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Abstract—Semirelativistic self-consistent calculations of the electronic structure of MoSi2 are performed
within the framework of the linearized augmented-plane-wave (APW) method in the local density functional
approximation. The results of investigations of the band structure, the Fermi surface, and electrical character-
istics (effective cyclotron masses, the conductivity anisotropy constant, the mean free path, and the coefficient
γ of the heat capacity component linear in temperature) are reported. The Fermi surface consists of two sheets,
namely, an electron sheet and a hole sheet. The extreme sectional areas of the Fermi surface agree well with the
experimental data on the de Haas–van Alphen effect. The results of first-principles calculations need no addi-
tional correction. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Molybdenum disilicide possesses high microhard-
ness [1], resistance to oxidation during heating both in
air and in an oxygen flow [1], high thermal stability [2],
temperature-independent high thermoelectric power
[3], low resistance [4–9], and good technological prop-
erties. This compound has long been in use in many
fields of science and engineering. Initially, molybde-
num disilicide compounds were used as antirust coat-
ings. However, considerable advances made in micro-
and nanotechnologies substantially extended the field
of application of MoSi2 materials. In recent years,
molybdenum disilicide has been used in the fabrication
of diffusion barriers [10], protective coatings for inter-
metallic compounds at elevated temperatures [11],
high-temperature thermocouples deposited on elec-
trodes [3], silicon integrated circuits [1], coatings for
aircraft structures [12], and high-temperature turbine
blades [13]. Such a wide spectrum of application of
MoSi2 stems from the high stability of its properties.
The nature of these properties cannot be understood
without detailed investigation of the electronic struc-
ture.

At present, the electronic structure of MoSi2 has
been extensively investigated using experimental and
theoretical techniques. Among the experimental meth-
ods are x-ray emission [14–16] and photoelectron [17,
18] spectroscopies. The Fermi surface has been experi-
mentally studied in terms of the de Haas–van Alphen
effect [19]. The electronic structure of MoSi2 has been
treated theoretically in the framework of the self-con-
sistent relativistic pseudopotential approach [20], the
linear muffin-tin orbital formalism [21–24], and the
augmented-spherical-wave (ASW) method [17]. These
calculations were performed in the local density func-
1063-7834/03/4502- $24.00 © 20201
tional approximation, specifically for the band structure
[20, 21, 24], densities of states [17, 20–24], and the
Fermi surface [22, 24]. However, none of the first-prin-
ciples calculations of the Fermi surface [22, 24] agrees
in full measure with the experiment [19]. It turned out
that the results of direct calculations of the extreme sec-
tional areas of the Fermi surface [22, 24], which depend
on the direction of the magnetic field, considerably
exceed the experimental values [19]. This discrepancy
was explained as resulting from the use of the local den-
sity functional approximation. In order to achieve better
agreement between the calculation and the experiment
[19], the results of the direct calculations performed in
[22, 24] were corrected by fitting to the experimental
Fermi surface. In particular, Andersen et al. [24] dis-
placed the Mo  states to the Fermi level by

0.41 eV and the Mo dxy states to the valence band bot-
tom by 0.21 eV. As a result, the initially obtained density
of states at the Fermi level (0.31 states/eV per unit cell)
decreased by approximately 20% and almost reached
the experimental value (0.24 states/eV per unit cell)
[25]). Antonov et al. [22] applied a correction accord-
ing to the same scheme. However, the results of these
corrections are ambiguous: the corrected data in [24]
are in better agreement with the experiment [19] than
those obtained in [22].

This paper reports on the results of direct theoretical
investigations of the electronic structure of body-cen-
tered tetragonal MoSi2. In the present work, we calcu-
lated the band structure, the Fermi surface, and electri-
cal characteristics, such as the effective cyclotron
masses, the conductivity anisotropy constant, the mean
free path, and the coefficient γ of the heat capacity com-
ponent linear in temperature. Our results are in satisfac-
tory agreement with the available calculated [20–22,
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24] and experimental [4, 19, 25, 26] data. However, no
additional correction, such as that performed in [22,
24], was needed in our case.

2. COMPUTATIONAL TECHNIQUE

The electronic structure of an MoSi2 crystal was cal-
culated in the local density functional approximation
using an exchange correlation potential within the
approach proposed in [27]. The energy spectrum was
calculated by the self-consistent linearized augmented-
plane-wave (APW) method in terms of the formalism
used in [28] within the scalar relativistic approximation
[29], which includes all relativistic effects, except for
spin–orbit splitting. The linearized APW method was
described in detail in [30]. The low-temperature phase
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Fig. 1. Crystal structure of MoSi2.
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Fig. 2. Band structure of MoSi2.
PH
of MoSi2 crystallizes in a body-centered tetragonal

structure (Fig. 1) (space group –I4/mmm) with the
unit cell parameters a = b = 0.3202 nm, c = 0.7852 nm,
and c/a = 2.452 [31]. The calculation was performed in
the basis set of 176 linearized augmented plane waves.
The basis function was expanded in spherical harmon-
ics up to terms with l = 7.

3. RESULTS AND DISCUSSION

3.1. Band Structure and the Fermi Surface

Figure 2 represents the band structure of MoSi2.
According to the calculation, the valence band is equal
to 13.4 eV. The energy bands at the valence band bot-
tom are attributed to the Si s electron states. The region
from –0.3 to –4.7 eV is determined primarily by the Mo
d states with an admixture of Si p states. This is in good
agreement with the available calculated data on the
density of states [17, 20–24]. The density of states at
the Fermi level (EF) is relatively low [N(NF) =
0.28 states/eV per unit cell], which indicates that the
compound is stable. This value is less than that deter-
mined prior to the fitting of the results in [24]
(0.31 states/eV per unit cell) but is closer to the experi-
mental value obtained in [25] (0.24 states/eV per unit
cell). The Fermi level is crossed by two energy bands,
namely, by the seventh and eighth energy bands
counted off from the valence band bottom. The seventh
band passes through the Fermi level EF near the Γ point
of the Brillouin zone and is empty in this vicinity. The
eighth band crosses the Fermi level in the vicinity of the
Z point. In this part of the Brillouin zone, the eighth
band is characterized by occupied states. These bands
form the Fermi surface of MoSi2 (Fig. 3). The intersec-
tion of the seventh band with the Fermi level generates
a hole sheet on the Fermi surface (Fig. 3a). This sheet
has the shape of a cylinder that is slightly widened both
in the upper and lower half and is then narrowed in the
bases along the ΓZ direction. The eighth band forms an
electron sheet on the Fermi surface (Fig. 3b) having the
shape of a Z-centered rosette. A comparison showed
that the results of our calculations of the Fermi surface
are in good agreement with the theoretical investiga-
tions performed in [22, 24] and the experimental data
on the de Haas–van Alphen effect [19]. Nonetheless,
there are some differences. As follows from our calcu-
lation, the seventh and eighth bands are degenerate in
the ΓZ direction. Consequently, the electron and hole
sheets of the Fermi level in the ΓZ direction touch each
other at a point. However, according to [22, 24], the
electron and hole sheets are separated by a gap. This
difference stems from the fact that our calculation
ignores the spin–orbit splitting, which relieves the
degeneracy of these bands. As was shown in [20, 21],
the spin–orbit splitting of energy levels in MoSi2 is a
small quantity; as a result, there arises a gap of
0.007 bohr–1 between the electron and hole sheets of
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the Fermi surface [20]. This value is less than 2% of the
characteristic size of the Fermi surface. Therefore, the
error introduced by this neglect is small compared to
the contributions made by other factors (for example,
the potentials used in the calculations) and does not
change the topology of the calculated Fermi surface.

It was expedient to analyze quantitatively the topol-
ogy of the Fermi surface and to compare our results
with the experimental data [19] on the de Haas–van
Alphen effect. For this purpose, we calculated the area
of the extreme section of the Fermi surface as a function
of the direction of the magnetic field (Fig. 4). In order
to compare the available calculated [22, 24] and exper-
imental [19] data with our results, the areas of the
extreme sections formed on the Fermi surface by planes
orthogonal to four crystallographic directions are pre-
sented in Table 1. The values taken from [22, 24] refer
to the data obtained after the fitting of the calculation to
the experiment, because the initial results differ appre-
ciably from the experimental data. We revealed two
extreme sections for the electron and hole parts of the
Fermi surface (Fig. 3), which can be associated with the
specific features of their structures. The branch A corre-
sponds to the seventh band, whereas the branch B is
attributed to the eighth band. The minimal orbit A1 is
centered at the Γ point, and the maximal orbit A2 is sep-
arated by a distance of 0.1928 bohr–1 from the Γ point.
The extreme orbits are located in the hole part of the
Fermi surface (Fig. 3a) in the planes orthogonal to the
[001] crystallographic direction. These two orbits
merge into a single branch A when the direction of the
magnetic field deviates from the [001] direction by an
angle greater than 50° (Fig. 4). The electron sheet of the
Fermi surface also has two extreme orbits (Fig. 3b);
they are aligned with the planes perpendicular to the
[100] direction. The minimal orbit B1 is centered at the
Z point, and the maximal orbit B2 is separated by a dis-
tance of 0.1475 bohr–1 from the Z point. These are
extreme orbits that merge into a single branch B in the
case when the magnetic field deviates by an angle
greater than 33° from the [100] direction toward the
[110] direction and by an angle greater than 57° toward
the [001] direction (Fig. 4). The calculations demon-
strated that the areas covered by the orbits B1 and B2 are
very close in magnitude (Table 1); as a result, it is rather
difficult to differentiate these orbits experimentally. In
their experiments, van Ruitenbeek et al. [19] did not
obtain a clearly defined splitting of the orbit B into a
minimal orbit B1 and a maximal orbit B2 in the section
orthogonal to the [100] direction. These authors noted
only a splitting of the orbit B into two or three closely
located spectral or satellite peaks along this direction
[19]. However, they could not assert unambiguously
that the orbit B is split into minimal and maximal
branches. As follows from first-principles calculations
[22, 24], considerable splitting of the orbit B occurs in
the section perpendicular to the [100] direction. How-
ever, after the correction, the calculations performed in
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
[22] and [24] offered different results. Andersen et al.
[24] fitted the calculated data in such a manner that the
separation between the branches B1 and B2 decreased

8000

7000

6000

5000

4000

3000

2000

1000

[100] [001] [100] [110]

A

B

A A

B
B2

B1

A2

A1

Fig. 4. Angular dependences of the extreme sectional areas
of the Fermi surface for MoSi2 according to our calculations
(solid line) and experimental data taken from [19] (points).

[001]
(a)

A

B

A1

A2

B1

[010]

[100]

[001]

(b)

B2

[100]

[010]

Fig. 3. Fermi surface of MoSi2: (a) hole sheet of the Fermi
surface and (b) electron sheet of the Fermi surface. Heavy
lines indicate extreme orbits.

dH
νA

 f
re

qu
en

cy
, T

Magnetic field direction
3



204 KURGANSKIŒ et al.
Table 2.  Ratios of extreme sectional areas of the Fermi surface for MoSi2

Sections Our calculation [22] [24] Experiment [19] Θ, deg 1/cosΘ

A1[102]/A1[001] 1.61 1.79 1.66 1.59
50.8 1.58

A2[102]/A2[001] 1.52 1.51 1.46 1.49

B1[102]/B1[100] 1.27 1.23 1.29
1.31 39.2 1.29

B2[102]/B2[100] 1.21 1.20 1.27

Table 1.  Extreme sectional areas of the Fermi surface and effective cyclotron masses for MoSi2

Field 
direction Orbit

Extreme sectional areas (T) Effective cyclotron masses (m*/m0)

our cal-
culation [22] [24] experi-

ment [19]
our cal-
culation [22] [24] experi-

ment [19]

[100] A 4581 4623 4511 4230 0.94 0.82 0.96 1.0

[110] A 4375 4256 4325 4060 0.85 0.85 0.89 0.91

[001] A1 863 664 690 735 0.29 0.29 0.27 0.31

A2 942 826 949 830 0.31 0.21 0.31 0.33

[002] A1 1397 1188 1148 1165 0.48 0.39 0.45 0.51

A2 1431 1248 1385 1235 0.47 0.38 0.46 0.50

[100] B1 1369 921 1486 1450 0.55 0.47 0.49 0.53

B2 1592 1425 1516 0.65 0.33 0.55

[110] B 2177 1656 2016 1970 0.88 0.55 0.77 0.69

[001] B 7347 8481 6364 5600 1.85 1.11 1.57 –

[102] B1 1745 1134 1921 1900 0.71 0.28 0.63 0.65

B2 1929 1710 1927 0.76 0.62 0.64
substantially (Table 1); consequently, their calculation
is in close agreement with the experiment [19]. The cor-
rection made by Antonov et al. [22] gave other results
(Table 1): the separation between the orbits B1 and B2
was significant, which would unlikely remain imper-
ceptible in the experiment.

The dependence of the extreme sectional area on the
angle Θ (where Θ is the angle between the direction of
the magnetic field and the [001] axis for the hole part of
the Fermi surface and the [100] direction for the elec-
tron part of this surface) is well approximated by the
law 1/cosΘ. Therefore, the Fermi surface in the vicinity
of the extreme sections can be considered to be nearly
cylindrical to a good approximation. The calculated
and experimental ratios of the areas corresponding to
the dependence of the extreme section on the angle Θ
are listed in Table 2. It can be seen from Table 2 that,
compared to the maximal orbits, the minimal orbits are
better approximated by a cylinder.
P

3.2. Electrical Characteristics

The majority of the electrical properties of the mate-
rials depend on the composition and the structure of the
Fermi surface. Specifically, the Fermi surface deter-
mines the effective cyclotron masses

(1)

where A(E, kz) is the area of the extreme section of the
Fermi surface. Table 1 presents the effective cyclotron
masses according to our results, data taken from [22,
24], and experimental data taken from [19]. Most of the
values obtained for the four crystallographic directions
([100], [110], [001], [102]) are less than unity.

The electrical conductivity also depends on the
structural features of the Fermi surface. In the approxi-

m∗ E k2,( ) "
2

2π
------

∂A E kz,( )
∂E

-----------------------,=
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mation of the relaxation time, the electrical conductiv-
ity can be represented by the expression [32]

(2)

where the integration is performed over the entire
Fermi surface, θ is the angle between the direction of
the electron velocity and the electric field, and l0 is
the mean free path. As a rough approximation, l0 was
considered to be constant. The conductivity anisot-
ropy σz/σx = 1.28, which was obtained from expres-
sion (2), is in good agreement both with the experi-
mental value (1.3–1.45) [4, 26] and with the esti-
mate (1.3) [19].

The mean free path l0 was estimated from formula (2)
using several experimental values of the resistivity [4–
9]. The experimental resistivities for MoSi2 [4–9] and
the mean free paths calculated from these values are
presented in Table 3. According to the calculation, the
experimental data on the resistivity of MoSi2, for the
most part, lead to a mean free path close to that for
alkali metals (the mean free paths for Na, K, Rb, and Cs
are equal to 3.38, 3.56, 2.26, and 1.55 nm, respectively
[32]). However, Laborde et al. [4] obtained a resistivity
that was lower than the values given in other works. In
this case, the resistivity was measured for different
directions of the electric field (the electric field E was
aligned parallel either to the x axis or to the z axis). As
a consequence, the σz/σx value calculated from these
data turned out to be comparable to the mean free path
for noble metals (the mean free paths for Cu, Ag,
and  Au are equal to 4.2, 5.56, and 4.09 nm, respec-
tively [32]).

The heat capacity of a solid at low temperatures con-
tains the electronic and lattice contributions [32]:

(3)

At low temperatures, the coefficient γ for the elec-
tronic component of the heat capacity is determined by

σ e2

4π3
"

------------ l0 θcos
2

S,d∫=

cv γT AT3.+=

Table 3.  Resistivities [4–9] and the mean free paths for
MoSi2

References ρ × 108, Ω m λ0, nm

Laborde et al. [4] E || x16.56 4.01

E || z11.42 4.55

Machizuki et al. [5] 21.8 2.38

Crowder and Zirinsky [6] 21.5 2.42

Murarka et al. [7] 21.6 2.41

Crow and Steckl [8] 21.5 2.42

Saraswat [9] 21.8 2.38
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
the density of states at the Fermi level [32]:

(4)

where kB is the Boltzmann constant. Upon substituting
the calculated value N(EF) = 0.28 states/eV per unit cell
into expression (4), we obtained the coefficient γ =
0.66 µJ/(mol K2), which agrees well with experimental
values of 0.57 [25] and 0.71 µJ/(mol K2) [19].
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Abstract—This paper reports on the results of investigations into the nonlinear optical characteristics of chal-
cogenide films (As2S3, As20S80, 2As2S3/As2Se3, 3As2S3/As2Se3). The nonlinear refractive indices and two-
photon absorption coefficients for these films are measured using the Z-scan technique at wavelengths of a pico-
second Nd : YAG laser (λ = 1064 and 532 nm). The optical limiting due to Kerr-type nonlinearities is analyzed.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The possibility of using semiconductors to solve
various problems in laser physics depends on a number
of nonlinear optical characteristics, specifically on the
nonlinear refractive index n2 and the two-photon
absorption coefficient β. This circumstance has stimu-
lated extensive investigations into nonlinear refraction
and nonlinear absorption in semiconductors [1–3]. In
recent years, particular interest has been expressed by
many researchers in amorphous chalcogenide struc-
tures. These materials hold promise for use in data pro-
cessing systems owing to their large nonlinearity, high
transparency in the IR range, and good workability. The
potential fields of application of amorphous chalco-
genides involve phase conjugation, polarization holog-
raphy, optical image processing, optical switching,
integrated optical devices, holographic optical ele-
ments, etc. Smektala et al. [4] analyzed the nonlinear
refractive indices and nonlinear absorption coefficients
for a number of chalcogenide glasses. Chalcogenide
glasses are characterized by different positions of the
absorption edge (depending on the composition of
these materials). The composition of glasses also
affects the nonlinear susceptibilities at appropriate
wavelengths. For example, the replacement of germa-
nium and sulfur atoms by arsenic and selenium atoms
leads to an increase in the nonlinear response in these
structures. In particular, Kanbara et al. [5] proved that
an increase in the fraction of selenium atoms is an effi-
cient way to increase the nonlinear susceptibilities of
chalcogenide glasses. Moreover, these materials exhibit
a pronounced spectral dependence of the nonlinear
optical parameters. Indeed, at the wavelength λ = 633 nm,
the nonlinear refractive index γ (expressed in SI units)
and the nonlinear absorption coefficient are equal to
7.6 × 10–5 cm2 W–1 and 1.6 cm W–1, respectively [6]. In
the IR spectral range, these parameters at λ = 1064 nm
1063-7834/03/4502- $24.00 © 0207
are equal to 5.7 × 10–14 cm2 W–1 and 2.6 × 10–10 cm W–1,
respectively [7], and γ = 1.7 × 10–14 cm2 W–1 at λ =
1319 nm [8].

Considerable recent attention has been focused on
chalcogenide materials prepared in the form of thin
films [6]. The characteristics of these structures sub-
stantially depend on the growth conditions and external
factors. The effect of irradiation on the optical proper-
ties of As2S3 amorphous thin films was studied by
Dawar et al. [9]. The investigation performed by Kwak
et al. [6] demonstrated that amorphous chalcogenide
thin films (including As2S3 films) offer promise as
materials for optical limiters.

The optical limiting effects are of special interest in
nonlinear optics and optoelectronics owing to their pos-
sible application for the protection of eyes and sensitive
detectors against intense radiation. The mechanisms
responsible for optical limiting are of different natures.
The reverse saturable absorption, which is associated
with a large cross section of absorption from excited
levels, brings about optical limiting effects in colloidal
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9

28
1

6

4

7Z

Fig. 1. Schematic diagram of a Z-scan experimental setup
for investigation of optical limiting: (1) focusing lens,
(2) chalcogenide films, (3, 4) FD-24K photodiodes,
(5, 6) V4-17 digital voltmeters, (7) limiting aperture,
(8) reflecting plate, and (9) micrometric table.
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metals [10], fullerenes [11], and phthalocyanines [12].
The optical limiting in inorganic clusters is caused by
strong nonlinear refraction [13], whereas the optical
limiting in semiconductor structures is governed by
two-photon absorption [14].

The purpose of this work was to elucidate how the
nonlinear refraction and nonlinear absorption affect the
optical limiting of picosecond laser radiation in a
number of chalcogenide films (As2S3, As20S80,
2As2S3/As2Se3, 3As2S3/As2Se3). We measured the non-
linear refractive indices and the two-photon absorption
coefficients of the films under investigation. Moreover,
we examined the optical limiting associated with the
Kerr-type nonlinearities in amorphous chalcogenide
films.

2. EXPERIMENTAL TECHNIQUE

The optical characteristics of chalcogenide films
were investigated using a conventional Z-scan tech-
nique [14] at wavelengths λ = 1064 and 532 nm. The
experimental scheme was similar to that described in
our previous work [15]. In the experiments, we used an
Nd : YAG laser emitting a train of picosecond pulses. A
single 42-ps pulse (at an intensity level of 1/e) sepa-
rated out from a train was focused through a lens 1 with
a focal distance of 25 cm (Fig. 1). The beam diameters
(at an intensity level of 1/e2) in the focal waists for the
first and second harmonics were equal to 90 and 75 µm,
respectively. The diameters of the focused beams in the
focal waists were also compared with the experimen-
tally measured parameter ∆Z = 1.7z0 [14]. Here, ∆Z is

0.8

–3 –2 –1 0 1 2 3
Z, cm

0.9

1.0

1.1

1.2

1
2
3
4

Normalized transmittance, rel. units

Fig. 2. Normalized transmittance as a function of the posi-
tion of (1) As20S80, (2) As2S3, (3) 2As2S3/As2Se3, and
(4) 3As2S3 /As2Se3 chalcogenide films in the scheme
with a limiting aperture at wavelengths of (1) 532 and
(2−4) 1064 nm.
P

the distance between the positions of the studied sam-
ple at which the normalized transmittance reaches the

maximum and minimum values, z0 = k  is the dif-
fraction length of the laser beam, k = 2π/λ is the wave
number, and w0 is the radius beam at the focal point (at
a level of 1/e2 in the spatial intensity distribution). In
our case, ∆Z was equal to 2 cm for radiation with wave-
length λ = 1064 nm (see below). The calculated value
of w0 was 45 µm. The laser pulse energy was recorded
with a calibrated FD-24K photodiode 4 and measured
on a V4-17 digital voltmeter 5. Calibrated neutral filters
were used for measuring the laser radiation energy.
Chalcogenide films 2 were transferred using a micro-
metric table 9 along the Z optical axis when scanning
the focal region.

An aperture 1 mm in diameter, which was placed at
a distance of 150 cm from the focal region, transmitted
~3% laser radiation (the so-called scheme with a limit-
ing aperture). The signal from an FD-24K photodiode 3,
which was positioned behind the aperture, was sent to a
V4-17 digital voltmeter 6. In order to eliminate the
effect of instability of the output energy laser parame-
ters on the results of measurements, the signal detected
by photodiode 3 was normalized to the signal detected
by photodiode 4. Each point in the graphs was obtained
by averaging over the results of five measurements. The
scheme with the limiting aperture enabled us to deter-
mine both the sign and the magnitude of the nonlinear
refractive index of chalcogenide films. When measur-
ing the nonlinear absorption coefficients, the limiting
aperture 7 was removed and the transmittance of the
film under investigation was measured as a function of
the position of the cell with respect to the focal point
(the so-called scheme with an open aperture). In the
experiments, special care was taken to prevent optical
breakdown in the medium. The thresholds of optical
breakdown in the semiconductor films at wavelengths
of the first and second harmonics were equal to 8 × 109

and 2 × 109 W cm–2, respectively. The maximum radia-
tion intensities used at these wavelengths did not
exceed 109 and 8 × 108 W cm–2, respectively.

The experiments were performed using the As2S3,
As20S80, 2As2S3/As2Se3, and 3As2S3/As2Se3 chalco-
genide films. The films were prepared through vacuum
evaporation of ground components of the chalcogenide
glasses (As2S3, As20S80, As2Se3) onto the surface of
BK-7 glass plates. The evaporation rate was equal to
0.5 nm/s. This rate provided evaporation of the film
whose parameters were close to those of the initial bulk
material (the coincidence of the stoichiometric compo-
sitions was confirmed using electron microscopy). The
2As2S3/As2Se3 and 3As2S3/As2Se3 amorphous multi-
layer films were produced by successive evaporation of
the As2S3 and As2Se3 compounds. The thickness ratios
of individual layers in these films were equal to 20 :
10 nm for 2As2S3/As2Se3 films and 30 : 10 nm for

w0
2
/2
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3As2S3/As2Se3 films. The thickness of all the films was
equal to 10 µm.

3. RESULTS AND DISCUSSION
The dependences of the normalized transmittance T

on the position of the chalcogenide films in the scheme
with a limiting aperture are shown in Fig. 2. This
scheme is particularly suited to the measurements of
nonlinear refraction. The measurements were per-
formed under the conditions when the observed pro-
cesses were caused by the third-order nonlinearities.
Below, these conditions will be considered in greater
detail.

One of the advantages of the Z-scan technique is the
possibility of determining the sign of n2 directly from
the dependence T(Z). The presence of a minimum
ahead of the focal point (Z = 0) and a maximum behind
this point in the dependence T(Z) indicates that the
medium possesses self-focusing properties. For exam-
ple, it immediately follows from the results obtained
that the 2As2S3/As2Se3 and 3As2S3/As2Se3 films have
negative nonlinear refractive indices, which leads to
self-defocusing in these materials. At the same time, the
As2S3 and As20S80 films are characterized by positive
indices; i.e., these films experience self-focusing pro-
cesses. From the dependences depicted in Fig. 2, the
parameter ∆Tp – v can be easily determined as the differ-
ence between the maximum and minimum normalized
transmittances in the dependence T(Z).

The change in the refractive index of the medium in
an electromagnetic wave field (when only the third-
order nonlinear optical processes are taken into
account) can be represented by the relationship

(1)

where Iω and Eω are the intensity and the electrical field
strength of the wave with frequency ω, respectively.
The nonlinear refractive indices n2 and γ, which
describe the same process in different units of measure-
ment, are related by the expression n2 [esu] = (c ×
n/40π)γ [SI]. Here, c is the velocity of light and n is the
linear refractive index of the medium.

The nonlinear optical characteristics of the films
were determined using the relationship [14]

(2)

where I0 is the radiation intensity at the focal point, S is
the aperture transmittance (the portion of the radiation
incident on the photodiode), L is the sample thickness,
and α is the linear absorption coefficient of the film.

In our experiments, the nonlinear optical character-
istics were investigated with the use of picosecond radi-
ation, whose intensity at the focal point was less than
the critical intensity at which free carriers arising from

∆n γIω n2

Eω
2

2
-----------,= =

∆T p v– 0.404 1 S–( )0.25 2πγI0 1 αL–( )exp–[ ]
αλ

----------------------------------------------------- ,=
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two-photon absorption begin to affect the linear refrac-
tion and absorption. At low intensities of laser radia-
tion, the third-order nonlinearity is due to the nonlinear
refraction caused by bound electrons [16]. At high
intensities of laser radiation, a considerable contribu-
tion is made by the nonlinear refraction associated with
free carriers generated during two-photon absorption.
In particular, Smektala et al. [17] showed that the non-
linear refractive indices n2 for As2S3 and As2Se3 glasses
decrease by factors of five and nine with an increase in
the intensity of probe radiation (at 1064 nm) from 2 ×
108 W cm–2 to ~3–7 GW cm–2. In [17], the authors
assumed that, in this case, the five-order nonlinearity
corresponding to a negative nonlinear addition to the
refractive index can also make a noticeable contribu-
tion. For this reason, in our work, the nonlinear absorp-
tion coefficients were determined for laser radiation
intensities at which the nonlinear absorption is of little
consequence. Specifically, the nonlinear absorption
coefficients n2 were determined using the radiation
intensity I0 = 2 × 108 W cm–2, at which the change in the
refractive index is associated only with the third-order
nonlinearity. The fact that free charge carriers do not
contribute to the change in the refractive index is indi-
rectly confirmed by the symmetric dependences T(Z)
(Fig. 2), which was obtained in the scheme with a lim-
iting aperture for all the studied films, except for
As20S80. The use of low intensities in analyzing the
nonlinearities observed in the films made it possible to
avoid the influence of the higher order nonlinearities (in
particular, the fifth-order nonlinearity) on the Z-scan
results. It has been just this effect which, in a number of
cases, led to different interpretations of the experimen-
tal data on nonlinear optical parameters of semiconduc-

0.7

–2 –1 0 1 2
Z, cm

0.8

0.9

1
2

Normalized transmittance, rel. units

1.0

Fig. 3. Normalized transmittance as a function of the posi-
tion of the (1) GaAs semiconductor wafer and (2) As20S80
chalcogenide film in the scheme with an open aperture at
wavelengths of (1) 1064 and (2) 532 nm.
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tors. Most likely, this effect is responsible for the con-
tradictions in the available experimental data on the
two-photon absorption coefficients (for GaAs, the
absorption coefficients differ by a factor of 2–5 or more
[18, 19]) and the nonlinear refractive indices γ.

Our measurements showed that chalcogenide films
are characterized by large values of n2. For example, the
value of n2 for the As20S80 film is equal to 1.3 × 10–8 esu
at a wavelength of 532 nm. The measurement error in
these experiments was 30%. The largest nonlinear
refractive index n2 = –2.6 × 10–8 esu at a wavelength of
1064 nm is observed for the 2As2S3/As2Se3 film.

It is found that all the semiconductor structures
under investigation are characterized by two-photon
absorption. Figure 3 depicts the experimental depen-
dence of the normalized transmittance on the position
of the As20S80 film in the scheme with an open aperture.
For comparison, Fig. 3 shows the dependence T(Z) for
a 0.4-mm-thick GaAs wafer at a radiation intensity of
1.3 × 109 W cm–2 at the focal point. In the above cases,
the dominant contribution to the absorption is made by
the nonlinear absorption. The linear absorption in the
chalcogenide films is insignificant. In particular, the
linear absorption coefficient for the As2S3 film at a
wavelength of 1064 nm is equal to 0.095 cm–1.

The normalized transmittance in the case of the
scheme with an open aperture is defined by the relation-
ship [20, 21]

(3)

where

. (4)

Here, z0 = kr2/2 and r is the beam radius in the focal
waist. By determining the minimum normalized trans-
mittance at the focal point (z = 0) in the scheme with an
open aperture, the nonlinear absorption coefficient of
the medium under investigation can be obtained from
relationships (3) and (4). By this means, the nonlinear
absorption coefficient β for GaAs is found to be equal
to 31 × 10–9 cm W–1, which is in good agreement with the
experimental data obtained earlier (26 × 10–9 cm W–1

[18]). The measured values of β for chalcogenide films
As20S80 (β = 3 × 10–6 cm W–1 at λ = 532 nm and I0 = 4 ×
108 W cm–2) and 3As2S3/As2Se3 (β = 10–7 cm W–1 at λ =
1064 nm and I0 = 3 × 108 W cm–2) indicate that chalco-
genide thin films have large nonlinear absorption coef-
ficients.

The optical properties of amorphous chalcogenides
can be controlled by varying their stoichiometric com-
position. For this purpose, amorphous chalcogenide
films can be easily prepared through vacuum evapora-

T z( )
1 q0+( )ln
q0

------------------------,=

q0 β
I0 1 αL–( )exp–[ ]

1
z
z0
---- 

  2

+ 
  α

-------------------------------------------=
P

tion. It can be expected that a change in the optical
parameters of these films should also be attended by
variations in their nonlinear optical characteristics.
However, to date, only the optical properties of chalco-
genide multilayer films have been investigated experi-
mentally [22–24]. The size effects in As40Se60/Ge25Se75
amorphous multilayer films were studied by Ogino and
Mizushima [22] with the use of optical absorption
methods. Similar investigations were carried for
Se0.85Te0.15/CdSe and Se/CdSe multilayer structures
[23] and As2Se3/As2S8 chalcogenide films [24]. How-
ever, the problem associated with the relation between
the nonlinear optical properties of multilayer films and
the nonlinear optical parameters of their components
was not studied earlier.

The nonlinearities of chalcogenide composite films
can be evaluated from the nonlinear hyperpolarizabili-
ties of individual components [25]. Examination of the
results obtained in the investigation of the nonlinear
refractive index for the As2S3 film revealed that, at the
given intensities, the sign of this index (as could be
expected) is identical to that of the index n2 for the bulk
material. This result also agrees with the analysis of the
Kramers–Kronig relations, according to which the pos-
itive sign of the nonlinear refractive index should be
observed for semiconductors with the ratio ω/Eg < 0.69
[19]. Here, ω is the circular frequency of the laser radi-
ation and Eg is the band gap. For As2S3, the band gap Eg

is equal to 2.37 eV [26] and the ratio "ω/Eg at the wave-
length λ = 1064 nm is 0.49.

The situation is different for the As20Se80 film. The
band gap Eg of this film is equal to 2.5 eV [24]. The ratio
ω/Eg at the wavelength λ = 532 nm is 0.93. Therefore,
the medium should possess self-defocusing properties.
However, according to our data, the nonlinear refractive
index n2 for this film has positive sign.

A similar situation is observed for 2As2S3/As2Se3
and 3As2S3/As2Se3 multilayer films. Earlier investiga-
tions of the optical spectra of individual components
(similar to the aforementioned chalcogenide structures)
in the vicinity of the absorption edges demonstrated
that the band gaps of arsenic sulfide and arsenic
selenide single-component films are equal to 2.5 eV for
As2S3 and 1.78 eV for As2Se3. However, the optical
absorption edges of multilayer structures of the
2As2S3/As2Se3 and 8As2S3/As2Se3 types are shifted
toward the high-energy range with respect to the optical
absorption edge of As2Se3 (and, correspondingly, the
band gaps increase) by 0.19 and 0.25 eV, respectively
[24]. Consequently, the band gaps of the aforemen-
tioned multilayer composite films lie in the range
between the band gaps Eg of their chalcogenide glass
components. Note that the band gap Eg only slightly
increases even in the case when the fraction of As2S3 in
the multicomponent film considerably exceeds the frac-
tion of As2Se3. The band gaps calculated for the
2As2S3/As2Se3 and 3As2S3/As2Se3 multicomponent
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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films (with due regard for the extrapolation of the data
taken from [24]) are equal to 1.97 and 1.99 eV, respec-
tively. For the above values of Eg and the ratios ω/Eg

equal to 0.59 for 2As2S3/As2Se3 and 3As2S3/As2Se3,
these films at the wavelength λ = 1064 nm should pos-
sess self-focusing properties (n2 > 0). However, accord-
ing to our results, the 2As2S3/As2Se3 and
3As2S3/As2Se3 films are characterized by the self-defo-
cusing properties (Fig. 2).

The origin of this self-defocusing is not quite clear.
We can only assume that free carriers (generated by
two-photon absorption, which makes an insignificant
contribution at the intensities used) affect the general
pattern of the phase relationships of the radiation pass-
ing through the film. As is known, a change in the
refractive index in the general case is determined by the
expression [18]

(5)

Here, the second term of the sum describes the change
in the refractive index due to the effect of free charge
carriers. The parameter σr characterizes the change in
the refractive index caused by a single free charge car-
rier formed in photoexcitation and ionization processes
that lead to the appearance of a cloud of charge carriers
with density N. Note that the parameter σr for the
majority of semiconductors has negative sign; as a
result, this value can compensate for and even exceed
the positive contribution to the refractive index due to
the effect of bound electrons [18]. Consequently, the
behavior of the laser radiation can change when passing
through a similar medium (i.e., there occurs a crossover
from self-focusing to self-defocusing). Another reason
for the above findings could be interference in the thin
films. This phenomenon can be responsible for an
increase in the local field factor, the two-photon absorp-
tion, and the effect of free charge carriers on the refrac-
tive index of the medium. The observed processes of
self-defocusing in multilayer films and self-focusing of
the radiation with λ = 532 nm in the As20S80 film call for
further investigation.

Now, let us now consider in more detail the As2S3,
As20S80, 2As2S3/As2Se3, and 3As2S3/As2Se3 chalco-
genide films, because their use as materials for optical
limiters has been poorly investigated. The characteris-
tics of optical limiting for chalcogenides of this type
were studied earlier only for As2S3 glasses [6]. A theo-
retical treatment of the optical limiting associated with
the Kerr-type nonlinearities in the aforementioned four
films is given below.

We used a standard procedure for calculating the Z-
scan with a limiting aperture [14] in order to evaluate
the optical limiting caused by the Kerr-type nonlineari-
ties in chalcogenide films. The film position is fixed in
the region corresponding to a minimum transmittance
[ahead of the focal point in the case of self-focusing and
behind the focal point in the case of self-defocusing

∆n γI σrN .+=
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(see Fig. 2)] when two-photon absorption processes are
of little significance. In this case, the minimum trans-
mittance Tv is proportional to the laser radiation inten-
sity and the nonlinear refractive index; that is,

(6)

where B is the parameter independent of laser radiation
intensity. The range of the analyzed intensities is cho-
sen from the following considerations. The lower
boundary should correspond to the intensity at which
the dependence T(Z) in the scheme with a limiting aper-
ture still exhibits a characteristic behavior, and the
upper boundary should correspond to the intensity at
which the optical breakdown has not yet occurred in the
semiconductor.

Figure 4 shows the calculated dependences of the
normalized transmittance for 3As2S3/As2Se3 (Fig. 4a)
and 2As2S3/As2Se3 (Fig. 4b) chalcogenide films. The

Tv BI0γ,=
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Fig. 4. Calculated normalized transmittance as a function of
the laser radiation intensity for (a) 3As2S3/As2Se3 and
(b) 2As2S3/As2Se3 chalcogenide films.
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largest limiting (by a factor of 12.5) is observed for
the 2As2S3 /As2Se3 film. The As2S3 and As20S80 films
are characterized by a fivefold limiting, and the
3As2S3/As2Se3 film exhibits a threefold limiting. For all
the films, the limiting process is observed in the inten-
sity range 107–109 W cm–2.

As in the case of nonlinear absorption, the experi-
mental investigation of the optical limiting in semicon-
ductors was performed using the scheme with an open
aperture. The dependences of the transmittance on the
laser radiation intensity for the studied films are shown
in Fig. 5. The sample position corresponds to a mini-
mum transmittance; i.e., the sample is located at the
focal point. In this case, the optical limiting is due to
two-photon absorption. The largest limiting (by a factor
of 25) is observed in the As2S3 film.

As was noted above, the two-photon absorption in
semiconductors is accompanied by the generation of
free charge carriers, which also contribute to the non-
linear propagation of radiation in these media. This
effect has found application for the case of using semi-
conductors (GaAs, GaP, CdSe) as passive elements in
generators of extended pulse trains with passive nega-
tive feedback [27, 28]. Although these generators are
very simple in design, they make it possible to generate
compressed picosecond pulses with stable energy and
time characteristics, which is a very important and nec-
essary condition for the performance of nonlinear opti-
cal experiments. Our investigations demonstrated that
chalcogenide films, such as 2As2S3/As2Se3 and
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Fig. 5. Normalized transmittance as a function of the inci-
dent radiation intensity for (1) As20S80,
(2) 2As2S3/As2Se3, (3) As2S3, and (4) 3As2S3/As2Se3
chalcogenide films in the scheme with an open aperture at
wavelengths of (1) 532 and (2–4) 1064 nm.
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3As2S3/As2Se3, hold promise for use as intracavity ele-
ments for the compression of picosecond pulses.

It should be noted that, up to now, there has been no
analysis performed to compare the nonlinear optical
characteristics of films and bulk samples of amorphous
chalcogenides, nor for their characteristics of optical
limiting over the wide range of laser radiation intensi-
ties at which higher order nonlinearities (in particular,
five-order nonlinearities) make a considerable contri-
bution. The possibility of island structures appearing
during epitaxial growth of films can lead to the forma-
tion of two-dimensional clusters, which, in turn, can
result in an enhancement of the optical nonlinearities
caused by the local field effect [29]. The appearance of
so-called “hot regions,” in which the field amplitude
exceeds the mean field amplitude by several orders of
magnitude, brings about a substantial increase in the
nonlinearities [30]. Possibly, this is the reason for the
rather large nonlinear response observed in our experi-
ments with chalcogenide thin films.

4. CONCLUSIONS

Thus, we investigated the nonlinear optical charac-
teristics and the optical limiting in As2S3, As20S80,
2As2S3/As2Se3, and 3As2S3/As2Se3 chalcogenide
films. The nonlinear refractive indices and the two-pho-
ton absorption coefficients of these films were mea-
sured using the Z-scan technique at wavelengths of a
picosecond Nd : YAG laser (λ = 1064 and 532 nm). The
optical limiting associated with the Kerr-type nonlin-
earities was analyzed for the amorphous chalcogenide
films. It was demonstrated that the 2As2S3/As2Se3 film
is characterized by a 12.5-fold optical limiting. The
optical limiting due to two-photon absorption was
investigated experimentally. It was found that the As2S3
film exhibits a 25-fold optical limiting.
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Abstract—Specific features of Γ8-band electron scattering on a spatially correlated mixed-valence iron ion sys-
tem in HgSe : Fe crystals are investigated. The s–p hybridization and Bloch wave function amplitudes are taken
into account in calculating the probability of electron scattering by mixed-valence iron ions. The relaxation time
and mobility of Γ8-band electrons in HgSe and HgSe : Fe at low temperatures are calculated, and the energy
dependence of the electron relaxation time is analyzed. This dependence for Γ8-band electrons is shown to
change radically when mixed-valence iron ions are ordered in space. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies into electron transport phenomena in iron-
doped HgSe crystals are of importance because these
materials exhibit unusual physical properties [1–12].
One of these surprising properties is a significant
increase in the mobility of electrons observed to occur
in the region of liquid-helium temperatures as the iron
concentration is increased from NFe = N* = 4.5 × 1018

to (1–2) × 1019 cm–3 [1–4]. It has been shown [1–12]
that the anomalies in the electron transport in HgSe : Fe
crystals at low temperatures are associated with the for-
mation of a mixed-valence (MV) state (Fe2+–Fe3+) of
iron ions at the Fermi level and with a spatial ordering
of positively charged iron ions due to their Coulomb
repulsion.

When interpreting the transport phenomena in these
compounds, the dispersion law of carriers in the Γ8 con-
duction band is assumed to be nonparabolic, but the
wave functions can be approximated by plane waves. In
effect, this approach corresponds to the Γ6 band and an
infinitely wide band gap εg  ∞; the s–p hybridiza-
tion (characteristic of the Γ8 band) and the Bloch ampli-
tudes of wave functions are ignored. However, it is well
known [13–16] that the scattering of Γ8-band conduc-
tion electrons by charged centers can be significantly
weaker than that of Γ6-band electrons. Therefore, it is
of interest to elucidate how this weakened scattering of
Bloch electrons and the calculations performed in [6,
17, 18] without regard for the s–p hybridization will be
affected if the spatial correlation of Fe3+ ions and the s–
p hybridization of the wave functions are taken into
account. On the other hand, due to the dependence of
the Bloch amplitudes on the electron energy, the energy
1063-7834/03/4502- $24.00 © 0214
dependence of the relaxation time τ(ε) of electrons can
also be affected. Since the thermomagnetic effects,
such as the longitudinal and transverse Nernst–Etting-
shausen effects, are proportional to the energy deriva-
tive of the relaxation time dτ(ε)/dε, allowance for the
structure of the Γ8-band wave functions can change
these effects and can be of importance in explaining the
unusual dependences of the thermomagnetic effects on
temperature and iron impurity concentration [9–11].
Under hydrostatic pressure applied to an HgSe crystal,
the energy gap εg between the Γ8 conduction band and
the Γ6 band changes, which should affect the Bloch
amplitudes. This effect must be taken into account in
interpreting the experimental data on the influence of
hydrostatic pressure on the electrical conductivity of
HgSe : Fe crystals at low temperatures. These issues
are discussed in the present paper.

In Section 2, we calculate the electron momentum
relaxation time due to scattering by MV iron ions in
HgSe crystals. In Section 3, the dependence of the elec-
tron mobility on the iron impurity concentration is ana-
lyzed. In Section 4, the energy dependence of the relax-
ation time of Γ8-band electrons is discussed and a com-
parison is made with the results of calculations made in
[9, 10] with the Bloch amplitudes ignored in calculat-
ing the electron scattering probability.

2. ELECTRON RELAXATION TIME 
DUE TO SCATTERING BY MIXED-VALENCE 

IRON IONS IN HgSe : Fe CRYSTALS

In the model proposed in [6, 17, 18], the system of
iron ions in HgSe : Fe is treated as a binary substitution
alloy consisting of charged Fe3+ centers and of neutral
2003 MAIK “Nauka/Interperiodica”
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(on the lattice) Fe2+ centers. The electron momentum
relaxation at low temperatures is due to interaction of
the electrons with these centers. The interaction with
neutral centers is assumed to be a contact interaction,
while the interaction with charged centers is described
by the screened Coulomb potential characterized by the
Fermi–Thomas screening length. In calculating the
relaxation time τ(ε), the nonparabolic conduction band
of HgSe is described in terms of the Kane two-band
model [15]:

(1)

where mn is the electron effective mass at the bottom of
the band and εg = ε(Γ8) – ε(Γ6). For HgSe, we have εg =
0.22 eV and mn ≅  0.02m0, where m0 is the free-electron
mass [1].

In contrast to [6, 17, 18], in calculating the electron
transition probability from the state |k, j〉  to |k', j'〉  due
to scattering by MV iron ions, we use Bloch wave func-
tions for the Γ8 conduction band (j± = ±3/2) normalized
to the crystal volume [13–15]:

(2)

where k± = kx ± iky; R± = (x ± iy)/21/2; arrows ↑  and ↓
indicate the spin direction (up and down); S and (X, Y,
Z) are the s and p wave functions, respectively [15];
d± = (b ± c*21/2)/2; and a, b, and c are coefficients
defined as

(3)

with ∆ being the spin–orbit splitting (for HgSe, ∆ =
0.45 eV). From the normalization condition for the
Bloch amplitudes, it follows that
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The inverse relaxation time of Γ8-band electrons can
be written as [6, 18]

(5)

Here, θ is the angle between the momenta of the inci-
dent and scattered electrons and

(6)

where q = 2ksin(θ/2); N+ and N0 are the concentrations
of charged and neutral (on the lattice) iron ions, respec-

tively; V+(q) = –(4πe2/χ)(q2 + )–1 is the Fourier trans-
form of the screened Coulomb potential; χ is the dielec-
tric constant; and rs is the screening length. The interac-
tion of Γ8-band electrons with neutral centers is
described by two parameters, V0(q) ≡ V0 and W0; the
parameter V0 characterizes this interaction for the
s-type Bloch amplitudes and W0, for the p-type Bloch
amplitudes [19]:

(7)

In HgSe : Fe crystals, iron substitutes for divalent mer-
cury at lattice sites; therefore, the interaction of an elec-
tron with neutral (on the lattice) Fe2+ ions is described
by the potential V0(r) =  –  localized

within a unit cell. Since the electronegativity of Fe2+

ions is less than that of Hg2+ ions [1], V0(r) and, hence,
V0 are negative. The functions Iαβ(θ) take into account
the difference in scattering between a Bloch Γ8-band
electron and a free electron and are given by

(8)

Here, w = W0/V0 is the ratio between the constants char-
acterizing the interaction of a Γ8-band electron with
neutral centers [19]. For Hg1 – xCdxSe solid solutions,
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we have V0 = 3.6 × 10–22 eV cm3 and w = –0.29 [20].
According to the estimates made for HgSe : Fe in [21],
V0 = 8.2 × 10–22 eV cm3 and w ≈ –0.1 ± 0.1.

The structure factors Sαβ(q) depend on the relative
positions of the ions [22],

(9)

and can be expressed in terms of the total correlation
functions hαβ(r) = gαβ(r) – 1, where gαβ(r) are the partial
pair correlation functions for the Fe3+–Fe2+ ion system
[22, 23]:

(10)

For the Fe3+–Fe2+ iron impurity system, we have

(11)

Thus, in order to analyze electron momentum relax-
ation involving MV iron ions, one needs to find the four
pair correlation functions gαβ(r) which describe the
spatial distribution of Fe2+ and Fe3+ ions in HgSe : Fe
crystals. In [18], an approximate scheme was proposed
for calculating the partial pair correlation functions
gαβ(r) and the corresponding structure factors Sαβ(q).
The scheme is based on a set of integral Ornstein–
Zernike equations for MV iron ions treated within a
penetrating hard sphere model [18] and on the follow-
ing physical arguments. The Coulomb repulsion V++(r)
of d holes localized at different sites is the strongest
interaction in the MV (Fe2+–Fe3+) ion system and deter-
mines the rearrangement of d holes and neutral centers
in space; the interactions V0+(r) and V00(r) are signifi-
cantly weaker and can be ignored. For this reason, we
solve the Ornstein–Zernike equation in the Percus–
Yevick approximation for the d-hole subsystem using
the hard-sphere model [6] and find S++(q). Then, we cal-
culate the remaining structure factors Sαβ(q) using exact
relations between the partial correlation functions for
binary substitution alloys [22]. The result is [18]

(12)
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where η = πd3n/6 is the packing fraction characterizing
the degree of ordering of hard spheres (this quantity is
equal to the ratio of the volume of the hard spheres to
the total volume of the system). It is clear that Coulomb
repulsion of d holes in the MV iron ion system results
not only in spatial ordering of charged centers (Fe3+

ions) but also in correlation between the positions of
neutral centers with respect to the charged centers [17,
18]. Therefore, the charge redistribution in the MV
(Fe3+–Fe2+) iron ion system leads to coherent electron
scattering, which can significantly affect the transport
characteristics of HgSe : Fe crystals.

Performing integration in Eq. (5), the inverse relax-
ation time for Γ8-band electrons scattered by MV iron
ions is found to be

(14)

Here, y = k/kF, εBn is the Bohr energy for an electron at
the bottom of the conduction band, Λ =

mFaB  is an alloy scattering parameter
dependent on the ratio between the electron interaction
constants with neutral and charged centers, aB =
χ"2/mFe2 is the Bohr radius, εF is the Fermi energy, and
the functions Φαβ(k) are given by
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ing by the correlated Fe2+–Fe3+ ion system is deter-
mined by three contributions: one from scattering by
correlated Fe3+ ions, one from scattering by neutral cen-
ters, and the interference contribution Φ0+. It should be
noted that in the case of randomly distributed iron ions,
we have S++(q) = S00(q) = 1 and S0+(q) = S+0(q) = 0. In
this case, there is no interference contribution and Mat-
thiessen’s rule holds for electron scattering on neutral-
and charged-center systems.

In HgSe : Fe crystals with NFe < N* = 4.5 × 1018 cm–3,
the Fermi level lies below the iron d level; therefore,
N0 = 0 and the Fe3+ ions are randomly distributed over

the lattice sites. In this case, S++(q) = 1,  =  = 0,

and the expression for the inverse relaxation time 
reduces to that derived earlier for the case of scattering
by randomly distributed donors [14, 15]:

(16)

where  = ln(1 + bk) – (1 + )–1,  = 1 + (1 + bk)–1 –

2 , and  = {1 – 4  – 2 (1 +

)–1 + 6 ln(1 + bk)}.

In the case of scattering by randomly distributed neutral

centers (S00(q) = 1), Eq. (14) for  reduces to the
expression derived in [15, 19]:

(17)

Further, we analyze the dependence of the electron
mobility on the impurity content in HgSe : Fe crystals
and discuss the specific features of the coherent scatter-
ing of Γ8-band electrons by MV iron ions.

3. INTERFERENCE IN ELECTRON SCATTERING 
BY MIXED-VALENCE IRON IONS

AND THE MOBILITY OF CONDUCTION 
ELECTRONS IN HgSe : Fe CRYSTALS

The dependence of the mobility of electrons on the
impurity concentration NFe in HgSe : Fe crystals was
analyzed in [6, 17, 18]. Nonparabolicity of the conduc-
tion band was included only in the dispersion law of
carriers. In contrast to those papers, we take into
account the specific features of the Γ8-band wave func-
tions in calculating the probability of electron scatter-
ing by MV iron ions and analyze the dependence of the
electron mobility µ++(Nd) = eτ++/mF limited by scatter-
ing by randomly distributed donors on the donor con-
centration Nd in HgSe crystals. By comparing the
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results of the calculations with the experimental data
taken from [14, 24, 25], we determine the parameters
characterizing Γ8-band electron scattering by charged
centers, namely, the dielectric constant χ, effective
mass , and electron mobility µ* for Nd = N* = 4.8 ×
1018 cm–3. Then, these parameters are used to calculate
the electron mobility limited by scattering on MV iron
ions in HgSe : Fe crystals. An analysis of the electron
mobility in HgSe crystals on the basis of Eq. (16) for
τ++(εF) revealed that the calculated µ(Nd) dependence
(curve 1 in Fig. 1) agrees with the experimental data
[14, 24, 25] if the parameters are taken to be χ ≈ 27 and

 ≈ 0.07m0 (mn ≈ 0.023m0); in this case, µ* ≈ 2.23 ×
104 cm2/V s. As the iron content in HgSe : Fe is
increased, the Fermi level reaches the d level at NFe ≈
4.5 × 1018 cm–3 and then, with a further increase in NFe,
the electron concentration ne (ne = N+) saturates and
remains equal to ne = N* ≈ 4.8 × 1018 cm–3 [1] virtually
everywhere in the range NFe ~ (5–500) × 108 cm–3 [1,
Fig. 3b]. Therefore, in what follows, we use the param-
eters  and µ* determined for this concentration.

Let us consider the dependence of the electron
mobility on the impurity content in HgSe : Fe crystals
and analyze the role of coherent scattering of Γ8-band
electrons by MV iron ions. We express µ(NFe), limited
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Fig. 1. Electron mobilities (1) µ(Nd) in HgSe crystals and
(2) µ(NFe) in HgSe : Fe crystals; (3, 4) contributions to

mobility µ(NFe) from electron scattering by correlated Fe3+

ions and from alloy scattering, respectively; (5) µ(NFe)
dependence not including the effect of coherent electron
scattering; (6) µ(NFe) dependence including the effect of

intrinsic defects of concentration Nd = 1 × 1018 cm–3; and
(7) µ(NFe) dependence calculated using “basic equation” (25)
derived in [27]. Open and filled symbols are experimental
data on µ(Nd) in HgSe crystals [14, 24, 25] and on µ(NFe) in
HgSe : Fe crystals [3, 30], respectively.
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by electron scattering on MV iron ions, in terms of the
quantity µ*:

(18)

(19)

where the function Φαβ and structure factors Sαβ(q) are
given by Eqs. (15) and (12), respectively. It should be
noted that the structure factor S00(q) is noticeably dif-
ferent from unity only in the range of low neutral-center
concentrations N0 < N+, where the electron scattering
by these centers is weak and can be neglected [18]. At
higher iron impurity contents (N0 @ N+), where the neu-
tral-center scattering becomes significant, we have
S00(q) ≈ 1. Therefore, for the sake of simplicity, we put
S00(q) ≈ 1; in this case, the quantity Φ00 is given by
Eq. (17).

When a correlated Fe3+ ion system is treated statis-
tically within the hard-sphere model, the structure fac-
tor S++(q, η) depends on the packing fraction character-
izing the degree of ion ordering. In order to calculate
the electron mobility and other transport characteristics
of HgSe : Fe crystals, we need to acquire the relation
between the packing fraction and the iron impurity con-
tent. Several methods have been proposed for determin-
ing this relation [5, 6, 17, 18, 26–28]. The most reliable
and physically substantiated is the method suggested in
[6] and refined in [17, 18]. According to this method,
the η(NFe) dependence is found as follows. First, the
alloy scattering parameter Λ is determined using the
experimental values of the electron mobility µexp(NFe)
in the range of high iron concentrations NFe > 1020 cm–3

(where the alloy scattering is dominant). Then, the con-

tribution  due to scattering by correlated Fe3+

ions is calculated:

(20)

Then, using the expression for the structure factor
S++(q, η), we calculate µ++(η) as a function of η.
Finally, by equating the experimental and calculated

values of the mobility,  = µ++(η), the η(NFe)
dependence is determined. It is found that the empirical
η(NFe) dependence can be closely approximated by the
expression

(21)
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dependence with η∝  ≈ ηL = 0.45 agrees with the exper-
imental data; therefore, the system of Fe3+ ions in an
HgSe : Fe crystal at low temperatures can be considered
as a strongly correlated Coulomb liquid in the case of
NFe @ N+ [6]. The empirical method used in [6] was
substantiated in [18, 28, 29], where the dependence of
the correlation sphere radius and, hence, of the packing
fraction on the iron impurity content was calculated for
N0 < N+ by using the balance equation for d holes and
neutral centers in the short-range-order cluster of an
Fe3+ ion:

(22)

The empirical η(NFe) dependence Eq. (21) for N0 < N+
correlates well with Eq. (22) (see [18, Fig. 3]). It was
shown in [18] that Eq. (22) is an exact asymptotic
expression in the limit of N0 ! N+ (i.e., N0  0). On
the other hand, from empirical equation (21) for N0 !
N+, it follows that η(NFe) ≈ 2η∝ N0/NFe; a comparison
with Eq. (21) gives η∝  ≈ 0.37. In what follows, we take
into account this refinement and use this value of η∝  in
calculating the electron mobility µ(NFe) and the contri-
butions from alloy scattering and from scattering by
correlated Fe3+ ions. The quantities V0 and w = W0/V0
are adjustable parameters characterizing Γ8-band elec-
tron scattering by iron ions that are neutral on the lat-
tice. The values of these parameters are found by com-
paring the calculated µ(NFe) dependences with the
experimental data from [3, 30].

The results of the analysis described above are
shown in Fig. 1. It is seen that there is good agreement
with the experimental data taken from [3, 30]. We suc-
ceeded in adequately describing both the µ(Nd) depen-
dence in HgSe crystals (curve 1) and the µ(NFe) depen-
dence in HgSe : Fe crystals (curve 2) in terms of the
same set of parameters. First of all, it is to be noted that
the weakened electron scattering by spatially ordered
charged centers is further weakened (by a factor of
approximately 1.5) in the case of Γ8-band electrons: the
mobility µ++(NFe) reaches a saturation value of µS ≈
25.8 × 104 cm/V s for NFe @ N*, while in the case of
randomly distributed charged centers of the same con-
centration N*, we have µ* ≈ 2.2 × 104 cm/V s; there-
fore, the ratio µS/µ* ≈ 12 is larger by a factor of 1.5 than
in the case where the Bloch amplitudes are ignored in
calculating the electron relaxation time due to scatter-
ing by correlated Fe3+ ions [6, 17, 18]. It is also seen
from Fig. 1 that when µ++(NFe) reaches saturation
(curve 3) for NFe > 2 × 1019 cm–3, the alloy scattering is
dominant (curve 4). For this reason, the total mobility
in this impurity concentration range is insensitive to
changes in the value of η∞ within the range η∞ ≈ (0.37–
0.45). The alloy-scattering parameters are found to be
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V0 ≈ 7.9 × 10–22 eV cm3 and w ≈ 0.15 (Λ = 0.4), which
correlates well with the estimates made in [21] (V0 ≈
8.2 × 10–22 eV cm3, w ≈ –0.1 ± 0.1).

Allowance for the Bloch wave functions results not
only in weakened electron scattering by charged cen-
ters but also in significantly suppressed scattering by
neutral centers: for s wave functions, we have Φ00 ≈ 0.5
[17, 18], whereas for the Γ8 band, Φ00 ≈ 0.11. There-
fore, the alloy-scattering parameters V0 and Λ become
approximately twice as large as their values used in [17,
18] in calculating the µ(NFe) dependence. In the range
where the mobility is maximum, the electron scattering
is dominated by scattering on correlated Fe3+ ions and
by the interference contribution. It should be noted that
the electron mobility µ(NFe) calculated without regard
for coherent scattering (curve 5) is roughly twice as
large. Obviously, the interference effects in electron
scattering by neutral and charged centers in HgSe : Fe
crystals are of importance and should be taken into
account when analyzing electron transport phenomena.
Curve 6 demonstrates the effect of intrinsic defects
(shallow donors) of concentration Nd = 1 × 1018 cm–3 on
the µ(NFe) dependence in an HgSe : Fe crystal. The cal-
culation of this dependence is performed using the
same method as in [8].

Now, we discuss Matthiessen’s rule, which is vio-
lated in the case of electron scattering by MV iron ions
because of interference effects in electron scattering on
neutral and charged centers. If there is no spatial corre-
lation, we have S0+(q) = 0 and Matthiessen’s rule holds.
In this case, the contributions from electron scattering
by charged and neutral iron impurity centers to electron
momentum relaxation are additive [31] and we have

(23)

The degree of violation of Matthiessen’s rule for the
electron mobility can be characterized by the quantity

(24)

Figure 2 shows the dependence of the deviation from
Matthiessen’s rule on the iron impurity content. It is
seen that the deviation vanishes for both N0  0
(NFe  N*) and N0 @ N+ and reaches a maximum
value of 60% for NFe ~ (1–2) × 1019 cm–3 (when N0 ≈ N+).

Thus, with allowance for the actual band structure of
HgSe : Fe crystals, the model developed in [6, 18, 28]
enables one to adequately describe all characteristic
features of the µ(NFe) dependence in a wide range of
iron impurity contents, namely, the value and position
of the maximum of the electron mobility at NFe ~ (1–2) ×
1019 cm–3, the sharp increase in µ(NFe) for N0 < N+ asso-
ciated with weakened electron scattering on correlated
Fe3+ ions, and the decrease in the electron mobility for
NFe > 2 × 1019 cm–3 due to alloy scattering.

µMR NFe( ) µ++
1– NFe( ) µ00

1– NFe( )+[ ] 1–
.=

∆µ/µ µ µMR–( )/µ.=
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Another model that takes into account spatial order-
ing of MV iron ions was proposed by Mikheev [26, 27].
Unfortunately, no equations were derived and solved to
find the impurity-content dependence of the correla-
tion-sphere radius rc(NFe) in those papers; instead, some
assumptions were made. Since Mikheev [26, 27] cast
doubt on the correctness of the short-range correlation
model (SRCM) developed in [6, 17, 18, 28] and used in
this paper, we thoroughly analyzed the assumptions
made in [26, 27] and can say the following to clarify the
point. By assuming that the probability of a correlated
particle arrangement W(N+, rc, r1) is equal to the proba-
bility W0 that there will be no d hole in the volume Ωc

in the case of randomly distributed MV iron ions [i.e.,
when the Coulomb repulsion of Fe3+ ions (d holes) is
turned off], the following basic equation was derived
in [26]:

(25)

This dependence of the packing fraction on the iron
impurity content is significantly weaker than that given
by Eq. (21) (Fig. 3a) and is not consistent with exact
asymptotic expression (22) for rc(NFe) for N0 < N+. In
[27], in order to substantiate Eq. (25), the case of
extremely low neutral-center concentrations was con-
sidered (N0/N+ ! 1, ΩcN+ = 8η ! 1). Under the
assumption that in this limit the Fe3+ ion correlation
spheres do not overlap, Mikheev [27] derived the fol-
lowing relation (believing it to be an exact asymptotic
expression):

(26)

η NFe( )
N+Ωc

8
------------- 0.74 1 N+/NFe( )

1
∆N1
----------

– .≅=

N+ NFe 1 N+Ωc–( ) or η NFe( ) N0/ 8N+( ).= =

0.7

0.6
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NFe, 1018 cm–3

∆µ/µ

Fig. 2. Deviation from Matthiessen’s rule as a function of
iron impurity content, calculated with the same values of
parameters as for the electron mobility.
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Equation (26) is consistent with Eq. (25), and the
dependence on the impurity concentration in Eq. (26) is
significantly weaker than that in Eqs. (21) and (22)
(Fig. 3a). However, the Fe3+ ion correlation spheres
always overlap, including the limiting case of N0/N+ ! 1.

By definition, the correlation sphere (Ωc = 4π /3) con-
structed around each Fe3+ ion contains only neutral cen-
ters. If the correlated Fe3+ ions are approximated by
hard spheres, the spacing between the centers of Fe3+

ions cannot be less than rc = d (d is the hard-sphere
diameter): g++(r) = 0 for r < rc. Outside the correlation
volume Ωc (in the spherical layer rc < r < 2rc), the pair
correlation function g++(r) ≠ 0 and the probability of
finding an Fe3+ ion in this layer is nonzero for any non-
vanishing value of the parameter η. Therefore, the cor-
relation spheres of the Fe3+ ions located within the
spherical layer rc < r < 2rc will inevitably overlap. For

the function  used in [26] (see also [23,
Fig. 8.6.1b]), the average number of Fe3+ ions located
within this layer is easily found to be ∆N = 56η + 34η2.
For η ~ 10–2, half of the short-range-order clusters in
the rc < r < 2rc spherical layer contain an Fe3+ ion and
the correlation spheres of such Fe3+ ions overlap.
Therefore, the assumption on which the derivation of
Eq. (26) is based is incorrect.

The adequacy of the different methods can be veri-
fied by using them for calculating electron-transport
effects in HgSe : Fe crystals (see below) or by analyz-
ing the balance of d holes and neutral centers redistrib-
uted over the correlation sphere and the spherical layer
in the extreme case of N0 ! N+, where the correlation

rc
3

g++
1( ) r( )
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Fig. 3. Dependences of (a) the packing fraction η(NFe) and
(b) ratio ∆N0/∆Nc on the iron impurity content as calcu-
lated on the basis of (1) balance equation (22) for parti-
cles; (2, 3) empirical equation (21) with η∝  ≈ 0.45 and 0.37,
respectively; (4) short-range correlation model (SRCM-I)
[5]; and (5) the basic equation of [26, 27].
PH
sphere radius is limited by the number of empty sites
for d-hole redistribution (i.e., by the Fe2+ concentration
N0) in the spherical layer rc < r < r1. Allowance for this
balance is the basic point of the SRCM [2, 28, 29]. Let
us consider the influence of the iron content on the aver-
age number ∆Nc of d holes passing to the spherical
layer and on the change ∆N0 in the number of empty
sites for their redistribution (i.e., in the number of Fe2+

ions) in the spherical layer as the Coulomb repulsion of
d holes is turned on. In the extreme case of N0 ! N+,
d holes occupy all empty sites in the spherical layer;
i.e., ∆N0 ≈ ∆Nc. Therefore, for N0 < N+, the following
inequality should be satisfied:

(27)

where ∆  = 8η and ∆  = (∆N1 – 8η)N0/N+. Inequal-
ity (27) is a criterion for the validity of different phe-
nomenological methods used for describing the spatial
ordering of MV iron ions. As seen from Fig. 3, inequal-
ity (27) holds, with a large margin for the η(NFe) depen-
dences following from Eqs. (21) and (22). For Eq. (22),
following from the balance equation for d holes and
neutral centers, the ratio ∆N0/∆Nc = 1 over the entire
range of iron contents. The surprising thing is that, for
empirical equation (21) with η∝  ≈ 0.45 (curve 2 in
Fig. 3) and η∝  ≈ 0.37 (curve 3), criterion (27) is satis-
fied with a large margin everywhere over the range N0 <
N+. In contrast, strong inequality (27) does not hold for
SRCM-I [5] (curve 4) and especially not for the basic
equation of the theory developed in [26, 27] (curve 5)
in the range of N0 < N+. Due to the unduly slow increase
in the packing fraction in Eq. (25) [which is the result
of the assumption that W(N+, rc, r1) = W0], the ratio
∆N0/∆Nc ~ 6 significantly exceeds unity for N0 ! N+
(curve 5 in Fig. 3b). Obviously, Eq. (25) is not valid in
the limit of N0/N+ ! 1: in the spherical layer rc < r < r1,
a large number of empty sites remain accessible for
d-hole redistribution, but the equality W(N+, rc, r1) =
W0, assumed in [26, 27] to hold, forbids the greater part
of d holes from transferring to these sites.

Thus, empirical formula (21) satisfies criterion (27)
everywhere over the N0 < N+ range and can be used to
calculate electron transport effects in HgSe : Fe crys-
tals. It is not surprising that the µ(NFe) dependence cal-
culated on the basis of Eq. (21) adequately describes all
specific features of this dependence observed experi-
mentally over a wide range of iron contents (curve 2 in
Fig. 1). In contrast, the µ(NFe) dependence calculated
on the basis of Eq. (25) for η(NFe) (curve 5 in Fig. 3a)
with the same values of the parameters as for curve 2
leads to an unduly slow increase in µ++(NFe) with
increasing iron content (curve 7 in Fig. 1). There is a
significant discordance between the calculations and
experimental data in the range where the electron
mobility increases and reaches a maximum µ(Nmax): the
calculated µmax is less than its experimental value by a

∆N0/∆Nc 1–  ! 1,

Nc N0
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factor of approximately 2.5, and the position of the
mobility maximum [experimental value Nmax ≈ (1–2) ×
1019 cm–3] is significantly shifted to higher iron con-
tents (Nmax ≈ 6 × 1019 cm–3). In this method, the values
of the adjustable parameters cannot be chosen in such a
way as to adequately describe the µ(NFe) dependence in
both the range of the mobility increase and the range of
the mobility maximum. It should be noted that in [27],
in calculating the mobility, the specific features of the
conduction band were not taken into account, coherent
electron scattering was ignored (which led to a twice as
large value of the maximum mobility), and µ* was
taken to be an adjustable parameter.

In [27], in calculating the effect of intrinsic defects
(shallow donors) on the electron mobility in HgSe : Fe
crystals, Eq. (25) is used and the pair correlation func-
tion of iron ions and intrinsic defects is assumed to have
the form of a step function, gFD(r) = ϑ(r – rc). Such a
correlation function is adequate for use in the case of a
low density (η ! 1) or of weak spatial correlations of
Fe3+ ions and intrinsic defects. To justify this approxi-
mation, Mikheev [27] does not analyze the set of equa-
tions for the pair correlation functions of MV iron ions
and intrinsic defects but instead introduces the concept
of a “perforated system.” When analyzing the tempera-
ture dependence of the electron mobility, Mikheev [32]
also uses Eq. (25) and the weak spatial correlation
approximation to calculate the structure factor.

In the weak-correlation model, as indicated in [18],
the particle conservation law breaks down and the ther-
modynamic functions exhibit a nonphysical behavior.
Therefore, the application of this model for calculating
electron transport effects is ill founded. The inadequacy
of this model also manifests itself in the fact that the
structure factors and, hence, the electron-scattering
probabilities become negative as the density of the sys-
tem increases. For the step function g(0)(r) = ϑ(r – rc),
the structure factor S(0)(q) for small wave vectors
becomes negative even for η > 0.125. In the next orders
in density, S(1)(q) and S(2)(q) become negative for η >
0.235 and 0.18, respectively. Therefore, the low-density
or weak-spatial-correlation approximation gives physi-
cally reasonable results only for a weakly correlated
gas, i.e., for η < 0.125, which corresponds to NFe < 6 ×
1018 cm–3. In order to calculate the µ(NFe) dependence
in the entire range of NFe values, one needs to use the
pair correlation functions that are adequate for the case
of a large particle number density for which particle
correlations are strong. In this paper, we use structure
factors (12) calculated within the Percus–Yevick
approximation, which is not subject to the drawbacks
indicated above. Our analysis of the basic assumptions
and the physical consequences on which the results of
[26, 27, 32] are based allows one to judge the reliability
of those results.

The short-range correlation model proposed by us is
based on the Ornstein–Zernike equations for the partial
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
correlation functions and can be used in both cases of
weak and strong Coulomb correlations of d holes in
MV iron ions. This model is adequate for description of
all specific features of the experimental dependence of
the electron mobility on the iron content in HgSe : Fe
crystals at low temperatures. It is shown that the coher-
ent electron scattering plays an important part in elec-
tron momentum relaxation; this scattering results in a
breakdown of Matthiessen’s rule and should undoubt-
edly be taken into account in analyzing electron trans-
port effects.

4. ENERGY DEPENDENCE 
OF THE RELAXATION TIME 

OF Γ8-BAND ELECTRONS

Let us consider the energy dependence of the relax-
ation time of Γ8-band electrons and make a comparison
with the calculations performed earlier without regard

1 100
0

0.5

–0.5

–1.0

10
NFe, 1018 cm–3

–1.5

–2.0

1.0
(a)

(b)

1

2

3

4
5

NFe, 1018 cm–3
10010

2 2b

1b
1c

1a

2c

2a
1

D(τ)

D(τ), Dαβ(τ)
1.0

0.5

0

–0.5

Fig. 4. Dependences of (a, b) dimensionless parameter D(τ)
and (b) its partial contributions Dαβ(τ) on the iron impurity
content as calculated (a) (1) for the Γ8 band, (2, 3) for the Γ6
band without regard for the Bloch amplitudes in the electron
scattering probability, and (4, 5) from the Brooks–Herring
formula and for Γ8-band electrons, respectively, in the case
of electron scattering by randomly distributed charged cen-
ters; (b) (1, 1a–1c) for Γ8-band electrons, (2, 2a–2c) for
Γ6-band electrons, (1a, 2a) contribution D++(τ), (1b, 2b)
contribution D+0(τ), and (1c, 2c) contribution D00(τ).
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for the Bloch amplitudes in calculating the electron
scattering probability [9, 10]. This dependence is of
importance in studying the thermomagnetic effects
[33]. The point is that, for example, the longitudinal and
transverse Nernst–Ettingshausen effects are propor-
tional to the energy derivative of the relaxation time.
Therefore, a variation in the spatial ordering of MV iron
ions can cause the Nernst– Ettingshausen effects to
change sign, whereas the electron mobility is changed
only in magnitude in this case. Experimental studies
support this theoretical prediction [9, 10].

Figure 4a shows the dependence of the dimension-
less parameter D(τ) on the iron impurity content:

(28)

In calculating D(τ) and the µ(NFe) dependence, we
used the same values of the parameters. It is seen from
Fig. 4 that the τ(ε) dependence changes in a qualitative
manner: in both the cases of scattering by randomly dis-
tributed iron ions and by MV iron ions, τ(ε) increases
with energy [D(τ) > 0] in the region of weak spatial cor-
relations, whereas in the region of strong correlations
(NFe > 1019 cm–3), τ(ε) becomes a decreasing function
of energy [D(τ) < 0]. A comparison of curves 1 and 2 in
Fig. 4a shows that the allowance for the Bloch ampli-
tudes (curve 1) results in D(τ) shifting to lower iron
contents. The assumption of S+0 = 1, made in [9, 10] in
studying the transverse Nernst–Ettingshausen effect,
leads to a sharper change in D(τ) in the region of rela-
tively low iron contents (curve 3). This approximation
is obviously inadequate for quantitative description of
the thermomagnetic effects. In the case of scattering by
randomly distributed charged centers, the parameter
D(τ) calculated from the Brooks–Herring formula
(curve 5) and for Γ8-band electrons (curve 4) is positive
throughout the entire Nd-concentration range. There-
fore, an increased degree of spatial ordering of MV iron
ions leads not only to weakened electron scattering and
to an anomalously increased electron mobility in com-
parison with the case of electron scattering by ran-
domly distributed iron ions but also to a qualitative
change in the energy dependence of the electron relax-
ation time. The D(τ) sign reversal with increasing iron
content will cause the Nernst–Ettingshausen effects to
change sign.

The contributions to Dαβ(τ) coming from electron
scattering by correlated Fe3+ ions, D++(τ), and by neu-
tral centers, D00(τ), as well as from the interference
effect in scattering by charged and neutral centers,
D+0(τ), are shown in Fig. 4b as functions of the iron
content for Γ8-band electrons (curves 1, 1a–1c) and for
Γ6-band electrons without s–p wave-function hybrid-
ization (curves 2, 2a–2c). It is seen from Fig. 4b that the

D τ( ) εF εd
d τ ε( )( )ln[ ] ε εF==

=  
εF

τ εF( )
-----------

dτ εF( )
dε

--------------- 
 

ε εF=
D++ D+0 D00.+ +=
P

allowance for the Bloch amplitudes in calculating the
electron-scattering probability affects the interference
contribution D+0(τ) most significantly; for Γ6-band
electrons, this contribution is positive and fairly large
(curve 2b), whereas for Γ8-band electrons, coherent
scattering makes a small contribution to D(τ) through-
out the entire iron-content range (curve 1b). For a rela-
tively low iron content N0 < N*, D(τ) is dominated by
the contribution D++(τ), while at high concentrations
NFe @ N*, D(τ) is dominated by the contribution D00(τ)
from neutral-center scattering. Although coherent scat-
tering affects the energy dependence of the relaxation
time [i.e., D(τ)] only slightly in the case of Γ8-band
electrons, this scattering makes a significant contribu-
tion to the electron mobility, as demonstrated above.

5. CONCLUSIONS

Thus, we have analyzed the influence of the band
nonparabolicity on the electron momentum relaxation
in HgSe and HgSe : Fe crystals and determined the
parameters characterizing electron scattering by MV
iron ions. In terms of the same set of parameters, we
succeeded in describing both the dependence of the
electron mobility on the intrinsic-defect concentration in
HgSe crystals and the µ(NFe) dependence in HgSe : Fe
crystals. The good quantitative agreement of the calcu-
lated mobility with the experimental data for HgSe
crystals [14, 24, 25] and of the calculated µ(NFe) with
the data for HgSe : Fe [3, 30] indicates that the spatial
ordering of MV iron ions and the main electron
momentum relaxation mechanisms are correctly taken
into account. An analysis of the energy dependence of
the electron relaxation time revealed that in order to
describe the thermomagnetic effects quantitatively, one
needs to allow for the nonparabolicity of the dispersion
law of carriers in HgSe and HgSe : Fe crystals and, in
addition, include the s–p hybridization and the Bloch
amplitudes of the electron wave functions in calculat-
ing the electron-scattering probability.

An analysis of the thermomagnetic effects in
HgSe : Fe crystals with allowance for the band nonpar-
abolicity and of the effect of hydrostatic pressure on the
electrical conductivity at low temperatures is of consid-
erable interest in itself and will be published elsewhere.
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Abstract—The optical dephasing in frozen amorphous toluene doped with octaethylporphine zinc is investi-
gated using the photon echo technique over a wide range of temperatures (0.4–100 K) up to the Debye temper-
ature of solid toluene (TD = 100.7 K). The contributions of different mechanisms to the broadening of the zero-
phonon line (ZPL) are reliably separated owing to the measurements performed over such a wide range of tem-
peratures. Analysis of the experimental data demonstrates that, at low temperatures, the main contribution to
the optical dephasing is determined by the interaction of impurities with fast tunneling transitions in two-level
systems. The temperature dependence of the linewidth exhibits a quasi-linear behavior at temperatures below
3–4 K. At higher temperatures, the dominant contribution to the dephasing is made by the interaction of impu-
rities with quasi-local phonons, which leads to a quasi-exponential temperature dependence of the linewidth. It
is shown that the latter contribution can be described in the framework of the soft-potential model allowing for
a broad spectrum of low-frequency phonon vibrations in the matrix. The temperature of the crossover between
the aforementioned two mechanisms of line broadening is determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, the presence of spatial and energy
microinhomogeneities in condensed disordered media
(glasses, polymers, frozen solutions, amorphous semi-
conductors, etc.) leads to a considerable difference
between the properties of these materials and crystals.
For example, temperature dependences of the heat
capacity and the thermal conductivity of disordered
materials at temperatures below 1 K exhibit anomalous
(linear or quadratic) behavior as compared to the cubic
dependences of these parameters for crystalline materi-
als [1]. Despite numerous experimental and theoretical
investigations into the dynamic processes occurring in
amorphous media at low temperatures, up to now, the
nature of these processes has remained unclear and
there has been no consistent theoretical description of
the above phenomena. This circumstance and the wide
practical applications of amorphous materials explain
the urgency of the problems and the great interest
expressed by researchers in this field.

Traditionally, dynamic processes in condensed
media are investigated using optical spectroscopy of
impurity centers (atoms, ions, or molecules). These
impurity centers are specially introduced in low con-
centrations as spectral microprobes into the matrix
under investigation. The matrix dynamics most clearly
manifests itself in a broadening of zero-phonon lines
(ZPLs) in optical spectra of impurity centers. Examina-
tion of the temperature dependence of the width of
zero-phonon lines allows one to obtain important infor-
mation on the mechanisms responsible for the dynamic
properties of the studied system. However, the inhomo-
1063-7834/03/4502- $24.00 © 20224
geneous line broadening effects inherent in amorphous
media lead to a considerable smearing of the observed
spectra. This appreciably restricts the possibility of
extracting dynamic information on the properties of
these materials with the use of traditional spectroscopic
methods. The development of new selective spectro-
scopic techniques, such as the laser burning of stable
spectral holes [2, 3], fluorescence and phosphorescence
fine-structure spectroscopy under laser excitation [4,
5], and different variants of the photon echo technique
[6, 7], made it possible to eliminate the influence of the
inhomogeneous broadening on the spectra studied.
These techniques have provided a considerable amount
of valuable information on the glass dynamics. Over
the period of the last ten to fifteen years, a large number
of studies concerned with the problem of temperature
broadening of zero-phonon lines have been performed
using selective spectroscopic techniques. It has been
found that, at low temperatures (T < 3–5 K), the homo-
geneous width of zero-phonon lines observed for amor-
phous materials is one or two orders of magnitude
larger than that for crystals and exhibits a quite different
temperature behavior [8]. According to the universally
accepted concepts, this is explained by the fact that
amorphous materials contain atomic or molecular
groups which undergo tunneling transitions between
two local minima on the potential energy surface of the
material. These atomic or molecular groups form the
so-called two-level systems [9, 10]. The transitions
occurring in two-level systems bring about changes in
the frequencies of electron transitions in impurity mol-
ecules and, thus, lead to a broadening of zero-phonon
003 MAIK “Nauka/Interperiodica”



        

OPTICAL DEPHASING IN SOLID TOLUENE ACTIVATED BY OCTAETHYLPORPHINE ZINC 225

                         
lines. Despite its simplicity, the model of tunneling
two-level systems adequately describes the majority of
experimental data on the broadening of the spectral
lines of impurity centers in amorphous matrices at tem-
peratures below 2–3 K (see, for example, monographs
[11–13] and references therein). At higher tempera-
tures, the temperature dependence of the linewidth
changes drastically. In this case, experimental data are
interpreted in terms of both the above mechanism of
line broadening associated with two-level systems and
the broadening caused by the interaction of impurity
centers with one or two quasi-local low-frequency
modes whose frequencies fall in the range 10–30 cm–1

[14, 15]. This approach was developed in analogy to the
model used for crystals in which, beginning with tem-
peratures higher than several degrees Kelvin, the
dephasing is affected by the quasi-local low-frequency
modes arising upon introduction of impurity centers
into the solid matrix. However, these modes have never
been observed in experiments with amorphous materi-
als containing impurities. In recent years, dynamic phe-
nomena in condensed disordered media at low temper-
atures have been described within the soft-potential
model [16]. Within this model, low-frequency vibra-
tional excitations in these media are treated as motions
of atomic or molecular groups in local single-well min-
ima of the potential surface. It is essential that, in the
framework of this model, the low-frequency vibrational
modes are the excitations inherent in the solid amor-
phous matrix and are characterized by a broad fre-
quency distribution function n(ω) ~ ω4. It was of inter-
est to analyze experimental data on the optical dephas-
ing not only in terms of the discrete spectrum of low-
frequency modes, as has been often done in the litera-
ture, but also with the use of the concept of a broad fre-
quency distribution of vibrational excitations in the
amorphous matrix, as is predicted by the soft-potential
model.

In the majority of experimental works performed
thus far, the broadening of spectral lines of impurity
molecules in organic glasses and polymers has been
measured in a relatively narrow temperature range (the
temperature varied by a factor of no more than 10–20).
This circumstance substantially restricts the possibility
of reliably interpreting experimental data, because the
contributions of different mechanisms to the broaden-
ing of zero-phonon lines can superpose in the narrow
temperature ranges studied. In this respect, extension of
the temperature range of measurements is an important
problem. The solution of this problem requires the
development of new experimental approaches, since
none of the existing techniques provides a way of mea-
suring the zero-phonon line widths over a very wide
range of temperatures.

In the present work, the optical dephasing in an
organic amorphous system was experimentally investi-
gated using the photon echo technique over a wide tem-
perature range (from 0.4 to 100 K). An impurity organic
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
glass, namely, a frozen solution of octaethylporphine
zinc in toluene, served as the object of investigation. We
succeeded in performing the measurements over such a
wide range of temperatures owing to the use of two
experimental photon echo setups adapted specially for
two variants of the photon echo technique: the two-
pulse picosecond photon echo and incoherent photon
echo. The experiments at low temperatures were car-
ried out on a two-pulse picosecond photon echo setup
[17] equipped with a 3He cryostat. The use of this setup
permitted us to perform measurements at temperatures
down to 0.35 K. An insufficiently high time resolution
of the setup made measurements at temperatures above
4 K impossible. For this reason, at higher temperatures,
we used the incoherent photon echo setup [18], which
has a considerably higher time resolution. The appro-
priate choice of impurity chromophore molecules is of
importance in extending the temperature range of mea-
surements toward high temperatures. As a chro-
mophore molecule, we chose the octaethylporphine
zinc molecule, which is characterized by a large
Debye–Waller factor. This enabled us to raise substan-
tially the upper boundary of the temperature range of
measurements.

2. EXPERIMENTAL TECHNIQUE

The experiments were performed at T < 4 K on the
two-pulse picosecond photon echo setup at the Univer-
sity of Bayreuth (Bayreuth, Germany) and at T > 1.6 K
on the incoherent photon echo setup at the Institute of
Spectroscopy, Russian Academy of Sciences (Troitsk,
Russia). These setups were described in detail in [17,
18]. For this reason, only their basic parameters are
given below. The two-pulse picosecond photon echo
setup was based on a picosecond dye laser with a time
resolution of 6 ps. The 3He cryostat of the setup pro-
vided a means of performing measurements in the tem-
perature range 0.35–4 K. The temperature was con-
trolled with an accuracy higher than 10 mK. The inco-
herent photon echo setup was based on a specially
designed broadband dye noncavity laser. The spectral
width of laser radiation was approximately equal to
100 cm–1 (λ = 573–576 nm), and the pulse width was
12–15 ns. The time resolution of this setup was deter-
mined by the lasing spectrum width and the accuracy of
recording the time instrument function of the setup (the
decay curve corresponding to the minimum time T2)
and was as high as 25–30 fs [18].

In the experiments, special care was taken to elimi-
nate undesirable effects that could be caused either by
high impurity concentrations or by high laser radiation
power. For this purpose, a sample with a low concentra-
tion of octaethylporphine zinc impurity molecules (1 ×
10–4 M) was prepared and the intensity of the radiation
incident on the sample was chosen to be as low as pos-
sible. The radiation energy densities in the two-pulse
picosecond photon echo and incoherent photon echo
3
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Fig. 1. Decay curves of incoherent photon echo signals for a solution of octaethylporphine zinc in toluene at different temperatures.
The inset in panel (a) shows a portion of the decay curve at short delay times on an enlarged scale, and the inset in panel (d) repre-
sents a portion of the decay curve with contributions of the zero-phonon line and the phonon wing at long delay times.
measurements were lower than 10–5 and 5 × 10–4 J/cm2,
respectively. The special check showed that, at these
intensities of laser radiation, the measured optical
dephasing time T2 is virtually independent of the laser
pulse energy.

The samples were prepared from anhydrous toluene
(Aldrich; the content of the main product was 99.8 wt %).
The solution was placed in silica cells 1 mm thick. In
order to prevent contact with atmospheric water vapor,
which led to cracking of toluene upon freezing, the
samples were prepared in a helium atmosphere. The
optical density of the sample in the excitation range (at
the long-wavelength wing of the purely electronic
absorption band) at room temperature was equal to 0.8–
1.0. This density is close to optimum from the view-
point of compromising between the echo generation
efficiency and the elimination of undesirable effects
caused by the high optical density of the sample.

3. RESULTS AND DISCUSSION

The decay curves of incoherent photon echo signals
at different temperatures are depicted in Fig. 1. The
high time resolution of the setup makes it possible to
separate clearly the portions corresponding to the zero-
phonon line and the phonon wing (PW) in the decay
P

curve. The sharp peak in the range of zero delay time
(Fig. 1a) is associated with the contribution of the
phonon wing to the echo signals. The decay curves
measured at temperatures from 4 to 20 K (Figs. 1b, 1c)
at delay times ~2 ps exhibit a well-defined feature
caused by the interference of the contributions from the
zero-phonon line and phonon wing. At delay times
longer than 4–5 ps, the zero-phonon line makes the
main contribution to the recorded curves at the above
temperatures. As the temperature increases, the contri-
bution of the zero-phonon line decreases owing to a
decrease in the Debye–Waller factor and virtually dis-
appears at T ~ 100 K. It is this decrease in the contribu-
tion of the zero-phonon line (as compared to the contri-
bution of the phonon wing) with an increase in the tem-
perature, rather than the time resolution of the setup,
that is the main factor limiting the possibility of sepa-
rating the contributions of the zero-phonon line and the
phonon wing at T > 100 K. This situation is illustrated
in Fig. 1d.

The computational algorithm is of considerable
importance in determining the dephasing time T2 from
the experimental curves. At low temperatures (Figs. 1a,
1b), the time T2 was determined from the portion of the
decay curve at long delay times τ at which the contribu-
tion of the phonon wing to the echo signals could be
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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ignored. At higher temperatures (Figs. 1c, 1d), this con-
tribution increased sharply and the dephasing time was
calculated by subtracting the contribution of the
phonon wing from the resultant curve. Since the peak
associated with the phonon wing at these temperatures
was nearly symmetric and coincided with the left por-
tion of the photon echo decay curve, this portion was
used to approximate the phonon wing peak by a sym-
metric Voigt function (Fig. 1d). The function thus
obtained was subtracted from the resultant decay curve,
which permitted us to derive the contribution of the
zero-phonon line. Note that, according to experimental
and theoretical data, the decay curves of two-pulse
picosecond photon echo signals and the decay curves of
incoherent photon echo signals at T > 10 K are nearly
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
exponential in shape. Therefore, the dephasing time T2
in these cases was determined by approximating the
curves with the use of the standard expression relating
the photon echo signal intensity to the delay time, that
is,

(1)

As follows from the theory, the decay curves of inco-
herent photon echo signals at low temperatures are not
strictly exponential but are described by a more compli-
cated function. Consequently, the experimental decay
curves of incoherent photon echo signals at T < 10 K
were approximated by the relationship [19]
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where u = T2/T1 and B is the delay-time-independent
incoherent component of the incoherent photon echo
signals. It is easy to see that, in the limit T2/T1 ! 1,
relationship (2) transforms into the standard exponen-
tial expression (1).

Figure 2 shows the temperature dependence of the
reciprocal of the time T2 : ΓPE(T) = 1/πT2(T) = 1/2πT1 +

1/π . This quantity can be considered a homoge-
neous width of the zero-phonon line, which is calcu-
lated from the measured decay curves. Here,  is the
time of pure optical dephasing and T1 is the excited-
state lifetime of impurity molecules. This time was
measured by the induced grating technique on a modi-
fied two-pulse picosecond photon echo setup and
proved to be equal to 1.9 ns for the studied system. It
can be seen from Fig. 2 that the measured dependence
exhibits a temperature behavior characteristic of impu-
rity amorphous systems: as the temperature increases,
the zero-phonon line width insignificantly increases at
T < 3 K and steeply increases at higher temperatures.
The observed temperature dependence of the linewidth,
as a rule, is explained by the contribution of at least two
mechanisms of optical dephasing. These are the broad-
ening due to the interaction of the impurity center with
transitions in two-level systems at low temperatures
and the broadening caused by the contribution from
low-frequency vibrational modes of the matrix at
higher temperatures. The data obtained with the two
techniques somewhat differ in the range T = 1.5–3 K. In
our opinion, this difference is associated with the fact
that the spectral diffusion on the nanosecond time scale
affects the results of incoherent photon echo measure-
ments. The point is that the incoherent photon echo and
two-pulse picosecond photon echo techniques are char-
acterized by different measurement time scales tx [18,
20] and, therefore, have different sensitivities to the

T2' T( )

T2'
spectral diffusion. The two-pulse picosecond photon
echo technique is used to measure the homogeneous
linewidth and is insensitive to this process. In the inco-
herent photon echo technique, the time scale is deter-
mined by the lifetime T1 of chromophore molecules and
the laser pulse duration [19], which can be longer than
the dephasing time T2. In particular, the time scale tx in
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Fig. 2. Temperature dependences of the reciprocal of the
optical dephasing time 1/π  = 1/πT2 – 1/2πT1 for a solu-

tion of octaethylporphine zinc in toluene according to the
two-pulse picosecond photon echo (squares) and incoherent
photon echo (circles) data: (1) the approximation of the
experimental data by expression (3), (2) the contribution of
two-level systems, (3) the contribution of one low-fre-
quency mode with a frequency of 14.5 cm–1, and (4) the
contribution of the broad spectrum of low-frequency modes
according to relationship (4). The inset shows the structural
formula of the octaethylporphine zinc molecule.
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our experiments is determined by the time T1, i.e., is
equal to several nanoseconds.

The experimental temperature dependence was
approximated using the relationship

(3)

which describes the two aforementioned mechanisms
of broadening of the zero-phonon line in the case when
the high-temperature dephasing is due to the interaction
with only one low-frequency quasi-local vibration. In
this relationship, the first term is defined by the formula
Γ0 = 1/2πT1, the second term describes the line broad-
ening caused by the interaction with tunneling two-
level systems, and the third term accounts for the broad-
ening attributed to the interaction with the low-fre-
quency mode at the energy ∆E.

In order to separate more correctly the two contribu-
tions to the temperature broadening of the zero-phonon
line, the approximation was carried out as follows. At
the first stage, the low-temperature portion of the curve
(T < 1–2 K), in which the contribution of the low-fre-
quency mode to the dephasing could be obviously dis-
regarded, was approximated by the power dependence
ΓPE(T) = Γ0 + bTα and the parameters b and α were
determined. Then, these parameters were fixed and the
experimental points were approximated with the use of
relationship (3), which allowed us to derive the parame-
ters c and ∆E. As can be seen from Fig. 2, relationship (3)
adequately describes the experimental data, except for
the incoherent photon echo data in the range T < 10 K.
As was noted above, this discrepancy is attributed to the
effect of spectral diffusion. The parameters correspond-
ing to the best fit are listed in the table.

The parameter α characterizes the dynamic proper-
ties of the amorphous system under investigation. This
parameter has been determined in numerous experi-
mental works dealing with hole burning and photon
echo. As a rule, the obtained values of α fall in the range
1.2–1.9. In early works concerned with the conven-
tional two-level system model (see, for example, [21]),
it was stated that, under the assumption of a uniform
energy distribution of two-level systems P(E) ~ const,
the parameter α should be equal to unity. The larger
parameters α observed in many experiments have been
explained by the fact that the energy distribution of
two-level systems actually has the form P(E) ~ Eµ, so
that α = 1 + µ, where µ = 0.1–0.7 [22]. Subsequent
more rigorous theoretical investigations have demon-

ΓPE T( ) Γ0 bTα c
∆E/kT–( )exp

1 ∆E/kT–( )exp–[ ] 2
--------------------------------------------------,+ +=

Fitting parameters obtained by approximating the temperature
dependence of the optical dephasing with the use of relation-
ship (3) for a solution of octaethylporphine zinc in toluene

b, MHz/Kα α c, GHz ∆E, cm–1

41.07 1.1 ± 0.1 50 14.5 ± 1.5
PH
strated that the parameter α should exceed unity even at
very low temperatures. In our recent work [23], we
showed that the parameter α for different systems can
vary from 1 to 2 depending on the constant of the two-
level system–phonon interaction. Unfortunately, at
present, the parameter α for the system under consider-
ation cannot be calculated in terms of the existing the-
ories, because the necessary data are unavailable in the
literature.

Earlier [24], we carried out photon echo measure-
ments for a number of impurity organic matrices,
namely, two polymers [poly(methyl methacrylate) and
poly(isobutylene)] and one glass (ethanol) in the tem-
perature range 0.36– 50 K. In the case of polymers, the
value of α appeared to be equal to 1.1, which almost
coincides with the α parameter obtained for the toluene
matrix in the present work. For the ethanol matrix, the
exponent α was equal to 1.9. It remains unclear why
this exponent is approximately identical for the above
polymers and the toluene matrix and turns out to be
considerably larger for the ethanol matrix. In our opin-
ion, this difference can be associated with the fact that
molecules of resorufin, which was used for doping the
ethanol matrix, are ionic, whereas the impurity mole-
cules introduced into the other matrices are electroneu-
tral. The nearest environment of an ionic molecule can
undergo a considerable transformation with the forma-
tion of a particular shell (the so-called shell effect [25]).
This can lead to a change in the dynamics of the nearest
environment and, hence, in the temperature depen-
dence of the linewidth.

The frequency of the local mode in the solution of
octaethylporphine zinc in toluene is determined to be
∆E ~ 14.5 cm–1, which is typical of impurity amorphous
systems. For example, the values of ∆E obtained exper-
imentally for several systems in [24] lie in the range
7−29 cm–1.

Now, let us analyze the high-temperature portion of
the temperature dependence of the zero-phonon line-
width in the framework of the soft-potential model
[16], which includes a broad frequency distribution of
quasi-local vibrations. For this purpose, the high-tem-
perature portion was approximated by the expression

(4)

This equation was derived by Garcia and Fernandez
[26] within the soft-potential model. The equation
describes the broadening of a homogeneous line of an
impurity center due to low-frequency phonon excita-
tions (harmonic oscillators in terms of the model) in the
matrix. Here, Eb is the energy of the boson peak, which
is approximately equal to 20 cm–1 for toluene [27].

Figure 2 presents the results of this approximation
(curve 4) and also the data obtained on the basis of the
model allowing for one vibrational mode. The interac-
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tion constant a determined within the model with a
broad vibrational spectrum of the matrix is equal to 2 ×
10–1 s–1 K–7. It can be seen from this figure that both
approximating curves are similar to each other. How-
ever, this does not mean that both approaches used to
describe the optical dephasing caused by the phonon
excitations are equivalent. In the first approach, the
obtained frequency ∆E does not correspond to any
actually existing vibrational mode (unlike the analo-
gous case with impurity crystals). Therefore, the quan-
tity ∆E should be treated as an effective frequency char-
acterizing the broad distribution of low-frequency
modes. The validity of the second approach is con-
firmed by the experimental data, which prove the
occurrence of the broad spectrum of vibrational excita-
tions.

In this work, we restricted our consideration to the
specific case of the contribution made to the optical
dephasing by the interaction of impurities with two-
level systems and low-frequency vibrations of the
phonon type in the matrix. However, it should be noted
that, over the wide temperature range studied, other
mechanisms of broadening can also manifest them-
selves: the interaction of impurities with two- and
three-phonon tunneling transitions in two-level sys-
tems, the dephasing associated with the thermally acti-
vated over-barrier transitions in two-level systems, and
the broadening caused by the acoustic phonons of the
matrix. At present, the problem concerning the ratio
between the contributions of the aforementioned mech-
anisms to the line broadening in impurity amorphous
systems has not been studied. This problem is also
unclear for the system under consideration. In our
recent work [28], using the system of tetra-tert-butyl-
terrylene in poly(methyl methacrylate) as an example,
the contributions of two-phonon tunneling transitions
and over-barrier transitions in two-level systems to the
dephasing were calculated in terms of the soft-potential
model for the first time in impurity amorphous materi-
als. It was shown that, in the studied system, the contri-
bution of over-barrier transitions in two-level systems
to the optical dephasing over the entire temperature
range is less than that of tunneling two-level systems.
The contribution of two-phonon tunneling transitions
in two-level systems exceeds the contribution of one-
phonon transitions at high temperatures (T > 15 K) but
is less than the contribution of low-frequency modes.
Unfortunately, we could not evaluate the influence of
these mechanisms of broadening on the parameters of
the temperature dependence of the linewidth for the
studied system of octaethylporphine zinc in toluene,
because the data necessary for calculations are not
available in the literature. We can only assume that the
contributions of the two studied mechanism of dephas-
ing are also dominant in the system under investigation.

We now dwell on the possible contribution of acous-
tic phonons to the temperature broadening of the zero-
phonon line in our system. From numerous experi-
ments, it follows that, at temperatures below 10–20 K,
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the density of states of acoustic phonons is substantially
less than that of two-level systems and low-frequency
modes. Consequently, acoustic phonons should not
noticeably affect the dynamics of amorphous materials
and, in particular, the line broadening at these tempera-
tures. As regards higher temperatures, the conditions
under which the contribution of acoustic phonons to the
dephasing begins to manifest itself have not been
revealed up to now. Note that, in our case, the entire
temperature dependence of the linewidth can be
explained without regard for the contribution of acous-
tic phonons, even though the measurements were per-
formed up to the Debye temperature of solid toluene.
The elucidation of the actual role played by acoustic
phonons in the broadening of the homogeneous line of
the impurity center in the amorphous matrix calls for
further investigation.

4. CONCLUSIONS

Thus, the optical dephasing processes were investi-
gated in an impurity organic system composed of solid
amorphous toluene doped with octaethylporphine zinc.
Owing to the use of two variants of the photon echo
technique, the dephasing times T2 were measured for
the first time over a wide range of temperatures (0.35–
100 K), which differ by more than two orders of mag-
nitude and cover the range from millikelvins to the
Debye temperature of solid toluene. The high time res-
olution achieved in the incoherent photon echo mea-
surements made it possible to distinguish clearly the
portions corresponding to the zero-phonon line and the
phonon wing in the decay curves. The measurements
performed over a wide range of temperatures allowed
us to separate reliably two different mechanisms of
broadening in the optical spectrum of impurity mole-
cules in the system under investigation. These are the
optical dephasing caused by the tunneling transitions in
two-level systems at low temperatures and the dephas-
ing associated with the quasi-local low-frequency
phonons of the matrix at high-temperatures. It was
demonstrated that the experimental data can be ade-
quately described using the spectrum of low-frequency
vibrations of the matrix, which was predicted by the
soft-potential model.
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Abstract—A radical transformation of the spectrum of electromagnetic eigenwaves in anisotropic plates of
optically biaxial and uniaxial crystals is investigated for small deviations of the direction of wave propagation
from crystallographic orientations. It is demonstrated that, in the case when the sagittal plane and plate faces
are the symmetry planes of the permittivity tensor e, there exist four independent families of bulk eigenwaves,
each characterized by an infinite set of dispersion curves. Dispersion curves of the independent families inter-
sect one another to form a network structure. Under the action of perturbations, the sagittal plane and the plate
faces cease to be the symmetry planes. Moreover, these perturbations lead to interactions between waves
belonging to different families, the generation of mixed polarization modes, and divergence of the dispersion
curves, i.e., the disappearance of intersection points. In the vicinity of these points, the polarization of wave
fields changes drastically even with insignificant variations in the frequency. © 2003 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

It is known that, as for a stretched string with char-
acteristic natural sound frequencies, an anisotropic
crystal plate can be characterized by an infinite set of
electromagnetic eigenwaves. The properties of these
waves depend on many factors, such as the components
of the permittivity tensor e, the orientations of the plate
surfaces with respect to the crystallographic axes, spe-
cific boundary conditions on these surfaces, and the
direction of wave propagation. In this work, we investi-
gated eigenwaves in anisotropic plates of optically
biaxial and uniaxial crystals within the standard con-
cepts of crystal optics [1–3] and described possible sit-
uations where even very insignificant changes in the
propagation conditions bring about radical transforma-
tions in the structure of wave fields and, consequently,
in the dispersion curves.

If the sagittal plane (the plane of wave vectors) and
plate faces are the symmetry planes of the permittivity
tensor e, there exist four independent families of bulk
eigenwaves. In this case, each family is characterized
by an infinite set of dispersion curves and for each
curve there is a characteristic polarization of the wave
field. Dispersion curves of the independent families
intersect one another to form a network structure.
Under the action of perturbations, the sagittal plane and
the plate faces cease to coincide with the symmetry
planes. These perturbations lead to interactions
between waves belonging to different families, the gen-
eration of mixed polarization modes, and the diver-
gence of the dispersion curves at the points of their
intersection. In the vicinity of these points, even insig-
nificant variations in the frequency drastically affect the
1063-7834/03/4502- $24.00 © 20231
polarization of wave fields. This phenomenon will be
analytically described below.

2. FOUR INDEPENDENT FAMILIES 
OF BULK EIGENWAVES

Let us consider an anisotropic plate of thickness 2d,
which was cut from an optically biaxial crystal. The
plate faces are aligned parallel to the planes of symme-
try of the optical properties characterized by the permit-
tivity tensor e (Fig. 1a). The plate is bordered on both
sides by an isotropic medium with the permittivity ε.
All the properties of electromagnetic eigenwaves in this
plate are determined using Maxwell equations with
standard boundary conditions.

The electrical component of the electromagnetic
wave field both in the plate and in the adjacent isotropic
medium can be represented in the following form:

(1)

Here, x, y, and z are the coordinates of the variable point
(the coordinate axes are directed along the principal
axes of the permittivity tensor e; hence, we can write
εij = εiδij); t is the time; ω is the frequency; c is the
velocity of light in free space; n = c/v ; v  is the velocity
of propagation of the electromagnetic wave field; and
ϕ is the angle specifying the direction of propagation of
the wave field. The magnetic component of the electro-

E x y z, ; t,( ) E z( )=

× iω 1
c
---n x ϕcos y ϕsin+( ) t–
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magnetic wave field H(x, y, z; t) has a form similar to
expression (1).

Under the conditions when the plate faces are
aligned parallel to the symmetry planes, there exist two
independent families of electromagnetic wave fields for
any direction of wave propagation (at any angle ϕ).
First, the wave fields are symmetric in the electrical
components and antisymmetric in the magnetic compo-
nents simultaneously (Fig. 1b):

(2)

In what follows, these fields will be designated as SEAH.
Relationships (2) describe the behavior of the wave
fields with respect to reflection in the central plane of
the plate when z  –z.

Second, the electromagnetic wave fields can be anti-
symmetric in the electrical components and symmetric
in the magnetic components simultaneously (hereafter,
these fields will be denoted by AESH). In this case, the
electrical and magnetic components in relationships (2)
should change position (Fig. 1c).

In each family, the vector amplitude E(z) contains
partial wave contributions from branches of two types,
which are denoted by the plus and minus signs:

. (3)

Ex y, z( ) Ex y, z–( ), Ez z( ) Ez z–( );–= =

Hx y, z( ) Hx y, z–( ), Hz z( )– Hz z–( ).= =

E z( ) E+ z( ) E– z( )+=

Fig. 1. Characteristics of the wave fields in the case when
the sagittal plane and plate faces are the symmetry planes of
the permittivity tensor e: (a) sections of the surfaces of the
refractive indices by the sagittal plane and the refraction
vectors of bulk waves in the plate, (b) orientations of the
polarization vectors of electromagnetic fields for bulk
eigenwaves of the families (SEAH)+ and (SEAH)–, and (c)
orientations of the polarization vectors for bulk eigenwaves
of the families (AESH)+ and (AESH)–.
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These branches correspond to two independent solu-
tions of the Maxwell equations. The z dependence of
the partial contributions involved in expression (3) has
the form

(4)

Here, the z coordinate varies within the range –d ≤ z ≤
d. Relationships for the vectors E±, which specify the
polarization of the wave field, and for the parameters
n± = n±(n2) will be derived below.

The wave field in the adjacent isotropic medium at
z ≥ d can be adequately described by expression (1)
under the conditions

(5)

Here, E1 is the polarization vector and p is the parame-
ter of the wave-field localization in the isotropic
medium (p > 0). For z ≤ –d, it is necessary to perform
the following replacements in relationships (5): E1 
E2 and p  –p. Therefore, the wave field outside the
plate exponentially decays as the distance from the
plate surfaces increases.

In the case when the wave fields in the plate are gen-

erated by bulk waves, the waves obey the inequality 
≥ 0 and the wave normals form the angles α± =

 with the plate faces (Fig. 1a).

For symmetric directions of wave propagation
(when ϕ = 0 or π/2), the sagittal plane is the plane of
symmetry and each of the aforementioned two indepen-
dent families of eigenwaves, in turn, can be separated
into two families, of which one family contains waves
of branches with the plus sign and the other family
includes waves of branches with the minus sign
(Figs. 1b, 1c). In this case, the dispersion relationships
for eigenwaves of all four families can be easily
obtained in the explicit form. In particular, at ϕ = 0, we
can write the following four expressions for the dimen-
sionless frequencies Ω = ωd/c:

Here,

(10)

and m, s, k, and l are natural numbers corresponding to
the numbers of the dispersion branches. The dispersion
curves described by relationships (6)–(9) for four inde-

E± z( ) E1
± iωn±z/c( )exp E2

± –iωn±z/c( ).exp+=

E z( ) E1 ωpz/c–( ), pexp p n2( ) n2 ε– .= = =

n±
2

n±/n( )arctan

Ω n2( )

=  

– n+ε/ pε1( )arctan πm+[ ] /n+, SEAH( )+,

p/n–( )arctan πs+[ ] /n–, SEAH( )–,

pε1/n+ε( )arctan πk+[ ] /n+, AESH( )+,

– n–/ p( )arctan πl+[ ] /n–, AESH( )–.
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n– n– n2( ) ε2 n2– ,= =
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pendent families of eigenwaves are depicted in Figs. 2a
and 2b. These curves are conveniently constructed
using the asymptotic expressions at small and large
arguments of the trigonometric functions, i.e., when
p   0 (at n2  ε), n+  0 (at n2  ε3), and
n−  0 (at n2  ε2).

The vector amplitudes of the wave fields for the con-
figurations (SEAH)± described by relationships (6) and
(7) take the form

(11)

(12)

Here, a± are the amplitude multipliers. For the configu-
rations (AESH)± described by relationships (8) and (9),
the vector amplitudes of the wave fields can be obtained
from expressions (11) and (12) upon the replacement
cos  isin (Figs. 1b, 1c).

Considering the curves approaching different
asymptotic levels, namely, n2  ε3 and n2  ε2
(Figs. 2a, 2b), it is easy to understand that superposition
of Figs. 2a and 2b should result in a large number of
intersections of the dispersion curves in the region
defined by the inequality

(13)

For the second orientation of the sagittal plane, which
also coincides with the plane of symmetry (at ϕ = π/2),
the above results hold true provided the coordinate axes
change their directions as follows: x  y and y  –x.
Note that, in the relationships thus obtained, it is neces-
sary to perform the replacement ε1  ε2.

3. GENERATION OF HYBRID
POLARIZATION MODES

Let us consider the case when the sagittal plane and
the plate faces simultaneously cease to be symmetry
planes and all four families of eigenwaves are no longer
independent. This leads to the generation of hybrid

E+ z( ) a+
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0

n/ε3( )i Ωn+z/d( )sin–
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0
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H– z( ) a–
–n–i Ωn–z/d( )sin

0

n Ωn–z/d( )cos

.=

ε n2 min ε2 ε3,( ).< <
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polarization modes. As a result, all the points of inter-
section of the dispersion curves disappear and the
divergence of these curves is observed (Figs. 3a–3c).
For example, this situation can occur upon a small rota-
tion of the plate faces about a common (nonsymmetric)
axis aligned parallel to the xy plane. Consequently, the
separation between the dispersion curves ∆Ω proves to
be proportional to the angle of this rotation. It should be
noted that a similar effect of divergence for elastic
waves in crystals was described in our earlier work [4].

Now, we analyze in more detail the special case
when only the sagittal plane ceases to be the symmetry
plane due to a perturbation, whereas the plate faces
remain the planes of symmetry as before. Such a pertur-
bation can manifest itself in an insignificant change in
the direction of wave propagation, specifically in a
deviation of the propagation direction from the x axis
through a small angle ∆ϕ. This leads to the hybridiza-
tion of waves of the same parity that belong to branches
with both the plus and minus signs. The aforemen-
tioned four series of solutions are joined into two inde-
pendent families formed by linear combinations (3) of
the previously independent configurations (SEAH)+ and
(SEAH)–, on the one hand, and (AESH)+ and (AESH)–, on
the other. Analysis of the dispersion curves for wave
fields of the same parity in the vicinity of any point of
their intersection demonstrates that, upon perturbation,
the intersection of the branches disappears and the sep-

Fig. 2. Dispersion curves for four independent families of
bulk eigenwaves.
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aration between the dispersion curves becomes propor-
tional to the perturbation parameter (∆Ω ~ ∆ϕ). We
leave aside the rather cumbersome calculations and
write the final result

(14)

Here, for brevity, we introduced the following designa-
tions:

(15)

In these expressions, the values of n2 can be determined
from the positions of the points of intersection of the
dispersion curves in the absence of perturbations. The
appropriate conditions are obtained by equating the
right-hand sides of Eqs. (6) and (7) or (8) and (9).

As a consequence, the polarization of wave fields
becomes hybrid and changes drastically even with

∆Ω ∆ϕ( )n2±=

×
ε3 f +ε1/ε2 1–( ) f – 1–( )

ε2 ε–( ) ε1ε3 ε2–( )n2 εε3 ε1 ε–( )–[ ]
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p2 δ3 δ1–( ) δ3εε2/ε1+
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Fig. 3. Schematic diagrams illustrating the generation of
mixed polarization modes: (a) intersections of the families
of dispersion curves for eigenwaves of independent polar-
izations in the absence of perturbations, (b) divergence of
the dispersion curves due to perturbations (dotted lines are
the dispersion curves in the absence of perturbations), and
(c) changes in the dispersion curves shown in Fig. 3a due to
perturbations.
P

insignificant variations in the frequency Ω in the por-
tions of the dispersion curves that are close to disconti-
nuities. Although the perturbations are relatively small,
they lead to radical changes in the dispersion curves. In
particular, the smooth dispersion curves take on a
clearly defined wavy shape. Moreover, there appears a
new specific feature: the polarization sharply changes
with a certain periodicity along the dispersion curve. In
this case, the polarization vectors execute a motion
between the mutually orthogonal limiting orientations
(this can be seen from relationships (11), (12) and
Figs. 1b, 1c). Thus, considerable effects are induced by
small perturbations.

It should be noted that the above perturbations do
not lead to the disappearance of the points of intersec-
tion of the branches attributed to wave fields of differ-
ent parity. The wave fields remain independent until the
plate surfaces are aligned parallel to the symmetry
planes of the permittivity tensor e.

Expression (14) holds for optically biaxial crystals
and can be substantially simplified in the case of opti-
cally uniaxial media. Specifically, if the optic axis in the
initial unperturbed state is perpendicular to the sagittal
plane, i.e., is aligned along the y axis, expression (14)
takes the form

(16)

Here, ε0 and εe are the permittivities of optically uniax-
ial crystals [1–3]; in our case, the permittivities satisfy
the conditions ε0 = ε1 = ε3 and εe = ε2.

When the optic axis in the initial unperturbed state
is parallel to the sagittal plane and is aligned along the
x axis, expression (14) takes the form

(17)

In this case, we have 
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. Note
that expressions (14), (16), and (17) are derived in the
linear approximation with respect to the perturbation

 

∆ϕ

 

 and hold only for the parameters at which the sepa-
ration 

 

∆Ω

 

 remains small.

4. DISCUSSION

Let us now elucidate how perturbations of different
types affect the dispersion curves. Upon rotation of the
plate faces with respect the crystallographic axes
through a small angle 

 

∆ϑ

 

 about the normal to the sagit-
tal plane (i.e., about the 

 

y 

 

axis), the sagittal plane
remains the plane of symmetry but the plate faces cease
to coincide with the symmetry planes. As a result, the
four initially independent families also become hybrid

∆Ω ∆ϕ( )n2 ε0 ε–

ε0 εe ε–( ) ε0 ε+( )n2 εε0–[ ]
-----------------------------------------------------------------.±=

∆Ω ∆ϕ( ) n2

ε0 n2–
---------------±=
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ε0εe ε2
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in pairs. However, these pairs are formed in another
manner: one pair is formed only by waves of branches
with the plus sign, whereas the other pair is formed only
by waves of branches with the minus sign. The pertur-
bation distorts the structure of the wave fields in such a
way that the parity properties defined by relationships
(2) disappear. However, no divergence of the intersect-
ing dispersion curves is observed. Actually, the small
perturbation under consideration only slightly distorts
the dispersion curves shown in Figs. 2a and 2b and can-
not eliminate the intersections of branches with the plus
and minus signs. In the case when this perturbation is
supplemented by a small change in the direction of
wave propagation ∆ϕ, the sagittal plane ceases to coin-
cide with the symmetry plane and all the points of inter-
section of the branches should disappear. Conse-
quently, the divergence of the branches associated with
wave fields of the initially (prior to perturbation) equal
parity can be approximately described by the above
relationships in which ∆Ω ~ ∆ϕ. At the same time, the
divergence of the branches attributed to wave fields of
different (prior to perturbation) parities appears to be
less pronounced and is determined by the product of
two small parameters: ∆Ω ~ (∆ϕ)(∆ϑ).

Upon perturbation when the plate faces are rotated
through an angle ∆ϑ  about the direction of wave propa-
gation parallel to the x axis, the sagittal plane and the
plate faces simultaneously cease to be symmetry planes.
As a result, all the points of intersection of the disper-
sion curves disappear. Analysis demonstrates that, in
this case, the separation proportional to the perturbation
parameter ∆Ω ~ ∆ϑ  is observed only for the branches
corresponding to wave fields of initially different pari-
ties, whereas the separation between the branches attrib-
uted to wave fields of equal (prior to perturbation) parity
has a higher order of smallness: ∆Ω ~ (∆ϑ)2.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
The excitation of the wave fields under investigation
can be achieved using attenuated total internal reflec-
tion, as is the case with the excitation of surface electro-
magnetic and elastic waves in solids. The appropriate
techniques were described in our recent works [5, 6].
Note that, in actual practice, hybrid wave fields and the
separation between the dispersion curves can be easily
controlled by varying only the direction of wave prop-
agation (i.e., the ϕ angle). It is important that even very
insignificant variations in the direction of wave propa-
gation lead to considerable changes in the structure of
wave fields.
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Abstract—The 200-fold increase in the thermal resistance of ZnSe at 15 K caused by doping of these crystals
with nickel is accounted for by suppression of the thermal phonon contribution to thermal conductivity. As fol-
lows from our calculations, in order to reach such high thermal resistances, one has to suppress the contribution
from phonons with frequencies lying in an interval not narrower than 100 K. © 2003 MAIK “Nauka/Interperi-
odica”.
One of Slack’s older publications reported on mea-
surement of the thermal conductivity of iron-doped
ZnS crystals within a broad temperature range (from 3
to 300 K) [1]. The curves plotting the temperature
dependence of the thermal-conductivity coefficient of
Zn1 – xFexS revealed minima whose depth depended on
iron concentration. For x ≈ 0.01, the thermal conductiv-
ity at the minimum (T = 20 K) was found to be two
orders of magnitude lower than that of pure ZnS at the
same temperature. The corresponding value of the ther-
mal resistance at T = 20 K may be called giant. Slack
[1] proposed assigning these clearly pronounced fea-
tures in thermal conductivity to resonant phonon scat-
tering from iron atoms occurring when the phonon fre-
quency coincides with the energy gaps between the
electronic states of the iron atom in the ZnS matrix.
This idea was not developed further, however, and no
interpretation has been put forward for the experiment.

Interest in this problem was spurred by a recent
paper reporting on a study of the temperature depen-
dences of thermal conductivity of nickel-doped ZnSe
crystals [2]. The crystals studied were high-electrical-
resistivity samples, for which the electron contribution
to thermal conductivity is negligible. The experimental
results obtained in [2] are displayed in Fig. 1. One
readily sees that the thermal conductivity of the crystal
drops with increasing doping. Samples 3 and 4, with
nickel concentrations of 3.6 × 1019 and 1 × 1020 cm–3,
respectively, exhibit a minimum in the thermal conduc-
tivity at T = 15 K. The thermal conductivity of sample 4
at this temperature is 200 times lower than that of pure
ZnSe at the same temperature. These anomalies in the
temperature dependence of thermal conductivity were
assigned in [2] to resonant phonon scattering caused by
a nickel impurity. In contrast to [1], where resonant
phonon scattering was attributed to intracenter transi-
tions in iron atoms, in [2], the resonant scattering was
explained as being due to the phonon frequency coin-
ciding with the frequency of the local lattice vibration
induced by nickel atoms. It is believed [2] that the only
1063-7834/03/4502- $24.00 © 20236
reason for the unusually strong resonant change in ther-
mal conductivity is the anomalously large cross section
of the resonant scattering. It should be pointed out,
however, that the effect of phonon scattering on thermal
conductivity depends, generally speaking, on two fac-
tors, namely, the phonon scattering cross section and

1
2
3
4
5

1

0.1

10 100
T, K

κ, W/cm K

Fig. 1. Temperature dependences of thermal conductivity
of zinc selenide crystals [2]. (1) Sample 1 (pure ZnSe);
(2–4) ZnSeNi samples with different Ni concentrations,
(2) sample 2 (4.3 × 1017), (3) sample 3 (3.6 × 1019), and
(4) sample 4 (1 × 1020) cm–3; and (5) pure ZnSe [1].
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the phonon frequency interval within which this scat-
tering mechanism is efficient. The fact that the thermal
conductivity of sample 4 at the temperature of the min-
imum is 200 times lower than that of a pure sample at
the same temperature implies that the vast majority of
thermal phonons in sample 4 do not contribute to ther-
mal conductivity. Therefore, in order for the resonant
phonon scattering from local vibrations to lower the
thermal conductivity of ZnSeNi by two orders of mag-
nitude, the resonant frequencies have to be distributed
over a fairly broad interval (this frequency interval must
be equal, in order of magnitude, to that occupied by
thermal phonons). We propose a simple phenomeno-
logical calculation scheme which permits one to per-
form a quantitative description of the experimental data
and to estimate the frequency interval of thermal
phonons whose contribution to thermal conductivity is
negligible.

Our estimation is based on a phenomenological
expression for the thermal conductivity of a phonon gas:

(1)

where CV is the phonon gas (lattice) specific heat, v f is
the phonon velocity, and l = v fτ is the phonon mean free
path. The specific heat of the phonon gas is calculated
from the relation

(2)

where g(ω) is the density of phonon states in pure ZnSe
[3] (Fig. 2).

We assume that the doping of ZnSe crystals with
nickel initiates a new powerful phonon scattering
mechanism (for instance, resonant scattering from local
modes), with the result that the phonon contribution
from a finite frequency interval ω0 – ∆ω < ω < ω0 + ∆ω
to thermal conductivity becomes negligible. In the
model we accepted, only phonons with frequencies out-
side the above frequency interval contribute to the heat
flux in ZnSeNi; it is these phonons that are only weakly
involved in the new scattering mechanism. Therefore,
the mean free path of these phonons differs little from
that in pure ZnSe. Thus, we divide phonons in ZnSeNi
into two groups. The first group includes the phonons
for which the new scattering mechanism is efficient.
Their contribution to the heat flux can be neglected.
Phonons of the second group provide the major contri-
bution to the heat flux. For these phonons, the mean free
path is determined by the same scattering mechanisms
that operate in pure ZnSe.

The scheme we propose for calculating κ(T) in
nickel-doped crystals is as follows.

First, we calculate the phonon relaxation time in
pure ZnSe:

κ CVv f
2τ ,∼

CV ωω2g ω( )
e"ω/kT

e"ω/kT 1–( )2
-----------------------------,d

0

∞

∫∼

τ0 T( ) κ0 T( )/CV T( )v f
2 .=
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Here, κ0(T) is the experimental value of thermal con-
ductivity for pure ZnSe (curve 1 in Fig. 1) and the spe-
cific heat is calculated from Eq. (2). In calculating the
thermal conductivity of ZnSeNi, we identify the
phonon relaxation time with τ0(T) and include into the
heat flux only the contribution of the phonons for which
the new scattering mechanism associated with the pres-
ence of nickel is inefficient. Therefore, our calculation
of the specific heat will take into account only the con-
tribution of the phonons whose frequencies lie outside
the interval ω0 – ∆ω < ω < ω0 + ∆ω. We finally come to
a simple expression for estimating the thermal conduc-
tivity of ZnSeNi,

(3)

Equation (3) takes into account the frequency depen-
dence of the acoustic phonon velocity. We simulated
this dependence using the relation for the spectrum of a
one-dimensional chain: ν(q) ~ sinqa(ωmaxa = π/2).

Therefore, we set v f (ω) ~  in Eq. (3).

κ T( ) κ0 T( ) 1 I ω0 ∆ω– ω0 ∆ω+,( )/I 0 ∞,( )–( ),=

I a b,( ) ωω2g ω( )v f
2 ω( )

e"ω/kT

e"ω/kT 1–( )2
-----------------------------.d

a

b

∫=

1 ω/ωmax( )2–

5

4

3

2

1

0 100 200 300
ω, cm–1

g1, arb. units–

Fig. 2. Density of phonon states  in pure ZnSe [3].g1



238 MIKHEEV
Equation (3) makes it possible to calculate the thermal
conductivity of a phonon system with inclusion of the
additional scattering mechanism, whose efficiency in a
certain phonon frequency interval is so high as to jus-
tify neglect of the contribution from these phonons to
the heat flux. Only the thermal conductivity and phonon
spectrum of the original system and the frequency
interval within which the new scattering mechanism
operates need to be known. This frequency interval is
determined by two parameters, ω0 and ∆ω, which serve
as fitting parameters in our phenomenological theory. It
is assumed that all significant changes in the phonon
spectrum occur in the frequency interval within which
the new scattering mechanism is efficient.

We calculated the phonon gas thermal-conductivity
by taking pure ZnSe as the starting system (sample 1
[2]). The experimental temperature dependence of ther-
mal conductivity is shown by symbols (filled squares)
in Fig. 1. The density of phonon states was taken from
[3] (Fig. 2). Our calculations of the specific heat were
confined to the low-temperature region and took into
account only the acoustic branch of the phonon spec-
trum. Experiments have shown [2] that the doping of
ZnSe with nickel initiates an additional scattering
mechanism, which may give rise to a thermal conduc-
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κ, W/Òm K

Fig. 3. Temperature dependences of thermal conductivity.
Symbols are experimental points for pure ZnSe [2], and
solid curves are model calculations. The center of the cho-
sen phonon frequency interval lies at ω0 ≅  68 K, and the fre-
quency interval halfwidth ∆ω varies from zero (top curve)
to 65 K (bottom curve) in steps of 5 K.
PH
tivity that is decreased by two orders of magnitude. To
describe this effect phenomenologically, we introduce
the frequency interval within which phonons undergo
anomalously strong scattering. We assume the width of
this interval to increase monotonically with nickel con-
centration. Thus, our model contains two fitting param-
eters, namely, the position of the center of the interval
ω0 and the interval halfwidth ∆ω. The results of the
model calculations are shown graphically in Figs. 3–5.
Figure 3 plots a series of theoretical curves, with each
corresponding to the parameter ω0 = 68 K and to a half-
width varied from 0 to 65 K in 5-K steps. The calcu-
lated curve corresponding to ∆ω = 0 passes through the
experimental points obtained on pure ZnSe. As the
parameter ∆ω increases, a flattening appears in the tem-
perature dependence of thermal conductivity, which
then transforms to a clearly pronounced minimum. At
∆ω = 55 K, the magnitude of thermal conductivity at
the minimum is two orders of magnitude lower than
that of pure ZnSe. The presence of a characteristic min-
imum in thermal conductivity can be interpreted as fol-
lows. At very low temperatures, where scattering from
a boundary is dominant, the phonon mean free path is
temperature-independent and the thermal conductivity
grows together with the specific heat. The fact is that

1
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κ, W/Òm K
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Fig. 4. Temperature dependences of thermal conductivity
(calculation). Parameter ∆ω = 55 K. Parameter ω0 is varied
from 62 (bottom curve) to 74 K (top curve) in 2-K steps.
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the phonons excited with increasing temperature have
frequencies ω < ω0 – ∆ω, for which the new mechanism
is inefficient. As the temperature increases still further,
phonons from the frequency interval ω0 – ∆ω < ω <
ω0 + ∆ω, which do not contribute to thermal conductiv-
ity, will become excited. At the same time, the contribu-
tion of phonons with frequencies ω < ω0 – ∆ω
decreases with increasing temperature because of
increased scattering. As a result, thermal conductivity
decreases. As the temperature continues to rise,
phonons with frequencies ω > ω0 + ∆ω, for which the
new scattering mechanism is inefficient, undergo exci-
tation. Therefore, in this temperature interval, the ther-
mal conductivity passes through a minimum and starts
to grow. The depth of the minimum grows with increas-
ing parameter ∆ω.

Figure 4 presents a series of curves displaying the
temperature dependence of thermal conductivity for
various values of the parameter ω0. The curves (from
bottom up) were drawn for a halfwidth of the frequency
interval ∆ω = 55 K and for the band center position var-
ied from 62 to 74 K in 2-K steps. As follows from our
calculations, as the frequency band center ω0 moves
toward higher frequencies, the position of the minimum
in the curve also shifts toward higher temperatures.
This is accompanied by an increase in the thermal con-
ductivity at the temperature of the minimum by an
order of magnitude.

Figure 5 compares the calculations with experimen-
tal data. The top curve (open triangles) is drawn for the
frequency interval 22 < ω < 109 K. The experimental
points [2] refer to sample 3, with a nickel concentration
of 3.6 × 1019 cm–3. The bottom curve (filled triangles)
corresponds to frequencies 11 < ω < 125 K. The exper-
imental data [2] are for sample 4, with a nickel concen-
tration of 1 × 1020 cm–3. In both cases, the center of the
chosen frequency interval lies at ω0 ≅  67 K. Thus, our
calculations show that in order to suppress the contribu-
tion of thermal phonons to thermal conductivity (and
reduce the magnitude of thermal conductivity by two
orders of magnitude) at 15 K, a new strong scattering
mechanism efficient within a broad phonon frequency
interval (2∆ω ≅  100 K) has to be initiated. It is difficult
to conceive of a reason for which resonant scattering
peaks would appear within such a broad frequency
interval. Whatmore, on assuming that there is an infi-
nitely high phonon scattering cross section in the fre-
quency interval in question, we obtained too small a
width for this interval. Therefore, we believe the con-
jecture made in [2] as to the thermal conductivity min-
ima in ZnSeNi being due to resonant phonon scattering
from nickel-induced modes to be unrealistic. In our
opinion, the reason for the suppression of the phonon
contribution to thermal conductivity may lie either in
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
the change to some new scattering mechanism that is
efficient in the frequency interval in question or in a
rearrangement of the phonon spectrum within this fre-
quency interval. Because phonon spectrum rearrange-
ment brings about a change in the density of phonon
states, further study of this problem would benefit con-
siderably from measurements of the temperature
dependence of the specific heat of nickel-doped ZnSe
crystals.
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Abstract—The Bragg diffraction spectrum of a synthetic opal with pores filled by the vanadium dioxide semi-
conductor (VO2) was found to be strongly affected by 0.1-µs-long YAG:Nd laser first-harmonic pulses
(1.06 µm). This effect is associated with a structural phase transition in the opal–VO2 composite, which is
accompanied by a strong change in the VO2 permittivity. © 2003 MAIK “Nauka/Interperiodica”.
Optical properties of photonic crystals, i.e., objects
with dielectric permittivity modulated with a period
close to the light wavelength, are presently generating
considerable interest [1]. A photonic band gap (PBG)
forms in the spectrum of electromagnetic eigenstates of
such crystals, which precludes propagation of photons
with energies lying in the PBG through the photonic
crystal. These energies depend on the direction of light
propagation, and bands originating from Bragg diffrac-
tion from a periodic structure appear in the correspond-
ing spectra of light transmission and reflection. Under
certain conditions, the PBG may become complete; in
this case, light of a photon energy lying within some
interval cannot propagate in any direction. The interest
in photonic crystals stems from their application poten-
tial in light-propagation control [2] and the develop-
ment of zero-threshold lasers [3] and components of
quantum computers [4].

Synthetic opal, representing a periodic ordered
close-packed array of amorphous SiO2 (a-SiO2)
spheres of a submicron diameter, may be currently con-
sidered the best studied example of three-dimensional
photonic crystals for visible light [5, 6, and references
therein]. The voids between the spheres add up to 26%
of the total volume. By properly varying the a-SiO2
sphere diameter (from 0.1 to 1 µm), one can tune the
PBG position in energy (from ultraviolet to near infra-
red). Another possibility of adjusting the PBG position
lies in filling the voids between spheres in a controlled
manner with various materials, in particular, semicon-
ductors [5, 7]. Filling the opal with semiconductors also
results in an increased depth of permittivity modulation
in the photonic crystal; this approach is particularly
promising in developing a complete three-dimensional
PBG [8].

Of particular interest for the purposes of application
is possible external control of the PBG position and
width in photonic crystals. PBG tuning with an electric
1063-7834/03/4502- $24.00 © 20240
field in liquid-crystal-based photonic materials was
considered theoretically in [9] and recently tested
experimentally in [10, 11]. The PBG position in period-
ically ordered structures based on monodisperse colloi-
dal dye particles has also been controlled using laser
pulses [12]. Recently, the same was reached by varying
the temperature of an opal sample filled by nanocrystal-
line vanadium dioxide (opal–VO2 composite) [13]. It is
well known that VO2 undergoes a dielectric–metal
structural phase transition near Tc ≈ 70°C [14], which is
accompanied by a strong variation of the dielectric per-
mittivity of VO2. The latter permits one, by properly
changing the sample temperature, to vary the average
value and modulation amplitude of the permittivity in
the composite, thereby changing the position and width
of the PBG. Reversible displacement of a peak in the
Bragg reflectance spectrum by 25 nm to shorter wave-
lengths and back under multiple repetition of the heat-
ing–cooling cycles of the sample in the range from
room temperature to T > Tc [13] was observed.

This communication reports on the possibility of
controlling the PBG position in an opal–VO2 composite
by means of laser pulses. The synthetic opal samples
used had a polydomain structure. Single-crystal
domains with a highly ordered array of a-SiO2 spheres
230 ± 5 nm in diameter forming an fcc lattice measured
30 to 100 µm. The samples studied were plates 5 × 5 ×
0.1 mm in size cut along a plane close to the (111) opal
growth face. The opal–VO2 composite was prepared by
filling the opal matrix pores with a solution of vana-
dium pentoxide in nitric acid, with V2O5 reduced sub-
sequently to VO2 by high-temperature annealing of the
sample in vacuum. This technology made it possible to
fill the pores to 80%. X-ray diffraction and Raman stud-
ies provided evidence supporting the formation of
nanocrystalline vanadium dioxide in the pores of the
opal matrix. Characterization of the samples by using
003 MAIK “Nauka/Interperiodica”
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various techniques is described in considerable detail in
[13]. Several samples of the opal–VO2 composite pre-
pared in the same conditions were studied.

Let us turn now to the results of our preliminary sta-
tionary studies of the temperature effects; the studies
were aimed at characterization of the samples and
checking the existence of a phase transition in the mate-
rial. A collimated beam of light from a halogen lamp
was focused on the surface of an opal–VO2 composite
plate at close-to-normal incidence. The reflected light
included the mirror-reflected beam from the sample
surface and the Bragg-diffracted light from the (111)
plane, whose spectrum is a characteristic of the PBG of
a photonic crystal. Due to defects present on the sample
surface and to the sample face deviating slightly from
the opal (111) plane, the mirror-reflected and the
Bragg-diffracted beams propagate in slightly different
directions, which permitted us to isolate the diffracted
component of interest. By using optimal angles of inci-
dence and collection of light and by projecting (by
means of a microscope and an optical fiber) the image
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Fig. 1. (a) Stationary Bragg diffraction spectrum from the
(111) plane of the opal–VO2 composite measured at tem-
peratures corresponding to the semiconducting (T = 13°C)
and metallic (T = 100°C) VO2 phases, and (b) temperature
dependence of the position of the Bragg diffraction spec-
trum maximum under slow heating and cooling of a sample.
Vertical arrows identify the phase transition temperatures
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of a small (≤100 µm, within one domain) region of the
sample surface onto the monochromator slit, one could
suppress the mirror-reflected beam and measure the
reflectance band in the [111] direction; this band related
only to Bragg diffraction in the opal–VO2 composite.

The Bragg diffraction spectra (Fig. 1a) clearly
exhibit a 100-nm-wide band peaking at a wavelength
λm whose position depends on temperature T. As is evi-
dent from Fig. 2b, the Bragg diffraction band shifts by
∆λm = 25 nm to shorter wavelengths with increasing T.
The temperature dependence of the band shift reveals a
distinct hysteresis. The observation of this relation in
the vicinity of the phase transition and of a hysteresis in
the opal–VO2 composite is due to the nanocrystalline
structure of the VO2 material and correlates with earlier
studies of the electrical properties of polycrystalline
VO2 films [15, 16] and of the opal–VO2 composite [13].
The temperature  = 67°C, at which λm changes
sharply under heating, is shown by a vertical arrow in
Fig. 1b. The temperature of the jump in λm(T) measured

Tc
+

0.4

0.2

0

–0.2

–0.4

0

–0.2

–0.4

0 50 100 150 200
t, µs

650 nm

∆I
(t

, λ
)/

I 0
(λ

)

628 nm

570 nm

(b)

(a)

Fig. 2. Evolution of the relative change in Bragg diffraction
intensity measured at different wavelengths under laser
pulse pumping; (a, b) panels were obtained on different
samples of the opal–VO2 composite. The Bragg diffraction
spectrum of the sample corresponding to the (a) panel is
presented in Fig. 1a. The dashed line schematically shows
the signal expected for an ideal composite structure (see text
for explanation). The vertical arrow identifies the jump in
intensity in the temporal dependence.
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in a cooling run is lower,  = 53°C. The λm(T) hyster-
esis loop measured on other samples was also in the
interval 50–75°C. The slight differences in  and 
between various samples can be assigned to uncontrol-
lable variations in the conditions of VO2 synthesis in the
opal pores.

The shift of λm in the –  temperature interval is
due to a structural phase transition in VO2 embedded in
the opal pores. Indeed, the position of the Bragg dif-
fraction peak observed in the [111] direction is given by

the relation λm = 2d , where d is the distance
between the sphere-close packing planes in opal and
〈ε〉  is the average permittivity of the opal–VO2 compos-
ite. It is known that crystalline VO2 undergoes a phase
transition with increasing T, which is accompanied by a
decrease in the real part of the dielectric permittivity
from 8.4 to 5.3 [17]. In the opal–VO2 composite, this
effect should obviously reduce 〈ε〉  and, accordingly, λm.
At the same time, the permittivity modulation depth in
the opal–VO2 composite also decreases, which brings
about the theoretically predicted decrease in the PBG
width and a narrowing of the Bragg diffraction band
[18, 19].

We turn now to a discussion of the experiments with
pulsed optical excitation, which were performed on the
same samples at a fixed temperature. In these experi-
ments, a sample was maintained at room temperature
and additionally pumped by 0.1-µs-long YAG:Nd laser
first-harmonic pulses (λ = 1.06 µm, pulse repetition fre-
quency of 1 kHz). We measured the evolution of the
change ∆I(t, λ) in the Bragg diffraction spectral inten-
sity in the experimental arrangement employed in the
stationary measurements of the temperature behavior.
The maximum pulse energy density of the YAG:Nd
laser beam on the sample was Jmax ~ 7 mJ/cm2; at
higher densities, the sample surface underwent dam-
age. No changes in the Bragg diffraction spectrum were
observed to occur at excitation densities J < Jmin ≈
2 mJ/cm2. The Bragg diffraction spectrum did change
when the excitation density increased above the thresh-
old Jmin < J < Jmax. Figure 2a shows the typical behavior
of the ratio ∆I(t, λ)/I0(λ) in time, where I0(λ) is the sta-
tionary intensity of the reflected light at the wavelength
λ in the absence of laser pulses for the sample whose
spectrum is displayed in Fig. 1a. Near the maximum of
the spectral band (λ ≈ λm), laser pulses cause a decrease
in intensity and, accordingly, ∆I(t, λ) < 0, whereas on
the short-wavelength wing of the band, we have
∆I(t, λ) > 0. This behavior indicates a shortward shift of
the Bragg diffraction band similar to that observed to
occur with increasing temperature in stationary condi-
tions. This observation, together with the experimen-
tally established threshold in the appearance of the
∆I(t, λ) signal for J > Jmin, permits one to conclude that
laser pulses initiate a phase transition in VO2 which,
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–

Tc
+ Tc

–

ε〈 〉
P

similar to the case of sample heating in stationary
experiments (Fig. 1), brings about a shift of the Bragg
diffraction band to shorter wavelengths.

The ∆I(t, λ) pulses observed in all the samples stud-
ied have a steep leading edge whose duration is equal to
that of the laser pulses (0.1 µs), followed by a long
decay with an average time constant ~100 µs. In one of
the samples, a reproducible drop in |∆I(t, λ) | was
observed at t = 20 µs on the trailing edge (vertical arrow
in Fig. 2a). In the other samples, no such jump was
observed at any pump intensity J, with |∆I(t, λ) | falling
off smoothly (Fig. 2b).

The pulsed-laser photon energy exceeds the band-
gap width Eg = 0.8 eV in semiconducting VO2. Thus,
optical pulses of the YAG:Nd laser are absorbed
strongly by the semiconductor filler of the opal and
generate free carriers (electrons and holes). The fast
relaxation of photoexcited carriers in VO2 creates
phonons; in other words, the local temperature T of the
optically excited region near the sample surface
increases. If the optical excitation density J is in excess
of a certain threshold (J > Jmin), then T >  and the
material undergoes a phase transition, which brings
about a shortward shift of the Bragg diffraction spectrum
and, accordingly, the observation of a ∆I(t, λ) signal.

In the ideal uniform case, where the variation of
temperature T(t)and the phase transition occur simulta-
neously at all points of the region pumped by laser
pulses and involved in the formation of the Bragg spec-
trum, one should expect the ∆I(t, λ) signal to have a
rectangular shape, as shown schematically in Fig. 2a.
Indeed, the sharp leading edge of the ∆I(t, λ) signal
appears under heating by a laser pulse to T > ; the
duration of the constant ∆I(t, λ) signal should be equal
to the time required to cool to , and the amplitude of
∆I(t, λ) should be determined from the difference in
intensity between stationary Bragg diffraction spectra
measured in different phases at the corresponding
wavelength λ.

The difference of the experimentally observed ∆I(t,
λ) signals from the ideal case is accounted for by the
fact that laser pulses nonuniformly heat VO2 at different
points of the spatial region producing the Bragg signal.
The reason for this obviously lies in the small penetra-
tion depth of pulsed laser radiation into the sample.
This brings about a nonuniform temperature distribu-
tion in depth from the pumped surface. Furthermore,
the opal–VO2 composite system is not uniform both
due to the polydomain structure of the opal and in view
of the nonuniform thermal contact of nanocrystalline
VO2 in the opal pores with a-SiO2 spheres. Therefore,
when comparatively long laser pulses (0.1 µs) are used,
different microscopic regions in VO2 will heat to differ-

ent T >  and cool to the transition temperature  for
different times. As a result, the observed signal will
exhibit an essentially smooth falloff with a certain char-
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acteristic mean time. As already mentioned, on one of
the samples, we succeeded in observing a jump in ∆I(t,
λ) at the trailing edge (Fig. 2a); however, this jump was
not reproduced in the other opal–VO2 composite sam-
ples (Fig. 2b). This suggests that the difference in the
behavior of our samples is associated with the nonuni-
formity of the opal pore filling by VO2 and with imper-
fection of the interfaces between the opal spheres and
the nanocrystalline VO2.

It is important that the observed average decay time
of ~100 µs is substantially in excess of the times
(shorter than 0.1 µs) seen in similar experiments on the
laser-pulse-induced variation of optical characteristics
of crystalline VO2 films [20]. This is apparently con-
nected with the heat removal in the opal–VO2 compos-
ite being considerably slower than that in epitaxial VO2
films deposited on glass substrates. Such a strong dif-
ference in the decay time is in accord with current con-
cepts of the thermal conductivity in disordered and
porous objects.

Thus, we have demonstrated laser-pulse-induced
rearrangement of the Bragg diffraction spectrum in
synthetic opals with pores filled by VO2. The rearrange-
ment is caused by the dynamic heating of the opal–VO2
sample and is directly related to the structural phase
transition in VO2. The above results, combined with
experiments on the effect of femtosecond-scale laser
pulses on the optical constants of crystalline VO2 films
[17, 20], give one grounds to assume that the Bragg
spectrum switching upon application of ultrashort laser
pulses in photonic opal–VO2 crystals may occur in
times less than 1 ps.
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Abstract—Color center formation in PbMoO4 crystals, originating from nonstoichiometric batch composition,
BaO and Bi2O3 additions, high-temperature annealing of crystals, and UV illumination, is discussed. Additional
optical absorption bands are identified. The photochromism of the crystals is shown to be due to charge
exchange, Pb2+ + Mo6+  Pb3+ + Mo5+, of the centers. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Lead molybdate (PbMoO4) is a well-known acous-
tooptical material with scheelite structure. The yel-
lowish color of crystals grown in air and the photo-
chromic effect in crystals bleached by annealing at a
low oxygen partial pressure prevent the application of
PbMoO4 in optical-instrument engineering. Suppres-
sion of these phenomena requires both refinement of
crystal growth techniques [1–4] and elucidation of the
nature of the defects responsible for the main bands in
the optical absorption spectra of PbMoO4. While the
optical properties and carrier transfer in a lead molyb-
date have been discussed in the literature [5–10] and
various conjectures bearing on the color center struc-
ture have been put forward, there is still no consensus
on this point.

It is known that compounds with scheelite-like
structure exhibit vacancy disorder because of off-sto-
ichiometry and oxygen exchange with ambient air. It
has been suggested that PbMoO4 is deficient in
molybdenum ions because of MoO3 having a higher
vapor pressure than PbO and of the mobility of molyb-
denum ions being higher than that of lead ions [5, 6].
By contrast, some properties of PbMoO4 are
accounted for by a deficiency of lead on the crystal lat-
tice [7].

In this paper, we attempted to analyze, within a
common framework, some experimental studies into
the effect of dopants and of the off-stoichiometry of
the main components, illumination by UV light, and
high-temperature annealing in air on color center for-
mation in PbMoO4 single crystals.

2. EXPERIMENT

PbMoO4 crystals were grown by the Czochralski
method from platinum crucibles in air. The starting
materials were OSCh-grade MoO3 and PbO oxides
1063-7834/03/4502- $24.00 © 0244
taken both in the stoichiometric ratio and with devia-
tions from stoichiometry toward a molybdenum
excess of up to 1.5 mol %. BaO and Bi2O3 oxides were
added as dopants in amounts of up to 1 wt %. The
crystals were annealed in a muffle furnace at 1175 K
in air. A 200-W mercury lamp with a water solution of
CuSO4 used as a filter served to illuminate the samples
with UV light. The optical transmittance spectra were
measured with a Specord M-40 spectrophotometer at
room temperature.

3. RESULTS AND DISCUSSION

The PbMoO4 crystals grown by us using the Czo-
chralski technique from batches with different compo-
nent ratios, from 50 mol % MoO3 + 50 mol % PbO to
51.5 mol % MoO3 + 48.5 mol % PbO, were yellowish
and colored by UV light at room temperature (Fig. 1).
After illumination, the optical visible absorption spec-
tra exhibit three broad bands peaking at 25 100,
23 000, and 17 300 cm–1 (390, 435, 580 nm). We
denote them by A, B, and C, respectively. The photo-
chromic effect is reversible; annealing at 625 K indeed
restores the crystals to their original state.

While no noticeable effect of excess molybdenum
on photoinduced absorption was observed, the origi-
nal spectra obtained on crystals with different con-
tents of MoO3 and PbO differ from one another. Fig-
ure 1 presents optical transmittance spectra of crys-
tals grown from a batch with stoichiometric
composition and from a batch with the maximum
deviation from stoichiometry. As is evident from the
difference spectra, the molybdenum excess brings
about additional absorption of light in the region of
bands B and C.

High-temperature annealing in air performed at
1175 K on all crystals with different MoO3 and PbO
contents results in a considerable increase in light
2003 MAIK “Nauka/Interperiodica”
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absorption in the region of band B and a decrease in
the intensity of band C (Fig. 2). Crystals with a small
MoO3 excess also exhibit a decrease in absorption in
the region of band A.

Earlier studies [5, 8] reported on heat treatments of
PbMoO4 crystals in various media with the purpose of
influencing the thermodynamic activity of Mo and Pb
ions and producing samples with defects of various
types originating from off-stoichiometric component
ratios. Investigation of the electrical conductivity of
annealed PbMoO4 samples [5] has indicated that there
is a Frenkel-type disorder on the Mo sublattice of
original nominally stoichiometric crystals that is
caused by an MoO3 deficiency. The coloring of the
crystals is due to holes associating with Mo (Pb)
vacancies or with acceptor defects produced by sub-
stitution of Mo6+ by Pb2+ (Pb4+) ions. A study of the
charge and mass transport carried out in [6] provided
supportive evidence for the interaction (association)
of defects on the Mo sublattice with holes, for
instance, the formation of complexes including two
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Fig. 1. Optical transmittance of PbMoO4 crystals (1, 3) grown
from a batch of stoichiometric composition and (2, 4) of a
composition of 51.5 mol % MoO3 + 48.5 mol % PbO (1,
2) after annealing at 950 K and (3, 4) after UV illumina-
tion. (5–7) Difference spectra: 5 = 1 – 3, 6 = 2 – 4, and 7 =
1 – 2. Sample thickness, 10.2 mm.
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Mo vacancies and one hole or molybdenum and oxy-
gen vacancies.

There are also other hypotheses on the nature of the
centers responsible for the coloring of PbMoO4. For
instance, it was assumed in [9] that the absorption near
435 nm (band B) is due to the presence of Mn3+ ions.
Ballmann [8] showed, however, that absorption band
B is not related to iron group ions. Ballmann believes
that the existence of this band is due rather to Pb3+

centers; an analysis of the optical absorption at 30, 80,
and 300 K of PbMoO4 crystals, which were annealed
at 1025 K and an oxygen pressure of ≤1.3 Pa and sub-
jected subsequently to x-ray irradiation, revealed two
characteristic absorption bands in the visible range
(390, 575 nm); Ballmann assigns these bands to Mo5+

ions.

A study of the luminescence of PbMoO4 crystals
led to the conclusion that the center responsible for the

luminescence in these crystals is the Pb3+–Mo
complex [10].
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Fig. 2. Optical transmittance of PbMoO4 crystals grown
from a batch of stoichiometric composition: (1) starting
crystal, (2) after 7 h of annealing at 1200 K, and (3) after
87 h of annealing at 1200 K. (4, 5) Difference spectra: 4 =
1 – 3 and 5 = 1 – 2. Sample thickness, 10.8 mm.
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An analysis of our experiments on the influence of
compositional nonstoichiometry, of high-temperature
annealing in air, and of the photochromic effect cor-
roborates the conjectures put forward in [8, 10] and,
thus, permits us to take them as a basis for a model of
local centers in PbMoO4.

The Pb3+ hole paramagnetic center (ground state
2S1/2) has been repeatedly observed using EPR in var-
ious compounds. For instance, Pb3+ centers produced
by irradiation with x-rays were studied in KCl : Pb in
and CaWO4 : Pb [11, 12]. The assignment of these
centers is corroborated by the presence of hyperfine
interaction of the unpaired 6s electron of the Pb3+ ion
with the nuclear magnetic moment of the 207Pb isotope
(nuclear spin I = 1/2), and investigation of the super-
hyperfine interaction of Pb3+ with the ligands indi-
cates a strong effect of covalent bonding.

Mo5+ centers in PbMoO4 crystals have also been
detected using EPR [13]. The absorption bands asso-
ciated with Mo5+ centers may be related both to intra-
center transition involving the unfilled d shell and to
charge transfer [14].

Thus, we believe that a deviation from composi-
tional stoichiometry toward an excess of MoO3

decreases the charge of part of the Mo6+ ions in the
course of the reaction taking place spontaneously in
PbMoO4 during crystal growth [13]:

Mo6+ + e–  Mo5+.
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Fig. 3. Photochromic effect in (1, 2) PbMoO4–1 wt % Ba
and (3, 4) PbMoO4–0.3 wt % Bi crystals (1, 3) before and
(2, 4) after UV illumination. Sample thickness, 12.4 mm.
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This becomes manifest in the appearance of absorption
bands A and C. Furthermore, the MoO3 excess is, at the
same time, a deficiency of PbO, which accounts for the
increase in charge on part of the lead ions to Pb3+ and
brings about the formation of band B.

High-temperature annealing in air may initiate the
formation of Pb3+ by the reaction

4Pb2+ + O2  4Pb3+ + 2O2–.

In this case, absorption band B grows strongly in inten-
sity. At the same time, the intensity of bands A and C
decreases. An assumption was put forward in [15] that
the presence of oxygen vacancies in the nearest envi-
ronment of Mo6+ favors electron capture with the for-
mation of Mo5+ centers in scheelite crystals. It is likely
that annealing in air could decrease the concentration of
oxygen vacancies and, hence, of the Mo5+ ions through
interaction with oxygen in the environment:

4Mo5+ + O2  4Mo6+ + 2O2–.

The photochromic effect can be described in terms
of our model by the reaction

Mo6+ + Pb2+  Mo5+ + Pb3+,

which accounts for the appearance of all three absorp-
tion bands A, B, and C after sample illumination by UV
light.

We also studied the optical transmittance of
PbMoO4 crystals with BaO and Bi2O3 additions. Judg-
ing from the close similarity of their ionic radii, we
believe that Ba2+ and Bi3+ should isomorphically substi-
tute for Pb2+ ions, with Bi3+ playing the part of the Pb3+

center. Figure 3 presents the spectral response of the
optical transmittance of PbMoO4–Ba2+ and PbMoO4–
Bi3+ crystals before and after UV illumination.

A comparison of the photochromic effect in the
original and barium-doped crystals shows that the
introduction of Ba2+ reduces photoinduced coloring.
Doping with Ba2+ obviously exerts a stabilizing effect
on the lead sublattice. The spectrum of bismuth-doped
crystals exhibits a strong absorption band near
23 000 cm–1 (band B) but no photochromism. This
supports our model for color centers in lead molyb-
date crystals.
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Abstract—Crystals of cerium aluminate with perovskite structure were obtained using the cold-crucible tech-
nique. The electrical and optical properties of cerium aluminate were studied in air in the range 300–1300 K.
The main characteristics of CeAlO3 at T = 300 K are a follows: electrical conductivity σ = 10–7 S/cm, dielectric
permittivity ε = 3000–10000 (both measured at a frequency of 1000 Hz), thermal band-gap width ∆E = 2.3 ±
0.5 eV, and optical width δE = 2.65 ± 0.25 eV, which decreases at a rate of –0.62 × 10–3 eV/K with increasing
temperature in the 300- to 1500-K interval. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Oxygen compounds of cerium of various valences

were studied systematically in [1–5]. These publica-
tions describe the preparation of oxides using ceramic
technology, the structural and physicochemical proper-
ties of a number of perovskite-type compounds, and
original techniques employed in their investigation.

The interest in oxides with this type of structure
stems primarily from their electrical characteristics;
some of these oxides exhibit ferroelectric properties
and offer promise as solid electrolytes with ionic con-
duction, sensors for gaseous media, and catalysts.

This communication reports on the preparation of
cerium aluminate through cold-crucible melting and
directional crystallization of this oxide. The optical and
dielectric characteristics of the crystals obtained were
studied. The possibility of using optical transmittance
measurements to determine the temperature and deduce
the phase transition kinetics in these oxides was inves-
tigated.

2. EXPERIMENTAL TECHNIQUE
The technology employed in melting high-melting-

point oxides and growing their crystals using cold-cru-
cible technology was described in [6, 7].

The electrical characteristics were derived from the
capacity and electrical conductivity of plane-parallel
plates of the oxide measured with an E 7-8 digital meter
at 1000 Hz. The dielectric permittivity was derived,
using the conventional method, from the capacity and
geometric dimensions of the sample assuming the
oxide to be homogeneous. If the conduction of a mate-
rial is partially or completely ionic, the sample may
become inhomogeneous in the course of measure-
ments. This phenomenon for ionic conduction was ana-
lyzed in [8], where the magnitude and temperature
1063-7834/03/4502- $24.00 © 20248
dependence of the capacity were shown to correlate
with the conductivity.

Optical measurements were carried out with a
DMR-4 monochromator and an SF-16 spectrophotom-
eter. The refractive index and its variation with temper-
ature in the range 300–1500 K were determined from
the deflection of a light beam with a wavelength
0.63 µm (LG-78 laser) by a prismatic sample. The
phase transitions were detected by measuring the tem-
perature dependence of light transmittance. The light
flux was chopped with a frequency of 1000 Hz before
passing through the sample under study. This removed
the effect of radiation of the heated sample on the light
detector and provided the possibility of lock-in mea-
surement of electrical signals. The measurements were
conducted in air in the temperature range from room
temperature to 1300 K. Crossed-polarizer studies were
also carried out. In this case, the signal from the light
receiver arrived only if the sample under study was
optically anisotropic. The signal was minimal if, for
instance, the sample was driven by temperature to the
optically isotropic cubic structure.

A heater was used for measurements conducted
under temperature variation; it consisted of a hollow
rod of SiC-based material with electrodes at the ends
and was 18 cm long with outer and inner diameters of
1.4 and 0.5 cm, respectively. Two mutually perpendic-
ular channels drilled in the central part of the rod
increased its Ohmic resistance, and a local heating of
up to 1500 K could be reached by passing a current
through the rod. One of the channels housed the sample
under study, and the other served to pass the light or
supply electrical contact to the sample. The sample
temperature was measured with a thermocouple
mounted along the rod axis.
003 MAIK “Nauka/Interperiodica”
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The quantities to be measured (temperature and
optical transmittance) were fed to an LKD-4 X–Y
recorder.

3. RESULTS AND DISCUSSION
3.1. Crystal Characteristics

The CeAlO3 samples obtained by directional crys-
tallization from melt had a columnar structure form
from intergrown crystals that was up to 0.5 cm in length
and about 0.3 cm in diameter. The lattice parameters
were a = 3.772 Å and c = 3.804 Å [9]. The ceramic
samples are characterized by the values a = 3.78 Å [4]
and 3.77 Å [10].

According to the chemical formula of the oxide, the
cerium cation has a charge of +3 and is a paramagnetic
ion in this state. As expected, cerium aluminate is para-
magnetic and is attracted to a permanent magnet. This
cerium valence is corroborated by optical measure-
ments, which reveal a characteristic absorption peak at
a wavelength of 4.55 µm [9]. X-ray line shift measure-
ments yield a cerium valence of 2.98 ± 0.02 for the
starting sample and 3.01 ± 0.02 after its thermal treat-
ment (1100 K, 5 h) in ambient air [11].

Repeated heating and cooling of crystals within the
range 300–1500 K does not change their properties
markedly. The crystals differ in this respect from
ceramic samples, which become oxidized in these con-
ditions and decompose into CeO2 and Al2O3 [5].

The crystals prepared from melt apparently contain,
as do polycrystalline samples, an oxygen excess with
respect to the stoichiometric composition [5]. This may
be associated with a possible valence change of part of
the cations from Ce3+ to Ce4+. Annealing of a crystal in
vacuum at 1900 K brings its composition closer to sto-
ichiometric and reduces the Ce4+ concentration. After
the annealing, the optical band-gap width of cerium
aluminate increases slightly and the dark green color of
its crystals grows paler. A similar effect of annealing on
the color, albeit in an oxidizing medium, has been
observed in studies of a partially reduced CeO2 oxide
single crystal [12]. Annealing in an oxidizing medium
reduces the number of Ce3+ ions available in the par-
tially reduced CeO2 and, as a consequence, brings the
oxide closer to stoichiometric composition and
bleaches the crystals. These observations imply a con-
nection between the color characteristics of the oxides
containing cerium and off-stoichiometry in their com-
position, which originates from the mixed valence of
cerium.

3.2. Electrical Conductivity

Figure 1 plots the temperature dependence of the
electrical conductivity of a cerium aluminate sample.
Its slope in the region of intrinsic conduction yields
∆E(0) = 2.3 ± 0.5 eV (including the scatter between dif-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
ferent samples) for the thermal band-gap width, which
corresponds to a temperature T = 0 for a linear ∆E(T)
relation [13]. This band gap decreases with increasing
temperature as ∆E(T) = ∆E(0) + αT, where the coeffi-
cient α = –0.62 × 10–3 eV/K was derived from optical
transmittance measurements carried out on the cerium
aluminate within the range 300–1300 K. Knowing that
∆E(T), one can estimate the intrinsic carrier concentra-
tion and, if the electrical conductivity is available,
determine the carrier mobility. For T = 1000 K, m* = me,
and ∆E(0) = 2.3 eV, this estimation yields a value of
about 1 cm2 /V s for the mobility in cerium alumi-
nate.

In this analysis, the oxide conductivity was assumed
to retain its electronic character throughout the temper-
ature range covered. However, the existence of ionic
conduction in BaCeO3, SrCeO3 [14–16], and CeO2 [12]
suggests that the ionic component can also appear in the
electrical conductivity of CeAlO3, particularly, at high
temperatures (about 1000 K). This conclusion finds
supportive evidence in our studies of the dielectric
characteristics of cerium aluminate at high tempera-
tures in comparison with the ionic-conductivity oxides
BaCe0.8Y0.2O3 and CeO2.

3.3. Dielectric Characteristics

Figure 2 presents the dielectric permittivity of
CeAlO3 measured in the region 250–1000 K. At low
temperatures (up to ~170 K), ε = 16 and grows slightly
with temperature. In the 250- to 600-K interval, the
dielectric permittivity reaches as high as a few thou-
sands and is only weakly temperature dependent. Start-
ing from 600 K up, ε exhibits an activated behavior,
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Fig. 1. Temperature dependence of the electrical conductiv-
ity of crystalline cerium aluminate.
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which is characterized by an activation energy close to
that of electrical conductivity. As already mentioned,
this feature is characteristic of ionic conduction.

It is of interest to compare the permittivity of cerium
aluminate with those of Al2O3 and the ionic conductor
CeO2. Our measurements show that in the high-temper-
ature domain, the permittivities of the CeO2 and
CeAlO3 oxides behave in a similar way (Fig. 3).

Measurements carried out on ceramic samples show
the permittivity of cerium aluminate to rise with tem-
perature, reaching as high as 9, 209, and 1796 at tem-
peratures of 93, 298, and 549 K, respectively [10]. In
[4], the values ε = 14–300 were reported to be obtained
and the thermal conditions maintained in the prepara-
tion of ceramic samples were shown to affect the per-
mittivity of this oxide.

3.4. Optical Characteristics

The spectral response of transmittance  in the
energy interval 0.15–3 eV and that of the reflectance at 1–
5 eV of cerium aluminate were studied in [9]. It was
shown that the absorption band at 0.3 eV is due to the
Ce3+ ion. The optical band-gap width δE and the refrac-
tive index n were estimated as 2.7 eV and 2.3, respec-
tively.

In the present communication, the refractive index
was determined for light with a wavelength of 0.63 µm
on a prismatic sample in the 300- to 1500-K region to
be n = 2.13, with ∆n/∆T = 5.5 × 10–6 K–1.

The optical characteristics of the oxide depend on its
stoichiometric composition. This factor, as well as light
scattering, which varies with temperature, is responsi-
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Fig. 2. Temperature dependence of the permittivity of crys-
talline cerium aluminate measured at 1000 Hz.
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ble for a certain scatter in the corresponding experi-
mental data.

The transmittance spectrum of a 0.03-cm-thick
cerium aluminate plate and its variation following
annealing of the oxide in vacuum at T = 1900 K are dis-
played in Fig. 4. The band gap increases as the sample
approaches stoichiometric composition as a result of
annealing in vacuum. The optical band gap for cerium
aluminate with different deviations from stoichiometry
was found to be δE = 2.65 ± 0.25 eV. As follows from
measurements of the transmittance spectrum performed at
various temperatures, the optical band gap width
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Fig. 3. Temperature dependence of the permittivity of
(1) CeAlO3, (2) CeO2 oxide with ionic conductivity, and
(3) Al2O3 oxide with electronic conductivity.
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Fig. 4. Spectral response of the transmittance of a 0.03-cm-
thick cerium aluminate crystal obtained after annealing
(1) in air and (2) in vacuum.
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decreases with increasing temperature in the 300- to
1300-K region, with d(δE)/dT = –0.62 × 10–3 eV/K.

3.5. Phase Transitions

Cerium aluminate was established to undergo sev-
eral phase transformations. Observations made using
an optical microscope revealed that one of the transfor-
mations occurs at 360 K and is associated with changes
in the lattice symmetry, whereas another is a transition
to an isotropic cubic phase at 1250 K [3]. Differential
scanning calorimetry measurements carried out in the
region 300–800 K indicate two phase transitions, tak-
ing place at 310 and 450 K, respectively [17].

In this study, the above phase transitions in the oxide
were established by measuring its light transmittance at
wavelengths of 0.63 and 0.77 µm in the region
300−1500 K. The results of the measurements are dis-
played in graphical form in Fig. 5, which also presents
calorimetric measurements [17]. The temperature
dependence of transmittance exhibits anomalies associ-
ated with phase transformations. The decrease in trans-
mittance caused by the transition of the oxide to the
optically isotropic cubic structure starts from 1170 K
and comes to completion at 1400 K, with a hysteresis
of about 100 K being seen. At 440 K, the transmittance
is observed to change sharply with a slight (a few
degrees) hysteresis. A change in optical transmittance
is also observed to occur in a phase transition at about
310 K. To return the oxide to the starting state after this
transition, the sample has to be maintained at room
temperature for 1–2 h. This transition becomes progres-
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Fig. 5. (1) Temperature dependences of the optical transmit-
tance of cerium aluminate. The measurements were con-
ducted in the crossed-polarizer arrangement; λ = 0.77 µm.
(2) Calorimetric measurements performed on a fused sam-
ple [17].
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sively sharper as the oxide approaches the stoichiomet-
ric composition under annealing in vacuum (Fig. 6).

ACKNOWLEDGMENTS

This study was partially supported by the Russian
Foundation for Basic Research (project no. 00-03-
32476) and INTAS (grant no. 99-00636).

REFERENCES

1. A. I. Leonov and É. K. Keler, Izv. Akad. Nauk. SSSR,
Ser. Khim., No. 11, 1905 (1962).

2. A. I. Leonov, High-Temperature Chemistry of Oxygen
Compounds of Cerium (Nauka, Leningrad, 1970).

3. A. I. Leonov, High-Temperature Microscope to Observe
Melting, Polymorphous Transformations of Crystalline
Materials and Other Processes (Tsentr. Inst. Tekh.-
Ékonom. Inform., Moscow, 1961), No. 17.

4. V. A. Ioffe, A. I. Leonov, and I. S. Yanchevskaya, Fiz.
Tverd. Tela (Leningrad) 4 (7), 1788 (1962) [Sov. Phys.
Solid State 4, 1282 (1962)].

5. V. E. Shvaœko-Shvaœkovskiœ, A. I. Leonov, and A. I. She-
lykh, Neorg. Mater. 1 (5), 737 (1965).

6. M. A. Borik, E. E. Lomonova, V. V. Osiko, and
A. M. Prokhorov, in Problems of Crystallography
(Nauka, Moscow, 1987).

7. B. T. Melekh, Yu. N. Filin, I. V. Korkin, et al., in Pro-
ceedings of 5th International Conference on Crystals:
Growth, Properties, Real Structure, and Application
(Aleksandrovsk, 2001), Vol. 1, p. 59.

Τ, arb. units
~

T, K
300 350 400 450 500 550 600

100

80

60

40

20

0

Fig. 6. Effect of phase transitions on the optical transmit-
tance of cerium aluminate. The 0.03-cm-thick crystal was
preliminarily annealed in vacuum at 2100 K. The measure-
ments were conducted in the crossed-polarizer arrangement
at the wavelength 0.63 µm.



252 SHELYKH, MELEKH
8. A. B. Lidiard, in Handbuch der Physik, Ed. by S. Flugge
(Springer, Berlin, 1957; Inostrannaya Literatura, Mos-
cow, 1962), p. 246.

9. A. I. Shelykh, N. S. Zhdanovich, B. T. Melekh, et al.,
Fiz. Tverd. Tela (St. Petersburg) 36 (3), 817 (1994)
[Phys. Solid State 36, 448 (1994)].

10. M. L. Keith and R. Roy, Am. Mineral. 39 (1–2), 1
(1954).

11. A. E. Sovestnov, V. A. Shaburov, I. A. Smirnov, et al.,
Fiz. Tverd. Tela (St. Petersburg) 36 (4), 1140 (1994)
[Phys. Solid State 36, 620 (1994)].

12. I. V. Vinokurov, É. N. Zonn, and V. A. Ioffe, Neorg.
Mater. 3 (6), 1012 (1967).
P

13. J. S. Blakemore, Semiconductor Statistics (Pergamon,
Oxford, 1962; Mir, Moscow, 1964).

14. R. C. T. Slade and N. Singh, Solid State Ionics 46 (1–2),
111 (1991).

15. V. P. Gorelov and D. S. Zubankova, Elektrokhimiya 28
(6), 944 (1992).

16. A. L. Samgin, Neorg. Mater. 36 (8), 979 (2000).
17. V. M. Egorov, Yu. M. Baœkov, N. F. Kartenko, et al., Fiz.

Tverd. Tela (St. Petersburg) 40 (11), 2109 (1998) [Phys.
Solid State 40, 1911 (1998)].

Translated by G. Skrebtsov
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



  

Physics of the Solid State, Vol. 45, No. 2, 2003, pp. 253–258. Translated from Fizika Tverdogo Tela, Vol. 45, No. 2, 2003, pp. 242–247.
Original Russian Text Copyright © 2003 by Randoshkin, Vasil’eva, Plotnichenko, Pyrkov, Saletski

 

œ

 

, Sysoev, Galkin, Dudorov.

                                                                                                                                                                                                                                          

SEMICONDUCTORS 
AND DIELECTRICS
Optical Absorption in Cobalt-Containing Single-Crystal 
Epitaxial Films of Gadolinium Gallium Garnets

V. V. Randoshkin*, N. V. Vasil’eva**, V. G. Plotnichenko***, Yu. N. Pyrkov***, 
A. M. Saletskiœ****, N. N. Sysoev****, A. M. Galkin****, and V. N. Dudorov*

* Joint Laboratory of Magnetooptoelectronics, Institute of General Physics, Russian Academy of Sciences, 
Mordovian State University, Bol’shevistkaya ul. 68, Saransk, 430000 Russia

** Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991 Russia
*** Research Center of Fiber Optics, Institute of General Physics, Russian Academy of Sciences, 

ul. Vavilova 38, Moscow, 119991 Russia
**** Moscow State University, Vorob’evy gory, Moscow, 119899 Russia

e-mail: antonv@aha.ru
Received June 10, 2002

Abstract—Cobalt-containing single-crystal garnet films are grown by liquid-phase epitaxy from supercooled
PbO–B2O3- and Bi2O3–B2O3-based solution melts on Gd3Ga5O12 substrates. It is shown that cobalt in the films
is in a trivalent state. Upon introduction of GeO2 into the initial solution melt, cobalt transforms into a bivalent
state. It is revealed that the absorption spectrum of the grown films exhibits two broad bands in the wavelength
ranges 450–800 and 900–1800 nm. Each of these bands contains three components. The spin–orbit splitting of
the observed bands is determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In single-crystal garnet films synthesized by liquid-
phase epitaxy from a supercooled solution melt, the
valence of crystal-forming ions can be controlled by the
introduction of different additives into the solution melt
(see, for example, [1]). Specifically, the valence of
cobalt ions in epitaxial single-crystal garnet films
changes upon introducing GeO2 into the solution melt
[2]. Note that cobalt-containing single crystals are very
promising for use as saturable filters in infrared (IR)
lasers [3]. This is associated with the fact that the trans-
mission spectra of these crystals exhibit a broad absorp-
tion band in the wavelength range λ = 1.3–1.6 µm.

The purpose of the present work was to analyze the
possibility of varying the valence of cobalt ions in epi-
taxial single-crystal garnet films and to investigate opti-
cal absorption in the wavelength range from 0.2 to
2.5 µm.

This work is a continuation of our recent study [2]
on the optical absorption of bivalent and trivalent cobalt
ions in single-crystal films of gadolinium gallium gar-
net. These films were grown by liquid-phase epitaxy
from supercooled PbO–B2O3- and PbO–B2O3–GeO2-
based solution melts.

2. THE GROWTH OF FILMS

Cobalt-containing films were grown on Gd3Ga5O12
(GGG) substrates with the (111) orientation from PbO–
B2O3- (I), PbO–B2O3–GeO2- (II), Bi2O3–B2O3- (III),
1063-7834/03/4502- $24.00 © 0253
and Bi2O3–B2O3–GeO2-based (IV) solution melts in a
platinum crucible. In the absence of GeO2 in the solu-
tion melt, cobalt occurs predominantly in a trivalent
state in order to provide charge compensation [1]. Only
a small amount of Co2+ ions can form to compensate for
the charge of Pb4+ and Pt4+ impurity ions transferring
from the solution melt into the film. Platinum passes
into the solution melt due to dissolution of the crucible
material. Upon introduction of GeO2 into the solution,
cobalt ions should transform into the bivalent state to
compensate for the charge of Ge4+ ions incorporated
mainly into the tetrahedral sublattice of the garnet
structure.

The composition of solution melts I–IV was charac-
terized by the following molar ratios.

For I,

R1 = (Ga2O3 + Co3O4)/Gd2O3,

R2 = PbO/B2O3,

R3 = (Gd2O3 + Ga2O3 + Co3O4)/(Gd2O3

+ Ga2O3 + Co3O4 + PbO + B2O3),

R4 = Ga2O3/Co3O4.

For II,

R1 = (Ga2O3 + GeO2 + Co3O4)/Gd2O3,

R2 = PbO/B2O3,

R3 = (Gd2O3 + Ga2O3 + GeO2 + Co3O4)/(Gd2O3

+ Ga2O3 + GeO2 +Co3O4 + PbO + B2O3),
2003 MAIK “Nauka/Interperiodica”
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Table 1.  Molar ratios of the components in solution melts

Solution melt R1 R2 R3 R4

I 14.42 16.03 – 0.08 – 9.00

II 30.77 16.03 – 0.15 – 20.35

III 1.11 – 15.92 – 0.14 9.00

IV 2.34 – 15.92 – 0.20 20.14

V 14.42 16.03 – 0.08 – –

VI 1.11 – 15.92 – 0.14 –

R2' R3'
Table 2.  Growth parameters for epitaxial garnet films

Sample 
no. Tg , °C tg , min 2h, µm

fg ,
µm/min

I-1 985 5 5.8 0.58

I-2 956 5 10.3 1.03

I-3 931 5 6.2 0.63

I-4 904 5 4.3 0.43

I-5 877 5 2.3 0.23

I-6 937 60 92.3 0.77

II-1 906 5 1.98 0.20

II-2 889 5 2.6 0.26

II-3 859 5 3.3 0.33

II-4 822 5 2.3 0.23

II-5 874 120 44.6 0.19

III-1 1015 5 22.2 2.2

III-2 996 5 23.8 2.4

III-3 977 5 22.6 2.3

III-4 960 5 17.7 1.8

III-5 943 5 14.5 1.4

III-6 952 5 70.8 7.1

III-7 931 5 35.1 3.5

III-8 914 5 27.8 2.8

III-9 1003 15 29.3 0.98

III-10 952 15 87.5 2.9

IV-1 990 5 1.3 0.13

IV-2 963 5 9.1 0.91

IV-3 937 5 13.8 1.37

IV-4 953 15 27.6 0.92

IV-5 948 40 59.4 0.74

V-1 1017 10 28.4 1.42

V-2 1005 13 43.4 1.67

V-3 987 10 30.5 1.52

V-4 971 11 20.8 0.95

VI-1 925 15 16.2 0.54

VI-2 912 15 22.8 0.76

VI-3 902 15 32.8 1.1
PH
R4 = (Ga2O3 + GeO2)/Co3O4.

For III,

R1 = (Ga2O3 + Co3O4)/Gd2O3,

 = Bi2O3/B2O3,

 = (Gd2O3 + Ga2O3 + Co3O4)/(Gd2O3

+ Ga2O3 + Co3O4 + Bi2O3 + B2O3),

R4 = Ga2O3/Co3O4.

For IV,

R1 = (Ga2O3 + GeO2 + Co3O4)/Gd2O3,

 = Bi2O3/B2O3,

 = (Gd2O3 + Ga2O3 + GeO2 + Co3O4)/(Gd2O3

+ Ga2O3 + GeO2 + Co3O4 + Bi2O3 + B2O3),

R4 = (Ga2O3 + GeO2)/Co3O4.

The films grown from solution melts I–IV were yel-
lowish green, greenish blue, green, and blue colored,
respectively. Table 1 lists the molar ratios for the solu-
tion melts used in growing the epitaxial films. The
molar ratios for PbO–B2O3 (V) [4] and Bi2O3–B2O3
(VI) solution melts [5], from which the films of nomi-
nal composition Gd3Ga5O12 were grown, are also given
in Table 1 for comparison.

3. EXPERIMENTAL TECHNIQUE

The total thickness 2h of the studied films on both
sides of the substrate was determined by weighing the
substrate prior to and after the epitaxial growth [4–6].
We ignored the difference in the densities of the grown
film and the substrate.

The transmission spectra of the films were measured
on a Lambda 900 (Perkin-Elmer) spectrophotometer in
the wavelength range 0.2–2.5 µm at room temperature.
The absorption spectra of the films were calculated
from the transmission spectra of the substrates with the
grown films by subtracting the absorption by the sub-
strate. The growth parameters for the studied films are
presented in Table 2, where Tg, tg, fg, and 2h are the tem-
perature, time, growth rate, and film thickness, respec-

R2'

R3'

R2'

R3'
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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tively. Roman numerals refer to the solution melt, and
Arabic numerals refer to the number for films sequen-
tially grown from the relevant solution melt. Note that,
for sample III-6, which was grown immediately after
homogenization of the solution melt, the growth rate of
the film was maximum and amounted to 7.1 µm/min.

4. RESULTS AND DISCUSSION

Figure 1 shows the absorption spectra of the GGG
substrate (curve 0) and films grown from solution melts
I, III, V, and VI (curves 1–4, respectively). These spec-
tra exhibit absorption peaks that can be attributed to
impurity and dopant ions. As follows from the compar-
ison of curves 0, 1, and 3, the absorption peak at a
wavelength of 280 nm is associated with Pb2+ (6s2)
impurity ions. This is in agreement with the results
obtained by Scott and Page [7], who assigned this peak
to the 1S0  3P1 electron transition.

The spectrum of the film grown from solution melt
I contains two broad absorption bands in the wave-
length ranges 540–800 and 900–1700 nm and a narrow
absorption band with a maximum at approximately
390 nm (Table 3). Reasoning from the inferences
drawn by Wood and Remeika [8], these bands can be
assigned to Co3+ dopants.

Each of these broad bands consists of three compo-
nents with maxima at 570, 625, 680 and 1100, 1265,
1630 nm, respectively.

A comparison of curves 0, 2, and 4 (Fig. 1) shows
that the absorption peak centered at a wavelength
~290 nm is associated with Bi3+ (6s2) impurity ions (the
1S0  3P1 electron transition [1]).

A broad absorption band in the range 900–1700 nm
and a narrow absorption band with a maximum at about
400 nm in the spectrum of the film grown from solution
melt III are attributed to Co3+ dopants. The second
absorption band in the wavelength range 520–740 nm
is due to the 4A2  4T1(4P) electron transition in the
tetrahedral Co2+ ion [8]. For films grown from solution
melt III, the charge compensation is provided by Pt4+

impurity ions.
For films grown from solution melt III, each of the

two broad bands (in the ranges 900–1700 nm for Co3+

and 520–740 nm for Co2+) also contains three compo-
nents, whose parameters are given in Table 3.

According to the data obtained in [8], the absorption
peak centered at about 1100 nm can be assigned to the
5E  5T2 electron transition in the Co3+ ions incorpo-
rated into the tetrahedral sublattice of the garnet struc-
ture. The absorption peaks with maxima at 680 and
390 nm should be attributed to the electron transitions
1A  1T1 and 1A1  1T2, respectively, in the Co3+

ions involved in the octahedral sublattice. Finally, the
absorption peak centered at about 625 nm should be
assigned to the 5E  5T2 electron transition in the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
Co3+ ions contained in the dodecahedral sublattice
(Table 3).

It can be seen from the comparison of curves 1 and
2 (Fig. 1) that, in the wavelength range from 0.7 to
1.5 µm, the absorption spectrum of the film grown from
solution melt I lies above the absorption spectrum of
the film grown from solution melt III. Therefore, we
can optimize the growth parameters with the aim of
preparing films with a specified optical absorption
coefficient.

The absorption spectra of the films grown from
solution melt I at different temperatures are shown in
Fig. 2 (see also Table 2). It can be seen that, as the
growth temperature decreases, the optical absorption
coefficient α increases over the entire temperature
range covered. This correlates with an increase in the
cobalt distribution coefficient (which is less than unity)
due to further supercooling of the solution melt. The
dependences of the absorption coefficient α on the
growth temperature Tg for characteristic absorption
peaks of the Co3+ ions are depicted in Fig. 3. As is
clearly seen, these dependences are almost linear and
can be described by the linear functions given in Fig. 3.
Consequently, the dependences obtained can be used to
determine the temperatures required to grow films with
specified absorption coefficients.

Figure 4 shows the absorption spectra of the films
grown from solution melts I, II, and V (curves 1–3,
respectively) and the spectrum of the GGG substrate
(curve 0). It can be seen that, upon introduction of GeO2
into the solution melt, both broad bands become all the
more broadened, whereas a weak absorption band asso-
ciated with Co3+ ions (λ = 390 nm) incorporated into
the octahedral sublattice disappears. On this basis, we
can conclude that cobalt transforms into the bivalent
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α, cm–1

Fig. 1. Absorption spectra of (1) I-1, (2) III-3, (3) V-3, and
(4) VI-2 samples and (0) the GGG substrate. The sample
numbering corresponds to that in Table 2.
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Table 3.  Positions of the maxima of the absorption bands and their assignment in the transmission spectra of cobalt-containing
films and crystals

Solution melt Range of absorption 
bands

Positions of the maxima of 
the optical bands

Spin–orbit splitting
of the bands Electron transition [8]

PbO–B2O3 (I) 540–800 nm 570, 625, 680 nm 2800 cm–1 625 nm (5E  5T2)

(18500–12500 cm–1) (17500, 16000, 14700 cm–1)  Dodecahedron Co3+

680 nm (1A1  1T1)

Octahedron Co3+

900–1700 nm 1100, 1265, 1630 nm 2970 cm–1 1100 nm (5E  5T2)

(11100–5900 cm–1) (9100, 7900, 6130 cm–1) Tetrahedron Co3+

390 nm (25600 cm–1) 390 nm (1A1  1T2)

Octahedron Co3+

280 nm (35600 cm–1) 280 nm (1S0  3P1)

Pb2+ (6s2)
PbO–B2O3–GeO2 (II) 500–770 nm 573, 613, 657 nm 2300 cm–1 613 nm (4A2  4T1(

4P))

(20000–13000 cm–1) (17500, 16300, 15200 cm–1) Tetrahedron Co2+

1060–1760 nm 1295, 1425, 1625 nm 1570 cm–1 1425 nm (4A2

 4T1(4F))

(9400–5700 cm–1) (7720, 7020, 6150 cm–1) Tetrahedron Co2+

280 nm (35600 cm–1) 280 nm (1S0  3P1)

Pb2+ (6s2)
Bi2O3–B2O3 (III) 520–740 nm 575, 613, 651 nm 2040 cm–1 613 nm (4A2  4T1(

4P))

(19200–13500 cm–1) (17400, 16300, 15360 cm–1) Tetrahedron Co2+

900–1700 nm 1100, 1290, 1630 nm 2970 cm–1 1100 nm (5E  5T2)

(11100–5900 cm–1) (9100, 7750, 6130 cm–1) Tetrahedron Co3+

400 nm (25000 cm–1)

400 nm (1A1  1T2)

Octahedron Co3+

290 nm (34500 cm–1) 290 nm (1S0  3P1)

Bi3+ (6s2)
Bi2O3–B2O3–GeO2 
(IV)

450–741 nm 573, 613, 657 nm 2300 cm–1 613 nm (4A2  4T1(
4P))

(22200–13500 cm–1) (17500, 16300, 15200 cm–1) Tetrahedron Co2+

1100–1800 nm 1295, 1425, 1625 nm 1570 cm–1 1425 nm (4A2

 4T1(4F))

(9100–5560 cm–1) (7720, 7020, 6150 cm–1) Tetrahedron Co2+

290 nm (34500 cm–1) 290 nm (1S0  3P1)

Bi3+ (6s2)
Spinel crystal
MgAl2O4 : Co2+

(4 × 1019 ion/cm3)

490–680 nm 549, 583, 624 nm 2180 cm–1

(20400–14700 cm–1) (18210, 17150, 16030 cm–1)
1050–1660 nm 1230, 1340, 1520 nm 1520 cm–1

(9500–6000 cm–1) (8100, 7460, 6580 cm–1)

Silica glass: Co2+ [9] 19700, 16500, 14500 cm–1 5200 cm–1

8000, 6300, 5300 cm–1 2700 cm–1

Crystalline quartz:
Co2+ [9]

18500, 17100, 15600 cm–1 2900 cm–1

7700, 6700, 5700 cm–1 2000 cm–1
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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state. Table 3 lists the positions of the maxima of the
first triplet, which is broadened toward the short-wave-
length range and, consequently, is located in the range
500–770 nm, and the maxima of the second triplet,
which is shifted to the long-wavelength range (1060–
1760 nm).

Figure 5 depicts the absorption spectra of the GGG
substrate (curve 0) and the films grown from solution
melts III, IV, and VI (curves 1–3, respectively), as well
as the absorption spectrum of the Co2+-doped MgAl2O4

spinel (curve 4). It can be seen that, upon introduction
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Fig. 2. Absorption spectra of (1) I-1, (2) I-2, (3) I-3, (4) I-
4, (5) I-5, and (6) I-6 samples. The sample numbering cor-
responds to that in Table 2.
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Fig. 4. Absorption spectra of (1) I-6, (2) II-5, and (3) V-3
samples and (0) the GGG substrate. The sample numbering
corresponds to that in Table 2.
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of GeO2 into the solution melt, the first triplet shifts to
the short-wavelength range 450–741 nm, whereas the
second triplet broadens toward the long-wavelength
range 1100–1800 nm. Reasoning from the results
obtained in [8], we assigned the absorption peaks with
maxima at approximately 613 and 1425 nm to the elec-
tron transitions 4A2  4T1(4P) and 4A2  4T1(4F),
respectively, in the Co2+ ions involved in the tetrahedral
sublattice of the garnet structure.

The absorption spectrum of the Co2+-doped
MgAl2O4 spinel contains two absorption bands in the

y = 2518.5 – 2.5x

y = 879.5 – 0.8x

y = 236.9 – 0.2x
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860 900 940 980
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α, cm–1

Fig. 3. Dependences of the absorption coefficient α for
films grown from solution melt I at wavelengths λ =
(1) 1071, (2) 1265, and (3) 1630 nm.

10–1

101

102

103

104

10–2

1

α, cm–1

0 500 1000 1500 2000 2500
λ, nm

0

3 2

1

4

Fig. 5. Absorption spectra of (0) the GGG substrate, (1) III-3,
(2) IV-5, and (3) VI-2 samples and (4) Co2+-doped
MgAl2O4 spinel. The sample numbering corresponds to
that in Table 2.
3



258 RANDOSHKIN et al.
ranges 490–680 and 1050–1660 nm. Each of these two
absorption bands is split into three components (Table 3).
It is evident that the absorption bands of Co2+ ions in
epitaxial films are broader than those of single-crystal
spinel.

The spin–orbit splittings of the levels for films
grown from solution melts II and IV are identical and
equal to 2300 and 1570 cm–1. Moreover, the spin–orbit
splittings are equal to 2970 and 2800 cm–1 for films
grown from solution melt I, 2970 and 2040 cm–1 for
films grown from solution melt III, and 2180 and
1520 cm–1 for Co2+-doped spinel. Note also that,
according to [9], the spin–orbit splittings are 5200 and
2700 cm–1 for Co2+-doped silica glass and 2900 and
2000 cm–1 for crystalline Co2+-doped quartz.

5. CONCLUSIONS

Cobalt-containing garnet films of compositions
Gd3Ga5O12 : Co3+ and Gd3(Ga,Ge)5O12 : Co2+ were
grown for the first time by liquid-phase epitaxy from
PbO–B2O3- and Bi2O3–B2O3-based solution melts.

The results obtained in this work can be summarized
as follows.

(i) Upon incorporation of GeO2 into the solution
melt, cobalt in the grown films transforms into the biva-
lent state and occupies the tetrahedral sublattice of the
garnet structure.

(ii) The absorption spectra of epitaxial films con-
taining bivalent and trivalent cobalt ions exhibit two
broad bands in the near-IR range. Each of these bands
involves three components.
P

(iii) The absorption bands of tetrahedral Co2+ ions in
epitaxial films are broader than those in single-crystal
spinel.
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Abstract—The effect of oxygen on the dislocation-induced photoluminescence (DPL) spectra at 4.2 K is stud-
ied in silicon crystals with different impurity compositions subjected to plastic deformation at temperatures
above 1000°C. A strong effect of doping impurities on the DPL spectra is observed for concentrations above
1016 cm–3. It is shown that the peculiarities of many DPL spectra in silicon can be explained by assuming that
the D1 and D2 lines are associated with edge-type dislocation steps on glide dislocations. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Dislocation-induced photoluminescence (DPL) in
silicon at 4.2 K is characterized by the lines D1
(0.807 eV), D2 (0.870 eV), D3 (0.935 eV), and D4
(1.00 eV) [1]. The D4 line and D3 line (TO phonon rep-
lica of the D4 line) are attributed to the emission of reg-
ular segments of split 60° dislocations [2–4]. The inter-
est in the origin of the D1 and D2 lines, which has not
been clarified completely, is due to the possible appli-
cation of this radiation in optoelectronics, which was
demonstrated in [4].

It is well known that D1 and D2 lines are observed
in silicon crystals subjected to plastic deformation at
temperatures T < 900°C and then annealed in the tem-
perature range 400–1200°C. The analysis of the condi-
tions for the emergence and disappearance of these
lines carried out in [2, 5–10] indicates their possible
relation to translational-symmetry violation at disloca-
tions, i.e., to specific step-type defects and dislocation
nodes.

On the other hand, D1 and D2 lines of appreciable
intensity have been detected in initial Czochralski-
grown silicon (Cz-Si) crystals after annealings facilitat-
ing the nucleation and growth of oxygen precipitates
[11–13]. Oxygen precipitation is accompanied by the
generation of interstitial Sii atoms and the formation of
interstitial dislocation loops, whose plane is perpendic-
ular to the Burgers vector b: partial Frank dislocation
loops (b = (a/3)〈111〉 , with a being the lattice constant)
and perfect prismatic dislocation loops [b =
(a/2)〈110〉]. As a result of absorption of excess Sii

atoms, these dislocations climb through the formation
and displacement of edge steps in the plane of the loop
[14]. The D1 and D2 lines detected in the recrystallized
(100) Si layers after annealing at 1100°C in a chlorine-
containing atmosphere are attributed to a three-dimen-
1063-7834/03/4502- $24.00 © 0259
sional network of pure edge dislocations [15]. The
occurrence of a change in the defect structure of these
layers upon annealing is due to the expansion of perfect
prismatic loops as a result of climbing and to the elastic
interaction between large loops that approach one
another.

Transmission electron-microscopic studies revealed
that these dislocation loops in silicon are effective get-
ters of transition metals [16–18]. In silicon crystals
grown through crucibleless floating-zone melting (FZ-Si)
intentionally contaminated with copper, colonies of
copper precipitates were observed in the area swept by
helicoidal dislocations [16, 17] formed from gliding
screw dislocations with edge steps as a result of climb-
ing of these steps [14]. This fact, as well as a discrete
arrangement of copper precipitates on partial Frank dis-
locations [17], allows us to consider edge steps as
defects that facilitate the nucleation of copper precipi-
tates. According to [18–20], oxygen precipitates in the
form of SiOx polyhedrons (1 < x < 2) are formed at tem-
peratures above 900°C in some regions on dislocations
and at the nodes of a dislocation network.

The above arguments suggest that the D1 and D2
lines in plastically deformed crystals are associated
with edge-type steps on gliding dislocations, as well as
with dislocation nodes, i.e., with defects near which
precipitates of various impurities nucleate. The maxi-
mum decrease in the concentration of interstitial oxy-
gen atoms as a result of precipitation occurs at 1050°C
[21]; therefore, the effect of oxygen on the DPL spec-
trum may be pronounced most strongly in this temper-
ature region. In order to verify this hypothesis, we stud-
ied DPL spectra in silicon crystals with different con-
centrations of oxygen and doping impurities deformed
at T > 1000°C.
2003 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

Experiments were carried out on silicon single crys-
tals doped with boron (p type) or phosphorus (n type)
with different oxygen contents and with a growth-dis-
location density below 100 cm–2. The boron concentra-
tion NB and the phosphorus concentration NP were var-
ied in the intervals 1012 < NB < 1.6 × 1016 cm–3 and 6 ×
1013 < NP < 8 × 1016 cm–3. In FZ- and Cz-Si crystals, the
oxygen concentration was ~1 × 1017 and ~1 × 1018 cm–3,
respectively. In crystals with NB, NP > 1016 cm–3, the
carbon concentration amounted to 1017 cm–3. These
data were obtained from the infrared absorption spec-
tra. Chemically polished parallelepipeds with dimen-
sions of 3.2 × 3.4 × 11 mm were deformed in a vacuum
of ~7 Pa through compression along the longest edge
(〈123〉 direction) at various temperatures from the inter-
val 1050 ≤ Td ≤ 1200°C up to strains 0.5% < δ < 30%
[6]. After deformation, the crystals were unloaded and
cooled slowly (at a rate of less than 10 deg/min) to room
temperature, which facilitated the formation of an equi-
librium dislocation structure in the samples. The dislo-
cation density was determined from etching pits on the
{111} face.

The dislocation structure produced by high-temper-
ature deformation was studied earlier in [6]. This struc-
ture is formed not only through the motion of disloca-
tions in the slip plane but also through their leaving this
plane due to cross glide of screw segments and climb of
edge segments. In the crystals with the above-men-
tioned orientation, for moderate deforming stresses τ,
only one glide system operates and part of the isolated
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Fig. 1. DPL spectra recorded at 4.2 K in (1) n-type FZ-Si
(NP = 6 × 1013 cm–3) and (2) n-type Cz-Si crystals (NP = 2 ×
1014 cm–3. The dislocation density ND is equal to (1) 4 × 106

and (2) 6 × 106 cm–2; Td = 1050°C.
P

dislocations takes the form of rectilinear (regular) seg-
ments of screw- or 60° dislocations separated by kinks
and jogs. Activation of other glide systems at higher
values of τ and the interaction of dislocations facilitate
the formation of a cellular structure and the emergence
of dislocation nodes. For δ > 20%, regular segments of
screw- and 60° dislocations form a network whose con-
nectivity increases with δ.

The PL spectra were measured at 4.2 K in the energy
range 0.8–1.2 eV using a technique employed earlier in
[5–7, 10]. The power density of excitation of nonequi-
librium electrons and holes by Ar laser radiation at a
wavelength of 488.8 nm was 2 mW/cm2.

3. RESULTS

According to [7], the shapes of the DPL spectra in
FZ- and Cz-Si crystals of type p with NB = 4 × 1013 cm–3

deformed at 1050°C differ significantly for relatively
small densities of introduced dislocations (ND < 2 ×
107 cm–2). The DPL spectra of FZ- and Cz-Si crystals
(with different types and concentrations of doping
impurities) deformed at T ≥ 1050°C are presented
below. It was found that an analogous difference is also
observed in the DPL spectra of FZ- and Cz-Si crystals
of type n with NP ≤ 2 × 1014 cm–3. An n-type FZ-Si sam-
ple (curve 1 in Fig. 1, NP = 6 × 1013 cm–3) is character-
ized by a typical DPL spectrum containing D1–D4
lines attributed to dislocations. In the spectrum of an n-
type Cz -Si sample (curve 2, NP = 2 × 1014 cm–3), instead
of the D1 line, a broadened line with maximum energy
Em = 0.82 eV appears, which is displaced to Em =
0.83 eV for ND ~ 1.5 × 107 cm–2. A specific DPL spec-
trum is observed for Cz-Si samples of the n and p types,
deformed in the temperature range 1050 ≤ Td ≤ 1200°C,
with a donor concentration NP ≤ 2 × 1015 and acceptor
concentration NB ≤ 1.6 × 1016 cm–3, respectively.

The effect of dislocation density on the PL spectra is
investigated in the p-type Cz-Si crystals with NB = 1.6 ×
1016 cm–3 (Td = 1170°C; Fig. 2). As in [7], an increase in
the dislocation density for ND < 2 × 107 cm–2 intensifies
the PL in the vicinity of the D1 and D2 lines. However,
for ND > 2 × 107 cm–2, radiation appears with energy
Em = 0.807 eV, corresponding to the D1 line; the inten-
sity of this radiation increases with ND at a much higher
rate than the intensity of the D2 line. Consequently, the
broad D1 line (curve 3, ND ~ 109 cm–2) dominates in the
PL spectra for ND ~ 108–109 cm–2. Samples 1–3 display
an increase in the radiation intensity at energies 0.95–
0.97 eV (inset to Fig. 2), which is often observed in the
form of a small step on the long-wavelength wing of the
D4 line (see, e.g., Fig. 1).

Figure 3 shows the DPL spectra in n-type Cz-Si
crystals doped with phosphorus (NP = 2.6 × 1016cm–3,
Td = 1170°C). For samples with ND ~ 107 cm–2, quite
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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small peaks are detected in place of the D2, D3, and D4
lines (curve 1). A further increase in ND facilitates a rise
in the intensity of the D1–D4 lines. A wide emission
band on the left of the D2 line (curve 2 in Fig. 3) indi-
cates that samples with ND ~ 108 cm–2 display emissions
with Em = 0.807 and 0.830 eV, which are of approxi-
mately equal intensities. In the sample with δ = 25%
(curve 3 in Fig. 3), emission in the vicinity of the D1
line becomes dominant; its integrated intensity (ID1),
reduced to the same measurement conditions, turned
out to be an order of magnitude lower than that in sam-
ple 3 (Fig. 2).

Since the concentrations of oxygen and carbon are
virtually identical in the initial Cz-Si crystals of the n
and p types with NB, NP > 2 × 1016 cm–3, the consider-
able decrease in radiation intensity in the vicinity of the
D1 and D2 lines observed in n-type Cz-Si samples
could be due to the type of the doping impurity
involved. For this reason, DPL spectra were also stud-
ied in n-type FZ-Si crystals with NP = 8 × 1016 cm–3. In
the sample with ND = 3 × 106 cm–2, the dislocation-
induced PL is not detected. A very weak D2 line and
quite intense D3 and D4 lines are observed for ND =
1.5 × 107 cm–2 (curve 1 in Fig. 4). A 30-min annealing
of the sample at T0 = 700–800°C does not affect the
spectrum. At higher values of ND, emission in the vicin-
ity of the D1 and D2 lines is detected (curve 2), but the
values of ID1 are also an order of magnitude smaller
than those for sample 3 (Fig. 2).

It should be noted that in samples with different
oxygen contents (Figs. 2–4), an increase in ND from 107
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Fig. 2. DPL spectra recorded at 4.2 K in p-type Cz-Si
crystals (NB = 1.6 × 1016 cm–3) for different dislocation

densities ND: (1) 8 × 106, (2) higher than 2 × 107, and

(3) ~109 cm–2. Td = 1170°C.
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to 109 cm–2 does not lead to a large difference in the val-
ues of ID4 (these quantities differ by only a factor of sev-
eral units). Consequently, the comparable values of ID1

and ID4 in samples with δ > 20% (Figs. 3, 4) reflect a
decrease in the effectiveness of emission in the vicinity
of the D1 line.
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Fig. 3. DPL spectra recorded at 4.2 K in n-type Cz-Si crys-
tals (NP = 2.6 × 1016 cm–3) for different dislocation densi-

ties ND: (1) 1.2 × 107, (2) ~108, and (3) ~109 cm–2. Td =
1170°C.
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Fig. 4. DPL spectra recorded at 4.2 K in n-type FZ-Si crys-
tals (NP = 8 × 1016 cm–3) for different dislocation densities

ND: (1) 1.5 × 107 and (2) ~109 cm–2. Td = 1050°C.
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For FZ- and Cz-Si samples with NB, NP > 1016 cm–3

and ND ≤ 1.5 × 107 cm–2 (Figs. 2–4), the emission of a
TO exciton, its phonon replica, and the emission of a
TA exciton were detected in [10] for E > 1 eV.

Thus, the above results indicate specific changes in
the DPL spectra upon an increase in the oxygen, boron,
and phosphorus concentrations.

4. DISCUSSION

4.1. DPL Spectra for Energies E < 0.9 eV

A comparative analysis of the DPL spectra in FZ-
and Cz-Si crystals carried out by us earlier [7] and in
this work made it apparent that the broadened line with
Em = 0.82–0.83 eV is a characteristic feature of
deformed Cz-Si crystals with ND < 2 × 107 cm–2. The
D1 line appears in the DPL spectrum after annealing of
these crystals at 1070°C for t0 = 30 min, followed by
slow cooling to room temperature [7], or after the intro-
duction of a large number of dislocations (ND = 2 ×
107 cm–2, Fig. 2). These facts correlate with results
obtained by other authors. The D1 line is shifted
towards higher energies under uniaxial elastic deforma-
tion of samples with introduced dislocations [22] or
after their annealing in oxygen at 750°C [23]. In n-type
Cz-Si samples deformed at 900°C (Nd = 2 × 1014 cm–3,
ND ~ 109 cm–2), the emission in the vicinity of the D1
line depends on the cooling rate of the samples after
annealing at 1200°C [24]. In the case of slow cooling,
the D1 line is replaced by a broad step adjoining the
long-wavelength wing of the D2 line and falling off
steeply for E < 0.82 eV; after annealing, D1 and D2
lines of approximately equal intensities are detected.
The broad band with a peak at E ≈ 0.82 eV and the D2–
D4 lines are observed after rapid (td = 15 min, ND = 5 ×
105 cm–2) deformation of Cz-Si samples at 700°C [9],
while for td = 14 h, DPL disappears completely.

The sum of these factors indicates that oxygen pre-
cipitation in Cz-Si crystals is a possible reason for the
strong effect of the conditions of sample preparation on
radiation in the vicinity of the D1 line.

We assume that, in the case of slow cooling of n- and
p-type Cz-Si samples (Figs. 1, 2) followed by deforma-
tion, interstitial oxygen atoms precipitate on the avail-
able growth precipitates and in the vicinity of disloca-
tion steps. The mismatching of the molar volumes of
the matrix and the precipitates gives rise to elastic
stresses whose magnitude are maximal for the plane
precipitate and decreases by an order of magnitude at a
distance ~10–5 cm [11]. The effect of elastic stresses on
the position of the D1 line [22, 23] allows us to
attribute the emergence of radiation with Em = 0.82–
0.83 eV (Figs. 1, 2; see also [9, 24]) to the presence
of the steps responsible for the D1 line in the vicinity
of precipitates.
P

The emergence of the D1 line in the spectra of
deformed Cz-Si samples after annealing at 1070°C [7]
is probably due to the removal of steps from precipi-
tates as a result of dislocation climbing upon absorption
of interstitial silicon atoms generated during precipitate
growth. The detachment of 60° dislocations from oxy-
gen precipitates through climbing was observed in Cz-
Si crystals at 900°C [20]. The transformation of a line
with Em = 0.818 eV into a D1 line (Em = 0.807 eV) after
long-term annealing of Cz-Si crystals correlates with
the removal of dislocation loops from precipitates [13],
while the excitation of the D1 line (reported in [24])
after annealing at 1200°C followed by quenching cor-
relates with precipitate dissolution [21].

The number of steps increases with ND as a result of
moving-dislocations overcoming obstacles in the form
of impurity atoms, precipitates, and forest dislocations,
as well as due to the generation of steps during the for-
mation of dislocation nodes [14]. According to [6], the
separation between the nodes in dislocation networks
in samples subjected to strong plastic deformations (δ ~
20–30%) amounts to 50–500 nm. Assuming that the
number of steps exceeds the number of nodes, we take a
value of 50 nm for the mean distance between the steps. In
this case, for the dislocation density ND ~ 109 cm–2, we
obtain the step concentration ~1014 cm–3, which is an
order of magnitude higher than the maximum possible
concentration of precipitate nuclei in Cz-Si crystals
with NO ~ 1018 cm–3 [25]. At a given temperature T0, this
concentration is determined by the annealing time for
which the oxygen diffusion length becomes compara-
ble with the mean distance between precipitates. In this
case, the growth of existing precipitates is more proba-
ble than the nucleation of new precipitates; i.e., the
number of steps near which no precipitates are formed
increases with ND. For this reason, the D1 line emerges
in the DPL spectrum for ND > 107 cm–2, with its inten-
sity increasing with δ (Fig. 2).

The sensitivity of the D1 line to oxygen, the mini-
mal energy barrier for the formation of copper precipi-
tates at perfect prismatic dislocations [17], and the for-
mation of helicoidal dislocations during oxygen precip-
itation in silicon [20] indicate that the edge steps
associated with the D1 line could be localized at screw
dislocations. The D2 line can be attributed to edge-type
steps at 60° dislocations. Regular segments of a screw
dislocation are split into two 30° partial dislocations,
while 60° dislocations are split into 30° and 90° partial
dislocations. Ruptured bonds of both partial disloca-
tions are reconstructed (pairwise closed) and do not
create any deep states in the band gap of silicon. Two
quasi-one-dimensional bands that are split off from the
conduction band (empty EDc band) and from the
valence band (filled EDv band) and that are located at a
distance of ~0.07 eV from the edges of their parent
bands are associated with the deformation potential of
90° partial dislocations. Consequently, deep states
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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associated with edge steps or dislocation nodes and
manifested in PL may be due to the presence of silicon
atoms with unsaturated bonds.

A considerable decrease in the PL intensity in the
vicinity of the D1 and D2 lines in deformed n-type Cz-
and FZ-Si samples with NP > 1016 cm–3 (Figs. 3, 4) rel-
ative to p-type Cz-Si samples (Fig. 2) correlates with
the suppression of oxygen precipitation in n-type Cz-Si
samples as a result of strong doping by Group V impu-
rities (in contrast to doping with boron) [26], as well as
with the difference between the effects produced by
boron and phosphorus on the mobility of dislocations in
Si [27]. The problem of interaction of technological
impurities (nitrogen, oxygen, carbon) and some other
doping impurities from Groups III and V with cores of
90° partial dislocations in silicon was investigated the-
oretically in [28]. The decelerating effect of oxygen on
the motion of dislocations was attributed to accelerated
diffusion of interstitial oxygen atoms Oi along the cores
of these dislocations and to the formation of a stable
complex of two Oi atoms in the region of extension. The
As, B, N, and P impurities, in contrast to oxygen, inter-
act chemically with the core of a 90° partial dislocation,
thus rupturing the reconstructed bonds, and with a
reconstruction defect in this core (soliton). A soliton is
a solitary Si atom with three saturated bonds and one
unsaturated bond situated at the boundary between
reconstructed regular segments of partial dislocations
with different phases. Consequently, a phosphorus
atom in the core of a partial dislocation can replace, for
example, a Si atom with (a) four or (b) three saturated
bonds (during its interaction with a soliton). In case (a),
there is a shallow donor level of phosphorus and a deep
level of the soliton in the band gap, while in case (b), we
are left only with a shallow level (associated with a pair
of valence electrons in phosphorus) near the top of the
valence band or in the valence band; i.e., passivation of
unsaturated bonds of the soliton takes place. According
to [28], the soliton being pinned at these impurities
(case b) is more advantageous from the energy point of
view. As a result, dislocation-pinning centers with high
binding energies are formed (E* = 2.3–2.5 eV for As,
B, and P and 3.4 eV for N). Such values of E* are due
to a change in the structure of chemical bonds in the
core and to the necessity of their switching during the
motion of dislocations (otherwise, an impurity atom
would follow the dislocation).

The chemical interaction of phosphorus with edge
steps may also lead to passivation of their electric activ-
ity, which explains the considerable decrease in the
intensity of the D1 and D2 lines in n-Si with NP >
1016 cm–3 (Figs. 3, 4). The high intensity of the D1 line
in p-type Cz-Si (Fig. 2) and the above-mentioned
results [26, 27] indicate that the behavior of boron does
not match the predictions made in [28]. In real crystals,
the formation of impurity complexes depends, in par-
ticular, on the charge state of doping impurities and
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
intrinsic point defects, the concentration of technologi-
cal impurities, and the probability of formation and the
thermal stability of clusters SiOx, B2O3, P2O5, etc. [26].
Boron and phosphorus atoms differ in the value of the
covalent radius (0.86, 1.10, and 1.18 Å for B, P, and Si,
respectively) and in the sign of the ions at T ~ 1000°C
in the samples under investigation (positive for P and
negative for B). In the case of doping with boron, the
nucleation of oxygen precipitates near edge steps is
apparently more advantageous from the energy view-
point, while in the case of doping with phosphorus, the
chemical interaction of phosphorus with the steps dom-
inates.

In the framework of this hypothesis, the reason for
the emergence of the D1 and D2 lines in the presence of
transition metals is associated in [29] with the forma-
tion of edge steps due to dislocation climb during diffu-
sion or precipitation of these impurities.

4.2. DPL Spectra for Energies E > 0.9 eV

In deformed p-type Cz-Si samples (Fig. 2), the D4
line (Em = 0.998 ± 0.001 eV) is attributed to the emis-
sion of regular segments of 60° dislocations with an
equilibrium value of the stacking fault width ∆0. This
radiation is the result of recombination of nonequilib-
rium electrons and holes trapped in quasi-one-dimen-
sional bands EDc and EDv, respectively. The deforma-
tion potential of a 30° partial dislocation plays the role
of a weak perturbation whose magnitude depends on
the distance between partial dislocations, i.e., on the
value of ∆. This parameter affects the depths of the
bands EDc and EDv and, accordingly, the energy of radi-
ation. The value of ∆ can be changed, for example, by
cooling a deformed sample to room temperature under
a large load [2, 3]. Such a sample acquires regular seg-
ments of 60° dislocations with nonequilibrium values
of ∆, while the DPL spectra of Si acquire a series of nar-
row lines (instead of the D4 line). For ∆ > ∆0, each value
of ∆ corresponds to a narrow line with a value of Em >
1.00 eV, which increases discretely with ∆, while for
∆ < ∆0, the values of Em decrease discretely in the inter-
val 1.00–0.93 eV. Thus, radiation with Em = 0.95–0.97 eV
in p-type Cz-Si samples with an equilibrium disloca-
tion structure (see the inset to Fig. 2) falls in the energy
range corresponding to segments of 60° dislocations
with nonequilibrium values of ∆ < ∆0. This could mean
that, in addition to regular segments of 60° dislocations
with equilibrium values of ∆0, such samples also con-
tain regular segments with ∆0e < ∆0.

An analysis of the DPL spectra of plastically
deformed Ge crystals with an equilibrium dislocation
structure [30] reveals that the value of Em = 0.513 eV
for band 1, associated with 60° dislocations, corre-
sponds to regular segments of 60° dislocations with an
3
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equilibrium splitting ∆0 in only one sample. For the
remaining samples, lower values of Em = 0.497–0.508 eV
are observed.

The electron-microscopic images presented in [31]
show that regular segments of glide dislocations in Ge
samples with an equilibrium dislocation structure are
characterized by different lengths and values of ∆. Reg-
ular segments with L > Lc correspond to the value ∆0,
while those with L < Lc correspond to the value ∆0e < ∆0.
The critical length Lc amounts to ~100 nm; i.e., the rela-
tion L > (20–30)∆0 holds for long segments (L > Lc),
while the minimal values ∆0e correspond to segments
with L ~ 30 nm.

The above results lead to the conclusion that the
spectral composition of PL in Si and Ge associated with
an equilibrium ensemble of regular segments of 60°
dislocations is determined by the distribution of these
segments over the lengths and the values of ∆. A higher
intensity of radiation with Em = 0.95–0.97 eV (due to an
increase in the number of 60° dislocations with lengths
L < Lc) in p-type Cz-Si samples with ND > 107 cm–2 cor-
relates with the presence of oxygen precipitates.

In the spectra of deformed FZ- and Cz-Si samples
doped with phosphorus with NP > 1016 cm–3, the D4 line
is characterized by the value Em = 0.988 ± 0.001 eV
(Figs. 3, 4), which is 10 eV lower than the values of Em

for crystals with a different level of doping (Figs. 1, 2).
In analogy with the above arguments, we assume that
these values of Em are due to a decrease in the lengths
of the majority of regular segments of 60° dislocations
to values L < Lc. This range of L values is apparently
determined by the number of steps whose electrical
activity is passivated by phosphorus.

5. CONCLUSIONS

Thus, the hypothesis on the relation between the D1
and D2 lines and the edge-type steps makes it possible
to explain specific features of the DPL spectra in Si
crystals with a large oxygen content. Oxygen precipi-
tates formed in deformed p-type Cz-Si crystals with
dislocations affect the number and the radiation energy
of the steps separating regular segments, as well as the
length of these segments. The quenching of the D1 and
D2 lines in the case of an elevated phosphorus concen-
tration is, in all probability, a manifestation of the
chemical interaction of phosphorus with the steps. Low
solubility of oxygen and transition metals at room tem-
perature and their effective interaction with the steps
facilitate concentration of these impurities in individual
regions on dislocations, which causes carrier recombi-
nation to occur at quasi-one-dimensional dislocation
segments and defects separating them.
PH
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Abstract—The effect of the type of conductivity and the doping level of InSb single crystals on the mobility
of fast 60° dislocations in a magnetic field is discovered. It is found that doping of a pure InSb crystal with tel-
lurium (n-type impurity) to 1018 cm–3 reduces the mobility of dislocations to the background level. At the same
time, in p-type InSb crystals doped with Ge with the same carrier concentration (1018 cm–3), the magnetoplastic
effect is manifested clearly. It is shown that preliminary mechanical loading and, hence, internal stresses in the
crystal affect not only the mean path length of dislocations in a magnetic field but also the magnitude of the
threshold magnetic field below which the magnetoplastic effect is not observed. Possible reasons for these phe-
nomena are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetoplastic effect (MPE), viz., the motion
of dislocations in a dc magnetic field in the absence of
mechanical loading, was discovered first in NaCl crys-
tals [1]. The MPE is manifested macroscopically in the
lowering of the yield stress of nonmagnetic crystals in
a magnetic field [2], in a decrease in their microhard-
ness [3] and in the coefficient of strengthening [4], and
in a change in the internal friction [5, 6]. The MPE is
observed in alkali-halide crystals [1–10], nonmagnetic
metals [11, 12], polymers [13, 14], molecular crystals
[15], semiconductors [16–19], and ferroelectrics [20,
21]. An analysis of the type of motion of dislocations in
a weak magnetic field (µB ! kT, where µ is the Bohr
magneton, B is the magnetic induction, k is the Boltz-
mann constant, and T is the temperature) and its depen-
dence on various physical parameters proved that the
MPE is associated with depinning of dislocations from
magnetically sensitive stoppers as a result of spin-
dependent electron transitions occurring under the
action of an external magnetic field in the dislocation-
paramagnetic-center system [7–10]. A similar concept
[22, 23] forms the basis of interpretation of a number of
phenomena associated with the effect of weak magnetic
fields on the physical and chemical properties of non-
magnetic materials.

This work is devoted to an analysis of the MPE
effect in InSb semiconducting crystals with different
types of conduction and doping levels and to investiga-
1063-7834/03/4502- $24.00 © 20266
tion of the effect of internal stresses in a crystal on the
mobility of fast 60° dislocations in a dc magnetic field.

2. EXPERIMENTAL TECHNIQUE

Experiments were carried out on InSb single crys-
tals with different types of conduction and different
doping levels: n type (1 × 1014, 1 × 1018 cm–3) and p type
(5 × 1013, 1.6 × 1014, 1 × 1017, 1 × 1018 cm–3).

Samples were cut in the form of rectangular bars
with dimensions of 3 × 1.5 × 40 mm in the directions
[111], [112], and [110], respectively. Dislocations were
introduced by scratching the sample observation sur-
face (111) with a corundum needle along the [110]
direction and were subsequently dispersed by four-
point bending at elevated temperatures (over distances
of 1000–2000 µm). The method of sample preparation
is described in detail in [24, 25].

The prepared samples were placed in the uniform dc
field of an electromagnet (B = 0.2–0.9 T) for a time t
varying from a few seconds to 20 min. The experiments
were made at an elevated temperature (T = 200°C) with
preliminary slow heating for 40–60 min followed by
analogous slow cooling.

The initial and final positions of dislocations (before
and after “magnetic processing,” respectively) were
revealed with the help of selective chemical etching
003 MAIK “Nauka/Interperiodica”
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(with etchant SR-4A) [16, 25]. The path lengths of fast
60° dislocations were measured.

3. RESULTS AND DISCUSSION

The MPE is manifested in semiconducting InSb
crystals as a preferred motion of dislocations from a
scratch (“diverging” half-loops) under the action of a dc
magnetic field at elevated temperatures in the absence
of mechanical loading [16]. The displacement of dislo-
cations towards the scratch (“contracting” half-loops)
is also observed. It was shown in [16], however, that the
relative number of contracting dislocations in magnetic
fields B = 0.7–0.9 T amounts to only ~10% of the total
number of displaced dislocations, while the relative
number of such dislocations in the case of control
annealing in the absence of magnetic action is of the
order of 90%. The mean path lengths of diverging dis-
locations are considerably larger in a magnetic field
than for B = 0.

We observed the effect of the conduction type and
the doping level of InSb single crystals on the MPE. It
was found that doping of a pure n-InSb crystal (carrier
concentration C = 1 × 1014 cm–3; symbols 1 in Fig. 1)
with tellurium to a concentration C = 1 × 1018 cm–3

(symbols 5 in Fig. 1) suppresses the MPE; i.e., the path
lengths of dislocations diverging from the scratch
decrease to the background level, while the relative
number of dislocations contracting to the scratch
increases to 80–90%, which is typical of annealing.
However, the MPE in p-type InSb crystals doped with
Ge is manifested clearly even for the Ge impurity con-
centration (C = 1 × 1018 cm–3, symbols 3 in Fig. 1) equal
to the Te impurity concentration in n-InSb: the path
lengths of diverging dislocations coincide, to within the
experimental error (~15%), with the path lengths in an
undoped crystal (Fig. 1). As the concentration of the Ge
doping impurity decreases (C = 1 × 1017 cm–3), the path
length of diverging dislocations in a magnetic field
decreases (point 4 in Fig. 1, obtained from measure-
ments on five samples). A further decrease in the Ge
concentration to 1.6 × 1014 cm–3 suppresses the MPE
effect completely. It should be noted that, in the same
crystals subjected to mechanical tests in a zero mag-
netic field [24], the path lengths increased with Te con-
centration insignificantly, while an increase in the Ge
concentration led to a considerable decrease in the path
length. Thus, magnetic processing in the absence of
mechanical loading leads to the opposite effect: the
path lengths decrease to the background level upon an
increase in the Te doping level, while doping with Ge to
the same concentration virtually does not change the
path length, which remains the same as that in pure
samples. Consequently, the mobility of dislocations in
semiconducting crystals in a magnetic field is deter-
mined not only by the type of conductivity but also by
the magnetic state of the doping impurity. Probably,
doping of InSb with tellurium strengthens the crystal in
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
a magnetic field, as was observed in [9] for NaCl(Pb)
crystals.

A comparative analysis was carried out for three
n-type InSb crystals with the same carrier concentra-
tion (C = 1 × 1014 cm–3) but taken from different boules.
Special analysis of the temperature dependence of elec-
trical conductivity, as well as chemical analysis,
revealed no difference between the samples from the
three boules. However, the mobilities of dislocations in
these seemingly identical crystals in a magnetic field
differ significantly.

The dependences of the mean path length of diverg-
ing dislocations for InSb-I crystals [16] (symbols 1)
and InSb-II (symbols 2) are presented in Fig. 1. The
observed saturation level for path lengths in InSb-II
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Fig. 1. Dependence of the mean path length l of diverging
fast 60° dislocations on the magnetic induction B for InSb
single crystals subjected to preliminary mechanical loading
of (1–5) 15 and (6) 10 MPa. T = 200°C, and t = 10 min.
Crystals of the n type: (1, 6) InSb-I (1 × 1014 cm–3),
(2) InSb-II (1 × 1014 cm–3), and (5) InSb(Te) (1 × 1018 cm–3);
and of the p type: (3) InSb(Ge) (1 × 1018 cm–3), and
(4) InSb(Ge) (1 × 1017 cm–3).
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Fig. 2. Dependence of the mean path length l of diverging
fast 60° dislocations in the InSb-I crystal (of the n type, with
concentration 1 × 1014 cm–3) on the preliminary mechanical
loading τpr for various values of magnetic induction B:
(1) 0.9, (2) 0.8, and (3) 0.7 T. T = 200°C and t = 10 min.

l, µm
3



268 PETRZHIK et al.
depends neither on the magnetic-processing time nor
on the value of the preliminary mechanical loading.
The saturation level is apparently determined by the
presence of nonmagnetically sensitive stoppers that
cannot be overcome by dislocations in a magnetic field.
An analysis of the entire optical transmission band and
(separately) the edge of the absorption band revealed
small changes in the structure of the optical spectrum
and a small shift in the edge of the absorption band in
InSb-II relative to those in InSb-I. The reason for these
changes is unclear. The InSb-III crystal subjected to
mechanical tests behaved similarly to InSb-I (in which
the MPE is manifested most clearly): under identical
conditions, the activation energy for InSb-I crystals is
UInSb-I = 0.8 eV, while the activation energy for InSb-III
crystals is UInSb-III = 0.88 eV; however, under the action
of a dc magnetic field in the absence of mechanical
loading, fast 60° dislocations contract and diverging
dislocations are not observed. The analysis of the
mobility of dislocations in three types of InSb crystals
with the same charge carrier concentration in a mag-
netic field suggests that the magnitude of the MPE is
affected either by a small amount of a magnetically sen-
sitive impurity (whose presence is not manifested in
conductivity or in mechanical tests) or by different
magnetic states of the same impurity in different crys-
tals, which may facilitate strengthening of the crystal in
analogy with [9].

The effect of preliminary mechanical loading during
the “withdrawal” of dislocations from a scratch with
the help of four-point bending on the dislocation mobil-
ity in a magnetic field was studied on InSb-I samples
(n type, C = 1 × 1014 cm–3). Preliminary magnetic load-
ing sets the density of dislocations in an array originat-
ing at the scratch and, hence, the level of internal stress.
Figure 2 shows the dependence of the mean path length
l of dislocations on the preliminary mechanical loading
stress τpr for various values of the magnetic field. We
plotted the path length of diverging dislocations alone.
It can be seen from Figs. 1 and 2 that the level of inter-
nal stress determines not only the dislocation path
lengths in a magnetic field but also the threshold mag-
netic field starting from which diverging dislocations
are predominantly observed. For example, Bthr ≈ 0.6 T
for τpr = 15 MPa (symbols 1 in Fig. 1), while Bthr ≈ 0.8 T
for τpr = 10 MPa (symbols 6 in Fig. 1).

Our experiments proved that, in semiconducting
crystals, as in alkali-halide crystals and metals, the
internal stresses of the crystal serve as the driving force
for dislocations in the MPE. The role of the magnetic
field lies in the creation of conditions for depinning of
dislocations from stoppers.
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Abstract—The formation of magnetosensitive point-defect complexes in NaCl : Eu crystals is investigated. It
is shown that the formation of intermediate metastable magnetosensitive point-defect complexes and their sub-
sequent spontaneous transformation into relaxation products are thermally activated processes and do not
depend on the diffusion mobility of impurity–vacancy dipoles. It is revealed that the magnetic field induces a
transition of the magnetosensitive point-defect complexes to a new state that cannot occur in the absence of a
magnetic field. A variation in the heat treatment temperature makes it possible to enhance the magnetoplastic
effect significantly (by a factor of three) and to create the appropriate conditions for the existence of magneto-
sensitive complexes in the crystal over a long period of time. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Recent investigations into the magnetoplastic effect

in diamagnetic crystals [1–7] have demonstrated that
spin-dependent reactions between structural defects are
primarily responsible for the plastic properties of the
crystals [5]. The hypothesis that the effect of a magnetic
field on the plasticity of ionic crystals should be associ-
ated with the change in the kinetics of spin-dependent
reactions was first put forward by Al’shits et al. [4] with
respect to the interaction between point defects and dis-
locations. At present, it has been established that the
aggregation of impurity–vacancy dipoles into compos-
ite complexes can be treated as a specific type of spin-
dependent reactions affecting the dislocation mobility
in magnetic fields [5–7]. These reactions are of great
practical interest, because the effect of a magnetic field
on the kinetics of relaxation of a point-defect sub-
system brings about the transformation of dislocation
stoppers and can manifest itself not only in ionic crys-
tals but also in ionic–covalent (ZnS, InSb) [8, 9] and
covalent (Si, Ge) crystals [10–15]. In the latter group of
crystals, this effect can be revealed from the changes in
the mechanical [10, 11], electrical, and optical proper-
ties [8, 9, 12–15].

Up to now, many aspects of the interaction between
paramagnetic impurity–vacancy dipoles that migrate in
the crystal and aggregate into complexes due to thermal
fluctuations remain unknown. A large number of works
and reviews [16–20] that were concerned with this
problem long before the discovery of the magnetoplas-
tic effect did not provide insight into the mechanisms of
the most important, early stages of aggregation of
impurity–vacancy dipoles and the evolution of already
1063-7834/03/4502- $24.00 © 20270
existing complexes. The main problem lies in the fact
that the standard spectroscopic techniques used for
measuring electron paramagnetic resonance (EPR),
luminescence, and other properties of defect crystals
possess an insufficient sensitivity to distinguish differ-
ent impurity–vacancy dipole complexes formed at the
earliest stages of aggregation and to identify numerous
conformations of complexes of the same type [20].
However, as was shown in our earlier work [7], it is
these initial stages of point-defect relaxation that are
responsible for the formation of comparatively long-
lived complexes (~1–10 h at room temperature) whose
structure undergoes transformations in magnetic fields.
In this respect, the investigation into the kinetics of for-
mation and subsequent transformations of these com-
plexes can provide better insight into the interrelation
between the spin and molecular dynamics of defects in
magnetic fields, which is essential to the understanding
of the magnetoplastic effects in crystals.

One of the most efficient methods of determining
the height of the barriers between different states of
defects and investigating the kinetics of reactions in
crystals involves thermoactivation analysis. In recent
years, many attempts have been made to elucidate the
role played by thermally activated processes in the
magnetoplastic effect [1, 2, 5]. However, under the
experimental conditions used in the aforementioned
works, a change in temperature could affect several
concurrent processes occurring prior to, during, and
even after the spin-dependent stage. Among these pro-
cesses are the formation of the atomic structure of mag-
netosensitive point-defect complexes, the thermofluc-
tuation generation of the electronic magnetosensitive
003 MAIK “Nauka/Interperiodica”
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states, spin–lattice relaxation in a magnetosensitive
state, etc. The aim of the present work was to examine
magnetosensitive point-defect complexes under exper-
imental conditions providing separation of the contri-
butions from the concurrent processes to the thermoac-
tivation of magnetic-field-induced reactions in a sub-
system of paramagnetic point defects in NaCl : Eu
crystals.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The experiments were carried out with quenched
crystals of NaCl : Eu (~0.1 wt % Eu). The choice of
europium impurities was motivated by the possibility
of forming magnetosensitive point-defect complexes
based on Eu impurity ions [6, 7]. Moreover, there is
strong evidence that the relaxation of a thermally
excited subsystem of europium impurity–vacancy
dipoles is a chemical reaction occurring through spin-
dependent stages [20]. The quenching required to
excite the subsystem of point defects was performed
using crystals heat treated under the following condi-
tions: (1) at T = 920 K for 2 h, (2) at 770 K for 1 h, and
(3) at T = 770 K for 10 min. Then, in all three cases, the
crystals were cooled in a copper vessel to a temperature
of 293 K at a mean rate of ~5 K/s. These heat-treatment
conditions were used to elucidate the role played by the
possible dissociation of defect complexes in the studied
processes and to separate their fragments at a high tem-
perature. In order to prevent diffusion of oxygen and
hydroxyl groups into the crystals, their heating in each
experiment was performed in a helium or argon atmo-
sphere.

It is evident that the possibility of promoting a mag-
netosensitive reaction offers considerable advantages
for its separation from concurrent (or consecutive) pro-
cesses. Therefore, the experimental conditions used in
magnetic treatment of the crystals have to provide a
rapid transformation of magnetosensitive point-defect
complexes. Earlier [21], we established that treatment
of NaCl : Eu crystals in crossed dc and microwave mag-
netic fields (under the EPR conditions) results in fast
relaxation of magnetosensitive point-defect complexes
and a change in the microhardness when the magnetic
field induction falls in several discrete ranges. A set of
magnetic field inductions that correspond to locations
of the lines in the classical EPR spectrum is a unique
characteristic of the studied complexes and makes it
possible to identify them as defects containing Eu2+

paramagnetic ions [6]. Point defects in the crystal sub-
jected to this treatment in a magnetic field more rapidly
transform into new states (for ~5 min) as compared to
point defects in the crystals exposed to a dc magnetic
field with an induction of ~1 T in the absence of a
microwave field (for 30–50 min at T = 293 K [3–5]).
For this reason, in order to initiate transformations in
the structure of magnetosensitive point-defect com-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
plexes, the sample was placed in a cylindrical cavity of
an RÉ-1306 standard radiospectrometer, which was set
to measure one of the lines of the electron paramagnetic
resonance detected in [5, 6, 21] from the change in plas-
ticity. The chosen line corresponded to transitions
between the states with spin projections –1/2 and +1/2
onto the direction of the dc magnetic field under the
conditions when the induction vector was directed
along the [001] principal magnetic axis [16]. Another
fast technique for magnetic-field initiation of transfor-
mations in a subsystem of point defects consists in
increasing the magnetic field induction to 6 T. In this
case, the use of four magnetic-field pulses, which have
the shape of a half-cycle of a sinusoid and a pulse width
of 10 ms, makes it possible to transform completely all
the magnetosensitive point-defect complexes accumu-
lated in the crystal at a given instant of time.

In order to reveal magnetosensitive point-defect
complexes in a crystal, the microhardnesses H of the
crystal under investigation was measured before and
immediately after a 5-min treatment in crossed mag-
netic fields. The magnitude of the difference ∆H
between these microhardnesses served as a quantitative
measure of the magnetoplastic effect and indirectly
characterized the concentration of magnetosensitive
centers accumulated in the crystal. In all the experi-
ments, the Vickers microhardness H of the crystals was
measured under an indenter load of 0.2 N and the load-
ing time was 10 s. The indentation diagonals were ori-
ented along the [110] direction. Each point in the
graphs was obtained by averaging over 20–30 measure-
ments. As a result, the error in the microhardness mea-
surement was reduced to 1–1.5%. This is a typical error
in measurements of the microhardness in ionic crystals
and other materials (see, for example, [22]). It should
be noted that, in all the experiments, the microhardness
measurements and magnetic treatment of the crystals
were performed at T = 293 K and the total duration of
these procedures was considerably shorter than that of
the transient processes examined in this work. Under
these conditions, any variations in the kinetics and
magnitude of the magnetoplastic effect ∆H could be
associated only with the influence of the thermal pre-
history on the formation of magnetosensitive point-
defect complexes and not with the change in the condi-
tions of measuring the plastic properties or the mag-
netic treatment.

3. RESULTS AND DISCUSSION

The magnitude of the microhardness H of the crys-
tals quenched upon isothermal treatment at 920 K for
1 h varies nonmonotonically with time t after the
quenching (Fig. 1, curve 1). Special experiments
revealed similar changes in the microhardness H upon
indentation of the crystals that were cleaved not imme-
diately after quenching but directly before the indenta-
tion was performed on the as-prepared surface. This
3
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suggests that the nonmonotonic variations in the micro-
hardness H are caused by changes in the state of impu-
rities in the crystal bulk rather than by random varia-
tions in the atmosphere-sensitive surface properties of
the samples. Similar variations in the microhardness
after quenching have been observed earlier by other
authors [23]. In our experiments, after measuring the
microhardness H used in plotting curve 1 (Fig. 1), the
crystal was exposed to a magnetic field and the micro-
hardness H was measured once again. The instant of
time at which the latter value of the microhardness was
measured (Fig. 1, curve 2) differed only slightly from
that of the former value. As a result, we obtained two
different values within a relatively narrow time interval.
Thus, the same sample was used to obtain two points at
identical (to within minutes) instants of time in curves 1
and 2 (Fig. 1). After measuring the two points, the sam-
ple was not used, because treatment in a magnetic field
leads to irreversible changes in the crystal [21]. The
reliability of the results obtained was checked by mea-
suring the microhardness H for several samples pre-
pared under the same conditions.

The change in the plasticity of the crystals ∆H due
to exposure to magnetic fields is equal to zero immedi-
ately after quenching and in a long period of time after
quenching (at t > 100 h) (Fig. 2a, curve 2). Upon iso-
thermal treatment of the crystals at T = 293 K for t ~ 25 h

~~
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II–III*

I–II

920 K

1 h t

293 K

1
2

B

H0
210

202

194

0 2 4 20 40 60 80 100 300
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t, h

Fig. 1. Dependences of the microhardness H on the time t
elapsed after quenching of the crystals from 920 K for
(1) samples in the absence of a magnetic field and (2) the
same samples exposed to a single magnetic-field pulse (B =
7 T; pulse width, 10 ms). H0 is the microhardness of the
crystals unquenched or held after quenching for several
years at room temperature. Roman numerals denote the
impurity relaxation stages corresponding to the occurrence
of different-type complexes in the crystal: (I) point defects
forming magnetosensitive point-defect complexes, (II)
magnetosensitive point-defect complexes, (III) products of
relaxation of magnetosensitive point-defect complexes in
the absence of an external magnetic field, and (III*) prod-
ucts of relaxation of magnetosensitive point-defect com-
plexes formed in the presence of an external magnetic field.
The inset illustrates the temperature–time schedule of mea-
surements (T is the variable temperature), the instants of
indentation (indicated by arrows), and the time interval of
exposure to magnetic fields (designated as B).
P

after quenching, the quantity ∆H becomes nonzero and
reaches a maximum at t ~ 50 h. At t > 50 h, the change
in the plastic properties of the crystals in response to
external magnetic fields decreases and then becomes
zero. Similar behavior is observed for other quenching
conditions when the crystals are held at T = 293 K
between quenching and indentation (Fig. 2a, curve 2;
Fig. 2b).

The presence of the maximum in the dependence
∆H(t) indicates that the accumulation of magnetosensi-
tive point-defect complexes depends not only on the
kinetics of their formation at stage I–II (Fig. 2b) but
also on a subsequent relaxation of the subsystem of
point defects at stage II–III, during which the magneto-
sensitive point-defect complexes spontaneously (in the
absence of external magnetic fields) transform into new
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Fig. 2. (a) Dependences of the microhardness change ∆H
induced by the crossed dc and microwave magnetic fields
under EPR conditions on the time t elapsed after quenching
of the crystals from 770 K (upon isothermal treatment for
1 h). After quenching, the samples were held at tempera-
tures of (1) 77, (2) 293, (3) 393, and (4) 473 K. The inset
illustrates the temperature–time schedule of measurements
(T is the variable temperature), the instants of indentation
(indicated by arrows), and the time interval of exposure to
magnetic fields (designated as B). (b) Dependences of the
microhardness change ∆H induced by the crossed dc and
microwave magnetic fields under EPR conditions on the
time t elapsed after quenching of the crystals from (1) 920 K
(upon isothermal treatment for 1 h) and (2) 770 K (upon iso-
thermal treatment for 10 min) and a schematic diagram of
the stages of the evolution of point-defect complexes (des-
ignations are the same as in Fig. 1).
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complexes insensitive to magnetic fields. With the aim
of analyzing the role of these processes, we carried out
a series of experiments in which the crystals were
(i) quenched from 770 to 293 K; (ii) slowly cooled (for
1–3 min) to 77, 393, or 473 K; and (iii) subjected to iso-
thermal treatment under the new conditions up to the
measurement of the microhardness and softening of the
sample in the magnetic field at 293 K. (Cooling to room
temperature during quenching in all experiments is nec-
essary to ensure the same rate of freezing of the meta-
stable states of point defects and the same initial con-
centration of impurity–vacancy dipoles and their meta-
stable complexes.) It was found that an increase in the
temperature T of isothermal treatment of the crystals
after quenching leads to a shift of the maximum in the
time dependence of the microhardness change ∆H
toward the short-time range (Fig. 2a). Moreover, we
revealed a noticeable decrease in the lifetime of the
magnetosensitive state of the crystal. All the above find-
ings suggest that the formation of magnetosensitive
complexes occurs more rapidly with an increase in the
temperature. This assumption is quite consistent with
universally accepted concepts of an increase in the rate
of mutual transformation between different configura-
tions of complexes. A decrease in the maximum value
of ∆H with an increase in the temperature T can imply
that the rate of transformation of defects from a magne-
tosensitive state into a new state (stage II–III) also
increases with an increase in the temperature. In order
to verify this assumption, the crystal was held at T =
293 K until the stage of accumulation of magnetosensi-
tive defects (I–II) was attained (this corresponds to the
maximum softening of the crystal in a magnetic field).
After reaching the maximum microhardness change
∆H (at ~50 h), when the defect accumulation was
assumed to be close to completion, the temperature was
changed and the crystal was held at a different tempera-
ture (Fig. 3). It turned out that, upon cooling of the crys-
tal, spontaneous weakening of the magnetoplastic
effect becomes considerably less pronounced (Fig. 3).
This means that thermal fluctuations favor not only the
accumulation of magnetosensitive point-defect com-
plexes but also their relaxation and transformation into
reaction products that are insensitive to a magnetic
field. Therefore, in the absence of a magnetic field, the
accumulation of magnetosensitive point-defect com-
plexes in the crystal depends on the rate of defect for-
mation at stage I–II and the rate of transformation into
products of relaxation at stage II–III (see scheme in
Fig. 2b).

Before proceeding to the discussion of the results,
one additional essential remark needs to be made. The
magnitude of the microhardness H of the crystals
quenched from 770 K is smaller than that of the crystals
quenched from 920 K and amounts to approximately
150 MPa. In contrast, the magnitude of the softening
∆H of the former crystals (18 MPa at a maximum) is
larger than that of the latter crystals. By varying the
quenching conditions and the temperature of isother-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
mal treatment between quenching and exposure to a
magnetic field, we succeeded in enhancing the effect of
softening of the crystals to 12%, which is three times
larger than the effect observed earlier in [6, 7, 21]. Fur-
thermore, the revealed possibility of retarding the spon-
taneous transformation of magnetosensitive point-
defect complexes through cooling of the crystals
(Fig. 3) opens the way to the stabilization of magneto-
sensitive point-defect complexes.

At T = 770 K, the diffusion coefficient D is approx-
imately equal to 10–20 m2 s–1 [24] and the diffusion
length L1 of an impurity–vacancy dipole for time t = 6 ×
102 s amounts to ~(6Dt)1/2 ≈ 6 × 10–9 m, which is almost
two orders of magnitude smaller than the mean distance
between complexes (~10–7 m). Consequently, the heat
treatment at 770 K for 10 min can result only in dipole
displacements comparable in size to the complexes
themselves. However, as was shown in [24], the diffu-
sion activation energy is 0.7 eV. On this basis, we found
that, upon isothermal treatment at a higher temperature
(920 K) for 2 h, the mean distance L2 (diffusion length)
to which an impurity–vacancy dipole can move away
from the dissociating complex turns out to be nearly
30 times larger than the diffusion length L1. This
implies that the dipole ceases to belong to a particular
complex. Hence, if the diffusion significantly contrib-
utes to the formation of complexes, the change in the
quenching conditions should substantially affect both
the redistribution of dissolving impurities in the crystal
and the time of their subsequent aggregation at the
same temperature, T = 293 K. In particular, the times
required to form a magnetosensitive point-defect com-
plex under the above conditions should differ by
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Fig. 3. Dependences of the microhardness change ∆H
induced by the crossed dc and microwave magnetic fields
under EPR conditions on the time t elapsed after quenching
of the crystals (isothermal treatment at 770 K for 1 h). After
quenching, the samples were held first at a temperature of
293 K for 50 h and then at temperatures T = (1) 77, (2) 293,
and (3) 473 K. The inset illustrates the temperature–time
schedule of measurements (T is the variable temperature),
the instants of indentation (indicated by arrows), and the
time interval of exposure to magnetic fields (designated
as B).
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~(L2/L1)2 ~ 302, i.e., by approximately three orders of
magnitude. On the other hand, it can be seen from
Fig. 2 that, if a difference between the positions of the
maxima in the dependences ∆H(t) does actually occur,
it is considerably less than the difference that would be
observed if the diffusion processes were to be involved
in the formation of magnetosensitive point-defect com-
plexes. Most likely, this suggests that bimolecular pro-
cesses and higher order reactions do not appreciably
affect the kinetics of formation of magnetosensitive
point-defect complexes. This inference is confirmed by
the waiting time required for thermally activated
detachment of the impurity–vacancy dipole from the
complex during isothermal treatment of the crystals at
a high temperature for any reasonable activation energy
of detachment of the dipole from the complex (~0.1–
1 eV [25]). Therefore, the processes occurring at stages
I–II and II–III are most probably governed by the intra-
center excitation and structural relaxation of the com-
plexes existing in the crystal already prior to quench-
ing. The possible intracenter process that can be favor-
able to the formation of magnetosensitive point-defect
complexes is a thermostimulated transformation of the
complex from one configuration into another with a
change in the location of a constituent dipole. For
example, upon thermoactivation of the four relatively
stable trimer configurations, which were calculated and
described in [25], a change in the orientation of one of
the dipoles can result in a change in the configuration of
the complex as a whole.

Analysis of the experimental results revealed that
magnetosensitive point-defect complexes in crystals
can nucleate in the absence of magnetic fields. The
question arises as to the role played by the external
magnetic field in the evolution of the point-defect sub-
system: whether or not the magnetic field promotes the
transformation of magnetosensitive point-defect com-
plexes into state III, which can be achieved by these
complexes for a longer time in the absence of the field,
or the magnetic field initiates the formation of the com-
plexes in new states. The branching of processes after
the spin-dependent stage is a well-known phenomenon
in the theory of spin-dependent reactions [26]. Since
the formation of magnetosensitive point-defect com-
plexes is attended by a decrease in the magnitude of the
crystal microhardness and stage II–III is accompanied
by an increase in the microhardness H (Fig. 1), the
acceleration of stage II–III upon exposure to a magnetic
field, all other factors being equal, should lead to a
strengthening of the crystals rather than to their soften-
ing, as observed in our experiments. This allows us to
assume that exposure of point defects to magnetic fields
stimulates their relaxation from state II to a state III*
differing from state III; i.e., the magnetic field induces
a new concurrent process of relaxation of metastable
magnetosensitive point-defect complexes.
P
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Abstract—The EuBaMn2O6 composition prepared in air at T = 1500°C is shown to be a cubic perovskite
exhibiting spin-glass properties below Tf = 40 K. The reduced composition, EuBaMn2O5, crystallizes in a per-
ovskite-like, YBaCuFeO5-type layered structure with a tetragonal unit cell. EuBaMn2O5 with crystallographi-
cally ordered Eu3+ and Ba2+ ions is a ferromagnet with TN = 160 K. The anomalous behavior of the paramag-
netic susceptibility is assumed to be due to a partial ordering of the Mn2+ and Mn3+ ions. EuBaMn2O5 oxidized
in air at 900°C to EuBaMn2O6 has a magnetic ordering temperature TM = 260 K, near which the magnetoresis-
tance reaches a peak value. X-ray diffraction measurements show the long-range order in the Eu3+ and Ba2+ ion
arrangement to persist in the oxidized EuBaMn2O6 sample. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of the colossal magnetoresistance
phenomenon in the Ln1 – xDxMnO3-type manganites
(Ln stands for the lanthanide, and D, for an alkaline-
earth metal) [1–3] initiated intense study of their phys-
icochemical properties aimed at establishing the nature
of the relation connecting the magnetic and electrical
characteristics of these systems. It is well known that
the magnetic and electrical states of the manganites are
determined to a great extent by the relative concentra-
tions of the tri- and quadrivalent manganese. This rela-
tion is usually varied by properly doping the compound
by an alkaline-earth metal. There is, however, another
way in which the oxygen content can be varied in the
sample. It was found, for instance, that oxidation of
LaMnO3 initiates a transition from the antiferromag-
netic to a ferromagnetic state that exhibits a clearly pro-
nounced relation between the magnetic and electrical
properties [4, 5]. The formation of oxygen vacancies
gives rise to a strong increase in ionic conductivity in
the manganites, which has a certain potential applica-
tion [6]. Oxygen vacancies can order, as occurs in
CaMnO3 – γ [7]. Interesting results were obtained in a
study of the Y1 – xBaxMnO3 – γ system. Attempts to syn-
thesize the YBa2Mn3O7 compound in this system, by
analogy with the high-temperature superconductor
YBa2Cu3O7, failed, however. The compound that was
obtained was YBa(Mn2+Mn3+)O5, which has the struc-
ture of YBaCuFeO5 with crystallographically ordered Y
and Ba ions, as well as oxygen vacancies [8]. All man-
ganese ions are arranged in square pyramids. Magnetic
1063-7834/03/4502- $24.00 © 20276
measurements showed this compound to have a mag-
netic-ordering temperature TM = 167 K and a spontane-
ous magnetic moment per formula unit of 0.5µB.
According to neutron diffraction studies, the spontane-
ous magnetic moment is due to antiparallel ordering of
the magnetic moments of the Mn2+ and Mn3+ ions [9].
It should be pointed out that the magnetic and electrical
properties of the manganites depend strongly, for the
same Mn3+/Mn4+ ratio, on the radius of the rare-earth
ion. For instance, La0.7Ca0.3MnO3 is a ferromagnetic
metal below TC = 250 K [10], whereas Tb0.7Ca0.3MnO3
is a spin glass with Tf = 40 K [11]. This stimulated our
study of the properties of the Eu0.50Ba0.50MnO3 – γ sys-
tem as functions of the oxygen content. The europium
ion was chosen because the Eu3+ ions reside, as a rule,
in the ground diamagnetic state and do not contribute
noticeably to the sample magnetization.

2. EXPERIMENT

Polycrystalline Eu0.50Ba0.50MnO3 was prepared
using the usual ceramic technology. The OSCh-grade
Eu2O3 and Mn2O3 oxides and the BaCO3 carbonate
were weighed in the required molar ratio and mixed
thoroughly in an agate mortar with addition of a small
amount of ethyl alcohol. The mixture thus prepared was
pressed into a pellet and calcined in air at 1150°C for
4 h with subsequent grinding. The final synthesis was
carried out in air at 1560°C for 2 h. The sample was
spread on a platinum substrate. To obtain a composition
with a close-to-stoichiometric oxygen content, the sam-
ples were maintained at 900°C in air for 100 h and
003 MAIK “Nauka/Interperiodica”
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cooled afterwards to room temperature at a rate of
100°C/h.

X-ray diffraction measurements on the product of
the chemical reaction were performed on a DRON-3
diffractometer in Cr-Kα radiation at room temperature
within the angular interval 30° ≤ 2θ ≤ 100°. The oxygen
content was deduced from thermal gravimetry data
(TGA). Our studies suggest that the sample synthesized
in air was stoichiometric in oxygen. According to [12],
the oxygen content in manganites prepared in air and
substituted strongly (x ~ 0.50) by calcium and stron-
tium ions is close to its stoichiometric value.

A reduced EuBaMn2O5 sample was prepared using
a topotactic reaction. The sample was placed in an evac-
uated quartz ampule containing a predetermined
amount of metallic tantalum employed as an oxygen
absorber. The quartz ampule was maintained at 900°C
for 10 h, followed by cooling to room temperature at a
rate of 100°C/h.

The oxygen content in the reduced sample was
derived from the change in sample mass by weighing
the sample before and after the reduction. The sample
chosen for reduction had a mass of ~3 g. In this case,
the error in the oxygen concentration measurements did
not exceed 0.03%.

The reduced sample was reoxidized in air at 900°C
for 5 h. The weighing made after the reoxidation
showed that the oxygen content increased and corre-
sponded to the chemical formula EuBaMn2O6.

The magnetization was studied on a commercial OI-
3001 vibrating-sample magnetometer in the tempera-
ture range 4–300 K. The magnetic transition tempera-
ture was determined in a weak magnetic field of 100 Oe.
Electrical-resistivity measurements were performed on
samples 8 × 2 × 2 mm in size, following the standard
four-probe technique at temperatures of 77–350 K. The
magnetoresistance was calculated from the expression

MR(%) = {[ρ(H) – ρ(0)]/ρ(H)} × 100%, (1)

where ρ(H) is the electrical resistivity in a magnetic
field of 9 kOe and ρ(0) is that in a zero magnetic field.
The magnetic field was applied parallel to the electrical
current flowing through the sample.

3. RESULTS AND DISCUSSION

X-ray diffraction measurements show the
Eu0.50Ba0.50MnO3 perovskite prepared in air to have
cubic structure with the unit-cell parameter a = 3.881 Å
(V = 58.47 Å3) (Fig. 1a). The EuBaMn2O5 sample
reduced in the quartz ampule produces the same reflec-
tions as YBaCuFeO5; therefore, these two compounds
are isostructural. The reduced compound EuBaMn2O5

has a tetragonal unit cell with the parameters a = 3.945 Å
and c = 7.712 Å (V = 120.03 Å3; Fig. 1b). The doubling
of the unit-cell parameter along one direction is due to
the Y and Ba ions ordering in alternate planes. A similar
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
structure was observed in HoBaCo2O5 cobaltites in
[13]. TGA data suggest that the oxidation of the
EuBaMn2O5 sample in air starts at 250°C and comes to
an end at approximately 500°C. The change in mass
corresponds to an increased oxygen content and the
chemical formula EuBaMn2O6. The samples annealed
at 1300°C and prepared from reagents at 1560°C have
identical diffractograms. In this case, both samples are
cubic perovskites. However, if the annealing was per-
formed at temperatures below 1200°C, strong devia-
tions from cubic symmetry are observed. For instance,
the unit cell of the EuBaMn2O6 sample annealed at
900°C for 5 h exhibits pronounced orthorhombic dis-
tortions (Fig. 1c). The unit-cell parameters are a =
3.917 Å, b = 3.835 Å, and c = 7.764 Å (V = 116.63 Å3).
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Fig. 1. X-ray powder diffractograms obtained at room temper-
ature for the following compositions: (a) starting, crystallo-
graphically disordered Eu0.50Ba0.50MnO3; (b) anion-deficient,
crystallographically ordered EuBaMn2O5; and (c) crystallo-
graphically ordered EuBaMn2O6 annealed in air at 900°C and
stoichiometric in oxygen. The reflections shown in the insets
are (a) (200), (b) (200) + (020) and (004), and (c) (200),
(020), and (004).
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Remarkably, the reduced volumes of the samples pre-
pared in air at 1560°C and annealed at 900°C for 5 h
after the reduction are approximately equal, although in
the second case the volume is slightly smaller. This

Fig. 2. A model of the crystal structure for (a) starting, crys-
tallographically disordered Eu0.50Ba0.50MnO3; (b) anion-
deficient, crystallographically ordered EuBaMn2O5; and
(c) crystallographically ordered EuBaMn2O6 annealed in air
at 900°C and stoichiometric in oxygen. The light and dark
circles in (b, c) denote the Eu3+ and Ba2+ ions, respectively.
The dashed contour shows the unit cells of the compositions.

(a)

(b)

(c)
P

implies that the annealed ordered composition
EuBaMn2O6 has shorter Mn–O bond lengths than the
disordered Eu0.50Ba0.50MnO3 compound.

Our studies suggest that the structure of the starting

disordered composition 
prepared in air represents an array of MnO6 oxygen
octahedra which share corners and extend in all three
spatial directions (Fig. 2a). The Mn3+ and Mn4+ ions are
located in the MnO6 oxygen octahedra. The cations are
distributed randomly. The structure of the reduced com-
position is as follows. The Eu3+ and Ba2+ cations are
located in different planes alternating along the c direc-
tion (Fig. 2b). The oxygen vacancies lie in the planes at
the level of the Eu3+ ion. The Mn3+ and Mn2+ ions reside
in the MnO5 oxygen pentahedra, which likewise
share corners and extend in all three spatial direc-
tions. The chain of the pentahedra breaks along the c
axis. The ordering of the cations and oxygen vacan-
cies makes the unit cell double. The ordering of the
Eu3+ and Ba2+ cations and oxygen vacancies permits
one to consider the anion-deficient compositions

 as independent com-
pounds with a doubled chemical formula EuBaMn2O5.
The structure of the ordered composition

Eu3+Ba2+Mn3+Mn4+ , which is stoichiometric in
oxygen, retains the ordered distribution of the Eu3+ and
Ba2+ cations, as a result of which the unit cell also dou-
bles. However, the symmetry of the unit cell changes
from tetragonal to orthorhombic.

The temperature dependences of the magnetization
were measured under heating in a field of 100 Oe fol-
lowing field cooling (FC) and zero-field cooling (ZFC).
The ZFC magnetization curve of the Eu0.50Ba0.50MnO3
sample prepared in air at 1560°C exhibits a sharp max-
imum near Tf = 40 K. Below this temperature, the ZFC
and FC curves diverge (Fig. 3a). The dependence of
magnetization on an external magnetic field does not
reveal linear parts up to H = 15 kOe (Fig. 4). The mag-
netization in a field of 15 kOe is 0.36µB, which is a few
times less than the value expected for the case of purely
ferromagnetic ordering (3.5µB). Note that the tempera-
ture Tf = 40 K is typical of a spin-glass-type state in
manganites [14]. Figure 3b illustrates the measure-
ments of the ZFC and FC magnetizations as functions
of temperature made on the EuBaMn2O5 reduced com-
position. The FC magnetization begins to rise sharply
below TN = 160 K. Almost immediately below this tem-
perature, the ZFC and FC curves diverge. The magni-
tude of the ZFC magnetization depends weakly on tem-
perature below 140 K and is considerably lower than
the FC magnetization. Near 145 K, a maximum in the
temperature dependence of the FC magnetization
appears. This type of behavior of the ZFC and FC mag-
netizations may be expected in strongly anisotropic
ferro- or ferrimagnets. An interesting feature of the FC
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2+ Mn0.50
3+ Mn0.50

4+ O3
2–
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curves is the drop in magnetization with decreasing
temperature in the interval 40–50 K. This effect is also
well pronounced in strong fields, which is not charac-
teristic of phenomena dominated by the contribution
from the rare-earth sublattice or spin reorientation (Fig. 5).
This phenomenon is possibly caused by changes in the
crystal structure or by the formation of a spin-glass
component. Due to large magnetic anisotropy, estima-
tion of the spontaneous magnetic moment from the
dependence of the magnetization on an external mag-
netic field is difficult. It can, however, be conjectured
that this moment does not exceed 0.3µB per
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Fig. 3. Temperature dependence of magnetization in an
external magnetic field H = 100 Oe after zero-field cooling
(ZFC) (open symbols) and field cooling (FC) (filled sym-
bols) for (a) starting, crystallographically disordered
Eu0.50Ba0.50MnO3; (b) anion-deficient, crystallographi-
cally ordered EuBaMn2O5, and (c) crystallographically
ordered EuBaMn2O6 annealed in air at 900°C and stoichio-
metric in oxygen. The inset shows the ZFC magnetization
peak for panel (b).
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EuBaMn2O5 formula unit (Fig. 4). The measured tem-
perature dependence of the paramagnetic susceptibility
yielded additional information on the magnetic state
(Fig. 6). It turned out that this dependence exhibits a
hysteretic, temperature-broadened anomaly character-
istic of first-order phase transformations.

Orthorhombic EuBaMn2O6 annealed in air revealed
a strong increase in the critical temperature for mag-
netic ordering. While cubic Eu0.50Ba0.50MnO3 has a crit-
ical temperature Tf = 40 K, the orthorhombic sample of
the same composition becomes magnetically ordered at
260 K (Fig. 3c). However, the spontaneous magnetiza-
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Fig. 5. Temperature dependence of magnetization measured
in various magnetic fields H: (1) 0.1, (2) 2.5, and (3) 10 kOe
for the anion-deficient, crystallographically ordered
EuBaMn2O5.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8 10 12 14 16
H, kOe

M
, µ

B
/M

n

3

1

2

Fig. 4. Magnetization plotted vs. external magnetic field at
15 K for (1) starting, crystallographically disordered
Eu0.50Ba0.50MnO3; (2) anion-deficient, crystallographi-
cally ordered EuBaMn2O5; and (3) crystallographically
ordered EuBaMn2O6 annealed in air at 900°C and stoichio-
metric in oxygen.

FC



280 TROYANCHUK et al.
35000

30000

25000

20000

15000

150 200 250 300
T, K

χ–
1 , a

rb
. u

ni
ts

EuBaMn2O5

Fig. 6. Temperature dependence of inverse magnetic susceptibility in the paramagnetic region measured for the anion-deficient,
crystallographically ordered EuBaMn2O5. Arrows identify the direction of measurement.
tion, which is close to 1 µB per formula unit of
EuBaMn2O6, is considerably smaller than the value
7 µB/f.u. that could be expected in the case of purely
ferromagnetic ordering.

An investigation of the electrical properties showed
that all the compounds under study behave as semicon-
ductors both above and below the magnetic-ordering
temperature. The room-temperature electrical resistiv-
ity was found to be the highest in the reduced
EuBaMn2O5 sample and the lowest in the orthorhomb-
ically distorted overoxidized EuBaMn2O6. The latter is
the only sample exhibiting a clearly pronounced rela-
tion between the magnetic and electrical properties.
Near the magnetic-ordering temperature, the tempera-
ture dependence of electrical conductivity reveals a
break and the magnetoresistance reaches a maximum
(Fig. 7). Note that this behavior is typical of weakly
doped, ferromagnetic dielectric samples of manganites,
such as La1 – xCaxMnO3 (0.10 ≤ x ≤ 0.20) [15].

It is well known that the magnetic state of the sto-
ichiometric manganites Ln1 – xDxMnO3 is governed by
the Mn3+/Mn4+ ratio on the B sublattice of the ABO3
perovskite, by the average ionic radii of the lanthanide
and the alkaline-earth ion 〈rA〉 , and by the cation size
misfit in the A sublattice:

(2)

where xi is the filling of the A sublattice by the ith cat-
ion with the corresponding ionic radius ri [16]. The
smaller the average ionic radius on the A sublattice and
the larger the difference between the Ln and D radii,
the lower, as a rule, the magnetic ordering temperature
[17, 18]. The variation in the magnetic properties of
the Ln0.50Ba0.50MnO3 system with decreasing Ln radius
can be explained in terms of this model. The

σ2 Σxiri
2 rA〈 〉 2,–=
P

Ln0.50Ba0.50MnO3 compounds (Ln = La, Pt, Nd) are fer-
romagnetic metals below TC, with the magnetic-order-
ing temperature dropping sharply with decreasing
radius of the rare-earth ion [19–21]. The spin-glass
transition in the Sm1 – xBaxMnO3 system occurs already
for x > 0.12, with the ferromagnetic state failing to form
within the concentration region 0 ≤ x ≤ 0.50 [20]. This
behavior is accounted for by the fact that the ionic
radius of the barium ion in the 12-fold oxygen coordi-
nation, R(Ba2+) = 1.61 Å, is much larger than R(Sr2+) =
1.44 Å and R(Ca2+) = 1.34 Å [22]. As a result, the misfit
between the ionic radii of the rare-earth and barium
ions is large. The spin-glass state sets in because of the
large Mn–O–Mn bond-angle differences near the Ba2+

ions and of the breakdown of translational symmetry
for the Mn–O bonds resulting from the Ba2+ ions being
distributed statistically over the A sublattice. It is
known that the closer the Mn–O–Mn bond angle is to
180°, the larger will be the positive exchange coupling
[23]. As the Mn–O–Mn bond angle decreases, antifer-
romagnetic exchange interaction can become dominant
[24]. Because of the barium ions being distributed at
random over the A sublattice, the Mn–O–Mn bond
angles that are opposite in exchange-interaction sign
are also distributed statistically, which may give rise to
the formation of a spin-glass-type state.

Reduction of Eu0.50Ba0.50MnO3 to EuBaMn2O5

entails crystallographic ordering of the Eu3+ and Ba2+

ions and oxygen vacancies, as was established to occur
in YBaMn2O5 [8]. The planes filled by the Eu3+ and
Ba2+ ions alternate along the c direction in the tetrago-
nal unit cell. Oxygen vacancies order in the plane con-
taining the Eu3+ ions. The clearly pronounced transition
to a paramagnetic state implies a well-formed long-
range magnetic order. The magnetic structure of
YBaMn2O5 is determined by the antiparallel orienta-
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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tion of the Mn2+ and Mn3+ magnetic moments [19]. If
the magnetic moments of the Mn2+ and Mn3+ ions are
oriented antiparallel to each other, the magnetic
moment per formula unit (EuBaMn2O5) should be close
to 2µB, whereas magnetic measurements indicate a
smaller value, 0.5µB. As follows from neutron diffrac-
tion studies of YBaMn2O5, its magnetic structure is of
the G type, in which the Mn2+ and Mn3+ ions are
arranged in staggered order (with each Mn3+ ion sur-
rounded by five Mn2+ ions, and vice versa). We believe
that the arrangement of the Mn2+ and Mn3+ ions is not
in complete order, thus reducing the average magnetic
moment. This conjecture is buttressed by paramagnetic
susceptibility measurements (Fig. 6). We assign the
anomalous behavior of the paramagnetic susceptibility
to the ordering of the Mn2+ and Mn3+ ions. The transi-
tion is strongly temperature-broadened, which may be
due to the ions being ordered gradually; however, the
ion order does not become complete.

Consider the nature of exchange interactions in
EuBaMn2O5. A study of YBaMn2O5 [8] suggests that
the Mn–O–Mn bond angles can be equal to 180° and
160°. The 180° bond is directed along the c axis of the
unit cell, whereas the two 160° bonds lie in the a–c
plane. The half-filled  orbitals of the Mn2+ and Mn3+

ions should overlap along the c axis, which corre-
sponds, according to the Goodenough–Kanamori rule
[23], to strong antiferromagnetic exchange. In the bases
of the square pyramids, the half-filled (Mn2+) and
empty (Mn3+)  orbitals should overlap. In the

case of 180° configuration, this corresponds to ferro-
magnetic exchange coupling and an overall A-type anti-
ferromagnetic structure, whereas the structure revealed
in actual fact is G type. Apparently, a decrease in the
Mn–O–Mn angle to 160° results in a reversal of the sign
of exchange interaction; one should also take into
account the substantial antiferromagnetic contribution
from the t2g orbitals.

The results of the structural and magnetic studies
suggest that the long-range order in the arrangement
of the Eu3+ and Ba2+ ions breaks down after anneal-
ing in air at 1300°C. At lower temperatures, the long-
range order persists, although the chemical formula
EuBaMn2O6 corresponds to complete oxidation. The
ordering of the Eu3+ and Ba2+ ions apparently entails
an increase in the mean 〈Mn–O–Mn〉  bond angle and
the onset of translational symmetry in the arrange-
ment of these ions. These factors should stabilize the
ferromagnetic component of exchange interaction.
Indeed, the temperature of magnetic ordering rises
sharply to 260 K; the magnitude of the spontaneous
moment, however, is at odds with a purely ferromag-
netic state. It may be suggested that the Mn3+ and
Mn4+ ions are ordered and that the magnetic structure
corresponds to antiparallel ordering of the magnetic
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moments of these ions. However, the magnetic
moment is fairly high for such a structure (Fig. 4)
and measurements show a very high electrical con-
ductivity. The magnetoresistance peak is also charac-
teristic of the ferromagnetic rather than ferrimag-
netic state. The small magnetic moment can also be
due to a noncollinear magnetic structure; the nature
of this phenomenon remains, however, unclear. We
believe that in this case we have a nonhomogeneous
magnetic system characterized by the presence of
ferromagnetic and antiferromagnetic regions of a
fairly large size. Ordered EuBaMn2O6 can appar-
ently support the coexistence of structural modifica-
tions characterized by different magnetic structures,
as is the case, for instance, with BiSrMn2O6 [25].
Neutron diffraction measurements would be needed,
however, to gain a better understanding of these fea-
tures.
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Abstract—Granular silicon oxide films with embedded CoNbTa ferromagnetic particles and different relative
contents of the metal and dielectric phases were studied using both steady-state and dynamic magnetoop-
tical techniques with subpicosecond time resolution. Measurements were conducted in the spectral inter-
val from 1.45 to 1.70 eV. The concentration dependences of the linear and photoinduced Kerr effects were
found to behave similarly. Both relations are nonmonotonic with a maximum lying near the percolation thresh-
old. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Granular Fe-, Co-, and Ni-based nanocomposites
containing ions of other transition metals have been
recently attracting considerable interest. This interest
can be attributed primarily to the giant magnetoresis-
tance (GMR) effect observed in these materials [1]. In
addition, nanocomposites exhibit a number of other
unusual magnetic, electrical, optical, and magnetoopti-
cal properties, among which one can place the possibil-
ity of varying the electrical resistivity within a broad
range, enhancement of optical nonlinearities [2], a cor-
relation between the magnetic transport and nonlinear
optical properties [3], the high magnetorefractive effect
[4], and high electromagnetic-radiation absorption in
the rf and microwave regions [5]. Although some phys-
ical mechanisms responsible for these phenomena still
remain unclear, granular nanocomposites can be confi-
dently classed among materials promising for use in
developing reading heads and magnetooptical storage
components [6, 7]. Thus, investigation of the magnetic,
optical, and magnetooptical properties of granular
structures is interesting from the standpoint of both fun-
damental and applied research. It should be pointed out
that present-day requirements for the recording of
information and readout speed impose stringent con-
straints not only on the magnitude of magnetoresis-
tance or of nonlinear optical susceptibility but also on
the response time of a material to magnetic or light
excitation.

In this communication, we report on a study of the
magnetic, optical, and magnetooptical properties of
granular structures of amorphous silicon oxide contain-
ing cobalt-based ferromagnetic nanoclusters with vari-
1063-7834/03/4502- $24.00 © 20283
ous metallic phase contents. This investigation made
use of both stationary and dynamic magnetooptical
techniques, the latter providing the possibility of study-
ing the magnetic and optical properties of a medium
with subpicosecond time resolution.

2. SAMPLE GROWTH AND STRUCTURE

Granular films consisting of a silicon oxide dielec-
tric matrix with ferromagnetic inclusions of a cobalt-,
niobium-, and tantalum-based amorphous alloy with
different contents of the metal phase represent typical
percolation systems. Such films were prepared using
ion beam sputtering on fixed glass ceramic substrates
[8]. The metal grains were 2–5 nm in size, depending
on the actual content of the metal phase. The metal
nanoparticles made up a granular, electrically uncon-
nected structure below the percolation threshold and a
conducting cluster structure above this threshold. We
studied three composites based on silicon oxide with
embedded CoNbTa particles and an amorphous metal-
alloy film which did not contain the oxide. The targets
employed to prepare films of the metal alloy and of
amorphous granular nanocomposites were of two
types, namely, monolithic and composite. The mono-
lithic targets of Co86Nb12Ta2 composition were
obtained from metals in the corresponding proportion
through rf alloying in vacuum. To prepare the alloys,
we employed 99.98%-pure cobalt and technical-grade
tantalum and niobium, using the component weight
content relative to the alloy composition required. After
mechanical stirring, the melt of the corresponding com-
position was poured into a special ceramic mould. The
003 MAIK “Nauka/Interperiodica”
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Film parameters

Sample Number of SiO2
plates in target Composition Silicon oxide content Thickness, µm

A 0 Co86.1Nb12.2Ta1.7 – 5.0

B 9 Co53.4Nb8.3Ta1.1 Si20.2O17 4.6

C 11 Co47.3Nb7.0Ta1.4 Si23.6O20.7 4.7

D 15 Co27.7Nb3.0Ta0.7 Si26.7O41.9 4.6
melting and casting operations were performed in vac-
uum. Two targets measuring 270 × 70 × 14 mm were
melted from one charge of the alloy. The targets were
ground on both sides and soldered to the water-cooled
base; one of them was mounted in the vacuum chamber
for subsequent sputtering. The composite target of
composition Co–Nb–Ta + SiO2 was a Co86Nb12Ta2
alloy target with quartz single-crystal plates, ~2 mm
thick and ~9 mm wide, fixed to the surface of the alloy
target perpendicular to its longitudinal axis. By prop-
erly varying the number of quartz plates (9, 11, and 15
plates were used in our case) and the distance between
them, one could change the relative volumes of the
deposited magnetic and dielectric phases and, thus,
control the composition of the composite. The choice of
the number of quartz plates for the composite target
was dictated by the need for obtaining granular com-
posites with a unconnected and a conducting-cluster
structure, as well as with a structure close to the perco-
lation threshold [8]. The samples prepared by sputter-
ing were films 4.6–5 µm thick. The film thickness was
measured with a MII-4 Linnik interferometer. The
composition of the composites thus obtained was mon-
itored using electron microprobe x-ray spectral analy-
sis. The parameters of the films grown are specified in
the table.

3. EXPERIMENTAL SETUP

The steady-state magnetic properties of the films
were studied by measuring the meridional magnetoop-
tical Kerr effect following the technique described in
[9]. We used the radiation of a femtosecond titanium–
sapphire laser with photon energy "ω = 1.45–1.70 eV
and of a cw helium–neon laser with "ω = 1.96 eV. The
sensitivity of determining the Kerr rotation angle of the
light polarization was 10 seconds of arc. The light
struck the sample at 45°. The strength of the dc mag-
netic field applied to the sample could be varied within
the interval ±15 kOe.

Theoretical [10, 11] and, later, experimental [12]
studies carried out as far back as the 1960s showed that
magnetization in a medium can be produced not only
by an external magnetic field but also by the electric
field of a light wave. This approach, however, was ear-
lier employed to study only diamagnetic and paramag-
netic materials [13]; the investigation of magnetically
ordered crystals was started only very recently [14].
P

Such studies make use of the completely optical tech-
nique of probing fast magnetic phenomena, in which a
stronger (pump) beam transfers the medium to an
excited state and a weaker beam (probe) interacts with
the medium to reveal its new state. If a pulsed radiation
source is available, this technique of optical pumping
and probing can be employed to study the dynamic phe-
nomena occurring in a solid with the time resolution
limited by the pulse duration.

Consider a double-beam method in which a circu-
larly polarized pump beam induces a magnetic moment
in a medium as a result of the inverse Faraday effect
[10, 11]. In this case, due to the Kerr magnetooptical
effect, the polarization plane of the probe beam will be
rotated by an angle θK:

(1)

where n is the refractive index of the medium, E is the
pump pulse electric field, and p(+) and p(–) are the third-
order nonlinear polarizations induced by the right-
handed circularly polarized pump pulse and the right-
and left-handed circularly polarized components of the
probe pulse, respectively [15]. We will call this phe-
nomenon the Kerr dynamic magnetooptical effect in
what follows.

Dynamic measurements were carried out using the
technique described in [15]. When using a femtosecond
Ti-doped sapphire laser ("ω = 1.45–1.60 eV) operating
with a pulse duration of 100 fs and a repetition fre-
quency of 82 MHz, the pump and probe beams were
focused on a sample at a 10 : 1 intensity ratio to a spot
100 µm in diameter for the pump beam and a slightly
smaller spot for the probe beam. The spatial energy
exposure per pump pulse was 10 µJ cm–2 in most mea-
surements. The angles of incidence of the pump and
probe beams were 20° and 30°, respectively. The Kerr
rotation was measured as a function of the delay time
between the pulses and of the photon energy. To
exclude possible spurious signals, photoinduced rota-
tion was measured as a function of the pump polariza-
tion ellipticity. In complete agreement with the theory
of the dynamic magnetooptical Kerr effect, the

θK Im
1

n n2 1–( ) E 2 td

∞–

+∞

∫
------------------------------------------ p +( ) p –( )–( )E∗ td

∞–

+∞

∫
 
 
 
 
 
 
 

,=
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



        

MAGNETOOPTICAL STUDY OF GRANULAR SILICON OXIDE FILMS 285

                                                                  
response was maximal under circularly polarized
pumping.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 displays field dependences of the Kerr
effect for films C and D. The field dependences exhibit
a narrow hysteresis and reach practically complete sat-
uration in fields ±15 kOe. The weak saturation fields
imply that the CoNbTa particles embedded in the SiO2
matrix are ferromagnetic. No noticeable dispersion was
observed in the spectral responses within the photon
energy range covered (Fig. 2). At the same time, one
clearly sees a nonmonotonic dependence of the magni-
tude of the effect on the Co content, which passes
through a maximum at a cobalt concentration of
45 at. %. Note that in granular films, the magnitude of
the magnetooptical Kerr effect is two to three times
larger than that in a metal alloy.

Investigation of the behavior of the Kerr effect with
time showed the signal to be observed only in the
region where the pump and probe pulses overlap. Note
that in granular structures, local-field enhancement
effects occurring during the pulse overlap may contrib-
ute considerably to the magnitude of nonlinear optical
phenomena, in particular, of the dynamic magnetoopti-
cal Kerr effect. After termination of the pumping, the
local-field effects decay rapidly as the optical coher-
ence is lost. This may account for the dynamic Kerr
effect being observed only during the pump and probe
pulse overlap. Another factor that may explain this
behavior of the Kerr effect is the short nonequilibrium
spin polarization lifetime, which is associated with the
short lifetimes of electrons in the excited state [16] and
of spin excitations [5].

The spectral response of the dynamic magnetoopti-
cal Kerr effect is shown graphically in Fig. 3. In con-
trast to the static effect, the dynamic one reveals strong
dispersion in all granular structures. The spectral
response exhibits the presence of electron transitions
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Fig. 1. Field dependences of the steady-state meridional
Kerr effect in films C and D.
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near 1.45 eV or at a lower energy beyond the operating
range of the Ti-doped sapphire laser. It should be
pointed out that the dynamic Kerr effect in a monolithic
CoNbTa film is practically independent of photon
energy. Thus, the electron transition near 1.45 eV (or at
a lower energy) is obviously induced by processes
occurring in CoNbTa nanoparticles and manifestations
of this transition can be revealed only by using a
method based on measuring the dynamic magnetoopti-
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Fig. 2. Spectral response of the steady-state meridional Kerr
effect in films (1) A, (2) B, (3) C, and (4) D measured in a
field of 3 kOe. The lines plot linear fits to experimental data.
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cal Kerr effect. In our opinion, the resonant behavior of
the nonlinear magnetooptical signal near 1.45 eV is due
to local-field enhancement effects in the vicinity of
plasmon transitions in CoNbTa nanoparticles.

The inset to Fig. 3 plots the dynamic and steady-
state magnetooptical Kerr effects vs. cobalt content in
granular films observed at a photon energy "ω =
1.45 eV. The identical behavior of the concentration
dependences of these phenomena appears remarkable.
This implies a correlation between the steady-state and
dynamic Kerr effects. Note that a correlation between
the magnetic transport and nonlinear optical properties
in granular nanocomposites was earlier observed
experimentally in [3]. Revealing the mechanisms
responsible for the interrelation of these phenomena
appears to be an interesting task for further studies.

5. CONCLUSIONS
Thus, we have obtained and studied granular nano-

composites of a CoNbTa ferromagnetic alloy embed-
ded in a silicon oxide matrix with different cobalt con-
tents by using the steady-state and dynamic magne-
tooptical methods. The spectral response and
concentration dependences of the steady-state and
dynamic magnetooptical Kerr effects were investigated
and compared. The spectral response of the linear Kerr
effect exhibits a weak and monotonic dependence on
photon energy. By contrast, the spectral studies of the
dynamic Kerr effect provide evidence of electron tran-
sitions occurring in granular films at photon energies
below 1.45 eV. The difference between the steady-state
and dynamic spectral responses can be accounted for
by local-field enhancement effects near the plasmon
resonance in metal grains. The concentration depen-
dences of the steady-state and dynamic Kerr effects
reveal a nonmonotonic behavior and exhibit a maxi-
mum near the percolation threshold, where the cobalt
concentration is about 45 at. %.
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Abstract—Temperature and field dependences of the magnetization of VBO3 and CrBO3 single crystals with
the magnetic field applied parallel and perpendicular to the (111) basal plane were measured. VBO3 was found
to have a considerable uniaxial anisotropy with a field Ha ≈ 6.25 T. CrBO3 was shown to exhibit not only uniax-
ial but also hexagonal anisotropy. The experimental anisotropy constants were estimated, and their temperature
dependences are presented. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Transition metal borates with the chemical formula
ABO3 (A = Fe, V, Cr, Ti) are attracting interest in con-
nection with the rich variety of physical properties
exhibited in this isostructural series [1]. Although the
Mott–Hubbard strongly correlated dielectric oxides of
the 3d metals have been investigated intensely due to
their nontrivial physical properties, such as the high-
temperature superconductivity of cuprates and the
colossal magnetoresistance of manganese oxides, a
number of the ABO3 3d-metal borates, except FeBO3,
remain very poorly studied. As for the VBO3 and
CrBO3 compounds, considered in this study, the litera-
ture does contain sufficient information to draw well-
grounded conclusions concerning their magnetic struc-
ture [2–4], but there are practically no available data on
their magnetic anisotropy. Knowledge of the magnitude
and character of the anisotropic interactions are essen-
tial both to the understanding of the nature of the static
and dynamic properties and to searching for possible
applications of these materials.

The crystal lattices of the ABO3 compounds belong
to the rhombohedral symmetry group. A number of
magnetic structures can exist in these compounds,
depending on the actual filling of the d shell. For
instance, VBO3 is a collinear ferromagnet with a Curie
temperature TC ≈ 32 K, FeBO3 is a weak ferromagnet
with the Néel temperature TN = 348 K, and CrBO3 is
tentatively identified [2] as a collinear two-sublattice
antiferromagnet with TN = 15 K and magnetic moments
aligned with the (111) threefold symmetry axis. The
electron configurations of the magnetic ions V3+, Fe3+,
and Cr3+ are d2, d5, and d3, respectively. The main
mechanism responsible for magnetic order in these
1063-7834/03/4502- $24.00 © 20287
compounds is believed to be indirect 90° exchange
mediated by the O2– anions.

Of the whole series of the 3d-metal borates, experi-
mental studies of the magnetic anisotropy have thus far
been performed on FeBO3 only. This compound is
known to be an easy-plane weak ferromagnet. A review
of experimental data on the magnetic anisotropy of
FeBO3 single crystals can be found in [5]. As justly
pointed out in [5], there is unfortunately some disagree-
ment between the experimental data on the anisotropy
of FeBO3. For instance, the value of the uniaxial-
anisotropy field Ha quoted in early studies [6, 7] is
approximately 6.25–6.30 T, while in [8] this value is
believed to be the sum of the contributions due to both
the anisotropy and the Dzyaloshinski fields. In later
studies [9, 10], the uniaxial-anisotropy field Ha, as
derived from the data on the antiferromagnetic reso-
nance, is reported to be 0.31–0.33 T, whereas the hex-
agonal anisotropy is considerably weaker and the cor-
responding field does not exceed 10–4 T.

The present communication reports on an experi-
mental study of the temperature and field dependences
of magnetization of VBO3 and CrBO3 single crystals.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

VBO3 and CrBO3 single crystals were grown by
spontaneous crystallization from melt solutions of the
systems M2O3–B2O3–(70 wt % PbO + 30 wt % PbF2),
where M = V, Cr. The single crystals obtained were thin
plates up to 4 × 4 mm in size and about 0.1 mm thick,
with a smooth lustrous surface. Unfortunately, the
VBO3 plates had an irregular shape, thus making in-
plane anisotropy measurements impossible; the CrBO3
single crystals were shaped as regular hexagonal plates.
003 MAIK “Nauka/Interperiodica”
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The temperature and magnetic field dependences of
magnetization were performed using a vibrating-sam-
ple magnetometer with a superconducting solenoid
within the temperature range 4.2–350 K and in mag-
netic fields of up to 7.5 T [11].
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Fig. 1. Magnetic-field dependences of the magnetization of
a VBO3 single crystal measured in a magnetic field parallel
to the (111) basal plane at different temperatures T: (1) 4.2,
(2) 10, (3) 15, (4) 20, (5) 25, (6) 30, and (7) 32 K.
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Fig. 3. Temperature dependences of the magnetization of a
VBO3 single crystal measured in a magnetic field parallel to
the (111) basal plane for different values of the magnetic-
field H: (1) 2, (2) 4, and (3) 6 T.
P

3. EXPERIMENTAL RESULTS

The magnetic-field dependences of the magnetiza-
tion M(H) measured at various temperatures on VBO3

single crystals in fields parallel and perpendicular to the
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Fig. 2. Magnetic-field dependences of the magnetization of
a VBO3 single crystal measured in a magnetic field perpen-
dicular to the (111) basal plane at different temperatures T:
(1) 4.2, (2) 10, (3) 15, (4) 20, (5) 30, and (6) 32 K.
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Fig. 4. Magnetization curves of VBO3 in a magnetic field
(1) parallel and (2) perpendicular to the (111) plane
obtained at T = 4.2 K.
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(111) basal plane, which coincided with the plane of the
plate, are displayed in Figs. 1 and 2, respectively, with
due account of the demagnetization factor. The field
orientation in the plane was chosen arbitrarily, because
preliminary measurements showed the in-plane anisot-
ropy to be negligible compared with the uniaxial one.
Figure 3 displays temperature dependences of the mag-
netization M(T) measured in various fields parallel to
the plane of the crystal plate. As seen from Figs. 1–4,
the behavior of the VBO3 magnetization is characteristic
of easy-plane ferromagnets [12]. The first uniaxial-anisot-
ropy constant K1, as calculated using the area method, was
found to be approximately 1.2 × 107 erg/cm3 (T = 4.2 K),
which corresponds to a magnetic-anisotropy field Ha =
6.25 T. This is the largest value among the anisotropy
fields of known rhombohedral antiferromagnets [13].

Figure 5 compares the experimental temperature
dependence of the uniaxial-anisotropy constant for
VBO3 (symbols) with a theoretical curve calculated
from the relation [14]

where K10 is the value of K1 at T = 4.2 K, M(T) is the
VBO3 magnetization in a field of 2 T, and MS is the sat-
uration magnetization. The experimental dependence is
seen to be in good agreement with the calculated curve.

Using the paramagnetic Curie temperature Θ = 34 K
determined in [2] and the magnetic moment M = 1.8µB
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Fig. 5. Experimental (circles) and calculated (solid line)
temperature dependences of the uniaxial-anisotropy con-
stant of VBO3.
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measured by us earlier [1], we estimated the exchange
field in VBO3 as HE ≈ 78.2 T; this figure is lower by an
order of magnitude than that for FeBO3.

The magnetization curves for CrBO3 are displayed
in Fig. 6 for three magnetic field directions. Curves 1
and 2 correspond to two directions in the basal plane;
namely, direction 1 points to the corner of the hexago-
nal plate, and direction 2 is perpendicular to a side of
the plate. Curve 3 corresponds to the magnetic field
aligned with the [111] axis. The magnetic field orienta-
tions are shown in the inset to Fig. 6. Figure 7 plots tem-
perature dependences of the magnetization in a field of
0.5 T oriented in directions 1 and 3.

As seen from Fig. 6, the M(H) curve for CrBO3 mea-
sured in the [111] direction is a straight line without any
features, which apparently corresponds to the sublattice
magnetization vectors canting toward the magnetic
field direction. At the same time, the magnetization
curves measured in an in-plane field exhibit a break in
the interval 5–6 T; this break is accompanied by hyster-
esis and noise, which indicate instability of the mag-
netic state occurring in this field interval. According to
[12], this instability may reflect that the exchange and
anisotropic interactions compete with the effect of the
external magnetic field. Thus, application of an in-
plane magnetic field apparently initiates a spin-reorien-
tation transition. This conjecture is buttressed by the
hysteresis observed in the temperature dependences of
magnetization (Fig. 8). A similar spin-reorientation
phase transition was also observed to occur in the Cr2O3
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Fig. 6. Magnetization curves of a CrBO3 single crystal
obtained at T = 7.6 K.
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isostructural compound in the same critical-field inter-
val [15]. The ratio of the magnetic susceptibilities cor-
responding to the directions parallel and perpendicular
to the basal plane is approximately 1.24 in the low-field
region. In the high-field region, curves 1–3 in Fig. 6
have similar slopes, which possibly corresponds to a
magnetic susceptibility χ⊥  ≈ 2 × 10–3 in a magnetic field
perpendicular to the antiferromagnetism vector.

Our set of experimental data does not permit us to fit
the magnetic properties of CrBO3, as was done in [2],
to a simple model of a collinear two-sublattice antifer-
romagnet with magnetic moments aligned with the
[111] axis. It appears more likely that the antiferromag-
netism vector of CrBO3 makes a small angle with the
basal plane, because when the crystal is magnetized
perpendicular to (111), the M(H) relation has a simple
shape characteristic of the sublattice magnetic
moments being canted toward the magnetic field. At the
same time, the existence of hysteresis and of a region of
magnetic-state instability with magnetization produced
along mutually perpendicular crystallographic direc-
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Fig. 7. Temperature dependences of the magnetization of a
CrBO3 single crystal measured in a magnetic field of 0.5 T.
PH
tions 1 and 2 in the basal plane apparently implies that
neither of these two directions is the easiest magnetiza-
tion axis. Otherwise, one of the two magnetization
curves would be a straight line, whereas the other
would exhibit a more or less pronounced jump or break
corresponding to a spin flop. Thus, the magnetic struc-
ture of CrBO3 is apparently more complex than was
assumed in [2] and magnetization experiments alone
cannot determine this structure reliably. Our experi-
mental data should be correlated with studies of neu-
tron scattering, AFMR, measurements of magnetostric-
tion or ultrasound propagation through the sample, etc.

By extrapolating the M(H) dependence to high
fields using the χ⊥  value found above, we estimated the
exchange field E in CrBO3 to be 38.2 T. The totality of
our results is presented in the table together with known
data for FeBO3.

4. DISCUSSION OF RESULTS

As is evident from the experimental data presented
above, the anisotropic properties of the FeBO3, VBO3,
and CrBO3 borates exhibit both common features and
substantial differences. A common feature is that the
dominant component of the magnetic moment in all
three compounds apparently lies in the (111) plane. The
anisotropies of these compounds are naturally different
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Fig. 8. Temperature dependence of the magnetization of
CrBO3 measured in a magnetic field of 7.5 T in direction 1.
Magnetic properties of FeBO3, VBO3, and CrBO3

Compound TC, N, K µS, µB Ha , T K1, erg/cm3 HE , T

FeBO3 348 5.9 0.3 [10] 580 [5]

VBO3 32 [2] 1.81 6.25 12 × 106 78.2

CrBO3 15 [2] 3.73 [2] 38.2
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in magnitude due to the types of magnetic ordering in
these compounds being completely different.

The problem of the nature of magnetic anisotropy
cannot be considered solved at present even for the
well-known compound FeBO3. Although the S state
with zero orbital magnetic moment is the ground state
of the Fe3+ ion, it is believed [16] that, in addition to the
magnetic dipole interaction, the single-ion mechanism
contributes noticeably to the anisotropy and that the
orbital magnetic moment is induced by the field created
by the trigonally distorted rhombohedral crystal lattice.
The same distortions can bring about partial unfreezing
of the Cr3+ orbital angular momentum.

The F state is the ground state of the V3+ ion.
Although the magnetic moment of V3+ (1.63µB) is
believed to be the sum of the spin and orbital moments,
its experimental value (1.81µB), derived by us from
measurements of the static magnetization [1], suggests
that part of the orbital angular momentum is quenched
by the crystal field. One cannot exclude the possibility
that the high uniaxial anisotropy in VBO3 originates
from a stronger spin–orbit coupling.

As for the third known source of magnetic anisot-
ropy (anisotropic exchange), this mechanism, together
with the spin–orbit coupling, may play a substantial
role in generating anisotropy in cases where the orbital
angular momentum is not quenched. Furthermore,
although its contribution to the anisotropy of rhombo-
hedral antiferromagnets is believed to be small [13], it
is possibly that this contribution accounts for the small
discrepancy between the critical temperatures observed
when magnetizing CrBO3 in different directions
(Fig. 8). At any rate, in order to estimate the effect of
various microscopic sources of magnetic anisotropy,
one has to carry out theoretical calculations, which
could be subsequently compared with data obtained
from a series of different experiments.
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Abstract—The mechanism of hysteresis of magnetization in superparamagnetic systems under a time-increas-
ing (decreasing) magnetic field is studied. The model used involves the nonequilibrium thermodynamic prop-
erties of superparamagnetic systems, such as the difference in temperature between the spin subsystem and the
lattice caused by a sweeping magnetic field. It is shown that the temperature of the spin system and, hence, the
magnitude of the magnetization always lag behind a variable magnetic field, which might be the cause of the
observed hystertesis of magnetization. The results of calculations are compared with the experimental data for
V15 nanoclusters. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-spin magnetic molecules, or magnetic nano-
clusters, attract much attention [1– 3]. Objects of this
type include nanoclusters containing d or f ions
(Mn12Ac, Fe6, Fe8, Fe10, V15, and others) [3–21]. Such
objects are of interest for studying the fundamental
problems of magnetism and for physical applications,
such as quantum calculations or magnetic recording of
information. In this study, we suggest a model that
explains the hysteresis observed in a superparamagnet
consisting of magnetic nanoclusters. Such hysteresis
has recently been observed in V15 nanoclusters [4, 5].
The characteristic feature of this hysteresis is that it
occurs in nonequilibrium conditions: during cyclic
measurements, the magnetic field is first increased in

proportion with time, B(t) = , from –Bmax to Bmax and
then the field is decreased according to the law B(t) =

−  to –Bmax. The characteristics of hysteresis essen-

tially depend on the rate  of the magnetic-field sweep
(Figs. 1, 2). In recent years, other interesting effects
have been revealed in nanoclusters. These effects are

determined by the rate  or, what is the same, by the
steady-state vortex electric field existing in the object
under study during a sweep of the magnetic field. The
dependence of magnetic hysteresis of nanoclusters on

the rate  was observed in Mn12 and Fe8 in [6–8] when
studying the effect of macroscopic quantum tunneling
of magnetization [9] in these clusters and was theoreti-
cally explained in [10, 11]. New quantum effects in

Ḃt

Ḃt

Ḃ

Ḃ

Ḃ

1063-7834/03/4502- $24.00 © 20292
nanoclusters and nanostructures determined by the rate

 were predicted in [12–14].

As mentioned above, interesting experimental
results were obtained in [4, 5] from measurements of
the dynamic magnetic characteristics of a single crystal
formed by V15 molecules. In particular, the magnetiza-
tion of a sample as a function of magnetic field showed
hysteretic behavior at temperatures T ~ 0.1 K. At first
glance, the existence of such a hysteresis seems
strange, because the system of magnetic molecules
under study was a superparamagnet. The observed

Ḃ
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Fig. 1. Experimental magnetization curves at T = 0.1 K for
various rates r of the magnetic field sweep.
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behavior of magnetization was explained in terms of
the model of a narrow phonon bottleneck [4, 5]. The
main idea of this model consists in the following. A
spin subsystem placed in a magnetic field can exchange
energy only with resonance phonons having energy ∆H

(the Zeeman splitting of the ground state of the V15

molecule in a magnetic field). The phonon heat capac-
ity of a sample in the course of the experiment is far less
than the heat capacity of the spin subsystem; therefore,
the temperature of the subsystem of resonance phonons
sufficiently quickly becomes equal to the temperature
of the spin subsystem; however, because the number of
resonance phonons is small as compared to the number
of spins in the sample, the energy transfer through the
chain “spin subsystem–resonance phonon subsystem–
sample holder” is hampered. Such an approach requires
detailed knowledge of the characteristics of the phonon
system and of the spin–phonon interaction in a sample.
In [4, 5], this model is described by two first-order dif-
ferential equations with respect to time for the mean
occupation numbers of both spin and resonance phonon
subsystems. In this study, we suggest a qualitative and
a quantitative explanation of this effect in terms of a dif-
ferent model; it is assumed that in an ac magnetic field,
the temperature of the spin subsystem becomes unequal
to the lattice temperature. Our model does not detail the
mechanism of energy transfer from the spin subsystem
to a sample holder; it only assumes the existence of
such a mechanism, which allows one to draw on only
one equation for energy transfer. The advantage of this
model is a smaller number of unknown microscopic
parameters in comparison to other models, such as the
above-mentioned model of a narrow phonon bottle-
neck.
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B, T

M, µB

r = 0.14 T/s

T = 0.1 K
T = 0.15 K
T = 0.2 K

Fig. 2. Experimental magnetization curves at various tem-
peratures and a constant rate of the magnetic field sweep,
r = 0.14 T/s.
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2. MODEL

The crystals formed by molecules of polyoxivana-

date (K6[ As6O42(H2O)] · 8H2O) are trigonal (space
group R3, a = 14.029 Å, α = 79.26°, V = 2632 Å3). The
V15 complex consists of 15 VIV anions, each having the
spin S = 1/2 in the ground state. Vanadium atoms in the
V15 molecule form a quasi-spherical three-layered
structure [20]. Three vanadium atoms, forming an equi-
lateral triangle, are located in the central layer, and six
vanadium atoms, forming a regular hexagon, are in the
adjacent layers (Fig. 3). Each hexagon consists of three
pairs of strongly interacting spins (J ≈ –800 K), and
each spin at a vertex of the triangle interacts with two
pairs of spins (one pair from each hexagon, J ' ≈ J1 ≈
−150 K, J '' ≈ J2 ≈ –300 K).1 Exchange interaction
between the spins located at the vertices of the triangle
is rather weak (J1 ≈ –2.5 K). The total spin of the mol-
ecule in magnetic fields up to 2.8 T is equal to S = 1/2;
in higher fields, the spin system is rearranged and the
total spin becomes equal to S = 3/2 [4, 5]. In the
megagauss range of magnetic fields, the ferrimagnetic
structure of the molecule changes into a ferromagnetic
one [19]. The unit cell consists of two V15 molecules,
which, however, are located far apart from each other;
magnetic dipole interaction between their spins can be
neglected. In the absence of a magnetic field, the
ground state of a molecule is split into two energy dou-
blets separated by an energy ∆0 ~ 0.01 K.

The experimental dependence of magnetization of
the V15 single crystal on a dc magnetic field up to 5 T

1 In recent publications [V. M. Platonov, O. M. Tatsenko, V. I. Plis,
and B. Barbara, Fiz. Tverd. Tela (St. Petersburg) 44, 2010 (2002);
V. V. Kostyuchenko and A. K. Zvezdin, Fiz. Tverd. Tela
(St. Petersburg), in press], a different set of exchange parameters
was chosen, with lower magnitudes of the exchange integrals.

V15
IV

J0

J'

J''
J

J2

J2J1

J1

Fig. 3. Structure of the mesoscopic V15 complex.
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can be described in terms of the Heisenberg Hamilto-
nian for three spins S = 1/2 [4, 5]:

(1)

where S1 = S2 = S3 = 1/2, g = 2 is the spectroscopic split-
ting factor, J = –2.5 K is the exchange integral of the
antiferromagnetic interaction in the central layer, and
B is an external magnetic field.

One of the specific features of the mesoscopic sys-
tem under discussion is that the particles have intrinsic
spin degrees of freedom independent of their transla-
tion. If the equilibrium between the spin and translation
degrees of freedom is established sufficiently slowly,
then, in order to describe the magnetic properties of the
whole system, one can introduce the concept of the
temperature of the spin system, which differs generally
from the temperature associated with a translation of
particles. Thus, we consider two different thermody-
namic subsystems: the subsystem associated with the
spin degree of freedom (henceforth spin system) and
the subsystem associated with the translation of mole-
cules, the temperature of which is maintained constant
by a thermostat (henceforth environment).

The concept of the spin system temperature can be
cleared up by considering a simple two-level system.
Let the spacing between the energy levels of the spin
system be "ω; the temperature of the spin system TS in
this case is defined by the ratio na/nb = exp("ω/kTS),
where na and nb are the mean occupation numbers of
the lower and upper levels, respectively. For two-level
systems, to which V15 belongs, this definition of the
spin temperature is quite natural.

If the spin system temperature is not equal to the
temperature of the environment, the process of leveling
of temperatures should occur. The rate of this process is
determined by the heat capacities of the spin system

H J S1S2 S2S3 S3S1+ +( )–=

– gµBB S1 S2 S3+ +( ),
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Fig. 4. Theoretical magnetization curves at T = 0.1 K and
various rates r of the magnetic field sweep.
PH
and its environment, as well as by the rate of energy
transfer from the spin system to its environment. If the
heat capacity of the environment is much higher than
that of the spin system, the temperature of the spin sys-
tem reaches the temperature of the environment in a
time determined only by the rate of energy transfer
between the systems; this process is characterized by
the spin–lattice relaxation time τb [22].

3. THE BASIC EQUATIONS

We assume that the temperature of the spin system
differs from the temperature of the environment, which
is quite justified because the characteristic spin–lattice
relaxation time τb ~ 0.01 s at temperatures of the order
of 0.1 K [23] is long in comparison to the time scales of
the magnetic-field sweep in the experiment. The tem-
perature of the environment is kept constant by a ther-
mostat. The equation of energy transfer from the spin
system to the environment can be written as

(2)

where δQ/dt is the amount of energy transferred from
the spin system to the environment per unit time; T and
C are the temperature and heat capacity of the spin sys-
tem, respectively; T0 = const is the temperature of the
environment; and τb is the spin–lattice relaxation time.
According to the second law of thermodynamics, we
have

(3)

where S is the entropy of the spin subsystem. Substitut-

ing Eq. (3) with  =  into Eq. (2), after

simple calculations, the following first-order differen-
tial equation with respect to time is obtained for the
temperature of spin system: 

(4)

where M is the magnetization of the spin system and
dB/dt is a given function of time. The thermodynamic
functions M(B, T) and S(B, T) can be calculated from
the energy spectrum of particles of the system in the
magnetic field; for V15, this spectrum can be found
from the Hamiltonian (1). Within the range of magnetic
fields of interest (from 0 to 0.7 T), the total spin of a
molecule is S = S1 + S2 + S3 = 1/2 and the energy spec-
trum, according to the experimental data [4, 5], consists
of two doubly degenerate levels with a gap between
them (inset to Fig. 7), the nature of which is not clear.
Equation (4) may be interpreted in a different way: the
change in the temperature of the spin subsystem with
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time is caused by the magnetocaloric effect in the spin
system (the first term in the right-hand side of Eq. (4))
and by the relaxation of temperature to its equilibrium
value T0 (the second term in the right-hand side). In
contrast to the standard magnetocaloric effect, we deal
here with heating (or cooling) of the spin system alone
rather than of the whole sample. Substituting a solu-
tion to Eq. (4) with the initial condition T(0) = T0 into
the expression for magnetization M(T(t), B(t)), we
obtain the time dependence of the magnetization of
the system.

For the results to be adequate, it is necessary to take
into account the dependence of the spin–lattice relax-
ation time τb on magnetic field and temperature. In [22],
it is shown that the relaxation time for a two-level sys-
tem can be represented as

(5)

where ∆B = 2  is the energy difference
between the two levels and α is a constant. The system
is considered to be close to equilibrium; i.e., the tem-
perature of the spin subsystem differs only slightly
from the temperature of the environment.

4. SOLUTION OF THE EQUATION 
AND COMPARISON WITH EXPERIMENT

Now, we shall calculate the magnetization of a V15
sample as a function of magnetic field B within the
model proposed above.

Using the data given in Section 2 on the energy
spectrum of the V15 molecule in a magnetic field, one
can calculate the magnetization M(B, T) and the

τb α
∆B/2kBT( )2tanh

∆B
2

---------------------------------------,=

gµBzSz( )2 ∆0
2+

r = 0.14 T/s

T = 0.1 K
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Fig. 5. Theoretical magnetization curves at various temper-
atures and constant rate of the magnetic field sweep, r =
0.14 T/s.
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entropy (B, T) of the system of V15 molecules from
the standard formulas

(6)

where Z(B, T) is the partition function for a V15 particle,
N is the number of V15 particles in the system, and

S̃

M B T,( )
∂F
∂B
------ 

 
T

, S̃ B T,( )–
∂F
∂T
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B

,–= =

F kBT Z B T,( )( )N ,ln–=

Z B T,( ) 4
gµBSzBz( )2 ∆0

2+
kT

-------------------------------------------
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r = 4.4 mT/s
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Fig. 6. Theoretical dependence of the spin subsystem tem-
perature on magnetic field for various rates r of the mag-
netic field sweep.
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F(B, T) is the free energy of the system.2 Substituting
the results of the calculations into Eq. (4), we obtain a
first-order differential equation with respect to time for
the temperature of the spin subsystem. In dimension-
less variables, this equation has the form

(7)

Here, a = kBT/J, a0 = kBT0/J, b = µBB/J, f = t/τfield, and
τ = τb/τfield, where J is the exchange integral involved in
the effective Heisengerg Hamiltonian that approxi-
mately describes the behavior of the V15 complex in a
magnetic field (J ≅  –2.5 K [4, 5]) and 2τfield is the time
required for the magnetic field to change from –Bmax to
Bmax. The time dependence of the magnetic field in
terms of the dimensionless variables introduced above
has the form b(f ) = b0(f – 1), where b0 = µBB0/J. For the
dimensionless magnetization of the spin system under
study (m = M/µBN, with N being the number of V15 mol-
ecules in a sample), we have

(8)

The field dependence of the spin–lattice relaxation time
in Eq. (5) at sufficiently low temperatures can be
approximated as

(9)

where τ0 is independent of T and B. Numerical calcula-
tions show that the use of a more cumbersome formula (5)
instead of Eq. (9) gives similar results; however, a solu-
tion to differential equation (7) in this case cannot be
written in an explicit form.

A solution to differential equation (7) with the initial
condition a |f = 0 = a0 has the form 

(10)

where

2 This form of the spectrum is taken from [4], where it was pro-
posed that it be used as an optimal parametrization of the experi-
mental data. The authors of [4] believe that the energy gap is due
to the hyperfine interaction; however, as indicated above, the
question as to the origin of the gap remains open.
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Substituting Eq. (10) into Eq. (8) for m(a, b), we obtain
the magnetization m(a(f ), b(f )) of a sample as a func-
tion of time (or, what is the same, as a function of mag-
netic field, m(a(b), b), since the magnetic field and time
are related linearly). The results of calculations accord-
ing to this scheme are presented in Figs. 4 and 5. The
spin–lattice relaxation time τb and zero-field splitting
∆0 are chosen in such a way as to minimize the devia-
tions of theoretical curves from the experimental data.
The best-fit values τ0 = 0.016 s and ∆0 = 0.028 K are
obtained by finding the minimum of the root-mean-
square deviation of the theoretical m(a(b), b) curve
from the experimental one as a function of two vari-
ables, τ0 and ∆0. These values of the parameters are in
good agreement with the parameters fitted in [4, 5] to
account for an experimental hysteresis loop in terms of
the model of a narrow phonon bottleneck (τ0 = 0.01 s,
∆0 = 0.05 K). The time dependence of the temperature
of the spin subsystem is shown in Fig. 6. Since the
curves are symmetrical with respect to the axis of ordi-
nates, Fig. 6 shows only their parts for B > 0.

The model suggested was used to calculate the
dependence of the characteristic width of a hysteresis

loop for the V15 sample on the rate  of increase in the
magnetic field (Fig. 7). The width of the loop was cal-
culated at the inflection point of the function M(B) cor-
responding to the field increasing. The obtained depen-
dence is well approximated by the function ∆B = ∆B0xb,
where ∆B0 = 0.1765 T, b = 0.2831, and x = r/ropt, with
ropt = 0.14 T/s being the rate of increase in the magnetic
field corresponding to the optimal fit of the experimen-
tal and theoretical curves.

Now, let us analyze possible ways of improving our
model. First, substitution of a more precise formula (or,
possibly, experimental data) for τ0(B, T) in expression (9)
will improve the final results, but the complexity of the
expression will not allow one to solve Eq. (7) explicitly
and obtain a formula similar to Eq. (10). Second, it is
possible to take into account the mechanism of spin–
phonon relaxation by introducing (in addition to the
temperature TS of the spin subsystem) the temperature
Tph of the subsystem of resonance phonons. However,
instead of a single equation of energy conservation,
Eq. (1), this approach requires consideration of a sys-
tem of two coupled equations (see [23]).

5. CONCLUSIONS

Thus, the results obtained within the model pro-
posed in this paper well describe the experimental data
for the V15 complex. An explicit quadrature formula is
derived, Eq. (10), describing the dependence of the spin
subsystem temperature on the external magnetic field
for a V15 single crystal. Our model requires the use of
less information for the description of this phenomenon
than the model of a narrow photon bottleneck; however,
the results obtained within both models describe the

Ḃ
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experimental data equally well. The model suggested in
this paper should not be considered an alternative to
that proposed in [4, 5]. On the contrary, these models
complement each other and, when combined, give a
deeper insight into the possible mechanisms of forma-
tion of hysteresis in mesoscopic nanomagnets in a
sweeping magnetic field.

Because of the sufficiently general character of the
assumptions as to the structure of the material studied
and the interactions in it, the model can be generalized
to a wider spectrum of systems of mesoscopic magnets.
Preliminary estimations confirm this prediction.
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Abstract—This paper reports on measurements of the acoustic, magnetic, and electrical properties and on an
x-ray microprobe analysis of a La0.825Sr0.175MnO3 single-crystal sample. The acoustic studies were made with
a pulsed acoustic spectrometer operating on a 770-MHz carrier. The studies revealed anomalies in the damping
coefficients and sound velocity near 300, 200 K, and the Curie temperature TC (283 K) where the colossal mag-
netoresistance occurs. The effect of a magnetic field on the magnetic texture of lanthanum manganites cooled
below TC, observed earlier in samples of other composition, is confirmed. In addition, a region was found
wherein the magnetic susceptibility of an unclamped sample behaves anomalously. The electrical resistivity
was observed to decrease substantially below TC; this effect exhibits a hysteretic pattern in the interval 200–180 K.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest expressed in lanthanum manganites
was initiated primarily by the discovery of colossal
magnetoresistance (CMR) in them at room temperature
[1]. It soon became clear that the CMR in these materi-
als is accompanied by specific features not only in the
electrical and magnetic but also in the structural prop-
erties. This stimulated investigation of lanthanum man-
ganites using various experimental techniques [1–4],
including acoustic measurements [5–9]. Major atten-
tion was focused on manganites of the LaxSr1 – xMnO3

composition (0.16 ≤ x ≤ 0.18), which exhibit the largest
values of CMR. However, despite the large number of
relevant publications, the nature of the CMR and the
character of the temperature anomalies in the electrical,
magnetic, and elastic characteristics of these materials
remain unclear. In particular, the temperatures and
compositions favoring magnetic and structural transi-
tions known from the literature differ markedly, which
may be traced to either the techniques of sample prep-
aration employed or the method used being based on
measuring one or two characteristics of these materials.

Our previous studies showed the crystal with x =
0.175 to possess a number of acoustic anomalies near
305, 290, and 220 K [9]. We refined the method of
acoustic measurements at 700–800 MHz, which made
it possible to more reliably identify the anomalies dis-
1063-7834/03/4502- $24.00 © 20298
covered earlier and investigate their behavior in an
applied magnetic field.

Prior to looking for an interpretation of these fea-
tures, it had to be established whether they are related
to any anomalies in other (structural, magnetic, electri-
cal) properties of the samples studied in relation to the
available literature data. With this purpose in mind, we
carried out an x-ray microprobe analysis of the chemi-
cal composition and magnetic and electrical measure-
ments, whose results were subsequently compared with
the literature data quoted for manganite samples of the
same composition.

The x-ray microprobe analysis was employed to
detect inhomogeneities with dimensions of 1 µm or
larger whose presence could account for the observed
acoustic anomalies. The negative result obtained means
that the anomalies are associated with the properties of
the manganite material rather than with specific fea-
tures of the sample under study. The fact that the elec-
trical and magnetic measurements coincide with the lit-
erature data also shows that our sample differs little in
its individual characteristics from those used by other
researchers.

2. X-RAY STRUCTURAL AND MICROPROBE 
ANALYSIS OF THE SAMPLE

An La0.825Sr0.175MnO3 lanthanum manganite single
crystal was grown by laser-beam zone melting at the
003 MAIK “Nauka/Interperiodica”
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Moscow Power Institute (group of A.M. Balbashov).
The phase diagram [10] shows that the crystal structure
of lanthanum–strontium manganites differs only
slightly from cubic. It was earlier assumed that below
T = 200 K, these distortions correspond to orthorhom-
bic symmetry and above it, to rhombohedral. Some
publications (see, e.g., [10]) suggest that both phases
consist of small twins, with the above distortions ori-
ented in different directions. Due to this twinning, the
sample as a whole recovers its cubic symmetry, and it
is this symmetry that is revealed in standard x-ray struc-
tural analysis.

The x-ray microprobe analysis of chemical compo-
sition for La, Sr, and Mn was performed on a JEOL
Superprobe-733 microanalyzer. This instrument is
capable of detecting inhomogeneities in chemical com-
positions with sizes above 1 µm, which is considerably
smaller than the ultrasound wavelength (λ = 5 µm) at a
frequency of 770 MHz. No such inhomogeneities in
any of the elements indicated above were revealed.
Figure 1 illustrates concentration profiles obtained by
scanning the sample surface. To improve the accuracy,
the scanning was done by translating the sample rela-
tive to the electron beam exciting the characteristic
x-ray lines. Numerous scans of this type were obtained
on different parts of the surface, and none detected a
deviation from the pattern shown in Fig. 1.

These data show that the response of our sample to
the 770-MHz ultrasound should be similar to that of a
homogeneous cubic single crystal.

3. RESULTS OF MAGNETIC 
AND ELECTRICAL STUDIES

The magnetic studies were performed on a SQUID
magnetometer (Quantum Design) capable of measur-
ing magnetic moments to within 1%. The measure-
ments were made on a free La0.825Sr0.175MnO3 sample
6.06 mg in weight. Figure 2 displays magnetization
curves obtained at T = 2 K after cooling in a zero mag-
netic field (ZFC) and in a field H = 2 kOe. These curves
are shown in expanded scale in Fig. 2b. They differ in
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Fig. 1. Local concentration profiles of La, Sr, and Mn (in at. %)
obtained by electron beam scanning of the sample surface.
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the following features: (i) the magnetization rate is
maximal in fields H ≈ 1 kOe; (ii) the magnetization
noticeably exceeds the remanent magnetization, which
is not seen in the scale of Fig. 2b; (iii) the character of
magnetization does not affect the saturation magnetiza-
tion MS (the magnitude of MS is the same, to within
experimental error, for both curves); and (iv) the differ-
ence between the ZFC and FC magnetization curves
does not change under remagnetization (the remagneti-
zation hysteresis is not discernible in the scale of
Fig. 2b).

The difference seen between the M(T) curves of
samples cooled in a field H = 2 kOe and H = 0 implies
that a magnetic texture appears in the latter case; this
texture, as follows from property (iii), is due to scatter
in the easy magnetization axes rather than in the TC

temperature. Application of a field H = 2 kOe at temper-
atures T > T0 suppresses (apparently, completely) the
formation of such a texture. We show subsequently that
T0 = 140 K.

The value of MS (Fig. 2a) was used to calculate the
average magnetic moment per Mn atom:

(1)µMn 3.80 0.04±( )µB,=
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Fig. 2. (a) Magnetization curve of a free
La0.825Sr0.175MnO3 single-crystal sample measured at T =
2 K, and (b) its part in the field H . 2 kOe shown in
expanded scale.
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where µB is the Bohr magneton. This figure agrees, to
within experimental error, with the value µMn = 3.825µB,
which follows from the assumption that 82.5% of Mn
atoms with valence 3+ should bear a moment µMn =
4µB, while for the remaining 17.5%, having a valence
4+, µMn = 3µB. This agreement indicates that the sample
is of very high quality (absence of magnetic impurities,
no oxygen off-stoichiometry, etc.).

The temperature dependences of magnetization
M(H, T) measured at H = 30 and 2 kOe are presented in
Fig. 3. Because the saturation field for the sample under
study is in excess of 5 kOe (Fig. 2a), the low-field
M(H, T) curve (Fig. 3b) corresponds to a nonuniformly
magnetized state. Below the temperature T = 140 K,
this curve splits, as shown in expanded scale in Figs. 3b
and 3c. The top branch (crosses) of the curve corre-
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Fig. 3. Temperature dependences of magnetization of the
sample under study measured in a field H of (a) 30 and
(b) 2 kOe and (c) curve M(T) obtained in the field H = 2 kOe
and shown in expanded scale.
P

sponds to M(H, T) of a sample cooled in a field H =
2 kOe (Fig. 3c), while the bottom branch (squares)
relates to a ZFC sample; in other words, this splitting is
due to the above-mentioned magnetic texture forming
as a result of scatter of the easy magnetization axes.
Displacement over the lower branch of the M(H, T)
curve (squares) is reversible if the heating is replaced
by cooling, provided the heating was done to tempera-
tures T < 140 K. Heating above 140 K brings about a
switch to the top curve (crosses). This means that
T0 = 140 K is indeed the temperature above which a
field H = 2 kOe suppresses the formation of a magnetic
texture.

The low-field M(H, T) curve (H = 2 kOe) has a
region with hysteresis within the temperature interval
175 < T < 215 K. According to the phase diagram pre-
sented in [10], this region corresponds to coexistence of
the orthorhombic and rhombohedral phases. The sup-
pression of the hysteresis by a magnetic field H =
30 kOe (Fig. 3a) implies that these phases differ in
magnetic-anisotropy constants rather than in the satura-
tion magnetization and TC temperatures.

Application of an 80-Hz ac magnetic field 4 Oe in
amplitude made it possible to measure the magnetic
susceptibility χ = ∂M/∂H of the sample under study for
various values of the dc magnetic field H. Figure 4a pre-
sents the temperature dependence χ(H, T) for H =
100 Oe. One readily sees a difference in the χ(T) behav-
ior between a ZFC sample and a sample cooled in H =
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Fig. 4. Temperature dependence of the real part of magnetic
susceptibility measured in a magnetic field H of (a) 0.1 and
(b) 2 kOe.
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2 kOe, as well as a temperature hysteresis correspond-
ing to the transition between the orthorhombic and
rhombohedral phases. While the difference in χ(T)
between samples cooled in zero and 2-kOe fields is no
longer seen already in a magnetic field H = 2 kOe
(Fig. 4b), the temperature hysteresis still persists. The
most significant feature of this curve is the drop in χ(T)
with increasing T in the region from 100 to 250 K. This
behavior is considered anomalous for a ferromagnet,
because when magnetized along the easy axis, χ(T)
should grow and, along the hard magnetization axis, be
independent of T. Additional studies would be required
to establish the nature of the observed anomaly.

The χ(T) curve is usually employed to determine the
Curie temperature TC from the position of the maxima.
Such maxima appear in the sample under study for H >
0.5 kOe. In weaker fields, their formation is precluded
by the domain structure. Extrapolating the positions of
these maxima to zero field yielded TC = 282 K, which
is in accord with the phase diagram presented in [10].

The electrical resistivity and magnetoresistance are
among the best studied properties of the lanthanum
manganites, including the La0.825Sr0.175MnO3 composi-
tion investigated here [2]. We measured the electrical
resistivity ρ(T) of our sample in order to make sure the
latter did not differ significantly in its electrical proper-
ties from the samples studied by other authors. Figure 5
shows ρ(T) curves obtained in the temperature range
from 100 to 300 K. Our curve exhibits a clearly defined
temperature hysteresis near the transition from the
orthorhombic to rhombohedral phases, which is seen in
the M(T) (Fig. 3c) and χ(T) (Fig. 4) curves.

4. ACOUSTIC STUDIES

We measured the velocity and amplitude of longitu-
dinal and transverse ultrasound waves in an
La0.825Sr0.175MnO3 lanthanum manganite sample in the
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Fig. 5. Temperature dependence of the electrical resistivity
of the La0.825Sr0.175MnO3 sample. (1) Our data and (2) data
from [2].
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shape of a rectangular parallelepiped with dimensions
4.85 × 8.2 × 7.9 mm whose end faces were plane-paral-
lel to within a few seconds of arc. The sample faces
were perpendicular to the [100], [010], and [001] axes
to within 0.5°. Short (τ ~ 0.5 µs) ultrasonic pulses were
propagated along the [100] axis of the sample. By sta-
bilizing the temperature to within 0.5 K and reducing
the step in the temperature variation in the 350- to
150-K region, we succeeded in detecting a number of
additional changes in the acoustic parameters v  and A
(v is the velocity and A is the amplitude of the ultra-
sonic wave) as compared with the data from [9]. The
velocity and damping were determined in external
fields H = 0 and 10 kOe by measuring the time of arrival
of the first pulse that had passed through the piezoelec-
tric transducer–sample-piezoelectric transducer system
to the detector and the intensity of the pulse. As seen
from the character of the curves in Figs. 6 and 7, plot-
ting the temperature dependences of the velocity of the
longitudinal, v l, and transverse, v t, waves, their ampli-
tude starts to increase in the interval 320–308 K. In the
305- to 297-K interval, the first minimum in v l and v t

was observed. The values of the amplitudes Al and At in
this region correlate with the variation in the velocity;
more specifically, the amplitudes grow with increasing
velocity and vice versa. Application of a magnetic field
(H = 10 kOe) had no noticeable affect on the velocity
and amplitude of the acoustic pulses.

The second minimum in the velocities v l and v t was
observed in the interval 297–275 K and was centered at
about 283 K. Application of a magnetic field in this
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Fig. 6. Temperature dependences of (a) the velocity and
(b) amplitude of longitudinal acoustic pulses.
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interval increased the acoustic stiffness of the sample.
Simultaneously, starting from 310 K, the pulse of the
longitudinal wave began to split into two. The first of
them, with amplitude Al, was associated with the longi-
tudinal wave, and the second, At, with the transverse
one. The value of At increased and that of Al decreased
when the temperature was lowered to 270 K. The appli-
cation of a magnetic field resulted in a noticeable
decrease in Al and a slight increase in At.

As the temperature was lowered still more to 220 K,
the velocity and amplitude of the transverse wave were
observed to grow smoothly. Some anomalies in v t and
At were also found in the interval 220–200 K. The effect
of a magnetic field on the velocity and damping in the
intervals 305–297 and 220–190 K was weak. Note that
the variations of velocity and damping in the ranges
305–297 and 220–190 K had a hysteretic temperature
pattern. At the same time, no hysteresis in v l and v t was
observed within the 295- to 275-K interval.

A combined analysis of temperature-induced acous-
tic anomalies and of the results of magnetic and electri-
cal measurements led us to the unambiguous conclu-
sion that in the sample with x = 0.175, a first-order
structural phase transition occurs near 305 and 210 K.
The identification of these transitions with a first-order
phase transformation is supported by the temperature
hysteresis in the velocities and damping of the ultra-
sonic waves (near 305 and 210 K) and magnetization
(175 ≤ T ≤ 215 K). It is in these temperature regions of
structural phase transitions that the CMR reaches its
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peak values [2]. These transitions differ in character in
that the first of them (at 305 K) sets in above TC in the
paramagnetic phase; the second (at 210 K), in the fer-
romagnetic state.

It is the transition in the vicinity of 220 K that is
identified in most studies with a structural transforma-
tion from rhombohedral to orthorhombic symmetry.
Our results show, however, that noticeable changes in
structure also occur near 305 K. They are most likely
related to the closeness in temperature to the magnetic
transition (TC = 283 K). In any case, this problem
requires further study performed with additional exper-
imental techniques.

The onset of ferromagnetic ordering below TC
accounts for the transformation of the longitudinal
acoustic mode to the magnetoelastic one. The strong
damping of the longitudinal mode below TC finds
explanation in the magnon–phonon mechanism of
absorption [11], which results in damping that is pro-
portional to the frequency squared for longitudinal
waves only. The difference between the magnetic field
effects on the longitudinal and magnetoelastic modes
suggests that their transformation takes place at the
front face of the sample rather than in its bulk, which is
in full agreement with the mechanism of acoustic wave
transformation in ferromagnets proposed earlier [12].

5. CONCLUSIONS 

Thus, our integrated studies provide support for the
model proposed in [13], which assumes that strong
electron–lattice coupling mediated by orbital ordering
of the 3d electrons of Mn3+ ions exists above TC. It is
this coupling that accounts for the decrease in the
velocity and amplitude of acoustic waves. Below TC,
the electron–lattice coupling is suppressed by the
ordering in the spin system. This spin–lattice coupling
is the reason for the anomalous damping and softening
of acoustic modes near TC.
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Abstract—The effect of the surface on the magnetic susceptibility of nanopowders of the CuO semiconducting
antiferromagnet was studied. Single-phase nanopowders with nanoparticles 15, 45, and 60 nm in size were pre-
pared through copper vapor condensation in an argon environment, with subsequent oxidation of the copper.
The temperature dependences of the magnetic susceptibility of the nanopowders differ qualitatively from the
χ(T) relations for bulk samples. In the region 80 ≤ T ≤ 600 K, the magnetic susceptibility of nanopowders is
inversely proportional to temperature and is described by the sum of contributions due to the bulk part of CuO
and to the Cu2+ paramagnetic ions localized in surface layers. The paramagnetic contribution to the total sus-
ceptibility is shown to increase with decreasing particle size and sample density. A comparison of the χ(T) rela-
tions is made for nanopowders and for a dense CuO nanoceramic with grain size 5 ≤ d ≤ 100 nm prepared using
the shock wave technique. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of the properties of nanoparticles may both
contribute to our knowledge in the fundamental areas of
the physics of surface phenomena and be of interest for
practical applications of nanocrystalline materials.
Decreasing the size of particles changes their properties
as compared to those of bulk materials. The exchange
coupling parameters of magnetic ions on the surface of
nanoparticles and the direction of their magnetic
moments can change due to a loss of three-dimensional
lattice periodicity and to breaking of a large number of
surface ion exchange bonds. Large perturbations in
crystal symmetry entail a change in the surface anisot-
ropy energy as compared to that in the bulk. The best
studied effects caused by a decrease in particle size are
the superparamagnetism and weak ferromagnetism
observed in 3d metals and their alloys. Size effects
manifest themselves in a strong increase in the coercive
force and in the magnetic moment, a shift of the hyster-
esis loops, and in irreversibility of the magnetization
curves.

Magnetic order in 3d-metal oxides is governed by
the superexchange interaction with second-to-nearest
neighbors and depends on bond length and bond angle.
A decrease in particle size in ionic compounds may
produce a stronger effect than in metallic compounds.
The influence of a decrease in the coordination and of
surface anisotropy on the magnetic properties of oxide
compounds was considered by Kodama and Bercowitz
in [1, 2]. They believe that pair exchange interactions in
the bulk and on the surface are identical, but the total
exchange coupling is weaker for surface ions because
1063-7834/03/4502- $24.00 © 20304
of their lower coordination and, hence, of the smaller
number of neighbors. They also postulated the exist-
ence of broken exchange bonds due to the presence of
oxygen vacancies or ligands. The main effect induced
in ferrimagnets by a decrease in particle size is frustra-
tion of the exchange bonds and spin disorder in surface
layers. At low temperatures, the disordered spins are
frozen, which results in the hysteresis loops becoming
irreversible. As the temperature is raised to T > 50 K,
the spin-glass phase transforms to a canted spin
structure.

The magnetic properties of nanoparticles of ionic
antiferromagnets have been insufficiently studied. Only
information on NiO is available at present. The nickel
monoxide is a two-sublattice collinear antiferromagnet
with TN = 523 K. At T = 5 K, NiO nanoparticles (d =
53–315 Å) exhibit large magnetic moments, coercive
force, and hysteresis loop shifts, which cannot be
accounted for within the two-sublattice model. It may
be conjectured that the microscale surface structure
gives rise to a change in the ground state and to a
breakup into a larger number of magnetic sublattices.
Modeling of the spin configuration in NiO nanoparti-
cles shows the four-, six-, and eight-sublattice states to
be preferable for the two-sublattice structure [1, 2]. The
reason for the multiple breakup of the magnetic lattice
lies in the closeness of the energies (degeneracy)
between the two- and many-sublattice states.

Copper monoxide occupies a particular place
among the transition-metal oxides. This compound
has a low-symmetry monoclinic lattice and is a quasi-
one-dimensional antiferromagnet with a high Néel
003 MAIK “Nauka/Interperiodica”
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temperature, TN = 230 K. Intense investigation of CuO
properties was spurred by the discovery of high-tem-
perature superconductivity [3, 4]. CuO is the basis of
HTSC cuprates and exhibits properties similar to
those of semiconducting HTSC phases. Copper mon-
oxide and the related structures enjoy application in
photosensitive transducers, catalysts, and gas sensors.
Ishihara et al. [5] found that an equimolar powder
mixture of BaTiO3 with 3d-metal oxides can be used
to develop semiconductor sensors for CO2 detection.
CuO–BaTiO3-based sensors possess a giant capacitive
effect [6].

In an earlier publication [7], we reported on the
effect of grain size on the magnetic susceptibility of a
dense CuO nanoceramic produced from polycrystalline
CuO subjected to isentropic shock waves. The present
study deals with the effect of the surface on the mag-
netic properties of copper monoxide nanopowders with
different particle dimensions. We carried out tempera-
ture measurements of the magnetic susceptibility of
loose nanopowders with an average particle size vary-
ing from 100 to 1000 Å over a broad temperature range
(80 < T < 600 K) both above and below TN.

2. SAMPLES AND MEASUREMENT TECHNIQUE

Single-phase CuO nanopowders were prepared
through condensation of metallic copper in a gas
medium. In this method, a drop of molten metal blown
with an inert gas flow (Ar) is suspended and heated in
this state to 2000°C by a high-frequency magnetic field
of a specially designed inductor. Maintaining a drop in
the suspended state permits one to prevent the molten
metal from capturing uncontrollable impurities. The
metal vaporizing from the drop surface cools together
with the inert gas and condenses into particles of nanoc-
rystal size, which deposit on a filter. The average parti-
cle size is controlled by the inert-gas pressure in the
setup and by the velocity of gas flow near the metal
drop. By properly varying these parameters, copper
nanopowders with an average particle size of 15 to
100 nm could be produced. The size of the Cu particles
was monitored using transmission electron microscopy.
The particle size distribution was relatively narrow and
close to normal logarithmic. The Cu nanopowders were
oxidized to CuO in air at temperatures of 90–240°C for
0.5–2.0 h. The choice of the annealing temperature and
annealing time was dictated by the following consider-
ations. The powders needed to be oxidized completely
but with CuO crystallization avoided and the absence of
the Cu and Cu2O phases ensured. Increasing the oxida-
tion temperature above 300°C resulted in a strong
increase in the CuO particles in size.

The size of the CuO nanoparticles thus prepared was
monitored by means of an STM-U1 scanning tunneling
microscope. The powder was spread in a thin layer on a
polished silicon plate. Because of the low electrical
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
conductivity of CuO, a fairly high voltage had to be
applied to the tip to obtain a tunneling current; there-
fore, an additional instability arose in the operation of
the tip–sample system. Computer image processing
made it possible to partially eliminate noise. To amass
more complete information on the state of a sample, ten
or more images of each region of interest were obtained
and used to determine the average nanoparticle size.
The error in nanoparticle size determination from STM
images was 30–50%, depending on the scan extent, tip
translation step, and subsequent image processing
regime.

The phase and structural analysis was made with a
DRON-2.0 diffractometer using CrKα radiation. The
magnetic susceptibility of CuO nanopowders was mea-
sured with a magnetic balance over a broad temperature
range (80–600 K). The sensitivity of the balance permitted
susceptibility measurements of down to 10–8 cm3/g. The
measurement error of χ did not exceed 5%.

We succeeded in preparing single-phase CuO nan-
opowders with an average grain size of 15, 45, and
60 nm. Figure 1 presents the microstructure of these
samples obtained with the STM. It is seen that in the
samples with small particles, d = 15 and 45 nm in size,
the grains were spherical, whereas for d = 60 nm, part
of the grains had an elongated shape. The grains in the
sample in Fig. 1c are substantially larger in size than
those in Fig. 1a. The grains in Fig. 1c are spread in size;
i.e., there are both particles with d = 60 nm and larger
ones with d ≥ 100 nm. However, to understand the role
of surface magnetism in CuO, it is essential that the
fraction of surface layers in the sample with d = 15 nm
(Fig. 1a) be substantially larger than that in the sample
shown in Fig. 1c.

3. MAGNETIC SUSCEPTIBILITY
OF CuO NANOPOWDERS

Among all the copper oxides, only the compounds
containing divalent copper ions (3d9, S = 1/2) can be
magnetically ordered. Univalent copper ions have a
filled 3d shell (3d10, S = 0) and are nonmagnetic. There
is presently no experimental evidence supporting the
presence of Cu3+ ions (3d8, S = 1) in ionic copper-con-
taining oxides. The Cu2+-containing compounds are
characterized by the formation of low-dimensional
magnetic systems, more specifically, linear (1D) chains
and two-dimensional (2D) planes, which may be a con-
sequence of the Jahn–Teller effect. A specific feature of
low-dimensional systems is a flat maximum in the sus-
ceptibility and heat capacity at temperatures compara-
ble with the exchange interaction parameters in a chain
or plane [8].

CuO is a quasi-one-dimensional antiferromagnet
with a high Néel temperature (TN = 230 K) as compared
with those for other known low-dimensional com-
pounds (TN < 50 K). Below T = 213 K, a collinear anti-
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ferromagnetic structure forms in CuO, and within the
213 K < T < TN region, a noncollinear (chiral) configu-
ration forms. Strong spin correlations among the Cu2+

ions along the [10 ] direction persist considerably1

A B
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B
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AB profile
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Fig. 1. Microstructure of CuO nanopowders with grains of
different sizes obtained with scanning tunneling micros-
copy. d: (a) 15, (b) 45, and (c) 60 nm.
PH
above the Néel temperature. The temperature depen-
dence of magnetic susceptibility of bulk CuO samples
follows a pattern typical of low-dimensional antiferro-
magnetic systems, which undergo a transition to a 3D
state with decreasing temperature. Above TN, the sus-
ceptibility, rather than decreasing with increasing tem-
perature, grows and passes through a broad maximum
near 550 K. In the vicinity of TN, there is no susceptibil-
ity peak characteristic of 3D antiferromagnets; only the
slope of χ(T) changes. The absence of a χ peak near TN

indicates a smooth transition from the 3D state with a
long-range antiferromagnetic order to a low-dimen-
sional state with strong spin correlations. Intrinsic
defects (oxygen vacancies) and Li+, Zn2+, and Ni2+ ions
substituting for a part of the Cu2+ ions (<3%) do not
affect the pattern of the χ(T) relations qualitatively [9].

Figure 2 displays temperature dependences of the
magnetic susceptibility in a dc magnetic field H =
9 kOe obtained on CuO nanopowders with different
average grain sizes. Also shown for comparison is the
χ(T) plot for a polycrystal with d > 1000 nm (curve 1).
The susceptibility of nanopowders with grains of d = 45
and 60 nm, unlike the χ(T) relation for the polycrystal,
decreases with increasing temperature for T < 140 K. In
nanopowders with d = 15 nm, the susceptibility is
inversely proportional to temperature throughout the
temperature range covered. This is well illustrated in
Fig. 3, which presents the temperature dependences of
inverse susceptibility. The Curie–Weiss law χ = C/T –

Θ (where C = N /3k is the Curie–Weiss constant and
Θ is the paramagnetic Curie temperature) is met only
for the sample with the smallest grain size within a
broad temperature range T = 150–600 K. The effective
magnetic moment µeff = 2.12µB is, however, higher than

µeff
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Fig. 2. Temperature dependences of magnetic suscepti-
bility (1) for polycrystals; (2–4) for CuO nanopowders with
particles of different size d = (2) 60, (3) 45, and (4) 15 nm;
and (5) for heterophase powder with d & 100 nm.
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the theoretical value µeff = 1.73µB for single Cu2+ ions,
which implies the presence of exchange coupling
between Cu2+ ions in this temperature region. The value
of the susceptibility is observed to correlate with parti-
cle size for CuO nanopowders for all temperatures;
namely, the smaller the d dimension, the higher the
value of χ.

An important factor affecting the pattern of the χ(T)
relation is not only the particle size but also the sample
density. Figure 4 presents temperature dependences of
the susceptibility in a magnetic field H = 9 kOe
obtained on dense (98%) nanoceramic CuO samples
with different grain dimensions acted upon by a shock
wave. The temperature dependence of susceptibility of
the large-grain sample (d = 110 nm) coincides with
χ(T) measured for polycrystals. While the grain size in
this series of samples varies in the same range as that of
the particles prepared through gas condensation, the
pattern of the χ(T) curve is somewhat different. As seen
from Fig. 4, the susceptibility of loaded samples is
independent of grain size in the region where short-
range magnetic order dominates (TN < T < 550 K). In
the region of long-range magnetic order (T < TN), the
so-called “paramagnetic” contribution χ ~ 1/T appears
and grows with decreasing d. Note that the χ(T) rela-
tions obtained on the samples of the two series with the
same grain size do not coincide. Loose samples, in
which the fraction of surface layers in the total mass is
considerably larger, have higher values of χ.

To study the effect of nonmagnetic phases Cu2O and
Cu on the magnetic susceptibility of CuO, we measured
χ(T) for heterophase samples containing a mixture of
these phases (50 wt %). The magnetic susceptibility of
a finely dispersed powder (d ≤ 100 nm) prepared by

χ–1, 103 g/cm3
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100

0 200 400 600
T, K

4

3
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1

Fig. 3. Temperature dependences of inverse susceptibility in
a magnetic field H = 9 kOe obtained for CuO nanopowders
with particles of different size d = (1) 15, (2) 45, and
(3) 60 nm; and (4) for polycrystal.
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sputtering copper in vacuum with high-power current
pulses remained practically constant, χ = (1.55–1.65) ×
10–6 cm3/g, in the region T = 100–300 K (curve 5 in
Fig. 2). At T = 80 K, the susceptibility increased
slightly to χ = 2.08 × 10–6 cm3/g. Both the absolute val-
ues of the susceptibility and the pattern of the χ(T) rela-
tion for the heterophase sample can be described for
T > 100 K by the sum of contributions due to all the
phases:

(1)

where a, b, and c are the concentrations of the CuO,
Cu2O, and Cu phases, respectively. We measured the
temperature dependences for the single-phase Cu2O
and Cu samples. The susceptibility of Cu2O is small
and decreases with increasing temperature from χ =
0.81 × 10–6 (T = 80 K) to 0.23 × 10–6 cm3/g (T = 290 K).
Metallic copper exhibits a diamagnetic (negative),
weakly temperature-dependent susceptibility (χ = –0.1 ×
10–6 cm3/g at T = 300 K). The susceptibility of CuO
usually increases from χmin = 2 × 10–6 to 3.6 × 10–6 cm3/g
[10, 11]. The lower values of χ of the heterophase sam-
ple as compared with the single-phase CuO (Fig. 2) are
due to the contribution of the Cu2O and Cu phases to
the total susceptibility. Hence, the observed behavior of
χ(T) of CuO nanopowders, rather than being due to the
presence of the Cu2O and Cu phases, is a manifestation
of the nanocrystalline state of the copper monoxide.
Note that magnetic-susceptibility measurements are a
convenient tool to reveal the presence of uncontrollable
magnetic impurities in weakly magnetic materials.

χΣ aχ CuO( ) bχ Cu2O( ) cχ Cu( ),+ +=
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Fig. 4. Temperature dependences of magnetic susceptibility
measured in a dc magnetic field H = 9 kOe on polycrystal-
line CuO samples with different grain size d subjected to a
spherical shock wave. d: (1) 110, (2) 70, (3) 30, (4) 15, and
(5) 5 nm.
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4. DISCUSSION

The antiferromagnetic ordering in CuO is mediated
by superexchange interaction of Cu2+ ions with second-
to-nearest neighbors through the O2– ions along the

[10 ] axis. The Cu–O–Cu bond angle along this direc-
tion is the closest to 180°. In all the other directions, the
Cu–O–Cu angle is close to 90° and provides ferromag-
netic coupling. The CuO magnetic structure can be rep-
resented in the form of Cu–O–Cu zigzag antiferromag-

netic chains aligned with [10 ]. The interchain
exchange coupling is weaker and ferromagnetic in
character. At high temperatures, i.e., under the condi-
tions where thermal energy kT becomes comparable
with the interchain exchange parameter, this interaction
breaks down, with CuO transferring to the quasi-one-
dimensional antiferromagnetic state. Above T = 550 K,
copper monoxide resides in the paramagnetic state.

As the size of particles in nanocrystalline samples
decreases, the χ(T) relation acquires a complex shape
apparently connected with the paramagnetic contribu-
tion, which is inversely proportional to temperature. It
appears reasonable to relate the paramagnetic contribu-
tion to the measured χ with surface layers. The fraction
of surface layers in the total mass in a loose nanopow-
der is larger than that in a dense nanoceramic; there-
fore, this contribution operates in the whole tempera-
ture range.

1
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Fig. 5. Temperature dependences of magnetic susceptibility
calculated for various concentrations (x) of paramagnetic
Cu2+ ions in nanocrystalline CuO samples. x: (1) 1, (2) 2,
(3) 4, (4) 6.7, (5) 10, (6) 15, (7) 20, and (8) 100%.
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We consider the possible reasons for the influence of
the surface on the magnetic properties of CuO. The
breakdown of three-dimensional periodicity in surface
layers ruptures exchange bonds between the Cu2+ ions.
In 1D antiferromagnets, alternating chains with a lim-
ited number of spins form [12]. It is unlikely that the
larger part of alternating chains in CuO consists of an
odd number of spins; this is the case in which a rise in
χ should be observed. For alternating antiferromagnetic
chains with an even number of spins, the susceptibility
decreases smoothly with decreasing temperature. As a
result of the rupture of exchange bonds in the surface
layers, CuO becomes, most likely, a strongly frustrated
antiferromagnet. In such antiferromagnets, the perpen-
dicular and parallel susceptibilities (with χ = 2/3χ⊥  +
1/3χ||) may grow with decreasing temperature. The
exchange bond frustration should manifest itself only in
the magnetically ordered region. In the high-tempera-
ture region T > TN, a decrease in particle size should not
affect the absolute values of the susceptibility χ(T).
Such a behavior of χ(T) is observed in samples of dense
nanoceramic. Their magnetic properties can be
accounted for by strongly frustrated antiferromag-
netism. In the case of loose nanopowders, however, the
absolute values of susceptibility grow with decreasing
d throughout the temperature range covered.

As already mentioned, the breakdown of a large
number of exchange bonds of surface ions in nanopar-
ticles may produce a spin-glass state. As is evident from
Figs. 2 and 4, the spin-glass state in CuO can set in only
below 80 K. Above the freezing temperature Tf, at
which the susceptibility should reach a maximum,
nanoparticles should reside in the paramagnetic state
and their susceptibility should follow the Curie–Weiss
law. Our studies show that the Curie–Weiss law is met
only for nanopowders with d = 15 nm (Fig. 3). The
large value of µeff indicates, however, that the spin-glass
state in small CuO particles cannot set in for T > 80 K.

In our opinion, the appearance of the paramagnetic
component of susceptibility in nanocrystalline CuO is
initiated primarily by paramagnetic Cu2+ ions localized
in surface layers. We calculated the total susceptibility
under the assumption that the variation of the tempera-
ture dependences of susceptibility for nanocrystalline
samples with particles of different size is accounted for
by the variation of the relative contributions from the
antiferromagnetic matrix and the Cu2+ paramagnetic
ions to χ:

(2)

where x is the concentration of Cu2+ paramagnetic ions,
S = 1/2, and g = 2.

The first term in Eq. (2) was derived from the tem-
perature dependence of susceptibility for a CuO poly-
crystal with a close-to-stoichiometric composition [9].
The second term in Eq. (2) is actually the Curie law,

χ 1 x–( )χ CuO( ) x Ng2S S 1+( )µB
2 /3kT[ ] ,+=
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because Cu2+ ions in surface layers of a nanoparticle do
not order magnetically at any temperature (the para-
magnetic Curie temperature Θ = 0).

Figure 5 plots calculated χ(T) curves for various
concentrations, x = 0.01–0.20. The χ(T) relations cal-
culated for nanocrystals with d > 70 nm and polycrys-
tals follow the same pattern, because, for small x ≤ 0.01,
the total susceptibility is dominated by the first term in
Eq. (2). As the Cu2+ concentration increases, the second
term grows in magnitude, particularly at low tempera-
tures. The temperature dependences of susceptibility
have the same pattern as those in Fig. 4 for nanoceram-
ics, with a minimum within the temperature interval
150–200 K. For higher Cu2+ ion concentrations (x >
0.10), the second term in Eq. (2) is dominant. These
relations are similar in pattern to the χ(T) curves in
Fig. 2 measured on CuO nanopowders. If all Cu2+ ions
were to be isolated, the susceptibility would reach the
value χ = 61.2 × 10–6 cm–3/g at 77 K. The experimental
values of χ obtained for nanocrystalline samples are an
order of magnitude smaller. Hence, a larger part of the
Cu2+ ions in nanoparticles remain antiferromagneti-
cally ordered.

The appearance of paramagnetic Cu2+ ions in CuO
multilayers below TN was observed in [13]. Polycrystal-
line and epitaxial CuO films of a thickness varying
within d = 2–200 nm were deposited on substrates of
the MgO and Al2O3 nonmagnetic phases. Within the
range 4.2 < T < 300 K, the susceptibility of all film sam-
ples was inversely proportional to temperature, χ ~ 1/T.
For the same total thickness of the multilayers, the sus-
ceptibility of thinner films is higher. The susceptibility
at 4.2 K was established to grow linearly with increas-
ing number of interfaces. The χ(T) relations are plotted
in [13] in arbitrary units, thus precluding a comparison
of the absolute values of susceptibility for films and
nanopowders. From the magnetic and Mössbauer mea-
surements, the conclusion was drawn that, in addition
to the main antiferromagnetic CuO phase, the films
contain paramagnetic Cu2+ ions localized in sheets of
effective thickness 2–4 Å adjoining the interface layers.
The concentration of Cu2+ paramagnetic ions in thin
polycrystalline (CuO 20 Å)/(Al2O3 30 Å) 100-layer
films was estimated from magnetic susceptibility data
to be 6.7% of the total number of copper ions. The
Mössbauer spectra obtained at 4.2 K on the same films
consisting of 50 CuO layers can be well fitted by
assuming the concentration x to be 0.10. Increasing the
film thickness (CuO 100 Å/Al2O3 150 Å, ten layers)
reduces the paramagnetic contribution intensity to 4%.

A comparison of the experimental with calculated
χ(T) relations leads to the conclusion that the model
proposed adequately describes the behavior of suscep-
tibility in nanocrystalline CuO samples prepared using
various techniques. An increase in the fraction of free
surface layers in the total sample mass should bring
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
about an increase in the concentration of the Cu2+ para-
magnetic ions. Estimates show that the concentration of
Cu2+ paramagnetic ions in nanopowders with particle
size d = 60 nm is x = 0.02; for d = 15 nm, x = 0.082. As
for the dense nanoceramics, the sample with the mini-
mum grain size d = 5 nm revealed the maximum value
x = 0.03. Our values of the Cu2+ paramagnetic ion con-
centration in CuO nanocrystals are in agreement with
the data obtained for multilayered films.

In addition to the size of nanoparticles, the density
of a sample is an important factor that influences the
magnitude of the paramagnetic contribution to χ. In
loose nanopowders, particles are separated by large dis-
tances; therefore, the susceptibility characterizes the
magnetic properties of the nanoparticles themselves.
The spins of the Cu2+ ions on the surface are not
exchange-coupled with those in the bulk of the nano-
particles. Due to the small distances between nanopar-
ticles in a dense ceramic, the spins of surface Cu2+ ions
are correlated. In this case, one should take into account
the interaction between nanoparticles [14]. The differ-
ence in the χ(T) relations between nanopowders and a
dense CuO nanoceramic for the same size of particles
is due to the fact that the paramagnetic Cu2+ ion concen-
tration in the latter decreases because of the interaction
between nanoparticles and a change in the surface spin
structure.

5. CONCLUSIONS

Thus, the surface of a nanocrystalline sample
noticeably affects the magnetic properties of CuO. On
the surface of nanoparticles, breakdown of three-
dimensional periodicity disrupts antiferromagnetic
bonds between Cu2+ ions. As a result, part of the copper
ions in the surface layers resides in the paramagnetic
state at T < TN and behaves like a paramagnetic impu-
rity. The magnetic susceptibility of CuO nanoparticles
is the sum of the contribution due to the antiferromag-
netic matrix and the contribution of isolated paramag-
netic Cu2+ ions. The paramagnetic contribution grows
with increasing fraction of surface layers in the total
sample mass, in particular, with decreasing nanoparti-
cle size and sample density.
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Abstract—The spectrum of magnetoelastic waves in a periodic structure of alternating ferromagnetic and non-
magnetic layers was studied. In the case of ferromagnetic layers with easy magnetization axes parallel to the
layer surfaces, an orientational phase transition induced by an external tangential magnetic field He was con-
sidered. The formation of an inhomogeneous phase with a spatially modulated order parameter, which is caused
by the magnetization being coupled through magnetostriction to lattice strains near the interfaces separating the
magnetoelastic from elastic media, is predicted. It is shown that at a certain critical field in excess of the orien-
tational phase transition field in the system without magnetostriction, a magnetoelastic wave propagating in a
direction parallel to the in-plane magnetization vector M becomes unstable at finite values of the wave vector
and condenses into a magnetostriction domain structure. A phase diagram in the (L, T, He) coordinates is con-
structed, and the regions of existence of thermodynamically equilibrium collinear, canted, and domain phases
are established (L and T are the thicknesses of the ferromagnetic and nonmagnetic layers, respectively). © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Magnetostriction noticeably affects the dynamic
and static properties of ferromagnets near a spin-orien-
tational phase transition. In unbounded samples, a mag-
netoelastic gap appears in the spin wave spectrum near
the orientational phase transition and the velocity of
one of the transverse acoustic mode branches decreases
to zero for wave vector k  0 [1–4]. In bounded mag-
nets, Néel-type domain structures are frequently
observed, whose existence is assigned to magnetoelas-
tic interaction [5–9]. By analyzing the spectrum of
magnetoelastic waves in magnetic materials, one can
determine the type of soft mode driving the second-
order phase transition [10].

The magnetoelastic-wave spectrum and the distribu-
tion of magnetization and elastic strains in a uniaxial
ferromagnetic plate with the easy axis normal to its
plane were studied in [8, 9]. It was established that near
a magnetic-field-induced orientational phase transition,
the frequency and group velocity of a magnetoelastic
wave vanish for finite values of the wave vector k = kc ≠
0, with the sample breaking down into domains. As a
result of domain structure formation, the energy of the
long-range demagnetization fields in vacuum
decreases. Competition between the magnetoelastic
and dipole energies brings about a substantial depen-
dence of the direction of propagation and of polariza-
tion of the soft magnetoelastic mode on the plate thick-
ness L. In the case of thick plates (L > LN), the soft mode
is a transverse wave polarized perpendicular to the
plane of the plate and propagating along the magnetiza-
1063-7834/03/4502- $24.00 © 20311
tion direction (k || M). This mode condenses into a
Néel-type domain structure. In thin films (L < LB), the
transverse wave polarized in the plate plane and propa-
gating perpendicular to M is soft, which signals nucle-
ation of a Bloch-type domain structure.

An alternative case of domain structure nucleation,
in a ferromagnetic film with the easy magnetization
axis parallel to a surface clamped to an elastic substrate,
was studied recently in [11–13]. It was shown that in
the vicinity of an orientational phase transition induced
by a tangential external magnetic field, a horizontally
polarized critical Love wave becomes unstable and
transforms into a magnetostriction domain structure
localized near the film–substrate interface. In these
conditions, transition to the domain state reduces the
energy of the long-range elastic-strain fields in the non-
magnetic substrate.

This study deals with nucleation of a domain struc-
ture in a periodic system in which ferromagnetic layers
with the easy magnetization axis parallel to the surface
alternate with elastic nonmagnetic layers. Inhomoge-
neous magnetic states (domain structures) of multilay-
ered systems have been a recent subject of intense
investigation [14, 15]. The fairly large dispersion, com-
bined with a high sensitivity to an external magnetic
field, makes such systems promising for applications in
signal processing devices. The formation of a domain
structure is usually associated with the effect of mag-
netic charges on the surface of magnetic layers. We will
show that a phase transition involving in-plane spin
reorientation may give rise to the formation of a mag-
003 MAIK “Nauka/Interperiodica”
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netostriction domain structure whose existence is fully
determined by the possibility of reducing the energy of
the long-range elastic-strain fields, which penetrate into
a nonmagnetic material to a depth of the order of the
domain structure period.

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

We write the energy of the system as

(1)

where Fm is the magnetic energy, Fe is the elastic energy
of the lattice, and Fme is the magnetoelastic interaction
energy. If the magnetoelastic interaction constants are
small, the elastic strains and displacements in the sys-
tem may be considered small under certain conditions.
The elastic energy density fe is a positively definite qua-
dratic form of the strain tensor uik,

(2)

and the magnetoelastic energy density fme is linear in
strains uik.

The ground and metastable states correspond to the
minimum of the energy of the system F; therefore, the
distributions of the magnetization M and of elastic dis-
placements u satisfy the equations of state

(3)

where Heff is the effective magnetic field

(4)

Using the second equation in Eqs. (3) and in view of the
uniformity of fe and fme in elastic displacements, one
readily obtains the relation

(5)

The equality sign in Eqs. (2) and (5) takes place only in
the absence of elastic strains in the system. Whence it
follows that for a given magnetization distribution in
the absence of external elastic stresses, interaction
between the magnetic and elastic subsystems can
reduce the total energy of the system. The second of
equations of state (3) permits one to uniquely express
the displacements through magnetization and to trans-
fer to the effective magnetic energy, which depends on
the magnetization alone. The total contribution of the
elastic and magnetoelastic energies turns out to be neg-
ative and nonlocal. If there are no deformations and
dipole fields in a homogeneous magnetic state (for
instance, in a layered film–substrate system, in which a
massive substrate precludes the development of strains
in the film plane), magnetoelastic interaction may ini-
tiate instability of the homogeneous phase and nucle-
ation of a domain structure. This may occur even in
conditions where domains in a purely magnetic system
do not exist at all [11–13].

F Fm Fe Fme+ + v f m f e f me+ +( ),d∫= =

Fe 0,>

M Heff×[ ] 0, δF/δu 0,= =

Heff δF/δM.–=

Fe Fme+ Fme/2 0.≤=
P

Consider an orientational phase transition and the
spectrum of magnetoelastic excitations in a periodic
structure consisting of alternating ferromagnetic layers
of thickness L and nonmagnetic layers of thickness T
with no gap between them. All layers are assumed to be
dielectric. Let the normal to the surfaces of each layer
be directed along the ny axis. The magnetic layers pos-
sess uniaxial magnetic anisotropy, with the symmetry
axis na being the easy magnetization axis. This axis is
oriented identically in the magnetic layers and is paral-
lel to the layer planes, na || nz. The system is placed in a
tangential external magnetic field He || nx perpendicular
to the anisotropy axis.

The energy of the periodic system F can be conve-
niently divided into two terms,

(6)

In Eq. (6), Ffm = Fm + Fme + Fe is the energy of the fer-
romagnetic layers, where

(7)

(8)

(9)

and the energy of the nonmagnetic layers Fnm is purely
elastic,

(10)

Here, HD = ∇Φ  is the dipole field, M is the magnetiza-
tion, β > 0 is the uniaxial anisotropy constant, α is the
nonuniform exchange constant, B is the magnetostric-

tion constant of the ferromagnetic material,  and

 are the elastic moduli,  = (∂ /∂xk +

∂ /∂xi)/2 are the strain tensors, and Vfm and Vnm

are the total volumes of the magnetic and nonmagnetic
media, respectively. The elastic anharmonicities and
the nonlinearity of the strain tensor are neglected,
because their influence reduces to an insignificant
renormalization of the elastic and magnetoelastic mod-
uli [2]. We restrict ourselves to an isotropic approxima-
tion for the magnetostriction energy and the elastic
energy of the system. We assume also that the effect of
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lattice misfit between the magnetic and elastic layers
and of the volume magnetostriction reduces to renor-
malization of the magnetic anisotropy constant and of
the external field.

The dependence of the magnetization M and elastic
strains u(fm, nm) on time t is described by the equations

(11)

where g > 0 is the gyromagnetic ratio and ρ(fm) and ρ(nm)

are the densities of the magnetic and nonmagnetic lay-
ers, respectively.

At the interfaces between the media, the dipole field
potential Φ = ϕM0 and the normal component of mag-
netic induction B = He + HD + 4πM = bM0 = (h + hD +
4πm)M0 are continuous and the derivative of the mag-
netization vanishes:

(12)

The displacements u and the components of the
magnetoelastic stress tensor σyi are also continuous at
the interfaces:

(13)

Let us analyze the character of variation of the low-
frequency region in the magnetoelastic wave spectrum
and of the ground state of the system with variation of
the external magnetic field.

3. UNIFORM SPONTANEOUS STRAINS
IN MAGNETOELASTIC AND ELASTIC LAYERS

If the external magnetic field He || nx is strong, the
magnetization in the magnetoelastic layers is parallel to
the external field, M || nx. Although the magnetization
is uniform, in contrast to the case of a magnetoelastic
film on a massive elastic substrate [11–13], the sponta-
neous strains  and stresses  in the system are
nonzero.

If the elastic moduli of the magnetic and nonmag-

netic layers are equal,  =  = Cijkl, the non-
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vanishing components of the spontaneous strain ten-
sor are

(14)

The change in energy δF/V per unit volume of the sys-
tem due to the presence of spontaneous strains can be
written as

(15)

As seen from Eq. (15), spontaneous strains and stresses
give rise to renormalization of the magnetic anisotropy
energy. Their existence makes the anisotropy of the fer-
romagnetic layers biaxial. The increment of the effec-
tive magnetic energy (15) is not negative. In the case
where the anisotropy field in the magnetic layers is suf-
ficiently strong and the magnetization is parallel to the

layer boundaries, the term proportional to  in
Eq. (15) is of no interest to us. The remaining part of
Eq. (15) can be included into the uniaxial anisotropy
energy.

If the elastic moduli of the magnetic and nonmag-
netic layers are not equal, the part of δF of importance
to us is

(16)

We shall assume in what follows that the anisotropy
constant β is renormalized. This will permit us to disre-
gard the existence of spontaneous strains in studying
the magnetoelastic-wave spectrum and the stability of
the collinear state with M || nx. The correction to energy
due to spontaneous strains in the canted phase with uni-
form magnetization parallel to the magnetic layer plane
and canted at an angle to the bias field can also be writ-
ten in the form of Eq. (16). In this case, by mz one
should understand the magnetization component  in

the reference frame x 'y ' with the axis  parallel to the
direction of uniform magnetization.
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4. SPECTRUM OF LOW-FREQUENCY 
MAGNETOELASTIC EXCITATIONS

AND THE COLLINEAR-PHASE STABILITY LOSS 
LINE

We shall first analyze the variation of the state of the
system that is homogeneous in the x and z coordinates
in relation to an external magnetic field. Because the
magnetization in each ferromagnetic layer is uniform
and lies in the plane parallel to the interfaces separating
the media, there are no elastic strains in the system (the
contribution due to the spontaneous strains and stresses
has already been taken into account by renormalizing
of the constant β). We express the components of the
normalized magnetization m through the polar angle ϑ
and azimuthal angle ϕ:

(17)

Minimizing the energy (6) with respect to ϑ  and ϕ
yields the following homogeneous phases: a collinear
phase with

m || He (18)

and two canted phases with magnetization parallel to
the interfaces,

(19)

To determine the regions of stability of the collinear
phase against small magnetoelastic perturbations, we
find the spectrum of low-frequency excitations in the
system. Consider the propagation of magnetoelastic
waves in the direction parallel to the external field (kx ≡
k ≠ 0, kz = 0). Such excitations possess the strongest
magnetoelastic coupling and the highest threshold for
instability against the field He, because the domain
walls forming in this case have no magnetic charges
and the dipole field in the system is zero [11, 12].

Let small nonuniform components of magnetization
m and of displacements u depend on coordinates x and
z and time t as exp[i(kx – ωt)]. In what follows, we will
drop this exponential factor and consider m(y) and u(y)
to be Fourier amplitudes of nonuniform magnetization
and displacements. We look for a solution to the equa-
tions of motion of magnetization and the elastic
medium in the form of Bloch functions:

(20)

where V(y) and U(y) are periodic functions; κ is the
wave number, varying within the first Brillouin zone
−π/D ≤ κ ≤ π/D; and D = T + L is the period of the struc-
ture.

mx ϑ , mycos ϑ ϕ ,sinsin= =

mz ϑ ϕ .cossin=

ϕ 0,=

ϑ ϑ 0

0 for h β,>
h/β( ) for 0 h β.< <arccos±




= =

m V y( ) iκy( ),exp=

u y( ) U y( ) iκy( ),exp=
PH
If the anisotropy constant of the magnetic layers is
sufficiently large, the dipole field and all components of
the nonuniform magnetization and displacements,
except  and , can be disregarded in the vicinity of
the orientational phase transition. The distribution of
nonuniform magnetization and displacements in a fer-
romagnetic layer I (–L/2 < y < L/2) can be cast in a gen-
eral form as

(21)

where Ω = ω/ωM, with ωM = gM0.

Substituting solution (21) into equations of motion
(11) yields a biquadratic characteristic equation for
determining the quantities q1 and q2:

(22)

where kfm = ωM/ ,  =  is the trans-

verse sound velocity, and hme = B2 / .

We conveniently write the general solution to equa-
tions of motion (11) of the elastic medium for the lower
adjacent nonmagnetic layer II (–L/2 – T < y < −L/2) as

(23)

and that for the upper adjacent nonmagnetic layer III
(L/2 < y < L/2 + T) as

(24)

Here,  = k2 – Ω2  and knm = ωM/ . Equations (20)
imply that the coefficients of Eqs. (23) and (24) are
related as  = a3 and  = b3. The coefficients a1, 2, 3

and b1, 2, 3 and the dispersion relation for the Love mag-
netoelastic waves in a periodic structure are found from
boundary conditions at the y = ±L/2 surfaces:

(25)
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We do not present here the dispersion relation in a gen-
eral form, because the case of κ = 0, where excitations
in layers of the same material vary in phase, is of most
interest.

For κ = 0, the system supports independent symmet-
ric (a1, 2, 3 ≠ 0, b1, 2, 3 = 0) and antisymmetric (a1, 2, 3 = 0,
b1, 2, 3 ≠ 0) modes for each layer. The dispersion relation
for the symmetric modes is

(26)

and that for the antisymmetric modes is

(27)

where ε = / . On expanding the nonuniform
components of magnetization and of elastic strains in
powers of the order parameter and carrying out manip-
ulations similar to those made in [12, 13], one can show
that the transformation from the collinear to canted or
domain phase is a second-order phase transition. In
what follows, we will not be interested in the antisym-
metric modes, because the soft mode for the field-
driven orientational phase transition in the system
under study is the lowest symmetric mode.

The stability loss field for the collinear state hc and
the magnitude of the critical-mode wave vector kc are
found from Eq. (26) and the conditions

(28)

If the layers in a periodic structure are very thin
(|q1, 2|L ! 1, |q3 |T ! 1), Eq. (26) reduces to the equation

(29)

Variation of Eq. (29) with respect to k yields

(30)

which means that magnetostriction domains do not
form in a periodic system of ultrathin films.

For a small thickness of the ferromagnetic layer
(|q1, 2|L ! 1) and a large thickness of the nonmagnetic
layer (|q3 |T @ 1), Eq. (26) transforms to

(31)
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From this equation, we derive approximate values of
the critical field and reciprocal domain structure period:

(32)

We readily see that the critical domain structure period

grows with increasing stiffness  of the nonmag-
netic layers.

In the case of thick nonmagnetic layers (|q3|T @ 1)
and magnetoelastic layers of intermediate thicknesses
(|q1|L @ 1, |q2|L ∝  1), the critical parameters of the

domain structure for  =  can be written as

(33)

Equations (32) and (33) coincide with the correspond-
ing expressions presented in [11, 12] if the replacement
L  L/2 is made in the latter.

An analysis of the roots of dispersion relation (26)
shows that there is no domain structure in the system
with absolutely soft or rigid nonmagnetic layers.

Equations (26) and (28) can be conveniently ana-
lyzed numerically by introducing dimensionless quan-
tities ξ = (h – β)/hme, k' = k(α/hme)1/2, κ' = κ(α/hme)1/2,
q' = q(α/hme)1/2, L' = L(hme/α)1/2, and T ' = T(hme/α)1/2.
Only three parameters (L', T ', ε) are left independent.
The primes on the quantities k', κ', q', L', and T ' will be
subsequently dropped.

Figures 1 and 2 display (in normalized variables) the
calculated nucleation field and the critical domain
structure period plotted vs. the thicknesses of the mag-
netoelastic and elastic nonmagnetic layers. For a fixed
thickness of nonmagnetic spacers, the critical field hc =
β + hmeξc grows monotonically with increasing mag-
netic-layer thickness (Fig. 1a). The reciprocal critical
period (Fig. 1b) is maximal at a certain thickness of the
magnetoelastic layer and tends to zero as L  0 and
L  ∞. As the thickness of the nonmagnetic spacers
grows with the magnetic-layer thickness kept fixed, the
critical field decreases monotonically (Fig. 2a) and the
reciprocal critical period of the domain structure
increases monotonically (Fig. 2b).

The domain size grows with decreasing thickness of
the nonmagnetic layers (Fig. 2b); the magnetostriction
domains disappear when the period of the domain
structure becomes of the order of the nonmagnetic-
spacer thickness. Therefore, as the external magnetic
field decreases, the system undergoes a second-order
phase transition from the collinear to either a homoge-
neous canted or domain phase, depending on the actual
material parameters of the magnetoelastic and nonmag-
netic layers. The stability loss field of the collinear
phase against transition to the canted phase hc0 is
described by the expression

(34)

hc β hme
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which coincides with Eq. (30). For hc > hc0, the system
transfers to the domain phase at the field hc; in the case
where the reverse inequality is met (hc < hc0), to the
canted phase. The condition hc = hc0 is the equation of
the T*(L) curve on the L–T plane separating the regions
of transition from the collinear phase to the domain
(T > T*) and to the canted (T < T*) phase. Since this
phase transition is second-order, magnetostriction
domains can form only for nonmagnetic spacer thick-
nesses T > T*. Figure 3 shows the pattern of the
T*(L) relation drawn in reduced variables. As the non-
magnetic-spacer thickness approaches T*(L) in the
region of small magnetoelastic layer thicknesses, the
reciprocal critical period of the domain structure tends
monotonically to zero; therefore, Eq. (26) for the low-
est static mode transforms to

(35)

The derivatives of the left- and right-hand parts of
Eq. (35) with respect to k are monotonically growing
functions of k, and the derivative of the right-hand side
is maximal at k = 0. By expanding the right-hand part
of Eq. (35) in powers of k, we can determine the T*(L)
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Fig. 1. (a) Critical field and (b) reciprocal period of the crit-
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relation and the critical domain-structure parameters
near the T*(L) curve:

(36)T∗ 12 αC44
nm( )( )/ hmeLC44

fm( )( ),≅

0.97

0.96

0.95

0.94

8 12 16 20

(a)

0.16

0.14

0.12

0.10

4

(b)

T

0.08

0.06

Fig. 2. (a) Critical field and (b) reciprocal period of the crit-
ical magnetostriction domain structure plotted vs. nonmag-
netic-layer thickness for ε = 1 and a fixed thickness of mag-
netic layers L = 100.

100

10

1
0.1 1 10 100

L

T*

Fig. 3. T*(L) relation plotted on the L–T plane for ε = 1.

ξc

kc
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



MAGNETOSTRICTION DOMAIN STRUCTURE IN A PERIODIC SYSTEM 317
(37)

We readily see from Fig. 3 that relation (36) fits quite
well to the e T*(L) curve in the region of small L up to
values L ∝  1. We did not succeed in deriving an analyt-
ical expression for T*(L) in the region of large values of
L, because the values of kc on this line are finite.

We will not discuss here specific features of the dis-
persion relation for magnetoelastic waves in the vicin-
ity of the orientational phase transition, because, quali-
tatively, this relation has the same character as in a
bilayer system of a magnetoelastic film and a nonmag-
netic elastic substrate [11–13].

5. CONCLUSIONS

Thus, we have studied the spectrum of magnetoelas-
tic waves in a periodic structure of alternating dielectric
ferromagnetic and nonmagnetic layers. We considered
an orientational phase transition driven by a tangential
external magnetic field He for the case of uniaxial fer-
romagnetic layers with easy magnetization axes paral-
lel to the layer surfaces. The formation of an inhomoge-
neous phase with a spatially modulated order parame-
ter, which originates from magnetostriction-mediated
coupling between the magnetization and lattice defor-
mations, was predicted. The phase diagram in (L, T, He)
space was constructed, and the regions of existence of
the collinear, canted, and domain phases in thermody-
namic equilibrium was determined.

The analysis of the transition of a multilayer system
from the homogeneous to an inhomogeneous phase did
not take into account the effect of exchange coupling
between magnetic layers. For a system of dielectric lay-
ers, this is justified as long as the thickness of nonmag-
netic layers exceeds a few lattice constants.

Consider briefly the effect of lattice misfit between
the magnetic and elastic materials on the state of the
system. The order parameter for the phase transition
under study is the amplitude of the magnetization com-
ponent mz (or of the strain tensor component uxz). If the
misfit-stress symmetry does not coincide with the sym-
metry of the order parameter, the misfit stresses should
not affect the final results as long as the difference
between the parameters periods of the magnetic and
nonmagnetic materials is small (i.e., as before, these
stresses reduce to a renormalization of the external field
and of the anisotropy constant). If, however, the lattice
misfit between the magnetic and nonmagnetic layers is
large, the ground state of the system may become inho-
mogeneous, i.e., in nucleation of a domain structure. In
these conditions, magnetostriction domains will be
observed against the background of the inhomogeneous
phase if the period of those domains is small as com-
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× 1 5 hme/α( )1/2 T T∗–( )2
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kc
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pared to that of the domain structure, which is governed
by the lattice misfit. Otherwise, the inhomogeneous
state will have a more complex character.

Structures containing conducting components are of
particular interest. If the nonmagnetic layers are con-
ducting, the exchange coupling between the magnetic
layers may acquire either ferromagnetic or antiferro-
magnetic character, depending on the nonmagnetic-
layer thickness. Therefore, the results obtained here are
applicable only if the thickness of the nonmagnetic lay-
ers is large enough to justify neglect of the exchange
coupling between ferromagnetic layers. In the case
where all layers are conducting, giant magnetoresis-
tance may appear in the structure [16]. If only the mag-
netic layers are conducting, the presence of a domain
structure in them can also give rise to giant magnetore-
sistance; if an in-plane current flows through the struc-
ture, the resistivity of each layer may vary, because the
electron reflection coefficient depends on the spin
polarization and the orientation of the magnetization in
the domains. Finally, in ferromagnet–antiferromagnet
multilayer systems, the phase transition from the homo-
geneous state to a magnetostriction domain structure
may occur in a substantially different manner than in
the system considered above, even if the components of
the system are insulators. A comprehensive analysis
showed that condition (12) fails at the ferromagnet–
antiferromagnet interface [17]. Furthermore, exchange
coupling between the ferro- and antiferromagnetic lay-
ers strongly affects the domain wall structure near the
surface of the ferromagnet. Additional studies are
needed to establish the character of the orientational
phase transition in the structures indicated above.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project no. 02-02-16794), Pol-
ish Scientific Research Committee, and the ISTC Foun-
dation (grant no. 1522).

REFERENCES

1. I. E. Dikshteœn, E. A. Turov, and V. G. Shavrov, in
Dynamic and Kinetic Properties of Magnetic Systems,
Ed. by S. V. Vonsovskiœ and E. A. Turov (Nauka, Mos-
cow, 1986), Chap. 3.

2. V. I. Ozhogin and V. L. Preobrazhenskiœ, Usp. Fiz. Nauk
155, 593 (1988) [Sov. Phys. Usp. 31, 713 (1988)].

3. V. G. Bar’yakhtar and E. A. Turov, in Spin Waves and
Magnetic Excitations, Ed. by A. S. Borovik-Romanov
and S. K. Sinha (North-Holland, Amsterdam, 1988),
Vol. 2, Chap. 7.

4. Yu. V. Gulyaev, I. E. Dikshteœn, and V. G. Shavrov, Usp.
Fiz. Nauk 167, 735 (1997) [Phys. Usp. 40, 701 (1997)].

5. A. Hubert, Theorie der Domanenwande in Geordneten
Medien (Springer, Berlin, 1974; Mir, Moscow, 1977).

6. R. W. Patterson and M. W. Muller, Int. J. Magn. 3, 293
(1972).
3



318 BESPYATYKH et al.
7. M. H. Yang and M. W. Muller, J. Magn. Magn. Mater. 3,
251 (1976).

8. Yu. I. Bespyatykh, I. E. Dikshteœn, and V. V. Tarasenko,
Fiz. Tverd. Tela (Leningrad) 23, 3013 (1981) [Sov. Phys.
Solid State 23, 1757 (1981)].

9. I. E. Dikshteœn, Fiz. Tverd. Tela (Leningrad) 32, 1286
(1990) [Sov. Phys. Solid State 32, 754 (1990)].

10. I. E. Dikshteœn, Fiz. Tverd. Tela (Leningrad) 31 (3), 175
(1989) [Sov. Phys. Solid State 31, 447 (1989)].

11. Yu. I. Bespyatykh and I. E. Dikshteœn, Fiz. Tverd. Tela
(St. Petersburg) 41, 665 (1999) [Phys. Solid State 41,
599 (1999)].

12. Yu. I. Bespyatykh, I. E. Dikshtein, Zhen-ya Li, and
W. Wasilewski, Phys. Rev. B 62, 3322 (2000).
PH
13. Yu. I. Bespyatykh and I. E. Dikshtein, J. Magn. Magn.
Mater. 220, 214 (2000).

14. Magnetic Ultrathin Films: Multilayers and Sur-
face/Interface and Characterization, Ed. by B. T. Janker
(Material Res. Soc., Pittsburg, PA, 1993).

15. Ultrathin Magnetic Structures, Ed. by B. Heinrich and
J. A. C. Bland (Springer, Berlin, 1994), Vols. 1 and 2.

16. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev.
Lett. 61, 2472 (1988).

17. V. D. Levchenko, A. I. Morozov, A. S. Sigov, and
Yu. S. Sigov, Zh. Éksp. Teor. Fiz. 114, 1817 (1998)
[JETP 87, 985 (1998)]. 

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



  

Physics of the Solid State, Vol. 45, No. 2, 2003, pp. 319–325. Translated from Fizika Tverdogo Tela, Vol. 45, No. 2, 2003, pp. 303–308.
Original Russian Text Copyright © 2003 by Nesterov, Sazonov.

                                                                  

MAGNETISM 
AND FERROELECTRICITY
Self-Induced Transparency of Hydrogen-Containing 
Ferroelectrics for Extremely Short Pulses in the Vicinity 

of the Curie Temperature
S. V. Nesterov and S. V. Sazonov

Kaliningrad State University, Kaliningrad, 236041 Russia
e-mail: nst@alg.kaliningrad.ru

Received March 4, 2002; in final form, June 10, 2002

Abstract—Nonlinear propagation of extremely short (carrierless) electromagnetic pulses in a KDP-type ferro-
electric is investigated at temperatures close to the phase transition point. It is demonstrated that, although weak
monochromatic signals undegro a sharp attenuation at these temperatures, an extremely short high-power pulse
can propagate in the self-induced transparency regime and the associated soliton is stable to transverse pertur-
bations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The self-induced transparency phenomenon
involves a nonlinear bleaching of a resonant medium
under the action of a laser pulse whose intensity
exceeds a threshold [1]. Over the last decade, laser
engineering has progressed to the stage where pulses of
duration as short as one period of an electromagnetic
oscillation (extremely short pulses) can be generated
under experimental conditions [1–3]. The spectrum of
these pulses is so broad that the carrier frequency can-
not be separated. Consequently, the slowly varying
amplitude approximation [4], which is traditionally
used for quasi-monochromatic pulses with a carrier fre-
quency, becomes inapplicable to theoretical investiga-
tions into the interaction of extremely short pulses with
materials. The same is also true for the specific features
observed in self-induced transparency for extremely
short pulses as compared to quasi-monochromatic
pulses [5]. However, in both cases, the mechanisms of
propagation of self-induced transparency solitons are
virtually identical and involve periodic energy
exchange between the pulse and the medium.

In recent years, considerable interest has been
expressed by researchers in laser actions on media
undergoing structural phase transitions. A softening of
vibrational modes in the vicinity of the phase transi-
tions increases the role played by nonlinear effects.
This opens up new possibilities for observing the spe-
cific features of nonlinear phenomena that cannot man-
ifest themselves far from phase transitions. In particu-
lar, Belonenko [6] studied the self-induced transpar-
ency for quasi-monochromatic pulses propagating in a
KDP-type ferroelectric and resonantly interacting with
1063-7834/03/4502- $24.00 © 20319
impurity two-level atoms. It was demonstrated that the
soliton velocity can sharply decrease as the temperature
T of the ferroelectric in polar and nonpolar phases
approaches the Curie temperature TC.

Note also that self-induced transparency solitons
whose spectrum does not embrace frequencies of reso-
nance transitions can propagate in a KDP-type ferro-
electric at temperatures far from the Curie point TC [7].

As the Curie temperature TC is approached, the
relaxation processes resulting in severe overdamping of
the soft mode play an increasingly important role. As a
result, the frequency dependence of the susceptibility
of the ferroelectric is described by the Debye curve
rather than by the Lorentzian curve [8, 9]. In this case,
the softening of the vibrational mode manifests itself as
a critical slowing down: the quasi-oscillation dynamics
of polarization gives way to the relaxation dynamics,
and the relaxation time tends to infinity at T  TC. It
should be noted that this relaxation is collective in
nature and stems from a strong dipole–dipole interac-
tion of polarization centers [10]. In a KDP-type ferro-
electric, the function of the polarization centers is ful-
filled by hydrogen ions whose vibrational mode is asso-
ciated with tunneling these ions between minima of
double-well potentials [8, 9].

In the vicinity of the Curie temperature, the self-
induced transparency effect for quasi-monochromatic
pulses (resonant with the soft mode) becomes impossible
owing to a strong overdamping of the vibrational mode.
Actually, the phase relaxation time for hydrogen ions
tunneling in KH2PO4 is estimated as T2 ~ 10–12 s [8] and
the frequency of the quantum tunneling is determined
to be ω0 ~ 1013 s–1. At |T – TC | ~ 1 K and TC ≈ 222 K,
the frequency of the soft mode is estimated as ωc ~

ω0  ~ 1012 s–1 ~ 1/T2. Since the pulse is res-T TC– /TC
003 MAIK “Nauka/Interperiodica”
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onant, its frequency is determined as ω = ωc ~ 1/T2.
Observation of the self-induced transparency requires
the fulfillment of the condition τp ! T2 for the pulse
duration τp. From this condition and the above relation-
ships, we obtain ωτp ! 1, which contradicts the condi-
tion ωτp @ 1 for the quasi-monochromatic pulse and
more likely corresponds to extremely short pulses. The
spectrum of these pulses, in addition to resonance fre-
quencies, contains other frequencies, including higher
frequencies. As a result, the interaction of extremely
short pulses with a medium can differ considerably
from the interaction of quasi-monochromatic pulses
and the medium. As the power of extremely short
pulses increases, the interaction between the polariza-
tion centers (hydrogen ions) and the field of pulses
becomes stronger than that between the polarization
centers themselves. Consequently, the collective relax-
ation responsible for the overdamping of the soft mode
makes a smaller contribution and, hence, the specific
features of the polarization centers can show them-
selves more clearly. Therefore, the situation becomes
similar to that observed for isolated atoms.

In the present work, we theoretically investigated
the incoherent nonlinear propagation of extremely
short high-power broadband pulses in hydrogen-con-
taining ferroelectrics of the order–disorder type.

2. THE SELF-CONSISTENT SYSTEM 
OF CONSTITUTIVE AND WAVE EQUATIONS

In the right–left representation and the molecular-
field approximation, the Hamiltonian of an active pro-
ton interacting with the electric field E of a pulse can be
written in the form [8, 9, 11]

(1)

where " is the Planck constant, ω0 is the frequency of
quantum tunneling of the proton in an isolated double-
well potential, J is the mean constant of the dipole–
dipole coupling between quantum tunneling transitions
of protons, Ω = dE/", d is the dipole moment of the tun-

neling transition, and  (ρ = x, y, z) are the Pauli pseu-
dospin operators for the ith center. In this case, the

operator  determines the population inversion of two
quantum levels of the jth center with the energy separa-

tion "ω0. At the same time, the operator  is propor-
tional to the dipole moment operator of the ith center.

The role of the operator  reduces to the closure of the

pseudospin operator algebra (note that Sρ = ,
where 〈…〉 is the quantum averaging operation).

Ĥ1 –"ω0Ŝx " Ω JSz+( )Ŝz,–=

Ŝρ
j

Ŝx
j

Sz
j

Sy
j

Ŝρ〈 〉
PH
After quantum averaging of the Heisenberg equa-

tions written for the Pauli operators  (ρ = x, y, z), we
obtain

(2)

Relaxation is disregarded in these equations. Since this
effect is very important in the vicinity of the Curie tem-
perature TC, according to [11], we take into account the
relaxation by adding phenomenological relaxation
terms to formulas (2). Owing to the critical slowing-
down, the molecular field varies very slowly in the
neighborhood of TC. Therefore, the pseudospin compo-
nents relax to the time-dependent quasi-equilibrium,
which is determined by the instantaneous molecular
field, rather than to the thermodynamic equilibrium [11].

First, we rewrite formulas (2) in the following form
[11]:

(3)

where S = (Sx, Sy, Sz) and Weff = Wm + W . The compo-
nents of the molecular field Wm (with the frequency

dimension) are represented in the form  = ω0,  =

0, and  = JSz.

It can be seen from relationship (3) that the vector S
precesses about an instantaneous direction of the vector
Weff.

Let us introduce the effective susceptibility χeff as
follows:

(4)

where Sq is the quasi-equilibrium value of the vector S,
which is determined by the instantaneous value of Weff.

In the state of thermodynamic equilibrium, we have
[8, 9, 11]

(5)

and the Curie temperature TC can be found from the
expression

(6)

where kB is the Boltzmann constant.
From relationships (4) and (5), we obtain

(7)

Ŝρ
j

∂Sx

∂t
-------- Ω JSz+( )Sy,=

∂Sy

∂t
-------- ω0Sz Ω JSz+( )Sx,

∂Sz

∂t
--------– ω0Sy.–= =

∂S
∂t
------ S Weff,×=

Ωx
m Ωy

m

Ωz
m

Sq χeffWeff,=

Sx Sx
e "ω0/kBT( ), T TC≥tanh

ω0/J , T TC≤



= =

ω0

J
------

"ω0

kBTC
------------ 

  ,tanh=

χeff Sx
e

ω0
------

1
ω0
------

"ω0

kBTC
------------.tanh= =
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The true static susceptibility χ(0) is deduced from the
formula Sz0 = χ(0)Ω and, as follows from relation-
ships (4) and (7), is related to χeff by the expression

(8)

This expression coincides with the corresponding
expression derived for χ(0) in the framework of the ther-
modynamic theory [8] and, according to formula (6),
has a singularity at T = TC.

Taking into consideration that the vector S at tem-
peratures close to TC relaxes to its quasi-equilibrium
value Sq [see formula (4)], relaxation terms in the form

–γ⊥ (S – S⊥ ) and γ||(  – ) should be added to the
right-hand side of formula (3). Then, we obtain

(9)

where S⊥  = (Sy, Sz),  = ( , ), ex is the unit vec-
tor aligned along the direction Sx (in the pseudospin
space), and γ⊥  and γ|| are the phase and energy relax-

ation rates, respectively. Note that the inequality  @

 is valid for hydrogen-containing ferroelectrics, in
which the quantum tunneling through the barrier of the
double-well potential has a high probability. Among
ferroelectrics of this type are perovskites, SnTe, KDP,
and other materials [8]. As a rule, the inequality γ⊥  ! γ||
is satisfied [12]; hence, the relaxation rate γ|| will be
ignored thereafter.

For the zth component, Eq. (9) takes the form

(10)

At T = TC, we have /ω0 = 1. Consequently, the
relaxation terms in the last equation can be disregarded
in the vicinity of the transition temperature. Taking into
account the aforesaid and eliminating the physically
meaningless yth component of the vector of the pseudo-
potential S, Eq. (10) can be rewritten in the form of a set
of equations for the components of the vector S; that is,

(11)

(12)

Below, it will be shown that the results obtained with
the proposed technique of introducing the relaxation
are in reasonable agreement with the experimental data

χ 0( ) 2χeff

1 2Jχeff–
----------------------- ω0

"ω0

kBTC
------------coth J– 

  1–

.= =

Ṡx Sx
q

∂S
∂t
------ S Weff× γ⊥ S⊥ χeffW⊥

m–( )– γ|| Sx χeffWx
m–( )ex,–=

W⊥
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m Ωz
m

ω0
2
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∂Sz
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-------- –ω0Sy γ⊥ 1 JSx

e/Ω0–( )Sz.–=

JSx
e

∂Sx

∂t
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Ω JSz+
ω0

-------------------
∂Sz

∂t
--------,–=

∂2Sz

∂t2
---------- γ⊥

∂Sz

∂t
-------- ω0

2
Sz+ + ω0 Ω JSz+( )Sx.=
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on the dynamic properties of ferroelectrics in the vicin-
ity of the Curie temperature.

Now, we supplement the constitutive equations (11)
and (12) with the Maxwell equation for the external
field Ω:

(13)

where c is the velocity of light in free space, n is the
concentration of active centers, and ∆ is the Laplacian.
Further analysis is based on examination of the self-
consistent system of equations (11)–(13), which
describes the dynamics of the electromagnetic pulse in
hydrogen-containing ferroelectrics of the order–disor-
der type at temperatures close to the Curie point.

3. ATTENUATION OF WEAK 
MONOCHROMATIC WAVES

Let us linearize the system of equations (11) and

(12). For this purpose, we write Sx =  + ξ and Sz =

Sz0 + ζ (Sz0 ≠ 0 at T < TC), where ξ and ζ ! , and Sz0.
Then, from Eqs. (12) and (13), we find

(14)

where  =  ≡ (1 – J /ω0) at T > TC and  =

 ≡ (J )2 at T < TC.

The dynamic susceptibility of the ferroelectric can
be defined by the relationship

(15)

where P0 = dhSz0 is the equilibrium polarization (spon-
taneous at T < TC), P = dhSz is the total polarization in
the presence of the external electric field E, and ω is the
field frequency.

By assuming that ζ and Ω = dE/" ~ eiωt, from formu-
las (14) and (15), we have

(16)

where χ(0) = d2n /("J ).

Expression (16) adequately describes the experi-
mental data for hydrogen-containing ferroelectrics [8].
Moreover, it is easy to see that this expression is the
limiting case of the more general relationship [11] at

 @ . If the phase relaxation rate were to symmet-
rically enter into the equations for Sy and Sz (as is often
the case in media at temperatures far from phase transi-
tions), ωc in expression (16) would not become zero at
T = TC. Therefore, we can draw the inference that the
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inclusion of the relaxation in the simplest manner (as in
the preceding section) leads to agreement with the
experiment and does not contradict the thermodynamic
theory. The quantity χ(0) in expression (16) is the static
and, simultaneously, thermodynamic equilibrium sus-
ceptibility. Indeed, for example, at T > TC, we obtain

This relationship coincides with the theoretical expres-
sion derived within the molecular-field approximation
in the vicinity of TC [9]. The situation at T < TC can be
considered in a similar way.

By expanding expression (5) into a series in terms of
the small parameter (T – TC)/TC at T > TC with due

regard for formula (6), we obtain  =  = (T –

TC)/TC, where  = ("J/kBTC)(1 – /J2). Simi-

larly, in the ferroelectric phase, we have  =  =

(TC – T)/TC, but the formula for  is more cumber-

some than that for . This representation of ωc in
expression (16) results in the best agreement with the
experimental data [8].

As the Curie temperature TC is approached in the
paraphase (T > TC) and the ferroelectric phase (T < TC),

we obtain  ~ |T – TC |. Therefore, in the immediate
vicinity of the transition temperature, the free oscillator
(Ω = 0) described by formula (14) becomes over-
damped (i.e., γ⊥  > ωc), because the rate γ⊥  is virtually

independent of the temperature [11]. At  @ , the
first term on the left-hand side of expression (14) can be
disregarded. As a result, the order parameter exhibits a
purely relaxation dynamics with the characteristic

relaxation time τ = 2γ⊥ /  = TC/ |T – TC |. In this
case, there is direct evidence of a critical slowing down
at T  TC. However, unlike hydrogen-free ferroelec-
trics, the relaxation in our case is caused by tunneling
effects to a greater extent than by thermal over-barrier
transitions in double-well potentials. Neglect of the
term ∂2ζ/∂t2 in formula (14) at temperatures close to TC

corresponds to neglect of ω2 in the denominator of
expression (16). Consequently, the susceptibility of the
ferroelectric exhibits Debye behavior [8, 9, 11].

The relaxation dynamics of the order parameter
(polarization) indicates that, at temperatures close to
the Curie point, electromagnetic waves incident on the
ferroelectric should undegro a severe attenuation over a
wide range of frequencies. According to the Beer law,
the intensity of the wave propagating along the z axis is
represented as I ~ E2 ~ exp(–κz), where κ = 2ωNI /c is
the attenuation coefficient and NI is the imaginary part

of the refractive index N =  = NR – iNI

χ 0( )
d2n

"J 1 JSx
e/ω0–( )

-------------------------------------.=

ωc
2 ω+

2 Ω+
2

Ω+
2 ω0

2 ω0
2

ωc
2 ω–

2

Ω–
2 Ω–

2

Ω+
2

ωc
2

γ⊥
2 ωc

2

ωc
2 Ω±

2–

1 4πχ ω( )+
P

[here, NR is the real part of the refractive index and χ(ω)
is defined by relationship (15)].

Let us estimate the attenuation coefficient κ at dif-
ferent frequencies ω.

(1) Low-frequency waves (w ! wc). In this case,
we can disregard ω2 in expression (16). Setting d ~ 10–18,
n ~ 1022 cm–3, and J ~ 1013 s–1, we obtain d 2n/"J ~ 1.
Moreover, under the assumption that ω0 ~ 1013 s–1 and

(T – TC)/TC ~ 10–2, we find that ωc ~ ω0  ~
1012 s–1. As a result, we have χ(0) ~ 102. At γ⊥  ~ 1012 s–1,

we obtain χ(ω) ~ 102 and N ≈ . By separating
the imaginary part, we find

Therefore, at low frequencies, we have κ ~ ω2. At ω ~
1011 s–1 (wavelength λ ~ 1 cm), from the last expression
and with the aforementioned parameters, we obtain
~10 cm–1, which corresponds to the penetration depth
l  = κ –1 ~ 0.1 cm. Since l < λ, the wave does not propa-
gate in the medium.

(2) Waves of resonance frequencies (w = wc). Esti-
mates analogous to those made in the preceding case
demonstrate that 4π|χ(ω) | @ 1. Therefore, we have
N2 ~ 4πχ(ω) and

At ω = ωc ~ 1012 s–1 (λ = 0.1 cm), we find κ = l–1 ~
103 cm–1. In this case, we obtain l ! λ and, hence, the
wave attenuates even more rapidly than at low frequen-

cies. Since κ ~  and λ ~ ω–1, an increase in the fre-
quency can result in an increase in the ratio l/λ. In this
respect, we also examine the high-frequency range.

(3) High-frequency waves (w @ wc). The upper
limit of the frequencies under investigation lies at ω ~
1014 s–1, because higher frequencies ω correspond to
optical electron transitions and transitions of protons to
higher lying levels in the double-well potential [8],
whose contribution is disregarded in the present work.
Consequently, setting ωc/ω ~ 10–2 in expression (16),
we obtain |χ(ω)| ~ χ(0)(ωc/ω)2 ~ 10–2 and 4π|χ(ω)| ! 1.
Hence, the refractive index is determined to be N =
NR − iNI ≈ 1 + 2πχ(ω).

By separating the imaginary part in expression (16)
and ignoring  in the denominator, we obtain

Thus, in the high-frequency limit, we have κ ~ ω–2.

T TC–( )/TC

4πχ ω( )

κ 4
γ⊥

c
----- πd2n

"J
------------

ω0ω
2

ωc
3

------------.=

κ 2
ω0

c
------ πd2n

"J
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γ⊥
-----.=

ω

ωc
2

κ 8πd2n
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2
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At ω ~ 1014 s–1 (λ ~ 10–3 cm) and with the aforemen-
tioned parameters, we obtain κ ~ 10 cm–1, which corre-
sponds to l ~ 102λ.

Therefore, only in the case of very high frequencies
in the IR range can the penetration depth be of the order
of 10–100 wavelengths (or ~1 mm). In the other range
(ω < 1014 s–1), the weak electromagnetic field with the
IR frequency spectrum virtually does not penetrate into
the ferroelectric when its temperature is close to the
Curie point.

4. NONLINEAR PROPAGATION 
OF PULSES UNDER THE CONDITIONS 

OF SPECTRAL OVERLAP

Now, let us consider the propagation of the
extremely short high-power pulse in the ferroelectric
along the polar axis perpendicular to the plane of tun-
neling oscillations of protons [9]. We assume that the
pulse is so short that the following condition of spectral
overlap is met [5, 13, 14]:

(17)

Since the pulse has a spectral width δω ~ , condi-
tion (17) can be rewritten in the form (δω/ω0)2 @ 1.
Therefore, the spectrum of the extremely short pulse
involves the Fourier components that are resonant with
even–odd quantum transitions between tunneling states
of protons. This circumstance should lead to a substan-
tial change in the difference between the populations of
these states. As a consequence, condition (17) corre-
sponds to a strongly nonlinear interaction of the pulse
with the ferroelectric. Furthermore, it is also assumed
that the following condition is satisfied:

(18)

which allows us to ignore the relaxation term in Eq. (12).
Setting ω0 ~ 1013 s–1 and γ⊥  ~ 1012 s–1 [8], we find that
conditions (17) and (18) can be satisfied at τp ~ 10–14 s.
In this case, the interaction of the extremely short pulse
with high-lying quantum levels of protons in the dou-
ble-well potential can be disregarded. In view of condi-
tion (17), the last term on the left-hand side of Eq. (12)
can also be ignored.

On this basis, the system of equations (11) and (12)
can be rewritten in the form

(19)

where

Making allowance for the initial conditions, we obtain

X(–∞) =  and Z(–∞) = 0 [see relationship (10) at T >

ω0τ p ! 1.

τ p
1–

τ p ! γ⊥
1– ,

∂X
∂t
------- ΨZ ,

∂Z
∂t
------– ΨZ ,= =

X Sx, Z
1
ω0
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∂Sz
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--------, Ψ Ω JSz.+= = =

Sx
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TC and T < TC]. After regaining the initial designations,
the solution to system (19) can be represented in the
following form:

(20)

where the “area” is given by the formula

(21)

Since we have JSz ≈ ω0 and the Rabi frequency Ω ~ 
[5] in the vicinity of the transition temperature, condi-
tion (17) is equivalent to the inequality Ω @ JSz.

This inequality corresponds to neglect of the dipole–
dipole interaction between protons in different double-
well potentials. Consequently, when condition (17) is
met, the interaction of each proton with the field of the
pulse is stronger than that with protons of the environ-
ment. The pulse as though suppresses interactions
between the protons responsible for the phase transi-
tion. As a result, individual properties of the proton sys-
tem rather than its collective properties manifest them-
selves in the field of the high-power pulse. Therefore, a
number of effects, such as the softening of the vibra-
tional mode and its overdamping, are not of consider-
able importance. Hence, the expression for θ can be
written as follows:

(22)

Substitution of the second equation of system (20) into
the right-hand side of Eq. (13) gives the three-dimen-
sional sine-Gordon equation

(23)

where β = 4πd2nω0 /"c2 ≈ 4πd2n /("Jc2).

In the one-dimensional case, at θ = θ(z, t) (where z
is the polar axis), Eq. (23) becomes integrable [15]. The
one-soliton solution of this equation has the form

(24)

where V is the soliton velocity related to the soliton
width τp by the expression

(25)

Since d2n/"J ~ 1 (see the preceding section), at ω0τp ~
0.1, the soliton velocity differs from c by 1–10%.
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With the use of relationships (20), (22), and (24), we
find

(26)

(27)

(28)

In this situation, we have Sz0 = 0 in the paraphase and

Sz0 ≈  ~ 0.1 (at |TC – T |/TC ~ 0.01) in the

ferroelectric phase. At the same time, we can write  ≈
ω0/J < 1 and ω0τp ~ 0.1. Consequently, the quantity Sz0

and the multiplier 2(ω0τp)  in expression (27) are of
the same order of magnitude (~0.1 ! 1). Therefore, the
displacement of protons from equilibrium positions in
the double-well potentials appears to be insignificant
when condition (17) is satisfied. As a result, the propa-
gation of soliton (26) through the ferroelectric is
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Fig. 1. An extremely short soliton of self-induced transpar-
ency in a ferroelectric: (a) soliton profile in a comoving
frame of reference, (b) polarization dynamics during soliton
propagation, and (c) evolution of the difference in the pop-
ulations of the tunneling transition during soliton propaga-
tion.
P

accompanied by very weak changes in the ferroelectric
polarization. On the other hand, according to relation-
ship (28), the difference between the populations of the

tunneling sublevels considerably changes from  ≈

ω0/J at t – z/V  ±∞ to –  ≈ –ω0/J at t – z/V = 0 (see
Fig. 1).

Now, we analyze the stability of soliton (26) against
self-focusing. For this purpose, it is necessary to return
to the three-dimensional sine-Gordon equation (23) and
to allow for the perturbation of the one-dimensional
solution (26), provided that it weakly depends on the
transverse coordinates r⊥ . To accomplish this, we
invoke the averaged variational principle [16].

Equation (23) can be derived from the Euler–
Lagrange equations with the use of the Lagrangian den-
sity

(29)

The trial solution, which includes a weak dependence
on the initial coordinates, can be written in the form

(30)

In the one-dimensional case [see relationship (24)], we

have ρ(r) =  = const and ϕ(r) = z/V.

Since the dependence on r⊥  is weak, ρ(r) is a slowly
varying function of arguments and ϕ(r) is a rapidly
varying function in expression (30). Substituting
expression (30) into formula (29) and ignoring the
derivatives of the slowly varying function ρ(r) [16], we
find that the mean Lagrangian

can be expressed by the formula

(31)

The Euler–Lagrange equation for the variables ϕ and ρ
can be represented in the following form:

(32)

(33)

where V = ∇ϕ  and P and ρ are related by the expression

(34)

Note that equations (32) and (33) coincide with the
well-known equations describing a steady potential
flow of ideal fluid. In this case, Eq. (32) is the Bernoulli
integral and Eq. (33) is the continuity equation. There-
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fore, the quantity P plays the role of an internal pressure
and the quantity ρ fulfills the function of the density of
this fluid, for which the equation of state coincides with
Eq. (34). It is evident that the condition for the steady
flow of this hypothetical fluid dP/dρ > 0 corresponds to
the condition for the stability of soliton (26) [see also
expression (24)] against transverse perturbations.

According to relationship (34), the extremely short
soliton of self-induced transparency does not undergo a
self-focusing in the hydrogen-containing ferroelectric
at temperatures close to the transition point. On the
other hand, it is well known that self-induced transpar-
ency resonant quasi-monochromatic solitons are unsta-
ble with respect to transverse perturbations [17].

5. CONCLUSIONS

Thus, the results of the above investigation demon-
strated that, unlike weak monochromatic signals, the
high-power short (τp ~ 10–14 s) electromagnetic video
pulse can propagate virtually without attenuation in the
ferroelectric at temperatures close to the Curie point. It
was revealed that the mechanism of this propagation is
associated with the suppression of the dipole–dipole
interactions between active centers under the action of
a strong field induced by an electromagnetic pulse. As
a result, the active centers (protons in the double-well
potentials) behave like isolated atoms in the field of the
pulse. Therefore, collective effects, such as the soft
mode and the critical slowing down, are also sup-
pressed in the region of propagation of extremely short
pulses.

In the strict sense, at the pulse duration τp ~ 10–14 s,
the pulse dynamics can be affected (even if insignifi-
cantly) by transitions to proton quantum levels that lie
above the tunneling sublevels of the ground state. For
these transitions, the condition of the wave transpar-
ency is satisfied: (ωpτp)2 @ 1, where ωp is the frequency
of transition from one of the tunneling sublevels to the
nearest high-lying proton level in the double-well
potential. A technique taking account of these transi-
tions for isolated atoms was proposed in [18]. With
minor improvements, this technique can be applied to
the solution of problems concerning the interaction of
extremely short pulses with ferroelectrics.
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Abstract—The spectra of small-amplitude single-phonon vibrations and large-amplitude nonlinear mul-
tiphonon vibrations of Fe3P and Fe2P metal–metalloid compound crystallites are investigated. The vibrational
spectra of 3D crystallites of gradually increasing volumes are calculated within a microscopic approach using
previously tested interatomic interaction potentials. The calculated energy of the main low-frequency peak is
closer to its experimental value in comparison with previous calculations, which reduces the significant discor-
dance between the experimental and theoretical spectra. The fine structure of the high-frequency part of the
vibrational spectrum is discussed. A study of large-amplitude nonlinear vibrations (which determine the diffu-
sion of atoms and dispersive processes in materials) showed that a specific nonlinear breather mode of vibration
can be generated in the crystallites in question, which is a genetic precursor of nonlinear self-localized vibra-
tions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental studies of the vibrational spectra of
crystalline and amorphous Fe–P metal–metalloid com-
pounds (which are of interest in nuclear-reactor materi-
als science) are presently performed on an FÉI DIN
neutron spectrometer at the Joint Institute of Nuclear
Research (Dubna) by using inelastic slow-neutron scat-
tering. In solving practical radiation-materials science
problems, one should use very accurately determined
values of the parameters of the interatomic interaction
potentials, which control the transport characteristics of
the diffusion of atoms in materials. Among these char-
acteristics are, first, the activation energy (the barrier
height) for diffusive motion of atoms, which deter-
mines the exponential factor of the phenomenological
diffusion coefficient, and, second, the spectrum of
vibrations that precede the activation process and deter-
mine the preexponential factor of the diffusion coeffi-
cient. However, roughly estimated, heuristic values of
these basic characteristics are generally used in radia-
tion-materials science. In a number of papers, these
characteristics were calculated using the molecular-
dynamics method. In this case, however, the initial con-
ditions are chosen heuristically, which does not allow
one to establish the essential features (see below) of
nonlinear subthreshold vibrations that determine the
preexponential factor.

The parameters of the atom–atom interaction poten-
tials in condensed materials can be determined most
accurately by experimentally and theoretically analyz-
ing the spectra of both single-phonon (small-ampli-
tude) vibrations and nonlinear multiphonon (large-
amplitude) vibrations of a subthreshold energy. The
1063-7834/03/4502- $24.00 © 20326
parameters of interatomic potentials and their effect on
the single-phonon spectra of small-amplitude vibra-
tions for a wide range of technological materials have
been studied intensively at many scientific centers [1–
5]. Some theoretical studies involve the tridiagonaliza-
tion procedure, which significantly reduces the reliabil-
ity of their results. Nonlinear, large-amplitude vibra-
tions of high energy are difficult to investigate both
experimentally and theoretically, and they have been
considered only in a few papers [6–11]. These vibra-
tions are of interest, because they are immediately fol-
lowed by diffusive jumps of atoms, disruptive pro-
cesses, and disintegration of materials. It is of most
interest to study bound multiphonon complexes, such
as biphonons, triphonons, solitons, breathers [12–15],
self-localized vibrations [8–11], and microshock
waves.

In this paper, the vibrational spectra of Fe3P and
Fe2P crystallites are calculated without involving the
tridiagonalization procedure [1], since this procedure
reduces the reliability of the results of calculations per-
formed for a large number of atoms (N  ≅  105). We apply
an alternative method for studying the vibrational spec-
trum of a 3D crystallite whose size is small and pro-
gressively increased until the asymptotic spectrum is
obtained for N ≅  0.5 × 103; the interaction of all atoms
is fully taken into account and described by previously
tested interatomic potentials. It is shown that in the
Fe3P crystal, the calculated energy corresponding to the
main low-frequency peak is lower than that found in [1]
and is closer to the experimentally measured energy
[2]; this result explains the previously found discor-
003 MAIK “Nauka/Interperiodica”
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dance. Then, we discuss the fine structure of the spec-
trum. In the future, one will be able to fit the parameters
of the interatomic potentials to the experimental data
obtained using a DIN neutron spectrometer and to
determine the values of these parameters more accu-
rately.

Nonlinear vibrations are investigated in elementary
Fe2P and Fe3P crystallites. The self-localized vibrations
have not yet been observed experimentally, and it is of
interest to discuss the possible detection of such mul-
tiphonon complexes. It should be noted that the studies
reported in [8–11] dealt either with unbounded model
crystals or with crystalline chains of 100 and 128 atoms
for which numerical calculations were performed. In
those studies, in order to solve the problem analytically,
simplifying assumptions were made: the envelopes
were assumed to be smooth, a cutoff of the spectrum
was introduced, etc.

In this paper, we investigate the dynamics of nonlin-
ear vibrations of closed crystallites, such as chains of
small lengths or, what is the same, of unbounded crys-
tallites with the Born–von Karman boundary condi-
tions. This approach allows us to find exact analytical
solutions which virtually cannot be found for crystals
of large sizes or within the framework of the molecular-
dynamics method. We note that the Fermi resonance
interface modes (FRIMs, band-gap modes at Fermi res-
onance), which are solitons of a fundamentally new
type, have been discovered using this approach [16,
17]. We find exact analytical solutions to the dynamic
nonlinear equations for large-amplitude vibrations of
crystallites of the smallest size possessing the symme-
try elements of Fe2P and Fe3P. It is shown that in such
crystallites, a new type of nonlinear periodic breather
(NPB) vibrations can be generated. These NPB vibra-
tions are similar, in part, to breather vibrations of the
FRIM type [16, 17] and are likely a genetic precursor
of self-localized vibrations. In these NPB excitations,
the “modulus” of the system (see below) oscillates in
time and the phase of the system has an oscillatory time
dependence (which is characteristic of these excita-
tions), so that the Fourier expansion contains an infinite
set of frequencies. It is shown that the NPB vibrations
follow closed multiturn trajectories only if the change
in phase over a modulus oscillation period is a rational
multiple of π (such a change in phase corresponds to a
certain, fixed number of turns in the closed trajectory).
The trajectories of the NPB vibrations correspond to
strictly definite initial conditions, which practically
cannot be determined using the molecular-dynamics
method, where general initial conditions bring about
nonresonant nonperiodic vibrations.

2. PHONON EXCITATIONS

The Fe3P crystal belongs to the tetragonal system,
and its symmetry is described by the space group

. The unit cell consists of 32 atoms formingS4
2 I4( )
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eight Fe3P quasimolecules. The lattice parameters
determining the unit-cell position vectors a0ni + b0mj +
c0 pk (n, m, p are integers) are a0 = b0 = 9.107 Å and
c0 = 4.460 Å [18, 19]. All atoms of the body-centered
tetragonal unit cell occupy the positions xyz, , ,
and . The coordinates of the atoms of one of the
eight quasimolecules (in units of a0, b0, c0) are 0.106,
0.079, 0.234 for Fe(1); 0.031, 0.361, 0.986 for Fe(2);
0.219, 0.172, 0.755 for Fe(3); and 0.045, 0.292, 0.49
for P. The coordinates of the other atoms of the unit cell
can be found using the rotation and reflection symmetry
of the unit cell. The projections of the 32 atoms of the
unit cell onto the xy plane are shown in Fig. 1a. The
phosphorus atoms are represented by thick circles. The
numbers in the circles indicate the height of the atom
(in percentage of c0) above the xy plane.

The Fe2P crystal belongs to the hexagonal system,
and its symmetry is described by the space group

P 2m. The unit cell consists of nine atoms forming
three Fe2P quasimolecules. The lattice parameters are
a0 = b0 = 5.865 Å and c0 = 3.456 Å [19]. The coordi-
nates of the atoms in the unit cell are (x, 0, 0), (0, x, 0),
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and ( , , 0) with x = 0.256 for Fe(f); (x, 0, 1/2),
(0, x, 1/2), and ( , , 1/2) with x = 0.594 for Fe(g);
±(1.3, 2/3, 0) for P(c); and (0, 0, 1/2) for P(b). Figure 1b
shows the projection of the unit cell onto the ab basal
plane (rc = 0). It is worth noting that the three strongly
interacting Fe atoms lying in the ab basal plane (large
filled circles) form a closed trimerlike system.

The Hamiltonian H of the dynamic system of atoms
oscillating about their equilibrium positions on the
crystal lattice is the sum of the kinetic energy Hk and the
interaction energy Φ of the atoms (which are assumed
to interact via a pairwise potential):

(1)

Here, pαi is the ith momentum component of an atom α
of mass Mα. The interaction energy uαβ(Rαβ) between
atoms α and β depends on the spacing Rαβ between
them, which is determined by the equilibrium positions
rαi and small displacements xαi:

(2)

If the total energy of the system in the equilibrium state
is taken as zero, the interaction energy for small-ampli-
tude (single-phonon) vibrations can be written in the
quadratic form as

(3)

where  are the force constants. Within the har-
monic approximation, the dynamic equations of motion
for the displacements of atoms and their solutions are
written in the conventional form as 

(4)

The frequencies ω and amplitudes B of vibrational
excitations in Eq. (4) can be found as eigenvalues and
eigenvectors of the corresponding dynamic matrix D:

(5)

Taking into account that uαβ depend on Rαβ, which, in
turn, are functions of the displacements of atoms in
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Eqs. (1)–(3), the harmonic force constants can be writ-
ten as

(6)

The first and second derivatives of Rαβ (α ≠ β) are

(7)

Upon substitution of Eqs. (6) and (7) into Eq. (4), the
matrix D takes the form

(8)

When theoretically analyzing the experimental vibra-
tional spectra of metals and metal–metalloid com-
pounds, various pairwise potentials, such as the Morse
and Lennard-Jones potentials, were used [1]. The
agreement with the experimental data was good only
when an effective cutoff was introduced to account for
the interaction between the electron and phonon sub-
systems. In this paper, we describe the interatomic
interaction uαβ using the Morse potential (which was
tested in [1] for compounds of iron with phosphorus)
with a cutoff function f(y):

(9a)

(9b)

(9c)

where Rc is the cutoff radius, taken equal to 1.4R0. The
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potential for the Fe–Fe, Fe–P, and P–P pairs are taken
to be (2.6, 2.2, 3.8 Å) and (0.51, 0.85, 0.19 eV), respec-
tively, and α = 3.76 for all pairs [1]. For crystallites of
finite size, the boundaries are assumed (as is usually
done) to be free.

The vibrational spectra of Fe3P crystallites of pro-
gressively increasing size are calculated numerically by
solving the set of secular equations (5) on a Pentium PC
using the MATHCAD software. We note that, in recent
years, a set of secular equations for finite crystallites
has often been solved directly in the coordinate space,
because the Fourier transform method is inadequate for
use in solving this problem. The results of calculations
are presented in Fig. 2a. The solid curve is the density
of states ρ for a crystallite in the form of a parallelepi-
ped consisting of 16 (2 × 2 × 4) Fe3P unit cells
(512 atoms), which is the maximum crystallite size for
which the computer can handle the corresponding set of
equations. The dashed curve is the Fe3P vibration spec-
trum determined from inelastic slow-neutron scattering
experiments [2]. For comparison, the dot-and-dash
curve shows the spectrum calculated numerically in [1]
by using the tridiagonalization procedure. All three
curves are normalized to the unit integrated density of
states. It can be seen from Fig. 2a that in the calculated
spectra, the low-frequency maxima associated with the
Fe–Fe interaction are shifted to higher energies relative
to the low-frequency peak of the experimental spec-
trum; however, the position of the maximum in the
spectrum calculated by us is closer to that in the exper-
imental spectrum. The significant shift of the peak in
our spectrum toward lower energies relative to the cor-
responding peak in the spectrum calculated in [1] is due
to the larger shift in the position of the centroid of this
peak, whereas the shift of the maximum of the peak is
relatively small. We also note that in both calculated spec-
tra, there are shoulders near the energy ε ~ 10–15 meV. In
the high-frequency range of the spectrum in Fig. 2a,
where the Fe–P and P–P interactions dominate, there is
a fine structure consisting of four additional resonance
peaks. The positions of the first (~40 meV) and third
(~50 meV) peaks coincide with those observed in the
experimental spectrum [2]. We note that, in the calcu-
lated spectra, the ratio of the average intensity of the
high-frequency peaks to the low-frequency peak inten-
sity is ~0.5, whereas in the experimental spectrum, this
ratio is significantly smaller, ~0.2. The calculations are
performed for crystallites of progressively increasing
size, starting with the simplest case of one unit cell and
finishing with the largest crystallite (mentioned above)
computable with the computer at our disposal. An anal-
ysis shows that the calculated spectrum reaches its
asymptotic form as the crystallite size is increased in
the last steps of the calculation. In the future, it will be
necessary to adjust the parameters of the interatomic
interaction potentials in order to bring the calculated
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
and experimental spectra into better agreement and find
the optimum values of these parameters.

Figure 2b shows the calculated density of vibra-
tional states of Fe2P crystallites. The solid curve is the
density of states of the largest crystallite, consisting of
3 × 4 × 5 unit cells (540 atoms), and the dashed curve is
the density of states of a smaller crystallite, consisting
of 36 (3 × 3 × 4) unit cells (324 atoms). Through com-
parison with Fig. 2a for Fe3P, it can be seen that the gen-
eral structure of the spectrum is the same: there is a
low-frequency broad resonance peak and a fine reso-
nance structure in the high-frequency range. However,
the low-frequency resonance peak in the Fe2P spectrum
is narrower and the high-frequency fine structure covers
a wider energy range than in the spectrum in Fig. 2a.
The maximum of the low-frequency peak is shifted
toward lower frequencies by ~5 meV relative to that for
Fe3P (located at 30 meV), which is due to the smaller
proportion of the heavier component in the former case.
For the same reason, the lower frequency part of the
high-frequency fine structure is more pronounced in
Fe2P in comparison with that in Fe3P. The results
obtained here can be useful in the preliminary stage of
the experimental investigations of Fe2P and Fe3P with
the help of the DIN neutron spectrometer.
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crystallites.
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3. BREATHER EXCITATIONS

Now, we consider large-amplitude nonlinear vibra-
tions of Fe2P crystallites. As in [8–11], the interaction
energy of oscillating atoms of the crystallite system is
assumed to consist of a harmonic and an anharmonic
(fourth-order) component. As seen from Fig. 1b, the
three nearest neighboring Fe atoms form a trimer,
which can be considered as a closed crystalline chain of
three atoms. We consider nonlinear vibrations of this
trimer with allowance for the Fe–Fe interaction alone,
because the spectrum of harmonic vibrations in the
main-resonance region is determined by this interac-
tion. (The effect of the Fe–P and P–P interactions will
be allowed for in another paper.) Note that consider-
ations of both closed crystalline systems and unbound
crystalline systems subject to the Born–von Karman
boundary conditions lead to absolutely identical
results; we use the terminology of the former approach
only for the sake of convenience. The trimer can be
considered as the smallest element in the hierarchy of
closed crystalline chains, and the exact solution found
for the trimer in what follows can be used as a basis for
the investigation of nonlinear vibrations of a system
and of their possible localization [8, 11]. In the Fe–P
compounds, the trimer or the tetrahedron (see below) is
repeated as a motif in each unit cell of a crystal; there-
fore, the solutions obtained below can be used as basis
intracell solutions, which will then be modified by the
inclusion of intercell interactions. However, even at this
initial stage, the exact solution is fairly intricate (see
below). The Hamiltonian of this crystalline system with
quartic anharmonicity in the scalar theory has the form

(10)

By introducing the normalized quantities

, (11)

the dynamic equations can be simplified to

(12)

where i, j, and k are equal to any cyclical permutation
of subscripts 1, 2, and 3. If the center of gravity is fixed,
we have x1 + x2 + x3 = 0 and Eqs. (12) reduce to a set of
two dynamic equations for r1 = x1 – x2 and r2 = x2 – x3:

(13)

H
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PH
If the nonlinear terms are neglected, we have harmonic

oscillations of frequency  in reduced units. Let us
introduce polar coordinates for the variables R1 = (r1 –

r2)/  and R2 = (r1 + r2)/ : R1(τ) = ρ(τ)cosϕ(τ)
and R2(τ) = ρ(τ)sinϕ(τ), where ρ(τ) and ϕ(τ) are the
time-dependent modulus and polar angle (phase [15]),
respectively. From Eqs. (13), it follows that ρ(τ) and
ϕ(τ) obey two equations, which can be written in the
form

(14)

Here, C is a constant of integration involved in the
expression for ϕ(τ) that is an integral function of ρ(τ')
over the range τ0 < τ' < τ, where τ0 can be chosen arbi-
trarily. It follows from Eq. (14) that ρ(τ) oscillates
within the range ρ0 < ρ(τ) < ρm, whose limits determine
the constant C in Eqs. (14) as

(15)

From Eqs. (14), we obtain

(16)

It follows immediately from Eq. (16) that the inverse
function τ(ρ), defined in the ρ range from ρ0 (at τ = 0)
to ρm, has the form (which is the exact analytical solu-
tion found by us)

(17a)

(17b)

(17c)

where F(ψ, k) is an elliptic integral of the first kind,
with ψ being the argument and with parameter k
defined by Eq. (17c). From Eqs. (14), it can be found

3
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respectively; (c) a trajectory of the dynamic system; and (d) vibration spectral density σ.
that the phase ϕ(ρ) is given by the expression (which is
also an exact analytical result obtained by us)

(18)

where Π(ψ, n, k) is a known tabulated special function,
namely, an elliptic integral of the third kind with argu-
ment ψ, parameter k, and additional parameter n. In
Eq. (18), the phase is defined such that ϕ = 0 for τ = 0
and ρ = ρ0.

An analysis of Eqs. (17) and (18) revealed that these
equations describe nonlinear breather-type (NPB)
vibrations with temporal oscillations in the modulus
and (what is important) in the phase, which is an inte-
gral function of ρ. Such a time dependence of the phase,
ϕ(t) = Ωt + βsinωt with a small parameter β, was found
for breather-type FRIM solitons in [15]. In this depen-
dence, the first term is characteristic of harmonic oscil-
lations, while the second term is due to anharmonicity
and leads to a frequency spectrum when the quantity
exp[iϕ(t)] is expanded into a Fourier series.
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The exact analytical dependences given by Eqs. (17)
and (18) describe the dynamics of nonlinear vibrations
over the range 0 < τ < T0/2, where T0 is the period of ρ
oscillation from ρ0 to ρm and vice versa:

(19)

In the first half-period T0/2, the change in phase ϕ(ρ)
is equal not to π/2 but rather to ϕ(ρm) < π/2. For consec-
utive half-periods, we must continue the functions. For
instance, over the half-period T0/2 < τ < T0, the contin-
uations τ = τ1(ρ) and ϕ = ϕ1(ρ) are τ1(ρ) = T0 – τ(ρ) and
ϕ1(ρ) = 2ϕ(ρm) – ϕ(ρ), where τ(ρ) and ϕ(ρ) are given
by Eqs. (17) and (18). As a result, in the length of time
2T0, the change in phase is ϕ(τ = 2T0) < 2π and the tra-
jectory of the system in the (r1, r2) plane does not close.
As the time increases further, for general values of ρ0
and ρm, the trajectory intersects itself (with a different
slope) rather than being tangent to itself; that is, NPB
vibrations, characterized by a closed trajectory with
smoothly varying slope, do not occur. Such vibrations
arise only if the change in phase in a half-period T0/2 is
a rational multiple of π/2, i.e., when ϕ(ρm) = 2πp/q,
where p and q are integers. In this case, the trajectory
will close smoothly with the same slope after 2p mod-
ulus oscillation periods when the change in phase is
equal to qϕ(ρm). In a sense, this condition for nonlinear
vibrations can be interpreted as quantization of the tra-

T0
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------- 1
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2 4+ +
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jectories, by analogy with the quantization of orbits in
quantum mechanics. The integers p and q are by no
means arbitrary because of the restriction ρm > ρ0, and
it would be of interest to establish their systematics.

Using the analytical expressions presented above,
we calculated the corresponding curves on a Pentium
PC. For this purpose, we chose a fixed sequence of val-
ues ρi lying in the range between ρ0 and ρm and calcu-
lated the corresponding sequences of τi and ϕi from
Eqs. (17) and (18) and from their continuations. Then,
we found the inverse functions ρi = ρi(τi) and ϕi = ϕi(τi).
The ρ(τ) and ϕ(τ) dependences for ρm = 3 and ρ0 =
2.153 are shown in Figs. 3a and 3b for p = 3 and q = 14.
The corresponding trajectory in the (r1, r2) plane is
shown in Fig. 3c. The initial point of the arrow corre-
sponds to the moment τ = 0 and, simultaneously, is the
point at which the trajectory becomes closed without a
discontinuous change in slope. Figure 3d shows the fre-
quency spectrum of NPB vibrations in units of ωT =
2π/T, where T is the total rotation period along the
closed trajectory shown in Fig. 3c. It can be seen from
Fig. 3d that, in addition to the fundamental frequency
ωT, there is a second harmonic (2ωT) of high intensity
and also higher harmonics showing a progressive gen-
eral decrease in intensity with a peak at ~5ωT (there are
also still higher harmonics not presented in Fig. 3d).

Next, we investigate nonlinear breather excitations
in the Fe3P crystal. Since this crystal belongs to the

symmetry group , we consider a three-dimen-
sional elementary crystallite of this type in the form of
a regular tetrahedron with four atoms at its vertices,
constituting a quasimolecule (Fig. 1a). Note that the tet-
rahedron, as well as the Fe3P crystal, possesses a four-
fold rotation–inversion axis (Fig. 1a).

We assume that, in addition to expression (10) with
the corresponding generalization of scalar displace-
ments Xi (i = 1, 2, 3, 4) to the three-dimensional case,
the Hamiltonian contains the interaction

(20)

This interaction meets all symmetry requirements for
the Hamiltonian and is quite realistic in the presence of
the corresponding anisotropy. Physically, the inclusion
of this interaction can be justified by the fact that, for
large-amplitude nonlinear vibrations, as the atoms
lying on opposite mutually perpendicular edges
approach each other, the repulsion energies of all four
atoms increase, whereas in the case where the atoms
lying on two edges with a common point approach each
other, the repulsion of only three atoms increases. The
choice of the coefficients in expression (20) for H4 is
dictated by the fact that only with such coefficients is
the analytical treatment of the problem significantly
simplified and can at least the azimuth angle be calcu-

S4
2 I4( )

H4
a( ) K4

4
------=

× X1 X3–( )4 X2 X4–( )4 6 X1 X3–( )2 X2 X4–( )2+ +[ ] .
P

lated analytically (see below). The theory developed
above, after the corresponding generalization, allows
one to reduce the set of four dynamic equations for xi

(i = 1, 2, 3, 4) to a set of two equations for functions
ρ(τ) and θ(τ) which determine the displacements (x1 –

x3)/  = ρsinθcosϕ, (x2 – x4)/  = ρsinθsinϕ, and

(x1 + x3)/  = ρcosθ in spherical coordinates, with
ϕ(τ) being an integral function of ρ and θ. These two
equations and the ϕ = ϕ(ρ, θ) dependence have the form

(21a)

(21b)

(21c)

where, as before, C > 0 is a constant which determines
the initial azimuthal velocity of an effective particle at
the starting point with spherical coordinates (ρ0, π/2, 0).
It seems very difficult to solve the set of equations (21a)
and (21b) analytically. Therefore, in order to investigate
the problem of existence of breathers in more compli-
cated systems than the trimer considered above, we
solved the set of equations (21a) and (21b) numerically.
However, it should be remembered that breather modes
of vibrations occur only at certain values of the modu-
lus and phase related to each other. In the case consid-
ered above, we determined these values analytically.
Now, the analytical relation between these quantities is
unknown and it is difficult to guess the exact initial val-
ues ρ0, θ0, and ϕ0 at which breather vibrations can be
simulated numerically. We determined these values by
scanning the total energy of vibrations E (which is con-
served) as a known function of the initial modulus ρ0
and initial angle θ0 at a fixed value of the constant C and
ϕ0 = (dρ/dτ)0 = (dθ/dτ)0 = 0. This dependence of the
total energy (in dimensionless units) has the form

(22)

Equation (22) for fixed values of E, C, and ρ is qua-
dratic in cosθ0. By varying ρ0, one can determine
(through numerical calculations) the value of θ0 at
which the multiturn trajectory returns to the starting
point with the same slope. Only in this case do periodic
nonlinear breather modes of vibration arise. For other
initial values, the trajectory intersects itself only at non-
zero angles and nonlinear vibrations are nonperiodic
and chaotic in nature.
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Figures 4a and 4b show the ρ(t) and θ(t) depen-
dences calculated for the Fe3P crystallite using the
parameters E = 0.3, C = 0.1, ρ0 = 0.2, and θ0 = 2.234
found by scanning Eq. (22). The modulus ρ(τ) and the
polar angle θ(τ) are seen to exhibit periodic oscillations
characteristic of a breather, the period being equal to
T = 32.96. As in Fig. 3b, the time dependence of the azi-
muth angle is of the type ϕ(t) ~ c(t + α sinωt), which is
characteristic of a breather; the frequency spectrum of
sin[c(t + α sinωt)] contains all frequencies n × 2π/T
(n = 1, 2, 3, …) with the characteristic frequency
dependence of the Fourier amplitudes. Figure 4c shows
the axonometric projection of the trajectory in the (r1,
r2, r3) space corresponding to the calculated ρ(t), θ(t),
and ϕ(t) dependences. The dot marks the starting (and
finishing) point of the trajectory, and the arrow indi-
cates the direction along which the trajectory was cal-
culated numerically. Figure 4d shows the Fourier spec-
trum of NPB vibration frequencies ω in units of ωT. It
can be seen that, in addition to the fundamental fre-
quency ωT, there are intense harmonics at ~3ωT and
~6ωT and a less intense harmonic at ~9ωT; there are
also still higher harmonics of progressively decreasing
intensity, which are not shown in Fig. 4d. In further
investigations, the theoretical spectra (such as those
shown in Figs. 3d, 4d) can be used to interpret the fine
structure of the experimental spectra in the higher har-
monic frequency range [20, 21]. It is also of interest to
investigate the spectra for trajectories of different types
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
in the case of K4 < 0 and in the case of the total energy
E being close to the threshold for disintegration of crys-
tals caused by large-amplitude nonlinear vibrations [22,
23].
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Abstract—The influence of the finite rate of formation of a metastable state on the kinetics of the first-order
phase transition is analyzed. The conditions determined by the thermodynamic parameters and the cooling rate
of the system under consideration are derived. Under these conditions, the formation of the metastable state can
be treated either as an instantaneous process, when nucleation occurs at the end of the cooling stage, or as a
slow process, when intensive nucleation of a new phase proceeds within the cooling stage. An equation describ-
ing the time and temperature that correspond to intensive nucleation of new-phase particles is obtained. The
nucleation stage of the new phase takes place in the immediate vicinity of the temperature determined from this
equation. All the other parameters, which determine the kinetics of the initial and transient stages of the phase
transition, are calculated with respect to this temperature. As an example, all the relationships for a weak solid
solution are presented. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of a metastable state is assumed to be
instantaneous in virtually all the works dealing with the
initial stage of nucleation of new-phase particles [1–
15]. In the present paper, we consider the actual condi-
tions of formation of a metastable state of the studied
system during cooling. It is demonstrated that, depend-
ing on the thermodynamic parameters and the cooling
rate of the system, the nucleation of a new phase and
its evolution with time can be determined by the meta-
stability either at the end of the cooling stage or within
this stage. The former case can be considered instan-
taneous formation of metastability at the end of the
cooling stage. The latter can be treated as a case of slow
cooling.

As an example, let us consider the transition of a
sufficiently weak solid solution from an equilibrium
state to a metastable state with a decrease in the initial
temperature T0 to a final value Tf for the time tf. Under
these conditions, intensive nucleation of new-phase
particles can occur either after the completion of cool-
ing or at an instant of time t* < tf within the cooling
stage, at which point the conditions are most favorable
(the smallest barrier) for the transition of the system to
a disperse state. The occurrence of either of these two
cases is determined by the parameters of the system and
the rate of formation of the metastable state. In the
former case (tf  < t*), a decrease in the temperature leads
to the formation of the metastable state at a final tem-
perature, after which the metastable phase undergoes
decomposition. This process corresponds to an instan-
1063-7834/03/4502- $24.00 © 20335
taneous formation of the metastable phase. When the
decrease in the temperature is sufficiently slow, it is
necessary to determine the instant t* of the onset of
intensive nucleation of new-phase particles and the cor-
responding degree of metastability. Under these condi-
tions, all the characteristics of the stage of nucleation of
new-phase particles should be determined by parame-
ters other than those describing the instantaneous tran-
sition to the metastable state.

Earlier [13], we showed that all the formulas derived
for instantaneous formation of a metastable state are
applicable provided the characteristic times obey the
following hierarchy (which holds almost without
exception):

(1)

Here, tN is the time interval of intensive nucleation of
new-phase particles; trel is the time interval of attaining
a quasi-stationary state in the size range 1 ≤ n ≤ nc; n is
the number of impurity atoms in a new-phase particle;
nc is the number of impurity atoms in a particle of crit-
ical size, i.e., in a new-phase particle in equilibrium
with the solid solution at a given instant of time; a is the
distance between the lattice sites of the matrix; D is the
impurity diffusion coefficient in the lattice; α is the
parameter accounting for the difference between the
last jump of the impurity atom from the matrix onto a
new-phase particle and the jump in the bulk of the
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matrix (0 ≤ α ≤ 1); c0 is the initial concentration of

impurities in the matrix; β = ; σ is the interfacial

tension; nc = β3 ; c∞ is the equilibrium concen-

tration of impurities at a finite temperature [13]; c0 =

 is the initial concentration of impurities in the
solid solution; and T0 is the temperature at which the
solid solution with a given initial concentration
becomes saturated with a decrease in the temperature.
The temperature T0 corresponds to the formation of a
metastable (supersaturated) state of the solid solution,

c∞ =  is the equilibrium concentration of impuri-
ties in the solid solution after cooling to a temperature
Tf , I0 is the flux of new-phase particles in the size space
through the critical point in a unit of nondimensional

time τ =  per lattice site of the matrix (formula (19)

in [13]), and

(2)

where  = ∆Φ(nc) is the change in the ther-

modynamic potential of a weak solution due to the for-
mation of a new-phase particle of critical size. The con-
dition of instantaneous formation of the metastable
state can be written in the form

(3)

2. SLOW COOLING

Let us consider the case of sufficiently slow cooling
when the following condition is satisfied:

(4)

where t* is the instant of the onset of intensive nucle-
ation of new-phase particles. The flux of new-phase
particles per lattice site in a unit time can be represented
by the relationship [13]

(5)

For instantaneous supersaturation under condition (4),
the initial concentration of impurities in the solid solu-
tion in relationship (2) needs to be replaced by the cur-
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rent concentration. This is caused by the fact that, under
the given conditions, the flux of new-phase particles in
the size space adjusts itself not only to the current tem-
perature but also to the impurity concentration, which
also varies with time due to the transfer of part of the
impurity atoms to new-phase particles. Therefore, two
processes, namely, the change in the impurity concen-
tration with time c(t) and the change in the equilibrium
concentration with temperature c∞ = c∞(T(t)), should be
taken into account simultaneously. Their variation with
time leads to the appearance of a time interval t* @ tN

in which the nucleation rate of the new phase is maxi-
mum.

As follows from expression (5), the onset of inten-
sive nucleation of the new phase is determined to an
exponential accuracy by the smallest exponent in
expression (5), which, in turn, is determined by the
relationship

(6)

Next, we perform the differentiation and obtain the fol-
lowing equation for t* and, correspondingly, for T* =
T(t*):

(7)

After the differentiation, we set c*(t*) = c0 =

 in Eq. (6), which, as was shown in [13], can

be done by virtue of the very strong exponential depen-
dence of the nucleation rate on the supersaturation and,
hence, the small change in the concentration during
intensive nucleation. In relationship (7), we used the

following designations:  = β3(T*) ,

c∞(T*) = , c* ≅  c0 = , and 

= – . According to [13], we have

(8)

Substituting expression (8) into relationship (7), we

obtain the following equation for x = :
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(9)

Here, β0 =  and D = D0  =

D0 . As a rule, we have  and  @

1. Hence, expression (9) can be represented in the form

(10)

where  =  and td =

−  is the characteristic time of temperature

decrease. Now, we will seek the solution to Eq. (10). It
is evident that the roots of this equation at any value of
its right-hand side lie in the range

(11)

Considering conditions (3) and (4), the cooling is
instantaneous in the case when the following condition
is satisfied:

(12)

Condition (12) means that the smallest exponent in
expression (5), which is determined by the temperature
T* = T0 x from relationship (10), is not reached,
whereas intensive nucleation occurs at the end of the
cooling stage at a temperature Tf = T0xf when the
exponent in expression (5) is minimum in the range
Tf  ≤  T ≤ T0. Consequently, the initial metastability is
determined by the final temperature Tf ; i.e., it coincides
with the maximum possible metastability under the
given conditions.

Slow cooling implies that intensive nucleation
occurs within the cooling stage. This corresponds to the
condition

(13)

Therefore, from the comparison of the root x of Eq. (10)
with conditions (12) and (13), we can determine the
instant of time at which the nucleation of new-phase
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particles occurs, particularly, either at the end of the
cooling stage or within this stage. In the latter case, the
parameters of the nucleation and transient stages
should be radically different. These parameters are
determined by x rather than by xf . It should be noted
that the degree of metastability arising at the end of the
cooling stage is identical in both cases. Therefore, the
precipitation of new-phase particles in equal excess
amounts becomes possible for sufficiently long times.
Consequently, the kinetics of the nucleation and tran-
sient stages will be governed by the cooling rate and
can differ significantly from the kinetics of instanta-
neous cooling. The later stage (Ostwald ripening) will
also be identical. However, as was shown earlier in
[18], the onset of this stage depends on the prehistory
of the process and, correspondingly, can change with
time. In [18], it was demonstrated that, at the later
stage, the system forgets its prehistory and the kinetics
of transition to this stage.

In general, the particular values of the roots of
Eq. (10) can be obtained in the limiting cases. The max-
imum value with respect to x on the right-hand side is

determined by the factor . The second factor

 = α is

maximum and, to sufficient accuracy, is considerably
less than unity at the point x = 1/3:

(14)

Hence, it follows that the root of Eq. (10) is close to 1/3

at  @ α. In this case, Eq. (10) takes the form

(15)

In the other limiting case , we first take the

logarithm of Eq. (10) and then retain the principal
terms. As a result, we obtain

(16)

The solution of the approximate equation gives a root in
the tolerance range when
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Therefore, knowing the parameters of the system
(β0, T0, Q, QD, ) and the cooling rate, from relationship
(10), we can determine parameters characterizing the
nucleation stage of new-phase particles, such as β(x)

and nc(x) , and, correspondingly,

the transient stage. After the determination of the above
parameters, all the characteristics of the kinetics of the
nucleation and transient stages can be obtained by sub-
stituting these parameters into the formulas derived for
instantaneous cooling in [13, 15]. As a consequence,

we found that the slower the cooling , the

smaller the number of nucleated particles of the new
phase and the slower the decomposition of the metasta-
ble phase. Thus, the cooling rate can substantially affect
the kinetics of the first-order phase transformation
when the later stage of the decomposition (Ostwald rip-
ening) is not reached [16, 17].

In conclusion, we should note that the above
approach can also be applied to more complex systems
in the case when the interaction of impurities in solid
solutions is taken into account or multicomponent sys-
tems are examined [19, 20]. Some of these cases will be
considered in a separate paper.
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Abstract—The influence of neutron irradiation on the temperature kinetics of thermoelastic martensitic trans-
formation in a Cu–Al(13.4%)–Ni(5%) alloy single crystal is investigated by measuring the electrical resistivity
directly under irradiation of the sample in a nuclear reactor channel. It is revealed that, after irradiation of the
crystal in a martensitic or two-phase state, the temperature of the phase transition upon heating becomes 25–30 K
higher than that prior to irradiation. This shift in the transition temperature is observed only upon the first heat-
ing, and the kinetics of martensitic transformation is restored in subsequent thermocycles. The shift in the trans-
formation temperatures after irradiation increases with an increase in the fluence. The experimental results are
explained by a disturbance of coherence at the interfaces in the irradiated crystals. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION 

Radiation-induced changes in the crystal structure
of alloys substantially affect the martensitic transfor-
mations. These processes have been investigated most
extensively in an TiNi equiatomic alloy, which exhibits
a pronounced shape-memory effect and, consequently,
holds considerable promise for practical applications
[1–3]. Under irradiation of the TiNi alloy with fast neu-
trons, an increase in the fluence leads to a shift in the
martensitic transformation temperature toward the low-
temperature range [4–7]. In our earlier works [8, 9], it
was demonstrated that, upon exposure of the alloys to
low-temperature irradiation, an increase in the fluence
is accompanied by an exponential decrease in the criti-
cal temperatures and a linear increase in the electrical
resistivity. According to the experimental data, the
decrease in the characteristic temperatures of the phase
transformations in the TiNi alloy occurs at different
rates. As a result, the temperature hysteresis of the
phase transitions under reactor irradiation increases
significantly. It is worth noting that, despite consider-
able variations in the temperature kinetics of martensi-
tic transformation, the alloy completely retains the abil-
ity to change its shape reversibly after low-temperature
irradiation with a fluence of 7 × 1018 cm–2 [8]. 

It is believed that radiation-induced disordering of a
solid solution plays a decisive role in the aforemen-
tioned phenomena [10, 11]. However, it is not improb-
1063-7834/03/4502- $24.00 © 20339
able that the martensitic transformation can also be
affected either by elastic stresses arising in the region of
cascades of atomic collisions or by radiation-induced
ageing, which can cause the emergence of inhomoge-
neities in the chemical composition of the alloy under
investigation [12]. All the above structural changes are
observed in the TiNi alloy. Other materials with mar-
tensitic transformations have been poorly investigated.
Very little information is available in the literature on
the Fe–Mn–Si, Mn–Cu [13], V3Si [14], Fe–Ni [15], and
TiPd(Cr) [16] alloys and pure cobalt undergoing a tran-
sition from the face-centered cubic phase to the hexag-
onal close-packed phase [17]. For this reason, it has
hitherto remained impossible to reveal regularities in
the behavior of alloys with martensitic transformations
of different types or to elucidate the physical nature of
the effect of reactor irradiation on martensitic phase
transitions in crystals. 

The necessity of studying a wide variety of materi-
als in detail is also dictated by the fact that metals
undergoing martensitic transformations can be quite
competitive with TiNi alloys in the manifestation of
mechanical effects associated with the reversibility of
severe deformations. Among these materials are prima-
rily copper-based alloys (such as Cu–Al–Ni, Cu–Al–
Mn, and Cu–Zn–Al), especially, in the form of single
crystals, because they are not subject to intercrystalline
brittleness—the chief drawback of copper-based shape-
memory alloys [18]. Owing to a unique combination of
003 MAIK “Nauka/Interperiodica”
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their properties, single-crystal alloys in the Cu–Al–Ni
system are very promising in technical applications,
specifically in nuclear power plants [19, 20]. 

This paper reports on the results of investigations
into the effect of neutron irradiation on the martensitic
transformation in the Cu–Al–Ni alloy, which differs
from titanium nickelide in both the crystal structures of
the phases involved in the transformation and the tem-
perature kinetics of the phase transition. 

2. EXPERIMENTAL TECHNIQUE 

A single crystal of the Cu–Al(13.4%)–Ni(5%) alloy
(wt %) was chosen as the object of investigation. A
cylindrical sample 30 mm long and 1 mm in diameter
was irradiated in a low-temperature helium loop chan-
nel of a WWR-M reactor (St. Petersburg Institute of
Nuclear Physics, Russian Academy of Sciences). In the
course of irradiation, experimental instrumentation
made it possible to vary the temperature of the studied
samples in the range 100–400 K in an arbitrary manner.
During the experiments, isothermal irradiation alter-
nated with thermocycling in the temperature range of
martensitic transformations. The temperature was var-
ied in the following way: irradiation at a constant tem-
perature  thermocycling (one or several thermocy-
cles)  irradiation at a different temperature or at the
same temperature  thermocycling and so on. The
temperature was maintained constant to within ±3 K.
The time of isothermal irradiation was 10–40 h. In the
course of thermocycling, the temperature varied at a rate
of 1–3 K/min. The temperature in the gas-filled channel
was measured using a copper–constantan thermocouple
located in the immediate vicinity of the sample. 

In the experiments, the electrical resistivity of the
studied alloy was continuously measured by the four-
point probe method. The temperature kinetics of the
martensitic transformation after isothermal neutron
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Fig. 1. Temperature dependence of the electrical resistivity
in the range of the martensitic transformation in the Cu–
Al(13.4%)–Ni(5%) alloy before irradiation. 
PH
irradiation was judged from the temperature depen-
dences of the electrical resistivity measured in the
course of thermocycling. The irradiation temperatures
corresponded to different structural states of the mate-
rial (austenitic, martensitic, and two-phase states). 

In the helium loop channel, the flux density of fast
neutrons with an energy ≥1 MeV at a height corre-
sponding to the irradiated sample was equal to 6 ×
1012 cm–2 s–1. In each experiment of isothermal irra-
diation, the fluence of fast neutrons did not exceed
9 × 1017 cm–2. The integral dose for two weeks of the
experiments was 5 × 1018 cm–2 (3 × 10–3 dpa). 

3. RESULTS AND DISCUSSION 

It is found that the studied alloy at room temperature
undergoes a martensitic transformation from the high-
temperature β1 phase with a DO3 structure to the 
martensitic phase (2H). Figure 1 depicts the tempera-
ture dependence of the electrical resistivity ρ of the
unirradiated alloy. As can be seen, this dependence
exhibits a linear behavior outside the transition temper-
ature range. A drastic increase and a decrease in the
electrical resistivity correspond to direct and reverse
martensitic transformations with a temperature hyster-
esis of 12–13 K. The characteristic temperatures of the
phase transformation are as follows: Ms = 346 K, Mf =
297 K, As = 325 K, and At = 354 K. In order to exclude
the influence of repeated thermocycles on the transfor-
mation characteristics, the sample was cooled and
heated repeatedly prior to the experiments. Conse-
quently, the dependence shown in Fig. 1 is stable and is
well reproduced with varying the temperature. 

Figures 2 and 3 display typical temperature depen-
dences measured under isothermal irradiation of the
sample in the martensitic state at irradiation tempera-
tures Tir = 322 and 123 K, respectively. Note that the

γ1'
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260 280 300 360
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320 340 380

Isothermal
irradiation

Fig. 2. Temperature dependences of the electrical resistivity
measured under isothermal irradiation of the Cu–Al–Ni
alloy in the martensitic phase at 322 K (indicated by the ver-
tical arrow) and upon subsequent heating and thermocy-
cling. Points represent the temperature dependence of the
electrical resistivity of the unirradiated alloy. 
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alloy has a martensitic structure at an irradiation tem-
perature of 322 K in the temperature range of the mar-
tensitic transformation only in the case when this tem-
perature is reached by heating from lower tempera-
tures. The vertical arrows in Figs. 2 and 3 (and in all the
other figures given below) show the increment of the
electrical resistivity upon isothermal irradiation. After
irradiation, the sample was heated in the temperature
range involving the reverse transition temperature and
additional thermocycling was performed in order to
determine the kinetics of the phase transition in the irra-
diated alloy. For comparison, Fig. 2 shows the depen-
dence ρ = f(T) for the unirradiated alloy measured in
the thermocycle immediately before irradiation.

It can be seen from Fig. 2 that the martensitic trans-
formation upon heating immediately after irradiation at
322 K occurs at temperatures 20–25 K higher than
those for the unirradiated alloy. Earlier, Abramov et al.
[20] noted that the temperatures of the reverse marten-
sitic transformation in Cu–Al–Mn and Cu–Al–Ni
alloys increase by more than 100 K after fast-neutron
irradiation with a fluence of approximately 1.5 ×
1020 cm–2 at a temperature of 330 K. However, our
experimental data demonstrate that a similar increase in
the transformation temperatures is observed only once.
Even in the next thermocycle, the temperature kinetics
of the transformation becomes rather common for mar-
tensitic transitions and differs only slightly from the
kinetics observed for the unirradiated alloy. For the
most part, the difference resides in a small shift of the
hysteresis loop toward the low-temperature range with-
out a noticeable change in the temperature hysteresis
(Fig. 2). A similar single increase in the temperatures of
the martensite  austenite transformation in the
course of the first heating is observed after irradiation
at the temperature Tir = 123 K (Fig. 3). 

Since the aforementioned single increase in the tem-
peratures of the reverse transformation is caused by
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Fig. 3. Temperature dependences of the electrical resistivity
measured under isothermal irradiation of the Cu–Al–Ni
alloy at 123 K (indicated by the vertical arrow) and upon
subsequent heating and thermocycling. 
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irradiation, it is reasonable to assume that the tempera-
ture shift depends on the integral neutron dose absorbed
by the sample in the course of isothermal irradiation. In
order to reveal this dependence, the alloy was irradiated
at a temperature of 123 K with different fluences. Then,

the temperature  of the onset of the reverse marten-
sitic transformation was measured upon heating per-
formed immediately after isothermal irradiation. The
results presented in Fig. 4 indicate that the shift of the
martensitic transformation temperature increases with
an increase in the neutron fluence. 

Owing to the specific features in the temperature
kinetics of the martensitic transformation, the crystal
under investigation can occur in different structural
states at the same absolute temperature. Analysis of the
dependence depicted in Fig. 1 shows that, as was noted
above, the crystal at a temperature of 322 K occurs in
the martensitic state upon heating from low tempera-
tures and in the two-phase state (a mixture of martensi-
tic and austenitic phases in the temperature range of the
direct transition, i.e., between Ms and Mf) upon cooling
from high temperatures. This temperature was chosen
for irradiation of the alloy in the two-phase state. It can
be seen from Fig. 5 that, in this case, irradiation leads
to the same effects as those observed upon irradiation
of the sample in the single-phase martensitic state, i.e.,
to a single increase in the temperatures of the reverse
transformation upon the first heating. 

After neutron irradiation of the alloy in the austen-
itic state at Tir = 340 K, no low-temperature anomalous
changes are observed in the temperature kinetics of the
martensitic transformation. Upon isothermal irradia-
tion, the hysteresis dependence ρ = f(T), as a whole,
only slightly shifts toward the low-temperature range.
The increase in the electrical resistivity of the alloy
under irradiation at 340 K unexpectedly turns out to be
considerably less than that under irradiation at other
temperatures. The dependences of the relative change

As
ir

2 4 6 8 10
Fluence, 1017 cm–2

330

340

350

360

A
sir

K,

Fig. 4. Temperature of the onset of the reverse martensitic
transformation during the first heating after irradiation at
123 K as a function of the neutron fluence for the irradiation
time. 
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in the electrical resistivity ∆ρ/ρ0 on the neutron fluence
at different temperatures are shown in Fig. 6. The
dependences exhibit a linear behavior. Their slopes
dρ/(ρ0dΦ), which characterize the rate of increase in
the electrical resistivity, are as follows: 2.1 × 10–19 cm2

at Tir = 120 K (the martensitic state, curve 1 in Fig. 6),
1.4 × 10–19 cm2 at Tir = 302 K (the martensitic state,
curve 2 in Fig. 6), 1.2 × 10–19 cm2 at Tir = 322 K (the
two-phase state, curve 3 in Fig. 6), and 2.3 × 10–20 cm2

at Tir = 340 K (the austenitic state, curve 4 in Fig. 6). 

The difference between the first three slopes can be
explained by the change in the irradiation temperature
(it is known that the lower the irradiation temperature,
the higher the rate of accumulation of radiation dam-
ages in the crystal lattice). However, this simple expla-
nation is inapplicable to the fourth case. Actually, an
increase in the temperature by 18 K (from 322 to
340 K) is accompanied by more than a fivefold
decrease in the rate of increase in the electrical resistiv-
ity. Therefore, the sharp change in the slope dρ/(ρ0dΦ)
can be attributed only to a change in the structural state
of the crystal. It becomes clear that the considerable
increase observed in the electrical resistivity during
irradiation of the sample in the martensitic and two-
phase states is associated not only with the formation of
radiation-induced defects, such as vacancies, inter-
stices, and their clusters, which are also formed during
irradiation of the sample in the austenitic state. Conse-
quently, the above findings and regularities should be
explained in terms of structural features of the material
in different states. 

The two-phase state of the alloy upon cooling can be
represented as an austenitic matrix with embedded
martensitic crystals. The transformation is attended by
a small volume effect (~0.3%) and an appreciable
change in the shape of the newly formed regions, which
results in the appearance of elastic stresses at the inter-
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Fig. 5. Temperature dependences of the electrical resistivity
measured upon cooling to the irradiation temperature (open
triangles), under isothermal irradiation of the sample in the
two-phase state at 322 K (indicated by the vertical arrow),
upon heating after irradiation (open circles), and subsequent
thermocycling (solid lines). 
PH
faces. The interfaces themselves are coherent and easily
sliding, and the transformation upon cooling occurs
through both the growth of the existing martensitic
crystals and the formation and growth of new crystals.
As a consequence, the crystal in the martensitic state
consists of a set of martensitic structural domains with
different crystallographic orientations. Therefore, the
main distinctive feature of the martensitic and two-
phase states, as opposite to the austenitic state, is the
presence of a large number of phase boundaries (inter-
facial and interdomain). The transformation upon heat-
ing proceeds through the boundary motion in the
reverse direction with complete recovery of the original
austenitic structure. The reverse boundary motion is
caused by the chemical driving force due to the differ-
ence between the free energies of the austenitic and
martensitic states Gch = GA – GM and the mechanical
force Gm associated with the elastic stresses. 

There are strong grounds to believe that neutron
irradiation causes the disturbance of coherence at the
interfaces in the martensitic and two-phase states. This
assumption is in complete agreement with the experi-
mental data. Indeed, the disturbance of coherence leads
to a decrease in the mobility of the interfaces and,
hence, their motion in the course of the reverse transfor-
mation requires an additional thermodynamic contribu-
tion ∆Gir, i.e., a substantial superheating, which is
observed in the experiments. The interfaces disappear
after transformation of the crystal into the austenitic
state. This results in virtually complete disappearance
of the irradiation memory in the metal structure and in
the recovery of the temperature kinetics of the transfor-
mation. Note that incoherent or semicoherent planar
lattice defects efficiently scatter charge carriers; as a
consequence, the electrical resistivity of the material
involving interfaces under irradiation increases consid-
erably more steeply as compared to that of the material
in the austenitic state. 
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Fig. 6. Dependences of the electrical resistivity of the Cu–
Al–Ni alloy on the fast-neutron fluence under isothermal
irradiation at temperatures of (1) 120, (2) 302, (3) 322, and
(4) 340 K. 
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The radiation-induced disturbance of coherence at
the interfaces can be associated with the directed
migration of radiation-induced point defects in the field
of elastic stresses arising in the course of the transfor-
mation. Moreover, motion of point defects initiates
motion of lattice dislocations. The emergence of dislo-
cations at the inner interfaces or their intersection by
dislocations also leads to a disturbance of the interface
structure. A number of these mechanisms were dis-
cussed in [21, 22]. It should be emphasized that motion
of lattice defects is attended by the plastic deformation,
which leads to a decrease in Gm. In turn, this also favors
an increase in the temperatures of the reverse martensi-
tic transformation after irradiation. 

It is of interest to consider the situation when the
crystal irradiated in the two-phase state is cooled
(rather than heated) to the completion of the austen-
ite  martensite direct transition. In this case, first,
the kinetics of the direct transformation should
change owing to the disturbance of coherence at the
interfaces of the martensitic crystals and, second, a spe-
cific kinetics of the reverse transformation should be
expected, because, after cooling, a number of martensi-
tic crystals have a usual structure and the interfaces of
the other crystals are damaged by irradiation. The
results of the experiment on these transformations are
presented in Fig. 7. A small decrease in the temperature
of the direct transformation is observed upon cooling
after irradiation of the crystal in the two-phase state. It
seems likely that, for the above reasons, the irradiated
martensitic crystals cease to grow upon cooling and the
transformation occurs only through the nucleation of
new crystals, which requires an additional supercool-
ing. According to the known property of thermoelastic
martensitic transitions, the martensitic crystals disap-
pear upon heating in inverse order to their sequence of
formation; i.e., the crystals arising late in cooling disap-
pear early in heating. In the experiment under consider-
ation, heating is accompanied by the initial disappear-
ance of the unirradiated crystals and then the crystals
with damaged incoherent interfaces. This is why the
first and second stages of the reverse transformation are
characterized by small and large temperature hystere-
ses, respectively (Fig. 7). In general, the experimental
data presented in Fig. 7 indirectly confirm the proposed
structural mechanisms of the influence of short-term
neutron irradiation on the martensitic transformation in
the Cu–Al–Ni alloy. 

It turned out that the response of the Cu–Al–Ni alloy
single crystal to neutron irradiation differed from that
observed for TiNi alloy polycrystals in our earlier
works [8, 9], even though the martensitic transforma-
tions in both materials follow the same thermodynamic
and kinetic regularities. Elucidation of the origin of this
difference calls for further investigation. 

In conclusion, we should also note that the results
obtained in this work can be used in practice. The dras-
tic change revealed in the kinetics of the reverse mar-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
tensitic transformation after irradiation can serve as a
basis for the design of neutron radiation indicators. The
simplest indicator, for example, in the form of a rod
fabricated from the Cu–Al–Ni alloy, is sensitive to low
radiation doses and can provide information on both the
neutron irradiation in the course of exposure and the
neutron fluence. 
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Abstract—The martensite phase formation in elastic fields of isolated screw and edge dislocations, as well as
in planar clusters of like-sign dislocations and in a two-dimensional network of opposite-sign edge dislocations,
is quantitatively analyzed within the theory of smeared martensitic transitions. The heterogeneous nucleation
of martensite at dislocations is shown to increase the characteristic temperature of the martensitic transition and
its temperature smearing. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Currently, the mechanism of the influence of lattice
defects on martensitic phase transformations is poorly
studied both experimentally and theoretically. The
available data allow the conclusion that plastic defor-
mation and, hence, dislocations significantly affect
martensitic transformations in shape memory alloys
[1]. Quenching defects [2] and disperse particles [3, 4]
also appreciably change the martensitic-transition
parameters. Transmission-electron-microscopy studies
of crystals show that dislocations [5–9] and coherent
precipitates [3, 6] are centers of martensite heteroge-
neous nucleation.

Defects have an effect on all parameters of the trans-
formation: the temperature width, temperature hystere-
sis, and characteristic temperature. There are only qual-
itative considerations for the mechanism of this effect
because of the absence of a quantitative theory of first-
order phase transitions, including the structural marten-
sitic transitions in shape memory alloys. In this paper,
we study the influence of dislocations on the martensi-
tic-transition parameters in the framework of the phe-
nomenological theory of smeared martensitic transi-
tions (SMTs), recently developed in [10, 11], on the
basis of the theory of smeared first-order phase transi-
tions [11].

The theory defines the phase equilibrium between
the high- and low-temperature phases (the equilibrium
between the martensite and austenite volume fractions
in the crystal) depending on a change occurring in the
crystal internal energy during structural rearrangement
of the crystal lattice. Since defects, e.g., dislocations,
disturb this equilibrium due to the elastic fields pro-
duced by them, the kinetics and parameters of a marten-
sitic transition will be affected by defects if their den-
1063-7834/03/4502- $24.00 © 20345
sity is sufficiently high. The SMT theory allows one to
make a quantitative calculation of this effect.

In this paper, we theoretically analyze the influence
of dislocations and their clusters on the martensitic-
transition kinetics in shape memory alloys within the
SMT theory. In Section 2, we present the basic relations
of the theory, which are then used in Section 3 to con-
sider the formation of equilibrium martensite nuclei at
isolated dislocations. Sections 4 and 5 are dedicated to
the martensite formation near planar dislocation clus-
ters and in a two-dimensional ensemble of uniform-
density dislocations, respectively. In Section 6, we
quantitatively analyze the influence of the dislocation
density on the kinetics and parameters of an SMT.

2. BASIC RELATIONS OF THE SMEARED 
MARTENSITIC TRANSFORMATION THEORY

According to the theory, the relative volume fraction
ϕM of martensite in a material at a given temperature T,
stress τ, and pressure P is given by [10, 11]

(1a)

where ∆U = ω∆u is the internal-energy change in the
crystal as its elementary volume ω undergoes the auste-
nite-to-martensite transition;

(1b)

is the change in the internal energy per unit volume of
the material due to the phase transition; q is the transi-
tion heat; Tc0 is the critical (characteristic) transition
temperature in the absence of stress τik and pressure P;

ϕM T τ,( ) 1
∆U
kT
-------- 
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1–
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∆u q
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ξik and ξ0 are the spontaneous shear strain and dilatation
of the lattice, respectively, during its structural rear-
rangement; [ud] is the change in the intrinsic energy of
the lattice defects upon structural transition; and nd is
the defect concentration. Since the contribution of the
last term in Eq. (1b) to the energy change is small in
comparison with the others, we hereafter neglect it.

As is evident from Eq. (1), the amount of martensite
in the crystal depends on the magnitude and sign of the
energy ∆u. Austenite and martensite prevail in the crys-
tal at ∆u > 0 and ∆u < 0, respectively. The condition
∆u = 0, under which the amounts of austenite and mar-
tensite in the crystal are equal, defines the characteristic
transition temperature

(2)

Equation (2) is a generalized Clausius–Clapeyron rela-
tion, according to which external stresses applied to the
crystal or the internal stresses should cause a change in
the critical temperature of the transformation. The crys-
tal defects that are accompanied by long-range elastic
fields should also affect the critical temperature.

Another SMT parameter is the temperature range of
the phase transformation, i.e., the transition tempera-
ture smearing (width) ∆TM. This quantity depends on
the derivative dϕM/dT at the characteristic transition
temperature Tc0 and is equal to ∆TM = (4/B)Tc0, where
B = ωq/kT ≈ ωq/kTc0. Thus, the smearing is determined
by the transformation elementary volume and transfor-
mation heat. As for the transformation temperature hys-
teresis ∆Tf, this quantity depends on the force (stress) of
interphase boundary locking by defects.

3. SCREW AND EDGE DISLOCATIONS

Isolated dislocations can affect the martensitic
transformation parameters only locally, i.e., within the
range of their elastic shear field. For a straight screw
dislocation line oriented along the z axis, the shear
stresses are given by

(3)

where µ is the shear modulus and b is the Burgers vec-
tor. Within the SMT theory, the martensite formation in
elastic fields given by Eq. (3) can be correctly described
on the scales r > rω, where rω is the largest size of the
elementary transformation volume ω. For example, in
the case of a disk-shaped elementary transformation
volume with a thickness of the order of the lattice
parameter a, we have rω = (4ω/πa)1/2, which corre-
sponds to 3–6 nm for the characteristic values ω ≈ 2–
10 nm3 in shape memory alloys and a = 0.3 nm.

Tc Tc0

Tc0

q
------- ξ ikτ ik ξ0P+( ).+=

τ zx τ xz
µb
2π
------ x

x2 y2+
----------------,–= =

τ zy τ yz
µb
2π
------ y

x2 y2+
----------------,–= =
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For a general orientation of the screw dislocation
with respect to the habit plane and in the presence of
spontaneous shear strains  and , the energy of
the martensitic relaxation of the local stress field of the
dislocation is given by

(4)

where ξ = (  + )1/2 and mzx and mzy are the direc-
tion cosines defining the dislocation orientation with
respect to the habit plane and spontaneous-strain direc-
tion. Substituting Eq. (4) into Eq. (1b), we arrive at the
martensite distribution near the screw dislocation:

(5)

where t = T/Tc0, X = x/b, and Y = y/b are the dimension-
less temperature and coordinates respectively, and A1 =
µξ/2πq ≈ 1–10 is the parameter characterizing the
relaxation intensity.

Figures 1a–1c show the martensite distribution near
the screw dislocation according to Eq. (5) for A1 = 8,
B = 50, and t = 1.25 and for three different orientations
of the dislocation line. Contours 1–3 bound the regions
where ϕM = 1, 2/3, and 1/3, respectively, at a given tem-
perature. One can see that the martensite distribution
near the dislocation depends on the dislocation orienta-
tion with respect to the habit plane. Martensite arises in
the region near the dislocation where, according to
Eq. (3), positive and negative shear stresses are stron-
gest. To eliminate the divergences as x, y  0, the
constant term 0.1b2 was introduced into the denomina-
tor of formula (4) in order to limit the dislocation stress
field at distances r < 0.3b from the dislocation.

Curve 2 in Fig. 1d shows the martensite concentra-
tion at the point x = 5b, y = 0 near the dislocation
(Fig. 1a) as a function of temperature. For comparison,
curve 1 shows the martensite concentration at this point
in the absence of dislocations. One can see that, for the
parameters indicated above, the martensite nucleation
in the crystal is initiated at a significantly higher tem-
perature (Tc ≈ 1.5Tc0) than in the absence of disloca-
tions. If the martensite concentration ϕM = 0.99 is taken
as that defining the size of the martensite formation
region in Figs. 1a–1c, then, according to Eq. (5), the
region size can be estimated as

(6)

where m = 0.5 is the maximum value of the orienta-
tional factor. For the parameters indicated above and
T = 1.2Tc0, we have RM ≈ 24b. This value appreciably
exceeds RM ≈ 4b for contour 1 in Figs. 1a–1c, since a
higher ϕM value was taken as critical in the numerical
calculation. As the temperature decreases, the marten-

ξ z'x' ξ z'y'

ξ ikτ ik
µbξ
2π
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mzxx mzyy+
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----------------------------,= =
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site region near the dislocation grows and becomes infi-

nitely large at the temperature TM = Tc0. This

means that the martensitic transformation occurs in the
whole crystal at this and lower temperatures regardless
of the dislocation.

In addition to shear stresses τxy, the edge dislocation
in the crystal also produces a hydrostatic component
P = (σx + σy + σz)/3:

(7)

The energy of the martensitic relaxation of the elastic
field of the edge dislocation consists of two compo-
nents: the energy of the shear-stress relaxation

(8a)

(where mxy is the orientational factor and ξ = |ξxy |) and
the pressure relaxation energy

(8b)

Substituting these energies into Eq. (1b), we arrive at
the martensite distribution near the straight edge dislo-
cation line:

(9a)

(9b)

The other designations are the same as those in for-
mula (5). Figures 2a and 2b show the martensite
regions near the edge dislocation calculated from
Eq. (9) for pure shear (A2 = 8, mxy = 0.5) and pure dila-
tation (A3 = 2) relaxation of the dislocation elastic field
at the temperature T = 1.25Tc0. Figure 2c displays the
calculated martensitic relaxation including both stress
field components of the edge dislocation.

The electron microscopy observations [5–7] showed
the size of martensite regions near dislocations to be
approximately 10–20 nm, which corresponds to the
estimates made from formula (6). Martensite structures
near dislocations consist of a set of several-nanometer-
thick martensite plates alternating with austenite phase
regions [5]. The SMT theory ignores the plate shape
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Fig. 1. Martensite formation near a screw dislocation at var-
ious orientations of the dislocation line with respect to the
habit plane: (a) mzx = 0.5, mzy = 0; (b) mzx = 0, mzy = 0.5;
(c) mzx = mzy = 0.4; and (d) temperature dependences of the
amount of martensite at the point x = 5b, y = 0 [in case (a)]
(1) without and (2) with dislocations. Contours 1–3 in
(a–c) correspond to the martensite concentrations ϕM = 1,
2/3, and 1/3, respectively.

1 2 3



348 MALYGIN
and sizes; however, this theory defines their number
near dislocations at given plate sizes [11].

4. PLANAR DISLOCATION CLUSTERS 

Dislocations in the crystal can comprise various
clusters and dislocational structures. The long-range
stress field of dislocations in such structures strengthen
or compensate for each other depending on the region;
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Fig. 2. Martensite phase distribution near an edge disloca-
tion in the case of (a) a shear, (b) pure dilatation, and (c)
total stress fields.

1 2
3

PH
therefore, the magnitude of local stresses depends on
the sign and relative positions of dislocations. Below,
we consider the martensite formation near clusters of
like-sign edge dislocations in the glide plane, as well as
near an edge dislocation cluster in the form of a vertical
wall of finite height.

In the former case, by summing up the shear and
dilatation stresses from separate dislocations, we obtain

(10)

where l is the distance between dislocations in the clus-
ter, 2N + 1 is their total number, and n specifies the dis-
location position in the cluster. By substituting Eq. (10)
into Eqs. (1), we calculated the martensite phase distri-
bution near the plane cluster of edge dislocations.

Figure 3a shows the martensite distribution over the
glide plane (y = 0) at the temperature T = 1.6Tc0, the dis-
tance l = 10b between neighboring dislocations, and the
total number 2N + 1 = 11 of cluster dislocations. The
other parameters are the same as above. One can see
that the martensite region size is approximately 5l near
the cluster edges where the opposite-sign stress fields
do not compensate each other. Smaller martensite
regions (of the order of l) arise near internal disloca-
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Fig. 3. Martensite phase distribution near a planar cluster of
edge dislocations (a) over the glide plane at y = 0 and (b)
over the plane normal to the dislocation lines.
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tions, since the fields compensate each other. The mar-
tensite phase distribution over a plane normal to the
glide plane is shown in Fig. 3b. Contour 2 corresponds
to the martensite phase concentration ϕM = 2/3. In the
cluster center, the martensite region narrows, since dis-
location stress fields compensate each other. Small
martensite regions located near the glide plane in
Fig. 3b correspond to martensite formed near separate
dislocations. It is also evident that, in the case of a clus-
ter of like-sign dislocations, large martensite regions
arise at a higher temperature than in the case of isolated
dislocations.

The martensite formation near a vertical wall of
like-sign edge dislocations with the average distance l
between dislocations [the wall height is H = (2N + 1)l]
can be calculated in a similar way. Figures 4a and 4b
display the calculated distribution for the parameters
indicated above and the temperature T = 1.5Tc0. Fig-
ures 4a and 4b show the martensite phase distributions
over the wall at x = 0 and over the plane normal to dis-
locations, respectively. One can see that significant
martensite regions arise at the dislocation wall edges in

1050–5–10
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0.5
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l
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Fig. 4. Martensite phase distribution near a vertical wall of
edge dislocations (a) over the wall at x = 0 and (b) over a
plane normal to the dislocation lines.
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the strongest stress regions. A dislocation wall of finite
height can be considered to be a disclination dipole;
therefore, Figs. 4a and 4b show the martensite phase
distribution near such a dipole.

5. TWO-DIMENSIONAL NETWORK 
OF EDGE DISLOCATIONS

Heterogeneous martensite nucleation on a two-
dimensional network of opposite-sign edge disloca-
tions can be calculated similarly to the preceding case.
The shear stresses in the network of opposite-sign dis-
locations arranged in staggered rows are described by
the double sum

(11a)

τ xy
µb

2π 1 ν–( )
-----------------------=

× 1–( )n m+ x nl+( ) x nl+( )2 y ml+( )2–[ ]
x nl+( )2 y ml+( )2+[ ] 2

----------------------------------------------------------------------------------------------.
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∑
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Fig. 5. Martensite distribution near a two-dimensional net-
work of opposite-sign edge dislocations (a) over the dislo-
cation glide plane y = 0 and (b) over the plane normal to the
dislocation lines.
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The hydrostatic stress is written as

(11b)

Figure 5a displays the martensite distribution over
the dislocation glide plane y = 0 for the average distance
l = 100b between network dislocations; their total num-
ber is (2N + 1)2 = 49, and the temperature is T = 1.2Tc0.
The values of the other parameters are the same as those
indicated above. It is evident that martensite exists at
this temperature not only near dislocations but also
between them. Figure 5b displays the martensite distri-
bution over a plane normal to dislocation lines of the
two-dimensional dislocation network.

P
µb
3π
------ 1 ν+

1 ν–
------------ 

  1–( )n m+ y ml+( )
x nl+( )2 y ml+( )2+

-------------------------------------------------.
N–

N

∑
N–
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Fig. 6. Temperature dependences (a) of the martensite vol-
ume fraction in the crystal (1) without and (2) with disloca-
tions and (b) of the martensite fraction caused by disloca-
tions.
PH
6. INFLUENCE OF DISLOCATIONS 
ON THE MARTENSITIC-TRANSITION 

PARAMETERS

The temperature dependence of the amount of mar-
tensite in the crystal changes due to heterogeneous mar-
tensite nucleation at defects. Curve 2 in Fig. 6a displays
this dependence in the case of the two-dimensional dis-
location network shown in Fig. 5b. The dependence
was calculated by integrating the local martensite dis-
tribution for the two-dimensional dislocation network:

(12)

where 4L2 is the integration domain size. For compari-
son, Fig. 6a also shows the temperature dependence of
ϕM in the absence of dislocations in the crystal (curve 1).
One can see that dislocations shift the temperature
dependence to higher temperatures and extend the
transformation temperature range, i.e., increase the
transition temperature smearing. Figure 6b displays the
temperature dependence of the amount of deforma-
tional martensite resulting from the dislocation network
in the crystal. The dependence was constructed as the
difference between curves 1 and 2 in Fig. 6a.

If the temperature at which half the crystal is in the
martensite state is taken as a characteristic transition
temperature in the crystal containing dislocations and
the size of martensite regions near dislocations
becomes close to [(1/2)l, where l = ρ–1/2 and ρ is the dis-
location density], then the characteristic temperature is
estimated to be

(13)

where m is the orientational factor. At the values of the
parameters A2 = 8, A3 = 2, m = 0.5, and b = 0.25 nm, the
temperature Tc is 1.03Tc0 for the dislocation density ρ =
1010 cm–2. Experience shows that plastic deformation
[1] or quenching [2] of a crystal often decreases the
characteristic transition temperature in shape memory
alloys rather than increasing it, as well as increases the
transformation temperature hysteresis. The latter
increase is caused by the interaction between inter-
phase boundaries and defects. The decrease in temper-
ature Tc due to plastic deformation can also be caused
by this factor.

7. CONCLUSIONS

In this paper, we restricted ourselves to the analysis
of the martensite formation near dislocations and their
clusters in the case of only one martensite variant
present in the crystal. However, the SMT theory also
allows one to analyze the case of a few martensite vari-
ants, as well as the case where the martensite formation

ϕM T( )
1

4L2
--------- x ϕM x y T, ,( ) y,d

L–

L

∫d

L–

L

∫=

Tc 1 2 mA2 A3+( )bρ1/2+[ ] Tc0,=
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is caused by the application of an external mechanical
stress to the crystal, rather than by a temperature
decrease.
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Abstract—The previously proposed model of a crystal with rotational degrees of freedom is extended to the
two-dimensional case. The model contains two nonlinear terms that allow for the stability of 1q, 2q, or 3q mod-
ulated phases, depending on the ratio between the model parameters. A numerical treatment is performed for
the transition between the 1q and 3q phases that is characteristic of crystals with hexagonal symmetry. This
model makes it possible to reconstruct the sequence of phase transitions occurring in quartz crystals upon cool-
ing and offers a satisfactory explanation of the experimentally observed increase in the temperature range of
existence of the 1q phase under external uniaxial loading. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the formation of modulated phases
in crystals has attracted considerable attention both in
terms of the theory of phase transitions and as an exam-
ple of a more general physical phenomenon, namely,
spatial localization of energy under external homoge-
neous actions. Great interest expressed by researchers
in the formation of modulated phases is associated with
the aforementioned and other intriguing phenomena
[1–7]. In a dielectric crystal, the modulated phase arises
from the high-symmetry commensurate (normal) phase
due to a second-order phase transition, which, in turn,
is caused by the disappearance of the acoustic mode
with a wave vector lying within the first Brillouin zone.
A similar phase transition can be experimentally
observed with a decrease in the temperature. In modu-
lated phases, the atoms are slightly displaced from their
lattice positions following a periodic law. It should be
noted that, in the vicinity of the phase transition point,
the modulation is nearly sinusoidal. Moreover, there
exist modulations in the form of a superposition of two
or three sinusoidal waves. In this case, modulated
phases are referred to as the 2q and 3q phases, respec-
tively, unlike the 1q phase, in which the modulation has
the form of a single wave. When the ratio of the lattice
parameter of the modulated phase to the modulation
wavelength is an irrational number, this phase is termed
incommensurate. However, since the exact value of the
actual ratio is unknown, it is usually represented in the
form of an irreducible fraction. Therefore, it is physi-
cally correct to characterize the incommensurate phase
by such a ratio of the lattice parameter to the modula-
tion wavelength that can be expressed by an irreducible
fraction with a sufficiently large denominator [8].
1063-7834/03/4502- $24.00 © 20352
During further cooling, the modulated phase under-
goes a number of transitions and, as a rule, ultimately
transforms into the low-symmetry commensurate
phase. For example, the following sequences of phase
transformations are observed upon cooling: (i) normal
phase  1q  3q  commensurate phase for
SiO2 quartz [9, 10] and (ii) normal phase  2q 
1q  commensurate phase for Ba2NaNb5O15 crystals
[11, 12].

It is conventional to describe the incommensurate
phases in terms of microscopic models. In particular,
the so-called ANNNI model, which was modified by
Yamada and Hamaya [13], provides a qualitative
description of a sequence of phase transformations
from the incommensurate phase to the commensurate
higher-order phase and, then, to the low-symmetry
commensurate phase in crystals belonging to the struc-
tural family A2BX4. Parlinski and Chapuis [14] per-
formed a molecular dynamics simulation of the transi-
tion between 3q and 3q' phases with different modula-
tion periods in the framework of a three-dimensional
hexagonal model. These authors also applied the
molecular dynamics method to an analysis of the kinet-
ics of the 1q  3q and 3q  1q phase transitions
[14, 15]. It was proved that, in order to obtain stable 2q
and 3q phases, the Hamiltonian of the system has to
contain specific nonlinear terms [14–17]. The afore-
mentioned works elucidated the conditions of the exist-
ence of stable 2q and 3q phases in terms of two-dimen-
sional and three-dimensional models. However, the ori-
gin and mechanisms of the 1q  2q and 1q  3q
phase transitions are still not clearly understood. The
former transition was thoroughly investigated in our
previous work [18]. The latter transition will be consid-
ered in the present paper (see below). Our treatment is
003 MAIK “Nauka/Interperiodica”
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based on a microscopic model dealing with the so-
called elastically hinged molecules of finite size, i.e., on
the elastically hinged molecule (EHM) model [19, 20].
In this work, the one-dimensional variant of the EHM
model proposed in [19, 20] is extended to the two-
dimensional case. It should be noted that the one-
dimensional models constructed under the physical
assumptions made by Slot and Janssen [21] and Ishiba-
shi [22] are described by equations of motion that are
mathematically equivalent to the equation derived in
the one-dimensional EHM model. The Hamiltonian of
the two-dimensional EHM model is almost identical to
the Hamiltonian treated earlier by Parlinski et al. [17].
The only difference between them is that the linear part
of the Hamiltonian in the EHM model corresponds to
the case of an arbitrary external pressure, whereas the
Hamiltonian considered in [17] describes the case of
hydrostatic pressure. As a consequence, the frequency
of the soft mode in the EHM model can vanish at any
point of the Brillouin zone. By contrast, in [17], the fre-
quency of the soft mode becomes zero simultaneously
at three points lying along the high-symmetry direc-
tions [1 0], which, as will be shown below, makes
numerical treatment of the transition between the 1q
and 3q phases impossible.

2. DESCRIPTION OF THE MODEL

A continuum analog of the one-dimensional EHM
model can be represented in the form [19]

(1)

where u(x, t) is an unknown field of displacements, F is
the parameter describing the elastic properties of the
medium, and P is the external pressure.

Now, we write an obvious two-dimensional general-
ization of Eq. (1) in the following form:

(2)

where u(x, y, t) is an unknown function of displace-
ments; Fx, Fxy, and Fy are the elastic constants of the
anisotropic medium; Px and Py are the external pressure
components; and H is the parameter of the nonlinear
part of the equation. By analogy with the calculations
performed in [17], the nonlinear part of the equation in
our case is chosen in a more general form than in
Eq. (1).

Before proceeding further, one additional remark
needs to be made. The coefficient of the term u3 in
Eq. (1) can be normalized to unity. However, this nor-
malization is inapplicable in the case of Eq. (2). None-
theless, the consideration of the aforementioned special
case will suffice for our purposes. Note also that equa-
tions similar to Eqs. (1) and (2) are widely used in the
theory of beams and thin plates.

utt Fuxxxx Puxx u u3+ + + + 0,=

utt Fxuxxxx 2Fxyuxxyy Fyuyyyy+ + +

+ Pxuxx Pyuyy u Hu
2

u3+ + + + 0,=
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Let us now assume that the vectors a = (1, 0) and

b = (–1/2, ) generate a hexagonal lattice with
points ma + nb, where m and n are integral numbers
(Fig. 1a). The reciprocal lattice is generated by the vec-
tors a* and b*. Figure 1b shows the reciprocal lattice
specified by these vectors and the first Brillouin zone.

A discrete analog of Eq. (2), which is deduced for
the hexagonal lattice, can be represented in the form

(3)

When deriving relationship (3), we restricted our con-
sideration to the special case of an isotropic medium,
that is, Fx = Fxy = Fy = F.

The Hamiltonian of the two-dimensional EHM
model based on the hexagonal lattice has the following
form:

3/2

u̇̇m n, 3Px Py– 48F–( ) um 1+ n, um 1– n,+( )+

+ 2 Py 24F–( ) um 1+ n 1+, um n 1+, um 1– n 1–, um n 1–,+ + +( )

+ 16F um 2+ n 1+, um 1+ n 2+, um 1– n 1+,+ +( )
+ um 2– n 1–, um 1– n 2–, um 1+ n 1–,+ + )

+ 1 6Px– 6Py– 192F+( )um n, Hum n,
2 um n,

3+ + 0.=

H
1
2
--- u̇m n,( )2

m n,
∑ 1

2
--- 3Px Py– 48F–( )+=

× um n, um 1+ n, um 1– n,+( ) Py 24F–( )+
m n,
∑

(a) (b)

b

a

b*

a*
M2

M1

M3
b* – a*

∑1

∑2

∑3

x

y
z Py

(c)

Px Px

Py

Molecule

Fig. 1. (a) Hexagonal lattice, (b) reciprocal lattice and the
first Brillouin zone, and (c) the two-dimensional EHM
model. Rigid molecules are linked together by elastic
hinges. The model is exposed to an external pressure with
components Px and Py.
3
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(4)

Physically, relationships (3) and (4) can be inter-
preted in different ways. In particular, Parlinski et al.
[17] proceeded from analyzing the interaction between
point particles that had neither size nor shape. The
EHM model proposed in our earlier work [19] offers
another interpretation. Recall that the majority of
dielectric crystals are composed of very rigid, virtually
undistorted atomic groups. For example, quartz crystals
consist of SiO4 tetrahedral clusters. In this structure, the
tetrahedra are linked together at vertices occupied by
oxygen atoms, which play the role of hinges. Phase
transitions in quartz crystals occur through mutual rota-
tions of hinged tetrahedra in such a way that their dis-
tortions are negligible. Quartz crystals have hexagonal
symmetry. Since modulations in the quartz incommen-
surate phase propagate in the (x, y) plane, they can be
treated in the framework of a two-dimensional model.
On this basis, we can consider the two-dimensional
case of rigid triangle particles (molecules) joined
through elastic hinges (Fig. 1c). Let us assume that the
angle between the axes of the two neighboring, elasti-
cally hinged molecules is nonzero. In this situation, the
elastic hinge is characterized by a force moment that
tends to decrease the magnitude of this angle. The
rigidity of the hinge is designated by F. Each hinge
exhibits one degree of freedom, namely, displacement
in the direction perpendicular to the (x, y) plane. The
elastically hinged molecules interact through a poten-
tial with anharmonic third- and fourth-order terms. This
potential describes how the molecular layer under con-
sideration is affected by the rest of the crystal structure.
An external pressure with components Px and Py is
applied along the (x, y) plane.

The harmonic part of Eq. (1) leads to the following
dispersion relationship:

(5)

× um n, um 1+ n 1+, um n 1+, um 1– n 1–, um n 1–,+ + +( )
m n,
∑

+ 8F um n, um 2+ n 1+, um 1+ n 2+, um 1– n 1+,+ +(
m n,
∑

+ um 2– n 1–, um 1– n 2–, um 1+ n 1–,+ + )

+
1
2
--- 1 6Px– 6Py– 192F+( ) um n,

2

m n,
∑

+
H
3
---- um n,

3

m n,
∑ 1

4
--- um n,

4

m n,
∑ .+

ω2 κ x κ y,( ) 32F CxCy 1 2Cx 2Cy+ +( )[=

+ SxSy 1 2Cx– 2Cy–( ) Cx– Cy– ]
+ 2 3Px Py– 48F–( )Cx 2 2Py 48F–( )+

× CxCy SxSy– Cy+( ) 1 6Px– 6Py– 192F,+ +
P

where

We assume that the elastic constant F and the
parameter H depend on the temperature. A change in
the temperature and (or) the external pressure compo-
nents Px and Py causes a point particle to move in the
four-dimensional phase space of the model; as a conse-
quence, there can occur phase transitions.

Equation (3) has an obvious trivial solution, that is,
um, n = 0 (normal phase). This solution is stable pro-
vided the function ω2(κx, κy) defined by relationship (5)
is strictly positive. A change in the parameters of the
model results in variations in function (5). This func-
tion can vanish at a point with coordinates (κx, κy),
which gives rise to a soft mode represented by the
expression

(6)

In expression (6), at least one coefficient (Q1 or Q2) is
nonzero. If the (κx, κy) point lies on one of the three
high-symmetry axes a*, b*, or b* – a* (Fig. 1b),
expression (6) corresponds to the 1q modulated phase;
otherwise, this expression can describe either the 1q
phase or the 2q phase (depending on the coefficients Q1
and Q2). In the case where the structure described by
expression (6) has the lowest energy at both nonzero
coefficients Q1 and Q2, we deal with the 2q phase; how-
ever, the situation where one of these coefficients
appears to be zero corresponds to the 1q modulated
phase. If function (5) reduces to zero simultaneously at
several points of the Brillouin zone, the displacements
in the modulated phase are represented by a linear
superposition of all the soft modes described by expres-
sion (6). For this superposition, the coefficients should
be determined from the minimum condition of the
potential energy.

Now, we specify the conditions at which function (5)
becomes zero. It is evident that, when ω2(κx, κy) = 0, we
have ω2(–κx, –κy) = 0. In the subsequent discussion, we
will use only one of these points. Within this model,
function (5) can vanish at any point of the Brillouin
zone. However, we restrict our consideration to the fol-
lowing two special cases.

(i) Px = Py = P. This case was analyzed earlier by
Parlinski et al. [17]. Note that the dispersion surface
defined by function (5) has a sixfold symmetry. Hence,
this surface can vanish simultaneously either at the
points M1, M2, and M3 or at the points Σ1, Σ2, and Σ3
(Fig. 1b). More specifically, the surface vanishes at the
points M1, M2, and M3 under the conditions

(7)

Cx 2πκx( ), Cycos 2πκy( ),cos= =

Sx 2πκx( ), Sysin 2πκy( ),sin= =

κ κ xa∗ κ yb∗ .+=

um n, Q1 2π mκ x nκ y+( ) ϕ1+[ ]cos=

+ Q2 2π mκ x nκ y–( ) ϕ2+[ ] .cos

F P/8, 1 16P– 256F+≤ 0=
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and at the points Σ1, Σ2, and Σ3 under the conditions

(8)

(ii) Py > Px. The dispersion surface described by
function (5) exhibits a twofold symmetry. Therefore,
the dispersion surface vanishes either at the M2 point
when we have

(9)

or at the Σ2 point when

(10)

The possible scenario of the 1q  3q phase tran-
sition implies that function (5) becomes zero simulta-
neously at three points of the Brillouin zone. In this sit-
uation, the 3q phase represents a superposition of three
1q modes expressed in terms of Eq. (6). Let us now
assume that the symmetry of the dispersion surface is
lowered, for example, under a low applied uniaxial
pressure. Consequently, function (5) first vanishes at
one of the three points and there arises the 1q phase.
However, upon subsequent changes in the external
parameters, function (5) can reduce to zero at other
points of the Brillouin zone; as a result, the 1q  3q
phase transition becomes possible.

3. DISCUSSION

First, we analyze the case where Px = Py = P. By set-
ting H = –0.01, we ensure the fulfillment of the stability
conditions of the 3q phase [17]. It is assumed that a
point particle in the phase parameter space moves from
the stability region of a trivial solution and intersects
the parabola F = P2/4 [see relationships (8)] at a point
with coordinates defined by the expressions

(11)

Then, function (5) reduces to zero simultaneously at
three points, namely, κa*, κb*, and κ(b* – a*) (points
Σ1, Σ2, and Σ3 in Fig. 1b), where κ = M/N and N > 2M
(M and N are relatively prime positive integral num-
bers).

As an example, we consider the motion of a point
particle in the phase space (P, F) along the line defined
by the equality

(12)

Here, P(κ) is determined from expression (11). We
examine the case where κ is close to 1/2 or, more pre-
cisely, where κ is 20/41. This value of κ implies that the
modulation wavelength is equal to 41 points. In our
numerical simulation, we dealt with an 82 × 82-point
network.

The trivial solution (normal phase) remains stable
until the inequality F > F(20/41) holds. At F =
F(20/41), the frequencies of vibrations become zero

F P/8, F> P2/4.=

F Py/8, 1 16Py– 256F+≤ 0=

F Py/8, F> Py
2/4.=

     

P κ( )
1
8
--- πκ( )sin[ ] 2– , F κ( )

P2 κ( )
4

-------------.= =

P const P κ( ).= =
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simultaneously at three points (namely, Σ1, Σ2, and Σ3)
of the Brillouin zone and a transition to the incommen-
surate phase takes place. The numerical analysis dem-
onstrated that the 3q

 

 phase is formed in this case.

Let us now examine the 1

 

q

 

  3

 

q

 

 phase transition
by assuming there to be a small deviation from the
condition 

 

P

 

x

 

 = 

 

P

 

y

 

 = 

 

P

 

; more precisely, we suppose that

 

P

 

x

 

 = 

 

P

 

 and 

 

P

 

y

 

 = 

 

P

 

 + 

 

ε

 

, where 

 

ε

 

 is small compared to 

 

P

 

and (for definiteness) positive. Physically, 

 

ε

 

 is a low
uniaxial pressure applied together with hydrostatic
pressure 

 

P

 

. The symmetry of the dispersion surface is
lowered under a low uniaxial pressure. Consequently,
according to relationships (10), the dispersion surface
reduces to zero at the  Σ 

2
  point with the formation of the

1

 

q

 

 incommensurate phase. Upon a further decrease in
the elastic constant 

 

F

 

, the frequencies of vibrations
become zero at the 

 

Σ

 

1

 

 and 

 

Σ

 

3

 

 points of the Brillouin
zone and there occurs a transition to the 3

 

q

 

 incommen-
surate phase. Figure 2 illustrates the simulation of
phase transitions in the framework of the EHM model
with a decrease in the elastic constant 

 

F

 

 along the line
defined by formula (12) and the kinetics of the 1

 

q

 

  3

 

q

 

phase transition at 

 

H

 

 = –0.01 and 

 

ε

 

 = 2 

 

×

 

 10

 

–5

 

. We intro-
duced the dissipative term into the equation of motion (3)
in order to determine the equilibrium states of the
model at different external parameters. The interval
[

 

−

 

u

 

max

 

, 

 

u

 

max

 

] (where 

 

u

 

max

 

 is the maximum magnitude of
the displacement of point particles) was divided into
five equal intervals, and each displacement of point par-
ticles was indicated by a particular symbol (large open
circle, small open circle, closed circle, small cross, or
large cross), depending on the interval in which the dis-
placement of a given point particle takes place. The
normal phase (trivial solution) and one period of the
supercooled 1

 

q

 

 incommensurate phase are presented in
Figs. 2a and 2b, respectively. Then, the parameter 

 

F 

 

was
instantaneously changed to the value 

 

F

 

 = 

 

F

 

(20/41) – 10

 

–4

 

.
As a result, the 1

 

q

 

 incommensurate phase became
unstable and the 1

 

q

 

  3

 

q

 

 phase transition was initi-
ated. Figures 2c and 2d display intermediate stages of
the phase transition. Figure 2e shows one period of the
stable 3

 

q

 

 incommensurate phase with 

 

κ

 

 = 20/41, which
was formed as a result of relaxation. A further decrease
in the elastic constant 

 

F

 

 was attended by a transition
from the 3

 

q

 

 incommensurate phase to the 3q low-sym-
metry commensurate phase with κ = 1/2 (Fig. 2f). The
possible mechanism of the last transition was discussed
in our recent work [23].

The aforementioned results can shed light on the
origin of the phenomenon observed experimentally by
Abe et al. [10]. These authors demonstrated that, for
quartz crystals, the temperature range of existence of
the 1q incommensurate phase increases under external
uniaxial pressure. In the framework of the two-dimen-
sional EHM model, this finding can be explained by the
fact that an increase in the external uniaxial pressure
brings about an increase in the degree of distortion of
the dispersion surface. In turn, this leads to an increase
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(a) (d)

(e)(b)

(c) (f)

Fig. 2. Sequence of phase transformations observed in the framework of the EHM model with a decrease in the elastic constant F:
(a) the normal phase (trivial solution), (b) the supercooled 1q incommensurate phase with κ = 20/41, (c, d) intermediate stages of
the transition to the 3q phase, (e) the 3q incommensurate phase with κ = 20/41, and (f) the 3q low-symmetry commensurate phase
with κ = 1/2.
in the phase path length at which the frequencies of
vibrations become zero first at the Σ2 point and then at
the Σ1 and Σ3 points.

The case considered above corresponds to the con-
dition Py > Px. Note that, in the case when Px > Py, the
frequencies of vibrations reduce to zero first at the Σ1

and Σ3 points and then at the Σ2 point. This means that
P

our model can be applied to the simulation of the
2q  3q phase transition.

4. CONCLUSIONS

Thus, the one-dimensional EHM model was
extended to the two-dimensional case with hexagonal
symmetry. This made it possible to elucidate the mech-
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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anism of the transition between the 1q and 3q incom-
mensurate phases and to simulate its kinetics. Within
the proposed model, the dispersion surface, under
external hydrostatic pressure, can reduce to zero only at
three points of the Brillouin zone simultaneously,
which results in a transition from the normal phase to
the 3q incommensurate phase. Under a low uniaxial
pressure applied together with hydrostatic pressure, the
symmetry of the dispersion surface is lowered. The fre-
quencies of vibrations become zero first at one point
and then at the other two points of the Brillouin zone
due to slow variations in the external parameters. This
behavior corresponds to a transition first from the nor-
mal phase to the 1q incommensurate phase and then
from the 1q phase to the 3q incommensurate phase.
Therefore, our model describes the sequence of phase
transitions observed in quartz. Furthermore, this model
offers an explanation of the increase in the temperature
range of existence of the 1q phase in quartz with an
increase in the applied uniaxial pressure.
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Abstract—The Coulomb drag of electrons in spatially separated two-dimensional layers is considered under
conditions of electron heating when the nonequilibrium distribution of electrons in the first layer can be
described by macroparameters, such as the effective temperature. The nonequilibrium response is calculated
using a projection operator that is an obvious generalization of the Mori operator to the case of nonequilibrium
systems. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Pogrebinskiœ [1] and Price [2] showed that the elec-
tron–electron interaction between band charge carriers
located in spatially separated two-dimensional layers
should give rise to a response in the second system
when the electric current I1 is passed through the first
system. The voltage V2 induced in the second layer is
proportional to the electric current I1 and can be repre-
sented in the form

(1)

Here, W and L are the parameters characterizing the
width and length of the sample, respectively, and Rd is
the transresistivity due to interlayer Coulomb interac-
tion of charge carriers.

The experimental observation of the above phenom-
enon, which was called the Coulomb drag effect,
became possible due to the considerable progress
achieved in nanostructural technology. The Coulomb
drag effect was investigated using both purely electron
and electron–hole samples. It was demonstrated that, in
the absence of a magnetic field, the transresistivity at
low temperatures satisfies the relationship Rd ~ T2. As
is known, the Coulomb interaction is primarily respon-
sible for the elastic properties and effects observed in
two-dimensional systems. Moreover, this interaction
immediately manifests itself in the Coulomb drag
effect. Consequently, experimental investigations into
the Coulomb drag effect have stimulated a large num-
ber of theoretical works dealing with different aspects
of this effect (see review [3]).

In this paper, we consider the Coulomb drag effect
under conditions of electron heating (in the hot electron

V2

RdI1L
W

--------------.=
1063-7834/03/4502- $24.00 © 20358
approximation) when the nonequilibrium distribution
of electrons in the first layer can be described by mac-
roparameters, such as the effective temperature and
drift velocity [4]. The nonequilibrium response is cal-
culated with averaging over the quasi-equilibrium dis-
tribution with the effective electron temperature Te. For
this reason, even in the Born approximation of the scat-
tering theory, the standard approach (within the formal-
ism of Mori projection operators [5] or the Green’s
function method) has offered incorrect results [6]. In
this respect, we will calculate the nonequilibrium
response in terms of a projection operator that is an
obvious generalization of the Mori operator [5] to the
case of nonequilibrium systems.

2. GENERAL FORMALISM

Let us briefly formulate the theory of linear response
of a nonequilibrium system to a weak measuring field.
We assume that the nonequilibrium system described
by the Hamiltonian H is affected by an additional weak
field,

(2)

where A is an operator and F(t) is the c-particle ampli-
tude of the external field. In the nonequilibrium system,
this perturbation gives rise to a new nonequilibrium
state, which obviously cannot be described in terms of
the initial set of basis operators.

The new nonequilibrium distribution ρ(t) satisfies
the Liouville equation, which can be represented in the
following form:

H1 t( ) AF t( ),–=
003 MAIK “Nauka/Interperiodica”
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(3)

Here, ρ0(t) is the statistical operator specifying the ini-
tial nonequilibrium distribution of the system with the
Hamiltonian H.

It is assumed that the initial condition for the distri-
bution ρ(t) is its coincidence with the initial nonequilib-
rium distribution ρ0(t) at an instant of time t  –∞.

According to the Kubo theory, the nonequilibrium
admittance corresponding to an arbitrary operator B
can be written in the form

(4)

Using the identity

(5)

(  = (i")–1[A, H]) and introducing the definition of the
correlation functions

(6)

(7)

we transform the expression for the admittance. After
simple calculations, we obtain

(8)

(9)

The transport matrix TBA(t, ω) in the nonequilibrium
case plays the same role as in the case of the response

∂ρ t 0,( )
∂t

------------------ iL iL1 t( )+( )ρ t 0,( )+ ε ρ t 0,( ) ρ0 t 0,( )–( )– ,=

ε +0, iLA
1
i"
----- A H,[ ] ,=

iL1 t( )A
1
i"
----- A H1 t( ),[ ] .=

χBA t ω,( ) t1e
ε iω–( )t1d

∞–

0

∫–=

× 1
i"
-----SP B e

it1L
A ρ0 t t1+ 0,( ),[ ],{ } .

ε t1e
εt1e

it1L
A ρ0 t t1+ 0,( ),[ ]d

∞–

0

∫

=  t1e
εt1e

it1L
A ρ0 t t1+ 0,( ),[ ]d

∞–

0

∫ A ρ0 t( ),[ ]–
.

Ȧ

B A,〈 〉  = 
1
i"
----- t1e

εt1SP Be
it1L

A ρ0 t t1+ 0,( ),[ ]{ } ,d

∞–

0

∫–

B A,〈 〉 ω 1
i"
----- t1e

ε iω–( )t1d

∞–

0

∫–=

× t2e
εt2SP Be

i t1 t2+( )L
A ρ0 t t1 t2+ + 0,( ),[ ]{ } ,d

∞–

0

∫

χBA t ω,( ) χBA t 0,( )
TBA t ω,( ) ε+

TBA t ω,( ) ε iω–+
------------------------------------------,=

χBA t 0,( ) B A,〈 〉 , TBA
1

B A,〈 〉 ω------------------- B Ȧ,〈 〉 ω
.= =
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of an equilibrium system. The Green’s function
GBA(t, ω) and the transport matrix TBA(t, ω) are related
by the expressions

(10)

(11)

Within this approach, the problem involved in calcu-
lating the nonequilibrium admittance is reduced to the
determination of the transport matrix or the Green’s
function, which, in turn, requires the use of the projec-
tion operators.

Let us introduce the operator Π projecting an arbi-
trary operator B on the basis set of operators P+:

(12)

Next, we consider the identity

(13)

By alternating action on the left-hand and right-hand
sides of this identity through the operators Π and Q, by
making allowance for the identity P+(E) = ΠP+(E) +
QP+(E), and by taking into account that

after simple transformations, we obtain the following
equation for the Green’s function:

(14)

where

(15)

(16)

Earlier, Kalashnikov [7] used a similar technique of
projection with the Mori projection operator in order to
prove the equivalence of the Mori method [5] and the
linear version of the nonequilibrium statistical operator
method.

Formulas (15) and (16) allow one to calculate the
frequency matrix T(t, ω) and the memory function R(t,
ω) in the case when the system is in a stationary non-
equilibrium state and the statistical operator ρ0(t) is
time independent or in the case of a periodic time
dependence of the statistical operator.

GBA t ω,( ) TBA t ω,( ) ε iω–+{ } 1– ,

GBA t ω,( )
1

BA〈 〉
------------- BA〈 〉 ω.=

ΠB+ = P+ 1

P P+,〈 〉
------------------ P B+,〈 〉 , ΠB = B P+,〈 〉 1

P P+,〈 〉
------------------P,

ΠP+ = P+, Q = 1 Π–( ), ΠQP+ = 0.

i L E–( )P+ E( ) P+, iE iω ε.–= =

ΠP+ E( ) P+G t ω,( ),=

Π –iE QiL+( ) 1– QiLP+ E( ) 0,=

G t ω,( ) R t ω,( ) iΩ t ω,( ) iE–+[ ] 1– ,=

iΩ t ω,( )
1

P P+,〈 〉
------------------ P Ṗ

+,〈 〉 ,=

R t ω,( )
1

P P+,〈 〉
------------------ QṖ –iE QiL+( ) 1– QṖ

+,〈 〉 ,=

T t ω,( ) R t ω,( ) iΩ t ω,( ).+=
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3. CALCULATION OF THE COULOMB
DRAG EFFECT

Let us now apply the above approach to the calcula-
tion of the Coulomb drag effect. We consider a two-
dimensional system consisting of two spatially sepa-
rated layers. In this system, the tunneling of carriers
(electrons) between the layers is disregarded and the
carrier concentrations are taken to be identical in both
layers. Generalization to the case of different-type car-
riers with different concentrations does not present any
problems.

The Hamiltonian of the system under consideration
can be represented in the form

(17)

Here, λ is the index of the layer, H1F is the interaction
of electrons of the first layer with the electric field,

e is the elementary charge, m is the electron mass, Pλ is
the operator column vector composed of the compo-

nents of the total electron momentum,  is the α pro-
jection of the coordinate of the jth electron, HL is the
Hamiltonian of the lattice, HeL is the Hamiltonian of the
interaction between electrons and the lattice, and H12 is
the Hamiltonian of the interlayer Coulomb interaction
of electrons,

(18)

Here, V(q) is the Fourier component of the interaction

potential and  and aλ, k are the operators of produc-
tion and annihilation of electrons, respectively, with the
wave vector k in the band λ.

By assuming that the initial nonequilibrium state is
stationary and by repeating the calculations performed
in Section 2, we obtain

(19)

H H0 H1F H12 HeL,+ + +=

H0 H1 H2 HL,+ +=

Hλ
Pλ j

2

2m
-------, λ

j

∑ 1 2.,= =

H1F e X1 j
α Eα t( ), Xλ

α∑– X jλ
α ,

j

∑= =

X j
α

H12
1
2
--- V q( )aλ k q+,

+ aλ' k' q–,
+ aλ' k, aλ k', .

k k' q, ,
∑=

aλ k,
+

ρ12

R12

P1P1〈 〉 P2P2〈 〉
-----------------------------------,=
PH
where

(20)

Here, ρ0 is the nonequilibrium statistical operator and
iL is the Liouville evolution operator.

The above relationships have a general form and
hold for any stationary nonequilibrium distribution.

Now, we specify a particular initial nonequilibrium
distribution. This distribution is characterized by the
following temperatures of the crystal subsystems: β1 =

 is the reciprocal temperature (expressed in energy
units) of the kinetic degrees of freedom of conduction
electrons in the first layer and β = T –1 is the reciprocal
(equilibrium) temperature of electrons in the second
layer and lattice phonons. The nonequilibrium distri-
bution can be specified by the quasi-equilibrium distri-
bution

(21)

The Coulomb drag effect will be treated in the Born
approximation. In this case, it will suffice to calculate
the memory function in the second order with respect
to the interlayer electron–electron interaction. Conse-
quently, the nonequilibrium statistical operator ρ0(0)
can be replaced by the quasi-equilibrium distribution
(21), in which we disregarded the Hamiltonians
describing the interaction of electrons with the scatter-
ers. It is evident that the evolution operator should also
be replaced by the evolution operator of noninteracting
subsystems, iL  iL0. Then, we take into account
that

With consideration taken of the aforementioned
remarks, the expression for ρ12 can be written in the
form

R12 Re t1e
εt1d

∞–

0

∫ t2e
εt2SPd

∞–

0

∫=

× QṖ1e
i t1 t2+( )L 1

i"
----- QṖ2ρ0[ ]

 
 
 

.

T1
1–

ρq S0 t 0,( )–{ }exp=

=  –Φ β1H1– βH2– βHL–{ } ,exp

Φ SP –β1H1 βH2– βHL–( )exp{ } .ln=

QṖλ Ṗλ V, O Ṗλ V,( ), Ṗλ V,+
1
i"
----- Pλ HV,[ ] .= =
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(22)

Here, we took into account that

We now proceed to a step-by-step calculation of ρ12.
By using the explicit form of the interaction Hamilto-
nian H12, we obtain the relationship

(23)

Next, we use the Kubo identity and obtain the equation

(24)

For the commutator under the integral, we derive the
expression

(25)

After substituting expressions (23) and (25) into rela-
tionship (22) and averaging the Fermi operators accord-
ing to the Wick theorem, we obtain the following rela-
tionship:

(26)

Here, f(ε1, k) and f(ε2, k) are the distribution functions
of electrons in the first and second layers with the tem-

peratures  and β–1, respectively.

By introducing the designations

ρ12
1
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-----------------Re t1d
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1

4n1n2m2
--------------------Re t1e
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f ε1 k,( ) f εk( ), f ε2 k,( ) F Ek( )≡≡
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and taking into account the result of integration with
respect to time, we have

(27)

After integration by parts, we obtain the relationship

(28)

Here, f '(εk) is the derivative of the nonequilibrium
electron distribution function with respect to energy.

With due regard for the equalities

(29)

(30)

we rewrite the expression for β12 in the following form:

(31)

where ∆ = β"ω. Note that, in the equilibrium case (β1 =
β), expression (31) transforms into the corresponding
formulas derived in [8].

Further calculations of ρ12 are reduced to calcula-
tion of the integrals. By changing over from the sum-
mation over k' to integration, we obtain

(32)

ρ12
π"

4n1n2m2
--------------------=
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where kF is the wave vector corresponding to the Fermi
energy εF = ("kF)2/2m.

After similar calculations for the first term in
square brackets in relationship (31), we obtain the
expression

(33)

Upon calculating the integral with respect to the energy
for the degenerate electron statistics, we have

(34)

The integral with respect to the energy "ω can be
represented in the form

(35)
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P

By combining the intermediate results of calculations
for ρ12, we obtain

(36)

In this expression, we took into account that

.

In order to calculate the other integral with respect
to q, it is necessary to know the matrix element V(q),
which determines the interlayer Coulomb interaction of
electrons. In the case when two-dimensional layers are
treated as identical planes, we have the following
expression [8]:

(37)

where  = κ"/(2me2) is the Thomas–Fermi screening
length in the two-dimensional case, κ is the permittiv-
ity, and d is the interlayer distance.

The main contribution to the integral with respect to
q is made by the region where q ≤ d–1; however, since
d–1 ! kF and qTF, the second term in the denominator of
relationship (37) can be disregarded. In this case, the
integration with respect to q is reduced to the integral

(38)

Consequently, the expression for ρ12 can be repre-
sented in the form

(39)

In the absence of heating (β1 = β), we obtain the same
result as in [8].

Now, we determine the effective temperature β1
responsible for the nonequilibrium distribution of elec-
trons of the first layer. An expression for this tempera-
ture can be derived from the equations for the momen-
tum and energy of electrons. Following the standard
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procedure [4, 9], the balance equations in the stationary
case can be represented in the form

(40)

(41)

where

is the reciprocal time of relaxation of the electron
energy, Ce is the heat capacity, and

 

is the frequency of relaxation of the momentum. In this
case, we have

en1EV1
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i ω1L– 0,=
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From expressions (40) and (41), we can determine the
effective temperature

(42)

It follows from relationship (42) that the relative shift in
the electron temperature is determined by both the
momentum relaxation time and the energy relaxation
time. Expressions (39) and (42) adequately describe the
Coulomb electron drag in the case of carrier heating by
an electric field in the first layer.

The dependence of ρ12 on the effective temperature
T1 is shown in the figure. As follows from the above cal-
culations, the carrier heating leads to a considerable
increase in the Coulomb electron drag at low tempera-
tures.
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Abstract—Spherical quantum dots containing several electrons are considered for different values of the total
spin. Numerical calculations are carried out using the quantum path-integral Monte Carlo method. The depen-
dence of the electron correlations on the dimensionless control quantum parameter q associated with the steep-
ness of the confinement potential is studied. The quantum transition from a Wigner crystal-like state (i.e., from
the regime of strongly correlated electrons) to a Fermi-liquid state (“cold” melting) driven by the parameter q
is studied in detail. The behavior of the radial and pair correlation functions, which characterize quantum delo-
calization of the electrons, is considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of electron systems in quantum dots
are of great interest, especially in the regime of strong
electron correlations [1–5]. This regime takes place at
low densities of the electron system, which can be
achieved by changing the steepness of the potential, for
example, with the use of a controlling gate [6] or by
means of a perpendicular magnetic field [7, 8]. This
feature distinguishes quantum dots (giant artificial
atoms) from natural atoms with rather weakly corre-
lated electrons (in all natural atoms, the correlation
energy is always smaller than the Hartree–Fock
energy). For this reason, a detailed study of the charac-
teristics of quantum dots in a wide range of values of
the quantum parameter controlling the electron correla-
tion is of great importance. In particular, it is very
important to investigate the electron crystallization and
quantum “cold” melting.

The behavior of an extended electron system in a
random potential caused by impurities or interface
roughness is also an interesting aspect of this problem.
In this case, a sufficiently rarefied electron system is
broken up into clusters located in the vicinity of the
minima of the random potential. Thus, an analysis of
the behavior of the electron system in an isolated quan-
tum dot gives an idea of the short-range order in the dis-
ordered electron system and of changes in this order
with an increase in the quantum parameter.1

In this paper, a system of several electrons in a
spherical quantum dot with the parabolic confinement

1 For extended systems, the quantum parameter q is related to the
dimensionless parameter rs characterizing the average distance
between the electrons in units of the electron Bohr radius:

(4π/3)  = 1/n, where a0 = "2ε/(m*e2) is the effective Bohr
radius and n is the electron density.

rs
3 a0

3
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potential αr2 is studied in detail. At low temperatures,
all properties of the system depend only on the dimen-
sionless quantum parameter q related to the steepness
of the confinement potential. We study the dependence
of the properties of a spherical quantum dot containing
several electrons on q and the total spin of the system.
We use the ab initio quantum path-integral Monte Carlo
method for fermions.

If the parameter q is small, the characteristic quan-
tum kinetic energy is also small; the electron system
becomes strongly correlated and, in the limit of small q,
forms a crystal-like, nearly classical electron cluster
[1–4]. At larger values of q, the crystal structure is
smeared due to quantum zero-point oscillations and the
cluster undergoes a quantum (cold) transition into a
Fermi-liquid phase. Finally, at large values of the quan-
tum parameter, the dynamic correlations in the electron
system become as small as those in natural atoms.

We study a number of characteristics of a system of
several electrons in a quantum dot (such as radial and
pair correlation functions, total and exchange energies,
average distance between the particles) and analyze the
effect of the Fermi statistics on these characteristics.

2. MODEL OF A QUANTUM DOT

Let us consider a system of Coulomb particles in a
three-dimensional parabolic confinement potential as a
model of a spherical quantum dot. Such a potential ade-
quately describes real quantum dots with a small num-
ber of electrons. The Hamiltonian of the system is

H
"

2

2m
-------∇ i

2

i 1=

N

∑ mω2

2
----------ri

2

i 1=

N

∑ ε2

ε ri r j–
-------------------.

i j<

N

∑+ +–=
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In what follows, we use the dimensionless length,
energy, and temperature: r ' = r/r0, E ' = E/E0, and T ' =
T/E0, where r0 = (2e2ε/mω2)1/3 and E0 = e2/εr0 =

mω2 /2. In terms of these dimensionless variables, the
Hamiltonian takes the form

where q = ("2/2m)(mω2ε4/2e8)1/3 is the dimensionless
quantum parameter of the system. This parameter can
be expressed as the ratio of the effective Bohr radius

 associated with the effective interaction between
the charges to the single-particle length l = ("/m*ω)1/2

(the characteristic size of the wave function of one elec-
tron in the parabolic confinement potential): q =
( /2l)4/3.

Below, we study the behavior of the system in rela-
tion to the dimensionless parameter q. Experimentally,
this parameter can be controlled by varying the value of
the confinement potential with the help of a controlling
gate.

3. CALCULATED QUANTITIES

We calculated the following characteristics of the
system under consideration: the radial distribution of
the particles

the pair correlation function

the total energy of the system

where τ = 1/MT is the step of integration with respect to
the reciprocal temperature; the widths at half-maxi-
mum for all distributions; the average number of parti-
cles 〈N〉  involved in permutation (see below); and the
average interparticle distance 〈a〉 .

We studied the dependence of these quantities on
the quantum parameter q at a low temperature kept con-
stant in oscillator units and equal to T = 0.3"ω.
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Averaging over the Monte Carlo steps was carried
out in the following way:

where pi is the permutation parity, p0 = 1, and Neff =

 is the effective length of a Markov chain. Each
permutation of a pair of Fermi particles with the same
spin changes the sign of pi.

4. DISCUSSION

The dependences of the total and exchange energies
on the quantum parameter q, as well as the q depen-
dences of the radial distributions and the positions and
widths of the maxima of the radial and pair correlation
functions characterizing the electron correlation (and,
in particular, electron crystallization) in the quantum
dot, are shown in the figures. We also illustrate the elec-
tron localization in the quantum dot by projecting a
bunch of Feynman paths (in imaginary time) in three-
dimensional space onto the plane in which the electrons
are localized in the classical limit q = 0.

We use the following notation: the state with N = 3
and S = 1/2 corresponds to a three-electron system with
the total spin 1/2, etc. Since we neglect the spin–orbit
interaction, the total spin of the system defines only the
symmetry of the coordinate wave function. In the
absence of an external magnetic field, the system is
degenerate due to spin. Thus, the states corresponding
to different spin components are described by the same
coordinate wave functions. In the limit q  0, the sys-
tem under consideration is equivalent to a classical
three-dimensional Thomson atom [1, 4]. For a classical
two-electron system in an equilibrium state, the average

A〈 〉 1/Neff( ) piAi∑=

Ai … R0d R1…d RM 1– R0 A RM〈 〉 Sm

m 1=

M

∑–
 
 
 

,expd∫∫=

pi∑

1
2
3
4

16

14

10

6

2

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0
logq

E

Fig. 1. Total energy of the system as a function of the quan-
tum parameter q. (1, 2) N = 2 and (3, 4) 3; (1) S = 0, (2) 1,
(3) 1/2, and (4) 3/2.
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distance between the particles is 〈a〉 = 1 and the total
potential is V = 3/2; a classical three-electron system
forms an equilateral triangle with 〈a〉  = (3/2)1/3 ≈ 1.445
and V ≈ 3.93 in an equilibrium state. At sufficiently
small values of q, the results of our calculations are in
good agreement with these classical values.

We investigated the system for the values of the
quantum parameter q lying in the range 10–3 to 1.

The total energy of the two- or three-electron system
monotonically increases with the quantum parameter.
The states with S = 0 and 1/2 are energetically favorable
in the investigated range of values of the quantum
parameter for two and three electrons to within the lim-
its of error (Fig. 1). The exchange energy, determined
as the difference between the total energies of the Fermi
system and of the “Boltzmann” system of nonidentical

1
2
3

2.5

1.5

0.5

0

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0
logq

Eexch

Fig. 2. Exchange energy Eexch as a function of the quantum
parameter q. (1) N = 2 and (2, 3) 3; (1) S = 1, (2) 1/2, and
(3) 3/2.

1
2
3
4

2.2

1.8

1.4

1.0

〈a〉

–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0
log q

Fig. 4. Average interparticle distance 〈a〉  as a function of
log q. (1, 2) N = 2 and (3, 4) 3; (1) S = 0, (2) 1, (3) 1/2, and
(4) 3/2.
P

particles in the same confinement potential, monotoni-
cally increases with q (Fig. 2).

It turned out that the Fermi statistics begins to affect
the behavior of two particles at logq ≈ –1.25. At this
value of q, the exchange energy, which is closely
related to the statistics, starts to increase significantly as
a function of q (Fig. 2). The influence of the Fermi sta-
tistics can also be seen from the q dependence of the
average number of particles 〈N〉  involved in permuta-
tions. This quantity starts to rise sharply at almost the
same value of q as the exchange energy. For three elec-
trons, the Fermi statistics becomes significant at q ≈
1.75.

As the quantum parameter q increases, the system
undergoes a quantum transition (crossover) from the
crystal structure to a delocalized Fermi-liquid state.
The position of the transition range is determined by the

1
2
3
4

1.4

1.0

0.6

0.2
–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0

logq

Érad

Fig. 3. Width of the radial distribution Γrad as a function of
q. (1, 2) N = 2 and (3, 4) 3; (1) S = 0, (2) 1, (3) 1/2, and
(4) 3/2.
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Fig. 5. Evolution of the radial distribution with increasing
quantum parameter q. S = 1 and N = 2.
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Fig. 6. Projections of the trajectories traced out by electrons with increasing imaginary time for different values of q.
condition 〈a〉  ≈ 2Γrad, where a is the average distance
between the particles and Γrad is the width of the elec-
tron distribution (Fig. 3). The average distance between
the particles starts to increase monotonically (from its
classical value) as the quantum parameter q increases.
The additional statistical repulsion (due to the exclu-
sion principle) results in the following regularity: the
larger the total spin of the state, the more rapidly the
average distance between electrons increases with q
(Fig. 4).

It is of interest to analyze the evolution of the radial
distribution for the case when the system undergoes the
crossover from strong to weak correlations (Fig. 5). For
convenience, we normalized the radial distribution such
that its maximum was equal to unity. At small values
of q, this distribution is narrow and its value is zero at
r = 0. Thus, the electrons are strongly localized at small
values of q and form a crystal-like structure. With
increasing q, the width of the distribution increases. At
logq = –1.0, this distribution becomes sufficiently wide
in comparison with the initial distribution; the maxi-
SICS OF THE SOLID STATE      Vol. 45      No. 2      2003
mum is at r = 0. Thus, as q increases, quantum melting
occurs and the electrons are smeared over the quantum
dot (Fig. 6). The quantum delocalization of the elec-
trons also manifests itself in the widths of the pair cor-
relation functions increasing monotonically for the
two- and three-electron systems.

5. CONCLUSIONS

Thus, the main results of the work are the following.

(1) The states with S = 0 and 1/2 are energetically
favorable for three-dimensional quantum dots with two
and three electrons, respectively.

(2) It has been found that with increasing control
quantum parameter, the electron system in a spherical
quantum dot undergoes a transition from a crystal state
(of strongly correlated electrons) to a disordered delo-
calized state (Fermi liquid); i.e., so-called quantum
(cold) melting occurs.
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Abstract—Absorption of electromagnetic radiation by 2D electrons at the surface of a quantum sphere placed
in a weak magnetic field is studied. It is shown that at low temperatures, the absorption curve exhibits four res-
onance peaks observed in the Faraday geometry (photon wave vector parallel to the magnetic field) and six
peaks in the Voigt geometry (photon wave vector perpendicular to the magnetic field). In the particular case of
the Voigt geometry, where the photon polarization vector is parallel to the magnetic field, the absorption curve
exhibits only two resonance peaks. The shape, position, and intensity of the peaks are examined. It is shown
that at temperatures close to zero, steps of two types appear in the absorption curve. One type of steps is asso-
ciated with crossing of the µ – "ω level by the electron energy levels, while steps of the other type arise when
electron energy levels cross the chemical potential µ. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable attention has been given recently to
the production and study of spherical nanostructures
[1–3], which is primarily due to the fact that optical and
electronic devices of a new generation can be devel-
oped on their basis. Spherical nanostructures exhibit
interesting spectral [4] and optical properties [5–7]. It
has been shown [5–8] that the optical absorption of
such structures can be adequately described in terms of
the classical theory. It is worth noting that the spectral
and other properties of a nanostructure essentially
depend on its shape and size [9]. On the basis of spher-
ical nanostructures, photonic crystals can be fabricated
to possess a photonic band gap [10–12].

Quite recent advances in nanotechnology have pro-
vided a way of producing a dielectric nanosphere cov-
ered with a thin metallic or semiconducting layer. There
are a few original techniques for fabricating such nano-
structures. For example, Hines and Guyot-Sionnest
[13] prepared crystals from nanospheres, each of which
consisted of a CdSe core covered with a ZnS shell.
Spherical nanoshell structures can also be produced by
mixing HAuCl4 and Na2S aqueous solutions, with the
resulting formation of spherical dielectric Au2S cores
covered with Au shells [14–17]. The sizes of spheres
thus obtained are a few tens of nanometers. The electro-
magnetic-radiation absorption spectra of media con-
taining such nanoshell structures were measured exper-
imentally, and it was found that, in the optical range of
these spectra, there was a resonance peak correspond-
ing to nanoshell structures [14, 15]. In terms of the clas-
sical theory, it was shown in [8] that this peak is due to
electron plasma resonance in the system. The position
and intensity of this absorption peak were found to
1063-7834/03/4502- $24.00 © 20369
depend on the thickness of the metallic shell and on the
diameter of the dielectric core [14, 15]. The shell can
significantly enhance the nonlinear optical response of
the nanostructure [18–20]. The study of optical prop-
erties of nanoshell structures provides important infor-
mation on the growth kinetics of these nanostructures
[15] and allows one to determine such parameters as
the electron relaxation time and the electron–phonon
coupling constant [14]. It should be noted that if the
metallic or semiconducting shell is a few atomic-layers
thick, quantum effects in the properties of the system
become significant. In this case, the classical theory is
inadequate to describe the properties of such nano-
structures [14].

The objective of this paper is to investigate optical
transitions of 2D electrons at the surface of a nano-
sphere placed in a weak uniform magnetic field. We
note that the study of optical transitions is a powerful
method for determining the parameters of the energy
spectrum and the Fermi surface of electrons [21–25].
The model of an electron gas at a spherical surface is
widely used to investigate the spectral [26, 27], mag-
netic [28–31], and transport [32] properties of spherical
and spheroidal nanostructures and the effect of the elec-
tron–electron [33] and spin–orbit interactions [34] on
the spectral properties of electrons in spherical systems.
This model has been used, in particular, to study the
electromagnetic-radiation absorption by a nanosphere
in the absence of a magnetic field [35]. The model of an
electron gas at a spherical surface is applicable for
investigating a nanoshell structure in the case where the
shell thickness is much smaller than the dimensions of
the structure.
003 MAIK “Nauka/Interperiodica”
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2. ELECTRON TRANSITIONS INDUCED
BY ELECTROMAGNETIC RADIATION

We consider a system of noninteracting electrons at
the surface of a nanosphere placed in a weak uniform
magnetic field. The Schrödinger equation for this sys-
tem can be reduced to the differential equation

where A = (2m*R2/"2)(E – "ωcm/2), C = m*ωcR2/2", m
is the magnetic quantum number, E is the electron
energy, R is the nanosphere radius, and m* is the effec-
tive mass of an electron. The electron wave function is
represented in the form ψ(ϕ, ϑ) = eimϕ f(cosϑ). Solu-
tions to this differential equation are the angular pro-
late-spheroidal functions Sml(C, η) [36]. In the case of a
weak magnetic field, the term quadratic in a magnetic
field can be dropped in the Hamiltonian. The spectral
problem for the Hamiltonian in this approximation can
easily be solved [28]:

(1)

where l is the orbital quantum number, Ω = "/m*R2, and
Yl, m(ϑ , ϕ) are the spherical harmonics. Note that the
energy level splitting for electrons at the nanosphere in
a magnetic field is similar to the Zeeman effect for an
atom. Equations (1) are valid if the following inequality
is satisfied:

(2)

By treating the interaction of electrons with a high-
frequency electromagnetic field as a perturbation and
using a conventional method [37], we can calculate the
electromagnetic-radiation absorption of the nano-
sphere. For a degenerate electron gas, the absorption is
found to be

(3)

where ε(ω) is the real part of the dielectric constant
(there is assumed to be no dispersion in the frequency
range in question), Nk is the concentration of incident
photons of frequency ω, k is the wave vector of a pho-
ton incident on the nanosphere, f0(El, m) is the electron
distribution function, and the factor [1 – exp(–"ω/T)]
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accounts for the induced photon emission. The elec-
tron–photon interaction operator has the form

where A is the vector potential of the uniform magnetic
field and ek is the photon polarization vector.

In calculating the matrix elements of the operator
HR, the electromagnetic field is considered to be uni-
form, since the photon wavelength is much larger than
the nanosphere radius.

We restrict our consideration to the case of a linearly
polarized electromagnetic wave. The z axis is taken to
be along the direction of the uniform magnetic field B,
and the x axis is chosen such that the photon polariza-
tion vector lies in the xz plane: ek = (sinα, 0, cosα),
where α is the angle between the photon polarization
vector and the magnetic field. We consider two config-
urations that differ in symmetry: the Faraday geometry,
in which the photon wave vector is parallel to the uni-
form magnetic field (k || B) and, hence, ek = (1, 0, 0),
and the Voigt geometry, in which the photon wave vec-
tor is perpendicular to the magnetic field (k ⊥  B). In the
latter case, the photon polarization vector can be arbi-
trarily oriented relative to the magnetic field, ek = (sinα,
0, cosα).

In the Faraday geometry and in the symmetric gauge
chosen for the vector potential of the magnetic field, we
have ek(p + |e |A/c) = px – m*ωcy/2. In this case, the
transition matrix elements in the dipole approximation
can be written as

Using the recurrent formulas for the associated Leg-
endre polynomials, one can calculate these matrix ele-
ments, from which it follows that, in the Faraday geom-
etry, transitions in the dipole approximation are
allowed only between energy levels of neighboring
electron shells (l ' = l ± 1) with magnetic quantum num-
bers differing by unity (m ' = m ± 1). Note that the selec-
tion rules for electron transitions in this case are identi-
cal to those for the Zeeman effect. The resonance
absorption peaks are split in a magnetic field into a few
components, the number of these components being
dependent on the orientation of the photon wave vector
relative to the magnetic field (i.e., on the direction of
observation). By analogy with the Zeeman effect, the
resonance peaks due to transitions m  m ± 1 will be
referred to as σ components and the resonance peaks
due to transitions m  m, as π components.

HR
e

m∗
-------

2π"Nk

ε ω( )ω
-----------------ek p

e
c
-----A+ 

  ,=

l ' m' k HR l m 0, ,–, ,〈 〉

=  
e

m∗
-------

2π"Nk

ε ω( )ω
----------------- l ' m' px

m∗ ωc

2
-------------y– l m,, .
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After simple algebra, the absorption can be written
as the sum of four terms:

(4)

where

(Γ0 = e2τ/4cm*R2 ). Here, the resonance peak
broadening due to scattering is described by the Lorent-
zian

(5)

where τ is the phenomenological relaxation time.

First, we consider the particular case of the Voigt
geometry where ek || B and, hence, ek(p + |e |A/c) = pz.
In this case, the transition matrix elements in the dipole
approximation have the form

(6)

It follows from Eq. (6) that, in the dipole approxima-
tion, the transitions are allowed only between energy
levels of neighboring electron shells (l ' = l ± 1) with
identical magnetic quantum numbers (m' = m). There-
fore, only the π components of the resonance peaks will
be observed in the absorption.

Γσ Γ1 Γ2 Γ3 Γ4,+ + +=
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τ 2– x2+
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l ' m' k HR l m 0, ,–, ,〈 〉

=  
e
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Substituting Eq. (6) into Eq. (3) yields

(7)

It is seen from Eq. (7) that the Γπ(ω) dependence
exhibits resonances at electromagnetic-radiation fre-
quencies ω = Ω(l + 1) for the values of l satisfying the
condition f0(El) @ f0[El + "Ω(l + 1)].

If the resonance broadening due to scattering is
described by Eq. (5), the absorption can be written as
the sum of two terms, Γπ = Γ1 + Γ2, where

The nonresonant term Γ1 corresponds to photon
emission. Near resonance, we have Γ1/Γ2 = O[1/(τω)2];
therefore, the contribution from Γ1 to the absorption of
the high-frequency field can be neglected. Dropping
this nonresonant term and the exponentially small term
proportional to ~exp(–"ω/T), we obtain

(8)

In the case of the Voigt geometry and an arbitrary
orientation of the photon polarization vector relative to
the magnetic field, i.e., ek = (sinα, 0, cosα), the electro-
magnetic-radiation absorption of the nanosphere can be
written as

(9)

where Γπ is given by Eq. (8) and Γσ, by Eq. (4).
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Thus, the absorption curve exhibits only σ compo-
nents of the resonance peaks in the Faraday geometry
and both σ and π components in the Voigt geometry. In
the particular case of ek || B, the σ components disap-
pear and only the π components survive; that is, only
transitions m  m are allowed.

3. ANALYSIS OF THE ABSORPTION CURVE

The formulas derived above for the absorption are
valid both for an isolated sphere (N = const) and for a
sphere exchanging electrons with a reservoir (µ =
const). However, the behavior of absorption in these
two cases is radically different. Let us first consider the
case of a sphere placed in a thermostat characterized by
chemical potential µ and temperature T.

Let l0 be the value of the orbital quantum number
satisfying the conditions  ≤ µ < . We
also introduce the value m0 of the magnetic quantum

El0 l0–, El0 1+ –l0 1–,
PH
number equal to l0 if the inequalities  ≤ µ <

 are satisfied; otherwise, the value m0 is such

that the two inequalities  ≤ µ <  are true.
At zero temperature, l0 and m0 are the quantum num-
bers of the highest occupied level. From the normaliza-
tion condition, it follows that at zero temperature, we

have N = 2(  + l0 + m0 + 1).

In the Faraday geometry, the contribution from the
nonresonant terms Γ3 and Γ4 to the high-frequency field
absorption can be neglected near resonance. Resonance
absorption is associated with transitions (l0, m) 
(l0 + 1, m ± 1) and (l0 – 1, m)  (l0, m ± 1) and occurs
at frequencies ω1, 2 =  and ω3, 4 =

.

Let us calculate the absorption at zero temperature.
Keeping only the terms with l = l0 – 1 and l = l0 in
Eq. (4), we obtain Γσ(T = 0) ≈ Γ1 + Γ2, where

El0 l0,

El0 1+ –l0 1–,

El0 m0, El0 m0 1+,

l0
2
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Here, θ(x) is the step function

We will make estimates for the case of zero
temperature under the assumption that the reso-

θ x( )
0, x 0≤
1, x 0.>




=

nance peaks are well resolved (τΩ  @ 1, τωc @ 1,

ωc ! Ω). Let  be the relative intensities of the

σ components (Γσ/Γ0) of the resonance peaks at
frequencies ωi (i = 1, 2, 3, 4). From Eqs. (10) and
(11), we have

Iσ
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(14)

Iσ
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(15)Iσ
4( ) T 0=( )
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It can be seen from Eqs. (12)–(15) that the intensi-

ties of the first and third peaks ( , ) decrease,
while the intensities of the second and fourth peaks

( , ) increase, with increasing magnetic field.

Now, we consider the effect of temperature on the

intensities  and . The first and second resonance
peaks are associated with transitions (l0 – 1)  l0. At
T = 0, transitions can occur only to unoccupied states of
the l0th electron shell (m > m0). An increase in temper-
ature causes the contributions due to transitions to the
levels m > m0 to decrease and the contributions due to
transitions to the levels m ≤ m0 to increase. Therefore,

 increases, while  decreases, with increasing

temperature (for "ωc/2T > 1); that is, (since  > )
the lower of the two resonance peaks grows and the
higher peak diminishes (Fig. 1). This difference in

behavior is due to the fact that the contributions to 
coming from transitions to levels with smaller values of

m are larger, whereas in the case of , the opposite
is true.

Next, we investigate the effect of temperature on

 and . The third and fourth resonance peaks are
associated with electron transitions from the l0th to the
(l0 + 1)th shell. At T = 0, transitions can occur only from
the occupied levels of the l0th electron shell (m ≤ m0).
As the temperature is increased, the contributions due

Iσ
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Iσ
2( ) Iσ

4( )

Iσ
1( ) Iσ

2( )
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1( ) Iσ
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Iσ
3( ) Iσ

4( )

20
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0
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Γ/
Γ 0

7 8
ω/Ω

Fig. 1. Effect of temperature on the absorption peak inten-
sities in the Faraday geometry. R = 10–5 cm, τ = 3 × 10–10 s,
µ = 5.1 × 10–15 erg, ωc/Ω = 0.15, and l0 = 7.
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to transitions from the levels with m ≤ m0 become
smaller, whereas the contributions due to transitions
from the levels with m > m0 become larger. Therefore,

 decreases, while  increases, with increasing
temperature (for "ωc/2T > 1), because the contributions

to  due to transitions from levels with smaller values

of m are larger, whereas in the case of , the situation

is reversed. Since  >  (for m0 < l0), an increase in
temperature causes the smaller peak to increase and the
larger peak to decrease (Fig. 1). A numerical analysis
revealed that if the upper electron shell is filled, the
intensities of both peaks decrease with increasing tem-
perature.

Now, let us discuss the shape and position of the
peaks. In the Faraday geometry, the peak position var-
ies linearly with the magnetic field strength: ω1, 2 =

 and ω3, 4 = . In low fields
(ωc ! Ω), the absorption peaks exhibit a doublet struc-
ture. The spacing between the first and second peaks, as
well as the spacing between the third and fourth peaks,
is equal to the cyclotron frequency. An increase in the
magnetic field causes these spacings to increase and the
second-to-third peak distance to decrease. At ωc = Ω ,
the second and third absorption peaks merge into one
peak.

It follows from Eq. (3) that at a sufficiently low
temperature, the electromagnetic-radiation absorption
involves only electrons whose energy lies within the
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Fig. 2. Dependence of radiation absorption by a nanosphere
on the frequency of radiation and magnetic field strength in
the Faraday geometry. R = 10–5 cm, T = 0, τ = 10–10 s, µ =
5.22 × 10–15 erg, and l0 = 7. The second peak, as well as the
first peak forming with increasing magnetic field, is shown.
Jumps of the first type are seen.
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range [µ – "ω, µ]. As the radiation frequency or the
magnetic-field strength is varied, the number of elec-
tronic energy levels lying within this range changes.
Therefore, the number of electrons involved in the radi-
ation absorption is also varied and the absorption Γ
undergoes discontinuous changes with increasing fre-
quency ω and magnetic field B.

The changes in absorption that arise when electronic
energy levels cross the level µ – "ω and the chemical
potential µ will be referred to as jumps of the first and
second types, respectively.

First, we consider jumps of the first type. Since in a
weak field the distances between energy levels of
neighboring electron shells are much larger than the
distances between adjacent levels of the same shell,
these jumps appear in series. Each series appears when
the energy levels of an electron shell cross the level µ –
"ω; the number of jumps within each series is equal to
the number of levels belonging to the corresponding
shell. For instance, for the lth shell, the number of
jumps is 2l + 1. From the condition µ – "ω = El, m for a
jump to appear, we find that the absorption curve will
show jumps at electromagnetic-radiation frequencies:

(16)

It follows from Eq. (16) that the (l0 – 1)th series of
jumps occurs in the region of the first and second reso-
nance peaks, while the other series of jumps arise on the
higher frequency slope of the fourth peak.

Let us consider the (l0 – 1)th series of jumps. At
point  = µ for m0 > 0 (the point at which second-

ωjump l m,( ) µ
"
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Ω
2
----l l 1+( )

ωc

2
------m.––=

El0 m0,
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Fig. 3. (a) Jumps of the first type in the region of the first
resonance peak (ωc/Ω = 0.15) and (b) effect of a magnetic
field on the position and magnitude of first-type jumps in
the Faraday geometry. R = 10–5 cm, T = 0, τ = 5 × 10–10 s,
µ = 5.165 × 10–15 erg, and l0 = 7.
PH
type jumps arise in the region of the third and fourth
peaks), we have, according to Eq. (16), ωjump(l0 – 1, m) =
Ωl0 + ωc(m0 – m)/2. From this formula, it follows that
the (l0 – 1, m0) jump occurs at frequency ωjump(l0 – 1,
m0) = Ωl0 (this jump lies midway between the first and
second peaks), the (l0 + 1, m0 + 1) jump arises at the first
resonance frequency, and the (l0 – 1, m0 – 1) jump
occurs at the second resonance frequency (Fig. 2).
Hence, the positions of the jumps at the maxima of the
resonance absorption peaks remain unchanged with
varying the magnetic field and are found from the equa-
tion  = µ (for m0 < –1, the replacement m0 
m0 + 1 should be made in the last equation).

Note that the spacing between the first resonance
peak and the jump (l0 – 1, 1), as well as the spacing
between the second resonance peak and the jump (l0 –
1, –1), remains unchanged with increasing magnetic
field.

If m0 = 0 or –1, the position of the (l0 – 1, m0) jump
does not change with varying the magnetic field. The
positions of the jumps with m > 0 shift to lower fre-
quencies and those of the jumps with m < 0 shift to
higher frequencies relative to Ωl0 with increasing mag-
netic field.

Figure 3a shows the absorption curve in which
jumps in absorption occur in the region of the first res-
onance peak when the energy levels of the sixth elec-
tron shell cross the µ – "ω level. The jumps occurring
when the levels of the fifth shell cross the µ – "ω level
are shown in Fig. 3b.

At temperatures close to zero, the relative magni-

tude of a first-type jump  is given by the approxi-
mate formula

(17)

It is seen from Eq. (17) that the magnitude of a jump
is the larger, the closer the position of a jump of the (l0 –
1) series to the first or second resonance frequency.

Therefore, the closer m to m0 ± 1, the larger . If
the positions of jumps approach the resonance fre-
quency as the magnetic field increases, the magnitude
of such jumps increases with field; the magnitude of the
other jumps decreases (Fig. 2).

The positions of jumps of the (l0 – 1)th series can
cross the first and second resonance frequencies with
increasing field; in this case, for m0 > 0, the absorption

El0 m0,

∆l m,
1( )

∆l m,
1( ) 1

µ/"Ω l l 1+( )/2 ωcm/2Ω––[ ] 2l 1+( ) 2l 3+( )
-----------------------------------------------------------------------------------------------------------------≈

×
l m 1+ +( ) l m 2+ +( ) l ωc/2Ω+( )2

1 τ2 µ/" Ω l 1+( ) l 2+( )/2 ωc m 1+( )/2––[ ] 2+
------------------------------------------------------------------------------------------------------------------

+
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at these frequencies (ω1, 2 = ) undergoes
jumps

(18)

(the upper sign corresponds to jumps at the first fre-
quency; the lower, at the second frequency).

If m0 < –1, the jumps at these frequencies are equal

to – .

Now, we consider the other series of jumps. At Ω @
ωc, Eq. (17) can be rewritten as

where

It follows that  increases with increasing |m |
and the magnitude of a jump for positive m is larger
than that for negative m (with the same |m |). It also fol-
lows that as the magnetic field increases, a jump
increases in magnitude if m > 0 and decreases if m < 0
(Fig. 3b).

Next, we consider jumps of the second type, which
occur only when the magnetic field is varied and the
electronic energy levels cross the chemical-potential
value. This value can be crossed only by the levels of
the l0th and (l0 + 1)th shells. For example, the positions
of the jumps corresponding to the l0th-shell levels
crossing the chemical potential are determined by the
condition µ = . At these crossings, the quantum

number m0 changes by unity. Note that, in Eqs. (10) and
(11), only the first terms (responsible for the formation
of the third and fourth absorption peaks) are dependent
on the quantum number m0, whereas the second terms,
describing the first and second peaks, do not depend on
this quantum number. Therefore, the second-type
jumps are significant only in the region of the third and
fourth resonance peaks.

Let us calculate the changes in the intensity of the
absorption peaks. If m0 > 0, the value of m0 decreases
by unity when an energy level of the l0th shell crosses
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∆l m,
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El0 m0,
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the chemical potential. From Eqs. (14) and (15), it fol-
lows that, at zero temperature, the changes in the inten-
sity of the third and fourth peaks are

(19)

(the upper sign corresponds to the jump in the intensity
of the third peak). It follows from Eqs. (18) and (19)
that, in this case, the first and second peaks increase in
a jump, whereas the third and fourth peaks decrease
(Figs. 2, 4).

If m0 < –1, the value of m0 increases by unity when
an energy level of the l0th shell crosses the chemical
potential. The intensities of the third and fourth peaks

are changed by – . Thus, according to Eqs. (18)

and (19), the first and second peaks decrease and the
third and fourth peaks increase in this case.

In the particular case of the Voigt geometry, where
the photon polarization vector is parallel to the mag-
netic field, the absorption curve exhibits only π compo-
nents of resonance peaks. At low temperatures, the res-
onance absorption peaks are associated with transitions
(l0, m)  (l0 + 1, m) and (l0 – 1, m)  (l0, m). There-
fore, the resonance frequencies are ω1 = Ωl0 and ω2 =
Ω(l0 + 1).

Let us calculate the absorption at zero temperature
in this case. Near resonance, only the terms with l =
l0 – 1 and l = l0 are significant in Eq. (8). Therefore, we
can write

∆l0 m0,
2( )

≈
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Fig. 4. Dependence of radiation absorption by a nanosphere
on the frequency of radiation and magnetic field strength in
the Faraday geometry. R = 10–5 cm, T = 0, τ = 10–10 s, µ =
5.22 × 10–15 erg, and l0 = 7. The third and fourth resonance
peaks are shown. Jumps of the second type are seen.
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(20)

Let  and  be the relative intensities of the
peaks in the absorption Γπ/Γ0 at frequencies ω1 = Ωl0
and ω2 = Ω(l0 + 1), respectively. Dropping the terms of
the order of (τΩ)–2, these intensities can be found to be

(21)

(22)

A numerical analysis revealed that the second peak
is higher than the first if m0 ≥ –1 and the situation is
reversed if m0 < –1. Note that the number of transitions
l0  (l0 + 1) is larger than that of transitions (l0 – 1) 
l0 for m0 ≥ 0.

For m0 = –1, an increase in temperature causes an
increase in the intensity of the larger peak and a
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Fig. 5. Effect of temperature on the absorption peak inten-
sities in the Voigt geometry. R = 10–5 cm, τ = 5 × 10–11 s,
µ = 5.161 × 10–15 erg, ωc/Ω = 0.15, and l0 = 7.
PH
decrease in the intensity of the smaller peak. For the
other values of m0, the situation is reversed (the larger
peak decreases and the smaller peak increases; Fig. 5).

Now, we examine the shape and position of the
absorption peaks. The values of the resonance frequen-
cies are entirely determined by the chemical potential
and the radius of the nanosphere; indeed, according to
Eq. (20), the resonance absorption occurs at frequen-
cies ω1 = Ωl0 and ω2 = Ω(l0 + 1), which depend only on
R and l0, with l0, in turn, determined by the chemical
potential. As the magnetic field is increased, the elec-
tronic energy levels may cross the chemical-potential
level. When µ is crossed by the energy levels of the l0th
shell, the intensity of the absorption peak changes but
the peak position remains unchanged. If m0 = l0 (the l0th
shell is closed) or m0 = l0 – 1, then, as follows from

Eq. (21),  = 0 and the absorption curve exhibits only
one resonance peak, at frequency ω = Ω(l0 + 1). If the
energy levels of the (l0 + 1)th shell cross the chemical
potential with increasing magnetic field, then a new
peak arises in the absorption curve (Fig. 6).

As in the case of the Faraday geometry, the positions
of jumps of the first type are determined by Eq. (16).
From this equation, it is seen that the position of the
jump (l, 0) is independent of the magnetic field. Since
the spacing between adjacent jumps of an individual
series is ωc/2, the positions of jumps with m > 0 shift to
lower frequencies relative to the jump (l, 0), while the
positions of jumps with m < 0 shift to higher frequen-
cies, with increasing magnetic field. Note that the series
of jumps with l = l0 – 1 occurs in the region of the first
resonance peak, while the other series appear on the
higher frequency slope of the second peak. It should be

Iπ
1( )

60

20
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Γ 0
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ωc/Ω = 0.15

40

Fig. 6. Formation of a new resonance peak with increasing
magnetic field in the Voigt geometry. R = 10–5 cm, T = 0, τ =
5 × 10–11 s, µ = 6.2 × 10–15 erg, and l0 = 7.
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noted that the jumps are progressively smoothened with
increasing temperature (Fig. 5).

Now, we consider the series of jumps associated
with the (l0 – 1)th shell levels crossing the (µ – "ω)
level. From Eq. (16) and the definition of the quantum
number m0 (  ≤ µ <  for m0 ≠ l0), we find
that the jumps appear at frequencies satisfying the con-
ditions

(23)

From Eq. (23), it follows that the (l0 – 1)th series of
jumps appears in the region of the first resonance peak:
the jumps with m ≤ m0 are located on the higher fre-
quency side of this peak [ωjump(l0 – 1, m) ≥ Ωl0], while
the jumps with m > m0 are located on the lower fre-
quency side [ωjump(l0 – 1, m) < Ωl0].

When the levels of the l0th shell cross the chemical
potential, we have ωjump(l0 – 1, m0) = Ωl0. Therefore, the
quantum number m0 and the peak intensity are changed
when the position of a jump of the (l0 – 1) series passes
through the first resonance frequency with increasing
magnetic field. For m0 = 0 and –1, the jumps with m >
0 move to the left of the first resonance frequency and
the jumps with m < 0 move to the right (the position of
the jump with m = 0 remains unchanged) with increas-
ing magnetic field.

The relative magnitude of a first-type jump  at
temperatures close to zero can be approximated by the
expression

El0 m0, El0 m0 1+,

Ωl0 ωc m0 m–( )/2+ ωjump l0 1– m,( )≤
< Ωl0 ωc m0 m– 1+( )/2.+

∆l m,
1( )
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Fig. 7. Dependence of radiation absorption by a nanosphere
on the radiation frequency in the Voigt geometry. R = 10–5 cm,
T = 0, τ = 4 × 10–10 s, µ = 5.1 × 10–15 erg, ωc/Ω = 0.15, α =
π/4, and l0 = 7.
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(24)

It follows from Eq. (24) that the closer a jump of the
(l0 – 1)th series to the first resonance frequency, the
larger the magnitude of the jump. If jumps are shifted
toward the resonance frequency with increasing mag-
netic field, the magnitude of such jumps increases with
the field, while the magnitude of the other jumps
decreases. For m0 > 0, the position of the jump (l0 – 1,
m0) passes through the first resonance frequency as the
magnetic field is increased. In this case, as follows from
Eq. (24), the magnitude of the jump at the first reso-
nance frequency [ωjump(l0 – 1, m0) = Ωl0] is equal to

(25)

The number of jumps in the intensity of the first peak
equals m0 |B = 0.

For m0 < –1, the position of the jump (l0 – 1, m0 + 1)
passes through the first resonance frequency with
increasing magnetic field, the magnitude of the jump at

this frequency being equal to –  in this case.
The number of jumps in the first-peak intensity equals
–m0 |B = 0 + 1.

Now, let us consider the second-type jumps, which
appear in the magnetic-field dependence of absorption
when energy levels of the l0th shell cross the chemical
potential. At such crossings, the quantum number m0
changes by unity. Note that, in Eq. (20), only the first
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Fig. 8. Dependence of radiation absorption by a nanosphere
on the frequency of radiation and magnetic field strength in
the Voigt geometry. R = 10–5 cm, T = 0, τ = 10–10 s, µ =
5.12 × 10–15 erg, α = π/4, and l0 = 7.
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term (responsible for the formation of the second reso-
nance peak) is dependent on the quantum number m0;
the second term, corresponding to the first resonance
peak, does not depend on m0. Therefore, the second-
type jumps are significant only in the region of the sec-
ond resonance peak.

From Eqs. (21) and (22), it can be seen that at T = 0,
the intensities of the peaks do not vary with magnetic
field in the range where the energy levels do not cross
the chemical potential. For m0 = 0 and –1, the chemical
potential is not crossed by the energy levels (the quan-
tum number m0 does not change) and, hence, the peak
intensities are independent of the field (in the field
range in question).

If m0 > 0, the quantum number m0 decreases by unity
as the chemical potential is crossed by an energy level
of the l0th shell. From Eq. (21), it follows that the rela-
tive magnitude of the second-type jump at the second
resonance frequency is

(26)

It can be seen from Eqs. (25) and (26) that for m0 > 0,
the intensity of the first peak increases and the intensity
of the second peak decreases with increasing magnetic
field. The number of second-type jumps in the intensity
of the second resonance peak equals m0 |B = 0.

If m0 < –1, the quantum number m0 increases by
unity as an energy level of the l0th shell crosses the
chemical potential. In this case, the absorption at the ith

resonance frequency undergoes a jump – .
Therefore, for m0 < –1, the intensity of the first absorp-
tion peak decreases, while the intensity of the second
peak increases, with increasing magnetic field. The
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Fig. 9. Dependence of radiation absorption by a nanosphere
on the radiation frequency and the angle between the mag-
netic field direction and the photon polarization vector in
the Voigt geometry. R = 10–5 cm, T = 0, τ = 10–10 s, µ =
5.12 × 10–15 erg, ωc/Ω = 0.46, and l0 = 7.
P

number of second-type jumps in the intensity of the
second resonance peak is equal to –m0 |B = 0 + 1.

In the general case of the Voigt geometry, where the
photon polarization vector is oriented arbitrarily rela-
tive to the magnetic field, it follows from Eqs. (8) and
(9) that the absorption curve exhibits six resonance
peaks: two peaks in the π component of absorption [at
frequencies ω2 = Ωl0 and ω5 = Ω(l0 + 1)] and four peaks
in the σ component [ω1, 3 =  and ω4, 6 =

] (Fig. 7). Therefore, the positions of
the π components (of the second and fifth resonance
peaks) do not vary with field, whereas the frequencies
ω2 – ω1 = ω3 – ω2 = ω5 – ω4 = ω6 – ω5 = ωc/2 are depen-
dent on the field (Fig. 8).

It is seen from Fig. 7 that there are two triplets in the
absorption curve for low magnetic fields. As the mag-
netic field is increased, the spacings between the peaks
of a triplet increase (Fig. 8) and, when ωc = Ω , the third
and fourth peaks merge into one peak.

The peak intensities are I1 = , I2 =

, I3 = , I4 = , I5 = ,

and I6 =  (when the peaks are well resolved,
i.e., when ωcτ/2 @ 1, ωc ≠ Ω). The dependence of the
absorption on the angle α and frequency ω is shown
in Fig. 9.

In the case where the peaks are well resolved, the
intensities of the second and fifth peaks do not vary
with magnetic-field strength, while the behavior of the
other peaks is the same as in the Faraday geometry; that
is, the intensities of the first and fourth peaks decrease,
whereas those of the third and sixth peaks increase,
with increasing magnetic field.

As indicated above, the absorption curve in the
Faraday geometry exhibits four peaks, with the spacing
between the first and second peaks and between the
third and fourth peaks being equal to the cyclotron fre-
quency and with the peak positions varying linearly
with magnetic field.

In the Voigt geometry, where the magnetic field is
oriented arbitrarily relative to the photon polarization
vector, the absorption curve exhibits six resonance
peaks: two peaks in the π component (associated with
electron transitions m  m) and four σ-component
peaks (due to electron transitions m  m ± 1).

In the particular case of the Voigt geometry, where
the photon polarization vector is parallel to the mag-
netic field, the absorption curve at low temperatures
exhibits only two π-component peaks, whose positions
are independent of the magnetic field. At low tempera-
tures, the peak intensities do not vary with magnetic
field in the range where there are no energy levels
crossing the chemical potential.
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4. CONCLUSIONS

For all configurations of the magnetic field and the
photon polarization vector considered in this paper, the
absorption has been shown to undergo jumps of two
types. The first type of jump is associated with elec-
tronic energy levels crossing the level µ – "ω; the posi-
tions of these jumps depend on the frequency of the
electromagnetic radiation and on the magnetic field
[see Eq. (16)]. Jumps of the second type arise when
electronic energy levels cross the chemical potential µ;
the positions of these jumps depend only on the mag-
netic field and are determined by the condition µ = El, m.

First-type jumps appear in series. Each series of
jumps is associated with the electronic energy levels of
an electron shell crossing the level µ – "ω; the number
of jumps in each series is equal to the number of energy
levels in the corresponding electron shell. The (l0 – 1)th
series of jumps arises in the region of the first and sec-
ond resonance peaks in the Faraday geometry and in the
region of the first, second, and third resonance peaks in
the Voigt geometry. The other series appear on the
higher frequency slope of the last resonance peak.

Second-type jumps are significant only when they
arise in the region of the third and fourth resonance
peaks in the Faraday geometry and in the region of the
fourth, fifth, and sixth peaks in the Voigt geometry, with
the magnitudes of the jumps being maximum at the res-
onance frequencies. The jumps of the second type can
be both positive or negative, depending on the sign of
the quantum number m0.

It should be noted that jumps of both types are sig-
nificantly smoothened even at fairly low temperatures.

A numerical analysis revealed that, in the case of an
isolated nanosphere, the dependence of the chemical
potential on the magnetic field B is such that the elec-
tronic energy levels do not cross the chemical-potential
level. Therefore, as the field B is varied, the quantum
numbers l0 and m0 remain unchanged. For this reason,
when the number of particles is fixed, the absorption
undergoes only jumps of the first type. The position of
the jump (l, m0) does not change with varying the mag-
netic field, whereas the jumps with m > 0 are shifted to
lower frequencies and the jumps with m < 0, to higher
frequencies, relative to the jump (l, m0), as the magnetic
field is increased. Due to the dependence of µ on T, the
positions of first-type jumps can vary with temperature,
in contrast to the case of a constant chemical potential,
where the temperature causes the jumps only to
smoothen.
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Abstract—The thermal conductivity of porous glass with randomly distributed connecting pores ~70 Å in size
(glass porosity ~25%), as well as of a porous glass + NaCl composite, was measured in the temperature range
5–300 K. NaCl filled one fourth of the pores in the composite. The experimental results on the composite ther-
mal conductivity can be accounted for only by assuming that phonons scatter from the boundaries of NaCl
nanocrystals embedded in channels of the porous glass. © 2003 MAIK “Nauka/Interperiodica”.
The physical properties of small particles of metals and
semiconductors embedded in nanovoids (nanochannels)
of porous dielectric matrices, such as zeolites, opals,
asbestos, and porous glass, have become a topic of
broad interest in recent years all over the world.
Research in this area is aimed at studying the funda-
mental properties of micro- and nanoparticles with the
aim of applying them in technology and nanoelectron-
ics [1–5].

In this paper, we deal with nanocomposites based on
porous glasses.

Porous glass is produced in the chemical reaction of
acids with a starting sodium borosilicate glass sub-
jected preliminarily to a specific thermal treatment [6].
The composition of sodium borosilicate glasses is as
follows: 80–96% SiO2, 3–13% B2O3, and 0.5–1.5%
Na2O. Reaction with acids taken in various concentra-
tions etches sodium and boron oxides out of the start-
ing glass, leaving porous glass as the final product. The
size of the randomly distributed pores (channels) var-
ies from 30 to 150 Å [6]. The porosity (number of
pores per unit volume) and the degree of pore unifor-
mity in size are determined by the composition of the
starting glass and the actual conditions of its heat treat-
ment, both before and in the course of etching. A
porous glass obtained in this way can be conceived of
as an array of densely packed SiO2 spheres of various
diameters [7, 8]; the space between these spheres (the
porosity) in such glasses amounts to ~25–27% of the
sample volume.

The glass pores can be filled by metals, semiconduc-
tors, or insulators. Liquids that wet the glass enter its
voids easily, so that the loading of compounds dis-
solved into pores in such liquids does not present any
difficulties. To do this, one simply immerses the porous
1063-7834/03/4502- $24.00 © 20381
glass into the required solution and dries the impreg-
nated glass. Nonwetting liquids are introduced into
glass pores using high-pressure injection.

The above techniques were employed to introduce
Ga, Hg, In, NaCl, ferroelectrics, etc., into porous
glasses, and their physical properties (changes in the
superconducting transition temperature and in the melt-
ing and solidification points, specific features in the
behavior of the electrical resistivity, heat capacity, ther-
mal conductivity, optical characteristics, neutron scat-
tering, etc.) were studied [2].

Of particular interest for the physics of small parti-
cles are studies of the behavior of phonons in them,
including phonon scattering from nanocrystal bound-
aries [9] and estimation of the part played by surface
vibrations [10, 11] and by variation of the phonon spec-
trum [12, 13]. Unfortunately, studies of the thermal
conductivity of nanocomposites based on porous
glasses are scarce. This study attempts to fill this gap
by investigating the thermal conductivity of a porous
glass + NaCl nanocomposite. We measured the ther-
mal conductivity of porous glass with randomly dis-
tributed and fairly uniform (in size) pores ~70 Å in
diameter, the total volume of the pores being ~25% of
that of the sample. The composition of the starting
sodium borosilicate glass was 91.7% SiO2, 7.3% B2O3,
and 0.5% Na2O.

A 5 × 5 × 12-mm sample dried by heating to 250°C
was immersed in a water solution containing NaCl and
kept there until impregnation was complete. After the
impregnation, the sample was taken out of the solution
and dried and the NaCl macrocrystals formed on its sur-
face were mechanically removed. Weighing of the sam-
ple before and after NaCl loading showed that 1/4 of the
pore volume was filled by NaCl.
003 MAIK “Nauka/Interperiodica”
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The thermal conductivity κ was measured within the
temperature interval 5–300 K on a setup similar to that
used in [14].

The results obtained for κ of the starting porous
glass and of the porous glass + NaCl composite are pre-
sented in Figs. 1a and 2. After the κ measurements on
the composite, the sample was placed in water and the
NaCl contained in it was completely washed off, which
was verified by weighing the washed and dried sample.
After thorough drying, the κ(T) of the sample was mea-
sured again (from 80 to 300 K). The thermal conductiv-
ities of the starting and washed porous glass were found
to completely coincide (Fig. 1a).

The porous glass and composite studied are insula-
tors; therefore, the thermal conductivity measured in
the experiment is that of the crystal lattice, κph (κ = κph).

We note two interesting features revealed by us in
the behavior of κ(T) of the composite:

(1) Within the temperature interval 25–300 K, κ of
the composite is noticeably in excess of κ of the starting
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Fig. 1. (a) Temperature dependences of the thermal conduc-
tivity of (1) porous glass, (2) porous glass + NaCl compos-
ite, and (3) a sample of the composite from which NaCl was
removed by dissolution in water. (b) Temperature depen-
dence of the thermal conductivity of the porous glass +
NaCl composite (solid curve obtained using curve 2 in
Fig. 1a) and the thermal conductivity calculated for this
composite from Eq. (2) (triangles) [15] assuming the κ of
NaCl nanocrystals embedded in channels of porous glass to
be substantially smaller than the κ of a bulk single crystal
[16] due to phonon scattering from the nanocrystal bound-
aries.
PH
porous glass, although NaCl fills only ~6% of the avail-
able pores in the glass. 

(2) In the 5- to 25-K interval, κ of the composite is
equal to κ of the starting porous glass.

The first feature does not raise any questions,
although it seems remarkable that a small filling of the
pores by sodium chloride is capable of producing such
a noticeable effect on the κ of the composite.

The second feature is somewhat unusual. A zero
contribution from the embedded NaCl to the κ of the
composite can be expected only if the κ of the filler

κ,
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/m
 Κ

T, K
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B
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B
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T, K

0.01
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0.10
κ,

 W
/m

 Κ
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0.25

Fig. 2. Temperature dependences of the thermal conductiv-
ity of (1) porous glass and (2) porous glass + NaCl compos-
ite. (3) κeff of the nanocomposite calculated from Eq. (2)
[15] with due account of phonon scattering from the bound-
aries of nanocrystals embedded in glass channels. Inset B:
expanded low-temperature part. Dashed curves in the figure
and inset B are κeff calculated from Eq. (2) [15] under the
assumption of the thermal conductivity of the filler (NaCl)
being equal to that of a bulk single crystal [16].
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



        

PHONON SCATTERING FROM THE BOUNDARIES OF SMALL CRYSTALS EMBEDDED 383

                                                         
(NaCl in our case) is approximately equal to the κ of the
matrix (porous glass) or is substantially smaller than it
(filler κ & matrix κ). The observed effect cannot be
explained given the fact that the κ of NaCl in the glass
is the same as that in the bulk material. For instance, at
5 K, the κ of bulk NaCl is ~600 W/m K according to
[15],whereas the thermal conductivity of the composite
and of the matrix is, according to our data (Figs. 1, 2),
only ~0.03 W/m K.

The low-temperature thermal conductivity of NaCl
in the channels of porous glass can be of the order of (or
lower than) that of the matrix only if the NaCl nanoc-
rystals in the channels of porous glass are subject to the
size effect, for which the phonon mean free path (l) is
limited by the size of the NaCl nanocrystals.

The mean free path of phonons in a bulk NaCl single
crystal can be estimated as [17]

(1)

Here, Cv is the specific heat at constant volume [18–20]
and  is the average sonic speed [21]. The values of l
calculated from Eq. (1) for a bulk NaCl single crystal
are shown graphically in Fig. 3.

We shall assume the NaCl nanocrystals embedded
in channels of porous glass to have the same transverse
dimensions as the channels (70 Å).1 In this case, the
value of l for NaCl nanocrystals in glass will be 70 Å
and the maximum in κ(T) for them will lie at ~180 K
(Fig. 3).

1 The transverse dimensions of NaCl nanocrystals may be less than
70 Å [11].

l
3κph

Cv v
-----------.=

v

T, K

+
70 Å

0 100 200 300

10–4

10–5

10–6

10–7

l, 
cm

Fig. 3. Temperature dependence of phonon mean free path
in bulk NaCl single crystals [17].
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Equation (1) can be used to calculate κph(T) for
NaCl nanocrystals in channels of porous glass (curve 2
in Fig. 4) accepting l = const = 70 Å, Cv (T) and  =
const for the interval 180–5 K [18–21]. Now, by taking
these values of κph for NaCl in porous glass, we find
that in the interval 5–35 K, the κ of NaCl in channels of
porous glass is smaller than or of the order of the κ of
the matrix (porous glass) (see Figs. 1, 2, 4 and table).

This provides an explanation for the κ of the com-
posite being approximately equal to that of the matrix
in the temperature interval 5–35 K.

The above conclusion is qualitatively supported by
our estimation of the thermal conductivity of the com-
posite under study. The thermal conductivity of the
composite κeff was calculated from the well-known for-
mula obtained by Odelevsky [15] for a standard nano-
composite:

(2)

v

κ eff

κmat
--------- 1

m

1
1 ν–
------------ 1 m–

3
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Fig. 4. Temperature dependence of the thermal conductivity
of the (1) NaCl single crystal [15] and (2) NaCl assuming

 . const and l = const = 70 Å.v
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Thermal conductivity κ (in W/m K) of a bulk NaCl single crystal, of NaCl nanocrystals embedded in channels of porous glass,
of porous glass, and of a porous glass + NaCl nanocomposite in the low-temperature region

T, K κ of NaCl + porous 
glass composite κ of porous glass κ of NaCl single crystal κ of NaCl nanocrystals 

embedded in porous glass

5 0.03 0.03 600 0.004

10 0.05 0.05 900 0.032
where ν = , m is the volume occupied by the filler,

and κfill and κmat are the thermal conductivities of the
filler (NaCl) and matrix (porous glass), respectively.

For κfill, we took the data available for bulk single-
crystal NaCl [16] and our data obtained for NaCl
nanocrystals embedded in channels of porous glass
(curve 2 in Fig. 4).

As seen from Fig. 2, the calculation made for the κfill
taken equal to the κ of bulk NaCl (dashed curve) for the
low-temperature region T < 35 K, where the experiment
showed the κ of the composite to be equal to the κ of
the matrix, fails to fit to the experiment; conversely,
good enough agreement between the calculated and
experimental data for the whole temperature range cov-
ered, 5–300 K, was reached when the data on the ther-
mal conductivity of nanocrystals embedded in channels
of porous glass (curve 2 in Fig. 4) were substituted for
κfill in Eq. (2).

It should be pointed out that we carried out only a
qualitative analysis of the obtained data. The real
behavior of the κ of the nanocomposite based on porous
glass and of the material loaded in its channels follows
a much more complicated pattern. We considered
phonon scattering from the sample boundaries assum-
ing the NaCl nanocrystals to be free. In actual fact, one
should take into account that rather than being free, the
nanocrystals are embedded in a matrix, which can also
affect the behavior of the thermal conductivity of the
filler considerably. In addition, our analysis disregarded
the possible effect exerted on the κ of small crystals by
surface vibrations2 [10, 11] and by changes in the
phonon spectrum [12, 13].

One can, however, draw the conclusion that phonon
scattering from the boundaries of nanocrystals embed-
ded in matrix channels probably dominates over the
behavior of the κ(T) of small objects.

In conclusion, we point out another possible inter-
pretation of our results for the κ of the porous glass +
NaCl nanocomposite.

Both the experimental and theoretical studies
reported in [22–25] and in other publications consid-
ered the possibility of the onset, at low temperatures

2 The influence of surface modes on the κ of small particles can
probably be felt above room temperature, because surface modes
in small NaCl crystals, according to [11], appear in the gap
between the limiting frequencies of longitudinal and transverse
optical vibrations.

κ fill

κmat
---------
PH
T < 20–10 K, of additional phonon scattering in com-
posites whose matrix (epoxy resin, polymers, etc.) was
loaded by sufficiently large particles, 1 to 100 µm in
size, of crystalline quartz, diamond, corundum [22],
copper [24], etc., as well as by crystallized particles of
the matrix (semicrystalline materials) [23] and of amor-
phous glass. In order to discriminate these materials
from nanocomposites, we refer to them as microcom-
posites.

The additional phonon scattering giving rise to a
decrease in the thermal conductivity of these compos-
ites at low temperatures appeared because of the con-
tact thermal resistance rb between the crystals (or amor-
phous particles) of the filler and the amorphous mat-
rix.3 According to [23–25], rb ~ T–3 and depends on the
relative magnitude of the acoustic parameters and the
filler and matrix densities.

In our case, however, there are some points that do
not fit into the model considered in [23–25]. According
to [22–24], as the temperature is lowered, κeff crosses
κmat at one point and, as the temperature is lowered still
further, falls off rapidly, following a law close to κeff ~
T +3, until κeff becomes significantly smaller than κmat.
No such behavior was observed, however, in our nano-
composite. This nanocomposite does not have the
crossing point mentioned above; instead, one observes
κeff = κmat in the interval 4–35 K and κeff does not
decrease with further lowering of the temperature (for
T < 30–35 K).

That our experiment does not reveal the effect
observed in [22–24] is possibly accounted for by the
fact that the acoustic parameters and densities of the
materials making up the nanocomposite (amorphous
quartz and crystalline NaCl) do not differ very much
from one another [21–25]. Thus, either rb becomes
insignificant compared to the contribution to κ that
derives from phonon scattering by the boundaries of
NaCl nanocrystals embedded in the channels of the
porous glass matrix or the relation for rb in nanocom-
posites is different from that observed in the microcom-
posites.

3 At low temperatures, this thermal resistance is sometimes
referred to in the literature as the Kapitza resistance [24].
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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Abstract—A theory of nonlinear TE-polarized surface waves propagating along the flat interfaces of a sym-
metric flat three-layer structure with a linear core and nonlinear coatings is developed. The coatings are nonlin-
ear due to the optical exciton–biexciton conversion. The dispersion laws of the propagating waves are found
and analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In view of the rapid development of integrated
optics, investigation of the properties of surface, inter-
face, and waveguide modes directed by the interfaces of
nonlinear media and nonlinear light guides are of par-
ticular interest [1, 2]. The demonstration of the fact that
s-polarized nonlinear surface waves can, in principle,
propagate along the boundary between a crystal and
vacuum [3–5] or between two nonlinear media [6] is a
significant experimental result. The spatial distribu-
tions of the fields of nonlinear surface waves propagat-
ing in nonlinear media characterized by different mod-
eling dielectric functions were studied in [7, 8]. The
properties of nonlinear surface waves are usually stud-
ied by using the dielectric function of a crystal whose
dependence on the field of the propagating wave can be
represented by a quadratic (Kerr) correction with
respect to the field. However, the use of such a dielec-
tric function is valid only in the range of moderate
fields. Furthermore, such a function carries almost no
information on the model of the nonlinear medium and
the type of quantum transitions involved. Nevertheless,
the properties of nonlinear surface waves have been
studied for non-Kerr media in a number of papers [9–
13]. In a consistent theory, the dielectric function of a
medium should be determined self-consistently from
constitutive equations of the Bloch type with due regard
for the specific mechanisms of the nonlinearity and
quantum-transition type.

In this paper, we present the results of theoretical
investigations of the properties of nonlinear surface
waves (to be more specific, of nonlinear interface
waves) propagating along an interface of a symmetrical
three-layer structure (Fig. 1).
1063-7834/03/4502- $24.00 © 20386
2. STATEMENT OF PROBLEM 
AND BASIC EQUATIONS

Let us consider nonlinear TE-polarized surface
waves propagating in a symmetrical three-layer struc-
ture consisting of a flat 2d thick layer (–d ≤ z ≤ +d) sur-
rounded by semi-infinite nonlinear semiconductors on
both sides (Fig. 1). Suppose that the layer is character-
ized by a dielectric constant ε0 and the coatings are
semiconductors in which a propagating light wave can
generate excitons from the ground state of the crystal
and simultaneously transform them into biexcitons
through optical exciton–biexciton conversion. This
may occur in crystals, such as CdS and CdSe, in which
the biexciton binding energy is vanishingly small. In
these crystals, the giant oscillator strength correspond-
ing to the optical exciton–biexciton conversion makes it
possible to consider nonlinear propagation of laser
radiation at moderate excitation levels. To solve the
problem, we need to obtain the dielectric function of
the nonlinear medium ε depending on the frequency ω

x

zd

y

–d O Hz

Hx

E

k

ε0ε ε

Fig. 1. Configuration of the problem and the directions of
the field components.
003 MAIK “Nauka/Interperiodica”
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and amplitude E of the electromagnetic field of the
propagating wave originating from the interaction
between the light and the excitons and biexcitons in the
crystal. The interaction Hamiltonian has the form

(1)

where E+ and E– are the positive- and negative-fre-
quency components of the field of the electromagnetic
wave, respectively; a and b are the amplitudes of the
exciton and biexciton waves of the crystal polarization,
respectively; g is the exciton–photon interaction con-
stant; and σ is the optical exciton–biexciton conversion
constant. The Heisenberg equations for the amplitudes
a and b have the form

(2)

(3)

where ω0 and Ω0 are the exciton- and biexciton-transi-
tion frequencies, respectively. In a stationary regime, a
and E are proportional to e–iωt and b is proportional to
e–2iωt. Solutions to Eqs. (2) and (3) can be easily found
in this case; then, we can find the polarization and the
crystal dielectric function:

(4)

where  = 2∆2/σ2, ∆ = ω – ω0 is the detuning of the
resonance between the frequency ω of the propagating
radiation and the exciton transition frequency ω0, ωLT =
4π"g2/ε∞ is the longitudinal–transverse splitting fre-
quency of the exciton state, and ε∞ is the background
dielectric constant. It should be noted that Eq. (4) has
been previously used in considering the properties of
surface waves propagating along the boundary between
semi-infinite linear and nonlinear media [9], optical
bistability [14], and the self-reflection effect [15].

We use Eq. (4) to investigate the stationary propaga-
tion of TE-polarized surface waves in the geometry
shown in Fig. 1. Suppose that the electromagnetic wave
propagates along the x axis and is characterized by
wave vector k. The wave field contains the transverse
electric E (parallel to the y axis) and the transverse mag-
netic component Hz, as well as the longitudinal compo-
nent of the magnetic field Hx. From the Maxwell equa-
tions, we derive the following wave equations to
describe the spatial distribution of the electric field of
the electromagnetic wave in the stationary regime:

(5)

H –"g a+E+ aE–+( ) "σ b+aE+ a+bE–+( ),–=

iȧ ω0a gE+– σbE–,–=

iḃ Ω0b σaE+,–=

ε ε∞ 1
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∆
---------

Es
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2 E2–( )2

------------------------–
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Es
2

d2E

dz2
---------
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------ n2 ε∞ 1
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∆
---------

Es
4

Es
2 E2–( )2
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–
 
 
 

E,=

z d ,≥
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
(6)

where n = ck/ω is the effective index of refraction of the
medium and c is the speed of light in vacuum. We look
for spatially confined surface waves whose energy is
localized in the vicinity of the interface |z | = d. For this
reason, a solution to Eq. (5) must satisfy the conditions

(7)

Introducing a new variable  =  and integrating

Eq. (5) with due regard for conditions (7) yields the fol-

lowing equation in the region  > D = :

(8)

where

(9)

Here, W(E) is the potential energy of a nonlinear oscil-
lator, whose motion is described by the first integral in
Eq. (8).

It should be noted that for an optically linear
medium, we have W(E) = –E2(n2 – ε0), where ε0 is the
dielectric constant of the middle layer. Extending this
to the nonlinear case, one can write W(E) as W(E) =
−E2(n2 – ε*), where, according to Eq. (9), we have

(10)

Below, ε* is referred to as the effective dielectric func-
tion of the medium. It follows from Eq. (8) that solu-
tions to this equation in the form of surface waves exist
only for the amplitudes of the field E(z) satisfying the
condition W(E) ≤ 0. This condition significantly
restricts the range of values of the parameters in which
the desired solutions exist. An analysis shows that solu-

tions exist at ∆ < 0 and for n2 > εex = ε∞  and

the amplitudes of the corresponding waves lie in the
range

(11)

Here, εex is the dielectric function of the linear medium
in the vicinity of the exciton transition and Em is the
maximum possible amplitude of the field in the surface
wave. Hence it follows that the nonlinear surface waves
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can exist only in the long-wavelength range with
respect to the frequency of the exciton transition and
under the condition that n2 ≥ ε0 or n2 ≥ ε*. The spatial
distribution of the field E( ) of this wave has a maxi-
mum in the region  > D. Integrating Eq. (8) yields the
following solution for the profile of the field E(z) out-
side the layer (for  > D):

(12)

in the region D ≤  ≤  and

(13)

for  ≥ . Here, the position  =  of the maximum

of the field E( ) = Em is determined from the expression

(14)

where q =  and E0 is the field amplitude at the

boundary of the light guide at (  = D). It follows from
Eq. (12) that, in the region  @ , where E ! Em, the

field decays exponentially: E ~ exp(– (  –

)).

First, we consider the properties of symmetrical
(even) nonlinear surface waves. In this case, the solu-
tion to Eq. (6) has the form

(15)

where q0 =  and C is a constant of integration,
which defines the field amplitude at the center of the
layer in this case. From the condition that the tangential
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components of the electric and magnetic fields be con-
tinuous at the boundary  = D, the following relation-
ship can be obtained using Eqs. (15) and (8):

(16)

This formula can be considered to be a dispersion rela-
tion determining the ω(k) dependence or, in this case,
the effective index of refraction n of the medium
depending on the detuning from the resonance ∆ at
fixed values of the layer thickness d and the parameter
E0, which is the amplitude of the wave field at the
boundary between the media at  = D. It should be
noted that the field amplitude E0 cannot be controlled
experimentally; the energy flow P transferred by the
propagating wave is experimentally determined in this
case. The total energy flux through the cross-sectional
area of the wave guide P can be written as the sum of
the linear flux PL in the core and the nonlinear flux PNL

in the coatings:

(17)

(18)

Using Eq. (16) to eliminate E0 from Eqs. (17) and (18),
we find the P(n, ∆) dependence or the dependence of
the effective index of refraction n of the nonlinear light
guide on the energy flow transferred by the wave.

Now, we consider antisymmetric (odd) nonlinear
surface waves. For the internal region (  ≤ D), the
solution has the form

(19)

for the external region: the solution is defined by
Eqs. (12)–(14) and (18), as in the case of symmetric
waves. The energy flux in the layer in this case is

(20)

and the dispersion law is expressed by the formula

(21)
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Fig. 2. Dispersion law of symmetrical TE-polarized surface waves at ε0 = 5.6, ε∞ = 5, and D = 1/3.
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d) 1/3.

500

P/P0
3. DISCUSSION

For simplicity, we will use the resonance detuning ∆
and the Rabi frequency σE0 normalized to the longitu-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
dinal–transverse splitting ωLT: δ = ∆/ωLT and f0 =
σE0/ωLT. First, we consider the dispersion law for even
modes and, according to Eq. (15), study the behavior of
the n(δ, f0) dispersion curves. It follows from Eq. (16)
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that n2 > ε0, ε* is larger than ε0 and ε*, where ε* =

ε∞(1 + |δ|/(δ2 – )). The nonlinear surface waves
exist only in the spectral range δ < 0. At a fixed value of

f0, the δ(n) curve begins at the point n = , where

|δ| = |δ0| = (1 + )/2. Then, the function δ(n)

monotonically increases with n = , reach-

ing a maximum value |δm | =  at n, where

xm is determined from the equation x  = 1. As n
increases further, the function δ(n) decreases and
asymptotically approaches |δ| = |δ0 |. There are two val-
ues of n corresponding to a given value of |δ|. With

increasing D, the maximum point approaches n = .
The n(δ, f0) surface is shown in Fig. 2a. As f0 increases,
the region of existence of the nonlinear surface waves
shifts towards longer wavelengths; thus, the long-wave-
length part is pulled into the spectrum of the light guide,
whereas the short-wavelength parts are expelled from
it. At a fixed value of |δ| > |δm |, the function f0(n) has a
maximum at n = (ε0 + xmD–2)1/2 and the position of the
maximum does not depend on |δ|. The smaller the |δ|,
the higher the maximum of the function f0(n).

Figure 2b shows the P(n, δ) dependence for sym-
metric nonlinear surface waves. It is seen that at a fixed
value of |δ|, the energy flux increases rapidly with n and
then, reaching a maximum, monotonically decreases.
At fixed n, the energy flux decreases rapidly with
increasing |δ|. It should be noted that there are two dif-
ferent values of the effective index of refraction n cor-
responding to the same energy flux.

Figures 3a–3c show the dispersion law of the anti-
symmetrical nonlinear surface waves for two values of
the normalized thickness of layer D. It follows from
Eq. (21) that, at D > (ε0 – ε∞)–1/2, the dispersion relation
describes a surface in (n, δ, f0) space which is bound
with respect to δ and n (Fig. 3a). At D < (ε0 – ε∞)–1/2;
however, the dispersion law defines two different sur-
faces, because there is a gap in the dispersion law
(Fig. 3c). One of these surfaces is restricted to values of

n within the limits  ≤ n ≤ n*, where n* is a solution

to the equation (ε0 – ε∞)  = . It is seen that
the limit values of the effective index of refraction n*
depend on ε0, ε∞, and D but are independent of the res-
onance detuning δ. The more distant region of the dis-
persion law is defined by the inequality n ≥ n**, where
n** is a solution to the equation (ε0 – ε∞ –

ε∞/ |δ|)  =  and depends not only on the
parameters ε0, ε∞, and D but also on the resonance
detuning δ. At |δ| @ 1, the gap in n (the interval of the
forbidden values of n) decreases and n**  n*.

f 0
2/2

ε0

1 2 f 0
2+

ε0 xm
2 D 2–+

1
xm

2 1–

4D2
--------------+

 
 
 

–1

xtanh

ε0

ε0

q0D( )sinh
2

q0
2

q0D( )sinh
2

q0
2

PH
It can be seen from Figs. 3b and 3d that the disper-
sion law depends on the energy flux and also exists in
one or two separate regions, depending on the value of
the parameter D.

4. CONCLUSIONS

Thus, the properties of s-polarized nonlinear surface
waves arising from the interaction of excitons and biex-
citons with light differ significantly from the properties
of nonlinear surface waves propagating in Kerr media.
The resonance character of the nonlinear dielectric
function is of crucial importance for the existence of the
waves considered in the present paper. The region of
existence of the antisymmetrical nonlinear surface
waves is split into two independent subregions sepa-
rated from each other at certain values of the parame-
ters. The dispersion laws obtained depend significantly
on the value of the energy flux.
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Abstract—Dispersion and attenuation of Rayleigh surface acoustic waves on a statistically rough free surface
of a Z-cut hexagonal crystal were analytically studied using a modified mean-field method within the perturba-
tion theory. Numerical calculations were carried out in the frequency range accessible for the perturbation the-
ory using expressions for the real and imaginary parts of the complex frequency shift of Rayleigh waves caused
by a slight surface roughness. The Rayleigh wave dispersion and attenuation in the Z-cut hexagonal crystal were
shown to coincide qualitatively with those in an isotropic medium, differing only quantitatively. In the long-
wavelength limit λ @ a, where a is the lateral roughness correlation length, explicit analytical expressions for
the relative change in the phase velocity and the inverse damping depth of Rayleigh waves were derived and
used in numerical calculations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the past twenty-five years, a great number of
theoretical and experimental studies have been dedi-
cated to the propagation of surface acoustic waves
(SAWs) along a statistically rough solid surface. This
attention can be explained by the high sensitivity of
SAWs to various perturbations of the surface along
which they propagate. Random roughness is one of the
most commonly encountered perturbations existing at
the surface of a sample and arising during sample prep-
aration. SAWs have found many technical applications
in seismology, ultrasonic defectoscopy, and acousto-
electronics.

Emphasis has been placed on the Rayleigh waves,
which, as is known [1], can exist in a semi-infinite elas-
tic medium that is bounded by a plane surface and prop-
agate along it with no dispersion or attenuation. When
the surface is only slightly rough (the characteristic
roughness heights are small in comparison with the
wavelength of the wave under study), a small rough-
ness-caused addition (a complex frequency shift) arises
in the dispersion law of the Rayleigh wave. In this case,
the real part of the frequency shift describes the phase
velocity dispersion of the Rayleigh wave, while the
imaginary part characterizes wave attenuation.

The dispersion relation for the Rayleigh SAW prop-
agating along the statistically rough free surface of an
isotropic solid was first found theoretically in [2]. The
dispersion law was derived in an integral form using the
mean-field (Rayleigh) method. Since the authors of [2]
failed to calculate the integral in an explicit form, they
made an order-of-magnitude estimate of the imaginary
part of the frequency shift, i.e., of the attenuation. In [3–
1063-7834/03/4502- $24.00 © 20391
5], the Rayleigh SAW attenuation was studied in the
framework of the scattering theory using the Green’s
function method. We note that the mean-field method,
in contrast to the scattering theory, allows one to deter-
mine not only the imaginary part of the frequency shift
but also its real part. In [6–8], the dispersion law of a
Rayleigh wave propagating along a statistically rough
surface was derived by solving the Dyson equation for
the average Green’s function. In this case, the disper-
sion relations also had an integral form and only order-
of-magnitude estimates of the dispersion and attenua-
tion were made in the extreme cases of short and long
(in comparison with the lateral roughness correlation
length) Rayleigh waves.

In our opinion, the dispersion and attenuation of a
Rayleigh SAW propagating along a slightly rough free
surface of an isotropic elastic half-space were most
comprehensively studied in [9]. The authors of [9]
derived explicit analytical expressions for the real and
imaginary parts of the frequency shift using the mean-
field method. Since the expressions for the phase veloc-
ity dispersion and the attenuation coefficient were
rather intricate and contained integrals, the authors of
[9] calculated them numerically in a wide frequency
range. The approach advanced in [9] was generalized in
[10] to the case of stratified media by taking into
account the piezoelectric effect. We note that, in [2–10],
the three-dimensional roughness x3 = ζ(x1, x2) was
mostly considered. An important class of problems
related to the Rayleigh wave dispersion and attenuation
caused by two-dimensional roughness x3 = ζ(x1) was
considered in [10–14].
003 MAIK “Nauka/Interperiodica”
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An analysis of [2–14] shows that their results often
seriously differ and sometimes contradict each other.
This is true for both conclusions made on the basis of
different methods and within the same technique. To
clarify the situation, the use of a modified mean-field
method was suggested in [15] to calculate the disper-
sion and attenuation. The expressions derived in [15],
along with the relations from [5], confirmed the results
of [9].

We note that only isotropic media were considered
in most of the above-mentioned studies. As for [10, 15],
where the results involved the Green’s tensor for an
anisotropic elastic medium occupying the half-space
x3 > 0, numerical calculations were carried out only for
the isotropic case. However, the overwhelming major-
ity of materials in applications of SAWs are anisotropic
crystals. In contrast to isotropic media, computational
complications emerge even for ideally smooth surfaces
in this case. The study in [16] seems to be the first to
derive frequency dependences for the Rayleigh SAW
dispersion and attenuation in the long-wavelength
limit. The dependences of the relative variation in the
phase velocity in the Rayleigh SAW on the propagation
angle were numerically constructed for various aniso-
tropic-medium cuts.

This study is dedicated to the Rayleigh SAW propa-
gation along the statistically rough free surface of a
hexagonal crystal (three-dimensional roughness). The
statistical roughness is assumed to be slight; the surface
x3 = 0 coincides with the crystal basal plane (Z cut). The
modified mean-field method [15] is applied; this
method allows derivation of the dispersion relations for
SAWs of various polarizations propagating along a free
slightly rough solid surface of any symmetry. We ana-
lytically derive a dispersion relation for the frequency
shift of Rayleigh waves and study this relation numeri-
cally in the whole frequency range accessible for the
perturbation theory. Furthermore, we derive analytical
expressions for the phase velocity dispersion and the
attenuation coefficient of Rayleigh waves in the long-
wavelength limit and compare them to the results of
[16]. The dispersion and attenuation of Rayleigh waves

x3

x1

Hexagonal elastic medium

ρ; Cαβµν

x3 = ζ(x||)
Vacuum

Fig. 1. Geometry of the semi-infinite homogeneous elastic
medium with a free surface x3 = ζ(x||) exhibiting three-
dimensional roughness.
P

propagating in any direction along the rough Z-cut sur-
face x3 = ζ(x1) of a hexagonal elastic medium will be
studied in a separate paper.

2. STATEMENT OF THE PROBLEM. EFFECTIVE 
BOUNDARY CONDITIONS FOR AN ELASTIC 

SEMI-INFINITE HEXAGONAL MEDIUM 
BOUNDED BY A FREE SLIGHTLY ROUGH 

SURFACE

The geometry of the problem is shown in Fig. 1. A
hexagonal crystal, considered in the elastic-continuum
approximation with the hexad axis parallel to the x3
axis, is bounded by a free rough surface x3 = ζ(x||) and
occupies the half-space x3 > ζ(x||), where x|| = (x1, x2, 0).
The hexagonal elastic medium is characterized by the
mass density ρ and the elastic-moduli tensor Cαβµν. A
Rayleigh wave propagates along the statistically rough
surface of the hexagonal medium (Z cut). It is required to
determine the phase velocity dispersion and attenuation
of the Rayleigh wave caused by the surface roughness.

For a randomly rough surface, the surface profile
function ζ(x||) is not known exactly; therefore, we
describe the surface statistically as

(1)

Here, δ =  is the root-mean-square roughness
amplitude, the angular brackets indicate averaging over
the ensemble of profile function ζ(x||) realizations, and
W(|x|||) is the correlation function, hereafter assumed to
be a Gaussian, 

(2)

where a is the lateral roughness correlation length char-
acterizing the average distance between sequential sur-
face peaks or hollows.

The surface roughness is assumed to be slight; i.e.,
we consider the characteristic roughness height δ to be
small in comparison with the wavelength of the wave
under study (δ/λ) ! 1. The temporal dependence of the
displacement field u(x, t) is assumed to be harmonic,

Taking into account the above assumptions, the equa-
tions of motion of the medium are written as

(3)

where the Greek subscripts α, β, γ, … run through 1, 2,
and 3; repeated subscripts indicate summation.

The boundary conditions at the free surface are
given by

(4)

ζ x||( )〈 〉 0, ζ x||( )ζ x||'( )〈 〉 δ 2W x|| x||'–( ).= =

ζ2〈 〉

W x||( ) x||
2/a2–( ),exp=

u x t,( ) u x ω( ) iωt–( ).exp=

ω2δαµ
1
ρ
---Cαβµν

∂2

∂xβ∂xν
-----------------+ 

  uµ x ω( ) = 0, x3 ζ x||( ),>

Cαβµν n̂β
∂uµ x ω( )

∂xν
----------------------

x3 ζ x||( )=
0, a 1 2 3,, ,= =
HYSICS OF THE SOLID STATE      Vol. 45      No. 2      2003



RAYLEIGH WAVE DISPERSION 393
where  is the unit normal vector to the surface depen-
dent on the two-dimensional vector x||.

To derive the dispersion relation for the SAW (it can
be both a Rayleigh SAW and an SAW of shear horizon-
tal (SH) polarization), equations of motion (3) should
be solved in the half-space x3 > ζ(x||), taking into
account boundary conditions (4) at the free surface x3 =
ζ(x||). We solve this problem using the modified mean-
field method advanced in [15]. As shown in [15], in the
case of slightly rough surfaces, this problem can be
reduced to a simpler one, namely, to the same equations
of motion (3), but in the half-space x3 > 0, and to effec-
tive boundary conditions at the plane surface x3 = 0.
These effective boundary conditions for the Fourier
components of the displacement field were obtained in
[1] to the second order with respect to ζ (see [1,
Eqs. (2.19)]).

As indicated in [15], only the assumption of a slight
surface roughness was used when deriving the effective
boundary conditions and the medium symmetry was
not concretized. Thus, the effective boundary condi-
tions are also valid for the Z-cut hexagonal elastic
medium under consideration.

3. SET OF EQUATIONS FOR THE MEAN 
DISPLACEMENT FIELD

To derive the dispersion equation for Rayleigh
waves, we preliminarily write a set of equations for the
mean displacement field. To this end, it is convenient to
pass over from the set of differential equations of
motion (3) in the half-space x3 > 0 and the effective
boundary conditions at the plane surface x3 = 0 to a set
of integral equations. With this object in view, we intro-
duce the Green’s function Dαβ(x, x'|ω), satisfying the
equation

(5)

and the boundary conditions at the plane x3 = 0 and at
infinity

Then, using the fact that the displacement field dimin-
ishes with distance from the surface, as well as the sym-
metry property of the Green’s tensor

n̂

ω2δαµ
1
ρ
---Cαβµν

∂2

∂xβ∂xν
-----------------+ 

  Dµβ x x' ω,( )

=  δαβδ x x'–( ), x3 x3', 0≥

Cα3µν xν∂
∂

Dµβ x x' ω,( ) x3 0= 0,=

Dαβ x x' ω,( ) x3 ∞→ 0.=

Dαγ x x' ω,( ) Dγ x x' ω,( ),=
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we invoke Green’s integral theorem to arrive at

(6)

where θ(x3) is the Heaviside step function.

The hexagonal crystal is assumed to be oriented
such that the surface x3 = 0 coincides with the crystal
basal plane (Z cut). All the directions in the basal plane
of the hexagonal crystal are equivalent for elastic
waves. In other words, the hexagonal crystal in the
plane x3 = 0 is characterized by translational invariance
in the directions parallel to the plane x3 = 0. Therefore,
we have

and the Green’s function can be conveniently repre-
sented in the form of a Fourier integral,

Then, the set of integral equations (6) in the Fourier
representation is written as

(7)

where the subscript Φ takes on the values 1 and 2.

The braced expression in the right-hand side of
Eq. (7) coincides with the left-hand side of the expres-
sion for the effective boundary conditions. Thus, we
come to a homogeneous integral equation for
uα(k||ω|x3) to the second order with respect to ζ:

(8)

θ x3( )uα x ω( )

=  x2 '|| Dαγ x x' ω,( )
1
ρ
---Cγ3µν

∂uµ x ω( )
∂xν'

-----------------------
 
 
 

x3' 0=

d ,∫

Dαβ x x' ω,( ) Dαβ x|| x||'– ; x3 x3' ω,( )=

Dαβ x x' ω,( )
k2

||d

2π( )2
-------------∫=

× ik|| x|| x||'–( )( )Dαβ k||ω x3x3'( ).exp

θ x3( )uα k||ω x3( ) Dαγ k||ω x30( )=

× 1
ρ
--- Cγ3µΦikΦ Cγ3µ3 x3'∂

∂
+ uµ k||ω x3'( )

 
 
 

x3' 0=

,

θ x3( )uα k||ω x3( )
q2 ||d

2π( )2
-------------Dαγ k||ω x30( )∫=

× ζ k|| q||–( )Mγµ q|| k|| ω,( )uµ q||ω 0( )

+
q2

||d

2π( )2
-------------Dαγ k||ω x30( )ζ 2( ) k|| q||–( )∫
× Nγµ q|| k|| ω,( )uµ q||ω 0( ).
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Expression (8) can be significantly simplified by intro-
ducing a real orthogonal 3 × 3 matrix S(k||) and its
inverse S–1(k||),

(9)

as well as the following notation:

(10)

(11)

(12)

(13)

Using the symmetry properties of the elastic-moduli
tensor Cαβγδ = Cγδαβ, the matrices X and Y can easily be
shown to possess the properties

(14)

where the symbol T implies the transposition operation.
The matrices X and Y are identical in form to expres-
sions in [15, Eqs. (A.7a)–(A.8e)] and depend on ω and
the components of the elastic-moduli tensor for the
hexagonal medium. By multiplying both parts of

Eq. (8) from the left into S( ) and taking into account
Eqs. (9)–(13), we arrive at

(15)

Relation (15) is valid for all values of x3 = 0+. Having
put x3 = 0+ in Eq. (15), we come to a set of equations
for the displacement field components Fα(k||ω|x3) near
the crystal surface:

S k̂||( )
k̂1 k̂2 0

k̂2– k̂1 0

0 0 1 
 
 
 
 

, S 1– k̂||( )
k̂1 k̂2– 0

k̂2 k̂1 0

0 0 1 
 
 
 
 

,= =

k̂Φ
kΦ

k ||
-----, Φ 1 2,,= =

Fα k||ω x3( ) Sαµ k̂||( )uµ k||ω x3( ),=

dαβ k||ω x3x3'( ) Sαµ k̂||( )Dµν k||ω x3x3'( )Sνβ
1– k̂||( ),=

Xαβ q|| k|| ω,( ) Sαµ k̂||( )Mµν q|| k|| ω,( )Sνβ
1– q̂||( ),=

Yαβ q|| k|| ω,( ) Sαµ k̂||( )Nµν q|| k|| ω,( )Sνβ
1– q̂||( ).=

XT k|| q|| ω,( ) X k|| q|| ω,( ),=

YT k|| k|| ω,( ) Y– k|| k|| ω,( ),=

k̂||

θ x3( )Fα k||ω x3( )
q2 ||d

2π( )2
-------------ζ k|| q||–( )dαβ k ||ω x30( )∫=

× Xβµ q|| k|| ω,( )Fµ q||ω 0( )

+
q2

||d

2π( )2
-------------ζ 2( ) k|| q||–( )dαβ k ||ω x30( )∫
× Yβµ q|| k|| ω,( )Fµ q||ω 0( ).
P

(16)

where

(17)

An explicit form of the surface profile function ζ(x||) is
not known; only its statistical properties are known.
Therefore, the set of equations (16) should be averaged
over an ensemble of function ζ(x||) realizations. To this

end, according to [9], we introduce the operator ,
which averages all the quantities on which it operates
over an ensemble of realizations of the profile function,

f = 〈 f 〉 , as well as the operator  = I – , where I is
the unit operator.

We apply the operators  and  sequentially to
both parts of Eq. (16) and then substitute the second
obtained equation into the first. Taking into account the
equality

and properties (14) of the matrix X, we arrive at a
homogeneous set of linear algebraic equations for the
mean-field components:

(18)

The Green’s function dαβ was determined in [17] for

any values of x3 and  in the Z-cut hexagonal crystal
with a plane boundary. Green’s function (17) at the
crystal surface appears in Eq. (18). Therefore, after
simple algebraic transformations, the Green’s function
becomes much simpler in comparison with that in [17].

4. DISPERSION RELATION 
FOR RAYLEIGH WAVES

It can be shown by performing integration over the
angle in Eq. (18) that the components 〈F1(k||ω|0)〉  and
〈F3(k||ω|0)〉  are separate from 〈F2(k||ω|0)〉 . In this case,
surface waves of sagittal polarization (Rayleigh SAWs)
are described by the matrix equation

Fα k||ω 0( )
q2 ||d

2π( )2
-------------ζ k|| q||–( )dαβ k || ω( )∫=

× Xβµ q|| k|| ω,( )Fµ q||ω 0( )

+
q2

||d

2π( )2
-------------ζ 2( ) k|| q||–( )dαβ k || ω( )∫
× Yβµ q|| k|| ω,( )Fµ q||ω 0( ),

dαβ k || ω( ) dαβ k ||ω 0+ 0,( ).=

P̂

P̂ Q̂ P̂

P̂ Q̂

P̂ζ 2( ) k|| q||–( ) δ2 2π( )2δ k|| q||–( )=

Fα k||ω 0( )〈 〉 δ 2 q2
||d

2π( )2
-------------g k|| q||–( )dαβ k || ω( )∫=

× Xβγ q|| k|| ω,( )dγµ q|| ω( )Xµν
T q|| k|| ω,( ) Fν k||ω 0( )〈 〉

+ δ2dαβ k || ω( )Yβµ k|| k|| ω,( ) Fµ k||ω 0( )〈 〉 .

x3'
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(19)

F1 k||ω 0( )〈 〉
F3 k||ω 0( )〈 〉 

 
 

δ2 q2 ||d

2π( )2
-------------g k|| q||–( )∫=

× d11X11
2 d̃11 d11X12

2 d̃22 d13X33X11d̃31+ + d11X11X33d̃13 d13X33
2 d̃33+

d31X11
2 d̃11 d31X12

2 d̃22 d33X33X11d̃31+ + d31X11X33d̃13 d33X33
2 d̃33+ 

 
 
 

F1 k||ω 0( )〈 〉
F3 k||ω 0( )〈 〉 

 
 

+ δ2 d13Y31 d11Y13

d33Y31 d31Y13 
 
  F1 k||ω 0( )〈 〉

F3 k||ω 0( )〈 〉 
 
 

,

where Xαβ ≡ Xαβ(q||, k|||ω), Yαβ ≡ Yαβ(k||, k|||ω), and
dαβ ≡ dαβ(k|||ω); the tilde means that the corresponding
quantity should be taken at an argument equal to q||,

e.g.,  ≡ dαβ(q|||ω).

The dispersion law for Rayleigh waves is derived
from the condition for a nontrivial solution to matrix
equation (19). To make the algebra simpler, we use the
relation

(in this case, A is the 2 × 2 unit matrix). Thus, the dis-
persion relation for Rayleigh waves takes the form

(20)

Using the explicit expressions for the function dαβ, we
rewrite Eq. (20) as

(21)

where ∆(k|||ω) is the Rayleigh determinant, which is
reduced to [15, Eq. (4.11)] in the case of an isotropic
medium. We omit explicit expression of function
Z(k|||ω), because it is cumbersome.

In the limiting case of δ = 0, Eq. (21) describes the
dispersion law of Rayleigh waves propagating along
the plane surface of the hexagonal crystal parallel to the
basal plane:

(22)

Its solution [17] is ωR(k||) = k||cR, where cR is the Ray-
leigh wave velocity at the plane surface of the hexago-
nal crystal (Z cut). It is convenient to introduce the nota-
tion

(23)

d̃αβ

det A δA+( ) detA detATr A 1– δA( ) O δA2( )+ +=

1 δ2 q2
||d

2π( )2
-------------g k|| q||–( ) d11X11

2 d̃11 d11X12
2 d̃22+{∫=

+ d13X33X11d̃31 d31X11X33d̃13 d33X33
2 d̃33+ + }

+ δ2 d31 d31–( )Y13.

∆ k || ω( ) δ2Z k || ω( ),=

∆ k || ωR( ) 0.=

ρωR
2 c44k ||

2ε.=
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Then, we have cR = ε, where ε depends only on the

components of the elastic-moduli tensor and, under the
condition 0 < ε < min(1, a1), is defined by the equation
[following from Eq. (22)]

(24)

Since only the terms O(1) and O(δ2) are retained in the
above calculations, we can put ω = ωR(k||) = k||cR in the
right-hand side of Eq. (21). Expanding ∆(k|||ω) into a
Taylor series in the vicinity of ω = ωR, the dispersion
law of Rayleigh waves propagating along a statistically
rough surface can be written as

(25)

If we now substitute the surface scattering factor
g(|k|||) in the form of Gaussian (2) into Z(k|||ω), pass
over to the polar coordinates, and integrate over the
angle θ, we arrive at

(26)

where In(z) is the modified Bessel function of the nth
order and the coefficients Cn(q||, k|||ωR) are

(27)

with η = q||/k||. The denominator ∆(q|||ωR) in the inte-
grand in Eq. (26) should be understood as ∆(q|||ωR + iα)
as α  0+. As follows from Eq. (22), ∆(q|||ωR + iα)
vanishes at η = 1 and α = 0. Considering ∆(q|||ωR + iα)

c44

ρ
------

1
c44

c33
------– 

  ε3 c11

c33
------ 1– 2a1– 

  ε2 a1 2 a1+( )ε a1
2–+ +  = 0,

a1

c11c33 c13
2–

c33c44
--------------------------.=

ω k ||( ) ωR k ||( ) ∆ω k ||( )+=

=  ωR k ||( ) δ2 Z k || ω( )
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ω ωR=
.+
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2
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2a2/4–( ) q||q||
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2a2/4–( )exp
∆ q|| ωR( )

---------------------------------d

0
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∫exp=

× Cn q|| k || ωR,( )In

k ||q||a
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2
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4

∑

Cn k || q|| ωR,( ) k ||
8εα t k || ωR,( )Cn η( ),=
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formally as a function of the variables q|| and ωR, we
expand ∆ into a Taylor series in the vicinity of q|| = k||
and α = 0:

(28)

Using the well-known relation

(29)

where the symbol P indicates the Cauchy principal
value of the integral and  = ±1 for ν _ 0, we can
write

(30)

Then, it is convenient to pass over to the dimensionless
function ω12 defined by the equality

(31)

where ξ = k||a. Taking into account Eq. (30) and replac-
ing the variable of integration in Eq. (26) by t = η2/ε, we
arrive at the dispersion law ω12(ξ) in the final form

(32)

where the coefficients A(ξ), B(ξ), E(ξ), l, and d are
given in Appendix A. Expression (32) is complex;
therefore, ω12(ξ) can be written as

(33)

where ω1(ξ) and ω2(ξ) are real functions. The real and
imaginary parts of ω12(ξ) define the phase velocity dis-
persion

(34)

and the inverse damping depth of Rayleigh waves

(35)

respectively.
Expression (32) contains the complex functions

, which appear in an expression for the Green’s
function in [17]. Since the surface wave should vanish

∆ q|| ωR iα+,( )

=  k ||
∂∆ q|| ωR,( )

∂q||
-------------------------

k|| ωR,( )
η 1– i

α
ωR

------– 
  .

1
x iν+
-------------- P

1
x
--- iπ ν( )δ x( ),sgn–=

ν( )sgn

1
∆ q|| ωR iα+( )
----------------------------------

=  P
1

∆ q|| ωR( )
--------------------- iπ δ η 1–( )

k ||
∂∆ q|| ωR( )

∂q||
-------------------------- 

 
q|| k||=

-----------------------------------------------.+

∆ω k ||( )
ωR

----------------
δ2

a2
-----ω12 ξ( ),=

ω12 ξ( )
d
2
---ξ4 ξ2/4–( )exp–=

× A ξ( ) B ξ( ) E ξ( )+ +[ ] ξ 2l,+

ω12 ξ( ) ω1 ξ( ) iω2 ξ( ),–=
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d2

a2
-----ω1 ξ( ),=

1
l
---

δ2

a
3

-----2ξω2 ξ( ),=

α̃ t1 t2, t( )
P

at an infinite depth and go away from the surface, the
following conditions are imposes on these functions in
[17]:

(36)

Inequalities (36) can be met only in the case where

 are real functions, which imposes the follow-
ing conditions on the elastic moduli: 

if

(37)

if

Conditions (37) are met for most of the known hex-
agonal crystals (see table). In the case of an isotropic
medium, where

(38)

dispersion law (32) reduces to [15, Eq. (4.16)].
The functions ω1(ξ) and ω2(ξ) calculated numeri-

cally for ZnO are shown in Figs. 2 and 3, in which
dashed curves correspond to polycrystalline ZnO with
the Poisson ratio σ = 0.356. A method for calculating
the Poisson ratio for a polycrystalline material from the
data for single crystals was suggested in [18]. An anal-
ysis of Figs. 2 and 3 and their comparison with the cor-
responding figures for the isotropic case considered in
[15] and for the other hexagonal crystals listed in the
table show that such curves are qualitatively similar for
all single crystals and are similar to the corresponding
curves for isotropic media, differing only quantita-
tively.

5. LONG-WAVELENGTH LIMIT λ @ a

The relations

(39)

are met for all known hexagonal crystals. From the ine-
quality c11 > c12, it follows that h > 0. The expression for

 contains the square root  ≥ 0, which is

Reα̃ t1 t2, t( ) 0, Imα̃ t1 t2, t( ) 0.<>
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positive according to condition (37). Therefore, if z = 0,
we have y2 ≤ 0 and, hence,

(40)

Taking into account Eqs. (39) and (40), one readily sees
that  is a pure imaginary quantity in the range 0 <

t <  and  is purely imaginary in the range 0 <

t < 1; in the remaining region,  are real. Let us
consider ω12(ξ) in Eq. (32) in the long-wavelength limit

c44

c11
------

1 c44/c33+
a1 2c13/c33–
------------------------------ 1.≤ ≤

α̃ t( )
c44

c11
------ α̃ t2 t( )

α̃ t1 t2, t( )

1.2

1.0

0.8

0.6

0.4

0.2

0
0.1 0.5 1 5 10 50 100

ξ

Fig. 2. ω1(ξ) dependence for single-crystal (solid curve)
and polycrystalline (dashed curve) ZnO; the Poisson ratio
for the polycrystal is σ = 0.356 [18].

–ω
1
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λ @ a (ξ = ka ! 1). In this case, only the coefficients of
I0 will contribute to ω12(ξ), since I0(0) = 1 and In(0) = 0
at n = 1, 2, …. The result can be conveniently written
using the following notation:

(41)

where Λ and Φ are constants independent of ξ;

(42)

ω1 ξ( ) Φξ, ω2 ξ( )–
ξ4

2
-----Λ,= =

Φ d π
2a1
----------=

× a1h3/2 2 a1 h–( )2 h2+( ) m n+ m n–+( )+{ } ,

0.7
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0

ω
2

2 4 6 8 10
ξ

Fig. 3. ω2(ξ) dependence for single-crystal (solid curve)
and polycrystalline (dashed curve) ZnO; for the polycrystal,
σ = 0.356 [18].
Numerical values of Φ, Λ, and cR for numerous hexagonal crystals*

Medium Temperature, K ρ, g cm–3 cR , km s–1 Φ Λ

Be 293 1.816 7.203 0.4125 0.1262

CdS 293 4.825 1.700 0.3073 0.05179

Co 298 8.836 2.808 0.3572 0.06368

Ice 257 0.960 1.768 0.3624 0.07435

Ice 248 0.960 1.730 0.3448 0.05929

Ice 263 0.960 1.703 0.3437 0.05832

Ice 268 0.960 1.702 0.3470 0.05892

Mg 0 1.799 3.006 0.4100 0.09836

SiO2 873 2.517 3.516 0.4257 0.1136

SiO2 873 2.533 3.516 0.4178 0.1159

ZnO 293 5.676 2.615 0.3587 0.07057

Y 4 4.472 2.285 0.4700 0.1149

Y 75 4.472 2.276 0.4704 0.1124

Y 200 4.472 2.225 0.4607 0.1082

Y 300 4.472 2.177 0.4479 0.1095

Y 400 4.472 2.139 0.4374 0.1045

* The elastic moduli involved in the expressions for cR , Φ, and Λ, were taken from [18].
3
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(43)

The coefficients m, n, A, B, and E are given in Appen-
dix B.

The numerical values of Λ and Φ for some crystals
are listed in the table.

6. CONCLUSIONS

Thus, the Rayleigh SAW propagation along a statis-
tically rough free surface x3 = ξ(x1, x2) of a hexagonal
crystal, whose hexad axis is normal to its surface such
that the Rayleigh wave propagates in the basal plane (Z
cut), has been theoretically studied. Since the solid has
been considered as an isotropic medium in the over-
whelming majority of studies dedicated to the problem
under consideration [2–15], we attempted to generalize
the “isotropic” consideration. The surface roughness
was assumed to be slight (δ/λ ! 1), and the problem
was solved using the modified mean-field method [15]
within the perturbation theory. This method was chosen
because the results obtained using this method involve
the Green’s tensor, which is currently known only for
an isotropic medium [3] and for a Z-cut hexagonal crys-
tal [17].

Dispersion relation (32) for the Rayleigh SAW was
derived; this relation has an explicit analytical integral
form and reduces to [15, Eq. (4.16)] in the isotropic
limit. As in the isotropic case, the expressions for the
real ω1(ξ) and imaginary ω2(ξ) parts of the complex fre-
quency shift ω12(ξ) were derived in an explicit analyti-
cal form. However, these expressions are cumbersome
and are not presented in this paper.

The ω1(ξ) and ω2(ξ) curves were calculated numer-
ically for all hexagonal crystals listed in the table. The
calculated results for the typical hexagonal crystal ZnO
are shown in Figs. 2 and 3.

The long-wavelength approximation of most inter-
est in the experimental aspect, λ @ a, was studied ana-
lytically and numerically. In this case, ω1 ~ ω and ω2 ~
ω4; therefore, the relative change in the phase velocity
and the inverse damping depth are ∆c/cR ~ ω and 1/l ~
ω5, respectively. A comparison shows that the results
calculated for ZnO in this study and the results of [16]
are identical. In closing, we note that the results of this
study are applicable to hexagonal crystals belonging to

classes 6, , 6/m, 6mm, m2, 622, and 6/mmm in the
Hermann–Mauguin notation.

Λ d A B E+ +( ).=

6 6
PH
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(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

where c11, c12, c13, c33, and c44 are the independent com-
ponents of the elastic-moduli tensor of the hexagonal
crystal.

APPENDIX B

(B.1)

Φ1 t( )
2 t

εα pα̃ p t( )
------------------------- ε

c33 c13+
c33

------------------- a1– 
 –=

× α̃m t( )
c13

c33
------ t 1–– 

  εt t 1–( ) 2a1 h–( ),–

Φ2 t( )
ε
2
--- t 1– 2h a1 h–( )t t 1–+=

+
2ht

εα pα̃ p t( )
--------------------- ε

c33 c13+
c33

------------------- a1– 
  α̃m t( )

c13

c33
------ t 1–– 

  ,

Φ3 t( ) h εt t 1–( ), Φ4 t( )–
h2

2
-----t t 1– ,= =

h
c11 c12–

2c44
-------------------,=

γ
2ε ε 1

c13

c33
------+ 

  a1– 
  2

a1
2 1 ε–( ) 1

2c13 c11+
c33

----------------------- a1–+ 
  ε2–

----------------------------------------------------------------------------------,=

α̃ p t( ) α̃ t1 t( ) α̃ t2 t( ), α p+ α̃ p 1/ε( ),= =

α̃ t1
2 t( ) 1/2 z t( ) z2 t( ) 4y2 t( )–+( ),=

α̃ t2
2 t( ) 1/2 z t( ) z2 t( ) 4y2 t( )––( ),=

α̃m t( )
α̃ t1 t( )α̃ t2 t( )

t 1–
--------------------------,=

α̃ tt t( )
ht 1– , ht 1 0,≥–

i 1 ht– , ht– 1 0,<–



=

y2 t( ) c( 11/c33 ) t 1–( ) t c44/c11–( ),=

z t( ) a1 2c13/c33–( )t 1 c44/c33+( ),–=

m
a1

2
-----

c13

c33
------, n– m2 c11

c33
------– ,= =

A
ε3/2

2h
------- ε 2

3
---h+ 

  ,=
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
(B.2)

(B.3)

REFERENCES
1. Lord Rayleigh, Proc. London Math. Soc. 17, 54 (1887).
2. E. I. Urazakov and L. A. Fal’kovskiœ, Zh. Éksp. Teor. Fiz.

63 (6), 2297 (1972) [Sov. Phys. JETP 36, 1214 (1972)].
3. A. A. Maradudin and D. L. Mills, Ann. Phys. (NY) 100

(2), 262 (1976).
4. V. G. Polevoœ, Akust. Zh. 29 (1), 91 (1983) [Sov. Phys.

Acoust. 29, 52 (1983)].
5. V. V. Kosachev, Yu. N. Lokhov, and V. N. Chukov, Zh.

Éksp. Teor. Fiz. 94 (9), 162 (1988) [Sov. Phys. JETP 67,
1825 (1988)].

6. Nguen van Chong, Ukr. Fiz. Zh. 28 (11), 1699 (1983).
7. V. V. Krylov and V. E. Lyamov, Zh. Tekh. Fiz. 49 (11),

2514 (1979) [Sov. Phys. Tech. Phys. 24, 1424 (1979)].
8. V. V. Kosachev, Yu. N. Lokhov, and M. V. Polikarpov, in

Abstracts of XIII All-Union Conference on Acoustic–
Electronics and Quantum Acoustics (1986), Vol. 1,
p. 131.

9. A. G. Eguiluz and A. A. Maradudin, Phys. Rev. B 28 (2),
728 (1983).

10. A. P. Mayer and M. Lehner, Waves in Random Media 4
(3), 321 (1994).

11. X. Huang and A. A. Maradudin, Phys. Rev. B 36 (15),
7827 (1987).

12. V. V. Kosachev, Yu. N. Lokhov, and V. N. Chukov, Fiz.
Tverd. Tela (Leningrad) 32 (7), 2045 (1990) [Sov. Phys.
Solid State 32, 1189 (1990)].

13. V. V. Kosachev, Yu. N. Lokhov, and V. N. Chukov, Solid
State Commun. 73 (8), 535 (1990).

14. S. Z. Dunin and G. A. Maksimov, Preprint No. 032-88,
MIFI (Moscow Engineering Physics Institute, 1988).

15. V. V. Kosachev and A. V. Shchegrov, Ann. Phys. (NY)
240 (2), 225 (1995).

16. A. V. Shchegrov, J. Appl. Phys. 78 (3), 1565 (1995).
17. L. Dobrzynski and A. A. Maradudin, Phys. Rev. B 14 (6),

2200 (1976); Erratum: Phys. Rev. B 15 (4), 2432 (1977).
18. O. L. Anderson, Phys. Acoust. B 3, 80 (1965).

Translated by A. Kazantsev

B Im
td

2 ε
----------

ε2α̃ p t( )

α̃m t( ) 1 a1t–( ) t 1–+
------------------------------------------------------

0

1

∫–=

× t t 1–
2 a1 h–( )2

h2+
2

----------------------------------- ε t 1–
2

-----------------+




+
ε t 1–

2
-----------------

t2 a1 h–( )
εα pα̃ p t( )
------------------------ ε

c33 c13+
c33

------------------- a1– 
 +

× α̃m t( )
c13

c33
------ t 1–– 

  α̃m t( ) a1 ε–( )+




,

E πd a1
2 2a1h–

3
2
---h2+

=

+
ε2

2
---- a1 ε–( )2 a1 h–( )γ–+ 

 .
3



  

Physics of the Solid State, Vol. 45, No. 2, 2003, pp. 400–407. Translated from Fizika Tverdogo Tela, Vol. 45, No. 2, 2003, pp. 377–383.
Original Russian Text Copyright © 2003 by Rashkovich, Petrova, Shustin, Chernevich.

                                                                                              

LOW-DIMENSIONAL SYSTEMS 
AND SURFACE PHYSICS

       
Formation of a Dislocation Spiral on the (010) Face
of a Potassium Hydrogen Phthalate Crystal

L. N. Rashkovich, E. V. Petrova, O. A. Shustin, and T. G. Chernevich
Moscow State University, Vorob’evy gory, Moscow, 119992 Russia

e-mail: rashk@polc49.phys.msu.su
Received February 21, 2002; in final form, March 28, 2002

Abstract—The atomic-force microscopy method is used to study the structure of the surface and the formation
of a dislocation spiral on the (010) face of a potassium hydrogen phthalate crystal grown from a water–alcohol
solution. It is shown that the face grows according to the dislocation mechanism. Channels surrounding dislo-
cation sources with a large Burgers vector are discovered. The density of kinks at the steps was so high that no
smooth regions were observed between kinks. The velocity of a step fluctuates, with the fluctuations growing
in proportion to the fourth root of time. During the formation of a spiral, a segment of a step acquires a constant
velocity independent of its length after attainment of the critical length. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Immediately after Frank’s discovery of the disloca-
tion mechanism of crystal growth, Burton, Cabrera, and
Frank [1] used the Gibbs–Thomson relation to prove
that the separation λ between the turns of an isotropic
dislocation spiral must be equal to 19 times the radius
rc of a two-dimensional critical nucleus. The radius rc

and the above-mentioned relation (for small supersatu-
ration) can be written in the form

(1)

where Ω is the volume of a building unit of the crystal;
α is the free surface energy of the step riser; ∆µ is the
difference in the chemical potentials of particles in the
medium and in the crystal; r and V are the radius of cur-
vature and the velocity of a step, respectively; and V∞ is
the velocity of a direct step. In the case of a polygonal
spiral, rc/r = lc/l, where l is the length of a side of an
m-gonal spiral and lc = 2rc .

For almost 50 years following this discovery, the
separation between the turns of isotropic, elliptic, and
polygonal spirals was calculated using various methods
[2–7]. In those publications, relation (1) was used and
values approximately equal to 19rc were obtained. At
that time, the theory had not been verified experimen-
tally; the above estimate was assumed to be correct and
was used to calculate, for example, the free linear
energy of steps. However, as early as in 1973, Voronkov
[8] proved that a polygonal spiral should satisfy, instead
of Eq. (1), the equation

(2)

rc Ωα /∆µ,=

V V∞ 1 rc/r–( ),=

π/m( )tan

l
lc

--- 1– A
V /V∞

1 V /V∞( )2–
--------------------------------- 1

2
π
--- V /V∞arcsin– 

  ,=
1063-7834/03/4502- $24.00 © 20400
where A = πkTh/2Ωα for a square critical nucleus and
h is the separation between the rows of building units.
A distinguishing feature of Eq. (2) is that, for A < 1, the
value of V increases with l/lc much more rapidly than
follows from Eq. (1). It was also proved in [8] that the
velocity of a side of the polygon is independent of its
length for a small supersaturation. The distance
between the turns of the spiral is equal to the product of
the time T it takes for one spiral turn to form and the
velocity V∞ of a side; for a square spiral, we have T =
4lc/V∞ and, consequently, λ = 4lc. Therefore, for a large
supersaturation, when lc is smaller than the mean dis-
tance between kinks, the value of λ must be of the order
of this distance and be independent of supersaturation
[8]. It should be noted that, for a large density of kinks,
the latter condition may be violated. Relation (2) has
not been verified experimentally either.

The contradiction to the Gibbs–Thomson formula
was noted for the first time in [9], where it was found
that the velocity of steps on a face of a growing calcite
crystal increases with the length of the steps at a rate
much higher than that predicted by formula (1). Hig-
gins et al. [10] studied the growth of barium sulfate
under hydrothermal conditions by using an atomic-
force microscope (AFM) and also proved that formula (1)
was inconsistent with their results. In [9], as well as in
[10], an explanation was sought on the basis of the con-
cepts developed by Voronkov [8, 11], but Higgins et al.
were likely unaware of Eq. (2). The discrepancy with
formula (1) was observed in [12, 13], where crystalliza-
tion of the rhombic and monoclinic modifications of
lysozyme was investigated.

Our study was also aimed at verification of the gen-
erally accepted (so far) relation (1) from an analysis of
the formation of a new turn of a dislocation spiral on a
face of a potassium hydrogen phthalate (KAP) crystal.
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In contrast to barium sulfate and lysozyme, whose steps
contain a small number of kinks and are displaced
through the formation of one-dimensional nuclei (the
density of kinks in calcite is unknown), the density of
kinks in KAP is high.

PBP crystals have been grown for a long time [14],
and their structure is well known. These crystals belong
to the rhombic-pyramidal class with a well-developed
lateral pinacoid face (010) possessing a perfect cleav-
age. The lattice parameters are a = 0.9609 nm, b =
1.3857 nm, c = 0.6466 nm, and z = 4; the space symme-
try group is Pca21; and c is a polar axis [15, 16]. The
evolution of growth spirals on the (010) face was
observed in situ at 2-s intervals using the phase contrast
method, but the velocity of steps was too high to trace
the process in detail [17, 18]. The energy of strong link
chains was calculated in [15]; it was concluded that the
steps on the (010) face are predominantly oriented in
the [101] and [102] directions. The same authors deter-
mined the kinetic coefficient (the proportionality factor
between the velocity of steps and supersaturation) of
rapidly moving steps in the [101] direction, which was
found to be equal to 50 µm/s. The velocity of steps with
the same orientation, but moving in the opposite direc-
tion relative to the c axis, was smaller by a factor of 10
[19].

The large velocity of steps even for small supersatu-
ration did not allow the authors of recent publications
[20–23] to study the growth of the (010) face in situ
with the help of AFM. They obtained ex situ perfect
images of spirals in crystals grown for different super-
saturations in nominally pure solutions, as well as in
solutions containing various impurities. By assuming
that λ = 19rc, those authors determined the free surface
energy of the end faces of rapidly and slowly growing
steps (50 and 4 erg/cm2, respectively) from the depen-
dence of the distance between the spiral turns on the
degree of supersaturation.

2. EXPERIMENTAL TECHNIQUE

Crystals with a size up to 5 mm were obtained by
spontaneous crystallization from an aqueous solution.
Owing to perfect cleavage over the (010) face, the sur-
face of this face can easily be renewed with the help of
an adhesive tape to which a layer of thickness of a few
tens of micrometers is stuck.

Experiments were made in the contact regime in a
Digital Instruments Nanoscope-3 liquid cell of an AFM
using silicon nitride tips. As in [20–23], we could not
make reliable in situ measurements in the aqueous solu-
tion. For this reason, crystallization was carried out
from a water–alcohol solution consisting of eight parts
(by weight) 96% ethyl alcohol and two parts saturated
aqueous solution of PBP in order to reduce the solubil-
ity and the growth rate. The solvent with crystals in it
was held for several days at 30°C; the obtained satu-
rated solution was placed in an air thermostat, from
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which it flowed by gravity to the measuring cell. The
pressure and flow rate were held constant by placing the
solution into a Mariotte vessel. The flow rate was cho-
sen such that the crystal growth rate was independent of
the velocity of the solution flow. The experiments were
made at a temperature 5°C higher than room tempera-
ture. The degree of supersaturation was varied by
changing the solution temperature and was maintained
constant in the course of measurements. The tempera-
ture dependence of solubility of KAP in the water–
alcohol solution is not known; therefore, the degree of
supersaturation could not be determined.

3. MORPHOLOGY OF THE GROWING SURFACE 
AND STEP VELOCITY FLUCTUATIONS

The sources of growth were screw dislocations gen-
erating spiral hillocks with steps of height equal to the
unit-cell parameter b (Fig. 1). At the points of emer-
gence of dislocations, channels were observed (Fig. 2);
this was predicted by Frank in [24] and detected for the
first time on a face of potassium dihydrophosphate in
[7]. The radius of the channels was approximately pro-
portional to the square of the Burgers vector of the dis-
location source. However, the channels could not be
seen in all cases (e.g., there is no channel in Fig. 1a or
in Fig. 2 at the sources of single-thread spirals).

Using a large magnification, we visualized unit cells
on the surface. The distances between the cells match
the x-ray data diffraction (Fig. 3). A fragment of a step
with such a magnification is strongly rugged and occu-
pies the entire field of vision. This indicates a high den-
sity of kinks, as well as considerable fluctuations in the
velocity of individual parts of steps.

We recorded the image of a small region of a step in
the single-row-scanning regime. In this regime, slow
motion of the AFM scanner (along the vertical) is ter-
minated and a change in the position of a small segment
on a step (equal to one scan, which is ~0.6 nm long in
our case; Fig. 4) with time is observed. The coordinate
of this segment was measured in each of 512 scans at a
time interval of 0.1 s. The obtained x(t) dependence is
presented in Fig. 5. It can be seen that, in addition to the
displacement of a step as a whole with an average
velocity of the order of 0.3 nm/s, the segment of the
step moves back and forth over a distance dx ≈ ±4 nm
(~±7 lattice parameters).

In an analysis of fluctuations in the position of a seg-
ment on a step, we assumed, in the first approximation,
that the velocity of the step was constant and approxi-
mated the data depicted in Fig. 5 by a linear depen-
dence. The fluctuations δx of the step position from its
mean value as a function of time was calculated by sub-
tracting the coordinate of the actual position of the step
from the coordinate of the corresponding point on the
approximating straight line. Then, we constructed the
3
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1 µm 1 µm

Fig. 1. AFM image of dislocation hillocks on the (010) face of a KAP crystal: (a) double spiral and (b) Frank–Read source. The step
height is 1.4 nm. The angles between the segments of the steps are distorted due to the small difference between the velocities of
the steps and the measuring tip. The number of scans is 512, and the scanning frequency is (a) 10 and (b) 20 Hz.

(a) (b)
autocorrelation function 〈(δx)2〉  for the dependence on
time ∆t:

(3)

This expression defines the mean square change in the
amplitude of fluctuations in the position of the step over

δx( )2〈 〉 δ x t( ) δx t ∆t+( )–[ ] 2〈 〉 .=

1 µm

Fig. 2. Region on a face with the emergence of several dis-
locations. Channels surrounding the sources of (1) double
and (2) triple spirals can be seen.

1

2

PH
time ∆t: for each instant t, the change in the coordinate
of the step during the time interval ∆t is calculated, and
the obtained values are averaged over all values of the
running time t. In view of the poor approximation of the
results presented in Fig. 5 by a linear dependence, we
had to confine the analysis to the maximal value of ∆t ≈
3 s, since the motion of the step as a whole starts to be
manifested for ∆t > 4 s. When plotted on the log–log
scale, dependence (3) turned out to be linear with a
slope equal to 0.54 ± 0.02, i.e., close to 0.5. Conse-
quently, we can assume that 〈(δx)2〉  increases in propor-
tion to the square root of time ∆t (Fig. 6). This fact is
reflected in the following dependence, in which we
write t instead of ∆t, indicating now the time character-
izing the rate of fluctuations buildup:

(4)

The proportionality factor was determined from the
slope of the straight line in Fig. 6: χ = 61.2 ± 0.3 nm4/s =
(6.12 ± 0.3) × 10–27 cm4/s. The proportionality of δx to
the fourth root of the time was predicted by Voronkov
[25] and discovered by us earlier for steps on the faces
of potassium dihydrophosphate [26] and of rhombic
[27] and monoclinic [13] lysozyme. A number of fun-
damental parameters of crystallization could be deter-
mined from the value of χ if we could ascertain the
structural unit of the crystal and determine its size.

4. FORMATION OF A DISLOCATION SPIRAL

Figure 7 shows the AFM images of several frames
obtained by us that characterize the evolution of a turn
of a dislocation spiral. The images were recorded under

δx( )2〈 〉 χ t( )1/2.=
YSICS OF THE SOLID STATE      Vol. 45      No. 2      2003
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the following conditions. The frame size was 5 × 5 µm,
and only the half of the frame containing 64 scans at a
scanning frequency of 30.5 Hz was recorded. The time
of recording of one image was 2.097 s, and the error in
the measurement of distances (discretization step) was
39 nm. The choice of such conditions was dictated by
the compromise that had to be achieved between the
minimal recording time and the maximal possible accu-
racy of measurements. We could not improve the accu-
racy, since an insufficiently large segment of a spiral
was in the frame in the case of large magnification. The
velocity of slow movement of the measuring needle
was 1192 nm/s. It will be proved below that this value
is approximately 50 times as large as the velocity of
steps. In spite of such a difference, the orientation of
steps in the consecutive upward and downward scan-
ning was slightly distorted. For this reason, Fig. 7
shows images obtained for the same direction of scan-
ning. In frame 6, the numbering of step segments is
indicated; the designations of the angles between the
segments are shown in frame 1.

The main difference in the shape of the spiral
observed by us from the images obtained earlier [20–
23] lies in a much smaller (by a factor of ~5) difference
in the separations between the turns along the positive
and negative directions of the c axis. In all probability,
this is due to the fact that a water–alcohol solution was
used as the solvent instead of water.

In order to illustrate the mechanism of formation of
a new turn of the dislocation spiral more distinctly,
Fig. 8 shows the superposition of the frames depicted in
Fig. 7. Each new segment emerging on the step is elon-
gated first due to the motion of the neighboring segment
and then itself starts moving after attaining a critical
length. At this instant, a new segment appears. When
the latter segment attains its critical length and starts
moving, the rate of elongation of the former segment
increases and is determined by the displacement of two
neighboring segments. This process can be recorded as
follows. Let us denote the length of the segments and
their velocity by li and v i, respectively, where the values
of i = 1, 2, 3, 4 correspond to the numbering of seg-
ments in Fig. 7; lc, i is the critical length; and t is the
time. In this case, li = 0 as long as li + 1 < lc, i + 1 and li =
lc, i for li − 1 = 0:

(5)

It should be noted that, for i = 1, the index i – 1 corre-
sponds to the fourth segment of the next turn, while for
i = 4, the index i + 1 corresponds to the first segment of
the preceding turn.

The time dependence of the segment lengths mea-
sured from the images of the step (Fig. 7) is shown in
Fig. 9. These results characterize the formation of a turn
and the beginning of the formation of the next turn. The

dli/dt v i 1+ , li 1– lc i 1–, ,<=

dli/dt v i 1+ v i 1– , li 1– lc i 1–, .>+=
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c
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Fig. 3. Structure of a face with high resolution. Unit cells
are clearly seen even without noise filtration by using Fou-
rier transforms. The number of scans is 512, and the scan-
ning frequency is 60 Hz.
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Fig. 4. Time variation of the coordinate of a segment of a
step moving from left to right. There are 512 scans; and the
scanning frequency is 10 Hz.
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time during which one turn of the spiral is completed is
T = 36 ± 1 s.

It can be seen from Fig. 9 that all experimental
points fit straight lines (5) to within the measuring error
(±20 nm). In crystals of the rhombic-pyramidal class,
the mirror symmetry plane passes along the c axis per-
pendicularly to the (010) face; consequently, the rela-
tions

(6)

should hold and the slopes of the corresponding straight
lines in Fig. 9 should be identical. Relations (6) hold
quite accurately if we take into account the fact that the

α β , v 1 v 4, v 2 v 3,= = =

v 1 v 3+ v 2 v 4+=
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x, nm
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2

0.2 0.6 1.0 1.4 1.8

〈(δx)2〉  nm2

∆t1/2, s1/2

Fig. 5. Time dependence of x(t) plotted according to the
results presented in Fig. 4.

Fig. 6. Autocorrelation function given by Eq. (4), describing
the time dependence of fluctuations of the position of a seg-
ment of a step. The slope of the straight line is 7.82 ±
0.15 nm2/s1/2.
P

actual angle θ between a segment and the horizontal
axis in Figs. 7 and 8 depends on the direction of motion
of the measuring tip (θ↑ or θ↓):  = (  +

)/2. Moreover, the depicted lengths of the second
and third segments in the case of downward motion of
the tip are smaller than the true length, while those for
the first and fourth segments are larger than the true
length. The opposite situation is observed in the case of
upward motion of the tip. Taking into account these
corrections and the errors in our measurements, it was
found that

Judging from these values of the angles, the orienta-
tion of the second and third segments differs slightly
from the directions 〈101〉 , for which γ = 112°. The ori-
entations of the first and fourth segments are close to
the 〈102〉  directions but also differ from them (δ = 73°
for these directions).

The main feature of Fig. 9 is that the quantity dl/dt
is the same for all segments. Let us consider, by way of
example, the elongation of the fourth segment. This
segment appears when the first segment attains its crit-
ical length, and its length starts to increase immediately
at a constant rate equal to the growth rate of the first
segment. This means that the velocity of the first seg-
ment for l1 > lc, 1 is independent of its length. Subse-
quently, the elongation of the fourth segment is acceler-
ated sharply but then proceeds at a constant rate (equal
to v 1 + v 3). Acceleration takes place when the third seg-
ment attains its critical length (and the second segment
appears); consequently, the velocity of this segment is
also independent of its length (for l3 > lc, 3). The same
applies to other segments.

If the velocity of segments is independent of length,
the time during which a spiral completes a turn is the
sum of the times over which each segment attains its
critical length:

Substituting the above values of lci and v i into this for-
mula, we obtain T = 33.1 s, which is only 7% smaller
than the actual time it takes for one turn of the spiral to
form. For a square spiral, the pitch would be equal to
λ = 4lc. In our case, λi = Tv i; these values for the first
and fourth segments differ from those for the second
and third by a factor of two. This corresponds to the val-
ues λ2, 3 ≈ 680 nm (=35.6 s × 19 nm/s) and λ4 ≈ 1350 nm
(=35.6 s × 38 nm/s), measured from the data presented
in Fig. 7.

Let us compare these findings with expressions (1)
and (2). Let us suppose that l/lc = 1.5, which is observed
approximately 4.2 s after the attainment of the critical

θcot θ↑cot

θ↓cot

α β 85°, γ 107°, δ 83°,= = = =

v 1 v 4 38 nm/s, v 2 v 3 19 nm/s,= = = =

lc 1, lc 4, 240 nm, lc 2, lc 3, 180 nm.= = = =

T lc1/v 2 lc4/v 1 lc3/v 4 lc2/v 3.+ + +=
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Fig. 7. AFM images of consecutive stages of formation of a new turn of a dislocation spiral. The time interval between the frames
is 4.2 s; 64 scans with a scanning frequency of 30.5 Hz. Frame 1 shows the beginning of motion of the second segment and the
emergence and elongation of the first segment. After the critical length is reached (frame 2), the first segment starts to move and the
fourth segment emerges in frame 3. In frame 4, the fourth segment attains its critical length. Frames 5 and 6 illustrate the formation
of the third segment. In frames 7 and 8, the second segment is formed and attains its critical length. The turn is completed, the hillock
height increases by the thickness of a unit step, and then the process is repeated. The formation of the turn is completed 2.1 s after
the shooting of frame 8, which explains the large distance between the first and last positions of the spiral in Fig. 8.
length by the segments (Fig. 8). Then, relation (1) gives
V/V∞ = 0.33. We assume that, for l/lc = 1.5, V/V∞ ~ 0.95,
in accordance with the results of experiments, and find
A = 0.813 from relation (2). Knowing A, we can deter-
mine the surface energy α = πkTh/2ΩA. Assuming that
the volume of a building unit is equal to the unit-cell
PHYSICS OF THE SOLID STATE      Vol. 45      No. 2      200
volume Ω = 0.861 × 10–21 cm3 and that the distance
between the rows of building units along the [101]
direction is h = 0.537 × 10–7 cm, we obtain α =
4 erg/cm2 for T = 300 K (k = 1.38 × 10–16 erg/K). If,
however, the building unit is a molecule, then the value
of Ω is a fourth and the value of h is half as large as the
3
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above values and α = 8 erg/cm2. Both values of α are
regarded as the minimum possible values for the inter-
face with a solution of low-molecular compound crys-
tals. If the surface energy is higher than these values,
the value of A will be even smaller and the ratio V/V∞
will be even closer to unity.

Thus, the experimental results confirm the validity
of Eq. (2). It should be noted that the derivation of
Eq. (2) is based on the fact that, for a high density of
kinks, a segment of critical length has an equilibrium
shape and is bent. Only a small central part of the seg-
ment with low Miller indices deviates from the equilib-
rium shape. When the length of the segment increases,
its central part has the smallest curvature and deter-
mines the velocity. The length of the central part
increases much more rapidly than the length of the seg-
ment; for this reason, the velocity attains its maximum
value after a short time [8]. It can clearly be seen from
Figs. 7 and 8 that the segment of critical length has the
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Fig. 8. Change in the position of a spiral over 4.2 s. The
numbers correspond to frames in Fig. 7.

Fig. 9. Time dependence of the length of segments of a step.
The designations of the curves correspond to those of the
segments.
P

shape of a rounded curve, as predicted by the theory;
the angles between adjacent segments are also rounded.

5. CONCLUSIONS

The main results of this study can be formulated as
follows.

(1) It has been shown experimentally that the depen-
dence of the velocity of segments of steps on their
length in the case of a polygonal dislocation spiral with
a high density of kinks does not obey the Gibbs–Thom-
son formula (1); it is determined by relation (2) derived
by Voronkov. This conclusion requires a revision of the
prevailing concepts concerning not only the relation
connecting the spiral pitch with the surface energy and
the degree of supersaturation but also the interaction of
a step with an array of impurity stoppers absorbed at the
crystal surface.

(2) KAP is the fourth crystal for which fluctuations
in the velocity of steps have been studied. It has been
shown that the fluctuations increase in proportion to the
fourth root of time. An analysis of the fluctuations
makes it possible to determine the phenomenological
and microscopic parameters of crystallization. The
analysis is complicated by the lack of information on
the building unit of the crystal.
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