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The possibility of forming a stable optical–acoustic soliton in the regime of electromagnetically induced trans-
parency has been analyzed under the condition that the group velocity of light in a medium with stimulated
Mandelstam–Brillouin scattering decreases to the speed of sound. This possibility exists because the forward
Mandelstam–Brillouin scattering, which is forbidden in a nondispersive medium, is allowed under this condi-
tion. The optical component is an envelope pulse, and the acoustic component has no carrier frequency. It has
been shown that such a soliton can be formed for anomalously low input intensities of the optical pulse. © 2005
Pleiades Publishing, Inc.

PACS numbers: 42.50.Ar, 42.65.Es, 42.81.–i
Experimental advances in anomalously strong light
slowing both in gases [1] and in solids [2] in the regime
of electromagnetically induced transparency (EIT)
stimulated a series of works on optical–acoustic inter-
action under the conditions of the collinear propagation
of light and sound [3–5]. In this geometry, this interac-
tion is most efficient when the group velocity of light is
equal to the speed of sound in the substance under con-
sideration. Soliton mechanisms of the generation of
acoustic pulses in noncollinear regimes of optical–
acoustic interaction were analyzed in [6]. The possibil-
ity of the hypersonic transparency of the absorbing
paramagnetic by means of microwave electromagnetic
radiation supplied to the sample perpendicularly to the
propagation of the acoustic pulse was analyzed in [7].
The equality of the speeds of light and sound is not nec-
essary in noncollinear geometry.

Matsko et al. [4] showed that the parameters of
stimulated Mandelstam–Brillouin scattering (SMBS)
change substantially when the group velocity of light
approaches the speed of sound. In particular, they con-
cluded that forward SMBS was possible under the con-
ditions of strongly slowed light. This scattering in a
nondispersive medium is forbidden by the conservation
laws for energy and momentum in interactions between
photons and phonons [8].

Since SMBS is a purely nonlinear effect, not only
the effect of the acoustic phonon branch on light but
also inverse action is important. At the same time, the
medium slowing light is strongly dispersive. As is
known, the presence of nonlinearity and dispersion can
give rise to the formation of a soliton in such a medium.
In view of this circumstance, a question arises as to
whether the generation of an acoustic soliton is possible
with its further synchronous propagation with the
0021-3640/05/8105- $26.00 0201
slowed light pulse in the regime of forward SMBS. This
problem is studied in this work.

Let us consider a continuous isotropic medium
(matrix) containing impurities with resonance three-
level λ transitions. Intense optical pumping at the
2  3 transition (quantum levels are enumerated
from bottom to top) creates the EIT regime for a signal
pulse that is much less intense and that is in resonance
with the 1  3 transition. The latter transition is char-
acterized by a sharp decrease in the absorption coeffi-
cient (almost to zero) and group velocity of the signal
pulse, as well as by the trapping of the populations of
quantum levels in the system of λ transitions.

The polarization response P(r, t) of the dispersive
medium to the action of the linearly polarized signal
field E(r, t) is represented in the form

(1)

where χm is the dielectric susceptibility of the matrix,
which is assumed to be nondispersive in the frequency
range under consideration, and χ(τ) is the susceptibility
of the dispersive medium of three-level impurity atoms. 

The acoustic phonon branch leads to the modulation
of the matrix susceptibility [8]:

(2)

where u(r, t) is the field of local longitudinal deforma-
tions of the medium and the subscript 0 corresponds to
the absence of strains.
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Under these conditions, the energy density of opti-
cal–acoustic interaction that is associated with SMBS
has the form

(3)

The Hamiltonian density for the acoustic field has the
form

(4)

where ρm is the average density of the medium; a is the
speed of longitudinal sound in it; s is the local displace-
ment field that is related to the strain field as u = ∂s/∂z,
where the z axis coincides with the direction of the
propagation of the optical pulse and acoustic pulse that
is generated by the optical pulse; and p is the field of the
momentum density of local displacements. Using
Eqs. (3) and (4) and the Hamiltonian equations for the
continuous medium

where H = d3r, we obtain

(5)

where ∆ is the Laplace operator.

Using Eqs. (1) and (2) and Maxwell equations for E,
we arrive at the equation

(6)

where c is the speed of light in vacuum and nm =

 is the refractive index of the matrix. The
nonlinear integro-differential system of Eqs. (5) and (6)
self-consistently describes the SMBS regime in the dis-
persive medium.

Let us consider a light field in the form of a quasi-
monochromatic pulse with carrier frequency ω0 and
wavenumber k0. In this case,

(7)

where ψ(r, t) is the slowly varying envelope. Following
[9], we substitute Eq. (7) into Eq. (6) and expand
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ψ(r, t – τ) in a Taylor series in τ. Taking into account
only minimum-order group dispersion, we write

(8)

where χ(ω) = (τ)exp(iωτ)dτ is the frequency sus-

ceptibility of impurities and the subscript 0 means that
the corresponding derivatives are calculated at ω = ω0.

Substituting Eqs. (7) and (8) into Eqs. (6) and (5)
and ignoring relatively fast-oscillating terms, we obtain

(9)

(10)

respectively. Here, ψg = c/(n + ω0(∂n/∂ω)0) is the group
velocity of the optical signal pulse, n = [1 + 4π(χm +
χ(ω0))]1/2 is the total refractive index of the medium,
k2 = (∂(1/v g)/∂ω)0 is the dispersion parameter for the
group velocity, and ∆⊥  is the transverse Laplacian. Note
that, in contrast to the optical field, the acoustic wave is
represented in Eqs. (9) and (10) by the strain field rather
than the envelope. Therefore, the acoustic pulse gener-
ally has no the carrier frequency.

In what follows, the carrier frequency ω0 of the opti-
cal signal pulse is assumed to be exactly equal to the
frequency of the 1  3 quantum transition. In this
case, χ(ω0) = 0 [10] and (∂2n/∂ω2)0 = 0 [11] and, there-
fore, n = nm and k2 = 2(∂n/∂ω)0/c > 0. Thus, the group
dispersion at the center of the resonance absorption line
is positive.

For the one-dimensional case (∆⊥  = 0), Eqs. (9) and
(10) transform into the known Zakharov system [12].
For v g = a, the Zakharov–Benni resonance or resonance
of long and short waves [13] is realized: the group
velocity of the short-wavelength (optical) component is
equal to the phase velocity of the long-wavelength
(acoustic) component. This is the condition under
which the interaction between sound and slowed light
is most efficient. In this case, it is convenient to analyze
Eq. (10) in the approximation of quasi-unidirectional
propagation [13]. Since Eq. (2) is an expansion, the first
term on the right-hand side of Eq. (10) is small. In addi-
tion, the paraxial approximation is used (∆⊥ u !
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∂2u/∂z2). Introducing the “local” time τ = t – z/a = t –
z/v g and the “slow” coordinate ζ = µz, where the small
parameter µ is proportional to the right-hand side of
Eq. (10), and ignoring ~µ2 terms, we represent Eqs. (9)
and (10) in the form

(11)

(12)

where α = (2πω0/cn)(∂χm/∂u)0 and β =
(∂χm/∂u)0/(2ρma3).

In the one-dimensional case, Eqs. (11) and (12)
present the integrable Yadjima–Oikawa system [14],
which has the single-soliton solution

(13)

Here, ψm = (|k2|/τp) , um = k2/α , q = Ω/a +

(k2/2)(1/  – Ω2), and the propagation velocity v  is
determined by the relation 1/v  = 1/a – k2Ω .

Solution (13) involves two free parameters, namely,
the duration τp and the nonlinear shift Ω of the optical
component of the soliton. It follows from the expres-
sions for α, β, and ψm that Ω ≥ 0. According to this rela-
tion and Eqs. (13) and (7), we conclude that the fre-
quency of the optical component is shifted toward the
red spectral range: ω0  ω0 – Ω. This corresponds to
a decrease in the energy of each photon undergoing
SMBS and to the excitation of phonon modes.

As follows from [4], for v g = a and forward scatter-
ing there are no formal constraints on Ω . However, note
that Ω has an upper limit because (i) the envelope ψ
varies slowly and thereby Ω ! ω0 [see Eqs. (7) and
(13)] and (ii) the Ω value must correspond to the disper-
sionless approximation accepted here for sound and,
hence, to the low-frequency range of the first Brillouin
zone. For this reason, there is a lower limit for the pulse
duration: τp @ h/a, where h is the distance between ele-
mentary cells (nearest neighbors) in the medium in the
soliton propagation direction. Setting h ≈ 5 × 10–8 cm
and a ≈ 5 × 105 cm/s, we obtain τp @ 10–13 s. Thus, the
lower limit is τp ~ 1 ps.

Note that, at Ω = 0, the optical component of the
soliton vanishes; i.e., the entire energy of the input light
pulse is transformed to the strain soliton. In order to
reveal the conditions under which this phenomenon is
possible, it is necessary to solve the boundary value
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problem for the system of Eqs. (11) and (12). This
problem is a subject for a separate investigation.

As follows from the expression for um, the acoustic
component of the soliton corresponds to compression
deformation or tensile deformation if (∂χm/∂u)0 is posi-
tive or negative, respectively.

For possible experiments, the stability of soliton
(13) under transverse perturbations is important. These
perturbations are taken into account using Whitham’s
averaged Lagrangian method [15]. The system of
Eqs. (11) and (12) corresponds to the Lagrangian den-
sity

(14)

where Q is related to the strain as u = ∂Q/∂τ.
Expressions (13) with the changes 1/τp  ρ,

qz  Ωz/a – nω0Φ/c are used as trial solutions, where
new dynamic variables ρ and Φ are coordinate func-
tions that must be determined. Substituting trial solu-
tions into Eq. (14) and integrating with respect to the
fast variable τ (as was done in [16] for other nonlinear
equations), we arrive at the average Lagrangian of the
form

(15)

Writing Euler–Lagrange equations for ρ and Φ with
regard for Eq. (15), we obtain the “hydrodynamic-type”
system

(16)

In the one-dimensional case, system (16) has the solu-
tions ρ = 1/τp = const and Φ = Φ0(z) = (ck2/2nω0)(Ω2 –

1/ )z, which exactly correspond to solitons (13). This
circumstance is a serious argument in the favor of the
average Lagrangian method.
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The general analysis of Eq. (16) is complicated by
its nonlinearity. For this reason, we take into account
only small transverse perturbations corresponding to
slight distortions of solitons (13). Accordingly, we
write ρ = 1/τp + ρ1 and Φ = Φ0 + Φ1, where ρ1 ! 1/τp

and Φ1 ! Φ0. Then, linearizing Eq. (16) with respect to
ρ1 and Φ1 and setting ρ1, Φ1 ~ exp i(q||z + q⊥ r⊥  , we
arrive at the “dispersion” relation

(17)

As was mentioned above, k2, Ω > 0. Therefore, the q||
values are real, and thereby the optical–acoustic soliton
given by Eq. (13) is stable under small transverse per-
turbations.

Let us numerically estimate the parameters of the
optical–acoustic soliton given by Eq. (13). The slowing
of light in solids can be efficient when they are doped
with rare-earth ions [2]. In [2], experiments on the
slowing of light were carried out at a temperature of
5 K in the dielectric Y2SiO5 doped with 0.05 at. % of Pr
ions. These ions were chosen because their quantum
transitions in the above-indicated matrix are character-
ized by very narrow inhomogeneous broadening, and
thereby the slowing of light can be most efficient. For
the pumping intensity Ip ≈ 470 W/cm2, light in this
medium has been slowed to v g ≈ 4.5 × 103 cm/s. The
speed of sound is approximately two orders of magni-
tude higher. The group velocity of the strongly slowed
light component in the EIT regime is proportional to the
Rabi frequency squared of the pumping field and, there-
fore, to intensity Ip [1]. Thus, in order to satisfy the con-
dition v g ≈ a, Ip must be increased to 47 kW/cm2. Let
the soliton duration be τp ≈ 100 ps. In this case, for the
parameters ω0 ~ 1015 s–1, a ≈ 5 × 105 cm/s, Ω ~ 1011 s–1,
ρm ≈ 2 g/cm3, (∂χm/∂u)0 ~ χm ~ 0.1 [8], nm ~ 1, and k2 ~

1/aω0, we obtain Iopt ≈ c /4π ~ 10–2 W/cm2 for the
intensity of the optical component of the soliton, um ~

10–9 for the strain, and Is ≈ ρma3 /2 ~ 10–8 W/cm2 for
the corresponding intensity of the acoustic component.
Note that these estimates coincide in order of magni-
tude with the respective estimates presented in [4] for
the nonsoliton regime of forward SMBS. Thus, for
durations of several hundreds of picoseconds, the inten-
sities of the optical–acoustic soliton are anomalously
low, and the optical component dominates. As the dura-
tion of the soliton decreases, the intensity of the soliton,
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as well as the relative weight of the acoustic compo-
nent, increases.

Anomalously low intensities of the optical compo-
nent of the above soliton as compared to the intensities
of the usual light solitons [9] are consistent with the
conclusions made in [17, 18], where it was shown that
the nonlinear characteristics of the medium in the EIT
regime are giant and, correspondingly, are manifested
for very low intensities of signal fields.
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In a gas of slow atoms exhibiting the effect of coherent population trapping (CPT) on the sublevels of the ground
state in a spatially nonuniform light field, rare collisions destroying the CPT state initiate the irreversible
exchange of momentum between radiation and atoms. This exchange is manifested as an additional force that
acts on the particles and is of geometric origin; i.e., it is determined only by the structure of the field of local
CPT states. When this force is not masked by the standard collision change in atomic momentum, the observa-
tion of the kinetics of the particles may provide information on the physics of the collisions. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 32.80.Qk, 42.50.–p
The evolution of an atom that interacts with resonant
radiation and has a complicated structure of the sublev-
els of its ground state exhibits the phenomenon of
coherent population trapping (CPT). This phenomenon
includes numerous effects known from the early devel-
opment stages of the physics of the interaction between
resonant radiation and gaseous media. Investigations of
optical pumping (see review [1]) were the first in this
series. The development of the test-field method in non-
linear laser spectroscopy of three-level systems also led
to the observation of the effect now known as CPT [2].
A wide interest in the CPT phenomenon was initiated
by [3]. It is now applied in such important fields as
superhigh-resolution spectroscopy (so-called “dark res-
onance”) [4], nonlinear optics [5], creation of an inver-
sionless laser [6], atomic optics [7], and laser cooling of
atoms below the photon recoil energy [8]. States of
CPT may also be used as a fine instrument for studying
interparticle interactions in a rarefied gas. As is known,
these states are certain superpositions of the atomic
states on certain atomic sublevels. Controlling the
amplitudes of these states by varying the parameters of
the radiation field, one may observe the kinetics of
atoms and thereby analyze the dependence of the result
of a collision on the internal state of the particles. A
simple example of such an approach is the subject of
this work.

We remind readers of the essence of the CPT phe-
nomenon, which is observed even in the simplest stan-
dard model of a Λ atom interacting with a pair of mono-
chromatic light fields (see figure). This scheme, along
with the notation introduced in it, will be used below. A
certain uncoupled superposition |ψUNC〉  of the ground
states |–〉  and |+〉  turns out to be “dark”; i.e., it is not
0021-3640/05/8105- $26.000205
involved in the radiative evolution of the atom. The pro-
cesses of induced radiative transitions |ψUNC〉  |0〉
through the channels |–〉   |0〉  and |+〉   |0〉
destructively interfere and damp each other, because
the amplitudes of states |–〉  and |+〉  in the superposition
|ψUNC〉  are matched with the amplitudes λ– and λ+ of the
optical transition per unit time (the explicit form of the
state |ψUNC〉  will be introduced below). The inclusion of
the spatial dependence of the optical transition ampli-
tudes λ± = λ±(x) leads to the notion of the local CPT
state |ψUNC(x)〉 . The atom reaches the dark state due to
a series of induced and spontaneous radiative transi-
tions. In this work, the fast (primarily compared to
translational motion) transition of the atom to the CPT
state is analyzed. Under these conditions, the introduc-
tion of the notion of the local CPT state is reasonable.

Scheme of the Λ-atom levels.
 © 2005 Pleiades Publishing, Inc.
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The slow atom reaching the dark state does not leave it.
This model was first considered in [9], where the con-
ditions of its applicability were derived.

Let us assume that a movable dark atom collides
with buffer gas particles. We ignore the interparticle
momentum exchange and suppose that random change
(lockout) in the relative phase of the states |–〉  and |+〉  is
the only collision effect. Thus, after a collision, the
atom is in a state from which optical transitions are pos-
sible. In the process of fast radiative evolution, the atom
is an intermediary in the exchange of photons between
different plane waves of the laser radiation field and the
field of spontaneous photons. After this evolution, the
atom that is not displaced again reaches the dark state,
gaining a certain momentum. Thus, the process of the
destruction of the CPT state in collision phase lockout
initiates the transfer of the momentum from radiation to
the atom. A certain additional force begins to act on the
atom. This work is devoted to the calculation of this
force in the above-indicated approximations.

We start with the following quantum kinetic equa-

tion for the atomic density matrix :

(1)

The left-hand side of this equation includes the Hamil-
tonian of translational motion (  and m are the
momentum operator and mass of the atom, respec-
tively). The first term on the right-hand side is the Liou-
villian of the proper internal dynamics of the atom and
its interaction with radiation through induced and spon-
taneous transitions. In the coordinate representation, it
is appropriate to introduce a superoperator 5(x1, x2)
that acts on the internal degrees of freedom of the atom
and depends parametrically on x1 and x2:

(2)

Here, δ± is the detuning from the resonant frequencies

corresponding to the transition |±〉  |0〉 ,  are the
projectors on the corresponding states,

is the Hamiltonian of interaction with the field, and γ±
are the rates of spontaneous decays through the corre-
sponding channels. The coordinate dependence of rates
Γ± in the income terms is associated with the inclusion

ζ̂ρ

∂t
ˆ i

2m
------- p̂2 ˆ,[ ]+ 5 ˆ[ ] # ˆ[ ] .+=ζρζρ ζρ ζρ

p̂

x1〈 |5 ˆ[ ] x2| 〉 5 x1 x2,( ) ˆ x1 x2( )[ ]≡ζρ ζρ

=  iδ+ P̂+
ˆ x1 x2( ),[ ]– iδ– P̂–

ˆ x1 x2( ),[ ]–ζρ ζρ

– iV̂ x1( ) ˆ x1 x2( ) i ˆ x1 x2( )V̂ x2( )+ζρ ζρ

+ Γ+ x1 x2–( )P̂+ Γ– x1 x2–( )P̂–+( )TrP̂0
ˆ x1 x2( )ζρ

–
1
2
--- γ+ γ–+( ) P̂0

ˆ x1 x2( ) ˆ x1 x2( )P̂0+( ).ζρζρ

P̂α

V̂ x( ) λ+ x( ) 0| 〉 +〈 | λ – x( ) 0| 〉 –〈 | h.c.+ +=
of the recoil momentum in the emission of a spontane-
ous photon (see, e.g., [10]). The particular form of these
functions is immaterial in this work. It is sufficient to
remember that Γ±(x) = Γ±(|x |) and Γ±(x)  γ± for
x  0. In superoperator (2), as well as in initial equa-
tion (1), a unitary transformation was performed that
removed an explicit harmonic time dependence of the

Hamiltonian (x). Possible fluctuations of fields λ±(x)
are disregarded.

The second term on the right-hand side of Eq. (1)
describes the collision destruction of the coherent
superpositions of states |+〉  and |–〉:

(3)

where ν is the collision frequency.

In what follows, the dark-resonance condition δ+ =
δ– ≡ δ is assumed to be satisfied. Under this condition,
the state

(4)

(where λ2(x) ≡ |λ+(x)|2 + |λ–(x)|2) is not involved in inter-
action with the field; i.e.,

(5)

As was mentioned above, the evolution of the atom
to the dark state is assumed to be fast in our model; i.e.,
the atom is not displaced and does not undergo colli-
sions. Under this condition, the equation

(6)

describes this evolution with a high accuracy. The result
of this evolution may be symbolically represented as
the result of the action of a certain superoperator $:

(7)

As in 5, in the coordinate representation it is conve-
nient to introduce the superoperator $(x1, x2) that
depends parametrically on x1 and x2 and acts only in the
space of the internal atomic states:

(8)

The result of the application of the superoperator $(x1,
x2) always has the form

(9)

where all the information on (x1|x2) is contained in

the function (x1|x2).

V̂

# ˆ[ ] ν P̂+
ˆ P̂+ P̂–

ˆ P̂–
ˆ–+( ),=ζρ ζρ ζρ ζρ

ψUNC x( )| 〉
λ– x( )
λ x( )
------------- +| 〉

λ+ x( )
λ x( )
------------- –| 〉–=

5 x1 x2,( ) ψUNC x1( )| 〉 ψUNC x2( )〈 |[ ] 0.=

∂t
ˆ 5 ˆ[ ]=ζρ ζρ

ˆ post( )
$ ˆ pre( )

[ ] .= ζρζρ

x1〈 |$ ˆ pre( )
[ ] x2| 〉 $ x1 x2,( ) ˆ pre( )

x1 x2( )[ ] .=ζρ ζρ

ˆ post( )
x1 x2( ) ψUNC x1( )| 〉 x1 x2( ) ψUNC x2( )〈 | ,=ζρ ζρ

ˆ pre( )
ζρ

ζρ
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As a result, evolution for time scales longer than the
duration of evolution to the dark state is described by
the kinetic equation

(10)

The density matrix entering into this equation satisfies,

according to Eq. (9), the condition  = ( )  =

( ), where ( ) is the projection operator
on the local CPT state. The contribution of the transla-

tional motion is presented in the operator ( ) =

( ) /2m ( ). Such a modification of the
initial Hamiltonian corresponds to the adiabaticity
model used here for the transitional motion and pre-
sents, as is easily verified, the dynamics of the atom in
the field of the scalar and vector potentials of the geo-
metric origin [9, 11, 12]. We are interested in the right-
hand side of Eq. (10), which presents the collision
destruction of the CPT state and, as a result, the irre-
versible transfer of the momentum of the atom to the
radiation field. In order to calculate collision effects, it
is necessary to know the action $(x1, x2) in explicit
form, i.e., to express (x1|x2) from Eq. (9) in terms of

(x1|x2). To this end, we use the following approach
[9]. Note that the Hilbert–Schmidt scalar product

(11)

is an integral of Eq. (6) if the operator  is canceled by
the action of the superoperator 5† conjugate to the
superoperator 5 with respect to scalar product (11). In
this case, it is easy to see that

(12)

The operator (x1|x2) is uniquely determined from

the above equality. Trivial algebra shows that (x1, x2) :
5†(x1, x2)[ (x1, x2)] = 0.

The result of the calculation of the right-hand side of
Eq. (10) in the coordinate representation has the form

(13)

where

(14)

Here,

∂t
ˆ i K̂ x̂( ) ˆ,[ ]+ ν $ P̂σ ˆ P̂σ[ ] ν ˆ .–

σ ±=

∑=ζρ ζρ ζρ ζρ

ζ̂ρ P̂
UNC

x̂ ζ̂ρ

ˆ P̂
UNC

ζρ x̂ P̂
UNC

x̂

K̂ x̂

P̂
UNC

x̂ p̂2 P̂
UNC

x̂

ζρ

ˆ pre( )
ζρ

ρ̂ ˆ,( )( ) Trρ̂† ˆ≡ζρ ζρ

ρ̂

ρ̂ ˆ post( )
,( )( ) ρ̂ $ ˆ pre( )

[ ],( )( ) ρ̂ ˆ pre( )
,( )( ).= =ζρ ζρ ζρ

ˆ post( )
ζρ

ρ̂
ρ̂

ν f x1 x2,( ) 1–( ) ˆ x1 x2( ),ζρ

f x1 x2,( )
A x1 x2,( )
B x1 x2,( )
----------------------.=

A x1 x2,( ) 2γ λ+ x1( )λ+* x2( )Γ+ x1 x2–( )(=

– λ– x1( )λ–* x2( )Γ– x1 x2–( ) )
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(15)

(16)

where γ ≡ (γ+ + γ–)/2. The function f(x1, x2) ( f *(x1, x2) =
f(x2, x1)) represents the change in the transitional
motion state when the atom gains momentum from the
radiation field. Note that f(x1, x2)  1 for x1  x2.

A force appears in the explicit form in the Wigner
representation for the description of the motion of the
atom (see, e.g., [10]). Under the assumption that the
coherence length of the atomic wave packet is shorter
than the characteristic scales (e.g., wavelength) at
which the amplitudes λ±(x) vary, expression (13)
assumes the standard classical kinetic form

(17)

where

(18)

The final expression for the force has the form

(19)

where the standard notation a b = a∂xb – b∂xa is used.
For traveling light waves (λ±(x) = λ±exp(ik±x)), the first
two terms on the right-hand side of Eq. (19) are non-
zero. The force in the case of standing waves is given
by the last term. In this case, this force turns out to be
an antisymmetric function of frequency detuning δ.
Note that the force F(x) is independent of the radiation
intensity; more precisely, it is invariant under the trans-
formation λ±(x)  constλ±(x). This property is attrib-
uted to the fact that only the structure of the field of the

× λ+ x1( ) 2λ2 x2( ) λ2 x1( ) λ– x2( ) 2–( )

– λ+ x1( )λ+ x2( ) 2 λ– x1( )λ– x2( ) 2+( )

× 2iγδ λ2 x1( ) λ2 x2( )–( ) λ2 x1( ) λ2 x2( )–( )2
+[

+ 2γ2 λ2 x1( ) λ2 x2( )+( ) ] ;

B x1 x2,( ) λ2 x1( )λ2 x2( )=

× 2γ λ+ x1( )λ+* x2( )Γ+ x1 x2–( )([

+ λ– x1( )λ–* x2( )Γ– x1 x2–( ) )

+ 2iγδ λ2 x1( ) λ2 x2( )–( ) λ2 x1( ) λ2 x2( )–( )2
–

– 2γ2 λ2 x1( ) λ2 x2( )+( ) ] ,

F x( )∂p
ˆ x p,( ),– ζρ

F x( ) i
ν
2
---∂x' f x x',( ) f x' x,( )–[ ]
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F x( ) iν
γ+ λ– x( ) 2 λ+* x( )∂xλ+ x( )[ ]
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CPT states |ψUNC(x)〉  is important for determining the
force, because the transition to the dark state is the fast-
est process. Owing to this circumstance, force (19) is
similar to the aforementioned geometric potentials.

The first two terms in Eq. (19) are of the order of νk,
where k is the characteristic wave vector of the radia-
tion field. The variation of the relative values of the
parameters λ± and γ± changes this estimate only
slightly. The third term contains the detuning δ. If the
detuning is too large, the time of the arrival of the atom
at the dark state is comparable with the time of flight k−1

of the characteristic scale of inhomogeneity and our
model becomes incorrect. Using these criteria, we esti-
mate the upper allowable limit for |δ| under the assump-
tion that kv  ! γ, λ (v  is the characteristic atomic veloc-
ity, and γ . γ±). For |δ| ! γ and λ, the condition of the
slowness of the atomic motion compared to the occupa-
tion rate of the dark state has the form [9] kv  ! γλ2/δ2.

Therefore, |δ| ! λ . The right-hand side of this
inequality is the desired limit. The third term in the
expression for the force at limiting detuning is estimated

as ~νλ . For λ ~ γ ~ 108 s–1 and kv  ~ 106 s–1, this
estimate is an order of magnitude larger than νk. For a
dipole moment of about 15D (as for rubidium), the nec-
essary intensity is equal to 20 mW/cm2.

Thus, we have considered the kinetic manifestation
of specific “quasi-optical” collisions that are combined
events consisting of a usual collision and the following
short (about the characteristic time of system evolution)
stage of the interaction of the atom with the radiation
field. The situation of the collision lockout of the rela-
tive phase in the superposition of vectors |+〉  and |–〉  has
been analyzed. This basis is separated in the subspace
of the ground atomic states in its proper internal
dynamics of the atom (by assumption, it diagonalizes
the proper internal Hamiltonian) and in its interaction
with radiation. Note that the introduced spontaneous
decay rates γ+ and γ– are also connected with this basis.
When the energies of the sublevels of the ground state
are equal to each other (these energies are different in
figure), the collision destruction of coherence between
states from a certain “rotated” basis |1〉  = α|+〉  + β|–〉
and |2〉  = –β*|+〉  + α*|–〉 , where |α|2 + |β|2 = 1, is
possible.1 In this case, Eq. (3) contains the projection

1 If the energies of the states |+〉  and |–〉  are different, the collision
superoperator describing the destruction of coherence in the
superposition of |1〉  and |2〉  is not invariant under the unitary
transformation of the “rotating wave” that is performed in Eq. (1).

γ/kv

k/γv
operators  and  on the turned state rather than 

and . The dynamics of coherence with respect to the
old basis turns out to be more complicated, and colli-
sion transitions |+〉   |–〉  appear. Expression (19) for
the force is significantly modified. This property illus-
trates the statement made at the beginning of the paper
that CPT states are applicable to investigation of colli-
sions. The rigorous model must evidently take into
account both change in the atomic momentum during
collision and the real, more complicated structure of the
sublevels of the ground state. In such a model, as well
as in experiments, the problem of the detection of force
(19) against the background of collision change in the
moment will arise.
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The spatial localization of an atom in a field of periodic femtosecond laser pulses is considered. It has been shown
that the atom can be localized with absolute accuracy in the nanometer range. The time interval during which
the atom is situated in the laser field is only 10–7–10–8 of the total localization time interval. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 32.80.Pj
A single atom “at rest” is an ideal physical object for
many fundamental and applied investigations [1–3]. A
good approximation is an atom that is cooled by laser
light and localized in one of the diversiform traps that
have been realized to date [4–6]. However, a potential
localizing the atom provides an appreciable perturbing
effect on both external and internal degrees of freedom
of the atom (shift of the atomic energy levels, modula-
tion of the position and velocity of the atom, etc.). The
best situation that may be expected (which has been
achieved in certain types of traps) is the cooling of the
atom to a temperature corresponding to the energy of
the atomic ground state, where the atom occupies the
minimum phase space. Although the spatial motion of
the atom is minimal in the ground state, this motion
noticeably affects the internal degrees of freedom (shift
of energy levels, etc.). Most fundamental and applied
investigations are focused on the internal degrees of
freedom. In the method that was proposed by Karori et
al. [7] (and was realized in the experiment reported in
[8]) for minimizing the effect of the localizing potential
on certain internal degrees of freedom of the atom, the
atom-localization conditions under which the effect of
the spatial motion of the atom on its internal degrees of
freedom is minimal are realized by varying the param-
eters of the trap. In the experiment reported in [8], the
minimum effect on the shift of the atomic absorption
line (transition between two energy levels) was realized
by choosing the parameters of the trap for which the
shifts of both levels were very close to each other. As a
result, the effect of the potential on the atomic parame-
ter of interest is minimized.

Traps are intended for trapping various particles in a
limited spatial region. This aim is achieved by imposing
a certain potential, which is usually time-independent,
on this region. The time-independent potential is used
because particles usually have high velocities. In partic-
ular, an atom with a thermal velocity of about 105 cm/s
0021-3640/05/8105- $26.00 ©0209
is displaced in space by 1 mm for only 1 µs. Significant
advances in the field of the laser cooling of atoms has
provided the possibility of dealing with velocities of
about equal to or even lower than the recoil velocities
v r ~ 1 cm/s. For such low velocities, the concept of
using time-independent confining potentials becomes
unnecessary.

In this work, we propose and analyze another
approach to the minimization of the effect of the local-
izing field on the atom. Its essence is the use of the
short-term and time-periodic action of the laser field on
the spatial motion of a very slow atom. In such a
scheme, the atom is free of the perturbing effect (for the
use of the atom for measurements) of the localizing
field for a certain time interval (1 – tp/T), where tp is the
duration of the action and T is its repetition period.
When femtosecond pulses are used, the relative time
interval during which the atom is situated in the localiz-
ing field may be very short, i.e., 10–7–10–6 of the total
time interval during which the atom is confined in the
trap. As will be shown below, the approach under con-
sideration may provide the situation wherein the atom is
subjected to the localizing field for only (10–8–10–9)%
of the total time interval of its localization; i.e., the
atom is almost at rest.

The behavior of the particle under the action of peri-
odic short force pulses has been actively studied in con-
nection with the problem of classical and quantum
chaos [9, 10]. We will show that, under certain (experi-
mentally realizable) conditions, it is possible to avoid
chaos in the motion of the atom and to achieve its long-
term spatial localization.

The basic idea of the localization of the atom by a
periodic sequence of short laser pulses is as follows.
Laser light pulses are perpendicularly reflected from a
mirror. The incident and reflected pulses “collide” at a
certain distance from the mirror. The energy of a single
 2005 Pleiades Publishing, Inc.
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Fig. 1. (c, d) Shapes of the atomic potential for two relative positions (a, b) of two counter-propagating (incident and reflected) fem-
tosecond laser pulses.

Incident Incident
femtosecond pulse is spatially localized at a size l = c/tp,
where c is the speed of light and tp is the pulse duration.
When the duration of the laser pulse is extremely short,
i.e., equal to the period of light [11], its spatial size is
equal to the laser wavelength: l = λ. The region where
pulses collide is the localization region for the atom and
has the same size. Depending on the phase relations
between the incident and reflected pulses, either a max-
imum or minimum of the laser-field intensity arises at
the center of the overlapping of the pulses due to their
interference. The atom that is placed in the pulse colli-
sion region is subjected to the gradient force of light
pressure that is directed toward the center of the pulse
overlapping region when the laser frequency is lower
than the atomic transition frequency and intensity is
maximal. (When femtosecond few-cycle light pulses
are used, several minima of the potential energy arise.)
After the action of a light pulse, the atom freely moves
with a velocity determined by its initial velocity and the
momentum gained from the laser field. Figures 1c and
1d show the shapes of the localizing potential for two
different positions of two laser pulses shown in Figs. 1a
and 1b, respectively.

The basic questions that concern the above proce-
dure and answers to which are sought in this work are
as follows. The first is whether the motion of atoms is
finite in the coordinate and momentum spaces. The sec-
ond is whether the action of short intense laser pulses is
breaking for atom (i.e., whether the atom is ionized or
dynamic chaos arises).

Let us consider a two-level atom that is character-
ized by an absorption frequency of ω0 and interacts
with a quasi-resonant laser field with a frequency ωL.
When the detuning δ = ω0 – ωL is sufficiently large, the
upper-level population may be disregarded (adiabatic
elimination). In this case, the atom may be treated as a
structureless pointlike particle. For the field intensity
that is required for the localization of the atom (see
below), the two-level approximation is valid for the
interaction of the atom with the strong field [12]. In
these approximations and in the one-dimensional case,
the Hamiltonian of the interaction of the atom with a
sequence of laser pulses has the form [13]

(1)

Here, H0 = P2/2M, where P is the momentum of the
atom; V(t) = V0cos(2kLX); and F(t) describes the time
profile of the laser field consisting of pulses that have
duration tp and follow with period T. The potential has
a period of half the wavelength, and its amplitude is
given by the expression

(2)

Here, ΩR = 2µE0/" is the Rabi frequency, where µ is the
matrix element of the atomic dipole moment and E0 is
the amplitude of the electric field of the laser wave. It is
convenient to represent Hamiltonian (1) in the dimen-
sionless form

(3)

Here,  = ρ2/2, where ρ = (2kLT/M)P is the dimen-
sionless momentum; V'(t) = kcosx, where x = 2kLX is
the dimensionless coordinate, kL = 2π/λ, λ is the laser
wavelength, k = (8V0/")ωrT2 is the normalized potential

amplitude, ωr = " /2M is the recoil frequency, and M
is the atomic mass; τ = t/T is the dimensionless time;
and the function f(τ) describes the time dependence of
the laser field (with the unit amplitude of a laser pulse

H H0 V t( ) F t nT–( ).
n

∑+=

V0 "ΩR
2 /8δ.=

H' H0' V' t( ) f τ n–( ).
n

∑+=

H0'

kL
2
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of duration tp/T). In the limit of infinitely short pulses,
when f(τ) is the Dirac delta function, Hamiltonian (3)
has the form

(4)

where K = βk is the stochasticity parameter and β =

(t)dt/tp is the factor that depends on the laser field

shape and is close to unity. Hamiltonian (4) also
describes the dynamics of a δ-kicked rotator, which has
been actively studied in the problem of classical and
quantum chaos [9, 10].

First, let us estimate the orders of magnitude of the
parameters of laser pulses and atoms for which atoms
may be spatially localized. We analyze the case of
extremely short laser pulses whose duration is equal to
the light-wave period tp = 2π/ω. This case is of most
interest, because atoms may be localized with absolute
accuracy in the nanometer range. We also suppose that
the spectral width ∆ωL of the laser pulse is significantly
narrower than the detuning between the central radia-
tion frequency and the atomic transition frequency; i.e.,
∆ωL < δ. If the initial atomic velocity is such that, for a
time interval between pulses, the atom is displaced
insignificantly compared to the characteristic size of
the pulse-overlapping region (atom localization
region), then, under the above conditions, one can say
that the atom is subjected to the average potential with
the amplitude

(5)

A necessary condition for the localization of the atom
in such a potential is that the potential barrier must be
higher than the kinetic energy of the atom. This condi-
tion leads to the following relation between the initial
atomic velocity vat and the parameters of laser pulses:

(6)

Here, α ≡ vat/v r, v r is the recoil velocity, 2γ is the width
of the upper atomic level, IS is the intensity of the satu-
ration of the atomic transition, and I is the time-aver-
aged intensity of the laser field in the overlapping
region for laser pulses. The localization of the atom is
achieved for the following average intensity of laser
radiation:

(7)

The peak intensity of the laser field is 

(8)

H' ρ2/2 K φ δ τ n–( ),
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F∫

Ṽ x( ) V x( )
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ωrδ
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and the peak Rabi frequency is given by

(9)

For example, for the Rb atom and laser radiation with a
central frequency of 1.06 µm (Nd3+:YAG laser), these
parameters are I = α250 W/cm2, Ip = α21.2 × 108 W/cm2,
and ΩR = 2πα5 × 1011 s–1. If laser radiation is focused
to a size of d = 30 µm, the required average power of
laser radiation is as small as P = α20.5 mW. An impor-
tant consequence of the above estimate is that, for
atomic velocities lower than the recoil velocity (α < 1),
the peak intensity that is required for the localization of
the atom is several orders of magnitude lower than val-
ues for which the ionization of the atom occurs in the
field of femtosecond pulses [14].

Note that few-cycle pulsed laser systems with the
above-presented energy parameters really exist in labo-
ratories [11].

The lifetime of the atom in optical dipole traps is
fundamentally limited by the velocity diffusion of the
atom due to spontaneously emitted photons of the local-
izing laser field. The so-called hyperbolic secant is quite
a close approximation for the shape of a separate fem-
tosecond laser pulse. In this approximation, the proba-
bility of the excitation of the atom to the upper level by
an individual pulse is given by the expression [15]

(10)

where tsp is the radiative lifetime of the given atomic
transition. When the laser pulse duration is much
shorter than the lifetime of the excited state (tp ! 1/2γ),
the probability of the excitation of the atom is related to
the parameters of the atom and laser pulse as follows:

(11)

For the case where the pulse period is longer than the
relaxation time for the excited state (T @ 1/2γ) (disre-
garding the quantum interference effect in the excita-
tion of the atom) and the “area” of the pulse satisfies the
relation ΩRtp ! 1, it follows from Eq. (11) that the rate
of the reemission of spontaneous photons by the atom
is given by the expression

(12)

Since each reemission event increases the kinetic
energy by a value larger than the height of the localiz-
ing potential, the atom localization time interval is
equal to τtrap ≈ (dnph/dt)–1.

For the Rb atom and the above-presented parame-
ters of the laser field, the atom localization time interval
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Fig. 2. (a, b) Trajectories of the atom on the phase plane (x, ρ) in the field of femtosecond laser pulses for the stochasticity parameter
K = 0.05 and 10. (c, d) Mean momentum squared vs. the number of laser “kicks.”
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is equal to τtr ≈ 0.1α–2. For the atomic velocity ϑat = v r,
the localization time is equal to τtr = 0.1 s, and, for the
velocity ϑat = 0.1v r, the localization time increases to
τtr = 10 s. The atom localization time interval can be
increased by increasing the detuning frequency of the
laser field.

It is well known that motion may be chaotic in a sys-
tem subjected to periodic short kicks [9, 10]. The degree
of chaos depends on the stochasticity parameter K.
For K ! 1, the motion of the system is almost regular
(with regions of local chaos); for K ~ 1, the motion of
the system is chaotic for most initial conditions; and for
K > 4, widespread chaos occurs. The stochasticity
parameter K in the atom-localization problem is deter-
mined by the parameters of the laser field and the atom.
It follows from Eqs. (3) and (4) that the stochasticity
parameter is expressed as

(13)

The following question arises: is it possible to real-
ize those conditions of the interaction of the laser field
under consideration and the atom under which neces-
sary conditions (6) of localization are simultaneously
satisfied and, at the same time, the inevitable presence
of chaos in the dynamics of the system is not breaking?
The quantitative characteristics of the dynamics of the
atom subjected to periodic short kicks may be obtained
using the standard mapping technique [9]. The classical
equations of motion of the atom in the potential speci-
fied by Eqs. (3) and (4),

(14a)

, (14b)

K ΩR
2 /δ( )ωrTtp.=

Ẋ P/M,=

Ṗ ∂V /∂t=
reduce to the standard mapping [9, 10]

(15a)

(15b)

where x = 2kLX and ρ = 2kL(P/M)T are the dimension-
less coordinate and momentum, respectively.

Figure 2 shows examples of the atomic trajectories
on the phase plane (x, ρ) in the field of femtosecond
pulses for two stochasticity parameters K = 0.05 and 10.
For the small stochasticity parameter K = 0.05, the
motion is finite (Fig. 2a), and chaos is observed for the
larger stochasticity parameter K = 10 (Fig. 2b). The
atom undergoes 100 kicks. Figure 2 also shows the
mean velocity squared of the atom as a function of
interaction time interval (number of kicks) as calcu-
lated from the expression

(16)

As is seen in Fig. 2, the motion of the atom remains
bounded at the small stochasticity parameter (K =
0.05), and the atomic velocity increases unboundedly at
the large stochasticity parameter (K = 10). Computer
calculation is impossible for an interaction time of
about 1 s (expected atomic lifetime), because this cal-
culation corresponds to about 108 kicks.

The degree of chaos in the motion of the atom at a
large number of kicks can be estimated by considering
the problem quantum mechanically. Let |ψ(k)〉  be the
state vector before the kth kick. After the kick, the state
vector of the atom is

(17)

xn 1+ xn ρn 1+ ,+=

ρn 1+ ρn K xn,sin+=

ρ ρ0–( )2 K2 xi x j.sinsin
j

n 1–

∑
i

n 1–

∑=

iV kT( )t p/"–[ ] ψ k( )| 〉 ,exp
JETP LETTERS      Vol. 81      No. 5      2005



MOTION OF AN ATOM UNDER THE EFFECT 213
where V(kT) is the interaction potential at time t = kT.
The dynamics of the atom between kicks is governed
by the operator exp[–iH0t/"]. Therefore, the atomic
state before the (k + 1)th kink is related to the atomic
state before the kth kink as

(18)

With the use of the following expansion of the state
vector |ψ(k)〉  in the eigenvectors |ψm〉  of the unperturbed
operator H0,

, (19)

the quantum map is represented as

(20)

Quantum map (20) relates the coefficients of the expan-
sion of the state vector |ψ(k + 1)〉  before the (k + 1)th
kink to the respective coefficients before the kth kink.

For the case under consideration, the transformation
matrix Vnm(k) has the form

(21)

where Jn – m is the Bessel function of the first kind of the

(n –m)th order and Ωeff = /δ is the effective Rabi fre-
quency. The coefficients cm in Eq. (20) govern the time
variation of the momentum of the atom:

(22)

Analogously to the classical consideration, the calcula-
tion of 〈p〉  is impossible because of the huge number of
kinks for the expected lifetime of the atom in the trap.
However, momentum change can be estimated for the
case where the atomic momentum changes insignifi-
cantly during one kink. The coefficients cn in Eq. (22)
depend on the Bessel function value Jn – m(Ωefftp) in
expression (21) for the transformation matrix elements.
For a small argument (Ωefftp ! 1), the Bessel function
may be approximated as

(23)

An increase in the momentum can be estimated consid-
ering the case where the atom is initially quite well
localized (vat < v r). Using the complete set of eigen-

states in which 〈x|ψm〉  = (1/ )exp(ipx/") and the
initial state |ψ0〉  = |p = 0〉 , one can conclude that the
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probability of populating the neighboring state |ψ1〉  =
|p = "k〉  after one kick is equal to

(24)

When the probability of populating the neighboring
state after the action of N laser pulses becomes equal to
unity, the atom can be treated as completely delocal-
ized. From this condition, the atomic lifetime in the trap
is estimated as

(25)

For the following parameters of the laser pulse, tp =
3.5 × 10–15 s, ΩR = 2πα5 × 1011 s–1, and δ = 2π × 1014 s–1,
the atomic lifetime is equal to ttrap ~ 2.5 × 103/α4 s. For
α ≤ 1, this value is much longer than the spontaneous-
decay lifetime of the atom.
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stimulating discussions of the results. This work was
supported in part by INTAS (grant no. INFO 00-479),
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(grant no. RU-P1-2572-TR-04) and the Ministry of
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Propagation of Whistlers in a Plasma 
with a Magnetic Field Duct
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The propagation of whistlers in a homogeneous magnetized plasma in the presence of a magnetic field duct has
been experimentally investigated. The possibility of efficiently trapping whistlers in a narrow (wavelength-
scale) cylindrical duct with the increased field has been demonstrated. It has been shown that a comparatively
slight perturbation of the external magnetic field (δB/B0 ~ 0.1) can significantly change the spatial structure and
increase the amplitude of whistlers near the duct axis. © 2005 Pleiades Publishing, Inc.

PACS numbers: 52.25.Xz, 52.35.Hr, 52.72.+v
The ducting of whistlers plays a key role in the prop-
agation of signals of very low frequencies in the near-
Earth plasma. The presence of plasma inhomogeneities
(ducts) that are extended along the geomagnetic field
lines is of fundamental importance for magnetospheric
physics, because it provides an explanation of the effi-
cient transfer of low-frequency radiation between the
magnetic conjugate points of the ground. Only ducts
with increased or decreased plasma density are tradi-
tionally considered [1]. The propagation of whistlers in
density ducts has been well studied both theoretically
[2] and experimentally [3]. Owing to nonlinear thermal
effects in the near field of antennas, artificial waveguide
ducts can be formed, which make it possible to control
the radiation pattern of high-power transmitters [4, 5].

However, as has been shown in this work, magnetic
field inhomogeneities arising when the magnetosphere
is disturbed by intense magnetohydrodynamic waves
due either to the diamagnetism of hot particles of the
Earth’s radiation belts or to phenomena that are similar
to the inverse Faraday effect [6], which can be observed
when intense elliptically polarized waves propagate in
the plasma, can significantly affect the propagation of

whistlers (  < ω < ωH ! ωp, where ω is the wave
frequency, ωp is the plasma frequency, and ωH and ΩH

are the cyclotron frequencies of electrons and ions,
respectively). The possibility of the trapping of whis-
tlers in magnetic field ducts was pointed out in [2, 7],
and certain properties of magnetic field ducts were dis-
cussed in [8].

In this work, the propagation of whistlers in a cylin-
drical duct with an increased or decreased magnetic
field that is created in a homogeneous plasma is exper-
imentally studied at the Krot setup. The effect of the
transverse inhomogeneity of the magnetic field on the

ωHΩH
0021-3640/05/8105- $26.00 ©0214
spatial structure of wave fields that are created in the
plasma has been analyzed.

The experimental setup was a vacuum chamber
10 m long and 3 m in diameter (Fig. 1a). The magnetic
field of the mirror configuration (mirror ratio R = 2.4,
Fig. 1b) was created by means of a solenoid that was
mounted inside the vacuum chamber (this solenoid is
not shown in Fig. 1). In the experiment, the magnetic
field in the central section of the chamber was equal to
B0 = 35 G. The cylindrical plasma column (with a
length of 4 m and a diameter of 1.5 m) was formed due
to the pulsed inductive rf discharge (fdis = 5 MHz,

Fig. 1. (a) Scheme of the Krot experimental setup and
(b) magnetic field distribution along the vacuum-chamber
axis.
 2005 Pleiades Publishing, Inc.
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Pgen ~ 250 kW, τpulse = 1 ms) in argon at a pressure of
p = 7 × 10–4 Torr. The maximum plasma density at the
discharge time was on the order of 1013 cm–3, the elec-
tron temperature was equal to Te ~ 10 eV, and the ion
temperature was Ti ≤ 0.5 eV. Plasma decay was deter-
mined by the ambipolar diffusion of electrons along the
magnetic field.

Experiments were carried out in a decaying quies-
cent plasma within the interval 6–12 ms after the
plasma-creating generators had been turned off. Over
the indicated time interval, the plasma density mono-
tonically varied from 1011 to 2 × 1010 cm–3 at electron
temperatures Te ≤ 0.2 eV.

The transverse inhomogeneity of the magnetic field
(magnetic duct) was created by means of a cylindrical
seven-coil solenoid situated at the center of the cham-
ber (coil diameter D = 7.5 cm and distance between
coils l = 5.5 cm, Fig. 1a). The solenoid was made of an
insulated copper wire with a diameter of d = 1 mm. A
current of Imax = 100 A in the form of a rectangular
pulse of duration of τ = 0.2–1 ms passed through the
solenoid. The propagation of whistlers in the duct with
the increased and decreased magnetic field was studied.
The form of the duct was determined by the polarity of
the connection of the solenoid to a supply source.

Measurements of density that were carried out by a
microwave resonator probe [9] showed that the intro-
duction of a solenoid into the plasma volume did not
give rise to a significant redistribution of the plasma
(Fig. 2). The deposition of particles on the wire and
supporting structures of the solenoid leads to a decrease
in the electron density by no more than 7–10% at a
scale much larger than the coil diameter. Moreover, no
change is observed in the density when a pulse current
up to 100 A flows through the solenoid.

The excitation and reception of rf whistlers (f =
ω/2π = 20–50 MHz, P < 1 W) were performed by
means of magnetic loop antennas 1 cm in diameter that
were placed in various sections of the plasma column.
In order to reduce the plasma effect on the impedance
characteristics of the antennas, they were coated with a
thin dielectric film. Interferometric measurements
showed that the antennas excited oblique whistlers in
the plasma with wavelengths λ|| ~ λ⊥  ~ 15–30 cm in the
indicated parameter range. In experiments, a transmit-
ting antenna was placed on the axis of the system at a
distance of z = 5 cm from the extreme coil of the sole-
noid. The transverse structure of the rf field was ana-
lyzed by means of a diagnostic antenna, which was
freely displaced over a radius in a plane that was spaced
7 cm from the opposite end of the solenoid. Signals
from the plasma were detected by a receiver with a
band of ∆f = 100 kHz.

Figure 3 shows the transverse distributions of the
amplitude of a probe wave with an amplitude of f =
20 MHz in the plasma (1) with an unperturbed mag-
netic field and in the presence of the (2) increased and
JETP LETTERS      Vol. 81      No. 5      2005
Fig. 2. Time dependence of the density of the decaying
plasma. The inset shows the transverse distribution of the
plasma density at 8 ms after the plasma-creating generator
has been turned off (1) in the absence of a solenoid and
(2) in the presence of the solenoid that was introduced into
the plasma volume and that created a magnetic duct (sole-
noid diameter is D = 7.5 cm).

Fig. 3. Transverse distributions of (a) the magnetic field cre-
ated by the solenoid and (b) the amplitude of an rf whistler
(f = 20 MHz) in the homogeneous plasma (1) in the absence
of a duct and at the exit of the duct with the (2) increased
and (3) decreased magnetic fields (the relative perturbation
of the magnetic field in the duct is δB/B0 = 0.2).
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(3) decreased magnetic fields. The relative perturbation
of the magnetic field was |δB|/B0 = 0.2. In the presence
of the decreased-field duct, the amplitude of the
received signal decreases, and the transverse distribu-
tion of the rf field was broader than the distribution of
the wave field in the absence of the duct. At the same
time, the creation of the duct with the increased mag-
netic field changed the spatial structure and caused a
significant increase in the amplitude of the rf field near
the duct axis. In the latter case, a whistler was effi-
ciently trapped in the magnetic duct, and the propaga-
tion of waves in the increased-field duct was investi-
gated in detail in the experiment.

Figure 4 shows the redistribution of the rf field (f =
20 MHz) when the current in the solenoid increases
from 0 to 50 A. Note that the structure of rf fields
changed even for a comparatively small perturbation of
the magnetic field at δB/B0 = 0.1. When the magnetic
field in the duct increased to δB/B0 = 0.3, the amplitude
of the rf field was almost tripled, and the field was local-
ized near the duct axis.

The transverse distributions of the amplitudes of
waves with various frequencies that are emitted into the
duct with the increased magnetic field are shown in
Fig. 5. The results were obtained for a fixed small per-
turbation (δB/B0 = 0.1) of the magnetic field. As fre-
quency increases, the difference between the structures

Fig. 4. Transverse distributions of the rf field of the whistler
(f = 20 MHz) propagating in the duct with the increased
magnetic field for various perturbations of the magnetic
field in the duct.
and amplitudes of fields in the presence and absence of
the duct becomes more pronounced. The trapping of
whistlers is particularly efficient at frequencies f & fH/2,
where fH = ωH/2π . 100 MHz (f = 45 MHz, Fig. 5c).

In order to explain the experimental results, we ana-
lyze the dispersion properties of whistlers. The disper-
sion relation for whistlers has the form

(1)

where n is the refractive index of the whistler, k is the
wavenumber, c is the speed of light in vacuum, and Θ
is the angle between the wave vector and the external
magnetic field. According to Eq. (1), under the condi-
tion ω ! ωHcosΘ, the properties of magnetic field
ducts for the propagation of whistlers are similar to the
waveguide characteristics of plasma-density ducts [7].
In particular, for low frequencies, ducts with the
increased field are equivalent to lowered-density ducts,
which efficiently confine oblique whistlers with λ|| ~ λ⊥
[3]. However, when the frequency approaches half the
electron gyrofrequency, the analog between density

n
kc
ω
-----

ωp

ω ωH Θcos ω–( )
--------------------------------------------,= =

Fig. 5. Transverse distributions of rf wave fields (1) in the
presence of the duct with an increased magnetic field (rela-
tive perturbation of the magnetic field in the duct is δB/B0 =
0.1) and (2) in the absence of the duct for the parameters
N = 4 × 1010 cm–3 and B0 = 35 G and for various frequen-
cies.
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ducts and magnetic field ducts is broken. For whistlers,
the curvature of the wave vector surface for frequencies
ω ~ ωH/2 is very small, and even a small change in the
ratio ω/ωH in the duct can lead to a strong change in the
conditions of the propagation and trapping of waves.
Under these conditions, small (10%) transverse varia-
tions in the magnetic field significantly affect the spa-
tial structure of rf fields. This conclusion is corrobo-
rated in the experiment (Fig. 5c).

Let us discuss certain features of the experimental
procedure. First, the longitudinal length of the whistler
wave exceeds the diameter of the magnetic field duct in
the experiment. Hence, the geometrical optics approach
[7] can be used only for qualitative analysis of the con-
ditions of the trapping of whistlers in the duct. Second,
no more than two or three wavelengths are kept in the
length of the created duct. Under these conditions, the
diffraction of the whistler on the magnetic field inho-
mogeneity whose size is comparable to the wavelength
takes place rather than the excitation of the eigenmodes
of the magnetic duct. The investigation of duct modes
would be possible for a longer duct.

In conclusion, we discuss the conditions for the
existence of magnetic field ducts in the near-Earth
plasma. In particular, it is known that, in addition to the
cold (Te ~ Ti ~ 1 eV) background plasma with density n0
in the inner magnetosphere, there is a small fraction
(nhot < 10–3n0) of “hot” electrons and protons (in the
radiation belts and ring-current region) with energies
above 10 keV [10]. Despite an extremely low density of
the hot component, its energy increases strongly under
the conditions of strong geomagnetic disturbances. In
this case, the following condition can be valid [11]:

, (2)

where Thot is the temperature of the hot particles and
B2/8π is the energy density of the geomagnetic field. In
this case, the azimuthal inhomogeneity of the density
and temperature of energetic particles can give rise to
strong diamagnetic disturbances, which are not accom-
panied by variations in the density of the cold back-
ground plasma. Moreover, the channeling formations
can have the dynamic character, and whistlers can be
trapped in inhomogeneities created by intense,
extremely low frequency oscillations (magnetic pulsa-

nhotThot & 
B2

8π
------
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tions) whose amplitude reaches δB ~ 10 nT [12] (rela-
tive field perturbation δB/B ~ 5–10%).

Thus, the laboratory experiments and estimates
show that the transverse inhomogeneities of the Earth’s
magnetic field can serve as ducts for whistlers, particu-
larly during periods of strong disturbance of the mag-
netosphere.

This work was supported by the Russian Foundation
for Basic Research (project nos. 04-02-17188 and
04-02-16344), the Russian Department of Science
(Program for the Support of Unique Setups, project no.
01-18), and the Council of the President of the Russian
Federation for Support of Young Russian Scientists
and   Leading Scientific Schools (project no. NSh-
1639.2003.02).

REFERENCES
1. J. C. Cerisier, J. Atmos. Terr. Phys. 36, 1443 (1974).
2. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova,

Electrodynamics of Density Ducts in Magnetized Plas-
mas (Gordon and Breach, Amsterdam, 1999).

3. M. T. Zaboronkova, A. V. Kostrov, A. V. Kudrin, et al.,
Zh. Éksp. Teor. Fiz. 102, 1151 (1992) [Sov. Phys. JETP
75, 625 (1992)].

4. R. L. Stenzel, Phys. Fluids 19, 857 (1976).
5. A. V. Kostrov, A. I. Smirnov, M. V. Starodubtsev, and

A. A. Shaœkin, Pis’ma Zh. Éksp. Teor. Fiz. 67, 548
(1998) [JETP Lett. 67, 579 (1998)].

6. L. P. Pitaevskiœ, Zh. Éksp. Teor. Fiz. 39, 1450 (1960)
[Sov. Phys. JETP 12, 1008 (1961)].

7. R. N. Kaufman, Izv. Vyssh. Uchebn. Zaved., Radiofiz.
27, 1102 (1984).

8. W. Calvert, J. Geophys. Res. 100, 17491 (1995).
9. I. G. Kondrat’ev, A. V. Kostrov, A. I. Smirnov, et al., Fiz.

Plazmy 28, 977 (2002) [Plasma Phys. Rep. 28, 900
(2002)].

10. R. H. W. Friedel and A. Korth, Adv. Space Res. 20, 311
(1997).

11. L. R. Lyons and D. J. Williams, Quantitative Aspects of
Magnetospheric Physics (Reidel, Dordrecht, 1984; Mir,
Moscow, 1987).

12. T. A. Plyasova-Bakounina, J. Kangas, K. Mursula, et al.,
J. Geophys. Res. 101, 10965 (1996).

Translated by R. Tyapaev



  

JETP Letters, Vol. 81, No. 5, 2005, pp. 218–221. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 81, No. 5, 2005, pp. 278–282.
Original Russian Text Copyright © 2005 by Evlyukhin, Bozhevolnyi.

              
Applicability Conditions for the Dipole Approximation
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Using the method of the tensor Green’s function of the wave equation, the conditions have been determined
under which the dipole approximation is sufficient in the problem of the scattering of surface optical electro-
magnetic waves (surface plasmon polaritons) on a small spherical particle. The independence of the electric
field inside the scatterer of the spatial coordinates is used as the main requirement of the dipole approximation.
Conditions are obtained in the form of inequalities involving the wavenumber, the material parameters of the
system, and the size of the scatterer and its position with respect to the surface on which plasmon polaritons are
excited. © 2005 Pleiades Publishing, Inc.
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Investigation of surface optical electromagnetic
waves, which arise at the interface between a dielectric
and a metal and decay exponentially with the distance
from the interface, is of great interest at present [1, 2].
Free charge carriers of the metal are predominantly
involved in the generation of these waves. For this rea-
son, these waves are often called surface plasmon
polaritons (SPPs). There are two reasons for this partic-
ular increased interest. First, the invention and develop-
ment of near-field optical microscopy provided the pos-
sibility of directly observing SPPs immediately near
the surface and, hence, of not only investigating their
properties but also directly affecting the process of their
excitation. Second, significant advances in nanotech-
nologies have enabled researchers to control the pro-
cess of the propagation and scattering of SPPs at length
scales much less than the length of their damping
caused by absorption in the metal. Therefore, methods
for the concentration and directional propagation of
light energy in microsystems with sizes of about a
wavelength of light or smaller can be experimentally
studied using the properties of SPPs.

For a clear breakthrough in this direction, it is nec-
essary to perform numerous theoretical investigations
of the processes of the scattering of SPPs on various
objects. This is a very intricate problem that requires
numerical calculations even in a relatively simple case
of a single symmetric scatterer [3]. For this reason,
when analyzing the multiple scattering of SPPs in sys-
tems containing numerous scatterers, one is forced to
use a number of approximations that make it possible to
describe the scattering of SPPs by a separate object
using a relatively simple method. The application of the
dipole approximation is one such approach. Moreover,
0021-3640/05/8105- $26.00 0218
the propagation of SPPs in various surface structures
with a finite number of scatterers has been numerically
simulated only in this approximation [4–7]. However,
open questions concerning the applicability limit for
this approximation in the problem of the scattering of
SPPs exist to date. Two restrictions on the scatterer size
are often given as sufficient conditions. First, the scat-
terer must be much smaller than the wavelength of the
external field, and, second, the distance from it to the
surface with SPPs must be much larger than its size.
These two conditions are justified. However, as has
been shown in this work, they must generally be sup-
plemented by additional requirements that include the
relations between the material and configuration
parameters of the system.

In order to analyze the scattering of SPPs, we apply
the method of the tensor Green’s function of the wave
equation [8]. The advantage of this method is that it
enables one to independently consider different scatter-
ing channels for SPPs from the very beginning. Such a
possibility follows from the representation [9] recently
obtained for the Green’s tensor of the system of two
half-spaces that are filled with a metal and a dielectric
with a planar interface. This representation is a sum of
several terms, each describing excitation in the system
of electromagnetic fields of a certain type: quasi-static
or near-zone electric field, field of SPPs, and transverse
electromagnetic waves propagating from the metal sur-
face to the far wave zone. We emphasize that the
decomposition of the Green’s tensor into the above
terms may be strictly performed only when the absorp-
tion of electromagnetic energy in the metal is disre-
garded [9]. For this reason, here we assume that the
dielectric constants of the system without the scatterer
© 2005 Pleiades Publishing, Inc.
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are real. This assumption is justified because, for noble
metals that are primarily used in experiments with sur-
face electromagnetic waves of the visible or infrared
range, the damping length for SPPs is several times
longer than their wavelength [2]. Therefore, damping is
immaterial when the properties of SPPs are studied at
the scale of their wavelength.

We consider a surface plane electromagnetic wave
that has frequency ω and propagates along the planar
interface between two half-spaces filled with metal and
dielectric with dielectric constants εm and εd , respec-
tively, such that –εm > εd. Under this condition, the
existence of SPPs is possible. A SPP wave is scattered
by a macroscopic spherical particle that is situated at
the interface on the dielectric side. This particle has
radius Rp and dielectric constant εp. The position of the
particle is given by the radius vector rp with coordinates
(0, 0, zp) in the Cartesian coordinate system, where zp is
the distance between the center of the particle and the
metal–dielectric interface. The total electromagnetic
field in the system satisfies Maxwell’s equations

(1)

(2)

where E and H are the electric and magnetic fields,
respectively; µ0 is the permeability of free space; ε0 is
the permittivity of free space; Θ(Rp – |r – rp|) is the
Heaviside step function; P = ε0(εp – εd)E(r) is the parti-
cle polarization vector; and ε is the dielectric constant
of the system without the scatterer. In terms of the
method of the tensor Green’s function, the total electric
field beyond the particle at distances |r – rp| @ Rp in the
dipole approximation is determined by the equation

(3)

Here, E0(r) is the electric field of the external (incident)

SPP wave, k0 is the wavenumber in vacuum, (r, r') is
the Green’s tensor of the system without the scatterer,
and the electric dipole moment of the particle p is given
by the expression

, (4)

where Vp = 4π /3 is the volume of the particle. The
dipole approximation describes the basic contribution
to scattering if the electric field inside the particle is
uniform. In this case, the dipole moment is equal to p =
ε0(εp – εd)VpE(rp), where the electric field is taken at the
center of the particle for the sake of definiteness.

Let us find the electric field inside the particle and
determine the conditions under which this field can be
treated as uniform. In order to determine the electric
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field inside the particle, we consider the Lippmann–
Schwinger integral equation

(5)

where r ∈  Vp. The Green’s tensor is represented as the
following sum of several terms responsible for the exci-
tation of electromagnetic fields of certain types in the
system [9]:

(6)

Here, the excitation of the quasi-static field in the sys-

tem is described by the terms  and , the latter of
which includes the effect of the interface between two
media; the excitation of transverse fields in the system

is described by terms the  and , the latter of
which includes the effect of the metal–dielectric inter-

face; and  corresponds to the excitation of SPPs in
the system.

Our approach is based on the well-known solution
to the problem of the scattering of electromagnetic
waves on a small particle in uniform space (Rayleigh
theory) [10]. In this case, the electric dipole approxima-
tion makes the basic contribution to the scattered field
if the solution to the quasi-stationary problem is suffi-
cient for determining the electric field inside the parti-
cle. Under this condition, the field inside the particle is
uniform, and its electric dipole moment can be simply
calculated. In terms of the Green’s function, this means
that, when the Lippmann–Schwinger equation is solved
for the particle volume and the near-field zone, the
external field E0 can be treated as uniform, and it is suf-
ficient to approximate the Green’s function by its quasi-

static part (r, r'). In this case, the electric field inside
the particle is given by the expression

(7)

where εh is the dielectric constant of the homogeneous
medium. If the particle is situated near the planar inter-
face between two media, in order for the quasi-static
electric field in the particle to be treated as uniform, an
additional condition must be satisfied; namely, the dis-
tance between the particle and interface must be much
larger than the particle size (Rp ! zp). Indeed, in this
case, the quasi-static effect of the interface on the field
in the particle can be taken into account by the image
method of introducing a certain effective electric
dipole, i.e., an image of the dipole corresponding to the
particle. The electric field that the image creates at the
place where the particle is located is nearly uniform due
to the condition Rp ! zp. Therefore, one can say that the
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r r',( ) ĜSPP r r',( ).+

Ĝq
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particle is subjected to uniform external electric fields,
and the field inside the particle is also uniform under
these conditions. Thus, the dipole approximation is suf-
ficient for describing the scattering of SPPs on the small
particle if the quasi-static approximation of Green’s
function (6) is sufficient for determining the field inside
the particle and if Rp ! zp and Rpks ! 1, where ks =

k0  is the wavenumber of the SPP.

Assuming that the field inside the particle is inde-
pendent of the spatial coordinates, we express it from
Eq. (5):

(8)

where  is the 3 × 3 identity tensor and α0 =
3ε0εdVp(εp – εd)/(εp + 2εd) is the quasi-static polarizabil-
ity of the small spherical particle. In Eq. (8), the field is
taken for definiteness at the center of the particle and
the approximation

(9)

is used under the condition Rp ! zp. The tensor (rp,
rp) can be obtained by the electrostatic image method
[6, 11] in the form

(10)

where , , and  are the unit vectors of the chosen
Cartesian coordinate system. According to Eq. (8), this
expression in the quasi-static limit transforms into
Eq. (7).

In order to determine the conditions under which the
quasi-static part of the Green’s function is sufficient for
determining the field in the particle, it is necessary to
estimate the integrals entering into Eq. (8) and to com-
pare them with the quasi-static contribution. In order to
estimate the contribution from transverse fields, we

retain only the first term of the expansion of (rp, r)

in the small parameter Rpkd ! 1 (kd = k0 ) [12, 13].
In this case, we obtain

(11)

where R = |rp – r| and  = R/R. Estimating the integral

of (rp, r) in Eq. (8), we take into account that this
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--- ẑẑ+ + 

  ,

x̂ ŷ ẑ
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tensor has no singularity at r = rp. Therefore, it can be
factored out of the integral over the small-particle vol-
ume at this point. Then, using a representation for

(r, r') taken from [9], we obtain

(12)

where a =  and V.p. means that the principal
value is taken for the integral of the expression with a
pole singularity. Using Eqs. (10)–(12), from Eq. (8) we
obtain conditions under which the quasi-static approx-
imation for the Green’s tensor is dominant. Thus, we
arrive at the following two conditions associated with
transverse waves,

(13)

(14)

and the following two conditions associated with the
plasmon polariton field,

(15)

(16)

Here, the function F(akszp) is given by the expres-
sion

(17)

where the two terms arise from the expression in square
brackets in Eq. (12). If the first term is equal to or larger
than the second term, m = 1 and n = 0; otherwise, m =
0 and n = 1. For estimates in the important case where
akszp & 1, the simple analytical approximation F .
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1/[2πakszp] can be used (see figure). Note that the quan-
tity 1/aks characterizes the penetration depth for SPPs
into the dielectric.

Thus, in addition to the conditions Rp ! zp and
Rpks ! 1, we obtain conditions (13)–(16), under which
the electric field inside the scatterer may be treated as
almost uniform. Note that the magnetic field in the scat-
terer is disregarded in this approximation from the very
beginning. The substitution of the total electric field
from Eq. (8), where only quasi-static terms are
retained, into the expression for the electric dipole
moment yields the known representation for the polar-
izability tensor  of the spherical particle that is situ-
ated near the planar interface between two media:

(18)

Conditions (13)–(16) can be significantly simplified
for the case where the role of the metal–dielectric inter-
face in the determination of the scatterer polarizability
is negligible, so that

(19)

In this case, conditions (13)–(16) reduce to the two ine-
qualities

(20)

(21)

Note that the condition Rp ! zp is not necessary in this
case.

In experiments on the scattering of SPPs, the scat-
terer is often made of the same metal (e.g., gold or sil-
ver) as the substrate with SPPs (εp = εm). In this case,
the dielectric over the substrate is air (εd = 1). In conclu-
sion, for such material systems we estimate the scat-
terer radius Rp that satisfies the requirements of the
dipole approximation. Let the wavelength of light
exciting SPPs be equal to 800 nm. In this case, the
imaginary part of the dielectric constant of gold is much
smaller than the absolute value of the real part. For this
reason, this imaginary part can be ignored, and we set
εm = εp ≈ –26 [14]. Note that the condition Rp ! zp may
be replaced by condition (19). Let us assume that zp =
50 nm. In this case, the dominant conditions are ine-
qualities (19) and (21), from which we obtain Rp !
74 nm and Rp ! 71 nm, respectively. As the distance
between the scatterer and surface with SPPs increases,
the determining conditions become Rp ! 1/ks and
Eq. (20) (Rp ! 120 nm for zp = 200 nm). Since the
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dielectric constant of silver at the given wavelength dif-
fers only slightly from the dielectric constant of gold,
the resulting constraints on Rp are also valid for silver.
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A tunneling conductivity between a heavy-fermion metal and a simple metallic point is considered. We show
that, at low temperatures, this conductivity can be noticeably dissymmetrical with respect to the change of volt-
age bias. The dissymmetry can be observed in experiments on heavy-fermion metals whose electronic system
has undergone the fermion-condensation quantum phase transition. © 2005 Pleiades Publishing, Inc.
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Understanding the unusual quantum critical proper-
ties of heavy-fermion (HF) metals at low temperatures
T remains challenging. It is a common belief that quan-
tum phase transitions developing in HF metals at T = 0,
which have the ability to influence the finite-tempera-
ture properties, are responsible for the anomalous
behavior. Experiments on HF metals explore mainly
their thermodynamic properties, which have proved to
be quite different from those of ordinary metals
described by the Landau Fermi liquid (LFL) theory. In
the LFL theory, considered to be the main instrument of
investigating quantum many-electron physics, the
effective mass M* of quasiparticle excitations control-
ling the density of states determines the thermody-
namic properties of electronic systems. It is possible to
explain the observed thermodynamic properties of HF
metals on the basis of the fermion-condensation quan-
tum phase transition (FCQPT), which allows the exist-
ence of the Landau quasiparticles down to the lowest
temperatures [1, 2]. In contrast to the Landau quasipar-
ticles, these are characterized by an effective mass that
strongly depends on the temperature T, applied mag-
netic field B, and number density x of the heavy-elec-
tron liquid of the HF metal. Thus, we return again to the
key role of the density of state. It would be desirable to
probe the other properties of the heavy-electron liquid,
such as the probabilities of quasiparticle occupations,
which are not directly linked to the density of states or
to the behavior of M*. Scanning tunneling microscopy,
which is sensitive to both the density of states and to the
probabilities of quasiparticle occupations, is an ideal
technique for the study of such effects at the quantum
level.

The tunneling current I through a point contact
between two ordinary metals is proportional to the driv-
ing voltage V and to the squared modulus of the quan-
tum–mechanical transition amplitude t multiplied by

¶ This article was submitted by the author in English.
0021-3640/05/8105- $26.00 ©0222
the difference N1(0)N2(0)(n1(p, T) – n2(p, T)) (see, e.g.,
[3]). Here, n(p, T) is the quasiparticle distribution func-
tion and N(0) is the density of states of the correspond-
ing metal. On the other hand, the wavefunction calcu-
lated in the WKB approximation and defining t is pro-
portional to (N1(0)N2(0))–1/2. As a result, the density of
states is dropped out, and the tunneling current does not
depend on N1(0)N2(0). Upon taking into account that, at
T  0, the distribution n(p, T  0)  nF(p),
where nF(p) is the step function θ(p – pF) with pF being
the Fermi momentum, one can check that, within the
LFL theory, the differential tunneling conductivity
σd(V) = dI/dV is a symmetric function of the voltage V.
In fact, the symmetry of σd(V) holds provided that so-
called particle–hole symmetry is preserved, as it is
within the LFL theory, but the relation n(p, T  0) 
θ(p – pF) will do. Therefore, the existence of the σd(V)
symmetry is quite obvious and common in the case of
metal-to-metal contacts when these metals are in the
normal state or in the superconducting one.

In this letter, we show that the situation can be dif-
ferent when one of the two metals is a HF metal whose
electronic system is represented by the heavy-electron
liquid. When the heavy-electron liquid has undergone
FCQPT, its distribution function is no longer the step
function as soon as the temperature tends to zero [4]. As
a result, both the differential tunneling conductivity
σd(V) and the tunneling conductivity σ(V) become dis-
symmetrical as a function of voltage V, though the
application of a magnetic field destroying the non-
Fermi-liquid behavior of the heavy-electron liquid
restores the symmetry.

At first, we briefly describe the heavy-electron liq-
uid with the fermion condensate (FC) [4–6]. When the
number density x of the liquid approaches some density
xFC, the effective mass diverges. Because the kinetic
energy near the Fermi surface is proportional to the
inverse effective mass, FCQPT is triggered by the frus-
 2005 Pleiades Publishing, Inc.



        

DISSYMMETRICAL TUNNELING IN HEAVY-FERMION METALS 223

                                                          
trated kinetic energy. Behind the critical point xFC, the
quasiparticle distribution function represented by nF(p)
does not deliver the minimum of the Landau functional
E[n(p)]. As a result, at x < xFC, the quasiparticle distri-
bution is determined by the standard equation to search
for the minimum of a functional [4]:

(1)

Equation (1) determines the quasiparticle distribution
function n0(p) that delivers the minimum value of the
ground-state energy E. Determined by Eq. (1), the func-
tion n0(p) does not coincide with the step function nF(p)
in the region (pf – pi), so that 0 < n0(p) < 1; however,
outside the region, it coincides with nF(p). It follows
from Eq. (1) that the single-particle spectrum is com-
pletely flat over the region. Such a state was called the
state with a FC, because quasiparticles located in the
region (pf – pi) of momentum space are pinned to the
chemical potential µ. We note that the behavior
obtained was observed within exactly solvable models
[7, 8] and represents a new state of Fermi liquid [9]. We
can conclude that the relevant order parameter κ(p) =

 is the order parameter of the super-
conducting state with an infinitely small value of the
superconducting gap ∆ [5]. Thus, this state cannot exist
at any finite temperatures and is driven by the parameter
x: at x > xFC, the system is on the disordered side of
FCQPT; at x = xFC, Eq. (1) possesses the nontrivial
solutions n0(p) with pi = pF = pf; at x < xFC, the system
is on the ordered side. At T > 0, the quasiparticle distri-
bution is given by

(2)

where ε(p, T) is the single-particle spectrum, or disper-
sion, of the quasiparticle excitations and µ is the chem-
ical potential. Equation (2) can be recast as

(3)

As T  0, the logarithm on the right-hand side of
Eq. (3) is finite when p belongs to the regions (pf – pi);
therefore, Tln(…)  0, and we again arrive at Eq. (1).
Near the Fermi level, the single-particle spectrum can
be approximated as

(4)

It follows from Eq. (2) that n(p, T  0)  nF(p) pro-
vided that M* is finite at T  0. Thus, at low temper-
atures, the left-hand side of Eq. (3) determines the
behavior of the right-hand side. In contrast to this case,
the right-hand side of Eq. (3) determines the behavior
of M* when a FC is set for the liquid. Indeed, it follows
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from Eq. (1) that n(p, T  0) = n0(p). Therefore, at
low temperatures, as seen from Eq. (3), the effective
mass diverges as [10]

(5)

At T ! Tf, Eq. (5) is valid and determines quasiparticles
with the energy z and characterized by the distribution
function n0(p). Here, Tf is the temperature at which the
influence of FCQPT vanishes [5]. The energy z belongs
to the interval

(6)

Now, we turn to a consideration of the tunneling
current at low temperatures, which, in the case of ordi-
nary metals, is given by [3]

(7)

We use an atomic system of units: e = m = " = 1, where
e and m are electron charge and mass, respectively.
Since temperatures are low, we approximate the distri-
bution function of an ordinary metal by the step func-
tion nF. It follows from Eq. (7) that quasiparticles with
the energy z, µ – V ≤ z ≤ µ, contribute to the current,
while σd(V) . 2|t |2 is a symmetrical function of V. In the
case of the heavy-electron liquid with a FC, the tunnel-
ing current is found to be of the form

(8)

Here, we have replaced the distribution function of an
ordinary metal with n0, the solution of Eq. (1). We have
also taken units such that |t |2 = 1. Assume that V satis-
fies the condition |V | ≤ 2T, while the current flows from
the HF metal to the ordinary one. Quasiparticles of
energy z, µ – V ≤ z, contribute to I(V), and the differen-
tial conductivity σd(V) . 2n0(z . µ – V). If the sign of
the voltage is changed, the direction of the current is
also changed. In that case, quasiparticles of the energy
z, µ + V ≥ z, contribute to I(V), and the differential con-
ductivity σd(–V) . 2(1 – n0(z . µ + V)). The dissym-
metrical part ∆σd(V) = (σd(–V) – σd(V)) of the differen-
tial conductivity is of the form

(9)

It is worth noting that it follows from Eq. (9) that
∆σd(V) = 0 if the HF metal in question is replaced by an
ordinary metal. Indeed, if the effective mass is finite at
T  0, then n0(T  0)  nF is given by Eq. (2)
and 1 – n(z – µ . V) = n(z – µ . –V). One might say that
the dissymmetrical part vanishes due to the particle–
hole symmetry. On the other hand, there are no reasons
to expect that (1 – n0(z – µ . V) – n0(z – µ . –V)) = 0.
Thus, we are led to the conclusion that the differential
conductivity becomes a dissymmetrical function of the
voltage. To estimate ∆σd(V), we observe that this is zero
when V = 0, because n0(p = pF) = 1/2 as it should be, and

M* T( ) . pF

p f pi–
4T

----------------.

µ 2T z µ 2T .+≤ ≤–

I V( ) 2 t 2 nF z µ–( ) nF z µ– V+( )–[ ] z.d∫=

I V( ) 2 n0 z µ–( ) nF z µ– V+( )–[ ] z.d∫=

∆σd V( ) . 2 1 n0 z µ . V–( ) n0 z µ . V––( )+( )–[ ] .
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it follows from Eq. (3) as well. It is seen from Eq. (9)
that ∆σd(V) is an even function of V. Therefore, we can
assume that, at low values of the voltage V, the dissym-
metrical part behaves as ∆σd(V) ∝  V2. Then, the natural
scale to measure the voltage is 2T, as is seen from
Eq. (6). In fact, the dissymmetrical part should be pro-
portional to (pf – pi)/pF. As a result, we obtain

(10)

Here, c is a constant, which is expected to be of the
order of unity. This constant can be evaluated using
analytical solvable models. For example, calculations
of c within a simple model, when the Landau functional
E[n(p)] is of the form [4]

(11)

give that c . 1/2. It follows from Eq. (10) that, when
V . 2T and a FC occupies a noticeable part of the Fermi
volume, (pf – pi)/pF . 1, the dissymmetrical part
becomes comparable with differential tunneling con-
ductivity, ∆σd(V) ~ Vd(V).

The dissymmetrical behavior of the tunneling
conductivity can be observed in measurements of
heavy-fermion metals such as, for example,
YbRh2(Si0.95Ge0.05)2 or YbRh2Si2, which are expected
to have undergone FCQPT. In that case, upon the appli-
cation of a magnetic field B, the effective mass should
diverge as [1, 11]

(12)

Here, Bc0 is the critical magnetic field that drives the HF
metal to its magnetic-field-tuned quantum critical
point. The value of the critical exponent α = –1/2 is in
good agreement with experimental observations col-
lected of these metals [12, 13]. The measurements of
∆σd(V) have to be carried out while applying a mag-
netic field Bc0 at temperatures T ≤ Tf. In the case of these
metals, Tf is of the order of a few kelvin [11]. We note
that, at sufficiently low temperatures, the application of
a magnetic field B > Bc0 leads to the restoration of the
Landau Fermi liquid with M*(B) given by Eq. (12) [1,
11]. As a result, the dissymmetrical behavior of the tun-
neling conductivity vanishes.

The dissymmetrical differential conductivity
∆σd(V) can also be observed when the HF metal in
question goes from normal to superconducting. The
reason is that n0(p) is again responsible for the dissym-
metrical part of σd(V). This n0(p) is not appreciably dis-
turbed by the pairing interaction, which is relatively
weak as compared to the Landau interaction forming
the distribution function n0(p) [10, 14]. In the case of

∆σd V( ) . c
V

2T
------ 

 
2 p f pi–

pF

----------------.

E n p( )[ ] p2

2M
-------- pd

2π( )3
-------------∫ V1 n p( )n p( ) pd

2π( )3
-------------,∫+=

M* B( ) B Bc0–( )α .∝
superconductivity, we have to take into account that the
density of states,

(13)

comes into the play because Ns is zero in the gap, that
is, when |E| ≤ |∆|. Here, E is the quasiparticle energy,
while the normal state quasiparticle energy is ε – µ =

. Now, we can arrange Eq. (9) for the case of
a superconducting HF metal by multiplying the right-
hand side of Eq. (9) by Ns/N(0) and replacing the qua-

siparticle energy z – µ by , with E being rep-
resented by the voltage V. As a result, Eq. (10) can be
cast into the following form:

(14)

Note that the scale 2T entering into Eq. (10) is replaced
by the scale ∆ in Eq. (14). In the same way, as Eq. (10)
is valid up to V . 2T, Eq. (14) is valid up to V . 2|∆|. It
is seen from Eq. (14) that the dissymmetrical part of the
differential tunneling conductivity becomes as large as
the differential tunneling conductivity at V . 2|∆| pro-
vided that a FC occupies a large part of the Fermi vol-
ume, (pf – pi)/pF . 1. In the case of a d-wave gap, the
right-hand side of Eq. (14) has to be integrated over the
gap distribution. As a result, ∆σd(V) is expected to be
finite even at V = ∆1, where ∆1 is the maximum value of
the d-wave gap. A detailed consideration of the super-
conducting case will be published elsewhere.

In summary, we have shown that the differential tun-
neling conductivity between a metallic point and an
ordinary metal, which is commonly symmetric as a
function of the voltage, becomes noticeably dissym-
metrical when the ordinary metal is replaced by a HF
metal, the electronic system of which has undergone
FCQPT. This dissymmetry can be observed when the
HF metal is both normal and superconducting. We have
also discussed possible experiments to study the dis-
symmetry.

I am grateful to Dr. A.Z. Msezane for the kind hos-
pitality at CTSPS, Clark Atlanta University, Atlanta,
GA, USA, where part of this work was done.
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Electron transport in monodisperse granular Cu, Ni, and Pd structures with conduction near the percolation
threshold is investigated. An activation conduction law is observed in the oxidized Cu structures, whereas the
Efros–Shklovskii law is observed in the initial Cu structures and in the Ni and Pd structures. This behavior is
discussed within the framework of a model in which variable range hopping conduction is considered with regard
to both the disorder potential and spread of the sizes of grain assemblies. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.63.–b, 81.07.–b
Metal nanostructures are, with increasing fre-
quency, being considered key elements of various tech-
nologies, for example, in the development of new nano-
electronic devices [1] or highly efficient catalysts [2].
The prospects for the applications of such structures are
determined by their unusual electric properties, which
depend on factors of structure and energy disorder
(such as the spread of particle sizes, the character of
correlations in the mutual arrangement of these parti-
cles, or the value of the random potential). However,
possibilities for experimental studies that would pro-
vide detailed information on physical phenomena in the
indicated structures have been restricted until recently,
because the effects of these factors are manifested
simultaneously in real nanostructures formed using
conventional procedures. At the same time, the physical
nature of electron transport in granular structures is far
from being completely understood in the theoretical
aspect as well. Here, the difficulty of simultaneously
taking into account various kinds of disordering is also
important. However, in recent years, new technologies
have emerged that allow for the creation of nanostruc-
tures in which the effect of some factors of disorder can
be neglected. Studying such structures allows one to
verify the applicability of various theoretical models to
the description of transport processes. This work is
devoted to the study of granular metal (Cu, Ni, and Pd)
films obtained by one of the new technologies, namely,
laser electrodispersion [3]. The most important feature
of this technique is that the resulting structures consist
of spherical metal nanoparticles with relative size dis-
persion <0.1, so that the nanostructures under study
may be considered as monodisperse. In addition, the
mean size of nanoparticles is determined only by the
properties of the material from which these particles are
manufactured. Thus, the diameter of nanoparticles
equals 5 nm for Cu, 2.5 nm for Ni, and 2 nm for Pd.
Depending on the film deposition time, the density of
particles on the substrate surface can vary in the range
0021-3640/05/8105- $26.000226
from one partially filled layer of particles to several
close-packed layers of particles. The prepared films
were kept in air and were thereby partially oxidized. It
is important to note that the structural features of films,
such as the character of the mutual arrangement of
nanoparticles or the thickness of their oxide shell, are
also determined primarily by the material of the parti-
cles.

We compare the structure of Cu, Ni, and Pd films
where the density of particles is such that conduction in
these films is due to tunnel electron transport (below the
percolation threshold). For Cu films, this kind of con-
duction is provided when the surface density of parti-
cles is 0.9 M, where M is the density of one completely
filled layer. A microphotograph of such a film is shown
in Fig. 1a. The figure demonstrates that the structure of
the film is inhomogeneous: particles form assemblies
composed of several closely adjoining grains. An anal-
ysis of the image shows that the assemblies consist of
1–15 particles, and the probability PV of finding an
assembly with volume V is given by the expression
PV = A/V. The constant A is found from the normaliza-
tion condition A = (lnVmax/Vmin)–1. These assemblies are
separated by a network of dielectric gaps whose width
exceeds 3 nm. Because tunneling through such a gap is
highly improbable, a current in the structure can flow
only because of tunneling through a small number of
particles connecting the assemblies.

A microphotograph of a Ni film is shown in Fig. 1b.
It is seen that the distribution of Ni nanoparticles over
the substrate surface is also nonuniform; however, most
particles are grouped into assemblies that mainly have
the form of chains. As in the case of Cu structures, the
distribution of assembly sizes obeys the law PV = A/V.
Note that the structure of Pd films is similar to the struc-
ture of Ni films and that both structures exhibit conduc-
tion properties starting with the instant when the first
layer of particles is filled by more than a quarter, that is,
 © 2005 Pleiades Publishing, Inc.
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at a mean density of particles of 0.25 M. The sizes of
gaps between assemblies in such structures are less
than 2 nm, and electron tunneling between isolated
assemblies is quite feasible.

Measurements have shown that the oxidation of Cu
films substantially affects their electric properties. Fig-
ure 2 demonstrates temperature dependences of the
conductivity of the same film, one of which was mea-
sured immediately after preparation and the other of
which was measured after the film was exposed to air
for a week. It is evident that the fully oxidized film
demonstrates an activation dependence of the conduc-
tivity that linear on the coordinates (lnσ, 1/T). At the
same time, the temperature dependence of the conduc-
tivity of the freshly prepared film is significantly
weaker.

We believe that this difference is due to the effect of
the process of oxidation of Cu nanoparticles on the film
structure. At small oxidation times (1–2 days), the
metal particles are not oxidized and, contacting each
other, form conducting assemblies. After oxidation for
10 days or longer, all the Cu nanoparticles are covered
with a Cu2O layer 0.7–0.8 nm thick (correspondingly,
the diameter of the remaining metal core equals
.3.5 nm), after which oxidation terminates [4]. In such
strongly oxidized structures, metal cores are separated
from each other by a nonconducting layer even at tight
contact; that is, during oxidation, conducting assem-
blies are divided into separate particles.

Nickel and palladium particles are of lower oxida-
tive capacity than Cu ones; therefore, oxidation slightly
affected the conductivities of the structures of these
metals. Figure 3 presents the temperature dependences
of the conductivity of Pd and Ni nanostructures mea-
sured after the exposure of films to air for several
weeks. It is evident in the figure that these dependences
are similar to the temperature dependences of the con-
ductivity of partially oxidized Cu nanostructures and
are linear in the coordinates (lnσ, (1/T)1/2).

Thus, nanostructures composed of monodisperse
spherical metal grains, for which an activation depen-
dence of the conductivity was expected to be natural,
exhibit such a dependence only in the case of oxidized
Cu films. In all other cases, the temperature dependence
of the film conductivity is close to exp(–(T0/T)–1/2).

While the activation dependence of the conductiv-
ity observed in granular structures is readily explained
by the Coulomb blockade effects, the dependence
exp(−(T0/T)1/2) has been a subject of discussion for
many years. From the arguments by Efros and
Shklovskii [5], it is clear that this behavior is connected
with the role of disorder. It was suggested in [6] that
disorder is associated with the spread of particle sizes
and the Efros–Shklovskii (ES) law is fulfilled due to
correlation between the size of particles and the dis-
tance between them. It is unlikely, however, that this
correlation is universal for structures obtained using
various technologies. Some other mechanisms were
JETP LETTERS      Vol. 81      No. 5      2005
also discussed, in particular, the discreteness of particle
energy levels [7], disorder in the arrangement of impu-
rities [8], and fluctuations associated with the surface
energy [9]. However, the above mechanisms are not
important for the structures investigated in our work,
which consist of quite large particles.

All the approaches mentioned above considered
electron hops between neighboring particles. Only in a

30 m

30 m

(a)

(b)

Fig. 1. Microphotographs obtained by transmission electron
microscopy for (a) copper film (sputtering time 5 min) and
(b) nickel film (sputtering time 15 s).

Fig. 2. Temperature dependences of the conductivity of the
(1) oxidized and (2) freshly prepared Cu film.
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recent work [10] has an explanation of the ES law been
suggested based on the consideration of a combination
of the disorder potential (associated with background
traps) with the possibility of hops between distant par-
ticles, when the tunneling electron crosses a number of
intermediate particles. In this case, hops between dis-
tant particles have been considered in the framework of
semiqualitative estimates. In our opinion, the possibil-
ity of hops between distant particles involving interme-
diate particles is decisive for the explanation of the ES
law for granular systems.

We will analyze two possible situations. The first
one suggests the dominating effect of the disorder
potential associated, e.g., with charged traps in dielec-
tric interlayers. Its analysis will be based on the same
arguments as were presented in [10]. In the other situa-
tion, energy disorder is associated with the self-organi-
zation of particles into assemblies whose sizes exhibit
a significant spread.

Before beginning a detailed analysis, we note that
the comparison of the problem of electron transport in
granular materials with the problem of hopping con-
duction in semiconductors provides for the conclusion
that the Coulomb blockade effect is analogous to the
on-site electron–electron repulsion and that transport
under the Coulomb blockade conditions is analogous to
transport over the upper Hubbard band. If the Fermi
level position is the same in different particles, trans-
port under the Coulomb blockade conditions is associ-
ated with the activation of electrons from the Fermi
level to the upper Hubbard band. In this case, the con-
ductivity obeys an activation law, and the activation
energy is the Coulomb blockade energy EC = e2/C,
where C is the particle capacitance in the structure.

In the presence of a fluctuating potential, the elec-
tron energy in the particle is

εp U ,+

Fig. 3. Temperature dependences of the conductivity of Ni
and Pd films.
where εp is the kinetic energy and U is the local value
of the particle potential. The values of U are different
for different particles and have a spread ∆U. As a result,
the Fermi level positions µ with respect to vacuum for
conduction electrons are different for different parti-
cles. It might be expected that electron exchange
between individual particles should maintain a com-
mon level of the chemical potential on the same pattern.
However, the Coulomb blockade effects prevent this
kind of leveling, so that the spread of the Fermi levels
in particles is retained in the system. If ∆U > EC, the
scale of the spread is determined by the energy EC.

Because electron transfer proceeds over states in the
vicinity of the Fermi level, the change in energy upon
electron transfer between two particles is

, (1)

where C12 is the mutual capacitance of the particles. It
is evident that, because of the spread of µ, the electron
transfer activation energy can be reduced to zero. Note
that the arguments presented are mainly analogous to
those given in [10]. The situation is similar to hopping
conduction in semiconductors in the case where the
upper and lower Hubbard bands overlap due to the dis-
order energy. The latter term in Eq. (1) corresponds to
the Coulomb interaction energy between the electron
that is transferred from one particle to another and the
remaining hole and leads to a Coulomb gap in the dis-
tribution of quasi-Fermi level positions in various par-
ticles. This gap is analogous to the Coulomb gap for the
density of localized states in semiconductors.

Thus, at sufficiently high EC and low temperatures,
variable range hopping conduction can be manifested:
the activation energy for transitions between distant
particles can be lower than the energy required for tran-
sition between the neighboring particles. At a high par-
ticle density in the structure, which is characteristic of
the case under consideration, hops between distant par-
ticles must occur through intermediate metal particles.

In order to describe such a hop, we will use an
approach similar to that used by Shklovskii and Spivak
[11] (see also [12]), in which hops are considered
through intermediate sites. Let us estimate the probabil-
ity of a hop between particles 1 and 3 through interme-
diate particle 2 within the framework of perturbation
theory, taking into account the change in the electron
states of individual particles due to tunneling to other
particles. According to calculations similar to those
made in [11, 12], the probability of such a hop is

(2)
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e2
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Here, τe–ph is the electron–phonon relaxation time in the
particles, Im, n are overlap integrals between electron
states of the corresponding particles, I is the width of
energy states in the particles, and the summations are
carried out over all available states of particles 2 and 3.
The summation with respect to ε2, i is performed over
strips of width I in the vicinity of energies ε1 and ε3, j.
The summation with respect to ε3, j is carried out over a
strip of width ~T in the vicinity of the Fermi level of
particle 3.

The most important fact is that the tunneling expo-
nent is determined by a simple sum of exponents
describing tunneling of particle 1 to particle 2 and par-
ticle 2 to particle 3 (entering into expressions for the
overlap integrals I1, 2 and I2, 3), whereas the parameters
of intermediate grain 2 enter only into the preexponen-
tial factor.

Analogous considerations can also be used to
describe a hop over a greater number of intermediate
particles (cf. [11]), which substantiates the concept of
variable range hopping conduction for granular sys-
tems. The tunneling exponent for a hop over a distance
r is estimated at ~di(r/adg), where di is the characteristic
size of the dielectric gap between individual particles,
dg is the size of the metal core of the particle, and a is
the electron localization length in the insulated inter-
layer. It is clear that the effective localization length for
a hop over intermediate particles is aeff ~ adg/di.

For hops with an energy deficit less than EC, the exist-
ence of a Coulomb gap in the distribution of particle
Fermi levels is important: it leads to the ES law for the
conductivity σ ∝  exp – (T0/T)1/2, where T0 = e2/κeffaeff.
The dielectric constant κeff is determined by screening
processes in the structure. (Note that the presented
expression is similar to that given in [10], where κeff
was estimated at κdg/di.)

Let us now suppose that the disorder potential is
absent and consider a nanostructure composed of close-
packed assemblies of particles in which the spread of
assembly sizes corresponds to the experimentally
observed distribution PV = A/V. Because PV ∝  (1/rV)d

and V ∝  (where d is the dimension of the structure,
CV is the capacitance of the grain assembly of volume V,
and rV is the mean distance between the centers of such
assemblies), it is evident that rV ∝  CV . Hence, the Cou-
lomb blockade energy for grain assemblies of a given
volume depends on the distance between grains as
UC, V  = e2A1/d/κeffrV , and the probability of a hop
between them is

The optimization of the exponent with respect to rV

leads to the law (T0/T)–1/2, where T0 differs from the
estimate obtained for the disorder potential model by a

CV
d

p  –
2rV

aeff
-------- e2A

κ effrVT
-----------------+ 

 
 
  .exp∝
JETP LETTERS      Vol. 81      No. 5      2005
factor of ln–1/d(Vmax/Vmin) < 1. It is unlikely that this fac-
tor can strongly differ from unity. Therefore, a choice in
favor of a certain model must based not only on an anal-
ysis of the slopes of the temperature dependences of the
conductivity but also on additional information about
the properties of the structures.

Let us now turn to the analysis of experimental data.
The activation character of conduction in the fully oxi-
dized Cu films points to the absence of energy disorder
and a small effect of the random potential in such struc-
tures. The energy of a charged particle calculated from
the slope of curve 1 in Fig. 2 equals 200 meV and cor-
responds to dg ~ 3.5. Considering that the disorder
potential must increase with the degree of oxidation
and that the disorder effect is absent for the oxidized
films, it is natural to attribute the nonlinear temperature
dependence of the conductivity for freshly prepared Cu
films (curve 2) to the spread of the sizes of particle
assemblies, which coincides with the results of struc-
tural investigations.

In contrast to the Cu structures, the Pd and Ni struc-
tures exhibit a pronounced ES law in a wide tempera-
ture range (in the decade limits). In this case, according
to Fig. 3, the value of T0 is estimated at ~0.1 eV, which
corresponds to dg/di ~ 3. This agrees with our inference
that the gaps between individual assemblies of particles
are less than the mean assembly size (see Fig. 1b).
Thus, taking into account the character of the distribu-
tion of Pd and Ni particles over the surface, it may be
expected that the spread of the sizes and shapes of the
particle assemblies is responsible for the disorder of the
system. Note that the explanation of the observed effect
when the ES law is obeyed for a change in the temper-
ature by a decade requires the existence of assemblies
of 15–20 particles in size.

In summary, we investigated hopping electron trans-
port in monodisperse granular Cu, Ni, and Pd films
with conductivity below the percolation threshold. The
possibility of the manifestation of both the activation
behavior of the conductivity and the Efros–Shklovskii
law in such structures is associated with the presence of
conducting assemblies composed of 1–15 particles. It is
shown that, for the explanation of experimental results,
it is necessary to invoke a model in which variable
range hopping conduction via intermediate particles is
considered.
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As is well known, the absorption of circularly polarized light in semiconductors results in optical orientation of
electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is
accompanied by optical alignment of electron momenta. Here, we show that the absorption of unpolarized light
leads to the generation of a pure spin current, although both the average electron spin and electric current van-
ish. We demonstrate this for direct interband and intersubband as well as indirect intraband (Drude-like) optical
transitions in semiconductor quantum wells. © 2005 Pleiades Publishing, Inc.

PACS numbers: 72.25.–b, 73.63.Hs, 78.67.De
1. INTRODUCTION

Spin and charge are among the basic properties of
elementary particles such as electrons, positrons, and
protons. The perturbation of a system of electrons by an
electric field or light may lead to a flow of the particles.
The typical example is an electric current, which repre-
sents the directed flow of charge carriers. Usually, the
electric currents do not entail a considerable spin trans-
fer because of the random orientation of electron spins.
However, the charge current can be accompanied by a
spin current if the electron spins are co-oriented, as
happens, e.g., under injection of spin-polarized carriers
from magnetic materials [1, 2] or in the optical-orienta-
tion-induced circular photogalvanic effect [3, 4]. Fur-
thermore, there exists a possibility to create a pure spin
current that is not accompanied by a net charge transfer.
This state represents a nonequilibrium distribution
when electrons with spin “up” propagate mainly in one
direction and those with spin “down” propagate in the
opposite direction. In terms of the kinetic theory, it can
be illustrated by a spin density matrix with two nonzero
components, namely, ρs, s(k) = (–k), where s and k
are the electron spin index and the wavevector, and 
means the spin opposite to s. Spin currents in semicon-
ductors can be driven by an electric field acting on
unpolarized free carriers that undergo a spin-dependent
scattering and/or that propagate in a medium with spin–
orbit coupling. This is the so-called spin Hall effect,
wherein a pure spin transfer appears in the direction
perpendicular to the electric field (see [5–8] and refer-
ences therein). The spin currents can be induced as well
by optical means as a result of interference of one- and
two-photon coherent excitation with a two-color elec-
tromagnetic field [9] or under interband optical transi-
tions in noncentrosymmetrical semiconductors [10].

¶ This article was submitted by the authors in English.
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Here, we show that pure spin currents, accompanied
neither by charge transfer nor by spin orientation, can
be achieved under absorption of linearly polarized or
unpolarized light in semiconductor low-dimensional
systems. The effect is considered here for direct inter-
band and intersubband as well as for indirect free-car-
rier optical transitions in semiconductor quantum wells
(QWs).

Phenomenologically, the flux of electron spins is

characterized by a pseudotensor , whose components

 describe the flow in the β direction of spins oriented
along α, with α and β being the Cartesian coordinates.
In terms of the kinetic theory, such a component of the
spin current is contributed by a nonequilibrium correc-
tion ∝σ αkβ to the electron spin density matrix, where σα
is the Pauli matrix. In general, the concept of spin cur-
rent is uncertain in systems with spin–orbit interaction,
since the spin and spin-dependent velocity cannot be
determined simultaneously [11]. Mathematically, it is
caused by the fact that the Pauli matrices and the veloc-
ity operator do not commute. However, this problem is
overcome in most real semiconductor QWs, where
spin–orbit interaction can be considered as a small per-
turbation. To the first order in the constant of spin–orbit
coupling and within the relaxation time approximation,
the pure spin current photoinduced in the conduction
band is given by

(1)

with the spin-dependent corrections being taken into
account either in the velocity operator v(k) or in the
photogeneration rate of the spin density matrix (k).
Here, τe is the relaxation time of the spin current, which
can differ from the conventional momentum relaxation

F̂

Fβ
α

Fα
β τeTr

σα

2
------v β k( )ρ̇ k( )

k

∑=

ρ̇
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time that governs the electron mobility. Electron–elec-
tron collisions, which do not affect the mobility, can
contribute to τe, as happens, e.g., in the case of spin
relaxation [12].

2. INTERBAND OPTICAL TRANSITIONS

The appearance of a pure spin current under direct
optical transitions is linked with two fundamental prop-
erties of semiconductor QWs, namely, the spin splitting
of the energy spectrum, which is linear in the wavevec-
tor k, and the spin-sensitive selection rules for optical
transitions [13]. The effect is most easily conceivable
for direct transitions between the heavy-hole valence
subband hh1 and conduction subband e1 in QWs of the
Cs point symmetry, e.g., in (113)- or (110)-grown QWs.
In such structures, the spin component along the QW
normal z is coupled with the in-plane electron wavevec-
tor. This leads to k-linear spin–orbit splitting of the
energy spectrum as sketched in Fig. 1, where the heavy
hole subband hh1 is split into two spin branches ±3/2.
As a result, they are shifted relative to each other in k
space. In the reduced-symmetry structures, the spin
splitting of the conduction band is usually smaller than
that of the valence band and is not shown in Fig. 1 for
simplicity. Due to the selection rules, direct optical
transitions from the valence subband hh1 to the con-
duction subband e1 can occur only if the electron angu-
lar momentum changes by ±1. It follows then that the
allowed transitions are |+3/2〉   |+1/2〉  and
|−3/2〉   |–1/2〉 , as illustrated in Fig. 1 by vertical
lines. Under excitation with linearly polarized or unpo-
larized light, the rates of both transitions are equal. In
the presence of spin splitting, the optical transitions
induced by photons of the fixed energy "ω occur in
opposite points of k space for the spin branches ±1/2.
The asymmetry of photoexcitation results in a flow of
electrons within each spin branch. The corresponding
fluxes j+1/2 and j–1/2 are of equal strengths but opposite

Fig. 1. Microscopic origin of pure spin current induced by
interband photoexcitation. The vertical lines show the pos-
sible optical transitions.
directions. Thus, this nonequilibrium electron distribu-
tion is characterized by the nonzero spin current jspin =
(1/2)(j+1/2 – j–1/2) but also by a vanishing charge current,
e(j+1/2 + j–1/2) = 0.

The direction β of the photoinduced spin current and
the orientation α of transmitted spins are determined by
the explicit form of the spin–orbit interaction. The latter
is governed by the QW symmetry and can be varied.
For QWs based on zinc-blend lattice semiconductors
and grown along the crystallographic direction [110] || z,

the light absorption leads to a flow along x || [ ] of
spins oriented along z. This component of the electron
spin flow can be estimated as

(2)

where  is a constant describing the k-linear spin–
orbit splitting of the hh1 subband; me and mh are the
electron and hole effective masses in the QW plane,
respectively; ηcv is the light absorbance; and I is the
light intensity.

In (001)-grown QWs, the absorption of linearly
polarized or unpolarized light results in a flow of elec-
tron spins oriented in the QW plane. In contrast to the
low-symmetry QWs considered above, in (001) QWs
the k-linear spin splitting of the hh1 valence subband is
suppressed and, here, for the sake of simplicity, we
assume parabolic spin-independent dispersion in the
hh1 valence subband and take into account the spin-
dependent contribution

(3)

to the electron effective Hamiltonian. Then, to the first
order in the spin–orbit coupling, the components of the
pure spin current generated in the subband e1 are
derived to be

(4)

Hole Spin Currents

For heavy holes hh1, one can introduce the pseu-
dospin description with pseudospins  = ±1/2 repre-
senting hole states with angular momentum ±3/2. In
addition to electron spin current (4), a hole pseudospin
current is induced by interband photoexcitation with
linearly polarized light. In the geometry of normal inci-

dence, the components (hh1) and (hh1) are
given, respectively, by the real and imaginary parts of
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where τh is the relaxation time of the hole spin current
and e is the light polarization unit vector.

3. INTERSUBBAND OPTICAL TRANSITIONS

The intersubband light absorption in n-doped QW
structures is a resonant process and occurs if the photon
energy equals the energy spacing between the sub-
bands. In a simple one-band model, direct optical tran-
sitions from subband e1 to subband e2 can be induced
only by irradiation with the nonzero normal component
ez of the polarization vector. These transitions occur
with spin conservation, (e1, +1/2)  (e2, +1/2) and
(e1, –1/2)  (e2, –1/2), as illustrated in Fig. 2 by ver-
tical solid lines. Due to k-linear spin splitting of the e1
and e2 subbands, the optical transitions induced by
photons of the certain energy "ω occur only at a fixed
kx, where the photon energy matches the energy separa-
tion between the subbands [4]. Similarly to the inter-
band excitation considered in the previous section,
these kx points have opposite signs for the spin branches
±1/2. Such spin-dependent asymmetry of photoexcita-
tion gives rise to pure spin currents in both the e1 and
e2 subbands.

An interesting feature of the pure spin photocurrent
induced under intersubband transitions is its spectral
behavior: an increase in the photon energy "ω (see
Figs. 2a and 2b) leads to a shift of the points kx that
results in reversal of the spin current direction. The
explicit spectral dependence of the spin photocurrent in
ideal QWs depends on the specific fine structure of the
energy spectrum. However, in real structures, the spec-
tral width of the intersubband resonance is broadened
and, hence, substantially exceeds the spectral width of
the absorption spectrum of an ideal structure. The
broadening can be taken into account assuming, e.g.,
that the energy separation E21 between the subbands
varies in the QW plane. Then, to the first order in the
spin–orbit coupling, the pure spin current generated
under intersubband optical transitions has the form

(5)

where  and  are the constants of the spin–orbit
coupling in the e1 and e2 subbands, τe1 and τe2 are the
corresponding relaxation times of the spin currents,
η21("ω) is the intersubband light absorbance with the
inhomogeneous broadening being taken into account,
and  is the mean value of the electron kinetic energy.
It equals EF/2 for a 2D degenerate gas with the Fermi
energy EF and kBT for a 2D nondegenerate gas at the
temperature T. Intersubband light absorption is domi-
nated by spin-conserving optical transitions; therefore,

Fβ
α 1

2"
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-------=

× τe2η21 "ω( ) τe1 τe2–( )E
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pure spin current (5) is proportional to the difference of
subband spin splittings. The spectral behavior of the
spin current is determined mainly by the second term in
Eq. (5) and repeats the derivative of the light absorption
spectrum dη21("ω)/"ω, since the relaxation time in the
excited subband τe2 is usually shorter than that in the
lowest subband, τe1.

4. FREE-CARRIER ABSORPTION

Light absorption by free carriers, or Drude-like
absorption, occurs in doped semiconductor structures
when the photon energy "ω is smaller than both the
band gap and the intersubband spacing. Because of
energy and momentum conservation, free-carrier opti-
cal transitions become possible if they are accompanied
by electron scattering by acoustic or optical phonons,
static defects, etc. Scattering-assisted photoexcitation
with linearly- or unpolarized light also gives rise to a
pure spin current. However, in contrast to the direct
transitions considered above, the spin splitting of the
energy spectrum leads to no essential contribution to
the spin current induced by free-carrier absorption. The
more important contribution comes from asymmetry of
the electron spin-conserving scattering. In semiconduc-
tor QWs, the matrix element V of electron scattering by
static defects or phonons has, in addition to the main
contribution V0, an asymmetric spin-dependent term
[14–17]

(6)

where k and k' are the electron’s initial and scattered
wavevectors, respectively. Microscopically, this contri-
bution is caused by a structural and bulk inversion
asymmetry similar to the Rashba–Dresselhaus spin
splitting of the electron subbands. The asymmetry of
the electron–phonon interaction results in nonequal
rates of indirect optical transitions for opposite

V V0 Vαβσα kβ kβ'+( ),
αβ
∑+=

Fig. 2. Microscopic origin of pure spin current induced by
intersubband photoexcitation. A change in the light fre-
quency (a), (b) leads to reversal of the spin-current direc-
tion.
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wavevectors in each spin branch. This is illustrated in
Fig. 3, where the free-carrier absorption is shown as a
combined two-stage process involving electron–photon
interaction (vertical solid lines) and electron scattering
(dashed horizontal lines). The scattering asymmetry is
shown by thick and thin dashed lines: electrons with
spin +1/2 are preferably scattered into the states with
kx > 0, while particles with spin –1/2 are scattered pre-
dominantly into the states with kx < 0. The asymmetry
causes an imbalance in the distribution of photoexcited
carriers in each branch s = ±1/2 over the positive and
negative kx states and yields oppositely directed elec-
tron flows j±1/2, which are shown by horizontal arrows.
Similarly to the interband excitation considered in the
previous section, this nonequilibrium distribution is
characterized by a pure spin current without charge
transfer.

If the photon energy "ω exceeds the typical electron
kinetic energy , the pure spin current induced by free-
carrier light absorption is given by

(7)

where ηe1 is the light absorbance in this spectral range.

The components  are obtained from Eq. (7) by the
replacement x  y.

In addition to the free-carrier absorption, the spin-
dependent asymmetry of electron–phonon interaction
can also give rise to a pure spin current in the process
of energy relaxation of the photoexcited electrons. In
this relaxation mechanism, the spin current is generated
in a system of hot carriers independently of any heating
means.

The mechanisms of pure spin photocurrent consid-
ered above can reveal themselves in the appearance of
electric current in the presence of an in-plane magnetic
field. Indeed, the application of a magnetic field results,

E
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Fig. 3. Microscopic origin of pure spin current induced
under light absorption by free electrons. The free-carrier
absorption is a combined process involving electron–pho-
ton interaction (vertical solid lines) and electron scattering
(dashed horizontal lines).
due to the Zeeman effect, in different equilibrium pop-
ulations of the subbands. The currents j±1/2 flowing in
the opposite directions become nonequivalent, which
results in a spin-polarized net electric current [18].

Valley-Orbit Current

In addition to spin, free charge carriers can be char-
acterized by another internal property, namely, by a
well number in multi-QW structures or a valley index,
l, in multivalley semiconductors. Thus, one can con-
sider not only pure spin currents but also pure orbit-val-
ley currents, in which case the net electric current j =

 vanishes but the partial currents jl contributed by
carriers in the lth valley are nonzero. In carbon nano-
tubes, the index l runs through two equivalent one-
dimensional subbands (n, K) and (–n, K') formed near
the K and K' valleys of a graphene sheet rolled up into
a cylinder, where n is the component of orbital angular
momentum along the tube principal axis z [19]. In
chiral nanotubes, the photoexcitation results in nonzero
partial flows, jz(K) and jz(K'), which have opposite signs
for linearly polarized light. Another example is a
GeSi/Si (111)-grown quantum-well structure. This has
an overall C3v symmetry and contains three equivalent
two-dimensional valleys l = 1, 2, 3. The symmetry rep-
resenting an individual valley is reduced to Cs and
allows for generation of a partial in-plane photocurrent
jl under normal light incidence. The net electric current
is absent, but one can introduce the pure valley-orbit
flows j = , where cl are arbitrary nonequal coef-
ficients.

We acknowledge helpful discussions with
V.V. Bel’kov and S.D. Ganichev. This work was sup-
ported by the Russian Foundation for Basic Research,
INTAS, programs of the Russian Academy of Sciences,
and the Foundation “Dynasty”–ICFPM.

REFERENCES
1. R. Fiederling, M. Keim, G. Reuscher, et al., Nature 402,

787 (1999).
2. Y. Ohno, D. K. Young, B. Beschoten, et al., Nature 

 

402

 

,
790 (1999).

3. S. D. Ganichev and W. Prettl, J. Phys.: Condens. Matter
 15 , R935 (2003).
4. S. D. Ganichev, V. V. Bel’kov, Petra Schneider, 

 

et al.

 

,
Phys. Rev. B 

 

68

 

, 035319 (2003).
5. J. N. Chazalviel and I. Solomon, Phys. Rev. Lett. 

 

29

 

,
1676 (1972).

6. A. A. Bakun, B. P. Zakharchenya, A. A. Rogachev, 

 

et al.

 

,
Pis’ma Zh. Éksp. Teor. Fiz. 

 

40

 

, 464 (1984) [JETP Lett.

 

40

 

, 1293 (1984)].
7. Y. K. Kato, R. C. Myers, A. C. Gossard, and

D. D. Awschalom, Science 

 

306

 

, 1910 (2004).
8. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth,

cond-mat/0410295.

jll∑

cl jll∑

  
JETP LETTERS      Vol. 81      No. 5      2005



PURE SPIN PHOTOCURRENTS IN LOW-DIMENSIONAL STRUCTURES 235
9. J. Hübner, W. W. Rühle, M. Klude, et al., Phys. Rev. Lett.
90, 216601 (2003).

10. R. D. R. Bhat, F. Nastos, A. Najmaie, and J. E. Sipe,
cond-mat/0404066.

11. E. I. Rashba, Phys. Rev. B 70, 161201 (2004).
12. M. M. Glazov and E. L. Ivchenko, Pis’ma Zh. Éksp.

Teor. Fiz. 75, 476 (2002) [JETP Lett. 75, 403 (2002)].
13. Optical Orientation, Ed. by F. Meier and B. P. Zakharch-

enya (Elsevier, Amsterdam, 1984).
14. V. I. Belinicher, Fiz. Tverd. Tela (Leningrad) 24, 15

(1982) [Sov. Phys. Solid State 24, 7 (1982)].
JETP LETTERS      Vol. 81      No. 5      2005
15. E. L. Ivchenko and G. E. Pikus, Izv. Akad. Nauk SSSR,
Ser. Fiz. 47, 2369 (1983) [Bull. Acad. Sci. USSR, Phys.
Ser. 47, 81 (1983)].

16. N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.:
Condens. Matter 14, R271 (2002).

17. E. L. Ivchenko and S. A. Tarasenko, Zh. Éksp. Teor. Fiz.
126, 426 (2004) [JETP 99, 379 (2004)].

18. V. V. Bel’kov, S. D. Ganichev, E. L. Ivchenko, et al.,
J. Phys.: Condens. Matter (in press).

19. E. L. Ivchenko and B. Spivak, Phys. Rev. B 66, 155404
(2002).
                                      



  

JETP Letters, Vol. 81, No. 5, 2005, pp. 236–240. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 81, No. 5, 2005, pp. 297–301.
Original English Text Copyright © 2005 by Gvozdikova, Zhitomirsky.
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in a Heisenberg FCC Antiferromagnet¶ 
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A nearest neighbor Heisenberg antiferromagnet on a face-centered cubic lattice is studied by extensive Monte
Carlo simulations in zero magnetic field. The parallel tempering algorithm is utilized, which allows one to over-
come a slow relaxation of the magnetic order parameter and to fully equilibrate moderately sized clusters with
up to N . 7 × 103 spins. By collecting energy and order parameter histograms on clusters with up to N . 2 ×
104 sites, we accurately locate the first-order transition point at Tc = 0.4459(1)J. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.10.Jm, 75.50.Ee
Geometric frustration generally denotes an inability
of a magnetic system to find a unique classical ground
state. It arises due to a competition between exchange
interactions for certain types of magnetic sublattices.
The most well-known examples are triangular and kag-
omé lattices in two dimensions and pyrochlore and
face-centered cubic (fcc) lattices in three dimensions.
The intriguing behavior of geometrically frustrated
magnetic materials has attracted much experimental
and theoretical attention in the past decade [1]. The
frustrated properties of an Ising antiferromagnet on an
fcc lattice (Fig. 1) were recognized a long time ago [2].
The case of vector (Heisenberg) spins has been investi-
gated to a lesser extent. Experimental realizations of fcc
magnets include the type-I antiferromagnet UO2 [3, 4]
and the type-II antiferromagnet MnO [5].

In the present work, we investigate a nearest neigh-
bor Heisenberg antiferromagnet on an fcc lattice
described by the Hamiltonian

(1)

where Si is a classical vector spin of unit length and J is
the exchange constant. Every spin interacts with 12
nearest neighbors separated by (±a, ±a, 0), (0, ±a, ±a),
and (±a, 0, ±a). The frustrated properties of model (1)
become apparent if one calculates the mean-field tran-

¶ This article was submitted by the authors in English.
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sition temperature  = |min{Jq}|. The Fourier

transform of the exchange interaction is

(2)

The minimum is reached at Q = (π/a)(1, q, 0) with arbi-
trary q and all equivalent wavevectors in the cubic Bril-
louin zone. This set includes, in particular, the type-I
antiferromagnetic structure with Q1 = (π/a)(1, 0, 0) and

the type-III ordering with Q3 = (π/a) . The

type-I (type-III) structure becomes the only absolute

Tc
MF 1

3
---

Jq 4J qxa( ) qya( )coscos[=

+ qya( ) qza( )coscos qza( ) qxa( )coscos+ ] .

1
1
2
--- 0, , 

 

Fig. 1. Face-centered cubic lattice as a network of edge-
sharing tetrahedra.
© 2005 Pleiades Publishing, Inc.
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minimum of Jq if a weak second-neighbor exchange is
added to Eq. (1) with a ferromagnetic (antiferromag-
netic) sign (see, e.g., [6]).

The degeneracy of the nearest neighbor model
(Eq. (1)) is a consequence of the decomposition of an
fcc lattice into a network of edge-sharing tetrahedra,
such that every site is shared between eight tetrahedra.
The classical ground-state constraint then consists in a
requirement of zero total spin for every tetrahedron.
This yields an infinite number of collinear and noncol-
linear states with different periodicities, all of which
have the same classical energy. A harmonic spin-wave
analysis shows that, at low temperatures, thermal fluc-
tuations select collinear states by an “order by disorder”
effect [6]. Such a result can be most easily understood
by a method suggested in [7], where the effect of short-
wavelength thermal fluctuations is shown to lead to an
effective biquadratic exchange between neighboring
spins. For classical spins on an fcc lattice, thermal fluc-
tuations generate the following low-temperature cor-
rection to the free energy:

(3)

Such a biquadratic interaction favors collinear spin
arrangement. Two examples of collinear ground states
include the type-I spin structure Si = cos(Q1 · ri) and

the type-III configuration Si = cos .

Additional collinear ground states are constructed from
the above two configurations by selecting crystal planes
(parallel to one of the cubic axes) with the Néel type of
spin order and by rotating all spins in such planes by
180°. All obtained collinear states have exactly the
same free energy in the harmonic approximation due to
an extra gauge symmetry of the quadratic Hamiltonian
[7]. Their degeneracy is lifted by anharmonicities in the
spin-wave Hamiltonian—a problem that, to our knowl-
edge, has not been considered analytically.

The finite-temperature transition of a type-I fcc anti-
ferromagnet has been studied by the renormalization
group approach [8, 9]. The absence of stable fixed
points within the e expansion suggests a first-order
transition driven by thermal fluctuations. The above
calculations have been performed for the case when the
type-I structure corresponds to the absolute minimum,
that is, the case of spin model (1) with a significant fer-
romagnetic second-neighbor exchange. In the nearest
neighbor case, the anomalous contribution of thermal
fluctuations is further enhanced due to extrasoft modes.
Therefore, the conclusion concerning a first-order tran-
sition should remain essentially unchanged.

Numerical Monte Carlo (MC) simulations of the
finite-temperature phase transition in a nearest neigh-
bor fcc antiferromagnet have been performed by a stan-
dard single spin-flip technique [10–12]. The first-order
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T
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nature of the transition at Tc . 0.45J was unambigu-
ously established from the finite-size scaling of the
peak in the specific heat [11] and was further supported
by the energy histograms collected at the transition
point [12]. As for the type of magnetic ordering at low
temperatures, there is no consensus among different
authors. Several early works suggested the collinear
type-I antiferromagnetic structure [10, 11], though no
results for the magnetic structure factor have been pro-
duced. In a subsequent, more detailed study [12], the
low-temperature phase of an fcc antiferromagnet was
described as “a collinear state with glassy behavior.”
The apparent difficulty in simulating an fcc antiferro-
magnet at low temperatures comes from the above-
mentioned degeneracy between various collinear states,
which correspond to different local minima of the free-
energy functional. The collinear states transform into
each other under rotation of all spins in one crystal
plane. The local minima of the free energy are, there-
fore, separated by rather large entropy barriers ~L2,
where L is a linear size of the system. A single spin-flip
MC technique cannot produce appreciable shifts in the
phase space between distinct collinear configurations.
As a result, the spin system hardly relaxes to the abso-
lute minimum, and the magnetic structure factor does
not exhibit good averaging in a reasonable computer
simulation time.

In the present work, we shall apply the novel
exchange MC method [13] for simulation of a Heisen-
berg fcc antiferromagnet. This modification of the stan-
dard MC technique, also called parallel tempering [14],
was developed for spin glasses, which are an outstand-
ing example of hardly relaxing spin systems with
numerous local minima separated by macroscopic
energy barriers. In the exchange MC technique, several
replicas of the spin system are simulated in parallel at a
preselected set of temperatures. After a few ordinary
MC steps performed on each replica, replicas that are
adjacent in temperature are exchanged with a specially
chosen probability [13]. The ensemble of parallel tem-
pering thus includes two Markov processes: stochastic
motion in the multidimensional phase space of the spin
model and a random walk along a one-dimensional
array of replicas. The second auxiliary process helps to
dramatically decrease the correlation time for the main
stochastic motion by repeatedly heating a given replica
to high temperatures, where it quickly loses memory of
the low-temperature magnetic structure. The exchange
MC technique allows one to equilibrate moderately
sized systems and has gained popularity in the simula-
tion of spin glasses [15] and frustrated Ising models
[16]. This method has not been applied so far to geo-
metrically frustrated vector spin models.

We performed exchange MC simulations of model
(1) on finite clusters with periodic boundary conditions
and N = 4L3 sites for L = 4, 6, 8, 10, and 12 (N = 256–
6912). The highest temperature for the exchange MC
ensemble was selected to be Tup = 0.75 > Tc, where the
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system equilibrates quickly with a standard MC tech-
nique. The lowest temperature in our simulations was
0.1J. The intermediate temperatures were determined
empirically starting with a geometric progression in
such a way that the exchange rates for replica swaps are
roughly uniform and exceed 0.1 for the largest clusters.
In particular, in the vicinity of the first-order transition
point, the temperature steps have to be decreased in
order to avoid a bottleneck for replica drifts across Tc.
In total, we employed NT = 72 replicas for most cluster
sizes. The MC procedure for simulation of individual
replicas is the multiflipping Metropolis method (see,
e.g., [11]), which includes several flipping attempts
(m = 5 in our case) on every spin under the same local
field before moving to the next spin. This method is
especially suitable for an fcc lattice with a large coordi-
nation number, e.g., z = 12, when calculation of local
fields takes a significant portion of CPU time. After
sweeping twice over the whole cluster, the replica
exchanges were performed. The above procedure con-
stitutes one exchange MC step. All replicas were set in
random initial configurations and equilibrated over 105

exchange MC steps. Measurements were performed for
additional 5 × 105–4 × 106 exchange MC steps. The
equilibration of various physical characteristics was
checked (i) by absence of time evolution over at least
half the measuring time and (ii) by comparison to
results for a different set of initial replica configurations
obtained by gradual annealing of a single replica from
high temperatures.

During simulations of the exchange MC ensemble,
the internal energy E, the specific heat, the magnetic
structure factor, and the collinear order parameter were
measured. Results for the internal energy and the spe-
cific heat are identical to the previous results obtained
by the standard MC method [11, 12] and are not dis-

Fig. 2. Temperature dependence of the structure factor cor-
responding to the type-I antiferromagnetic ordering.
cussed here. The magnetic structure factor is given by
the square of the antiferromagnetic order parameter:

(4)

where 〈…〉  denotes a thermal average. For q = Q3, the
structure factor exhibits a rather weak T dependence and
scales as 1/N with increasing cluster size at all tempera-
tures. This generally indicates an absence of the corre-
sponding order in the thermodynamic limit at any T.

Results for the structure factor of the type-I antifer-
romagnetic ordering are presented in Fig. 2. Contribu-
tions from three nonequivalent wavevectors of the
type-I structure are added together. Symbols are used to
distinguish different curves, while lines are drawn
through the actual data for NT = 72 replicas. For the
largest cluster, with N = 6912 spins, only NT = 39 repli-
cas down to T = 0.3J were equilibrated. The most
remarkable feature of the presented data is an inverse
finite-size scaling at temperatures below Tc . 0.45J: the
order parameter increases with the system size. The
equilibrium sublattice magnetization deduced from
Sαα(q) is still significantly smaller than 1 even at T =
0.1J. This is a consequence of thermally excited stack-
ing faults, domain walls, and other defects in an ideal
type-I antiferromagnetic structure. The linear size of
such defects coincides with the lattice size. Their con-
centration, therefore, decreases with increasing system
size, thus producing a significant increase of the order
parameter. Unfortunately, the lattice sizes are still too
small to observe an asymptotic thermodynamic behav-
ior for Sαα(q), though they definitely point at spin
ordering with the wavevector of the type-I antiferro-
magnetic structure. The data for two large clusters
exhibit a clear jump at the transition temperature, thus
indicating the first-order transition.

Measurements of Sαα(q) cannot distinguish between
the presence of three domains of a single-q type-I struc-
ture, which is always the case for finite clusters, and a
noncollinear triple-q spin state. In order to study this
aspect of the magnetic ordering in an fcc antiferromag-
net, we defined a collinear order parameter. This is a
single-site characteristic that is insensitive to the peri-
odicity (wavevector) of the magnetic structure but that
describes instead the breaking of a spin-rotational sym-
metry. The collinear order parameter is given by a
traceless second-rank tensor:

(5)

It vanishes for a noncollinear triple-q structure and has
a nonzero value for a collinear state. In the present case,
Pαβ is a secondary order parameter: it couples linearly
to a square of the primary antiferromagnetic parameter.
For an XY antiferromagnet on a checkerboard lattice,
Pαβ is, however, a primary order parameter and charac-
terizes a spin-nematic state [7].
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In MC simulations, the square of order parameter
(5) is measured, which is given by

(6)

The corresponding results are shown in Fig. 3. Since

 is proportional to the fourth power of an antiferro-
magnetic order parameter, it does not show an apprecia-
ble jump at the first-order transition temperature. The
data for the collinear order parameter exhibit a remark-
able lack of finite-size scaling. This indicates that spins
over the whole lattice are predominantly parallel or
antiparallel to a certain direction. At T = 0.1J, the
aligned component of spin is 〈Sα〉  ≈ 0.78. Thus, the
combination of the structure factor results (Fig. 2) and
the collinear order parameter data (Fig. 3) points
uniquely to the collinear type-I antiferromagnetic order
in a Heisenberg fcc antiferromagnet.

Finally, we present results for the energy and the
order parameter histograms (distribution functions) at
the transition point. Since an fcc antiferromagnet
exhibits a weak first-order transition, we find it more
advantageous to perform histogram collection with a
single replica instead of setting up an exchange MC
ensemble. Histograms were collected utilizing a hybrid
MC algorithm: three multiflipping Metropolis steps
were combined with 11 overrelaxation (microcanoni-
cal) updates [17]. On average, 2 × 106 configurations
were generated to build one histogram. Its accuracy
was checked by comparing the final distribution func-
tion to intermediate distributions obtained with proper
rescaling from 106 and 5 × 105 configurations. The
quality of the data shown in Fig. 4 is significantly
higher than in the previous work [12], which allows us
to locate the transition point more precisely. The first-
order nature of the transition is clearly observed from
the double-peaked structure of the energy histogram
(see Fig. 4). The positions of the two peaks do not
change significantly with growing cluster size, while
the probability for intermediate states rapidly drops
with increasing L. At Tc ≈ 0.4459J, the probability
weights in the two peaks for the largest L = 18 cluster
(N = 23328) differ by approximately 15%. To demon-
strate the strong temperature dependence of the relative
weight of the two peaks, we present in the inset of
Fig. 4 the distribution functions at T = Tc ± 0.0001J.
The system clearly spends more time in the upper
(lower) peak above (below) the transition temperature.
We conclude, therefore, that the first-order transition in
a Heisenberg fcc antiferromagnet takes place at Tc =
0.4459 ± 0.0001J.

The distribution function for the square of the anti-
ferromagnetic order parameter is shown in Fig. 5. The
largest cluster also develops the double-peaked struc-
ture that is characteristic of the first-order transition.
Smaller clusters have, however, significantly wider dis-
tributions for the magnetic structure factor, which is not

Pcol
2 1

N2
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αSi
βS j

αS j
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3
---.–

i j,
∑=

Pcol
2

JETP LETTERS      Vol. 81      No. 5      2005
Fig. 3. Temperature dependence of the collinear (nematic)
order parameter.

Fig. 4. Distribution function (energy histogram) for several
lattice sizes at the first-order transition Tc = 0.4459J. Inset
shows energy histograms for the largest cluster L = 18 (N =
23328) at T = 0.4458J (solid line) and T = 0.4460J (dashed
line).

Fig. 5. Histogram for the magnetic structure factor at the
first-order transition Tc = 0.4459J.
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surprising in light of the many local minima for differ-
ent collinear states. It is interesting to note that the jump
of Sαα(Q) at the transition point determined from the
histogram for the L = 18 cluster (Fig. 5) is close to the
jump observed for the L = 12 cluster in the temperature
scan (Fig. 2), though the latter lattice does not exhibit
any visible double-peaked structure at Tc. This indicates
that, apart from the close vicinity of the transition point,
the L = 12 cluster may be very close to the thermody-
namic limit.

In conclusion, we performed Monte Carlo simula-
tions for a finite-temperature transition in a nearest
neighbor Heisenberg fcc antiferromagnet. The obtained
results clearly demonstrate a first-order transition into a
collinear type-I antiferromagnetic structure due to an
order by disorder effect. The entropy mechanism for
selecting the magnetic ordering suggests an interesting
sequence of phase transitions for a weak antiferromag-
netic second-neighbor exchange 0 < J' ! Tc. The higher
temperature transition from a paramagnetic state is
determined by thermal fluctuations and takes place to
the type-I collinear antiferromagnetic structure. At suf-
ficiently low temperatures T ~ J', energy selection over-
comes the entropy effect, and a second transition,
namely, from the type-I to the type-III structure, occurs.

We are grateful to H.G. Katzgraber for helpful com-
ments on the exchange MC method. M.E.Z. acknowl-
edges the hospitality of the Condensed-Matter Theory
Institute of Brookhaven National Laboratory during the
course of this work.
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