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PACS numbers: 42.65.–k
Recent experiments with petawatt laser plasmas
revealed interesting and unpredictable phenomena
[1, 2]. A large number of fast electrons with energies up
to several tens of MeV were detected. The estimated
energy of these electrons was up to 10% of the pump
laser energy. On the other hand, the plasma temperature
was of the order of hundreds of eV and was only
weakly dependent on laser intensity, but it was signifi-
cantly dependent on the pump pulse duration. The num-
ber of these hot electrons was dependent on the laser
intensity, and the angular distribution function of these
electrons was very wide. It seems difficult to imagine
that all these results are consequences of any plasma
wave turbulence. Moreover, a resonant wake process
such as might be used for deliberate acceleration of
electrons would exhibit strong directionality n of the
accelerated electrons. Thus, the review paper [1] con-
siders the electron distribution phenomena to be rather
puzzling. In this work, we point out that many of the
important features of strong laser–plasma interactions
and, particularly, hot-electron production can be inter-
preted as a consequence of electron–ion collisions.

However, traditional models of electron–ion colli-
sions in strong laser fields that are based on the small-
angle scattering approximation [3], i.e., under the
assumption that quivering electrons pass near ions
along straight lines, cannot explain the existing experi-
mental results. An alternative description of Coulomb
collisions, taking into account the substantial accelera-
tion of particles during the scattering process, was pro-
posed [4]. The application of the proposed model to the
description of hot-electron production provided by
electron–ion collisions and a comparison with experi-
mental data from [1, 2] constitute the major emphasis
of the present work.

¶ This article was submitted by the authors in English.
0021-3640/05/8101- $26.00 0001
The paper is organized as follows. First, we discuss
the applicability conditions and the main parameter for
the model being used. We show that, for relativistic lev-
els of laser intensities, these effects are very important.
We give estimates for the “energy spectrum” of hot
electrons (so named after [1]) directly formed by elec-
tron–ion collisions, obtaining a power tail distribution.
We estimate the total number of hot electrons pro-
duced from a unit volume per unit time. We calculate
as well the heating rate of the background plasma.
Finally, we compare the experimental data [1, 2] with
our theoretical predictions and show good agreement
between the two.

Let us note first the range of laser emission parame-
ters where the present model is suitable. In further
expressions, electron temperature T is in eV, intensity P
is in 1018 W/cm2, frequency ω is in 1015 Hz, density n is
in 1018 cm–3, and all other values are given in CGS
units.

The plasma is assumed to be cold in comparison
with the oscillatory energy, so that

(1)

This condition is satisfied easily and remains true prac-
tically for all plasmas interacting with short intense
laser pulses, especially in the first stage of the experi-
ment (preceding the Joule heating).

Second, the laser field intensity must be large
enough for the characteristic spatial scale of scatter-
ing bosc to be small compared to the radius of oscilla-
tions rosc:

(2)
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where posc = eE/ω is the oscillatory electron momen-
tum. This parameter range was first introduced in [4]. It
has never been considered in conventional theories of
electron–ion collisions, but it exhibits useful physical
limits. It can be written as a limit on the ion Coulomb
field potential energy at the distance of the oscillation
radius rosc, which must be small compared to the oscil-

latory energy . In other words, the dimensionless
parameter

(3)

needs to be small. This parameter appears naturally
when the test-particle-motion equation is put into
dimensionless form. In particular, in a nonrelativistic
approximation for a field with linear polarization along
the z0 axis, this equation can be rewritten as

(4)

Here, the time is normalized to Ω/ω, and distance, to the
characteristic scale

(5)

Note that the radius rE is equal to the distance from
the ion at which the amplitude of the laser field
becomes of the order of the amplitude of the ion Cou-
lomb field [4]. In terms of rE, the smallness of the
parameter Ω is equivalent to the fact that the radius of
the sphere surrounding the ion, inside of which the
Coulomb field dominates, is less than the radius of elec-
tron oscillations. Moreover, this scale appears naturally
when the acceleration due to the ion during the scatter-
ing process is considered (see below).

Thus, only the one parameter Ω determines the
structure of the seven-dimensional phase space of
Eq. (4). In the absence of the external field (Ω  ∞),
particle motion is regular and well-known from the
solution of the Rutherford problem [6]. A finite value of
Ω results in the formation of a stochastic layer in the
vicinity of separatrix curves, but as long as Ω @ 1, its
volume remains exponentially small.

As the field amplitude increases (which corresponds
to the decrease of Ω), the stochastic layer broadens and,
at Ω ≤ 1, occupies the whole region |p| ≤ posc in momen-
tum space. Even in this case, description of the electron
dynamics is possible under the approximation of regu-
lar trajectories, but only under the condition that it is
highly energetic particles (p @ posc) that contribute
most to the collision integral. However, we are prima-
rily interested in the opposite limit of small thermal
velocities (1), specifically, when particle dynamics is
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stochastic, since this is exactly the regime usually real-
ized in experiments.

In order to describe particle scattering in the pres-
ence of the strong laser field, let us make use of the fact
that the collision process proceeds in two stages [4]. In
the beginning, particles are just attracted to the ion with
the essential changing of the impact parameters; i.e.,
the variation of the test particle density and momentum
direction occurs at practically constant kinetic energy
of the drift motion. Also, the electron bunching happens
at first stage, so that the wave phase at the momentum
of “hard” collision is the same for different electrons
and ions. Secondly, the “hard” collision occurs (which
is actually the last collision), accompanied by a sub-
stantial change of electron momentum and by electron
departure from the Coulomb center, and, at this stage,
scattering at large angles with a corresponding large
energy exchange is possible.

It is enough to find the particle density n(r, t) before
hard collision (i.e., the density in the small vicinity of
the ion) for deriving the probability density of a colli-
sion with impact parameter r over time W(r, t) =
vn(r, t)d2ρ. To obtain the particle density n(r, t) prior to
the last hard collision, one can use both the results of
numerical simulation and the results of analytical anal-
ysis [4]. In both cases, the dependence n(r, t) is a singu-
lar periodical function of t:

(6)

Here, ρ =  is the transverse electron coordinate
(impact parameter) before the hard collision, a(v) ≥
bv = e2Z/mv 2 is a coefficient describing the efficiency of
the attraction of particles to the ion and depending on
the direction of the initial velocity v relative to vosc. It is
important to emphasize that this dependence on drift-
velocity direction is weak [4]. Thus, for the major frac-
tion of test particles, we have quasi-isotropic scattering,
so that we can use expression (6) for further estimates.
It is also important to note that the obtained singularity
of the probability function occurs independently from
the wave polarization and intensity. In particular, it can
be shown that the same estimate is appropriate for
ultrarelativistic intensities as well.

Distribution (6) describes electrons that have expe-
rienced strong attraction to the ion. Previously, such
particles were called “representative” electrons [4].
Note that, for the majority of such particles, one can
consider the scattering of the total velocity, V = v +
vosc(t), as a small-angle scattering.

The hard collision can be described by the relations
from the Rutherford-problem solution [6]. With small-
ness of drift velocity (1) taken into account, momentum
variation here is determined by the oscillatory momen-
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tum value at the collision moment and by the impact
parameter ρ:

(7)

It is supposed in (6) that collisions occur only when the
oscillatory velocity reaches its maximum (it is the
effect of bunching that provides the latter [4, 5]) and the
collision is momentary. The latter condition implies the
upper limit on the impact parameter:

(8)

Otherwise, for such large impact parameters, velocity
variation during the scattering process is substantial
and Rutherford formulas (7) are not applicable. How-
ever, this limitation is not important, since the energy
variation ∆W of such far-flung particles in strong fields
(bosc ! rosc) is small compared to the oscillatory energy:

(9)

Equation (7) allows us to find the relation between
the density function on impact parameters (6) and the
distribution of the hot-particle production rate on
momentum per unit volume and unit time:

(10)

Using density distribution (6), one finally gets

(11)

Note that the dependence of the hot-electron distribu-
tion on momentum has the universal law ~1/p3 for any
(relativistic and nonrelativistic) energies of particles.

From the relation between the kinetic energy and the
particle momentum

(m is the rest mass of electron), it is easy to find the
particle energy distribution for the nonrelativistic case
w ! mc2

(12)

and the relativistic one w @ mc2

(13)
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We will insert here the dimensional estimate for the

particle density dn(w)/dt = (w)dw with energies

exceeding some limit in the relativistic case for the
period of the field, supposing w, cposc @ mc2:

(14)

In this relation, particle energy w is measured in MeV
and other quantities are measured in units specified in
(1). Note that this density does not depend on laser
intensity. However, the total number of hot electrons
depends on pump intensity due to the larger interaction
volume with laser intensities.

In particular, considering the number of particles
with energy higher than 1 MeV for plasma1 with den-
sity 1019 cm–3 and volume 300 × 20 × 20 µm at a pulse
duration of 10 ps, one finds that the hot-electron num-
ber must be of the order of 109 Z particles, where Z ≥ 10
is the charge of ions in plasma, which coincides well
with the number of particles, 1010 to 1011, measured
experimentally. Another comparison with experimental
data that one can perform is to observe that the number
of hot electrons produced by collisions must be propor-
tional to the square of the plasma density. We compared
this result with the data taken from [2] and found good
agreement between the theory and experiment.

In experiments [1, 2], it is the distribution of parti-
cles scattered off in the same direction that is measured,
i.e., the distribution function over momentum g(p) as
found in (11). Superposing theoretical dependence (11)
on the experimental data points, one can see good coin-
cidence between the two (figure). Note that, in the fig-
ure, we combined four different series of experimental
measurements [1, 2].

The figure represents further evidence of the colli-
sional effects on hot electrons. The collisional heating
gives a natural upper limit to the momentum (and, cor-
respondingly, the energy) that particles may achieve.
This limit is the doubled oscillatory momentum 2posc,
which, under the conditions of the experiment [2]
(figure), corresponds to an energy of about 2 MeV. We
see, indeed, the abrupt decrease of the hot-particle
number for energies higher than 2 MeV. Similar results
were obtained in [1].2 It is important to emphasize that
what is shown in the figure is the dependence on the
“energy momentum” (electron kinetic momentum mul-

1 These data correspond to experiment [1].
2 We should note that much more energetic particles (with energies

up to /m or /m2c) can be produced as a result of elec-

tron–ion collisions in the ultrarelativistic case, while distribution
law (11) is applicable only for electrons with energy less than the
oscillatory energy poscc @ mc2. The momentum and angular dis-
tribution law of such ultraenergetic particles is different from
(11). It is probable that exactly these electrons have been seen at
distribution tails in experiments [1, 7].
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tiplied by the speed of light, pc), not on the actual
energy. These would be identical only in the case of
ultrarelativistic particles in [1]. The possibility of this
interpretation of the experimental results might be con-
nected with the fact that the magnetic scintillator used
for the measurements actually measures the distribu-
tion function of the particle momentum rather than the
particle energy.3 

Further comparisons with the experimental data can
be performed by analyzing the heating rate Q =

(w)wdw, which is easy to calculate using particle

energy distribution (12). By substituting a = bv, one
gets the expression for the heating rate:

In the nonrelativistic case w, cposc ! mc2,

(15)

in the ultrarelativistic case cposc @ mc2,

(16)

Here, ra = v /ω is the adiabaticity radius, i.e., the dis-
tance over which incident particles with an impact
parameter exceeding ra have adiabatically small energy
variation; bc = e2Z/mc2 is the Rutherford radius, which,
if estimated with for Z = 1 and for electron velocities

3 Taking this into account and also considering the dependence on
plasma density and the “cutoff” effect, we might conjecture that
the power law shown in [2] was aberrant due to a calibration mis-
take.

g∫

Q . 4πninemv osc
2 v abosc;

Q . 4πninemc2cbc
2 c
v
----.

The comparison between the experimental results (figure
from [1, 2]) and the theoretical (solid line, (11)) dependence
of hot-electron distribution on “energy momenta” pc.
Arrows show the “cutoff” effect.
equal to the speed of light c, matches the classical elec-
tron radius.

Expression (16) must be supplemented by an addi-
tional term describing the contribution of ultrarelativis-
tic electrons to distribution law (13). This term will
obviously coincide with (16), at least approximately,
but, for a more precise calculation, a more detailed
description of the collisions is necessary. That descrip-
tion would need to take into account the radiation losses
and quantum effects taking place in the case when the
momentum variation becomes significant.

Note that the heating rate in ultrarelativistic case
(16) does not depend on the pumping field amplitude.
The estimate of the heating rate per unit volume,

, (17)

allows one to estimate the plasma temperature (kinetic
energy) after the pulse has passed. In particular, for a
pulse with an ultrarelativistic intensity and a duration of
1 ps (which corresponds to the conditions of the exper-
iment in [1]), the electron temperature is of the order of
hundreds of eV. That is exactly the order of the temper-
ature (200–600 eV) observed in the experiment in [1].

The results represented above were obtained using
the pair-collisions approximation, wherein the proba-
bility of the simultaneous collisions of three and more
particles is assumed to be negligible. The condition of
this approximation is the smallness of the interaction
volume nVint ! 1. Usually (without a field), the interac-

tion volume is estimated as Vint = , giving

(18)

where rD =  is the Debye radius. In strong
fields, the interaction volume is Vint ≈ σeffrosc (σeff =
πbvbosc is the effective collisional cross section [4]),
which leads to the mild requirement

(19)

But this condition, obviously, can be derived using dif-
ferent approaches. Indeed, the new scale rE that appears
as the particle attraction is taken into account is the dis-

tance to the ion (multiplied by the factor rE; see
[4]), at which a particle moving near the ion with an
oscillation velocity hits the ion after a single oscillation.
The effect of attraction will not be “washed off” by
neighboring particles if this scale is less than the Debye
shielding radius rD. Hence, one again comes to condi-
tion (19). One more simple condition can be consid-
ered, namely, the absence of the influence of external
ions on the dynamics of hard collision. The volume of
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hard collision is Vhard = 2π rosc. So, the condition is
nVhard ! 1 or

, (20)

the ordinary condition of transparent plasmas. Both
conditions (19) and (20) are simple to fulfill.

To summarize, in considering the two types of par-
ticles being scattered (Eq. (6)), we derived an expres-
sion for the effective collision frequency and the hot-
particle energy distribution, which agree well with
experimental data. Moreover, taking into account the
“representative” electrons (the singular part of (6)) is
necessary for an adequate explanation of the experi-
mental results.
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The temperature dependences of resistance and the current–voltage characteristics of two-dimensional arrays of
superconductor–normal metal–superconductor (SNS) junctions have been measured at low temperatures. It has
been found that, in two-dimensional arrays of SNS junctions the following occur: (i) a change in the energy spec-
trum within an interval of the order of the Thouless energy is observed even when the thermal spread far exceeds
the Thouless energy for a single SNS junction; (ii) the manifestation of the subharmonic gap structure with high
harmonic numbers is possible even when the energy relaxation length is smaller than that required for the real-
ization of a multiple Andreev reflection in a single SNS junction. These results point to the synchronization of a
great number of SNS junctions. A possible mechanism that may be responsible for the features observed in the
behavior of two-dimensional arrays of SNS junctions is discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.23.–b; 74.45.+c; 74.81.Fa
Andreev reflection is a microscopic mechanism
responsible for the charge transport through a normal
metal–superconductor interface [1]. An electron-like
quasiparticle in the normal metal with an energy lower
than the superconducting gap (∆) is reflected from the
boundary as a hole-like quasiparticle, while a Cooper
pair is transferred to the superconductor. If the normal
metal is sandwiched between two superconductors, an
additional charge-transfer mechanism, namely, multi-
ple Andreev reflection (MAR), arises. This mechanism
was proposed in [2] to explain the subharmonic gap
structure (SGS) observed as dips in the differential
resistance curves at voltages eVn = 2∆/n (n is an inte-
ger). The MAR concept is as follows: owing to sequen-
tial Andreev reflections from normal metal–supercon-
ductor (NS) interfaces, a quasiparticle passing through
the normal region can accumulate an energy of 2∆,
which is sufficient for the transition to single-particle
states of the superconductor. Although, by now, ample
experimental data on the transport properties of NS and
superconductor–normal metal–superconductor (SNS)
junctions are available [3] and the existing theoretical
models fairly well describe the phenomena observed in
the experiments [4–6], the properties of multiply con-
nected SNS systems are poorly investigated. It should
be noted that systems consisting of superconducting
islands incorporated into a normal metal are spontane-
ously formed in disordered superconducting films [7].
In view of this circumstance, it is of interest to study the
properties of model multiply connected SNS systems
0021-3640/05/8101- $26.00 0010
with superconducting and normal regions formed in a
controlled way.

This paper is devoted to the properties of two-
dimensional arrays of SNS junctions fabricated on the
basis of a 20-nm-thick PtSi superconducting film (with
a critical temperature of Tc = 0.64 K) [8]. The transport
parameters of the initial PtSi film were as follows: the
resistance per square at T = 4.2 K was Rsq = 22.8 Ω , the
mean free path was l = 1.35 nm, and the diffusion coef-
ficient was D = 7.3 cm2/s. The initial samples were fab-
ricated by photolithography in the form of Hall bars,
which were 50 µm wide and 100 µm long. Then, by
electron beam lithography with subsequent plasma
chemical etching, the initial film was thinned in preset
regions. Figure 1a schematically represents the struc-
ture under study. It consists of periodically arranged
film areas with a thickness of 20 nm (islands), between
which the film is thinned by plasma chemical etching.
The period of the structure is 1 µm, and the island
dimensions are 0.8 × 0.8 µm. This structure completely
covers the whole area of the Hall bar (Fig. 1b). Thus,
the number of islands between the potential terminals is
50 × 100. To control the depth of etching, a reference
film was etched uniformly over its surface simulta-
neously with the structure etching. The low-tempera-
ture transport measurements were performed by the
standard four-terminal method with a low-frequency
(~10 Hz) alternating current using the lock-in detection
technique. The current was within the range 1–10 nA.
© 2005 Pleiades Publishing, Inc.
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The experiment showed that the decrease in the film
thickness due to plasma chemical etching used in the
structure fabrication process suppressed the supercon-
ducting transition. At the same time, in the islands,
whose thickness remained equal to that of the initial
PtSi film, the suppression of the superconducting tran-
sition was nearly insignificant. Hence, there is a certain
temperature interval within which the thinned film is in
the normal (N) state and the islands are in the supercon-
ducting (S) state. In this temperature interval, the struc-
tures under study represent a two-dimensional array of
SNS junctions. Moreover, since the superconducting
and normal regions of the SNS junctions fabricated in
the aforementioned way consist of the same material,
the formation of tunnel barriers at the NS interfaces is
excluded and a high transparency of the NS interfaces
can be a priori expected.

Figure 2 shows the temperature dependence of resis-
tance for two samples that only differ in the film thick-
ness between the islands. The resistance per square of
the reference film at T = 4.2 K is 995 Ω for sample S#1
and 1483 Ω for sample S#2. For all structures studied,
a noticeable decrease in resistance with decreasing
temperature is observed slightly below the temperature
Tc of the initial 20-nm-thick PtSi film. As the tempera-
ture decreases (Fig. 2), a small decrease in the resis-
tance is first observed at T ~ 0.61 K; then, the resistance
increases, reaches a maximum, and then decreases
again. Such an anomalous behavior of the temperature
dependence of resistance in the narrow temperature
range near Tc was never observed before, and the origin
of this behavior is unknown.

To explore the nature of this anomaly, we studied the
current–voltage characteristics of the samples. For
sample S#1, Fig. 3 shows the dependences of the differ-
ential resistance (dV/dI) on the bias voltage. The mea-
sured values of dV/dI are given per square. The total
voltage is divided by the number of junctions (100) in
the rows lying between the potential terminals. For a
square array, this procedure yields the average voltage
across one SNS junction, and this quantity is repre-
sented by the abscissa axis in Fig. 3 (below, all depen-
dences of the differential resistance on the bias voltage
are plotted in similar coordinate systems). The depen-
dences of dV/dI on V are symmetric with respect to the
direction of the current. As one can see from the depen-
dences shown in Fig. 3, an increase in temperature
leads to a suppression of the excessive conductivity
and, at T . 570 mK, the minimum observed at V = 0 is
replaced by a maximum. It should be emphasized that
the change of a minimum to a maximum in the differ-
ential resistance curves at zero bias voltage occurs in
the same temperature interval within which the anom-
aly is observed in the temperature dependence of resis-
tance (in Fig. 2, for sample S#1, this interval is indi-
cated by arrows).

Let us estimate the characteristic energy scales for
the two-dimensional array of SNS junctions under
JETP LETTERS      Vol. 81      No. 1      2005
Fig. 1. Schematic representation of the structure: (a) profile
of the film modulated in thickness (the geometric dimen-
sions are indicated in the figure); (b) position of the struc-
tured film on the sample used for the measurements.

Fig. 2. Temperature dependence of the resistance per square
for samples S#1 and S#2. The dash in the plot indicates the
superconducting transition temperature for the initial
20-nm-thick PtSi film. The arrows indicate the temperature
range from 0.545 to 0.599 K.
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study. The energy corresponding to the voltage at which
the minimum is suppressed at zero bias and tempera-
tures below 570 mK is estimated as eVex . 3 µeV. The
presence of the maximum in the differential resistance
at T > 570 mK may be caused by the minimum that
occurs in the density of states in the normal region. A
theoretical study of the properties of diffusive NS junc-
tions [9] shows that the decrease in the density of states
is caused by the presence of coherent Cooper pairs in
the normal metal. According to the theory, at a distance
x from the NS interface, only the pairs from the energy
window EF ± ETh (the coherence window), where ETh =
"D/x2 is the Thouless energy, will remain coherent.
Therefore, the density of states has a minimum at ener-
gies E < ETh and a maximum at E . ETh, and this max-
imum is higher than the density of states in the normal
metal. The experimental study of the density of states as
a function of the distance to the NS interface [10]
showed a good agreement with the theory. Note that
this effect manifests itself in two ways. On the one
hand, the presence of coherent Cooper pairs leads to a
decrease in the resistance of the normal region (an ana-
log of the Maki–Thompson correction), and, on the
other hand, the pairing leads to a decrease in the density
of single-particle states (an analog of the correction to
the density of states in the Cooper channel). These
competing contributions may lead to a nonmonotonic
temperature dependence of the resistance of SNS junc-
tions [11]. Let us estimate the Thouless energy ETh =
"D/L2 for the structure under study, where L = 0.2 µm

Fig. 3. Differential resistance per square versus the bias
voltage per SNS junction for sample S#1. All dependences,
except for the lower one, are sequentially shifted upwards
by 0.5 Ω .
is the length of the normal region and D = 2 cm2/s is the
diffusion coefficient for the reference film. Then, the
Thouless energy is ETh . 3 µeV, which nearly coincides
with the characteristic voltage value (in Fig. 3, this
value is indicated by the vertical straight line). How-
ever, for the observation of the effects associated with
changes in the quasiparticle spectrum at the Thouless
energy, the necessary condition is kT < ETh. In the tem-
perature range of interest, e.g., at T = 580 mK, the ther-
mal broadening is kT . 50 µeV, which noticeably
exceeds the correlation energy ETh for the SNS junc-
tions forming the array. Thus, one should expect that
the processes determined by ETh would not manifest
themselves in the differential resistance curves. How-
ever, the experimental dependences clearly display the
suppression of the maximum at a voltage of about
ETh/e. This fact suggests that the effect observed in the
experiment is collective; i.e., the whole array is respon-
sible for its manifestation. Note that the total bias volt-
age is eVΣ = 300 µeV; i.e., it is much higher than kT. We
will return to discussing this issue after presenting the
results that, in our opinion, also testify to a correlation
in the behavior of the array of SNS junctions.

Figure 4a shows the dependences of the differential
resistance on the bias voltage per one SNS junction.
These dependences have pronounced minima at some
voltage values (the minima are marked by α, β, and γ in
the plot). When the temperature increases, the minima
are shifted to lower voltages and, in the interval from
550 to 600 mK, one more minimum (δ) appears; at
lower temperatures, this minimum is absent. The tem-
perature dependences of the positions of these features
are shown in Fig. 4b by different symbols. The solid
lines in Fig. 4b represent the temperature dependences
of the superconducting energy gap 2∆(T)/en, where
∆(T) is the temperature dependence of the supercon-
ducting energy gap predicted by the BCS microscopic
superconductivity theory and n is an integer (the corre-
sponding values are indicated in Fig. 4b). The exact
value of ∆(0) for platinum monosilicide is unknown.
The estimate by the formula ∆(0) = 1.76kTc (Tc = 0.88 K
for bulk PtSi [12]) yields the value ∆/e . 133 µV. If we
set ∆/e = 126 µV, the positions of the features in the
voltage dependences of the differential resistance will
be determined by the condition eV = 2∆(T)/n. From
Fig. 4b, one can see that the temperature dependences
of the positions of minima observed in the experimental
differential resistance curves functionally coincide with
the dependences 2∆(T)/en. From this fact, we can con-
clude that these features represent the subharmonic gap
structure (SGS).

However, there are two circumstances clearly indi-
cating that it is difficult to treat the features observed at
bias voltages equal to 2∆(T)/(en) as the manifestation
of the SGS caused by multiple Andreev reflections that
occur independently in each SNS junction and that this
interpretation is impossible for large values of n. First,
the conventional mechanism of the SGS formation in a
JETP LETTERS      Vol. 81      No. 1      2005
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single SNS junction implies that, for the appearance of
a subharmonic of number n, an n-fold passage of qua-
siparticles through the normal region is necessary with-
out any energy relaxation. In other words, the energy
relaxation length (le) must be no smaller than n · L [6].
The energy relaxation length can be estimated from the
known phase-breaking length lϕ. In the temperature
range of interest, le can exceed lϕ by no more than an
order of magnitude [13]. When a carrier acquires an
energy of 2∆ = 252 meV, it is heated to a temperature of
~3 K. According to our magnetotransport measure-
ments, at this temperature, we have lϕ = 40 nm. Then,
the most optimistic estimate yields le ~ 0.4 µm. This
value is much smaller than 14 × 0.2 µm = 2.8 µm,
which is necessary for the realization of the subhar-
monic with n = 14. Second, it is difficult to expect that
normal regions are fully identical, i.e., characterized by
exactly the same resistance. Evidently, we are dealing
with a network of different resistances. Therefore,
when a current flows through the structure, the voltages
across the normal regions are different. This means
that, if, for some of the normal regions, the condition
eV = 2∆/n is satisfied at a given value of the current, for
other regions it will be satisfied at some other values of
the current. Only when the resistances are close to each
other is it possible to observe the subharmonic gap
structure as a result of the statistical averaging; how-
ever, this structure will be smeared in proportion to the
deviations of actual resistances from the average value.
These speculations lead to a natural conclusion that, for
a network of random resistances, the observation of the
subharmonic gap structure is impossible. Contrary to
this conclusion, the experiment shows that the SGS still
manifests itself, although it is somewhat irregular; i.e.,
it lacks some of the harmonics. Similar results for an
array of SNS junctions of other configuration were
obtained in [14]. No theory has been developed to
describe multiply connected SNS systems, and, on the
basis of the theoretical results obtained for single SNS
junctions, it is difficult to explain the observation of
subharmonics with numbers reaching n = 14.

In considering the properties of single SNS junc-
tions, the superconducting regions are usually assumed
to be large and to serve as reservoirs for electrons. The
fundamental distinction of the array of SNS junctions is
the finite size of the superconducting regions (LS).
Therefore, it is necessary to take into account the pos-
sibility of the mutual influence of the Andreev reflec-
tion processes that occur at the interfaces of one super-
conducting island. In NSN junctions, in addition to the
“common” Andreev reflection, when an electron-like
excitation is reflected at the interface of the supercon-
ductor with transformation into a hole-like excitation
(in Fig. 5, process 1: ei  hi), an additional process
of crossed Andreev reflection ei   (process 2) is
possible, when the electron-like and hole-like excita-
tions are on different sides of the superconducting
region [15–17]. As a consequence, such a reflection in

     
     h j'                    
JETP LETTERS      Vol. 81      No. 1      2005
Fig. 4. Sample S#1: (a) differential resistance per square
versus the bias voltage per SNS junction (i.e., the voltage
across the potential terminals is divided by 100); (b) posi-
tions of the features marked in Fig. 4a as functions of tem-
perature. The solid lines represent 2∆(T)/en. The respective
values of n are indicated in the plot. The dependences are
calculated for ∆(0) = 126 µeV and Tc = 0.625 K.

Fig. 5. Andreev reflection process in a semiconductor repre-
sentation for a structure consisting of alternating supercon-
ducting and normal regions.

(a)
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combination with the common Andreev reflection,
which occurs on one side of the superconductor (pro-
cess 3), leads to the passage of quasiparticles without
any energy loss. Note that, for the observation of the nth
subharmonic of Andreev reflection, the realization of
this mechanism of charge transport does not require
that the voltage across each of the normal regions be
exactly equal to Vn = 2∆/en. It is sufficient that the total
voltage across the chain of normal regions connected in
series through superconducting regions be equal to
2∆/e:

Moreover, for the observation of the nth subharmonic
of Andreev reflection, the condition le > nL need not
necessarily be satisfied. It is sufficient that the energy
relaxation length be greater than the distance between
the superconducting regions (le > L). We also note that
the crossed Andreev reflection process makes a consid-
erable contribution to the charge transport through an
NSN junction even if the size of the superconducting
region is several times greater than the superconducting
coherence length ξ [15, 18]. In our case, ξ(0) ≈ 70 nm,
and, at T = 100 mK, we have LS/ξ ≈ 10.

We believe that this charge-transport mechanism is
responsible for the features observed in the experiment.
Returning to the behavior of the two-dimensional array
of SNS junctions near zero bias, we note that the syn-
chronous Andreev reflection on both sides of the super-
conducting regions should lead to correlated changes of
the energy spectra in normal regions, by analogy with
the formation of minibands and minigaps in semicon-
ductor superlattices.

We are grateful to M.V. Feigel’man for useful dis-
cussions and for the interest taken in our work. This
work was supported by the Russian Academy of Sci-
ences (the program “Quantum Macrophysics”), the
Ministry of Science of the Russian Federation (the pro-
gram “Superconductivity of Mesoscopic and Strongly
Correlated Systems”), and the Russian Foundation for
Basic Research (project no. 03-02-16368).
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The possibility of a considerable increase in NMR intensity has been shown for absorption on mixed-valence
3d ions in magnetically ordered crystals. This effect is determined by the high intensity of electric dipole tran-
sitions between the ground and low excited levels of a mixed-valence complex, as well as by the existence of
the unfrozen orbital angular momentum in such complexes, which mixes nuclear and electron states. © 2005
Pleiades Publishing, Inc.

PACS numbers: 31.30.Gs; 76.60.–k
1. INTRODUCTION

It is well-known that, in transition-metal oxides at
low concentrations of either nonisovalent substitutional
atoms or vacancies in both the cation and anion sublat-
tices, extra electrons or holes appear and Coulomb
forces localize them on nearest neighbors of the indi-
cated centers [1]. In this case, each 3d ion nearest to an
impurity provides an equivalent possibility for localiz-
ing an extra electron or hole, so that orientationally
degenerate impurity complexes (centers), which con-
tain different-valence ions of the same 3d element such
as Mn4+–Mn3+, Cr4+–Cr3+, etc., are formed in a crystal.
The ground state of such a mixed-valence complex,
where the excess charge can be transferred between 3d
ions, can be orbitally degenerate [2]. In this case, in
addition to the ordinary Jahn–Teller properties, such a
mixed-valence complex has features caused by the
redistribution of the excess charge between the ions of
the complex and, correspondingly, by the stabilization
of the dipole moment when orientational degeneracy is
removed due to an external perturbation or random
crystal fields. Owing to its local nature, NMR can
enable one to acquire valuable information on the fea-
tures of the magnetic state of the systems under consid-
eration and to analyze the local charge distribution in
mixed-valence centers.

In this work, the possibility of the electric dipole
mechanism of the absorption of electromagnetic radia-
tion is analyzed for transitions between the magnetic
states of the nuclear spins of 3d ions in magnetically
ordered crystals. Trigonal mixed-valence centers in
spinel-structure crystals are taken as examples. The fea-
0021-3640/05/8101- $26.000015
tures of the NMR spectra of the 3d ions in such centers
are primarily determined by the presence of an anoma-
lously strong direct hyperfine interaction A1(σζIζ)
between the orbital angular momentum σζ and nuclear
spin I in one of the charge configurations 3dn or 3dn ± 1

[3]. It has been shown that the intensity of the NMR
transitions under consideration can increase consider-
ably due to the coupling between the orbital angular
momentum and electric dipole moment in a mixed-
valence center.

2. HAMILTONIAN 
OF THE MIXED-VALENCE CENTER

We consider the mixed-valence center that consists
of three exchange-coupled 3d ions with an extra t2g hole
localized on them and that is formed by a point defect
in the cation sublattice of the spinel-structure crystal
(Fig. 1). We assume that the ground energy level for
ions with the 3dn – 1 configuration is doubly degenerate
in the orbital quantum number (a trigonal E term). The
ground electron state of other two magnetic ions with
the 3dn configuration is treated as orbitally nonde-
generate.

We restrict our consideration to the cluster states
with the maximum projection of the total spin of the
system, assuming that the ground state of the triad is
among these states. The six lower levels of the triad
(a mixed-valence center) are formed when states are
mixed. Each of these levels is doubly degenerate and
corresponds to the localization of the extra t2g hole on
one of the ions of the cluster. The corresponding wave
 © 2005 Pleiades Publishing, Inc.
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functions are transformed according to the irreducible
representations A1, A2, and 2E of the triad symmetry
group C3v [4].

Let us assume that the splitting of the ground E term
is determined by the spin–orbit interaction and by some
low-symmetric intracrystalline fields:

(1)

Here, σζ, σξ, ση are the orbital operators specified on
the trigonal basis, the ζ axis is the trigonal symmetry
axis of the triad in the chosen coordinate system, λ is
the parameter of the spin–orbit interaction, and hξ and
hη are the components of the low-symmetric field on
the mixed-valence center. Random elastic and electric
crystalline fields, as well as magnetic anisotropy fields
created, e.g., due to the second-order effects in the
spin–orbit interaction, can serve as low-symmetric
fields [2, 3].

For simplicity, we describe the hyperfine interac-
tions on the mixed-valence center only by the following
terms (similar to [4]):

(2)

Here, only the isotropic term is taken into account for
ions with the 3dn configuration, whereas the isotropic
hyperfine interaction and an anisotropic term describ-
ing the direct interaction between the orbital angular
momentum σζ and the nuclear spin I are taken into
account for ions with the 3dn – 1 configuration, and S '
and S are the spins of 3d ions in the respective electron
configurations.

Hel λSζσζ– hξσξ hηση , σζ+ + 1– 0

0 1 
 
 

,= =

σξ
0 1

1 0 
 
 

, ση
0 i

i– 0 
 
 

.= =

Hhf 3dn( ) A0' IS'( ),=

Hhf 3dn 1–( ) A0 IS( ) A1σζ Iζ .+=

Fig. 1. Mixed-valence center formed near a point defect by
three cations in the octahedral spinel sublattice with an extra
t2g hole located on them: PD is the point defect in the cation
sublattice, A is an anion, C is a cation, and P is the hole.
It is convenient to transform the Hamiltonian of the
mixed-valence center using functions diagonalizing
electron Hamiltonian (1) and hyperfine-interaction
Hamiltonian (2) written in the mean-field approxima-
tion as the basis functions. In this case, after the corre-
sponding transformations of “rotation” [5] for the
orbital operators (σζ, σξ, ση  τz, τ+, τ–) and nuclear
spin operators (Ix', Iy', Iz'  Iz, I+, I–), the Hamiltonian
of the mixed-valence center can be represented in the
form

(3)

Here, Eel is the splitting energy of the ground E term of
the mixed-valence center and Ωk are the NMR transi-
tion frequencies for ions with k = 1, 2, 3, which belong
to the mixed-valence center. It is seen that the anisotro-
pic hyperfine interaction mixes orbital and nuclear
excitations on the mixed-valence center.

3. ELECTRIC DIPOLE NMR ABSORPTION
IN MIXED-VALENCE CENTERS

The coefficient of the electric dipole absorption of
electromagnetic radiation on the centers under consid-
eration is represented as

(4)

Here, P is the dipole moment of the mixed-valence
complexes under consideration; N0 is the number of the
mixed-valence centers; c is the speed of light; n is the
refractive index of the medium; the parameter p0 char-
acterizes the maximum attainable dipole moment on
the mixed-valence center; and ϕα = 0 (z), 2π/3 (x),
−2π/3 (y).
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After simple transformations with the use of
Green’s functions calculated in the second order of per-
turbation theory in the hyperfine-interaction Hamilto-
nian, the absorption coefficient in the region of NMR
frequencies is expressed as

(5)

Here, n and nk are the unit vectors directed along the
magnetization and trigonal axes of ions of the mixed-
valence center and the parameter x characterizes the
mixing of two states of the mixed-valence center that
correspond to the repeated E representations.

Total absorption on mixed-valence centers includes
not only the contribution of the mixed-valence clusters

shown in Fig. 1 with the [ ] trigonal axis but also the
contributions of other three types of clusters with the

trigonal symmetry axes [ ], [ ], and [ ].
Expression (5) is averaged over the distribution of ran-
dom crystalline fields with the use of the Gaussian dis-
tribution function

(6)

where ∆ is the standard deviation of random crystalline
fields.

4. RESULTS CALCULATED FOR NMR 
SPECTRAL DISTRIBUTIONS

As an example, we consider mixed-valence centers
in comparatively weak random fields such that ∆ ! λ.
Figure 2 shows the frequency dependence of the NMR
spectrum of the mixed-valence centers that is typical
for the electric dipole mechanism. The external mag-
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netic field is directed along the tetragonal axis of the
crystal, n || [001], and all four types of the centers make
the same contribution to the absorption coefficient. The
left maximum of absorption is attributed to the triad
ions with numbers k = 1 and 2, and the right maximum,
to the ion with number 3.

Figure 3 illustrates the anomalously strong anisot-
ropy in the intensity of electric dipole NMR absorption
in the mixed-valence centers. It has been shown that the
spectral intensities for the mixed-valence centers with
different directions of the trigonal axes may differ by
several orders of magnitude. This figure corresponds to
the orientation of magnetization in the crystal along the

Fig. 2. Frequency dependence of the NMR spectrum on
mixed-valence centers for electric dipole absorption. The
magnetic field is directed along the [001] axis, x = 0.5,
A0S = S', A1/A0S = 10, T/J = 0.1, ∆/J = 0.1, and J =

λSmax.

A0'

3

Fig. 3. Frequency dependence of the NMR spectrum on
mixed-valence centers for electric dipole absorption. The
magnetic field is directed along the [110] axis. The left part
of the figure corresponds to the mixed-valence centers with

the trigonal axes [ ] and [ ], the right part, to the

mixed-valence centers with the trigonal axes [ ] and

[ ], x = 0.5, S'/A0S = 2, A1/A0S = 20, T/J = 0.1, ∆/J =

0.1, and J = λSmax.

111 111

111

111 A0'

3
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[110] axis. For this direction of magnetization, mixed-
valence clusters are divided into two groups: clusters

with the trigonal axes [ ] and [ ], which are per-
pendicular to the chosen magnetization direction, and

clusters with the trigonal axes [ ] and [ ], which
are not perpendicular to magnetization. For the clusters
of the first type, the spin–orbit interaction does not con-
tribute to the splitting of the degenerate state of a clus-
ter, and the NMR frequencies depend only on random
fields:

(7)

The clusters of this type are responsible for the absorp-
tion band whose center is at the frequency ω1 =
(2 S' + A0S)/3. The second group of clusters gives rel-
atively weak peaks at frequencies (5) characteristic of
the ions of the cluster when the random field is equal to
h ≅  ∆. The ratio of the corresponding intensities is equal
to (λ/∆)4. The electric dipole mechanism is obviously
most substantial in magnetic fields perpendicular to the
trigonal axis of the mixed-valence clusters. In this case,
when the splitting of the degenerate state is minimal, a
noticeable increase in NMR signals can be expected.

5. CONCLUSIONS
Thus, the existence of a large electric dipole contri-

bution has been found in the NMR spectral distribution
of the mixed-valence centers. It has been shown that the
possibility of a considerable increase in the NMR sig-
nal appears in principle due to the existence of the
unfrozen orbital angular momentum. This effect is
attributed to the high intensity of the electric dipole
transition between the split components of the E term of
the mixed-valence center and mixing between orbital
and nuclear states due to the hyperfine interaction.

The ratio of magnetic-to-electric dipole absorption
intensities for electromagnetic radiation in the NMR
frequency band under consideration is about

/ , where εk = 0 is the energy of a spin
wave with k = 0. The electric dipole contribution is at
least comparable with the magnetic dipole contribution
in wide ranges of the ratios A1/A0 and εk = 0/Eel. The

111 111

111 111

Ωk
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3
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– 2 A0S A0' S'–( )x ϕ ϕ k–( ) τζ〈 〉cos .

A0'

p0
2A1

2Eel
2– µB

2 A0
2εk 0=

2–
spectral distributions for electric dipole and magnetic
dipole contributions to electromagnetic-radiation
absorption at the NMR frequencies noticeably differ
from each other. This result enables one to understand
the appearance of additional peaks in the NMR spectra
of the systems under consideration for the case of com-
parable contributions of the above mechanisms.

At present, in the absence of an adequate theory for
describing NMR spectra in magnetically ordered sys-
tems with mixed-valence 3d ions, the above results
extend the possibilities for qualitative interpretation of
experimental data. It is sufficient to mention 55Mn
NMR spectra [6–8] in (LaMn)1 – 2xO3 crystals contain-
ing mixed-valence Mn ions. The corresponding 55Mn
NMR spectrum [6] is a set of several inhomogeneously
broadened lines. A sharp increase in the NMR signal
was observed in these systems over the entire frequency
band when the concentration of defects was increased.
These results have not yet been interpreted.

This work was supported by the Russian Foundation
for Basic Research.
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A complex study of the magnetic, electric, magnetoelectric, and magnetoelastic properties of GdMnO3 single
crystals has been performed in the low-temperature region in strong pulsed magnetic fields up to 200 kOe. An
anomaly of the dielectric constant along the a axis of a crystal has been found at 20 K, where a transition from
an incommensurate modulated phase to a canted antiferromagnetic phase, as well as electric polarization along
the a and b axes of the crystal induced by the magnetic field H || b (Hcr ~ 40 kOe), is observed. Upon cooling
the crystal in an electric field, the magnetic-field-induced electric polarization changes its sign depending on
the sign of the electric field. The occurrence of the electric polarization is accompanied by anisotropic magne-
tostriction, which points to a correlation between the magnetoelectric and magnetoelastic properties. Based on
these results, it has been stated that GdMnO3 belongs to a new family of magnetoelectric materials with the
perovskite structure. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.80.+q
INTRODUCTION

Magnetoelectric interactions in systems (magneto-
electric materials) where magnetic and electric order-
ings can coexist have been investigated in a great num-
ber of works [1–3]. Recently, interest has been
enhanced in studying unusual magnetoelectric materi-
als based on the rare-earth manganites RMn2O5 and
RMnO3 with the perovskite structure. It should be
noted that RMnO3 compounds, depending on the ionic
radius of the rare-earth ion, can exhibit different struc-
tures: the perovskite structure for R = La–Tb and the
hexagonal structure for R = Ho–Lu. The RMnO3 crys-
tals with the hexagonal structure are magnetoelectric
materials and have been reasonably well studied [5].
The study of magnetoelectric effects in the RMnO3 sys-
tem is only starting.

Data on the interplay of magnetic and electric prop-
erties in TbMnO3 and DyMnO3 single crystals, exhibit-
ing an orthorhombically distorted perovskite structure
described by the Pbnm space group, have been reported
recently [6, 7]. Since these compounds are centrosym-
metric antiferromagnets, in which the classical magne-
toelectric effect cannot be observed, the magnetoelec-
tric effect observed in [6, 7] was attributed to a transi-
tion from an incommensurate modulated structure to a
commensurate one. However, the nature of this transi-
tion is not fully understood, and it is necessary to seek
0021-3640/05/8101- $26.00 0019
new nonstandard mechanisms of its occurrence to
explain the specificity of the magnetoelectric interac-
tions of rare-earth manganites with the perovskite
structure.

It was also of interest to study the possibility of
magnetoelectric effects in manganites with the RMnO3
perovskite structure with other rare-earth ions, in par-
ticular, GdMnO3, about which contradictory data have
been reported [6, 8]. Thus, it is argued in [6] that there
is no spontaneous polarization in GdMnO3 along the
principal crystallographic axes throughout the entire
temperature range above 2 K. At the same time, the
conclusion that a small spontaneous polarization along
the a axis exists at T < 13 K was made in [8]. According
to [9], GdMnO3 at room temperature exhibits the same
orthorhombically distorted perovskite structure (Pbnm
space group) as TbMnO3. At temperatures below TN ~
40 K, the spins of Mn3+ ions are ordered in an incom-
mensurate sinusoidal antiferromagnetic structure,
which transforms to a canted antiferromagnetic struc-
ture (AYFZ) at TCA ~ 20 K, whereas the antiferromag-
netic ordering of the spins of Gd3+ ions occurs at  ~
6.5 K [9].

This work is devoted to studies of the magnetic,
electric, magnetoelectric, and magnetoelastic proper-
ties of GdMnO3 single crystals upon spontaneous phase

T N2
© 2005 Pleiades Publishing, Inc.



 

20

        

KADOMTSEVA 

 

et al

 

.

                                                                                
transitions and phase transitions induced by a strong
magnetic field.

EXPERIMENTAL RESULTS 
AND DISCUSSION

GdMnO3 single crystals were grown by floating
zone melting with optical heating. Powder x-ray phase
analysis showed that the crystals are single phase and
exhibit an orthorhombic crystal structure of the Pbnm
type. The crystals were oriented by the x-ray method.
Samples were cut from them in the form of cubes with
edges directed along the principal crystallographic axes
with sizes of about several millimeters for measuring
polarization and magnetostriction. For measuring the
dielectric constant, the samples were cut in the form of
plane-parallel wafers or disks with characteristic sizes
d ~ 1 mm and area S ~ 20 mm2, and electrical contacts
were attached to their surfaces with a silver paste.

The magnetic properties of single crystals were
determined by measurements of torque curves, which
were performed on a torque magnetometer in constant
magnetic fields up to 12 kOe in the temperature range
4.2–50 K. The temperature dependence of the sponta-
neous magnetic moment along the c axis of a GdMnO3
single crystal obtained from measurements of torque
curves in a magnetic field of 3 kOe is shown in Fig. 1.
It should be noted that this method is the most sensitive
for detecting a transverse, weak ferromagnetic
moment in canted antiferromagnets. In Fig. 1, it is
evident that the weak ferromagnetic moment appears
below TCA ≈ 20 K and increases with decreasing tem-
perature, reaching a value of 35 s cm3 g–1 at a tempera-
ture of 8 K; then, the magnetization drops sharply and,
below the ordering temperature for the Gd ions, has a
value of 4 s cm3 g–1, which is close to the weak ferro-
magnetic moment of the manganese subsystem [10].

Fig. 1. Temperature dependence of the spontaneous magne-
tization along the c axis of the GdMnO3 crystal.
These data correspond to the results of direct magneti-
zation measurements [9]. The absence of the contribu-
tion of the gadolinium subsystem to the weak ferro-
magnetic moment in a low-temperature region is evi-
dently associated with the antiferromagnetic ordering
of Gd3+ spins. It is also possible that the magnetic man-
ganese and gadolinium subsystems differ in symmetry,
as was observed for rare-earth orthoferrites [11].

In addition to magnetic properties, the temperature
dependence of the dielectric constant has also been
studied at a frequency of 1 MHz (Fig. 2). The dielectric
constant ε was calculated by the formula

where ε0 = 8.85 × 10–12 F/m is the permittivity of free
space and C, d, and S are the electric capacitance, thick-
ness, and surface of the crystal, respectively. The crys-
tal capacitance was determined using an automatic
LCR meter E7-12. The anomaly in the temperature
dependence εc(T) along the c axis of the crystal was
small at this frequency, whereas it was more pro-
nounced at lower frequencies [6]. With decreasing tem-
perature, a sharp jump of the dielectric constant was
observed in the dependence εa(T) at TCA ≈ 20 K, where
a transition from the incommensurate sinusoidal anti-
ferromagnetic ordering of Mn3+ to the canted structure
takes place according to [9]. In the vicinity of , a
pronounced anomaly of the dielectric constant associ-
ated with the antiferromagnetic ordering of Gd3+ was
also observed; that is, a close connection between the
electric and magnetic subsystems was manifested.

With the aim of further studying the correlation
between the magnetic and electric states of the system,
the dependences of the electric polarization on the
external magnetic field were studied by the method
described in [12]. When the external magnetic field was

ε Cd/ε0S,=

T N2

Fig. 2. Temperature dependence of the dielectric constant
along the a and c axes of the GdMnO3 crystal.
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applied along the a and c axes, no longitudinal electric
polarization was observed over the entire temperature
range 10–50 K. When the magnetic field was aligned
with the b crystal axis, along which the spins of Mn3+

ions were oriented, jumps in the electric polarization
were observed in the temperature range 10–20 K at cer-
tain threshold fields.

Figure 3 shows the dependences of the electric
polarization along various crystallographic directions
at a temperature of 5 K on the magnetic field H || b as
obtained after the poling of a GdMnO3 crystal in an
electric field of E = –1500 V/cm below TN. It is evident
that the polarization increases most sharply along the a
and b crystal axes in the threshold field Hcr ~ 40 kOe,
whereas the dependence Pc(Hb) along the c axis exhib-
its a smoother behavior. Note that the variation of the
electric polarization along the a crystal axis with
increasing field is opposite to that observed for the b
and c axes. The magnetic-field dependence of the elec-
tric polarization exhibits a significant hysteresis with
respect to the field. It should be noted that the magnetic-
field-induced electric polarization along the b and a
axes changed its value and sign depending on the sign
of the applied electric field (Fig. 4). This is apparently
associated with the existence of electric domains differ-
ing in the sign of polarization.

The dependence of the longitudinal polarization on
H || b, Pb(Hb), measured at various temperatures in the
absence of an electric field, is shown in Fig. 5. At T >
21 K, the electric polarization decreases sharply, which
is apparently associated with a transition to an incom-
mensurate sinusoidal state. It should be noted that the
magnitude of the threshold field inducing this uncon-
ventional transition weakly depends on temperature. It
is remarkable that the results obtained for GdMnO3 are
formally similar to the data reported in [6, 7] for
TbMnO3 and DyMnO3, where the initial electric polar-
ization was directed along the c axis. When the mag-
netic field H || b was applied, this polarization in the
case of TbMnO3 and DyMnO3 was reoriented to the
a axis at the threshold field. The magnitude of the effect
in TbMnO3 and DyMnO3 was substantially larger than
that in GdMnO3.

Since the method used for measurements allows one
to detect only the change in the polarization in a mag-
netic field rather than the existence of polarization at
H = 0, it is rather difficult to make an unambiguous con-
clusion about the existence of spontaneous electric
polarization. Different signs of the change in Pa and Pb

upon cooling in electric fields of different signs corrob-
orate its existence in GdMnO3 in the direction perpen-
dicular to the c axis at T < TCA. The coexistence of elec-
tric polarization and a canted structure at these temper-
atures can also be explained under the assumption, in
accordance with [13], that the magnetic structure of Gd
below TCA ~ 20 K is partially modulated.
JETP LETTERS      Vol. 81      No. 1      2005
Fig. 3. Magnetic-field dependence of the electric polariza-
tion along the a, b, and c axes of the GdMnO3 crystal at 5 K
upon cooling from TN = 40 K in an electric field of E ~
−1500 V/cm.

Fig. 4. Magnetic-field dependence of the electric polariza-
tion along the a and b axes of the GdMnO3 crystal upon
cooling from TN in the absence of an electric field (zero-field
cooling, ZFC) and at E ~ +1500 (+E) and –1500 (–E) V/cm
at 7 K.

Fig. 5. Isotherms of the magnetic-field dependence of the
electric polarization along the b axis for H || b.
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At the same time, another scenario cannot be com-
pletely excluded. According to this scenario, spontane-
ous electric polarization in GdMnO3 is absent in accor-
dance with the data reported in [6], but a magnetic field
applied along the b axis induces a transition to a com-
mensurate modulated structure similar to that observed
in TbMnO3 and DyMnO3. Such a structure already
allows for the existence of electric polarization. In this
case, the dependence of the polarization sign on the
direction of the electric field can be tentatively
explained by the pinning effects of the sinusoidal
incommensurate magnetic structure on various defects.
The application of an electric field can induce electric
polarization. Upon the switching off of the field, this
polarization can be partially retained and can affect the
shape of the curves P(H) at T < TCA.

As for the physical meaning of the observed thresh-
old fields in the case of magnetization along the direc-
tion of the magnetic moments of Mn3+ ions, it might be
suggested (as it was done in [7]) that these fields are due
to the spin-flip transition of Mn moments from the b
axis to the c axis of the crystal. However, the estimation
of the magnitude of these fields from the antiferromag-
netic resonance frequencies νAFMR, which are approxi-
mately the same as in LaMnO3, that is, ~20 cm–1 [14],
gives Hcr ≈ 200 kOe. This value substantially exceeds
the experimental values. Another possibility is the
field-induced transition with a change in the wave vec-
tor of the commensurate magnetic structure (in the
cases of TbMnO3 and DyMnO3 [6]) or, as indicated
above, the transition from the canted structure to an
incommensurate one (in the case of GdMnO3). The lat-
ter structure can be ferroelectric and have other compo-
nents of the electric-polarization vector. The gain in the
Zeeman energy due to the large susceptibility of the Mn
subsystem along the b axis in the commensurate phase
can favor this transition.

Fig. 6. Magnetostriction of GdMnO3 along the a, b, and c
axes vs. the magnetic field H || b at 5 K.
We found that the phase transition in GdMnO3 men-
tioned above is accompanied by the occurrence of mag-
netic-field-induced magnetostrictive strains. The
dependences of magnetostriction along the a, b, and c
axes of the crystal on the magnetic field H || b at a tem-
perature of 5 K are shown in Fig. 6. It is evident that the
crystal strain is anisotropic. Such dependences of mag-
netostriction on the magnetic field were observed over
the entire temperature range 5–21 K, and the threshold
fields obtained from measurements of magnetostriction
and the magnetoelectric effect agree with each other. It
should be noted that, in agreement with [6, 8], the fer-
roelectric transition in the studied RMnO3 compounds
with the perovskite structure is apparently improper.
This fact explains its occurrence in crystals with a cen-
trosymmetric paraphase [1].

The difference of the results obtained in this work
from the data reported in both [6] and [7] can be
explained by the fact that GdMnO3 is located on the
boundary of the existence of the ferroelectric phase;
therefore, minor structural features of crystals prepared
by different technologies can lead to the occurrence or
disappearance of spontaneous electric polarization.

In conclusion, note once again that an anomaly of
the dielectric constant along the a axis of the crystal
was observed at TCA = 20 K, where a transition from an
incommensurate sinusoidal phase to a canted antiferro-
magnetic state takes place. At temperatures below TCA,
a change in the electric polarization along the a and b
axes of the crystal was detected for H || b. Upon poling
the crystal below TN, the polarization changed its sign
in an electric field, depending on the sign of the electric
field. A correlation between magnetoelectric and mag-
netoelastic properties was found. It was found that
GdMnO3 is a new ferroelectric with the perovskite
structure.

We are grateful to V.V. Glushkov for placing the
experimental setup at our disposal and for his help in
measurements of the dielectric constant, to Z.A. Kazeœ
for help in the crystallographic orientation of single
crystals, and to A.K. Zvezdin for valuable instructions
given during the discussion of the results. This work
was supported by the Russian Foundation for Basic
Research, project nos. 04-02-16592 and 03-02-16445.
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We study the effect of random porous matrices on the isotropic–nematic phase transition. Sufficiently close to
the cleaning temperature, both random field and thermal fluctuations are important as disordering agents. A
novel random field fixed point of the renormalization group equation was found that controls the transition from
isotropic to the replica symmetric phase. Explicit evaluation of the exponents in d = 6 – ε dimensions yields to
a dimensional reduction and three-exponent scaling. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.30.Pq; 64.70.Md
Liquid crystalline ordering in a confined geometry
has been the subject of considerable investigation dur-
ing the past decade. The study of liquid crystals con-
strained to a random network of porous silica aerogel
has been an area of current interest due to their impor-
tance in technological applications and from a funda-
mental point of view. One of the fundamental questions
concerns the effect of quenched disorder on the phase
transitions. Liquid crystals exhibit a variety of experi-
mentally accessible phase transitions involving orienta-
tional and translational ordering. Most of the studies
are focused on the nematic–isotropic or nematic–smec-
tic phase transitions. For example, the first has been
investigated using various experimental techniques [1].
The main results can be summarized as follows: (a) the
bulk isotropic–nematic (I–N) phase-transition tempera-
ture is shifted down, and the character of the transition
changes; (b) even for above the bulk I–N phase-transi-
tion temperature, there exists a weak residual nematic
ordering; and (c) Monte Carlo simulations show that, in
some cases, the nematic order is replaced by a quasi-
long-range nematic phase.

Theoretical modeling of such phenomena is diffi-
cult. The porous matrix not only geometrically con-
fines the liquid crystal but also induces a random ori-
enting field that fixes the direction of the order param-
eter near the surface of the matrix. Some experiments
with liquid crystals in random porous media [2] have
stimulated a random-field (RF) model for nematic liq-
uid crystal [3] that qualitatively explains the glasslike
behavior seen in experiments for liquid crystal–aerogel
systems [2, 4–6].

The nematic phase within the pores could be mod-
eled as an Ising-like system with an imposed random
field coupled directly to the orientational order param-
eter to account for the random confinement. Such a
model uses a random uniaxial anisotropy in a spin sys-

¶ This article was submitted by the author in English.
0021-3640/05/8101- $26.00 ©0024
tem [3, 7], including a symmetric coupling between the
anisotropy vector and the order parameter in order to
account for the “up–down” nematic symmetry. This RF
term in the Hamiltonian of the nematic liquid crystal is
linearly coupled to the order parameter. The strength of
the random field in this model should directly depend
on the anchoring strength of the molecules to the sur-
face of the gel and indirectly on the porosity.

The basic point in discussing the effect of RF on
ordered nematic phases follows from the Imry–Ma
argument [8, 9], which suggests that this continuous-
symmetry system does not have nematic long-range
order for dimensions less than four (d < 4). The possi-
bility for the nematic phase to be replaced by a glassy
state characterized by quasi-long-range order was dis-
cussed in [10] and also predicted by numerical simula-
tions [11] and a renormalization-group (RG) approach
[12].

The theory in [12] is the first to extend beyond the
mean-field approximation for the low-temperature
phase of disordered nematics. In this low-temperature
phase, uniaxial nematics in random porous media can
be mapped onto the RF O(N) model. However, map-
ping becomes invalid near the phase transition to the
isotropic phase. In this paper, we focus on the effects of
quenched disorder that are introduced by the host silica
aerogel at the high-temperature phase, i.e., above the
I−N phase-transition temperature. An appropriate
model would require a full Landau–de Gennes type
Hamiltonian incorporating a random orienting field.
We carry out the mean-field analysis and RG treatment
as well.

The order parameter for a nematic liquid crystal is a
three-dimensional symmetric traceless second-rank
tensor Qij. The effective Landau–de Gennes free-energy
 2005 Pleiades Publishing, Inc.
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functional appropriate to the RF nematic model near
the I–N phase transition can be written as

(1)

where r0 = T – T0, T0 is the second-order transition tem-
perature if b = 0 (bulk supercooled temperature limit),
and b and c are temperature-independent constants. The
quenched RF hij(x) is a symmetric, traceless, Gaussian
random tensor with a vanishing quenched average
[hij(x)]av = 0 and with variance [13]

(2)

where n is the dimensionality of the tensor hij.

Ground-state configurations of the longitudinal
component of the field Q(x) (we consider here only the
uniaxial nematic) are defined by the saddle-point equa-
tion

(3)

We recall first what behavior is expected for a nem-
atic placed in a nonrandom field, i.e., a homogeneous
field in a uniform direction. The isotropic phase
acquires some order and is transformed into a parane-
matic phase. The paranematic–nematic phase transition
occurs at r0c = (2b2/9c)(1 + h/2hc). Here, hc = b3/27c2 is
a uniform critical field that determines the nematic–

paranematic critical point, (hc) = b2/3c. For h < hc,
the paranematic supercooling temperature T0 and the
nematic overheating temperature T* both have field
dependence. All three temperatures T0, Tc, and T*

merge at the nematic–paranematic critical point . For
h > hc, the order parameter Q will increase smoothly as
temperature is decreased.

Apparently, the solutions of Eq. (3) with nonhomo-
geneous h(x) may essentially depend on a particular
configuration of the quenched fields. The effect of RF
is averaged over a length scale L, over which the orien-
tation is correlated. The mean magnitude of the sum of
the random fields is given by the sum of the squares of
the random fields. Using the central-limit theorem, the
effective RF that couples to the local order parameter is
approximately h0L–d/2. Now, because the order parame-
ter is changing on a length scale L, the elastic energy
term is of the form (Q/L)2. Combining the ideas of Lan-
dau and those of Imry and Ma, it was shown that, for
low-order parameters Q < ch0/b2, the correlation length

F ddx
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L is about a molecular length scale [7]. The free energy
advantage acts as though there were a fixed nematic
field on the molecules and thus is negatively linear in Q.
There is an energy cost in changing molecular orienta-
tion from point to point, but this is negligible because it
is proportional to Q2. Thus, for the isotropic phase, the
effect in this mean-field consideration is roughly the
same whether the imposed field is random or fixed.

Let us estimate under which conditions random
fields are relevant and get a dominant contribution for
the ground-state configurations. We divide the system
into blocks of linear size L. As we have seen, the char-
acteristic value of the RF in this block (averaged over
realization) could be defined by h = h0L–d/2. In the case
when the fields can be considered the dominant factor,
the order parameter does not depend on the tempera-
ture, and this happens for h > τβδ. Here, β and δ are the
order-parameter critical exponents as a function of tem-
perature and field, respectively. Now, it is easy to esti-
mate the characteristic size of the block up to which the

RF can dominate: L < τ–2βδ/d. On the other hand, the
approximation we are using is correct only on length
scales much larger than the fluctuation region ξ ∝  τ–ν.
Thus, we have another bound for L: L > ξ. Therefore,
the temperature region where RF effects cannot be
ignored is [14]

(4)

Such a region of temperatures near Tc exists only if
2βδ > dν. This value of τh can be interpreted as the esti-
mate for the temperature interval around Tc in which the
order-parameter configurations are essentially defined
by the random fields.

In the mean-field theory, using Landau critical expo-
nents, the above nontrivial temperature interval τh

exists only at dimensions d < 6 and equals τh =

(c )2/(6 – d). These simple arguments hold only in the
approximation where critical fluctuations can be
neglected. Thus, the temperature region τh where disorder

induces a finite correlation length ξ(h0) ∝  (c )–1/(6 – d)

is correct in this regime only.
It is easy to estimate the Ginzburg criterion of the

applicability of this approximation. For our model
(Eq. (1)), one can get τG ∝  max[b4/(6 – d), c2/(4 – d)], and
the above result is valid only for τ > τG. On the other
hand, the Ginzburg temperature region is larger than the
metastable interval of the first-order I–N phase transi-
tion τG > b2/c. For weak RF such that τh < τ < τG, critical
exponents get renormalized by thermal fluctuations,
and, in the region τ < τh, RF fluctuations are important
as well.

The following qualitative arguments may be con-
structed. Actually, multiple global solutions of saddle-
point equation (3) can appear due to the double-well

h0
2/d

τ ch0
2( )1/ 2βδ dν–( )< τh.=

h0
2

h0
2
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local potential. This potential has two local minima for
T0 < T < T* and for the values of the field h < hc. At tem-
peratures above T*, the disordered local minima solu-
tion is unique. The energy of the nematic solution is
higher than the typical energy of the disordered solu-
tions. At further temperature lowering, the interaction
of the local minima solutions does not get small. As in
spin glasses [15], there are a large number of the disor-
der-dependent local energy minima. In contrast to the
usual spin-glass phase, these minima are probably sep-
arated by finite energy barriers. In this state, the stan-
dard nematic order parameter equals zero, [〈Q〉]av = 0.
Therefore, it is possible to expect the existence of a
finite-temperature interval between the isotropic and
nematic phases where the glass-type behavior occurs,
rather than the real spin-glass phase. At the same time,
the application of an external magnetic field H restores
the long-range orientational order, and the magnetic-
field threshold is determined from the condition that the
nematic coherence length ξH ∝  H–1 is less than the dis-
order-induced correlation length ξ(h0).

In the glass-type phase, the thermodynamics is
defined by numerous disorder-dependent local energy
minima. The most developed technique in this case is
the Parisi replica-symmetry-breaking method [16].
Using this technique, it has been proven that, for the
N-component (N @ 1) spin systems with RF, the usual
scaling replica-symmetry solution is unstable with
respect to the replica symmetry breaking at the phase-
transition point. Moreover, it turns out that the
spin-glass transition, which is believed to take place at
the replica-symmetry-breaking temperature, always
precedes the low-temperature phase and obeys the

equation τRSB ∝  ( )4/(6 – d) [17]. If we compare τRSB

with a RF-controlled temperature region τh, we see that
τh > τRSB.

Now, we consider the disordered I–N model,
defined by Eq. (1), within the high-temperature, i.e.,
isotropic, phase. We assume the existence of rather
strong fluctuations of the order parameter in the isotro-
pic phase near the I–N transition, for which experimen-
tal evidence exists [18]. The Landau–de Gennes Hamil-
tonian has cubic and quartic interaction terms and the
RF term; therefore, there are three length scales in the
fluctuation theory: ξc ∝  c–1/(4 – d), ξb ∝  (b2)–1/(6 – d), and

ξh ∝  (c )–1/(6 – d).

Let us remove the fast modes and rewrite the Hamil-
tonian in terms of the block order parameter corre-
sponding to the scale L = al. Here, a is the ultraviolet
cutoff and l > 1. Then, we rescale in such a way that the
Hamiltonian would be restored to its initial form with
new constants b(L), c(L), and h0(L). Dimensional anal-
ysis provides the estimates

(5)

h0
2

h0
2

b L( ) l 6 d–( )/2b a( ), c L( ) l4 d– c a( ),= =

h0 L( ) lh0 a( ).=
If one considers the combination ∆ = c  as a new
parameter, we immediately get

(6)

Iteration until ∆(L0) = 1 yields L0 = ξh, i.e., the length
scale beyond which the RF fluctuations are significant.
The same arguments are true for the order-parameter
fluctuations coming from the cubic term in (1). The
quartic term is an irrelevant variable in the RG sense.
Hence, the two length scales are important for IN phase
transition near d = 6. Thus, we interpret this result phys-
ically by noting that, sufficiently close to Tc, the domi-
nant disordering agent is not the RF only, but also the
thermal fluctuations caused by cubic interaction. Using
the RG method for disordered systems, recursion rela-
tions are established for the parameters of the effective
replica Hamiltonian. Then, replica symmetry is
assumed and the RG equations become simple func-
tions of replica number. In that respect, the use of rep-
lica is a trick of diagram counting. One can generally
establish identical RG equations directly by consider-
ing disorder correlation functions, a method that is usu-
ally called replica-symmetry perturbation theory. After
standard RG transformations, the one-loop equations in
differential form are the following:

(7)

(8)

(9)

Here, we set n = 3 for a nematic liquid crystal, and
ε = 6 – d.

The exponent η determines the behavior of the two-
point correlation function G(q), which is defined by
means of the relation

(10)

At the critical point, G(q) diverges as qη – 2, and, to
the lowest order in the perturbation expansion,

(11)

We find that the fixed points µ(b2, ∆) of the RG
equations are given by µ0(0, 0), µb(6ε/13, 0), µ∆(0,
ε/26), and µ*(6ε/613, 25ε/613). The RG flow diagram
in the (b2, ∆) plane is illustrated in the figure.

In addition to the trivial Gaussian fixed point µ0,
these equations possess three nontrivial fixed points.
The fixed point µb describes the critical behavior of the
pure nematic, and the coefficient r at this point is

h0
2

∆ L( ) l6 d– ∆ a( ).=

dr
d Lln
------------ 2 η–( )r

7
6
---b2 1 2r–( )– 7∆ 1 2r–( ),+=

d b2ln
d Lln
-------------- ε 3η– b6– 24∆,–=

d ∆ln
d Lln
------------ ε 3η–

22
3
------b2 26∆.–+=

G q( ) Q q( )Q q–( )〈 〉[ ] av=

– Q q( )〈 〉 Q q–( )〈 〉[ ] av .

η 7b2/18.=
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greater than zero. Thus, the fixed-point Hamiltonian
has a minima at Q = 0 and at Q ≈ b/c. The first-order
transition occurs if the order parameter falls into the lat-
ter deep minimum. It is likely that the µb fixed point
corresponds to the critical fluctuations about the meta-
stable minimum at Q = 0 [19]. The fixed point µ∆ is
exactly the RF Heisenberg fixed point for the five-com-
ponent O(N) model, and it describes the RF behavior at
the isolated Landau point on the phase diagram, where
b = 0 [20]. All the above fixed points are unstable.

The only stable fixed point is µ*, which controls the
behavior of the relevant parameters of the Hamiltonian
below six dimensions and corresponds to the replica-
symmetric phase with an infinite correlation length.

Let us now determine the critical exponents associ-
ated with the fixed point µ*. The correlation-length
exponent ν follows directly from Eq. (7):

(12)

Using RG iterations and the perturbation expansion
for the two-point correlation function, one can obtain
the susceptibility exponent

(13)

The specific-heat exponent α can be calculated from
a singular part of the free energy

where (l) is the coefficient of the Q2 term in the
Hamiltonian averaged over the distribution of the RF
and l* = lnξ. Evaluating the above integral to leading
order, we find Fs ∝  τ2 – α, where

(14)

Equations (11)–(14) yield the usual “thermody-
namic” scaling law γ = ν(2 – η) and the modified hyper-
scaling law 2 – α = ν(d – θ) with the “violation of
hyperscaling” exponent θ = 2 – η. This result is valid to
first order in ε.

In the presence of the RF, the quantity
[〈Q(0)〉〈 Q(x)〉]av is nonzero even in phases where
[〈Q(x)〉]av vanishes. There are, therefore, two distinct
correlation functions to consider. The first is the analog
of usual connected correlation function G (10), and the
second is the disconnected function and is specific for
random systems. It measures the fluctuations in the
local quenched order parameter,

(15)

ν 1– 2
35
18
------b2 14∆.–+=

γ 1
7
6
---b2– 7∆.+=

Fs 1 r̃ l( )+( )e dl– l,dln

0

l*

∫∝

r̃

α 6 d–
2

------------
7
4
---b2 14∆.–+=

Cs q( ) Q q( )〈 〉 Q q–( )〈 〉[ ] av=

– Q q( )〈 〉[ ] av Q q–( )〈 〉[ ] av ,
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and diverges at small q as Cs ∝  .

Near Tc, we can write Cs(q) = G2(q)D(q) [21], where

D(q) is related to a dressed spectral function (q) of

the RF fluctuations. If (q) ∝   for qξ @ 1, then

one obtains Cs(q) ∝   and  = 2η – λ∆. Note
that the choice λ∆ = 0 yields  = 2η, a value that is on
the limit of the exact inequality  ≤ 2η that is due to
[22]. Another relation was suggested by consideration
of the RF contribution to the free energy in a correlation
volume that scales as ξθ. In contrast, for the pure sys-
tem, the characteristic scale of variation of the effective
free energy is simply set by the thermal fluctuations,
i.e., ∝ T. On the other hand, if the local order parameter
were uncorrelated with the RF, this would scale as
ξd/2 − β/ν. Here, the factor ξd/2 comes from the scaling of
the total RF. The relation for β is easy to find from scal-
ing the disconnected correlation function in a real space
2β = (d – 4 + )ν. Since the correlations could be

included by an additional factor , corresponding to

(q) ∝   for qξ ! 1, we expect that θ = 2 – η + λ∆.
The case λ∆ = 0 yields θ = 2 – η, which is on the limit
of another inequality, namely, θ ≥ 2 – η [23]. Thus, for
the hyperscaling-violation exponent, we recover the
result θ = 2 + η –  [14, 17, 23, 24].

In one-loop calculations, the critical exponent η is
determined by (11), and  = 2η. The ∆-dependent
terms appear in Cs(q) only in the two-loop diagram-
matic expansion for D(q),

(16)

and, now, the particular value λ∆ = (7/3)∆(6∆ – b2) is
nonzero to second order in ε. All diagrams in (16)
must be disconnected before averaging over the RF
distribution.

qη̃ 4–

h0
2

h0
2 q

λ∆–

q
2η 4– λ∆–

η̃
η̃

η̃

η̃

ξ
λ∆/2

h0
2 ξ

λ∆

η̃

η̃

D q( ) h0
2 1

7
3
---∆ b2 6∆–( ) qln+ 

  ,=

Phase diagram of the RG equations. Points 1, 2, 3, and 4
stand for the fixed points µ0, µb, µ∆, and µ*, respectively.
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Formally, we can divide the diagrams contributing
to G(q) and write η = η1(b2) + η2(∆2, b2∆). In the one-
loop approximation, η2 = 0 and η1 is given by (11). A
straightforward evaluation of the RF-dependent dia-
grams leads to the expression η2 = λ∆. This means that,
for the hyperscaling-violation exponent, we get θ = 2 –
η1. In contrast to the disconnected correlation function,
all diagrams here are connected before configuration
averaging, and not all of them are treelike diagrams, as
is the case for the O(N) model.

More generally, in the vicinity of the fixed point µ*,
the random correlation function is proportional to c–1

for small c. Therefore, in the critical region, one expects
that the random correlation function will scale as

Cs(q, ξ, c) = c–1 Cs(elq, e–lξ), where λc is the
scaling exponent of the irrelevant parameter c. For q =

0, one has the behavior Cs(0, τ) ∝  , with  = ν(2 –
η – λc). Using the relation  = ν(4 – ) that follows
from the scaling at small q and τ = 0, we can write λc =

 – η – 2. We see that λc = –θ. This result is quite obvi-
ous. Really, on the other hand, the perturbation expan-
sion for free energy is a double power series in b2, c,

and . The first terms in this series behave like b2

and c , or, for large , they both are proportional to

 as well. Thus, for the free-energy density, we have

F( , τ) = τνdf( τ–ϕ), where ϕ is the crossover expo-
nent. If we conclude that f is a linear function of its
argument for small τ, as follows from the perturbation

expansion, one can get F( , τ) ∝  τν(d – ϕ/ν); hence, θ =
ϕ/ν. The crossover exponent is related to the scaling of

the RF near the fixed point µ*:  increases as

exp(lϕ/ν). Writing the recursion relation for  up to
two-loop order, as we have done (Eq. (16)), we again
find ϕ/ν = 2 – η + λ∆ = 2 – η1.

All of our results for critical exponents suggest that
 ≠ 2η, in agreement with the three-exponent scaling

picture [23, 24]. For example, the exponent scaling

gives the ratio Cs(0)/G2(0) ∝  , which would diverge
unless 2η =  is valid. However, this divergence is too
weak to be detected, and, thus, this ratio may be con-
cerned as a constant, and the concept of no self-averag-
ing in RF systems is expected [25].

We have considered the effects of a RF (field conju-
gate to the order parameter) on an I–N phase transition
using the ε = 6 – d expansion method. We have found
the novel RF fixed point that proceeds from the exist-
ence of two relevant variables in the RG approach. The
first involves the effects of the RF, while the latter
involves those of thermal disorder. These two agents of
disorder give comparable contributions to the problem.

e
2 η– λc–( )l

τ γ̃– γ̃
γ̃ η̃

η̃

h0
2 h0

2

h0
4 h0

2

h0
2

h0
2 h0

2

h0
2

h0
2

h0
2

η̃

ξ
λ∆

η̃

In the pure nematic, when h0 = 0, the zero cubic term
means that the system is located at an isolated Landau
point at the phase diagram [20]. This point is unstable
with respect to b. When nonzero h0 is switched on, ∆ is
renormalized towards a fixed point µ*, and all critical
exponents are changed. We believe that this fixed point
governs the critical behavior at the transition from iso-
tropic to the replica-symmetric phase that precedes the
replica-symmetry-breaking phase. The location of this
nontrivial random fixed point on a phase diagram is
quite close to the fixed point µ∆ with zero cubic term
(we may call this point a random isolated Landau
point). This indicates that the critical behavior of the
isotropic nematic in RF is like the behavior of the RF
Heisenberg model for the five-component order param-
eter. Independent calculation of the critical exponents
shows that the dimensional reduction in the hyperscal-
ing relations for the RF isotropic nematic contain the
shifted value d – 2 – η +  instead of d. The so-called
“three-exponent scaling” appears in second order in ε.
A model for studying the replica-symmetry-breaking
transition from the replica-symmetric phase is clearly
necessary to perform further investigations.

I would like to thank Prof. J. Stevens for his kind
hospitality at the University of North Carolina at
Asheville, which enabled completion of the present
work.
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The resonant Raman scattering in GeSi/Si structures with GeSi quantum dots has been analyzed. These struc-
tures were formed at various temperatures in the process of molecular-beam epitaxy. It has been shown that
Raman scattering spectra recorded near resonances with the E0 and E1 electronic transitions exhibit the lines of
Ge optical phonons whose frequencies differ significantly from the corresponding values in bulk germanium.
In the structures grown at low temperatures (300–400°C), the phonon frequency decreases with increasing exci-
tation energy. This behavior is attributed to Raman scattering, which is sensitive to the size of quantum dots,
and shows that quantum dots are inhomogeneous in size. In the structures grown at a higher temperature
(500°C), the opposite dependence of the frequency of Ge phonons on excitation energy is observed. This behav-
ior is attributed to the competitive effect of internal mechanical stresses in quantum dots, the localization of
optical photons, and the mixing of Ge and Si atoms in structures with a bimodal size distribution of quantum
dots. © 2005 Pleiades Publishing, Inc.

PACS numbers: 63.22.+m; 78.67.Hc; 78.30.Am
Owing to new physical properties and compatibility
with well-developed silicon technology, structures with
Ge/Si self-assembled quantum dots have large potential
for application as an element base of photoreceivers
and light-emitting devices [1–6], nonlinear optical
devices [7], memory devices [8], and lasers [9]. It is
obvious that the production of such devices imposes
stringent requirements on the technology of the forma-
tion and structure parameters of quantum dots (such as
size, shape, content, stresses in quantum dots, etc.),
which determine their energy spectrum. The under-
standing of the vibrational properties of quantum dots
is important both for studying the fundamental proper-
ties (electron–phonon scattering and heat conductivity)
of new physical objects and for applications, because
the vibrational spectrum of quantum dots carries infor-
mation on their structural properties. The Raman scat-
tering is the most informative method for studying the
vibrational properties of structures with Ge quantum
dots. Acoustic [10–13] and optical [13–18] phonons in
Ge quantum dots of various sizes and shapes were stud-
ied. Recently, we reported the observation of resonant
Raman scattering sensitive to the size of quantum dots
in multilayer structures with Ge quantum dots of the
pyramidal shape (“hut” cluster) [19].

In this work, we present the results of studying the
Raman scattering in structures with Ge/Si quantum
0021-3640/05/8101- $26.00 ©0030
dots, which are formed in a wide range of growth tem-
peratures and have various structural and optical prop-
erties. Four samples, denoted as T300, T400, T500, and
T600, were sequentially grown by the process of
molecular-beam epitaxy in the Stranski–Krastanov
growth regime at Ge deposition temperatures of 300,
400, 500, and 600°C, respectively, on Si substrates ori-
ented in the (001) direction. The temperature of the
growth of Si layers was equal to 800 and 500°C before
and after the Ge deposition, respectively. The structures
consisted of five sequentially repeated pairs of Ge and
Si quantum-dot layers with a nominal thickness of 1.4
and 50 nm, respectively. The scattering of light was
studied at a temperature of 8 K upon excitation by
457.8–630.1 nm light from a laser that was based on
Rhodamine 6G dyes and pumped by an Ar+Kr+ laser.
The Raman spectra were recorded by means of a
T64000 triple monochromator in the backscattering
geometry.

As is well known, the Raman spectra for structures
with GeSi quantum dots exhibit three main lines at fre-
quencies 300–320 and near 420 and 525 cm–1, corre-
sponding to Ge–Ge, Ge–Si, and Si–Si optical vibra-
tions (longitudinal optical phonons), respectively [14–
19]. Moreover, weaker lines can be observed near 300
and 510 cm–1, which are attributed to the contributions
 2005 Pleiades Publishing, Inc.
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of second-order scattering (2TASi) and Si–Si local
vibrations [20], respectively.

We consider in more detail Ge–Ge optical vibrations
localized in quantum dots. Three physical phenomena
competitively affect the frequencies of these phonons:
internal mechanical stresses (a high-frequency shift
corresponds to them), mixing of Ge and Si atoms in
quantum dots, and the localization of optical phonons
(both effects induce low-frequency shift) [12–19]. Fig-
ure 1 shows the results obtained in the experiments on
the resonant Raman scattering for the samples under
investigation. This figure presents the intensity of the
signal of longitudinal optical phonons in germanium,
which was normalized to the intensity of the Si–Si sig-
nal for each spectrum, as a function of laser excitation
energy. As is seen in the figure, the resonance profile
has a wide maximum near 2.4 eV for all structures.
Samples grown at higher temperatures (T400 and
T500) exhibit an asymmetric high-frequency shoulder,
and the resonance profile of the T600 sample has an
additional maximum near 2.68 eV.

The behavior of the frequencies of longitudinal opti-
cal phonons in germanium as a function of excitation
energy seems to be important (Fig. 2). The frequency of
longitudinal optical phonons in germanium for the
T300 and T400 samples decreases with increasing exci-
tation energy (from 2.5 to 2.7 eV). This shift is equal to
4–5 cm–1 and corresponds to a value observed previ-
ously for samples similar to the T300 sample [11, 13].
At the same time, an increase in the phonon frequency
for the T500 sample from 308 to 316 cm–1 is simulta-
neously observed. The frequency of longitudinal opti-

Fig. 1. Intensity of the Raman scattering line of the Ge–Ge
vibrational mode vs. laser excitation energy for the struc-
tures (a) T300, (b) T400, (c) T500, and (d) T600.
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cal phonons in germanium for the T600 sample remains
constant at 305 cm–1.

The large FWHM value of the resonance profile (up
to 0.2 eV) for the T300 and T400 samples implies the
presence of contributions from several electron reso-
nances. First, the energy of E1 transitions in stressed Ge
quantum dots is equal to 2.39 eV, which is higher than
its bulk value by 0.16 eV [21]. Second, the energy of E0
resonance in the wetting Ge layer is equal to 2.0–2.2 eV
[22]. Therefore, electronic transitions in the wetting
layer can also contribute to the Raman scattering to
become process. Third, the energy of E0 transitions in
quantum dots can reach 2.4–2.6 eV, which allows for
the resonant Raman scattering to become sensitive to
the size of quantum dots. The Raman scattering by
small quantum dots for which the energy of E0 transi-
tions is higher appears to be resonantly enhanced when
the energy of the exciting laser coincides with the
energy of localized electron states. The effect of the
localization of optical phonons is much larger for small
quantum dots, which is manifested in a decrease in the
frequency of optical phonons in the spectra of the
Raman scattering (Fig. 2) that are excited by higher
laser energies (2.5–2.7 eV). The direction of the
phonon-energy shift is determined by the negative dis-
persion of optical phonons in germanium [23]. Mixing
of atoms in quantum dots in the T300 and T400 samples
is insignificant (the Si content is no more than 15–20%)
[16] and does not lead to considerable change in elec-
tronic transitions.

Quantum dots in the T500 and T600 samples form a
GeSi solid solution, where Si content reaches 33 and

Fig. 2. Frequency of the Ge–Ge optical vibrational modes
in quantum dots vs. laser excitation energy for the structures
(a) T300, (b) T400, (c) T500, and (d) T600.
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47%, respectively, and quantum dots have sizes
25−100 nm [16]. For such compositions, Cerdeira et al.
[24] determined that the energies of E1 transitions in
GexSi1 – x/Si superlattices are equal to 2.6 and 2.7 eV,
respectively, which agrees well with the energy posi-
tions of the shoulder observed near 2.6 eV and the addi-
tional peak for the T600 sample (2.68 eV). At growth
temperatures of 300–400°C, small stressed quantum
dots in which the localization effect is large are formed.
For this reason, the frequencies of phonons in quantum
dots are determined by the above-discussed Raman
scattering sensitive to the size of quantum dots [11]. A
small increase in the frequency of longitudinal optical
phonons in Ge quantum dots for the T400 sample
(about 1 cm–1) as compared to the corresponding value
for the T300 sample can apparently be attributed to an
increase in the mean size of quantum dots with an
increase in the growth temperature, which is observed
in experiments with high-resolution electron micros-
copy [16]. A further increase in the growth temperature
leads to intense mixing of Ge and Si atoms, which must
lead to a decrease in the Ge–Ge vibrational frequency
(near 308 cm–1) for the T500 sample. This behavior is
observed in the spectra of the Raman scattering at rela-
tively low laser excitation energies (up to 2.4 eV) but
does not explain an increase in the phonon frequency
(up to 316 cm–1) with increasing excitation energy up to
2.7 eV.

Such a behavior of the phonon frequency as a func-
tion of excitation energy can be attributed to the bimo-
dal character of the size distribution of quantum dots,
which is typical for samples grown at temperatures near
500°C [25]. With an increase in the growth tempera-
ture, the density of small stressed quantum dots (hut
clusters) decreases, whereas the density of partially
relaxed large GeSi quantum dots increases. At a growth
temperature of 500°C, the contribution from the quan-
tum dots of the GeSi solid solution becomes consider-
able, which leads to a decrease in the phonon frequency
(308 cm–1) compared to the stressed state (316 cm–1).
However, with increasing laser excitation energy
(above 2.4 eV), the hut clusters make the resonant con-
tribution to the Raman scattering, which leads to an
increase in the phonon frequency to a value correspond-
ing to the stressed state in the hut clusters. In the struc-
tures grown at a higher temperature (600°C), the den-
sity of the hut clusters decreases significantly. As a
result, the contribution of large relaxed GeSi quantum
dots to the Raman scattering prevails at all laser excita-
tion energies, and the vibrational frequency remains
constant near 305 cm–1. The intensity of the vibrational
modes of quantum dots in the solid solution increases
additionally due to the 2.68-eV resonance (Fig. 2d). We
emphasize that the intensity of resonance curves for the
T300 and T400 samples decreases with an increase in
the growth temperature. This dependence may be
attributed both to a decrease in the density of quantum
dots with an increase in the temperature and to a
decrease in the intensity of Raman scattering by Ge–Ge
vibrational modes in GeSi solid solutions.

Thus, a nonmonotonic behavior of the frequency of
Ge–Ge vibrational modes as a function of laser excita-
tion energy has been found for GeSi/Si structures
grown in a wide temperature range. At low growth tem-
peratures (300–400°C), the mode frequencies are deter-
mined by internal mechanical stresses and by the local-
ization of optical phonons. At a higher growth temper-
ature (500°C), the bimodal size distribution of quantum
dots plays a considerable role. At low laser excitation
energies, the phonon frequencies are determined by the
contribution from large relaxed GeSi quantum dots,
whereas small stressed quantum dots make the resonant
contribution to the Raman scattering at high energies.
With a further increase in the growth temperature, the
density of small quantum dots decreases, and the
phonon frequencies are independent of excitation
energy and are completely determined by the effect of
the mixing of atoms in quantum dots.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17746.
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The angular dependence of the intensity of CKα radiation measured from a film of oriented carbon nanotubes
shows an increase in the yield of x-ray fluorescence along the growth direction of the nanotubes. The angular
distribution of the intensity of scattered x rays is close in magnitude to the angular distribution of the directivity
of nanotubes in the film that is determined by analyzing an electron-microscope image. To explain the propa-
gation of radiation along the nanotubes, two mechanisms are proposed on the basis of reflection from inner
walls of a tube (channeling) and an anomalous dispersion of CKα photons in the carbon medium. © 2005 Ple-
iades Publishing, Inc.
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Carbon nanotubes are quasi-one-dimensional struc-
tures formed by the self-assembly of carbon atoms at
high temperatures. The existence of an internal cylin-
drical hollow implies the possibility of channeling
charged particles, neutrons, and x rays in nanotubes [1–
4]. The propagation of x rays in the nanotube hollow
can be considered as multiple reflections from the walls
of the tube similar to the propagation of radiation in
capillary structures [5, 6]. The features of refraction of
radiation in micron-diameter capillaries are well stud-
ied (see [4] and references cited therein). The most
interesting feature of the propagation of radiation near
the strongly curved surface of the channel is the surface
channeling of radiation [7]. The effective wavelength of
ultrasoft photons is approximately equal to the diame-
ter of the internal hollow of nanotubes λ⊥  ≈ d0 (d0 = 1–
10 nm). Therefore, it is necessary to take into account
wave features leading to the bulk channeling of radia-
tion in nanotubes. In this case, wave effects of surface
channeling are strongly suppressed [8]. The difficulty
of the manipulation of nanoobjects and the low scatter-
ing intensity restrict the possibilities for experimentally
studying x-ray radiation in an individual carbon nano-
tube. However, orientational dependences can be mea-
sured for an array of ordered nanotubes. One of the
most common methods of producing film structures
consisting of oriented carbon nanotubes is the method
0021-3640/05/8101- $26.00 0034
of the pyrolysis of carbon compounds in the presence of
catalyst particles [9].

The aim of this work is to study the orientational
effect of the texture of a carbon nanotube film on the
intensity of CKα radiation. The angular dependence of
the intensity of x rays from the film is compared with
the degree of the disorder of the nanotubes in a sample,
which is determined by analyzing an electron-micro-
scope image. The angular divergence of x rays propa-
gating in the channel of a multilayer carbon nanotube
has been theoretically estimated.

The films of multilayer carbon nanotubes were
grown on the surface of a silicon plate via the process
of the pyrolysis of vapors of a mixture of fullerene C60
and ferrocene Fe(C5H5)2 in a tube furnace 1 m in length
and 3.8 cm in diameter with an atmospheric pressure of
argon and at a temperature of 950°C. The resulting
materials were analyzed with the use of a JSM 6340F
scanning electron microscope and a JEOL 100C trans-
mission electron microscope. Carbon nanotubes were
formed on a substrate and had a prevailing orientation
perpendicular to the surface (Fig. 1a). The mean length
of nanotubes coincided with a film thickness of about
30 µm. The film consists of individual nanotubes 10–
30 nm in diameter (Fig. 1b) and their bundles possessed
a mean distance between tubes of about 100 nm. The
nanotubes are multiwalled, the diameter of the internal
hollow of tubes was equal to 5–7 nm (Fig. 1c), and the
© 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Image of the carbon-nanotube film on the silicon-plate surface as obtained by scanning electron microscopy, (b) the image
of nanotubes forming the film as obtained by transmission electron microscopy, and (c) the enlarged image of multilayer nanotubes.
number of layers varied from 7 to 30. Transmission
electron microscopy showed that, in addition to nano-
tubes, the samples contained metal nanoparticles,
which served as a catalyst of nanotube growth.

The intensity of x rays from the film of oriented nan-
otubes was measured by a deep-vacuum laboratory
x-ray spectrometer. Figure 2 shows the arrangement of
a sample, an x-ray source, and a gate emergence slit.
The 8 × 2-mm sample was mounted on a rotating axis,
which made it possible to vary the angle α between the
sample surface and optical axis of the spectrometer
from 60° to 100°. The positions of the copper anode and
the gate emergence slit were fixed. The angle β comple-
mentary to the angle between the direction from the
surface of the primary anode to the sample and spec-
trometer axis was 20°. The directions of radiation inci-
dent on the sample and fluorescence propagation
through the collimator are denoted as I and II in Fig. 2.
A gas proportional counter filled with methane at a
pressure of 0.2 atm was placed behind the system of
collimating slits. This optical system ensured an angu-
lar resolution of about 0.5°. The x-ray tube operated at
a voltage of 2.3 kV and a current of 0.1 A. The count
rate at the intensity maximum was equal to 3000 pulses
per second. The angular dependence of x-ray fluores-
cence was measured for initial sample 1 with the verti-
cal orientation of nanotubes. Measurements were then
carried out for the same sample, where the vertical ori-
entation of nanotubes was broken due to mechanical
action on the film surface (sample 2). The disorienta-
tion of nanotubes in sample 2 was corroborated by
scanning electron microscopy (SEM).

To estimate the angular directivity of nanotubes
(texture) in sample 1, SEM microphotographs of the
film were mathematically processed. Figure 3 shows an
image of the lateral cut of the carbon-nanotube film and
Fourier-analysis data for this image, which enable one
JETP LETTERS      Vol. 81      No. 1      2005
to estimate the degree of the disorientation of nano-
tubes with respect to the growth axis [10]. The resulting
dependence (Fig. 3b) is the averaged angular distribu-
tion of nanotubes for the film section presented on the
microphotograph. The distribution is characterized by a
maximum at 90° with a width of about 20°. To obtain
the image of the lateral cut, the film sample was
cleaved. As a result, the texture of nanotubes was par-
tially broken. For this reason, one can expect that the
angular distribution of nanotubes in the initial sample
can be significantly narrower. Moreover, electron
microscopy provides information on the material struc-
ture only in the local region of the sample.

X-ray fluorescence is due to the occupation of pre-
viously created core vacancies by valence electrons.
Owing to the localization and symmetry of the inner
C1s level, the x-ray fluorescence of carbon atoms is iso-
tropic. However, the probability of radiation in single

Fig. 2. Layout of measurements of the angular dependence
of x-ray fluorescence yield from the film of oriented nano-
tubes.
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crystals depends on the electron distribution in the
valence band and is a complicated function of the fluo-
rescence-yield angle. In layered structures consisting of
2p elements, fluorescence radiation can be completely
or partially polarized for transitions involving different-
symmetry bands. In particular, in the x-ray spectra of
graphite, the contributions of π and σ components
change depending on the angular orientation of the
detector [11, 12]. The shape of the x-ray CKα spectrum
changes monotonically, and the total intensity of the
spectrum must change similarly.

Figure 4 shows the angular dependences of the
intensities (curve 1) I1(α) and (curve 2) I2(α) of x-ray
fluorescence that were measured for samples consisting
of the oriented and disoriented nanotubes, respectively.
The dependences were normalized such that the lines
coincide in the angular range 60°–70°. As is seen, the
angular distributions for samples 1 and 2 are close to
each other and demonstrate an increase in the intensity
at angles of 60° to 85° and a decrease in the intensity at
larger angles. Lines differ only for angles close to 90°,
where additional intensity appears for sample 1 of the
oriented nanotubes. The effective density of the film is
one-thirtieth to one-twentieth of the density of graphite.
Therefore, the excitation of CKα radiation occurs over
the entire depth of the film. Since the absorption coeffi-
cient of CKα radiation in the carbon film is compara-
tively small [13], radiation from the entire thickness of
the sample can contribute to the detected spectrum.

For the texture-free sample, the angular distribution
of x-ray fluorescence depends on the geometric param-

2 µ

(‡)

Fig. 3. (a) Image of the section of the lateral film surface of
oriented nanotubes and (b) the angular distribution of the
directivity of nanotubes with respect to the substrate surface
as constructed on the basis of the Fourier transform of this
image.
eters of the experiment and absorption coefficients for
the incident and fluorescence beams and can be
expressed by the formula

(1)

Here, I0 is the intensity of incident radiation and η is the
factor determined by the absorption coefficient and
sample density. Change in the visible surface as a func-
tion of the angle α is also taken into account in Eq. (1).
Formula (1) is presented in Fig. 4 by curve 3. The
parameter η was chosen such that curves 3 and 2 are in
best agreement in the angular range over which the
measurement was carried out. Curve 3 has an asymmet-
ric shape with a maximum near 82°. The difference
between experimental curve 2 and curve 3 can be attrib-
uted to the imperfection of the film structure, in partic-
ular, to the presence of metal inclusions, thickness
inhomogeneity of the film, etc. Moreover, it is not
excluded that, after mechanical action on the sample of
oriented nanotubes, small sections of the textured film
hold.

I I0 α 110° α–( ) η 20° α–( )cos
αsin

------------------------------------– 
  .expsinsin=

Fig. 4. Angular dependence of the intensity of x-ray fluores-
cence as measured for (1) the film of oriented nanotubes and
(2) the film of disoriented nanotubes and (3) as calculated
by formula (1) for an isotropic sample, as well as (4) the
fivefold increased difference between curves 1 and 2. The
error bars show the statistical spread of the curve 4σ =
(I1)0.5 + (I2)0.5. For comparison, curve 5 shows part of the
angular distribution of the directivity of carbon nanotubes
as obtained by mathematically processing the electron
microscope image (Fig. 3).
JETP LETTERS      Vol. 81      No. 1      2005
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To reveal the effect of the film texture on the angular
distribution of CKα radiation, the difference between
lines 1 and 2 is obtained and multiplied by a factor of
five, and the result is presented in Fig. 4 by line 4. The
accumulated number of pulses per channel when mea-
suring dependences 1 and 2 was equal to about 40000
at a maximum, which makes it possible to determine
the difference between them with an accuracy of about
0.3% of the total intensity. A large statistical spread in
the difference line is associated with a small effect of
anisotropic scattering. Nevertheless, the presence of a
maximum at α = 90° with a width of 6° is identified
with a probability of more than 97%. In our opinion,
this feature can be attributed to the directing action of
carbon nanotubes on the propagation of x-ray fluores-
cence in the film. Knowing the total intensity of the dif-
ference line, one can estimate that the angle of radiation
trapping in the direction of the orientation of nanotubes
is equal to about 6°. A broad scattering halo that is
superimposed on the general fluorescence background
is formed due to nanotubes with large bending angles.
For comparison, the part of the angular distribution
obtained for carbon nanotubes as obtained from the
Fourier analysis of the SEM image is also shown in
Fig. 4 (line 5). Both lines have maxima at an angle of
α = 90°, which confirms the determining effect of the
orientation of nanotubes in the sample on the directivity
of the scattering of x-ray radiation. The difference
between lines 5 and 4 can be attributed to the electron-
microscopy features mentioned above and the inhomo-
geneity of the sample.

Two causes of the orienting effect of carbon nano-
tubes on the propagation of x rays along them are pos-
sible. The first cause may be the channeling effect,
which arises due to the anomalous scattering of x-ray
photons on the walls of the internal hollow of nano-
tubes. In the x-ray range, the refractive index is slightly
smaller than unity. Therefore, the vacuum is a denser
medium for x rays. The propagation of x rays in the
channels of microcapillaries is described on the basis of
the effect of total internal reflection. For nanotubes,
such an approximation is valid only for sufficiently
hard photons, i.e., under the condition λ⊥  < d0. In the
case under consideration, this condition is violated, and
all estimates must be obtained in the wave approxima-
tion [4].

Atoms in carbon nanotubes are arranged in hexa-
gons forming the walls of tubes. In the first approxima-
tion, a channel formed in such a way is axisymmetric.
The interaction of an x-ray photon with a medium is

determined by the plasmon energy ω0 = ,
where e and m0 are the charge and mass of an electron,
respectively, and N0 is the density of the electron cloud
of a nanotube. Since the electron density can be approx-
imated by an averaged axisymmetric function, which is
minimal in the channel center and maximal on the
walls, the averaged plasmon energy has the same sym-

4πe2N0/m0
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metry [6]. Estimates show that this energy at a maxi-

mum varies in the range  ≈ 100–170 eV
depending on the character of the formation of a nano-
system. The angular divergence of photons channeled
in the averaged potential of a nanotube is given by the

expression  = Vθ2f(θ, r), where f(θ, r) is the radi-

ation distribution function in the nanotube channel, and
it is determined by the interaction potential of x-ray
photons with the electrons of the medium. By analogy
with the scattering of channeling electrons in crystals
[14], the angular divergence can be estimated by the
formula

where r0 is the radius of the internal hollow of the nan-
otube and ω and Nph(ω) are the energy and number of
emitted photons, respectively. For carbon nanotubes
with r0 ≈ 2.5–3.5 nm, the angle of radiation trapping in

the internal channel of the tube is estimated as  ≤
6°–10°. Thus, the contribution of the channeling of x
rays to the formation of the total pattern of radiation
scattering in the film of carbon nanotubes is small and
cannot exceed 0.5%, which agrees well with the exper-
imental value.

The main part of radiation undergoes diffuse scatter-
ing, which is determined by the structure and density of
nanotubes, as well as by the presence of structures dif-
fering from tubular. In our opinion, diffuse scattering
forms a broad halo in the angular distribution of fluo-
rescence. Moreover, secondary radiation can pass
through “gaps,” when x-ray photons propagate in cavi-
ties between nanotubes and bundles of nanotubes. This
is so-called “effect of the collimation” of radiation. The
effect of collimation absorption is considerably sup-
pressed due to a small absorption coefficient for CKα
radiation near the K absorption edge [13]. We estimate
this contribution to the angular distribution of radiation
from the film of oriented nanotubes as follows. The
mean “visibility distance” in the “forest” of nanotubes
in a plane parallel to the substrate is equal to about
600 nm. The absorption coefficient is so small that a
2-µm-thick carbon film can be used as a window in an
x-ray counter to detect CKα bands, in particular, in the
x-ray spectrometer used in the experiments. Therefore,
an x-ray photon must cover a distance of about 35 µm
for noticeable absorption. The angular width of the
corresponding distribution is ≥50°, which is much
larger than the width of the feature observed at an
angle of 90°.

A nonzero thickness of the walls of multilayer nan-
otubes ∆d0 ≈ 2–10 nm (7–30 layers) is responsible for
the specific propagation of radiation in a nanochannel,
leading to diffraction effects and restricting the angular

ω0( )max

θ2 d∫

∆θch
2 ω

Nph ω( )
ω2

------------------ xN0 x( ),d
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divergence. The cause is that the width of the main
mode of radiation propagation in the channeling regime
(~10–100 nm) may be larger than the wall thickness,
which, in turn, leads to the tunneling of radiation
through the potential barrier of the wall. In this case, it
is necessary to take into account the diffraction of radi-
ation in the multilayer system, which determines the
angular divergence of the dechanneled fraction of radi-
ation. According to estimates, this value is of the same
order of magnitude as the angular divergence of the
channeling of x-ray photons.

Another possible cause of the orienting effect of the
propagation of CKα radiation along nanotubes is the
conditions for anomalous dispersion. The decrement of
the refractive index δ for photons with a wavelength of
λ ~ 0.1 nm in the carbon medium is equal to about
~10−6 [15]. If the photon energy is slightly lower than
the edge of the absorption band of the medium, the dec-
rement of the refractive index is negative and increases
significantly in magnitude [16]. This behavior leads to
total internal reflection, and, therefore, a nanotube
behaves as a hollow waveguide [17]. In this case, the

critical angle is determined as ϕ0 ~ δ and is equal to
about 2.5° for a carbon sample with δ ~ –10–3. There-
fore, the propagation of x-ray photons in the film of ide-
ally oriented carbon nanotubes is characterized by an
angular divergence of about 5°. The total intensity of
such “trapped” radiation can be equal to about 0.5%,
which is close to the total intensity of line 4 (Fig. 4).

Thus, the measurements and analysis show the pos-
sibility of the dominant propagation of CKα radiation
along carbon nanotubes.
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Experiments on the irradiation-induced suppression of the critical temperature in high-Tc superconductors are
analyzed within the mean-field Abrikosov-Gor’kov-like approach. It is shown that the experimental data for
YBa2Cu3O7 – δ single crystals can be quantitatively explained by the pair-breaking effects under the assumption
of the combined effect of potential and spin-flip scattering on the critical temperature and with an accounting
for a nonpure d-wave superconducting order parameter. © 2005 Pleiades Publishing, Inc.
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Particle irradiation is a powerful tool that provides
an opportunity to modify the physical properties of
superconductors. Irradiation-induced defects act as
effective pinning centers [1], thus causing the critical
current density to increase. Apart from the practical
benefits, irradiation effects may be used to probe the
fundamental characteristics of superconductors. For
example, peculiarities of the disorder-induced suppres-
sion of the critical temperature Tc are expected to
depend on the pairing mechanism and the symmetry of
the superconducting order parameter ∆(p). In this
respect, a study of the response of high-Tc cuprates to
intentionally incorporated impurities or radiation
defects provides an indirect way to elucidate the cause
of their unusual normal- and superconducting proper-
ties. Among other things, depending on the symmetry
of ∆(p), clear differences were predicted for the defect-
induced variations of experimentally accessible charac-
teristics such as Tc [2, 3], the density of states [4], the
isotope coefficient [5], the specific-heat jump [6], etc.

Various mechanisms of the disorder-induced Tc sup-
pression have been considered, including, e.g., the pair-
breaking [7], localization [8], and phase-fluctuation [9]
effects, etc. The main problem here is that the disorder
results not only in a decrease in Tc but also in the strong
increase in the width of the superconducting transition,
∆Tc, so that the functional form of Tc versus, e.g., the
defect concentration xd appears to be poorly defined at
Tc ! Tc0, where Tc0 is the initial value of Tc in the
absence of the disorder. In fact, the value of ∆Tc usually
becomes comparable to the value of Tc at Tc/Tc0 ≈ 0.3
[10, 11]. While the measured Tc versus xd curve in high-Tc

¶ This article was submitted by the author in English.
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cuprates was commonly observed to be approximately
linear at Tc/Tc0 > 0.3 [10], the details of Tc(xd) behavior
at Tc/Tc0 ! 1 remained unclear.

In a recent paper [12], Rullier-Albenque et al.
reported the results of experimental studies of Tc degra-
dation under electron irradiation of underdoped and
optimally doped YBa2Cu3O7 – δ single crystals. They
have measured Tc and in-plane resistivity ρab in a very
broad range of xd, the value of xd being proportional to
∆ρab, the increase in ρab upon irradiation. The authors
of [12] succeeded in the creation of an extremely uni-
form distribution of radiation defects over the sample,
so that the value of ∆Tc never exceeded 5 K. Moreover,
the value of ∆Tc did not increase monotonously with
radiation dose but had a maximum at Tc/Tc0 ≈ 0.3 and
subsequently decreased again to ∆Tc < 1 K at the high-
est dose for which the resistive superconducting transi-
tion was still observed at Tc ≈ 1 K. Thus, the depen-
dence of Tc on ∆ρab (or xd) was obtained with an excel-
lent accuracy from Tc/Tc0 = 1 down to Tc/Tc0 = 0 (or, at
least, Tc/Tc0 ~ 10–2).

It was found in [12] that Tc unexpectedly decreased
quasi-linearly with xd in the entire range from Tc0 down
to Tc = 0. Having compared the results obtained with the
predictions of Abrikosov-Gor’kov (AG) pair-breaking
[13] and Emery–Kivelson phase-fluctuations [9] theo-
ries, the authors of [12] arrived at the conclusion that
the experimental data are at variance with AG theory
and point to a significant role of phase fluctuations of
the order parameter in high-Tc superconductors.

To compare the pair-breaking theory with the exper-
iment, the authors of [12] made use of the AG formula
© 2005 Pleiades Publishing, Inc.
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[13] for a d-wave superconductor (we set " = 1 herein-
after):

(1)

where Ψ(z) is the digamma function and τ is the elec-
tron scattering time [14], τ–1 ∝  xd ∝  ∆ρab. This formula
gives a negative curvature of the Tc versus ∆ρab curve,
contrary to the experimental observations. Note, how-
ever, that, first, the symmetry of ∆(p) in YBa2Cu3O7 – δ
is different from pure d wave due to an orthorhombic
lattice distortion [15], and, second, irradiation may
result in the appearance of spin-flip scatterers along
with potential ones, since radiation defects created in
CuO2 planes disturb antiferromagnetic correlations
between copper spins. The AG-like formula that
accounts for both those effects reads [3, 16]

(2)

where τp and τs are scattering times due to potential and
spin-flip scatterers, respectively; the coefficient

(3)

is a measure of the degree of in-plane anisotropy of
∆(p); and 〈…〉FS means the Fermi surface (FS) average.
The range 0 ≤ χ ≤ 1 covers the cases of isotropic s-wave
(∆(p) = const, χ = 0), d-wave (〈∆(p)〉FS = 0, χ = 1), and
mixed (d + s)-wave or anisotropic s-wave (0 < χ < 1)
symmetries of ∆(p).

In fact, the assumption concerning the combined
effect of potential and spin-flip scatterers on Tc and
accounting for a nonpure d wave ∆(p) in YBa2Cu3O7 – δ
(i.e., χ ≠ 1) allows for a quantitative explanation of the
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Fig. 1. Tc/Tc0 versus ∆ρab in electron-irradiated YBa2Cu3O7
crystals. Experiment [12] (triangles). Theory (Eqs. (2)–(5))
for ωpl = 0.75 eV, χ = 0.9, and α = 0 (dashed line), 0.01
(solid line), and 1 (dotted line).
experimental data [12] within the modified pair-break-
ing AG-like theory [17], without resorting to phase-
fluctuations effects [9]. Figure 1 shows the measured
Tc/Tc0 versus ∆ρab curve taken from [12] along with the-
oretical curves computed with Eq. (2) for χ = 0.9 and
various values of the coefficient

(4)

that specifies the relative contribution of spin-flip scat-
terers to the total scattering rate. Here, we represent the
scattering time in terms of the in-plane residual resistiv-
ity ρ0 obtained by the extrapolation of ρab(T) to T = 0,

(5)

where ωpl is the plasma frequency (see [7, 16]). We also
make use of the fact that ρ0 = ∆ρab in a very good
approximation [12]. From Fig. 1, one can see that, at
χ = 0.9 and ωpl = 0.75 eV, the quasi-linear experimental
dependence of Tc on ∆ρab in YBa2Cu3O7 is quantita-
tively reproduced at α = 0–0.01.

We emphasize that the quantity ωpl that enters into
Eq. (2) for Tc through relation (5) should be considered
as just a characteristic energy that does not necessarily
coincide with the value of the plasma frequency deter-
mined by, e.g., optical spectroscopy. Based on general
grounds, one could expect ωpl ~ 1 eV. In this respect,
although our choice of ωpl = 0.75 eV is, to some extent,
arbitrary, a change in ωpl results only in a change in the
best-fitting values of χ and α. For example, χ ≈ 0.8 and
0.6, α = 0.04 ± 0.01, and 0.045 ± 0.01 for ωpl = 0.8 and
1.0 eV, respectively (see Figs. 2 and 3). Meanwhile, for
χ = 1, i.e., for pure d-wave symmetry of ∆(p), the
experimental data cannot be described at any value of
ωpl (see Fig. 4). This is not surprising, because of the
orthorhombic crystal structure of YBa2Cu3O7 – δ, which
excludes the pure d-wave symmetry of ∆(p) and points

α τ s
1– / τ p

1– τ s
1–+( )=

τ p
1– τ s

1–+ ωpl
2 /4π( )ρ0,=

Fig. 2. The same as in Fig. 1 for ωpl = 0.8 eV, χ = 0.8, and
α = 0 (dashed line), 0.04 (solid line), and 1 (dotted line).
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to an admixture of the s-wave component to the d-wave
type, so that ∆(p) is of (d + s)-wave or (d + is)-wave
type [15]. Thus, the experimental data [12] for
YBa2Cu3O7 single crystals can be quantitatively
explained by the pair-breaking theory taking a nonpure
d wave ∆(p) and the combined effect of potential and
spin-flip scatterers on Tc into account.

As for the underdoped single crystals YBa2Cu3O6.6,
the experimental dependence [12] of Tc/Tc0 versus ∆ρab

is close to that for YBa2Cu3O7 and can be fitted within
the same approach at similar values of ωpl, χ, and α.
The discussion of the probable effect of the oxygen
content, i.e., the hole concentration, on the value of ωpl,
the gap anisotropy, and the relative amount of spin-flip
scatterers in the sample is, however, beyond the scope
of this paper.

Note that χ < 1 not only for a mixed (d + s) wave
∆(p) but also for an anisotropic s wave ∆(p). Recently,
the d-wave symmetry of ∆(p) in hole-doped cuprate
superconductors [19] has been doubted by several
authors (see, e.g., [20, 21]). The reanalysis of the results
obtained by angle-resolved photoemission spectros-
copy, Fourier-transform scanning tunneling spectros-
copy, low-temperature thermal conductivity, etc.,
including phase-sensitive techniques, has shown that
the combined data agree quantitatively with the
extended s-wave symmetry [20, 21]. Making use of the
fit [21] ∆(θ) = 24.5(cos4θ + 0.225) meV to single-par-
ticle tunneling spectra of YBa2Cu3O7 – δ, with the angle
θ being measured from the Cu–O bonding direction, we
have χ ≈ 0.9 for YBa2Cu3O7 – δ. It follows from the fits
presented in [21] that an even lower value of χ may be
expected for Bi2Sr2CaCu2O8 + y. In this respect, it would
be very interesting to study the behavior of Tc versus ρab

in this and other high-Tc cuprates down to Tc = 0.

Finally, a note is in order about one more argument
presented in [12] in favor of the phase-fluctuations the-
ory and against the pair-breaking mechanism of Tc sup-
pression in high-Tc cuprates. According to [12], the pos-

Fig. 3. The same as in Fig. 1 for ωpl = 1.0 eV, χ = 0.6, and
α = 0 (dashed line), 0.045 (solid line), and 1 (dotted line).
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itive curvature of the Tc(∆ρab) curve is necessary to
explain the maximum of the transition width ∆Tc as a
function of ∆ρab that was experimentally observed at
Tc/Tc0 ≈ 0.3. Note, however, that, first, this argument is
incompatible with the experimental data themselves,
since the curvature of the measured Tc(∆ρab) depen-
dence is (with a few exceptions) close to zero in the
whole range of ∆ρab and, respectively, in the whole
range of Tc/Tc0, including the region near Tc/Tc0 ≈ 0.3.
Second, the line of reasoning in [12] is based on a naive
assumption that ∆Tc(xd) ∝  xd(dTc/dxd). Such an assump-
tion is at least questionable for the resistive supercon-
ducting transition whose critical temperature and width
are determined by the zero-resistance path and the uni-
formity of the defect distribution, respectively. Besides
this, the value of ∆Tc depends on a specific criterion
used for its evaluation from the curve ρab(T). Thus,
knowledge of the function Tc(xd) alone is obviously
insufficient to draw definite conclusions about the func-
tion ∆Tc(xd), and vice versa.

We note that the phase-fluctuations theory [9] goes
beyond the standard mean-field theory and implies that
the so-called pseudogap [22] is a precursor of super-
conductivity. This contradicts the experiments, which
give evidence for interplay between competing and
coexisting (superconducting and nonsuperconducting)
ground states (see, e.g., [23]). We note also that the AG-
like pair-breaking approach is based on the BCS–
Bogolyubov mean-field theory that seems to describe
the spatial-momentum quasiparticle states in high-Tc

cuprates, at least in optimally doped samples such as,
e.g., YBa2Cu3O7, rather well [24, 25].

In summary, we have shown that experiments on the
irradiation-induced Tc suppression in YBa2Cu3O7 – δ can
be quantitatively explained within the AG-like pair-
breaking mean-field theory under the assumption of the
combined effect of potential and spin-flip scattering on
Tc and with an accounting for a nonzero Fermi surface
average of the superconducting order parameter, with-

Fig. 4. The same as in Fig. 1 for χ = 1 and ωpl = 0.5 eV (dashed
line), 0.7 eV (solid line), and 1 eV (dotted line) (see [18]).
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out resorting to phase-fluctuations effects. One cannot
exclude, however, a possibility that the latter become
important at Tc  0, i.e., in the very vicinity of the
superconductor–insulator transition.

I am grateful to A.V. Kuznetsov for assistance.
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Processes are analyzed in the course of production of a microplasma as a result of the collision of two dense clus-
ter beams. In reality, this microplasma is characterized by a lifetime of ~1 ns, by a size of ~0.01 cm, by a number
density of electrons of ~1020 cm–3, by an electron temperature of several tens of eV, and by a charge of its mul-
ticharged ions of up to z = 10. Under contemporary conditions, the laser method allows one to create a hot micro-
plasma with a higher electron temperature and charge of atomic ions. © 2005 Pleiades Publishing, Inc.

PACS numbers: 36.40.–c; 52.20.Hv; 52.50.–b
INTRODUCTION

A convenient method for the generation of a hot
microplasma consists in irradiation of a cluster beam by
a femtosecond laser pulse of high intensity, so that the
electric-field strength of the laser field exceeds that
inside the hydrogen atom by several orders of magni-
tude. As a result of the absorption process, clusters are
excited by taking on the energy of an electromagnetic
wave. The subsequent expansion of excited cluster mat-
ter during times of 0.1–1 ps leads to the formation of a
more or less uniform microplasma that can be used as a
source of x-ray radiation, neutrons, and fast multi-
charged ions, and these processes proceed during the
expansion time of this uniform plasma (~1 ns) [1–3].
Though excited multicharged ions, which are responsi-
ble for the x-ray radiation of this plasma, can be formed
at the first stage of cluster excitation, the generation of
x-ray radiation proceeds mostly in a uniform micro-
plasma.

Below, we consider an alternative method for the
creation of such a microplasma that results from the
collision of two intense cluster beams. Collision of two
clusters that are moving towards each other or colli-
sions of a cluster with individual nuclei lead to the
transformation of the kinetic energy of nuclei in cluster
beams into the energy of excitation of a forming micro-
plasma. Our goal is to analyze the processes that pro-
ceed in the course of formation of this microplasma and
to estimate the parameters of the plasma.

CLUSTER PARAMETERS
IN COLLIDING CLUSTER BEAMS

A general scheme of this process corresponds to the
almost frontal collision of two dense cluster beams
after their generation. As a result, a microplasma is
formed in the region of the collision of the cluster
beams, and the energy of this microplasma is taken

¶ This article was submitted by the author in English.
0021-3640/05/8101- $26.00 0006
from the kinetic energy of the colliding beams. Because
this process requires a high intensity and a small dura-
tion for the colliding beams, we will be guided by the
pulse scheme of cluster generation [4]. Using an exam-
ple of tungsten clusters, we use the parameters of clus-
ters in a beam evaluated for this scheme. These param-
eters for the tungsten case are as follows: a typical num-
ber of cluster atoms is n ~ 106; the number density of
bound atoms in clusters is Nb ~ 4 × 1019 cm–3; and a
radius of a cluster beam is 40 µm. Note that the number
density of bound atoms corresponds to the number den-
sity of multicharged ions in a forming microplasma.

At a certain stage of cluster generation, clusters are
charged by an electron beam. A charge of an individual
cluster is restricted by its strength, and the Rayleigh
instability threshold gives the maximum cluster charge
[5, 6] Zcr ≈ (5Ar/e2)1/2, where A is the specific cluster
surface energy and the cluster radius r is expressed
through the Wigner–Seits radius rW as r = rWn1/3. From
this formula, we have, for a tungsten cluster of the indi-
cated size (A = 4.7 eV, rW = 1.6 Å [7]), Zcr/n ≈ 2 × 10–3.
It is necessary to account both for the decrease of the
reduced cluster strength due to cluster excitation by an
electron beam in the course of its ionization and also for
its increase if a cluster is broken apart by electron
impact, so that these effects are mutually cancelled. We
take below Z/n = 1 × 10–3 for the case under consider-
ation.

At the last stage of cluster generation, clusters are
accelerated in an electric field. We assume the pulse
electric potential in which clusters are accelerated to be
equal to 1 and 10 MV in the two examples under con-
sideration, and these values are available for the con-
temporary pulse technique. This corresponds to an
energy per nucleus of 1 and 10 keV, respectively, and
this corresponds to cluster velocities of 3 × 106 and
1 × 107 cm/s. For the pulse method of cluster genera-
tion [4], when clusters are formed from a drop of radius
10 µm and the final radius of a generated cluster beam
© 2005 Pleiades Publishing, Inc.
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is 40 µm, the total energy transmitted to clusters is 0.02
and 0.2 J, respectively. Later collisions of clusters and
collisions of clusters with free ions lead to the forma-
tion of a microplasma, so that a typical nucleus charge
in this microplasma is z ~ 10 and a typical plasma tem-
perature is several tens of eV.

PROCESSES OF COLLISION OF CLUSTER 
BEAMS AND PARAMETERS OF MICROPLASMA

As a result of the collision of two cluster beams, the
kinetic energy is converted in the excitation of the elec-
tron component, and a hot plasma is formed that is sim-
ilar to that resulting from the excitation of a cluster
beam by a femtosecond laser pulse [1–3]. In this case,
during the collision of two clusters, atoms of one clus-
ter penetrate into the other one and are decelerated there
by interaction with the electron component. As a result,
the nuclei almost stop, and the excitation energy of the
electron subsystem is equal to the initial kinetic energy
of the nuclei. Considering almost frontal collisions of
cluster beams with a small angle between them, we
obtain the following criterion for the beam length L in
order for each cluster to take part in the collision:

(1)

Here, σ = 4π n2/3 is the cross section of collision of
two identical clusters and rW is the Wigner–Seits radius
of clusters. From this, we find the beam length

(2)

and, for the above parameters (Nb ~ 1 × 1019 cm–3, rW ≈
1.6 Å), criterion (2) gives L ≥ 30 µm. This corresponds
to a beam size under the pulse method [4] of its gener-
ation and gives a collision time of τ = L/v  ≈ 1 ns, which
is also a typical lifetime of a forming microplasma that
occupies a region of size ~L during this time.

We now consider the character of transformation of
the cluster kinetic energy into the excitation energy of a
forming microplasma. According to a study of cluster
collision with a solid surface [8–13], during this colli-
sion cluster nuclei penetrate into a solid, and, then,
under the pressure of a cluster shock, a shockwave is
formed at some distance from the solid surface, so that
the transformation of the kinetic energy of cluster
beams proceeds to a large extent through a shock wave.
In the case of cluster collisions, this mechanism does
not hold true because of their small size. Another mech-
anism of this process consists in the excitation of the
electron subsystem by moving nuclei, including collec-
tive effects such as plasma oscillations, and we consider
this mechanism for two limiting cases, taking into
account that a typical nuclear velocity is small com-
pared to typical electron velocities. Indeed, if a nucleus
is moving with a low velocity inside an electron sub-
system that is found in the ground state, a small part of

NclσL 1.≥

rW
2

L
n1/3

4πrW
2 Nb

-------------------≥
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the electrons can take part in transitions, because the
transition with a small change in the electron momen-
tum is prohibited for the majority of electrons. If the
electron subsystem is excited, this prohibition does not
hold, and the transformation of the nucleus energy pro-
ceeds more effectively.

For the ground state of the electron subsystem, we
consider the model of a dense degenerate electron gas in
which electrons are located in a Fermi sphere in a space
of electron momenta. Since the nucleus velocity is

, (3)

where vF is the electron velocity on the Fermi surface,
only electrons near the Fermi surface (at a distance
from it ~v) can partake in transitions. This gives, for the
deceleration rate [14, 15],

(4)

Here, a small parameter of this expansion is α ≈ v /πvF,
ao is the Bohr radius, and z is the effective charge of a
nucleus when it is moving with a velocity v  inside the
cluster.

Considering cluster electrons as a degenerate elec-
tron gas, we have the Fermi velocity for these electrons:

(5)

where Ne is the electron number density, z is the nucleus
charge in a degenerate electron gas, ρ is the tungsten
density, and m is the atom mass. The electron shell of
tungsten atoms is 5d46s2, and we assume that electrons
of these shells can form a degenerate electron gas; i.e.,
z = 6. This gives vF = 1.2e2/" for the tungsten case and
α = 0.004 and α = 0.012 for the tungsten-nucleus ener-
gies 1 and 10 keV, respectively. For these cases, we
have C(α) = 0.86 and C(α) = 0.60. The mean free path
of a nucleus inside the cluster with respect to its decel-
eration is, according to formula (4),

(6)

and, for the tungsten cases under consideration, we
have λ = 500ao and λ = 200ao. In reality, excitation of
the electron subsystem accelerates the excitation pro-
cess, and, hence, these values are overstated.

In the other limiting case, when final channels for
electron transition are open, the deceleration rate for a
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moving nucleus with respect to the excitation of elec-
trons is given by [16]

(7)

where the Coulomb logarithm is lnΛ = ln(pmax/pmin);
pmax = mev  is the maximum momentum transferred to a
scattered electron; pmin is its minimum value, which is
determined by the structure of the electron subsystem;
and we take, for definiteness, lnΛ ≈ 5–10. From this, we
have, for the nucleus mean free path with respect to
interaction with an electron subsystem,

, (8)

and, for the parameters of an example under consider-
ation, we obtain λ ! ao. In reality, we have an interme-
diate case between these two limiting ones. Indeed, if
we start from the ground state of the electron sub-
system, the rate of excitation of the electron subsystem
increases sharply in the course of an increase in the
degree of its excitation.

Thus, the transformation of the kinetic energy of
clusters and the collision of two cluster beams results
from the mutual penetration of atomic cores of one
cluster into another cluster, and these cores are deceler-
ated by excitation of the electron subsystem. Because
the deceleration process is the same in the case of an
individual atom, transformation of the kinetic energy
also proceeds in collisions of individual atoms and
atomic ions with clusters and their fragments before the
Coulomb explosion of excited clusters. This leads to
effective conversion of the initial kinetic energy of clus-
ter beams into the energy of a forming microplasma.

We now consider the properties of this microplasma
from another standpoint. Various processes lead to the
establishment of an equilibrium, so that a forming
microplasma consists of electrons and multicharged
ions. Assuming the ionization equilibrium to be ful-
filled, we find the electron temperature Te at which the
equilibrium constant is

(9)

where Jz is the ionization potential for an atomic ion of
a charge z. Taking z ≈ 6, we find that the ionization equi-
librium takes place at Jz/Te ≈ 12. From this, we have
that, at typical temperatures in the range Te = 20–40 eV,
ionization takes place for ions with an ionization poten-
tial Jz ≈ 200–500 eV that corresponds to z = 7–12. Note
that the kinetic energy of plasma electrons and ions is
in the range 150–300 eV in these cases; i.e., a signifi-
cant portion of the initial cluster energy is consumed
upon ionization of atoms and their ions.

dE
dt
-------– Nev

4πze4

mev
2

-------------- Λ ,ln=

λ
Emev

2rW
3

3z2e4 Λln
-----------------------=

K T( ) 1
Ne

------
meTe

2π"
2

------------ 
  3/2 Jz

Te

-----– 
  ,exp=
MICROPLASMA FROM CLUSTER COLLISIONS 
AND CLUSTER LASER PLASMA

The properties of this microplasma are similar to
those obtained by excitation of a cluster beam by an
ultrashort and superpower laser pulse. The lifetime of
the plasma resulting from the collision of two clusters
is ~rWn1/3/v  ~ 5 × 10–13 s, and, during this time, a dense
microplasma is formed inside a region of cluster colli-
sion with a number density of electrons of Ne ~ 1024 cm–3,
and, then, this plasma expands and is characterized by
the electron number density 1019–1020 cm–3. The latter
plasma lives for a time of ~1 ns. The electron tempera-
ture of this microplasma is several tens of electron
volts, and the charge of multicharged ions of this
plasma is about z = 10. These parameters are restricted
by the kinetic energy of nuclei in the incident cluster
beams, which we take to be 1 keV per nucleus. This
value can be increased by a decrease in the size of clus-
ters in a beam and by an increase in the kinetic energy
of clusters as determined by an experimental technique
and can be raised in the course of improvement of the
experimental technique.

As for a microplasma formed as a result of irradia-
tion of a cluster beam by a femtosecond laser pulse, its
parameters are better, though both microplasmas have
approximately the same lifetime (~1 ns) at the last stage
of their evolution, when each microplasma is almost
uniform. Indeed, the temperature of the cluster–laser
plasma is 0.1–1 keV, and the charge of multicharged
ions of this plasma can be z ≈ 30 (for example, see [17–
19]).

Thus, at the contemporary stage of the experimental
technique, the parameters of the microplasma resulting
from the collision of two cluster beams yield to those of
a laser–cluster plasma. In spite of this, the alternative
case of creation of a hot nanosecond microplasma is
worthy of notice, since the development of this method
can give new results for this microplasma.

This paper is supported in part by the Russian Foun-
dation for Basic Research (project no. 03-02-16059).
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