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It is shown that the differential cross sections of the reactions dd  n3He and dd  p3H measured at a
c.m.s. scattering angle θcm = 60° in the interval of the deuteron beam energy 0.5–1.2 GeV demonstrate the scal-
ing behavior dσ/dt ~ s–22, which follows from constituent quark counting rules. It is found also that the differ-
ential cross section of the elastic dp  dp scattering at θcm = 125°–135° follows the scaling regime ~s–16 at
beam energies 0.5–5 GeV. These data are parameterized here using the Reggeon exchange. © 2005 Pleiades
Publishing, Inc.
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Nuclei and nuclear reactions at low and intermediate
energies (or at long and medium distances between
nucleons rNN > 0.5 Fm) traditionally are described in
terms of effective nucleon–nucleon interactions that are
mediated by the exchange of mesons. In the limit of
very high energies (s  ∞) and transferred four-
momenta (t  ∞), the perturbative quantum chromo-
dynamics (pQCD) is expected to be applied to an expla-
nation of nuclear reactions in terms of quarks and glu-
ons. At present, one of the most interesting problems in
nuclear physics is the interplay between the meson–
baryon and quark–gluon pictures of the strong interac-
tion. The main question is the following: at which s and
t values (or, more precisely, relative momenta q of
nucleons in nuclei) does the transition region from the
meson–baryon to the quark–gluon picture of nuclei
set in?

A possible signature for this transition is given by
the constituent counting rules (CCR) [1, 2]. According
to dimensional scaling [1, 2] and pQCD [3], the differ-
ential cross section of a binary reaction AB  CD at
sufficiently high incident energy can be parameterized
for a given c.m.s. scattering angle θcm as

(1)

where n = NA + NB + NC + ND (Ni is the minimum num-
ber of pointlike constituents in the ith hadron; for a lep-
ton, one has Nl = 1) and f(s/t) is a function of θcm. The
existing data for many measured hard scattering pro-
cesses with free hadrons appear to be consistent with
Eq. (1) [4]. At present, in a nuclei sector, only electro-
magnetic processes on the deuteron were found to be
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compatible with the CCR. Thus, the deuteron electro-
magnetic form factor measured at SLAG [5] and JLab
[6] at high momentum transfer Q2 > 4 GeV2 approaches

to the scaling as   Q–10, which is in agree-
ment with the CCR. The deuteron two-body photo-
disintegration cross section γd  pn demonstrates the
s−11 scaling behavior in the data obtained in SLAG
[7−9] at Eγ > 1 GeV, θcm ≈ 90°, and Jlab [10] at Eγ = 1–
2 GeV for θcm = 89°, 69° [11]. According to the data
[10], at a photon energy of 3.1 GeV and scattering angle
θcm = 36°, there is no evidence for the s–11 scaling.
A nearly complete angular distribution of the cross sec-
tion of this reaction recently measured at energies 0.5–
3.0 GeV [12] demonstrates the s–11 behavior at proton
transverse momenta pT > 1.1 GeV/c [13]. Meson-
exchange models fail to explain the γd  pn data at
Eγ > 1 GeV (see, for example, [10] and references [3, 4,
9, 10] therein). Recent models based on quark degrees
of freedom have become quite successful in describing
this data. Thus, the observed in [8, 11] forward–back-
ward asymmetry was described within the Quark–
Gluon String (QGS) model [14] using a nonlinear
Regge trajectory of the nucleon. Other quark models
applied to this reaction are reviewed in [15].

The dimensional scaling was derived before the
QCD was discovered. The main assumption was a self-
similarity hypothesis for the amplitude of the binary
reaction with pointlike constituents in colliding (and
outgoing) particles and sufficiently high s and t [1]. The
pQCD (and, consequently, the scaling behavior within
the pQCD) is expected to be valid at very high trans-
ferred momenta that have not yet been reached in exist-
ing data for nucleon and deuteron form factors [16, 17].
From this point of view, the origin of the scaling behav-
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Fig. 1. The mechanisms of the reaction dd  p3H: one
nucleon exchange (a, b), Reggeon exchange (c, d).

Fig. 2. The differential cross section of the dd  n3He
and dd  p3H reactions at θcm = 60° (a), (b) and dp 
dp at θcm = 127° (c), (d) versus the deuteron beam kinetic
energy. Experimental data in (a), (b) are taken from [20]. In
(c), (d), the experimental data (closed squares), (s), (n),
(open square), and (d) are taken from [22–26], respectively.
The dashed curves give the s–22 (a) and s–16 (c) behavior.
The full curves show the result of calculations using the
Regge formalism given by Eqs. (2)–(4) with the following

parameters: (b) C1 = 1.9 GeV2,  = 0.2 GeV–2, C2 = 3.5,

 = –0.1 GeV–2; (d) C1 = 7.2 GeV2,  = 0.5 GeV–2,

C2 = 1.8,  = –0.1 GeV–2. The upper scales in (a) and (c)

show the relative momentum qpn (GeV/c) in the deuteron
for the ONE mechanism.

R1
2

R2
2

R1
2

R2
2

s–22

s–16
ior observed in the reactions with the deuteron at mod-
erate transferred momenta [5–12] is unclear and con-
sidered in some papers as a potentially misleading indi-
cator of the success of pQCD [15]. Moreover, the
hadron helicity conservation predicted by the pQCD
was not confirmed experimentally in the scaling region
(see [18] and references therein). On the other hand, in
these reactions, the three-momentum transfer Q = 1–
5 GeV/c is large enough to probe very short distances
between nucleons in nuclei, rNN ~ 1/Q < 0.3 Fm, where
0.3 Fm is the size of a constituent quark [19]. One may
expect nucleons to lose their separate identity in this
overlapping region and, therefore, six-quark (or, in the
general case, multiquark) components of a nucleus can
be probed in these reactions. In order to get more
insight into the underlying dynamics of the scaling
behavior, new data are necessary, in particular for had-
ron–nuclei interactions.

In the present paper we show that, in hadron interac-
tions with the participation of the lightest nuclei 2H, 3H,
and 3He, the scaling behavior given by Eq. (1) is also
occurs, specifically, at beam energies around 1 GeV if
the scattering angle is large enough. In order to estimate
at which internal momenta qpn between nucleons in the
deuteron one should expect the scaling onset, we con-
sider here the reaction γd  pn assuming that the one-
nucleon-exchange (ONE) mechanism dominates.
Under this assumption, the cross section is proportional
to the squared wave function of the deuteron in momen-
tum space: dσ ~ |ψd(qpn)|2. Using relativistic kinemat-
ics, we find that qpn is larger than 1 GeV/c at the photon
energy Eγ > 1 GeV and θcm = 90°. Furthermore, assum-
ing for the reaction dd  p3H (or dd  n3He) that
the ONE mechanism dominates (Figs. 1a and 1b), we
get dσ ~ |ψd(qpn)|2 × |Ψh(qNd)|2, where Ψh(qNd) is the
overlap between the 3H(3He) and deuteron wave func-
tions and qNd is the N – d relative momentum in the
3H(3He). On this basis we obtain, for example, at Td =
0.8 GeV and θcm = 90°, the relative momenta qpn =
0.8 GeV/c and qNd = 1.0 GeV/c. These values are close
to those that we have found for the γd  pn reaction
in the scaling region. Therefore, one may expect that
the scaling behavior in the dd  n3He reaction occurs
in the GeV region for large scattering angles, θcm ~ 90°.
In Figs. 2a and 2b, we show the experimental data from
[20] obtained at SATURNE at beam energies 0.3–
1.25 GeV for the maximum measured scattering angle
θcm = 60°. Shown on the upper scale is the minimum
relative momentum in the deuteron for the ONE dia-
gram. One can see that, at beam energies 0.5–1.25 GeV,
the data perfectly follow the s–22 dependence. (In this
reaction, n = 6 + 6 + 9 + 3 = 24.) In Fig. 2a, the dashed
curve represents the s–22 dependence with arbitrary nor-

malization fitted on the data with  = 1.18. For the
ONE diagram in Fig. 1b, which dominates at θcm = 60°,
this region corresponds to the internal momenta qpn =

χn.d . f .
2
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0.55–0.85 GeV/c in the deuteron and qNd = 0.60–
0.94 GeV/c in the 3He (3H) nuclei. Therefore, within
this model, the probed NN distances in the deuteron are
less than rNN < 1/0.55 GeV/c = 0.35 Fm. This regime, in
principle, corresponds to the formation of a six-quark
configuration in the deuteron. At θcm = 90°, the dia-
grams in Figs. 1a and 1b are equivalent and correspond
to higher momenta qpn = 0.7–1.1 GeV/c and qNd = 0.80–
1.22 GeV/c for the same beam energies 0.5–1.25 GeV.
Therefore, continuation of measurements up to θcm =
90° is very desirable to confirm the observed s–22 behav-
ior. One can see on the linear scale that the cross section
s–22dσ/dt demonstrates some oscillations that are simi-

lar to those observed in pp scattering at  = 90° [21].
However, the number of available experimental points
is too small in the scaling region (five or six) and has to
be increased to reach a more definite conclusion.

The dp  dp data obtained in different experi-
ments [22–26] at the c.m.s. scattering angle θcm = 127°
are shown in Figs. 2c and 2d versus the deuteron beam
energy Td. This scattering angle corresponds to a region
of the minimum in the angular dependence of the dif-
ferential cross section dp  dp, where the contribu-
tion of the three-body forces (and nonnucleon degrees
of freedom in the deuteron) is expected to be best pro-
nounced [27, 28]. One can see that, at low energies
(<0.25 GeV), the cross section falls very fast with
increasing Td, but the slope of the energy dependence is
sharply changed at about 0.5 GeV. Above this energy,
the cross section appears to follow the s–16 scaling
behavior. (In the dp  dp, one has n = 3 + 6 + 3 + 6 =
18.) We can show that a similar behavior is observed at

θcm = 135°. However, the parameter  is rather

high for the dp  dp data, namely,  = 4.3. The

high  value can presumably be attributed to
uncertainties due to systematic errors that are different
in various experiments [26]. Therefore, new, more
detailed data are needed, preferably from one experi-
ment covering the whole interval of energies Td = 1–
5 GeV. We notice that the discrepancy observed in [29]
between the results of the Faddeev calculations and the
measured unpolarized cross section of the pd  pd at
Tp = 0.25 GeV (corresponding to Td = 0.5 GeV in the
dp  dp), is, presumably, caused by the deuteron six-
quark component that is not taken into account in [29]
but, as seen from Fig. 2c, starts playing a role in the
pd  pd at this kinematics.

Due to very high internal momenta in the d  pn
and Nd  3H(3He) vertices, q ~ 1 GeV/c, calculation
with the 3H(3He) and deuteron wave functions obtained
from the Schrödinger equation with conventional NN
potentials are likely unrealistic. Since, in the reactions
γd  pn, dd  p3H (or dd  n3He), and dp 
dp (in the backward hemisphere), an important contri-
bution comes from the baryon-exchange mechanism,

θcm

χn.d . f .
2

χn.d . f .
2

χn.d . f .
2
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for numerical estimations we apply here the Reggeon
exchange formalism developed earlier for the pp 
dπ+ reaction at –t < 1.6 (GeV/c)2 [30] and the γd  pn
at Eγ > 1 GeV [14]. In this way, one may estimate to
what extent the observed scaling behavior in the dd 
n3He (dd  p3H) and dp  dp reactions is con-
nected to that in the γd  pn. The amplitude of the
reaction dd  p3H can be written as

(2)

where the first (second) term corresponds to the dia-
gram in Figs. 1a, 1b and the plus sign is chosen due to
the Bose statistics for the deuterons. The amplitude
T(s, t) is written in the Regge form:

(3)

We use here the effective Regge trajectory for the
nucleon from [30]: αN(t) = αN(0) + t + /2t2 with

the parameters αN(0) = –0.5,  = 0.9 GeV–2 and  =

0.4 GeV–4, so αN( ) = 1/2, where mN is the nucleon
mass. The function F(t) is parameterized as [30]

(4)

where the first term explicitly takes into account the
nucleon pole in the t channel. According to [30], the
second term at R2 ≈ 0 is important at |t | > 1 GeV2, which
indicates the presence of structureless configurations in
the deuteron (3He, 3H) wave functions at short dis-
tances. The results of calculations are shown in Fig. 2b,
and the parameters C and R2 are given in the caption.
One can see fairly good agreement with the data. For
the reactions dd  p3H and dd  n3He, the param-

eter  is lower than that used in [30] (  = 3 GeV2)

to fit the pp  dπ+ data. Such a diminishing  is
likely connected to a much more intensive high-
momentum nucleon component of the 3He(3H) wave
function as compared with the deuteron [31]. The
increasing ratio C1/C2 could mean that multiquark con-
figurations in the 3He(3H) become more important at
given t as compared with the deuteron. We also per-
formed this analysis for the dp  dp reaction and
obtained good agreement with the data under minor

modification of the parameters  and C1/C2 (see
Fig. 2d).

In conclusion, the CCR scaling behavior is observed
in cross sections of hadron–nucleus reactions with the
deuteron and 3He(3H) nuclei. This behavior sets in at
energies around 1 GeV and large scattering angles,
where the high-momentum components of nuclear
wave functions are required in the Schrödinger formal-
ism. To confirm this observation, more detailed data are

T T s t,( ) T s u,( ),+=

T s t,( ) F t( ) s
s0
---- 

  α N t( ) iπ
2
----- α N t( ) 1

2
---– 

 – .exp=

α N' α N''

α N' α N''

mN
2

F t( )
C1 R1

2t( )exp

mN
2 t–

---------------------------- C2 R2
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necessary for these and other exclusive reactions in the
pd, dd, p3He collisions, probably including meson pro-
duction.

I am thankful to V.I. Komarov, A.V. Kulikov,
V.V. Kurbatov, B. Pire, and H. Seyfarth for stimulating
discussions.
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QCD equations for the generating functions are applied to separate soft and hard jets in e+e– processes of mul-
tiparticle production. The dependence of average multiplicities and higher moments of multiplicity distribu-
tions of particles created in “newly born” soft subjets on the share of energy devoted to them is calculated in
fixed coupling gluodynamics. This dependence is the same as for the total multiplicity up to a constant factor
if soft jets are defined as those carrying out a fixed share of initial energy at all energies. The constant factor
depends on this share in a nontrivial way. Other definitions are also proposed. The relation between these quan-
tities for soft and hard processes is discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 12.38.Bx
In multiparticle production, it is quite a common
procedure to separate all processes into soft and hard.
Even though the intuitive approach is appealing, the
criteria of the separation differ. It is shown below that
QCD equations for the generating functions can be
applied to this problem. It is demonstrated how the
average multiplicities of soft and hard processes
depend on the parameter that is used to distinguish
between them. The same method can be applied to any
moment of the multiplicity distributions, as is explicitly
shown for the second moment (dispersion).

The QCD equations for the generating functions
(functionals) have been known for a long time (e.g., see
[1]). This is the system of two integro-differential equa-
tions that describe the evolution of quark and gluon jets.
They are quite useful for the prediction and description
of many properties of high-energy jets (for reviews see,
e.g., [2–4]). It has been found that the main qualitative
features of the process can be safely predicted by con-
sidering the single equation for gluon-jet evolution. In
that, way one neglects quarks and treats gluodynamics
instead of chromodynamics. Moreover, its solution
may be further simplified if one disregards the running
property of the QCD coupling strength and considers it
to be fixed (see [5]). To avoid some technicalities, we
adopt this approach in what follows and treat the multi-
plicity distributions of gluon jets. Both quark and gluon
jets with running coupling strengths will be considered
in the QCD context elsewhere.

When an initial gluon splits into two gluons (sub-
jets), its energy E is additively shared among them, and
the multiplicity of the whole process is a sum of the
multiplicities of these two subjets. The energy depen-
dence of the mean multiplicity of particles created in a
subjet, which carries out some share of the initial

¶ This article was submitted by the author in English.
0021-3640/05/8107- $26.00 0307
energy xE with a fixed value of x, must be the same as
for the initial jet if the gluons are equivalent. In experi-
ments it is more convenient to deal with values of x
ranging in some finite interval to get enough statistics.
One of the ways to define this is to separate all of the
subjets into soft and hard according to whether the
parameter x is smaller or larger than some x0. We show
how the properties of these two sets behave with
energy. We shall also consider the case when the param-
eter x0 depends on the initial energy.

If the probability to create n particles1 in a jet is
denoted as Pn, the generating function G is defined as

(1)

where z is an auxiliary variable; y = ln(pΘ/Q0) =
ln(2Q/Q0) is the evolution parameter defining the
energy scale; p is the initial momentum; Θ is the angle
of the divergence of the jet (jet opening angle), assumed
here to be fixed; Q is the jet virtuality; and Q0 = const.

The gluodynamics equation for the generating func-
tion is written as

(2)

where

(3)

1 In what follows, we adopt the local parton–hadron duality
hypothesis with no difference between the notions of particles
and partons up to some irrelevant factor.

G z y,( ) Pn y( ) 1 z+( )n,
n 0=

∞

∑=

dG
dy
------- xK x( )γ0

2
d

0

1

∫=

× G y xln+( )G y 1 x–( )ln+( ) G y( )–[ ] ,

γ0
2 6αS/π,=
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αS is the coupling strength, and the kernel K(x) is

(4)

One should not be surprised that the shares of
energy x and 1 – x split between the two gluons after the
initial one divides to form them enter asymmetrically
into this equation. Surely, the initial equation is fully
symmetrical. The asymmetry is introduced when the
phase space is separated into two equally contributing
parts: then, the jet with the share x is called the “newly
born” one (for more details, see [1]). Therefore, we
shall call soft processes those in which soft newly born
jets are produced, i.e., those where x is sufficiently
small (x ≤ x0 ! 1). In e+e– experiments, this would cor-
respond to considering soft newly born gluon jets with
energies Eg ≤ x0E ! E in three-jet events.

Before separating soft and hard jets, let us stress
that, at a given energy, this is an additive procedure for
probabilities Pn = Pns + Pnh and, consequently, for G =
Gs + Gh, where the indices s and h are for soft and hard
processes, respectively. It is convenient to rewrite the
generating function in terms of unnormalized factorial
moments

(5)

so that

(6)

The low-rank moments are

(7)

and D is the dispersion

(8)

It is seen from Eq. (5) that unnormalized moments are
additive also. To retain the additivity property, we
define the normalized factorial moments for soft and
hard jets with the normalization to the total mean mul-
tiplicity but not to their multiplicities:

(9)

Thus, the total multiplicity is in the denominator. The
additivity would be lost if soft and hard values were
normalized to their average multiplicities 〈ns〉  and 〈nh〉 .
Introducing fq = Fq/q!, we write

(10)

K x( ) 1/x 1 x–( ) 2 x 1 x–( )–[ ] .–=

^q Pnn n 1–( )… n q– 1+( )
n

∑ dqG z( )
dzq

-----------------
z 0=

,= =

G
zq

q!
-----^q.

q 0=

∞

∑=

^1 n〈 〉 , ^2 n n 1–( )〈 〉 D2 n〈 〉 2 n〈 〉–+= = =

D2 n2〈 〉 n〈 〉 2.–=

Fq

^q

n〈 〉 q
----------

^qs ^qh+

n〈 〉 q
----------------------- Fqs Fqh.+= = =

G z
q

n〈 〉 q f q.
q 0=

∞

∑=
The scaling property of the fixed coupling QCD [5]
allows one to look for the solution of the Eq. (2) with

(11)

and get the system of iterative equations for fq:

(12)

By definition, f1 = 1, and one gets at, q = 1, the relation
between γ and γ0

(13)

where

(14)

Let us point out that Eq. (13) is derived from the equa-
tion for mean multiplicities that follows from Eq. (2):

(15)

These results are well known [5]. Here, we would like
to consider Eq. (13) in more detail. As follows from
Eq. (15), the first two terms in the brackets correspond
to the mean multiplicities of two subjets, and their sum
is larger than the third term denoting the mean multi-
plicity of the initial jet (all divided by Eγ). Therefore,
the integrand is positive, and Eq. (13) defines the anom-
alous dimension γ. This does not contradict to the state-
ment that, for a given event, the total multiplicity is the
sum of the multiplicities in the two subjets because the
averages in Eq. (15) are done at different energies.

For sufficiently small γ and γ0, one gets

(16)

For the second moment, one gets the following from
Eq. (12) at q = 2 for small γ:

(17)

Now, according to the above discussion, we define soft
jets as those whose summed constituent particle ener-
gies are less than some x0E. First, consider x0 = const
and small. Then, we should choose the upper limit of

n〈 〉 γy( ) γ const=( )exp∝

γq f q γ0
2

xK x( ) xγq 1 x–( )γq 1–+( ) f q∫d

0

1

∫=

+ xγm 1 x–( )γ q m–( ) f m f q m–

m 1=

q 1–

∑ .
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integration in Eq. (12) equal to x0. Therefore, the
moments of soft processes fqs are calculated as

(18)

One should not be confused that the total moments
(obtained from the average multiplicities of both soft
and hard jets) are in the integrand of Eq. (18). This is
related to the difference between the notions of multi-
plicity in a given event and their averages discussed
above. The integration over small x up to x0 chooses just
the mean multiplicity of particles belonging to soft jets
〈ns〉 , while the integration from x0 to 1 gives that for
hard jets.

For q = 1, one gets from (18)

(19)

For small x0, this is

(20)

(21)

Thus, we have found the energy dependence of mean
multiplicity of particles in a set of subjets with low
energies Es ≤ x0E. As expected for constant x0, it is the
same as the energy dependence of the total multiplicity
with a different factor in front of it. Namely, this depen-
dence should be checked first with the experimental
data. Imposed on one another, these figures should
coincide up to normalization factor (19). This would
confirm the universality of gluons in jets.

Quite interesting is the nontrivial dependence of the
normalization factor in Eq. (19) on the parameter x0,

which does not coincide simply with . It reflects the
structure of the QCD kernel K(x). The main depen-
dence on the cutoff parameter x0 is given for x0 ! 1 by

the factor  with the same power as in the dependence
of total multiplicity on energy. This corresponds to sub-
jets with the largest energy of the set. However, with an
increase in x0, this dependence is modified according to
Eqs. (19)–(21). The negative corrections become more
important in Eq. (21). They are induced by subjets with
energies lower than x0E, and their shape reflects the fact
that these subjets are weighted according to the kernel

γq f qs γ0
2

xK x( ) xγq 1 x–( )γq 1–+( ) f qd

0

x0

∫=

+ xγm 1 x–( )γ q m–( ) f m f q m–

m 1=

q 1–

∑ .

ns〈 〉
n〈 〉

----------
M1 x0 γ,( )
M1 1 γ,( )
-----------------------.=
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----------
γ0

2

γ2
-----x0

γN1 x0 γ,( ),≈

N1 x0 γ,( ) 1 γ2x0
1 γ––

2γ
1 γ+
------------x0–=
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4
----------------------x0

2 γ– 3γ
2 γ+
------------x0

2 γ2 2 γ+( )
3

----------------------x0
3 γ– .–+

x0
γ

x0
γ

JETP LETTERS      Vol. 81      No. 7      2005
K(x) determined by the QCD Lagrangian. The decrease
in the normalization factor corresponds to the diminish-
ing role of very low-energy jets at higher initial ener-
gies. This should be also checked experimentally.

If plotted as a function of the maximum energy in a
set of jets em, the mean multiplicity is

(22)

This recalls Eq. (11) with the correction factor in the
brackets (for em ! E as in (21)).

This is the consequence of the scaling property of
the fixed coupling QCD that results in the jet self-simi-
larity. The relative weights of soft and hard processes

are determined by the factor /γ2, as seen from
Eqs. (20) and (21). They can be used to find out this
ratio experimentally.

For q = 2, we obtain

(23)

where

(24)

For small x0, one gets

(25)

(26)

Again, the main dependence on the cutoff parameter x0

is provided by the factor .
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The values of mean multiplicity and second normalized fac-
torial moment for different values of the coupling strength
and cutoff parameters x0

x0

γ = 0.5,
γ0 = 0.7

γ = 0.4,
γ0 = 0.516

γ = 0.3,
γ0 = 0.36

ns/n F2s ns/n F2s ns/n F2s

0.1 0.543 0.39 0.605 0.66 0.680 0.76

0.2 0.702 0.51 0.746 0.83 0.798 0.91

0.3 0.798 0.59 0.829 0.93 0.865 1.00
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Using these equations, we have calculated the mean
multiplicities and second moments of multiplicity dis-
tributions for soft jets. They are shown in the table for
different choices of γ and γ0 considered to be the most
realistic ones in previous studies. Note that M1(z, 2γ) =
0 for γ = 0.5 (and so is N1(x0, 2γ)). One can notice that,

at larger x0, the values in the table decline from 
behavior in accordance with Eqs. (19) and (23).

The values for hard jets are obtained by subtracting
these results from the values for the total process. Small
values of the second factorial moments do not imply
that multiplicity distributions in soft jets are sub-Pois-
sonian, because they are normalized to the total mean
multiplicity. To get the genuine second factorial
moments for these processes, one should divide the
numbers in the F2s columns to squared values in the ns/n
columns. In this way, one gets quite large numbers,
meaning that these processes are super-Poissonian, but
note that the genuine moments are not additive any-
more. However, the statement about the widths of the
distributions can be compared to experimental data as
well.

In principle, other definitions of soft jets are possi-
ble with x0 = x0(E). Then, one should solve the equation

(27)

which follows from Eq. (15). For example, one can
choose the jets with energies less than some fixed con-
stant independent of the initial energy. This would
imply em = const or x0(E) ∝  1/E, and the exact integra-
tion of Eq. (27) is necessary. However, for qualitative
estimates, Eqs. (20)–(22) can be used. They show that
the average multiplicity tends to a constant at high ener-
gies corresponding to the multiplicity at the upper limit.
At lower energies, it slightly increases with energy due
to the increasing role of jets with energies closest to
their upper limit.

It is well known that, for a running coupling, the

power dependence sγ/2 is replaced by exp(c ). The
qualitative statement about the similar energy behavior
of mean multiplicities in soft and inclusive processes
should be valid also.

The above results can be compared to experimental
data if soft jets are separated in three-jet events. How-
ever, in our treatment we did not consider the common
experimental cutoff, which must be also taken into
account. This is the low-energy cutoff imposed on a soft
jet for the third jet to be observable. It requires the soft
jet to not be extremely soft. Otherwise, the third jet is
not separated and the whole event is considered to be a
two-jet event. Thus, the share of energy must be larger

x0
γ

d ns〈 〉
dE

------------- Eγ 1– γ0
2M1 x0 E( ) γ,( ),=

sln
than some x1, and the integration in Eq. (14) should be
from x1 to x0. For x1 ≤ x0 ! 1, one gets

(28)

where the function v(x) is easily guessed from
Eqs. (20) and (21). At x1 ! x0 ! 1, Eq. (20) is restored.

The cumulative moments of the distribution are not
additive because they are obtained as derivatives of the
generating function logarithm, which is not additive for
additive G. Thus, the Hq moments [6, 7] are not additive
either. Nevertheless, the role of hard jets can be traced
by the preasymptotical oscillations of Hq. These oscil-
lations are induced by the terms of the kernel K additive
to the 1/x term. Thus, the oscillations of Hq are a sensi-
tive test of the shape of the noninfrared terms in the
QCD kernels and their integral contributions. Namely,
these terms contribute much to hard processes because
they favor larger values of x. The stronger their influ-
ence, the closer to zero the intercept of Hq with the
abscissa axis should be. It would be interesting to get
experimental information about the behavior of Hq for
soft and hard jets separately.

In conclusion, the separation of soft and hard jets
according to the share of energy devoted to the “newly
born” jet is proposed. If this is done, the experimentally
measured values of mean multiplicities and other mul-
tiplicity distribution parameters of particles belonging
to the soft jet can be compared with the theoretical pre-
dictions obtained above at different values of this share
of energy. For a constant share, this dependence is the
same as for the average total multiplicity but with a
nontrivial x0 dependence of the factor in front of it.
Some predictions are obtained for energy-dependent
cutoffs. The conclusions can be compared to experi-
ment.
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Grinbaum for useful comments. This work was sup-
ported in part by the Russian Foundation for Basic
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and NSH-1936.2003.2.
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Detonation in an aluminum–fluoroplastic-4 (Teflon) mixture is studied experimentally. To increase reactivity,
the initial mixture is pretreated in a mechanochemical activator. As a result, a mechanically activated composite
is obtained in the form of thin aluminum layers in a Teflon matrix. The action of a shock wave on a composite
sample initiates the steady detonation regime, in which the initial and final substances are in the condensed
state. Depending on the percentage composition and density of the mixture, the detonation velocity varies from
700 to 1300 m/s for the speed of sound below 100 m/s in the initial composition. The steady detonation velocity
changes insignificantly when sample pores are filled with helium instead of air. The results prove that it is pos-
sible in principle to reach the steady detonation regime in reactive condensed mixtures forming final reaction
products in the solid state. © 2005 Pleiades Publishing, Inc.

PACS numbers: 82.33.Vx
Detonation is a self-sustained energy-release pro-
cess propagating in a reactive medium at a constant
velocity exceeding the speed of sound in the initial sub-
stance. As a rule, the detonation of condensed explo-
sives results in the formation of gaseous end products,
and the process of detonation is satisfactorily described
by hydrodynamic theory [1]. Detonation in “gas-free”
systems is not forbidden in principle. Although the
solid-phase detonation of reactive mixtures has long
been studied (see, e.g., [2, 3]), the steady regime has not
yet been attained in such systems. Most gas-free sys-
tems are reactive mixtures of the oxidant–fuel type.
According to Khariton [4], the detonation mechanism
in such systems should be classified as the “mixture”
type. In contrast to homogeneous explosives, no gen-
eral criteria of the kinetics of energy release in the det-
onation of such systems have been established and it is
extremely difficult to estimate the detonation capability
of a mixture with fixed values of density and particle
size. The reaction in mixtures most likely occurs in cen-
ters on the contact surface of reagent particles rather
than in the entire volume of the substance. The reaction
rate is determined not only by the chemical characteris-
tics of reagents but also by the time of component mix-
ing at the front of a shock or detonation wave. The high-
est reaction rate can be expected in porous samples due
to the most favorable conditions for the relative motion
and mixing of the components.

Previously [5], we studied the chemical processes
occurring in mixtures of aluminum with sulfur and
metal oxides under the action of a shock wave. In
experiments with high-density mixtures and intense
0021-3640/05/8107- $26.00 0311
initiation, the reaction decayed at the initial propaga-
tion stage. In this case, the reaction rate was apparently
insufficient for sustaining the process and the substance
was dispersed in an unloading wave before entering the
reaction. The detonation regime with a gradual
decrease in the velocity of propagation over the sample
was reached with low-density charges.

Attempts were made to increase the reactivity of
mixtures. The strongest effect was obtained by using
preliminary mechanochemical activation. Mixtures
were treated in a vibratory mill designed by Aronov [6].
The conditions of mechanical activation were chosen
so that the maximum homogenization of the mixture
was ensured in the absence of the reaction between
reagents in the course of treatment. On the basis of this
method, a procedure was developed for obtaining
mechanically activated energy composites (MAECs),
which are highly homogeneous systems of mechani-
cally bound particles or layers of an oxidant and a fuel
of the submicron size. The reactivity of MAECs is
much higher than that for ordinary mixtures, which
ensures higher velocities of detonation and combustion
processes. It should be noted that the application of the
mechanochemical activation method to the preparation
of energetic materials has begun only recently. For
example, the Arrested Reactive Milling method was
developed in the USA, and it is used to process alumi-
num–oxidant mixtures in a mechanochemical activator
prior to the onset of a chemical reaction [7].

Among aluminum–oxidant mixtures reacting with
the formation of solid products, the aluminum–fluoro-
plastic-4 (Teflon) (Al/Tf) composite is of special inter-
© 2005 Pleiades Publishing, Inc.
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est. This system is advantageous over the mixtures
investigated earlier due to a higher thermal effect of the
chemical reaction between its components. For exam-
ple, the thermal effect of the reaction for the stoichio-
metric mixture (26.5% Al) with condensed end prod-
ucts is equal to 2070 kcal/kg, which exceeds the heat
liberated during the explosion of not only high explo-
sives, but also many aluminized explosive composi-
tions [8]. First results on the Al/Tf 45/55 mixture deto-
nation were reported in [9], where the detonation
regime with a constant velocity was obtained in a
porous MAEC sample. In a density range of 0.4–
0.5 g/cm3, the steady-state detonation velocity
increased when density decreased and was equal to
840 m/s for 0.4 g/cm3.

Ideal detonation in the Al/Tf 45/55 mixture was
thermodynamically analyzed in [10]. As possible prod-
ucts, we considered the gaseous (fluid) phase consisting
of CF4 and F2 molecules, solid and liquid phases of Al
and AlF3, solid graphite and diamond, and liquid car-
bon. The calculations for the initial density range 1.4–
2.0 g/cm3 show that no gas phase is formed at any point
on detonation adiabats. At the same time, each detona-
tion adiabat has a Chapman–Jouguet point at which all
classical conditions of ideal detonation are satisfied [1]:
D = min, S = min, and D–Up = C (S is the entropy, Up is
the mass velocity, and C is the speed of sound in the
detonation products). Unfortunately, the point of the
detonation adiabats at which the Chapman–Jouguet
conditions are satisfied could not be established for
densities below 1.4 g/cm3. Further improvement of the
thermodynamic method for calculating the detonation
parameters of the given mixture is associated primarily
with the derivation of the appropriate equations of state
for the reaction products. However, the thermodynamic
analysis confirms the possibility of steady gas-free det-
onation in the Al/Tf mixture even at the present stage.

In this paper, we report on new experimental results
in the search for gas-free detonation in the Al/Tf MAEC
for various concentrations of the components. For pre-

Fig. 1. Schematic diagram of the experiment.
paring mixtures, we used ASD-6 Al powder formed by
spherical particles with a mean size of 3.6 µm. The F4-
PN Teflon powder contained two fractions: the coarse
(main) fraction with a particle size of 10–300 µm and
the fine fraction with a size of 1.5–2.5 µm. The mixing
and mechanical activation of the components were car-
ried out in Aronov’s vibratory mill with the addition of
a small amount of hexane, which was subsequently
removed by drying the mixture. The energy efficiency
of the mill (i.e., the energy passing through 1 g of the
material per second during grinding) was 9 W/g. To
prevent overheating of the mixture and initiation of the
reaction in the activator, the treatment was carried out
in 45-s cycles. The total activation time was 15 min.
Analysis of the scanning electron microphotographs of
Al/Tf MAEC particles showed that the composite par-
ticles have the shape of flakes consisting of thin alumi-
num layers in a Teflon matrix. The linear size of the
main fraction of particles ranges from 5 to 50 µm,
while their thickness varies from fractions of a
micrometer to 1 µm.

X-ray diffraction analysis of the MAEC shows that
mechanical activation is followed by the broadening of
x-ray lines for both components, which may be due
both to a decrease in the size of crystallites (coherent
scattering regions) and to the accumulation of disloca-
tions. In particular, the analysis indicates that the broad-
ening of the x-ray lines of Al is caused by the formation
of dislocations. The formation of dislocations is appar-
ently associated with the intense plastic deformation of
aluminum under mechanical actions. Deformation is
accompanied by change in the shape (flattening) of the
initially spherical aluminum particles. No products of
chemical reactions between the components are
detected.

The detonation experiments were carried out in
thick-wall composite steel tubes with an inner diameter
of 29 mm, which consisted of individual sections with
a height of 20–30 mm. The schematic diagram of the
experiment is shown in Fig. 1. The Al/Tf mixture was
charged in portions into the tube and slightly com-
pressed. An ammonium perchlorate–acrylic plastic
mixture (95/5) with a mass of 10 g and a density of
0.55 g/cm3 was used as the initiator. According to the
estimate based on the method proposed in [11], the
velocity and pressure of detonation in such a mixture
are 2.5 km/s and 1 GPa, respectively. The initiating
mixture was detonated by an ED-8 electric detonator.
The velocity was measured by electric contact gauges
and quartz optical fibers inserted into the mixture to
half the diameter. The error of velocity measurements
did not exceed 50 m/s. At the end of the charge, a com-
pound witness plate made of duralumin (D16) or Teflon
with a piezoelectric pressure gauge was installed. We
used polyvinylidene fluoride film (PVDF) gauges,
which were prepared and calibrated at the Russian Fed-
eral Nuclear Center VNIIEF. In our experiments, a
PVDF gauge was mounted between two duralumin or
Teflon plates or at the Teflon–acrylic plastic boundary.
JETP LETTERS      Vol. 81      No. 7      2005
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The results of measurements of the detonation velocity
are presented in Fig. 2, which also shows the data for
Al/S/Fe2O3 55/33/12 and Al/MoO3 45/55 mixtures
obtained in similar experiments [5]. For mixtures of
aluminum with sulfur and metal oxides, the decaying
regime was observed. In this case, the process termi-
nated either with the transition to the slow combustion
regime or with the formation of a high-density plug
consisting of a mixture of reaction products and initial
components.

The detonation regime with a constant velocity was
obtained for Al/Tf mixtures. For a mixture with a
weight ratio of 45/55, the steady-state detonation veloc-
ity was 700–850 m/s for a density of 0.4–0.5 g/cm3. As
the stoichiometric ratio of the components (Al/Tf
26.5/73.5) was approached, the detonation velocity
increased, and the length of the segment preceding the
steady regime decreased from 120–150 mm for the
45/55 mixture to 90 mm for the 25/75 mixture. The
steady-state detonation velocity for the 35/65, 30/70,
and 25/75 composites was equal to 1050, 1110, and
1280 m/s, respectively. A further decrease in the alumi-
num concentration reduces the velocity to 700 m/s for
the 15/85 mixture.

To find the effect of atmospheric oxygen filling the
pores of the sample, we performed an experiment in
which the pores of the Al/Tf 45/55 MAEC were filled
with helium. The sample density was 0.49 g/cm3. Prior
to the experiment, air was evacuated from the sample
sealed in the tube and then helium was blown repeat-
edly. The results of this experiment show that filling of
pores with helium instead of air insignificantly reduces
the velocity of the process at the initial stage (by less
than 5%). However, at the end of the charge, the veloc-
ity is at a level of 700 m/s; i.e., it becomes equal to the
value corresponding to the steady-state segment for the
sample with air-filled pores. This result indicates that
the effect of atmospheric oxygen on the steady-state
process velocity is insignificant in the sample under
investigation. It should also be noted that the values
obtained for the velocity are noticeably higher than the
speed of sound in analogous porous mixtures. In the
Al/Tf 45/55 mixture, the speed of sound in compressed
samples was measured using the ultrasonic method. For
a density of 1.2 g/cm3 (0.5 of the maximal value), the
speed was found to be 100 ± 20 m/s. At a lower density,
the speed of sound must decrease. However, it could
not be measured due to strong damping. Thus, the
velocity of propagation of the detonation process in
Al/Tf MAEC substantially exceeds the speed of sound
in the initial mixture.

The pressure was recorded in various witness plates
in experiments with the Al/Tf 45/55 mixture of densi-
ties 0.44–0.49 g/cm3. The time of signal buildup to the
maximum value did not exceed 0.5 µs. The maximum
pressure was 1.0 GPa in duralumin, 0.6 GPa in Teflon,
and 0.5 GPa at the Teflon–acrylic plastic boundary,
which made it possible to estimate the pressure in the
JETP LETTERS      Vol. 81      No. 7      2005
detonation products of the 45/55 mixture at ~0.1 GPa.
For mixtures with a higher detonation velocity, the
pressure at the Teflon boundary increased. The maxi-
mum pressure in Teflon was equal to 0.75 and 1.1 GPa
for the Al/Tf 35/65 mixture of density 0.47 g/cm3 and
for the Al/Tf 30/70 mixture of density 0.55 g/cm3,
respectively. The cellular structure of imprints on the
witness plates indicates that the propagation of the pro-
cess in the systems considered here is accompanied by
the formation of high-speed jets or product particles
and may occur due to the transfer of the reaction from
one center to another.

In addition to experiments with low-density mix-
tures, we performed experiments with compressed
Al/Tf samples with a porosity of about 5%. The exper-
iments prove that the process rapidly decays in this
case, which agrees qualitatively with the results of
experiments on pressed samples of the Al/S and
Al/MoO3 mixtures [5].

Our results have demonstrated the possibility of
reaching the steady detonation regime in the Al/Tf
MAEC, in which the end products of detonation are in
the condensed state. A detailed mechanism of the prop-
agation of detonation in the mixtures under study
remains unclear and requires further investigation.

Investigations of detonation in reactive mixtures
forming solid end products will make it possible to
deepen insight into the mechanisms of shock-induced
physicochemical processes in condensed media. More-
over, these investigations will form the basis for obtain-
ing a new type of energetic materials.

Fig. 2. Detonation velocity over the Al/Tf MAEC charge
length for the following compositions: Al/Tf 45/55 of a den-
sity of (1) 0.40, (2) 0.50, (3) 0.48, (4) 0.44, and
(5) 0.49 g/cm3 in helium atmosphere; Al/Tf 35/65 of a den-
sity of (6) 0.5 and (7) 0.47 g/cm3; (8) Al/Tf 30/70 of a den-
sity of 0.55 g/cm3; and (9) Al/Tf 25/75 of a density of
0.54 g/cm3; as well as for the compositions (10) Al/S/Fe2O3

55/33/12 of a density of 0.81 g/cm3 and (11) Al/MoO3

45/55 of a density of 1.138 g/cm3. The curves are the expo-
nential extrapolations of the results.
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The damping of single-particle degrees of freedom in strongly correlated two-dimensional Fermi systems is
analyzed. Suppression of the scattering amplitude due to the damping effects is shown to play a key role in pre-
serving the validity of the Landau–Migdal quasiparticle picture in a region of a phase transition associated with
the divergence of the quasiparticle effective mass. The results of the analysis are applied to elucidate the behav-
ior of the conductivity σ(T) of the two-dimensional dilute electron gas in the density region where it undergoes
a metal–insulator transition. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.10.Hf, 71.27.+a
A quantitative understanding of the damping of sin-
gle-particle excitations in a Fermi liquid (FL) is essen-
tial to the determination of the resistivity, thermal con-
ductivity, and other kinetic properties of the system.
When the temperature dependence of the properties of
uncharged Fermi liquids is treated within Landau the-
ory, the decay rate γ(ε) of single-particle excitations at
the relevant energies ε ~ T is given by [1]

(1)

Here, the effective mass M* specifies the FL single-par-
ticle spectrum ξ(p) ≡ e(p) – µ = pF(p – pF)/M*, where
e(p) = δE0/δn(p) and µ is the chemical potential. The
factor W is proportional to the square of the scattering
amplitude Γ, suitably averaged over the spins and
momenta of incoming and outgoing particles.

Reliable experimental data on the modification of
FL properties under the variation of controllable vari-
ables (e.g., the density n) exist only for two-dimen-
sional (2D) Fermi systems, notably liquid 3He and the
electron gas. Landau theory adequately reproduces the
behavior of these data in a broad density region, except
in the vicinity of the critical density n∞, where the effec-
tive mass diverges and the spectrum ξ(p) becomes flat.
This failure of FL theory is conventionally attributed to
a strong enhancement of the dimensionless damping
rate r(T) = γ(T)/T. Close to the critical point, r(T) alleg-
edly exceeds unity, invalidating the Landau–Migdal
quasiparticle picture.

Here, we shall demonstrate that, in actuality, the
parameter r(T) remains rather small on both sides of the
phase transition associated with the divergence of the

¶ This article was submitted by the authors in English.

γ T( ) W M*( )3T2.=
0021-3640/05/8107- $26.00 ©0315
effective mass in the 2D system, and, consequently, that
the quasiparticle picture does apply. We then proceed to
study kinetic phenomena within the quasiparticle for-
malism, while paying particular attention to the metal–
insulator transition (MIT) occurring in the 2D electron
gas in the density region where the effective mass
diverges [2–4].

Our analysis is based on the standard formula for the
damping rate [1, 5],

(2)

where p, p1 and p',  are, respectively, the incoming
and outgoing momentum pairs, and ω = ε – ε'. The
function W is given by the sum of absolute squares of
the scalar (s) and spin-dependent (a) components Γs

and Γa of the scattering amplitude Γ = Γs + Γas1s2,
while F(ε, ε1, ω, T) = cosh(ε/2T)[cosh(ε1/2T)cosh((ε –
ω)/2T)cosh((ω – ε1)/2T)]–1 and GR is the retarded Green
function. In what follows, we assume that the depen-
dence of the mass operator Σ(p, ε) on ε is not crucial,
and, then,

(3)

To begin, we note that, in collision integral (2), all
the quasiparticle energies must lie close to the Fermi
surface, so that |ξ(p)| ≤ T, |ξ(p1)| ≤ T, and |ξ(|p – q|)| ≤ T,
|ξ(|p1 + q|)| ≤ T, since, as we shall see, broadening of the
single-particle states is insignificant. In 2D, these con-

γ ε( ) W p p1 p' p1' ; ε ε1 ω, ,, , ,( )F ε ε1 ω T, , ,( )∫∫
p1 p',
∑–∼

× ImGR p1 ε1–,( )ImGR p' ε ω–,( )

× ImGR p1' ω ε1–,( ) ε1 ω,dd

p1'

ImGR p ε,( ) γ ε( )/ ε ξ p( )–( )2 γ2 ε( )+[ ] .–=
 2005 Pleiades Publishing, Inc.
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ditions are easily met if (i) the momentum transfer q =
|p – p'| in the longitudinal particle–hole channel is
small, i.e., q ≤ qc(T) = T(dp/dξ)T ~ TM*/pF, or, equiva-
lently, if (ii) the momentum transfer q1 = |p – | in the
transverse particle–hole channel is small or (iii) the
total momentum P = |p + p1| is close to zero. Outside
these regions, contributions to the collision integral
appear to be minor.

In dealing with small momentum transfers, we first
address the scalar component Γs of the scattering ampli-
tude Γ, which obeys the standard equation [5]

(4)

where f is the scalar part of the Landau interaction func-
tion. In FL theory, the polarization loop Π0 is an inte-
gral over the product of two quasiparticle Green func-
tions G(p, ε) = (ε – ξ(p))–1, given by

(5)

in which dv  = d2p/(2π)2 is the volume element in 2D
momentum space and n(p) = 1/[1 + exp(ξ(p)/T)]–1 is the
quasiparticle momentum distribution.

The value of Re Π0 is of order N(0), the density of
states, proportional to M*. In a strongly correlated FL
obeying Landau theory, this quantity, whose sign
depends on the ratio ω/q, is enhanced by the factor
M*/M compared to the corresponding ideal Fermi-gas
value. On the other hand, at small ω and q > qmin =
M*ω/pF, the imaginary part of Π0(q, ω, T = 0), given by

(6)

has the same order as Re Π0. Thus, in strongly corre-
lated systems, f –1 can be neglected, and Eq. (4) reduces
to |Γs(q ~ qc, ω ~ T)| . N–1(0) [6].

A similar situation applies for the spin-dependent
part Γa of the scattering amplitude Γ, which satisfies the
same Eq. (4) with the replacement f  fa, where fa is
the spin-dependent part of the Landau interaction func-
tion. The 2D Fermi systems in question do not exhibit
ferromagnetism, in spite of the negative sign of fa

derived from experimental data on the spin susceptibil-
ity. This means that the Pomeranchuck stability condi-
tion [1] 1 + faN(0) > 0 is not violated, implying that
|faN(0)| < 1 holds even if the enhancement of the effec-
tive mass is large. The estimate |Γa(q ~ qc, ω ~ T)| ≤
N−1(0) follows straightforwardly. In the transverse par-
ticle–hole channel, where small momentum transfer
corresponds to q . 2pF, the situation is evidently the
same, so that, in collision term (2), integration over q
can be restricted to the region of small q, and the result
is doubled.

p1'

Γ s q ω,( ) f f Π0 q ω,( )Γ s q ω,( )+=

≡ f 1– Π0 q ω,( )–[ ] 1–
,

Π0 q ω,( ) 2
n p( ) n p q–( )–

ξ p( ) ξ p q–( )– ω–
------------------------------------------------ v ,d∫=

ImΠ0 q ω T 0=, ,( ) . ω M*( )2

πq pF 1 M*ω/q pF( )2–
----------------------------------------------------------,–
In the third relevant momentum region where the
total momentum P is small, the scattering amplitude
|Γ(P  0)| . –1/[N(0)lnP2] contains an additional
suppression factor 1/lnP2 due to the BCS logarithmic
divergence of the particle–particle propagator [5].
Therefore, in what follows the respective contribution
will be neglected. Thus, we conclude that a proper
treatment of damping effects in the strongly correlated
system leads to substantial suppression of the interac-
tion factor W governing damping rate (2).

In the foregoing analysis, the momentum depen-
dence of the Landau interaction function ̂  = f + fas1s2
has been neglected. Upon its inclusion, relation (4) is
replaced by the integral equation

(7)

with n = p/pF and n1 = p1/pF. We now make use of the
smallness of the quantity 1/Π0 ~ M/M* and rewrite the
scattering amplitude as

(8)

Neglecting small corrections, Eq. (7) becomes

(9)

Inserting expression (8) into collision formula (2), stan-
dard algebra [7] converts it to

(10)

where ImGR(p, ε) is given by Eq. (3). In the 2D dilute
electron gas where X = 1, this result practically coin-
cides with that derived in [7]. As usual [8], integration
over angles in Eq. (10) is replaced by integration over
energies ξ(l) where l = p – q, and, after some algebra,
we arrive at [7]

(11)

The same estimate is valid for other strongly correlated
2D Fermi systems where the spectrum ξ(p) is specified
only by the effective mass.

Result (10) holds in the density region where the
effective mass M* diverges, since in its derivation only
relation (8) has been employed. Here, at relevant q, ω,
the value of ReΠ0(q, ω) turns out to be of order

Γ nn1 q ω, ,( ) ^ nn1( )=

+ Π0 q ω,( ) ^ nn'( )Γ n'n1 q ω, ,( ) ϕ'/2π,d∫

Γ nn1 q ω, ,( ) X nn1( )/Π0 q ω,( ).=

0 ^ nn1( ) ^ nn'( )X n'n1( ) ϕ'/2π.d∫+=

γ ε T∼( ) X2 nn1( )
ImΠ0 q ω,( )
Π0 q ω,( ) 2

-----------------------------∫
qmin

qc

∫
0

ε T∼

∫∼

× ImGR p q– ε ω–,( ) ωq qdϕ ,dd

γ T( ) T2M*

MεF
0

-------------- M*T

MεF
0

------------ 
  .ln∼
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(dp/dξ)ξ . T. As for ImΠ0(q, ω), its value is evaluated on
the basis of the general formula [5]

(12)

Insertion of the explicit form of ImGR and integration
over ξ(p), ξ(l) along the same lines, as before, gives

(13)

where the product (dp/dξ)ξ = ε(dp/dξ)ξ = ε – ω has been

replaced by . As a result, one finds

(14)

Upon inserting this result into Eq. (10), we are led to

(15)

Thus, for evaluation of the damping rate γ(T) in the
density region where M* diverges, one needs to know
the spectrum ξ(p) close to the Fermi surface. To date,
microscopic calculations in this density region have
been performed only for the electron gas in 2D and 3D
and only at T = 0 [9–11]. In Fig. 1, we display results
for the spectrum ξ(p) of the 2D electron gas, calculated
at T = 0 within a functional approach [12]. Close to the
Fermi surface, the electron spectrum ξ(p, n∞), given in
Fig. 1, behaves as (p – pF)3. The leading FL term
reemerges at finite temperatures [13], so that

(16)

with the effective mass [14] going like M*(T, n∞) ~
(dp/dξ)T ~ T–2/3. With this result, the damping rate eval-
uated with the help of Eq. (15) becomes γ(T, n∞) ~

T4/3ln( /T).

The critical single-particle spectrum ξ(p, T = 0, n∞) ~
(p – pF)3 is not universal. In a broader context, the Lan-
dau state is known (e.g., from [15, 16]) to lose its sta-
bility at a density nb for which a bifurcation point p = pb

emerges in the equation

(17)

which ordinarily has only the single root p = pF. The
particular form ξ(p, T = 0, n∞) ~ (p – pF)3 corresponds
to the case in which the bifurcation point pb coincides
with pF. Obviously, in the general case, one has pb ≠ pF,
and the Landau state loses its stability before M*

ImΠ0 q ω,( ) ε ω–
2T

------------tanh ε
2T
------tanh–∫∫=

× ImGR p q– ε ω–,( )ImGR p ε,( )dε
π
----- v .d

ImΠ0 q ω,( )
pF

q
------ ε ω–

2T
------------tanh ε

2T
------tanh–

pd
ξd

------ 
 

T

2

ε,d∫∼

dp/dξ( )T
2

ImΠ0 q ω T∼,( )
T pF

q
---------- dp

dξ
------ 

 
T

2

.∼

γ T( ) T2

pF

------ dp
dξ
------ 

 
T

T
pF

------ dp
dξ
------ 

 
T

.ln∼

ξ p T n∞, ,( )

=  pF p pF–( )/M* T n∞,( ) ξ3 p pF–( )3,+

εF
0

ξ p T 0 nb,=,( ) 0,=
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becomes infinite. If the distance between pb and pF is
small, then the single-particle spectrum has the form

(18)

Suppose the temperature T lies below the maximum
value ξm of |ξ(p, T = 0, nb)| in the momentum interval
[pb, pF]. In this case, the dominant contributions to the
properties of interest come from the momentum region
adjacent to the bifurcation point pb, where, according to
Eq. (18), (dp/dξ)T ~ T–1/2. From this result and Eq. (15),

one obtains γ(T, nb) ~ T3/2ln( /T).

Beyond the critical density nb, Eq. (17) possesses
two additional roots p1 < pb < p2. The single-particle
spectrum ξFL(p, T = 0, n), evaluated with the Landau
momentum distribution nFL(p) = θ(pF – p), has the form

(19)

If pb ≠ pF, the roots p1, p2 are both located either in the
interior of the Fermi sphere or both outside it. If pb = pF,
then p1 < pF < p2. In all these cases, the Landau occupa-
tion numbers nL(p) are rearranged. As a rule, the Fermi
surface becomes multiconnected, but the quasiparticle
occupation numbers n(p) continue to take values 0 or 1.
Hence, the Landau–Migdal quasiparticle picture holds,
with n(ξ) = 1 for ξ < 0 and 0 otherwise. Consider first
the case p1 < p2 < pF. Then, according to Eq. (19), the
single-particle states remain filled in the intervals p < p1
and p2 < p < pF, while the states corresponding to p1 <
p < p2 are empty. We call this new phase the bubble
phase. If the bifurcation point pb coincides with the
Fermi momentum pF, then p1 < pF and p2 < pF, and the
states with p < p1 and with pF < p < p2 are occupied,
while those for p1 < p < pF are empty. Again, one deals
with the bubble phase.

At this point, we observe that solution (19) is not
self-consistent, since the spectrum is evaluated with

ξ p T 0 nb,=,( ) p pb–( )2 p pF–( ).∼

εF
0

ξFL p T 0 n,=,( ) p p1–( ) p p2–( ) p pF–( ).∼

Fig. 1. Single-particle spectrum ξ(p) of the homogeneous

two-dimensional electron gas in units of  = /2M, eval-

uated at T = 0 for different values of rs = (πn)–1/2/aB, where
aB is the Bohr radius.

εF
0

pF
2
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Fig. 2. Single-particle spectrum ξ(p) in units of 10–4  (top

panel), occupation numbers n(p) (middle panel), and dξ/dp

in units of 10–2 , where  = pF/M (bottom panel), plot-

ted versus p/pF at four line-type-coded temperatures rele-

vant to the bubble phase, in units of . Model (21) is

assumed with parameters β = 0.48 and λ = 3N0, where N0 =

pFM/π2.

εF
0

v F
0

v F
0

εF
0

Fig. 3. Single-particle spectrum ξ(p) in units of  at the

critical temperature TZ = 3 × 10–4  (left panel), occupa-

tion numbers n(p) (right-top panel), and ξ(p)/T (right-bot-
tom panel), plotted versus p/pF at five line-type-coded tem-

peratures relevant to the phase with a FC, in units of .

Model (21) is assumed.

εF
0

εF
0

εF
0

dξ
/d

p

nFL(p), while the true Fermi surface is doubly con-
nected. Following [15], we consider the feedback of the
rearrangement of nFL(p) on the spectrum ξ(p) in the
bubble phase based on the Landau relation [5]

(20)

where, as before, f is the scalar part of the Landau inter-
action function and n(p) = [1 + exp(ξ(p)/T)]–1 is the
quasiparticle momentum distribution. The solutions of
this nonlinear integral equation are known only in 3D
Fermi systems with phenomenological functions f
depending on q = |p – p1|. Despite the diversity of forms
assumed for f(q), the resulting single-particle spectra
and momentum distributions bear a close family resem-
blance. Figures 2 and 3 display results from the solution
of Eq. (20) for the function

(21)

Let us briefly summarize how solutions of Eq. (20)
evolve under variations of T. When the bubble range
p2 – p1 is small, then heating to T ~ TFL = (p2 – p1)2/M
results in its dissolution (see Fig. 2). With a further
increase in T, the function ξ(p) becomes smoother, and,
in the region of a new critical temperature TZ, a flat por-
tion ξ . 0 appears in the spectrum over an interval [pi,
pf] surrounding the Fermi momentum pF, as shown in
the left panel of Fig. 3. Since ξ(p) = e(p) – µ and e(p) =
δE0/δn(p), the equality ξ = 0 can be rewritten as a vari-
ational condition [17]:

(22)

with E0 = n(p) + (p – p1)n(p)n(p1) and

 = p2/2M. The solution n0(p) of Eq. (20) or, equiva-
lently, of Eq. (22), is a continuous function of p with a
nonzero derivative dn0/dp (see Fig. 3, top-right panel).
The set of single-particle states with ξ(p) = 0 is called
the fermion condensate (FC), since the corresponding
density of states ρ(ε) contains a Bose-liquid-like term
ηnδ(ε). The dimensionless constant η . (pf – pi)/pF is
naturally identified as a characteristic parameter of the
FC phase.

It has been demonstrated [18] that the FC “plateau”
in ξ(p) has a small slope, evaluated by inserting n0(p)
into the above Fermi–Dirac formula for n(ξ) to yield

(23)

As indicated in the bottom-right panel of Fig. 3, at T ≥
TZ the ratio ξ(p)/T is indeed a T-independent function of
p in the FC region. The presence of this flat portion of
ξ(p) ~ T is a signature of the phenomenon called fer-
mion condensation [17–19]. The width ξ(pf) – ξ(pi) ≡

∂e p( )
∂p

-------------- p
M
----- f p p1,( )

∂n p1( )
∂p1

----------------- v 1,d∫+=

f q( ) λ / q/2 pF( )2 1–( )2 β2+[ ] .=

δE0

δn p( )
-------------- µ, pi p p f ,< <=

ep
0

p∑ 1
2
--- fp p1,∑

ep
0

ξ p T TZ≥,( ) T
1 n0 p( )–

n0 p( )
----------------------, pi p p f .< <ln=
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ξf – ξi of the FC “band” appears to be of order T, almost
independently of η > ηmin ~ 10–2. Thus, at η > ηmin, the
FC group velocity is estimated as

(24)

As shown in [10], the effective mass diverges before
attaining the critical point rCDW for the charge-density-
wave instability. Microscopic calculations confirm this
assertion: M* diverges at rs = r∞ . 7, while the conden-
sate of the charge-density waves occurs at rCDW . 10.
Thus, in the interval r∞ < rs < rCDW, one deals with the
homogeneous ground state having a FC. In this case,
the damping rate of single particle excitations is evalu-
ated on the basis of Eqs. (15) and (24), yielding

(25)

Thus, as long as the FC density remains small, the
dimensionless damping rate r(T) = γ(T)/T proves to be
small as well, so the presence of the FC does not
destroy the quasiparticle picture. It is worth noting that,

at greater energies ε @ T, the damping γ(ε) grows as 
with increasing ε [20]. Thus, at these energies, the ratio
γ(ε)/ε exceeds unity, and the quasiparticle picture fails
independently of the η value.

Let us now apply our results to the elucidation of the
behavior of the conductivity of a dilute 2D electron gas
from data obtained in samples with silicon inversion
layers [2, 4]. We focus our attention on low densities,
where the 2D electron gas undergoes a metal–insulator
transition (MIT), as signaled by a change in sign of the
derivative dρ(T  0)/dT. In high-quality samples, the
sign change occurs at the density nMIT . 0.9 × 1011 cm–2.
On the metallic side of the MIT, this derivative has a
positive sign, while, on the insulating side, it is nega-
tive, the separatrix ρMIT(T) . 3h/e2 . 75 kΩ between the
two phases being almost horizontal [2, 4].

At these densities, the electron–electron interaction,
first taken into account within perturbation theory in
[21], becomes a “play maker.” A crucial point is that,
close to the critical density nMIT, the effective mass
M*(n) diverges [2, 4]. In this situation, a standard
method of the treatment of kinetic phenomena on the
basis of the Boltzmann equation fails. Therefore, we
employ a different approach where the conductivity
σ(T) is expressed in terms of the imaginary part of the
polarization operator Π(j, ω  0, T) through [5]

(26)

This provides contributions of two different types,
namely, from (i) imaginary parts of the quasiparticle
Green functions and (ii) imaginary parts of the scatter-
ing amplitudes. As a rule, both of these contributions
provide the same T dependence of σ(T). For example,
this is seen in homogeneous systems without impuri-
ties, where the two types of contributions cancel each

dξ p( )
dp

-------------- 
 

T

T
η pF

----------, pi p p f .< <∼

γ T( ) ηT 1/η( ).ln∼

ε

σ T( ) ω 1– ImΠ j ω T, ,( ).
ω 0→
lim–∼
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other to ensure vanishing of the resistivity due to
momentum conservation. (In solids, the resistivity ρ(T)
differs from 0 due to Umklapp processes.) Such a can-
cellation allows one to find the T dependence of the
resistivity in the critical density region, where the spec-
trum ξ(p) becomes flat, by retaining in Eq. (26) only
contributions coming from ImGR. Thereby, the calcula-
tions are simplified considerably, and the expression for
ImΠ acquires the form

(27)

Here, 7 is the vertex part, whose static limit is given by
[5] 7(j, ω = 0) = e∂ξ(p)/∂p. Upon inserting the explicit
form for ImGR into Eqs. (27) and (26), the latter
becomes [22]

(28)

Converting, as before, the momentum integration to an
integration over ξ and taking into account that the over-
whelming contributions to this integral come from the
vicinity of the point ξ = ε, we arrive at

(29)

where n = /2π. Remembering that, in the region of
the critical density of a 2D electron gas, where the

effective mass diverges, one has γ(T) ~ T4/3ln( /T);
then, Eq. (29) gives

(30)

Since dσ(T  0)/dT < 0, this point is situated on the
metallic side of the MIT. Beyond this density, i.e., at
r∞ < rs < rCDW, and at greater but still very low temper-
atures T ~ TZ, we pass the point of fermion condensa-
tion. The FC contribution to σ(T) is evaluated with the
help of Eqs. (25) and (24), yielding

(31)

where σ0 is a T-independent constant.

At rs > rCDW, the spontaneous generation of the con-
densate of the charge-density waves occurs, and the
ground state of the 2D electron gas becomes nonhomo-
geneous. Consequently, a gap in the single-particle
spectrum opens, which results in an exponential decline
of the conductivity σ(T) at T  0, implying that one
is dealing with the insulating side of the MIT. Thus, the
separatrix dividing the metallic and insulating domains
is situated in the FC region, and, according to Eq. (31),

ImΠ j ω 0 T,,( ) ε ω–
2T

------------tanh ε
2T
------tanh– 

 ∫∫∼

× 7 j ω 0=,( ) 2ImGR p ε ω–,( )ImGR p ε,( ) ε v .dd

σ T( )

=  2e2 ξ / pdd( )2γ2 ε( ) ε vdd

2T ε ξ p( )–( )2 γ2 ε( )+[ ] 2 ε/2T( )cosh
2

-------------------------------------------------------------------------------------------.∫∫

σ T( ) 2πne2

pF

-------- ξ / pdd( )
2Tγ ξ( ) ξ /2T( )cosh

2
------------------------------------------------- ξ ,d∫=

pF
2

εF
0

σ T( ) T 2/3– / εF
0 /T( ).ln∼

σFC T( ) σ0e2/η2 1/η( ),ln=
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it is a straight line. This result is in agreement with
available experimental data [2–4].

Flattening of the single-particle spectrum entails a

change of the Hall coefficient RH = σxyz/  [23]. In
homogeneous matter at H  0, σxx = σ/3, with σ
given by Eq. (29), while σxyz is recast as

(32)

where n(ξ) is the Fermi–Dirac distribution function. Far
from the critical density n∞, these formulas lead to the
standard result RH = 1/nec. The critical spectrum of 2D
electron gas has the form ξ(p, n∞, T = 0) ~ (p – pF)3, and,
with the help of Eqs. (29) and (32), one then finds RH =
K/nec, where

(33)

We see that, at the critical density, the effective volume
of the Fermi sphere considerably shrinks. It is impor-
tant that, even quite close to the critical point where the
effective mass still remains finite, the value K = 1 holds,
so that, at low T, critical behavior (33) of K emerges
abruptly. On the other hand, imposition of a static mag-
netic field H on the system at the critical density n∞ ren-
ders the effective mass finite [13, 14], and, hence, one
can expect an abrupt change in the Hall coefficient
RH(n∞, T  0, H) as a function of H.

In conclusion, we have analyzed damping effects in
a strongly correlated 2D Fermi liquid in a density
region where the effective mass diverges. We have dem-
onstrated that, in spite of the enhancement of the
dimensionless constants specifying the strength of the
effective interaction between quasiparticles, the Lan-
dau–Migdal quasiparticle picture is applicable on both
sides of the phase transition associated with the diver-
gence of the effective mass. The results of the analysis
have been applied to the interaction-driven metal–insu-
lator transition in the 2D electron gas, demonstrating
that the separatrix between the metallic and insulating
regions is a straight line.
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Quantum Analogue of the Spin-Flop Transition for a Spin Pair
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Quantum (step) magnetization curves have been analyzed for a spin pair with antiferromagnetic interaction in
the presence of a magnetic field that is parallel to the easy magnetization axis. Both semiclassical and numerical
analyses have been performed for a wide range of the anisotropy parameter and spins up to S * 100. In the
dependence of the anisotropy character (single-ion or exchange), a spin jump larger than unity can appear in
the magnetization curve or jumps can be concentrated in a narrow range of the field. In addition, regions of the
problem parameters have been revealed where behavior is semiclassical for low spins on the order of S = 5 and
where behavior is substantially quantum even for S  ∞. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.30.Kz, 75.50.Ee, 75.60.Ej
Magnetic systems whose total spin S is high but that
exhibit quantum effects associated with a finite spin
have been extensively studied in the last decade.
Among such systems are high-spin molecules with S ~
10, magnetic clusters with S ~ 100, and magnetic dots
(small magnetic particles 50–100 nm in size) [1, 2]. The
existence of objects that manifest quantum properties
on a macroscopic (more precisely, mesoscopic) scale is
important for both the fundamental physics of magne-
tism and its applications such as quantum computers [3,
4] and information recording devices [1]. The simplest
quantum effect that is manifested in such systems is
directly associated with the quantization of the projec-
tion of the total system spin. This effect is stepwise
magnetization under continuous variation of the exter-
nal magnetic field [1, 2]. Such behavior is observed for
many systems with prevailing antiferromagnetic inter-
action [5]. Among such systems, spin pairs with antifer-
romagnetic interaction, including pairs of high-spin
Mn4 molecules with the maximum total spin 2S = 9 [6,
7], are most studied. However, measurements were also
carried out for spin triplets, quartets, etc. [5, 8]. The
method of magnetization jumps appeared to be useful
for experimental determination of the material con-
stants [5].

For realization of this method, it is important that
the quantum problem that includes only isotropic
exchange and an external field, i.e., when B = 0 and κ =
0 in Hamiltonian (1) presented below, has an exact
solution for any spin. In this case, states with a given
total spin S and its projection S z are the eigenstates of
the Hamiltonian, and the maximum S z value S z = S cor-
responds to the minimum energy for a given S value.
The energy of states is given by the expression
E(S, Sz) = JS(S + 1)/2 – gµBHS z, S z changes stepwise
from Sz = n – 1 to Sz = n for the field Hn = Jn/gµB, and
0021-3640/05/8107- $26.00 0321
the complete saturation is reached at H = Hex, where the
exchange field is Hex = 2JS/gµB. Other exactly solvable
models for clusters with antiferromagnetic interaction
were discussed in [8]. In the presence of magnetic
anisotropy, the quantum problem has no exact solution,
excluding the Ising model, which corresponds to κ = 1
and B = 0 in Hamiltonian (1). In the latter case, which
is classical in essence, S z = 0 for H < Hex and the state
is saturated, i.e., S z = 2S, for H > Hex = JS/gµB.

We analyze the change in the magnetization of a
spin pair with antiferromagnetic interaction and uniax-
ial anisotropy in the presence of a magnetic field paral-
lel to the easy antiferromagnetic axis. The magnetiza-
tion curve appeared to be more complicated than for the
purely exchange case: jumps can be inequidistant, and
their value ∆S z can exceed unity. The behavior of the
magnetization curve for single-ion anisotropy differs
from that for exchange anisotropy. The behavior of the
spin pair is similar to that for a macroscopic antiferro-
magnet near the spin-flop transition. This similarity can
be suitable for qualitative estimate of the behavior of
the system. A field range is found where deviations
from the semiclassical behavior are not small even in
the S  ∞ limit.

Quantum model and its semiclassical analysis.
The Hamiltonian of a pair of spins S1 and S2 with anti-
ferromagnetic interaction, which is described by the
exchange integral J > 0, and uniaxial anisotropy in the
external magnetic field H that is directed along the easy
z axis is represented in the form

(1)
* J S1

z S2
z 1 κ–( )S1

⊥ S2
⊥+[ ]=

–
B
2
--- S1

z( )2
S2

z( )2
+[ ] gµBH S1

z S2
z+( ).–
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Here, both single-ion anisotropy with constant B and
exchange anisotropy with constant κJ are taken into
account. We start with the classical analysis of the prob-
lem. Treating the operators S1 and S2 as classical vec-
tors (sublattice spins) of a macroscopic antiferromag-
netic sample, we arrive at a suitable analogue of the
problem of the spin-flop transition [9–11]. We intro-
duce a unit vector l = (S1 – S2)/|S1 – S2|. In terms of the
angular variables, lz = cosθ and lx + ily = sinθexp(iφ).
Excluding the total spin vector Stot = S1 + S2 by means
of the relation

(2)

where β = B/J and ez is the unit vector along the sym-
metry axis (for details, see [11]), we write the energy
0(θ) of the antiferromagnet in the form

(3)

In the absence of the field, we arrive at the standard
result: both exchange and single-ion anisotropies make
an additive contribution to the effective magnetic
anisotropy (κ + β)JS2sin2θ, which is of easy-axis char-
acter for κ + β > 0. The minimization of this energy for
H ≠ 0 shows that various phases can exist. The collinear

Stot

2gµBH ez l θcos⋅–( )
J 2 κ– β 2θcos+( )

---------------------------------------------------,=

0 θ( )
gµBH( )2 θsin

2

J 2 κ– β 2θcos+( )
---------------------------------------------– J κ β+( )S2 θ.sin

2
+=

Fig. 1. Schematic field dependence of the ground state of
the classical antiferromagnet with exchange and single-ion
anisotropies when (a) single-ion or (b) exchange anisotropy
prevails. The arrows are the directions of spins.

cl
phase Φ|| is stable for H < H1, and S z = 0 and θ = 0 or π
in it. In the spin-flop phase Φ⊥ , which is stable for H >
H2, θ = ±π/2 and the spin projection is linearly related
to the field: Sz = 2SH/Hex. For H ≥ Hex = JS(2 – κ –
β)/gµB, the state is saturated and Sz = 2S. The character-
istic fields at which the phases lose stability are given
by the expressions

(4)

(5)

We note that the expression for the exchange field in the
absence of single-ion anisotropy coincides with the sat-
uration field for the exactly solvable Heisenberg and
Ising quantum problems.

If anisotropy is purely exchange, i.e., β = 0, the crit-
ical fields H1 and H2 coincide with each other and a
degenerate case arises. If β > 0, the transition from the
collinear state Φ|| to the spin-flop state Φ⊥  is stepwise
(the spin-flop transition is a first-order transition) for the

field H = Hsf introduced in Eq. (4) when  changes by

(6)

The spin can be reoriented in another way when
H1 < H2 and the Φ||  Φ⊥  transition occurs via two
second-order transitions through the angular phase Φ∠
[10, 11]. For this behavior, model (3) must include
competing anisotropies—single-ion anisotropy with
β < 0, which corresponds to easy-axis anisotropy for
κ  = 0, and sufficiently large exchange anisotropy with
κ > −β—in order for the effective magnetic anisotropy
to be easy-axis anisotropy. In this case, for fields in the
range H1 < H < H2, Sz varies linearly from 0 to

 ≈ , but the slope of the straight line is
much larger than that in the region of the spin-flop
phase (see Fig. 1).

Quantum properties. These results can be com-
pared with the properties of magnetization in quantum
model (1) for high spin by hypothesizing that, as in the
exactly solvable isotropic case, all continuous classical
linear dependences Sz(H) (see Fig. 1) are replaced by
stepwise dependences with equidistant jumps ∆Sz = 1

and the jump  > 1 at the spin-flop transition point
holds in the quantum case. This hypothesis is meaning-
ful when the spin-flop transition field is stronger than
the field of the first quantum jump in the isotropic case,

i.e., Hsf > J/gµB, and  > 1. Both conditions lead to
the inequality κ + β > 1/2S2, which can be satisfied for
S @ 1 even when anisotropy is small.

H1
JS

gµB
--------- 2 κ– β+( ) κ β+( ), H2

H1
2

Hsf
--------,= =

Hsf
JS

gµB
---------= 2 κ– β–( ) κ β+( ).
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It is convenient to represent the behavior of the sys-
tem in the (b, β) plane, where b = κ + β is the effective
anisotropy constant (see Eq. (3)). According to the clas-
sical consideration, the spin-flop transition with the

spin jump  > 1 can occur only for β > 0, and the

regions with different values  = n > 1 are vertical
stripes that are bounded from the bottom by the straight
line β = 0 and from the right and left by the vertical
straight lines b = bn and b = bn + 1, where bn = 8n2/(n2 +
4S2). The behavior with equidistant jumps ∆Sz = 1,
which is characteristic of the isotropic case, can be
expected for small anisotropy, as well as in the region
b < 0 of easy-plane anisotropy. For large anisotropy b in
the case β < 0, S z = 0 holds to the field H1 and, then, n
jumps are concentrated in the narrow field range H1 <
H < H2. Thus, the classical approach predicts quite
diverse behavior of the system, and this prediction is
corroborated by the numerical analysis of quantum
model (1) with one substantial exclusion, which will be
discussed below.

Numerical simulation. Hamiltonian (1) commutes

with the operator of the total spin projection  =  +

, and the total Hilbert space of the problem is decom-
posed into subspaces with fixed S z values. The projec-
tion of operator (1) onto these subspaces has the form
of three diagonal matrices whose eigenvalues are deter-
mined by the QR algorithm. An important simplifica-
tion is possible because the Zeeman term commutes

with , and the eigenvalues of the Hamiltonian for any
field H are obtained by shifting the eigenvalues E(Sz, 0)
that are obtained for H = 0: E(Sz, H) = E(Sz, 0) –
gµBHSz. Owing to these properties, the problem can be
analyzed over the entire phase plane (κ, β) even for a
high spin above 2S = 250 in reasonable time on a com-
puter.

Numerical analysis shows that many properties of
the classical spin-flop transition hold for quantum
model (1) even for a low spin S ~ 5. First of all, the
anisotropic antiferromagnet holds both the property
that the transition with S z = 0 occurs in the field range
0 < H < H1 and the existence of jumps with ∆Sz > 1 for
β > 0 when the classical spin-flop transition is a first
order transition. The classically predicted concentra-
tion of jumps in the narrow field range H1 < H < H2 is
also observed. The shape of regions with a given value
∆S z > 1 qualitatively corresponds to the classical calcu-
lation even for a low spin. In particular, lines bounding
regions with ∆S z = n > 1 for β > 0 are close to vertical
lines (see Fig. 2). However, there are appreciable devi-
ations. The first such deviation is the continuation of
regions with ∆S z > 1 for small ∆S z values to the lower
half-plane.

∆Scl
z

∆Scl
z

Ŝ
z

Ŝ1
z

Ŝ2
z

Ŝ
z
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The behavior of the line separating regions with

∆S z = 1 and ∆S z > 1 appears to be unexpected. Its devi-
ations from the classical result β = 0 turns out to be
appreciable even for high spins 2S . 200 (see Fig. 4).
The maximum size of this region in the negative β semi-
axis even increases with spin and reaches the limiting
value β ~ –0.3, but its area decreases with S  ∞.

In addition, for the angular phase, jumps larger than
unity are observed in the magnetization curve in the
parameter region d in Fig. 2 and Fig. 3d. This behavior
in the high-spin limit corresponds to the first order
phase transition Φ∠   Φ⊥ . In classical theory, this
transition is of the second order and the region d is
absent. Moreover, jumps ∆S z = 1 in the magnetization
curve are not equidistant in the region of the concentra-
tion of jumps (below the thick line in Fig. 2) (see
Fig. 3c); some of these jumps even merge together (see
Fig. 3d). In the latter case, which corresponds to the
narrow region d in Fig. 2, the magnetization pattern is
as follows. Several first jumps occur with ∆S z = 1; then,
a jump (always one) follows with ∆S z > 1, and the equi-
distant jumps with ∆S z = 1 finally appears. In terms of
a spin-flop analogue, this behavior indicates that the
Φ∠   Φ⊥  transition is of the first order, which is
impossible in classical model (3). Figure 5 shows a
more detailed structure of the region d for 2S = 64. The
parallelogram region in the (b, β) diagram (region d in
Fig. 2) corresponds to the transition from the state with

     

      

Fig. 2.
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present among the subsequent jumps: see Fig. 3d and expla-
nation in the text.



324 IVANOV, KIREEV
Fig. 3. Field dependence of S z for 2S = 10 in four characteristic regions marked in Fig. 2 by the following respective letters:
(a) almost exchange behavior, b = 0.1 and β = –0.2; (b) merging of jumps, an analogue of the spin-flop transition, b = 0.515 and
β = 0.1; (c) strong concentration of jumps, an analogue of the behavior in the Φ∠  phase, b = 0.56 and β = –0.1; and (d) jump with

∆S z > 1 from the state with S z ≠ 0, an analogue of the first-order phase transition Φ∠   Φ⊥ , β = –0.09 and b = 0.7; for more
details, see Fig. 5.

                                                        

gµBH/J
                   
S z ≠ 0 to the state with S z + ∆S z, where ∆S z > 1. In this
case, regions with S z and S z ± 1 adjoin each other, and
regions with the same ∆S z values join at points. This
structure is responsible for the sawtooth shape of the
curves with ∆S z > const in Fig. 5. However, according
to the contours in this figure and the plot in the inset, the
jump value decreases rapidly when moving from the
separation line between the states with ∆S z = 1 and
∆S z > 1 towards negative β values.

Results and discussion. Thus, the behavior of step
quantum magnetization curves for a pair of spins with

Fig. 4. Lines separating the spin-flop and angular phases for
2S = (e) 8, (n) 16, and (d) 32. The solid line corresponds to
2S = 256. The dashed rectangle is the region of the solid-line
minimum. The inset shows this region and the section of the
line near the ordinate axis for 2S = 256.
                                             

antiferromagnetic interaction and easy-axis anisotropy
is complicated and depends on the ratio of two anisot-
ropy constants of different origins in Hamiltonian (1).
When single-ion anisotropy dominates, single jumps
can merge with each other with the formation of a jump

Fig. 5. Lines separating regions with a fixed jump value in
the Φ∠   Φ⊥  transition for 2S = 64. Above the thick

line, the jump by ∆S z > 1 occurs from the S z = 0 state
(cf. the corresponding lines in Figs. 2 and 4). In regions
located below the thick line, the jump by ∆S z that exceeds
the value given on the right-hand side of the corresponding
inequality occurs from the state with S z > 0. The inset
shows the section of the plot for κ + β = 0.5 (by the dashed
vertical straight line). The ordinate axis shows the logarithm

of the jump value normalized to  ≡ ∆Sz|β = 0.

     

∆S0
z
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by ∆S z > 1. In the opposite case, where exchange
anisotropy dominates, all jumps of S z occur by unity,
but they are concentrated in a narrow field range. Ana-
logues are found in the properties of the solutions of the
quantum problem and the corresponding classical prob-
lem of the spin-flop transition even for low spins S ~ 5.
These analogues can be suitable as the initial point in
analysis of experiments and effects of other interac-
tions. Such an analysis is beyond the scope of this brief
report. At the same time, there are quantitative differ-
ences in the behaviors of the quantum system and its
classical analogue. These differences are particularly
substantial in the field range where the transition occurs
from ∆S z = 1 to ∆S z = 2, because quantum effects that
are free of 1/S smallness are manifested in this range.
This surprising property is likely attributed to the fact
that the quantum model with low anisotropy has a sin-
glet ground state that differs strongly from the classical
Néel state. Thus, the region of the pure quantum behav-
ior for S  ∞ is found for the system. Similar effects
are possible in the physics of antiferromagnetism. It is
sufficient to mention the Haldane hypothesis that the
ground states for integer and half-integer spins are dif-
ferent even in the S  ∞ limit [12]. Thus, the simple
model considered above for two spins again shows that
antiferromagnets can exhibit substantially quantum
properties even for high spins.
JETP LETTERS      Vol. 81      No. 7      2005
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Structural neutron diffraction studies indicate that only one ordered phase arises after the disorder–order tran-
sition in nonstoichiometric cubic tantalum carbide TaCy. This phase arises in the composition range y = 0.79–
0.89 due to long-term annealing with a decrease in temperature from 1600 to 300 K. It is incommensurate in the
[1–11]B1 direction, but it is close to commensurate M6C5 structures (C2/m and P31 space groups) in mutual
arrangement of atoms and vacancies in nonmetallic (1–11)B1 planes. The disorder–order transition channel that

is associated with the formation of the incommensurate superstructure in TaCy carbide includes two arms  ≈

0.473b2 and  = –  of the {k5} star and arms of the {k4} and {k3} stars. The translation period of the
incommensurate phase in the [1–11]B1 direction is 8.9–9.1 nm, which is larger than that in the commensurate
phase M6C5 by a factor of about 18. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Gz, 61.50.Ks, 61.66.Fn, 61.72.Ji, 64.70.Rh

k5
6( )

k5
5( ) k5

6( )
Atom–vacancy ordering often occurs in M–X sys-
tems (M = Ti, Zr, Hf, V, or Nb; X = C, N, or O) in which
cubic compounds MXy are formed with high nonsto-
ichiometry of the nonmetallic sublattice (MXyh1 – y ,
where 0.5 ≤ y ≤ 1 and h is the structural vacancy) [1].
Experimental and theoretical results that were system-
atized in [1, 2] show that the ordering of nonstoichio-
metric cubic carbides MCy is accompanied by the for-
mation of commensurate superstructures of the M2C,
M3C2, M6C5, and M8C7 types with various symmetries.
Incommensurate superstructures have not yet been
observed in carbide-forming M–C systems containing
transition d metals of Groups IV and V (M = Ti, Zr, Hf,
V, or Nb).

Tantalum carbide TaCy (TaCyh1 – y), which is a
strongly nonstoichiometric compound [1, 2], is a
poorly studied carbide. It has the B1 cubic structure and
a wide homogeneity range from TaC0.71 to TaC1.00. A
high concentration of structural vacancies h in the non-
metallic sublattice of TaCy provides the possibility of
ordering this compound. Available information on the
effect of low-temperature annealing on the basic-lattice
constant, magnetic susceptibility, and specific heat of
TaCy [3–5] is indirect evidence of its ordering. Electron
diffraction study [6] of TaC0.83 carbide revealed a dif-
fuse band whose geometry corresponds to M6C5 order-
ing with a low order degree. The thermodynamic calcu-
lation [7] of disorder–order transitions in TaCy that was
performed by the order-parameter functional method
0021-3640/05/8107- $26.00 0326
showed that the M6C5 superstructure is the only possi-
ble ordered phase in this carbide. The symmetry and
commensurability or incommensurability of the possi-
ble superstructure were not discussed in [7].

In this work, the structure of ordered tantalum car-
bide is studied by the neutron and x-ray diffraction
methods. TaCy samples with various carbon contents
(0.70 ≤ y ≤ 1.00) over the entire range of the homoge-
neity of the basic cubic phase were synthesized by
solid-phase vacuum sintering of Ta and C powders at a
temperature of 2000 K. After synthesis, samples were
subjected to thermal treatment in three different
regimes. Regime (a)—quenching from 1900–2000 K
with a cooling rate of about 200 K/min—was used to
obtain samples in a disordered state. Regimes (b) and
(c)—annealing with a decrease in temperature from
1600 to 750 K over 60 and 120 h, respectively—were
used to obtain samples in an equilibrium ordered state
with different order degrees. Preliminary structural cer-
tification of the samples was carried out by the x-ray
method with CuKα1, 2 radiation. The structure of the
ordered phase was analyzed by the neutron diffraction
method (λ = 0.1694 nm) in the step scanning mode with
∆(2θ) = 0.1° for 2θ angles from 12° to 90°. To reveal
weak superstructure reflections, large accumulation
was performed at each scanning step. The presence of
background with an intensity of about 5000 pulses gave
rise to parasitic reflections from radiation with wave-
lengths λ/2 and λ/3. These reflections correspond to the
structural reflections (200)B1, (220)B1, and (222)B1, and
© 2005 Pleiades Publishing, Inc.
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their intensity is about 0.5% of the intensity of the main
reflections.

Figure 1 shows typical spectra of the samples of
nonstoichiometric carbide TaCy for 2θ angles from 10°
to the (200)B1 structure reflection. It is the range where
reflections are observed in addition to the (111)B1 struc-
ture reflection. The intensity of the (111)B1 reflection is
low and is on the order of the intensity of superstructure
reflections, because it is proportional to ( fTa – fC)2 and
the amplitudes fTa = 0.70 × 10–12 cm and fC = 0.665 ×
10–12 cm of the atomic scattering of tantalum and car-
bon, respectively, are close to each other. The super-
structure reflections whose intensity depends on the
thermal treatment regime are observed in the spectra of
annealed tantalum carbide in the composition range
TaC0.79–TaC0.89. Weak superstructure reflections are
also observed for quenched carbide TaC0.83 (a) (Fig. 1).
A quenching rate of 200 K/min is likely lower than the
ordering rate and, thereby, it appears to be insufficient
for conserving the disordered state of tantalum carbide.
X-ray diffraction analysis indicates that the constant of
the basic cubic lattice of the TaCy samples (0.79 ≤ y ≤
0.89) increases slightly after annealing. A similar
increase in the basic lattice constant was previously
observed for carbides NbCy [3], ThCy [8], TiCy [9–11],
and VCy [12].

The superstructure reflections are appreciably wider
than the (111)B1 structure reflection, their intensity
decreases rapidly when the diffraction angle 2θ
increases, and they are hardly observed for 2θ > 50°.
This behavior indicates that the domains of the ordered
phase of tantalum carbide are much smaller than the
grains of disordered carbide with the basic structure B1.
The features discussed above imply that a structure
with perfect long-range order is not formed in TaCy car-
bide even after long-term annealing, although ordering
occurs quite rapidly.

The wave vectors that bound the first Brillouin zone
correspond to the angular range 2θ = 19°–25° in the
neutron diffraction pattern of tantalum carbide. The
presence of the superstructure reflections in this range
indicates that static concentration waves whose wave
vectors lie near the boundaries of the first Brillouin
zone appear in the crystal. According to [1, 2], the
ordering of nonstoichiometric monocarbides of transi-
tion metals of Group V is accompanied by the forma-
tion of M6C5 superstructures with the C2/m, P31, and
C2 space groups. The formation of these superstruc-
tures is attributed to the distortion of the symmetry of
the basic lattice over the wave vector stars {k9}, {k4},
and {k3}. The channel of the disorder–order transition
that is associated with the formation of the monoclinic
(C2 space group) superstructure M6C5 includes also the
arms of the {k0} star (hereafter, the stars and their arms
are enumerated according to [1, 13]). The positions of
the superstructure reflections for these stars are calcu-
lated for the basis cubic lattice whose period aB1 =
JETP LETTERS      Vol. 81      No. 7      2005
0.4428 nm corresponds to TaC0.83 carbide. The compar-
ison of the positions of the calculated and observed
superstructure reflections indicates that neutron diffrac-
tion patterns include reflections associated with the
{k4} and {k3} stars, but they do not include reflections
associated with the {k0} star. Analysis of neutron dif-
fraction patterns also shows that reflections at angles
2θ = 19.0°, 37.0°, 49.3°, 59.6°, etc., i.e., reflections that
correspond to the {k9} star of the nonmetallic fcc sub-
lattice, are absent in the spectra of ordered carbide
TaCy. These reflections in the TaCy diffraction spectra
are split into two superstructure reflections (satellites),
e.g., 2θ ~ 18.0° and 20.5° (see Fig. 1).

Complete and partially defective planes alternate in
the nonmetallic sublattice of superstructures of the

Fig. 1. Neutron diffraction patterns of tantalum carbide
TaCy in various structural states after thermal treatment in
the (a), (b), and (c) regimes described in the text. The upper
panel shows the position of reflections associated with the
{k0}, {k3}, {k4}, {k9}, and {k5} stars, as well as the split-
ting of reflections that correspond to the {k9} star and are
observed in commensurate superstructures of the M6C5
type into experimental superstructure reflections associated
with the {k5} star (the positions of the latter reflections are
shown by the dashed lines). The neutron wavelength is λ =
0.1694 nm, the reflection positions are calculated for TaCy
tantalum carbide with a basic-cubic-lattice period of aB1 =
0.4428 nm, and symbols . indicate the positions of the
reflections attributed to radiation with wavelengths λ/2
and λ/3.



328 LIPATNIKOV, REMPEL
M6C5 type (the C2/m, P31, and C2 space groups) in the

[ ]B1 direction (or in the equivalent directions

[111]B1, [ ]B1, and [ ]B1, depending on the orien-
tation of the unit cell). All sites of the complete planes
are occupied by carbon atoms, whereas some sites in
the defective planes are vacant. The alternation of com-

plete and defective nonmetallic atomic planes ( )B1

in ordered M6C5 structures is caused by the presence of

the arm  of the {k9} star in the channels of the cor-
responding disorder–order transitions [14]. The {k9}
star ensures the commensurability of all three struc-
tures, because the corresponding interplanar spacing
coincides with one of the interplanar distances of the
basic cubic structure B1.

Satellites into which reflections corresponding to
the {k9} star are split can be referred to the {k5} star.
The arms of the {k5} star are collinear to the arms of the
{k9} star, but they do not reach the boundary of the first
Brillouin zone. Their length is determined by the

parameter 0 < µ5 < 1/2 (Fig. 2). The positions of the 
arms can generally vary from zero of the reciprocal space
(Brillouin zone center) to the points L = (1/2 1/2 1/2)
at the boundary of the first Brillouin zone, which corre-

111

111 111

111

k9
3( )

k5
j( )

Fig. 2. Positions of the superstructure vectors  and

−  ≡  in the (110) section of the first Brillouin zone

of the fcc lattice [the (110) section is shown by dashed
lines]. The superstructure vectors shown by dashes are
formed by the reciprocal-lattice sites nearest to the Γ =
(0 0 0) site. The presence of two incommensurate super-

structure vectors  with µ5 ≈ 0.473 near the point L =

(1/2 –1/2 1/2), which corresponds to the commensurate vec-

tor , leads to the appearance of two close superstructure

reflections at 2θ ≈ 18.0° and 20.5° in the diffraction spectra
of the polycrystalline samples.

k5
6( )

k5
6( ) k5

5( )

k5
j( )

k5
3( )
spond to the arms of the {k9} star. The presence of the
arms of the {k5} star in the transition channel actually
means that the superstructure of tantalum carbide is
incommensurate.

The parameter µ5 can be determined from experi-
mental neutron diffraction spectra (see Fig. 1). The

 = b2 arm is collinear to the  = µ5b2 = {µ5, –µ5,
µ5} arm, where b2 = {1–11}. Moreover, there is the

opposite superstructure vector –  = . The 

vector is not equivalent to the  vector, and it enters

into the phase transition channel along with the 
vector. The superstructure diffraction vectors qi, 5 that
are associated with the {k5} star and that are generated

by the structure sites Hi are equal to (Hi + ), where

 are the arms of the {k5} star that enter into the tran-

sition channel. Therefore, qi, 5 = (Hi ± ). The first
superstructure vector that is generated by the (0 0 0) site

coincides with the  wave vector, and its modulus is

|q1, 5| = | | = µ5 . The length of the diffraction vec-
tor can be expressed as qi, 5 = (2aB1sinθi, 5)/λ. There-
fore,

(1)

The superstructure vector with a length of | | for
ordered TaC0.83 carbide (c) is observed at diffraction
angle 2θ1, 5 ≅  18.0°–18.06°. Calculation for this angle
yields µ5 ≈ 0.472–0.474. For all superstructure vectors
that are associated with the {k5} star, the average
parameter µ5 is equal to 0.473. Similar calculations
show that, within the diffraction experiment accuracy,
the parameter µ5 is the same for ordered carbides TaCy

with another carbon content; i.e., in the first approxima-
tion, µ5 ≈ 0.473 for any carbon content in TaCy. Thus,
the disorder–order transition channel that is associated
with the formation of the incommensurate ordered

phase in TaCy includes the arms  ≈ 0.473b2 and

 = –  of the {k5} star (see Fig. 2) and the arms
of the {k4} and {k3} stars.

According to the symmetry analysis, the superstruc-
ture of tantalum carbide differs from the known M6C5
superstructures (the C2/m and P31 space groups) that
are formed via the disorder–order transition channels
containing the arms of the {k9}, {k4}, and {k3} stars.
The vectors of the {k9} star ensure both the commensu-
rability of these superstructures and the sequential
alternation of complete and defective nonmetallic

atomic planes ( )B1, and the vectors of the {k4} and
{k3} stars determine the mutual arrangement of vacant
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sites and sites occupied by carbon atoms. The disorder–
order transition channel that is associated with the for-
mation of the superstructure in TaCy contains the arms
of the {k5} star with µ5 ≈ 0.473 instead of the arms of
the {k9} star. For this µ5 value, any interplanar distance
of the superstructure of TaCy carbide does not coincide
with the interplanar distances of the basic cubic struc-
ture B1. Therefore, the ordered phase found for nonsto-
ichiometric TaCy carbide is incommensurate in the

[ ]B1 direction or in the equivalent directions

[111]B1, [ ]B1, and [ ]B1, but it is close to com-
mensurate M6C5 structures (C2/m and P31 space
groups) in the mutual arrangement of atoms and vacan-

cies in the nonmetallic ( )B1 planes.
Let us consider functions that describe the probabil-

ity of the presence of a carbon atom in a site of a non-

metallic ( )B1 plane, i.e., the carbon filling factor

P(1–11) of the nonmetallic ( )B1 planes in MCy car-
bide with any long-range order degree η. Taking into
account the distribution functions for commensurate
M6C5 superstructures [1, 14], we express the filling fac-

tor  as

(2)

Here, z is the ordinal number of a nonmetallic ( )B1
plane, i.e., it is an integer; η9 is the long-range order
parameter corresponding to the {k9} star; and µ9 = 1/2.

According to Eq. (2), nonmetallic atomic ( )B1

planes with maximum  and minimum 

filling factors alternate in the [ ]B1 direction in com-
mensurate M6C5 superstructures. For an incommensu-
rate order structure close to M6C5, the expression for

the C-atom filling factor of nonmetallic ( )B1 planes
in MCy carbide is similar:

(3)

Note that functions (2) and (3) have a physical meaning

only in ( )B1 planes. It follows from these formulas
that the maximum and minimum filling factors of non-

metallic( )B1 planes for carbon atoms are equal to

 = y + η/6 and  = y – η/6, respectively,
where η = η9 and η5 for the commensurate and incom-
mensurate superstructures, respectively.

The maxima and minima of the function P(1–11) for
the incommensurate superstructure do not coincide

with nonmetallic ( )B1 planes. Therefore, the carbon
filling factor for these planes is intermediate between

 and . In other words, the concentration
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wave corresponding to the {k5} star has maxima and

minima that do not coincide with nonmetallic ( )B1

planes. Every second nonmetallic ( )B1 plane in the
commensurate M6C5 superstructure has the maximum
filling factor for C atoms, whereas only every 18th non-

metallic ( )B1 plane (18th, 37th, 54th, 73rd, etc.) is
maximally filled with C atoms in incommensurate tan-
talum carbide. Thus, the translation period in the

[ ]B1 direction in incommensurate ordered tantalum
carbide is equal to 8.9–9.1 nm, which is larger than the

value (2 )aB1/3 = 0.5112 nm for the commensurate
M6C5 phase by a factor of about 18. The translation
period depends on the tantalum carbide composition
and thermal-treatment conditions.

Noncoincidence of the maxima and minima of the

concentration waves with the ( )B1 planes of the
nonmetallic sublattice means that the probabilities of
filling carbon and vacant sites in incommensurate
ordered carbide Ta6C5 (TaC0.83) appreciably differ from
1 and 0, respectively. As a result, the degrees of the
long- and short-range orders in ordered tantalum car-
bide are far from the maximum possible values.

For the same long-range order parameters η9 = η5 =
η, the difference between the filling factors of nonme-

tallic ( )B1 planes in the incommensurate and com-
mensurate superstructures is expressed as

(4)

Let us estimate at which ( )B1 plane of the non-

metallic sublattice the probability  is equal to the

probability ; i.e.,  –  = 0. In this
case, substituting µ9 and µ5 values into Eq. (4), we
obtain z ≈ 37m, where m = 0, 1, 2, …. Thus, the filling

factors of nonmetallic ( )B1 planes for carbon atoms
in the incommensurate and commensurate M6C5 super-
structures coincide with each other in every 37th plane.

Another explanation of the distribution of carbon
atoms and vacancies in ordered tantalum carbide seems
to be possible. The ordered structure of nonstoichio-
metric carbide TaCy can be represented as sequences
[(CD)nC]∞ or [(CD)nD]∞ of alternating complete C and
ordered defective D nonmetallic planes, i.e., as a long-
range periodic structure. However, the parameter µ5 for
the long-range periodic structure [(CD)nC]∞ or
[(CD)nD]∞ must depend on the content of TaCy carbide,
while such a dependence is not revealed within the
accuracy of the diffraction experiment in this work.

This incommensurability of the structure also
means the absence of the exact stoichiometric compo-
sition of the ordered phase. In particular, this property
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explains a weak dependence of the intensity of super-
structure reflections on the composition of TaCy tanta-
lum carbide (see Fig. 1).

The observation of only one ordered phase over the
entire homogeneity range of TaCy carbide is consistent
with the calculation [7] of the phase diagram of the Ta–
C system. According to that calculation, only one
superstructure is possible in TaCy carbide, and the
homogeneity range of this superstructure at T = 300–
800 K is TaC0.81–0.83–TaC0.89–0.92. The formation of an
incommensurate superstructure is experimentally
observed for the composition range from TaC0.79 to
TaC0.89, which corresponds to the estimate obtained in
[7] for the position and width of the homogeneity range
of the ordered phase of tantalum carbide.

Thus, the above investigation indicates that only one
ordered phase is formed over the entire homogeneity
range TaC0.71–TaC1.00 of disordered tantalum carbide.
This phase is incommensurate in the [1–11]B1 direction,
but it is close to M6C5 superstructures in the mutual
arrangement of C atoms and h vacancies. Only com-
mensurate superstructures have been previously
detected in other nonstoichiometric carbides and
nitrides.

We are grateful to A.I. Gusev for stimulating discus-
sion. This work was supported by the Russian Founda-
tion for Basic Research (project no. 03-03-32031a).

REFERENCES
1. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder

and Order in Strongly Nonstoichiometric Compounds:
Transition Metal Carbides, Nitrides, and Oxides
(Springer, Berlin, 2001).

2. A. I. Gusev and A. A. Rempel, Nonstoichiometry, Disor-
der, and Order in Solids (Ural. Otd. Ross. Akad. Nauk,
Yekaterinburg, 2001) [in Russian].

3. V. N. Lipatnikov, A. A. Rempel, and A. I. Gusev, Izv.
Akad. Nauk SSSR, Neorg. Mater. 26, 2522 (1990).

4. A. I. Gusev, A. A. Rempel, and V. N. Lipatnikov, Phys.
Status Solidi A 106, 459 (1988).

5. V. N. Lipatnikov, A. A. Rempel, and A. I. Gusev, Fiz.
Tverd. Tela (Leningrad) 31 (10), 285 (1989) [Sov. Phys.
Solid State 31, 1818 (1989)].

6. J. D. Venables and M. H. Meyerhoff, NBS Spec. Publ.
364, 583 (1972).

7. A. I. Gusev, Usp. Fiz. Nauk 170, 3 (2000) [Phys. Usp.
43, 1 (2000)].

8. R. Lorenzelli and I. de Dieuleveult, J. Nucl. Mater. 29,
349 (1969).

9. V. Moisy-Maurice, N. Lorenzelli, C. H. de Novion, and
P. Convert, Acta Metall. 30, 1769 (1982).

10. S. Tsurekawa and H. Yoshihaga, J. Jpn. Inst. Met. 56,
133 (1992).

11. A. N. Emel’yanov, Teplofiz. Vys. Temp. 28, 269 (1990).
12. T. Athanassiadis, N. Lorenzelli, and C. H. de Novion,

Ann. Chum. France 12, 129 (1987).
13. O. V. Kovalev, Irreducible Representations of the Space

Groups (Akad. Nauk Ukr. SSR, Kiev, 1961; Gordon and
Breach, New York, 1965).

14. A. I. Gusev and A. A. Rempel, J. Phys. C: Solid State
Phys. 20, 5011 (1987).

Translated by R. Tyapaev
JETP LETTERS      Vol. 81      No. 7      2005



  

JETP Letters, Vol. 81, No. 7, 2005, pp. 331–334. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 81, No. 7, 2005, pp. 415–418.
Original Russian Text Copyright © 2005 by Orekhov, Volodin, Efremov, Nikiforov, Ul’yanov, Pchelyakov.

                                
Phonon Localization in Ge Nanoislands and Its Manifestation 
in Raman Spectra

D. A. Orekhov, V. A. Volodin, M. D. Efremov, A. I. Nikiforov, 
V. V. Ul’yanov, and O. P. Pchelyakov

Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 13, Novosibirsk, 630090 Russia

e-mail: volodin@isp.nsc.ru
Received February 21, 2005

Multilayer structures with germanium nanoislands that are formed on the silicon (111) surface upon submono-
layer deposition by molecular-beam epitaxy have been investigated using Raman spectroscopy. To interpret the
experimental Raman spectra, numerical calculations of the spectra have been performed for nanoislands con-
taining from several to several hundred germanium atoms. The calculations demonstrate that the in-plane sizes
of nanoislands (with sizes less than 2–3 nm) substantially affect the frequencies of phonons localized in these
nanoislands. The experimental Raman spectra confirm the occurrence of the quantum size effect. © 2005 Ple-
iades Publishing, Inc.

PACS numbers: 63.22.+m, 78.30.–j, 81.15.Hi
By now, the Stranski–Krastanov mechanism is well-
understood and widely used for the formation of ger-
manium quantum dots (QDs) in silicon (see [1] and ref-
erences therein). Approaches to the formation of ger-
manium QDs without forming a wetting layer have also
been developed recently, such as the growth of germa-
nium on ultrathin silicon oxide [2, 3] or the formation
of Ge clusters at submonolayer coverage [4, 5]. From
direct measurements by scanning tunneling micros-
copy, it is known that, in the initial stage of deposition,
germanium forms triangular nanoislands from one to
three bilayers thick (depending on the deposition rate)
on the reconstructed Si(111)-(7 × 7) surface [6]. Similar
to the electron spectrum, the phonon spectrum of a QD
must represent a set of discrete modes determined by
size quantization. Therefore, rapid and nondestructive
Raman scattering spectroscopy is an informative tech-
nique for studying the properties of semiconductor
nanoobjects [7–9].

An experimental sample was manufactured on a
Si(111) substrate using molecular beam epitaxy. A sili-
con buffer layer 50 nm thick was grown on a conven-
tionally cleaned substrate at a temperature of 700°C.
According to high-energy electron diffraction data, the
silicon surface was (7 × 7) reconstructed. Next, Ge was
grown at a temperature of 400°C to an effective thick-
ness of 0.3 bilayer (BL). One Ge bilayer contains
1.44 × 1015 atom/cm2. The Ge islands formed were cov-
ered from above by a Si layer 4 nm thick at the same
growth temperature of 400°C. In this way, 20 periods of
such a structure were grown. The deposition rate was
1.5 BL/min for both germanium and silicon. The sam-
ples obtained were studied using Raman spectroscopy.
0021-3640/05/8107- $26.00 0331
The spectra were measured at room temperature on an
automated setup based on a DFS-52 spectrometer
(LOMO, St. Petersburg) using the 514.5-nm Ar laser
line (2.41 eV). A quasi-backscattering geometry was

used, the incident light was polarized along the 〈 〉
crystallographic direction, and the scattered light polar-
ization was not analyzed.

The Raman spectra of the sample with germanium
nanoislands and the Si(111) substrate are shown in
Fig. 1 in the region of vibrational frequencies of both
Ge–Ge and Si–Ge bonds. Features near 305 cm–1 that
are associated with two-phonon scattering from trans-
verse acoustic (TA) phonons in silicon [10] are seen in
both spectra. The spectra of the sample with germa-
nium nanoislands exhibit a Raman peak with a maxi-
mum at ~280–290 cm–1, which is absent in the substrate
spectrum. The inset in the figure shows the Raman
spectrum of germanium nanoislands (minus the sub-
strate signal). The spectrum also exhibits peaks from
scattering by Ge–Si bond vibrations (~420 cm–1).

Numerical simulation was carried out to analyze the
experimental Raman spectra. The natural frequencies
and eigenvectors of vibrations in Ge/Si heterostructures
were calculated in the Born model using the approxi-
mation of cyclic boundary conditions. Next, the Raman
spectra were calculated from the obtained data using
the Wolkenstein bond polarizability model [7, 9, 11].
The force constants of germanium bonds in the Born
model were determined by fitting the calculated
phonon dispersion in the bulk material to the experi-
mental data of slow neutron scattering [12]. Since the
phonon dispersions for germanium and silicon are very

011
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similar, the mass substitution method was used to con-
struct Ge/Si heterostructures. The ratio of the deriva-
tives of bond polarizabilities for germanium and silicon
was determined from the ratios of Raman intensities for
germanium and silicon normalized to the scattering
volume. Computational details are described more
comprehensively in [3, 13].

The calculated spectra are given in Figs. 2 and 3.
The calculations were performed for islands of a trian-
gular shape specified by the symmetry of the recon-
structed (111)-(7 × 7) surface. The crystal structure of
the smallest islands for a thickness of 1 and 2 BL is
given in the insets of the figures. Germanium atoms are
shown in black. In our work, a four-atomic germanium
cluster shown schematically in black in the inset of
Fig. 2 was taken as a unit cell.

The Raman peak of bulk germanium that is associ-
ated with scattering by optical phonons is located at
302 cm–1. It is known that the effects of localization in
a planar layer reduce the optical phonon frequencies.
The effects of lateral localization on the frequencies of
optical vibrations are clearly seen in Figs. 2 and 3. The
frequencies of localized optical phonons decrease with
the lateral sizes of nanoislands. A comparative analysis

Fig. 1. Raman spectra of the (solid line) sample with germa-
nium nanoislands and (dashed line) silicon (111) substrate.
The inset shows the contribution from nanoislands (the sig-
nal from the substrate is subtracted).
of the experimental and calculated spectra can give
information on the lateral sizes of germanium nanois-
lands.

It is known that mechanical compressions can lead
to an increase in the frequency of Ge–Ge bond vibra-
tions. At a mismatch in the lattice constants of approx-
imately 4%, the shift for transverse optical (TO) modes
can reach 10 cm–1. The effect of mechanical stresses
was disregarded in the calculated Raman spectra, and
the inclusion of mechanical stresses would lead to a
shift of peaks (by 10 cm–1) toward the high-frequency
region. If the germanium nanoislands 1 and 2 BL thick
had in-plane sizes of 7–8 unit cells (about 3 nm,
approximately), peaks at 300–305 cm–1 would be
observed experimentally. Unfortunately, this frequency
range in the experimental spectra corresponds to a two-
phonon peak from the substrate and, therefore, cannot
be clearly resolved. However, when the substrate signal
is subtracted from the spectrum (inset in Fig. 1), the sig-
nal is virtually absent at these frequencies. Thus, the
following two assumptions are possible: first, mechan-
ical stresses in nanoislands are completely relaxed or,
second, almost all nanoislands have lateral sizes of 1 to
3 unit cells. It is known that the relaxation of mechani-
cal stresses starts at the deposition of germanium with

Fig. 2. Calculated Raman spectra of germanium nanois-
lands one bilayer in height. The numbers at the curves indi-
cate the in-plane size of nanoislands in terms of the number
of unit cells (see explanations in text). The inset shows the
configuration of an island corresponding to spectrum 1.
Germanium atoms are shown in black color.
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a thickness of approximately 4 BL or more. Therefore,
the second assumption is more probable.

The results obtained from the analysis of the Raman
data are in qualitative agreement with the direct data
obtained using scanning tunneling microscopy (STM).
The dependence of the number of germanium atoms
contained in the first, second, and third bilayers on the
deposition rate (in the range from 10–3 to 10–2 BL/min)
is given in [14]. The extrapolation of the dependences
obtained in that work to the region of deposition rates
that are two orders of magnitude higher shows that ger-
manium could form nanoislands only 1 and 2 BL in
thickness. It seems that nanoislands 3 BL thick have no
time to be formed at such relatively high deposition
rates. The dependence of the density of germanium
nanoislands on the deposition rate (in the range from
10–3 to 10–2 BL/min at a deposition temperature of
400°C and coverage of 0.3–0.5 BL) is also given in
[14]. The extrapolation of this dependence to a deposi-
tion rate of 1.5 BL/min used in our work yields a value
of 1013 cm–2 for the density of nanoislands. Approxi-
mately 4 × 1014 atoms/cm2 are contained in 0.3-BL ger-
manium, and simple estimates show that one nanois-
land contains several tens of atoms on the average. The
smallest germanium clusters that are used in our calcu-
lations (shown in Figs. 2 and 3) contain 4 and 13 ger-
manium atoms, respectively. It seems that nanoislands
containing from several to hundred germanium atoms
contribute to the wide experimental peak (Fig. 1),
which coincides with the estimate. Actually, according
to the analysis of the direct STM data (for deposition
rates lower by approximately two orders of magnitude),
it may be assumed that the sizes of Ge nanoislands at
conventional MBE rates do not exceed half the cell of
the (7 × 7) surface structure [6, 14]. As an example, we
present an STM image of germanium nanoislands
obtained after deposition of 0.4-BL Ge at 350°C
(Fig. 4). Along with fairly large triangular islands, a
multitude of clusters with sizes of 2–3 nm are seen in
the figure.

An analysis of the vibrational eigenvectors shows
that TO-like modes are mainly active in the Raman
spectra, although transverse and longitudinal modes are
already rather strongly mixed in the case of small
nanoislands. The longitudinal optical modes are almost
not localized in small germanium clusters because of
mixing with longitudinal acoustic modes in silicon,
which have the same frequencies. Since we used cyclic
boundary conditions, phonons were calculated for a
periodic array of nanoislands rather than for a separate
nanoisland. In this case, the mutual effects of neighbor-
ing nanoislands on the phonon frequencies were negli-
gibly small even when the distances between them were
equal to two to three lattice constants or more.

Thus, according to the analysis of Raman spectra, it
may be concluded that, for a coverage of 0.3 BL, a tem-
perature of 400°C, and a deposition rate of 1.5 BL/min,
germanium forms nanoislands with in-plane sizes of
JETP LETTERS      Vol. 81      No. 7      2005
less than 3 nm on the (7 × 7) reconstructed silicon (111)
surface. A shift in the frequency of optical modes in Ge
nanoislands was observed experimentally, and it can be

Fig. 3. Calculated Raman spectra of germanium nanois-
lands two bilayers in height. The numbers at the curves indi-
cate the in-plane size of nanoislands in terms of the number
of unit cells. The inset shows the configuration of an island
corresponding to spectrum 2. Germanium atoms are shown
in black.

151050 nm

Fig. 4. STM image of the Si(111) surface with Ge clusters
in half-cells of the (7 × 7) surface structure after the deposi-
tion of 0.4-BL Ge at a temperature of 350°C and a deposi-
tion rate of 6 × 10–3 BL/min.
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explained by the effect of phonon localization in
nanoislands.
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The J(ϕ) relation in SFIFS, SNINS, and SIS tunnel junctions is studied. A method for the analytical solution of
linearized Usadel equations has been developed and applied to these structures. It is shown that the Josephson
current across the structure has a sum of sinϕ and sin2ϕ components. Two different physical mechanisms are
responsible for the sign of sin2ϕ. The first one is the depairing by current, which contributes positively to the
sin2ϕ term, while the second one is the finite transparency of SF or SN interfaces, which provides the negative
contribution. In SFIFS junctions, where the first harmonic vanishes at the 0–π transition, the calculated second
harmonic fully determines the J(ϕ) curve. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.50.+r, 74.80.Dm, 75.30.Et
It is well known that tunnel SIS Josephson junctions
have a sinusoidal current–phase relation, while, with a
decrease in the barrier transparency, deviations from
sinϕ take place (see [1, 2] for a review). The sign of sec-
ond harmonic is important for many applications, in
particular, in junctions with a more complex structure
such as SNINS or SFIFS, where N is a normal metal
and F is a weak metallic ferromagnet [2–4]. To analyze
this problem self-consistently, one should go beyond
the usual “rigid boundary conditions” (RBC) approxi-
mation.

The RBC method is an effective tool used exten-
sively earlier for theoretical study of the proximity and
Josephson effects [1, 2]. This method is based on the
assumption that all nonlinear and nonequlibrium
effects in a Josephson structure are located in a “weak
link” connecting two superconducting electrodes. The
back influence of these effects on superconductivity in
the electrodes is neglected. The RBC approximation is
valid if a junction has the constriction geometry. The
quantitative criteria for the validity of RBC for planar
SIS tunnel junctions, SS'S sandwiches, and variable
thickness bridges were studied only numerically for
some parameter ranges [2]. The main technical diffi-
culty in formulating the analytical criteria of RBC
validity is to find the solution to equations describing
the perturbation of the superconducting state in S elec-
trodes. In this paper, we will attack this problem by
finding the solution to the linearized Usadel equations
[5]. We will also use this solution to formulate the cor-
rections to previous results obtained in the RBC
approximation.

¶ This article was submitted by the authors in English.
0021-3640/05/8107- $26.00 0335
JUNCTION MODEL

Let us consider a structure of the SFIFS type, where,
for simplicity, the parameters of the SF bilayers are
equal to each other. We assume that the S layers are
bulk and that the dirty limit conditions are fulfilled in
the S and F metals. We assume further that F metals are
weak monodomain ferromagnets with a zero electron–
phonon interaction constant and that the FS interfaces
are not magnetically active. We will restrict ourselves
to the case of parallel orientation of the exchange fields
H in the ferromagnets. The results obtained for SFIFS
junctions cross over to SNINS and SIS in the corre-
sponding limits.

Under the above assumptions, the problem is
reduced to the solution of the one-dimensional Usadel
equations [5, 6] in S and F layers and the matching of
these solutions by the appropriate boundary conditions
[7]. We choose the x axis perpendicular to the plane of
the interfaces with the origin at the central barrier I and
introduce indexes L (left), R (right), and I for descrip-
tion of the materials and interface parameters of the
SFIFS structure located on the left and right sides of the
central barrier and at this central barrier, respectively.

The Usadel functions G and F obey the normaliza-

tion condition  + Fω  = 1, which allows for the
following parameterization in terms of the new func-
tion Φ:

(1)

Gω
2 F ω–*

Gω
ω̃

ω̃2 ΦωΦ ω–*+
----------------------------------, Fω

Φω

ω̃2 ΦωΦ ω–*+
----------------------------------.= =
© 2005 Pleiades Publishing, Inc.
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The quantity  = ω + iH corresponds to the general
case when the exchange field H is present. However, in
the S layers, H = 0, and we have simply  = ω.

The Usadel equations [5] in the S and F layers have
the form

(2)

(3)

where Gω = / ,  = ω + iH in a ferro-

magnet (H is the exchange field),  = ω in S and N
metals, Tc and ∆ are the critical temperature and the pair
potential in a superconductor, ω = πT(2n + 1) are the
Matsubara frequencies, and ξS(F) are the coherence
lengths related to the diffusion constants DS(F) as ξS(F) =

. The pair potential satisfies the self-con-
sistency equations

(4)

In the case of an SFIFS tunnel junction in the quasi-
one-dimensional geometry, the boundary conditions at
the junction plane (x = 0) read

(5)

(6)

with

where the indices L and R refer to the left- and right-
hand sides of the junction, respectively, and RN and !I

are the normal resistance and the area of FIF interface.
The boundary conditions at the SF interfaces (x =

) have the form [7]

(7)

(8)

where RB and !B are the resistance and the area of the
SF interfaces; ρS(F) is the resistivity of the S (F) layer;
k = L, R. Both of these conditions ensure continuity of
the supercurrent.

ω̃

ω̃

ξS
2 πTc

πGS

---------- ∂
∂x
------ GS

2 ∂
∂x
------ΦS ΦS– ∆,–=

ξF
2 πTc

ω̃GF

----------- ∂
∂x
------ GF

2 ∂
∂x
------ΦF ΦF– 0,=

ω̃ ω̃2 ΦωΦ ω–*+ ω̃
ω̃

DS F( )/2πTc

∆ T
Tc

-----ln πT
∆ GSΦS ωsgn–

ω
------------------------------------

ω ∞–=

∞

∑+ 0.=

ξF

GF L,
2

ω̃L

----------- ∂
∂x
------ΦF L, ξF

GF R,
2

ω̃R

----------- ∂
∂x
------ΦF R, ,=

γBI

ξFGFL R,

ω̃L

------------------- ∂
∂x
------ΦFL R, GF R,

ΦF R,

ω̃R

-----------
ΦF L,

ω̃L

-----------– 
  ,±=

γBI RN!I/ρFξF,=

dF+−

ξSGS k,
2

ω
--------------- ∂

∂x
------ΦS k, γ

ξFGF k,
2

ω̃k

---------------- ∂
∂x
------ΦF k, ,=

γB

ξFGF k,

ω̃k

---------------- ∂
∂x
------ΦF k,± GS k,

ΦS k,

ω
----------

ΦF k,

ω̃k

----------– 
  ,=

with γB RB!B/ρFξF, γ ρSξS/ρFξF,= =
We will also suppose that, due to the low transpar-
ency of the FIF interface, the Josephson current is much
smaller than the depairing current of superconducting
electrodes, meaning that the suppression of supercon-
ductivity in the interior of the electrodes can be
neglected and, at x  ±∞,

(9)

where ∆0 is the magnitude of the bulk order parameter.

LIMIT OF SMALL F LAYER THICKNESS

In this limit

(10)

the gradients in (3) are small and, in the second approx-
imation of dF/ξF, the solution of (3) has the form

(11)

Integration constants  and  in (11) can be found
from boundary conditions at x = 0,

(12)

and at x = ±dF,

(13)

(14)

Expression (13) is valid if γB ! γBI. Substitution of (11)
and (13) into the boundary condition at x = ±dF leads to

(15)

where γM = γdF/ξF, and we reduce boundary problem
(2)–(9) to the solution of Eqs. (2), (4) in the S layers
with boundary conditions (9), (15). At H = 0 and
(γBId/ξF) @ 1, expression (15) reduces to the known
result for the SN bilayer [8].

LINEARIZED USADEL EQUATIONS

Following the RBC approximation, we will start
with the assumption that the suppression of supercon-
ductivity in the S layer is weak and that the solution of

ΦS k, ∆0,=

dF ! min ξF

DF

2H
-------, 

 

ΦF k, Ak Bk
x
ξF

----- x2

2
-----

ω̃k Ak

πTcξF
2 GF k,

--------------------------,+ +=

GF k,
2 ω̃R

2

ω̃R
2 Ak

2 ω( )+
----------------------------.=

Ã B̃

GF L,
2

ω̃L

-----------BL

GF R,
2

ω̃R

-----------BR

GF L, GF R,

γBI

----------------------
AR

ω̃R

------
AL

ω̃L

------– 
 = =

Ak A0 k, γB

GF k,

GS k, ω̃kγBM/πTc+
-------------------------------------------Bk,+−=

A0 k,
ω̃R L, ΦS k, GS k,

ω GS k, ω̃kγBM/πTc+( )
----------------------------------------------------, γBM γB

dF

ξF

-----.= =

ξS
∂
∂x
------ΦS k, γM

GF k,

GS k,
2

---------- ω
πTc

---------Ak± γ
ωGF k,

2

ω̃kGS k,
2

----------------Bk,+=
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the Usadel equations in the superconductor has the
form

(16)

(17)

where ∆0, k = ∆0exp{±iϕ/2 + iUx/ξS}, ϕ is the order
parameter phase difference across the barrier, and the
coefficient U describes the linear growth of the phase
difference due to the supercurrent in the electrodes.
Corrections to ∆0 and ΦS, k are supposed to be small:

(18)

The approximation is valid if the right-hand side of
Eq. (15) is also small, so that

(19)

(20)

where ϑk = (G0 + γBM/πTc) and |Ξ(ω)| ! ∆0. From the
structure of the linearized Usadel equations boundary
conditions (19), it follows that there are first-order cor-
rections only to the magnitudes Θ and ∆1 of functions
Φ1 and ∆1, k, respectively, while the phases of all of
these functions coincide with those of ∆0, k. In this case,

(21)

and, due to the symmetry of the structure, we have

(22)

(23)

To write (23), we also used the fact that, in the first
order with respect to |Ξ(ω)|, the magnitudes of the func-
tions ΦS, k in (13) equal ∆0 and that GS = G0.

ΦS k, ω( ) ∆0 k, Φ1 k, , ∆+ ∆0 k, ∆1 k, ,+= =

GS k, G0 G1 k, , G0+
ω

ω2 ∆0
2

+
----------------------,= =

G1 k,
G0

ω2 ∆0
2+

------------------
∆0 k,* Φ1 k, ∆0 k, Φ1 k,*+[ ]

2
---------------------------------------------------,–=

∆1 k,  ! ∆0, Φ1 k,  ! ∆0.

ξS
∂
∂x
------Φ1 k, Ξk ω( ),=

Ξk ω( ) γM

ωGF0 k, A0 k,

πTcG0
2

---------------------------± γ
ωGF0 k,

2 Bk

ω̃kG0
2

-----------------------,+=

GF0 k,
ωϑk

ω2ϑ k
2 ∆0

2
G0

2+
-----------------------------------,=

ω̃k

Φ̃1 k, Θ i
ϕ
2
---±

 
 
 

, ∆1 k,exp ∆1 i
ϕ
2
---±

 
 
 

exp= =

ω̃R ω̃L ω̃, GF0 k, GF0, ϑ k ϑ ,= = = =

A0 k,

∆0
--------- C0 i

ϕ
2
---±

 
 
 

, C0exp
ω̃G0

ωϑ
----------,= =

Ξk ω( )
GF0

G0ϑ
---------- γM

ω̃
πTc

--------- ϕ
2
---cos±=

+ i γM
ω̃

πTc

--------- 2
γ

γBI

-------GF0+ 
  ϕ

2
---sin .
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Substituting (16), (21) into (2), (3), we arrive at the
following boundary problem for Θ and ∆1:

(24)

(25)

(26)

(27)

Due to the symmetry of the problem, it is enough to
solve Eqs. (24)–(27) only in one of the electrodes,
namely, for x ≥ dF. Using the equation for ∆0(T),

(28)

and the symmetry relation Θ(ω) = Θ(–ω), we can
rewrite the self-consistency equation in the form

(29)

(30)

The solution of (24), (29) is

(31)

where the coefficients δΩ and qΩ satisfy the equation

(32)

(33)

and P(ϕ, ω) = ReΞR(ω)cos(ϕ/2) + ImΞR(ω)sin(ϕ/2).

Multiplying Eq. (33) by ω2(ω2 + )–3/2, summing both
sides of this equation over ω, and making use of (32),

ξS
2 πTc

ω2 ∆0
2

+
---------------------- ∂2

∂x2
--------Θ– Θ+ ∆1,=

∆1
T
Tc
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1
ω
------

ω ∞–=
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∞
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2
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one can transform (33) into a system of equations for
the coefficients δΩ , which yields

(34)

where

(35)

(36)

(37)

Here, Ω = πT(2m + 1) are the Matsubara frequencies.
As a result, the solution of boundary problem (24)–

(27) has the form

(38)

(39)

In particular, at x = dF, from (38) and (39) we have

(40)

(41)

(42)

To calculate sums (41) and (42), one needs to know
the expression for the coefficients qΩ, which can in gen-
eral be obtained from numerical solution of Eq. (32).
Since the main contribution to sums (41), (42) comes
from large Ω , the asymptotic behavior of qΩ at large Ω
can be used:

(43)
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The method developed is valid if the following con-
dition is fulfilled:

(44)

Therefore, for the function ΦS, k in Eq. (14), we get

(45)

and, substituting (45) into (13), we finally obtain

(46)

. (47)

From the structure of coefficients , we see that the
corrections to the supercurrent across the SFIFS tunnel
junction leads not only to the reduction of the critical
current of the structure but also to changes in the Js(ϕ)
relation.

Js(ϕ) RELATION

Using the standard expression for the supercurrent
[11], boundary condition (6), and Eq. (46), we can write
down the supercurrent I across the SFIFS junction in
the form

(48)

where

(49)

(50)

(51)

Expression (49) has been obtained previously in [9–
11]. The ϕ-independent correction to it, J11, is negative
and describes the suppression of the sinϕ component of
the supercurrent. The first term in Eq. (50), which is
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ÃR L,

I J0 J11+( ) ϕ J12 2ϕ ,sin+sin=

J0
πT
eRN

---------
∆0

2C0
2

ω̃2 C0
2∆0

2
+

-------------------------, C0

ω ∞–=

∞

∑ ω̃G0

ωϑ
----------,= =

J11
2πT
eRN

----------
∆0

2
C0

2

ω̃2 C0
2∆0

2+( )
2

------------------------------- γM

ω̃ωC0µ
0

------------------ΣF1

ω ∞–=

∞

∑–=

+
γB

γBI

-------
ω̃2GF0

ϑ
--------------- γ

γBI

-------
ω̃ωC0µ

∆0
------------------ΣF2+ ,

J12
πT
eRN

---------
∆0

2
C0

3

ω̃2 C0
2∆0

2
+( )

2
--------------------------------

ω ∞–=

∞

∑–=

×
γB

γBI

-------
GF0∆0

2C0

ϑ
--------------------- γ

γBI

-------
ω̃ωµΣF2

∆0
---------------------– .
JETP LETTERS      Vol. 81      No. 7      2005



THE CURRENT PHASE RELATION IN JOSEPHSON TUNNEL JUNCTIONS 339
proportional to γM, takes into account the suppression
of superconductivity in the S electrodes due to the prox-
imity of the thin F layer. The last two terms, which are

proportional to , describe the suppression of super-
conductivity by the current across the junction. The
larger γB and γ are, the weaker the superconductivity
induced into the F layer and the stronger the influence
of this effect.

The sign of the second harmonic J12 depends on the
relation between γB and γ. At γB = 0, it is positive and
J(ϕ) relation (48) has a maximum at ϕ = ϕmax < π/2.
Such a shift was predicted earlier near Tc for SIS tunnel
junctions and is due to the suppression of superconduc-
tivity near the barrier by a supercurrent [12]. An
increase in γB leads to additional phase shifts at both SF
interfaces and provides the mechanism for the shift of
ϕmax into the region ϕ > π/2. As a result, at sufficiently
large γB, the amplitude J12 changes its sign and ϕmax
shifts to ϕ > π/2. Such a competition between suppres-
sion by a supercurrent and by the proximity effect was
first analyzed in the SNS junctions [13] at T ≈ Tc. This
fact is in full agreement with the results of numerical
calculations summarized in [2].

The physical reason for different signs of J12 can be
easily understood if we consider the two cases sepa-
rately. Suppose first that γB is finite. In this case, the
SFIFS structure may be considered a system of three
Josephson junctions in series, as shown schematically
in Fig. 1. For rough estimates, one can assume that the
phase χ of ΦF, k does not depend on ω. Demanding the
equality of the currents across FIF and FS interfaces

and taking into account that IC ∝   ! IC1 ∝   for χ,
we will have

Substituting this χ into the expression for the supercur-
rent across the FIF interface, we get

Therefore, with increasing γB, the phase partly jumps at
the FS interfaces, leading to a continuous crossover
from the Josephson effect lumped at x = 0 to the phase
drop distributed at |x | ≤ dF. In full agreement with the
theory of double barrier devices [2], this crossover
results in the appearance of a second harmonic in JS(ϕ)
with a negative sign, which provides for a maximum
JS(ϕ) achieved at ϕ ≥ π/2.

If γB = 0, the structure is always lumped at x = 0 and
the main effect is the suppression of superconductivity
by a supercurrent in the vicinity of the FIF interface, as

γBI
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γBI
1– γB

1–
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------- 2χ .sin–=

I IC ϕ
IC
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 sin IC ϕsin
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shown schematically in Fig. 2. The resulting contribu-
tion to the full current is

(52)

It follows directly from (52) that the amplitude of the
second harmonic is positive.

The competition of the above two mechanisms of
I(ϕ) deformation is clearly seen from Eq. (51).

General expressions (49)–(51) can be simplified in
several limiting cases.

In the symmetric SNINS tunnel junctions, H = 0 in
both electrodes and, in the first approximation from
(49), the earlier result from [8] is reproduced:
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Fig. 1. The phase distribution in a SFIFS junction.

Fig. 2. Depairing by current near the tunnel barrier.
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while (50) and (51) reduce to

where

and G0 = ω/ .

In the limit γ  1, H, γM, γB, γBM  0, the SFIFS
structure transforms into a SIS tunnel junction. In this
case,

and, for the supercurrent I in the first approximation, we
have the well-known result of the Ambegakaokar–
Baratoff theory [14]:

Using (32) for J11 and J12, it is easy to get

(53)

and the full current across the tunnel junctions is
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The critical current is achieved at a phase difference ϕc,

and equals

at T  0, I(ϕ) simplifies to

At T ≈ Tc, Eqs. (53) transform into the result obtained in
[12].

CONCLUSIONS

In summary, we have studied the current–phase
relations JS(ϕ) in SFIFS, SNINS, and SIS junctions in
the regime in which the second harmonic of JS(ϕ) is not
small. To solve this problem self-consistently, we have
developed an analytical method for solving the linear-
ized Usadel equations. This solution describes a weak
suppression of the superconducting state in a supercon-
ductor caused either by the proximity of normal or fer-
romagnetic material or by a current in composite SN or
SF proximity systems. The method is rather general and
can be applied to a wide spectrum of proximity prob-
lems.

We have demonstrated that the full current across
structure (48) consists of the sum of the sinϕ and sin2ϕ
components and have calculated the amplitudes (J0 +
J11) and J12 of these components. In SIS and SNINS
structures, the corrections J11 and J12 to the previously
calculated critical current J0 are small. The J(ϕ) curve
is slightly deformed so that the maximum value of the
supercurrent is achieved at the phase difference ϕc,
which can be smaller or larger than π/2 for a positive or
negative sign of J12, respectively. In SFIFS junctions,
J0 = 0 at the point of the transition from the 0 to the π
state. This means that, in this case, the calculated values
J11 and J12 determine the J(ϕ) curve. Since the ampli-
tudes J11 and J12 may have comparable magnitude, the
J(ϕ) measured experimentally can be essentially differ-
ent from sinϕ. The validity of the approach developed
is determined by inequalities (44) and γB ! γBI. These
conditions also determine the validity of rigid boundary
conditions in the models [2] describing the properties
of SFIFS, SNINS, and SIS tunnel junctions.
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The magnetic and galvanomagnetic properties of single crystals of the new diluted magnetic semiconductor
p-Sb2 – xCrxTe3 (0 ≤ x ≤ 0.02) have been studied in the temperature range 1.7–300 K. A ferromagnetic phase
with the Curie temperature Tc ≈ 5.8 K and the maximum Cr content x = 0.0215 has been revealed. The easy
magnetization axis is parallel to the C3 crystallographic axis. In the presence of strong magnetic fields, the
Shubnikov–de Haas effect has been observed. Analysis of this effect shows that doping with chrome reduces
the concentration of holes. Negative magnetoresistance and the anomalous Hall effect are observed at liquid
helium temperature. © 2005 Pleiades Publishing, Inc.

PACS numbers: 72.20.My, 72.25.Hg, 72.80.Ey, 75.50.Pp
1. Layered semiconductors similar to Sb2Te3 have a

rhombohedral structure ( –  spatial symmetry
group) with symmetry axes of the second (C2) and third
(C3) orders. Crystals Sb2Te3 always have p-type con-
ductivity due to a high concentration of charged point
defects predominantly of the antistructural type; i.e.,
antimony atoms substitute for tellurium positions. The
formation of such defects is caused by a weak polarity
of Sb–Te bonds.

Doping-induced change in the polarity of bonds
leads to a change in the concentration of point defects
and, therefore, in the concentration of holes. Hence,
doping with an element of a certain group of the Peri-
odic Table can lead to both donor and acceptor effects
in connection with the effect on the polarity of a bond
rather than with the group number. As an example, we
point to indium, a Group III element, that provides the
donor effect in Sb2Te3 [1, 2], which is a narrow-gap
semiconductor whose indirect band gap is Eg = 0.25 eV
(at 295 K) and Eg = 0.26 eV (at 4.2 K) [3]. The valence
band consists of the upper band of light holes and the
lower band of heavy holes. Each band is sixfold degen-
erate, and the Fermi surface for each band is six-ellip-

R3m D3d
5
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soidal [1]. The anisotropy of the ellipsoids of the light-
hole band is η = Smax/Smin ≈ 3.8, and their slope angle to
the basis plane is θ ≈ 52.5° in Sb2Te3.

Recently, it has been found that doping with iron
increases the Seebeck coefficient of Bi2Te3 [4, 5].
Moreover, low-temperature ferromagnetism was found
in p-Bi2Te3 (Fe) [4, 6, 7]. More recently, ferromag-
netism has been also found in Sb2 – xVxTe3 [8] and
Bi2 − xMnxTe3 [9]. An interesting manifestation of such
an interaction in diluted magnetic semiconductors is
ferromagnetism observed in GaAs diluted magnetic
semiconductors with p-type conductivity (see review
[10]).

In addition to pure scientific interest in hole-induced
ferromagnetism in diluted magnetic semiconductors,
there are promising prospects for using this phenome-
non in spintronics for creating devices with controlled
spin transport. In this work, the galvanomagnetic and
magnetic properties of single crystals of the new
diluted magnetic semiconductor p-Sb2 – xCrxTe3 have
been studied. In addition, the Shubnikov–de Haas
effect has been analyzed in order to better understand
Shubnikov–de Haas oscillation frequency F; light-hole concentration P for T = 4.2 K; resistivity values ρ4.2 and ρ300 for
T = 4.2 and 300 K, respectively; Hall mobility µ for T = 4.2 K; and experimentally determined Cr content in Sb2 − xCrxTe3

Sample F, T P, 1019 cm–3 ρ4.2, µΩ cm ρ300, µΩ cm µ, m2/(V s) Cr, at. %

Sb2Te3 54.7 3.4 38.8 260 0.103 0

Sb2 − xCrxTe3 (x = 0.0115) 43.4 2.3 142 437 0.029 0.23

Sb2 − xCrxTe3 (x = 0.0215) 46.2 2.6 106 314 0.066 0.43
© 2005 Pleiades Publishing, Inc.
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the chrome effect on the properties of the initial
p-Sb2Te3 crystals.

2. The single crystals were grown by the Bridgman
method from components taken in the stoichiometric
ratio corresponding to the required composition
Sb2 − xCrxTe3. Ingots are easily cleaved along the cleav-
age planes that are perpendicular to the C3 axis, i.e.,
along the (0001) planes, which are usually parallel to
the axis of an ampule. Samples with characteristic sizes
1 × 0.5 × 4 mm for measurements were cut by a spark
erosion machine. Electric contacts were sealed by a
BiSb alloy.

The chrome content in the samples after magnetic
and electric measurements was determined by a JEOL-
8621 electron microanalyzer. The measurements also
show that chrome is uniformly distributed over a sam-
ple. The Cr content was found to be 0.23 and 0.43 at. %
in two doped samples being investigated. These values
correspond to x = 0.0115 and 0.0215, respectively, in
the formula Sb2 – xCrxTe3.

The temperature dependences of resistivity, as well
as magnetoresistance and the Hall effect, were mea-
sured by the standard four-terminal method with cur-
rent directed along the C2 axis. A magnetic field up to
6 T was created by a superconducting solenoid, and it
was perpendicular to layers along the C3 axis. The
Shubnikov–de Haas effect was measured in pulsed
magnetic fields up to 54 T with a pulse duration of 10
ms. Magnetic measurements over the temperature
range 1.7–300 K in magnetic fields up to 5 T were car-
ried out in a Quantum Design MPMS-5S SQUID mag-
netometer. Some parameters of the samples under
investigation are given in the table.

3. The resistivity ρ of all samples decreases with
temperature, and it is saturated for low temperatures.
The temperature dependence in the range 150–300 K
has the form ρ(T) ~ Tm with m ≈ 1.2. The deviation from
the m = 1.5 value characteristic of phonon scattering is
likely attributable both to the additional scattering of
holes on ionized impurities and to the temperature
dependence of the effective mass in this temperature
range. Chrome doping reduces mobility (see table),
although mobility in the sample with 0.43 at. % Cr is
higher than that in the sample with 0.23 at. % Cr. The
latter property is most likely associated with different
numbers of defects that arise in the samples during the
growth process. Resistivity increases in the chrome-
doped samples, although it is somewhat lower in the
sample with higher chrome content. Resistivity in the
chrome-doped samples increases also due to the addi-
tional scattering of holes by the localized magnetic
moments of Cr ions. The latter conclusion is corrobo-
rated by the existence of negative magnetoresistance
ρ(B) in weak magnetic fields (see Fig. 1). An anomaly
in the dependence ρ(B) is observed for B ≈ 1.5 T.

The Hall coefficient is positive in all samples, and it
increases with the chrome content, which indicates a
JETP LETTERS      Vol. 81      No. 7      2005
decrease in the hole concentration. However, it is
impossible to use this coefficient to calculate the hole
concentration, because bismuth and antimony tellu-
rides contain two groups of holes with different
unknown concentrations and mobilities. Hence, the
temperature and magnetic field dependences of the Hall
coefficient are complicated even in the absence of a
magnetic impurity in these semiconductors [2, 11]. For
this reason, in order to estimate the change in the con-
centration of light holes when Sb2Te3 is doped with
chrome, the Shubnikov–de Haas effect is used (see
below). The presence of Cr magnetic impurity in the
samples under investigation gives rise to the anomalous
Hall effect [12], which can be expressed as

(1)

where RH is the standard Hall coefficient, Ra is the
anomalous Hall coefficient, and M is the magnetization.

ρxy RHB Raµ0M,+=

Fig. 1. Negative magnetoresistance of two Sb2 – xCrxTe3
samples.

Fig. 2. Hall resistivity ρxy of the Sb2 – xCrxTe3 samples vs.
the magnetic field. The inset shows the deviation (the anom-
alous Hall effect) of (points) ρxy(B) from a linear depen-
dence in weak magnetic fields.

0.23 at. % Cr

0.43 at. % Cr

0.43 at. % Cr

0.23 at. % Cr0.23 at. % Cr

0.43 at. % Cr
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Figure 2 shows the Hall resistivity ρxy as a function of
the magnetic field. The inset in Fig. 2 shows the devia-
tion of ρxy from (straight lines) a linear dependence in
weak magnetic fields. This deviation is caused by the
anomalous Hall effect, and it is small because the
observed ferromagnetism is rather weak.

4. The magnetic susceptibility χ of the Sb2Te3 initial
single crystal is diamagnetic, it is nearly independent of
temperature, and its value is equal to –8 × 10–10 m3/mole
in the principal crystallographic directions. Figure 3
shows the temperature dependence of the magnetic sus-
ceptibility of Sb2 – xCrxTe3 per Cr ion after the subtrac-
tion of the diamagnetic background of the matrix in the
C3 direction in the magnetic field B = 10 mT. The abso-
lute value of χ increases with the chrome content in the
samples. The inset in Fig. 3 shows the magnetization
loops for the sample with a chrome content of 0.43 at. %

Fig. 3. Temperature dependence of the magnetic suscepti-
bility of Sb2 – xCrxTe3 in the magnetic field B = 10 mT. The
inset shows the magnetization loops for the sample with a
chrome content of 0.43 at. % at T = 1.7 K in the magnetic
field B oriented along the C3 or C2 axis.

Fig. 4. Shubnikov–de Haas oscillations in Sb2 – xCrxTe3 and
Sb2Te3 for B || C3 at T = 4.2 K.

0.23 at. % Cr

0.43 at. % Cr
for T = 1.7 K in the magnetic field B oriented along the
C3 or C2 axis. The hysteresis loop for B || C3 is narrow,
with a coercivity of ≈15 mT, and the saturation magne-
tization corresponds to 3.8µB per Cr ion. These data
indicate the existence of ferromagnetism in the samples
with chrome, and they are consistent with the Curie–
Weiss temperature dependences of magnetic suscepti-
bility with a positive paramagnetic Curie temperature.
When magnetization is measured along the B || C2

direction, the width of the hysteresis loop increases to
70 mT, but the field B = 2.5 T is insufficient for the sat-
uration of magnetization. Similar results were also
obtained for the sample with a chrome content of
0.23 at. %.

5. The Shubnikov–de Haas effect is analyzed for
T = 4.2 K in the magnetic field parallel to the C3 axis.
For this orientation, the sections of all six ellipsoids of
the upper valence band of light holes coincide with
each other, and one oscillation frequency is observed
(see Fig. 4). The oscillation amplitude decreases appre-
ciably in the doped samples. The oscillation frequen-
cies are given in the table. The light-hole concentration
that is presented in the table is calculated from these
frequencies by the procedure described in [13, 14]. The
concentration of light holes is lower than the total con-
centration of holes in the sample, but its change repre-
sents a change in the total hole concentration. Accord-
ing to the above data, doping with chrome reduces the
concentration of holes, although this effect is non-
monotonic: the hole concentration in the sample with
the high chrome content (0.43 at. %) is higher than that
in the sample with a chrome content of 0.23 at. %. As
was mentioned above, this anomaly can be attributed to
different defectiveness degrees of the samples.

The donor action of chrome is associated with its
effect on the polarity of bonds. A weak polarity of
Sb−Te bonds results in the presence of numerous anti-
structural defects in the lattice (Sb atoms substitute for
Te atoms). Doping with Cr changes the polarity of
bonds. This change leads to a change in the concentra-
tion of charged point defects and, therefore, to a change
in the hole concentration.

Chrome atoms primarily substitute for Sb atoms in
the lattice, whereas the Te content remains on a level of
60%. Thus, the Sb2 – xCrxTe3 solid solution is formed.
This assumption is corroborated by a decrease in the
unit-cell volume, because the covalent radius for
chrome, rCr = 0.127 nm, is lower than that for antimony,
rSb = 0.138 nm [15]. According to the x-ray measure-
ments, the lattice constants for Sb2Te3 are a =
0.42643(5) nm and c = 3.0427(4) nm, whereas these
constants for the sample with 0.43 at. % Cr are a =
0.402602(4) nm and c = 3.0431(3) nm. An increase in
the bond polarity when Sb atoms are replaced by Cr
atoms reduces the probability of forming antistructural
defects. For Sb2 − xCrxTe3, Sb atoms with electronega-
JETP LETTERS      Vol. 81      No. 7      2005
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tivity XSb = 1.9 are replaced by Cr atoms with electrone-
gativity XCr = 1.5, which increases the bond polarity.

6. In the diluted magnetic semiconductors
p-Sb2 − xCrxTe3 under investigation, the direct interac-
tion between magnetic ions is impossible due to their
low concentration. Hence, Ruderman–Kittel–Kasuya–
Yosida long-range oscillating interaction mediated by
holes can be responsible for the ferromagnetic transi-
tion. The sign of this interaction corresponds to ferro-
magnetic interaction, because the first zero of the inter-
action after which the interaction changes sign and
becomes antiferromagnetic lies at a distance that is
much larger (due to low hole concentration) than the
cutoff length of the interaction. It is clear why ferro-
magnetism is absent for n-type conductivity: ferromag-
netic interaction is hindered due to both a low effective
mass and a small exchange integral of electrons.
According to a theory developed by Jungwirth et al.
[16, 17] for homogeneous systems with random distri-
bution of localized spins, the Curie temperature Tc is
determined from the formula

(2)

Here, c is the magnetic impurity concentration, S is the
Cr-ion spin determined from magnetization measure-
ments, Jpd is the constant of the exchange interaction
between localized magnetic moments and spins of cur-
rent carriers, g is the Lande factor, µB is the Bohr mag-
neton, and χ is the magnetic susceptibility that depends
on the hole concentration p and temperature T. Disre-
garding correlation effects, we estimate susceptibility
by the Pauli expression χ = (gµB)2p/EF or χ =
(gµB)2m*kF/h2, where h is Planck’s constant and m* is
the effective mass of current carriers. Jungwirth et al.
[17] supposed an additional contribution χ =
(gµB)2e2(m*)2/εh4, where ε is the dielectric constant.
When hole concentration is high (as in Sb2Te3), first
contribution dominates. According to estimates for g =
2 and experimental values S = 3/2 for Cr and Tc = 5.8 K,
the exchange constant is equal to 0.2–0.3 eV nm3. This
value is an order of magnitude less than the value cal-
culated for (Mn)GaAs, but ferromagnetism is absent in
(Mn)GaAs for such a low concentration of magnetic
impurities. The above estimate is an upper estimate,
because it contains the mass of current carriers and the
heavy-hole mass is much larger than the electron mass.

Thus, investigation of the new diluted magnetic
semiconductor Sb2 – xCrxTe3 with p-type conductivity
has revealed hole-induced ferromagnetism with a Curie
temperature Tc ≈ 5.8 K. The easy magnetization axis is

kBTc
cS S 1+( )

3
-----------------------

J pd
2

gµB( )2
----------------χ f p T,( ).=
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parallel to the C3 crystallographic axis. Magnetic
measurements show that chrome is in the Cr3+ state.
The Ruderman–Kittel–Kasuya–Yosida interaction in
Sb2 – xCrxTe3 is the most probable mechanism of the
exchange interaction responsible for ferromagnetism.
Doping with chrome within the range under investiga-
tion reduces the hole concentration. The presence of a
magnetic impurity leads to negative magnetoresistance
and the anomalous Hall effect.

We are grateful to T. Gortenmulder for the analysis
of the chrome content in the samples.
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A new class of boron–nitrogen (BN) nanotubes composed of tetragons, pentagons, hexagons, heptagons, and
octagons is considered. By analogy with carbon nanotubes of the same topological structure, these nanotubes
were called Haeckelites. The geometry, energetics, and electronic properties were studied in detail for two reg-
ular mutual arrangements of the polygons. It was found that Haeckelite nanotubes are dielectrics with the
energy gap Eg = 3.24–4.09 eV. As the nanotube diameter increases, the energy gap Eg decreases, approaching
the value for the corresponding planar Haeckelite layer. The ground-state energy of the Haeckelite BN nano-
tubes is 0.3 eV/atom higher than that of well-known hexagonal BN nanotubes. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.46.+w, 73.20.At, 73.22.–f
Carbon nanotubes were discovered in 1991 [1].
Subsequent intensive studies demonstrated that these
systems exhibit a set of properties useful for potential
applications [2, 3]. More recently, it was found that car-
bon is not the only element capable of forming nano-
tube structures. As early as in 1992, the first noncarbon
nanotubes were synthesized based on layered molybde-
num disulfide and tungsten disulfide [4]. In 1995,
boron–nitrogen (BN) nanotubes were obtained by the
arc-discharge method [5]. More recently, a method for
producing BN nanotubes from carbon nanotubes by a
substitution reaction was described [6]. Further studies
demonstrated that other chemical elements can form
nanotube structures under certain synthesis conditions
[4]. Note that the existence and stability of BN nano-
tubes was theoretically predicted [7, 8] before they
were detected experimentally.

As was previously found using the tight-binding
(TB) method [7] and density functional theory (DFT)
[8], the BN nanotubes composed of hexagons [hence-
forth referred to as (BN)6] are dielectrics with a band
gap (Eg ~ 5.5 eV) almost independent of the diameter
and chirality. This is a dramatic difference between BN
and carbon nanotubes; the latter can be either semicon-
ductors or metals depending on their chirality and
diameter [2]. The mechanical properties of BN nano-
tubes were studied with the use of the nonorthogonal
TB method [9, 10]. Menon and Srivastava [11] found
that zigzag-type (BN)6 nanotubes are energetically
more favorable than the armchair-type nanotubes.
More recently, this conclusion was supported experi-
mentally [12]. Note that both of these types of carbon
nanotubes are energetically equally favorable.

In 2000, the existence of a new class of carbon nan-
otubes composed of either pentagons and heptagons or
pentagons, hexagons, and heptagons was predicted
0021-3640/05/8107- $26.000346
[13]. Of course, these nanotubes topologically satisfy
Euler’s theorem; namely, the numbers of nonhexagonal
units are pairwise equal for an arbitrary number of
hexagons. In particular, if a nanotube consists of penta-
gons, hexagons, and heptagons, the number of penta-
gons n5 is equal to the number of heptagons n7. These
nanotubes composed of nonhexagonal structure-form-
ing units were called Haeckelites. Based on nonorthog-
onal TB calculations, Terrones et al. [13] concluded
that Haeckelite carbon structures are energetically
more favorable than C60 fullerene and exhibit metallic
conductivity. Lambin and Biro [14] considered various
conceivable types of Haeckelite carbon nanotubes.
Recently, Rocquefelte et al. [15] calculated the elec-
tronic structures and vibrational spectra of a number of
carbon nanotubes of this type using the DFT method
and made a number of suggestions that allowed them to
experimentally identify Haeckelite carbon nanostruc-
tures.

By analogy with carbon nanotubes, it is of interest
to consider BN nanotubes composed of polygons other
than hexagons. However, unlike purely carbon nano-
tubes, in which the presence of polygons with odd num-
bers of edges is permissible, this possibility for BN
nanotubes is prohibited by the existence of energeti-
cally unfavorable B–B and N–N bonds in nonalternant
systems [16]. For this reason, tetragons, hexagons, and
octagons are feasible structural units provided that
Euler’s theorem is obeyed: n4 = n8 for an arbitrary num-
ber of hexagons.

In this work, we hypothesize the existence of a new
class of Haeckelite BN nanotubes consisting of tet-
ragons and octagons [(BN)48] or additionally including
hexagons [(BN)468]. It is shown that such nanotubes are
energetically possible. For comparison with the above
 © 2005 Pleiades Publishing, Inc.
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types, a BN nanotube consisting of pentagons and hep-
tagons [(BN)57] was also considered.

The calculations were performed using DFT [17] in
the generalized gradient approximation using the Per-
dew–Burke–Ernzerhof parameterization [18]. Ultrasoft
Vanderbilt pseudopotentials [19] were used to describe
atomic core electrons. The required basis set of sheet
waves was specified by the kinetic energy cutoff param-
eter (so-called cutoff energy), which was equal to
45 Ry. The cutoff energy for charge density was chosen
to be 360 Ry. The test calculations demonstrated that
the use of higher cutoff energies changed the total
energy by less than 1 meV. The atomic coordinates and
unit-cell parameters were relaxed using the BFGS
method [20] until forces acting on the atoms and
mechanical stresses in the cell became lower than 2.5 ×
10–3 eV/Å and 3 × 10–3 GPa, respectively. In the geo-
metric optimization of nanotubes, 4–18 k points in the
Brillouin zone were used. For each particular calcu-
lated structure, it was found that a further increase in
the number of k points changed the total energy by less
than 1 meV. The Monkhorst–Pack method [21] was
used for the generation of k points.

Classification of BN Haeckelites. Since a nanotube
can be represented as a graphite sheet rolled into a cyl-
inder, we initially considered the planar prototypes of
BN Haeckelite structures. First, the equilibrium geo-
metric structure of Haeckelites should be determined.
We considered two main types of these structures; one
of them (Fig. 1a) consists of tetragons, hexagons, and
octagons [henceforth referred to as (BN)468]. Among
numerous such structures, we considered only the one
shown in Fig. 1a. Structures composed of tetragons and
octagons [henceforth referred to as (BN)48], a planar
modification of which is shown in Fig. 1b, form another
type of BN Haeckelites. To form BN nanotubes from
(BN)468 and (BN)48 classes, the atoms of the (0,0) cell
are joined to the required (n,m) cell (see Figs. 1a, 1b)
using an na + mb vector (where a and b are the unit-cell
vectors and m and n are integers). Then, both (n,n)
(armchair type, Fig. 1c) and (n,0) (zigzag type, Fig. 1d)
nanotubes can be obtained from a (BN)468 sheet. Here,
we use the terms armchair and zigzag, which were
introduced for the designation of various types of car-
bon and BN nanotubes composed of hexagons, because
BN Haeckelite nanotubes are similar to the above types
of carbon nanotubes. Note that only armchair-type (n,n)
nanotubes can be produced from a (BN)48 sheet
(Fig. 1e). According to this classification, we character-
ize a planar BN structure composed of hexagons as
(BN)6, whereas nanotubes formed by rolling this sheet
are designated as armchair or zigzag nanotubes (n,m),
as proposed by Rubio et al. [7]. Note that our study is
restricted to only nonchiral nanotubes.

Energetics of BN Haeckelites. We determine the
equilibrium geometry and the cohesive energy of each
planar BN Haeckelite structure. For the geometry opti-
mization, we used the supercells of these structures
JETP LETTERS      Vol. 81      No. 7      2005
containing 32 [in the case of (BN)6 and (BN)48 sheets]
or 36 atoms [in the case of a (BN)468 sheet]. In the cal-
culation of the equilibrium geometry, we used 18 k
points equivalent to a 6 × 6 × 1 network of k points gen-
erated by the Monkhorst–Pack method [21]. The table
summarizes the energies [measured from the energy of
the (BN)6 sheet] of all planar structures. It is seen in the
table that the (BN)468 and (BN)48 atomic sheets are
energetically less favorable than the (BN)6 sheet by
0.29 and 0.32 eV/atom, respectively. Note that, accord-
ing to the calculations made in [13, 15], carbon Haeck-
elite atomic sheets are also energetically less favorable
(by ~0.3 eV/atom) than a carbon graphene sheet. It can
be seen that the differences between the energies of car-
bon and BN Haeckelite sheets are nearly identical.

Next, we determined the equilibrium geometry
structures and calculated cohesive energies for all
above types of Haeckelite nanotubes. The table summa-
rizes the main parameters [average diameter, B–N bond
length, and the energy of each particular structure mea-
sured from the energy of the (BN)6 planar structure]
characterizing the Haeckelite nanotubes. Knowing the
cohesive energies of planar BN structures and BN
Haeckelite nanotubes, we can determine the strain
energies Estr required for the formation of nanotube
structures with various diameters from the correspond-
ing flat prototype. This energy Estr can be calculated as
the difference between the energies of a nanotube and
the corresponding flat layer from which the nanotube
was formed. Figure 2 demonstrates the dependence of

Fig. 1. Fragments of BN Haeckelite nanostructures: (a)
(BN)468 and (b) (BN)48 sheets; (c) (7,7) (BN)468, (d) (4,0)
(BN)468, (e) (6,6) (BN)48, and (f) (4,0) (BN)57 nanotubes.
Open and closed circles indicate boron and nitrogen atoms,
respectively.
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Main parameters (average diameter D; B–N bond length in tetragons, pentagons, hexagons, heptagons, and octagons; energy
E measured from the energy of the (BN)6 sheet; and band gap Eg) of hexagonal BN and Haeckelite (BN)48 and (BN)468 structures

Structure D, Å
B–N bond length in N-gons, Å

E, eV/atom Eg, eV
N = 4 N = 5 N = 6 N = 7 N = 8

slab–(BN)6 – 1.45 0.00 4.56

(8,0)–(BN)6 6.57 1.46 0.13 3.56

(10,0)–(BN)6 8.03 1.46 0.08 4.03

(4,4)–(BN)6 5.72 1.46 0.14 4.28

(5,5)–(BN)6 7.14 1.45 0.11 4.31

slab–(BN)468 – 1.48 1.45 1.47 0.29 3.24

(2,0)–(BN)468 4.88 1.48 1.46 1.47 0.43 3.32

(3,0)–(BN)468 7.30 1.48 1.46 1.47 0.35 3.30

(4,0)–(BN)468 9.79 1.48 1.46 1.47 0.32 3.28

(4,4)–(BN)468 5.92 1.48 1.46 1.47 0.40 3.59

(5,5)–(BN)468 7.38 1.48 1.46 1.47 0.36 3.48

(6,6)–(BN)468 8.68 1.48 1.46 1.47 0.34 3.41

(7,7)–(BN)468 10.21 1.48 1.46 1.47 0.32 3.35

slab–(BN)48 – 1.48 1.47 0.32 4.09

(5,5)–(BN)48 7.89 1.48 1.47 0.38 4.24

(6,6)–(BN)48 9.45 1.48 1.47 0.36 4.20

(7,7)–(BN)48 10.99 1.48 1.47 0.35 4.16

(8,8)–(BN)48 12.53 1.48 1.47 0.34 4.15

(4,0)–(BN)97 9.77 1.47 1.46 0.71 2.02
the strain energy Estr of BN nanotubes of the (BN)48 and
(BN)468 types on the mean diameter D. It is seen that the
energy Estr decreases with increasing diameter of the
nanotubes, as in the case of (BN)6 nanotubes [8]. The
power approximation of these data exhibited approxi-
mately inverse quadratic functions of diameter Estr ~
4.27/D2 (dashed line in Fig. 2) for (BN)48 nanotubes
and Estr ~ 3.64/D2 (solid line in Fig. 2) for (BN)468 nano-

Fig. 2. Specific strain energy Estr of BN Haeckelite nano-
tubes vs. the mean diameter D. Dashed and solid lines indi-
cate the power approximations of the data.

(Å)
tubes. The approximation Estr ~ 12.39/D2.09 that was
found previously for (BN)6 nanotubes [22] had a much
greater (by a factor of about 3–3.5) numerical coeffi-
cient. This difference indicates that the flexural modu-
lus of BN Haeckelite nanotubes is lower than that of
(BN)6 nanotubes. Note that Estr for carbon Haeckelite
nanotubes nearly obeys the 1/D2 law [13].

According to the table, (BN)468 nanotubes are ener-
getically more favorable (by ~0.03 eV/atom) than
(BN)48 nanotubes. In general, this result is not surpris-
ing, because tetragons and octagons contain stressed
chemical bonds, which generally increase the energy of
the entire system. In addition, the calculations show
that BN Haeckelite nanotubes are energetically less
favorable than analogous planar structures. However,
the ab initio calculations demonstrate that the Haeck-
elite nanotube structures under consideration are never-
theless stable and they can either exist in nature or be
prepared artificially.

Since there are two types of BN nanotubes from the
(BN)468 class [armchair (n,n) and zigzag (n,0)], the con-
clusion that (n,0) (BN)468 nanotubes are energetically
more favorable (by ~0.01 eV/atom) than (n,n) (BN)468
nanotubes of the same diameter is of great interest. This
result is also expected, because these nanotubes are
similar to (BN)6 nanotubes, the zigzag type of which is
JETP LETTERS      Vol. 81      No. 7      2005
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Fig. 3. Electronic densities of states (DOS) of the following BN Haeckelite nanotubes: (a) (7,7) (BN)468, (b) (4,0) (BN)468,
(c) (6,6) (BN)48, and (d) (6,0) (BN)57. The Fermi level EF was taken to be zero.
energetically more favorable than the armchair type
[11]. Thus, it is expected that the zigzag (BN)468 nano-
tubes would be prepared experimentally.

We compared the energy characteristics of BN
Haeckelite nanotubes and (BN)6 nanotubes. We calcu-
lated the cohesive energies of (BN)6 nanotubes, and the
table summarizes the resulting values. According to the
table, (BN)6 nanotubes, as well as a sheet of this type,
are the most energetically favorable structures (by
~0.2–0.3 eV/atom), as compared to any class of Haeck-
elite nanotubes. Note that carbon Haeckelite nanotubes
are also energetically less favorable than a carbon
graphene sheet (by ~0.2–0.3 eV/atom) and hexagonal
carbon nanotubes (by ~0.1 eV/atom) [13, 14]. Thus, the
energy differences for carbon and BN Haeckelite nano-
tubes are approximately identical.

We also considered a BN Haeckelite nanotube that
is composed of pentagons and heptagons, (4,0) (BN)57,
and whose geometric structure is shown in Fig. 1f. We
used the classification proposed by Terrones et al. [13]
for the designation of this class. This nanotube contains
B–B and N–N bonds, which are energetically unfavor-
able [16]. The calculations demonstrated that the
energy of the (4,0) (BN)57 nanotube is higher than those
JETP LETTERS      Vol. 81      No. 7      2005
of (BN)468 and (BN)48 nanotubes (by ~0.4 eV/atom) or
of a (BN)6 sheet (by ~0.7 eV/atom).

Electronic structure of BN Haeckelites. In conclu-
sion, we calculated the electronic structures of planar
BN structures and (BN)48 and (BN)468 nanotubes. Fig-
ure 3 shows the electronic density of states (DOS) of
(a) (7,7) (BN)468, (b) (4,0) (BN)468, (c) (6,6) (BN)48, and
(d) (4,0) (BN)57 nanotubes ~10 Å in diameter. The
geometric structures of these nanotubes are depicted in
Figs. 1c–1f, respectively. It is seen in Fig. 3 that the
above BN Haeckelite nanotubes, as well as hexagonal
(BN)6 nanotubes, are dielectrics with the energy gaps
Eg of 3.35, 3.28, 4.20, and 2.02 eV, respectively. The
calculated values of Eg for BN Haeckelite nanotubes
with various diameters are also given in the table. It is
seen that the (4,0) (BN)57 nanotube is characterized by
a narrow energy gap (2.02 eV), as compared to the
other Haeckelite nanotubes; however, the energy of this
nanotube is higher (by ~0.4 eV/atom). A detailed anal-
ysis of the electronic structures of all above types of BN
Haeckelite nanotubes demonstrated that, as the nano-
tube diameter D increases, Eg decreases and approaches
the value for the corresponding flat layer [3.24 eV for
(BN)468 or 4.09 eV for (BN)48]. Note that the energy
gap Eg of the (BN)6 nanotube increases with the diame-
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ter D and approaches the value for the (BN)6 flat layer
[22]. Figure 4 shows the dependence of Eg on the diam-
eter of (BN)468, (BN)48, and (BN)6 nanotubes. We
emphasize that this dependence of Eg on the diameter D
of Haeckelite nanotubes is similar to the corresponding
dependence for carbon nanotubes. For comparison,
note that, according to the calculations performed in
[13, 15], carbon Haeckelite nanotubes exhibit metallic
conductivity regardless of the chirality and diameter of
the nanotubes.

Thus, the ab initio calculations provide the conclu-
sion that BN Haeckelite nanotubes are stable but ener-
getically less favorable than hexagonal BN nanotubes.
We can also hypothesize that the synthesis of BN
Haeckelite nanotubes is possible. The formation of
these structures is also probable in the synthesis of mul-
tilayered BN nanotubes. This hypothesis is based on the
identification of carbon Haeckelite nanostructures that
form the inner cavity of multilayered nanotubes [15].
However, this hypothesis can be tested only experimen-
tally.

We are grateful to E.I. Isaev for his assistance in
computations. The calculations were performed by
S.V.L. at the Russian Joint Supercomputer Center and
at the Computer Research Center, Moscow State Uni-
versity. This work was supported in part by the Russian
Foundation for Basic Research (project nos. 04-03-
96501 and 05-03-328876) and the Russian Academy of
Sciences (program “Fundamental Problems of the

Fig. 4. Energy gap Eg vs. the mean diameter D of BN
Haeckelite and hexagonal nanotubes.
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We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into
many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons)
is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize
the inverse unitary-transformation decoding of the message. Different ways of eavesdropping are considered,
and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that
using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a sug-
gested cryptographic protocol, the time scale on which communication can be considered secure is exponential
in the number of qubits in the entangled states and in the number of gates used to construct the quantum net-
work. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.67.–a
1. INTRODUCTION

In 1982 Feynman suggested that simulation of a
quantum system using another such system could be
more effective than using classical computers, which
demand exponential time depending on the size of the
system [1]. Later discussions focused on the possibility
of using quantum-mechanical systems for solution of
classical problems. For example, Deutsch’s algorithm
[2] of verification of a balanced function was the first
quantum algorithm that worked more efficiently than
the classical analog.

The most famous of these, Shor’s quantum factoriz-
ing algorithm [3], is capable of destroying a widespread
cryptographic system RSA [4]. That fact made a strong
impression and speeded up the development of quan-
tum cryptography [5] and quantum information pro-
cessing in general.

It is important to note that quantum mechanics
destroying classical ways of coding still gives the pos-
sibility of constructing new ones. At present, there exist
many ways of coding that use quantum mechanics.

As an example, the quantum algorithm of key distri-
bution using orthogonal states should be mentioned [6].
It was first experimentally realized by Bennet and Bras-
sard [7], who were able to carry out the transmission
only at a distance of forty centimeters. Later, a commu-
nication line of several kilometers was realized [8].

Another example was first experimentally demon-
strated in 1992 [9]. The method uses pairs of entangled
photons, part of which, with the help of Bell inequali-
ties of a special form [10], can be used to reveal
attempted eavesdropping.
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In the present article, another method of coding is
proposed. It uses quantum computers for creating
entangled states of several qubits. The safety of that
method is based on the complexity of tomography for
those states.

Later, it will be convenient to treat a single qubit as
a spin-1/2 particle. To transmit information, Alice (the
sender) first transfers it into a set of units and zeros and
divides the numerals into groups of K bits. Then, for
every group, she creates a set of K spins in pure states.
The spin corresponding to a numeral gets projected
along the fixed Z axis if the numeral is zero and pro-
jected opposite to the axis otherwise. After that, Alice

employs a preset unitary transformation  for every
group of K spins, thus obtaining a set of entangled
quantum-mechanical states that hereinafter will be
called messages:

(1)

where |k〉  is an unentangled state of spins with certain
projections along the Z axis, and where the projections
are defined by the sequence of units and zeros for the
binary record of the number k.

Having received K entangled spins, Bob (the
receiver) employs the inverse unitary transformation

, thus obtaining the original separable state of spins
with defined projections, which can be measured and,
thereby, the secret message can be decoded.

It is natural that only Alice and Bob know the uni-

tary transformation , providing that Eve (eavesdrop-
per), trying to measure the entangled quantum states,
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will obtain probabilistic results defined by quantum
mechanics.

Further, we will consider ways of learning how to
decode the transmitted information and, very impor-
tantly, how much time it takes. We will consider two
different ways: quantum tomography of every entan-
gled state and a simple guess of the quantum gate net-
work. The obtained results allow an estimate to be
made of how long Alice and Bob may safely use the
unitary transformation without changing it.

2. QUANTUM TOMOGRAPHY
OF AN ENTANGLED STATE

In the simplest case, Eve can determine the secret
unitary transformation if she knows exactly what infor-
mation is sent by Alice. We will not consider the ques-
tion of how she can do that; we will just assume that,
having intercepted the message, Eve knows exactly
what information was encoded by Alice. Thus, for sim-
plicity, in this section we deal with many identical
entangled states.

The strategy for Eve is to employ quantum tomog-
raphy for many identical intercepted entangled states.
In [11] it was shown that the density matrix of the state
of certain spins can be derived without using quantum
computers. The idea of the method is based on a mea-
surement of the probability p(n1, m1; …; nK, mK) for
every spin  projected into the state mi along the direc-
tion ni. The density matrix is determined by Monte
Carlo integration:

(2)

where the kernel (ni, mi) acts in the space of the ith
spin.

Let us introduce distance into the space of the den-
sity matrices:

(3)

It is known that, in the Monte Carlo method, the rel-
ative precision of integration converges as the inverse
square of the number of points used [12]. In our case,
we have

(4)

where N is the number of different sets of directions
used for measurement of spins.
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Now, we note that, for every set of fixed directions
and for every spin, it is necessary to measure all proba-
bilities for every combination of indices {mi}. This
takes about const × 2K intercepted messages.

Thus, we obtain that, in order to derive every density
matrix with precision α, it is necessary to intercept

(5)

messages.
To compose the desired unitary transformation, Eve

has to derive the density matrices {ρk} for all 2K entan-
gled states. Every density matrix {ρk} has a single
eigenvalue, 1, and an eigenvector |Ψk〉

(6)

Eve should find eigenvectors of the 2K density matrices
for all entangled states and put them together; thus, she
will get the matrix 2K × 2K for the unitary transforma-

tion  in the basis composed of vectors |k〉 . Since the
problem of finding an eigenvector for a matrix takes
about 22K elementary operations, the whole problem
takes about

(7)

operations, provided that we have a classical computer
that can operate with

(8)

complex numbers.
On top of this, for practical applications, Eve must

construct a quantum network by the unitary transfor-
mation. As we will see in the next section, the number
of necessary basic gates is

(9)

Therefore, as Alice and Bob increase the number of
bits contained in a single message, the number of nec-
essary intercepted messages, the time necessary for
deriving the unitary transformation, and the complexity
of the constructed quantum network grow exponen-
tially.

3. GUESSING THE UNITARY 
TRANSFORMATION

Complicated unitary transformations can be con-
structed using simple ones that mix states of one or two
qubits. Examples of actively studied gates for quantum
networks are based on superconducting circuits [13],
resonant cavities [14], linear ion traps [15], and nuclear
magnetic resonance [16].

The operation of a quantum computer can be pre-
sented as a network of sequential simple unitary trans-

N intercepted constα 2– 2K×≈

ρ̂k Ψk| 〉 Ψk〈 | .=

Û

Noperations 23K=
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formations. The whole unitary transformation has the
form

(10)

Ekert and Jozsa showed [17] that any unitary trans-
formation of qubits can be represented as a network of
every possible single-qubit gate and one type of double-
qubit gate. An example of a double-qubit gate can be the
“controlled NOT,” which acts like |a, b〉  |a, a ⊕  b〉.

Due to the fact that every gate has its counterpart,
which carries out the inverse transformation, we can
simply construct the inverse transformation:

(11)

Although the method of constructing the quantum
network by the matrix of the unitary transformation
was presented in [17], in the general case the algorithm
requires a polynomial number of gates over the dimen-

sion of the matrix ; thus, in our case, it takes a num-
ber of gates that is exponential in the number of qubits.
Nevertheless, Alice and Bob do not need to construct a
quantum network to get a certain unitary transforma-
tion: instead, they can just agree on a particular one.

We assume that Alice and Bob possess identical
quantum computers that can carry out any of L different
simple unitary transformations, provided that there
exists an inverse transformation for every one in the set.
If Alice and Bob use the simple transformations M
times, then the number of possible quantum networks is

(12)

Eve has no chance to guess the correct unitary trans-
formation by trying every quantum network, taking into
account that M and L should be greater than the square
number of qubits K2, because Alice and Bob at least
need to mix every qubit with each other.

As one can see, dependence (12) is again exponen-
tial. This formula does not yet take into account the fact
that, for every trial network, Eve must make several
measurements of quantum states to realize whether the
network she has guessed is correct or not. Let

(13)

be the probability of erroneous acceptance of a trial uni-

tary transformation  instead of the right one .
Then, the probability of not distinguishing these two
transformations after n measurements is

(14)

Since, for the overwhelming majority of quantum net-
works, the probability p is far less than one, a few mea-
surements are sufficient to realize that the network is
erroneous.

As a result, we conclude that, to increase the secu-
rity of the cryptographic method, Alice and Bob should
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increase not only the number of qubits but also the
number of quantum gates used.

4. CASE OF A PRIORI KNOWN TIME 
CORRELATIONS

Earlier, we supposed that Eve knew what informa-
tion was coded into the entangled states. Now, we will
assume that she knows only the time correlations
between messages of K classical bits. The correlations
can be described by the value

(15)

where pk(x) equals unity, if the xth message is |k〉 , and
zero otherwise.

We suppose that Eve possesses a priori information
such as the frequencies of appearance and the correla-
tions between the K-bit messages that were sent by
Alice. She then tries to construct a quantum network
that gives the same frequencies and correlations.

The estimated value of intercepted messages neces-
sary for deduction of the unitary transformation is
divided into two parts: the number of trial unitary trans-
formations and the number of necessary measurements
for each of them to understand whether the correlations
are proper or not. The first part of the problem is due to
entanglement, and the second is the same as in the case
of a classical replacement cipher.

The number of trial unitary transformations is
defined by formula (12). For calculation of the correla-
tions, it is necessary to measure a number of quantum
states that is polynomial in the value 2K:

(16)

where the power n of the polynomial Pn(x) corresponds
to taking long time correlations into account. This can
be understood in the following way: for the calculation
of correlations, it is essential to evaluate the probabili-
ties of appearance for the series of n messages, so it is
desirable to consider all possible series.

The final number of messages to be intercepted is

(17)

5. DISCUSSION

In the suggested method of encoding information,
the number of messages that Eve must intercept is
exponential in the number of qubits and quantum gates
used. This is clearly seen from equations (5), (12), and
(17).

According to the obtained estimations, it is neces-
sary for Eve to derive the structure of all 2K entangled
states, that is, to intercept

(18)

ξkl y( ) pk x( )pl x y+( )〈 〉 x,=
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messages. This corresponds to transmission of

(19)

bits of classical information.
On the contrary, according to (12), it is necessary for

Alice and Bob to preset M numbers less than L to define
the order of simple unitary transformations. As we
pointed earlier, M and K are of order K2; therefore, the
number of bits required for this is

(20)

This expression gives the length of the secret key that
must be shared by Alice and Bob. They can use a proto-
col of quantum key distribution to get it. Expression (19)
shows how many classical bits can be safely transmit-
ted using that secret key.

Let us estimate the length of time that Alice and Bob
may use a given unitary transformation without chang-
ing it. For this, let us consider the encrypting of tele-
phone calls, which require transmission of about fifty
thousand bits per second. If the quantum computer
operates with K = 8 qubits, then, according to our esti-
mates, Eve should intercept N ≈ 65 × 103 messages, so
Alice can send about NK = 5 × 105 classical bits or can
talk to Bob for ten seconds. If the computer operates
with K = 16 qubits, then the time necessary to guess the
unitary transformation equals several weeks. And in the
case of K = 24 qubits, the time of secure conversation
for Alice and Bob rises to four thousand years.

Although the suggested protocol requires a preset
secret key, it still has an advantage over classical block
cipher algorithms, which are also believed to be secure
for transmission of an exponential number of bits in the
length of the key. The example of the RSA system and
Shor’s algorithm shows that quantum mechanics can
greatly simplify the breaking of codes based on the
complexity of classical algorithms. On the contrary, the
safety of the suggested protocol is assured by funda-
mental laws of nature.

The main advantage of the suggested protocol is that
Alice and Bob, having arranged the secret transforma-
tion once, can use it for a long time. The transmission
is carried out in one direction, as opposed to the proto-
cols of secret key distribution, which require repeated
back-and-forth transmissions from Alice to Bob.

It should be mentioned that, according to Section 4,
the problem of determination of the secret unitary
transformation is added to the classical cryptographic
problems. The main source of additional security is the
fact that the cloning of a state is forbidden for any quan-
tum-mechanical system [18]. Due to this theorem, a
measurement in a wrong basis may give less informa-
tion than in the classical case, where an intercepted
message can readily be used for correlation calcula-
tions. In the quantum case, a part of the intercepted
entangled states will be an inevitable distraction for the
determination of the secret unitary transformation.

Nbit K 22K×∼

Nkey K2 K2
2log .∼
Another issue is that, according to the noncloning
theorem [18], Eve destroys the quantum state by mea-
suring it in a wrong basis, and, therefore, she is unable
to send the same state to Bob. In accordance with basic
principles of quantum cryptography [6], Bob can easily
notice the attempted eavesdropping, and he can ask
Alice to stop the transmission. In another similarity to
the case of relativistic quantum cryptography [19], Bob
can detect the attempted eavesdropping by the time
delay for incoming messages.

Although the considered protocol looks promising,
there are some problems in its realization. First, it
appears that the construction of quantum computers
capable of handling tens of qubits is still a matter of the
future. Second, due to small decoherence times for sys-
tems with massive entangled particles, photons remain
the best objects for transmission of quantum states, but
the conversion of a state of qubits into a state of photons
is a challenging problem for experimentalists. Never-
theless, some efforts have been made to study coupling
between photons and qubits [20] and to convert pairs of
spin-entangled electrons to pairs of polarization-entan-
gled photons [21]. Finally, during the transmission of
photons, there is the inevitable influence of the medium
on their states, and, therefore, the use of some quantum
error-correction techniques will be needed [22].

To conclude, we have presented estimates showing
that, for the suggested cryptographic protocol, the time
that a secure secret unitary transformation can be used
is exponential in the number of qubits within the entan-
gled states and in the number of gates used to construct
the quantum network.

Although we can not at the moment present a rigor-
ous proof of the proper statements for Eve’s general
attack, the suggested protocol in our opinion can serve
as an interesting alternative to the existing schemes in
quantum cryptography. The main advantage of the
cryptographic protocol is that using even relatively
small quantum computers with several dozen qubits
allows for a practical scheme that is more efficient than
existing ones in several respects (e.g., weaker loading
of the communication channel).
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