III, chamber of cluster ion detector;
IV, deposition chamber; 1, pulsed laser; 2, target; 3, tube
and valve for pulsed injection of helium; 4, nozzle; 5, skim-
mer; 6, cluster flux; 7, excimer laser; 8, accelerating grids;
9, cluster ion flux; 10, detector; 11, substrate; 12, evaporator
of matrix material; 13, ion beam for cleaning the substrate;
14, Auger spectrometer; and 15, diffractometer.
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Fig. 8. Setup for evaporative deposition of the films from an
atomic beam. 1, Vacuum chamber; 2, pulsed laser; 3, target
(cathode); 4, circular electrode (anode); 5, substrate;
6, capacitor bank; 7, bank charger; 8, to pump; and 9, work-
ing gas inlet.
The character of cluster–substrate interaction
depends on the particle energy [32]. If the energy is low
(<1 eV/atom), the cluster, when touching the surface,
behaves as a liquid drop: initially, it adheres to the sur-
face and produces a planar contact. Then, the surface
(outer) atoms of the cluster spread over the surface due
to diffusion, forming a thin film. When the cluster
energy is high, the collision with the surface causes an
appreciable shift of adjacent atoms, which results in the
erosion of the surface material, followed by its evapo-
ration. Therefore, low-energy cluster beams are used
for depositing thin films. If several materials are sput-
tered simultaneously, a complex ensemble of solid
clusters embedded in the matrix will condense. With
this approach, nanograined films of various materials
have been obtained in [30, 31, 33, 34].

However, the condensation of low-energy cluster
beams to obtain nanograined films of 3d metals is a
very complicated technology. Moreover, it does not
have any obvious advantages over other simpler pro-
cesses. The point is that the nanograin size in the result-
ing film depends largely on thermodynamic conditions
under which the condensate forms rather than on the
vapor flux type (atomic or cluster) [30, 31]. As a result,
the nanograins have the same size when the films are
deposited from atomic and cluster beams, all other
things been equal.

To obtain nanograined magnetic films, we have sug-
gested the method of pulsed plasma evaporation at a
pressure of 10–6 torr [35–40]. Our setup is shown in
Fig. 8. The method features a high condensation rate
(~104 nm/s) at a pulse duration of ~10–4 s and at a cool-
ing rate as high as ~108 K/s. This approach has turned
out to be very efficient, since high vapor overcooling is
the necessary condition for obtaining nanocrystalline
systems [32]. In our method, a plasma is generated
between the water-cooled anode and a 3d metal target
being sputtered when a high-capacitance capacitor
bank is discharged in the target vapor. An initial small
amount of the vapor is produced by the laser evapora-
tion of the target. The pulsed radiation of an LTI-207
solid-state laser partially evaporates the cathode mate-
rial, producing the medium through which an electric
current passes. The atoms evaporated are ionized in the
discharge plasma. The resulting ions of the target atoms
bombard the cathode, knocking out a new portion of the
atoms. The evaporation process lasts for a time exceed-
ing the pulse width by three or four orders of magni-
tude.

The novelty of our method is the proper choice of
the ultimate dispersion of the crystalline structure when
the number of originating nuclei is large and the radius
of a critical nucleus coincides with that of coalescence.
Films obtained with this method grow continuous,
starting from thicknesses of 2 to 3 nm, and are com-
prised of nanograins of approximately the same size.
This stems from the in situ measurements of the resis-
tivity and the examination of the structures in tunnel
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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and high-resolution transmission electron microscopes.
The parameters of the 3d metal films obtained with our
method are similar to those of the films produced by the
cluster beam technology: the grain sizes are equal, the
local anisotropy constant is large, and the exchange
parameter is relatively low.

Note, however, that the nanograined films of 3d met-
als obtained by the condensation of cluster and atomic
beams have a low coercive force obviously because of
the superparamagnetic effect. To rise the temperature of
this transition, the films must be appropriately ordered.
The ordering may be accomplished by taking advan-
tage of the high adsorbability of the nanoparticles on
high-molecular compounds. For example, one may
deposit the metal nanoparticles in an appropriate atmo-
sphere or sputter the metal and the polymer in parallel.

In this case, the new phase forms through the phase
transition, but the synthesis of the final product involves
chemical reactions [26]. Thin composite films may be
prepared under conditions when the polymerization of
related compounds and the vacuum evaporation of met-
als proceed concurrently. For example, the metallic tar-
get is sputtered in the glow discharge plasma of a poly-
mer or compounds that will be used as matrices are
sputtered in metal vapors. There can be versions where
the vapors of a metal and of an organic solvent are
codeposited onto a cooled substrate and the resulting
condensate is heated to a certain temperature. In most
of these cases, the material grows disordered. It
becomes clear that the synthesis of structurally homo-
geneous nanocomposites is impossible if the matrix is
not specially prepared. Therefore, a number of prob-
lems related to the vacuum condensation of the metal-
lopolymeric phase and to the examination of its struc-
ture should be solved before the reliable technology of
nanograined magnetic films with orderly arranged
nanoparticles that combines physical and chemical
methods is developed.

CONCLUSION

Thus, we showed that nanograined magnetic film
media with nanoparticles of size ≤5 nm are competitive
with magnetic quantum disks in the production of high-
density magnetic memory devices.

The temperature of transition to the superparamag-
netic state can be increased if certain structure ordering
is established in these materials. To do this, one can
take advantage of the high adsorbability of the nanopar-
ticles on high-molecular compounds. In principle, the
problem can be solved by chemical methods; however,
dry (solution-free) processes for the formation of nan-
ograined structurally ordered magnetic fields seem to
be more appropriate for applications. Therefore, it is
suggested to use technologies of vacuum deposition
that combine physical and chemical methods.
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
Note, in conclusion, that ordered nanocomposites
are not only of applied interest but also offer consider-
able scope for fundamental research.
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Abstract—An amplifier based on a high-power free-electron planar laser operating at a wavelength of 4 mm
is simulated. The system is built around the U-3 accelerator, which forms a ribbon relativistic electron beam
with an energy of up to 1 MeV and a total operating current of up to 2 kA. The simulation uses various
approaches, including the direct numerical simulation of the Maxwell equations and particle motion equations
by means of the PIC-code KARAT. The approaches are shown to give close results. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The provision of a relatively high integral radiation
power at a moderate energy density (the energy divided
by the cross section) is one obvious advantage of using
high-current ribbon relativistic electron beams (REBs)
for the generation and amplification of microwave radi-
ation [1–3]. The challenge here is the spatial coherency
of radiations from different parts of the beam. For oscil-
latory circuits, this problem can be solved by applying
two-dimensional distributed feedback based on planar
Bragg structures with the double-period corrugation of
the side walls [4, 5].

It has been shown [6] that two-dimensional Bragg
arrays are also appropriate for introducing the radiation
into an amplifier fed by an REB. In this case, the energy
can be uniformly distributed over the cross section of
the beam and the phase front of the output radiation can
be made almost plane. The amplifier simulated is now
being developed on the basis of the U-3 accelerator
(Institute of Nuclear Physics, Siberian Division, Rus-
sian Academy of Sciences), which forms a ribbon REB
with an energy of up to 1 MeV and a total operating cur-
rent of up to 2 kA.

In this work, the amplification process is simulated
with various approaches. In Section 1, we consider the
complete unaveraged set of self-consistent equations
that describe the interaction of the particles moving in
the field of a planar undulator and in the guiding mag-
netic field with the TEM mode of a planar waveguide.
In Section 2, these equations are averaged under the
undulator resonance condition and the linear and non-
linear stages of the amplification process are studied
based on these equations. Good agreement with the
simulation with the unaveraged equations is demon-
strated. In Section 3, we simulate a system whose
geometry is close to the real geometry of the amplifier
1063-7842/01/4612- $21.00 © 21545
being developed, using the two-dimensional version of
the PIC-code KARAT. All the approaches are shown to
give similar results.

1. BASIC MODEL AND EQUATIONS

Let us assume that a ribbon electron beam having an
initial velocity v0 = v 0z0 is transported in the field of a
planar undulator and in a uniform guiding magnetic
field H0 = H0z0 through a planar waveguide made by
two parallel metallic planes that are a apart along the
y axis. The system is assumed to be homogeneous
along the x coordinate. We also assume that the electron
beam excites the TEM mode of the waveguide. The
periodic undulator field and the field of the operating
mode are defined by the vector potentials

(1)

where As(z) is the slowly varying amplitude of the sig-

nal wave;  = 2π/d, d is the undulator period; k = ω/c;
and x0, y0, and z0 are the unit vectors of the Cartesian
system.

Using the excitation equations and the equations for
electron motion, we can obtain the self-consistent set of
equations that describes electron–wave interaction in a
one-way transmission-type amplifier:

(2a)

(2b)
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(2c)

(2d)

with the boundary conditions as|Z = 0 = a0, Px|Z = 0 =
Py|Z = 0 = 0, γ|Z = 0 = γ0, Y|Z = 0 = ky0, and τ|Z = 0 = τ0 ∈
[0, 2π). Here, Z = kz and Y = ky are the longitudinal and
transverse coordinates, respectively; y0 is the coordi-
nate of beam injection into the interaction space; τ = ωt
is time; Px, y, z = px, y, z/m0c are the normalized compo-
nents of the electron momentum;

are the normalized field components;  = /k and
au, s = eAu, s/m0c2 are the amplitudes of the undulator
field and signal wave field; J0 = 2ej0/m0cω2a is the cur-
rent parameter; and j0 is the linear current density.

In the equations of motion, time differentiation is
replaced by differentiation with respect to the longitu-
dinal coordinate: d/dt = v zd/dz.

The derivation of set (2) requires neither the syn-
chronism conditions nor conditions far away from
cyclotron resonance; hence, set (2) has a fairly general
character but averaging over fast oscillations in it is
absent. This complicates the analysis, in particular, the
elaboration of a linear theory. However, these equations
may help to check the accuracy of results obtained with
the averaged equations. Set (2) is intermediate in accu-
racy between the direct numerical simulation of the
Maxwell equations (for example, using the PIC-code
KARAT; see Section 3) and the approach based on the
averaged equations (Section 2).

2. AVERAGED EQUATIONS

To obtain the averaged equations, we will consider
the interaction of the electrons with the operating wave
under the undulator synchronism conditions

(3)

where Ω = v || is the oscillation frequency of the elec-
trons in the undulator field (bounce frequency).

We assume that the signal electromagnetic wave and
the undulator field are far from cyclotron resonance
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with the electrons:

(4)

where ωH = eH0/m0cγ0 is the gyrofrequency, v || is the
longitudinal velocity of the electrons, and T is the char-
acteristic time of interaction.

Approximately integrating equations of motion (2b)
and (2c) under these assumptions, we find the ampli-
tude of transverse electron oscillations in the resulting
field of the signal wave and the undulator:

(5)

where p+ = px + ipy, g = ωH/Ω is the cyclotron-to-bounce
frequency ratio, and u = 1 – γ/γ0 is the relative change
in the electron energy. Asterisk means complex conju-
gation.

Substituting (5) into excitation equation (2a) and
energy variation equation (2d) and averaging over fast
oscillations, we get

(6)

where αs = as/2γ0 is the amplitude of the operating

wave, αu = au y0)/2γ0 is the normalized field of
the undulator, I0 = J0/4γ0 is the current parameter, and

θ = ωt – (k + )z is the phase of the electrons relative
to the combinational wave. Tilde means averaging.

Writing the equation for the electron phase in the
form

(7)

and putting 1/βz ≈ 1 + 1/2γ2 + /2 in the ultrarelativis-
tic limit, we use expression (5) for transverse electron
oscillations and average over fast electrons. Eventually,
we come to the self-consistent set of equations (tilde is
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hv || ωH– T  @ 2π,
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omitted later on)

(8)

with the boundary conditions αs|Z = 0 = α0, u|Z = 0 = 0,

θ|Z = 0 = θ0 ∈  [0, 2π). Here, ∆ = (1 + ) – 1/β0 is the
undulator synchronism detuning.

Linearizing set (8) in the small-signal approxima-
tion and representing a solution in the form e–1ΓCZ, we
arrive at the dispersion relation

(9)

where  = (∆ – /2)C–1, b = 4C/µ(1 – g2),

(10)

is the Pierce parameter, and

(11)

is the inertial grouping parameter.
In the range of parameters that meets the condition

of the designed experiment, the cyclotron frequency
exceeds the bounce frequency and b is negative. Figu-
re 1 plots the optimal detuning and the maximal incre-
ment against b. The increase in the absolute value of b
decreases the maximal increment and shifts the optimal
detuning toward negative values.

The nonlinear stage of the interaction was simulated
for the parameters close to the conditions of the
designed experiment based on the U-3 accelerator.
A 12-cm-wide ribbon electron beam with an energy of
about 900 keV and a total current of 2 kA is to be
injected through a 1 × 20-cm rectangular waveguide
into the field of a planar undulator with a field period of
4 cm and an amplitude of the transverse magnetic field
component of 1.5 kOe. The strength of the guiding
magnetic field is 11 kOe. It is assumed that the beam
will interact with one of the lower H modes. At the
point of beam injection, the field configuration of this
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mode is close to that of the TEM mode of the planar
waveguide. A 1-MW 75-GHz gyrotron is used as an
external signal source.

Figure 2 shows the optimal (in terms of gain) rela-
tionship between the magnetic fields at the nonlinear
stage of the interaction for the averaged and unaveraged
equations. Here, the dependences of the maximal gain
on the undulator magnetic field under the optimal con-
ditions are also depicted. It is seen that the simulations
using the averaged and total equations give nearly the
same results. The gain is maximal throughout the entire
length of the interaction space, 90–100 cm, reaching
24–25 dB, which corresponds to the output power 250–
300 MW and the efficiency 14–17%.

3. SIMULATION OF THE AMPLIFICATION 
PROCESS WITH PIC-CODE KARAT

We additionally simulated the planar model of the
ubitron–amplifier with the two-dimensional version of
the PIC-code KARAT. This code allows us to directly
solve the Maxwell equations jointly with the equations
of macroscopic particle motion.

Figure 3 demonstrates the gain vs. longitudinal
coordinate dependences obtained from the solutions of
the averaged and unaveraged equations, also by the

É
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Fig. 1. Optimal detuning and maximal increment vs. b.
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Fig. 2. Optimal relationships between the guiding and
undulator magnetic fields and the dependence of the maxi-
mal gain on the undulator field under the optimal condi-
tions. Continuous curves, unaveraged equations; dashed
curves, averaged equations.
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KARAT simulation. In the last case, the gain reaches
22 dB, which corresponds to an output power of 160–
170 MW and an efficiency of 9%. The lower gain com-
pared with the other approaches can be explained by the
effect of low-frequency (static) and high-frequency
space charges. Specifically, the static space charge must
cause the separation of the electrons by longitudinal
velocity. Moreover, the analysis of the averaged and
unaveraged equations shows that the gain markedly
drops when the relationship between the magnetic
fields is not optimal. One can suppose that the same
sensitivity takes place in simulating with the KARAT

20

10

0 40 80 120
z, cm

1

23

K, dB

Fig. 3. Variation of the gain with the longitudinal coordi-
nate: 1, averaged equations; 2, unaveraged equations; and
3, KARAT code.
code. In this case, the exact optimal values of the fields
are very difficult to find.
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Abstract—A combined electromagnetic deflector consisting of four or eight electrodes that simultaneously act
as poles is proposed. The distribution of the potential in such systems is obtained, and the parameters of the
base beam trajectory under achromatic operating conditions are calculated. New (nonclassic) relationships
between the electrostatic and magnetic components of the field that provide a lower residual chromatic aberra-
tion and a higher deflection linearity are found. © 2001 MAIK “Nauka/Interperiodica”.
In scanning electron microscopes, electron-beam
tubes, secondary-ion and atomic mass spectrometers,
etc., a raster on the sample surface is produced mostly
by electrostatic systems with colocated deflection cen-
ters, which are called deflectors. The deflectors do not
defocus (in the first approximation) the charged particle
beam (i.e., they do not affect the beam divergence). An
electrostatic deflector is made as a cylinder or a cone
split along its generatrix [1, 2] into an even number of
planar electrodes placed on the sides of a rectangular
(square) box [3] or as a split plane capacitor [4].

Many devices and installations must provide the
same deflection for nonmonoenergetic beams. As is
known, achromatic systems employ mutually orthogo-
nal electrostatic and magnetic fields. We will write the
achromatism condition in the first approximation for
the general form, starting from the trajectory equation
without specifying the types of the fields. The con-
straints are the following: (i) the electrostatic and mag-
netic fields exert the same action (deflection, focusing,
or aberration correction) on the charged particle beam,
(ii) the mutually orthogonal transverse (with respect to
the particle motion) electrostatic and magnetic fields
occupy the same space, and (iii) the longitudinal parti-
cle velocity within the field region is constant. Then we
come to the first-order nonrelativistic achromatism
condition by differentiating the right-hand sides of the
projections of the trajectory equation on the xz and yz
planes with respect to energy and equating the resulting
expressions to zero:

(1)

Here, v  is the charged particle velocity, c is the velocity
of light, and E and H are the intensities of the oppo-
sitely directed electrostatic and magnetic fields lying in
the respective planes.

v /c 2Ex/Hy 2Ey/Hx.–= =
1063-7842/01/4612- $21.00 © 21549
The purpose of this work is to theoretically study
combined deflectors exhibiting a transverse chromatic
aberration that can controllably be varied in magnitude
and sign. Such deflectors are designed as a magnetic
cylinder split along its generatrix into four or eight
closely spaced parts. The electrodes simultaneously act
as the pole tips of the magnet. Figure 1 shows the cross
sections of the combined deflectors consisting of four
or eight electrodes–poles. In the four-element system,
only two pairs of the basic electrostatic (±Vx, ±Vy) and
magnetic ( , ) potentials are applied (Fig. 1a),
while the eight-element system parts use additional
potentials defined by the coefficient a (Fig. 1b) in order
to improve the field uniformity. The coefficient a has
been obtained in [1] from the condition that the coeffi-
cients of the third and fifth harmonics in the expansion

of the potential vanish (a =  – 1).

We obtained closed-form expressions for the distri-
bution of the deflecting potential taking into account
results from [5, 6]. For an infinite cylinder split into
four identical parts along its generatrix (Fig. 1a), the

Wy+− Wx±
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(a) (b)
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Fig. 1. Combined electromagnetic deflectors with (a) four
and (b) eight identical electrodes–poles.
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distribution in the Cartesian coordinates has the form 

(2)

Hereafter, the coordinates are normalized to the
radius R of the cylinder. For an eight-electrode deflector
(Fig. 1b), we have 

(3)

At a = 0, expression (3) turns to (2).

For a deflection system with combined electrodes
and poles, expressions for the magnetic scalar poten-
tials can be obtained from formulas (2) and (3) by
changing Vx to (–Wy) and Vy to Wx. In this case, the elec-
trostatic and magnetic forces act in opposite directions.

Earlier [2], nonuniform electrostatic fields of the
four- and eight-electrode deflectors were calculated as
a function of distance to their axes with formulas (2)
and (3). It should be noted that in magnetic systems
with apparent poles, the nonuniformity of the magnetic
fields is the same as that of the associated electrostatic
fields. Since the deflection aberrations depend on the
field, these data can be used to estimate the deflection
angle, which is defined by the maximum admissible
field nonuniformity.

In the plane of an object located outside the field, the
distance from the base beam trajectory to the axis of the
system; the angle of trajectory inclination to the axis;
and the chromatic aberrations, which are the same in
the horizontal and vertical planes in the first approxi-

Φ 4( )

=  1/π V x Vy+( )arctan 2 x y+( )/ 1 x2– y2–( )[ ]{

+ V x Vy–( )arctan 2 x y–( )/ 1 x2– y2–( )[ ] } .

Φ 8( ) 1 a–( )Φ 4( )=

+ 2a/π V xarctan 2x/ 1 x2– y2–( )[ ]{

+ Vyarctan 2y/ 1 x2– y2–( )[ ] } .
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Fig. 2. Ratio of the electrostatic and magnetic power com-
ponents versus field power of the combined deflector that
provides (1) the first-order achromatism and (2, 3) an
expanded achromatism region.
mation, have the form

(4)

where γ = γM – γE is the power of the combined electro-
magnetic deflector field, which is equal to the tangent
of the base beam trajectory inclination, and γE and γM

are its electrostatic and magnetic components:

(5)

Here, ε0 is the initial energy of the particles with a
charge e and a mass m, ∆ε is the change in the particle
energy, g is the distance from the deflector center to the
object, L is the effective field length, and K1 is the coef-
ficient before the first harmonic in the expansion of the
potential. For the deflectors with four electrodes–poles,

K1E = K1M = 2 /π; for the deflectors with eight elec-

trodes–poles, K1E = K1M = 8(  – 1)/π. Formulas (1)
show that the chromatic aberration can controllably be
varied in magnitude and sign. It is absent when the elec-
trostatic power is half as large as the magnetic power.

The trajectory of the charged particle beam in the
combined deflecting systems was calculated with the
original program DEF. The program solves a system of
second-order differential equations that contain the
potentials and the field intensities determined from
exact potential distributions (2) and (3). The field distri-
bution along the deflector axis was specified by empir-
ical formulas obtained in [2]. We studied short and long
deflectors with four electrodes–poles, because they
exhibit stronger aberrations than the deflectors with
eight electrodes–poles (other factors being equal).

The conventional relationship between the electro-
static and magnetic power components, γE/γM = 1/2,
provides achromatism only for small deflections (less
than 7°). At larger deflections, the residual aberration
sharply grows. We showed that the achromatism region
can be expanded by choosing another value of γE/γM.
Figure 2 plots the ratio of the electrostatic and magnetic
components against the field power of the achromatic
deflector that provides the same deflection at the exit
from the field region as the electrostatic deflector. Inter-
estingly, this dependence is the same for the deflectors
of lengths l = 2R and 4R. Curve 2 in Fig. 2 refers to the
case when the electrostatic component of the achro-
matic deflector field power is equal to the field power of
the purely electrostatic deflector (conditions 2). Curve 3
was obtained by varying the electrostatic and magnetic
components simultaneously (conditions 3). It is seen
that, at large deflections, the ratio γE/γM is significantly
different from the classical value (curve 1, conditions 1).
Note that, under achromatic conditions 2 and 3, the
electrostatic and magnetic components of the deflector

s1 γg, s1' γ, ∆s1 γE γM/2–( )g∆ε/ε0,= = =

∆s1' γE γM/2–( )∆ε/ε0,=

γE K1EeV /2ε0( ) L/R( ),=

γM K1MeWc 1– 2mε0( ) 1/2– L/R( ).=

2

2
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field power are smaller and the deflections are larger
than those under conventional conditions 1.

Figure 3 illustrates the chromatic aberration of the
coordinate, ∆s, and of the deflection angle, ∆s', for the
short deflectors at an energy spread ∆ε/ε0 = 5%. Curves 1
refer to the electrostatic deflector; curves 2, to the mag-
netic deflector. The residual chromatic aberration for
conditions 2 and 3 is illustrated by curves 4 and 5,
respectively. Figure 3 shows that the conditions sug-
gested are much better than the conventional achro-
matic conditions (curves 3). The new conditions also
expand the achromatic region of the longer deflectors.
In this case the residual aberrations, appearing with
increasing deflection, are 4–10 times lower than those
under the conventional conditions.

Figure 4 plots the coordinates and deflection angles
of the base beam trajectory in the horizontal and verti-
cal directions at the exit from the field region for the
shorter (l = 2R, L = 2.56R) and longer (l = –4R, L =
4.34R) electrostatic, magnetic, and achromatic deflec-
tors versus their field powers for ε0 = const. These plots
are seen to be almost linear and identical for all types of
the deflectors when the deflection angle is smaller than
7°. It should be noted that the maximum achievable
deflection angle is approximately inversely propor-
tional to the deflector length and is smaller in the longer
deflector, because the beam reaches the electrodes
faster. Furthermore, in the longer deflectors, the deflec-
tion nonlinearity under the weak (strong) conditions is
higher (lower) than that in the shorter devices.

On the whole, the nonlinearity of angular and coor-
dinate deflections in an achromatic deflector is lower
than in electrostatic and magnetic deflectors. In a con-
ventional achromatic deflector, the nonlinearity is so
high that it limits the maximum achievable linear and
angular deflections. In particular, in the shorter deflec-
tor, smax = 1.25R and  = 0.3.

Generally speaking, the total deflection nonlinearity
is the sum of the deflection aberrations due to the dif-
ference s – s1 at ε0 = const and the chromatic aberra-
tions. When ∆ε/ε0 < 5%, the deflection aberrations are
significantly higher. Therefore, when the raster is
formed on the working area as large as 0.7 of the aper-
ture or more, the four-electrode achromatic deflectors
are inappropriate and the deflectors with eight elec-
trodes–poles, in which the deflection aberrations are to
a great extent corrected, should be used.

The achromatic conditions found are of interest in
devices that scan an object not over the entire raster but
over a small region at a large angle of incidence. As an
example, consider the scanning of an object in the plane
located parallel to the deflector axis at a distance s =
1.2R with the field power varying in the range ∆γ =
±0.1. The deflection nonlinearity is characterized by the
ratio ζ = dz/dγ where dz is the change in the longitudi-
nal coordinate at the extreme points of the above range

smax'
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
of γ. The deflection is linear if ζ = 1. In our calculations,
the relative change in the initial energy was ∆ε/ε0 = 5%.
The results are summarized in the table, where ∆z is the
scan dimension.

As follows from the table, the deflectors with an
expanded achromatic region (conditions 2 and 3) are
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Fig. 3. Chromatic (a) coordinate and (b) angular aberrations
of the shorter deflectors at the exit from the field region for
the base beam trajectory: (1) electrostatic deflector,
(2) magnetic deflector, and (3–5) achromatic deflectors.
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the best in terms of deflection nonlinearity and scan
dimension.

CONCLUSIONS

(1) Achromatic systems that deflect the beam in
arbitrary directions are suggested. They have the form
of a cylinder split into an even number of parts that are
used simultaneously as poles and electrodes.

(2) First-order achromatic conditions are written in
the general form for deflecting, focusing, and correct-
ing systems with transverse electromagnetic fields.

(3) A program for calculating the parameters of
finite-length combined electromagnetic deflecting sys-
tems is developed. It involves exact potential distribu-
tions (in the two-dimensional approximation) and the
edge-field model proposed.

(4) The base beam trajectory parameters, including
the chromatic aberration, are calculated for a deflector
with four electrodes–poles.

Table

Condition γ S ∆z/R ξ

1 0.50 0.30 0.70 1.8

2 0.46 0.32 1.40 1.3

3 0.44 0.33 1.50 1.3
(5) A method for expanding the achromatic deflec-
tion region that uses an other-than-conventional rela-
tionship between the electrostatic and magnetic compo-
nents of the combined deflecting field power is put for-
ward.

(6) Operating conditions that expand the achromatic
region and provide a deflection nonlinearity signifi-
cantly lower than in a conventional first-order achromat
are found numerically.

(7) It is shown that these conditions are appropriate
for the discrete scanning of samples.
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Abstract—A procedure for calculating the potential and field of multipole lenses in which the central part of
the poles has the form of an ideal curve is presented. The procedure is based on the method of conformal map-
ping. The properties of these lenses are compared with those whose poles have a polygonal profile. It is shown
that sufficiently wide ideal-center poles provide a better field quality than polygonal poles. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Modern techniques for the formation and transfer of
charged particle beams widely use quadrupole (the
number of pole pairs P = 2), sextupole (P = 3), and
octupole (P = 4) lenses [1–3]. The quality of the lens
field requirements for which have recently become
much more stringent depend primarily on the pole
geometry. For any P-lens, there exists a theoretical pro-
file providing the “ideal” field: linear for a quadrupole,
quadratic for a sextupole, and cubic for an octupole.
The ideal profiles are however unfeasible, because they
do not leave room for winding and flux closure, and
real-lens fields always contain undesirable higher har-
monics [2, 3].

In modern practice of searching for “good” profiles
[2–4], there has appeared the tendency to construct
lenses of two types: (1) the broken ideal profile is ade-
quately approximated (for example, by a circular arc)
and (2) the lens profile is polygonal (or admits the
approximation by a polygon).

The early successful attempt to design lenses of the
latter type has been undertaken in [4], where the planar
profile of a quadrupole lens with the suppressed sixth
(the first minor) harmonic of the potential has been
found using conformal mapping. Note that the number
of the vertices of a polygon to be determined was only
two. The computing procedure applied in [4] has
recently been extended [5], so that a lens sector (a part
of the cross section belonging to one pole) could be
approximated by a polygon with more than ten vertices.

In this work, we elaborate upon designing multipole
lenses and consider lenses of the first type where the
central part of the pole is a strictly ideal curve. The
angular size of this part and the shim geometry are
selected such that they provide the high quality of the
field. In Section 3, lenses of both types are compared
and their applicability domains are indicated.
1063-7842/01/4612- $21.00 © 21553
It should be noted that the field quality is conven-
tionally estimated by two parameters: the maximal
(within the operating aperture) deviation of the field
from the ideal one and/or the amplitude of the first
minor harmonic of the potential. To date, it has
remained unclear which of these parameters is of
greater importance; therefore, we perform optimization
by either parameter separately (Section 3). The condi-
tions usually adopted for analytical methods are
assumed to be met; that is, the lens is long and totally
symmetric and iron does not saturate.

1. MAPPING OF A LENS SECTOR

Figure 1 exemplifies a quadrupole sector where the
central part of the pole is an ideal hyperbola. This curve
cannot be approximated by a polygon, as was done in
[5], because a broken line with a relatively small num-
ber of vertices instead of the hyperbola will heavily dis-
tort the field configuration. We proceed as follows. It
can be shown (see Appendix 3 in [5]) that the function

(1)

maps a sector of an ideal lens onto a band (digon) in the
plane of an intermediate variable δ. The exponential in
(1) makes the bisectrix ϕ = π/4 of the first quadrant on
the z plane the line of symmetry of the sector for any
number of pole pairs. With mapping (1) applied to a
sector of any real P-lens, the δ plane will contain a
closed figure whose central part is the exact map of the
ideal portion of the profile, i.e., a straight horizontal
segment (all other sections being curved in the general
case (Fig. 2). This figure can be fairly accurately
approximated by a polygon with the total number of
vertices 2M + 1, since such an approximation is tangi-
ble only at the periphery of the lens.

δ z( ) η z( ) iξ z( )+ z iαP–( )exp( )P,= =

αP π P 2–( )/4P=
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The upper half-plane of the complex variable ω =
u + iv  is mapped onto this polygon with the Christof-
fel–Schwartz integral, which, in view of the symmetry
of this domain, is written as [5, 6]

(2)

where βm = αm – 1, αm are angles interior with respect
to this domain (measured in terms of π), and am are
points on the real axis u of the plane ω that are the maps
of the vertices Am of the polygon.

The conformal mapping procedure completely coin-
cides with that employed in [5] for a polygonal profile
and allows us to find all parameters entering into map-
ping (2). However, the construction of the potential and
induction distributions, as well as of the potential spec-
trum (see the Appendix), is made in another way
because of the presence of the intermediate mapping
onto the δ plane.

2. MAGNETIC FIELD INDUCTION 
AND POTENTIAL DISTRIBUTIONS

The complex magnetic potential of a P lens on the
intermediate δ plane can be represented in the form [5]

(3)

where $(δ) and ^(δ) are the vector and scalar mag-
netic potentials, respectively [2].

δ ω( ) C0 ω2 am
2–( )
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∏ ω C1,+d

ω0

ω
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Fig. 1. Sector of a quadrupole with the ideal central part of
a pole. The thickness of the lines indicates to the scalar
potential distribution along the sector boundary.
We are dealing with the scalar potential ^(δ), the
distribution of which over the lens sector is shown in
Fig. 1. On the pole surface, ^ = 1 (thick lines); near the
winding, the potential falls to zero (variable-width line)
and is zero along the remaining part of the sector
boundary (thin lines). Expression (2) maps this distri-
bution onto the real axis u of the plane ω. Calculations
show that the winding region is small, so that the actual
distribution F(u) is well approximated by an equivalent
rectangle (Fig. 3b in [5]):

(4)

Upon mapping the plane ω onto the intermediate
plane δ, the imaginary axis 0 ≤ v  < ∞ transforms into
the segment 0 < χ < 1 of the imaginary axis η; this seg-
ment, in turn, is the map of the unit segment from the

lens center to the pole center x = y = 1/  on the z plane
(Fig. 1).

In terms of the variables u and v, the potential
^(u, v ) at any point of the upper half of the plane ω and
the potential distribution ^(v ) along the semiaxis 0 ≤
v  < ∞ are given by formulas (9) and (10) in [5]. The
method of constructing the induction distribution along
the lens bisectrix and along the boundary of the lens
sector is also totally applicable to our case. However,
the return to the initial plane z must include the vari-
ables of the intermediate plane δ; therefore, the induc-
tion distribution for the ideal central part of the pole
somewhat differs from those obtained in [5] for the
polygonal profile.

The dependence v (χ) entering into the potential dis-
tribution ̂ (v (χ)) along the semiaxis 0 ≤ v  < ∞ is found
from the equation

(5)

which is obtained by substituting χ for p  χ in for-
mula (12) in [5].

The induction distribution along the unit segment
from the center of the lens to that of the pole on the ini-
tial plane z in view of the equality χ = ρP is given by

(6)

Essentially, the calculation of the @(ρ) along the
bisectrix of the sector is performed by jointly using for-
mulas (5) and (6). From (6), one can find the exact
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induction value at the center of the pole, assuming that
v  = 0,

(7)

and also determine the induction near the lens center
from the conditions ρ  0 and v   ∞,

(8)

Comparing (8) and (3) in view of (1), one can find
the exact value of the coefficient for the first potential
harmonic:

(9)

To construct the second distribution of the induction
@(s), i.e., from the lens center along the sector bound-
ary (Fig. 1), we must obtain relationships similar to (5)
and (6) (the coordinate s is reckoned from the lens cen-
ter; s ≡ y for a quadrupole). The procedure is as follows.
The left-hand boundary of the sector on the plane z is
mapped onto the segment AM ≤ σ ≤ 0 of the real axis ξ
on the intermediate plane δ. This segment, in turn, is
mapped onto the segment aM ≤ u < ∞ of the real axis u
on the plane ω, where only the v  component of the
induction is nonzero. As in [5], we have

The dependence u(σ) entering into this expression is
found from the equation

(10)

which is obtained by substituting u(σ) for s  σ in
formula (20) in [5].

The final distribution of the induction along the sec-
tor boundary is given by

(11)

and is calculated together with (10). Note that the valid-
ity of formulas (8) and (9) can be confirmed from (11)
in the limit u(σ)  ∞.

Of two distributions (6) and (11), we take into
account that giving the greatest (within the working
aperture) deviation of the field from the basic one.

It has been noted above that the parameter to be min-
imized can also be the relative amplitude of the first
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minor harmonic of the potential. In the appendix, we
describe the recursive procedure for calculating the rel-
ative amplitudes of the higher harmonics  (n ≤ N)
appearing in (3) up to any order of N. For N > 1, this can
be done only by invoking computer analysis tools [7];
for N = 1, however, the computations are simple and the
exact expression for  in our case has the form

(12)

Note in pass that the similar characteristic for a
polygonal profile (which is absent in [5]) is given by

3. COMPARISON OF THE LENSES

Based on the algorithms used here and in [5], we
have developed the MULTIPOL software suite, which
makes it possible to interactively design and optimize
lenses with any number of pole pairs. With this suite,
we have gathered a large data array for designing qua-
drupoles and sextupoles whose profiles have both the
ideal and polygonal central parts. One basic input
parameter for the calculation is the total relative angle
of a pole of a P lens (Fig. 1):

(13)

In all the cases, the program automatically (without
the intervention of an operator) selected the shim length
and slope so as to minimize either the maximal (within
the working aperture ra ≤ 0.9) deviation δB/B of the
field from the ideal one or the relative amplitude  of
the first minor harmonic. For polygonal profiles, the
adjustable parameters Tϕ and Tr were also automati-
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Fig. 2. Map of the lens sector (Fig. 1) on the intermediate
plane δ. Dashed line, map obtained with function (1); con-
tinuous line, polygonal approximation of this map.
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Fig. 3. Maximal relative deviation of the field from the ideal one for (a) quadrupoles and (b) sextupoles. Continuous line, profile

with the ideal central part of a pole; dashed line, polygonal profile.  is the relative angle of the pole [see (13)].Ψ̃P
cally selected in order to correct the radial and angular
coordinates of the vertices (see Section 3 in [5]). The
total number (2M + 1) of the vertices of the polygons
approximating the sector of the second type [5, Fig. 2]
was found to be 21 for both the quadrupoles and sextu-
poles.

CONCLUSION

For the optimization with respect to δB/B, the pole
width is an important factor in deciding between the
lenses, as follows from Fig. 3. The profiles with the
ideal central part provide the better field quality when

the poles are wide,  * 0.65, while the polygonal
poles are better to use when the poles are narrow. For
the optimization with respect to the amplitude of the
first minor harmonic of the potential , the situation is
rather ambiguous; however, the presence of the profiles
where this harmonic is suppressed is beyond question.

It should be also noted that the narrower the pole,
the higher the fraction of the shim (the difference
between the total angular size of a pole and that of its

ideal or polygonal part). For example, at  ≈ 0.75,

this fraction was about 10% in all the cases; for  ≈
0.4, it grew to 30%. It appears that using shims of a

Ψ̃P

p̃1

Ψ̃P

Ψ̃P
shape more intricate than in Fig. 1 will improve the per-
formance of narrow-pole lenses.
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APPENDIX

The Potential Spectrum of a Lens 
with the Ideal Part of a Pole

With relationships (3) and (9), the relative distribu-
tion of the potential within a segment χ along the axis
of symmetry of the lens (Fig. 2) can be represented in
the form

(A1)

Here, the new variable

(A2)

is introduced and is assumed that the inequality v  > ab

is fulfilled [see (4)]. The dependence µ(χ) is also found

^̃ µ( ) ^/ p0=

=  µ
ab/ C0( )2

3
-----------------------µ3–

ab/ C0( )4

5
-----------------------µ5 ….–+

µ χ( )
C0

v χ( )
------------=
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in the form of a series:

(A3)

The second expression in (A3) is assumed to be a
small correction: |θ(χ)| ! 1.

From definition (A2), we find

(A4)

where dv /dχ is defined by formula (5) and the geomet-
ric equality  = –1 is taken into account.

Using the binomial expansion of the right-hand side
of (A4) with regard for (A3) and grouping the terms,
one can obtain a series in χ with the coefficients con-
taining the unknown quantities . On the other hand,
the derivative dµ/dχ in the form of series can be
deduced directly from basic definition (A3):

(A5)

Comparing the coefficients before the equal powers
of χ in relationships (A4) and (A5) and using the exact

µ χ 1 θ χ( )+[ ] , θ χ( ) α̃nχ
2n.

n 1=

M

∑= =

dµ
dχ
------

C0

v 2
---------dv

dχ
-------– 1

µam

C0
--------- 

 
2

+
βm–

,
m 1=

M

∏= =

βmm 1=
M∑

α̃n

dµ
dχ
------ 1 3α̃1χ

2 5α̃2χ
4 ….+ + +=
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
values of p0 and |C0|, we can recurrently determine the
parameters  (n = 1, 2, …) appearing in (A3). This
allows the construction of dependence (A2) for µ(χ) in
the explicit form and finding the amplitudes  (n = 1,
2, …, N) of the potential harmonics in series (3)
through (A1).
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Abstract—A quantitative study is carried of a metal cooling process in aqueous and water-polymer cooling
liquids. In the study, an original spherical hot probe with a heat-insulated stem is used to simulate the cooling
conditions of the operating part of the probe and to correspond to the cooling conditions of an isolated sphere.
It has been shown that in this case the process consists of distinct consecutive stages, each of which can be stud-
ied separately in a quantitative way. The cooling process in all stages is described with a simple exponential
relationship containing two parameters. One of these is the effective temperature of the cooling medium; the
other is a time constant of the cooling process uniquely related to the heat dissipation coefficient. In the film
boiling stage the effective temperature can be much lower than the nominal temperature; moreover, for cooling
in cold water it is found to be lower than the absolute temperature, which indicates the dominant contribution
of convection to the heat dissipation. The effective temperature of the medium is a monotonously increasing
function of the nominal temperature and rises with rising liquid viscosity. Dependence of the cooling process
time constant on the liquid temperature is influenced by two competing processes affecting convection, namely,
by variations with temperature of the density and viscosity of a liquid. The effect of diminishing density
becomes prevalent at temperatures of the liquid above ≈80°C. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Quenching is one of the widely used technological
procedures for imparting required mechanical proper-
ties to articles made of metal. Quenching in liquid cool-
ing media is a very complicated process. It involves a
large number of physical processes taking place in both
the metal being quenched and the cooling liquid. In the
metal various phase transitions can be taking place, as
well as the fixation of metastable high-temperature
crystal structures, microvolumetric deformations under
the effect of internal micro- and macrostresses, and so
on. For liquids typical processes are the phase transi-
tions from liquid to steam state (boiling) and vice versa,
chemical decomposition of organic components, and
well-developed convective flows. During quenching,
the cooling liquid becomes inhomogeneous and the
temperature distribution becomes involved; locally, the
liquid represents a two-phase system, namely, liq-
uid/steam or liquid/gaseous decomposition products
(quenching in organic oils). The liquid boiling can be of
different types: bubble and film boiling or in the form
of fronts of changing boil types moving along the sur-
face of the item being quenched. The picture is further
complicated by the fact that the articles to be quenched
nearly always have a complex form, the cooling being
strongly affected by their form; moreover, the same
article will cool differently depending on the orienta-
tion, in which it is immersed in the liquid.

The complete study of such complex interrelated
processes poses problems, to say the least, and is often
1063-7842/01/4612- $21.00 © 1558
practically impossible. In these circumstances it is
expedient to resort to the opportunities offered by
model investigations, in which a particular factor can be
isolated and analyzed.

The present work is an experimental study of the
cooling process under conditions simulating cooling of
an isolated sphere in aqueous and water-polymer cool-
ing liquids. With an article to be cooled having the form
of a small sphere it is possible to ensure a maximally
uniform cooling, such that the temperature gradient in
the metal bulk can be neglected, and to have the various
stages of the process occur one after another (film
boiling, bubble boiling, and then the convective heat
transfer).

EXPERIMENTAL

In this study we used a spherical polished hot probe
20 mm in diameter, with a heat-insulated stem and a
central thermocouple made of nickel or an X18H9T
stainless steel (Fig. 1) [1]. It can be seen that the design
of the hot probe is standard except for its stem. Usually
the stem is the element that causes nonuniform cooling
of the hot probe because of enhanced heat dissipation
from its surface (low heat conduction and large surface-
to-volume ratio). In our case the surface of stem 3 is
insulated from the cooling liquid 5 with a thin protec-
tive tube 4. This simple design eliminates intensive heat
dissipation by the stem surface and makes the cooling
conditions of the (spherical) working part 1 of the hot
2001 MAIK “Nauka/Interperiodica”
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probe similar to those for an isolated sphere. The sphere
surface was stabilized by keeping the hot probe in an
oxidizing atmosphere at a temperature of 1100°C for
1 h. A chromel–alumel thermocouple with spaced junc-
tions (7, 8 in Fig. 1) is used. The initial probe tempera-
ture in most experiments is 695°C.

The measurement setup scheme is also typical. The
hot probe is heated in a tube heater to a temperature
higher by 15°C than the initial temperature and then is
positioned above the cuvette with the liquid under
study. After cooling to the initial temperature of the
experiment, the hot probe is lowered into the cuvette at
a constant velocity of ≈50 mm/s. Variations of the hot
probe temperature during cooling are registered by a
KSP4 electronic recording potentiometer. The volume
of the cuvette for a liquid under study is 800 ml; the liq-
uid temperature is maintained with a fixed value by an
electronic regulator with an accuracy of ±2°C. Immedi-
ately prior to measurements the magnetic stirrer main-
taining uniform temperature field in the liquid is turned
off and the measurements are carried out with the liquid
at rest.

The simulative cooling media were distilled water, a
1% solution of sodium salt of carbomethylcellulose and
dispersions of supermoistureabsorbent based on par-
tially substituted cross-linked co-polymer of poly-
acrylic acid and polyacrylamide with a swelling index
of 1000 g/g [2, 3] in various concentrations. The choice
of these media is based on the following considerations.
Carbomethylcellulose, as well as polyacrylic acid, their
salts and co-polymers, are widely used as thickeners for
water-polymer quenching liquids [4]. The use for thick-
eners of supermoistureabsorbents, sparsely linked co-
polymers (gels) of polyacrylic acid with a swelling
index of up to 6000 g of water per 1 g of polymer, in the
form of aqueous gel dispersions, makes it possible to
lower the polymer concentration by more than an order
of magnitude, down to 0.01% [5]. Advantages of the
lower polymer concentrations in a quenching liquid are
obvious and need not be explained. For quenching, an
aqueous dispersion of ground gel with particle sizes in
the swelled condition of a few millimeters or less is
used. A large volume of such a dispersion has rheolog-
ical properties similar to those of a viscous-flowing liq-
uid; its viscosity is higher than that of a solution of a
linear polymer of the same concentration by a factor
of 10–100.

RESULTS AND DISCUSSION

Before presenting the measurement results we
would like to consider qualitatively the process of cool-
ing of the hot probe with a heat-insulated stem. If the
bath temperature is higher than 10–15°C, then, as soon
as the hot probe is immersed in the liquid, a steam layer
of a thickness of about 1 mm forms around its spherical
working part (in cold water, the formation of a stable
steam layer does not take place). No contact between
the liquid and the sphere takes place during immersion.
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
Because the heat capacity of the heat-insulating tube
protecting the stem from contacting the liquid and from
cooling is low, its temperature drops significantly
already during subcooling of the hot probe performed
before starting the experiment. Therefore after immer-
sion of the sphere the liquid contacts the heat insulation
of the stem isolating the spherical steam layer from the
atmosphere and no steam loss occurs. At water temper-
ature above 40°C the steam layer is stable enough (life
time more than 10 s), at the steam surface waves can be
seen with naked eye. Destruction of the steam layer as
a result of the hot probe cooling occurs explosively,
practically simultaneously over the entire sphere sur-
face, and is accompanied with a loud popping sound
(a short intermediate stage is observed only under cool-
ing in water at a temperature close to the boiling point
or in solutions with a high concentration of polymer).
Such a behavior is an evidence of the high uniformity
of the cooling process. There is no intermediate stage
between film and bubble boiling regimes. Duration of
the bubble boiling stage is short, not exceeding a few
seconds. Transition from the bubble boiling to convec-
tive heat exchange is slightly veiled, and for some time

6

5

4

3

2

1

8

7

Fig. 1. Schematic of the hot probe: 1—(spherical) working
portion; 2—spherical steam layer, surrounding the hot
probe in the film boiling stage; 3—stem of the hot probe;
4—heat-insulating tube protecting from contacting the
cooling liquid; 5—cooling liquid; 6—free surface of the liq-
uid; 7—electrode of the thermocouple; and 8—ceramic
tube.
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Fig. 2. Cooling curves of a hot probe for cooling in disper-
sions of supermoistureabsorbent of different concentrations
at a temperature of 20 ± 0.2°C. Polymer concentrations
in percent: 1—0.1; 2—0.08; 3—0.07; 4—0.06; 5—0.05;
6—0.045; 7—0.04; 8—0.035; 9—0.03; 10—0.025; 11—0.02.
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Fig. 3. Reproducibility of the cooling curves for distilled
water at a temperature of 60 ± 0.1°C. Figures by the curves
represent experiment numbers.
(1–2 s) regions of different cooling stages can exist on
the hot probe surface. This is caused by different cool-
ing conditions in the lower half of the sphere, which is
washed by the upward flow of cool liquid, and in the
upper half, which is washed by a slightly warmer
liquid.

Examples of the hot probe cooling curves with dis-
persions of supermoistureabsorbent in distilled water at
a nominal bath temperature of t0 = 20 ± 0.2°C with dif-
ferent polymer content are given in Fig. 2. Note the
characteristic feature of the cooling curves: they have a
kink corresponding to the explosive transition from
film to bubble boiling. The only exception is curve 11
for a dispersion with maximum gel concentration,
where the quantity of water in the space outside the par-
ticles is minimal, practically all water being bound by
the gel particles. The slight spread of the kink is
explained by the delayed temperature reading from
thermocouple because of the temperature difference
between the surface and the center of the spherical part.
Figure 3 illustrates reproducibility of the cooling pro-
cess in distilled water for a series of experiments at a
bath temperature of t0 = 65 ± 1°C. It can be seen that the
reproducibility of cooling curves in the film boiling
stage is rather high, with some curves nearly coincid-
ing. By shifting the curves along time axis regions of
the bubble boiling and convective heat exchange can be
aligned. Most of the scatter of the measurement results
comes from the slightly stochastic nature of the transi-
tion from film to bubble boiling. Irreproducibility of the
transition time is due to the whole complex of neglected
experimental factors, the main factors being the state of
the oxide film on the hot probe surface and concentra-
tion of gases dissolved in the water. This irreproducibil-
ity is fairly small; scatter in duration of the film boiling
is usually within ±10%. Raising the bath temperature t0
makes the cooling slower; the initial cooling rate in
water in the region of film boiling drops by about half
as t0 is increased from 25 to 97°C. At the same time
total cooling time of the hot probe from an initial tem-
perature of 695 to 200°C rises by a factor of nearly 16,
which is an evidence of the dominant role at high water
temperatures of the film boiling stage duration and
higher stability of the steam layer.

Variation with time of the hot probe temperature in
all stages of the cooling process, namely, in the film and
bubble boiling and convective heat exchange, can be
approximated with high accuracy by an exponential
relationship with constant parameters during stages

(1)

Here, teff is an effective temperature of the medium;

∆  has a sense of an initial effective temperature dif-

ference between the hot probe and the liquid, ∆  =
(ti – teff), ti being the hot probe initial temperature; we
recall that in our experiments ti ≈ 695°C and τ0 is a

t ∆teff
i τ /τ0( )exp teff.+=

teff
i

teff
i
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parameter having the dimension of time. The difference
between values calculated by Eq. (1) and the measured
data usually do not exceed ±2°C; only rarely the differ-
ence exceeds ±3°C, which is also within the experimen-
tal error.

The obtained curves are scanned and digitized with
the WINDIG program and then approximated using
ORIGIN software. In this case the fitting is carried out
using both parameters of Eq. (1), i.e., teff and τ0. Some
curves have been fitted manually using only one fitting
parameter teff, choosing its value in such a way as to
make the dependence of ln[(t – teff)/(ti – teff)] on τ a
straight line. Agreement between results of manual and
computer approximations is good. Excluded from pro-
cessing are small portion of the cooling curve near the
kink point corresponding to transition from film to bub-
ble boiling and a temperature region 105–100°C corre-
sponding to transition from bubble boiling to convec-
tive heat exchange, when, as mentioned above, differ-
ent stages of the cooling process coexist at the hot
probe surface for 1–2 s.

As mentioned above, the cooling process in any of
the stages is described with sufficient accuracy by rela-
tionship (1) with constant parameters over the stage
duration. This statement does not mean that the heat
exchange conditions remain actually the same from the
beginning till the end of any of the stages. Rather, this
means that the change of the conditions is fairly small
and can be studied only after considerable improve-
ment of the measurement accuracy, enough to make the
error at least an order of magnitude less than in our
experiments. Such a measurement accuracy is quite dif-
ficult to achieve.

Dependences of parameter τ0 and the effective
medium temperature teff on the nominal bath tempera-
ture t0 for distilled water in different cooling regimes—
film boiling, bubble boiling and convective heat
exchange—are shown in Figs. 4–6.

It can be seen that the dependence of teff on t0 for all
cooling stages has a qualitatively similar character and
represents a monotonically increasing function, as
could be expected. A large difference is evident
between teff and t0 in the first two stages of the process;
the values of these quantities come closer only at t0 
100°C, i.e., as the cooling bath temperature approaches
the boiling point. The equality of teff and t0 is shown in
Figs. 4–6 with dash-dot curves. The most significant
difference between teff and t0 is found in the film boiling
stage under cooling in cold water.

Let us try to elucidate the physical nature of param-
eter teff, effective medium temperature, which is one of
the two parameters in Eq. (1), and the nature of the dif-
ference between teff and t0. For this purpose, consider
schematically the temperature distribution around the
hot probe for cooling, for example, in the film boiling
stage (Fig. 7). It is natural to assume that the tempera-
ture at the steam–liquid interface is practically indepen-
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dent of the liquid temperature away from the hot probe
(bath temperature t0). It should be close to the boiling
point, or, to be precise, to the maximum water overheat-
ing temperature t*. The nominal liquid temperature in
the bath controls the temperature lowering in the direc-
tion away from the steam layer surface. In the absence
of convection the temperature lowering at some fixed
moments of time can be tentatively represented by
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Fig. 4. Dependences of teff and τ0 on the bath temperature
t0 for distilled water in the film boiling stage. Triangles—
parameters calculated by cooling curves for a stainless steel
probe. Dash-dot curve corresponds to equality of the effec-
tive and nominal bath temperatures.
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curves 1. Convection changes the temperature distribu-
tion, appreciably reducing the width of the zone of
heated liquid (curve 2). Of course, because of convec-
tion occurring in the form of jet flows, another effect of
convection will be the emergence of nonuniform tem-
perature distribution; but this effect will not be dis-
cussed here. It appears that in a fairly large region next
to the steam layer surface curve 2 will be close to
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Fig. 6. Same as in Fig. 4, for the convective heat transfer
stage.

Fig. 7. Schematic temperature distribution in the zone close
to the hot probe in the film boiling stage: 1—temperature
distributions without convection at successive moments of
time; 2—same with convection; 3—temperature distribu-
tion without convection, in a medium at a temperature equal
to teff.
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curve 3, which is a temperature distribution in the liq-
uid in the absence of convection but with the liquid at a
temperature teff < t0. So, it is reasonable to assume that
the effect of the convective flows can be accounted for,
in the first approximation, by introducing an effective
temperature teff of the liquid. The more intensive the
convection, the larger the difference should be (teff – t0).
The driving force of convection is the lowering of the
liquid density with rising temperature. The greater the
density difference, which is uniquely related to the tem-
perature gradient over the bulk of the liquid, the more
intensive are the convective flows. Hence, the raising of
liquid temperature t0 should cause weakening of the
convective flows and reduction of the difference
between teff and t0, which is observed in the experiment
(Fig. 4). Extremely low values of teff at t0  0°C
attract attention. In this case teff ! 0 K; i.e., below the
absolute zero, which is an evidence of the dominant
role of convection under cooling through the steam
layer in cold water. The second factor determining
development of the convective flows is the viscosity of
the liquid. With rising temperature the viscosity of the
liquid drops; so, this factor should counteract the rate of
weakening of convection with rising temperature of the
liquid.

For cooling under conditions of bubble boiling the
temperature distribution near the probe is essentially
different. The intensive movement of the steam bubbles
and mixing of the liquid cause formation about the hot
probe of a layer of hot liquid having a noticeably higher
temperature than the nominal bath temperature. As a
consequence, teff also rises (Fig. 5). For this reason in
the bubble boiling regime teff > t0 and at t0  100°C
the liquid near the hot probe is overheated and teff >
100°C. High values of teff do not signify that the role of
convection in this stage is negligible. It should be
emphasized once again that the actual temperature in
the heated zone near the hot probe is higher than the
effective temperature but the excess is not as high as in
the film boiling stage. The water overheating above the
boiling point near the hot probe in the bubble boiling
regime can be observed directly using a thermocouple.

In the regime of convective heat exchange, as could
be expected, the temperature in the area around the hot
probe overheated in the previous stage drops down, teff
diminishes, and over the entire temperature range
exceeds the nominal bath temperature only by a few
degrees (Fig. 6).

The second parameter in Eq. (1), τ0, which has a
dimension of time, is a time constant of the heat
exchange process, and is directly related to the heat
transfer coefficient of a sphere of small radius (the tem-
perature difference over the sphere radius can be
neglected) in accordance with the following equation [6]

τ0
ρcR
3α

----------,=
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where α is the heat transfer coefficient, ρ is the material
density, c is the specific heat, and R is the sphere radius.

As was already mentioned, in the zeroth-order
approximation τ0 and, correspondingly, the heat trans-
fer coefficient in each regime can be considered as hav-
ing some characteristic value which changes only
weakly when t0 is changed (Figs. 4–6). For the film
boiling stage the characteristic values are in the range
τ0 = 60–90 s and with rising t0 the characteristic time of
the process τ0(t0) first diminishes and then, near the
water boiling point, has a slight minimum. These high
values of τ0 are explained by the relatively low rate of
heat transfer through the steam layer. The decrease in τ0
indicates that with increasing bath temperature the heat
transfer coefficient becomes greater. This does not
mean that the cooling rate is rising with the bath tem-
perature. The increase in the heat transfer coefficient is
by far overridden by the decrease in the effective tem-
perature difference between the object and the cooling
liquid. Presumably, the reason for this behavior of τ0 is
the decrease in the viscosity of water with temperature
causing intensification of the convective flows. On the
other hand, at higher water temperatures the maximum
possible density differences of nonuniformly heated
volumes are less. The experiment indicates that at tem-
peratures below 80°C the overall effect is in favor of
“viscosity” because the density of water has a relatively
weak dependence on temperature. Analysis shows that
the temperature dependence of τ0 in the range of low
temperatures follows the usual exponential relation-
ship; estimates of the apparent activation energy are
about half of the value for the temperature dependence
of the density of water.

As could be expected, the lowest values of τ0 have
been observed in the bubble boiling regime, where mix-
ing is intensive. Typical values for a nickel hot probe
are in a range of 1–2 s and for a hot probe of stainless
steel having low heat conduction 3–4 s. Note that the
dependence of measured τ0 values on the probe mate-
rial is apparent only in the bubble boiling regime. In
this regime τ0(t0) is a weakly increasing function, cor-
responding to some degree to the behavior of this func-
tion in the film boiling regime at high bath tempera-
tures, t0 > 70°C, because in the bubble boiling regime
teff is also high, exceeding 80°C.

For cooling in the regime of the convective heat
transfer typical values of τ0 are intermediate, being
equal to 6–11 s. Qualitatively, the dependence of τ0 on
t0 shows the same behavior as in the stage of film boil-
ing, with the relative growth of τ0 starting at t0 > 70°C.

The above data suggest the following a priori con-
clusions about the effect of thickeners added to water
on the cooling curve parameters. From general consid-
erations it is clear that any additive that increases vis-
cosity and suppresses convective flows will cause local-
ization of the heat transfer process and growth of local
temperatures near the solid being cooled. This should
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
lead among other things to higher teff values. It is also
known that the thickening additives form two classes,
solutions and dispersions. The main distinction of a dis-
persion is the availability in the space between disperse
particles of pure water, which has low viscosity and is
capable of transferring heat by convection.

We studied the effect of an added linear polymer on
parameters of the cooling curve for the case of 1%-
solution of sodium salt of carbomethylcellulose
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Fig. 8. Dependence of teff on the bath temperature t0 for
cooling in a 1%-solution of carbomethylcellulose: 1—film
boiling; 2—bubble boiling; 3—convective heat transfer.
Dash-dot curve corresponds to equality of the effective and
nominal bath temperatures. Dash line a—water boiling
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Fig. 9. Dependence of τ0 on the bath temperature t0 for
cooling in a 1%-solution of carbomethylcellulose: 1— film
boiling; 2—bubble boiling; 3—convective heat transfer.
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(Figs. 8, 9). It can be seen (Fig. 8) that in this case for
all cooling regimes teff > t0, as expected. For the film
boiling and convective heat transfer dependences of the
effective temperature on bath temperature are practi-
cally straight lines. With increasing t0 they tend to the
boiling point of water and approach the straight line
teff = t0. In the bubble boiling regime teff > 90°C and
weakly varies from t0. This indicates a localized highly
heated region, whose temperature does not depend on
the nominal temperature of the cooling bath. Variation
of τ0 with t0 is weak in all regimes (Fig. 9). In the film
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Fig. 10. Dependence of teff on C-concentration of polymer
for aqueous dispersions of supermoistureabsorbent: 1—film
boiling; 2—bubble boiling; 3—convective heat transfer.
Dash line a—water boiling point.

Fig. 11. Dependence of τ0 on C-concentration for aqueous
dispersions of supermoistureabsorbent: 1—film boiling;
2—bubble boiling; 3—convective heat transfer.
boiling a slight minimum in τ0 is observed at 40–45°C.
It corresponds to teff ≥ 60°C, which is somewhat lower
than in the case of distilled water (80°C). Absolute val-
ues of τ0 are close to those observed for water at high
bath temperatures, though lower by 5–6 s. This rather
unexpected result is, evidently, related to the specific
effect of the polymer additive on the characteristics of
the steam layer surrounding the hot probe, due to which
the higher viscosity of the liquid did not cause an
increase in the thickness of the steam layer and growth
of τ0. Elucidation of the relation of this effect to physi-
cal characteristics of the solution requires a separate
study. It is possible that a certain role can be played by
different character of convective jet flows near walls of
the spherical steam layer and lower turbulence in
microscopic regions. It is remarkable that the growth of
viscosity of the liquid did not cause any increase in τ0

in the bubble boiling regime: τ0 = 1.2–1.5 s. The reason
is probably the same as the noted above decrease in τ0

in the film boiling regime and related to different con-
ditions at the boundary of the steam layer. Also, in the
convective heat transfer regime an almost two-fold
increase of τ0 is observed compared with values typical
for pure water, which appears to be a natural conse-
quence of the higher viscosity. With rising temperature
τ0 is decreasing as a consequence of the lowering of
solution viscosity with temperature.

Consider now the effect on the cooling curve param-
eters of additions of supermoistureabsorbent in differ-
ent concentrations (Figs. 10, 11). It is seen in these fig-
ures that increasing the polymer concentration causes
changes in the cooling curve parameters similar to
those resulting from changes brought about by raising
the cooling bath temperature (cf. Figs. 10 and 4–6),
which can be explained by gradual localization of the
cooling process and by growth of the heated zone tem-
perature near the hot probe. In the film boiling regime
the time constant τ0 is close to values typical of water at
moderate temperatures, 55–65 s. It could be expected
that at low concentrations of the polymer additive and a
bath temperature of about 20°C, when the effective
temperatures are very low, teff < –200°C, larger values
of the time constant, τ0 > 70 s, characteristic of cooling
in cold water will be observed. The possible reason for
the difference in τ0 may be the effect of polymer
destruction products on the surface tension at the liq-
uid–steam interface. Under convective heat transfer τ0

values are close to the values for the linear polymer
solution and increase with the concentration of the
polymer additive. This means that the viscosity
increase with concentration overrides the lowering of
viscosity caused by the local temperature rise and, cor-
respondingly, teff, because of gradual localization of the
cooling process.
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CONCLUSION

The data presented demonstrate the fruitfulness of
the adopted simulation approach to the study of the
cooling process. It has been shown that the cooling pro-
cess at any stage can be described by a simple exponen-
tial relationship with two parameters. Such a relation-
ship is characteristic of the heat transfer under condi-
tions of convection [5]. It is essential that, with the
accuracy of fitting the experimental data of ±3°C, the
equation parameters can be considered constant over a
stage. The first parameter has a dimension of time and
is uniquely related to the heat transfer coefficient. The
second parameter has a dimension of temperature and
its physical meaning is that of the effective temperature
of the cooling bath. Due to convection, the effective
(apparent) temperature of the cooling bath is lower than
the actual temperature of the liquid near the object
being cooled. An especially large difference is observed
in the film boiling stage, prior to formation of the zone
of heated liquid. The intensive build up of this zone
takes place in the bubble boiling stage.

When cooling proceeds under conditions of harden-
ing of articles of complex shape, an important factor
determining the course of the entire cooling process is
the process inhomogeneity, i.e., coexistence at different
regions of the surface of different stages: film boiling,
bubble boiling, and convective heat transfer. It is natu-
ral to think that this general case can be considered in
the first approximation as a sum of contributions from
individual processes with weighting coefficients equal
to a fraction of the surface, on which a process is dom-
inant (not taking into account the fact that the tempera-
ture is nonuniform over the metal bulk).
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To conclude, we note that on the basis of the per-
formed experiments we were able to suggest an effec-
tive scheme for quantitative description of the cooling
curves. Regrettably, no criterion could be found for
transition from film to bubble boiling, the search being
aggravated by the dependence of the temperature of this
transition on many factors difficult to control. One of
the most important among them is the state of the sur-
face of the article being cooled, in particular, the thick-
ness and fine structure of the oxide film. It is found that
an increase of the film thickness makes the stability of
film boiling lower and raises the break-up temperature.
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Abstract—The stability of Mott conventional spherically symmetric and retarding-potential conical polarime-
ters are compared for the case when the position of the electron beam at their inputs is changed. The primary
electron energies are 500 and 1600 eV. When the electron beam is shifted by 0.6 mm, the count rate of the
former polarimeter remains unchanged, while for the latter, it changes by ≈7 and ≈18% for the energies 1600
and 500 eV, respectively. This instability may cause errors in measuring the degree of polarization of the elec-
tron beam. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Currently, the spin polarization of an electron beam
is usually measured by sputtering high-energy elec-
trons by gold films [1, 2]. In Mott polarimeters, the
electron beam is accelerated to energies of 20–120 keV
and the electrons sputtered are recorded with two (or
four) detectors arranged at an angle of 120° to each
other symmetrically about the beam. Because of the
interaction of the electron spin with its orbital moment,
the effective cross section of the interaction for the elec-
trons with opposite spins is different. In other words,
the spin-orbital interaction causes left–right asymmetry
of scattering ALR, which can be defined as the normal-
ized difference between the signals of the left, NL, and
the right, NR, detectors:

(1)

Then, the beam polarization is given by the ratio

(2)

where Seff is the effective Sherman function, i.e., the
asymmetry that should be observed at 100% polariza-
tion of the electrons.

There are two types of high-voltage Mott electron
polarization analyzers.

(1) A conventional Mott detector [3, 4] represents a
linear accelerating column and a scattering chamber.
The latter is under a high potential and includes the tar-
get and two (or four) silicon surface-barrier (SSB) or
passivated implanted planar silicon (PIPS) detectors.
When moving in the drift space, the electrons scattered
are recorded and energy-selected by the detectors.

Another version of conventional polarimeters is a
spherically symmetric field-free device [5, 6]. Here, the
beam is accelerated between the spheres and the elec-
trons scattered also move in the drift space and are
energy-selected with SSB or PIPS detectors.

ALR NL NR–( )/ NL NR+( ).=

P0 ALR/Seff,=
1063-7842/01/4612- $21.00 © 21566
(2) Retarding-potential polarimeters [7–9]. The
name of these devices reflects the essence of the
method by which the electrons are selected by energy.
When moving in a decelerating field, the particles scat-
tered by a gold foil are recorded by electron multipliers
or by microchannel plates that are under a near-ground
potential.

At present, when interest in experiments on spin-
polarized electron spectroscopy has significantly
increased, there is no agreement among researchers
regarding the advantages and disadvantages of one or
the other type of the polarimeters. Such parameters of
spin analyzers as efficiency, dimensions, design sim-
plicity, cost, etc. are compared. Unfortunately, one
more basic point, namely, the sensitivity of the count
rate and the symmetry to a change in the electron beam
position on the Au foil, as well as to changes in its
diameter and density, is usually overlooked. It is how-
ever known that the position and the form of the beam
do not remain constant during experiments, which may
lead to false asymmetry (ALR). For example, upon
studying the magnetic properties of materials, it is often
necessary to reverse the magnetization in opposite
directions, which distorts the trajectories of both pri-
mary (if the excitation is due to electrons) and second-
ary beams. Next, the magnetization of the targets may
change during temperature measurements, which also
affects the electron trajectories. Moreover, if before
entering a Mott detector, the electron beam passes
through any energy analyzer, it may leave the analyzer
at different angles and its density in the cross section
will depend on its energy.

Note that the count rate stability is of primary
importance in this case although the asymmetry is a
normalized quantity. It may appear at first glance that a
change in the count rate due to a change in the primary
beam parameters will be compensated for if formula (1)
is used to calculate the asymmetry of scattering. In
practice, however, this is not always the case, since con-
001 MAIK “Nauka/Interperiodica”
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Characteristics of the Mott polarimeters of two types

Parameters Conventional spherically symmetric polarimeter Retarding-potential conical polarimeter

Efficiency 2.5 × 10–4 4.5 × 10–5

Dimensions 450 × 250 mm
Independent vacuum system. No high-voltage 
feedthrough required

135 × 100 mm
It is necessary to place it inside the vacuum 
system or use a separate vacuum chamber. 
High-voltage feedthrough required

Maximal count rate 106 count/s at a detection efficiency of 80%.
4 × 105 count/s at a detection efficiency of 100%

5 × 104 count/s

Self-calibration capability 
(rather conditional)

By extrapolating to high discrimination level [10] By extrapolating to the zero energy losses [13]
ditions for electron scattering into different detectors
may change because of the uncontrollable variations in
the angle of incidence onto the gold foil or because sites
of beam–foil interaction alter.

Yet, the sensitivity of various Mott polarimeters to a
shift of the electron beam on the target, as well as to the
variation of its diameter and density, has not been
explored.

In this work, we studied the count rate of two Mott
detectors operating under identical conditions as a
function of the beam shift at their entrance.

MOTT DETECTOR DESIGN
We have developed and studied two Mott polarime-

ters—conventional spherically symmetric and retard-
ing-potential conical devices, which are currently used
in basic research [10–12]. The table lists a number of
their operating parameters that are the most important
for the users.

Figure 1 shows the design of a spherically symmet-
ric field-free polarimeter. Its basic components are two
metallic polished semispheres with the center in com-
mon. The outer semisphere is under the ground or a
near-ground potential. The inner one is under a poten-
tial of 60 kV. It is fixed by two series-connected cylin-
drical ceramic insulators that can withstand a voltage of
≈80 kV. An electron beam whose polarization is to be
determined is directed to the intersphere region through
a circular diaphragm. Then, being accelerated by the
strong spherical field, it enters the inner sphere, inside
which four large-area silicon detectors, an Au target,
and guiding diaphragms are arranged. The scatterer is a
800-Å-thick Au layer deposited on a free thin Formvar
(polyvinyl formal resin) film. The scattered electrons
pass through holes in the diaphragms and are recorded
by the detectors.

In this polarimeter, electron selection by energy is
performed with the PIPS detectors. The pulse ampli-
tude at their output is proportional to the electron
energy. Once the pulses have been appropriately ampli-
fied and discriminated, their repetition rate can be
assumed to be proportional to the number of elastically
scattered electrons. For the PIPS detectors equipped
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
with special charge-sensitive amplifiers, the energy res-
olution is ≈10 keV. To decrease the input capacitance,
the spacing between the detectors and the amplifiers
was minimized. The amplifiers are mounted in a spe-
cially designed cylindrical case and placed inside the
polarimeter. The electrical feedthrough is in the vicinity
of the detectors. The amplifiers are under an operating
potential as high as ≈60 kV. For further processing, the
signals are transferred to the input of driver amplifiers,
which are under the ground potential, via a fiberoptic
system. The amplifiers are fed with a specially designed
70-kV power supply measuring 300 × 200 × 150 mm.

The design of a retarding-potential conical polarim-
eter is depicted in Fig. 2. The basic components of the
analyzer are two metallic hollow polished truncated
cones. The outer cone is under the ground potential, and
the inner one is under a potential of 30 kV. The electron
beam passes through a diaphragm with a circular hole,
is accelerated by the strong field, and enters the region

1

2

3
4

5

6
7
8
9

10

+ –

Fig. 1. Conventional spherically symmetric polarimeter:
1, electron bean; 2, input windows; 3, semispheres; 4, four
PIPS detectors; 5, CF-200 flange; 6, gold foil; 7, vacuum
feedthrough; 8, ceramic insulator; 9, four amplifiers; and
10, CF-63 flange.
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6
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1

0 30 kV 50 mm

Fig. 2. Retarding-potential conical polarimeter: 1, electron
beam; 2, input window; 3, diaphragms; 4, four channel elec-
tron multipliers; 5, gold foil; and 6, insulator.

1
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3

4

5

Z

90°

45°

Fig. 3. Experimental scheme: 1, electron gun; 2, sample;
3, detectors; 4, gold foil; and 5, polarimeter axis.
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–0.4 0 0.4 –0.4 0 0.4
d, mm

Fig. 4. Normalized count rate vs. electron beam shift d rel-
ative to the Mott polarimeter axis (the Z axis in Fig. 3) for
energies of 1600 and 500 eV. (a) Retarding-potential pola-
rimeter and (b) conventional polarimeter.
bounded by the smaller cone. A 100-µm-thick gold foil
is placed inside the cone. Electrons scattered by the foil
through an angle of ±120° leave the inner cone through
symmetrically arranged diaphragms and fall into the
decelerating electric field. Here, the scattered electrons
slow down and those having lost a small amount of
energy due to inelastic collisions pass through dia-
phragms located on the inner surface of the large cone
and detected by channel electron multipliers. In our
case, the range of energy losses ∆E due to inelastic col-
lisions was 300 eV. The amplifiers were under the
ground potential.

RESULTS AND DISCUSSION

The stability of the devices was checked with an
experimental scheme shown in Fig. 3. The scattering
geometry was typical of real experiments on spin-
polarized electron spectroscopy. The excitation was
carried out with an electron gun 60 mm distant from the
Al sample. Polycrystalline Al was employed in order to
exclude undesired effects associated with spin–orbital
interaction and crystallographic ordering of the sample.
Electrons scattered through 90° were detected by the
Mott polarimeter. The experiments were performed
with the devices of both types: first with one device and
then with the other (the positions of the devices were
the same). The polarimeters were placed in such a way
that their input conditions were identical. When com-
paring their performance, we did not use any electron
optics at the input. In both experiments, the potentials
across the input elements were equal to zero. The
energy selection of the Al-scattered electrons was
absent. The arrangement of the polarimeters was such
that the plane of second scattering (by the Au foil) made
an angle of 45° with that of the initial scattering (by the
Al sample).

The electron beam was scanned perpendicularly to
the plane of initial scattering (along the Z axis, Fig. 3).
The shift of the beam on the surface of the Al sample
was ±1 mm.

The results of the experiments are shown in Fig. 4.
Squares and circles correspond to the opposite scan
directions. The results for the normalized count rates at
primary beam energies of 500 and 1600 eV are pre-
sented, since they are the most typical. Similar mea-
surements were made for many other energies. It is seen
that, as the primary electron beam shifts by 0.6 mm, the
count rate of the conventional spherical polarimeter
remains fairly stable, while that of the retarding-poten-
tial device changes by ≈18 and ≈7% for the energies
500 and 1600 eV, respectively. It is also seen that the
curves run in a different way. The curve corresponding
to 500 eV is symmetric about the zero shift, while that
corresponding to 1600 eV is asymmetric. It is not the
goal of this work to comprehensively analyze the
behavior of these dependences. We try merely to find an
explanation for the low sensitivity of the conventional
spherically symmetric polarimeter to the shift of the
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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electron beam at its input compared with the retarding-
potential device.

In our opinion, the basic reasons for this difference
are as follows (in order of increasing significance).

(1) The presence of a retarding potential may con-
siderably affect the trajectories of electrons scattered by
the Au foil, which is not the case in the conventional
polarimeter, where the electrons scattered move in the
drift space.

(2) The spherical accelerating field in a free-field
polarimeter focuses the electron beam on the Au foil
well unlike the analyzer of the other type.

Thus, when designing an experimental spin ana-
lyzer, one must be guided not only by such parameters
as efficiency, dimensions, or design simplicity. It
should also be taken into account that the count rate
and, consequently, the asymmetry of scattering may
sometimes change when the electron beam shifts at the
input or when its diameter or density changes. Obvi-
ously, the electron beam polarization measured will be
in error in this case.
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Abstract—The discontinuity length is found when a high-frequency gasdynamic perturbation propagates in a
thermodynamically nonequilibrium gaseous medium. © 2001 MAIK “Nauka/Interperiodica”.
The gas dynamics of thermodynamically nonequi-
librium media, such as vibrationally excited gas,
nonisothermal plasma, chemically active mixture, etc.,
is presently the subject of much experimental and theo-
retical investigation. It is known that the second (vol-
ume) coefficient of viscosity in these media may be
inverted, so that the medium becomes acoustically
active [1, 2]. The acoustic activity of the media consid-
erably changes the configuration and dynamics of prop-
agating nonlinear waves.

The length of discontinuity Ld is one basic charac-
teristic of nonlinear acoustics. In particular, this param-
eter specifies the effective length within which plane-
wave approximations apply, for examples, to problems
like the self-action of sound or the dissipation of acous-
tic waves by waves of another nature. It has been shown
[2] that the discontinuity length in acoustically active
media is smaller. In this work, we suggest a simple for-
mula for Ld obtained by the method developed in [3].

Up to quantities of the second order of smallness,
the propagation of high-frequency perturbations in a
relaxing medium is governed by the Burgers equation
with a source given by [1–3]

(1)

where V is a perturbation of the gasdynamic velocity in
an acoustic wave (equations for the perturbations of
other parameters are similar), Z = X – u∞t, y = Θt, Θ ! 1
is a quantity of the first order of smallness, X and t are
coordinate and time, Ψ∞ = (γ∞ + 1)/2 is the hydrody-
namic nonlinearity coefficient, γ∞ is the adiabatic expo-
nent, µ is the dissipation factor due to viscosity and heat
conduction,

is the high-frequency dissipation factor due to relax-
ations with a relaxation time τ in the medium, ρ0 is the
density of the medium, CV0 and CV∞ are the equilibrium
and frozen heat capacities at constant volume, u∞ is the

VY Ψ∞VVZ+ µVZZ α∞u∞V ,–=

α∞
ξ0CV0

2

2ρ0CV∞
2 u∞

3 τ2
------------------------------=
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frozen speed of sound, and ξ0 is the low-frequency sec-
ond coefficient of viscosity. In a nonequilibrium
medium, ξ0 < 0 may be negative, hence, the acoustic
activity of the medium; i.e., α∞ < 0.

With the initial perturbation represented in the form
V(y = 0, z) = V0sin(ωZ/u∞), where ω is frequency, the
solution of Eq. (1) at µ  0 is given by

(2)

where β = Vexp(a∞u∞y)/V0 and  = /Ψ∞V0ω is the
well-known expression for the discontinuity length at
α∞ = 0 [3].

It is easy to check that expression (2) is the solution
of Eq. (1) for both α∞ > 0 and α∞ < 0. According to (2),
the discontinuity starts forming at

hence, the discontinuity length

Thus, knowing the increment α∞, one can easily find
the value of Ld when the initial high-frequency gasdy-
namic perturbation propagates in an acoustically active
medium.
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Abstract—The magnetic properties of a two-phase fiber composite are theoretically studied. One of the phases
is a ferromagnet with a highly nonlinear field dependence of the local magnetic permeability and a negligible
hysteresis loop. The dependences of the effective magnetic permeability (both along and across the fibers) on
the external magnetic field and on ferromagnetic phase concentration are found. A steep rise in the effective
transverse permeability is revealed near the percolation threshold. © 2001 MAIK “Nauka/Interperiodica”.
Magnetic composites are now attracting consider-
able interest (see, e. g., [1–5]). This is in great part due
to the fact that the potentialities offered by pure (single-
phase, uniform in composition, and homogeneous)
materials have been substantially exhausted. In many
cases, composites acquire properties that are lacking in
the initial materials. In the new-material technology,
emphasis is currently on the synthesis of macroscopi-
cally inhomogeneous media with properties controlla-
ble over a wide range (see, e. g., [6]).

Inhomogeneous media are usually characterized by
effective coefficients; in our case, the effective mag-
netic permeability is of interest. For composites with a
random structure, the calculation of the effective coef-
ficients is difficult and is possible only in certain
approximations. According to the arrangement of the
phases, the degree of disorder, etc., the effective coeffi-
cients may differently depend on the concentration and
external fields. The nonlinearity of the local magnetic
permeability, which is (by definition) an inherent char-
acteristic of ferromagnets, presents another problem in
the calculations. For example, the direct numerical sim-
ulation of a two-phase strongly inhomogeneous nonlin-
ear medium is extremely cumbersome and is made, if
possible, only by invoking the grid methods, where the
inclusions are specified by the nodes of a regular mesh.
Adequate methods that allow the reasonably accurate
description of nonlinear composites have been devel-
oped only recently [6].

In this study, we consider a composite consisting of
circular ferromagnetic filaments (first phase) embedded
in a nonmagnetic matrix (second phase). Either phase is
characterized by local magnetic properties. The nonlin-
earity of the ferromagnetic phase permeability is essen-
tial and governs the magnetic properties of the medium
as a whole. The second phase is paramagnetic or dia-
1063-7842/01/4612- $21.00 © 21571
magnetic, and its permeability can be set equal to µ0
with a good accuracy. The effective permeability will
be studied in relation to the phase concentration and the
external magnetic field. The ferromagnetic phase is
considered to have a nearly zero hysteresis loop (see,
e.g., [4]). The model of the composite is shown in Fig. 1.

The magnetic properties of the first phase are speci-
fied by the dependences µ1 = µ1(H) (Fig. 2) and

(1)

To characterize the magnetic properties of the mate-
rial as a whole, one uses the effective values, which
relate (by definition) the volume-averaged magnetic
field strength and induction:

(2)

where, even in the linear case, µe is a tensor whose prin-
cipal axes are directed along and perpendicular to the
cylindrical inclusions.

B µ1 H( )H.=

B〈 〉 µ e H〈 〉( ) H〈 〉 ,=

µ1
µ2

Fig. 1. Fibred two-phase magnetic composite. Fibers are of
a circular section, and the circle centers are distributed ran-
domly. The bulk concentration of the ferromagnetic phase
(black areas) is p.
001 MAIK “Nauka/Interperiodica”
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In the principal axes, this tensor is diagonal and has

the longitudinal component  “along” and two equal

transverse components  “perpendicular” to the
inclusions. In what follows, we will consider the paral-
lel and perpendicular relative orientations of 〈H〉  and
ferromagnetic fibers.

The composite is assumed to be macroscopically
inhomogeneous with the coordinate-dependent local
permeability µ = µ(r). In our case of the two-phase
medium, µ(r) = µ1(H(r)) in the ferromagnetic phase
and µ = µ2 in the nonmagnetic one. We also assume that
the composite is sufficiently large, so that any randomly
occurred parallel arrangement of the ferromagnetic
fibers can be considered as the self-averaging of the
material properties [7]; in other words, the effective
properties of different realizations are indistinguish-
able. Finally, we restrict our analysis to the stationary
case; i.e., we assume that B(r) and H(r) obey the Max-
well equations in the form

(3)

The calculation of the longitudinal component 
presents no difficulties. Under the assumption that 〈H 〉
is parallel to the fibers, Eq. (3) gives for the local mag-
netic field H||1 = H||2; that is, the local magnetic field

µ||
e

µ⊥
e

divB 0, curlH 0.= =

µ||
e
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Fig. 2. (a) Magnetic behavior B = µ1(H)H and (b) the local
permeability of the ferromagnetic phase.

H × 104, A/m
strength in both phases equals 〈H 〉 ||. Using this circum-
stance, one can average the local relation

(4)

over the volume:

(5)

where p is the concentration of the ferromagnetic
phase.

Equation (5) immediately yields the expression for
the effective permeability along the fibers:

(6)

The determination of the transverse component is
reduced to solving the two-dimensional problem with
randomly distributed circular inclusions. For the linear
case, such a problem in terms of dielectric permittivity
was posed by Maxwell [6, 8] and solved in the approx-
imation of solitary inclusions. In this approximation,
the concentration of the inclusions, for instance, of the
first phase, is assumed to be so small that they do not
interact with each other [9]. It is evident that, in real
composites, this approximation generally fails. The
interaction between the inclusions in the linear case is
best accounted for by the Bruggeman–Landauer (BL)
approximation of self-consistent field [8, 10]. This
approximation does well for not too high inhomogene-
ities in the entire range of concentrations except for the
vicinity of the percolation threshold (at high inhomoge-
neities), where the methods of percolation theory
should be applied. It is worth noting that the problem of
effective values has no general solution: at different
concentrations, arrangements, and distributions of
inclusions, as well as at different local dependences,
various relationships may take place. Only in particular
cases (small concentrations of inclusions, concentra-
tions near the percolation threshold, specific arrange-
ments of the phases in the two-dimensional case, etc.),
the problem has a general, while approximate, solution
that depends on a small number of parameters, e.g., on
the dimension of the problem.

To derive the effective transverse permeability ,
we use the BL approximation modified for the nonlin-
ear case [11, 12]. Following [11, 12], we consider the
local field inside the nonlinear inclusions as constant.
With this assumption, the nonlinear phase will be char-
acterized by the constant permeability :

(7)

where averaging 〈…〉1 is carried out over the volume of
the inclusions.

Since now the medium consists of two “linear”
phases with µ2 and , the effective permeability can

B|| r( ) µ r H ||,( )H ||=

B||〈 〉 µ H ||( )H ||〈 〉=

=  pµ1 H ||〈 〉( ) 1 p–( )µ2+( ) H ||〈 〉 ,

µ||
e H〈 〉( ) pµ1 H〈 〉( ) 1 p–( )µ2.+=

µ⊥
e

µ̃1

µ̃1 µ H ⊥( )〈 〉 1,=

µ̃1
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be found from the conventional BL formula [8, 10, 13]

. (8)

As is well known [7], for samples of a size exceed-
ing the typical self-averaging size (correlation radius),
〈BH〉 = 〈B〉〈 H〉; hence, with regard for (2) and (7) [11, 12],

(9)

After the substitution of µ1 = µ1(H⊥ ) for  =

〈µ(H⊥ )〉1, we approximate  as a function of 〈 〉 1:

(10)

µ⊥
e 1

2
--- 1 2 p–( ) µ2 µ̃1–( )=

+
1
2
--- 1 2 p–( )2 µ2 µ̃1–( )2 4µ2µ̃1+

H2〈 〉 1
H2〈 〉
p

------------∂µe

∂µ̃1

--------.=

µ̃1

µ̃1 H ⊥
2

µ̃1 µ H ⊥( )〈 〉 1 µ1 H ⊥
2〈 〉 1( ).≈=

(a)

(b)

µ⊥ /µ0
e

〈H〉

p

〈B〉

p 〈H〉

Fig. 3. Volume-averaged magnetic induction and  as

functions of the volume-averaged magnetic field 〈H⊥ 〉 .
µ⊥

e
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This approximation has proved to be valid in calcu-
lating the effective conductivity of nonlinear two-phase
composites [11, 12] with a highly nonlinear I–V char-
acteristic [14, 15]. Substituting (10) into (8) and (8) into

(9) yields the equation for 〈 〉 1:

(11)

Substituting 〈 〉 1 determined from (11) into (10),
we obtain the effective permeability of a nonlinear
composite as a function of the concentration, parame-
ters of the local function of the nonlinearity µ1 =
µ1(H⊥ ), and external magnetic field 〈H⊥ 〉 . The depen-
dence of the effective permeability for the particular
local function is plotted in Fig. 3. At p = 1 and p = 0, the

permeability (〈H⊥ 〉) becomes, as it must, that of the
ferromagnetic and nonmagnetic phases, respectively.

Similar to the conventional BL approximation, its
nonlinear generalization leads to the percolation-like

behavior of . As seen from Fig. 3a, at particular val-

ues of 〈H⊥ 〉 (such that (〈H〉 , p = 1)/µ0 @ 1), the effec-
tive permeability abruptly increases as the concentra-
tion passes over the threshold. The quantitative descrip-
tion of the near-threshold region, for example, the
determination of the critical exponents and their depen-
dences on 〈H⊥ 〉 , is possible only within the framework
of the percolation theory [16]. Note also that the exter-

nal field 〈H⊥ 〉max at which  (p = const) shows a max-
imum is concentration-dependent, 〈H⊥ 〉max = f(p).
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Abstract—The effect of small thermal fluctuations on a single-contact interferometer is analyzed. A relation-
ship between the dispersion of magnetic flux fluctuations, geometrical inductance of the interferometer, and
external magnetic flux is found. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known [1] that a single-contact quantum inter-
ferometer relies on radically new effects appearing
when a Josephson contact is closed to form a supercon-
ducting ring. The state of a single-contact interferome-
ter is described by the equation

(1)

where φe = 2πΦe/Φ0 is the external magnetic flux nor-
malized to the magnetic flux quantum Φ0 = "π/e, l =
L/Lc in the geometrical inductance normalized to the
Josephson inductance Lc = Φ0/2πIc, and Ic is the Joseph-
son critical current.

The shape of the φ(φe) dependence strongly depends
on the value of l: at l ! 1, the dependence is nearly lin-
ear, while at l > 1, it becomes uncertain. At a large
inductance, l @ 1, the interferometer has 2N (N = l/π)
stationary states and can be used as a basis for con-
structing memory cells. Several versions of such a
memory have already been implemented in experi-
ments [2]. In [3], a reversible data-processing device,
parametric quantron, with an extremely low dissipated
energy (much smaller than a dissipated thermal energy)
has been suggested. Another important application of a
single-contact interferometer is a high-sensitivity mag-
netic sensor incorporated in an rf SQUID. Recent
works regarding the use of the interferometers in quan-
tum computers [4] are also worth noting, since these
devices are real macroscopic systems that have two
quantum states under certain conditions.

The discovery of high-temperature superconductiv-
ity [5] has opened new avenues for superconducting
electronics. The transition from helium to nitrogen tem-
peratures in cryoelectronics makes it possible to extend
the application of superconducting electronic devices
(including single-contact interferometers). At the same
time, the operation at nitrogen temperatures runs into
serious problems, since thermal fluctuations grow with
temperature. As is known, the effect of thermal fluctua-

φ l φsin+ φe,=
1063-7842/01/4612- $21.00 © 21575
tions on the Josephson device performance can be char-
acterized by the dimensionless parameter

(2a)

(where kT is the thermal fluctuation energy and Ej =
"Ic/2e is the Josephson binding energy) or

(2b)

Thermal fluctuations are considered to be small if
γ ! 1. In this case, thermal activation is appreciable
near the critical current. Intense fluctuations, which are
observed at γ > 1, will not be considered in this article.
For the efficient operation of Josephson devices, the
critical current Ic considerably exceed the thermal cur-
rent IT; in other words, the parameter γ must lie within
some interval. The thermal current is estimated as

At helium temperatures, IT is small (IT = 0.2 µA), so
that the condition γ ! 1 is readily fulfilled. At nitrogen
temperatures, IT approaches 3.2 µA and the necessary
value of the critical current must grow. However, an
increase in the critical current also faces a number of
problems. For example, the power

dissipated upon switching Josephson tunnel contacts
into the resistive state may significantly grow, since the
energy gap of high-temperature superconductors is
much larger than in the low-temperature material.

Basically, thermal fluctuations at nitrogen tempera-
tures can be suppressed by carefully designing the
geometry of both the contacts themselves and their con-
nections to obtain desired properties. This issue calls
for special consideration and is beyond the scope of this
work. Recently, the effect of intense fluctuations (γ > 1)
on single-contact [6] and double-contact [7] interfer-
ometers has been studied. In those works, the theoreti-
cal grounds of the interferometer operation under

γ kT /E j=

γ IT /Ic, IT 2ekT /".= =

IT µA( ) 0.084T  K( ).=

P IcVg Ic2∆ T( )/e,= =
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strong fluctuations have been put forward. We assume
that the fluctuations are small and consider the different
variations of the magnetic field applied to a single-con-
tact interferometer. Such experiments could also help to
elucidate the noise properties of devices based on gran-
ulated high-temperature superconducting films, since
single-contact interferometers are basic elements in
simulating these media.

BASIC EQUATIONS

The effect of fluctuations on a single-contact inter-
ferometer can be studied with the Fokker–Planck equa-
tion for probability density [1]. For the probability den-
sity near the bottom of a potential well, we have

(3)

where G(φ, v ) is the energy of a single-contact interfer-
ometer [1]:

(4)

v  = V/Vc; V is the voltage across the Josephson contact;
Vc is the characteristic Josephson voltage: Vc = IcRN;
RN is the normal resistance of the contact; and C is the
contact capacitance.

If the inductance is small, the fluctuations of the crit-
ical current of the Josephson contact are neglected, so
that only the last term remains. The same approach
allows us to calculate the lifetime of the metastable
state and fluctuations near the absolute minimum [1].
As a result, the thermal fluctuation factor γ given by (2)
and its dependence on the magnetic field are absent in
the final expressions. In our analysis, we take into
account this disadvantage and calculate the magnetic
flux fluctuations. With Eq. (1) for the interferometer
state, the dispersion of the magnetic flux fluctuations is
expressed as

(5)

where the phase φ is given by Eq. (1)

It should be noted that the similar equation for the
fluctuations has been used in [8]. The dispersion of the
fluctuations of the Josephson critical current depends
on the McCamber capacitance parameter β =

2πIc C/Φ0 and on the rate of increase of the current
through the contact α = d(I/Ic)/d(t/Φ0/2πIcRN).

σ φ v,( ) G φ v,( )/kT–( )/ φ vd

∞–

∞

∫d

∞–

∞

∫exp=

× G φ v,( )/kT–( ),exp

G φ v,( ) CVc
2v 2/2=

+ Φ0Ic/2π 1 φcos φ φe–( )2/2l+–( );

δΦ̃2
/Φ0

2 φsin / φcos l 1–+( )( )2δĨc
2
/Ic

2,=

RN
2

(1) Small-Inductance Interferometer

For small inductances, the parameter α depends on
the rate of change of the external flux by virtue of
Eq. (1):

(6)

For slowly varying fields (i.e., for a low rate of
increase of the current through the contact) and small
fluctuations,

(7)

the dispersion of the delay time depends on the rate of
increase of current and capacitance parameter only
slightly [9, 10]. This is explained by the specific
dynamics of the Josephson phase when the rate of
increase of the current is low. When deriving these for-
mulas, we assumed that the fluctuations have enough
time to thermally activate the system through the
slowly lowering energy barrier. Multiplying the for-
mula derived for the dispersion of the delay time by α2,
we obtain the critical current dispersion:

(8)

where C0 is defined as [9, 10]

(8a)

Thus, in view of (5)–(8), the final expression for the
magnetic flux dispersion at low rates of increase of the
current has the form

(9)

When the rate of increase is high (α > (3γ/2)2/3) or
the fluctuations are small, the switching process is
affected insignificantly; in particular, a slight depen-
dence on α arises. Multiplying the associated formulas
for the delay time dispersion in the cases of a tunnel
contact [11] and a hysteresis-free junction [10] by α2,
we come to the expression for the critical current dis-
persion:

(10)

The formula for the magnetic flux dispersion is
obtained by substituting F1 for F0 in (9).

(2) High-Inductance Interferometer

At high inductances, several stationary states may
be observed. Of them, that with the least potential
energy is the most stable, while the other are metasta-
ble. The lifetimes of the metastable states are estimated
by the formulas given in [12]. To estimate the magnetic
flux fluctuations near the absolute minimum in formu-

α φe t( )( )dφe/dt.cos=

α 3γ/2( )2/3
 ! 1,<

F0 δĨc
2
/Ic

2( ) 3γ C0/25/2ln( )4/3
/6,≅=

C0

γ/4πα at β ! 1

3γ/2( )5/6/6πα at β @ 1.



=

δΦ̃c
2
/Φ0

2( ) l2 φeF0.sin
2

=

F1 δĨc
2
/Ic

2( ) 0.03γβ 3/4– α3/4 at β @ 1,= =

11.9γα7/9 at β ! 1.
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la (5), we must take into account the relationship sinφ ≈
φe/l, which is obtained from the equation for the inter-
ferometer state at high inductances. In this case, the rate
of increase of the current is given by α = dφe/dt/l. At a
low rate of increase of the current through the contact
and small fluctuations, i.e., when the condition (7) is
met, we have for the magnetic flux dispersion:

(11)

When deriving this formula, we used Eq. (5) and
Eqs. (1) and (8) for the interferometer state. If the cur-
rent through the contact grows rapidly, α > (3γ/2)2/3, the
expression for F1 should be applied instead of that for
F0 in formula (11).

Unlike the low-inductance limit, at large l, switch-
ing into the adjacent stationary state takes place as the
external magnetic filed increases. Near such switchings,
the denominator in the expression sinφ/(cosφ + l–1) tends
to zero and the effect of the fluctuations near these
threshold points changes. Using the formulas for the
threshold values of the phases in Eq. (1), as well as the
results obtained in [12], we find in the low-rate limit:

(12)

where  = |  – φe|,  = πn ±  + arcsinl–1 –
π/2 (n is the state number).

When deriving this equation, we used the expres-
sions for the barrier height and for the small-amplitude
oscillation frequency of a single-contact interferometer
near the threshold points (Chapter 6 in [1]). At high
rates, formula (12) holds but the rate dependence arises,
so that the expression

(12a)

should be used instead of .

DISCUSSION

Comparing formulas (9) and (11), we see that the
effect of the fluctuations for a low-inductance interfer-
ometer is quadratically small. In this case, the Joseph-
son contact is shunted by the interferometer inductance
and the fluctuations turn out to be small, because a
major part of the fluctuation current passes through the
inductance. This becomes clear if a single-contact
interferometer is viewed as parallel-connected contact
and inductance that are fed by a current source with a
current strength Φe/L. For large inductances, the effect
of the source is negligible and the interferometer
behaves as a single contact with a given current Ie = Φe/L.
As follows from (12), the effect of the fluctuations is

δΦ̃2
/Φ0

2( ) φe/ l2 φe
2– 1+( )

2
F0.=

δΦ̃2
/Φ0

2( )

=  l4 l2 1–( )1/2
2φ̃e( )1/2

l–[ ]
2

–{ } /4l l2 1–( )( )F0
1/2,

φ̃e φe
+ –, φe

+ –, l2 1–

F1
1/2 0.17α3/8β 3/8– γ1/2 at β @ 1,=

3.44α7/18γ1/2 at β ! 1

F0
1/2
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enhanced near the threshold points. At these points, the
effect of the Josephson inductance grows and the fluc-
tuation contribution is distributed among the ring and
contact inductances. Such a conclusion is in qualitative
agreement with the data obtained for the hysteresis-free
conditions (Chapter 14 in [1]). In [14], it was noted that
the phase jumps near the threshold points enhance the
fluctuations.

It is known that the SQUID sensitivity is character-
ized by the parameter

where δΦ is the external magnetic flux change equiva-
lent to the SQUID intrinsic noise in a band of measure-
ment ∆f and L is the inductance of the sensor (single- or
double-contact interferometer).

The formulas for δ /  derived above can be
used for estimating the SQUID energy sensitivity. The
careful calculation of the output characteristics of rf
SQUIDs is beyond the scope of this work. However,
these formulas allow us to make tentative conclusions.
For a slowly varying external magnetic flux, the energy
sensitivity degrades with decreasing frequency [see
(9)], because the logarithm increases when the parame-
ter α ∝  Ω in the denominator decreases (Ω ∝  dφe/dt).
This statement qualitatively agrees with the formulas in
Chapter 14 from [1], as well as with formula (30) in [6]
deduced in the small fluctuation approximation. This
approximation is obtained at L/LF  0 and γ  0.
According to [6], this case corresponds to the adiabatic
limit and the output energy sensitivity drops with
decreasing pump frequency. To improve the sensitivity,
it is advantageous to raise the pump frequency. Because
of this, the transition to super-high-frequency SQUIDs
seems to be topical. However, the drastic decrease in
the energy sensitivity at pump frequencies on the order
of the Josephson junction characteristic frequency, ω ≈
ωc (Ω ≈ 1), is due to the change in the single-contact
interferometer dynamics and, consequently, in the mag-
netic flux dispersion at high rates of increase of the cur-
rent. This corresponds to the nonadiabatic limit [6]. As
follows from (10), the sensitivity drops as Ω3/4 at β @ 1
and as Ω7/9 at β ! 1. In the nonadiabatic limit, the sen-
sitivity also decreases with increasing Ω ≥ 1, according
to [6].

Thus, we have analyzed the effect of small thermal
fluctuation on the performance of a single-contact
interferometer and related the magnetic flux fluctuation
dispersion to the geometric inductance and external
magnetic field.
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Abstract—A method is proposed for calculating an external source that forms when hard radiation is absorbed
by matter. The relevant electrodynamic problem is solved by numerical modeling. It is shown that the current
density vector can be localized in space and time. © 2001 MAIK “Nauka/Interperiodica”.
The investigation of electromagnetic waves accom-
panying the absorption of gamma-ray photons by mat-
ter implies a calculation of the macroscopic current
density vector, i.e., an external source for the electrody-
namic problem. The objective of this paper is to con-
sider the formation of a current pulse during the irradi-
ation of a gas medium by a collimated beam of hard
radiation. The method of calculation is described, and
the spatiotemporal structure of electromagnetic wave
sources moving at the speed of light is calculated. The
methods of numerical modeling are applied. The
numerical code is devised with the use of the GEANT
software package [1], which is widely utilized in
nuclear and high-energy physics. Account is taken of
the main processes of the interaction of photons with
matter (photoabsorption, Compton scattering, and pair
production), as well as of the secondary effects of the
interaction of delta-electrons with matter and ionization
processes induced by the secondary electrons. Elec-
trons with energies lower than ten kiloelectronvolts are
not taken into consideration. The input to the code
includes the data on the elemental composition of the
absorbing region and its geometry, as well as on the
spatiotemporal distribution of the primary gamma-ray
photons and their momenta. This work is motivated by
recent studies on the formation of highly directed,
strongly localized (in both space and time) electromag-
netic waves by sources propagating at the speed of light
[2–8]. Note that, in [2–8], the sources (the current den-
sity vectors) were specified heuristically rather than
calculated. In calculations of the electromagnetic radi-
ation from nuclear explosions [9, 10], the current den-
sity was determined using a simplified model. It was
assumed that the electrons produced during absorption
of gamma-ray photons by matter keep their initial
velocity unchanged along the path of propagation and
then stop abruptly. The spread in velocities and ejection
angles of the electrons, as well as secondary effects,
were neglected. These simplifications had to be made
1063-7842/01/4612- $21.00 © 1579
because, at that time, there were no adequate computers
and numerical methods.

A schematic of the numerical experiment is shown
in Fig. 1. The geometry of the problem is chosen to sat-
isfy the requirements imposed on the spatiotemporal
structure of the source by the familiar solutions to the
electrodynamic problem of the formation of directed
waves [4–8]. A homogeneous absorbing medium is
bounded by a cylindrical surface and by two planes that
are orthogonal to the cylinder axis, along which a spa-
tiotemporal δ-pulse of primary radiation propagates.
The origin of the coordinate system is chosen to be
located at the point O(x = 0, y = 0, z = 0), which lies in
one of the two planes. The z-axis is assumed to coincide
with the cylinder axis. The initial instant is chosen to be
the time at which a gamma-ray pulse passes through the
boundary of the absorbing region. The results presented
below were obtained for 10-MeV gamma-ray photons
propagating through air at a pressure of 10 atm. In
Fig. 1, the electron trajectories are shown by the solid
lines, and the trajectories of gamma-ray photons are
represented by the dashed lines. We can see that the
electrons are concentrated near the z-axis.

The spatiotemporal distribution of the current den-
sity j(r, t) is determined by the current density vectors

(r, t) in the volume elements ∆Vi ((xi, xi + ∆x), (yi,
yi + ∆y), (zi, zi + ∆z)) in space. In each of the elements,
the current density vectors of individual electrons is
summed:

where ∆V = ∆x∆y∆z, v(ra, t) and ra(x, y, z, t) are the
velocities and coordinates of the electrons in an absorb-
ing medium at the time t, and Ni is the number of elec-
trons in the volume element ∆Vi.

j∆Vi

j∆Vi
r t,( ) 1

∆V
------- ev ra t,( ),

a 1=

Ni

∑=
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The centers of the volume element ∆Vi are assigned
the vectors (r, t). The histograms describing trans-
verse distributions of the z-component jz(r, t) of the cur-
rent density vector at fixed t and z are shown in Fig. 2.
For the above parameters of the model experiment, the
half-width ∆R1 of the distribution jz(r, t) is smaller than
60 cm. This value of ∆R1 is an estimate of the extent to
which the forming source is localized in the transverse
direction at the chosen observation time.

Figure 3 shows how the shape of the current pulse
changes from cross section to cross section along the
absorbing region. For the above parameters of the
medium and for the above energy of the primary radia-
tion, the pulse duration T at a level of 0.1 of the peak
amplitude is shorter than 2 ns, which corresponds to the
spatial extension ∆Z2 = cT < 60 cm (where c is the
speed of light). This value of ∆Z2 is an estimate of the
spatial localization of the current along the z-axis. In
Fig. 3, we can also see that the current pulse propagates
at the speed of light.

The above estimates of the longitudinal and trans-
verse localization of the pulse enable us to draw the
following conclusion: for the chosen parameters of the
model experiment, the irradiation of a gas medium by a

j∆Vi

x

yz

O

O

Fig. 1. Schematic of the model experiment. A 20-m long
and 20-m-diameter cylindrical region is filled with air at a
pressure of 10 atm. The energy of the primary gamma-ray
photons is 10 MeV. The solid lines are the electron trajecto-
ries, and the dashed lines are the trajectories of gamma-ray
photons. The upper frame presents the region around the z-
axis on an enlarged scale.
collimated gamma-ray beam during the time interval
under consideration leads to the formation of a spatially
localized region that propagates at the speed of light
and in which j(r, t) ≠ 0. Hence, a simplified model in
which the external source is represented by a delta-
pulse of the current propagating at the speed of light
along a straight line [7] can be employed in electrody-
namic calculations of directed electromagnetic waves.

The method proposed here for calculating the cur-
rent density vector j in electrodynamic problems can be
used to model other sources propagating at the speed of
light (in particular, the sources that give rise to directed
waves [5, 6, 11]) by specifying the required distribu-
tions of the coordinates and momenta of the primary
gamma-ray photons.

The proposed method for calculating the current
density vector j can also be used to determine the shape
of a current pulse propagating faster than light (a super-
luminal source of radiation). An example of the forma-
tion of a superluminal source was given in [12], in
which the front of a hard radiation pulse was assumed
to be incident at an angle to the symmetry axis of an
extended absorbing region.
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Fig. 2. Histograms of the transverse distributions of the z-
component jz(r, t) of the current density vector at the time
t = 500 ns in the cross sections separated by a distance of
0.2 m along the z-axis.
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The main results of the present work can be summa-
rized as follows. A method is proposed for simulating
an electromagnetic wave source that forms in the inter-
action of hard radiation with matter and propagates
with a speed that is equal to or greater than the speed of
light. The transverse and longitudinal localization of
the current density vector in a gas medium irradiated by
a collimated gamma-ray beam is estimated under the
conditions chosen for the numerical experiment. The
use of a model in which the external source is repre-
sented by a delta-pulse of the current propagating at the
speed of light along a straight line is justified.

1

0
t × 106, s

0.02 0.04 0.06 0.08 0.10

z = 1.5 m

1
0

z = 1.3 m

1
0

z = 1.1 m

1
0

I
z = 0.7 m

Fig. 3. Waveforms of the current pulse in different cross sec-
tions of the absorbing regions for 10-MeV primary gamma-
ray photons.
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Abstract—Electrical and optical characteristics of a positive corona discharge in He/Xe(Kr)/SF6/CCl4 mix-
tures, which are of interest for the use in multiwavelength excimer radiation sources, are studied in the needle–
grid electrode configuration. The length of the discharge, which is usually used to pump repetitive high-pressure
multiwavelength radiation sources, is equal to the length of the electrodes of an excimer laser or lamp pumped
by a transverse electric discharge. The discharge current–voltage and frequency characteristics, panoramic
emission spectra, and the dependences of the relative emission intensity from the halogenides and excited noble
gas atoms on the corona discharge current are investigated. The main processes resulting in the production of
halogenides, as well as xenon and krypton excited atoms, in the generation regions of a corona discharge are
studied. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Pulsed corona discharges (CDs) in the mixtures of
noble gases with halogen-containing gases are widely
used for the UV preionization of electric discharge–
pumped excimer (RX*) lasers [1, 2]. The steady-state or
quasi-steady-state CDs in active media of the RX lasers
are studied less extensively. A CD with a length approx-
imately equal to the length of an RX laser active
medium can be used to pump the active media of high-
pressure gas lasers [3]. The studies carried out with
He/Xe(Kr)/HCl mixtures showed that, for negative sup-
ply voltage at the needle–grid electrode system, this
type of discharge can be used to pump the laser active
medium, whereas, for the positive voltage, a streamer
corona arises, which makes the discharge unfit for
pumping [4]. A multielectrode negative CD in
He/Xe(Kr) mixtures, whose composition is similar to
those used in multiwavelength radiation sources based
on the noble gas chlorides (with low-corrosive CCl4 as
a halogen donor), was studied in [5].

Here, we investigate the production of halogenides
and xenon (krypton) excited atoms in the generation
regions of a positive CD in He/Xe(Kr)/SF6/CCl4 mix-
tures and its electrical characteristics.

EXPERIMENTAL SETUP

The electrode system consists of 12 needles
arranged in a row and a grid made from 0.15-mm-
radius nickel wires. A radius of the needle apex is
0.5 mm; the needle–grid distance is 2 cm. The electrode
system is mounted on a dielectric flange and set into a
1063-7842/01/4612- $21.00 © 21582
high-pressure chamber. A positive dc voltage is applied
to the needles. A more detailed description of the exper-
imental facility is presented in [4, 5].

In our experiments, the CD has the form of bright
generation regions near the needle apexes, while the
bulk of the discharge gap is dark. At elevated voltages,
when a breakdown is going to occur, the generation
regions near the grid also arise. The increase in the sup-
ply voltage results in the onset of a streamer at one of
the needles. The optical characteristics of the discharge
plasma are studied throughout the entire aperture of the
CD. The main emission sources are the generation
regions near the needle apexes.

ELECTRICAL CHARACTERISTICS

Figure 1 shows the typical current–voltage charac-
teristics of a positive CD in the mixtures of noble gases
with SF6 and CCl4. The maximum CD current in the

200

100

0
8 10 12

1
2

U, kV

I, µA

Fig. 1. Averaged current-voltage characteristic of a positive
CD in the (1) He/Xe/SF6/CCl4 = 300/1.6/0.2/0.02-kPa and
(2) He/Kr/SF6/CCl4 = 300/13/0.2/0.02-kPa mixtures.
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noncontracted stage of the discharge and the minimum
discharge ignition voltage are attained with xenon-con-
taining mixtures. The difference of the current–voltage
characteristic from the dependence I = α(U – U0)2,
which is characteristic of a CD [6], is related to the sig-
nificant content of heavy noble gases in the mixture and
the resulting nonlinearity of the discharge [7]. Under
these conditions, the discharge acquires some proper-
ties of a glow discharge.

A hysteresis in the current–voltage characteristic
was almost absent, although it occurred in CDs in two-
component mixtures like He/Xe(Kr) [8]. This is related
to the decrease in the density of the excited heavy noble
gas atoms that participate in quenching reactions with
SF6 and CCl4 molecules (including the production of
RCl* and RF* excimer molecules) [9, 10].

Since the pumping rate of a gas mixture in an elec-
tric discharge scales as v  ~ (I)1/2 [11], it is maximum in
xenon containing mixtures with the lowest content of
halogen-containing molecules. In mixtures under
study, the maximum CD current is determined by the
density of halogen donors and depends only slightly on
the ballast resistance in the supply circuit.

A typical waveform of the CD current pulse and
dependence of the pulse repetition rate on the power
supply voltage are shown in Fig. 2. During almost the
entire discharge phase, the CD current is continuous,
being superimposed by a set of submicrosecond pulses
with a repetition rate of 1–225 kHz. The maximum
amplitude of the current pulses (~1 mA) is attained in a
CD in He/Kr/SF6/CCl4 mixture, whereas in the xenon-
containing mixtures it no higher than 0.15 mA. Since
the mixtures under study only differ by the content of
heavy noble gas atoms, the CD current pulses seem to
be related to the drift of positive ions (such as Xe+ or

) through the peripheral zone of the CD toward the
metal grid. The ratio between the current amplitudes is
approximately equal to the ratio between the krypton
and xenon atom densities in the mixture. The maximum
repetition rate of the CD current pulses is attained with
krypton-containing mixtures. In the entire range of the
parameters where the discharge is stable, the repetition
rate gradually increases with the power supply voltage.

OPTICAL CHARACTERISTICS 
AND PLASMA PROCESSES

The studies of the panoramic emission spectra from
the CD plasma show that, in the UV spectral region, the
most intense are the KrCl* 222-nm, KrF* 249-nm,
XeCl* 308-nm, and XeF* 351-nm bands, whereas in
the near IR region, these are the spectral lines corre-
sponding to the transitions Kr(5s–5p) and Xe(6s–6p).
Just a few emission lines from the Xe(6s–7p) and Kr
(5s–6p) transitions are observed in the visible spectral
region. There are no emission lines from the high-lying
levels of the Kr and Xe atoms, as well as from their sin-
gle-charged ions.

Xe2
+
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Figure 3 shows the relative intensities of the emis-
sion bands from excimer molecules versus the CD cur-
rent. The dependences are linear for the mixtures with
a low content of heavy noble gas atoms and deviate
from being linear at a higher content.

The most intense is the KrCl 222-nm emission band.
Comparing the production efficiency of the xenon and
krypton chlorides and fluorides in the four-component
mixtures, we can see that the emission intensity from
noble gas chlorides is higher by more than one order of
magnitude than that from the noble gas fluorides.

The dependences of the intensities of the emission
lines from the excited xenon and krypton atoms on the
CD current are shown in Fig. 4. They are linear and cor-
relate with the dependences of the emission intensities
from excimer molecules on the discharge current. For
the same currents, the ratio between the emission inten-
sities of Kr and Xe atomic spectral lines is approxi-
mately equal to the ratio between the atom densities in
the CD plasma. In view of such behavior of the emis-
sion intensities from the RCl*, RF*, and R(s–p), we can
suppose that, in the CD generation regions, the excimer

U, kV
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I, µA

t, µs

(a) (b)
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Fig. 2. (a) Waveform of the CD current in the
He/Kr/SF6/CCl4 = 300/13/0.2/0.02-kPa mixture and (b) the
repetition rate of the current pulses vs. power supply voltage
for (1) He/Xe/SF6/CCl4 and (2) He/Kr/SF6/CCl4 mixtures
at U = 13 kV.
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Fig. 3. Average intensities of the excimer molecule emis-
sion bands in (1, 2) He/Xe/SF6/CCl4 and (3, 4)
He/Kr/SF6/CCl4 mixtures vs. average CD current:
(1) XeF(B–X) 351-nm, (2) XeCl(B–X) 308-nm, (3) KrF(B–X)
249-nm, and (4) KrCl(B–X) 222-nm bands.
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molecules form via the “harpoon” reactions like

(1)

According to [9, 10], the rate constant for reaction (1)
with the participation of SF6 molecules is almost zero
(the corresponding branching ratio for the quenching
reaction resulting in the production of an excimer mol-
ecule is 0.02); hence, the emission intensity from RF*
molecules is much lower than that from RCl* mole-
cules. Under our conditions, RF* molecules can also
form in secondary processes with the participation of
light radicals that are produced due to either the disso-
ciation of SF6 molecules in a CD or ion–ion recombina-
tion.

In CCl4-containing mixtures, RCl* molecules can
be produced via direct reactions (1) with the participa-
tion of CCl4 molecules, the reactions involving Xe(6p)
atoms being the most efficient. The branching ratio for
the quenching of Xe(6p) by CCl4 molecules with the
production of XeCl(B) amounts to 0.6–0.7, whereas,
for metastable atoms, it is much less (about 0.24) [9].

In producing RX* in the generation regions of a CD,
ion–ion recombination is of lesser significance than the
“harpoon” reaction due to both the truncating the elec-
tron energy distribution function on the high-energy
side and the low densities of the positive ions of a noble
gas as compared to the density of the excited R (ns, np)
atoms [11, 12]. Moreover, the electron temperature in
the CD generation regions can be too high for the

recombination of Cl– (F–) ions with R+ ( ) ions to be
efficient.

The main process resulting in the production of
Xe(6p, 7p) and Kr(5p, 6p) atoms can be the direct elec-
tron–impact excitation of noble gas atoms, which
agrees with both the linear dependence of the R line
emission intensities on the discharge current and the
values of the effective cross sections for the electron–
impact excitation of np levels of Xe and Kr [13, 14].

R np ns,( ) CCl4 SF6,( ) RCl* RF*( )+

+  products.

R2
+

0 50 100

J, arb. units

150 I, µA

3

2

1

1

2

Fig. 4. Intensities of the emission lines from xenon and
krypton atoms vs. CD current: (1) Xe(6s–6p) 832-nm line
(He/Xe/SF6/CCl4 mixture) and (2) Kr(5s–5p) 810-nm line
(He/Kr/SF6/CCl4 mixture).
The dissociative recombination of  molecular ions
with electrons [15] can be another efficient mechanism
for populating the R(np) levels; however, its efficiency
is reduced by the high electron temperature in the hot
regions of the CD.

In the discharge under study, the current density and
the gas flow rate are limited by the onset of an instabil-
ity resulting in the formation of a cathode streamer. The
streamer arises near one of the needles at an elevated
power supply voltage. In the uniform phase of the dis-
charge, the CD current density increases as the concen-
tration of halogen-containing molecules in the gas mix-
tures decreases.

CONCLUSION

The characteristics of a positive multielectrode CD
in the mixtures of noble gases with SF6 and CCl4 and
the processes resulting in the excitation of atoms and
molecules are investigated. It is shown that this dis-
charge is characterized by low energy consumption
(W ≤ 1 W) and can be used to pump multiwavelength
excimer radiation sources. The excimer molecules and
excited noble gas atoms in the generation regions of a
corona discharge are produced mainly via harpoon
reactions and direct electron impact, respectively.
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Abstract—The behavior of an electric arc in a magnetic field is studied theoretically and experimentally. It is
found that the arc behavior can be governed by the ponderomotive interaction of the arc with current-carrying
elements. In a nonuniform magnetic field, the behavior of the arc depends on the Hall currents and the diamag-
netic properties of its plasma. It is shown that the position of the arc channel between the end faces of cylindrical
electrodes can be controlled by nonuniform magnetic fields. The methods and devices considered in this paper
allow one, in particular, to control arc heat sources used in the heat treatment of metals. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Electric arc finds wide application in many indus-
trial processes. Usually, a free arc chaotically moves
between electrodes, and its behavior and characteristics
are unpredictable. For example, in vacuum arc furnaces
for metal melting, the arc can reach the crucible walls,
which may adversely affect the metal quality or even
cause an accident. The available ways of arc position-
ing are inadequate [1, 2], since they either control the
arc source parameters that only indirectly specify the
arc position or minimize the detrimental effect of the
uncontrollable interaction between the arc and the sur-
rounding members. The strict positioning of the arc
channel between the electrodes is therefore necessary.

In this paper, we consider the possibility of control-
ling the position of dc and ac arcs [3]. If an arc is con-
sidered as a current-carrying conductor, then the pon-
deromotive interaction between the arc current and the
current leads can be used to stabilize the position of the
arc channel. On the other hand, an arc can be viewed as
a plasma conductor and plasma properties can be
employed for arc control.

THE USE OF PONDEROMOTIVE INTERACTION 
BETWEEN CURRENT LEADS AND ELECTRIC 

ARC TO STABILIZE THE ARC POSITION

The use of nonuniform magnetic fields generated by
the currents in the electrodes and other external current
leads to stabilize the arc channel position seems to be a
simplest and most attractive way for arc control [4].

Previously, we considered the ponderomotive inter-
action between the arc current and the current of the
electrodes made in the form of coaxial semi-infinite
cylinders separated by the arc gap. The arc was consid-
1063-7842/01/4612- $21.00 © 1585
ered as an infinitely thin linear current-carrying con-
ductor perpendicular to the electrode end faces. We
derived the expression for the force acting on the unit
length of the conductor with the current passing
between the semi-infinite cylindrical electrodes. This
force is equal to zero if the conductor in the arc gap is
coaxial with the electrodes. However, the radial force
expulsing the conductor out of the arc gap appears for a
distance between the conductor and the axis as small as
desired. This force increases with distance to the axis
and depends on the length of the gap only slightly.

Thus, the position of the arc between long coaxial
cylindrical electrodes has been shown to be unstable.
The destabilizing radial force can be diminished, for
example, by using a coaxial current lead.

Now, consider the ponderomotive interaction of a
current-carrying conductor placed between the bottom
of a conducting crucible and the end face of a semi-infi-
nite conducting cylinder (Fig. 1). In this geometry, the
cylindrical electrode, the crucible bottom with a con-
ductivity σb, and the crucible walls with a conductivity σw

are current leads. As before, the arc is considered as an
infinitely thin current filament perpendicular to the
electrode end face and the crucible bottom. It is
assumed that the current distribution in the electrode
occurs within an infinitely thin layer of its end face. The
current distributions across the crucible walls and bot-
tom are neglected; i.e., the currents were assumed to be
surface.

In the expression for the radial force Fm acting on
the unit length of the conductor with the current passing
between the crucible bottom and the electrode face end,
the relationship between the bottom and wall conduc-
tivities of the crucible is of importance [4]. For a mag-
netic field produced by coaxial electrodes, one can dis-
2001 MAIK “Nauka/Interperiodica”
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tinguish three important cases that specify the arc
behavior: (i) σw ! σb; (ii) σw = σb; and (iii) σb ! σw.

As follows from the calculations, the first two cases
are qualitatively similar to the coaxial-electrode prob-
lem considered above. For the bottom conductivity

r

z

1

2 3

45

Fig. 1. Coaxial arrangement of the electrodes: 1, current
source; 2, cylindrical electrode; 3, crucible wall; 4, crucible
bottom; and 5, arc channel.
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Fig. 2. Radial force fm acting on the unit length of the cur-
rent-carrying conductor between the coaxial vs. distance to
the electrode axis (fm = 107FmRe/I

2, where I is the discharge
current in units of A; Re in m; and Fm in N/m) for the case
σb ! σw. Re/Rw = (1) 0.5, (2) 0.7, and (3) 0.9.

200 mm
(a) (b)

Fig. 3. Foil melted when (a) σw = σb and (b) σw ! σb.
much smaller than that of the walls (σb ! σw), it was
established that, for Rc/Rw ≥ 0.9 (Re is the electrode
radius and Rw is the inner crucible radius) there is the
range 0 ≤ R ≤ 0.75Rw, where the force Fm acting on the
arc is directed toward the system axis; i.e., the equilib-
rium position is stable (Fig. 2). In practice, this case is
observed, for example, when titanium melts in copper
crucibles.

The stabilization of the arc channel position was
tested experimentally by melting aluminum foils kept
close against the end face of the upper electrode. The
foils melted under the conditions when the crucible bot-
tom conductivity was equal (Fig. 3a) and much lower
(Fig. 3b) than that of its walls. The experimental data
confirmed the calculations. As was expected, in the first
case, we observed the traces of the random movement
of the arc channel over end face of the electrode up to
its periphery. Another picture was observed in the sec-
ond case. It is seen that the arc channel is confined by
the region whose radius is smaller than the upper elec-
trode radius.

THE POSITIONING OF THE DC ARC CHANNEL 
BY MEANS OF A NONUNIFORM MAGNETIC 

FIELD

An electric arc is a plasma conductor and, hence,
can be controlled by using the plasma properties, in
particular, plasma diamagnetism. However, when
studying the behavior of plasma conductors in spatially
nonuniform magnetic fields, we came across a phenom-
enon that is paradoxical from the viewpoint of plasma
diamagnetism. A plasma column of a dc arc may have
a stable position in the region of both the minimum and
the maximum magnetic field, depending on the current
direction in the plasma column. In this case, the condi-
tion of magnetization necessary for diamagnetic inter-
action may not be satisfied.

The review of papers devoted to electric arcs has
revealed experimental evidence for arc stabilization in
the region of the maximum magnetic field. However, no
satisfactory theoretical explanation has been given
[5, 6].

Such behavior of an arc discharge has been
explained by taking into account the Hall effect, which
shows itself as the appearance of an extra current per-
pendicular to the electric and magnetic fields applied
[7]. It is the interaction of the Hall current with the
external magnetic field that governs the arc behavior.
The experiment confirming the theoretical prediction
has been carried out [8].

THE POSITIONING OF AN AC ARC BY USING 
THE DIAMAGNETISM OF ITS PLASMA 

As has been shown [8], the direction of the force
caused by the Hall currents depends on the current
direction in the arc. In ac arcs initiated in nonuniform
TECHNICAL PHYSICS      Vol. 46      No. 12      2001
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magnetic fields, the Hall force averaged over the arc
current period is equal to zero and the diamagnetic
effect becomes appreciable. Therefore, it can be used to
act upon the arc plasma column [9].

If the magnetic field in the gap increases from the
axis of the electrode to its periphery, the arc channel
must be within the region where the magnetic field
intensity B is minimal. The arc can then be displaced by
shifting the minimum of the magnetic field intensity.
Arc confinement by plasma diamagnetism is possible if
the electronic component of the plasma is magnetized.

The calculations of diamagnetic forces Fd confining
the arc, as well as relevant experimental data, showed
that arc confinement is effective in the magnetic field of
an antiprobkotron. The magnetic field was produced by
two short electromagnetic coils with oppositely
directed currents that were placed coaxial with the elec-
trodes and symmetrically relative to the arc gap.

The excited plasma of an ac arc in the magnetic field
of the antiprobkotron is shown in Fig. 4. One can see
the sharp-boundary arc channel, which is coaxial with
the electrodes. The region of the maximal pinch corre-
sponds to the position of the maximum magnetic field
gradient.

CONCLUSION

It has been found theoretically and experimentally
that the arc behavior in a nonuniform magnetic field can

+

+

1 23

Fig. 4. Arc plasma in the magnetic field of the anti-
probkotron: 1, electrodes; 2, current-carrying coils; and
3, arc.
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be controlled by plasma diamagnetism, Hall currents,
and the ponderomotive interaction of the arc with cur-
rent-carrying elements. The possibility of positioning
the arc channel between the end faces of cylindrical
electrodes by means of nonuniform magnetic fields has
been shown. The current lead arrangement and param-
eters that allow the ponderomotive interaction of the arc
with current-carrying elements to be used for arc stabi-
lization have been suggested. The arc channel can be
localized at a given point of the arc gap by using plasma
diamagnetism. The position of a dc arc can be con-
trolled by a nonuniform magnetic field in view of Hall
currents. The methods and devices considered allow
one, in particular, to control arc heat sources during the
heat treatment of metals.
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Abstract—The failure of quartz single crystals and piezoelectric ceramics under the action of ≈80-ns-wide
stress pulses is experimentally investigated. Spalling-induced microfailures in the piezoelectrics are found to
produce electromagnetic pulses 2–10 ns wide. The occurrences of the electromagnetic radiation and the micro-
failures correlate. The study of the structure of these electromagnetic pulses in combination with fractography
data may gain much real-time information on the failure of brittle materials under impact loads. © 2001 MAIK
“Nauka/Interperiodica”.
The electromagnetic radiation pulses recorded dur-
ing earthquakes and the geophysical survey of ores with
piezoelectric properties, as well as in the laboratories,
have a characteristic width, as a rule, of above (2–3) ×
10−6 s [1–3]. In these cases, the impact load duration
exceeds 10–6 s.

At the same time, when the dynamic strength and
the elastoplastic properties of the materials are tested
by submicrosecond (50–250 ns) impact loading [4–6],
individual short (2–10 ns) electric current pulses or
trains of these pulses are frequently recorded by piezo-
electric transducers along with stress pulses.

Typical signals waveforms upon loading X-cut
quartz specimens are presented in Figs. 1a–1c. When
the load stress was above ≈150 MPa, the signals arose
at different time moments and often their appearance
coincided with the edge of the stress pulses. The piezo-
electric plates retained their sensitivity and remained
macroscopically intact. Upon reloading, the number of
the pulses grew (Fig. 1c), the sensitivity of the plates
dropped, and microcracks appeared. The electrical sig-
nals from the plates and from a loop-shaped antenna
arranged around the lateral surface of the plates and ter-
minated by a wave impedance of 50 Ω were studied.
The signals detected by the antenna and caused by the
magnetic component of the field were found to appear
simultaneously with the pulses from the piezoelectric
transducer.

The reason for the short electrical pulses is the for-
mation of new surfaces as a result of microfailures. This
effect gives rise to local polarization gradients and high
local electric fields. Electrical breakdown is apparently
the most effective mechanism of electromagnetic pulse
generation in piezoelectrics. For these materials, both
estimated and measured values of the electric field
1063-7842/01/4612- $21.00 © 21588
strength at crack mouths are on the order of
106−108 V/m, which suffices to initiate electrical break-
down [6].

In the experiments, the diameter of the loading area
exceeded the dimensions of the piezoelectric transduc-
ers. Therefore, the appearance of the electromagnetic
pulses at the edge of the compression pulse is not a sur-
prise and is due to microfailures near the lateral surface

(a)

100 ns

0.5 V

0.5 V

0.5 V

50 ns

50 ns

(b)

(c)

Fig. 1. Waveforms of signals from X-cut SiO2 piezoelectric
transducers (R = 50 Ω) obtained with an S7-10B oscillo-
scope.
001 MAIK “Nauka/Interperiodica”
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Fig. 2. Waveforms of signals upon spallation obtained with an TDS-754C-type oscilloscope: (a, b) X-cut SiO2 specimen (24 ×
3.65 mm); (c, d) TsTBS-3 piezoelectric ceramic specimen (24 × 5.68 mm); (b, d) magnified fragments of the oscillograms when
the pulse reaches the free surface; (1, 3) waveforms of the current for the piezoelectric specimens; and (2, 4) waveforms for the
inductive transducer.
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of the transducers when the unloading wave passes.
Moreover, as is known, the surface strength of brittle
materials, such as quartz, becomes much lower than the
bulk value after processing.

It would be of interest to correlate the occurrence
and the evolution of the electromagnetic pulses with the
spalling processes in the case of submicrosecond
impact loading.

To separate in time the damage of the lateral sur-
faces and the spalling, larger diameter specimens were
investigated. They were X-cut single-crystal quartz
plates 24 mm in diameter and 3.65 mm thick, as well as
plates of TsTBS-3 piezoelectric ceramics (24 ×
5.68 mm). The diameter of the loading area was 8 mm.
For such specimens, the unloading wave originates on
the lateral surface more than 10–6 s after the longitudi-
nal wave has reached the free surface.

The specimens were stressed by ≈80-ns-wide pulses
excited when a pulsed laser irradiated a thin aluminum
layer pressed against a titanium acoustic waveguide
being in contact with the specimens. To provide plane
stressing, the laser energy was uniformly distributed
over the irradiated area.

The transducers operated under the short-circuit
conditions (R = 50 Ω). The current from the piezoelec-
tric specimen was determined simultaneously with the
signal from the six-turn induction coil of diameter
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27 mm wound around it. The temporal resolution of the
reception path was 2 ns.

In Figs. 2a and 2b, the waveforms of the currents for
the quartz specimen (curves 1, 3) and for the induction
coil (curves 2, 4) are presented in the case when the
quartz specimen was stressed at ≈450 MPa. The induc-
tive transducer detects electromagnetic pulses 2–12 ns
wide (curve 2). The appearance of the signals from the
inductive transducer coincides with the development of
tensile stresses at a depth of ≈85 µm. This phenomenon
is apparently associated with microfailures due to near-
surface process-induced defects. The electromagnetic
radiation intensity peaks at the instant the tensile
stresses become maximal at a distance of ≈260 µm from
the free surface. This value corresponds to the spalla-
tion thickness, as demonstrated by fractography data.
The subsequent nonmonotonic behavior of the radia-
tion intensity is apparently due to the development of
microfailures because of the reverberation of the volt-
age pulse in the spallation fragment. Reloading resulted
in the macrofailure of the specimens (curves 3, 4): they
were cleaved along the diameter into three or four parts
with the clear-cut spallation area near the free surface.

The signal waveforms for the loaded piezoelectric
ceramics specimen are presented in Figs. 2c and 2d. As
distinct from the quartz, the instant the electromagnetic
radiation anises (curve 2) coincides with the develop-
ment of the maximum tensile stress at a depth of
≈430 µm from the free surface. This value agrees with
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the measured thickness of the spallation layer. The
reloading of the specimen (curves 3, 4) also resulted in
macrofailures at the lateral surfaces. In this case, the
spallation area was even more pronounced than for
quartz. Intense oscillations of the electromagnetic radi-
ation that appear upon reloading are due to the failure
process because of the reverberation of the pulse volt-
age in the spallation layer.

Thus, we experimentally demonstrated that the fail-
ure of the piezoelectric materials subjected to submi-
crosecond stress pulses generates electromagnetic
pulses three orders of magnitude shorter than the ones
observed earlier. The reason for such a discrepancy
may be the different characteristic scales of structure
levels involved in the failure process at various shock
widths.

The investigation of electromagnetic pulses gener-
ated by the failure of piezoelectric materials in combi-
nation with fractographic analysis provides outstanding
possibilities for gaining much real-time information on
the development of brittle material failure, as well as on
structural levels involved in this process at different
durations of shock loading.
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