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We present a novel nonlinear mechanism for exciting a gravitational radiation pulse (or a gravitational wave)
by dust magnetohydrodynamic (DMHD) waves in dusty astrophysical plasmas. We derive the relevant equa-
tions governing the dynamics of nonlinearly coupled DMHD waves and a gravitational wave (GW). The system
of equations is used to investigate the generation of a GW by compressional Alfvén waves in a type II super-
nova. The growth rate of our nonlinear process is estimated, and the results are discussed in the context of the
gravitational radiation accompanying supernova explosions. © 2005 Pleiades Publishing, Inc.

PACS numbers: 04.30.Db, 97.60.Bw, 98.62.En
It is well known that there exist numerous mecha-
nisms for the conversion between gravitational waves
(GWs) and electromagnetic waves [1–19]. For exam-
ple, the propagation of GWs across an external mag-
netic field gives rise to a linear coupling to the electro-
magnetic field [1], which may lead to the gravitational
wave excitation of ordinary electromagnetic waves in
vacuum, or of magnetohydrodynamic (MHD) waves in
a plasma [2–4]. Furthermore, various nonlinear cou-
pling mechanisms give rise to three-wave couplings
between GWs and electromagnetic waves in matters.
We also note that four-wave processes may cause grav-
iton–photon conversion even in the absence of external
matters or fields [5]. Moreover, GWs can couple to
other types of waves, e.g., sound waves, also in neutral
media [6]. There are numerous motives for considering
wave couplings involving GWs. In some cases, the
emphasis is on the basic theory [5–10]. In other works,
the focus is on GW detectors [11–13], on cosmology
[14–16], or on astrophysical applications such as binary
mergers [17], gamma-ray bursts [18], or pulsars [19].
Here, supernovae and neutron star formation, giving
rise to GWs as considered in, e.g., [20, 21], will be of
special interest, since the possibility of dust formation
in supernova remnants is of current astrophysical inter-
est [22, 23]. Many of the previous works have concen-
trated on the conversion from GWs to electromagnetic
waves, which can be analyzed within a test matter
approach, which neglects the back reaction on the grav-
itational field. We note that such an approach can be
justified if the background energy density is low.

¶ This article was submitted by the authors in English.
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In this letter, we consider the three-wave coupling
between two dust magnetohydrodynamic (DMHD)
waves and a GW, including the effects of dust particles
[24] in a dense medium such as the supernova where
electrons, protons, and charged dust macroparticles are
abundant. For this purpose, we derive the dust Hall
MHD equations [24], i.e., equations describing the dust
MHD waves, including the effect of a GW. We empha-
size that, for a low-beta plasma, the system of equations
has a structure, which can describe both a dust-domi-
nated plasma, as well as an ordinary Hall-MHD plasma
(if we replace the dust mass density by the ion mass
density). Using the normal mode approach [25], the
three-wave coupling equations are derived, including
the back reaction on a GW from the Einstein equations.
The system is shown to fulfill the Manley–Rowe rela-
tions [25] (which means that the interaction process can
be viewed quantum-mechanically) and to be energy-
conserving. The three-wave equations are then used to
analyze the generation of a GW by the compressional
Alfvén waves in the iron core of the type II supernova
[26, 27]. It turns out that the characteristic timescale for
the Alfvén–GW conversion can be less than a millisec-
ond, which implies that the mechanism is potentially
relevant for the high-frequency part (>1 MHz) of the
supernova GW spectrum.

The plasma dynamics, due to the response to a grav-
itational wave

(1)
ds2 dt2– 1 h++( )dx2+=

+ 1 h+–( )dy2 2h×dxdy dz2+ +
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can be formulated according to

(2)

and

(3)

where we have introduced the tetrad e0 = ∂t, e1 = (1 –
h+/2)∂x – h×/2∂y, e2 = (1 + h+/2)∂y – h×/2∂x, e3 = ∂z, and
∇  = (e1, e2, e3). Moreover,

(4)

represents the gravitational acceleration of the particle
species s due to the GWs. We have assumed that ∂z ≈ −∂t

holds for the GWs.
The electromagnetic field is determined through the

gravity-modified Maxwell’s equations. Using the same
notation as above, they take the form

(5)

(6)

with the constraints∇  · E = ns and ∇  · B = 0.
Here, the effects of the GWs (1) are represented by the
effective currents

(7)

and

(8)

With the general setting established above, we will
from now on focus on the case of a three-component
dusty plasma, for which we have the equation of state
ps = kBTsns. Thus, the plasma is composed of electrons
(e), ions (i), and dust particles (d). The mass md of the
dust particles is assumed to be much larger than the
electron and ion masses, viz. me and mi, respectively.
We will assume that the plasma is approximately
quasineutral, i.e., qini = ene – qdnd. Moreover, the waves
under consideration are supposed to propagate with
phase velocities much smaller than the speed of light c.

∂tns ∇ nsvs( )+ 0,=

msns ∂t v ∇⋅+( )v

=  ∇ ps– qsns E v B×+( ) msnsgs,+ +

gs
1
2
--- 1 v sz–( ) v sx∂th+ v sy∂th×+( )e1–=

–
1
2
--- 1 v sz–( ) v sx∂th× v sy∂th+–( )e2

–
1
2
--- v sx

2 v sy
2–( )∂th+ 2v sxv sy∂th×+[ ] e3,

∂tE ∇ B× qsnsvs jE,–
s

∑–=

∂tB ∇ E jB,–×–=

qss∑

jE
1
2
--- Ex By–( )∂th+ Ey Bx+( )∂th×+[ ] e1–=

–
1
2
--- Ey Bx+( )∂th+– Ex By–( )∂th×–[ ] e2,

jB
1
2
--- Ey Bx+( )∂th+ Ex By–( )∂th×–[ ] e1–=

–
1
2
--- Ex By–( )∂th+ Ey Bx+( )∂th×+[ ] e2.
Thus, we may neglect the displacement current in
Ampere’s law (5), i.e.,

(9)

Due to the constraint me, mi ! md, the momentum con-
servation equation (3) for the inertialess electrons and
ions becomes

(10)

and

(11)

respectively. Adding Eqs. (10) and (11), using the
quasineutrality condition, assuming that the number
densities of the electrons and ions are not much larger
than the number density of the dust, and using the
heavy dust approximation, the dust momentum equa-
tion takes the form

(12)

where ρd = mdnd. In Eq. (12), we have also used the
approximation [Te + (e/qi)Ti]ne ! [Td – (qd/qi)Ti]nd.

Again, using Eqs. (10) and (11) to eliminate the
electric field, Faraday’s law (6) becomes

(13)

where we have used the dust momentum equation (12).
Thus, Eqs. (12) and (13), together with the dust con-

tinuity equation

(14)

constitute the dust MHD equations in the presence of a
GW. For a low-beta plasma, the pressure term in (12) is
negligible, which means that the structure of equations
(12)–(14) is the same as in an ordinary Hall-MHD
plasma without dust. Henceforth, we will consider a
low-beta plasma, drop the index d on all quantities, and,
thus, let q/m be either the ion charge-to-mass ratio or
the considerably smaller charge-to-mass ratio of the
dust particles. As a result, our mathematical analysis
below will then apply either to a dust Hall-MHD
plasma, or to an ordinary Hall-MHD plasma without
dust.

To simplify the problem, we consider the case when
the dust-acoustic speed cs = kBT/m is much smaller than

the dust Alfvén velocity CA = ( /µ0ρ)1/2 such that the
pressure term in (12) can be neglected. As a prerequi-
site for the nonlinear calculations, we first study the lin-
ear modes of the system (12)–(14) omitting the gravita-

∇ B× qsnsvs jE.+
s

∑=

0 kBTe∇ ne– ene E ve B×+( )– menege,+=

0 kBTi∇ ni– qini E vi B×+( ) minigi,+ +=

ρd ∂t vd ∇⋅+( )vd kB Td

qd

qi

-----Ti– 
  ∇ nd–=

+ ∇ B×( ) B jE B ρdgd+×–×

∂tB ∇ vd B×( )×=

–
md

qd

------ ∇ ∂ t vd ∇⋅+( )vd gd–[ ]× jB,–

∂tρd ∇ ρ dvd( )⋅+ 0,=

B0
2
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tional contributions. Letting B = B0  + B1, ρ = ρ0 + ρ1,
where the index 1 denotes the perturbation of the equi-
librium part, and linearizing Eqs. (12)–(14) and Fourier
analyzing, we readily obtain the dispersion relation

(15)

where ωc = qB0/m is the gyrofrequency. For frequencies
much smaller than the gyrofrequency, we note that the
modes separate into the shear Alfvén wave, ω2 –

 ≈ 0, and the compressional Alfvén wave, ω2 –

k2  ≈ 0. Below, we will consider the more general
case described by (15), however. For later applications,
it is convenient to use the linear equations to express all
quantities in terms of a single variable. Thus, we let the
wavevector of the dust MHD waves lie in the x–z-plane,
and write

(16)

(17)

(18)

(19)

Next, we consider a system of three weakly interact-
ing waves. Two dust MHD waves with frequencies and
wavenumbers (ω1, k1) and (ω2, k2), respectively, and an
arbitrarily polarized gravitational wave propagating
along the z-direction with the frequency and wavenum-
ber (wg, kg ). Noting that the gravitational dispersion
relation reads ωg = kgc and that CA ! c, the frequency
and wavenumber matchings (energy and momentum
conservation) can be approximated:

(20)

We will thus use k1 ≈ –k2 below, and we define k1x =
−k2x ≡ kx as well as k1z = –k2z ≡ kz (letting ky = 0 for con-
venience). All quantities are now assumed to be super-
positions of two dust MHD waves whose amplitudes
are weakly varying functions of time, i.e., ρ = ρ0 +

(t)exp[i(kj · r – ωt)] + c.c., where c.c. stands
for the complex conjugate. In principle, the gravita-
tional wave should also contribute, but we note that,
within a fluid model, the gravitational wave contribu-
tion to all plasma perturbations (velocity, magnetic

ẑ

ω2 kz
2CA

2–( ) ω2 k2CA
2–( )
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ρ jj 1=
2∑
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field, and density) are second-order in the gravitational
wave amplitudes, provided that the GW propagates par-
allel to B0, as we have assumed. Thus, the only linear
perturbations due to the gravitational wave are those of
the metric as described by Eq. (1).

Next, in order to simplify the algebra, we introduce
the normal mode aj defined by

(21)

Returning to Eqs. (12)–(14) and including the nonlinear
terms,1 we can, by keeping the part varying as
exp[i(k1 · r – ω1t)], derive

(22)

and we obtain a similar result for ∂a2/∂t by letting
1  2. After some algebra, using Eqs. (16)–(19) and
(21), we find that Eq. (22) reduces to

(23)

and similarly, for mode 2,

(24)

1 When including the nonlinear GW-coupling, it is, in principle,
important to separate the coordinate components (indices x, y, z)
from the tetrad components (indices 1, 2, 3), since the difference
is first order in h+, h×. However, for notational convenience, we
let indices x, y, z denote tetrad components 1, 2, 3 in equation (22)
and henceforth.
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where

(25)

(26)

and

(27)

Next, using the Einstein equations, linearized in h+, h×,
keeping only the resonantly varying part of Tµν, we
obtain for the ×- and +-polarization, respectively,

(28)

and

(29)

which is reduced to

(30)

and

(31)

where Wg = /2κ. The total wave energy is Wtot =
W1|v x1|2 + W2|v x2 |2 + Wg(|h×|2 + |h+ |2), and it is easily
verified from (23), (24) together with (30), (31) that
Wtot is conserved. Furthermore, the appearance of the
same coupling coefficients V×, V+ in Eqs. (23), (24) as
well as in (30), (31) assures that the Manley–Rowe rela-
tions are fulfilled, which implies that each mode
changes energy in direct proportion to its frequency,
i.e., (dW1/dt)/(dW2/dt) = ω1/ω2, etc. The system of (23),
(24) together with (30), (31) describing the energy con-
version between DMHD waves and GWs is one of the
main results of the present letter. A more elaborate cal-
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culation scheme, including effects such as inhomoge-
neity and background curvature, is a project for future
research.

We now apply our results to the gravitational radia-
tion arising from the iron core of a type II supernova
where the densities can be of the order 1017 kg/m3 [27].
The large neutrino outflow (which can reach powers of
1033 W/cm2; see, e.g., [26]) can generate MHD waves
described by (15). From the flux conservation, we
expect the iron core to be strongly magnetized (compa-
rable to pulsars), and for magnetic field strengths B0 ~
108 T, the gyrofrequency will be much larger than all
other frequencies of the problem. The dispersion rela-
tion then separate into the shear Alfvén waves ω2 –

 ≈ 0 and the compressional Alfvén waves ω2 –

k2  ≈ 0. Assuming that the pump MHD wave is a
compressional mode with a frequency 5 MHz, the
matching conditions (20) can be fulfilled for a GW with
a typical frequency 3 MHz and a shear Alfvén wave
with the frequency 2 MHz.2 For the assumed geometry,
the MHD waves couple only to the h×-polarization (to a
good approximation), and by combining (24) and (30),
we obtain

(32)

Thus, noting that the factor ω2|V×|2/ωgW2 is negative2

and has a magnitude of order unity3 for the given param-
eters, the growth rate is

(33)

which, for a weakly relativistic pump quiver speed,
|v x1|/c ~ 1/10, implies γ ~ 10 kHz. Thus, we deduce that
excitation of a GW by MHD waves is a reasonably fast
process in a dense mediums such as the supernova iron
core. It would be of interest to quantitatively estimate
the energy that can be converted to GWs through this
process. Clearly, the growth rate is fast enough, such
that the time available for conversion is not a limiting
factor. However, eventually the MHD wave source will
be depleted, which give an upper limit for the energy
available through this mechanism. How large fraction

2 Note that, from the Manley–Rowe relations, the pump wave must
have the highest frequency for the growth rates to become real
and positive. Thus, using the matching condition (20), we see that
the shear Alfvén mode formally has a negative frequency. Fur-
thermore, we note that the dispersion relations, together with the
matching conditions, means that the pump mode cannot propa-
gate purely along the magnetic field. Specifically, the wavevector
matching implies kxCA ≈ 4.6 MHz, where CA ≈ 300 m/s for the
given parameters.

3 This can be seen by taking the limit ωc  ∞ of the expression,

noting that (  – ) scales as 1/  from the dispersion

relation (15).
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of the MHD wave source that can be converted to GWs
depend on the influence from competing processes, for
example, excitation of other MHD waves by the MHD
pump wave and/or wave particle interaction. Thus, fur-
ther research is necessary before a definite estimate of
the GW energy levels due to the present mechanism can
be given. However, we emphasize that the present pro-
cess can give rise to GWs of higher frequencies than
many of the previously considered excitation mecha-
nisms (see, e.g., [20, 21, 28]). Thus, our model contrib-
utes to the understanding of gravitational radiation
emissions accompanying supernova explosions [29].
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New experimental data are presented for the inclusive cross sections both for the production and for the yield of
stable and unstable isotopes with charge numbers from one to eight in 16Op collisions at 3.25 A GeV/c. © 2005
Pleiades Publishing, Inc.

PACS numbers: 25.10.+s
The identification of mechanisms of the fragmenta-
tion of nuclei interacting with hadrons and nuclei is a
fundamental problem of high energy physics. Accord-
ing to experimental data, nuclear fragments make the
basic contribution to the multiplicity of secondary par-
ticles in hadron–nucleus collisions at several GeVs per
nucleon. Although this phenomenon has been studied
in a number of experimental works, there is no informa-
tion about such important characteristics of nuclear
fragmentation processes as cross sections for the yield
of all nuclear fragments, particularly unstable,
observed in experiments.

The aim of this work is to determine the inclusive
cross sections for the production of stable and unstable
nuclei with charge numbers Zf = 1–3 and cross sections
for the yield of stable and unstable nuclei with charge
numbers Zf = 4–8 in 16Op collisions at 3.25 A GeV/c.

We use the experimental data consisting of 13 479
16Op events detected on a 1-m bubble chamber (Labo-
ratory of High Energies, Joint Institute for Nuclear
Research) irradiated by 16O nuclei with a momentum of
3.25 A GeV/c at the Dubna synchrophasotron. Proce-
dure problems concerning the reconstruction of the
kinematic characteristics of secondary particles and
fragments, as well as their identification according to
charge and mass, were previously discussed in [1–3].

Stable isotopes, fragments with the charge Zf, were
separated as in [1] by analyzing the distributions over
the variable x = 1/p, where p is the laboratory momen-
tum of a fragment. We selected fragments with the mea-
sured length L ≥ 35 cm for Zf = 1 and 2 and L > 40 cm
for Zf = 3–8.
0021-3640/05/8104- $26.00 0140
The procedure for determining the production cross
sections for stable isotopes with the charge number Zf
consists of the following stages.

(i) The x spectrum of fragments with the charge
number Zf is approximated by the following sum of
Gaussians:

Here, n is the total number of the experimentally
observed isotopes with the charge number Zf, Ai is the
mass number of the ith isotope, xk is the x value at the
kth experimental point, po = 3.25 GeV/c is the initial
momentum per nucleon, and ai and σi are the approxi-
mation parameters that make it possible to determine
the contribution from each isotope to the x spectrum of
fragments.

(ii) The fraction αi of the ith isotope with the charge
number Zf is determined as the ratio

where m is the number of experimental points in the
x spectrum of fragments with the charge number Zf.

f Zf
xk( ) ai xk 1/Ai po–( )2/2σi

2–( ).exp
i 1=

n

∑=

α i Zf( )

ai xk 1/Ai po–( )2/2σi
2–( )exp

k 1=

m

∑

ai xk 1/Ai po–( )2/2σi
2–( )exp

i 1=

n

∑
k 1=

m

∑
-------------------------------------------------------------------------------------,=
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(iii) The production cross section for the ith isotope
with the charge number Zf is calculated as

where the average multiplicity 〈n(Zf )〉  of fragments
with the charge number Zf for Zf ≥ 2 is taken from [4],
the average multiplicity of single-charged fragments is
determined as the ratio of the total number of positive
single-charged particles with momenta above
1.75 GeV/c to the total number of inelastic 16Op events,
and σin(16Op) is the inelastic cross section for 16Op col-
lisions [5], which is equal to 334 ± 6 mb for a momen-
tum of 3.25 A GeV/c.

By definition, σi(Zf) is the inclusive cross section for
the production of the ith isotope with the charge num-
ber Zf. However, since no event with two or more iso-
topes with Zf ≥ 4 has been observed in the experiment,
the cross section obtained for such isotopes can be con-
sidered as their yield cross sections.

The production cross section for unstable 5Li3 nuclei
was determined [6] by analyzing the effective-mass
spectra of the α particle and proton, as well as by ana-
lyzing the angles between the proton momentum and
the momenta of the α particles produced in 16Op colli-
sions at 3.25 A GeV/c. Both values turned out to be the
same within the statistical errors: σ(5Li3) = 8.4 ±
0.5 mb. As we showed in [3], the cross sections for the
production of light mirror nuclei 3H1 and 3He2, as well
as 7Li3 and 7Be4, coincide with each other within the
statistical errors. For this reason, the cross sections for
the production of the mirror nuclei 5He2 and 5Li3 are
expected to be identical.

Using the phenomenological model of isotropic
phase space and analyzing the experimental spectrum
of effective masses, we obtained a value of σ(12C*) =
(9.8 ± 0.9) mb for the cross sections for the production
of excited 12C* nuclei in the channel of the production
of three α particles in 16Op collisions at 3.25 GeV/c [7].
The direct decay channel 12C*  3α and the channel
12C*  8Be4 + α  3α provide 40 and 60% of this
cross section, respectively.

Analyzing azimuthal correlations in the channels of
the production of three and four α particles in 16Op col-
lisions at 3.25 GeV/c in the framework of the phenom-
enological model of isotropic phase space [8], we
determined the contributions W(8Be4) = (22.0 ± 1.1)%
and W(9B5) = (19.0 ± 1.0)% of the unstable nuclei 8Be4

and 9B5 to these channels. Using the total cross section
(21.68 ± 0.87) mb for the production of three and four
α particles, we obtain σ(8Be4) = (4.80 ± 0.31) mb and
σ(9B5) = (4.12 ± 0.27) mb for the cross sections for the
yield of these unstable nuclei. In the framework of a
similar model, analyzing the scattering angle ϑαα
between a pair of α particles in the channel of the pro-

σi Zf( ) α i Zf( ) n Zf( )〈 〉σ in O16 p( ),=
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duction of two α particles in the same collisions, we
determined the contributions W(8Be4) = (9.7 ± 0.5)%
and W(9B5) = (5.4 ± 0.3)% of the unstable nuclei 8Be4

and 9B5 to this channel. Using the cross section
(29.17 ± 1.51) mb for the channel of the production of
two α particles, we obtain σ(8Be4) = (2.83 ± 0.20) mb
and σ(9B5) = (1.58 ± 0.11) mb for the cross sections for
the yield of these unstable nuclei.

Thus, the total cross sections for the yields of the
unstable nuclei 8Be4 and 9B5 in 16Op collisions at
3.25 GeV/c are equal to σ(8Be4) = (7.63 ± 0.37) mb and
σ(9B5) = (5.70 ± 0.29) mb, respectively.

The results of the above procedures, along with the
data on cross sections for the production of unstable
nuclei, are given in the table. The table shows that

(i) α particles are produced with the largest inclu-
sive cross section among multicharged fragments;

(ii) cross sections for the production of mirror nuclei
with mass numbers differing by ∆A = ±1 from the main
mass number defined as A = 2Z coincide with each
other within statistical errors. Note that cross sections
for the yield of the unstable isotope 9B and the stable
mirror isotope 9Be also coincide with each other within
statistical errors. It is remarkable that this rule also con-
cerns the mirror nuclei 15N and 15O formed due to the

Cross sections for the production of stable and unstable iso-
topes in 16Op collisions at 3.25 A GeV/c

Z A σ ± ∆σ, mb Z A σ ± ∆σ, mb

1 1H1 509.0 ± 5.7 5 5.70 ± 0.29

2H1 116.9 ± 1.3 10B5 10.6 ± 0.4
3H1 41.8 ± 0.4 11B5 10.9 ± 0.4

2 3He2 40.7 ± 1.9 6 12B5 0.51 ± 0.42
4He2 164.0 ± 1.9 10C6 1.77 ± 0.8

8.40 ± 0.50 11C6 9.18 ± 0.76

6He2 1.03 ± 0.23 12C6 26.3 ± 0.8

3 8.40 ± 0.50 9.80 ± 0.80

6Li3 19.0 ± 0.8 13C6 9.48 ± 0.76
7Li3 10.6 ± 0.8 14C6 3.68 ± 0.76
8Li3 4.80 ± 0.76 7 13N7 9.40 ± 0.79

4 7Be4 10.3 ± 0.5 14N7 26.1 ± 0.8

7.63 ± 0.37 15N7 30.3 ± 0.8

9Be4 6.15 ± 0.52 8 14O8 2.85 ± 0.7
10Be4 0.89 ± 0.52 15O8 31.1 ± 0.7

16O8 13.0 ± 0.7

* Unstable or excited states.

B
9 *

5

He
5 *

2

Li
5 *

3 C
12 *

6

Be
8 *

4
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loss of one nucleon by the initial nucleus 16O in periph-
eral collisions with a target proton.
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Novel Probe of the Vacuum of the Lattice Gluodynamics¶
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We introduce the notion of a minimal number of negative links on the lattice for a given original configuration
of SU(2) fields. Negative links correspond to a large potential, not necessarily to large action. The idea is that
the minimal number of negative links is a gauge invariant notion. To verify this hypothesis, we measure the cor-
relator of two negative links, averaged over all the directions, as a function of the distance between the links.
The inverse correlation length coincides within the error bars with the lightest glueball mass. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 11.15.–q, 11.15.Ha, 12.38.Gc
A traditional way to study spectrum of excitations is
to measure correlators of various sources. For example,
the correlator,1

(1)

where  is the gluonic field strength tensor, is sensi-
tive to the glueball mass mgl at large (Euclidean) dis-
tances r:

(2)

On the other hand, one can also study gauge dependent
correlators, such as

(3)

where  is the gauge field. Such correlators are not
unitary, generally speaking, and are not controlled by
glueball masses. In particular, gluon propagator (3)
could even grow at large r. More realistically, i.e., as
indicated by the lattice measurements, the gluon prop-
agator falls off at large r but exhibits some spurious
mass scales; for a review, see, e.g., [1, 2]. For us, it is
important that these spurious mass scales are, as a rule,
lower than the lightest glueball mass.

In this note, we introduce a new type of correlators
that, we hypothesize, might be unitary although they
are not explicitly gauge invariant (like (1)) and check
our hypothesis through lattice simulations of SU(2)
gluodynamics.

To explain the basic idea behind our measurements,
it is useful first to remind to the reader of how one can
introduce a gauge invariant condensate of dimension

¶ This article was submitted by the authors in English.
1 For simplicity of notations, we do not take into account the anom-

alous dimension.

Dgl r( ) 0〈 | Gµν
a r( )( )2

Gαβ
a 0( )( )2

0| 〉 ,,≡

Gµν
a

Dgl r( )
r ∞→
lim const const( )' mglr–( ).exp+=

Dµν
a b, r( ) 0〈 |Aµ

a r( ) Aν
b 0( ) 0| 〉 ,,=

Aµ
a
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two in gauge theories [3]. One starts with the vacuum

expectation value 〈( )2〉 , which is obviously gauge
dependent. One can, however, minimize this vacuum
expectation value on the gauge orbits, and the results

〈( )2〉min are gauge invariant by construction. To
ensure that the minimum exists, a Euclidean signature
is used.2

We generalize this idea to the case of a Z(2) projec-
tion of the original SU(2) fields. In this projection, the
link variables take values ±1 (for a review, see, e.g.,
[5]). Upon the Z(2) projection, a Z(2) gauge invariance
remains. We fix this gauge freedom by minimizing the
number of negative links over the whole lattice. We
speculate, furthermore, that the density of these nega-
tive links might well be gauge invariant, by analogy

with 〈( )2〉min.

Moreover, we expect that the correlator of the nega-
tive links is unitary, like (1). This speculation goes,
apparently, beyond the ideas discussed so far. Indeed,
the negative links in the continuum limit correspond to

singular potentials,  ~ 1/a, where a is the lattice
spacing. One could naively argue that the correlator of
such strong fields dies off in distances of order a. In par-
ticular, this is true for pure perturbative fluctuations.

This argument might not work, but only if there
exist fine tuned vacuum fluctuations that are sensitive
both to the lattice spacing and ΛQCD. Although the idea
of the existence of fine tuned fluctuations may look too
exotic at first sight, such fluctuations do exist. In partic-
ular, the so-called P-vortices are closed surfaces whose
total area scales in the physical units; for a review, see,
e.g., [5]. On the other hand, the P-vortices are defined

2 A modification suitable for the Minkowski space is to work in the
Hamiltonian formalism [4].

Aµ
a

Aµ
a

Aµ
a

Aµ
a
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as a unification of all the negative plaquettes in the Z(2)
projection. One can expect, therefore, that they are
associated with an action density that is ultraviolet
divergent. And, indeed, the fact that the P-vortices are
associated with the ultraviolet divergent non-Abelian
action was revealed directly through lattice measure-
ments [6]. It is by analogy with these observations that

Fig. 1. ln  vs. lattice spacing for (a) µ = ν and

for (b) µ ≠ ν, results obtained for IMCP.

Gµν r( )
G ∞( )

----------------- 1– 
 

Fig. 2. Mass parameters for IMCP and DMCP for µ = ν and
for µ ≠ ν.
we expect the “propagator of negative links” to scale in
physical units as well. This is, of course, a daring pos-
sibility that cannot be proven a priori but can be only
supported or rejected by measurements.

We perform measurements in greater detail both in
direct and indirect maximal center projections (DMCPs
and IMCPs). The details of these calculations are given
in the Appendix. As a result of SU(2)  Z(2) projec-
tion, the original SU(2) field configurations are pro-
jected into the closest configuration of Z(2) gauge
fields. The remaining Z(2) gauge freedom is then fixed
by maximizing the functional

(4)

with respect to Z(2) gauge transformations (Zx, µ 
zxZx, µ , zx = ±1).

After gauge fixing, only the positions of the negative
links are relevant and it is reasonable to change the vari-
ables:

(5)

Moreover, to imitate a scalar correlator on the discrete
variables, we consider here the isotropic correlator
defined as

(6)

where the summation is over all links Zx, µ for x lying in

the spherical layer r < |x | < r +  and Nr is the total

number of links in this layer.
Correlator (6) tends to a nonvanishing constant

G(∞) = 〈 〉 2 as r  ∞ (  is the average den-
sity of the negative links), and we fit the data by the
expression (see (2)):

(7)

We thus get mass parameter m for various values of lat-
tice spacing a. Logarithmic plots for the isotropic corr-
elator G(r) are presented in Fig. 1 for IMCPs, while the
corresponding values of mass m are depicted in Fig. 2
for IMCPs and DMCPs.

As is seen from Figs. 1 and 2, the correlator Gµν(r)
scales in physical units (within the error bars) and the
mass parameter is close to the scalar 0++ glueball mass
(m(0++) = 1.65 ± 0.05 GeV [7]). Thus, our measure-
ments support the idea that correlator (6) is in fact
gauge invariant and unitary. Of course, the results are
not analytical but pure numerical and, in principle, the
picture can change at smaller values of the lattice spac-
ing. The nontriviality of this observation is that it is a
correlator of potentials that are not explicitly gauge
invariant. Moreover, in the continuum limit, the nega-

F Z( ) Zx µ,

x µ,
∑=

zx µ̂+

Ẑx µ, 1 if Zx µ,, 1; 0 if Zx µ,– 1= ={ } .=

Gµν r( ) 1
Nr

------ Ẑ0µẐx ν,〈 〉 ,

r x r
a
2
---+< <

∑≡

a
2
---

Ẑx ν, Ẑx ν,〈 〉

G r( ) G ∞( ) C mr–{ } .exp+=
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tive links correspond to singular potentials. The scaling
of the correlation length observed here gives further
support to the existence of fine-tuned vacuum fluctua-
tions.
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APPENDIX

We perform our calculations both in direct [8] and
the indirect [9] maximal center projections (DMCPs
and IMCPs). The DMCP in SU(2) lattice gauge theory
is defined by the maximization of the functional

(8)

with respect to gauge transformations; Ux, µ is the lattice
gauge field. Maximization of (8) fixes the gauge up to
Z(2) gauge transformations, and the corresponding Z(2)
gauge field is defined as Zx, µ = sgnTrUx, µ. To get the
IMCP, we first fix the maximally Abelian gauge maxi-
mizing the functional

(9)

with respect to gauge transformations. We project
gauge degrees of freedom U(1)  Z(2) by a proce-
dure completely analogous to the DMCP case, that is,
we maximize F1(U) (8) with respect to U(1) gauge
transformations.

To fix the maximally Abelian and direct maximal
center gauge, we create 20 randomly gauge trans-
formed copies of the gauge field configuration and
apply a simulated annealing algorithm to fix the

F1 U( ) TrUx µ,( )2,
x µ,
∑=

F2 U( ) Tr Ux µ, σ3Ux µ,
+ σ3( ),

x µ,
∑=
JETP LETTERS      Vol. 81      No. 4      2005
gauges. In the calculations, we used that copy that cor-
responded to the maximal value of the gauge fixing
functional. To fix the indirect maximal center gauge
from a configuration fixed to a maximally Abelian
gauge and to fix Z(2) degrees of freedom, one gauge
copy is enough to work with our accuracy. We work at
various lattice spacings to check the existence of the
continuum limit. The parameters of our gauge field
configurations are listed in the table. To fix the physical

scale, we use string tension in lattice units [10],  =
440 MeV.
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σ

Parameters of configurations

β Size NIMCP NDMCP

2.35 164 20 20

2.40 244 50 20

2.45 244 20 20

2.50 244 50 20

2.55 284 37 17

2.60 284 50 20
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An asymptotic theory of the screening of the dust-particle charge in a plasma with an external ionization source
has been developed. It has been shown analytically that the screening of the charge of a dust particle adsorbing
the charge of charged plasma particles that fall on it is not generally described by the Debye theory. The screen-
ing radius is determined by the relation between the coefficients βei and βL = 4πeki (ki is the ion mobility) of the
electron–ion and Langevin recombinations, respectively. When βL @ βei, the screening radius is much larger
than the electron Debye radius. It has been shown that the contribution of the ion component of an isothermal
plasma to screening is equal to the electron contribution if the coefficient of the electron–ion recombination is
twice or more larger than the Langevin coefficient of the ion recombination, βei ≥ 2βL. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 52.27.Lw
INTRODUCTION

Dusty-plasma physics is a rapidly developing field
of science. The problem of the interaction force
between dust particles is an important and complicated
problem in dusty-plasma physics. This problem is
closely connected with the problem of the screening
character for a dust-particle charge, which is incom-
pletely solved in the physics of an ordinary low-temper-
ature plasma [1]. The Debye character of screening the
dust-particle charge is assumed in almost all the current
models that have been developed in dusty-plasma phys-
ics (see, e.g., reviews [2, 3]). There is no commonly
accepted point of view on the role of the ion component
in field screening. The screening radius is an important
parameter determining the conditions of the crystalliza-
tion of the Debye plasma [2], ion drag force (see [4] and
the further discussion in [5, 6]), the spectrum of the
dusty plasma waves [2], etc.

In this work, the formation and screening of the
charge of an isolated dust particle in a plasma with an
external source of gas ionization are considered in the
hydrodynamic regime of the transport of electrons and
ions. Investigation of the dusty plasma at high pres-
sures, where the gas is ionized by the external source
and the ionization by plasma electrons is negligibly
small, attracts great interest (see [2, 7–12]). For this
reason, we analyze here dusty plasma with a constant
rate of gas ionization by an external source such as a
beam of fast electrons or protons in non-self-sustained
discharges or laser radiation in a photoresonant plasma.
0021-3640/05/8104- $26.00 ©0146
ASYMPTOTIC SCREENING THEORY

Let a dust particle be located at the origin of the
coordinate system and the ionization compensating for
the loss of the plasma due to the absorption of plasma
particles by the dust particle be uniform and constant in
time and space. In the drift–diffusion approximation,
the steady state of the plasma is described by the equa-
tions

(1)

Here

(2)

where νσ is the collision frequency; Dσ is the diffusion
coefficient; φ is the self-consistent field potential; eσ =
e and –e, where e is the elementary charge, for σ = i and
e, respectively; Qion is the intensity of the bulk ioniza-
tion by the external source; and βei is the recombination
coefficient. We are interested in the asymptotic behav-
ior of the effective potential for r @ a when all the coef-
ficients in Eqs. (1) and (2) can be considered as being
independent of coordinates and the self ionization of
atoms by plasma electrons is assumed to be negligibly
small compared to Qion. Note that the charge and, cor-
respondingly, the electric field of the dust particle are
formed by electrons. Therefore, according to thermo-
dynamic concepts, the field of the dust particle cannot
heat the electron component and lead to a noticeable
change in the coefficients of the transport, ionization,

∇ Gσ Qion βeineni, σ– e i.,= =

Gσ
eσnσ

mσνσ
------------∇φ Dσ∇ nσ+

 
 
 

,–=
 2005 Pleiades Publishing, Inc.
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and recombination of electrons [8]. This means that the
self ionization of the plasma is possible only in an
external electric field whose magnitude in discharges
with the external ionization source is insufficient for an
noticeable ionization of the gas.

Since the effective potential decreases with increas-
ing distance, Eqs. (1) and (2) can be linearized begin-
ning with a certain radius RL. Assuming that ∇ Gσ = 0 in
the absence of any dust particle, we obtain

(3)

After linearization, Eqs. (1) take the form

(4)

where n0 ≡ n0e, i and δnσ ≡ δnσ(r) is the deviation of the
density of the σth type of particles due to the absorption
of the plasma by the dust particle.

In terms of these quantities, the Poisson equation
has the form

(5)

Dividing Eq. (4) by Dσ, summing over the types of par-
ticles, and taking into account Eq. (5) and the Einstein
relations Dσ = Tσ/mσνσ, we arrive at the following equa-

tion for the total density  ≡ δn+:

(6)

where  = n0/Dσ,  =  – ,  =

4π n0/Tσ, and δn– = δni – δne.

Dividing Eq. (4) by Dσ, multiplying by eσ, and sum-
ming over the types of particles, we obtain

(7)

where  =  + ,  =  – , and  =

βein0/Dσ. For a nonisothermal plasma, from Eqs. (6)
and (7) we obtain

(8)

where

(9)

Since δne, i(∞) = 0, it follows from Eq. (8) that

(10)

where A and B are arbitrary constants that are not deter-
mined in the framework of this approach. The integra-

n0e i, Qion/βei.=

eσn0

mσνσ
------------– ∆φ Dσ∆δnσ– βein0 δne δni+( ),–=

∆φ 4πδρ– 4π eσδnσ.
σ
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∆δn+ ks

2δn+– k
D

–
2 δn–,=

ks
2 βeiσ∑ k

D
–

2 kDi
2 kDe

2 kDσ
2

eσ
2

∆δn– kD
2 δn–– k

s
–

2 δn+,=

kD
2 kDe

2 kDi
2 k

s
–

2 ksi
2 kse

2 ksσ
2

∆ k1
2–( ) ∆ k2

2–( )δn– 0,=

k1 2,
2 1

2
--- kD

2 ks
2+( ) kD

2 ks
2–( )2

4k
D

–
2 k

s
–

2+± .=

δn–
A
r
---e

k1r– B
r
---e

k2r–
,+=
JETP LETTERS      Vol. 81      No. 4      2005
tion of Poisson equation (5) after the substitution of
Eq. (10) into it yields

(11)

where A1 = –4πeA/  and B1 = –4πeB/ . According to
Eq. (11), the potential created by the dust particle in the
case under consideration is described, in contrast to the
Debye theory, by the superposition of two exponentials
with different screening constants k1 and k2. It follows
from Eq. (11) that

(12)

At large distances, screening is determined by the
smaller constant k2 corresponding to the minus sign in
Eq. (9). In the plasma, De is always much larger than Di.
Therefore,

(13)

where βL = 4πeki is the Langevin ion recombination
coefficient. Since βL @ βei for most ions at atmospheric

pressure,  ! . In this case for Te @ Ti, it follows
form Eq. (9) that the screening radius in the nonisother-
mal plasma is given by the expression

(14)

This means that, when βL @ βei, the screening radius is
much larger than the electron Debye radius, which was
noted in our previous works [7–11] devoted to numeri-
cal simulations. In [9], where the character of the
screening of a dust-particle charge was studied for a
constant-density plasma, it was shown that the screen-
ing was exponential and the screening radius decreased
with increasing the electron–ion recombination coeffi-
cient, which was in complete agreement with Eq. (14).
Note that, if the three-particle recombination of elec-
trons and ions with an electron as the third body must
be taken into account in the processes of electron
losses, the sum βei + 2β3n0e rather than βei enters into all
the expressions and Eq. (14) takes the form

(15)

Expression (14) can be represented in the form

(16)

According to this relation, the screening radius up to a
constant factor is determined by the characteristic
length of the ambipolar diffusion of ions with the coef-
ficient Da = Di(1 + Te/Ti) for the characteristic recombi-
nation time τrec = (2βeine0)–1. Up to a constant factor,
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expression (16) coincides with the estimate [11] of the
size of the region of plasma perturbation by the dust
particle.

Then, we analyze the case of isothermal plasma,

Te = Ti. In this case,  = 0 and the relation between

δn+ and δn– through Eq. (6) disappears. In this case, it
follows from Eq. (6) that

(17)

When the sink of electrons and ions is absent (e.g., the
dust particle does not adsorb electrons and ions), the
densities of electrons and ions have Boltzmann distri-
butions and δn+ = 0 in the isothermal case. Therefore,
A  =  0 and only Debye terms remain in the below
expressions. However, in the nonisothermal plasma,
where charged particles are generated by the method
under consideration, currents exist even for the nonab-
sorbing dust particle (Boltzmann distributions for elec-
trons and ions result from the condition that currents (2)
vanish; expanding these distributions at large distances
and substituting the corresponding expansions into Eq.
(4), we see that the right-hand side of Eq. (4) does not
vanish when Te ≠ Ti).

The solution of Eq. (7) for kD ≠ ks has the form

(18)

The differences of the densities of ions and electrons
from the equilibrium values are expressed as

(19)

(20)

Under the condition

(21)

which is equivalent to the equality

(22)

it follows from Eq. (19) that

(23)

at distances r @ , although according to Eq. (20), the
perturbation of the electron density in this region
decreases exponentially:
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For the nonisothermal plasma, approximate equality
(23) at large distances is valid only under the condition

(25)

from which Eq. (22) again follows. Using Eq. (18),
from the Poisson equation we obtain

(26)

where A2 = 4πeA /  and B2 = 4πeB/ . It follows

from Eq. (26) that, at distances r @ , where kmax =
max{ks, kD}, the asymptotic formulas for the potential
and electric field have the form

(27)

where kmin = min{ks, kD}. For ks = kD, i.e., in the reso-
nance case, the solution of Eq. (7) has the form

(28)

In this case, from the Poisson equation we obtain

(29)

It is seen that the asymptotic formulas for ks = kD have
the form of a simple exponential with the Debye
screening radius:

(30)

As was mentioned above, βL > βei for most ions at

atmospheric pressure and, therefore,  < . Hence,
the screening radius in the isothermal plasma is given
by the expression

(31)

which differs slightly from Eq. (14). Using Eqs. (14)
and (31), one can conclude that, under the condition
βL @ βei, ions are not involved in the screening of the
dust particle field in both isothermal and nonisothermal
plasmas. Under the opposite condition βL < βei, a hump
appears in the ion distribution (see Fig. 1). Conse-
quently, the diffusion component of the ion current
turns against the drift component. For this reason, the
ion distribution becomes close to equilibrium and the
ion component is involved in screening. Therefore, the
screening radius, which is equal to the electron Debye
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radius at βL = βei (ks = kD/ ), becomes equal to the

classical Debye radius at βL ≤ βei (ks ≤ kD).

COMPARISON OF THE ASYMPTOTIC 
SCREENING THEORY WITH THE NUMERICAL 

CALCULATION RESULTS

Figure 1 shows the distributions of ions and elec-
trons near the dust particle for various relations
between the coefficients of the electron–ion and Lan-
gevin recombinations as obtained by numerically solv-
ing the time-dependent continuity equations

(32)

and the Poisson equation with the boundary conditions

(33)

where qint = 4π |Γi | – |Γe |)dt. The calculation proce-

dure was described in more detail in [8]. In test calcu-
lations with zero sources of the production and loss of
electrons in the calculation cell, the solution with
unscreened charge was obtained, which was discussed
in detail in [9]. Note that such conditions are possibly
realized in a so-called Q machine [13], where the ion-
ization of cesium atoms occurs on the heated walls of a
working chamber and the recombination of electrons
and atomic ions in volume occurs with a negligibly low
rate. Under the same boundary conditions with nonzero
parameters Qion and βei, the quasi-neutrality of the cal-
culation cell is reconstructed. In this case, the dust-par-
ticle charge and distributions of the plasma and electric

2
1
2
---

∂nσ/∂t divΓσ+ Qion βeineni–=

ne i r, r0= 0, E r r0= eqint/r0
2
,= =

ne i r, ∞= n0 Qion/βei, φ r ∞= 0,= = =

r0
2 (∫

Fig. 1. Distributions of ions and electrons near the dust par-
ticle: calculations for (s) electrons and (n) ions, (solid
lines) Boltzmann distributions for electrons, (dashed lines)
densities of electrons and ions in the unperturbed plasma for
the argon atomic density N = (1) 2.8 × 1019, (2) 1.12 × 1020,
and (3) 4.5 × 1020 cm–3. Lines 2 and 3 are shifted upward
for a convenient representation.
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field are independent of the form of the boundary con-
dition for the field through the accumulated charge in
the above boundary condition or in the form of zero
field at the outer boundary. The calculations were per-
formed for argon, ionization rate Qion = 1016 cm–3 s–1,
and various pressures with the constant recombination
coefficient βei = 0.85 × 10–6 cm3/s for the parameters
Te = Ti = 300 K, r0 = 10 µm, ne0 = ni0 = n0 = 1.087 ×
1011 cm–3, λDe = 3.63 µm, and λD = 2.56 µm. The Lan-
gevin recombination coefficient was varied by varying
pressure.

As is seen in Fig. 1, under condition (22), the ion
density remains constant almost to the dust particle
when the absorption of ions by the dust particle is man-
ifested. The ion density is constant, because a decrease
in the ion loss rate in the process of electron–ion recom-
bination with decreasing the electron density is exactly
compensated for by an increase in the Langevin recom-
bination rate. This problem, as well as the condition of
the appearance of a peak in the ion distribution and the
formation of the ambipolar-diffusion region, was dis-
cussed in [8]. This condition coincides with Eq. (22)
and is strictly justified here.

Figure 2 shows distribution (17) in comparison with
the distribution calculated for δn+. It is seen that the cal-
culation results are in an excellent agreement with the
asymptotic theory developed above. Figure 3 shows the
distribution of the reduced field. It is seen that, begin-
ning with a certain distance, the functions Ξ(r)
approach the asymptotic curves parallel to the abscissa
axis, as can be expected according to Eqs. (27) and (30).

Figure 4 shows the screening radii obtained in our
works [10, 11] (approximating the calculation potential
by the standard exponential divided by the radius) in
comparison with the values calculated from Eq. (15). It

Fig. 2. Distribution of δn+ near the dust particle: points are
calculations and solid lines correspond to distribution (17)
for βL = (1) 4βei, (2) 2βei, (3) βei, (4) 1/2βei, and (5) 1/4βei

and N = (1) 2.8 × 1019, (2) 5.6 × 1019, (3) 1.12 × 1020,
(4) 2.24 × 1020, and (5) 4.48 × 1020 cm–3.



150 FILIPPOV et al.
is seen that the calculations agree well with the asymp-
totic theory. A discrepancy at small times appears
because the electron density in the photoresonant
plasma at the initial time is still low and the screening
radius is very large. For this reason, to correctly deter-
mine it, calculations would have to be performed with
a much larger radius of the calculation cell than that
used in [10, 11].

CONCLUSIONS

In this work, using the perturbation method, we have
developed the asymptotic theory of the screening of the
charge of an isolated dust particle in a plasma with an
external source of the ionization of a gas in the hydro-
dynamic regime of the transport of electrons and ions.

Fig. 3. Distribution of the reduced field (1–3, 5) Ξ =

E exp(kminr)(1 + kminr)–1 and (4) Ξ = E exp(kminr0)(1 +

kminr0)–1. The calculation parameters are the same as for the
respective lines in Fig. 2.

r0
2

r0
2

Fig. 4. Screening radius divided by the electron Debye
radius (line 1) as calculated from relation (15) in compari-
son with data published in [11] for the photoresonant
plasma for the dust particle radius r0 = (2) 1, (3) 2, (4) 5, and
(5) 10 µm.
It has been shown that the screening of the charge of the
dust particle adsorbing the charged particles of the
plasma is not generally described by the Debye theory.
The screening radius is determined by the relation
between the coefficients of the dissipative and Lan-
gevin recombinations. When the latter coefficient is
small, the screening radius is much larger even than the
electron Debye radius. Thus, the appreciable excess of
the screening radius over the Debye radius, which was
repeatedly observed in hydrodynamic numerical calcu-
lations [7–11], as well as the correlation noted in [9, 11]
between the screening radius and the ion recombination
coefficient, has been strictly justified.
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Global Synchronization of Oscillations in the Level 
of Whistlers near Jupiter as a Consequence of the Spatial 
Detection of the Q Factor of a Magnetosphere Resonator
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The formation of the space–time structure of the intensity distribution for whistlers, as well as the content of
the energetic electrons in the radiation belts of Jupiter, has been considered. Parametric nonlinear processes in
a plasma magnetospheric maser have been analyzed. It has been shown that, owing to the azimuthal inhomo-
geneity of a magnetic trap in combination with the fast rotation of the planet, a component that is characterized
by the periodic modulation and is independent of the azimuth coordinate is formed in the Q factor of the mag-
netospheric resonator. This modulation is manifested as an external force that ensures the synchronization of
oscillations in the level of whistlers in individual magnetic field tubes under the global-resonance conditions.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 94.30.Hn, 95.55.Pe, 96.50.Ek
INTRODUCTION

In each magnetic field tube in the radiation belts of
Jupiter, an oscillation process may occur in the form of
alternating stages of the accumulation of energetic elec-
trons and their precipitation into the ionosphere during
electromagnetic radiation pulses generated when
exceeding the cyclotron instability threshold. The local
frequency ΩRB of the corresponding oscillations
depends on the power of the source of particles in the
local magnetic field tube. Analysis revealed the global
resonance effect in the electron radiation belts of Jupi-
ter [1]. Calculations based on the data for the magneto-
sphere of Jupiter that were available at that time showed
that the corresponding local frequencies of the oscilla-
tion process in individual tubes of the radiation belts of
Jupiter were nearly identical, given by the expression

(1)

and close to the angular velocity ΩJ of the planet’s rota-
tion. Here, c is the speed of light, D is the coefficient of
diffusion in the magnetic sheets (DLL = DL4), the reflec-
tion coefficient R of waves from the ionosphere from
above will be discussed in detail below, and RJ is the
radius of Jupiter.

It was argued in [2] that the coincidence of the fre-
quencies ΩRB and ΩJ is not accidental. They coincide
with each other, because the aforementioned oscillation
process determines the properties of the radial diffusion
of energetic electrons in the radiation belts and, there-

ΩRB
cD Rln

RJ
-------------------- 

  1/2

,=
0021-3640/05/8104- $26.00 ©0151
fore, the power of the source of particles. It is useful to
take into account that the efficiency of the interaction
between waves and particles depends on the back-
ground plasma density determined by the threshold of
the exchange instability [3].

Preliminary arguments that oscillations in different
magnetic field tubes must be synchronous were given
in [1, 2]. Recently, this conclusion has become urgent.
Direct measurements of the intensity of electromag-
netic radiation [4, 5] were carried out simultaneously
on two spacecrafts (Galileo–Cassini/Huygens and
Cassini/Huygens–Ulysses) in different positions with
respect to Jupiter. Analyzing the results from the space-
crafts, Kaiser et al. [4] concluded that oscillations of the
level of whistlers in individual magnetic field tubes are
synchronous. This means that the entire giant magneto-
sphere of Jupiter in whistlers flashes with a period of
10 h, which is equal to the rotation period, as a huge
lamp.

Those new experimental results have additionally
stimulated the return to this problem and new explana-
tion of the synchronization of oscillation processes in
different magnetic field tubes within the framework of
new, more advanced calculations. We consider the set
of magnetic field tubes adjacent to a certain magnetic
shell in the middle part of the magnetosphere of Jupiter,
which is spaced by 20–40 radii of Jupiter from its cen-
ter. The space–time dependence of the damping decre-
ment for whistlers is shown to be important for the
magnetosphere resonator. Moreover, it is shown that
the damping decrement has a component depending
 2005 Pleiades Publishing, Inc.
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only on time with the planet-rotation period, because
the decrement is determined both by the plasma param-
eters in the magnetic field tube and by the state of the
asymmetric ionosphere. According to calculations, this
component serves as an external force synchronizing
oscillations of the radiation belt parameters in different
magnetic field tubes.

SPATIAL DETECTION OF THE Q FACTOR 
OF THE MAGNETOSPHERIC RESONATOR

It is well known that laboratory lasers are success-
fully controlled by modulation of the Q factor of the
resonator of electromagnetic waves. This property also
fully concerns the plasma magnetospheric maser,
where the conjugate ionospheric regions serve as mir-
rors. In view of this circumstance, it is important to ana-
lyze the average damping decrement of electromag-
netic waves in the radiation belts. The space–time struc-
ture of the system is illustrated in Fig. 1, where the
equatorial (in the ecliptic plane) section of the Jupiter
magnetosphere is schematically shown with the outgo-
ing head shock wave in the solar wind, magnetopause,
and equatorial section of an individual magnetic sheet.
We take a nearly inertial reference frame that, as well as
the planet, rotates around the Sun and where the mag-
netosphere boundary is at rest. In addition, we intro-
duce a noninertial comoving reference frame that
rotates along with Jupiter and whose position is deter-
mined by the polar coordinate system. The azimuth
angle ϕ is measured from the fixed axis directed from
the planet center against the solar-wind direction.

The average damping decrement for whistlers in an
individual tube can be written in the form [6]

(2)

Here, the reflection coefficient R from the ends of the
magnetic trap depends primarily on the ionospheric

ν 2 Rln Tg
1– .=

Fig. 1. Equatorial section of the Jupiter magnetosphere.
state. Jupiter’s ionosphere rotating with the planet is
asymmetric (this property is indicated in Fig. 1 by the
close circle at the ionospheric altitude) due partially to
the considerable shift of the magnetic dipole with
respect to the planet center [7]. Therefore, 2|lnR| =
f1(ϕ – ΩJt), where f1 is a 2π-periodic function and ϕ is
the azimuth angle. The period Tg of the group propaga-
tion of whistlers in the magnetospheric resonator is in
turn a periodic function of the azimuth angle ϕ, because
it is determined by the structure of the magnetosphere,
namely, by the degree of the magnetosphere oblateness
and the plasma density along the magnetic field tube.
Both these parameters depend primarily on the local

time. Therefore,  = f2(ϕ), where f2(ϕ) is a 2π-peri-
odic function. Thus, the average damping decrement of
whistlers can be represented in the form

(3)

The above periodic functions can be expanded in the
Fourier series

(4)

The substitution of Eqs. (4) into Eq. (3) yields

(5)

where

and the function Φ(t, ϕ) satisfies the relation

(6)

According to Eq. (5), the expression for the damping
decrement of whistlers is represented as a sum of three
terms. The first term is time periodic with the Jupiter
rotation period TJ and is independent of the azimuth
angle. The second term depends only on the azimuth
angle. The third term depends on time and the azimuth
angle, but its angle average is equal to zero.

Thus, spatial detection appears because the average
damping decrement of whistlers and, therefore, the Q
factor of the magnetospheric resonator of the plasma
maser in the radiation belts of Jupiter are determined,
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according to Eq. (3), by the product of two quantities
depending on the time and azimuth angle. Below, we
will analyze the effect of the periodic time dependence
of the average damping decrement on the dynamics of
the plasma magnetospheric maser.

SPACE–TIME DYNAMICS OF THE CYCLOTRON 
INSTABILITY OF RADIATION BELTS

In the simplest balance approximation, the self-con-
sistent system of relativistic quasi-linear equations of
interaction between the wave and particles in the
plasma magnetospheric maser has the form [2, 6]

(7a)

(7b)

System (7) has a simple physical meaning. The number
N(t, ϕ) of particles in the magnetic field tube with unit
cross section at the ionospheric level increases with
time according to the power I(t, ϕ) of the source of par-
ticles. The motion of particles along the azimuthal
coordinate is caused by the drift of energetic particles
in the inhomogeneous curved magnetic field. The cor-
responding angular velocity Ωd(ϕ) is given by the for-
mulas presented, e.g., in [8]. The second term on the
right-hand side of Eq. (7a) presents losses of particles
from the magnetic field tube due to synchrotron radia-
tion (pair collisions in the Jupiter magnetosphere are of
low importance). The first term on the right-hand side
of Eq. (7a) presents a decrease in the number of parti-
cles in the magnetic field tube due to their precipitation
into the ionosphere as a result of interaction with whis-
tlers. This precipitation is faster for a higher energy
density W(t, ϕ) of the whistlers. In turn, the energy den-
sity of the whistlers is determined by transport equation
(7b) averaged over the time of the whistler propagation
between the conjugate regions of the ionosphere. In this
equation, the power of external wave sources (e.g.,
lightning discharges in the atmosphere) is represented
by the term a. The transverse angular anisotropy of the
momentum distribution function varies slightly. There-
fore, the double increment of the cyclotron instability
can be written in the form 2γ(ϕ) = h(ϕ)N(ϕ). Note that
the explicit expressions for the functions δ(ϕ) and h(ϕ)
can be obtained from formulas presented in [2], but
they are unnecessary here. First, we consider processes
in an individual magnetic field tube disregarding the
azimuthal drift and for a fixed azimuth angle ϕ. In this
case, the system of equations has a steady state corre-
sponding to the balance between the arrival of particles
from the source and their precipitation into the iono-
sphere. Let us analyze the oscillations near the steady
state. In the radiation belts, where the parameters 1/Tl

∂N
∂t
------- Ωd ϕ( )∂N

∂ϕ
-------– δ ϕ( )WN– N

Tl

----– I t ϕ,( ),+=

∂W
∂t

-------- h ϕ( )WN ν t ϕ,( )W– a.+=
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and a are small, for a constant damping decrement ν,
relaxation oscillations occur with the parameters

(8)

where ΩRB is the natural frequency of the oscillation
process in a given magnetic field tube and νRB and QRB
are the damping decrement and Q factor of these oscil-
lations, respectively.

Upon the modulation of the damping decrement ν
even in the space–time case, a resonance response is
naturally expected in the form of the deep modulation
of the parameters of the radiation belts and the level of
whistlers, particularly when QRB @ 1.

For simplified quantitative analysis of system (7), it
is natural to introduce the new dimensionless variables

(9)

In the new variables and in view of Eq. (5), system (7)
is written as

(10)

Here, all functions of ϕ are 2π-periodic functions, Q =
QRB(ΩRB/ΩJ) ≈ QRB @ 1, and the function Φ(τ, ϕ) sat-
isfies Eq. (6). Owing to the presence of the function
ψ(τ) in system (10), the time structure is formed in
oscillations of both the intensity of whistlers and the
content of energetic electrons and this structure is syn-
chronous over the entire magnetosphere. To corrobo-
rate this statement, we performed numerical calcula-
tions.

MODEL CALCULATIONS
In the numerical calculation illustrating the funda-

mental aspect of the problem, only lower spatial har-
monics are taken into account and the space–time
dependence of the damping decrement of whistlers is
written in the form

(11)

Here, the factor ∆1 > 0 reflects the fact that the length of
the magnetic field tube is minimal and maximal at ϕ =
0 and π, respectively; and the factor ∆2 > 0 presents the
fact that, when τ = 0, the reflection coefficient is maxi-
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1
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hI
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ν
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1
2
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------------,= =
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ΩJT J
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∂ hln
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Fig. 2. Energy density ε of whistlers as a function of the azimuth angle ϕ and time τ as shown by different grey tones.
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Fig. 3. Same as in Fig. 2 but for the total number n of energetic electrons in the magnetic field tube.
mal at ϕ = 0 for the appropriate choice of the time
beginning point (see Fig. 1). Let us numerically analyze
the properties of solutions of system (10). We take into

account the azimuth angle dependence of (ϕ) in the
form

(12)

where the coefficients on the right-hand side roughly
characterize the longitudinal inhomogeneity of the sys-
tem in the power of the source of energetic particles and
other parameters.

Since the natural frequency of the oscillation pro-
cess in individual magnetic field tubes is close to the

angular velocity of the planet rotation, we take  =
0.9 in our model calculations. The depth of modulation
associated with the asymmetry of the ionosphere is
taken not too large, ∆2 = 0.2. The Q factors of the oscil-
lation process at different longitudes may differ notice-

ωRB
2

ωRB
2 ϕ( ) ω

RB+
2 1 ∆2 ϕ( )cos+( ),=

ω
RB+
2

ably from each other. For this reason, we take  = 20
and ∆1 = 0.75 in our model calculations. The remaining
parameters that are comparatively small in the problem
under consideration are assumed to be constant: ωd =
0.03, 1/τ∗  = 0.01, and a = 0.005. Note that the real
velocities of the azimuthal drift of energetic particles in
the inhomogeneous curved magnetic field slightly
affect the calculations. For this reason, we change the
corresponding function to constant. At the same time,
the test calculations show that, if the corresponding
velocity were higher, time processes in different mag-
netic field tubes would be additionally synchronized.
For definiteness, we take the initial conditions in the
form n(0, ϕ) = 10 and ε(0, ϕ) = 0.01.

System (10) was numerically solved with the chosen
model parameters. The energy density ε of whistlers as
a function of time τ and the azimuth angle ϕ after the
transient process is shown by different grey tones in
Fig. 2. According to the calculations, the oscillation

Q
+
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process occurs with different efficiencies at different
longitudes. However, maxima of the intensity of whis-
tlers are reached quite synchronously over the entire
magnetosphere. The space–time dependence of the
total number n of energetic electrons in the magnetic
field tube is shown by different grey tones in Fig. 3.
Note that the time dependence of the total number of
particles clearly exhibits the periodicity with a double
period of 4π, which corresponds to a period of 20 h in
the dimensional variables.

CONCLUSIONS

In the magnetosphere of Jupiter, interaction between
waves and particles in individual magnetic field tubes
clearly correlates with the global dynamics of electron
radiation belts. This interplay is manifested in the pro-
nounced periodicity of the intensity of whistlers and
fluxes of energetic electrons. The entire giant magneto-
sphere of Jupiter in whistlers flashes as a huge lamp.

The experimentally observed law is likely due to sev-
eral factors. First, it is important that each magnetic field
tube in the radiation belts of Jupiter is characterized by
the natural frequency that corresponds to interaction
between waves and particles and is close to the angular
velocity of Jupiter. This circumstance ensures the reso-
nance character of the process, and a comparatively
weak external action can thereby provide the deep mod-
ulation of the level of waves and particle fluxes.

Owing to the rotation of the planet with the asym-
metric ionosphere, the spatial detection of the Q factor
of the magnetospheric resonator occurs. The average
damping decrement of whistlers includes a term that is
independent of the azimuth angle and varies with time
strictly periodically with the period of the orbital rota-
tion of Jupiter. This periodic dependence is manifested
as a controlling factor. (The plasma magnetospheric
maser is subjected to several external factors. The mod-
ulation of the Q factor of the magnetospheric resonator
most strongly affects its operation.) According to the
calculations, the modulation of the level of whistlers is
clearly synchronized at all longitudes. As can be shown
and was checked in numerical calculations, the trans-
port of particles and waves between individual mag-
netic field tubes improves the synchronization of pro-
cesses in different magnetic field tubes.

The significance of this effect is more general. It
must be observed for other types of electromagnetic
radiation emitted due to the radiation belts of Jupiter,
which vary quite synchronously in various spectral
ranges of the magnetosphere. The synchronization of
emission processes from different magnetic field tubes
was noted in [5].

We emphasize that there is one more mechanism of
the effect of the azimuthal drift of particles, which is
taken into account in Eq. (7a), on the cyclotron instabil-
ity and interaction between waves and particles. The
drift of particles may create a polarization electric field
JETP LETTERS      Vol. 81      No. 4      2005
and thereby a current system and a magnetic signal,
which changes the distribution function of energetic
electrons due, e.g., to the conservation of the adiabatic
invariants. However, estimates show that this mecha-
nism is inefficient in the electron radiation belts of Jupi-
ter. Indeed, the conductivity of the magnetospheric
plasma along the magnetic field is very high, and the
polarization field is short-circuited through the iono-
sphere, where the conductivity across the magnetic
field is high. Polarization electric fields should be taken
into account when analyzing the initial stage of the
space–time evolution of the distributions of particles
with sharp azimuthal gradients.

More complicated cases are possible when the ini-
tial oscillations are not relaxation oscillations but self-
sustained oscillations in individual magnetic fields. The
possibility of existing of the latter oscillations was
shown in [9]. Under certain conditions, the synchroni-
zation of processes can be expected in the magneto-
sphere of pulsars. However, each of the mentioned
cases requires special investigation.

Note that the above effect is an interesting example
of the Huygens effect known in classical mechanics. In
this case, oscillation processes in different magnetic
field tubes (rough clock) are synchronized due to inter-
action with the strictly periodic orbital rotation of the
planet (accurate clock).
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The ballistic conductance of a point contact between a strong ferromagnet and a d-wave superconductor is
calculated for arbitrary spin-dependent transmission coefficients. The width of the localized Andreev state
level is determined. The possibility of identifying the d-type superconductor by the shape of the voltage depen-
dence of the conductance is analyzed for a point contact with a good metallic conduction. © 2005 Pleiades
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Studies of ballistic electron transport between ferro-
magnetic metals (Fs) and high-temperature supercon-
ductors (HTSCs) [1–3] are important for understanding
the electronic properties of these materials and for the
development of electronic devices using spin-polarized
currents [1, 4–6]. The main distinctive feature of
HTSCs, as compared to ordinary s-wave superconduc-
tors, is the anisotropy of the order parameter. It has
been established [7, 8] that the order parameter in
HTSCs has the  symmetry. Superconductors (Ss)

with a d-wave symmetry possess a momentum-depen-
dent internal phase, which strongly affects the transport
properties of the contacts between them and other
materials. In [9], it was shown that, when the angle α
between the a axis of an HTSC crystal and the vector
perpendicular to the surface of a high-resistance contact
is equal to π/4, quasiparticle bound states are formed at
the Fermi level near the high-resistance boundary. In
[10], it was found that these bound states give rise to a
sharp zero-voltage peak in the tunneling conductance
between HTSCs and normal metals (Ns). The experi-
mental observation of such a peak at low temperatures
is considered as evidence of the d-wave symmetry of
the order parameter. The observation of the splitting of
this peak is interpreted as a manifestation of the sur-
face-induced near-boundary order parameter with bro-
ken time-reversal symmetry [11–13]. Theoretical stud-
ies of the effect of Andreev bound states, which arise
due to the interference of the incident and Andreev-
reflected quasiparticles, on the spin-polarized quasipar-
ticle transport in F/S contacts were carried out in [14–
17]. Those studies were based on the generalization of
the theory developed in [18] (the BTK theory) to F/S
structures. It was found that the properties of Andreev
reflection noticeably vary in the presence of exchange
interaction. The splitting of the zero-voltage peak of
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conductance under the effect of exchange interaction
was otained in [16].

However, the authors of recent paper [19] arrived at
the conclusion that the works in which the BTK theory
was generalized to F/S structures disregarded important
physical aspects of Andreev reflection and did not cor-
rectly describe the transport through an F/S interface.
The fact that these works did not reproduce the formula
obtained for the zero-temperature Andreev conduc-
tance from physical considerations was mentioned in
[20]. This supports the conclusion made in [19]. At the
same time, the number of experimental studies of the
electron transport through the F/S interface increases,
which requires an adequate theoretical description of
this phenomenon.

The aims of this study are, (i) using the semiclassi-
cal theory of superconductivity for metals with a spin-
split conduction band [20], to obtain an analytical
expression for the ballistic conductance of a point con-
tact between a strong ferromagnet and a d-wave super-
conductor at arbitrary values of spin-dependent trans-
mission coefficients; (ii) to determine the role of the
transparency of the F/S interface in the formation of the
spectrum of Andreev bound states in the HTSC; and
(iii) to analyze the possibility of identifying the d-wave
superconductor by the shape of the derivative of the
current–voltage dependence characterizing its point
contact with the ferromagnet when this contact exhibits
a good metallic conduction.

DIFFERENTIAL CONDUCTANCE
OF AN F/HTSC POINT CONTACT

The general expression for the current through a
point contact between a normal metal and a supercon-
© 2005 Pleiades Publishing, Inc.
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ductor was obtained in [18]. For the F/S contact, this
expression can be represented in the form

(1)

Here, f0(ε) is the Fermi equilibrium distribution func-
tion and GF/S is the spectral density of the conductance
of the F/S point contact at zero voltage. Let the ferro-
magnet lie to the left of the boundary x = 0, and the
superconductor, to the right (in the region of x > 0). The
x coordinate axis and the a–b crystallographic plane of
the HTSC crystal are perpendicular to the contact
plane. The expression for GF/S(ε) in terms of matrix
semiclassical Green’s functions was obtained in [20]:

(2)

In Eq. (2), ( , ) and ( , ) are retarded (super-
script R) and advanced (superscript A) semiclassical
Green’s functions that are symmetric (subscript s) and
antisymmetric (subscript a) with respect to the projec-
tion of the momentum  taken at the Fermi surface
onto the x axis. All the Green’s functions refer to the
ferromagnet and are calculated at x = 0. To determine
these functions, for each of the metals, it is necessary to
solve the semiclassical superconductivity equations for
metals with a spin-split conduction band [20]:

(3)

Here, εn = (2n + 1)πT is the Matsubara frequency, pF is
the momentum at the Fermi surface, and  represents

the Pauli matrices. The matrices , , and  have the
structures

(4)

In Eqs. (4), α = (↑ , ↓ ) is the spin index and  is the self-
energy part.
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1–+( ) K̂ ĝ,[ ] –+ +sgn 0,=

K̂ iv̂ x

1
2
---–

iεnτ̂ z ∆̂ Σ̂–+( )v̂ x

1
2
---–

– i p̂x τ̂ x p̂x τ̂ x–( )/2,–=

∆̂ ∆̂ x pF,( ), a b,[ ] ±≡ ab ba.±=

τ̂
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Equations (3) should be solved with the boundary
conditions formulated in [20]:

(5)

where  = 1/2[  ± ]. The functions  are
determined in a similar way. The explicit form of matri-

ces ] is given in [20]. The structure of the matrices

of transmission coefficients  and reflection coeffi-

cients  (  = 1 – ) is the same as the structure of
the matrix  in Eqs. (4). Subscripts d and n indicate
the diagonal and off-diagonal parts of the matrix,

respectively:  = 1/2[  ± τz τz]. The coefficients
αi are determined as

Knowing the functions gs(a), we use boundary condi-

tions (5) to derive the matrices  and ( )n. To deter-

mine the matrix ( )d, we find one more relationship

between the matrices  and .

Multiply equation (4) from [20] by (x', x) from

the left and its conjugate equation by (x, x') from
the right. Subtracting one from the other, we obtain

(6)

From this equation, it follows that

(7)

because (x, x') is equal to zero at infinity. Changing

to the functions  in Eq. (7) with the use of formulas
(5) from [20], we arrive at the expressions

(8)
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Eliminating the functions  and  from these rela-
tions, we obtain a set of boundary conditions for the

Green’s functions :

(9)

Matrices  in Eqs. (9) are expressed as

(10)

To determine ( )d appearing in Eq. (2), we use the
second row of Eqs. (8):

(11)

Now, solving the first of Eqs. (3) in combination with
boundary conditions (9), we determine the matrices

. Then, with these matrices, from Eqs. (5) and (11),

we determine the matrices . Substituting all the
expressions determined above into Eq. (2), we calculate
the conductance. Then, we assume that the order
parameter is independent of the coordinate. This
assumption will allow us to obtain an analytical solu-
tion of the problem. A self-consistent calculation of the
order parameter does not change the qualitative conclu-
sions derived from such a solution [21]. For a spatially
homogeneous order parameter, the solution of the first
of Eqs. (3) for each of the metals has the form [22]

(12)

Matrices (pF) represent the values of the Green’s
function  far from the F/S interface:

(13)

Here, θS is the angle between the electron momentum
in the superconductor and the x axis. The Green’s func-

tion  in Eq. (12) should tend to  when x  –∞,

and the Green’s function , to (pF) when x  ∞.
Performing a matrix multiplication in Eq. (12), we con-
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ĝ̃
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–
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ĝ

Ĉ0
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ĝS Ĉ0
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clude that, to satisfy the above conditions, the following
relations should be valid at x = 0:

(14)

From these relations, it follows that

(15)

Here,  represents the symmetric and antisymmet-

ric combinations of the matrix (pF) with respect to
the projection of the Fermi momentum onto the x axis:

 = 1/2[ (px) ± (–px)]; the matrix  has the

property ( )2 = , which is verified by a direct calcu-

lation; and ( )n is the off-diagonal part of the matrix .

Now, from  and  determined by Eqs. (15), we

construct combinations  and, substituting them into
the set of boundary conditions (9), we determine

(x = 0) and (x = 0):

(16)

When solving the set of boundary equations (9), we
ignored the spin dependence of the phases of scattering

amplitudes. Now, knowing the Green’s functions  and

, we determine the expression for the spectral density

of conductance, GF/S(ε), in terms of the matrix :
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F

pF( ),sgn–=

Ĉ0
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Ĉ0 s a( ),
S

Ĉ0
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ĝs
S ĝs
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Here,  and  are, respectively, the retarded and

advanced matrices obtained from the matrix (εn)
given by Eqs. (15) after the analytic continuation:

(18)

In Eqs. (18), ∆> = ∆d(T)cos(2θS – 2α) and ∆< =
∆d(T)cos(2θS + 2α). The angle θS varies from zero to
θ0 ≤ π/2. The angle θ0 is determined from the condition
of mirror reflection of electrons from the boundary:
p|| = pSsinθS = pF↑sinθ↑ = pF↓sinθ↓. Here, pF↑, pF↓, and pS

are the Fermi momenta of spin subbands of the ferro-
magnet and superconductor, respectively. The quantity

 has the form

The quantity  is determined in a similar way. Formu-
las (1) and (17) allow one to calculate the dependence
of the conductance σF/S(V) = dIF/S/dV of an F/HTSC
point contact on the applied voltage at arbitrary spin-
dependent transmission coefficients and angles of ori-
entation of the HTSC crystal axes with respect to the
vector perpendicular to the contact plane. For the
angles α = 0 and α = π/4, the expression for the conduc-
tance has a simple form:

(19)
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Here, the limits of integration with respect to angles
depend on the relative values of the Fermi momenta of
the spin subbands in the ferromagnet and in the super-
conductor. If these values satisfy the condition pF↓ <
pS < pF↑, the integration with respect to the angles in the
region pF↓ < p|| = pSsinθS = pF↑sinθ↑ should be per-
formed by setting D↓ = 0 and R↓ = 1.

In the case of a nonmagnetic metal (D↑ = D↓), at
α = 0, formula (19) yields the expression obtained in
[22] for the conductance of an N/S point contact if |∆|
is replaced by |∆d(T)cos(2θS)|. For α = π/4, from
Eq. (19) we obtain the expressions given in the review
[23] for the spectral density of conductance (Eqs. (32)
and (33) in [23]). For tunneling contacts, from Eqs. (1)
and (19), at both α = 0 and α = π/4, one can obtain the
expressions for the current that were given in [24].

DISCUSSION

Formula (19) differs from the expressions obtained
earlier on the basis of the scattering theory [14–17] and
leads to a number of qualitatively new results. From this
formula, it follows that finite values of the spin-depen-
dent reflection coefficients lead to a broadening of the
Andreev bound state, whose width Γ is expressed as

(20)

Here, τϕ is the quasiparticle phase breaking time, which
is taken into account in semiclassical Green’s functions
(13) by the substitution εn  (εn + isgn(εn)/τϕ). The
width associated with the finite transparency of the F/S
interface is the basic one at low temperatures. Hence,

the normalized conductance σF/S(V)/  (where  =

e2(  + )/8π2 is the Sharvin conductance of the

ferromagnet and  = e2(pF↑ + pF↓)/2π2 in the two-
dimensional case) cannot be greater than two; i.e., the
limits of its variation are the same as those of the con-
ductance at α = 0.

When the polarization δ = pF↓/pF↑ is equal to unity
and the interface is characterized by a low transparency,
formula (20) transforms to the expression obtained in
[25, 26] for the width of the Andreev bound state in
nonmagnetic tunneling contacts.
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From formula (19), it follows that, at α = π/4, the
spin-dependent potential barrier, which directly enters
into the expression for the conductance in terms of the
parameter Z0, ↑ [↓ ] in [16] and is taken into account in the
determination of the spin-dependent transmission coef-
ficients D↑ [↓ ] in this work, does not lead to the splitting
of the Andreev bound state if the effect of the induced
magnetization on the energy spectrum of the HTSC is
ignored. As the polarization of the ferromagnet
increases, the peak of the conductance at V = 0 is not
split but suppressed (in Figs. 1 and 2, this is illustrated
for F/S contacts with a good metallic conduction). This
conclusion follows from the shape of the subgap con-
ductance line and from the contribution of the spin-
dependent transmission coefficients to the total conduc-
tance at α = π/4. The subgap conductance has the form
of a Lorentzian that does not broaden with an increase
in the polarization of the ferromagnet. The quasiparti-
cle part of the conductance is proportional to the sum of

Fig. 1. Applied-voltage dependence of the normalized con-

ductance σF/S(V)/  calculated by formula (19) for differ-

ent values of the ferromagnet polarization δ = pF↓/pF↑  at
∆d(T)/2T = 5.

σ0
F

σ F
/S

/σ
0

the transmission coefficients with different spins, D↑ +
D↓, with weights independent of the energy variable, so
that the splitting of the total conductance because of the
spin-dependent barrier potentials is impossible for any
values of Z0, ↑ [↓ ].

The splitting in the absence of an external magnetic
field is possible only when the effect of the spin-polar-
ized current [27] or induced exchange field [28] on the
energy spectrum of the superconductor is taken into
account.

Let us analyze the possibility of identifying a
d-wave superconductor by the shape of the derivative of
the current–voltage dependence characterizing its point
contact with a ferromagnet in the absence of a potential
barrier. For this purpose, we perform a numerical calcu-
lation using model expressions for the transmission

Fig. 2. Applied-voltage dependence of the subgap (ε < |∆> |)
conductance.
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coefficients that correspond to a direct contact between
metals (for pS, we use pS = (pF↓ + pF↑)/2):

(21)

From Fig. 1, one can see that, as the ferromagnet
polarization δ increases, the peak value of the conduc-
tance at α = 0 is suppressed, as in the case of an s-wave
superconductor [20, 29]. This can be explained by the
fact that the efficiency of Andreev reflection is deter-
mined by the number of conducting channels in the
subband with the smaller value of the Fermi momen-
tum (in the case under consideration, it is pF↓), which
decreases with increasing polarization of the ferro-
magnet.

Only when the degree of polarization of the ferro-
magnet is very high, δ ≤ 0.1, does the quasiparticle part
of the conductance, together with the contribution from
the Lorentzian wings, exceed the peak value of the
Lorentzian. The peak in the conductance at V = 0 disap-
pears, and the dependence σF/S(V) becomes V-shaped.
This type of dependence was observed in the experi-
ment with an F/S structure
(La2/3Ba1/3MnO3/DyBa2Cu3O7) in [1]. An increase in
the ferromagnet polarization, on the one hand,
increases the subgap contribution to the conductance
due to the localized Andreev state through a decrease in
the localized state width (see Eqs. (19)); on the other
hand, it reduces the number of Cooper pairs that are
formed at the F/S interface and use the aforementioned
state for the resonance penetration into the depth of the
HTSC. The level itself makes a contribution to the con-
ductance that decreases with increasing temperature for
all polarization values excluding δ = 0. Thus, from the
dependence of the conductance σF/S on the applied volt-
age, it is possible to identify the symmetry of the order
parameter (  or s in the case under consideration)

if one of the electrodes is represented by a ferromagnet
with 0.5 > δ > 0.1. As the strength of the potential bar-
rier increases, the upper limit of this inequality moves
toward unity.

Thus, in this paper, the ballistic conductance of an
F/HTCS point contact was calculated for arbitrary spin-
dependent transmission coefficients and the width of
the localized Andreev state level was determined. It was
found that the presence of a spin-dependent potential
barrier cannot lead to the splitting of the localized
Andreev state without the inclusion of the effect of
induced magnetization on the energy spectrum of the
HTCS. The possibility of identifying a d-type super-
conductor by the shape of the voltage dependence of
the conductance characterizing its point contact with a
ferromagnet when the contact has a metallic conduc-
tion has been analyzed.
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Spin-Dependent Electron Localization in Crystals
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The possibilities of spatially localizing spin-polarized electrons in two-dimensional and three-dimensional sys-
tems due to spin–orbit interaction are studied theoretically. Using simple one-dimensional potentials as exam-
ples, it is demonstrated that electrons with a definite helicity can be localized so that carrier separation by spin
is accomplished. The magnetic field effect is studied, and it is shown that the position of bound levels depends
substantially on this effect. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.70.Ej, 73.50.Jt, 73.63.Hs
The recent years have been characterized by grow-
ing interest in the group of phenomena in low-dimen-
sional systems belonging to the field known as spin-
tronics. The main idea of the program of these investi-
gations can be expressed by the words: “spin instead of
charge.” That is, the idea is to search for various ways
of controlling the spin degree of freedom of mobile car-
riers. Hopes for the advent of new solid-state electronic
devices and new applications of such devices primarily
to quantum computing are pinned on this area of inves-
tigations. It is clear that, on this path, it is necessary to
learn how to induce spin polarization in an electron sys-
tem and directionally affect carriers with a definite spin
projection or, more precisely, with a given helicity. In
addition to the evident possibility of polarizing elec-
trons through the absorption of a circularly polarized
electromagnetic wave, spin polarization by a static
electric field (or direct current) through spin–orbit (SO)
interaction [1–3], the spin-galvanic effect [4], and spin-
dependent electron tunneling through a barrier [5] were
considered.

In this work, we examine the possibility of the
occurrence of a spatially localized state with only one
definite spin projection; more simply, we search for sit-
uations in which, for example, a spin-up electron is
bound and a spin-down electron is free. There are many
such cases in atomic physics, where exchange interac-
tion is responsible for spin separation. The simplest
example is given by negative ions of alkalies and halo-
gens: the spin of the excessive electron must compen-
sate for the spin of the atomic electron shell. However,
we will consider a one-particle problem, and the differ-
ent behaviors of electrons differing in helicity will be
caused by SO interaction. We will consider succes-
sively 2D and 3D cases and will also elucidate the mag-
netic field effect on localized and delocalized states.

1. Two-dimensional system. Rashba Hamilto-
nian. An electron gas in an oriented two-dimensional
system (the unit vectors n and –n perpendicular to the
0021-3640/05/8104- $26.00 0162
system plane are not equivalent) is described by the
Rashba Hamiltonian [6, 7]

(1)

where  = ( , ) is the 2D electron momentum
operator, s are the Pauli matrices, α is the effective SO
coupling constant, and " = 1 is taken. Consider the sit-
uation when the system possesses a one-dimensional
potential well of the form U(x) = –U0δ(x). Our task is to
find bound states. We will seek a solution of the

Schrödinger equation (  + U)Ψ = EΨ in the form

(2)

Here, L is the normalization size of the system in the
y direction. The ψ1, 2 spinor components obey the sys-
tem of equations

(3)

where the prime designates differentiation with respect
to x. A solution of system (3) is given by a superposition
of exponentials vanishing at |x |  ∞

(4)

where

(5)
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Here ε = E – /2m and k = mα. It is easy to verify that
the real part of the exponents ξ± are positive for ε <

−|pyk |/m at |py | > |k | and for ε < –(k2 + )/2m at
|py | < |k |.

The coefficients in Eq. (4) can be found from the
continuity condition for the wave function at the point
x = 0 and the condition for its derivative at this point

(6)

where U ≡ mU0. This yields a system of eight equations

for the coefficients  and . The spectrum of
localized states is determined from the condition that
the determinant of this system vanishes. The determi-
nant is given by the expression

(7)

The function D(ε) has a root ε = – /2m, which
does not depend on the δ-potential strength, and

another root ε = –(k2 + )/2m at |py | > |k |. An analysis

shows that these roots are spurious. If ε = – /2m is

chosen, two of the eight constants  and  intro-
duced above turn out to be zero. In this case, the num-
ber of matching conditions becomes greater than the
number of constants remaining free. In the case of the
second spurious root, roots of the characteristic equa-
tion are degenerate. Constructing a solution by the cor-
responding rule, we see that the resulting determinant
of the system of equations for the coefficients of lin-
early independent solutions does not equal zero at ε =

−(k2 + )/2m. The roots under discussion can become
actual ones only under certain relations between the
parameters py, U, and k of the problem. It may be shown
that the satisfaction of these relations simply corre-
sponds to an intersection of branches of the spectrum of

localized states and the parabolas – /2m and –(  +
k2)/2m.

Figure 1 demonstrates the numerical results for the
subbands of localized states ε±1(py) = ε±1(–py) at various
values of the SO coupling parameter k. It is evident that
the upper branch of the spectrum terminates at certain
values of the momentum py = ±pc. This occurs when ε+1
reaches a value of –pc|k |/m. In this case, ξ– is equal to
zero, and the corresponding wave function becomes

py
2

py
2

ψ1 2, +0( ) ψ1 2, –0( );=

ψ1 2,' +0( ) ψ1 2,' –0( )– 2Uψ1 2, 0( )+ 0,=
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delocalized. It is easy to find the following explicit
expression for pc:

(8)

For a given U, pc reaches its minimum value equal to U
at |k | = U/2.

Figure 2 presents dependences of ε±1 on k at a fixed
momentum py. Thus, the negative energy level of a
δ-shaped 1D well in a spinless problem is split by the
SO interaction. This effect, as it must, depends essen-
tially on the momentum py of the free motion along the
y axis and vanishes at py = 0. There is a critical momen-
tum pc such that only electrons of one definite helicity
remain bound in the well when |py | > pc.

2. Three-dimensional system. Dresselhaus
Hamiltonian. In this section, we consider the electron
gas in a bulk noncentrosymmetric III–V semiconductor
with the SO interaction in the presence of a one-dimen-
sional δ-function well –U0δ(z). Such a system is
described (in the coordinate system referenced to the

pc
U2 4k2+

4 k
---------------------.=

Fig. 1. Behavior of localized states as functions of py for α =
(a) 0.5U0 and (b) U0.
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principal crystal axes) by the Hamiltonian of the form
[7, 8]

(9)

where p|| = (px, py). The part of the Hamiltonian cubic in
the momentum corresponds to the SO interaction and is
characterized by the effective band parameter γ. It
should be noted that the cubic terms in Eq. (9) are much
smaller than the quadratic ones. We seek a solution in
the form

, (10)

where S is the normalization area of the system in the
(x, y) plane and r|| = (x, y). The ψ1, 2 functions obey the
system of equations

(11)

Ĥ
p||

2

2m
-------

pz
2

2m
------- γ σy py σx px–( )pz

2[+ +=

+ σz px
2 py

2–( )pz σx px py
2 σy py px

2– ] U0δ z( ),–+

Ψ r( ) e
ip||r||

S
----------

ψ1 z( )
ψ2 z( ) 

 
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ψ1 2,''– 2mγp±ψ2 1,'' i2mγ px
2 py

2–( )ψ1 2,'+−+

± i2mγpx py p+−ψ2 1, 2mU0δ z( )ψ1 2,– 2mεψ1 2, ,=

Fig. 2. Energies of localized states vs. the SO coupling con-
stant for the momentum py = (a) 0.5mU0 and (b) 1.5mU0.
Localized states are absent in the discontinuity region in
Fig. 2b.
where now the prime designates differentiation with

respect to z, ε = E – /2m, and p± = px ± ipy. The ψ1, 2

functions must obey conditions similar to (6)

(12)

The characteristic equation for system (3) has the form

(13)

Consider first the case px = py = p||/ . In this case,
Eq. (13) has the roots

(14)

(15)

Here, δ = 2mγp|| ! 1, which corresponds to the small-
ness of the cubic term mentioned above. At ε < 0 and

|ε| > δ/4m, the roots of the characteristic equation
are real. Localized states should be sought similar to
Eq. (4). For the coefficients A1, 2 and B1, 2, we again
obtain a system of equations. The spectrum is deter-
mined from the condition that the determinant of this
system equals zero. The roots of the determinant are
found analytically, and we obtain

(16)

for two subbands. The ε–1 subband for all p|| values cor-
responds to a localized state, whereas the ε+1 subband

describes localized states only when ε+1 < –δ /2,
because otherwise ξ– becomes imaginary. Thus, the
upper branch has a termination point, which is deter-
mined by the equation

(17)

Taking into account that δ = 2mγp|| is small, we find the
following expression for the longitudinal momentum at
the termination point:

(18)

Note that the condition 2m γ ≡ (2m2γU0)2/3 ! 1 must

be satisfied and  must obviously be much smaller
than the Brillouin momentum.

When the longitudinal momentum is directed along
a cube edge [e.g., p|| = (p||, 0)], an analysis shows that

p||
2

ψ1 2, +0( ) ψ1 2, –0( );=

ψ1 2,' +0( ) ψ1 2,' –0( )– 2Uψ1 2, 0( )+

+ 2mγp± ψ2 1,' +0( ) ψ2 1,' –0( )–[ ] 0.=

λ2 2mε+( )2
4m2γ2 λ2 px

2 py
2–( )2

p||
2λ4–[+

– px
2 py

2 p||
2 4 px

2 py
2λ2 ]– 0.=

2

λ1 2,
4mε– δp||

2+
2 1 δ–( )

------------------------------± ξ+,±≡=

λ3 4,
4mε– δp||

2–
2 1 δ+( )

-----------------------------± ξ–.±≡=

p||
2

ε 1± p||( )
2 mU0( )2 p||

2 δ2 δ+−( )+
4m 1 δ+−( )

----------------------------------------------------–=

p||
2

4mγ2 p||
4 2γp||

3– mU0
2+ 0.=

p||
c mU0

2/2γ( )1/3
.=

p||
c

p||
c
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the bound level in the δ well is weakly split but the ter-
mination point is absent and delocalization does not
occur.

The 3D problem is solved quite simply if the
approximation proposed in [5] is used: p|| ! |pz |, where
pz is the imaginary momentum of the bound electron. In
this approximation, only the first term is retained in the
SO interaction in the Hamiltonian (9). The resulting
Hamiltonian is diagonalized by the spinors of the form

(19)

where µ = ±1 is the helicity, and ϕ is the polar angle of
the p|| vector. In this case, two independent 1D equa-
tions arise for the χµ(z) functions

(20)

and two different effective masses correspond to the
two helicities

(21)

One may try to obtain spin separation in, for example,
the structure GaxAl1 – xAs/A3B5/GayAl1 – yAs. Such a
“sandwich” is described in the band diagram by a non-
symmetrical rectangular well, which (as distinct from a
symmetric one) may have no bound state. Therefore, by
selecting band discontinuities that depend on the con-
centrations x and y at a given γ, it is possible to achieve
the localization of particles of only definite helicity in
the inner part of the heterostructure. It is well known
that the first discrete level for an electron with mass mµ
appears in such a well under the condition

(22)

where U1, 2 are the heights of the well walls (U1 > U2)
and a is the well width. From Eq. (22), it may be con-
cluded that, if the inequalities

(23)

are satisfied, only an electron with the helicity µ = –1 is
localized.

Consider another example of two δ wells spaced at
a distance a from each other: U(z) = –U0[δ(z) + δ(z –
a)]. Solving Eq. (20), we obtain the dispersion relation

(24)

ψ1 z( )
ψ2 z( ) 

 
 

χµ z( ) 1

µe iφ–– 
 
  1

2
-------,=

d2/dz2– 2mµU z( )+[ ]χ µ 2mµεχµ,=

1
mµ
------

1
m
---- 1 µδ+( ), δ ! 1( ).=

2mµa2U2
U1 U2–

U2
------------------- 

  ,arctan>

2ma2U2 1 δ
2
---+ 

  U1 U2–
U2

------------------- 
 arctan>

> 2ma2U2 1 δ
2
---– 

 

κµ mµU0–( )2 mµU0( )2e 2κa– ,=
JETP LETTERS      Vol. 81      No. 4      2005
where κµ = . It follows from Eq. (24) that,
under the condition

(25)

two localized states exist for the helicity µ = –1,
whereas only one localized state exists for the other
helicity value.

3. Magnetic field effect. As evident from the geom-
etry of the problems under consideration, it is reason-
able to investigate the case of B||, that is, a field parallel
to the surface or to the plane z = 0 in the 3D problem.
In the case of B⊥ , particles are localized in the plane
even without an additional lateral potential (e.g., in the
representation of a given momentum). This case is
beyond the scope of this work.

In the 3D problem with the Dresselhaus Hamilto-
nian, the field B|| significantly changes the orbital
motion of electrons. Therefore, the Zeeman contribu-
tion can be disregarded (if the g factor is small). On the
contrary, in the two-dimensional case, B|| affects only
the Zeeman contribution to the system energy.

The general case (arbitrary fields and an arbitrary
longitudinal momentum) involves rather cumbersome
calculations. Being interested here only in the qualita-
tive aspects of the problem, we will again consider the
approximation [5] pxl, pyl ! 1, where l is the wave func-
tion localization length along the z axis, and, in addi-
tion, we will consider not too strong magnetic fields

such that l ! L, where L =  is the magnetic
length. Then, we arrive at the following system of equa-
tions for the spinor components ψ1, 2 (the vector poten-
tial gauge is selected so that Ay = –B||z, Ax = Az = 0):

(26)

where ε = E – /2m. Owing to the assumptions made
above, the last term on the left-hand side of Eq. (26)
may be treated as a small perturbation. However, it is
convenient here to include p±d2/dz2 into the main part of
the Hamiltonian so that the perturbation operator com-
prises only one term

(27)

We again consider the model U(z) = –U0δ(z). The
unperturbed part of the Hamiltonian is diagonalized
using spinors given by Eq. (19). The functions χµ(z)
now satisfy the equation

(28)
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-------– py
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1

L2
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dz
----- z

d
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----- 

 +− ψ2 1, 2mεψ1 2, ,=

px
2

V̂pert
γ
L2
-----δy

d
dz
----- z

d
dz
----- 

  .=

d

dz2
-------– py

z

L2
-----– 

  2
U0δ z( )–+ χµ 2mµεχµ.=
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Solutions of this equation are expressed in terms of the

parabolic cylinder functions ((z – z0) /Lµ) and

(–(z – z0) /Lµ), where qµ = (ε/ωc) , ωc =

eB||/mc, and Lµ = L . At U0 = 0, we immediately
obtain the SO-split Landau spectrum

(29)

Taking U0 into account, we obtain the dispersion rela-
tion

(30)

For the ground level n = 0 [still disregarding perturba-
tion (27)], we obtain

(31)

Here, we used the fact that mµ differs only slightly from
m and set qµ = 0 for the ground state in the subscript of
the Dq(t) functions.

Finally, taking  into account, in the first order,
we obtain

(32)

for the two lowest subbands. It is evident from Eq. (32)
that the SO interaction makes two contributions to the
splitting of the Landau subbands: one exponentially
depending on the momentum py and the other one linear
in the longitudinal momentum p||.

Thus, as should be expected, a magnetic field favors
the localization of a particle near a short-range defect,
which is represented in this case by a δ-shaped well:
both the  functions decrease as their arguments
increase. However, the localization radius and the par-
ticle energy depend essentially on the magnetic field,
and these dependences are different for electrons differ-

Dqµ
2

Dqµ
2 mµ/m

m/mµ

εn µ, n
1
2
---+ 

  ωc
m
mµ
------.=

π
Γ qµ–( )
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z0 2/Lµ( )Dqµ
z0 2/Lµ–( ).=

ε0 µ, ωc

mµ

m
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2
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mµLµU0

π
--------------------

mµ

m
------ pyL( )2– 

 exp– .=

V̂pert

E0 µ,
px

2

2m
------- ωc

mµ

m
------+=

× 1
2
---

mµ
3/4m1/4LU0

π
------------------------------

mµ

m
------ pyL( )2– 

 exp–

– µγ
mµ

m
------

py
2

2 p||L
2

--------------

Dqµ
ing in helicity. Hence, the corresponding occupation
numbers are also different. Using this fact, the spin
polarization in the system can be changed directionally.

The inclusion of the x-aligned magnetic field in the
2D system leads to a modification of the term with σx in
Eq. (1): ασxpy  σx(αpy – gµBB/2) (g is the g factor
and µB is the Bohr magneton). Hence, it immediately
follows that the spectrum of localized states in the pres-
ence of the magnetic field is given by the equation

(33)

where εµ(px, py) is determined by the solution of the
problem in the absence of the magnetic field.

The case of B || y when the characteristic equation
for ξ± becomes a complete fourth-order equation
involves much more cumbersome calculations. We
leave this problem for a more comprehensive analysis
elsewhere.
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The pressure dependences of the thermoelectric power S of Ce samples were measured at pressures P from 0 to
20 GPa in a synthetic diamond cell. The dependence of S on P was found to be nonmonotonic both in the region
of transitions from the fcc (γ) phase to the modified fcc (α) phase followed by the transition to the body-centered
monoclinic (α'') and the tetragonal (ε) phases at pressures of about 1, 5–6, and 12–15 GPa, respectively, and in
the stability region of these phases. The thermoelectric power sign was found to be positive for all high-pressure
Ce phases. The found S(P) dependence was compared with the published computational data on the electronic
structure of the cerium phases. Cerium was taken as an example to demonstrate the advantage of the thermoelec-
tric studies over other methods of investigation of phase transitions. © 2005 Pleiades Publishing, Inc.

PACS numbers: 05.70.Fh, 62.50.+p, 72.20.Pa, 81.40.Vw
In rare-earth metals, the formation of crystal struc-
tures depends clearly either on the atomic number in the
lanthanum series or on pressure [1–5]. Cerium is the
first metal in the lanthanum series and has only one f
electron in its electron shell. A change in the cerium
electronic structure upon pressure-induced phase tran-
sitions and, in particular, the behavior of the f band are
of great interest for understanding the general regulari-
ties in the formation of electronic structures of lan-
thanides and types of crystal lattices appearing in them
at normal and higher pressures. For this reason,
although the high-pressure phase transitions in cerium
have been studied in numerous works [1–16], they are
still being intensively studied both theoretically and
experimentally by various transition methods [4, 13,
14].

Under normal conditions, cerium crystallizes in the
fcc lattice (Fm3m) [3–5]. The isostructural γ  α
transition [1–5] that occurs in cerium at room tempera-
ture and P ≈ 0.8 GPa is accompanied by a noticeable
(16–17%) change in volume. It is not yet fully under-
stood and is one of the most intriguing phenomena. The
transition was detected from the jumps in the volume
and electrical resistance and from changes in the lattice
constant and elastic modulus [1–15]. At higher pres-
sures (5–7 GPa), further sequential phase transitions
occur in the body-centered monoclinic α'' phase (C2/m)
or the uranium α phase (distorted variants of the fcc lat-
tice) and thereupon (at 12–17 GPa) in the body-cen-
tered tetragonal ε phase (I4/mmm) [3–5].

In the initial fcc structure, the electronic configura-
tion of cerium is 4f15d16s2. Models in which only the
charge or spin instability is taken into account cannot
0021-3640/05/8104- $26.00 0167
account for the isostructural γ  α transition in
cerium [4, 9, 13]. In the first case, a 4f1 electron is local-
ized in the initial phase and delocalized in the new
phase and, hence, is involved in the bond formation. In
the second model, the 4f1 electron is assumed to be
localized in both phases, while the phase transition
occurs due to the spin-fluctuation energy [4, 9, 13].
Indeed, in contrast to the α phase, antiferromagnetism
was found in γ-Ce, in agreement with the relativistic
band calculations showing that the f band in the initial
cerium phase is split into two narrow bands with differ-
ent spin polarizations [15]. Recent synchrotron and
neutron studies have shown that the isostructural transi-
tion at 0.8 GPa in cerium is caused by the appreciable
changes not only in the electronic and magnetic but also
in the phonon subsystems [4].

Various methods for studying phase transitions
detect changes in a certain (electron, phonon, or mag-
netic) subsystem. In cerium, strong changes in the first
two subsystems occur even before the isostructural
phase transition [1–4, 11, 13]. For instance, the com-
pressibility [1], neutron diffraction, and ultrasonic [11,
13] data suggest that the bulk modulus in cerium is
approximately halved prior to the phase transition,
which correlates with the observed softening of the lon-
gitudinal phonon modes. An approximately twofold
increase is also observed for the thermoelectric power
[8] that characterizes the structure of the electron
bands. A similar large change in the electrical resistiv-
ity of cerium (a decrease by half) occurs only upon the
γ  α phase transition, while, in the pressure range
from 0 to 0.8 GPa, where both the elastic modulus and
thermoelectric power change strongly, the resistivity
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Pressure dependence of the thermoelectric power S
obtained for Ce sample no. 3 at T = 293 K in three consec-
utive cycles of an increase in pressure. The arrows indicate
structural phase transitions, and the shaded regions corre-
spond to the pressure ranges where these transitions are
completed according to the data obtained in [1–15]. Inset:
the thermoelectric signal vs. the temperature difference for
the Ce samples: curves 1 and 3 are obtained at the beginning
of the first and second cycles, respectively (at P ≈ 0 GPa),
and curves 2 and 4 are for the end of these cycles (at P ≈
20.1 and 21.6 GPa, respectively).

Fig. 2. Pressure dependence of the electrical resistance R
obtained for a Ce sample at T = 293 K. Inset: the portion of
the R(P) curve obtained after subtracting the linear slope
(a × P), where a = –0.596 Ω/GPa.
increases only by about 5% [2, 4, 6–8]; i.e., it only
slightly reflects the behavior of the electronic and crys-
tal structures under pressure.

A method for studying phase transitions in semicon-
ductors at high pressures up to 30 GPa was developed
in [17–19]. This method also proved to be quite effi-
cient for the detection of changes occurring in the elec-
tronic subsystems of metallic phases, in which the con-
ductivity is caused by the charge carriers from several
bands (e.g., electrons and holes) [18, 19]. We used this
method to study phase transitions in the pressure range
from 0 to 20 GPa for cerium, in which f, d, and s elec-
trons can contribute to the conductivity [14]. The aim of
this work was to perform thermoelectric measurements
over a broad pressure range, where several structural
modifications occur, so that one could compare the val-
ues of S and the corresponding pressure coefficients for
each phase and gain qualitative information on the
change in the electronic structure.

Cerium of type “ÉO” was studied. Structural certifi-
cation of the material was carried out using an IVV-2M
nuclear reactor by neutron diffraction analysis at the
wavelength λ = 1.532 Å (see, e.g., [20]). The diffraction
spectra corresponded to the fcc structure with the lattice
constant a = 1.1534 ± 0.0004 Å [15].

The dependences S(P) and R(P) of the thermoelec-
tric power and electrical resistance, respectively, were
measured for microsamples (~0.2 × 0.2 × 0.05 mm) in
conducting high-pressure synthetic diamond cells [17–
19]. The alternative methods of studying thermoelectric
power in a chamber with a compressible capsule [21]
and in transparent diamond cells with implanted con-
tacts [22] are as yet restricted by a hydrostatic pressure
of 12 GPa. The pressure in the compressible spacer
made from lithographic stone was determined using
calibration graphs constructed by recording phase tran-
sitions in reference materials, ZnSe, CdTe, etc., with an
error of about 10% [17–19]. To create the temperature
gradient, one of the anvils was heated. The temperature
at fixed anvil points was measured using thermocouples
[17–19]. The procedure for measuring the quantities
S(P) and R(P) was the same as in [17–19]. Measure-
ments were made using an automated setup that
allowed simultaneous recording of the pressure, tem-
perature differences, thermoelectric signal, sample
compression, and other parameters of the experiment
[18, 19]. The errors in determining the S(P) and R(P)
did not exceed 20 and 5%, respectively. The change in
the sample volume upon compression was disregarded.
The accuracy of determining the thermoelectric power
was monitored by measurements performed for special
purity grade lead, whose thermoelectric power S ≈
−1.27 µV/K is close to zero [23, 24].

The pressure dependence of the thermoelectric
power of the Ce samples has a pronounced nonmono-
tonic character (Fig. 1) and reflects the changes occur-
ring in their electronic structure. In the initial γ phase, S
increases with P by a factor of 1.3–2 (Fig. 1). These
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results are in agreement with the results obtained at
hydrostatic pressures below 9 GPa [8]. The S(P) depen-
dence correlates with the behavior of the cerium elec-
trical resistance R(P) [1, 2, 4–8], but the thermoelectric
power changes upon much stronger phase transitions
(Figs. 1, 2, and [8]). Note that, in the majority of works
where the electrical resistance of Ce was measured, the
samples were preliminary deformed [1, 2, 4]. In the
pressure ranges 1–2 and 5–6 GPa, where, according to
the data from [3–5], the structural phase transitions
occur, the thermoelectric power decreases (upon the
first transition) or increases (upon the second transi-
tion) sharply (Fig. 1 and [8]). The transition at P ≥
6 GPa occurs presumably to the monoclinic body-cen-
tered phase α'' [3, 4, 25]. In [4], the effect of elastic
stresses on the shift of phase-stability boundaries was
considered in the framework of the group theoretical
approach to demonstrate that the transition to the α ura-
nium phase is energetically favorable at high tempera-
tures in the samples without intrinsic elastic stresses,
whereas the “cold” sample compression (as in our case)
initiates transition to the monoclinic body-centered
phase, which is confirmed by the experiment [4, 25].
Above 12 GPa, the sign of dS/dP changes and the ther-
moelectric power decreases with increasing pressure,
while at P ≥ 15 GPa, where the R(P) curve also has kink
(Fig. 2), S depends slightly on the pressure (Fig. 1). The
change in the sign of the pressure coefficient for S at
12 GPa can be attributed to the onset of the phase tran-
sition to the tetragonal phase that is completed above
15 GPa, in accordance with the data of the synchrotron
and x-ray studies [3, 5].

The general expressions for the electrical conductiv-
ity σ and thermoelectric power S have the form

(1)

Here, f is the distribution function, EF is the Fermi
energy, k0 is the Boltzmann constant, e is the electron
charge, T is the temperature, and E is the electron
energy. In the case of metallic conductivity, Eq. (1)
transforms to the well-known formula S ≈
−(k0/e)(π2/3)k0T[dln(σ(E)/dE)  [23, 24, 26, 27].

In the low- and high-pressure cerium phases, s-, d-, and
f-band electrons contribute to the total conductivity σ.
These contributions are determined by the type of the
electronic structure of the phases with different crystal
lattices and depend on the charge-carrier mobility and
the density of electronic states in the indicated bands
[23, 24, 26, 27]. For instance, in a two-band metal
with carriers from the s and d bands, S ≈
−(k0/e)(π2/3)k0T[3/2EF – (1/(Nd(E))∂Nd(E)/∂E) ,

where Nd(E) is the density of states in the d band [23,
24, 26]. The second term in the square brackets is due
to the electron scattering on the d-band carriers and
strongly influences the thermoelectric power magni-

σ σ E( ) ∂f /∂E( ) E,d∫–=

S k0/ e( ) E EF–[ ] /k0T σ E( )/σ[ ] ∂ f /∂E( ) E.d∫–=

] E EF=

] E EF=
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tude and sign [23, 24]. For a nearly empty d band, this
expression accounts for the positive sign of the thermo-
electric power [23, 24]. In cerium, there is also the near-
empty f band where the main compression-induced
changes occur [14], which manifested in the thermo-
electric power behavior. According to Eq. (1), the con-
ductivity is determined by the contribution from all the
electron bands and, hence, changes slightly with pres-
sure. Note that the signs of the pressure coefficients for
the thermoelectric power and conductivity are opposite
in the body-centered monoclinic structure above 6 GPa:
S increases (Fig. 1 and [8]) while R decreases with
increasing pressure [6–8].

The density of electronic states was calculated for
different high-pressure cerium phases in [14]. It was
found that the Fermi level in the α phase lies at the side
of the van Hove peak in the density of states, while, in
the other phases, it lies in the pseudogap region, which
ordinarily corresponds to the higher structural stability.
The density of states calculated in [14] for different
bands near the Fermi level explains the strong pressure
dependence of the cerium thermoelectric power
(Fig. 1). In [14], the structural instability of cerium was
explained by the degeneracy of the hybridized pdf
states near the Fermi level and the transition was pre-
sumably attributed to the Peierls lattice distortion.

One can see from the data obtained in this work that,
both upon the phase transitions and in the phase-stabil-
ity regions, the cerium thermoelectric power, which is
determined by s, d, and f electrons, is much more sen-
sitive to a change in the electronic subsystem than elec-
trical resistance. Earlier [28–32], it was shown that the
thermoelectric power is highly sensitive to the pres-
sure-induced electronic transitions in semiconductors,
conducting ceramics, and other materials. This proves
that the thermoelectric power method offers advantages
over other methods for studying the phase transitions
and electronic structure of high-pressure phases.

We are grateful to I.F. Berger and V.I. Voronin for
the neutron-diffraction certification of the samples and
to A.V. Mirmel’shteœn for discussion of the results. This
work was supported by the Russian Foundation for
Basic Research (project no. 04-02-16178) and INTAS
(grant no. 03-55-629).
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The anomalously wide energy range for the formation of long-lived negative molecular ions during electron
capture by fullerene molecules is explained by the excitation of collective electron (plasma) oscillations in these
molecules. A model for such excitations for fullerenes C60 and C70 is proposed on the basis of the Thomas–
Fermi model. This model provides good correlation between the experimental curves of resonant electron cap-
ture and the theoretical energy dependences of the density of plasma oscillation modes. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 61.46.+w, 71.45.Gm
INTRODUCTION

In contrast to dissociative electron capture by poly-
atomic molecules, which is observed for the entire vari-
ety of organic compounds in the energy range 0–15 eV,
nondissociative attachment of electrons leading to the
formation of long-lived (mass-spectrometrically
detected) negative molecular ions (NMIs) may occur
either at thermal energies of electrons (  [1, 2] and
others) or at epithermal energies [3, 4] below 3–4 eV; at
these energies, NMI peaks are observed simultaneously
for several resonances.

At the same time, the first experiments on electron
capture by C60 and C70 fullerene molecules [5–7] have
already revealed an extremely wide electron energy
range (0–15 eV) in which NMIs are formed in the gas-
eous phase. In this case, a narrow “thermal” resonance
with a peak near 0 eV and a broad bell-shaped band
with a complex structure and several local peaks are
clearly observed (see, e.g., Fig. 1). Such a particular
interaction of electrons with fullerenes (and some of
their derivatives [8]) may be associated with the excita-
tion of collective electron oscillations in fullerene mol-
ecules [9]. An incident excess electron spends its entire
energy on exciting such plasma oscillations and, when
its energy becomes close to zero, is captured by a mol-
ecule. A similar mechanism of the formation of long-
lived NMIs for molecules is known as the Feshbach res-
onance with the electronic and/or vibrational excitation
of a target molecule under the condition of positive
electron affinity in the ground or electron-excited state
[2]. However, the absolute values of energies in these
two cases differ substantially: the energy of collective
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–

0021-3640/05/8104- $26.00 ©0171
electron excitations may be many times higher than the
energy of the electronic and vibrational transitions.

It should be noted that experiments on electron
impact [10–12] also revealed the excitation of collec-
tive electron oscillations, which is responsible for the
dissociative ionization and fragmentation of neutral
and charged fullerenes by high-energy (0.01–1 keV)
electrons. The plasmon contribution in the effective
cross section for the process was manifested in experi-

Fig. 1. Experimental curves for the effective yield of reso-
nant electron capture (a) C60 and (b) C70 fullerene mole-
cules, and (c) and (d) the respective distribution functions
for plasma oscillation modes.
 2005 Pleiades Publishing, Inc.
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ments in the form of a structureless resonance band in
the energy range 10–50 eV, whose position, shape, and
width weakly correlated with the charge state of the
fullerene ion and its mass [12]. At the same time, it is
well known that the intensity and localization of this
band must depend on the number of valence (collectiv-
ized) electrons in the fullerene molecule, while the
band shape may be determined by the predominance of
certain plasma modes manifested under various exper-
imental conditions of their excitation [13]. Such a pos-
sibility of separating plasma modes in fullerenes can be
realized in negative ion mass spectrometry when the
excitation is executed by low-energy electrons through
the mechanism of resonant electron capture [5, 7],
which are “softer” than that in experiments on electron
impact, where the energy resolution is relatively low.

This study is aimed at developing a quantitative
model of plasma oscillations in fullerene molecules
during electron capture that would take into account the
geometrical parameters of the fullerene skeleton and
the nonuniformity of the electron density distribution
over the surface of the molecule. As a result, it would
become possible to explain the experimental data on
the resonant capture of electrons by C60 and C70
fullerenes on the basis of theoretical calculations of the
distribution functions for plasma oscillation modes.

EXPERIMENT

The interaction of free fullerene molecules with
electrons was studied experimentally using a laboratory
negative ion mass spectrometer in the regime of reso-
nant capture of electrons [7]. The idea of the method
was described in detail in [2, 3] and, as applied to
fullerenes, is as follows. A collimated C60 molecular
beam generated due to sample heating (to 600–700 K)
is fed to the ionization chamber where it perpendicu-
larly intersects an energy-controlled electron beam (0–
30 eV) whose energy distribution has an FWHM of no
worse than 0.4 eV. Negative ions formed as a result of
electron capture are mass selected by a static magnetic
analyzer. The method implies the recording of so-called
effective-yield curves, which describe the dependence
of the ion current on the energy of ionizing electrons for
all the negative ions formed in the process. The mass
spectrum itself is the complete set of such curves. In
contrast to the mass spectrum for other “ordinary”
polyatomic molecules, the fullerene mass spectrum has
a single peak of a molecular ion with the corresponding
set of isotopic peaks. Typical experimental curves for
the resonant capture of electrons by C60 and C70
fullerene molecules are shown in Figs. 1a and 1b.

MODEL

The simplest model applied to these objects is the
hydrodynamic model of surface plasmons [14]. In this
model, electrons are treated as a charged liquid on the
surface of a fullerene molecule. If we consider that the
electron concentration N on the surface of the fullerene
molecule does not change with increasing the number
of carbon atoms (in the first approximation, the sizes of
hexagons and pentagons can be regarded as constant),
while the radius of the fullerene molecule is propor-

tional to , the energy of surface plasmons in accor-
dance with this model must be proportional to N–1/4.
The dependence of the energy range of the NMI forma-
tion on the number of atoms must be the same. Indeed,
for Cn fullerene series, where n = 60, 70, 76, 78, 84, and
90, the peak of the high-energy resonance is shifted
towards lower energies with increasing the number of
atoms. However, the range of the formation of NMIs in
this case increases from ~13 eV for C60 to ~20 eV for
C90. These differences in the position of the distribution
peak and in the range of formation may be due to the
fact that the model does not take into account the geo-
metrical factors, which depend on the shape of the mol-
ecule as well as on the electron distribution over its sur-
face (only the C60 molecule can be treated as spherical).
Apparently, it is the disregard of the geometrical factors
that complicates the application of the approaches [15,
16] for explaining the experimental data on the reso-
nant capture of electrons even for C60. In the model pro-
posed below for the excitation of plasma oscillations in
fullerene molecules, both the asphericity of the shape
and the nonuniformity of the distribution of electrons
over the surface are taken into account when describing
the motion of the electron liquid in the field of the pos-
itively charged ions of the fullerene skeleton.

Our consideration is based on microscopic quantum
hydrodynamics for fermions [17, 18]. It is known that
the solution of systems of equations in quantum hydro-
dynamics may form an infinite chain of unclosed equa-
tions. Following [17, 18], we introduce the Thomas–
Fermi model to close the systems of equations. In this
case, the continuity and momentum balance equations
take the form

(1)

Here, Φ(r, t) is the total potential of the field of elec-
trons and ions, v is an analogue of the velocity in clas-
sical hydrodynamics, and W(r, t) is the energy in the
Thomas–Fermi model. If we consider the surface elec-
tron density σ(r, t) rather than the volume electron den-
sity n(r, t), W(r, t) can be represented (disregarding the
exchange and spin corrections) in the form

(2)

N

∂n r t,( )
∂t

------------------ — n r t,( )v r t,( )( )+ 0,=

me
∂
∂t
----- v r t,( )—+ 

  v α r t,( )

+ ∇ α W r t,( ) eΦ r t,( )–( ) 0.=

W r t,( ) "
2

4πme

-------------σ r t,( ).=
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In the stationary case (v  = 0), system (1) is transformed
into the Thomas–Fermi equation

(3)

Spherical fullerene C60. We treat the C60 molecule
as a sphere with carbon ions rigidly fixed on its surface
and having the coordinates θk, ϕk = Ωk (dΩ = sinθdθdϕ).
For the surface distribution of electrons, n(r, t) = δ(r –
R)σ(r, t) and solution of Eq. (3) in the stationary case
has the form

where Ylm(Ω) is a Legendre spherical function and

,

where aB is the Bohr radius. For nonstationary pro-
cesses, the solution for the surface electron distribution
density is sought in the form

where σlm(t) = σlm . Solutions of system (1) give
the eigenfrequencies of plasma-type oscillations,

(4)

where  are the eigenvalues of the matrix

for a certain l value. Expression (4) was derived under
the condition that ξl ~ 1. This condition imposes a con-
straint in l ! 2R/aB – 1/2 = Lmax ~ 11. For l > Lmax, we
obtain complex values for frequencies, which corre-
sponds to the damping of plasma oscillations.

Spheroidal fullerene C70. Let us consider a C70
molecule in a spheroid (confocal, c = const is the focus)

coordinate system x = cosϕ, y =

sinϕ, z = cµν. For µ = µ0 = 1/ε, we
obtain ε = 0.561 and R/c = 1.462; i.e., the C70 molecule
has the spheroid shape, i.e., a sphere extended along the
z axis with eccentricity ε. In the case of the surface dis-
tribution of electrons, the potentials of the fields of
electrons and ions for µ = µ0 have the form

W r( ) eΦ r( )– 0.=

σ0 Ω( ) σ0
1

R2
----- φlm

60ξ lYlm Ω( ),
lm

∑+=

σ0
N

4πR2
------------, φlm

60 Ylm* Ωk( ),
k 1=

N

∑= =

ξ l 1 2l 1+( )
aB

4R
-------+

1–

=

σ Ω t,( ) σ0 Ω( ) σlm t( )Ylm Ω( ),
lm

∑+=

e
iωlmt

ωlm
2 ωp

2 l l 1+( )
2l 1+

-----------------4πλm
l( ),=

λm
l( )

Am1m2

l( ) 1
N
---- Ylm1

Ωk( )Ylm2
* Ωk( )

k 1=

N

∑=

c µ2 1–( ) 1 ν2–( )

c µ2 1–( ) 1 ν2–( )

Φe µ0 Ω,( ) 8πe2cg µ0( )=
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respectively. Here, e is the electron charge;

where Plm(µ0) and Klm(µ0) are the associated Legendre
functions of the first and second kind, respectively;

Ylm(Ω) = Θlm(ν) , Ω = 〈ν , ϕ〉 . The steady-state

solution of Eq. (3) has the form

where

For nonstationary processes, we seek the surface distri-
bution of electrons in the form

where σlm(µ0, t) = σlm(µ0) . Undamped plasma-
type oscillations can be determined from the solution of
system (1) as

(5)

× 1–( )m
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Here,

Expression (5) was derived under the condition that
ξlm(µ0) ~ 1. Otherwise, solutions of system (1) are
damped.

DISCUSSION

According to the model proposed above, the process
of electron capture by the fullerene molecule can be
described as follows. If the energy of the incident elec-
tron is equal or close to the energy of a certain plasma
mode, it excites this mode, loses its energy, and is then
captured with zero energy by the molecule. Each vibra-
tional mode has its own energy distribution and the dis-
tribution functions may overlap. Consequently, the
electron with a fixed energy can excite one of several
possible modes. Obviously, the larger the number of
different modes in a given energy range, the higher the
probability of the NMI formation and, hence, the higher
the intensity of a signal when recording the experimen-
tal curves of the effective ion yield.

To compare the experimental data with the results of
calculations, it is necessary to plot the frequency (or
energy) dependence g(ω) of the vibrational mode den-
sity for plasmons. To this end, it is necessary to numer-
ically solve the system of equations (1), to obtain a set
of eigenfrequencies ωlm of oscillations, to replace them
by Gaussians Γ with the standard deviation equal to the
width of the electron distribution, and to sum over the
entire energy range, g(ω) ≈ (ω – ωlm).

The results of numerical calculations of plasma
oscillation mode density are presented in Figs. 1c and
1d together with the corresponding experimental
curves for the resonant capture of electrons by mole-
cules of C60 and C70 fullerenes. It is seen that these
curves correlate: the ranges of NMI formation for both
types of fullerenes, as well as the positions of the main
peaks and other local singularities, coincide with each
other. Some discrepancy between the experimental and
theoretical curve is observed only in the low-energy
range, especially for C60 (Fig. 1a). According to our cal-
culations, the lowest energy of the vibrational mode for
C60 is approximately equal to 2.55 eV. The cross section
for the NMI formation is a nonlinear function of the
electron energy: as the energy decreases, the time of the
interaction between the electron and molecule (and,
hence, the formation cross section) increases [1, 2],
which leads to a relative increase in the density of low-
energy plasma modes. The narrow peaks on the exper-
imental curve in the range of thermal energies (≤2 eV)
are associated with the presence of the so-called single-
particle resonances [2] that do not belong to collective
excitations and, hence, are ignored in our model.

Alm µ0( ) 1

µ0
2 1–

------------------ 1
N
----

Ylm Ωk( ) 2

µ0
2 νk

2–
------------------------.

k 1=

70

∑=

Γ
lm∑
The above general approach to studying collective
vibrations of fullerenes is not limited to the C60 and C70
molecules. Higher fullerene molecules with substantial
deviation from the spherical shape, as well as fluori-
nated and hydrogenated fullerenes, will be investigated
experimentally and theoretically in our future works.
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Possible acoustic modes in a superfluid 2D gas of hydrogen atoms adsorbed on the surface of liquid helium at
T & 0.1 K are considered depending on the oscillation frequency and times of energy and momentum transfers
both between 2D subsystems of hydrogen atoms and ripplons and into the bulk liquid or substrate. Analogues
of the usual and second sounds are realized in 2D hydrogen at high frequencies. In the case of weak coupling
with the bulk liquid and substrate, ripplons provide an addition to the normal hydrogen component, which leads
to a change in the speed of the second sound. In the most interesting range of low frequencies, an analogue of
the fourth sound is realized, when ripplons and the normal hydrogen component are immobile and only the
superfluid hydrogen component moves. In this case, when the rate of heat transfer into the bulk liquid is much
lower than the sound frequency, oscillations of the temperature of hydrogen can be observed in phase with den-
sity oscillations. Methods for exciting acoustic modes are discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.75.Kk, 67.40.Pm, 67.65.+z, 68.03.Kn, 68.43.Pq
The two-dimensional superfluidity [1, 2] observed
in helium films with a thickness of several atomic lay-
ers [3] must also take place in a Bose gas. One of the
good examples of a 2D Bose gas with weak interaction
is the gas of electron and nuclear spin-aligned hydrogen
atoms that occupy the only bound state with an energy
of Ea = –1.14 K in the absorption potential on the liq-
uid-helium surface (2D H↓ ). A high phase-space den-
sity of 2D H↓  required for the observation of superflu-
idity can be reached, e.g., in a miniature magnetic trap
[4]. In this case, it is, however, difficult to directly
detect 2D H↓ . Wide opportunities for observing and
studying the transport processes on the liquid-helium
surface involving 2D H↓  [5] are opened by experiments
on the thermal compression of 2D hydrogen with direct
diagnostics by ESR spectroscopy [6, 7]. Thus, the ques-
tion of possible experimental manifestations of the
superfluidity of 2D hydrogen arises. This question is a
part of the more general problem of a 2D superfluid
Bose gas on the surface of a superfluid Bose liquid.

First of all, in a superfluid gas it is natural to expect
the appearance of several types of oscillations similar to
the first (usual), second, etc., sounds. Acoustic modes
on the helium surface involving 2D atomic hydrogen
can be analyzed using quantum surface hydrodynam-
ics. This approach ensures the transition from the
microscopic consideration of capillary waves to the
description in terms of the 2D gas of elementary exci-
tations, ripplons [8]. The features associated with the
superfluidity of 2D H↓  can be described in the frame-
work of two-fluid hydrodynamics similarly to the bulk
superfluid helium [9]. The difference is that normal
0021-3640/05/8104- $26.00 ©0175
motion involves not only the normal hydrogen compo-
nent but also ripplons.

It is necessary to emphasize that the interaction of
hydrogen with ripplons leads to the formation of two
types of mixed elementary excitations [10], which are
combinations of ripplons with hydrogen quasiparticles.
Therefore, strictly speaking, hydrogen and ripplons
should be treated as hydrogen-like and ripplon-like
excitations, respectively. The basic contribution to the
interaction comes from the process of the emission or
absorption of a ripplon by a hydrogen atom, where the
atom in the initial or final state has zero momentum,
i.e., is in a quasi-condensate. In the surface Hamilto-
nian, terms quadratic in the creation (annihilation)
operators of ripplons and above-condensate hydrogen
quasiparticles correspond to this process. Terms of
third and higher orders describe the relaxation pro-
cesses responsible for the nonzero width of mixed
terms and their interaction. The elementary-excitation
spectra appreciably differ from the pure hydrogen and
pure ripplon spectra when the initial terms are suffi-
ciently close to each other. For the case under consider-
ation, this condition corresponds to energies several
times higher than thermal energy, whereas hybridiza-
tion disappears in the long-wavelength limit. As a
result, the real effect of hybridization on the thermody-
namics and kinetics of the surface is insignificant [10].

Key quantities for the problems under consideration
are the characteristic times of the transfer of the longi-
tudinal momentum from the hydrogen system to rip-
plons (τHR) and from ripplons into the substrate or bulk
liquid (τR). The τHR value was calculated in the Boltz-
 2005 Pleiades Publishing, Inc.
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mann limit by Zimmerman and Berlinsky [11]. It is nat-
ural to assume that the result for degenerate hydrogen
can be significantly different and requires individual
consideration. The rate of momentum transfer both
from ripplons to phonons of bulk helium and into the
substrate was measured by Mantz et al. [12] and calcu-
lated in [13].

The relation between τHR and τR can be arbitrary,
because the temperature dependences of the quantities
differ from each other and τR depends on the character
of the surface [13]. In particular, according to [11], τHR

decreases from 6 × 10–7 to 10–8 s when the temperature
increases from 40 to 150 mK. At the same time, τR for
the film is nearly independent of the temperature for
T & 150 mK [12] but depends strongly on the film thick-
ness [13, 14] and the substrate roughness scale [13].

The hydrodynamic description of oscillations is
obviously applicable only if the oscillation frequency is
much lower than the frequencies of quasiparticles form-
ing the 2D gas. The validity of this condition can easily
be verified because the frequency ΩT ~ T/" ~ 1010 s–1 of
a thermal ripplon, as well as the elementary excitations
in 2D H↓ , is sufficiently high.

Further, hydrodynamics is based on the assumption
of local thermodynamic equilibrium, which we supple-
ment with the assumption of the equilibrium of each of
the individual subsystems. In turn, this means that the
thermal equilibrium within a subsystem is established
much faster than energy and momentum exchange with
other subsystems and the thermostat (bulk liquid or
substrate). Such an assumption is quite justified for 2D
hydrogen. Indeed, in the free-particle limit, T @ mc2,
where c is the speed of sound, the relaxation is deter-
mined by interatomic collisions. The frequency of elas-
tic collisions between hydrogen atoms is equal to

 ≈ σ × 3.5 × 10–4 cm2/s [5], which is much higher

than  over the entire density range under consider-
ation. In the opposite, acoustic limit, T ! mc2, equilib-
rium in 2D H↓  is established due to interaction between
phonons. The relaxation time due to the spontaneous
decay of a phonon into two phonons, similar to the
decay of phonons in superfluid helium, is estimated as

τ–1 ~ " /mσ [15]. For the density σ = 2 × 1013 cm–2 and
temperature T = 0.1 K, the wave vector of a thermal
phonon is equal to kT = T/"c = 3.2 × 106 cm–1; thereby,
τ ~ 3 × 10–10 s.

The thermal relaxation of ripplons is likely caused
by the R  R + R process [16]. In the case of its inef-
ficiency [17], it is more correct to consider the interac-
tion of hydrogen with the thermostat through ripplons
and to determine the corresponding nonequilibrium
distribution of ripplons from the kinetic equation. Nev-
ertheless, the thermodynamic description of ripplons
remains meaningful when τHR ! τR or τHR @ τR. In
these two important limiting cases, the distribution of

τHH
1–

τHR
1–

kT
4

ripplons remains thermal and their temperature and
velocity coincide with, respectively, the temperature
and velocity of the hydrogen or the substrate.

In view of the above discussion, the linearized trans-
port equations for the 2D system are written omitting
the dissipative terms responsible for longitudinal heat
conduction, diffusion, and viscosity. The continuity
equation for hydrogen [18] has the form

(1)

Here, as usual, the dot over the symbol stands for the
time derivative; jH = ρnvn + ρsvs is the hydrogen flux,
where vn (vs) and ρn (ρs) are the velocity and mass den-
sity of the normal (superfluid) components, respec-
tively, and ρH = mσ = ρn + ρs is the total density, where
m is the hydrogen atomic mass.

The equation of motion for the normal hydrogen
component has the form

(2)

where PH is the 2D hydrogen pressure, includes the
momentum transfer from the hydrogen to ripplons in
the τ approximation, and the last term on the left-hand
side should be treated as the formal definition of the
corresponding time constant τHR.

The equation of motion for ripplons including the
momentum transfer into the substrate is similar:

(3)

The equation of motion for the superfluid hydrogen
component has the usual form

(4)

The specific chemical potential µH ≈ σ /m of hydro-
gen is determined primarily by H–H interaction,
because under the superfluidity conditions σΛ2 * 7
[19, 20], and, therefore, the thermal contribution to µH

that is about  is exponentially small (here, Λ =

 is the thermal wavelength of the hydrogen

atom and  is the mean-field parameter generally
depending on the density [20]).

Heat transfer from hydrogen to ripplons [11] and
from ripplons to the film bulk [21] is described by the
following equations of energy conservation:

(5)

(6)

ρ̇H div jH+ 0.=

ρnv̇n ∇ PH

ρn

τHR
-------- vn vR–( )+ + 0,=

ρRv̇R ∇ PR

ρn

τHR
-------- vn vR–( )–

ρR

τR
------vR+ + 0.=

v̇s ∇µ H+ 0.=

Ũ

Te σΛ2–

2π"
2/mT

Ũ

TH ṠH divSHvn+( ) KHR TH TR–( )+ 0,=

TR ṠR divSRvR+( ) KHR TH TR–( )–

+ KRP TR T0–( ) 0.=
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Here, T0 is the temperature of the liquid in the film bulk
and KHR and KRP = 5.3T17/3 W cm–2 K–20/3 [21] are the
heat conductivities of the hydrogen–ripplon and rip-
plon–phonon contacts, respectively.

Assuming that deviations of the thermodynamic
quantities from their steady values, as well as vn, vs, and
vR, are small, excluding the velocities from Eqs. (1)–
(6), and substituting the solution in the form of the
plane wave exp(iωt – ikr), we arrive at the system of
three equations for the amplitudes of the oscillations of
the hydrogen density  and temperatures  and .
The condition of the consistency of these three equa-
tions yields, as usual, the relation between the fre-
quency ω and wave number k. However, this general
dispersion relation containing terms up to ω6 and k6 is
very lengthy.

The results turn out to be transparent in some limit-
ing cases. In particular, in the high-frequency limit,
when ωτHR @ 1 and ωτR @ 1 simultaneously, terms
describing the momentum transfer, i.e., containing τHR
and τR, can be omitted. The heat transfer rate is usually
not higher than the momentum transfer rate. Corre-
spondingly, under this condition, the quantities KRP/ωSR
etc., are also small [in particular, KRP/SR = 1.6 ×
105(T/0.1 K)13/3 s–1]. Therefore, the hydrogen and rip-
plons are coupled neither with each other nor with the
substrate, and the system of Eqs. (1)–(6) is split into
two independent systems. In this case, Eqs. (3) and (6)
describe the propagation of the second surface sound
(i.e., a ripplon density wave or, identically, a tempera-

ture wave) with a velocity of uR = SR/  ∝

[22]. The remaining four equations describe two
different oscillation modes in 2D H↓ , which are 2D
analogues of the usual and second sounds. As usual,
excluding the velocities from these equations and
expressing ∆µ and ∆P in terms of the increments of the
density and temperature of hydrogen [23], we arrive at
the following system of equations:

(7)

(8)

Here, all quantities without subscripts refer to hydro-
gen, c2 = (∂P/∂ρ)T is the speed of the usual sound in 2D

H↓ , and B = 1 – .

Substituting again the solution in the form of a plane
wave, we obtain the following equation for the oscilla-
tion propagation velocity u = ω/k:

(9)

ρH' TH' TR'

ρR ∂SR/∂T( )

TR
1/3

ρ̇̇ c2∆ρ– S∆T– 0,=

B ρ̇̇ c2ρs

ρ
-----∆ρ–

ρn

S
----- ∂S

∂T
------ 

  Ṫ̇– 0.=

ρn

S
----- ∂S

∂ρ
------ 

 

u4 u2 c2 BS2

ρn ∂S/∂T( )
--------------------------+–

ρs

ρ
----- 

  c2 S2

ρn ∂S/∂T( )
--------------------------+ 0.=
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Under these conditions, the fraction of the overconden-

sate hydrogen component approaches ξ = m /4π"2 .
0.14 [20, 24]; i.e., it is sufficiently low, and the elemen-
tary excitations are Bogoliubov quasiparticles, whose
energy "ωk and wavenumber k are related by the known

relation "ωk = (  + 2σ ek)1/2, where ek = "2k2/2m. For

low temperatures, in addition to the zeroth term σ2 /2,
long-wavelength excitations with the phonon-like dis-

persion relation, ωk ≈ ck, where c2 = σ /m, make the
basic contribution to the hydrogen energy. The expan-
sion of the hydrogen pressure PH = –FH, where FH is the
free energy of the unit area, in powers of the ratio θ =
T/mc2 is

(10)

where C =  – 1)–1x2dx . 2.404. It is easy to esti-

mate that the second and subsequent terms in the square
brackets are appreciably smaller than the first term
under the superfluidity conditions. From Eq. (10), we
obtain the hydrogen entropy in the form SH = (∂PH/∂T)µ .
(∂PH/∂T)σ . 3Cξσθ2; therefore, B = 1 + ρn/ρ. Note that
SH is comparable with the entropy of ripplons; SR ≈
1.52 × 10–2T4/3 erg/cm2 K7/3. Then, since (∂PH/∂ρ)S ≈
(∂PH/∂ρ)T . c2, the speed of the first and second sounds
in superfluid 2D hydrogen are expressed as [25]

(11)

(12)

respectively. It is interesting that the speed of the usual
sound, as was expected, is determined only by interac-
tion and is independent of temperature. At the same

time,  is proportional to T3/2 and inversely propor-
tional to density. In particular, for T  0, the fraction
of the normal component tends to ξ and the ratio of the
speeds is equal to

(13)

Then, let us analyze the case of weak coupling
between ripplons and the substrate, τHR ! τR. Such a
situation may be realized, e.g., on the surface of a bulk
liquid or macroscopically thick films, as well as for a
very smooth substrate; i.e., when the ripplon momen-
tum relaxation is mainly due to interaction with
phonons of the liquid in the absence of hydrogen. In
this case, the choice of the oscillation frequency can
ensure the condition τHRω ! 1 ! τRω, under which rip-
plons simply represent the contribution to the normal
density of hydrogen component similarly to the contri-
bution of a small 3He impurity in superfluid helium to
the normal (phonon at low temperatures) density. In

Ũ

ek
2 Ũ

Ũ

Ũ

PH . 
1
2
---σ2Ũ 1 2Cξθ3 ξO θ5( )+ +[ ] ,

ex(
0

∞∫

uH1
2 c2≈ σŨ/m,=

uH2
2 ρsSH

2

ρnρ
-----------

∂SH

∂T
--------- 

 
1–

 . 
3
2
---Cξ

ρs

ρn

----- 
  θ3c2,≈

uH2
2

uH2/uH1 . 1.9θ3/2.
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this case, the total entropy S is conserved, the tempera-
tures of the hydrogen and ripplons coincide with each
other, and, instead of Eq. (9), we obtain

(14)

Here, u2 differs from uH2 by changing the entropy of
hydrogen and the normal density ρn to the total entropy
of the hydrogen–ripplon mixture and  = ρn + ρR,

respectively. The factor A = 1 – (ρR/ρH)(ρn/ ) differs
slightly from unity, because ρR ! ρH for the case under
consideration. Thus, the speed of the usual sound is
again approximately equal to c, and the speed of the
second sound, as expected, is given by the expression

(15)

Finally, let us address the most interesting case of
extremely low frequencies, ωτR ! 1 and ωτHR ! 1. In
this case, the ripplons and the normal hydrogen compo-
nent are immobile, i.e., vn = vR = 0, which is similar to
the case of the propagation of the fourth sound [9]
involving only the superfluid hydrogen component. In
this case, continuity equation (1) takes the form

(16)

This equation, together with Eq. (4) and the expression
for the chemical potential µH, provides the wave equa-
tion

(17)

Thus, the speed of the fourth sound is given by the
expression

(18)

The fast transfer of the longitudinal momentum into
the substrate does not imply that the heat transfer is also
fast since there exist the elastic channel of the relax-
ation of the longitudinal momentum of ripplons [13].
Therefore, for ω @ KRP/SR = 1.6 × 105(T/0.1 K)13/3 s–1,
the temperatures of the hydrogen and ripplons do not

remain constant. According to the conditions, ω !  ~
KHR/SH; i.e., the heat transfer between the hydrogen and
ripplons is sufficiently fast and, therefore, TH ≈ TR. In
this case, summing Eqs. (5) and (6), we see that the
total entropy of the 2D system is conserved; i.e.,

(19)

u4 u2 Ac2 Bu2
2+( )– ρs/ρ( )c2u2

2+ 0.=

ρn'

ρn'

uHR2
2 ρsS

2

ρn' ρ
---------- ∂S

∂T
------ 

 
1–

.≈

ρ̇H ρsdivvs+ 0.=

mσ̇̇
ρsŨ
m

---------∆σ.–

u4
2 ρsŨ

m2
---------

ρs

ρH
------c2.= =

τHR
1–

dS
∂SH

∂σ
---------dσ ∂

∂T
------ SH SR+( )dT+ 0.= =
From this condition, we obtain the relation between the
amplitudes of oscillations of the hydrogen density and
temperature in the acoustic wave:

(20)

It is interesting to note that the oscillations of the hydro-
gen density and temperature are in-phase, because the
derivative (∂SH/∂σ)T is negative. Finally, for extremely
low frequencies ω ! KRP/SR, the temperature remains
constant and equal to the substrate temperature.

In conclusion, note that the problem of a method for
exciting and detecting oscillations is of particular
importance for experiments. At high frequencies, when
hydrogen (with or without ripplons) is isolated from the
substrate, the excitation of oscillations in 2D H↓  by
modulating the temperature or velocity of the substrate
is impossible. The efficient modulation of the density of
hydrogen itself at a frequency ω by means of ESR is
possible only for ωT2 & 1, because the induced recom-
bination of hydrogen atoms is due to transverse relax-
ation with a time constant T2. Indeed, in the absence of
transverse relaxation, the precession of spins is coher-
ent and any pair of atoms thereby remains in the triplet
state, where recombination is impossible. The problem
of a mechanism and transverse relaxation rate in quasi-
condensed (locally coherent) 2D hydrogen is closely
connected with the aforementioned problem of estab-
lishing thermal equilibrium. The classical estimate of
the rate of transverse relaxation due to dipole–dipole

interaction upon elastic atomic collisions yields  ~
σ × 10–6 cm2/s [6, 26], which is comparable with the

momentum transfer rate  into ripplons. Therefore,
high-frequency oscillations can be excited by ESR
only when the coupling of ripplons with the substrate
is weak. Moreover, it is known that the dissipation of a
2D superflow increases with both the oscillation fre-
quency and superfluid velocity [3]. According to the
above consideration, the fourth sound realized at low
frequencies is a most promising tool for experimental
observation of superfluidity in 2D H↓ . “Oscillations”
with ω = 0, i.e., a steady flow of the superfluid compo-
nent, present a specific kind of the fourth sound. In
particular, this mode must be substantial for the forma-
tion of the instability of the ESR spectrum of 2D
hydrogen [6].
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σŨ

2

3CξT
--------------

∂SR

∂T
--------- 

 +
δT
T

------.

T2
1–

τHR
1–
JETP LETTERS      Vol. 81      No. 4      2005



ACOUSTIC MODES IN 2D ATOMIC HYDROGEN 179
2. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124
(1972).

3. D. J. Bishop and J. D. Reppy, Phys. Rev. B 22, 5171
(1980).

4. A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov, et al., Phys.
Rev. Lett. 81, 4545 (1998).

5. A. I. Safonov, A. A. Kharitonov, and I. I. Lukashevich,
J. Low Temp. Phys. 138 (1/2) (2005).

6. S. A. Vasilyev, A. I. Safonov, J. Järvinen, et al., Phys.
Rev. Lett. 89, 153002 (2002).

7. S. A. Vasilyev, J. Järvinen, A. I. Safonov, and
S. Jaakkola, Phys. Rev. A 69, 023610 (2004).

8. K. R. Atkins, Can. J. Phys. 31, 1165 (1953).
9. I. M. Khalatnikov, An Introduction to the Theory of

Superfluidity (Nauka, Moscow, 1965; Addison-Wesley,
Redwood City, 1988).

10. M. W. Reynolds and G. V. Shlyapnikov, Phys. Lett. A
207, 105 (1992).

11. D. S. Zimmerman and A. J. Berlinsky, Can. J. Phys. 61,
508 (1983).

12. I. B. Mantz, D. O. Edwards, and V. U. Nayak, Phys. Rev.
Lett. 44, 663 (1980); 44, 1094(E) (1980).

13. A. I. Safonov, S. S. Demukh, and A. A. Kharitonov,
Pis’ma Zh. Éksp. Teor. Fiz. 79, 362 (2004) [JETP Lett.
79, 304 (2004)].

14. I. B. Mantz, D. O. Edwards, and V. U. Nayak, J. Phys.
Colloq. 39, C6-300 (1978).

15. E. M. Lifshitz and L. P. Pitaevskiœ, Course of Theoretical
Physics, Vol. 9: Statistical Physics (Nauka, Moscow,
1978; Pergamon, New York, 1980), Part 2, pp. 161–165.
JETP LETTERS      Vol. 81      No. 4      2005
16. W. F. Saam, Phys. Rev. A 8, 1918 (1973).
17. P. Roche, M. Roger, and F. I. B. Williams, Phys. Rev. B

53, 2225 (1996).
18. In contrast to a usual gas mixture, the continuity equa-

tion is not valid for the hydrogen–ripplon mixture,
because the number of ripplons is not conserved.

19. N. Prokof’ev and B. Svistunov, Phys. Rev. A 66, 043608
(2002).

20. U. Al Khawaia, J. O. Andersen, N. P. Proukakis, and
H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002).

21. M. W. Reynolds, I. D. Setija, and G. V. Shlyapnikov,
Phys. Rev. B 46, 575 (1992).

22. A. F. Andreev and D. A. Kompaneets, Zh. Éksp. Teor.
Fiz. 61, 2459 (1972) [Sov. Phys. JETP 34, 1316 (1972)].

23. Hereinafter, we ignore a very weak, no stronger than log-
arithmic, dependence of  on the hydrogen density
(see, e.g., [24]).

24. Yu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, JETP
Lett. 42, 209 (1985).

25. When deriving Eqs. (11) and (12), only corrections lin-
ear in the ratio (uH2/c)2 ! 1 are retained. The linear cor-

rection to  is equal to 2 (ρn/ρs) and, therefore, can

be omitted. At the same time, the correction to  that
has the same magnitude but opposite sign is significant.

26. I. Shinkoda and W. N. Hardy, J. Low Temp. Phys. 85, 99
(1991).

Translated by R. Tyapaev

Ũ
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The results of calculations of the spatially-resolved density of states (DOS) in an S(F/N) bilayer are presented
(S is a superconductor, F is a metallic ferromagnet, N is a normal metal) within quasiclassical theory in the dirty
limit. Analytical solutions are obtained in the case of thin F, N layers which demonstrate the peculiar features
of DOS in this system. The dependences of the minigap and the DOS peak positions on the exchange energy
and parameters of the layers are studied numerically. © 2005 Pleiades Publishing, Inc.
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In the past few years, there was a noticeable interest
to the Josephson junctions with ferromagnetic barriers
due to possibility to realize the π-junctions having the
phase difference π in the ground state. The π-states in
SFS junctions were first predicted by [1–3] and realized
experimentally by Ryazanov et al. [4, 5] in
Nb/CuNi/Nb structures and later by other groups [6–
10] using different ferromagnetic barriers. These exper-
iments stimulated further theoretical activity (see [11]
for the review). In particular, Josephson structures com-
posed from arrays of 0- and π-Josephson junctions
should exhibit extraordinary characteristics [12, 13].
Such arrays were recently realized in zigzag HTS/LTS
structures [14].

The purpose of the present paper is to study spatially
resolved electronic density of states (DOS) in the struc-
ture of S(FN) type (S is superconductors, F is a metallic
ferromagnet, N is a normal metal), consisting of a bulk
superconductor with ferromagnetic and normal layers
on the top of it, which is a generic system for 0- and
π-junctions connected in parallel.

DOS in SF bilayers (a ferromagnet coupled to a
superconductor) was studied quite extensively before.
Two new features were predicted compared to SN sys-
tems: spin splitting and spatial oscillations of DOS in a
ferromagnet [15–21]. The effect of spatial oscillations
was quite extensively discussed in the theoretical liter-
ature in different models [15–18] and observed experi-
mentally [22]. This effect is closely related to 0–π tran-
sitions. The effect of splitting is relevant for thin ferro-
magnetic layers and was studied theoretically in [19,
20]. In the present work, we discuss an interplay

¶ This article was submitted by the authors in English.
0021-3640/05/8104- $26.00 ©0180
between the oscillations and splitting in a more com-
plex S(F/N) structure.

The geometry of the structure is shown in Fig. 1. We
assume that the dirty limit conditions are fulfilled in all
metals, F is a weak monodomain ferromagnet with the
exchange energy H much smaller than the Fermi
energy, and the interfaces are not magnetically active.
In this case, spin-dependent corrections to the resistivi-
ties can be neglected and the S(F/N) structure is
described by the following spin-independent suppres-
sion parameters:

(1)

(2)

(3)

Here, RBF, RBN, and RB are the specific resistivities of the
SF, SN, and NF interfaces, respectively; ρS, F, N, DS, F, N,
and ξS, F, N are the resistivities, the diffusion constants,
and the coherence lengths of the S, F, and N layer and

γBF RBF!BF/ρFξF, γF ρSξS/ρFξF,= =

γBN RBN!BN/ρNξN , γN ρSξS/ρNξN ,= =

γB RB!B/ρNξN , γ ρFξF/ρNξN .= =

Fig. 1. The geometry of the structure.
 2005 Pleiades Publishing, Inc.
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the coherence lengths, where ξS, F, N = 
and Tc is the critical temperature of the superconductor.

Under the above assumptions, the problem can be
solved in the framework of the Usadel equations [23].
To simplify it further, we assume that S is a bulk super-
conductor and γN ! γBN, γF ! γBF so that the rigid
boundary conditions

are valid for superconductor. Here, ∆ is the magnitude
of the order parameter in S electrode, FS and GS are the
Green’s functions, ω = πT(2n + 1) are the Matsubara
frequencies.

Let us choose the x, y axes as shown in Fig. 1 and use
the θ parametrization G = cosθ, F = sinθ, then the
Usadel equations have the form

(4)

where  = ω + iH in F and  = ω in N.

The boundary conditions at the SF (y = 0, –∞ < x ≤
0), SN (y = 0, 0 ≤ x < ∞), and FN (x = 0, 0 ≤ y ≤ dF, dN)
interfaces have the form [24]

(5)

(6)

where sinθS = ∆/  and cosθS = ω/ . At
the free interfaces, the boundary conditions are

(7)

(8)

We will consider the limit of thin F and N layers
dF, N ! ξF, N. In this case, one can neglect both the deriv-
ative on x and nongradient items in Usadel equations (4)
and substitute the resulting solutions

DS F N, , /2πTc

FS
∆

ω2 ∆2+
----------------------, GS

ω

ω2 ∆2+
----------------------= =

ξF N,
2 πTc

ω̃
--------- ∂2

∂x2
--------θF N,

∂2

∂y2
--------θF N,+

 
 
 

θF N,sin– 0,=

ω̃ ω̃

γB F N,( )ξF N,
∂
∂y
-----θF N, θS θF N,–( ), ysin– 0,= =

γBξF
∂
∂x
------θF θN θF–( ),sin=

x 0, 0 y dF dN ,,≤ ≤=

ξN
∂
∂x
------θN γξF

∂
∂x
------θF, x 0, 0 y dF dN ,,≤ ≤= =

ω2 ∆2+ ω2 ∆2+

∂
∂y
-----θF N, 0, y dF N, ,= =

∂
∂x
------θF N, 0, 0 y dF, x ∞.+−≤ ≤=

θF N, x y,( ) θF N, x( )=

– KF N, x( )
dF N,

ξF N,
2

----------y KF N, x( ) y2

2ξF N,
2

-------------,+
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into boundary conditions (5). Then, the problem is
reduced to the one-dimensional equations for lateral
variations of θN, F in the x-direction:

(9)

where

(10)

the decay lengths ζN and ζF are

(11)

and we have taken for simplicity equal barrier parame-
ters for F and N

(12)

The general solution of Eq. (9) has the form

(13)

The integration constants θN(0) and θF(0) in (13) have
to be determined from the boundary conditions (6) at
x = 0 and can be found analytically in the limit of large
transparency of the FN interface when θ(x) is continu-
ous at x = 0:

From (11), it follows that the effective decay length
in normal metal, ζN, is a real quantity and equals to ζN =

ξN  for small ω and tends to ζN = ξN  with ω
increase. The effective decay length ζF in ferromagnet
at low ω ! ∆, H/  is given by ζF =

ξF , i.e., it becomes complex for

sufficiently strong exchange field H > πTc/ .

Below, we consider several limiting cases.

Identical F and N metals. Assume for simplicity
that the F and N materials differ by the existence the
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exchange field in F (γ = 1, ξF = ξN = ξ), then, from (6)
for θ(0), we have

(14)

Identical F metals with antiparallel direction of
magnetization. The results can be easily generalized to
the case of an S(F/F) structure with two identical ferro-
magnetic films having opposite magnetization direc-
tions (antiferromagnetic configuration)

(15)

Using the solutions obtained above, one can calcu-
late the spatially resolved DOS in S(F/N) and S(F/F)
structures.

DOS in S(F/N) and S(F/F) proximity systems.
The DOS for each spin direction is given by

(16)

where N0 is the total DOS for both spins at the Fermi
surface in the normal state and G(ε – iδ) = cosθ(ε – iδ)
is the retarded Green’s function. The total DOS is found
by summing over both spin projections, i.e., Ntotal =
N(H) + N(–H).

DOS in N and F metals far from the F/N inter-
face. In a normal metal far from the F/N interface
(x = ∞), the total DOS is given by

θ 0( ) 2

θN ∞( )
2
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2
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2
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------------------------------------------------------------------------.arctan=

N ε( )
N0

2
------ReG ω iε– δ+( ),=

Fig. 2. The total DOS in an SF bilayer for various values of
h as indicated in the figure.γ̃
(17)

It is well known (see [25, 26]) that DOS in a F/N bilayer
has a minigap at εg < ∆, which depends on the value of

, and NN(ε) has the peaks at ε = εg and ε = ∆. The mini-
gap εg characterizes the strength of superconducting
correlations induced into N metal due to the proximity
effect.

In SF bilayers, modifications of DOS due to spin
splitting of energy levels were investigated in [19, 20].
The DOS per spin projection in the F layer has the form

(18)

which demonstrates the energy renormalization due to
the exchange field. In particular, it follows from (18)
that now there are two minigaps in the spectrum εg↑ and
εg↓ and εg↑ ≤ εg ≤ εg↓.

The total DOS in a F/N bilayer Ntot(ε) = NF↓(ε) +
NF↑(ε) is shown in Fig. 2. It is clearly seen that, at h =
H/πTc < 1/ , there are three peaks in DOS located at
εg↓, εg↑, and ∆, respectively. At h = 1/ , the low-energy
singularity is shifted to the Fermi level, and for h > 1/ ,
the first peak disappears resulting in only two singular-
ities in the DOS at ε = εg↑ and ε = ∆. Note that the total
DOS at low energies depends nonmonotonously on H
even in a thin F-layer, even though spatial oscillations
are absent across the layer. Equation (18) yields

NF↑ , F↓(ε = 0) = (N0/2)Re( hsgn(h)/ ). For
h < 1, the total DOS N(0) = 0 due to the minigap in F,

while for h ≥ 1, the total low-energy DOS increases
sharply, exceeds unity, and saturates at N(0) = N0 for

h @ 1.
DOS at the F/N interface. At x = 0 and for identical

transport parameters on the F and N metals from (14),
(16), we obtain

(19)

where

(20)

and ΩN,  and ΩF↑ , F↓,  are defined by (17) and
(18), respectively.
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It follows from Eq. (19) that, similar to the case of
the SF bilayer considered above, the minigap exists if

h < 1. With increasing exchange field, the total DOS
at ε = 0 becomes nonzero if h > 1 is given by simple
expression

(21)

DOS at the F/F interface. At x = 0, we have

(22)

It can be shown that DOS at the F/F interface given
by Eq. (22) coincides exactly with the total DOS for the
F/N interface, NF↑(ε) + NF↓(ε), where NF↑(ε) and NF↓(ε)
are given by Eq. (19). In particular, the minigap exists
if h ≤ 1, and at h > 1, the DOS at F/F is determined
by Eq. (21).

The results of calculations from Eq. (19) at low tem-
peratures T ! Tc are shown in Figs. 3 and 4 for h = 0.5
and h = 2, respectively, together with the DOS for SF
(x  –∞) and SN (x  ∞) bilayers.

There are four characteristic energies in the system:
εg↓, εg, εg↑, and ∆. Here, εg↓ is the minigap for the spin-
down subband SF bilayer at x  –∞. It follows from
Eq. (19) that NF↓(ε) = 0 at ε ≤ εg↓ and becomes nonzero
at ε > εg↓, i.e., εg↓ is the minigap for the spin-down sub-
band in S(FN) at x = 0. However, contrary to SF case,
NF↓(ε) has no peak ε = εg↓ but grows continuously from
zero value.

For the spin-up subband, the minigap in NF↑(ε) is
not equal to the gap εg↑ in the spin-up subband in SF

γ̃
γ̃

N 0( ) N0 γ̃2h2 1– /γ̃h.=

N ε( )/N0 Re
2iε̃N– 2ε̃FF+

ΩF↑ ΩF↓ 2 ∆2 ε̃FF
2–+ +

-----------------------------------------------------------,=

ε̃FF
ΩF↑ ΩF↓ ε̃F↑ ε̃F↓– ∆2–

2
-----------------------------------------------------.=

γ̃ γ̃

γ̃
γ̃

Fig. 3. Spin-resolved DOS: comparison of FS, FN, and
S(FN) for h = 0.5.γ̃
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bilayer at x  –∞. Instead, NF↑(ε) the gap value is
determined by εg, the minigap in SN bilayer at x  ∞.
The formal reason is that, in the interval ε ≥ εg, ΩN

becomes an imaginary number and both numerator and
denominator in Eq. (19) are complex, thus leading to
nonzero DOS in this energy range. Similar to the spin-
down case, there is no peak in NF↑(ε) at the gap energy
ε = εg, while the peak occurs at ε = εg↑ (see Fig. 3). With
further increase of energy, there is a sharp peak in DOS
at ε = ∆ followed by saturation at N0/2 for ε @ ∆.

For h  > 1, the minigap at NF↓(ε) vanishes and the
structure of DOS becomes different, as illustrated in
Fig. 4 for the case h  = 2. The main qualitative differ-
ence from the previous case is that the spin-down and
total DOS are gapless for h  < 1.

The total DOS at the F/N interface at x = 0 (which
coincides with the total DOS in the F/F case), is shown

γ̃

γ̃

γ̃

Fig. 4. Spin-resolved DOS: comparison of FS, FN, and
S(FN) for h = 2.γ̃

Fig. 5. The total DOS in S(FN) for various values of h as
indicated in the figure.

γ̃
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in Fig. 5 for various values of h . One can see that the
gap is closed at h  = 1, and the broad zero-energy DOS
peak is formed with further increase of h until low-
energy states become continuously filled at h  @ 1.

In conclusion, we have studied theoretically the spa-
tially-resolved DOS in the S(FN) structures and in
S(FF) structures with antiparallel magnetization direc-
tions. Analytical solutions were obtained in the case of
thin F, N layers which demonstrate the peculiar features
of DOS in this system. We have illustrated the results
numerically and have studied the dependences of the
minigap and the DOS peak positions on the exchange
energy and parameters of the layers.

This work was supported in part by Russian Minis-
try of Education and Science and by the Russian Foun-
dation for Basic Research (project no. 04-02-17397a).
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A new class of non-carbon nanotubes based on Group III and Group V elements (aluminum and phosphorus,
respectively) is considered. The equilibrium geometry, energy characteristics, and electronic structure of the
AlP nanotubes were calculated using the density functional theory. These calculations demonstrated that the
AlP nanotubes are energetically stable structures. It was found that a low strain energy (approximately 0.01–
0.07 eV) is required for rolling a two-dimensional hexagonal AlP structure into a tube. The AlP nanotubes are
found to be wide-band-gap semiconductors with a band gap of 2.05–3.73 eV with direct (for the zigzag type)
or indirect (for the armchair type) transitions between the top of the valence band and the bottom of the con-
duction band. The band gap of these nanotubes increases with the tube diameter, approaching the band gap of
a two-dimensional hexagonal AlP layer. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.48.+w, 73.20.At, 73.22.–f
The synthesis of carbon nanotubes in 1991 [1]
caused a burst of activity by both experimenters and
theorists. It was found [2, 3] that these structures
exhibit a set of properties useful for potential applica-
tions. More recently, it was found that carbon is not the
only element capable of forming nanotube structures.
In 1992, the first non-carbon nanotubes were synthe-
sized based on layered molybdenum disulfide and tung-
sten disulfide [4]. This discovery stimulated a variety of
theoretical studies and experiments (e.g., see reviews
[5–7]) on searching for and synthesizing new possible
non-carbon nanotube structures that are geometrically
similar to carbon nanotubes.

Among the whole variety of non-carbon materials,
III–V semiconductors have attracted major attention
because of their potential applications. Boron–nitrogen
(BN) nanotubes were the first type of theoretically pre-
dicted non-carbon nanotubes geometrically similar to
carbon nanotubes [8, 9]. However, these nanotubes
were synthesized by an arc discharge only in 1995 [10].
Recently, a variety of non-carbon nanotubes, including
nanotubes based on Group III and Group V elements,
have been theoretically predicted [11–16] and synthe-
sized [17–20]. As a rule, the classification proposed
previously [21] for carbon nanotubes is used for
describing non-carbon nanotubes composed of hexa-
gons.

It is well known that diamond-structured carbon and
a BN crystal with the zinc-blende structure are dielec-
trics with nearly equal energy gaps (Eg ~ 5.5 eV). How-
ever, the electronic properties of their quasi-one-dimen-
sional forms (nanotubes as the graphene plane rolled
0021-3640/05/8104- $26.00 0185
into a cylinder) are essentially different. Thus, carbon
nanotubes can be either conducting or semiconducting
depending on their helicity [21, 22], whereas BN nano-
tubes are dielectrics with an energy gap of about 5.5 eV,
which is nearly independent of the helicity of BN nan-
otubes [8]. It was found that the electronic structure of
other classes of non-carbon nanotubes based on Group
III and Group V elements (GaN and AlN) [11, 12] is
also different from the electronic structure of carbon
nanotubes.

In this work, using density functional theory (DFT),
we simulated the geometric structure and calculated the
electronic properties of a new class of non-carbon nan-
otubes based on aluminum (Al) and phosphorus (P),
elements of Groups III and V, respectively. It is well
known that an AlP crystal with the zinc-blende struc-
ture is a semiconductor with an energy gap of 2.45 eV
and an indirect transition between the valence band and
the conduction band. Therefore, it is of interest to deter-
mine the energetic stability of AlP nanotubes and to cal-
culate their electronic structure in order to estimate
their potential applications in nanotechnology.

The calculations were performed using DFT [23],
which is commonly applied to calculate the electronic
structures and geometric and energetic properties of
various materials. This theory has been successfully
used to study the properties of a variety of non-carbon
nanotube structures [8, 9, 11, 12, 14, 15]. The compu-
tations were performed using the ABINIT code [24]
involving a plane-wave basis and pseudopotentials.
This program is based on an efficient algorithm of fast
Fourier transforms (used for converting wave functions
© 2005 Pleiades Publishing, Inc.
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between the direct and reciprocal spaces) [25], the con-
jugate gradient method [26], and the potential-based
conjugate gradient algorithm for the determination of
the self-consistent potential [27] and total energy and
for the optimization of the geometric configuration of
the system.

The calculations were performed in the generalized
gradient approximation using the Perdew–Burke–Ern-
zerhof parameterization [28]. Norm-conserving nonlo-
cal pseudopotentials were used to describe electrons in
the atomic framework [29–31]. The required basis set
of plane waves was specified by the kinetic energy cut-
off parameter (so-called cutoff energy) equal to 60 Ry.
Test calculations demonstrated that the use of a higher
cutoff energy changed the total energy by less than
1 meV.

We performed the test calculations of the equilib-
rium geometry, unit-cell parameter, and phonon fre-
quencies at the point q = Γ of the reciprocal space of an
AlP crystal with the zinc-blende structure. The results
of these calculations allowed us to conclude that the
pseudopotentials used are applicable to the subsequent
calculations. The calculated Al–P bond length of
2.34 Å and the unit-cell parameter of 5.50 Å are in
excellent agreement with the experimental values of
2.36 and 5.45 Å, respectively [32]. The calculated fre-
quency of a transverse optical mode at the point Γ was
equal to 13.25 THz, which is also consistent with the
experimental value of 13.17 THz. Thus, these pseudo-
potentials are suitable for calculating new AlP struc-
tures. The atomic coordinates and unit-cell parameters
were optimized using the BFGS method [33] until the
forces acting on the atoms and the mechanical stresses
in the cell became lower than 2.5 × 10–3 eV/Å and 3 ×
10−3 GPa, respectively. During the geometry optimiza-
tion of nanotubes, 6 k points in the Brillouin zone were
used. For each particular calculated structure, it was

Fig. 1. Examples of AlP nanotubes: (a) zigzag (6,0) and
(b) armchair (4,4). Open and closed circles indicate alumi-
num and phosphorus atoms, respectively.
found that a further increase in the number of k points
changed the total energy by less than 1 meV. The
Monkhorst–Pack method [34] was used for the genera-
tion of k points.

We began our study with the determination of the
equilibrium geometry of AlP nanotubes. The calculated
average length of the Al–P bond in the nanotubes
was 2.30 Å, which is shorter than the experimental
bond length of 2.36 Å [32] in a crystal of AlP with the
zinc-blende structure. Similarly to other types of nano-
tubes composed of Group III and Group V elements
[35], AlP nanotubes exhibited distorted tubular struc-
tures in which aluminum and phosphorus atoms were
shifted inward to the axis and outward to the nanotubes,
respectively. Figure 1 shows the optimized structures of
AlP nanotubes of the zigzag (6,0) and armchair (4,4)
types (Figs. 1a and 1b, respectively). Here, the notation
of nanotube types [armchair (n, n) and zigzag (n, 0)] is
equivalent to the notation for carbon nanotubes [21], as
well as to that used previously for the description of
non-carbon nanotubes [8]. It can be seen in Fig. 1 that
these nanotubes consist of two cylindrical layers, in
which the inner and outer cylinders are composed of
aluminum and phosphorus atoms, respectively.

Since a nanotube is a graphene layer rolled into a
cylinder, we simulated and calculated the cohesive
energy of a graphene-like layer composed of Al and P.
An AlP supercell containing 96 atoms in the atomic
plane was used for the geometry optimization of this
layer. In the calculation of an equilibrium geometry, we
used 18 k points equivalent to a 6 × 6 × 1 mesh of
k points generated by the Monkhorst–Pack method
[34]. To evaluate the stability of this graphene-like AlP
layer, we calculated its cohesive energy Ec. We com-
pared this energy with the value of Ec calculated for an
AlP crystal. The cohesive energy of the AlP crystal is
−8.57 eV/atom, which is consistent with both the
experimental value of –8.41 eV/atom and other ab initio
data [36]. The value of Ec calculated for a two-dimen-
sional AlP graphene-like structure was −7.63 eV/atom,
which is higher than Ec for the AlP crystal by
0.94 eV/atom. This difference between the cohesion
energies of the crystalline and two-dimensional forms
is also significant in comparison with analogous differ-
ences for GaN (0.36 eV/atom) [11] and AlN
(0.68 eV/atom) [12] structures. Thus, we can conclude
that the graphene-like AlP structure is less energetically
stable than the AlP crystal. The calculated Al–P bond
length in the two-dimensional structure was 2.30 Å,
which is shorter than the corresponding value calculated
for the crystal of AlP (2.34 Å).

At the next stage, we determined the strain energies
Estr required for the formation of nanotube structures
with different diameters from a corresponding flat pro-
totype. This energy Estr can be calculated as the differ-
ence between the specific energies of AlP in a flat
atomic layer and a nanotube. Figure 2 demonstrates the
dependence of the strain energy Estr of AlP nanotubes
JETP LETTERS      Vol. 81      No. 4      2005
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on the mean diameter D. It can be seen in Fig. 2 that the
energy Estr decreases with increasing the diameter of
the nanotubes. The best power approximation of these
data was provided by Estr ~10.71/D2.31 (dashed line in
Fig. 2) for the armchair nanotubes and Estr ~10.66/D1.46

(solid line in Fig. 2) for the zigzag nanotubes. It can be
seen that these relationships deviate from a characteris-
tic law of 1/D2; however, the numerical coefficients are
nearly equal. This property indicates that the bending
moduli of two types of AlP nanotubes are nearly iden-
tical.

The table summarizes the main parameters (diame-
ter, Al–P bond length, and strain energy) of several AlP
nanotubes. The tabulated results of the calculations
indicate that the zigzag-type nanotubes exhibited some-
what lower energies (by approximately 0.005–
0.01 eV/AlP) at equal nanotube diameters. This result
is consistent with conclusions drawn for BN and GaN
nanotubes [11, 35], in which the zigzag type is energet-
ically the most favorable. Thus, we can conclude that
the zigzag-type nanotubes composed of Group III and
Group V elements are energetically preferable. How-
ever, this energy difference for AlP nanotubes is insig-
nificant (~0.01 eV/AlP).

It is also of interest to compare the electronic struc-
ture of AlP nanotubes (quasi-one-dimensional systems)
with the band structure of the AlP crystal. For this pur-
pose, we calculated the electronic structure of an AlP
crystal with the zinc-blende structure. The calculations
demonstrated that this crystal is a semiconductor with a
band gap equal to 1.54 eV and an indirect transition
between the top of the valence band and the bottom of
the conduction band. This value is lower than the exper-
imental value of 2.45 eV by 0.91 eV. This is a well-
known problem of the DFT method, which underesti-
mates the energy gap Eg. The gap can be corrected by
the addition of a quantity obtained by calculating an
JETP LETTERS      Vol. 81      No. 4      2005
energy gap for known semiconductors to the calculated
value of Eg and comparing this Eg with the experimental
value [37]. Note that the value of Eg obtained by this
method is an approximate value, which is close to the
true value. The use of this method allowed us to consid-
erably shorten the computation time, as compared with
the quasiparticle GW approximation, which is more
accurate but more resource-consuming [38]. In this
case, this addition is 0.91 eV. Figure 3 shows the elec-
tronic densities of states and the electronic band struc-
tures of the nanotubes (a) (6,0) and (b) (4,4). It is seen
in Fig. 3 that these structures are wide-band-gap
semiconductors with band gaps of 1.77 and 2.48 eV
(2.61 and 3.39 eV after corrections), respectively, with
direct [for the AlP nanotube (6,0)] and indirect [for the
AlP nanotube (4,4)] transitions between the top of the
valence band and the bottom of the conduction band.
The table also summarizes the energy gaps of AlP nan-
otubes depending on the nanotube diameters. As is seen
in the table, the band gap of AlP nanotubes behaves

Fig. 2. Specific strain energy Estr of AlP nanotubes vs. the
mean diameter D.

(Å)

AlP
AlP
Main parameters (inner diameter Din, outer diameter Dout, Al–P bond length, strain energy Estr, band gap Eg, and corrected

band gap ) of AlP nanotubes

Structure Din, Å Dout, Å Al–P bond length, Å Estr, eV/AlP Eg, eV , eV

slab – – 2.30 0.00 2.82 3.73

(4, 0) 4.64 5.94 2.31 0.065 1.14 2.05

(6, 0) 7.06 8.21 2.30 0.017 1.77 2.68

(7, 0) 8.94 9.98 2.30 0.018 1.98 2.89

(8, 0) 9.56 10.62 2.30 0.023 2.02 2.93

(10, 0) 12.08 13.00 2.29 0.034 2.11 3.02

(4, 4) 8.08 9.24 2.30 0.013 2.48 3.39

(5, 5) 10.53 11.54 2.29 0.024 2.56 3.47

(6, 6) 12.11 13.52 2.29 0.044 2.63 3.54

(7, 7) 14.88 15.66 2.29 0.043 2.68 3.59

(8, 8) 16.94 17.43 2.29 0.059 2.70 3.61

Eg
cor

Eg
cor
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Fig. 3. Electronic density of states (DOS) and electronic band structure of (a) zigzag (6,0) or (b) armchair (4,4) AlP nanotubes.
The Fermi level EF was taken to be zero.
analogously to that of other nanotube structures.
Namely, the band gap increases with the tube diameter,
approaching the band gap of a flat layer. A detailed cal-
culation of the electronic structure of AlP nanotubes
demonstrated that they are wide-band-gap semiconduc-
tors and the zigzag and armchair types are character-
ized by direct and indirect transitions between the top
of the valence band and the bottom of the conduction
band, respectively. Note that this result is analogous to
the results obtained for GaN [11] and AlN [12] nano-
tubes.

Thus, according to the ab initio calculations, we can
conclude that AlP nanotubes are stable structures and a
low strain energy Estr (about 0.1 eV) is required for the
formation of these nanotubes. It is also evident that the
electronic properties of AlP nanotubes and carbon nan-
otubes [22] are essentially different. For example, the
energy gap Eg for the carbon nanotube (8,0) is about
0.8 eV, whereas Eg is 2.93 eV for the AlP nanotube
(8,0). The energy gap Eg in AlP nanotubes is also
smaller than Eg in BN nanotubes by approximately
2.2 eV. In other words, the AlP nanotubes proposed
above are new nanotube materials with properties inter-
mediate between carbon and BN nanotubes. The geo-
metric structure of AlP nanotubes allowed us to con-
sider them as corrugated or composed of two sublat-
tices of aluminum and phosphorus atoms, respectively.
A structural deformation of these tubes can result in the
appearance of an additional polarization of the entire
structure. All of the above factors may be favorable for
the use of AlP nanotubes in nanoelectronic devices.
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Center of Russia and at the Computer Research Center,
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part by the Russian Foundation for Basic Research
(project nos. 04-03-96501 and 05-03-328876) and the
Russian Academy of Sciences (program “Fundamental
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We propose a theory of low temperature thermal transport in nanowires in a regime in which competition
between a phonon and flexural modes governs the relaxation processes. Starting with the standard kinetic equa-
tions for two different types of quasiparticles, we derive a general expression for the coefficient of thermal con-
ductivity. The underlying physics of thermal conductance is completely determined by the corresponding relax-
ation times, which can be calculated directly for any dispersion of quasiparticles, depending on the size of a
system. We show that, if the considered relaxation mechanism is dominant, then at small wire diameters the
temperature dependence of thermal conductivity experiences a crossover from T1/2 to T 3-dependence. Quanti-
tative analysis shows reasonable agreement with resent experimental results. © 2005 Pleiades Publishing, Inc.

PACS numbers: 63.20.Kr, 63.22.+m, 65.40.–b
Low-dimension materials have attracted consider-
able attention in recent years, particularly in view of
their potential applications in electronic devices [1, 2].
Many theoretical and experimental studies of nanow-
ires and nanotubes are centered on the properties of
electronic transport. However, it is now realized that the
thermal properties of nanomaterials are also important
for applications [3–5]. It is of special interest to
increase thermal conductance in micro- and nanode-
vices [1, 6, 7]. In this paper, we study thermal transport
in nonmetallic systems, in which heat is transported by
thermal excitations only. In addition to the practical
importance of such studies, thermal transport in nanow-
ires is interesting from the fundamental point of view.
Recent theoretical [8] and experimental [9] findings
proved the existence of a quantum of thermal conduc-
tance in ballistic regime, which is similar to a quantum
of electronic conductance. The state of experimental
and theoretical understanding of thermal transport in
nanoscale systems is comprehensively discussed in
review [10]. Recently, D. Li et al. [11] reported an
accurate measurement of lattice thermal conductivity in
silicon nanowires for a wide range of temperatures and
wire diameters. They demonstrated a significant influ-
ence of the system size not only on the magnitude of the
thermal conductivity coefficient, but also on its temper-
ature dependence. It is well known that, for large
enough diameters of the wire and diffusive phonon–
boundary scattering, the thermal conductivity coeffi-
cient at low temperatures is proportional to T3. But for
small values of the wire diameters, experiment [11]
shows a clear crossover from cubic to near linear
dependence on the temperature. In the present paper,

¶ This article was submitted by the authors in English.
0021-3640/05/8104- $26.00 0190
we consider one particular relaxation mechanism that
can explain the observed crossover.

Recently, Mingo [12] carried out an accurate numer-
ical study of the thermal conductance of silicon nanow-
ires to explain the decrease of the thermal conductivity
coefficient with wire diameter observed in the experi-
ment. He assumed that all the effects can be explained
by the reconstruction of the phonon dispersion, where
realistic phonon modes obtained from MD simulations
were applied to general expression of the thermal con-
ductivity coefficient. His numerical analysis shows
excellent quantitative agreement with experiment [11]
for large enough diameters at high temperatures. As the
system size becomes smaller, the approach fails to
describe a sharp decrease of thermal conductance as
well as qualitative change of its temperature depen-
dence. This is likely because Matheissen’s rule has
been used for evaluation of the phonon lifetime, which
has rather restricted range of applicability (see, e.g.,
[13] and references therein).

As was noted in [14], a decrease of the temperature
increases the characteristic phonon wavelength and
reduces the scattering probability at the boundary sur-
face. This leads to a modification of the phonon spec-
trum. For ideal wires, this is represented by a set of
branches with energies proportional to a one-dimen-
sional (1D) momentum directed along the wire. Thus,
the standard theory of thermal conductance in dielec-
trics and semiconductors has to be modified to account
for low dimensionality effects as well as phonon spec-
trum modification at low temperatures. Thus, to under-
stand thoroughly the physical processes occurring
inside the nanowires with decreasing sizes, we need an
analytical theory to account for different mechanisms
© 2005 Pleiades Publishing, Inc.
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explicitly, such as dispersion reconstruction and
restricted geometry.

To approach the problem, we consider sufficiently
low temperatures in which the quasiparticle states of
“acoustic” branches are thermally populated (e  0
when p  0). The corresponding acoustic branches
have the following dispersion relations [14, 15]:

(1)

where ei stands for the energy of a quasiparticle, pi is
the corresponding momentum, a is the wire diameter,
and u1 and u2 are the characteristic velocities. The first
expression in Eq. (1) is the phonon dispersion, and the
second expression is the dispersion of the flexural
mode. The nature of flexural modes comes from the fact
they are analogous to the bending modes of classical
elasticity theory or to the antisymmetric Lamb waves of
a free plate [16]. The appearance of such a mode is just
a direct consequence of restricted geometry, and under
some conditions it can be considered as the only size
effect in thermal transport properties. Strictly speaking,
there are two modes for each type of dispersion, but we
do not account for them separately since their contribu-
tions are qualitatively the same. Consequently, we need
to solve the kinetic problem for a two-component gas of
quasiparticles. It is well known [13, 17–20] that using a
simple Callaway formula to estimate the thermal con-
ductivity coefficient in two-component systems some-
times leads to serious confusions. Simple summation of
the relaxation rates, as is done in the majority of theo-
retical works, is questionable under many physical con-
ditions. The dependence of the kinetic coefficients on
different relaxation times is much more complicated in
reality. An accurate method for calculation of the diffu-
sion coefficient in a two-component gas of quasiparti-
cles was proposed in [20]. Here, we extend this formal-
ism to the thermal conductance problem. To start with,
we consider a system of two types of quasiparticles.
Their kinetics is described by equations for correspond-
ing distribution functions fi:

(2)

where Cij(fi, fj) is the collision integral of thermal exci-
tations and Ci3(fi) is the collision integral describing the
scattering processes between quasiparticles and scatter-
ers; v i = ∂ei/∂pi is the group velocity of the correspond-
ing thermal excitation. The main purpose of our theory
is to obtain analytic expressions of thermal conduc-
tance, which are applicable to quasiparticles with arbi-
trary dispersion relations. In other words, the explicit
dispersion relations in Eq. (1) are needed only at the last
stage when calculating corresponding relaxation times
and thermodynamic quantities. As usual, we seek a
pefturbative solution of system (2) in the form

(3)

e1 u1 p1, e2 u2a p2
2,= =

v i

∂ f i

∂z
------- Cij f i f j,( )

j 1=

2

∑ Ci3 f i( ), i+ 1 2,,= =

f i f i
0( ) δ f i,+=
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where  is the local equilibrium Bose-function and

δfi !  represents a small deviation from the equilib-
rium. The perturbation term can be conveniently cho-

sen to be δfi = –gi∂ /∂ei with gi the new target func-
tions. After the standard linearization procedure,
Eq. (2) can be written in the following matrix form:

(4)

where

The two-dimensional (2D) collision matrix  can be
decomposed into a sum of three terms, corresponding

to different relaxation mechanisms—  =  +  +

—where , with matrix elements (ij = Cikδij +
Cij(1 – δij) (k ≠ i), describes the relaxation due to inter-

action between quasiparticles of different types; 
(6ij = Ciiδij) describes collisions between identical qua-

siparticles; and  (8ij = Ci3δij) describes all the other
relaxation mechanisms, including scattering on defects,
boundaries, umklapp processes, etc. Here, Cij represent
linearized collision operators [20].

Let us define the scalar product of two-dimensional
bra- and ket-vectors as follows [20]:

(5)

where (φk | and |χk) are the correspondent one-compo-
nent vectors and dΓ is the element of phase volume.

Under this condition, the collision operator  becomes
hermitian. System (4) is a system of nonuniform linear
integral equations. According to the general theory of
integral equations, the target solution |g〉  must be
orthogonal to the solution of corresponding uniform

equations |φuni〉 . It is therefore convenient to write the
formal solution of (4) so that the orthogonality condi-
tion (〈g|φuni〉) is imposed explicitly in the solution. For

this purpose we define the projection operator  onto

the subspace orthogonal to the vector |φuni〉 ,  = 1 –

,  = |φuni〉〈φuni|. As a result, the formal solution of
system (4) can be written in the form

(6)

f i
0( )

f i
0( )

f i
0( )

φκ| 〉 1
T
---∂T

∂z
------ #̂ g| 〉 ,=

φκ| 〉 e1v 1

e2v 2

, g| 〉 g1

g2

.= =

#̂

#̂ (̂ 6̂

8̂ (̂

6̂

8̂

φ χ〈 | 〉 φk|χk( )
k 1 2,=

∑ φk*χk

∂ f k
0( )

∂ek

----------- Γ k,d∫
k 1 2,=

∑–= =

#̂

#̂

3̂n

3̂n

3̂c 3̂c

g| 〉 3̂n #̂
1–

( )3̂n φκ| 〉 1
T
---∂T

∂z
------.=
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The heat flux density due to thermal excitations of
different types is given by the expression Q =

v kfkdΓk. Using relation (3) and the defini-

tion of scalar product (5), Q can be rewritten as Q =
〈φκ |g〉 . On the other hand, the effective thermal conduc-
tivity coefficient is defined by the relation Q =
−κeff∂T/∂z. Comparing the above two expressions for Q
and using formal solution (6), we obtain

(7)

To derive an exact and analytical expression for thermal
conductivity coefficient (7), it is necessary to introduce
a complete set of orthonormal 2D vectors |ψn〉  (n = 1, 2,
3, …) belonging to an infinite-dimensional Hilbert
space with scalar product (5). In principle, the particu-
lar choice of the basis is not essential, but for conve-
nience of calculations it is useful to specify at least four
of them. It is convenient to chose the first of them as
corresponding to the total momentum of quasiparticles
and the second as orthogonal, but still linear in momen-
tum [20]:

(8)

where ρi = (pi |pi) is the normal density of the ith com-
ponent, ρ = ρ1 + ρ2. The third and the fourth vectors
correspond to the energy flux,

(9)

where

(10)

and 1κj =  is the corresponding normaliza-
tion coefficient. The partial entropy of quasiparticle
subsystem Sj in Eq. (10) is given by the relation

(11)

Formally, the kinetic problem of a two-component
quasiparticles system can be solved in the above basis

set. The inversion of the operator matrix  in Eq. (7) is
similar to the procedure described in [20]. The final
result contains infinite-dimensional nondiagonal matri-
ces. To obtain closed form expressions, we must use
some approximations, a correct τ-approximation [19]
or Kihara approximation [20–23]. In some physical sit-
uations, we are able to obtain closed analytical expres-
sions. It is rigorously proved in [20] that, in the case of
quasi-equilibrium within each subsystem of quasiparti-

ek∫k 1 2,=∑

κ eff
1
T
--- φκ〈 |#̂

1–
φκ| 〉 .–=

ψ1| 〉 1

ρ
-------

p1

p2

, ψ2| 〉 1

ρρ1ρ2

-------------------
ρ2 p1

ρ1 p2–
,= =

ψ3| 〉 1
1κ 1

--------- ψκ 1

0
, ψ4| 〉 1

1κ 2

--------- 0

ψκ 2

,= =

ψκ j
1

T
------- e jv j

S jT
ρ j

-------- p j– 
  ,=

ψκ j|ψκ j( )

S j
1
T
--- e jv j|p j( ).=

#̂

cles, the corresponding transport coefficient can be
obtained in close analytical form. This is a reliable
approximation when the low temperature relaxation is
mainly governed by defect scattering processes. The
approximation formally implies that all the matrix ele-

ments of matrix  in Eq. (7) tend to infinity. The ther-
mal conductivity coefficient in this case can be obtained
in the form κeff = κF + κD. Here we separate the flux part
of thermal conductivity coefficient κF = τFS2T/ρ with
S = S1 + S2, which approaches infinity when the quasi-
particles do not interact with scatterers, and the diffu-
sive part κD = τD(S1T/ρ1 – S2T/ρ2)2ρ1ρ2/Tρ. The corre-
sponding relaxation times are given by

(12)

and

(13)

Relaxation times contained in formulas (12) and
(13) are defined by

(14)

We emphasize that these are not actual scattering times,
which are momentum dependent, but relaxation times
associated with the corresponding scattering mecha-
nisms. Once we obtain the particular scattering rate
νkj(pk) from standard scattering theory, we can replace
the true collision operator Ck with νkj(pk), so that the
corresponding relaxation time can be calculated by

(15)

As can be seen from the derived formulas, the coef-
ficient of thermal conductivity contains different relax-
ation times in a rather nontrivial combination. If one
component (say set S2 = 0, ρ2 = 0) drops out, we recover

the usual result,  = τ13 T/ρ1. For phonons with lin-
ear dispersion e = vp, κF reduces to the well-known

result  = Cphv 2τ13/3, where Cph = 3Sph is the heat
capacity of phonon gas.

The main advantage of our approach is its universal-
ity. In fact, up to this point we have not restricted our-
selves to any particular dimensionality of the system or
any quasiparticles dispersion. All the necessary infor-
mation is contained in the corresponding relaxation
times and thermodynamic quantities. This formalism
allows us to analyze contributions from different relax-
ation mechanisms to the total thermal conductivity

6̂

τD

ρ1

ρ
-----τ23

1– ρ2

ρ
-----τ13

1– τ12
1– τ21

1–+ + +
 
 
 

1–

,=

τF τD

S1

S
-----τ23

1– S2

S
-----τ13

1– τ12
1– τ21

1–+ + + 
 

2

=

× τ13
1– τ23

1– τ12
1– τ23

1– τ21
1– τ13

1–+ +( ) 1–
.

τkj
1– 1

ρk

----- p j|Ckj|p j( ).=

τkj
1– ρk

1– pk
2νkj pk( )

∂ f k
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∂ek
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κF
1( ) S1

2

κF
ph
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coefficient. Given the dispersion relations of quasipar-
ticles, we can easily calculate all the quantities con-
tained in (12) and (13).

With Eqs. (12) and (13), we are able to address the
competition between relaxation processes of the flex-
ural and phonon modes. Glavin [14] noted that such a
competition can be essential at extremely low tempera-
tures if the dominant relaxation mechanism is elastic
scattering on defects, where, he argued, the thermal
conductivity coefficient would scale as T1/2. Our
approach allows us to study this competition compre-
hensively. In particular, we predict a strong dependence
of the temperature scaling exponent on the wire diame-
ter. The standard Fermi golden rule approach [14] gives
the momentum dependent scattering rates for different

modes ν13 = W13 , ν23 = W23 , where Wkj are

the corresponding scattering amplitudes, which depend
on the physical properties of particular material. Using
Eq. (15), it is easy to show that the corresponding relax-
ation times scale as

(16)

Different temperature dependences of relaxation
times lead to a strong competition between two physi-
cally different mechanisms of thermal conductivity—
flux and diffusive. The dominance of one over the other
strongly depends on the wire diameter at a given tem-
perature. To make some specific conclusions, let us
summarize the approximations done and specify the
range of validity of the proposed theory. We consider a
situation in which thermal excitations are multiply scat-
tered elastically while being transferred through the
wire, so that other scattering mechanisms are strongly
suppressed by interaction with defects. Only for this
case were we able to drop relaxation within each sub-
system of identical quasiparticles to obtain closed
expressions (12) and (13). The influence of the bound-
ary is accounted for in the dispersion of the flexural
mode and in the dimensionality of the system. The
range of temperature is supposed to satisfy the relation
T < ∆e, where ∆e ~ 1/a is the characteristic value of the
frequency gap between the adjacent phonon branches.
For a larger temperature, we cannot use acoustic modes
(1) only, but need to account for higher branches.

In Fig. 1, we compare our theoretical results with
the experimental data from [11]. We have chosen the
unknown parameters W13 = 1.2 × 10–44 m5 s–4 and W23 =
0.9 × 10–44 m5 s–4 to fit data for a = 22 nm. Deviations
from the experimental data for large diameters and tem-
peratures show the restriction of the applicability of our
initial approximations. They arise from the Debye
approximation and simplified dispersion expression.
Additionally, when the diameter of the wire increases,
the mechanism we consider becomes less dominant. To
be more precise, we need to include higher excitation
branches as well as other relaxation mechanisms. How-

p1/2

u1
3a3/2

------------- 1

pu2
3a3

--------------

τ13
1– a 3/2– T1/2, τ23

1– a 5/2– T 1/2– .∝ ∝
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ever, our approach allows us to understand the physics
of the processes in the region under consideration. It is
clear that the observed crossover is the result of compe-
tition between κF ∝  T1/2 and κD ∝  T3. For smaller diam-
eters, κF is strongly dominant in a wide range of tem-
peratures as shown on Fig. 2 for wire diameter a =
2 nm. Figure 3 demonstrates a complete crossover from
T1/2 to T3 dependence for a nanowire of a = 30 nm. It
can be seen that the T dependence between 20 and 40 K
is nearly linear, which was observed in experiment
[11]. It should be noted that T3 dependence of κD cannot
be interpreted by simple analogy with the bulk case. It
comes not from a specific heat directly, but from differ-

Fig. 1. Thermal conductivity coefficient calculated from
Eqs. (12) and (13) for different values of nanowire diameter.
Experimented data are from [11].

Fig. 2. Comparative contribution from flux and diffusive
parts of thermal conductivity for a 2-nm wire.
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ent sources, including competition of the relaxation
times in Eqs. (12) and (13).

In summary, we derived the general analytical
expressions (12) and (13) to explicitly calculate the
contributions of different scattering mechanisms to the
total relaxation of the system. The simple expressions
clarify the essential effects leading to the observed
behavior of the thermal conductivity coefficient. It is
clear that the particular dispersion laws (and their
reconstruction) affect scattering rates and thermody-
namic quantities. Restricted geometry and low dimen-
sionality lead to additional scattering mechanisms.
Note the information about dimensionality is naturally
included in the particular form of phase space element
dΓi. Such a formalism helps to distinguish effects from
different scattering mechanisms. When applied to a
regime in which phonon modes compete with flexural
ones, our theory agrees favorably with the available
experimental data. Furthermore, we showed that the
thermal conductivity coefficient changes from approxi-
mately T1/2-dependence to T3-dependence with increas-
ing temperature. In view of our theoretical results, it
will be useful to investigate smaller diameters or lower
temperatures with fixed diameters in experiment to bet-
ter reveal the crossover from T3- to T1/2-dependence.
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We present a model to realise a probabilistic quantum teleportation of two-particle mode entangled state
through the four-photon quantum channel. Four modes of the two-photon mode entangled state are directly
transferred to other spatial four modes of the quantum channel with success probability of 50%. The quantum
protocol operates in space of photon number states. A Bell state measurement with four beam splitters and
four pairs of detectors in the teleportation protocol is accomplished in the fourfold coincidence basis. © 2005
Pleiades Publishing, Inc.

PACS numbers: 03.65.Ud
Quantum teleportation, proposed by Bennett et al.
[1], is the process that transmits an unknown two-state
particle from a sender (Alice) to a receiver (Bob) via a
quantum channel with help of sending some classical
information to Bob. In original scheme [1], such a
quantum channel has been represented by a Bell maxi-
mally entangled state or Einstein–Podolsky-Rosen
(EPR) pair. Experimental realization of the quantum
teleportation protocol by a partial set of Bell measure-
ments has been performed in [2] with success probabil-
ity of 50%. The main difficulty with any optical
approach is that nonlinear interactions between individ-
ual photons are required in order to implement the
quantum teleportation protocol that operates with
100% efficiency [3]. The Bell-state measurement being
inherently nonlinear is required for the 100% teleporta-
tion [4].

Quantum teleportation of a qubit occupying only
one optical mode via one-photon1 quantum channel
was studied in [5]. Experimental realisation of the
quantum teleportation of one mode qubit through the
one-photon quantum channel is reported in [6]. Prob-
lems of quantum teleportation by employing Green-
berger–Horne–Zeilinger (GHZ) quantum channel [7]
have been studied in [8]. More general questions of
quantum teleportation of two qubits involving noisy
quantum channels are involved in [9]. One should be
noted the work [10], in which quantum teleportation
protocol of N—particle entangled state via N + 1—par-
ticle quantum channel has been developed.

As pointed out by Bennett et al. [1] in their original
proposal for quantum teleportation, entanglement can
be transferred through teleportation of two modes one
of the particles forming the entangled state. This

¶ This article was submitted by the author in English.
0021-3640/05/8104- $26.00 0195
method, known as entanglement swapping [11], pro-
vides only partial teleportation of entanglement. We
propose an alternative method in which the two-photon
mode entangled state is directly transferred from one
place to another. We use four-photon quantum channel
to perform the teleportation protocol for the two-pho-
ton mode entangled state unlike [8–10]. We make use
of the number state representation to perform the total
teleportation of the two-photon mode entangled state
(all four modes of the state are teleported). One should
be noted, it was recently recognised in [12] that spatial
encoding is easier, for example, to manipulate and con-
struct universal quantum gates unlike the standard
method for encoding qubits in optics in which polariza-
tion degrees of freedom of single photon are used. The
source of the mode entanglement may consist of two
non-collinear degenerated on frequency spontaneous
parametric down converters with type-I phase matching
(SPDCI) [13]. Quantum teleportation utilizing such
four-photon quantum channel is not required special
detectors distinguishing between one- and two-photon
number states. The teleportation scheme of the entan-
gled state through the four-photon quantum channel
may be really performed in practice unlike teleportation
schemes based on the GHZ quantum channel [8–10].

We employ setup shown in figure for the teleporta-
tion of entanglement. As in the standard teleportation
scheme [1], our scheme (figure) consists of three dis-
tinct parts: the source station that generates a quantum
channel (it is not shown in figure), Alice’s station where
a Bell state measurement is performed and its result is
sent away through the classical communication chan-
nel, and Bob’s station where the signal from Alice is
read and a suitable unitary transformation with output
© 2005 Pleiades Publishing, Inc.
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state is performed. The four-photon mode entangled
state

(1)

is utilized as a quantum channel which is shared by
Alice (modes 5, 7, 5' and 7' in figure belong to Alice)
and Bob (modes 6, 8, 6' and 8' in figure). Here, the num-
bers in the subscripts of the states (Eq. (1)) are referred
to the optical modes of1 the photons [14]. For example,
the state |11110000〉56785'6'7'8' in Eq. (1) is a tensor prod-
uct of one-photon number states where the modes 5, 6,
7, and 8 are occupied by four photons while other resid-
uary modes 5', 6', 7' and 8' have zero photons. An

unknown two-photon mode entangled state  =
{α|100〉  + β|0011〉}1234 with amplitudes α and β satisfy-
ing condition |α|2 + |β|2 = 1 must be teleported to Bob.
According to figure, the first, second, third, and fourth

modes of the teleported state  are mixed with
fifth, seventh, fifth prime, and seventh prime modes of
the quantum channel (figure). Then, the input tensor
product of six photons is given by

Ξ1
56785'6'7'8'( )| 〉

=  
1

2
------- 11110000| 〉 00001111| 〉+{ } 56785'6'7'8'

Ψ1
1234( )| 〉

Ψ1
1234( )| 〉

Ψ1
1234( )| 〉 Ξ1

56785'6'7'8'( )| 〉

The experimental scheme realizes quantum state teleporta-
tion of unknown two-photon qubit by the four-photon quan-
tum channel (1). White side of the beam splitter indicates
the surface from which a sign change in exiting mode
occurs upon reflection. The use of this beam splitter phase
convention is convenient but not essential. PS means
π-phase shifter in the output sixth mode. Bob’s modes are
shown at lower part.
(2a)

,

where we introduce the following four-photon mode
entangled states

(2b)

(2c)

(2d)

(2e)

The states in the modes 6, 8, 6' and 8' is the teleported

state while the states  (i = 1–4) of the ancil-
lary photons must be subjected to the Bell state mea-
surement to end up the teleportation protocol [1].
Straightforward calculations based on the quantum the-
ory of the beam splitter yield the following outcomes of
the states (2b)–(2e)

(3a)

(3b)

(3c)

=  
1
2
--- Ξ1

1257345'7'( )| 〉{

× α 1100| 〉 β 0011| 〉+{ } 686'8' Ξ2
1257345'7'( )| 〉 ,+

α 1100| 〉 β 0011| 〉–{ } 686'8' Ξ3
1257345'7'( )| 〉+

× α 0011| 〉 β 1100| 〉+{ } 686'8' Ξ4
1257345'7'| 〉 ,+

α 0011| 〉 β 1100| 〉–{ } 686'8'

Ξ1
1257345'7'( )| 〉

=  
1

2
------- 11110000| 〉 00001111| 〉+{ } 1257345'7',

Ξ2
1257345'7'( )| 〉

=  
1

2
------- 11110000| 〉 00001111| 〉–{ } 1257345'7',

Ξ3
1257345'7'( )| 〉

=  
1

2
------- 11000011| 〉 00111100| 〉+{ } 1257345'7',

Ξ4
1257345'7'( )| 〉

=  
1

2
------- 11000011| 〉 00111100| 〉–{ } 1257345'7'.

Ξi
1257345'7'( )| 〉

Ξ1
1257345'7'( )| 〉 1

2 2
---------- 22000000| 〉 00220000| 〉+{

– 20020000| 〉 02200000| 〉– 00002200| 〉+

+ 00000022| 〉 00002002| 〉– 00000220| 〉 } 1257345'7',–

Ξ2
1257345'7'( )| 〉 1

2 2
---------- 22000000| 〉 00220000| 〉+{

– 20020000| 〉 02200000| 〉– 00002200| 〉+

– 00000022| 〉 00002002| 〉 00000220| 〉 } 1257345'7',+ +

Ξ3
1257345'7'( )| 〉 1

2 2
---------- 11001100| 〉 11000011| 〉+{

+ 00111100| 〉 00110011| 〉 10011001| 〉–+
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(3d)

We have four different outcomes that can be
grouped into two separate groups, namely, first group
involves the outcomes characterized by simultaneous
clicks in two different detectors (two bits of informa-

tion Eqs. (3a), (3b)). The states  and

 (first group) result in the outcomes differ-
ent only by sign from each other. Thus, the teleportation
protocol in figure fails when two detectors simulta-
neously register four photons as the outcomes of the
first group (Eqs. (3a), (3b)) are not distinguishable from
each other. Unlike the outcomes of the first group, a
Bell state measurement of the states of the second

group  and  projects the states
on coincidence registration of four photons in four
detectors (four bits, Eqs. (3c), (3d)). It is easy to check
the outcomes (3c), (3d) are distinguishable from each
other. Thus, when two pairs of detectors register a par-
ticular combination of four coincidences, Alice knows

which state (  or ) correspond to
it and, consequently, which state Bob has in his hands
and Alice must inform him about it using classical com-
munication [1].

To end up the teleportation protocol, one should
define what state is considered to be successfully tele-
ported. Let us consider the quantum teleportation per-
formance to be successful if the following state
{α|0011〉  + β|1100〉}686'8' occurs at Bob’s station. If Bob
is informed about outcome corresponding to the state

, he must do nothing. Other possible case
corresponds to the outcomes following from the input

state . To restore the teleported state in the
case, Bob must apply corresponding unitary transforma-
tions in one of the output modes. In our case, it is suffi-
cient to make use of the π-phase shifter, for example, in
the mode 6 to restore the teleported state. Since the
states forming second group represents one second of
the entire initial photon state (2a), the success probabil-
ity for the entanglement teleportation using the quantum
channel (1) is 50% also as in original proposal [1].

One should say some words about a possibility to
generate quantum channel (1) for the quantum telepor-
tation. From the “no cloning theorem” [15], we know
the conversion (α|0〉  + β|1〉)  (α|0〉  + β|1〉)(α|0〉  +
β|1〉) is forbidden while the following operation (α|0〉  +
β|1〉)  (α|00〉 + β|11〉) is allowed. To construct the
quantum channel (1), we must make use of a quantum
encoder operating on the mode entangled states [13]
and whose output in a probabilistic way (α|00〉 +

– 10010110| 〉 01101001| 〉– 011001110| 〉 } 1257345'7',–

Ξ4
1257345'7'( )| 〉 1

2 2
----------– 11001001| 〉 11000110| 〉+{

+ 00111001 00110110| 〉 10011100| 〉–+

– 10010011| 〉 01101100| 〉– 01100011| 〉 } 1257345'7'.–

Ξ1
1257345'7'( )| 〉

Ξ2
1257345'7'( )| 〉

Ξ3
1257345'7'( )| 〉 Ξ4

1257345'7'( )| 〉

Ξ3
1257345'7'( )| 〉 Ξ4

1257345'7'( )| 〉

Ξ3
1257345'7'( )| 〉

Ξ4
1257345'7'( )| 〉
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β|11〉)  (α|0000〉 + β|1111〉) will be given by the
state (1) in the case of quantum optics.

In conclusion, we have proposed a method to realize
a probabilistic quantum teleportation of two-photon
mode entangled state through the four-photon quantum
channel (1). This method is based only on a few linear
optics elements, namely four balanced beam splitters,
eight photodetectors and postselection. The maximum
success probability of the teleportation protocol is 50%.
To achieve the quantum teleportation protocol, fourfold
coincidences are required to be performed that are fully
available with the present technology.
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