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The spectral maxima of parametric x-ray radiation that are emitted by moderately relativistic protons interact-
ing with various crystals have been detected. The spectral positions of these maxima depend on the crystal ori-
entation angle and they are consistent with the theoretical values. The measurements were carried out with sil-
icon and graphite crystals on the 5-GeV proton beam extracted from the Nuclotron at the Laboratory of High
Energies, JINR. © 2005 Pleiades Publishing, Inc.

PACS numbers: 78.70.–g
Parametric x-ray radiation (PXR) is emitted by fast
charged particles in crystals due to the diffraction of the
virtual-photon field of a fast charged particle on crystal-
lographic planes. After theoretical predictions [1–3],
PXR has been detected and investigated on electron
beams of various energies [4, 5].

The characteristics of PXR from the charged parti-
cle in a crystal are determined by its velocity v  and they
are independent of the sign of the charge and mass of
the particle. The intensity of PXR must increase as Z2

with the charge number Z of the particle [6]. The veri-
fication of these conclusions of the theory of PXR is the
aim of these and designed experiments on beams of rel-
ativistic nuclei.

The energy of PXR photons is given by the expres-
sion [7]

(1)

where n is the diffraction order, d is the interplanar dis-
tance, θB is the angle of the orientation of the crystal
plane with respect to the particle velocity (see Fig. 1),
θD and θy are the radiation-detection angles, β = v /c,
and ε is the dielectric constant of the target material.
The detector is placed at angle θD in the diffraction
plane and is shifted by angle θy in the plane that is per-
pendicular to the diffraction plane. The diffraction
plane is determined by the particle momentum and nor-
mal vector to the crystal planes. For ultrarelativistic
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particles (β ≈ 1) in the x-ray frequency range (ε ≈ 1),
formula (1) coincides with high accuracy with the
Bragg relation for the diffraction of real photons in the
crystal.

The only attempt to investigate PXR from heavy
charged particles was carried out in 1992 on the
70-GeV proton beam at IHEP [8]. However, since the
energy resolution of the scintillation detector that was
used for spectral measurements was low, a PXR line in
the radiation spectrum could not be detected. Neverthe-
less, the dependence observed in the integral yield of
radiation in the energy range under consideration on the

Fig. 1. Layout of the experiment: S is the ionization monitor
of the beam, Mx and My are the ionization profilometers of
the beam, θB is the crystal orientation angle, and θD and θy
are the detection angles.
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photon emission angle was attributed by the authors of
that work to the detection of proton PXR.

In this paper, we present conclusive evidence for the
existence of PXR from heavy particles. The PXR lines
have been detected in spectra from relativistic protons.
The measurements were carried out on the 5-GeV pro-
ton beam from the Nuclotron at the Laboratory of High
Energies, JINR.

Figure 1 shows the layout of the experiment. The
proton beam was incident on the crystal whose large
face was inclined to the beam axis at the angle θB =
22.5°. The large face of the crystal was parallel to the
close-packed crystallographic planes. The crystal was
placed vertically. Hence, the diffraction plane is hori-
zontal. Photons of arising PXR were detected by a sili-
con detector that was placed at an angle of θD = 2θB =
45° and a horizontal distance of L = 480 mm from the
target. In addition, the detector was displaced down-
ward from the diffraction plane by 72 mm in order to be
at the maximum of the angular distribution of PXR.
This maximum is displaced from the diffraction plane
by an angle of θy = 1/γ = 0.158, where γ is the proton
relativistic factor. The working area of the detector was
equal to 12 mm2. The experiment was carried out in
Bragg geometry.

The beam incident on the crystal was monitored by
the ionization chamber S. The distribution of particles
in the beam was measured by the ionization profile
meters Mx and My. The characteristic sizes of the beam
were σx = 3 mm and σy = 6 mm. At the beginning of the
measurements, targets that were composed of thin alu-
minum and polyethylene plates were irradiated at the
place of the crystal and the ionization chamber. The

Fig. 2. Calibration spectrum with the peaks of the character-
istic copper radiation that is excited in a copper target by a
proton beam. The line is the approximation by the sum of
two Gaussians.
ionization monitor was calibrated by measuring the
radioactivity induced in the targets.

The semiconductor detector was calibrated by using
the lines of characteristic radiation excited in the cop-
per target by the proton beam. Figure 2 shows the mea-
sured spectrum of the characteristic radiation of copper
atoms. The distribution was approximated by the sum
of two Gaussians. The energy resolution of the detector
in the experiment for the 8.046-keV Kα line (first peak)
of the characteristic radiation of copper was approxi-
mately equal to 320 eV (the energy width of the spec-
trometer channel was 10.67 eV).

Figure 3 shows the measured radiation spectra from
the proton beam interacting with a (100) silicon crystal
in the form of a circular plate 100 mm in diameter and
300 µm thick. The silicon crystalline samples that were
used in the experiment were manufactured and tested at
the Moscow State Institute of Electronic Engineering
(Technical University). The peaks α (Eα = 7.48 keV)
and β (Eβ = 8.26 keV) in Fig. 3 correspond to the char-

Fig. 3. Radiation spectra measured from the proton beam
interacting with the (100) silicon crystal for the orientation
angles θB = (a) 22.5° and (b) 20°.
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acteristic radiation of nickel atoms that were excited in
the detector case by the particles of the beam halo (pro-
tons that are scattered in matter along the transportation
section and secondary particles). Figure 3a corresponds
to the symmetric case θB = 0.5θD = 22.5°. The position
Eγ = 11.4 keV of the peak γ is consistent with the value
E1 = 11.15 keV calculated by formula (1). Therefore,
the peak it corresponds to proton PXR on the (400)
plane of silicon. As was expected according to Eq. (1),
the PXR line is shifted toward the softer range as the
crystal orientation angle decreases (cf. Fig. 3b for θB =
20°). For Fig. 3b, Eγ = 10.21 keV, and the calculated
value is equal to 9.96 keV. The yield of PXR from the
silicon crystal is equal to 2.25 × 10–6 and 2.05 × 10–6

photons/(proton sr), respectively. These values were
obtained from the spectra after recalculation in which
the attenuation of radiation on the path to the detector
and the efficiency of the detector were taken into
account. These values are approximately half the theo-
retical estimates of the PXR yield [7]. The total error
that is primarily determined by the performance of the
spectrometer is estimated as 40%.

In [9], PXR was measured from a 4-MeV electron
beam interacting with a silicon crystal 20 µm thick. In
that work, the electron relativistic factor γe = 8.83 was
close to the value γp = 6.33 for protons in our case, the
angles of the crystal orientation and radiation detection
approximately corresponded to the respective angles in
our case, but that experiment was carried out in Laue
geometry that differed from the geometry of our exper-
iment. The (110) crystallographic planes on which the
virtual-photon field of the particles was diffracted were
perpendicular to the large faces of the crystal. In the
experiment described in [9], the yield of electron PXR
that was measured at the maximum and that included a
small contribution from coherent bremsstrahlung and
their interference was equal to 5 × 10–6 photon/(elec-
tron sr). This yield is more than twice as large as the
yield of proton PXR in our experiment. Since the con-
ditions for the two experiments were significantly dif-
ferent, the above comparison is only provisional.

The width of the peaks that were measured for PXR
exceeds the detector resolution and it is determined by
the transverse size of the proton beam on the target,
because the detector is placed quite closely to the
target.

Figure 4 shows the radiation spectra measured on
the 20 × 30-mm pyrolytic graphite crystal with a thick-
ness of 2 mm and a mosaicity angle of about 0.4°. Here,
α and β are also the peaks of the characteristic radiation
of nickel atoms in the detector case. In the symmetric
case (Fig. 4a), the peak γ at Eγ = 9.5 keV corresponds to
the second-order maximum of proton parametric radia-
tion on the (002) planes of graphite. Radiation corre-
sponding to the first order of diffraction (E1 = 4.51 keV)
is absorbed in the air on the path to the detector. To
observe the shift of the PXR peak, we increased the
JETP LETTERS      Vol. 81      No. 6      2005
crystal orientation angle in order to avoid overlapping
with the peak β of the characteristic radiation of nickel
(see Fig. 4b for θB = 25°). For Fig. 4b, Eγ = 10.35 keV
in agreement with the calculated position E2 = 9.97 keV
of the PXR line.

The detection of the spectral lines whose positions
agree with the calculations for the silicon and graphite
crystals, which were investigated for their various ori-
entations in the beam, evidently indicates that PXR
from moderately relativistic protons is observed in our
experiment. The experimental results corroborate the
theoretical conclusion that the spectral characteristics
of PXR are independent of the sign of the charge and
mass of the particles. The fact that the yield that is mea-
sured for PXR is lower than the theoretical estimates
and experimental data for electrons [8] can be attributed
to uncontrollable miscounts of the detector under high-
background conditions.

The PXR yield for protons will be measured more
accurately in further experiments. An experiment with

Fig. 4. Radiation spectra measured from the proton beam
interacting with the graphite crystal for the orientation
angles θB = (a) 22.5° and (b) 25°.
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a carbon atomic beam is also designed in order to test
the Z2 dependence of the PXR yield. 
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graph AG (www.optigraph.fta-berlin.de), at our dis-
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induced activity of targets irradiated by the proton
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the International Science and Technology Center
(project no. 2140) and the Russian Foundation for
Basic Research (project no. 03-02-17578).
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We show that, in the dual superconductor picture of the QCD vacuum, the presence of the monopole condensate
inevitably leads to the breaking of the chiral symmetry. © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.30.Rd, 12.38.Aw
The origin of chiral symmetry breaking and the
nature of the confinement of color charges are still
unresolved puzzles in Quantum Chromodynamics
(QCD). Analytical methods based on the perturbation
theory cannot describe these phenomena starting from
the first principles of the theory. The confinement of
quarks is realized as a linear dependence of the interac-
tion energy between a test quark and an antiquark,

 ~ σR, on the separation distance R. The coefficient
of proportionality, σ ≈ 1 GeV/fm, is called the “string
tension.” The confinement phenomena indicates its
presence at relatively large separations, R * 0.2 ~
0.3 fm, where the QCD coupling constant is large and
the perturbation theory is not applicable.

On the other hand, the effect of the chiral symmetry
breaking involves a formation of the quark condensate,
〈 〉  ≈ (250 MeV)3, which is not invariant under the
chiral transformations of the quark fields, ψ 
exp{iγ5α}ψ. Both the chiral condensate and the string
tension are dimensional quantities that remain nonzero
in the infinitely heavy quark limit (“quenched QCD”).
The last fact also illustrates the nonperturbative nature
of both confinement and chiral symmetry breaking phe-
nomena.

There are indications that the confinement and the
chiral symmetry breaking phenomena are closely
related to each other. For example, at sufficiently high
temperatures, T > Tc, confinement is lost and the QCD
goes from the confinement phase into the deconfine-
ment phase. The remarkable fact is that the chiral sym-
metry is restored exactly at the same temperatures, T >
Tc. Below, we discuss the relation between these phe-
nomena within the so-called dual superconductor
model of confinement.

The dual superconductor mechanism [1] of the
quark confinement is based on specific monopole-like

¶ This article was submitted by the authors in English.

Vqq

ψψ
0021-3640/05/8106- $26.00 0245
configurations of the gluonic fields. The configura-
tions—called “Abelian monopoles”—can be identified
in appropriate Abelian gauges [2]. In an Abelian gauge,
the non-Abelian gauge symmetry of the QCD, which is
given by the SU(3) gauge group, is fixed to an Abelian
subgroup. Since the original SU(3) gauge group is
compact, the residual Abelian symmetry group is com-
pact as well. The compactness of the Abelian group
guarantees the appearance of the monopoles in the vac-
uum of the theory.

According to the dual superconductor mechanism,
the quark confinement in the low temperature phase,
T < Tc, of the four dimensional SU(3) gauge model
appears due to the condensation of the Abelian mono-
poles. The condensation of magnetic charges leads to
the dual Meissner effect and, as a result, to the forma-
tion of the chromoelectric string between the quarks.
Consequently, the quarks get confined by the string.
The condensation of the monopoles was established in
various numerical simulations of non-Abelian models
[3]. Moreover, the Abelian monopoles make a domi-
nant contribution to the zero temperature string tension
[4] (for a review, see [5]).

At the critical temperature, the monopole conden-
sate disappears and at higher temperatures the quarks
are no longer confined. The restoration of the chiral
symmetry at T = Tc suggests that the chiral condensate
and the monopole condensate are tightly related to each
other. Numerical simulations suggest that the mono-
poles provide a dominant contribution to the chiral con-
densate in various models [6, 7]. Moreover, the mono-
poles are correlated with the topological charge1 [8],

1 Note that the ensemble of instantons (i.e., of classical objects
having a nonzero topological charge) can be used to explain the
breaking of the chiral symmetry. Since the QCD instantons fail to
explain the quark confinement, we do not discuss them in this
paper.
© 2005 Pleiades Publishing, Inc.
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which is known to be related to the breaking of the
chiral symmetry.

The dual superconductor model for QCD is
described by the Lagrangian [9]

(1)

where three monopole fields χα with α = 1, 2, 3, are
interacting with the dual gluon fields B = (B3, B8) by the
covariant derivative (the root vectors eα of the SU(3)

group are: e1 = (1, 0), e2 = (–1/2, – /2), and e3 =

(−1/2, – /2). The Abelian components of the original
gluons, A = (A3, A8), are interacting with the dynamical
quark fields ψ. The diagonal generators of the SU(3)
gauge group are denoted as H = (H3, H8). The magnetic
(electric) charge of the monopole (quark) is e (g).

The interaction of the dual gauge field with the orig-
inal gauge field is described by the Zwanziger
Lagrangian [10] (the first line of Eq. (1)). The constant

vector nµ (with  = 1) does not break the Lorentz sym-
metry on a quantum level provided the Dirac quantiza-
tion condition, eg = 2π, is satisfied. Note that, in the
Lagrangian (1), the off-diagonal components of the
gluon field were ignored due to the Abelian dominance
observed both for the confining [4] and the chiral prop-
erties of the vacuum [7].

In the confinement phase, the monopole condensate,
|〈χα〉| = v, is nonzero. Consequently, the dual gauge
field Bµ acquires the mass, MB = vg, due to spontaneous
breaking of the dual U(1) × U(1) symmetry. In order to
simplify the calculations, let us consider the mean field
approximation by setting χα = v. Then, the Lagrangian
becomes quadratic in the gauge fields, and the integra-
tion over the dual gauge field Bµ in the corresponding
partition function can be performed exactly:

(2)

where Kµν = Xµν/[(n∂)2 + ] and Xµν =

eλνγδnαnγ∂β∂δ. One can see that, if the monopole
condensate is absent, v  = 0; then, M = 0 and the model
becomes equivalent to U(1) × U(1) electrodynamics.

LDGL
1
2
--- n ∂ A∧( )⋅[ ] ν n * ∂ B∧( )⋅[ ] ν(–=

+ n ∂ B∧( )⋅[ ] ν n * ∂ A∧( )⋅[ ] ν n ∂ A∧( )⋅[ ] 2–

– n ∂ B∧( )⋅[ ] 2 ) i∂µ geαBµ–( )χα
2[

α 1=

3

∑+

– λ χα
2 v 2–( )2 ] ψ i∂ eA H m–⋅–( )ψ,+

3

3

nµ
2

LDGL mf–
1
4
---fµνfµν–=

+
1
2
---AµKµνAν ψ i∂ eA H m–⋅–( )ψ,+

MB
2 MB

2

eλ
µαβ
In the Lorentz-type gauge with the gauge fixing
Lagrangian Lgf(A) = (∂µAµ)2/2ξ, the propagator of the
gauge field Aµ is the following:

(3)

The interaction Lagrangian of the fermion fields can
be calculated exactly from Eq. (2) by the Gaussian inte-
gration of the gauge field Aµ:

(4)

This Lagrangian contains a free (quadratic) part and the
four-fermion interaction term similarly to the Nambu–
Jona–Lasinio (NJL) model. In the NJL-type models,
the chiral (quark) condensate appears naturally. How-
ever, the presence or absence of the quark condensate
depends on the particular form of the four-fermion
interaction. In our model (4), the interaction term and,
consequently, the properties of the chiral condensate
depend on the value of the monopole condensate v.

Another simplification of our considerations comes
from the fact that the Lagrangian (4) is invariant under
the global color rotations of the fermionic triplet ψ ≡
(ψ1, ψ2, ψ3), which implies that 〈 ψj〉  = 〈 〉δ ij/3.
Thus, below, we consider only one component of the
quark field, the dynamics of which are described by the
Lagrangian (4)—in which ψ has only one compo-
nent—with the simple redefinition e2  e2H2 ≡ e2/3.

The breaking of the chiral symmetry can be conve-
niently investigated with the help of the generating
functional

(5)

where η and  are external fermionic fields and the
quark action S corresponds to Lagrangian (4).

Thus, the knowledge of the generating functional (5)
allows us to find the existence of the chiral condensate,
〈 (x)ψ(x)〉  = δ2/(δη(x)δ (x)) , and,
as a result, the existence of the chiral symmetry break-
ing.

In order to integrate over the fermionic fields in (5),
we use the method proposed in Ref. [11]. First, we use
the Fierz identities to write

Dµν
1

∂2
----- gµν ξ 1–( )

∂µ∂ν

∂2
----------+

 
 
 

=

–
1

∂2
-----

MB
2

∂2 MB
2

+
------------------- 1

n∂( )2
-------------Xµν.

Lferm ψ ψ,( ) ψ i∂ m–( )ψ 1
2
--- jµDµν jν,–=

jµ ieψγµHψ.=

ψi ψψ

Z η η,[ ]
DψDψe

S ψ ψ,[ ]– ∫d
4
x ηψ ψη+( )+

∫
DψDψe S ψ ψ,[ ]–∫

---------------------------------------------------------------------,=

η

ψ η Z η η,[ ] η η 0= =log

γµ( )rsDµν x; ξ( ) γν( )tu
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(6)

The definitions of the basis forms, K∆, and the propaga-

tors, , are obvious. The indices ∆ = S, P, V, A, T, and
AT correspond, respectively, to the scalar, pseudoscalar,
vector, tensor, and pseudotensor: (KS)ru = δru, (KP)ru =
(iγ5)ru, etc.

Introducing the nonlocal hermitian variables,
[β(x, y)]+ = [β(y, x)], we multiply the nominator and

denominator of Eq. (5) by exp (y,

x), D∆(x – y; ξ)β∆(x, y)) . Next, we perform the shift

β∆(x, y)  β∆(x, y) + (y)K∆ψ(x) in the denominator
of the obtained expression. The Jacobean of such a shift
is unity. After the shift is preformed, the integration
over the fermionic fields ψ can be taken in the explicit
form:

(7)

where the action for the variables β reads as follows:

(8)

The definition of G(x, y; [β]) is (G–1)(x, y; [β]) =
(γ · ∂)δ4(x – y) + Σ(x, y; [β]), where the quantity

Σ(x, y; [β]) = (y, x), D∆(x – y; ξ)K∆(x, y)) can be

interpreted as a self-energy because 〈 (x)ψ(y)〉  ≡
〈G(x, y; [β])〉 .

We evaluate the functional (7), (8) by the saddle-
point method. The stationary point is given by the equa-
tions

(9)

which are then multiplied by the corresponding matri-
ces K∆ and functions D∆. Summing them up over ∆ and

=  δruδts iγ5( )ru iγ5( )ts+[ ]δµνDνµ x; ξ( )/4

+ iγµ( )ru iγν( )ts iγµγ5( )ru iγνγ5( )ts+[ ] D̃µν x; ξ( )

+ Σρµ( )ru Σρν( )ts iγ5Σρµ( )ru iγ5Σρν( )ts+[ ] D̃µν x; ξ( )

≡ K∆( )ru D∆ x y; ξ–( ) K∆( )ts,( ).
∆
∑

D̃

Dβ∫ 1
2
---e2 β∆(∆∑–









ψ

Z η η,[ ] Dβ Seff β[ ]–( )exp∫[ ]
1–

=

× Dβ –Seff β[ ] d4xd4yη x( )G x y; β[ ],( )η y( )∫+{ } ,exp∫

Seff β[ ] TrLog G 1–( ) x y; β[ ],( )[ ]–=

+
e2

2
---- β∆ y x,( ) D∆ x y; ξ–( )β∆ x y,( ),( ).

∆
∑

β∆(∆∑
ψ

βS P, x y,( ) tr KS P, G x y; β[ ],( )[ ] ,=

βν
V A, x y,( ) tr Kν

V A, G x y; β[ ],( )[ ] ,=

βµν
T x y,( ) tr Kµν

T G x y; β[ ],( )[ ] ,=
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the vector indices, we get an equation (in momentum
space) for the self-energy Σ in the matrix form:

(10)

We choose the following anzatz for the solution:

(11)

Here,  = (p0, p1, p2, p3) and the arbitrary functions A,

B, and C depend on  and ( , ): f( ) ≡ f( , ( ,
)).

In the parameterization (11), the first two terms cor-
respond to the chirally invariant vacuum while the third
term violates the chiral symmetry. As we show below,
there exists a nontrivial solution of Eq. (10) with B ≠ 0
such that the function B does not depend on the angle θ.
Therefore, there exists an infinite set of solutions (for
which the effect functional of the theory is the same!)
connected to each other by the transformation B 

B' . This corresponds to the spontaneous breaking
of the chiral symmetry.

It is convenient to set nµ = δµ, 0, and separate the inte-
grations in Eq. (10) into “time,” q0, and “space,” q,
parts. The integral over the angle part of the space
momentum can be taken explicitly. The integral over
the temporal variable contains a singularity 1/(p0 – q0)2,
which cannot be removed by a choice of the gauge. The
singularity appears to be related to the (gauge-variant!)
direction of the Dirac line; therefore, this singularity is
nonphysical in the sense that it should not contribute to
any gauge-invariant quantity.

In order to solve equations (10), we regularize the
double pole by the quantity e, which has the dimension
of mass, (p0 – q0)–2  [(p0 – q0)2 + e2]–1. This regular-
ization corresponds [6] to the quark–antiquark pair cre-
ation from the vacuum and the subsequent flattening of
the quark–antiquark potential at the distances R *
Rflat ~ e–1, which are small compared to the dual pene-

tration depth, , of the vacuum. Below, we study the
problem in the leading order of the smallness parame-
ter, MB/e ! 1.

In the Landau gauge, ξ = 0, the saddle-point equa-
tions are (all the regions of integration are (0, ∞)):

(12)

Σ p β[ ],( )

=  e2 d4q

2π( )4
-------------Dµν p q–( )γµ

1
i γq( ) Σ q β[ ],( )+
------------------------------------------γν.∫

Σ p β[ ],( ) i A p( ) 1–[ ] γ p( )=

+ iC p( ) γn( ) e
iγ5θ

B p( ).+

p

p2 n p p p2 p
n

eiγ5ϕ

MB
1–

C p0 p,( ) p0–
ẽ2

2π( )3
-------------=

× qq2 C p0 q,( )

q2 B2 p0 q,( )p0 C
2

p0 q,( )+ +
---------------------------------------------------------------------d∫
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(13)

where  ≡ πe2/e and (p0, p) ≡ A(p0, p)p0 + C(p0, p).
We also used the fact that A(p0, p) = 1 + O((MB/e)4),
which follows from Eqs. (10), (11).

Equations (12), (13) possess two types of solutions:
the chirally invariant solution with B = 0 and the
chirally broken solution with B ≠ 0. To discriminate
between them, one should compare the corresponding
values of the action. The action of a classical solution is
given by Eq. (8) evaluated on the anzatz (11)

(14)

where β∆ are given by Eqs. (9): B  = e2 (βS +

iγ5βP) and (γ · ∂)(A – δ(4)) + i(  · )C = e2 (iγµ) .
The action (14) does not depend on the angle θ.

Up to O((MB/e)2), the corrections of the difference
between the actions of B = 0 and B ≠ 0 vacua are

(15)

where  = p0 + C' , and CB = 0 is a solution of
Eq. (12) with B = 0, while CB ≠ 0 is a solution of
Eqs. (12), (13). In the absence of the monopole conden-

×
MB

2

pq
-------

MB
2

p q–( )2+

MB
2 p q+( )2+

---------------------------------,log

B p0 p,( )

=  
ẽ2

2π( )3
------------- qq2 B p0 p,( )

q2 B2 p0 p2,( ) C
2

p0 q,( )+ +
-----------------------------------------------------------------d∫–

×
MB

2

pq
-------

MB
2 p q+( )2

+

MB
2 p q–( )2+

----------------------------------,log

ẽ2 C

S A B C, ,[ ] TrLn γ ∂⋅( )A x y–( )[–=

+ e
iγ5θ

B x y–( ) i γ n⋅( )C x y–( )+ ] e2

2
----+

× d4xd4y βS y x,( )βS x y,( ) βP y x,( )βP x y,( )+[ ]{∫
× D̃ x y; ξ–( ) βµ

V
y x,( )βν

V
x y,( )D̃µν x y; ξ–( )+ } ,

e
iγ5θ

D̃

γ n D̃µν βν
V

∆S S AB 0= 0 CB 0=, ,[ ] S AB 0≠ B CB 0≠, ,[ ]–≡

=  d4x
d4 p

2π( )4
------------- 2 1 B2

p2
-----+ 

 log
2B2

p2 B2+
-----------------–





∫∫

+
4CB 0='

p0
----------------

4CB 0≠'

p0
--------------- 1

1 g2B2+
--------------------

2 p0CB 0='

p2
----------------------+–

–
2 p0CB 0≠'

p2 B2+
---------------------

4 p0CB 0≠' B2

p2 B2+( )2
----------------------------+





1 O MB/e( )2( )+[ ] ,

C MB
2

sate,  = 0, the difference (15) coincides with the
result of the QED [11].

The important fact is that Eq. (12) implies that
CB = 0  > CB ≠ 0. Therefore, the action difference ∆S is
always positive due to the presence of the monopole
condensate. Moreover, the concrete form of solutions
of Eqs. (12), (13) does not influence this conclusion.
One can show [12] with the help of both analytical and
numerical tools that the B ≠ 0 solutions of Eqs. (12),
(13) do exist. Thus, the presence of the monopole con-
densate makes the vacuum, which is degenerate in the
chiral angle θ, more energetically preferable with
respect to the chirally nondegenerate vacuum. There-
fore, in the scope of the dual superconductor model of
the QCD vacuum, the presence of the monopole con-
densate implies the chiral symmetry breaking in QCD.
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We discuss the interaction of photons with neutrinos including two lepton loops. The parity violation in the
γν  γν channel due to two lepton loops is substantially enhanced relative to the one lepton loop contribu-
tion. However, there is no corresponding enhancement in the parity conserving amplitude in either the direct or
the cross channel γγ  . © 2005 Pleiades Publishing, Inc.

PACS numbers: 13.15.+g

νν
1. INTRODUCTION AND SUMMARY

The photon–neutrino interaction is very weak,
involving only electrically neutral external particles.
The cross sections are exceedingly small. Therefore,
this interaction can only be of astrophysical interest.
Chiu and Morrison [1] proposed long ago that photon
conversion to neutrinos may play a role in supernova
cooling. Another possible application involves the
propagation of light waves through a handed neutrino
sea [2], which results in optical activity (birefringence).
There may perhaps be effects in the cooling of the early
universe. For all these reasons, there has been some
small theoretical interest in this interaction [3]. We con-
sider here the interaction at energies that are small com-
pared to the mass of the weak bosons. At these energies,
the weak interaction can be described by a Fermi type
effective theory. To have νγ interaction, one needs vir-
tual leptons that couple both weakly and electromag-
netically, thus, lepton loops in Feynman graphs. Con-
trary to intuition, a two loop graph dominates the parity
violation. In this section, we summarize our results
using only dimensional arguments. A more technical
description is in the next sections.

For supernova cooling, the amplitude for the annihi-
lation γγ   is relevant, while, for photon propa-
gation in a neutrino sea, the parity violation in the cross
(scattering) channel γν  γν is important. We first
discuss the annihilation process where the two loop
contribution turns out to be small. It is natural to expect
higher order graphs to be smaller, but, as mentioned, we
find a violation of this rule here. This is reminiscent of
the surprise in coherent photon scattering from atoms
discussed by G.E. Brown and Woodward and later
Peierls [4].

¶ This article was submitted by the authors in English.
1 On leave of absence from the Institute of Theoretical and Experi-

mental Physics, Moscow, 117218 Russia.

νν
0021-3640/05/8106- $26.00 0249
The earliest estimate for the annihilation amplitude
used the Fermi theory of weak interactions [1], but
Gell-Mann [5] noted that, in V–A theory, this amplitude
vanishes for a point interaction of four fermions. This
can be understood physically without any detailed com-
putation. In Fermi Theory, the annihilation amplitude is
described by a triangle graph with an electron running
in the triangular loop (see Fig. 1).

Two of the vertices of the triangle are electromag-
netic, where the two photons couple, and the third ver-
tex is weak, where the two neutrinos emerge. The
amplitude has the magnitude GFα(pk), where p and k
are the four momenta of the neutrino and photon, and
pk is the only nonvanishing relativistic invariant for the
process (the Feynman amplitude is dimensionless
which brings the factor pk). Because the two neutrinos
emerge from the same space–time point, they can have
no relative orbital angular momentum (s wave). With
vector or axial vector coupling (V–A), the spins of the
fermion–antifermion pair must be parallel. A theorem
of Landau and Yang [6] forbids two free photons in a
state with a total angular momentum of one. Conse-
quently, the process is forbidden at order GF in V–A the-
ory. Gell-Mann also noted that this proof does not hold
if there is a weak boson mediating the weak interaction;

Fig. 1. γν scattering in the four-fermion Model.
© 2005 Pleiades Publishing, Inc.
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thus, the two neutrinos are emitted at separate space–
time points.

With a weak boson to mediate the interaction, the
(parity conserving) amplitude was estimated by Levine
[7], and his estimate remains valid in the standard
model, as noted by a number of authors [3, 8]. With the
weak boson, the loop changes from a triangle to a
square with the weak boson providing one of the sides
(see Fig. 2).

This gives an additional factor of pk/  to the first
order in the momenta p and k. This suppression factor
vanishes when the boson mass goes to infinity, in agree-
ment with Gell-Mann’s theorem. The precise cross sec-
tion for the annihilation was computed by Dicus and
Repko [8] to the order (GFα)2:

(1)

where z is cosθ and ω is the photon energy (in the CoM
system: pk = ω2(1 – z)) and we have dropped loga-
rithms. This is in agreement with the one loop Feynman
amplitude described above up to a constant factor:

(2)

The suppression factor ω2/  may be interpreted as a
(kR)2 factor associated with a d-wave for the two neu-
trinos. Therefore, the leading order amplitude may be
thought of as anomalously small compared to the initial
expectations [8].

MW
2

dσ/dz GFα( )2/32π3[ ] ω6/MW
4[ ] 1 z4–[ ] ,=

T 1( ) GFαω4/MW
2[ ]=

×  angular function[ ] logarithms[ ] .

MW
2

Fig. 2. γν scattering in the Standard Model.

Fig. 3. A sample of two-loop contribution to γν scattering.
When we go to the next order in weak interactions,
there is a set of diagrams in which the two neutrinos are
emitted at a separation of the order of the Compton
wavelength of the electron instead of the Compton
wavelength of the weak boson. The diagram remains a
square with two adjacent weak (order GF) vertices sep-
arated by an electron-neutrino loop. The two final neu-
trinos are emitted at the two weak vertices, and the two
photons couple at the two remaining vertices (see
Fig. 3).

We can estimate the Feynman amplitude associ-
ated with the two-loop graph in the lowest order using
the same dimensional arguments as in the case of the
one-loop result, changing the MW with me in the
denominator:

(3)

Therefore, the ratio of the two-loop amplitude to the
one loop is:

(4)

The bracketed ratio of the two squared masses is
very large ~1010 so that the cross-section is dominated
by the leading term T(1) only at low energies (ω < me).
However, at intermediate photon energies ω > me, our
estimate of the two loop contribution is no longer valid

since the ratio pk/  is no longer small. To estimate
what happens at these energies, we take the limit where

this ratio is large; then, we expect  to be replaced by
pk. Then, the ratio of the two loop contribution to the

one loop contribution becomes of order GF , which
is a small number (of order 10–2) independent of energy.
Therefore, there is no enhancement of the annihilation
amplitude due to the two loop diagrams. This is in
accord with expectations.

We come now to the parity violating amplitude in
the cross channel. This was first studied by Royer [2]
using a triangle graph. His result was criticized by
Stodolsky [2] on the basis of Gell-Mann’s theorem.
More recently, estimates have been proposed using the
standard model [3] and the one lepton loop graph for
both real and virtual photons. Here, we show that these
one loop estimates are all negligible when compared to
the two lepton loop estimate for real photons.

In the cross channel, the parity violating amplitude
has to be odd under inversion of the coordinates. The
precise form is discussed in section 2 and given below.
As a result, parity violation appears dimensionally as a
two loop effect even for a one loop amplitude. Conse-
quently, it is natural to consider two loop terms together
with one loop terms.

T 2( ) GF
2 α pk( )3/me

2[ ]=

=  GF
2 αω6/me

2[ ] angular function[ ] .

T 2( )/T 1( ) GFω2 MW
2 /me

2( ).=

me
2

me
2

MW
2
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The estimate of the parity violating Feynman ampli-
tude in the standard model can be written in the form
[3]:

(5)

where C is a constant involving logarithms [3], and, in
the second line, we evaluate the magnitude of the first
expression in the forward direction for photons of
energy ω where pk = 2ω2. This formula should apply
for ω < MW.

With two lepton loops, the corresponding parity vio-
lating Feynman amplitude has the form (for ω < me)

(6)

If we compare the two lepton loop to the one lepton
loop result, we find

(7)

This ratio is quite large and independent of the pho-
ton energy below me ~ 500 keV; its value is approxi-
mately 2 × 105. Physically, this reflects the fact that the
two final neutrinos are separated in the two loop Feyn–
Man graph by an intermediate electron and a neutrino,
hence, a distance of an electron Compton wavelength.
Even for photon energies above 1 MeV, the correspond-
ing graph with a muon loop enhances the amplitude for
photon–muon–neutrino scattering by a factor of 5.
Should such an effect be observed, it would indicate a
violation of CPT and Lorentz invariance [9]. Attempts
to observe such an effect have been unsuccessful [10].
Why is the situation different with the parity violation
in the forward amplitude in the scattering channel? The
answer is simple. This amplitude must be odd under
parity and therefore be at least cubic in kp. Thus, we
need an extra factor of kp and this comes (in the one-

loop case) with its own denominator  for dimen-
sional reasons. Therefore, the parity violating ampli-
tude, even in the one loop diagram, is formally of order

 and, consequently, on par with the two loop dia-
gram. However, it should be emphasized that, even with
this large enhancement factor, the effect remains
extremely small.

For real photons k2 = 0, the two loop estimates are as
explained above, dominant. Therefore, estimates of the
rotatory power of the neutrino sea in the literature [3]

T pv
1( )

C
GFα pk( )2

2MW
2

------------------------eµναβeµ k( )eν* k( )
pαkβ

MW
2

----------- 
 =

∼ 194GFαω2 ω4

MW
4

--------
 
 
 

,

T pv
2( ) 3GF

2 α pk( )2

32π3
----------------------------eµναβeµ k( )eν* k( )

pαkβ

me
2

-----------=

∼ 0.025GF
2 αω6/me

2.

T pv
2( )/T pv

1( ) 10 4–( )GFMW
2 MW

2 /me
2[ ] .∼

MW
2

GF
2
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have to be multiplied by a factor of 2 × 105 to make
them correct. In particular, using Eq. (31) of Abbasa-
badi and Repko [3] and applying this correction, we
get, for the rotatory power φ/L, the formula:

(8)

which should only apply in the range discussed by
Abbasabadi and Repko [3] (where Tν is the neutrino
Fermi energy).

For off-mass shell photons the situation is different,
since the Landau–Yang theorem does not apply to off-
mass shell photons. Therefore, even the lowest triangle
graph is viable, as was realized by Nieves et al. [3]. At
low photon energy, their one loop estimate remains
dominant, while, at higher photon energies, the two
loop estimate dominates. The transition between Low
and High photon energies ω* is given by the equation
ω*Eν > 30 eV2, where Eν is the neutrino energy in the
rest frame of the sea. For a standard sea of energy of a
few degrees Kelvin, the transition occurs in the ω ~
100 keV region. However, for an unconventional sea of
Fermi Energy 100 eV [11], the two loop estimate will
dominate even for visible photons. For radio waves, the
one loop estimate dominates for virtual photons.

2. EFFECTIVE LAGRANGIAN

For a systematic study of neutrino–photon interac-
tion, it is useful to work with effective Lagrangians.

The simplest example of the effective Lagrangian is
the four-fermion interactions of neutrinos ν with elec-
trons e. For fermions with momenta much smaller than
the intermediate bosons mass, one can integrate the
degrees of freedom associated with W and Z and write
the effective Lagrangian only for fermionic degrees of
freedom:

(9)

where Γα = gVγα + gAγαγ5. In the Standard Model (SM),

one finds gV =  – 2sin2θW, gA = . For small momenta,

this effective Lagrangian is as good as the fundamental
Lagrangian of the SM.

Consider now the process ν(p) + γ(k)  ν(p) +
γ(k) at momenta smaller than the intermediate bosons
mass or even smaller than the mass of an electron me.
Interaction between neutrinos and photons occurs only
through the interaction of photons with charged virtual
particles in loops. Loop diagrams are numerous and a

bit complicated. For small momenta pk/  ! 1, one
can expand ν(p) + γ(k)  ν(p) + γ(k) amplitudes in
the power series in this small parameter. The lowest
terms of this expansion can be represented as a matrix

φ/L 0.015GF
2 αω2Tν

2 Nν Nν–( )/me
2
,=

Leff

GF

2
------- νγαν( ) eΓαe( ),=

3
2
--- 3

2
---

mW
2
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element of the appropriate operators, i.e., of the partic-
ular terms of the effective Lagrangian.

Each term of the effective Lagrangian has to be a
Lorenz-invariant combination of the gauge-invariant
electromagnetic field tensor Fµν and the left-handed

neutrino field νL = (1 + γ5)ν and their derivatives. The

effective Lagrangian has dimension four: [L] ~ [m]4.
The operators may have higher dimensions D. To pre-
serve the correct dimension, the coefficients in front of
these operators should be proportional to the appropri-
ate power of 1/m, where m is the scale of mass walking
inside the loops. The actual calculation of the diagrams
gives numerical a coefficient in front of the operator.

This line of reasoning is very similar to the naive
dimensional arguments given in the Introduction. The
only advantage of the effective Lagrangian is that,
within that more advanced approach, we get a more
clear understanding of the structure of the operators
(i.e., of the scattering amplitudes).

2.1. P-even Scattering Amplitude

2.1.1. One-loop approximation. Consider the
effective Lagrangian for P-even νγ scattering. The pho-
ton’s part of the amplitude should be even under parity,
i.e., be the same for right-handed photons and left-
handed photons. One has to construct appropriate
Lorenz invariant operators from the fields Fµν and νL.
The combination of the fields that satisfies all these
conditions looks as follows:

(10)

It has the dimension D = 8. The matrix element of
Leff for forward scattering gives the amplitude

(11)

If we identify the parameter m in Eq. (11) with the
largest mass in the diagrams (i.e., with mW), we repro-
duce the well known result [7] up to the numerical con-
stant.

From this exercise, it is absolutely clear that nonzero
γν scattering appears only in the second order in the
photon momenta, i.e., in the order (pk)2. Thus, one
immediately concludes that any results of zero order in

k, i.e., of order (GFα) ~ α2/  (e.g., such as in [1, 2]),
are erroneous.

There is no way to violate the Gell-Mann theorem
within effective Lagrangians. To get the amplitude of
the order GFα, one needs an operator with D = 6. By
direct inspection, one finds that there is no gauge invari-
ant operator with D = 6.

1
2
---

Leff
e4

m4
------ Fµα Fµβ[ ]νγ α∂β 1 γ5+( )ν h.c.+∼

T
e4

m4
------ pk( )2

e k( )*e k( ).∼

mW
2

2.1.2. Two-loop approximation. Now, consider
two-loop amplitudes with light particles (i.e., electrons
and neutrinos) in an intermediate state between two
external neutrino vertices. We expect that these dia-

grams are proportional to α/ . Thus, to preserve
the correct dimension in the effective Lagrangian, we
need an operator of dimension D = 10. The appropriate
effective Lagrangian is

(12)

For this Leff, the scattering amplitude is of the third
order in (pk)

(13)

Thus, for P-even scattering, second order loops give a

correction of the order GF (pk/ ), i.e., a small cor-
rection to the one-loop result.

2.2. Optical Activity. P-odd Scattering Amplitude

Now, let us come back to the P-odd effects in νγ
scattering and find the appropriate operators in Leff
responsible for optical activity. The Lagrangian of
dimension D = 8 that depends on P-odd combinations
of photon polarizations has the form

(14)

where  = eµναβFαβ.

The surprise is that this operator does not work in
our case. One can check that the matrix element of

Fµα  between photons with the same momenta and
polarization (forward scattering) is identically zero and
this operator of D = 8 does not contribute into P-odd
forward scattering. Thus, the P-odd effects are zero in

the (pk)2/  order. The first nonzero effect is of the
third order ~(pk)3. The birefringence of the neutrino sea
is strongly suppressed!

To find the effect in the next order, we have to look
for the operators of higher dimension D = 10. One of
these operators looks similar to the following:

(15)

GF
2 me

2

Leff

GF
2 α

me
2

----------- Fµα ∂γFµβ( )[ ] νγ α∂β∂γ 1 γ5+( )ν[ ] h.c.+∼

T C
GF

2 α
me

2
----------- pk( )3

e k( )e* k( ).∼

MW
2 me

2

Leff
1

mW
4

------- Fµα F̃µβ[ ] νγ α∂β 1 γ5+( )ν[ ] h.c.,+∼

F̃µν
1
2
---

F̃µβ

mW
4

Leff
1

m6
------ Fµα ∂γF̃µβ( )[ ] νγ α∂β∂γ 1 γ5+( )ν[ ] h.c.+∼
JETP LETTERS      Vol. 81      No. 6      2005



PHOTON–NEUTRINO INTERACTIONS 253
With this Leff, the forward scattering amplitude for a
photon with momentum k and for a neutrino with
momentum p is equal to

(16)

This amplitude makes a different contribution to the
left-handed and right-handed photon scattering: TLL =
−TRR.

3. ACTUAL CALCULATIONS
3.1. One-Loop Calculations: Real Photons

The actual calculation of the coefficient C has been
performed in one loop-approximation in [3] with the
results

(17)

where

(18)

in the third reference in [3] and

(19)

in the fourth one [3]. The reason for that discrepancy is
unknown. Though numerically Eqs. (18) and (19) differ
by only a few per cent, it would be interesting to under-
stand whether there is a correct one-loop calculation.

On the other hand, we find, for a P-odd effect, two-
loop diagrams many orders of magnitude larger than
the one-loop contribution. Thus, we can neglect any
one-loop results.

3.2. One-Loop Calculations: Off-shell Photons

The optical activity for off-shell photons was first
considered by Mohanty, Nieves, and Pal in [3]. They
noticed that the Gell-Mann prohibition theorem does
not work for the off-shell photons. Thus, one can expect

that the off-shell amplitude is of the first order in 1/ .
Indeed,

(20)

where s = sinθW.
Equation (20) differs from the original result of [3]

by a factor of 1/2. The reason is that the triangle dia-
gram was missing there. (This is the triangle diagram
with Z boson and two photons. For real photons k2 = 0,
the triangle diagrams cancel each other in the SM, since
the SM is anomaly free. However, for off-shell photons,

T C e4/8π2( ) pk/m2( )2
=

× eµναβeµ k( )eν* k( ) pαkβ/mW
2( ).

T C
e4

8π2s2
------------- 

  pk

mW
2

------- 
  2

eµναβeµ k( )eν* k( )
pαkβ

mW
2

----------- 
  ,=

C 4/3 mW
2 /m

2( )ln 11/3–( ),=

C 4/3 mW
2 /m2( )ln 8/3–( ),=

mW
2

T e4/8π2s2( )eµναβeµ k( )=

× eν* k( ) pαkβ/mW
2( ) k2/6me

2( ),
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each triangle diagram makes a contribution propor-
tional to k2/m2. The sum of all triangles is nonzero, and
the main contribution comes from the electron loop.
This contribution has to be taken into account.)

3.3. Two-Loop Calculation

The physical reason for the dominance of the two-
loop diagrams under the one-loop in P-odd amplitudes
is simple. To escape Gell-Mann’s restriction, one needs
nonlocal interactions in order to include the higher
orbital momenta of the pair  into the annihilation
process. In the one loop approximation, the expected
value of the orbital momentum of the neutrino pair is
~p/mW . The factor 1/mW measures the shortest separa-
tion of two neutrinos during interaction (nonlocality).

In the two-loop approximation, the expected value
of the neutrino pair orbital moment is ~p/me. The factor
1/me is due to (e–e+ν) in the intermediate states.

Kinematically, P-odd amplitudes are of the order of
(pk)3 (see Section 2.2). On dimensional grounds, we
conclude that two-loop amplitudes are of the same
order (pk)3 (see Section 2.1.2). Thus, the one-loop
P-odd amplitude has the same dependence on pk as the
two-loop P-odd amplitude. Moving to the next order in
the electroweak interaction, we loose a small factor of

α/2π but win a great factor of / . The net effect is

(21)

The actual calculation is rather lengthy. The result is

(22)

Thus, the enhancement factor is

(23)

where C is a one-loop coefficient from Eq. (8). We have
lost two orders of magnitude compared with the naive
estimate in Eq. (10), mainly due to the large logarithmic
coefficient C in the one-loop amplitude. Still, the
enhancement factor is very large ~105!

This research was supported by the NSERC Canada
and by the Russian Foundation for Basic Research
(project no. 00-15-96562).
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Formation of waves of large amplitude (freak waves, killer waves) at the surface of the ocean is studied numer-
ically. We have observed that freak waves have the same ratio of the wave height to the wave length as limiting
Stokes waves. When a freak wave reaches this limiting state, it breaks. The physical mechanism of freak wave
formation is discussed. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Waves of extremely large size, which are alterna-
tively called freak, rogue, or giant waves, are a well-
documented hazard for mariners (see, for instance [1–
4]). These waves are responsible for the loss of many
ships and human lives. There are no doubts that freak
waves are essentially nonlinear objects. They are very
steep. In the last stage of their evolution, their steepness
becomes infinite, thus, forming a wall of water. Before
this moment, the steepness is higher than for the limit-
ing Stokes wave. Moreover, a typical freak wave is a
single event (see [5]). Before breaking, it has a crest
three to four (or even more) times higher than the crests
of neighboring waves. A freak wave is preceded by a
deep trough, or hole in the sea. The characteristic life
time of a freak wave is short—ten wave periods or so.
If the wave period is fifteen seconds, this is just a few
minutes. Freak waves appears almost instantly from a
relatively calm sea. Certainly, these peculiar features of
freak waves cannot be explained by a linear theory. The
focusing of ocean waves creates only the preconditions
for formation of freak waves, which are a strongly non-
linear effect.

It is natural to associate the appearance of freak
waves with the modulation instability of Stokes waves.
This instability is usually named after Benjamin and
Feir; however, it was first discovered by Lighthill in [6].
The theory of instability was developed independently
in [7] and in [8]. Feir (see [9]) was the first to observe
the instability experimentally in 1967.

A slowly modulated weakly nonlinear Stokes wave
is described by the nonlinear Shrödinger equation
(NLSE), which is derived in [10]. This equation is inte-
grable (see [11]) and is just the first term in the hierar-
chy of envelope equations describing packets of surface
gravity waves. The second term in this hierarchy was

¶ This article was submitted by the authors in English.
0021-3640/05/8106- $26.00 0255
calculated by Dysthe in [12], and the next one was
found a few years ago in [13]. The Dysthe equation was
solved numerically by Ablovitz and his collaborates
(see [14]).

Since the first work of [1], many authors have tried
to explain freak wave formation in terms of NLSE and
its generalizations such as the Dysthe equation. A vast
amount scientific literature is devoted to this subject.
The list presented below is long but incomplete: [13–
23]. A survey of the different possible mechanisms of
freak wave formation is given in [24, 25].

One cannot deny some advantages achieved by the
use of the envelope equations. The results of many
authors agree on one important point: nonlinear devel-
opment of modulation instability leads to concentration
of wave energy in a small spatial region. This is a clue
about the possible formation of freak waves. On the
other hand, it is clear that the freak wave phenomenon
cannot be explained in terms of envelope equations.
Indeed, NLSE and its generalizations are derived by
expansion in series on powers of the parameter λ .
(Lk)–1, where k is the wave number and L is the length
of the modulation. For a real freak wave, λ ~ 1, and any
slow modulation expansion fails. However, the analysis
of the NLS-type equations gives some valuable infor-
mation about the formation of freak waves.

Modulation instability leads to the decomposition of
an initially homogeneous Stokes wave into a system of
envelope quasi-solitons [26, 27]. This state can be
called quasi-solitonic turbulence. In this model, soli-
tons can merge, thus, increasing the spatial intermit-
tency and leading to the establishment of chaotic
intense modulations of energy density. So far, this
model cannot explain the formation of freak waves with
λ ~ 1.

Freak wave phenomenon could be explained if the
envelope solutions of a certain critical amplitude are
unstable and can collapse. While, in the framework of
© 2005 Pleiades Publishing, Inc.
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1D focusing NLSE solitons are stable, the improved
model must have some threshold in amplitude for soli-
ton stability. The instability of a soliton of large ampli-
tude and its further collapse could be a proper theoreti-
cal explanation of the origin of freak waves.

This scenario was observed in a numerical experi-
ment using the heuristic one-dimensional Maida–
McLaughlin–Tabak (MMT) model (see [28]) of one-
dimensional wave turbulence [27]. In the experiments
described in the cited paper, the instability of a moder-
ate amplitude monochromatic wave leads first to the
creation of a chain of solitons, which merge due to
inelastic interaction into one soliton of large amplitude.
This soliton sucks energy from neighboring waves and
becomes unstable and collapses up to λ ~ 1, thus, pro-
ducing a freak wave.

In our experiments, a different scenario is observed.
Namely, a freak wave appears inside of a slightly mod-
ulated wave train. A freak wave looks like the develop-
ment of some defect on the periodic grid, which is a
Stokes wave train.

The most direct way to prove the validity of the sce-
nario outlined above for freak wave formation is a
straight numerical solution of the Euler equation
describing the potential oscillations of an ideal fluid
with a free surface in a gravitational field. This solution
can be found using the method published in several arti-
cles [29–31]. This method is applicable in 2 + 1 geom-
etry; it includes conformal mapping of a fluid bounded
by the surface to the lower half-plane together with an
optimal choice of variables, which guarantees the well-
posedness of the equations [32].

In the present article, we perform experiments for
wave trains of steepness µ . 0.15. This experiment can
be considered as a simulation of a realistic situation. If
the typical steepness of a swell is µ . 0.06–0.07, in a
caustic area, it could easily be two to three times more.
In the experiments, we start with the Stokes wave train
perturbed by a long wave with twenty times less ampli-
tude. We observe the development of modulation insta-
bility and, finally, the explosive formation of a freak
wave that is pretty similar to the waves observed in
nature.

2. BASIC EQUATIONS

Suppose that an incompressible fluid covers a two-
dimensional domain

(1)

where η(x, t) is the shape of the surface. The flow is
potential; hence,

(2)

∞ y η x t,( ),< <–

V ∇φ , ∆V 0, ∇ 2φ 0.= = =
Let ψ = φ|y = η be the potential at the surface and H =
7 + U be the total energy. The terms

(3)

are, correspondingly, the kinetic and potential parts of
the energy, where g is the gravity acceleration and φn is
the normal velocity at the surface. The variables ψ and
η are canonically conjugated; in these variables, the
Euler equation of the hydrodynamics reads

(4)

One can perform a conformal transformation to map
the domain that is filled with fluid

in the Z plane to the lower half-plane

in the w plane. After the conformal mapping, it is con-
venient to introduce, along with the conformal mapping
Z(w, t), the complex velocity potential Φ(w, t). Next, in
[33], equations (4) were transformed into a simple
form, which is convenient both for the numerical simu-
lation and analytical study. Namely, by introducing the
new variables

(5)

one can transform system (4) into the following one:

(6)

Now, the complex transport velocity U and B

(7)

In (7),  is the projector operator generating a function
that is analytical in a lower half-plane. Here, we have
omitted all the details, which can be found in [29, 33].

3. NUMERICAL APPROACH

Many numerical schemes have been developed for
the solution of Euler equations describing the potential
flow of a free-surface fluid in a gravity field. Most of
them use integral equations that solve the boundary-
value problem for a Laplace equation [34–36]. A sur-
vey of the method can be found in [37].

In this article, we study the modulation instability of
Stokes waves. As the initial condition, we use a slightly
modulated stationary nonlinear wave train. This train is
unstable with respect to growing long-scale modula-
tion. This remarkable fact was first established in [6],
where the authors calculated the growth-rate of insta-

7
1
2
--- ψφn x, Ud

∞–

∞

∫–
g
2
--- η2 x t,( ) x,d

∞–

∞

∫= =

∂η
∂t
------

δH
δψ
-------,

∂ψ
∂t
------- δH

δη
-------.–= =

∞ x ∞, ∞ y η x t,( ), Z< <–< <– x iy+=

∞ u ∞, ∞ v 0, w< <––< <– u iv+=

R
1

Zw

------, V iΦz i
Φw

Zw

-------= = =

Rt i URw RUw–( ),=

Vt i UVw RBw–( ) g R 1–( ).+=

U P̂ V R V R+( ), B P̂ VV( ).= =

P̂
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bility in the limit of long-wave perturbation. As far as
Lighthill’s growth-rate coefficient was proportional to
the wave number of the perturbation length, the result
was in principle incomplete: somewhere at short scales,
the instability must be arrested. The complete form of
the growth-rate coefficient was found independently in
[7, 8, 10].

We apply the spectral code to solve equations (6).
We should mention that conformal mapping is a routine
approach for studying a stationary Stokes wave. The
equations for the Fourier coefficients were solved
numerically by many authors (see, for instance [38]).
The idea to implement conformal mapping for simula-
tion of essentially nonstationary wave dynamics
emerged in the beginning of the eighties (see [39]).
Since equations (6) were not derived at that time, the
authors used the quasi-Lagrangian approach to fluid
dynamics. After some experiments and discussion of
their results, the idea to use the conformal mapping was
abandoned for the following reason: conformal map-
ping is not good for resolution of wedge-type singular-
ities naturally appearing on the free surface of a fluid.
This reason is important if the spatial mesh is sparse.
However, modern computers make it possible to use
very fine meshes consisting of more than a million
points or spectral modes. Thus, this argument is not
pertinent any more.

Our recent experiments are sufficiently accurate: we
use 105 to 2 × 106 harmonics. We solve equations (6) in
the periodic domain 0 < x < 2π, putting g = 1. The initial
data are chosen as a combination of the exact Stokes
wave (wave number k = 10; steepness ka = µ = 0.15)
and a long monochromatic wave with the wave number
k = 1 and a moderate amplitude 5 × 10–2. This relatively
high level of perturbation is deliberately chosen to
make the period of exponential instability growth that
is not interesting for us shorter. At given conditions, the
maximum growth-rate is

and  . 28.6. The period of the initial wave is T0 =

2π/ . The simulation is continued until T .
458.842, that is, until more than sixteen inverse growth-
rates have been completed. We performed the computa-
tions with double precision with the number of modes
doubled as far as the amplitude of the last mode reached
10–15. The maximum number of modes was two mil-
lions.

We observed a short period of exponential growth of
perturbation, then, some intermediate regime of inten-
sive modulation, which ends up with explosive forma-
tion of one single freak wave. Pictures of the surface
shape before breaking at the times T = 442 and T =
458.56 are presented in Fig. 1 and Fig. 2.

γmax . 
10
2

---------- 0.152×  . 0.035

γmax
1–

10
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The time interval from T = 442 to T = 458.56 con-
tains seven periods of the initial wave only. One can see
fast, nonmonotonic formation of the freak wave. At this
moment, the freak wave is more steep than the Stokes
wave of limiting amplitude. The amplitudes of the
waves preceding the freak wave are relatively small
(three times less). One can see a trough just ahead of the
freak wave. This is the so-called hole in the water
(marine folklore) that precedes a freak wave. Figure 3

Fig. 1. The shape of the surface at T = 422.

Fig. 2. The shape of the surface at T = 458.56.

Fig. 3. The shape of the surface near the wave crest at T =
458.61.
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demonstrates the fine structure of the surface shape
near the wave crest.

We managed to continue our simulation until the
moment T = 458.842. The zoomed shape of the surface
at that time is presented in Fig. 4.

One can see that, near the crest, the front face of the
wave is very steep. This is really a wall of water. In
some regions, the steepness is even negative. The cur-
vature of the shape is plotted in Fig. 5.

This is actually a breaking wave. Moreover, in all
our experiments, at the moment of breaking, we
observed that the ratio of the wave height to the wave-
length is practically the same and close to that of the
limiting Stokes wave, 0.141.

Note that the maximum value of the freak wave
height is three times higher than the height of the initial
wave. The growing of the wave height up to this level
from the level of insignificant wave height takes less
than ten wave periods. This is a really fast process; it is
three times faster than the development of modulation
instability.

Fig. 4. The shape of the surface near the wave crest at T =
458.842.

Fig. 6. The density of the kinetic energy just before break-
ing at T = 456 (dashed line) and at the moment of breaking
at T = 458.5 (solid line).
Figure 6 displays the evolution of the spatial density
of the kinetic energy (in the domain [5.5–9.5]) where
the breaking takes place.

One can see that this evolution is nonmonotonous.
The density oscillates in time and finally condensates in
one very narrow wave crest. In general, the whole pro-
cess of freak wave formation is nonmonotonous. We
can say that the freak wave runs over wave crests until
it reaches an extremely high amplitude. This behavior
can be easily explained by the difference of the phase
and group velocities: the energy propagates with a
group velocity that is twice less than the phase velocity.
Figure 7 demonstrates the distribution of the horizontal
momentum before and after breaking at T = 455 and
T = 456. One can see that the process of momentum
concentration in a moving but localized area is monot-
onous. Definitely, this behavior can be explained by the
fact that momentum is a conserved quantity.

4. CONCLUSIONS

Let us summarize our numerical experiments. Cer-
tainly, they reproduce the most apparent features of
freak waves: single wave crests of very high amplitude,

Fig. 5. Curvature (k) of the surface at T = 458.842.

Fig. 7. Distribution of momentum (M) before (dashed line)
and after (solid line) breaking.
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exceeding of the significant wave height by more than
three times, appearing from nowhere and reaching full
height in a very short time, less than ten periods of sur-
rounding waves. A singular freak wave is proceeded by
an area of diminished wave amplitudes. The final fate
of a freak wave is breaking. The ratio of the freak wave
height to its wavelength is practically the same, being
close to the limiting Stokes wave, 0.141. A freak wave
moves with the group velocity.

In our experiments, the freak wave appears as a
result of the development of modulation instability (if
the threshold of the instability is not exceeded, no freak
waves appear at all). Then, it takes a long time for the
onset of instability to create a freak wave. Meanwhile,
a freak wave appears only after the fifteenth inverse
growth rate of instability. What happens after the devel-
opment of instability but before the formation of a freak
wave? This stage could be considered as the develop-
ment of some defect on the periodic grid. This grid is
just the initial Stokes wave train. A similar picture was
observed in [40], where the breaking of a wave in the
group was studied.
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Superhard superconducting samples with a critical temperature of Tc = 12.6 K are obtained when synthetic dia-
mond powders that were preliminarily coated with a niobium film are sintered at a pressure of 7.7 GPa and a
temperature of 1973 K. Superhard superconductors with Tc = 9.3 K are obtained when diamond and molybde-
num powders are sintered at a pressure of 7.7 GPa and a temperature of 2173 K. Superconducting samples with
Tc = 36.1–37.5 K have been obtained in the systems diamond–MgB2 and cubic boron nitride–MgB2. © 2005
Pleiades Publishing, Inc.
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 INTRODUCTION

Superhard materials with superconducting proper-
ties are of considerable interest for the creation of high-
pressure devices for investigating the electric and
superconducting properties of various materials under
pressure. Moreover, engineering applications are possi-
ble in the form of high-strength superconducting con-
tacts and cryogenic electrical machines. The develop-
ment of high-pressure cryogenic equipment requires
the production of superhard superconducting materials.
One of the possibilities of solving this problem is the
sintering of small-crystalline diamond powders with
metal powders (Nb, Mo) at high static pressure and
temperature. Interacting with diamond, these metals
form carbides that bond diamond crystallites into a
united compact material and that have relatively high
critical temperatures of the transition to the supercon-
ducting state.

Superconducting composites consisting of hard
superconductors and normal metals that are in thermal
and electrical contacts with each other make it possible
to satisfy very conflicting requirements imposed on
superconducting materials for the production of large
superconducting magnetic systems [1].

The production of materials combining such proper-
ties as superconductivity, superhardness, and high
strength is of both scientific and applied interest. One of
the applications is the creation of a superhard material
for the production of anvils of high-pressure devices.

Reports on superconducting diamonds appeared
recently [2–4]. Prins reported [2] on the observation of
a phenomenon that was treated as a new type of super-
0021-3640/05/8106- $26.00 0260
conductivity in experiments with n-type diamonds at
room temperature. Additional experimental data, as
well as the theoretical explanation of the observed phe-
nomenon, are evidently necessary. Ekimov et al. [3]
presented experimental and calculation data on the
superconductivity of polycrystalline diamond aggre-
gates highly doped with boron. The transition to the
superconducting state started at Tc ≈ 4 K, and zero elec-
tric resistance was reached at T ≈ 2.3 K. It was con-
cluded that superconductivity was of the bulk type, and
it was attributed to the doped diamond particles. Super-
conductivity was also found in diamond films strongly
doped with boron [4]. The transition to the supercon-
ducting state starts at Tc = 7.4 K and ends at 4.2 K.

In this work, superhard superconducting materials
have been synthesized on the basis of the systems dia-
mond–Nb, diamond–Mo, diamond–MgB2, and cubic
boron nitride–MgB2, and the microhardness and super-
conducting properties of these materials have been
investigated.

PROCEDURE FOR PREPARING SAMPLES

The samples of the materials were obtained at high
static pressures and temperatures. The experiments
were carried out using high-pressure chambers of the
type “anvils with cavities” [5]. Pressure was calibrated
by resistance jumps in the reference metals Ba
(5.5 GPa) and Bi (2.5, 2.7, 7.7 GPa) at phase transi-
tions. The temperature graduation of the chambers was
performed using Pt/Pt–10% Rh and W/Re thermocou-
ples.
© 2005 Pleiades Publishing, Inc.
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The initial components were placed into a tantalum-
foil shell 0.1 mm thick. Samples were heated by ac cur-
rent flowing through a graphite heater, tantalum shell,
and sample. The experiments were carried out at a pres-
sure of 7.7 GPa and temperatures of (diamond–MgB2,
cubic boron nitride) 1373, (diamond–niobium) 1973,
and (diamond–molybdenum) 2173 K for 60–90 s. The
samples were quenched under high pressure at a rate of
200° per second. After the pressure decreased to atmo-
spheric pressure, the samples were extracted from the
high-pressure cell. They were 4.5 and 3.5 mm in diam-
eter and height, respectively. After grinding and polish-
ing, 3.9 × 2.51 × 1.54-mm parallelepiped samples were
obtained.

The phase content of the samples was determined by
the x-ray method using an HZG-4A diffractometer and
monochromatic 0.1541-nm CuKα radiation. The resis-
tance of the resulting samples was measured using the
standard four-contact method. The electrical contacts
were produced using conducting silver paste. The tem-
perature dependence of the resistance was measured in
the interval 4.2 < T < 300 K. The magnetic field was
created by a superconducting solenoid.

RESULTS AND DISCUSSION

1. Diamond–Niobium System

Synthetic diamond with 80–100-µm crystallites on
whose surfaces a niobium film was deposited by sput-
tering in vacuum was used as the initial material. The
total amount of niobium in the initial material was
24 wt %. The experiments were carried out at a pres-
sure of 7.7 GPa and a temperature of 1973 K for 60 s.

The diffraction patterns primarily exhibit peaks
associated with diamond and NbC monocarbide. Peaks
of lower intensities belong to Nb2C. It was found that
NbC monocarbide that was synthesized at the bound-
aries of crystallites had an fcc lattice with the lattice
parameter a0 = 0.447 nm. This value is consistent with
data obtained for NbC by another method [6]. Carbide
Nb2C has a hexagonal structure with the lattice param-
eters a0 = 0.312 nm and c0 = 0.492 nm.

Vickers microhardness was measured using a
PMT-3 device at an indenter load of 5.5 N. The hard-
ness values are in the range 35–95 GPa. According to
[6], the Vickers hardness of NbC is approximately
equal to 17 GPa, which is much less than the results
obtained in our work for microdomains enriched in
NbC. The hardness of such microdomains is high
apparently due to the effect of the boundaries of dia-
mond crystallites, which have a much higher hardness
(100–150 GPa along different faces and depend on the
quality of the crystals).

The temperature of the transition to the supercon-
ducting state in all the measurements is fixed at the
onset of the transition. According to an analysis of the
temperature dependence of the resistance, the critical
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temperature of the transition of the synthesized samples
to the superconducting state is equal to Tc ≈ 12.6 K
(Fig. 1a), which is characteristic of an NbC compound
with high stoichiometry [7–9]. Nonstoichiometric NbC
compounds have lower Tc or superconductivity is
absent in them altogether. The characteristic feature of
the synthesized samples is a quite narrow supercon-
ducting transition, ∆T ≈ 1.5 K. The measured depen-
dence of the resistance of a sample on the external mag-
netic field (Fig. 1b) is characteristic of a compound
whose stoichiometry is very close to that of NbC. The
second critical field Hc2 = 1.25 T (at T = 4.2 K) corre-
sponds to Hc2 for NbC films obtained by the laser-evap-
oration method [8]. Thus, one can assume that, on the
surface of diamond crystallites undergoing sintering,
NbC is formed with an almost perfect crystal lattice and
a low concentration of defects, whose presence also
reduces the temperature of the superconducting transi-
tion that can even disappear [10].

2. Diamond–Molybdenum System

In this system, a synthetic-diamond powder with a
granularity of 40–100 µm and a molybdenum powder

Fig. 1. (a) Temperature and (b) magnetic-field dependences
of the resistance for the sample obtained in the diamond–
niobium system.
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with a particle size of 1–5 µm are used as the initial
material consisting of 60 wt % diamond and 40 wt %
molybdenum. A compact material was obtained by
holding at a pressure of 7.7 GPa and a temperature of
2173 K for 90 s. The phase content of the samples was
determined by the same method as used for the dia-
mond–Nb system.

The following phases were identified in the samples:
the α-MoC diamond phase with a cubic lattice with the
parameter a0 = 0.427 nm (B1 type), the η-MoC hexag-
onal phase with the crystal-lattice parameters a0 =
0.300 nm and c0 = 1.452 nm, and traces of the γ-MoC
hexagonal phase (WC type) with the parameters a0 =
0.290 nm and c0 = 0.282 nm. The crystal-lattice param-
eters that were determined for the molybdenum–carbon

Fig. 2. Temperature dependence of the resistance for the
sample obtained in the diamond–molybdenum system.

Fig. 3. Temperature dependence of the resistance for the
composite samples obtained in the systems (1) cubic boron
nitride–MgB2, Tc = 36.1 K; (2) diamond–MgB2, Tc =
36.9 K; (3) MgB2, Tc = 37 K; and (4) diamond–niobium–
MgB2, Tc = 37.5 K.

Tc
compounds are consistent with published data [6]. The
Vickers microhardness of the samples lies in the range
27–83 GPa.

The composites that were obtained due to the inter-
action of diamonds with molybdenum are supercon-
ductors with characteristic features. First, the tempera-
ture of the transition to the superconducting state is
equal to Tc = 9.3 K, which is slightly lower than the Tc
values for molybdenum carbide obtained by sintering
powders of molybdenum and graphite [11]. Second, the
transition width ∆T ≈ 5 K is larger than that for the dia-
mond–niobium system. Figure 2 shows the temperature
dependence of the resistance of these composites.

3. The Systems Diamond–MgB2 
and Cubic Boron Nitride–MgB2

Magnesium diboride, whose bulk superconductivity
was discovered recently [12, 13], has higher critical
temperature Tc = 39 K than niobium carbide and
molybdenum carbide.

Many works were devoted to the study of the effect
of the conditions under which MgB2 was obtained and
treated at high pressures and temperatures on the super-
conducting properties of MgB2 with various dopants
[14–20]. It is of interest to obtain a superconducting
composite material in which diamond or cubic boron
nitride is used as the superhard component and MgB2 is
used as the superconducting component. As the initial
material, we used MgB2 industrial powders in which
the content of the basic product was equal to 98.5%.
The particle size was reduced to 5–10 µm by additional
powdering. The prepared mixtures consisted of 80 wt %
of the superhard component and 20 wt % of MgB2. The
granularity of the diamond and cubic boron nitride
powders was equal to 40–100 and 28–40 µm, respec-
tively. The assembly of the high-pressure cells and
experimental procedure were the same as those used for
the diamond–molybdenum system. In one of the exper-
iments, a niobium-coated diamond powder was used.
The samples were obtained by holding at a pressure of
7.7 GPa and a temperature of 1373 K for 60 s.

The Vickers microhardness of the diamond–MgB2
and cubic boron nitride–MgB2 samples varies in the
range 25–78 and 24–57 GPa, respectively. According to
[15], the microhardness of MgB2 samples that were
synthesized at 2 GPa and 1073 K from elements with
the addition of 2 wt % of a tantalum powder was equal
to 12.79 GPa.

The temperature dependence that was measured for
the resistance of the samples shows that the tempera-
ture of the transition to the superconducting state is
equal to Tc ≈ 37 K, which is close to the value known
for MgB2 [12]. This closeness indicates that MgB2
plays a key role in the superconductivity of these com-
posite materials, and the matrix consisting of cubic
boron nitride or diamond insignificantly changes the Tc.
JETP LETTERS      Vol. 81      No. 6      2005
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The mechanical properties of such a superconducting
material are much higher than those of compacted
MgB2. Figure 3 shows the results.

CONCLUSIONS
A composite superhard superconducting material in

the form of the diamond matrix and superconducting
NbC channels that have the perfect crystal structure and
Tc = 12.6 K has been obtained in the diamond–niobium
system at high pressures and temperatures.

A composite material consisting of a diamond
matrix and superconducting channels primarily of MoC
with Tc = 9.3 K has been obtained in the diamond–
molybdenum system. Parts of various devices can be
made of such composites.

Composite materials consisting of the superhard
matrices (80 wt %) and superconducting channels of
MgB2 with Tc = 36.1–37.5 K have been obtained in the
systems diamond–MgB2 and cubic boron nitride–
MgB2.

The microhardness of samples obtained in the sys-
tems under investigation indicates that the composite
matrix (consisting of cubic boron nitride or diamond)
occupying the major part of the volume of the samples
has a microhardness of 57–95 GPa. Such microhard-
ness values are characteristic of superhard compact
polycrystalline materials based on cubic boron nitride
and diamond that are used to produce various abrasive
and cutting tools [21]. Thus, the method used in this
work allows the production of high-strength superhard
superconducting materials.

This work was supported by the Russian Foundation
for Basic Research (project no. 05-02-17368a).
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The number of copper ions as constituents of a nanobridge that links two deoxyribonucleic acid (DNA) mole-
cules that are fixed in a particle of a liquid-crystalline dispersion has been evaluated from the measurements of
the magnetic susceptibility of particles in the liquid-crystalline dispersion of DNA. It has been shown that the
experimental data are consistent with both theoretical assumptions on the possible structure of a nanobridge and
a thermodynamic model that describes the formation of these bridges. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.75.+a
INTRODUCTION 

One of the strategies for producing nanoconstruc-
tions containing double-stranded nucleic acid mole-
cules is based on the use of liquid-crystalline disper-
sions rather than single nucleic acid molecules. The liq-
uid-crystalline dispersions of nucleic acids result from
the phase exclusion of these molecules from aqueous
polymer solutions. In this case, the problem is reduced
to the formation of nanobridges between neighboring
nucleic acid molecules fixed at a distance of 25–40 Å in
the structure of liquid-crystalline dispersion particles.
According to the model proposed previously [1–3],
nanobridges such as [–Cu2+–daunomycin–Cu2+–…–
Cu2+–daunomycin–Cu2+–] can link the nearest neigh-
boring molecules of nucleic acids. Thus, the nano-
bridges crosslink neighboring nucleic acid molecules to
form a rigid nanoconstruction (Fig. 1).

The aim of this work was to determine the number
of Cu2+ ions incorporated into nanobridges. To this end,
we found the contribution of paramagnetic Cu2+ centers
to the total magnetic susceptibility of liquid-crystalline
dispersions. It is well known that, when chelate bridges
with four reactive oxygen atoms are formed, copper
ions occur in the d9 state [4], which exhibits a nonzero
magnetic moment.

EXPERIMENTAL PROCEDURE

Double-stranded deoxyribonucleic acid (DNA)
from calf thymus (Sigma) with a molecular weight of
(7–8) × 105 amu was used for the sample preparation.
0021-3640/05/8106- $26.00 0264
Commercial daunomycin, CuCl2, NaCl, and sodium
phosphates from Sigma were used without additional
purification. A nanoconstruction that was based on dou-
ble-stranded DNA was formed in accordance with the
three-stage procedure described in [5]. The nanocon-
struction was centrifuged (5000 rpm, 40 min, 15°C),
and the resulting sediment was washed with distilled
water to remove the excess of CuCl2, placed in a test
tube, and used for the subsequent analysis. Magnetic
and EPR-spectroscopic studies were performed with
the resulting washed and dried liquid-crystalline dis-
persions.

Fig. 1. Schematic diagram of the formation of bridges
between two DNA molecules. (a) Bridges between two
DNA molecules fixed in the structure of the liquid-crystal-
line dispersion (filled circles indicate copper ions, and open
boxes indicate daunomycin molecules). (b) The central part
of a bridge shown on an enlarged scale.
© 2005 Pleiades Publishing, Inc.
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Low-temperature magnetic susceptibility measure-
ments were performed on a SQUID magnetometer [6]
in a magnetic field of 71.29 mT at temperatures ≥4.2 K.
Cooling to helium temperatures was performed in a
zero field; then, the magnetic field was introduced and
the temperature was increased to 100 K. Next, cooling
to helium temperatures was performed but in the mag-
netic field. We measured the number of quanta (M),
which is proportional to the magnetic flux generated by
a magnetized sample.

RESULTS AND DISCUSSION

Figure 2 demonstrates the temperature dependence
of the number of quanta, which is proportional to the
magnetic flux of the sample. The number M is propor-
tional to the magnetic moment (Pm) of the test sample.
Using the experimental data on the temperature depen-
dence of the magnetic moment, we calculated the mag-
netic susceptibility of the sample as follows:

where H is the applied magnetic field. The history of
cooling and introducing the magnetic field had no
effect on the results obtained.

It can be seen in Fig. 2 that both paramagnetic cen-
ters and a diamagnetic component contribute to the
magnetic susceptibility. In this case, only Cu2+ ions are
the paramagnetic centers. The main diamagnetic contri-
bution is due to water and the benzene rings of dauno-
mycin. The magnetic susceptibility is positive at low
temperatures, whereas it is negative at high tempera-
tures. Consequently, there are two contributions to the
total magnetic moment: a positive paramagnetic contri-
bution from doubly ionized Cu2+ ions and a negative
diamagnetic contribution due to the presence of both
water and daunomycin, which contains benzene rings,

χ Pm/H ,=

Fig. 2. Temperature dependence of the number of quanta M,
which is proportional to the magnetic flux generated by the
magnetized sample. The number M is proportional to the
magnetic moment (Pm) of the test sample.
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in the sample. We separated these two contributions by
the mathematical treatment of the experimental temper-
ature dependence of the magnetic susceptibility using
the Curie–Weiss law with a constant term χ0

where CCW is the Curie–Weiss constant and TC is the
paramagnetic Curie temperature.

The resulting experimental functions χ(T) allowed
us to perform important estimations. Let us assume that
mDNA is the mass of a single DNA molecule. In the test
sample, the mass of a DNA molecule is approximately
equal to 8 × 105 amu or mDNA = 1.34 × 10–18 g. The con-
centration of the DNA in the solution is CDNA =
0.00005 g/cm3, and the volume of the solution from
which the sample of the DNA nanoconstruction was
obtained is equal to 80 cm3. From these data, it follows
that the total mass of DNA in the sample is MDNA =
0.004 g. Consequently, the number of DNA molecules
in the sample is NDNA = MDNA/mDNA = 3 × 1015.

The effective magnetic moment was evaluated using
an EPR experiment. The g-factor value was 2.09 at
room temperature.

The effective magnetic moment of one Cu2+ atom in
the sample can be estimated as follows:

From the temperature dependence of the magnetic
moment (Fig. 3), we found CCW = 1.47 × 10–6 erg K Oe–1.

Let us denote the number of paramagnetic centers in
the sample by N. The Curie–Weiss constant is related to
N by the well-known equation (e.g., see [7])

χ χ0 CCW/ T TC–( ),+=

µeff gµB j j 1+( ) 1.82µB.= =

CCW µeff( )2N /3k,=

Fig. 3. Temperature dependence of the magnetic suscepti-
bility χ. The value of χ is expressed in ~10–8 emu/Oe
(1 CGS unit Oe–1).
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where k is the Boltzmann constant. Thus, we obtain

From the above relationship, we estimate that N =
1.96  × 1018. Consequently, there are approximately
N/NDNA = 716 Cu2+ atoms per DNA molecule.

The number of coils in a DNA molecule is (8 ×
105)/(6.6 × 103) = 120. Consequently, there are
716/120 = 5.9 (~6) copper atoms per DNA coil. If all
these copper atoms participate in the formation of a
nanobridge, six copper atoms are the constituents of a
nanobridge between the coils of neighboring DNA
molecules. This estimate is consistent with the results
of theoretical calculations [3], according to which the
bridge includes four to six copper atoms. Note that the
calculations and models developed previously [3] are
based on the assumption that all the bridges are formed
in a quasi-nematic plane of the liquid-crystalline dis-
persion (see Fig. 1). If some bridges are out of this
plane and the total number of bridges is higher than the
number of DNA coils in the sample, the number of cop-
per ions that are the constituents of a single bridge is
less than six.

The diamagnetic contribution of the sample can also
be evaluated from the experimental dependence.
Approximation gives the total diamagnetic contribution
of the magnetic moment Pdiam = –2.7 × 10–5 emu. Both
daunomycin and water contribute to diamagnetism.
However, based on the experimental data, we cannot
quantitatively separate these contributions.

N 3kCCW/ µeff( )2.=
Thus, the results of magnetometric measurements
indicate that both the structural model of nanobridges
developed previously [1–3] and the nanostructure
based on double-stranded DNA molecules seem realis-
tic. Note that the structure of regularly arranged nano-
bridges in a liquid-crystalline dispersion of DNA is
similar to a spin lattice (Fig. 1), and it can be of consid-
erable interest in nanotechnologies.

We are grateful to A.N. Vasil’ev and Yu.A. Kok-
sharov for helpful discussions and their assistance in
EPR experiments.
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Through an InAs Quantum Dot
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The tunneling transport through a GaAs/(AlGa)As/GaAs single-barrier heterostructure with self-assembled
InAs quantum dots is studied experimentally at low temperatures. An anomalous increase in the tunneling cur-
rent through the quantum dots is observed in magnetic fields both parallel and perpendicular to the current. This
result cannot be understood in the framework of the single-electron approximation. The proposed explanation
of the phenomenon is based on the modified Matveev–Larkin theory, which predicts the appearance of a singu-
larity in the tunneling current through the zero-dimensional state in a magnetic field because of the interaction
between the tunneling electron and the spin-polarized three-dimensional electron gas in the emitter. The
absence of spin splitting in the experimental resonance peaks is caused by the complete spin polarization of the
emitter in relatively weak magnetic fields. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.55.Eq, 73.21.–b, 73.40.Gk
Quantum dots are nanoobjects in which the electron
motion is restricted in three spatial directions. As a
result, a quantum dot is characterized by a set of dis-
crete electron energy levels similar to an atomic spec-
trum. The resonant tunneling through zero-dimensional
states was studied earlier, and the behavior of such sys-
tems at very low temperatures (in the millikelvin range)
often could not be explained in terms of the single-elec-
tron approximation. This is not surprising, because the
effects caused by the electron–electron interaction,
such as the Coulomb blockade [1], the Kondo effect [2],
and the Fermi-edge singularity (FES) [3–9], manifest
themselves at low temperatures and strongly affect the
tunneling current. However, the recently observed
effect seems surprising: the FES in the tunneling cur-
rent through InAs quantum dots was considerably
enhanced in a strong magnetic field parallel to the cur-
rent [10], whereas no such enhancement of the FES
occurred in a magnetic field perpendicular to the cur-
rent [11].

In this paper, we report on the observation of an
anomalous increase in the tunneling current through
quantum dots in magnetic fields both parallel and per-
pendicular to the current and interpret it as a manifesta-
tion of the FES. We present the results of studying the
tunneling transport through a heterostructure consisting
of a single Al0.4Ga0.6As barrier with self-assembled
InAs quantum dots embedded into it at its center. The
current–voltage characteristics, I(V), of this sample
exhibit a sharp increase in the tunneling current through
a quantum dot in the magnetic field. This result cannot
be explained in terms of the single-electron approxima-
0021-3640/05/8106- $26.00 ©0267
tion. We propose an explanation of the phenomenon on
the basis of the modified Matveev–Larkin theory,
which predicts the appearance of a singularity in the
tunneling current through a zero-dimensional state as a
result of the strong interaction of a tunneling electron
with the electron gas in the emitter. An analysis of the
temperature dependence of the tunneling current con-
firms that the anomalous increase in the resonant cur-
rent is attributed to its multiparticle component.

The experimental samples were asymmetric
GaAs/Al0.4Ga0.6As/GaAs single-barrier heterostruc-
tures containing a thin InAs layer at the barrier center
(1.8 monolayer (ML)). The original heterostructure
was grown by molecular beam epitaxy on substrates
with the (100) surface orientation. The doping impurity
was silicon, whose concentration in the substrates was
2 × 1018 cm–3. The self-assembled InAs quantum dots
were formed in the process of the growth of strained
InAs epitaxial layers by the Stransky–Krastanov
method. The typical size of the quantum dots and their
surface concentration were determined by scanning
tunneling spectroscopy of samples grown under the
same conditions as the experimental samples and were
found to be ~10 nm and 2 × 1011 cm–2, respectively. The
dot geometry was determined by transverse transmis-
sion electron microscopy for the sample used in the tun-
neling transport measurements. The dot height was
found to be ~2–3 nm. The additional InAs monolayer,
whose thickness was smaller than the critical thickness
(1.2 ML) necessary for the formation of self-assembled
quantum dots, was grown near the Al0.4Ga0.6As barrier
for studying the process of tunneling from the two-
 2005 Pleiades Publishing, Inc.
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dimensional InAs (WL) layer to InAs quantum dots
(these processes are not considered in this work). The
ohmic contacts were fabricated by the sequential depo-
sition of AuGe/Ni/Au layers with a subsequent anneal-
ing at T = 400°C. To obtain a mesostructure with a
diameter of 20–100 µm, we used a standard chemical
etching procedure. Figure 1 shows the bottom profile
calculated for the conduction band of our heterostruc-
ture at the bias voltage V = 5 mV. The presence of InAs

Fig. 1. Calculated potential profile of the active part of the
experimental structure at a positive bias voltage of 5 meV.
The arrows indicate the direction of the electron current.

Fig. 2. Current–voltage characteristic of the (a) experimen-
tal sample at T = 0.5 K and (b) first resonance peak at tem-
peratures of (solid curve) 0.5, (dotted curve) 1.4, and (dash–
dotted curve) 4 K.
quantum dots in the barrier leads to the formation of a
set of discrete zero-dimensional electron states. In the
absence of bias, electrons diffuse from the doped GaAs
contacts to the states of the two-dimensional InAs
quantum well (WL), and the negative charge accumu-
lated there causes a depletion of the layers adjacent to
the Al0.4Ga0.6As barrier (see Fig. 1). When the bias volt-
age is applied, the electron tunneling from the three-
dimensional (3D) GaAs emitter to the discrete electron
states in the quantum dots gives rise to peaks in the cur-
rent–voltage characteristic. A peak appears in the cur-
rent when the energy of the quantum dot coincides with
the Fermi energy of the emitter. In what follows, we
consider the bias voltage as positive when the electron
tunneling occurs from the substrate through the quan-
tum dots in the barrier, from left to right, as shown in
Fig. 1. The current–voltage characteristics were
obtained by the standard measuring technique with a
noise level below 30 fA. The measurements were per-
formed in the temperature range from 370 mK to 4.2 K
and in magnetic fields up to 12 T.

Figure 2a shows the current–voltage characteristic
of the experimental sample at T = 0.5 K. The curve
exhibits a series of sharp peaks in the voltage interval
from 8 to 50 mV at positive bias voltages. These peaks
marked as A, B, C, and D are manifestations of the res-
onant electron tunneling through InAs quantum dots in
the (AlGa)As barrier. The curve also has step E caused
by the Coulomb blockade at a negative bias. The posi-
tions of the peaks and their heights are different for dif-
ferent samples, but they are completely reproducible
for every single sample even after its thermal cycling.
The difference in the shape of the resonance features
that are observed for different directions of bias voltage
is explained by the asymmetry of the barrier region in
the heterostructure under study. Since the growth of
quantum dots begins from the middle of the barrier
layer and the dots have a finite height (~2–3 nm), the
tunneling layer under a quantum dot (i.e., to the right of
the InAs layer in Fig. 1) proves to be somewhat thicker
than the tunneling layer above the dot. Hence, at a pos-
itive bias, the electron tunneling from the emitter to the
quantum dot occurs much slower than the electron tun-
neling from the dot to the collector; i.e., ΓR @ ΓL.

In what follows, we restrict our consideration to the
behavior of the first peak (A), because it is the region
where we observed the singularity of the tunneling cur-
rent at a low temperature in a relatively strong magnetic
field. Figure 2b shows the temperature dependence of
resonance A. The shape of the resonance feature arising
in the current–voltage characteristic due to the tunnel-
ing through the zero-dimensional state (0D) is deter-
mined by the dimension of the emitter [12]. A sharp
threshold-type increase in the tunneling current occurs
at a bias voltage V0 at which the energy EQD of the quan-
tum dot state coincides with the Fermi energy EF of the
emitter. As the bias increases further, the resonant cur-
rent decreases and vanishes at a voltage V1 at which EQD
JETP LETTERS      Vol. 81      No. 6      2005
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coincides with the conduction-band bottom EC in the
emitter. Thus, the triangular shape of the resonant cur-
rent feature with a sharp front should be observed in the
case of the 0D–3D tunneling in the voltage interval
between V0 and V1. Owing to nonzero temperature, the
resonance front is smeared and the tunneling current is
determined by the expression [13]

(1)

where α is the bias voltage-to-energy conversion factor.
From the comparison of the experimental curves
obtained at different temperatures with formula (1), we
derive α ≈ 0.44 (see Fig. 2b). This α value agrees well
with the value obtained from self-consistent calcula-
tions of the potential profile along the experimental
structure in the voltage range 0–50 mV of interest. A
self-consistent solution of the set of Poisson and
Schrödinger equations was obtained by a numerical
method similar to that described in [14]. As a result,
these calculations allowed us to determine the Fermi
energy of the emitter in the first resonance region as
EF = α(V2 – V1) = 2.4 meV.

Now, we consider the transport characteristics of the
experimental heterostructure in the magnetic field. Fig-
ure 3 shows the current–voltage characteristics of the
sample in a magnetic field of 8 T perpendicular to the
current for two different temperatures. The I(V) curve
obtained at T = 3 K exhibits four resonance features
corresponding to tunneling through different states of
quantum dots, as in the absence of the magnetic field. A
decrease in temperature to 0.5 K drastically sharpens
the edge of resonance A, which occurs at a bias voltage
of 8 mV and corresponds to the threshold of tunneling
through the lowest zero-dimensional state, but only
slightly increases the heights of other resonance peaks.
Such a small increase in the peak currents that are
observed at 20, 30, and 40 mV can be explained by a
decrease in the temperature broadening of the Fermi
distribution for electrons in the emitter. However, the
appearance of singularity in the current at a bias voltage
of ~8 mV cannot be attributed only to the decrease in
the aforementioned temperature broadening. The
FWHM of this peak is as small as 0.3 mV, which corre-
sponds to 130 µeV on the energy scale. This singularity
represents a sharp growth of the tunneling current and
its subsequent slower decrease with increasing bias. As
we show below, this unexpected growth of the current
in the magnetic field can be attributed to a manifesta-
tion of the Fermi-edge singularity in the tunneling
through the localized state. A similar singularity was
also observed in the magnetic field whose direction was
parallel to the current (for the sake of brevity, we do not
present here the corresponding curve). Again, we note
that the singularity was not observed in the absence of
the magnetic field even at the lowest temperature of
~0.4 K achieved in our experiments (see Fig. 2b).

I
V1 V–

1 αe V0 V–( )/kT( )exp+
------------------------------------------------------------ V V1≤( ),∼

I 0 V V1>( ),=
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Beyond the tunneling threshold, the I(V) curve obtained
at 0.4 K has only weak features, which are presumably
associated with mesoscopic fluctuations of the density
of electron states in the emitter [15].

The inset in Fig. 3 shows the dependence of the peak
current of resonance A on the magnetic field B perpen-
dicular to the tunneling current for temperatures of 4.2
and 0.5 K. The decrease in the peak current with
increasing B may be attributed to the well-known effect
that can be understood in terms of the single-particle
model of electron tunneling in the magnetic field per-
pendicular to the current. This effect provides the basis
of the method of visualization of electron wave func-
tions in quantum dots with the use of magnetic tunnel-
ing spectroscopy and is described in detail in [16–18].
Peak value A at T = 4 K strongly depends on the orien-
tation of the magnetic field in the growth plane (not
shown in this paper). On the contrary, the amplitude of
peak A at T = 0.5 K is virtually isotropic. This property
is the result of the manifestation of an additional tunnel-
ing channel with electron–electron interaction at very
low temperatures. The dependence of the efficiency of
this channel on the magnitude and direction of the per-
pendicular magnetic field differs from the correspond-
ing dependence characterizing the single-particle chan-
nel. For this reason, the shape of the wave functions of
quantum dots cannot be measured in the same way as
at ~4 K.

Fig. 3. Current–voltage characteristic of the experimental
sample in a magnetic field of 8 T at two temperatures T =
(solid curve) 0.5 and (dash–dotted curve) 3 K. The inset
shows the peak current of peak A versus the magnetic field
perpendicular to the current for the temperatures of (circles)
4 and (asterisks) 0.5 K.
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To determine the nature of the multiparticle current
observed in our experiments, we analyzed the shape of
the resonance features. Figure 4a shows in more detail
the first (in voltage) resonance feature, i.e., peak A,
observed in the perpendicular magnetic field B = 8 T at
T = 0.5 K. We believe that the total current in Fig. 4a is
predominantly determined by the tunneling channel
with electron–electron interaction, because, as is
clearly seen in the inset in Fig. 3, the single-electron
current is suppressed by the magnetic field. This prop-
erty allows us to analyze the shape of the experimental
resonance feature and to compare it with theoretical
predictions [3, 4]. The shape of the experimental peak,
i.e., the sharp growth of the tunneling current and its
subsequent decrease according to the exponential law
I ~ (V – V0)–γ, where V0 is the voltage corresponding to
the peak current, is typical of a Fermi-edge singularity
[3, 4]. For the curve shown in Fig. 4a and obtained at
B = 8 T and T = 0.5 K, we obtain γ = 0.77, which far
exceeds the value theoretically predicted for a similar
experimental structure [3] in the absence of the mag-
netic field and is slightly higher than the γ value
obtained in [10, 11] for the magnetic field B = 28 T
applied in the direction parallel to the tunneling current.

The nature of the anomalous increase in the tunnel-
ing current through a quantum dot can also be deter-
mined by analyzing the temperature dependences of the
current–voltage characteristics. According to [7], the

Fig. 4. (a) Current–voltage characteristic of the experimen-
tal sample in the first resonance region in a perpendicular
magnetic field of 6.5 T at T = 0.5 K. The dotted curve shows
the dependence I ~ (V – V0)–γ with the exponent γ ~ 0.77.
(b) The temperature dependence of the FES peak current
(asterisks). The solid line represents the power-law depen-
dence of the peak current I0 ~ T–γ with the exponent γ ~ 0.8.
increase in the area under the I(V) curve in the reso-
nance region when the temperature decreases unambig-
uously testifies to the multiparticle nature of the phe-
nomenon. Our experimental curves clearly demonstrate
this kind of behavior (see Fig. 3). In addition, an exper-
imental study of the temperature dependences of the
tunneling characteristics provides another possibility
for determining the exponent γ [6, 10]. As is seen in
Fig. 4b, the amplitude of peak A decreases as I ~ T–γ

with γ ~ 0.8 when the temperature increases. Within the
accuracy of the experiment, this value coincides with
the γ value obtained from the shape of the resonance
features of the current–voltage characteristics in the
region of V > V0. Thus, the analysis of the temperature
dependences additionally and independently confirms
the conclusion that the anomalous increase in the tun-
neling current with decreasing temperature and increas-
ing magnetic field is associated with the manifestation
of the interaction between the tunneling electron and
the electron gas in the emitter (i.e., with the FES).

However, it should be noted that the very high expo-
nent γ ~ 0.8 cannot be explained in terms of the existing
FES theory (which is applicable only for γ ! 1 [3]
when the γ value is determined by the Fermi energy and
tunneling length) without its modification. An enhance-
ment of the FES similar to that recorded by us was
recently observed in very strong magnetic fields paral-
lel to the current for tunneling through InAs quantum
dots in single-barrier heterostructures [10, 11]. In this
work, a modified model of the FES has been proposed
and it has been shown that the interaction between the
localized charge in a quantum dot and the electrons in
the 3D emitter can lead to a considerable Fermi-edge
singularity if only the last spin-degenerate Landau level
is filled with electrons. Such an interaction gave rise to
an FES with γ ~ 0.5 in strong magnetic fields (~30 T).
In our experiments, the Fermi energy in the 3D emitter
at bias voltages near peak A was equal to 2.4 meV,
which was approximately one sixth of the correspond-
ing value in [10, 11]. Thus, the 3D emitter in our het-
erostructure at 8 T proved to be completely spin-polar-
ized, and we could observe the FES with γ ~ 0.8 in rel-
atively weak magnetic fields. Note that the complete
spin polarization of electrons in the emitter prevented
the observation of the Zeeman splitting of zero-dimen-
sional states in our experiments.

Finally, we stress that a strong FES has been
observed in both parallel and perpendicular magnetic
fields. Although the 3D emitter is quantized in mag-
netic fields of both directions, the theoretical descrip-
tion of the FES for the perpendicular field should pre-
sumably be somewhat different from that proposed in
[10, 11]. In our opinion, this issue requires further
detailed investigation.

Thus, we observed an anomalous increase in the
tunneling current through quantum dots in a magnetic
field. This increase cannot be explained in terms of the
single-electron approximation. We proposed an expla-
JETP LETTERS      Vol. 81      No. 6      2005
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nation of the phenomenon on the basis of the modified
Matveev–Larkin theory, which predicts the appearance
of a singularity in the tunneling current through the
zero-dimensional state as a result of the interaction
between the tunneling electron and the electron gas in
the emitter.
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etskii, I.A. Larkin, and Yu.V. Dubrovskii for numerous
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Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4,
whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the inter-
play of magnetic and electric orderings occurring in the system has been experimentally revealed and theoret-
ically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorienta-
tion transitions induced by a magnetic field have been investigated experimentally. For H || c and H ⊥  c, H–T
phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and
magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific non-
collinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magne-
toelectric behavior of the system within the framework of the symmetry approach in the entire temperature
range. This ordering provides the conservation of the crystal class of the system when the temperature decreases
to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and
magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimen-
tally. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.80.+q
INTRODUCTION

In recent years, magnetoelectric materials (also
known as multiferroics) have attracted much attention.
These materials have been known for more than half a
century, but they have been of only academic interest
until recently, because the magnetoelectric effect that
was observed in them was very weak. Only recently,
new interesting materials have been found in which this
effect is sufficiently strong [1–3]. In addition, recent
investigations have revealed another manifestation of
magnetoelectric interactions, namely, the possibility of
controlling the magnetic state of a substance by an elec-
tric field and vice versa [4–9]. In particular, electric
domains in such materials as TbMnO3 and GdMnO3
were switched by a magnetic field [4–6]. These new
effects provide promising prospects for applications,
but many fundamental questions concerning the nature
of these effects have not been clarified so far.

Among new multiferroics, gadolinium iron borate
GdFe3(BO3)4 [10–20] (one of the representatives of a
new family of multiferroics—rare-earth iron borates
RFe3(BO3)4) is of considerable interest. Its crystal

structure is characterized by the space group R32 ( ).
At TC = 156 K, a structural phase transition is observed
in gadolinium iron borate at which the translational
symmetry of the crystal changes presumably without a

D3
7
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change in the crystal symmetry class. This transition is
accompanied by characteristic dielectric anomalies
[20], which may serve as indirect evidence for the
occurrence of antiferroelectric ordering in the crystal.

According to [18], Fe3+ spins in gadolinium iron
borate are ordered antiparallel in the basal plane at T <
TN = 38 K (AF1 phase). At TR = 10 K, another phase
transition occurs at which the Fe3+ spins are reoriented
from the easy plane (AF1) to the easy axis c (AF2). For
this reason, we expected a substantial manifestation of
magnetoelectric interactions and their transformations
in phase transitions accompanied by a change in the
magnetic symmetry in gadolinium iron borate, which
has a noncentrosymmetric symmetry group. Since
information on this aspect in the behavior of rare-earth
iron borates is unavailable in the literature, the magne-
toelectric and magnetoelastic properties of
GdFe3(BO3)4 in phase transitions induced by a mag-
netic field have been studied both experimentally and
theoretically in this work.

EXPERIMENTAL RESULTS

The longitudinal electric polarization and magneto-
striction of a GdFe3(BO3)4 single crystal were mea-
sured in magnetic fields up to 100 kOe for H || c and
H ⊥  c in the temperature range 4.2–50 K by the proce-
 © 2005 Pleiades Publishing, Inc.
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dure described in [21]. It was found that the magnetic
field below TN induced the rearrangement of the mag-
netic structure in this compound that was accompanied
by the occurrence of the magnetoelectric effect and
magnetoelastic deformations. The field dependences of
the electric polarization and magnetostriction were
drastically different for H || c and H ⊥  c. Thus, the mag-
netoelectric effect and magnetostriction for H || c were
observed only at temperatures of T < 10 K, vanishing in
the temperature range 10 K < T < 38 K. This presum-
ably indicates that a change in the symmetry occurred
near TR. For H ⊥  c, anomalies in the magnetoelectric
effect and magnetostriction were observed for all tem-
peratures below TN.

The field dependences of the longitudinal magneto-
striction and electric polarization in the low-tempera-
ture region for H || c are presented in Fig. 1. It is evident
that jumps in the electric polarization PC(HC) and mag-
netostriction λC(HC) occur in the vicinity of 5 K at a

certain critical field  = 8 kOe, where a magnetic
field-induced spin reorientation from the c axis to the
easy plane was observed according to [16]. With
increasing temperature, the threshold fields decrease
and they vanish at TR. For temperatures 10 K < T <
38 K, the longitudinal electric polarization and magne-
tostriction along the c axis exhibit no anomalies and
depend monotonically (quadratically) on the field. The

–T phase diagrams that are obtained from mea-
surements of the magnetoelectric and magnetoelastic
properties (Fig. 2) are in good agreement, which indi-
cates that these properties evidently correlate with each
other. For H ⊥  c, the character of the field dependences
of the electric polarization and magnetostriction
changes qualitatively.

The field dependences of the longitudinal magneto-
striction and electric polarization for H || a are pre-
sented in Fig. 3. It is seen that, at T = 4.5 K, the electric
polarization and magnetostriction in low fields depend
weakly on the magnetic field. Then, they increase

abruptly at  = 37 kOe, and the polarization jump at
4.5 K for H || a exceeds the polarization jump for H || c
by a factor of 20. With increasing temperature from
4.2 K to TR, the threshold fields for the AF2 ⇒  AF1
transition decrease strongly. Starting with TR up to TN,
when the Fe3+ spins lie in the basal plane, the electric
polarization and magnetostriction increase abruptly
already in a relatively weak magnetic field of ~2 kOe
and, then, vary monotonically when the field increases.

The –T phase diagrams for H ⊥  c (Fig. 4) that
are plotted using the electric polarization and magneto-
striction isotherms (Fig. 3) in the same way as for H || c
(Fig. 2) are in good agreement with each other. This
indicates that the magnetoelectric and magnetoelastic
properties that are measured for the H || c and H ⊥  c ori-
entations of the magnetic field strictly correlate with

HC
crit

HC
crit

HC
crit
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crit
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each other. The experimental results indicate that jumps
arise in the electric polarization vector P when the mag-
netic field reorients the GdFe3(BO3)4 single crystal
from the AF2 to AF1 phase. This behavior certainly
points to the occurrence of ferroelectric properties in
this crystal.

Fig. 1. Isotherms of longitudinal (a) magnetostriction and
(b) electric polarization vs. the magnetic field directed
along the c axis for the GdFe3(BO3)4 single crystal.

Fig. 2. H–T phase diagram obtained from measurements of
magnetostriction and electric polarization in the
GdFe3(BO3)4 single crystal for H || c.

P
C

λ C
C
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THEORETICAL PART

In this work, a theoretical model for the magneto-
electric structure of gadolinium iron borate is proposed
to qualitatively explain the observed magnetoelectric
properties of the material. Magnetic measurements and
measurements of the antiferromagnetic resonance
spectra [18] allow the conclusion that an antiferromag-
netic collinear structure that is characterized by the
antiferromagnetic vector L is realized in this material at
T < TN. Therefore, we will take the model proposed in
[18] for the magnetic structure of gadolinium iron

Fig. 3. Same as in Fig. 1 but for the magnetic field directed
along axis a.

Fig. 4. Same as in Fig. 2 but for H || a.
borate as the basis for the subsequent analysis. Because
the vector L for TR < T < TN lies in the basal plane, the
crystallographic symmetry in this case changes evi-
dently due to the spin–orbit interaction. Actually, if L is
parallel to a second-order axis, the third-order axis (ele-
ment 3) is eliminated from the set of the class 32 sym-
metry elements. As a result, class 32 changes to mono-
clinic class 2 characterized by the point group with a
second-order symmetry axis as the generator. If L
departs from the second-order axis, symmetry element
2 also disappears. As a result, class 2 passes into trivial
class 1. Both these classes (2 and 1), as distinct from 32,
allow the occurrence of a polar vector, and this gives a
clue to the problem of the magnetoelectricity of gado-
linium iron borate.

At the same time, the dielectric anomaly at the point
TC (namely, the jump in the dielectric constant when
passing through TC in the direction of decreasing tem-
perature but with the retention of the crystal class 32)
points to the possibility of realizing a compensated fer-
roelectric state for T < TC, i.e., forming an antiferroelec-
tric structure.

A natural model describing the mechanism of the
occurrence of electric polarization upon magnetic
ordering is the decompensation of zero total electric
polarization (PS = P1 + P2 + P3 ≠ 0) of the antiferroelec-
tric (triangular) state (when PS = 0 for TN < T < TC).
Here, P1, P2, and P3 are the polarization vectors of
neighboring atomic layers spaced by one third of the
vertical lattice constant. These vectors appear at the
point TC, and they are directed along the corresponding
axes 2. This decompensation is very small due to the
smallness of the spin–orbit interaction in the system of
Fe3+ ions (which are s ions; i.e., their orbital angular
momentum in the ground state equals zero). It can be
responsible for the small increase observed in the
dielectric constant of gadolinium iron borate when T
decreases from TN to TR [20]. It is reasonable to expect
that Ps increases with increasing the absolute value of
L, which is the case when decreasing T. For T < TR, a
spin-reorientation transition to the L || c phase occurs
[17]. This phase is characterized by the point crystal
group 32, in which the polar vector P is absent. There-
fore, it may be expected that the magnetic field-induced
transitions AF2  AF1 will be accompanied by
jumps in the electric polarization (and in the dielectric
constant).

For deeper insight into the nature of the magneto-
electric interactions, the interplay between the electric
polarization and the vector L, and the magnetic struc-
ture and orientational phase transitions of gadolinium
iron borate, we consider the transformation properties
of vector L and other quantities under the transforma-
tions of class 32. Note that the magnetic unit cell of
gadolinium iron borate (in the direction of the c axis) is
twice as large as the crystallographic one. This circum-
stance distinguishes the material under consideration
JETP LETTERS      Vol. 81      No. 6      2005



MAGNETOELECTRIC EFFECTS IN GADOLINIUM IRON BORATE 275
from typical objects in the symmetry theory of antifer-
romagnetism [22, 23], in which these cells are assumed
to coincide. The evident way of overcoming this diffi-
culty is to consider an extended (doubled) crystal unit
cell of gadolinium iron borate and thus to return to the
conventional approach. Following it, let us reduce the
initial space group, assuming that the translations by
the unit cell constants in the basal plane and the dou-
bled translations along the c axis are equal to the iden-
tity transformation E. As a result, the reduced group

 can be characterized by the following generators:
C3, 2x, and Tz where Tz is translation on the period of the
unit cell along the c axis. The absolute values and ori-
entations of these generators are completely deter-
mined by the state of the iron ions, because the other
magnetic subsystem consisting of the Gd3+ ions is sup-
posed to be paramagnetic. The generator Tz is odd; that
is, this generator transforms one magnetic sublattice of
the antiferromagnet into the other one TzL = –L. At the
same time, 2x and C3 are even; that is, they interchange
atoms of the same sublattice 2xL = L, C3L = L.

The transformation properties of the above reduced
group offer the possibility of determining the symmetry
of the magnetoelectric interaction and the desired inter-
relations between the magnetic structure and physical
properties of the crystal. In Turov’s terminology, the
magnetic structure of gadolinium iron borate can be

characterized by the code , , . Note a certain
analogy (but not the isomorphism!) of the structure
under consideration with the magnetic structure of

Cr2O3 with the code I–, ,  [22, 23], which has been
comprehensively studied in the theory of antiferromag-
netism.

The magnetoelectric interaction energy of the iron
ion subsystem can be represented in the form1

(1)

where c1, c2, and c3 are the thermodynamic parameters
of the symmetry theory. From Eq. (1), we will obtain
the following equations determining the electric polar-
ization vector Ps, which spontaneously appears at the
antiferromagnetic ordering point:

(2a)

1 Rare-earth ions are paramagnetic and, in principle, do not change
the equations given below (for T @ TRN, where TRN is the order-
ing temperature of rare-earth elements). The inclusion of these
ions leads only to the renormalization of coefficients. Therefore,
having in mind a qualitative interpretation of the experiment, we
will not complicate the equations by taking into account the rare-
earth subsystem. Such a situation is typical for many d–f com-
pounds with an antiferromagnetic d subsystem [24].

G̃32

Tz
– 3z

– 2x
+

3z
– 2x

+

EME c1Lz PxLy PyLx–( )=

+ c2 Px Lx
2

Ly
2

–( ) 2PyLxLy+[ ] c3PzLxLz Lx
2 3Ly

2–( ),+

Psx c1LyLz c2 Lx
2 Ly

2–( )+=

=  C1L2 θ θ ϕ C2L2 θ 2ϕ ,cossin
2

+sincossin
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(2b)

(2c)

where θ and ϕ are the polar and azimuth angles of the
vector L.

According to the  symmetry, the linear magne-
toelectric effect is forbidden in gadolinium iron borate,
which is confirmed experimentally [19]. We emphasize
a certain similarity (and distinctions!) between Eq. (2c)
and the equation for Pz in the case of Cr2O3 [21], which
reflects the similarity and distinction between the cor-
responding magnetic structures and between the groups

32 and .
A symmetry analysis also provides the following

expression for the magnetoelastic energy:

(3)

from which the following formulas for magnetostric-
tion can readily be obtained:

(4)

Note that linear piezomagnetism, that is, the linear cou-
pling between the elastic deformations and the external
magnetic field, is forbidden in space group 32.

The above mechanism of symmetry breaking
through magnetic ordering offers another view on
Eqs. (2) for spontaneous electric polarization. Namely,
the electric polarization in a crystal can be considered
as a result of the double action: the spontaneous mag-
netostriction uik = δiklmLlLm and the piezoelectric effect
Pα = παiuik, where δiklm and παik are the magnetoelastic
and piezoelectric tensors, respectively. Both tensors
differ from zero in the crystals of class 32.

The multiplication of the tensors δiklm and παik

results in formulas for Px and Py that coincide with
those given by Eqs. (2). Certainly, this coincidence
does not mean that the coefficients are equal to the

Psy c1LxLz– 2c2LxLy+=

=  C1L2 θ θ ϕ C2L2 θ 2ϕ ,sinsin
2

+coscossin–

Psz = c3LxLz Lx
2

3Ly
2–( ) = C3L

4 θ θ 3ϕ ,coscossin
3

G̃32
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2 LY
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2 LY
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+ γ5 LY LZ uXX uYY–( ) uXY LX LZ+( )

+ γ6 LX LZuXZ LY LZuYZ+( )

+ γ7uZZ LX
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2–[ ] 2Lx
2+( )LY LZ,
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2 γ2 LX

2 LY
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+( ) γ7 LX
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2+( )LY LZ;+ +
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products of the components of the tensors π and δ.
These coefficients can also depend on intrinsic micro-
scopic magnetoelectric interactions. The component Pz

in this “piezoelastic” consideration is naturally equal to
zero, because this component, according to more
detailed Eqs. (2), is determined by the terms of the
fourth order in L; i.e., it is a small value (in the spin–
orbit coupling constant) as compared to Px and Py, and
this relation is manifested experimentally.

Another fourth-order combination of the compo-

nents Li is ((  – ) + 2 )LyLz = L4sin3θcosθsin3ϕ.

This combination is an invariant of the group ; that
is, it transforms by the representation Γ1. It is linear in
Lz. Therefore, the spins in the AF1 phase can be
departed from the basal plane at a small angle (because
the corresponding invariant is of the fourth order in Li).
This fact in combination with Eq. (2c) can be used to
explain the small jump in the Pz component of the elec-
tric polarization upon the AF2  AF1 reorientation.

The above consideration was mainly devoted to the
magnetic ordering (and magnetic field) effect on the
electric polarization in gadolinium iron borate. How-
ever, Eqs. (2) allow an interesting generalization to the
reverse crossing effects, that is, the electric field effects
on magnetism and magnetic transformations [7–9].
Actually, substituting Ei for Pi in Eq. (1), which is evi-
dently allowed by symmetry, we obtain the energy of
interaction between the external electric field and vec-
tor L. The new effects arising in this case will be con-
sidered in a separate paper.

Thus, the magnetic symmetry of gadolinium iron
borate and the model of the collinear antiferromagnetic
structure proposed in [18] offer the possibility of
explaining the jumps observed in the electric polariza-
tion and magnetostriction as a manifestation of spin-
reorientation transitions induced by the magnetic field
in this material. Expression (3) for the magnetoelastic
interaction in gadolinium iron borate has been obtained
using symmetry theory.
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The Efros–Shklovskii (E–S) law for the conductivity of granular metals is interpreted as a result of a variable-
range cotunneling process. The cotunneling between distant resonant grains is predominantly elastic at low
T ≤ Tc, while it is inelastic (i.e., accompanied by creation of electron-hole pairs on a string of intermediate non-
resonant grains) at T ≥ Tc. The corresponding E–S temperature TES, in the latter case, is slightly (logarithmi-
cally) T dependent. The magnetoresistance in the two cases is different: it may be relatively strong and negative
at T ! Tc, while, at T > Tc, it is suppressed due to inelastic processes, which destroy the interference. © 2005
Pleiades Publishing, Inc.

PACS numbers: 73.23.Hk, 73.43.Qt, 73.63.–b
INTRODUCTION

The low-temperature conductivity of most granular
metals (both three-dimensional samples and thin films)
exhibits a typical insulating behavior, which is charac-
terized by the Efros–Shklovskii (E–S) law

(1)

In samples with low room-temperature conductivity,
this law is observed in the whole range of T (from room
temperature down to liquid helium temperatures) [1–3].
Two ingredients are known to be necessary [4, 5] for the
existence of the behavior (1) in usual doped semicon-
ductors with localized impurity centers: (i) soft Cou-
lomb gap in the electron density of states, and (ii) long-
range electron tunneling between distant centers of
their localization. The original idea on the building of
the Coulomb gap as presented in [4] was recently
adapted to granular arrays in [6]. It was argued that the
principal source for this gap is random background
charges, and the physical mechanisms behind these
charges were discussed in detail. Feature (ii) is quite
natural for doped semiconductors, as it follows from
exponential decay of wave functions of localized elec-
trons. It is much less trivial for granular media, where
each grain is typically connected by tunnel junctions to
its nearest neighbors only; therefore, the very origin of
long-range tunneling needs some special explanation.

In this Letter, we demonstrate that the variable-
range hopping in a granular metal involves the so-
called cotunneling process [7] (either elastic or inelas-
tic). Elastic cotunneling is effective if the temperature
is low enough (namely, for T < Tc ~ +–1(δEC)1/2, where

¶ This article was submitted by the authors in English.

σ e
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δ is the characteristic level spacing in the grains, EC is
the characteristic charging energy, and + ~ 10 is a large
logarithmic factor; see below). At T > Tc, the conductiv-
ity is dominated by inelastic cotunneling processes. We
directly show this for the case of a granular metal with
poor room-temperature conductivity (small intergrain
conductances g ≡ (h/e2R) ! 1). We expect that the same
is also true for samples with moderately good conduc-
tivity (cf., e.g., [8, 9]) with properly renormalized TES,
but this more delicate issue will be discussed in a sepa-
rate publication. Experimentally, the relative role of
elastic verses inelastic cotunneling processes could be
detected by the presence of noticeable low-field magne-
toresistance in the hopping regime, while elastic cotun-
neling is expected to lead to negative magnetoresistance
as was predicted for doped semiconductors [10–13].
Inelastic cotunneling is intrinsically incoherent, and the
whole effect of the magnetic field upon conductivity is
localized within individual grains and can, therefore, be
only observed in very high fields H * 10 T.

Cotunneling as a key mechanism of low-tempera-
ture charge transfer was proposed [7] and extensively
discussed (cf., e.g., [14] for a review) with regard to
transport via quantum dots. A quantum dot situated
between two bulk metal reservoirs is characterized by
its charing energy EC and dimensionless conductances
gR, L. The semiclassical orthodox theory of Coulomb
blockade [15] predicts exponential suppression of con-
ductance through quantum dots at temperatures of T !
EC, i.e., Gorth ∝  min(gL, gR)exp(–EC/T), due to the low
probability of creation of a real state of dots with extra
electron charge. The cotunneling process, on the other
hand, occurs in the next order of perturbation theory in
(small) tunneling amplitudes tR, L but does not contain
© 2005 Pleiades Publishing, Inc.



 

278

        

FEIGEL’MAN, IOSELEVICH

                                                                                     
an exponential suppression factor exp(–EC/T), since the
dot state with extra charge occurs as a virtual state only.
One should distinguish two kinds of cotunneling pro-
cesses: elastic and inelastic ones. The elastic process
occurs when tunneling in and out of the dot deals with
the same intradot electron eigenstate α; thus, it leaves
the dot in exactly the same quantum state as it was
before. In contrast, inelastic cotunneling leaves behind
an excited electron-hole pair (since one electron tunnels
in the dot and populates some eigenstate h, whereas
another electron tunnels out of the dot from another pth
eigenstate). Elastic cotunneling contributes to the con-
ductance scales as Gel ∝  gLgRδ/EC, whereas the contri-
bution from inelastic cotunneling is Ginel ∝  gLgR(T/EC)2;
cf. [7, 14]. Thus, upon temperature decrease, first,
inelastic cotunneling prevails over the classical conduc-

tion given by Gorth; then, at T∗  ~ , it gives way to
elastic cotunneling. Below, we generalize the above
ideas to the situation of variable-range hopping in gran-
ular arrays.

In the spirit of the standard variable-range hopping
(VRH) theory, we consider a charge transfer between
two distant grains i and j with anomalously small ener-
gies εi, εj ! EC of the charged ground state (i.e., the
states with an extra electron or an extra hole; for an
explicit definition of the energy ε and a detailed discus-
sion of the corresponding density of ground states see
[6]). Such a transfer between distant grains proceeds
via a string of intermediate grains, where, typically, the
energy of a state with an extra electron is high (ε ~ EC).
As in the case of a standard single-particle tunneling via
resonant impurity states, the entire process is realized
as a coherent sequence of local hops between adjacent
grains in the string. There is an important difference,
however. For the single-particle problem, where the
same electron has to tunnel sequentially through all the
impurities in the string (starting from the first one and
ending with the last), the order of these local hops is
fixed. In our case, there are many electrons in each
grain, all these electrons being ready to tunnel to an
adjacent grain at any time; consequently, the sequence
of local hops in such a cotunneling process can be arbi-
trary. As a result, the states with a number of excited
electrons and holes on different grains appear as inter-
mediate virtual states of the cotunneling process and
the number of charged grains in these intermediate
states can be larger than one. In the final state, however,
all the charges of the intermediate grains should be
compensated for and the only extra charge is trans-
ferred between the two terminal grains of the string.
The long-range hopping process involves many inter-
mediate grains; in general, the cotunneling through
some of them will be of the elastic type and, through
others, it will be of the inelastic type. We will see below
that elastic cotunneling dominates the variable-range
hopping at rather low temperatures T < Tc, where Tc is
significantly lower than in the case of a single interme-
diate quantum dot.

ECδ
Note also that, in the case of not extremely low tem-
peratures T @ δ (when the spectrum of electrons in
grains can be treated as a quasi-continuous one), one
does not need to invoke phonons to ensure the energy
conservation: the energy can be taken from the fermi-
onic thermostat via the inelastic cotunneling process.

GENERAL APPROACH 
TO VARIABLE-RANGE COTUNNELING

The Hamiltonian of the system has the form  =

 +  + . Here, the single-grain hamiltonian

 = , and the inter-grain tunneling hamilto-

nian  = ; in the latter, the summation

runs over the pairs 〈ij〉  of neighboring grains

where the operator  creates an electron in a single-
particle orbital eigenstate αi with a spin projection σ on
a grain i. The Coulomb interaction hamiltonian

(2)

 =  – , being the operator of the

excess number of electrons at the grain i, , corre-

sponds to the minimum of  + . The variables qi

(which are not necessarily integer!) are the so-called
background charges (in the units of e). We will treat
them as independent continuous random variables
−1/2 < qi < 1/2 with symmetric distribution P(q). Two
different limits should be distinguished: (i) the case of
strong charge disorder, when the background charges
are large, so that qi is distributed homogeneously in the
interval –1/2 < qi < 1/2; and (ii) the case of weak disor-

der, when the charges are small, so that q0 ≡ ( )1/2 ! 1
and the probability to have q = 1/2, which is related to
the bare density of ground states at the Fermi level (cf.
[6]), is small: P1/2 ≡ P(1/2) ! 1. While the former case
seems to be most appropriate for a naturally disordered
granular material, the latter one may be relevant for
high quality artificial arrays of quantum dots.

If the tunnel matrix elements  are small enough,
the rate wij of cotunneling between distant grains i and
j can be found in the high order perturbation theory

in :

Ĥ

Ĥ0 Ĥ tun ĤC
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Ĥ tun Ĥ tun
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ij( )

α i σ,
∑ tα iα j
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ĤC
1
2
--- Ec

ij( ) n̂i qi–( ) n̂ j q j–( ),
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n̂i aα iσ
+ aα iσα i σ,∑ ni
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ni
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[ ] Q 7( )Q 7'( ).
m

∏

Here, we have assumed that the i  j transition is
dominated by tunneling along a unique string—a chain
of neighboring grains denoted by the numbers k = 0, 1,
…, N, N + 1, so that 0 ≡ i is the initial grain; N + 1 ≡ j
is the final grain; and each pair k, k +1 are in contact.
The possibility for several relevant strings to exist and
the effect of interference of their contributions will be
discussed in the last section of this Letter. The summa-
tion runs over all possible partitions 3 of the string into
two subsets: {k} = {m} ∪  {l}; on the grains {m}, elastic
cotunneling (via a state hm, pm ≡ αm) occurs, while, at
the grains {l}, inelastic cotunneling with the creation of
an electron-hole pair with quantum numbers hl, pl takes
place. The summation over all eigen-states αm and pairs
of eigenstates hl ≠ pl is assumed. The energies epl, ehl are
measured with respect to the Fermi level. The spin vari-
able σ0 corresponds to the state p0 variables, and σl cor-
responds to the pl components of electron-hole pairs.
All the other spin variables are not independent because
of the spin conservation by the tunneling hamiltonian.
The spin summation gives the factor 2L(3), where L(3)
is the number of inelastic grains in the partition 3. The
interference cross terms between the processes with
different αm are neglected because of violent sign fluc-
tuations of .

The time orderings 7 are all the possible orderings
{k1, k2, …, kr, kN + 1} of the set of grains k = 0, …, N
(note that there is no final grain N + 1 in this set!). The

contribution to the composite transition amplitude 
corresponding to particular 7 has the structure

(7) =  … ,

where the many-particle Green’s function  = [  +

]–1. The function λk(7) = 1 if, in the ordering 7, the
grain k – 1 comes earlier than the grain k, and λk(7) =
–1 otherwise. The sign factor (–1)K(7) arises due to per-
mutations of fermionic operators. The Fermi functions
fF(e) take into account the Fermi filling factors. The δ
function ensures the energy conservation, and ∆ij = εj –

εi – is the difference of the energies of the initial
and the final state. The factors

(4)

thk pk 1–

Ĥeff
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ĤC

Ec
ij( )

Q 7( ) HC n r( ){ } ehkr' 1+
epkr'

–( )
r' 1=

r

∑+

1–

r 1=

N

∏=
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are products of energy denominators appearing in .
Here, nk are the numbers of excess electrons on the kth
grain after p local hops; they can be found from the fol-
lowing recursion formula:

(5)

while nk(0) =  is the equilibrium distribution.

Inspecting expression (3), we see that the character-
istic value  of the inelastic energies epl, ehl is con-
trolled by the combination of the δ function in (3) and
the product of the corresponding Fermi functions. As a
result,  ~ ∆ij/ , where  (which is T dependent) is
the number of inelastic cotunneling events in the total
process. Actually T !  ! EC; consequently, in par-
ticular, the dependence of Q(7) on the inelastic ener-
gies can be neglected. On the other hand, the character-
istic value of  of the elastic energies eαm is limited

only by the energy denominators Q(7), so that  ~
EC.

Thus, performing the integration over epl, ehl and
eαm, we obtain for the effective Miller–Abrahams
dimensionless conductance gij between two distant
grains i and j the following:

(6)

Here δ = E0  is the mean level spacing (ν is the
electronic density of states per one spin projection at
the Fermi level in a particular grain, v  is the volume of
the grains, and E0 is an arbitrary energy unit). The char-

acteristic Coulomb energy EC = E0  (normally
EC ~ e2/κeffa, where a is the average diameter of the
grains, and κeff is the effective dielectric permeability of
the material; see [6]). Finally, the mean tunneling

amplitude t = E0 , where |tkk + 1|2 is the
coarse grained (i.e., averaged over an interval of ener-
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gies near the Fermi level; large compared to the level
spacing but small compared to any other relevant scale)
value of | |2. The averaging of the logarithm rule

appearing in the above definitions of mean values arises
as a result of self-averaging of a large (~N) number of
similar independent random factors with identical dis-
tributions. Note also the presence of the spin-factors 2
in the multipliers corresponding to inelastic processes
and the absence of such factors for the elastic pro-
cesses.

The local activation energy εij for the ij hop is the

combination of εi, εj and , which is standard for the
hopping conductivity theory (see [5] for the explicit
definition).

The weight function FNL = C(3), where

C(3) are numerical coefficients depending only on the
partition 3 and on the explicit form of the charging

energy matrix :

(7)

 ≡ em/EC and (7) ≡ Q(7)  being the dimension-
less variables.

The explicit form of the weight function FN, L for

general  can not be found. However, as it is argued
below, the asymptotics of F relevant for the purely elas-

tic and purely inelastic limits are FN, 0 ≈  and FN, N ≈

, correspondingly. The numerical constants  and

 are not known. As a result,

(8)

where g ≡ Gh/e2 = 8π2(t/δ)2 ! 1 is the average dimen-
sionless conductance of a contact between two adjacent
grains. Note that this definition of g differs from that in
[8, 9]. Applying standard Mott–Efros–Shklovskii argu-
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Ã2
N

Ã1
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exp∝
ments to the random network with conductances (8),
we obtain Eq. (1) with TES = +(T)EC

(9)

where the crossover temperature Tc ~ /+, and
c1 ~ 1 is an unknown constant depending on the statis-
tical geometry of the granular material. Since EC ∝  a–1

and δ ∝  a–3, we conclude that roughly TES ∝  a–1 and
Tc ∝  a–2.

It should be noted that the above consideration is jus-
tified and the VRH regime is actual only if the charac-
teristic length of the hop is large:  ~ (EC/+T)1/2 @ 1.

For  < 1, the nearest neighbor hopping regime char-
acterized by the Arrhenius law σ ∝  exp(–EA/T) with the
activation energy EA ~ EC should be observed. The
crossover temperature between the two regimes is con-
trolled by the intergrain conductance g; the NNH is
likely to be found in the samples with very low g.

MODEL OF LOCAL REPULSION:
MOTT LAW FOR GRANULAR ARRAY

The expression (7) can be explicitly evaluated for
the model case of the short range Coulomb interaction

 = Ekδkk'. Then, the dimensionless local energies of

the charged states are  = (Ek/EC)[1/2  qk], and εi =

Ek . In this case, (7) can be written as

a product of single particle Green functions with ener-
gies depending on the local charge. As a result,

so that, for N @ 1, when the number of similar factors
in (10) is large and an effective self-averaging takes
place,

(10)

(11)

 being binomial coefficients. The constant A1 does
not show any dramatic dependence on the strength of
the random potentials: A1 = e2 ≈ 7.4 for strong charge
disorder, and A1 = 4 for a weak one. The constant
A2 = e2 for a strong disorder, while, for a weak one,
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Ẽm
+( )--------- 1

Ẽm
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A1 ~  ! 1. The reason is the destructive interference
between the two possible processes of the pair produc-
tion: in the e–h process, the electron is created first and
the hole is created second, while, in the h–e-process,
the order is inverted. As a result, for q0 ! 1, the cross-
over temperature strongly depends on q0: Tc(q0) ~

(q0+)–1 . The growth of Tc is saturated at  ~

(+)–1( δ)1/4 for q0 & (δ/EC)1/4 when the energies epl,
ehl of the pairs come into play. Thus, we conclude that,
for the case of weak charge disorder, the inelastic
cotunneling is suppressed and the crossover between
the elastic and inelastic cotunneling is shifted to higher
temperatures.

Unfortunately, the result (10) can not be generalized

for the case of nonlocal interaction . It can be

shown, however, that FN, 0 ≈ , and FN, N ≈  with

certain renormalized constants  and . Roughly,
the reason is as follows (the details will be presented
elsewhere): the simple exponential form of the F func-
tion holds for any effectively short-range interaction
(not necessarily a strictly local one), while, for an effec-
tively long-range one, the functional form of F can be
changed dramatically. The clue is that, despite the long-
range character of the Coulomb potential, the interac-
tion of effective degrees of freedom, in our case, is the
short-range one. Indeed, the actual charge configura-
tions relevant to our problem are those generated by
local electronic hops between neighboring grains.
These hops create local dipoles, and the dipole–dipole
interaction decays with distance r as r–3.

With the explicit formula (10) at hand, one can per-
form the summation in (6) and find

where the function ϕ(z) is implicitly defined by the rela-
tions ϕ(z) = 2y – ln(1 – y), y3 = (1 – y)z2. The function
y(z) ≡ /N (with the asymptotics y(z) ≈ z2/3 at z ! 1) has
the meaning of a relative fraction of inelastic events.

The average number of grains Nij in a string con-
necting two distant grains is proportional to the dis-

tance rij between them: Nij = c2 rij, where ng is the
concentration of grains, and c2 ~ 1 is a geometric con-
stant depending only on the statistics of the grain pack-
ing. The estimates made for c2 for several two-dimen-
sional models show that c2 ≈ 1. Thus, we have arrived
at the d + 1 dimensional percolation problem in the ri

and εi space. The density of sites νd + 1 = ngP1/2/EC in this
space is the density of marginal grains whose ground
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Ã1 Ã2

gijln  = Nij

A1gδ
8π2EC

--------------- 
 ln ϕ

εi ε j–
2Nij

-----------------
2A2

A1ECδ
---------------- 

 +
 
 
  εij

T
-----,–

L

ng
1/d
JETP LETTERS      Vol. 81      No. 6      2005
states are almost degenerate. The connectivity criterion
reads

(12)

As usual (see [5]), one should find a value ξ = ξc corre-
sponding to the first appearance of an infinite cluster of
grains connected according to the criterion (12). Then,
with the exponential accuracy, the global conductivity
of the system σ ∝  exp(–ξc).

The arising percolational model differs, however,
from the standard VRH one (see [5, 16]) due to an addi-
tional dependence on rij and εi, εj appearing in the argu-
ment of the function ϕ. However, since the variation of
this function on the relevant scale of it’s argument is
δϕ ~ 1 ! +, the corresponding relative variation of
ξ(ri, εi|rj, εj) is small and can be treated by the standard
perturbational method (see [5]). As a result, we obtain
the Mott law

(13)

with TM, which is slightly temperature-dependent:

(14)

(15)

The universal percolation constant nc ≈ 5.7 for d = 3 and
nc ≈ 3.5 for d = 2. The function χ(z) is related to ϕ(z) by

(16)

where the averaging over the percolation hypersurface
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sionless coordinate s has the following explicit mean-
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The asymptotics of the function χ(z) are

(17)

where b1, b2 are universal constants depending only on
the space dimensionality d. In particular, b2 = –1/6 for
d = 2 and b2 = –1/2 for d = 3.

Experimentally, the Mott law (13) is likely to be
observed in materials with weak charge disorder, where
the density of states at ε = 0 is very small because of the
factor P1/2 ! 1, and the Coulomb gap is irrelevant,
except for extremely low T range. In such materials,
however, TM is very large (cf. (14)) and the crossover
between the Mott and the Arrhenius laws should take
place at relatively low T.

MAGNETORESISTANCE

In the entire above consideration, we have neglected
the possible interference between contributions of dif-
ferent strings (if any) connecting the same pair ij. The
main reason for this approximation is the strong sign
fluctuations of the matrix elements : even in the
coherent (purely elastic) limit, the signs of the contribu-
tions of different strings to the composite amplitude of
the i  j transition fluctuate independently. The inter-
ference effects, although irrelevant to the zero-field
effects, are sensitive to a magnetic field; as a result, they
may be the source for a low temperature effect of a neg-
ative orbital magnetoresistance similar to the one dis-
cussed in [10–13] for the case of VRH in conventional
disordered semiconductors. The key component of this
effect is the interference between the contributions of
different spatial paths leading from i to j. In our case,
this means the existence of several strings i  j giving
comparable contributions to gij. For a fairly homoge-
neous material, where all gkk + 1 are of the same order of
magnitude, one can expect such different strings to

χ z( )
b1z2/3 for z ! 1,

2 z b2 …+ +ln( ) for z @ 1,



≈

thh ph 1–

Four different strings contributing to the i  j transition
in a particular realization of an array. For the partition
shown (the inelastic grains {l} are depicted as filled circles
and the elastic grains {m} as open ones), only two strings (A
and B) contribute to the interference effects.
exist already for Nij * 1. For a strongly disordered
material (with exponentially large fluctuations of
gkk + 1), there is typically only one leading string for
Nij < Nmin, and only for Nij > Nmin do several strings act
in parallel. The crossover length Nmin is a function of

the magnitude of the fluctuations D = ; the
explicit form of this function is model-dependent, and
we will not discuss it in the present letter. For us, it is
only important that Nmin(D) ~ 1 for D ~ 1, and
Nmin(D) @ 1 for D @ 1.

Apparently, the magnetoresistance is controlled by
the typical area S(Nloop) of the interference loop (Nloop
being the length of this loop). Loops with Nloop < Nmin
are extremely rare and can be ignored. For Nloop > Nmin,

the scaling law S(Nloop) ~  with an unknown expo-
nent u < 2 holds. The problem of the statistics of loops
is closely related to the well-studied theory of directed
polymers in a random field [17].

One of the essential ingredients of our cotunneling
process is the presence of inelastic events, which cer-
tainly destroy the interference and suppress the magne-
toresistance. Namely, the interference between two dif-
ferent strings A and B is possible only if the cotunneling
at all grains of A and B that are not common for them is
elastic (see figure). Since the relative fraction of inelas-
tic cotunnelings y depends on the temperature, so does
the length Mel ~ 1/y of a typical stretch on a string con-
taining only elastic grains. It is just Mel, not the entire
length N of the distant hop, that should play the role of
the effective length Nloop of the interference loop.
Clearly, for T * Tc, one has Mel ~ 1, while Mel ~
(Tc/T)2/3 @ 1 for T ! Tc.

Thus, we can conclude that, for temperatures T >

Tmag ~ Tc (D) < Tc, the orbital magnetoresistance is
strongly suppressed (since the typical elastic stretch is
shorter than Nmin), while, at T ! Tmag, it can be rela-
tively strong: the characteristic magnetic field Hc at
which the conductivity would saturate at σ(H @ Hc) ~

σ(H = 0) (cf. [12]) is

(18)

where  = Φ0  is the field corresponding to a flux
Φ0 through an elementary triangle of neighboring
grains. The dependence σ(H) at H < Hc can be different
in different ranges of H: either ∆σ ∝  H2 (at the smallest
fields, see [11, 13]) or ∆σ ∝  H (at the intermediate
fields, see [10, 13]) or ∆σ ∝  H1/2 (at relatively high
fields, see [12]).

CONCLUSIONS

In conclusion, we have developed a theory of vari-
able-range hopping in granular arrays with poor inter-

g gln–ln( )2

N loop
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Nmin
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2

Hc Φ0/S Mel( ) Hc
0( ) T /Tc( )2u/3,∼ ∼

Hc
0( ) ng
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grain coupling. Long-range hopping of electrons is pro-
vided by the multiple cotunneling strings that contain
both elastic and inelastic processes within individual
grains. In the presence of long-range Coulomb interac-
tion, the Efros–Shklovskii law for the temperature
dependence of conductivity is derived in the asymptotic
limits of purely inelastic or purely elastic cotunneling.
Upon temperature decrease, the relative contribution of
elastic cotunneling increases; for the model case of
local (screened) Coulomb interaction, the general situ-
ation of partially elastic cotunneling was studied and
the crossover temperature Tc was determined; cf.
Eqs. (9), (14). For real granular metals, this crossover
temperature happens to be rather low. In particular, for
Al grains of size a ~ 20 nm, one estimates EC ~ 500 K
and δ ~ 0.05 K, which leads (at g ~ 0.3, consequently,
+ ~ 12) to Tc ~ 0.5 K. For a ~ 10 nm, the same estimates
give Tc ~ 2K. Therefore, the major part of the experi-
mental temperature range (from room to liquid helium
temperatures) is dominated by inelastic cotunneling.
This is the reason why the magnetoresistance is very
weak in granular metals, contrary to disordered semi-
conductors. The observation of noticeable negative
magnetoresistance due to interference of different tun-
neling strings might be possible with granular media
made of small (≤10 nm) grains of nonsuperconductive
metals such as copper, silver, or gold at temperatures
below 1 K. In the inelastic regime (at T > Tc), the con-
stant TES entering Eq. (1) is itself T dependent: it loga-
rithmically increases with the decrease of T. This
dependence should lead to somewhat faster growth of
the resistivity upon lowering T than that predicted by
the standard Efros–Shklovskii law.

After the present study was completed, we became
aware of a preprint [18] where purely elastic variable-
range cotunneling was proposed as the conduction
mechanism for granular metals; their results seem to
agree with ours as long as inelastic processes are
neglected.
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The effect of microwave radiation in the frequency range from 1.2 to 10 GHz on the magnetoresistance of a
high-mobility two-dimensional electron gas has been studied in a GaAs quantum well with AlAs/GaAs super-
lattice barriers. It has been found that the microwave field induces oscillations of this magnetoresistance, which
are periodic in the reciprocal magnetic field (1/B). It has been shown that the period of these oscillations in the
frequency range under study depends on the microwave radiation power. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.23.–b, 73.40.Gk
Magnetoresistance (MR) oscillations that have
recently been discovered in a high-mobility two-
dimensional electron gas (2DEG) in a GaAs/AlGaAs
heterojunction are induced by microwave radiation in
the magnetic field region preceding the region of the
appearance of the Shubnikov–de Haas (SdH) oscilla-
tions [1]. It was found that the positions of oscillation
peaks on the magnetic field scale are determined by the
ratio ω/ωc = N, where ω/2π is the microwave fre-
quency; ωc is the cyclotron frequency of electrons in a
magnetic field B; and N = 1, 2, 3, …. These oscillations
were predicted theoretically more than 30 years ago [2]
and were observed experimentally due mainly to
advances in preparing high-quality semiconducting
structures with modulated doping.

Soon after the publication of [1], it was shown that,
in a magnetic field range preceding the region of SdH
oscillations, MR oscillations are also induced by a con-
stant driving current Idc [3], i.e., by a zero-frequency
electric field. These oscillations are associated with
tunneling of charge carriers between the Landau levels
tilted under the action of the electric field. The period of
these oscillations depends on the ratio Idc/B, while the
positions of the oscillation peaks that are associated
with microwave radiation are determined by the fre-
quency, but they are independent of the power [4].

Obviously, with decreasing the microwave field fre-
quency, the oscillations that are caused by vertical tran-
sitions between the Landau levels [5] must change to
oscillations associated with “horizontal” tunneling [3].
In other words, below a certain characteristic fre-
quency, the positions of the oscillation peaks on the
magnetic field scale must depend on the microwave
radiation power. It follows from general considerations
0021-3640/05/8106- $26.00 0284
that this boundary frequency must be a function of the
mobility of 2DEG and the quantity kT, where k is the
Boltzmann constant and T is the temperature.

Fig. 1. (a) Magnetic field dependence of relative MR at T =
4.2 K for Idc = (1) 0 and (2) 1.2 × 10–4 A. The digits on curve
2 show the numbers (N) of oscillation peaks. For better
visualization, curve 1 is displaced downwards along the y
axis. (b) The positions of oscillation peaks vs. 1/B for Idc =

(1) 1.4 × 10–4 and (2) 1.2 × 10–4 A.

2
1

© 2005 Pleiades Publishing, Inc.
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Here, we study the effect of microwave radiation on
the MR of a high-mobility 2DEG in a GaAs quantum
well with AlAs/GaAs superlattice barriers. In such
selectively doped structures, we observed MR oscilla-
tions induced by microwave radiation in the range of
classically strong magnetic fields. We proved experi-
mentally that the positions of the peaks of these oscilla-
tions in a magnetic field in the microwave radiation
range under study depend on the power of the micro-
wave field.

The structures under study were grown by molecu-
lar beam epitaxy (MBE) on (100) GaAs substrates. The
width of the GaAs quantum well was 13 nm.
AlAs/GaAs type-II superlattices served as the barriers,
which made it possible to obtain a high-mobility 2DEG
with a high concentration [6, 7]. The mobility of 2DEG
in the MBE structure at the liquid helium temperature
and a concentration of 1.3 × 1012 cm–2 was 106 cm2/V s.
Measurements were carried out at T = 4.2 K in mag-
netic fields up to 2 T on 50-µm-wide Hall bridges with
distances of 100, 200, 300, and 400 µm between the
potentiometer leads. Microwave radiation was supplied
to the sample through a coaxial cable and was fed to the
2DEG through current contacts of the Hall bridge. The
resistance was measured using a 10–6-A alternating cur-
rent with a frequency of 777 Hz.

Figure 1a shows the dependences of the relative MR
for (curve 1) zero dc Idc and (curve 2) a nonzero dc. It is
clearly seen that, as compared to curve 1, the direct cur-
rent reduces the amplitude of the SdH oscillations in
fields exceeding 0.5 T, while oscillating MR appears in
the field range below 0.5 T. Analysis of the curves
shows that MR oscillations induced by current Idc are
periodic in the reciprocal magnetic field to within
experimental error. Figure 1b shows that the positions
of the peaks of these oscillations depend on Idc, which
is completely consistent with the results obtained in [3].
The position of the brightest peak on curve 1 (Fig. 1a)
corresponds to the integer N = 1, which also agrees with
the results obtained in [3].

Figure 2 shows the relative MR curves for various
powers P of 1.2-GHz microwave radiation. It is seen
that oscillations whose position on the magnetic field
scale depends on power P are induced by microwave
radiation in the region preceding the SdH oscillations.
The analysis of the positions of the peaks of these oscil-
lations in a magnetic field is presented in Fig. 3 for var-
ious values of P and frequencies of 1.2 and 10 GHz.
Analogously to oscillations induced by Idc, these oscil-
lations are periodic in 1/B, which is consistent with the
results obtained in [1], but the position of the first peak
on the magnetic field scale corresponds to the integer
N = 3 rather than to N = 1.

The experimental data that are presented in Fig. 3
show that the behaviors observed at frequencies of 1.2
and 10 GHz are qualitatively similar to each other. This
means that the dependence of the magnetic field posi-
tions of the peaks on the frequency of the microwave
JETP LETTERS      Vol. 81      No. 6      2005
Fig. 2. Magnetic field dependence of the relative MR at T =
4.2 K for the microwave field frequency F = 1.2 GHz for
various powers P. The lower and upper curves correspond to
the minimum and maximum P values, respectively. For bet-
ter visualization, the curves, beginning with the lower one,
are displaced upwards along the y axis. Numbers N denoted
oscillation peaks.

Fig. 3. Positions of the oscillation peaks vs. 1/B for various
powers P (P1 > P2 > P3) and for frequencies F = (a) 1.2 and
(b) 10 GHz.



 

286

        

BYKOV 

 

et al

 

.

                                 
field begins at higher frequencies at T = 4.2 K. It was
shown in [4] that a noticeable frequency dependence of
the positions of oscillation peaks for samples with a
higher mobility and a substantially lower concentration
of the 2DEG begins above 7.5 GHz at a temperature of
280 mK. Our results can be explained qualitatively by
the fact that the MR oscillations in the 2DEG in the
samples studied at T = 4.2 K in a frequency range up to
10 GHz are due to tunneling between the Landau levels
tilted in the electric field [3].

Thus, we observed experimentally the MR oscilla-
tions of a 2DEG that are induced in a GaAs quantum
well with AlAs/GaAs superlattice barriers by micro-
wave radiation. Their period in the reciprocal magnetic
field has been shown to depend on the microwave
power in a frequency range up to 10 GHz.

We are grateful to M.V. Entin for fruitful discussions
of the results. This work was supported by the Russian
Foundation for Basic Research (project no. 04-02-
16789) and INTAS (grant no. 03-51-6453).
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Spin Fluctuations in the Stacked-Triangular 
Antiferromagnet YMnO3
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The spectrum of spin fluctuations in the stacked-triangular antiferromagnet YMnO3 was studied above the Néel
temperature using both unpolarized and polarized inelastic neutron scattering. We find an in-plane and an out-
of-plane excitation. The in-plane mode has two components just above TN: a resolution-limited central peak and
a Debye-like contribution. The quasi-elastic fluctuations have a line width that increases with q as Dqz and the
dynamical exponent z = 2.3. The out-of-plane fluctuations have a gap at the magnetic zone center and do not
show any appreciable q dependence at small wave vectors. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.40.–s, 78.70.Nx
1. INTRODUCTION

YMnO3 belongs to the family of RMnO3 (R = Rare-
earth) manganite ferroelectric compounds that crystal-
lize in the hexagonal space group P63cm below the
paraelectric–ferroelectric phase transition (~900 K). In
YMnO3, the Mn3+ ions form triangular layers well sep-
arated from each other by Y layers. Because, in the fer-
roelectric phase, the lattice is distorted, the Mn ions are
slightly trimerized. The large separation between adja-
cent layers suggests that YMnO3 forms a good candi-
date for a geometrically frustrated 2-Dimensional (2D)
antiferromagnet.

The magnetic structure of hexagonal YMnO3 was
first investigated by Bertaut and Mercier [1] and rein-
vestigated later in more details by Munoz et al. [2].
Below TN ~ 70 K, the S = 2 magnetic moment of Mn
ions are arranged in a 120° magnetic structure with the
triangular layers at z = 0 and z = 1/2 being antiferromag-
netically coupled. At saturation, the magnetic moment
is µ = 2.9µB; i.e., it is significantly reduced from the
expected 4µB of Mn3+ spins, which was taken as evi-
dence that, even in the ordered phase, strong spin fluc-
tuations are present as a consequence of geometrical
frustration [3]. Analysis of the spin-wave spectrum
has confirmed the 2D character of the magnetic
exchange interactions in YMnO3 [4] with the ratio of
the intra- to interplane exchange interactions being on
the order ~2 × 102. Whereas well-defined excitations
are observed below the ordering temperature, a broad
inelastic signal, as well as short-range correlations
between the Mn magnetic moments within the triangu-
lar layers, persists well above TN [3].

¶ This article was submitted by the authors in English.
0021-3640/05/8106- $26.00 0287
In this work, we investigate the q and temperature
dependence of the spin excitations in YMnO3 close to
the Néel temperature. We were motivated by the fact
that the nature of the phase transition of frustrated mag-
nets is still not completely understood and that the crit-
ical properties of stacked triangular antiferromagnets
have received special attention since Kawamura [5]
proposed that the critical exponents in these systems
form a new universality class. Experimental confirma-
tion of the new class of (chiral) exponents was found in
CsMnBr3 by unpolarized [6] and polarized neutron
scattering [7] measurements as well as in Ho [8]. Sec-
ond, an anomaly in the dielectric constant ε with the
electric field applied in the ab plane was found in
YMnO3 [9] at TN. The nature of the coupling between
the electric and magnetic properties in hexagonal man-
ganites is a subject of intense debate [10]. Clearly, it is
required to characterise the behavior of the magnetic
fluctuations in the vicinity of TN to understand the pos-
sible relationship with the magneto-dielectric effect in
YMnO3 [11].

2. EXPERIMENTAL

Polycrystalline YMnO3 was prepared using a solid
state reaction. The starting materials of Y2O3 and MnO2
with 99.99% purity were mixed and grounded and then
treated at 1000–1200°C in air for at least 70 h with sev-
eral intermediate grindings. The phase purity of the
compound was checked with a conventional x-ray dif-
fractometer (SIEMENS D500). The powder was hydro-
statically pressed in the form of rods (8 mm in diameter
and ~60 mm in length). The rods were subsequently
sintered at 1300°C for 30 h. The crystal growth was car-
ried out using an optical floating zone furnace (FZ-T-
© 2005 Pleiades Publishing, Inc.
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10000-H-IV-VP-PC, Crystal System Corp., Japan)
with four 1000 W halogen lamps as a heat source. The
growth rate was 1.5 mm/h and both rods (the feeding
and seeding rod) were rotated at about 20 rpm in oppo-
site directions to ensure the liquid homogeneity. A mix-
ture of argon with 2% oxygen at 5.5 bar was applied
during the growing. The crystal has the shape of a rod
6 mm in diameter and 2 cm in height and a mosaic
spread better than 1°.

The measurements were performed at triple-axis
TASP located on the cold source of the neutron spalla-
tion source SINQ. The sample was mounted inside an
He-flow cryostat with the crystallographic axis a* and
c* in the scattering plane. The spectrometer was oper-
ated with the energy of the scattered neutrons kept fixed
at kf = 1.47 Å–1 for measurements with unpolarized neu-
trons. 80' Soller collimators were installed in the inci-
dent beam and before the analyzer and the detector.
With that configuration the energy resolution at zero
energy transfer is 180 µeV. To reduce both the back-
ground and contamination by higher wavelength neu-
trons a cold Be filter was installed in the scattered
beam. The inelastic polarized neutron measurements
were performed at kf = 1.51 Å–1 along (1 ± q, 0, 0.1) and
at different temperatures above TN. To perform longitu-
dinal-polarization analysis, remanent supermirror
benders [12] were inserted after the monochromator
and before the analyzer. The orientation of the polariza-
tion was chosen perpendicular to the scattering plane.
Because magnetic fluctuations with a polarization fac-
tor parallel to the neutron spin occur in the nonspin flip
channel, the nonspin flip data (NSF) contains the in-
plane fluctuations, and, in the spin-flip channel (SF),
only out-of-plane fluctuations are present, as will be
shown below.

Fig. 1. Temperature dependence of the intensity of the (1 0 0)
magnetic Bragg peak. The line is a fit to the data with a
power law.
3. RESULTS AND DISCUSSION

Figure 1 shows the intensity of the (1 0 0) magnetic
Bragg reflection as a function of the temperature, which
mirrors the square of the staggered magnetization. The
transition temperature, as determined by taking the
derivative of the magnetization curve [13], is TN =
72.1 ± 0.05 K. The intensity of the Bragg peak follows
the power law I ∝  |(T/TN – 1)|2β with β = 0.187(2). This
value is lower than that reported for the case of typical
stacked-triangular antiferromagnet RbNiCl3 (β = 0.28),
CsNiCl3 (β = 0.28), and CsMnBr3 (0.21 < β < 0.25) and
close to the critical exponent obtained in VCl2 (β =
0.20) [5, 14]. Typical 2D XY-antiferromagnets
(BaNi2(PO4)2) or ferromagnets (Rb2CrCl4, K2CuF4)
have a magnetization exponent that corresponds to the
expected theoretical value β = 0.23 [15]. We note that
β = 0.19 in the 3D triangular Ising antiferromagnet
[16].

Figure 2a shows elastic scans along the [1 0 l] direc-
tion as a function of temperature. Close to the Néel tem-
perature, correlations between adjacent hexagonal
planes give rise to broad magnetic scattering along c*
that eventually appears to condense into the magnetic
Bragg peak at TN. From Fig. 2b, we see that this diffuse
scattering is static on the time scale of our experiment
and corresponds to slow fluctuations of in-plane char-
acter, as will be shown below. With increasing temper-
ature, these correlations disappear and only scattering
across the [1 0 l] direction show a peak in the neutron
cross section. Hence, well above TN, correlations persist
only between the Mn moments located in the hexagonal
plane, as shown in Fig. 3. Here, we describe the line
shape of the diffuse intensity by a Lorentzian profile
convoluted with the resolution function of the spec-
trometer:

(1)

where Q0 is the position of the magnetic rod in recipro-
cal space, || and ⊥  denote the direction along and per-
pendicular to the magnetic rod, and κ|| denotes the
inverse of the correlation length ξ between Mn spins in
the hexagonal plane. Close to the Néel temperature, the
temperature dependence of ξ behaves similar to ξ(T) =
0.038(±0.005)(T – TN)ν with ν = 0.57(±0.06) as shown
in Fig. 3b. We now turn to the behavior of the paramag-
netic fluctuations in YMnO3. Figure 4 shows typical
energy scans performed at Q = (1 – q, 0, –3.8) and T =
73.6 K. The inelastic cross-section for an unpolarized
neutron beam is given by

(2)

where δαβ is the Kronecker symbol; α, β are the Carte-
sian coordinates x, y, z, (Q, ω) that denote the momen-
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tum and energy transfers from the neutron to the sam-

ple; and  = Q/|Q|. The first term in Eq. (2) is a selec-
tion rule that implies that only spin components
perpendicular to the scattering vector contribute to the
neutron scattering cross section. Hence, for scattering
vectors with large l components such as Q = (1 ± q, 0,
–3.8), the inelastic spectrum contains essentially para-
magnetic fluctuations with in-plane character (||). In
addition, close to the Néel temperature, inelastic scans
through the magnetic rod show the resolution-limited
central peak described by Eq. (1) as shown in Fig. 2.
Thus, to analyze the data shown in Fig. 4, we modeled
the inelastic intensity I(Q, ω) in the following way:

(3)

where Sinc = Aδ(ω) refers to the resolution-limited inco-
herent scattering that was measured at high temperature

Q̂

I Q ω,( ) Spara
|| Q ω,( )(=

+ Sinc ω( ) Sχc Q( ) )+ R Q ω,( ) Bck,+⊗

Fig. 2. (a) Elastic scans along (1, 0, l) that show the increase
of diffuse magnetic scattering in YMnO3 when the temper-
ature approaches TN. (b) Inelastic scan that shows the pres-
ence of the central peak in YMnO3. The insert shows the
difference between scans measured at (1, 0, –3.8) and (1, 0,
–3.5) that emphasizes the resolution-limited component.

(1, 0, l)

(a
rb

. u
ni

ts
)
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and S is a scale factor. The neutron scattering function

(Q, ω), which is related to the imaginary part of the

dynamical susceptibility through π(gµB)2 (Q, ω) =

F2(Q)(1 – exp(–"ω/kBT))–1 χ''(Q, ω), describes the
line shape of the paramagnetic scattering as a function
of momentum (Q) and energy ("ω) transfer, respec-
tively; F(Q) is the magnetic form factor of Mn. In Eq.
(3), the symbol ⊗  stands for the convolution with the
spectrometer resolution function R(Q, ω) [17] and Bck
denotes the background level. We find that a Debye-like
quasi-elastic line shape for the imaginary part of the
dynamical susceptibility

(4)

reproduces the data adequately. χ(q) is the static sus-
ceptibility as in Eq. (1) taken relative to the antiferro-
magnetic zone center (Q0 = (1, 0, 0)), and Γ(q) is the
damping of the paramagnetic fluctuations. Figure 4

Spara
||

Spara
||

I

Iχ '' Q0 q ω,+( ) ωχ Q0 q+( ) Γ q( )
ω2 Γ q( )2+
--------------------------=

Fig. 3. (a) Neutron diffuse intensity in YMnO3. The back-
ground was measured at T = 300 K and has been subtracted.
(b) Temperature dependence of the inverse of the correla-
tion length. The line is a fit to the data with a power law.
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shows the results of fits to the data at T = 73. 6 K from
which we extract that the damping of the in-plane fluc-
tuations Γ(q) evolves similar to Γ(0, T) + (1450 ± 90)qz

(meV) with Γ(0, 73.6 K) = 0.23 ± 0.07 (meV), and z =
2.26 ± 0.07. In contrast with data taken around (1 ± q,
0, 3.8), the inelastic spectra around (1 ± q, 0, 0.1) can-
not be fitted with Eq. (4). This is an indication that the
spectrum of paramagnetic fluctuations in YMnO3 con-
sists of 2 modes, an in-plane (||) as well as an out-of-
plane component (⊥ ). To separate the || from the ⊥  fluc-
tuations, it is necessary to use polarization analysis. A
typical inelastic spectrum measured with polarization
analysis is shown in Fig. 5 that reveals an out-of-plane
excitation in the spin-flip channel. In contrast with the

Fig. 4. Constant q-scans in YMnO3 at T = 73.6 K and 79.8 K
that show the in-plane fluctuations, as explained in the text.
The lines are the result of fit to the data using Eq. (3).
|| fluctuations, the ⊥  component is inelastic and is best
described by a damped-harmonic oscillator function

(5)

where Ωq is the renormalized frequency and γq the
damping of the excitation. Within the precision of the
measurements, we find that Ωq = 3.9 ± 0.3 (meV) and
γq = 2 ± 0.5 (meV) in the range of momentum values
reached in the present experiment (q ≤ 0.1).

The analysis of the data in the non-spin-flip channel
yields the same q dependence for the || fluctuations that
was obtained with the unpolarized set up. The results
are summarized in the table. The mean value for the
dynamical exponent of the || fluctuations in YMnO3
yields z ~ 2.3 and does not agree with the theoretical
dynamical exponent z = 1 for the classical 2D triangular
antiferromagnet [18]. Also, the value obtained in
YMnO3 is quite different from the dynamical expo-
nents z = 1.5 expected for the 3D Heisenberg antiferro-
magnet and measured, e.g., in RbMnF3 [19] and
CsMnBr3 [20]. Finally, we show the temperature
dependence of Γ(0, T) in Fig. 6, which increases almost
linearly above TN, Γ(0, T) = 0.4 + 0.07(T – TN)1.1 ± 0.2.

SDHO
⊥ ω

1 ω/T–( )exp–
------------------------------------

γq

ω2 Ωq
2–( )2 ω2γq

2+
-------------------------------------------,∝

Fig. 5. Constant q-scans in YMnO3 at T = 73.6 K that show
the in-plane fluctuations in the non-spin flip (NSF) and the
out-of-plane component in the spin-flip channel (SF),
respectively. The lines are the result of fit to the data as
described in the text.
Parameter values for the damping (Γ(q) = γqz (meV)) and the critical exponent (z) of the ||-fluctuation in YMnO3

T(K) γ ∆γ z ∆z

Unpol. 73.6 1450 90 2.26 0.07

79.8 1283 272 2.29 0.16

Pol. 74 1306 277 2.53 0.25

78 1028 313 2.40 0.4
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4. CONCLUSIONS

To conclude, using both unpolarized and polarized
inelastic neutron scattering, we showed that there are
two magnetic excitations in the paramagnetic regime of
YMnO3 that have in-plane and out-of-plane polariza-
tion, respectively. The in-plane mode has a resolution-
limited central peak and a quasi-elastic component with
a line width that increases as a function of momentum
transfer q similar to ∝ qz with the dynamical exponent
z = 2.3. The presence of two time scales in the spectrum
of in-plane fluctuations might be the signature for the
coexistence of 2D and 3D fluctuations in the vicinity of
TN [21]. The out-of-plane fluctuations are inelastic at
the magnetic zone center and do not show any q depen-
dence for small wave vectors.

This work was performed at the Neutron Spallation
Source SINQ, Paul Scherrer Institut, Switzerland and
was partly supported by the NCCR MaNEP project.
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Effect of the Spin Short-Range Order on Electron Transport 
and Neutron Scattering in Amorphous Alloys GdxSi1 – x
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Direct experimental evidence has been obtained for the existence of short-range ferromagnetic order in GdxSi1 – x
alloys. Along with the standard magnetotransport measurements, a “local” experimental method of the elastic
scattering of thermal neutrons on the magnetic moment of Gd is applied. The measurement results provide the
conclusion that short-range ferromagnetic order is formed in nanoclusters with an increased content of Gd ions.
We consider the amorphous alloy GdxSi1 – x as a new magnetic material with unique properties characteristic of
both strongly inhomogeneous alloys and nanocomposite compounds. © 2005 Pleiades Publishing, Inc.

PACS numbers: 72.15.Gd, 75.25.+z, 75.47.De, 75.50.–y
1. INTRODUCTION

Amorphous alloys GdxSi1 – x (0.1 < x < 0.2) have
been actively studied and discussed in recent years.
When the temperature and magnetic field vary, electron
and magnetic phase transformations occur in these
alloys and giant negative magnetoresistance is
observed. The standard classification of these materials
among completely disordered magnetic semiconduc-
tors appeared to fail to explain the anomalies in their
transport and magnetic properties over wide ranges of
temperatures and magnetic fields.

It follows from experiments [1, 2] that, in GdxSi1 – x
alloys, doping effects that are responsible for the
metal–insulator transition in disordered materials are in
complex combination with the spin-correlation effects
that are responsible for both the short-range order in
disordered magnetic materials and transition to the
spin-glass phase. For T > 50 K, the temperature depen-
dence of the conductivity σ(T) of GdxSi1 – x is the same
as in its nonmagnetic structure analogue YxSi1 – x. For
T < 50 K, negative magnetoresistance appears and the
conductivity decreases much faster with temperature
than the conductivity of YxSi1 – x. In the framework of
the model of the Mott–Anderson transition that is
induced by magnetic disorder, Kumar and Majumdar
[3] attempted to qualitatively describe such a situation,
but that work has not provided a complete understand-
ing of the properties of real materials.

As was shown in [4], the change in conductivity
under the variation of the temperature and magnetic
field is primarily caused by a change in the concentra-
tion of free carriers. When the temperature decreases
below a certain critical value Tc ≈ 50–70 K, the mag-
0021-3640/05/8106- $26.00 ©0292
netic susceptibility increases sharply and this increase
is accompanied by a shift of the spin resonance line.
These results provided the assumption that the system
contains nanometer objects in which the ferromagnetic
resonance occurs due to magnetic ordering for T < Tc.
In [5, 6], a fundamental statement is formulated that
structural and magnetic disorder in GdxSi1 – x alloys is
more complex than was traditionally expected previ-
ously. Namely, in addition to ordinary “microscopic”
fluctuations (at a scale of several interatomic distances)
of the content, there are “nanoscopic” fluctuations (at a
scale of ten or more interatomic distances) of the con-
tent. The latter fluctuations are nanoclusters (nanoclus-
ters) with an increased content of Gd ions and strong
ferromagnetic short-range order. Around these nano-
clusters, regions with an increased electron density
(“droplets”) are formed and they play an important role
in the transport properties of the system. An adequate
theoretical model has been developed and numerous
magnetic, transport, and magnetotransport measure-
ments have indirectly corroborated the hypothesis of
the formation of ferromagnetic droplets below Tc. The
features of the transport and magnetic properties of
GdxSi1 – x alloys have been successfully interpreted. In
particular, giant negative magnetoresistance was attrib-
uted both to the orientation of the magnetic moments of
individual nanoclusters and to lowering of the threshold
of the flowing of the system in the external magnetic
field, and an increase in the magnetic susceptibility
when the temperature decreases was attributed to the
superparamagnetic behavior of nanoclusters.

In this work, direct experimental evidence has been
obtained for the appearance of local ferromagnetic
order in GdxSi1 – x alloys. In order to observe nanoclus-
 2005 Pleiades Publishing, Inc.
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ters and to determine their magnetic state, a “local”
experimental method of the elastic scattering of thermal
neutrons on the magnetic moment of Gd is applied
along with the standard magnetotransport measure-
ments.

2. MAGNETOTRANSPORT PROPERTIES

The magnetotransport measurements for amor-
phous films of GdxSi1 – x approximately 1000 Å in
thickness, which were prepared at the laboratory
headed by Prof. F. Hellman by the method of joint dep-
osition by an electron beam [2], were carried out in the
temperature range 5–300 K and in magnetic fields to
40 kG. The magnetic-field dependences were measured
for transverse Rxx and Hall Rxy magnetoresistances in
van der Pauw geometry for various temperatures.
Before analyzing the measurement results, it is neces-
sary to make one remark.

We assumed that the conductivity in the system
under study is primarily ensured by electrons moving in
wide bands formed by s–p hybridized orbitals of Si.
According to [7], Gd enters into the matrix of amor-
phous Si in the form of a trivalent ion that closes broken
bonds between two neighboring Si ions and gives elec-
trons of its outer s–d shells to these bonds. Owing to
such a specificity of the chemical bond in a-GdxSi1 – x,
the anomalous contribution to Rxy due to the spin–orbit
interaction between band s–p states of Si and localized
f states of Gd is likely insignificant. For this reason, we
will take into account only the normal component of Rxy

and assume that the components of the tensors (Rxx, Rxy)
are related to the free-carrier concentration and the
average magnetic field Bin inside the current-flowing
regions as 1/Rxx ∝  n and RHall = Rxy/Bin ∝  1/n.

Under this assumption, the dependence of Bin ∝
Rxy/Rxx on the external magnetic field H can be plotted
in arbitrary units (see Fig. 1). It is seen that the depen-
dence Bin(H) is strongly nonlinear as a whole. However,
in the region H > 20 kG, it is almost linear and contains
a constant contribution that, as we believe, is attributed

to the saturation magnetization  of the sample.
Taking into account the saturation of the magnetization
in strong magnetic fields, we normalize the slope of the
dependence Bin(H) (H > 20 kG) to unity and thereby
determine the absolute value of Bin. This method makes
it possible to estimate the magnetization of the mate-
rial, and it serves as a Hall magnetometer sensitive to
the local magnetization of the material in the current-
flowing region. From the relation Bin(H > 20) . H +

4π , we obtain the rough estimate  . 2 kG. As
is easily seen, this value significantly exceeds the theo-
retical estimate of the saturation magnetization under
the assumption of the uniform distribution of Gd atoms

over the sample volume:  = NmµBsg . 450 G,

Ms
exp

Ms
exp Ms

exp

Ms
theor
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where Nm = 7 × 1021 cm–3 is the average Gd concentra-
tion corresponding to the content of Gd0.14Si0.86, µB is
the Bohr magneton, s = 7/2 is the spin of the Gd3+, and
g = 2 is the spectroscopic-splitting factor of the Gd3+

ions. Thus, the simplest interpretation of the experi-
mental results is not obvious, and a finer analysis of the
situation is necessary.

Taking into account a conclusion made in [8] that
the metal–insulator transition in GdxSi1 – x is of percola-
tion character, we assume that the conductivity in the
material under investigation occurs through the circuit
that is formed by nanoclusters inside which Gd spins
are ferromagnetically ordered. The average magnetic
field for the current that flows over nanoclusters in a
thin-film sample in the presence of the external mag-
netic field H perpendicular to the film plane is given by
the expression

(1)

Here, Hin is the magnetic field averaged over the nano-
cluster volume, f is the volume fraction of the nanoclus-
ters, 〈Nc〉  is the average demagnetization coefficient,
Mc = Mcs+(KµBsgHin/kBT) is the average magnetization
of the nanoclusters along the field, Mcs = NcµBsg is the
saturation magnetization of the nanoclusters, K is the
number of Gd ions in the nanoclusters, Nc is the con-
centration of Gd ions in the nanoclusters, +(y) =

 – 1/y is the Langevin function, and kB is the
Boltzmann constant.

For chaotically oriented clusters that are not too
anisotropic in shape, the approximation 〈Nc〉  ≈ 4π/3 can

Bin H in 4π Nc〈 〉–( )Mc+=

=  H 4π 4π/3–( ) f Mc– 4π Nc〈 〉–( )Mc.+

y( )coth

Fig. 1. Local magnetic field and magnetization inside cur-
rent-flowing regions vs. the external magnetic field in the
Gd0.145Si0.855 sample for various temperatures. The line is
the approximation by function (2).
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be used, and, taking into account that f ! 1 (since f <
x, measurements were carried out on GdxSi1 – x samples
for x = 0.1–0.2), we obtain Hin ≈ H. In this case, for-
mula (1) assumes the form

(2)

The solid lines in Fig. 1 are plotted according to for-
mula (2) with optimally fitted parameters Mcs and K. It
is seen that experimental dependences Bin(H) are well
approximated by the model of the current that flows
through ferromagnetic nanoclusters. A value of Mcs ≈
2.8 kG is obtained for the saturation magnetization,
and, when the temperature decreases, K increases grad-
ually and smoothly approaches the value K ≈ 10–15.
This behavior implies that the local concentration of Gd
atoms in the network that is formed by nanoclusters in
which the current flows is higher than Nm by a factor of
approximately 6. Taking into account the range of pos-
sible values of the demagnetization factor 〈Nc〉  = 0–2π,
we estimate the maximum and minimum concentra-
tions of Gd atoms in nanoclusters on the flowing paths
as Ncs ≈ (2–4) × 1022 cm–3. Knowing the mean number
K ≈ 10–15 of Gd atoms in a cluster, one can determine

Bin . H
8πMc

3
--------------  . H

8πMcs

3
---------------+

KµBsgH
kBT

--------------------- 
  .+ +

Fig. 2. Magnetic neutron diffraction patterns of the
Gd0.14Si0.86 sample for temperatures of (a) 4.2 and (b) 1.7 K.
The lines are the approximations by the functions (a) F(q) =
A + Bsin(rq)/rq, where r = 2 Å, and (b) F(q) = A +
Bsin(r1q)/r1q + C(1 – sin(r2q)/r2q), where r1 = 2 and r2 =
5 Å.

(a
rb

. u
ni

ts
)

its characteristic volume as ≈300–800 Å3. We note that
the saturation magnetization is approximately the same
in samples with significantly different contents. There-
fore, the densities of Gd atoms in ferromagnetic nano-
clusters are also nearly the same. The mean spacing
between Gd atoms in nanoclusters is approximately
equal to 3 Å, which is close to the lattice parameter in
GdSi2 crystals. These circumstances provide an
assumption on the chemical nature of ferromagnetic
nanoclusters. Ferromagnetic nanoclusters are possibly
GdSi2 inclusions formed during the material synthesis.

3. NEUTRON DIFFRACTION

The assumptions that were based on magnetotrans-
port measurements are corroborated by the results of
the neutron-diffraction experiment that was carried out
in order to reveal the local ferromagnetic order. In order
to obtain the material amount necessary for the neutron
experiment, a Gd0.14Si0.86 sample 1.3 µm thick was
grown on an NaCl crystal substrate. The material that
was formed after the dissolution of the substrate was
studied using neutron measurements on a G6.1 high-
flux neuron diffractometer mounted at the ORPHEE
reactor (Laboratory Leon Brillouin, Sacley, France).
The measurements were carried out with 4.741-Å
(3.6-meV) incident neutrons in the scattering angle
range 2θ = 5°–140° and for the temperatures T = 1.7,
4.3, 15, 40, and 80 K. The chosen scattering angles cor-
respond to the neutron momentum transfer q = 0.25–
2.5 Å–1. This choice allows the determination of the
magnetic correlation regions in the range 3–30 Å. The
magnetic-diffraction data for low temperatures were
obtained by the subtraction of the data that were
obtained at a temperature of T = 80 K (below which
correlations between magnetic Gd ions appear) from
the corresponding diffraction pattern.

Figure 2 shows the results thus obtained for T = 1.7
and 4.2 K. For these temperatures, the modulation of
the magnetic signal is observed in the dependence on
the wave vector. This modulation changes significantly
when the temperature increases, and the magnetic scat-
tering was not observed for T = 15 K. Only ferromag-
netic correlations are observed between Gd ions for
T = 4.2 K. From the approximation by the function
F(q) = A + Bsin(rq)/rq, where r = 2 Å, the ferromag-
netic correlation length is estimated as ≈5 Å for a dis-
tance of about 2 Å between Gd ions. The data obtained
for the lowest temperature, T = 1.7 K, exhibit the
existence of antiferromagnetic correlations. At the
same time, the best fit is obtained under the assump-
tion that antiferromagnetic correlations coexist with
ferromagnetic correlations. The use of the function
F(q) = A + Bsin(r1q)/r1q + C(1 – sin(r2q)/r2q), where
r1 = 2 Å and r2 = 5 Å, made it possible to estimate the
antiferromagnetic correlation length as ≈15 Å. This
result can be treated as the appearance of antiferromag-
netic correlations between ferromagnetic droplets.
JETP LETTERS      Vol. 81      No. 6      2005
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Thus, these data provide direct experimental evidence
that droplets with short-range ferromagnetic correla-
tions really exist in the sample for T < 15 K and increase
the magnetization.

The considerable decrease in the magnetization that
is observed for the lowest temperature (T < 2 K) is asso-
ciated with antiferromagnetic correlations between fer-
romagnetic droplets. Analysis of the intensity of the
elastic magnetic scattering of neutrons provides a con-
clusion that nearly all Gd ions are involved in antiferro-
magnetic correlations.

4. CONCLUSIONS
We think that the amorphous compound GdxSi1 – x is

a new magnetic material with unique properties charac-
teristic of both strongly inhomogeneous alloys and
nanocomposite compounds. The system under consid-
eration has percolation conductivity over the network
of nanoconductors formed by ferromagnetic particles
of nanometer sizes with a high concentration of Gd ions
incorporated into the matrix of amorphous silicon with
significantly lower concentration of Gd. The existence
of regions with a high concentration of Gd, as well as
the local ferromagnetic order in them, is corroborated
by the experiments on the diffraction of thermal neu-
trons and the Hall effect, as well as by the self-consis-
tent numerical simulation [5, 6].

We are grateful to V.B. Preobrazhenskiœ, A.V. Inyu-
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We argue that the inhomogeneous A phase in aerogel is energetically more preferable than the “robust” phase
suggested by Fomin [5]. © 2005 Pleiades Publishing, Inc.

PACS numbers: 67.57.–z
Experimental investigation of the superfluid phases
of 3He in aerogel is at present a hot subject in low tem-
perature physics (see the most recent publications [1, 2]
and references therein). In view of its anisotropic prop-
erties, special interest has been attracted to the A-like
superfluid phase. As was pointed out by Volovik [3],
such a phase corresponds at short-length scale to the
ordinary A-phase, while, at larger distances, it repre-
sents a kind of superfluid glass with irregular distribu-
tion of the direction of Cooper pairs angular momen-
tum and absence of superfluid properties. Volovik’s
derivation was based on the general analysis of Imry
and Ma of phase transitions with breaking of a contin-
uous symmetry in the presence of random local anisot-
ropy [4]. Recently, Fomin published a series of papers
[5–7] where he claimed that “the general argument of
Imry and Ma does not directly apply to the superfluid
3He in aerogel.” He introduced anisotropic interaction
of the superfluid 3He with aerogel

(1)

where Aµi is the superfluid order parameter and a trace-

less position-dependent tensor  = ηij – ηllδij

describes the local splitting of Tc for different projec-
tions of angular momenta because of anisotropic sup-
pression of superfluidity by aerogel strands. The isotro-
pic part of this tensor subtracted here is included in a
term that produces a local shift of the critical tempera-
ture. Due to the time reversal invariance of the energy

Fη, the tensor  obeys the symmetry  = .

According to Fomin [7], the interaction (1) plays the
role of the “surface” energy that is lost for any super-
fluid phase except for the case when there is an average
value of the order parameter  such that

(2)

¶ This article was submitted by the authors in English.

Fη η ij
a( ) r( )Aµi r( )Aµj* r( )d3r,∫=

η ij
a( ) 1

3
---

η ij
a( ) η ij

a( ) η ji
a( )

Aµi

η ij
a( )AµiAµj* 0=
0021-3640/05/8106- $26.00 ©0296
or, equivalently,

(3)

The above constraint removes the “surface” term Fη ≡
0 and leads to the conclusion [7] that superfluid phases
of 3He in aerogel below the second order transition
from the normal state should satisfy Eq. (3). The B

phase with  = ∆BRµieiϕ does satisfy this condition;
however, for the ordinary A phase, Eq. (3) is not ful-
filled. The A phase order parameter is given by

(4)

where a unit vector Vµ determines the orientation of the
spin quantization axis, while two orthogonal vectors m
and n yield the direction of the orbital momentum l =
m × n. As a result, it has been proposed to consider,
instead of the A phase, a class of so called “robust”
phases satisfying Eq. (3) [5–7].

Let us, nevertheless, substitute the A phase order
parameter into Eq. (1):

(5)

Using the identity mi(r)mj(r) + ni(r)nj(r) + li(r)lj(r) =
δij, we obtain

(6)

Any uniform state of the A phase has Fη = 0, since

 = 0. This is, actually, true for an arbitrary

homogeneous phase that is effectively “robust” on aver-
age and has the same transition temperature as the
states (3). The “nonrobust” A phase can further gain
energy from long-scale fluctuations of the random
anisotropy by adjusting the direction of vector l on a
certain length-scale L. Consequently, we just return to
the standard Imry–Ma picture described for application
to the super-fluid 3He by Volovik [3]. The only differ-
ence with the Imry–Ma scenario is that space variations

AµiAµj* Aµj Aµi* δij.∝+

Aµi
B

Aµi
A ∆AVµ mi ini+( ),=

Fη ∆A
2 η ij

a( ) mi r( )m j r( ) ni r( )n j r( )+[ ] d3r.∫=

Fη ∆A
2 η ij

a( )li r( )l j r( )d3r.∫–=

η ijd
3r∫
 2005 Pleiades Publishing, Inc.
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of the vector l(r) do not destroy the phase transition: the
complex superfluid order parameter Aµi(r) breaks addi-
tional spin-rotational symmetry and, partly, the gauge
symmetry [3]. Thus, the adjustment of vector l to the
long-scale fluctuations of the anisotropic energy leads
to an enhancement of the transition temperature of the
generalized A phase compared to the critical tempera-
ture of the “robust” axiplanar state suggested by Fomin.
The proper estimate of the domain-size L can be found
in [3].

As for the superfluid properties, the randomness of
the distribution of the l(r) vector does not destroy the
superfluid flow in 3He-A in aerogel. There is, in fact,
just the opposite effect: fixing of the l direction prevents
the phase slippage processes and makes the A phase in
aerogel an even better superfluid than in the bulk.
JETP LETTERS      Vol. 81      No. 6      2005
In conclusion, there is no reason for the stability of
the “robust” phases, which have a higher energy than
the locally homogeneous (on length scale L) A phase.
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The reasons that are presented by Mineev and Zhitomirsky are based on the unjustified neglect of the contribu-
tion from fluctuations to the free energy of superfluid 3He in an aerogel. © 2005 Pleiades Publishing, Inc.

PACS numbers: 67.57.–z
A random tensor field ηjl(r) that is introduced in
[C5–C7] (C stands for the references cited in the com-
ment under discussion) induces spatial fluctuations of
the order parameter. It is convenient to decompose the
order parameter into two components as Amj(r) =  +
amj(r), where  ≠ 0 is the mean value of the order
parameter. In this case, the free energy of superfluid
3He can be represented in the form of the sum

where F0( ) is obtained by substituting  into the
Ginzburg–Landau functional and Ffl contains nonzero

means of fluctuation additions , etc.
Mineev and Zhitomirsky ignore the presence of Ffl

and, following argumentation by Imry and Ma [C4] and
Volovik [C3], conclude that quasi-isotropic A-like
phases that were proposed in [C5–C7] are energetically
unfavorable. However, the fluctuation contribution to
the energy is leading for the case under discussion. It is
easy to verify this statement by estimating both contri-
butions. The energy F0( ) decreases due to the adjust-
ment of the order parameter orientation to fluctuations
of the random field at a certain scale L. This scale for
superfluid 3He-A was estimated by Volovik [C3] as L ~
ξ0/η2 in terms of the field ηjl. The energy F0 decreases

due to such an adjustment by δF0 ~ N(0)τ η4, where
N(0) is the density of states and τ = (Tc – T)/Tc.

When estimating the fluctuation contribution to the
energy, it is necessary to distinguish fluctuations along
directions in which the order parameter is degenerate
and along directions perpendicular to them. The contri-
bution from fluctuations of the second type does not
differ in essence from the corresponding contribution
for superconductors with the scalar order parameter ψ.
If this order parameter is represented as the sum of the
mean  and fluctuation addition ξ, then, according to

Larkin and Ovchinnikov [1],  ~ (η2/ ) and the

Aµj

Aµj

F F0 Aµj( ) Ffl Aµj aµj,( ),+=

Aµj Aµj

aµj aνe,

Aµj

Tc
2

ψ

ξ2 ψ2 τ
0021-3640/05/8106- $26.00 ©0298
corresponding addition to the energy is δF⊥  ~

N(0)τ3/2 η2. Even this addition is larger than δF0 by a
factor of /η2 (the condition η2/  ! 1 is necessary
for fluctuations of the order parameter to remain small
compared to its mean value).

The contribution to the energy from fluctuations in
the direction of the degeneracy of the order parameter

includes an additional large factor of ~ , where k

is the wavenumber of the corresponding fluctuations.
The integral diverging in the lower limit should be cut
at a scale of l∆ at which fluctuations of the order param-
eter are on the order of its value, i.e., l∆ ~ ξ0( /η2). In
this case, the fluctuation terms can compete with the
fourth order terms in the energy F0( ) and the equi-
librium order parameter need not coincide with the
minimum in F0( ). A criterion that was proposed in
[C5–C7] for choosing phases was the condition of the
exclusion of diverging terms in fluctuation energy. This
criterion ensures a much larger gain than that discussed in
the comment. This criterion separates the family of quasi-
isotropic A-like order parameters that are proposed as the
zeroth approximation for the observed A-like phase.

Note that the exclusion of diverging terms for the
vector order parameter that is used as an example by
Imry and Ma [C4] is possible only when the mean order
parameter vanishes. In view of the above discussion,
the reasons that are presented by Mineev and Zhitomir-
sky in their comment do not provide the basis for the
revision of the results obtained in [C5–C7].

I am grateful to E.I. Kats and D.E. Khmel’nitskiœ for
stimulating discussion and to Institute Laue–Langevin
(Grenoble, France) for hospitality.

REFERENCES
1. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz.

61, 1221 (1971) [Sov. Phys. JETP 34, 651 (1972)].

Translated by R. Tyapaev

Tc
2

τ τ

1
ξ0
----- kd

k2
-----∫

τ

Aµj

Aµj
 2005 Pleiades Publishing, Inc.


	241_1.pdf
	245_1.pdf
	249_1.pdf
	255_1.pdf
	260_1.pdf
	264_1.pdf
	267_1.pdf
	272_1.pdf
	277_1.pdf
	284_1.pdf
	287_1.pdf
	292_1.pdf
	296_1.pdf
	298_1.pdf

