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Abstract—The specific heats of the amorphous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67 were studied in the
temperature range 3–273 K. The data obtained allow one to isolate the contribution due to atomic vibrations
from the experimentally measured specific heat, to determine the density of electronic states at the Fermi level
and the temperature dependence of the characteristic Debye parameter Θ over a broad temperature range, and
to calculate a few frequency moments that characterize the vibrational spectrum. The information derived on
the average characteristics of vibrational spectra is in good agreement with earlier data on inelastic neutron scat-
tering. In transferring from Ni44Nb56 to Ni62Nb38, the density of electronic states at the Fermi level decreases
and the characteristic vibrational frequencies increase. The density of electronic states at the Fermi level for
Cu33Zr67 is close to that for Ni62Nb38. The characteristic frequencies of the vibrational spectrum of the Cu33Zr67
system are substantially lower (by 30%) than those of the Ni44Nb56 and Ni62Nb38 systems. © 2003 MAIK
“Nauka/Interperiodica”.
† 1. INTRODUCTION

Investigation of the dynamics of atomic vibrations
and of the electronic properties of amorphous systems
of the metal–metal type may broaden our understand-
ing of many other physical properties of metallic
glasses consisting of two or more components [1, 2].
The most complete and reliable information on the
dynamics of such systems can be extracted from inelas-
tic neutron scattering experiments made using the iso-
topic contrast method and, to a certain extent, from heat
capacity measurements.

Information on the heat capacity measured within a
broad temperature range allows one to judge the char-
acteristics of the vibrational and electronic excitation
spectra. It should be stressed that experimental data on
low-temperature heat capacity offer the possibility of
analyzing the low-frequency part of the vibrational
spectrum ("ω < 2 meV), which is difficult to access
using the inelastic cold-neutron scattering technique.
Valuable information on the electronic properties can
also be gained from data on the temperature depen-
dence of heat capacity.

In this paper, we report on a thermodynamic inves-
tigation of integrated characteristics of vibrational and
electronic excitation spectra in amorphous systems of
the metal–metal type, namely, in Cu33Zr67 and the
amorphous compounds Ni44Nb56 and Ni62Nb38, which
differ in component concentration, and make a compar-
ison of spectrum-averaged vibrational-frequency
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moments 〈ωn〉  derived from the temperature depen-
dence of heat capacity and directly from neutron mea-
surements.

2. EXPERIMENTAL TECHNIQUE

The heat capacity was measured on samples that
were employed in inelastic neutron scattering experi-
ments [3, 4]. Samples in the amorphous state were pre-
pared by rapid quenching of the melt on the surface of
a rotating copper disc in an inert atmosphere. The sam-
ple composition was verified using chemical analysis.
The structure of the systems under study was deter-
mined from x-ray and neutron diffraction studies. The
x-ray diffraction curves had an overall pattern typical of
amorphous systems that exhibited a lack of long-range
order.

The heat capacity of the samples was measured
using the adiabatic pulsed-heating method on two set-
ups, namely, a microcalorimeter intended for the inter-
val 2–30 K (experimental error 1–2%) and an instru-
ment covering the range from 4 to 300 K (error of 2%
in the 3- to 5-K interval, 1% for 5–10 K, and 0.2–0.5%
in the region 10–273 K).

3. EXPERIMENTAL RESULTS

The results of the heat capacity measurements con-
ducted on amorphous metallic alloys at constant pres-
sure are displayed in Figs. 1–4 and Tables 1 and 2. As
seen from Fig. 1 and Table 1, throughout the tempera-
003 MAIK “Nauka/Interperiodica”



 

606

        

PANOVA 

 

et al

 

.

                                                                                                            
ture range covered, the specific heat of the Ni44Nb56

amorphous system is larger than that of Ni62Nb38 and
the specific heat of Cu33Zr67 substantially exceeds that
of the Ni–Nb alloys.

The temperature dependences of the specific heats
measured at low temperatures (3–10 K) are plotted in
Fig. 2 in the C/T – T2 coordinates. One readily sees that,
in the low-temperature domain, the specific-heat data
are fitted well by the relation C = γT + βT3, which is a
straight line when presented in the C/T vs. T2 form.
Note that the above relation holds for these amorphous
systems within a broader temperature range than is the
case with the Ni–B alloys [5]. In the region 3–10 K the
rms deviation of experimental data from the C = γT +
βT3 relation is about 1.5%.

Estimates of the coefficients γ and β obtained by
least squares fitting of experimental data and the limit-
ing low-temperature value of the characteristic Debye
temperature ΘL, which is related to β through β =

12π4R/ , are listed in Table 2. Here and in what fol-
lows, R is the gas constant.

As follows from Fig. 2 and Table 2, replacement of
light nickel atoms by heavy niobium atoms brings
about an increase in the coefficients for both terms that
are linear or cubic in temperature, with the coefficient γ
increasing by 25% and β increasing by 9%. The coeffi-
cients of the terms that are linear in temperature for
Cu33Zr67 and Ni62Nb38 are similar in magnitude.
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Fig. 1. Specific heat plotted vs. temperature in the range 3–
270 K for (1) Ni62Nb38, (2) Ni44Nb56, and (3) Cu33Zr67
amorphous alloys.
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4. ANALYSIS AND DISCUSSION 
OF RESULTS

The vibrational specific heat Cvib was isolated from
the experimentally measured quantity Cp by subtracting
the correction CA, which includes the contributions to
the specific heat due to the anharmonic effects and ther-
mal expansion of matter, as well as to conduction elec-
trons:

(1)Cvib Cp CA– Cp γ A γ–( ) Cvib/3R( )2
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Fig. 2. Temperature dependence of the specific heat at low
temperatures plotted in the C/T vs. T2 coordinates for
(1) Ni62Nb38, (2) Ni44Nb56, and (3) Cu33Zr67 amorphous
alloys.
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Fig. 3. Temperature dependence of the vibrational specific
heat plotted in the Cvib/T3 vs. T coordinates for
(1) Ni62Nb38, (2) Ni44Nb56, and (3) Cu33Zr67 amorphous
alloys.
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where Cp is the molar heat capacity at constant pres-
sure, Cvib is the vibrational component of the specific
heat in harmonic approximation, γ is the coefficient in
the low-temperature electronic specific heat, and A is
the coefficient of the term that is linear in temperature
for the isobaric specific heat at high temperatures.

The interpolation expression for CA yields the corre-
sponding linear-in-temperature asymptotic behavior
for both low and high temperatures and provides a
smooth transition between the low- and high-tempera-
ture asymptotic curves following a law similar to the
Nernst–Lindemann expression.

The value of γ was determined following the stan-
dard technique from the low-temperature approxima-
tion of the temperature dependence of the specific heat
C = γT + βT3. The quantity A, together with the param-
eters Ω2, Ω4, and Ω∗  characterizing the vibrational
spectrum, was derived from the high-temperature
asymptotic approximation of the temperature depen-
dence of the specific heat:

(2)

where

This approximation for the asymptotic expansion of
vibrational specific heat at high temperatures was pro-
posed in [6] and used in [7, 8]. The quantities Ω2 and Ω4
are expressed in temperature units and are related to the
frequency moments of the vibrational spectrum
through the expression

(3)

Here, g(ω) is the vibrational density-of-states function.
The quantity Ω∗  in Eq. (2) is close in magnitude to Ωn

in Eq. (3) at n = 6.
By properly varying the four fitting parameters (A,

Ω2, Ω4, Ω∗ ), we succeeded in fitting Eqs. (1)–(3) to the
experimental results within the temperature region 60–
260 K with an rms deviation of about 0.15%. The val-
ues of the parameters A, Ω2, Ω4, and Ω∗  derived using
Eqs. (1)–(3) from the high-temperature asymptotic
behavior of the specific heat are presented in Table 2.
Also given is the limiting high-temperature Debye tem-
perature ΘH, which is related to the rms frequency of
the vibrational spectrum through
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The frequency moments of the vibrational spectrum
that primarily characterize its low-energy part (average
inverse, average logarithmic, and average frequencies)
are expressed through integrals of the vibrational spe-
cific heat [8]. Those expressions were used to calculate
the moments by performing integration over experi-
mental points in the temperature region 10–270 K,
while beyond this region, the specific heat was extrap-
olated with the use of either the low-temperature
asymptotic function of the type of C = βT3 or the high-
temperature behavior in the Debye model spectrum, as
was done in [9]. The results of the calculations are
given in Table 2, which presents, to facilitate compari-
son, not the spectral moments 〈ωn〉  but rather the corre-
sponding average frequencies Ωn, determined in accor-
dance with Eq. (3) and expressed in temperature units,
and the average logarithm of frequency Ωlnfound from

(4)

Because only phonons of energies E < 5 kT provide
a substantial contribution to the vibrational heat capac-
ity at temperature T, the low-temperature heat capacity
contains information on the low-frequency part of the
vibrational spectrum. The quantity Cvib/T3 was shown
in [10] to closely approximate the function g(ω)/ω2 at
ω = 4.93 T at low temperatures and energies (the fre-
quency is expressed here in temperature units). There-
fore, the vibrational component of the heat capacity at
low temperatures can be conveniently analyzed by plot-
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Fig. 4. Debye parameter Θ plotted vs. temperature T (1–3)
as derived from heat capacity and (4–6) as calculated from
the vibrational spectrum derived from inelastic neutron
scattering measurements [3, 4] for (1, 4) Ni62Nb38,
(2, 5) Ni44Nb56, and (3, 6) Cu33Zr67.
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ting the temperature dependence of specific heat as a
Cvib/T3 vs. T function. Figure 3 displays such graphs for
the systems under study. This functional relation is tra-
ditionally used to analyze the deviation of the tempera-
ture dependence of heat capacity from the Debye law,

Table 1.  Specific heat at constant pressure Cp of the amor-
phous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67 presented
as a function of temperature T

T, K

Cp , J/g-atom K

Ni44Nb56
(1 g-atom
= 77.85 g)

Ni62Nb38
(1 g-atom
= 71.7 g)

Cu33Zr67
(1 g-atom
= 82.09 g)

3 0.0150 0.0128 0.0185

4 0.0232 0.0191 0.0240

5 0.0335 0.0280 0.0510

6 0.0465 0.0395 0.0790

7 0.0628 0.0536 0.1157

8 0.0832 0.0708 0.1642

9 0.1080 0.0923 0.2234

10 0.1390 0.1203 0.2934

12 0.1760 0.1940 0.467

14 0.329 0.2937 0.688

16 0.469 0.422 0.956

18 0.642 0.580 1.265

20 0.846 0.769 1.610

22 1.079 0.988 1.987

25 1.486 1.371 2.622

30 2.355 2.144 3.873

35 3.056 3.117 5.309

40 4.732 4.150 6.82

45 5.91 5.23 8.30

50 7.10 6.33 9.69

55 8.27 7.44 11.00

60 9.42 8.52 12.16

70 11.60 10.66 14.50

80 13.52 12.55 16.42

90 15.22 14.24 18.05

100 16.73 15.75 19.45

120 19.18 18.24 21.70

140 21.05 20.14 23.14

160 22.49 21.62 24.77

180 23.64 22.79 25.87

200 24.58 23.73 26.82

220 25.37 24.51 27.64

240 26.05 25.18 28.37

260 26.65 25.76 29.05

273.15 27.01 26.11 29.46
P

according to which the vibrational heat capacity at low
temperatures scales as the temperature cubed.

As is evident from Fig. 3, at temperatures below
10 K, the quantity Cvib(T)/T3 remains practically con-
stant. As the temperature increases, the quantity
Cvib(T)/T3 in the Cu33Zr67 system falls off monotoni-
cally, while in Ni44Nb56 and Ni62Nb38, it passes through
a small maximum at 15 K and then decays smoothly
with increasing temperature. The existence of the max-
imum is connected with the vibrational heat capacity
deviating from the T3 law, which indicates that there is
rearrangement of the density of vibrational states in the
low-frequency domain.

Note that the information contained in this relation
loses its value with increasing temperature because of
the fast decay of Cvib/T3. Therefore, it is preferable to
discuss the behavior of the temperature dependence of
heat capacity within a broad temperature range in terms
of the temperature dependence of the characteristic
Debye parameter Θ which is a finer characteristic and
determines, in particular, the rate with which Cvib(T)
reaches its high-temperature asymptotic course. Figure 4
presents temperature dependences of the characteristic
parameter Θ for the systems under study, derived both
from the heat capacity data obtained in this work and
from the partial vibration energy spectra, obtained in
inelastic neutron scattering experiments made using the
isotopic contrast method in [3, 4]. In those experiments,
the density of vibrational states at low energies (below
4 meV) was replaced by a quadratic relation of the type
g(ω) = constω2, which joins smoothly with the experi-
mental g(ω) data at "ω = 4 meV.

At temperatures above 10 K, both the absolute val-
ues of the Debye parameter and its variation with Ni
concentration in the Ni–Nb alloys, as derived from heat
capacity, agree well with those determined from neu-
tron scattering measurements. The maximum differ-
ence between the neutron and calorimetric data in the
temperature region 10–220 K does not exceed 6%.

At temperatures above 10 K for the Cu33Zr67 system
and above 15 K for the systems Ni44Nb56 and Ni62Nb38,
the Debye parameter Θ is observed to grow with
increasing temperature, reaching a constant level above
70 K for Cu33Zr67 and above 100 K for the Ni–Nb sys-
tems. The range of variation of the Θ parameter with
increasing temperature is 50% for Cu33Zr67 and 25%
for the Ni–Nb systems.

Figure 4 and Table 2 also show that the average fre-
quencies characterizing the vibrational spectrum
moments increase by 4–5.5% as one goes from
Ni44Nb56 to Ni62Nb38. This scale of frequency variation
is in rough agreement with the Θ(T) relation expected
to occur when the change in the average atomic mass M
is taken into account.

As for the Cu–Zr system, the corresponding fre-
quencies are substantially (by 30%) lower than those
for the Ni–Nb systems, which implies a noticeable
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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Table 2.  Parameters characterizing the amorphous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67

Parameter
Ni44Nb56 Ni62Nb38 Cu33Zr67

from Cp(T) from g(ω) from Cp(T) from g(ω) from Cp(T) from g(ω)

γ, mJ/g-atom K2 4.33 3.45 3.68
β, mJ/g-atom K4 0.0960 0.0883 0.267
NF(0), state/eV atom 0.92 0.73 0.78
ΘL , K 272 280 194
ΘH , K 337 359 356 367 292 284
Ωln, K 171 171 179 182 132 139
Ω–2, K 163 160 170 173 125 131
Ω–1, K 196 203 207 213 157 164
Ω1, K 241 258 255 265 199 205
Ω2, K 261 278 276 284 226 220
Ω4, K 278 310 293 313 248 243
Ω*, K 282 298 255
A, mJ/mol K2 14.1 11.5 21

Note: The coefficients γ and β approximate the specific heat at low temperatures in a relation of the type C = γT + βT3. NF(0) is the density
of electronic states at the Fermi surface. ΘL and ΘH are the low- and high-temperature values of the characteristic Debye parameter,
respectively. The quantities Ω–2, Ω–1, Ω1, Ω2, Ω4, and Ωln characterize the average frequencies (moments) of the vibrational spec-
trum in accordance with Eqs. (3) and (4). This table presents data derived from the specific heat Cp(T) and data calculated from the
vibrational spectra g(ω) obtained in inelastic neutron scattering measurements made using the isotopic contrast method.
decrease in the force constants in this system as com-
pared with the Ni–Nb system.

5. CONCLUSIONS

Thus, our studies permit the following conclusions.
A change in the relative content of the Ni and Nb atoms
brings about a change in both the phonon and electron
subsystems. Significantly, the change in the phonon
subsystem follows strictly that which occurs in the
average atomic mass of the compound. For the Cu33Zr67
system, the quantity characterizing the vibrational fre-
quency spectrum is smaller (by 30%) than that for the
Ni44Nb56 and Ni62Nb38 alloys.

The general characteristic of the vibrational spec-
trum of the three systems (Ni44Nb56, Ni62Nb38,
Cu33Zr67), as derived from the temperature dependence
of heat capacity, is in agreement (within 6%) with the
data obtained from inelastic neutron scattering mea-
surements made using the isotopic contrast method.

An analysis of the low-frequency part of the vibra-
tional spectrum ("ω < 2 meV), which is difficult to
access using the inelastic neutron scattering technique,
revealed that the density of electronic states at the
Fermi level decreases as one goes over from Ni44Nb56
to Ni62Nb38, while for Cu33Zr67, the density of states is
close in magnitude to that obtained for Ni62Nb38.
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Abstract—The local vibrational spectra of copper crystals containing vacancies are calculated using the pair
atomic potential derived in the framework of the resonance pseudopotential theory. The calculations are per-
formed by a recursive method with due regard for the symmetry of the defect region. The frequencies of the
vacancy-induced resonance vibrations of different symmetries are determined. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Investigation into the physicochemical and mechan-
ical properties of copper crystals with different struc-
tural defects has attracted the particular attention of
researchers, because these materials are widely used in
many fields of engineering. The study of the phenom-
ena associated with atomic vibrations in the vicinity of
defects is of considerable practical interest. There are a
number of works dealing with the effect of vacancies
(i.e., the simplest structural point defects) on the
phonon subsystem of copper crystals [1, 2]. The data
obtained in these works and numerous investigations
concerned with the effect of intrinsic defects on the
properties of copper [3–7] have revealed that the results
of calculations are very sensitive to the type of inter-
atomic interaction potential used. In this respect, cor-
rect description of the real interatomic interaction is
important for the simulation of processes with the par-
ticipation of defects.

In the majority of earlier works, the physical charac-
teristics of copper crystals were calculated in the
approximation of the pair central interaction. In this
case, the interatomic forces, as a rule, can be described
using the Morse [1, 3, 5–7], Born–Mayer [4], and other
[2, 8] empirical pair potentials. The parameters of these
potentials are fitted to the available experimental data.
In addition to the aforementioned potentials, a number
of more physically justified pair potentials, which were
derived within different approaches applied in terms of
the pseudopotential theory, have also been used in cal-
culations [9–15]. In particular, Lam et al. [12] obtained
the potential for copper crystals in the framework of the
resonance potential theory developed by Dagens [13].
Vaks et al. [14] and Antonov et al. [15] used the poten-
tials determined on the basis of the local pseudopoten-
tial theory. More recent calculations have been per-
formed within the models allowing for different addi-
1063-7834/03/4504- $24.00 © 0610
tional contributions to the pair atomic potential
[16−21].

Analysis of the data available in the literature has
demonstrated that the potential obtained by Lam et al.
[12] for copper crystals is one of the most reliable pair
atomic potentials. The adequacy of this potential for the
correct determination of the physical characteristics of
copper crystals is confirmed by the fact that the results
of calculations of the dispersion curves [22, 23] and
energy characteristics of intrinsic point defects [12] are
in good agreement with experimental data.

In [1, 2], the phonon spectra of copper crystals with
vacancies were calculated using interatomic potentials
that poorly reproduced the vibrational spectrum of the
copper crystal with a perfect structure. In our opinion,
the authors of these works obtained incorrect quantita-
tive data on defect-induced vibrations.

In the present work, the atomic structure and vibra-
tional spectra of copper crystals containing vacancies
were calculated in the harmonic approximation with
the use of the pair atomic potential proposed in [12] but
with allowance made for the symmetry of the defect
region.

2. COMPUTATIONAL TECHNIQUE, 
RESULTS, AND DISCUSSION

The interatomic potential ϕ(r) [12] used for simulat-
ing the lattice dynamics is a long-range oscillating
potential. By virtue of its long-range character, the
application of the ϕ(r) potential to the calculation of the
vibrational spectrum of a copper crystal with vacancies
involves considerable difficulties. The problem con-
cerning the constraint of the effective range of a poten-
tial of this type was treated by Vaks et al. [14], who cal-
culated the energy of formation of a vacancy. The
results of calculations showed that relaxation of the lat-
tice to a new equilibrium configuration is governed pri-
2003 MAIK “Nauka/Interperiodica”
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marily by the short-range part of the interatomic poten-
tial. The truncation of the potential after approximately
six oscillations does not lead to appreciable errors. With
this potential, the energies of formation of point defects
can be calculated to sufficient accuracy.

As is known, the elastic constants and phonon fre-
quencies are determined by the first and second deriva-
tives of the potential energy of interatomic interaction
with respect to the interatomic distance r. For the inter-
atomic potential ϕ(r) described in [12], the first and
second derivatives obtained for closely spaced atoms
are substantially larger than those for atoms separated
by distances r larger than 5.5 Å. Therefore, we can
make the inference that the dynamic and elastic proper-
ties can be described with some error if the interaction
of each atom with its surrounding atoms located inside
a sphere of radius 5.5 Å is taken into account. The
inclusion of the long-range Friedel oscillations in the
potential leads to a decrease in the error when calculat-
ing the elastic constants and phonon frequencies.

With the aim of determining the optimum effective
range of the interatomic potential ϕ(r) and elucidating
the influence of this range on the dynamic and elastic
characteristics, we calculated the dispersion curves
ν(q) for three high-symmetry directions of the Bril-
louin zone and the elastic constants for a perfect copper
crystal.

The dispersion curves calculated using the potential
ϕ(r) with effective ranges of 15.0 and 5.5 Å are similar
to each other and agree reasonably with data on the
phonon frequencies obtained from inelastic neutron
scattering experiments [24, 25]. In both cases, the fre-
quencies of the transverse phonon branch at the bound-
ary of the Brillouin zone in the vicinity of the X point
differ only slightly from the experimental frequencies.

The calculated elastic constants are as follows:
C11 = 181 GPa, C12 = 143 GPa, and C44 = 99 GPa for a
potential range of 5.5 Å and C11 = 183 GPa, C12 =
121 GPa, and C44 = 75 GPa for a potential range of
15.0 Å. As is seen, the numerical values of the elastic
constants C12 and C44 differ insignificantly. In [26, 27],
the elastic constants C11 = 177 GPa, C12 = 125 GPa, and
C44 = 81 GPa (extrapolated to the corresponding values
at T = 0 K) were experimentally obtained from the lon-
gitudinal and transverse ultrasonic wave velocities. It is
evident that the elastic constants calculated with the
interatomic potential truncated at 15.0 Å are in better
agreement with the experimental data. Note that the
largest deviation (8%) from the experimental value is
observed for the elastic constant C44. At the same time,
the elastic constants determined using the potential
with an effective range of 5.5 Å are also in reasonable
agreement with the experimental data. In this case, the
largest difference (approximately 22%) between the
calculated and experimental values is observed for the
elastic constant C44.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
Reasoning from the above results and the fact that
the calculations of the dynamics of the copper lattice
with vacancies are significantly complicated in the case
when the long-range part of the interatomic potential is
taken into account, we chose the potential with an
effective range of 5.5 Å for our calculations of the
vibrational spectra of copper crystals with vacancies.

The formation of a vacancy in the metal lattice is
accompanied by changes in the states of the ionic and
electronic subsystems of the metal. These states corre-
spond to new equilibrium conditions; as a result, the
atoms arranged about the vacancy are displaced to new
equilibrium positions. The distortion of the crystal lat-
tice in the vicinity of the vacancy in the bulk of the crys-
tal was determined by minimizing the potential energy
of the vacancy-containing metal in the framework of
the lattice statics method [28]. For an equilibrium con-
figuration, the energy of formation of a vacancy was
calculated in the constant volume approximation [12,
14, 29]. This energy is found to be equal to 1.36 eV,
which agrees well with the energies obtained in similar
calculations with the same interaction potential: 1.42
[12] and 1.45 eV [29]. The difference between the
numerical values is associated with the fact that the
above calculations were performed using the inter-
atomic potentials with different effective ranges. More-
over, in [12, 29], the interatomic potential before the
truncation was replaced by the effective potential. Note
that the experimentally found energy of formation of a
vacancy in the copper lattice is 1.31 eV [12].

According to our calculations, the largest displace-
ments toward the vacancy are observed for the nearest
neighbor atoms located along the [110] direction. It
should be noted the atoms of the second and third coor-
dination spheres also relax toward the vacancy. The dis-
placements of the atoms located in the first, second, and
third coordination spheres are equal to 0.031, 0.003,
and 0.016 Å, respectively. The atoms of the other coor-
dination shells also change their equilibrium positions.
However, since these atomic displacements are rela-
tively small, they are disregarded in calculations of the
lattice dynamics.

The distortion of the metal lattice leads to changes
in the conditions of atomic vibrations. As a conse-
quence, there can arise resonance local vibrations. In
real physical processes with the participation of
phonons, these vibrations often play an important role.
The atomic vibrations are most strongly disturbed by
the vacancy in its nearest environment. For atoms of the
next coordination shells, the effect of the vacancy
weakens as the distance from it increases. On this basis,
we calculated the local densities of phonon states in the
region consisting of the first two coordination spheres
and containing the vacancy.

It is known that, in a physical process involving
phonons, vibrations can be active when they are
allowed by the symmetry selection rules for this pro-
cess. Therefore, in order to simplify analysis of the
3
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experimental data, the calculations should be carried
out with due regard for the symmetry of the vibrations.
For this reason, as in our earlier work [30], we calcu-
lated the symmetrized local densities of phonon states.
These densities characterize the dependence of the
square of the amplitude of the symmetrized atomic dis-
placements on the frequency of normal vibrations. The
symmetrized local density of phonon states is related to
the imaginary part of the diagonal element of the Fou-
rier transform of the one-particle Green’s function for
displacements. In turn, the diagonal element is deter-
mined by the dynamic matrix constructed in real space
for a particular atomic cluster. The use of the recursive
method [31] makes it possible to transform the dynamic
matrix into a three-diagonal form. As a result, the diag-
onal element of the Green’s function takes the form of
a readily calculable continued fraction. The computa-
tional algorithm used was described in more detail in
[30]. Note that the summation of the symmetrized local
densities of phonon states over all possible vibrational
modes for the metal with a perfect or defect structure
gives the corresponding total density of phonon states
G(ν). In order to separate the vibrations associated with
the vacancy, the symmetrized local densities of phonon
states for the metal with a perfect structure were com-
pared with those for the vacancy-containing metal. The
frequency of the localized vibrations induced by the
vacancy was determined from the maxima in the sym-
metrized local density of phonon states for the metal
with the vacancy provided these maxima did not coin-
cide with the maxima in the symmetrized local density
of phonon states for the perfect metal.

When calculating the symmetrized local densities of
phonon states in the framework of the recursive
method, the initial vectors were chosen in the form of
symmetrized displacements, which, in turn, were taken

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8
ν, THz

G(ν), arb. units

Fig. 1. Total densities of phonon states for copper with a
perfect structure (dashed line) and copper with vacancies
(solid line). The calculations are performed using the recur-
sive method.
P

as the normal coordinates of the region composed of
two coordination spheres about a copper atom subse-
quently replaced by a vacancy. The center of this region
occupies a position characterized by the symmetry
group Oh. According to the group-theoretic analysis,
the vibration representation Γ(57 × 57) for 19 atoms of
this region can be divided into irreducible representa-
tions of the point group Oh as follows:

For a specific symmetry Γ, the symmetrized local

densities of phonon states (ν) for a perfect copper
crystal and GΓ(ν) for a copper crystal with a vacancy
were calculated using the basis vector of the irreducible
representation as the initial vector. The basis vector was
determined by standard methods of the group theory.

Exact calculation of the density of phonon states in
the bulk of the crystal requires the construction of the
dynamic matrix for an atomic cluster of sufficiently
large size. In our calculations performed for a spheri-
cally symmetric cluster ~77 Å in size (containing
approximately 20000 atoms), we obtained 18 pairs of
exact recursive coefficients, which were then used for
calculating the density of phonon states. The validity of
the interatomic interaction model with the aforemen-
tioned cluster was verified by calculating the total den-
sity of phonon states G(ν) for a perfect copper crystal
(Fig. 1) with the use of the recursive method. A compar-
ison shows that the results obtained in these calcula-
tions are in good agreement with data on the total den-
sity G(ν) determined by integrating over the Brillouin
zone [24, 25].

The symmetrized local densities of phonon states
for all symmetries in the copper crystal with a vacancy
were calculated using the above procedure. For the cop-
per crystal with a perfect structure and the copper crys-
tal with a vacancy, Fig. 2 shows the symmetrized local
densities of phonon states projected onto the A2g dis-
placements of the atoms in the first coordination sphere
with respect to an atom subsequently replaced by a
vacancy. It can be seen that the local density of states is
redistributed in the low- and high-frequency ranges of
the vibrational spectrum. Resonance vibrations are
induced at frequencies ν(A2g) = 3.0, 5.9, and 6.8 THz.
The calculated frequencies of vacancy-induced reso-
nance vibrations of different symmetries are listed in
the table.

Note that, in [1], the localized vibrations with due
regard for the symmetry in vacancy-containing copper
crystals were also calculated using interatomic poten-
tials of three types. However, as was noted above, the
quantitative results obtained in [1] are incorrect. The
reason for this is that, unlike our results, the elastic con-
stants and phonon spectra calculated in [1] with the use
of these potentials for copper crystals with a perfect

Γ 57 57×( ) 2A1g A2g 3Eg 3F1g+ + +=

+ 3F2g A2u Eu 6F1u 3F2u.+ + + +

GΓ
0
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structure differ significantly from the experimental
data.

We calculated the total density of phonon states for
copper crystals with vacancies in the approximation of
noninteracting vacancies with a concentration approxi-
mately equal to 2%. Figure 1 presents the results of
these calculations and the total density of phonon states
for a perfect copper crystal. As follows from the com-
parison of the results obtained, the formation of vacan-
cies leads to an increase in the total density of phonon
states in the low-frequency range below 3.0 THz and at
frequencies close to 5.9 THz. Hence, it can be assumed
that the transformation from a perfect copper structure
into a defect structure should be accompanied by vari-
ations in the thermodynamic properties of the copper
crystal.

The problem regarding the influence of the vacancy
formation on the temperature dependence of the Debye
temperature ΘD(T) is of special interest. It is common
knowledge that the calculation of the Debye tempera-
ture ΘD(T) involves, first, the calculation of the lattice
heat capacity CV(T) at a constant volume (recall that the
lattice heat capacity CV(T), which, like any thermody-
namic function in the harmonic approximation, is an

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8
ν, THz

GA2g
(ν), arb. units

Fig. 2. Symmetrized local densities of phonon states pro-
jected onto the A2g displacements of the atoms of the first
coordination sphere for the copper crystal with a perfect
structure (dashed line) and the copper crystal with a
vacancy (solid line). The calculations are performed using
the recursive method.
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additive function of natural frequencies, i.e., it depends
on the total density of phonon states G(ν) [24]) and,
second, the standard calculation of CV(T) in the Debye
approximation [24].

Figure 3 shows the temperature dependence of the
Debye temperature ΘD(T) calculated for the copper
crystal with a perfect structure within the approach pro-
posed in [24]. For comparison, the Debye temperatures
determined from the experimental lattice heat capaci-
ties CV(T) [32, 33] are also given in Fig. 3. It should be
noted that the Debye temperatures ΘD(T) at T = 0 K
were obtained using the method described by Jules de
Launay [34], who used the elastic constants in the cal-
culation. In our case, the calculated Debye tempera-
tures ΘD(T) are somewhat higher than the experimental
Debye temperatures over the entire range of tempera-
tures from 0 to 300 K. This can be explained by the
inaccuracy in calculating the frequency distribution
function G(ν) due to the approximations used in our
model.

The temperature dependence of the Debye tempera-
ture ΘD(T) for the copper crystal with vacancies (Fig. 3)
was also determined using the calculated frequency dis-
tribution function G(ν) (Fig. 1). It can be seen from
Fig. 3 that, over the entire temperature range covered,

350

340

330

320

310

300
0 100 200 300

T, K

ΘD, K

Fig. 3. Temperature dependences of the Debye temperature
for the copper crystal with a perfect structure (dashed line)
and the copper crystal with vacancies (solid line). Points are
the experimental data taken from [32, 33] for the copper
crystal with a perfect structure.
Frequencies (in THz) of vacancy-induced resonance atomic vibrations of different symmetries in copper

Coordination 
sphere A1g A2g A2u Eg Eu F1g F2u F2g F2u

First 4.4 3.0 3.0 3.0 5.9 3.0 3.0 4.6 3.0

5.9 4.8 6.8 4.3 6.8

6.8

Second 6.8 5.9 5.9 4.6
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the Debye temperatures ΘD(T)calculated for the copper
crystal with vacancies are less than those calculated for
the copper crystal with a perfect structure. Since the
Debye temperature ΘD(T) accounts for the nature of the
interatomic forces, the obtained result agrees well with
the fact that the vacancy formation leads to a weakening
of the interatomic interaction in the vicinity of the
vacancy.

3. CONCLUSIONS

Thus, the effect of bulk vacancies on the vibrational
spectra of copper crystals was investigated using the
interatomic potential proposed by Lam et al. [12]. The
frequencies of vacancy-induced resonance vibrations
of different symmetries in a copper crystal were calcu-
lated with allowance made for the atomic displace-
ments in the vicinity of the vacancy. As far as we know,
experimental data on the resonance vibrations induced
by vacancies in copper crystals are not available in the
literature. In this respect, we believe that our results can
predict the effect of a vacancy on the vibrational spec-
trum of copper and serve as a basis for the experimental
verification of this effect. Moreover, we calculated the
temperature dependences of the Debye temperature
ΘD(T) for copper crystals containing vacancies and free
of them. The data obtained can be used to interpret the
physical processes associated with the presence of
vacancies in copper crystals.
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Abstract—Samples of the composition TlNiS2 in the hexagonal system with the unit cell parameters a =
12.28 Å, c = 19.32 Å, and ρ = 6.90 g/cm3 are synthesized. The results of the investigation into the electrical and
thermoelectrical properties of TlNiS2 samples in the temperature range 80–300 K indicate that TlNiS2 is a
p-type semiconductor. It is found that, at temperatures ranging from 110 to 240 K, TlNiS2 samples in a dc elec-
tric field possess variable-range-hopping conduction at the states localized in the vicinity of the Fermi level.
The density of localized states near the Fermi level is determined to be NF = 9 × 1020 eV–1 cm–3, and the scatter
of the states is estimated as J ≈ 2 × 10–2 eV. In the temperature range 80–110 K, TlNiS2 exhibits activationless
hopping conduction. At low temperatures (80–240 K), the thermopower of TlNiS2 is adequately described by
the relationship α(T) = A + BT, which is characteristic of the hopping mechanism of charge transfer. In the case
when the temperature increases to the temperature of the onset of intrinsic conduction with the activation energy
∆E = 1.0 eV, there arise majority intrinsic charge carriers of both signs. This leads to an increase in the electrical
conductivity σ and, at the same time, to a drastic decrease in the thermopower α; in this case, the thermopower
is virtually independent of the temperature. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chalcogenides of the general formula TlMeX2

(Me = Cr, Fe, or Co; and X = S, Se, or Te) are represen-
tatives of a new class of magnetic semiconductors. The
electrical, magnetic, and thermal properties of these
compounds were studied earlier in [1–7]. In the present
work, we propose a method of synthesizing TlNiS2

samples and present the results of investigations into
the electrical and thermodynamic properties of the pre-
pared compound.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The synthesis of TlNiS2 was carried out in an
ampule evacuated to a pressure of 10–3 Pa. The ampule
was fabricated from a fused silica tube. In this case,
TlNiS2 samples were prepared through the interaction
of initial elements (Tl, Ni, S) of high-purity grade. In
order to prevent explosion of the ampule filled with
reactants, the furnace temperature was raised to the
melting temperature of sulfur (391 K) and the ampule
was held at this temperature for 3 h. Then, the furnace
temperature was raised to 1400 K at a rate of 100 K/h
and the ampule was held at this temperature for 1.5–2.0 h,
after which it was cooled to 300 K. Thereafter, the
ampule was broken; the alloy contained in it was
crushed to powder; the powder thus prepared was
placed in a new ampule, which was then evacuated to a
pressure of 10–3 Pa; and the above process was repeated
1063-7834/03/4504- $24.00 © 20615
with subsequent cooling to 600 K. At this temperature,
the TlNiS2 sample was annealed for 240 h.

The TlNiS2 samples thus synthesized were sub-
jected to x-ray powder diffraction analysis on a DRON-
3M diffractometer (CuKα radiation, Ni filter, λα =
1.5418 Å). The x-ray diffraction patterns were recorded
continuously. The diffraction angles were determined
by measuring the intensity peaks. The error in deter-
mining the angles of reflection did not exceed 0.02°.
For the TlNiS2 sample, 24 diffraction reflections mea-
sured were unambiguously indexed in the hexagonal
system with the lattice parameters a = 12.28 Å, c =
19.32 Å, and ρ = 6.90 g/cm3.

The TlNiS2 samples used in electrical measure-
ments had the form of parallelepipeds 12.2 × 5.2 ×
1.6 mm in size. The ohmic contacts were produced
through the electrolytic deposition of copper. The elec-
trical conductivity σ and the thermopower α of the
TlNiS2 samples prepared were measured by the four-
point probe method with an accuracy up to 1% in the
temperature range 80–300 K.

3. RESULTS AND DISCUSSION

The results of the investigations into the electrical
and thermodynamic properties of TlNiS2 samples are
presented below. Figure 1 depicts the temperature
dependence of the thermopower for TlNiS2 in the tem-
perature range 80–300 K. As the temperature increases
from 80 K, the thermopower increases first moderately
and then more rapidly and, at T ≈ 235 K, reaches a max-
003 MAIK “Nauka/Interperiodica”
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imum (91 µV/K). With a further increase in the temper-
ature, the thermopower sharply decreases from 91 to
~0.5 µV/K and then remains nearly constant to room
temperature. In Fig. 1, the inset shows the high-temper-
ature branch of the thermopower on a tenfold enlarged
scale of the ordinate axis. The positive sign of the ther-
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Fig. 1. Temperature dependence of the thermopower in
TlNiS2. The inset shows the high-temperature branch α(T)
on an enlarged scale.
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Fig. 2. Dependence of the conductivity of TlNiS2 on (a)
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P

mopower indicates that holes are the majority charge
carriers in TlNiS2.

According to [8], the thermopower of chalcogenide
semiconductors in the case of p-type conduction can be
represented in the form

(1)

where γkT is the mean energy transferred by holes, γ ≈
1, ∆E is the activation energy of conduction, k is the
Boltzmann constant, and e is the elementary charge.

It should be noted that, when the thermopower is not
very high (of the order of k/e = 86 µV/K or less), the
analysis of the temperature dependence α(T) is more
complicated. If the material remains a p-type semicon-
ductor (as in the case under consideration), small values
of the thermopower can be due to the fact that the acti-
vation energy ∆E is of the order of kT. In order to check
the fulfillment of this criterion, we estimated the activa-
tion energy ∆E from the slope of the temperature
dependence of the conductivity for TlNiS2 at T < 240 K
(Fig. 2a). It is evident from Fig. 2a that the temperature
dependence of the conductivity has a variable slope.
For this reason, we estimated the activation energy ∆E
in the temperature range 160–240 K; as a result, the
activation energy was found to be equal to 1.54 ×
10−2 eV. For these temperatures, the values of kT were
determined to be (1.38–2.00) × 10–2 eV. In other words,
the values of ∆E and kT for TlNiS2 at low temperatures
are actually of the same order of magnitude, as is the
case with metals. In metals, the current is transferred by
charge carriers in the energy band whose thickness is of
the order of kT in the vicinity of the Fermi energy (EF).
According to [8], the thermopower of a metal has the
form

(2)

Formula (2) is valid only when kT ! EF.

As was noted above and shown in Fig. 2a, the
dependence of  on 1/T at temperatures T < 240 K
is characterized by a monotonic decrease in the activa-
tion energy with a decrease in the temperature. This
behavior of the conductivity in TlNiS2 at low tempera-
tures suggests that charge transfer occurs through the
variable-range-hopping mechanism [8], provided the
current is transferred by charge carriers at the states
localized in the vicinity of the Fermi level. This is also
confirmed by the temperature dependence  ~ T–1/4

(Fig. 2b). The slope of this curve (T0) allowed us to esti-
mate the density of localized states near the Fermi level
from the formula [8]

(3)
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where a is the localization length. 
The density of states NF was found to be equal to 9 ×

1020 eV–1 cm–3. The localization length was taken as a =
20 Å (by analogy with binary sulfides of Group III ele-
ments [9]). Such a high value of NF is characteristic of
amorphous semiconductors. Therefore, it can be con-
cluded that the energy-band structure of TlNiS2 is sim-
ilar to that of amorphous semiconductors. We calcu-
lated the hopping distance in TlNiS2 according to the
formula

. (4)

As a result, we found that, at T = 110 K, R ≈ 30 Å.
From the expression given in [8],

, (5)

we estimated the scatter of the trapping states about the
Fermi level: J = 1.97 × 10–2 eV. As was shown above,
the approximate activation energy of conduction ∆E,
which was determined from the dependence of 
on 103/T at low temperatures, is of the same order of
magnitude.

In the temperature range 80–110 K, the activation
energy of conduction becomes zero. The activationless
conduction also exhibits hopping nature, which mani-
fests itself in the hopping of charge carriers over spa-
tially more distant but energetically more closely
located centers without phonon absorption [10].

In contrast to formula (2) for the thermopower of
metals, the temperature dependence of α in the region
of hopping conduction can be represented by the rela-
tionship [8]

(6)

where B is the temperature coefficient for the ther-
mopower. In our case, the dependence α(T) for TlNiS2
(Fig. 1) is characterized by two slopes.

In the temperature range 80–110 K, where TlNiS2
samples possess activationless hopping conduction
(∆E = 0), the slope of the curve α(T) is equal to
0.13 µV/K2. At temperatures T > 110 K, when the acti-
vation energy of conduction varies monotonically with
temperature, the temperature coefficient for the ther-
mopower is approximately six times larger: B =
∂α/∂T = 0.8 µV/K2.

The extrapolated low-temperature branch α(T)
passes through zero; i.e., A = 0 in formula (6). This indi-
cates that, in the temperature range 80–110 K, where
the electrical conductivity σ does not depend on T, the
experimental values of α satisfy formula (2) for the
thermopower of metals. In the temperature range 110–
240 K, the thermopower obeys relationship (6). The
thermopower is determined primarily by the density of

R T( ) 3
8
---a T0/T( )1/4

=

J
3

2πR
3
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--------------------=

σlog

α T( ) A BT ,+=
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states and, hence, has positive sign in the region of hop-
ping conduction.

Earlier [1], we showed that similar behavior of α(T)
is also observed in TlFeSe2; i.e., under conditions of
hopping conduction, the sign of the thermopower is
positive and the temperature dependence α(T) is linear
(α ~ T).

It is evident from Figs. 1 and 2 that, at temperatures
close to 240 K, the dependences α(T) and σ(T) exhibit
a jump; i.e., the thermopower sharply decreases,
whereas the conductivity increases by more than three
orders of magnitude. In this range of temperatures, the
slope of the curve (1/T) is estimated at ~1.0 eV.
Such a sharp increase in the conductivity σ at the acti-
vation energy ∆E = 1.0 eV can be associated with the
onset of intrinsic conduction. In the case when the cur-
rent is transferred by carriers over states distributed
throughout the whole sample, the parameter γ in for-
mula (1) should be of the order of unity. At T ≈ 240 K,
the thermopower in TlNiS2 sample, which was esti-
mated from formula (1) at ∆E = 1.0 eV and γ = 1, is
more than one order of magnitude higher than the
experimentally observed thermopower. In other words,
the experimental values of α are not as large as those
calculated with the activation energy ∆E obtained from
the slope of the curve (1/T). Possibly, this differ-
ence is caused by the fact that, at high temperatures,
both holes and electrons are involved in conduction. Of
course, in this case, the thermopower α is less than that
calculated from formula (1), which holds for semicon-
ductors with single-type charge carriers.

4. CONCLUSIONS

Thus, it was demonstrated that, at low temperatures,
when hopping conduction dominates, the thermopower
of TlNiS2 is proportional to the temperature. As the
temperature increases, the charge carriers excited in the
allowed band begin to dominate in conduction and the
thermopower decreases drastically (by a factor of
~200) and becomes virtually independent of the tem-
perature. At high temperatures, small values of the ther-
mopower are associated with the ambipolarity of con-
duction, when the concentrations of holes and electrons
involved in conduction are of almost the same order of
magnitude. The absence of the sign inversion of the
thermopower indicates that the concentration of holes
in TlNiS2 always exceeds the concentration of electrons
involved in conduction.
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Abstract—First measurements of the thermopower and transverse magnetoresistance of sulfur at ultrahigh
pressures of up to ~40 GPa are reported. The conductivity of sulfur, as that of other elemental Group VI semi-
conductors (Te, Se), is shown to be due to valence band holes. The variation of band gap width is derived from
the pressure dependence of thermopower. The observed negative magnetoresistance of sulfur at P ~ 30 GPa
indicates a low hole mobility and suggests the existence of an indirect minimum gap in the electronic spectrum.
The pressure-induced variation of the electronic structure of sulfur is discussed in terms of the Peierls lattice
instability model. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At atmospheric pressure, sulfur is a molecular crys-
tal and crystallizes in an orthorhombic structure. In its
electrical properties, sulfur is an insulator with a band
gap Eg ≈ 2.9 eV [1]. In recent years, this substance has
been enjoying considerable interest spurred by the dis-
covery that it transfers, at a high pressure, to the super-
conducting state with a high critical temperature, Tc >
10 K [2, 3]. Subsequent studies have established a
series of structural transformations, from the orthor-
hombic phase to a monoclinic phase (5.3 GPa), an
amorphous phase (25 GPa), a phase with a tentative
chain structure (34 GPa), a body-centered orthorhom-
bic phase (100 GPa), and a β-Po-type phase (162 GPa)
[4–6]. At an ultrahigh pressure P, sulfur was observed
to transfer to a metallic state [1–7].

Thus, structural transformations in sulfur have thus
far been studied in the range up to 212 GPa [4]. These
data suggest that Te, Se, and S should exhibit substan-
tially similar electronic structures at high pressures. In
these substances, pressure induces transitions to a
metallic state and similar structural transformations in
the metallic phases [4]. Tellurium and selenium do
indeed demonstrate similar pressure-induced variation
of their electronic properties [8–10]. Because of the
very high electrical resistivity of sulfur, however, its
properties have been investigated to a considerably
lesser extent than those of its neighbors in Group VI.
The transition of sulfur to a metallic state at pressures
above 90 GPa was established in [1–6] from a jump in
the resistivity ρ and the onset of superconductivity, as
well as from a strong rise in optical reflectance. At the
same time, the temperature behavior of the resistivity
and the sharp decrease in the pressure coefficient of
ρ(P) suggested [7] that various modifications of sulfur
become conducting at substantially lower pressures,
45–54 GPa. This transition was also observed to occur
in later studies [3]. Because the temperature course of
1063-7834/03/4504- $24.00 © 20619
the resistivity revealed features of both semiconducting
(hopping) and semimetallic conductivity [7], conjec-
tures were put forward that, in these experimental con-
ditions, a sample contains a mixture of a semiconduct-
ing phase and of a newly forming semimetallic phase
[7], as well as that the electrical properties may be
strongly affected by defects [4]. Our knowledge of the
properties of sulfur in the semiconducting state for P <
40 GPa is actually poorer than that for the metallic
phases.

In some cases, data available on the resistivity are
insufficient to draw a conclusion as to the conduction
type [10, 11]. For instance, the high-pressure phases of
the cadmium and zinc chalcogenides with rocksalt
structure exhibit a metallic behavior of the temperature
dependences while retaining a considerable optical gap
Eg > 1 eV in the electronic spectrum [11] and featuring
values of thermopower too high for metals, |S | ≈
0.1 mV/K [10]. Studies of thermopower and magne-
toresistance provide an efficient way to learn the char-
acter of conduction and the electronic-structure param-
eters of high-pressure phases [12–14].

The purpose of this work was to investigate the ther-
moelectric and galvanomagnetic properties of sulfur in
the semiconducting phase at high pressures.

2. EXPERIMENTAL TECHNIQUE

Measurements of the electrical resistivity and ther-
mopower of sulfur were conducted in high-pressure
chambers with synthetic-diamond anvils [12, 14, 15].
Three chambers, with the diameter of the operating
anvil area varying from 0.6 to 1 mm, were used [16]. A
temperature gradient was produced by heating one
anvil with a heater element, the temperature at fixed
points on the anvils being measured with thermocou-
ples [17, 18]. Thermoelectric measurements were car-
ried out on a stand [18] after the sample resistance had
003 MAIK “Nauka/Interperiodica”
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dropped under pressure to ~107 Ω. Crystals of OSCh-
grade orthorhombic sulfur were chosen for the study.
Samples ~0.1 mm thick and with transverse dimensions
from ~0.2 × 0.2 to 0.4 × 0.4 mm were placed in a cen-
tral hole 0.3–0.5 mm in diameter drilled in a catlinite
cylinder. Platinum–silver spring ribbon contacts 5 µm
in thickness or conducting diamond anvils were used to
supply voltage and receive signals from a sample [12,
14]. The applied pressure was determined to within
±10% from calibration graphs based on resistance
jumps in reference materials with known phase transi-
tion pressures: GaP (22 GPa), ZnS (15 GPa), NaCl
(29 GPa), etc. [12, 15].

The transverse magnetoresistance of sulfur samples
was measured at a fixed pressure of ~30 GPa in a self-
contained diamond-chamber version [14] in the dc
magnetic field of a shell-cased electromagnet, with the
magnetic induction decreased and increased (up to 2 T)
in two magnetic field directions. Several measurements
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(a)
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1.4
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Fig. 1. Pressure dependences of (a) the electrical resistivity
of sulfur measured at T = 295 K (sample 1) and (b) the ther-
mopower of sulfur (sample 2) obtained at 305 K.
P

were made at each point, and the final result was
obtained by averaging. Ten series of measurements
were run at 295 and 310 K and produced identical
results. The parameters of the experiment and signals
from the sample were measured simultaneously and
stored in a nonvolatile memory, with subsequent trans-
fer of the data to a computer [18].

3. RESULTS OF THE MEASUREMENTS 
AND DISCUSSION

In accordance with earlier measurements [2, 5, 7],
the electrical resistivity of sulfur samples decreased
with increasing pressure (Fig. 1a). In the pressure
region P > 25 GPa, where structural transformations to
the amorphous and subsequent chain-structure phase
were shown to exist [4, 5], the pressure coefficient of
ρ(P) decreased in absolute value (Fig. 1a).

The thermopower of sulfur was measured in the
pressure range from ~30 to ~40 GPa and corresponded
to the hole character of conduction (Fig. 1b). Both ther-
mopower S and ρ decreased with increasing pressure.
The experimental relations were analyzed using the
well-known expressions for electrical conductivity and
the Seebeck coefficient [19, 20]:

(1)

Here, σ = 1/ρ is the electrical conductivity, E is the elec-
tron energy, EF is the Fermi energy, f is the distribution
function, k is the Boltzmann constant, and e is the elec-
tronic charge. For a nondegenerate n-type semiconduc-
tor, S is given by [19, 20]

(2)

where r is the parameter determining the dependence of
relaxation time τ on electron energy, τ(E) ~ Er [19, 20].

In the case of two-band conduction, S is the sum of
the electronic Sn and hole Sp contributions, S = Snσn/σ +
Spσp/σ. For an intrinsic semiconductor, this expression
can be recast to

(3)

where ρ = ρ0exp(Eg/2kT) is the electrical resistivity of
the semiconductor; mn and mp are the effective density-
of-states masses in the electron and hole bands, respec-
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tively; and b is a parameter equal to the ratio of the elec-
tronic to hole conductivity (b = σn/σp) [12, 19, 20].

The first term in the right-hand side of Eq. (3) has
the strongest dependence on pressure in the pressure
range covered and, for sulfur, is by far larger than the
other terms. The parameters rn and rp assume values
from –1/2 to 3/2, and the effective masses mn and mp

and the parameter ρ0 can vary considerably only near
Eg  0. Therefore, in analyzing the relation between
S and ρ under pressure, one can restrict oneself to the
first term. Note that a similar relation holds in the case
of activated mobility (hopping conduction), but, in that
case, the factor (b – 1)/(b + 1) of the first term has to be
replaced by the ratio of the semiconductor band gap Eg

to the total activation energy for conduction, because
the activation energy for mobility with inclusion of
only activation terms that are proportional to ~1/T does
not contribute to the thermopower [20].

The parametric relation between the thermopower
and electrical resistivity (Fig. 2), which were measured
simultaneously (the values of P are excluded in this
case), was used to estimate the factor (b – 1)/(b + 1) ≈
–1, which corresponds, within experimental accuracy,
to hole conduction and a negligible electronic contribu-
tion. Thus, the behavior of the resistivity and ther-
mopower under pressure is determined by the magni-
tude of Eg and by its variation with increasing pressure.
The above-mentioned bend in the ρ(P) relation (Fig. 1)
is associated with the decrease in the pressure coeffi-
cient of Eg above 25 GPa, which is in agreement with
the data on absorption spectra from [1]. The width of
the semiconducting gap, as estimated from the ther-
mopower, varies in the interval ~30–40 GPa from ~0.8
to 0.4 eV. In its thermoelectric properties, sulfur resem-
bles Te and Se, whose thermopower is likewise positive
and decreases strongly with increasing pressure [8–
10, 12].

The magnetoresistance measured at 295 and 310 K
and P = 30 GPa was found to be negative; that is, ρ
decreases when a magnetic field is applied (Fig. 3). The
semiconducting gap Eg, as determined in this state from
the ρ(T) dependence, was ~1 eV. The absence of a pos-
itive effect in magnetic fields of up to 2 T indicates a
low hole mobility µp. As follows from optical data [1,
5], the band gap in sulfur is indirect at pressures of up
to 30 GPa; therefore, the pressure-induced decrease in
Eg does not entail a rise in hole mobility. This distin-
guishes the semiconducting sulfur from the trigonal Te
and Se, whose conduction- and valence-band extrema
lie at the same point in the Brillouin zone, as a result of
which the effective mass of holes mp exponentially
decreases and, hence, their mobility µ ~ 1/m increases
with pressure [9, 10]. In the pressure interval studied,
sulfur is an analog of amorphous selenium and molec-
ular iodine, which also exhibit negative magnetoresis-
tance [9, 21]. The scattering mechanisms which can
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
account for the negative magnetoresistance in these
substances were considered in [8, 9, 21].

The experimental data obtained permit one to use
the Peierls lattice instability model to describe the pres-
sure-induced transformation of the sulfur electronic
structure [22]. This approach is based on the observa-
tion that it is the p electrons that play a major role in lat-
tice bond formation in Group V–VII materials and
some compounds with an unfilled p band [23]. Calcula-
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Fig. 2. Parametric dependence of thermopower on electrical
resistivity at 305 K in the pressure interval ~30–40 GPa
measured simultaneously on sample 2. Symbols are experi-
ment, and dashed line is calculation from Eq. (3).
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Fig. 3. Magnetoresistance of sulfur measured at 295 K and
a pressure of 30 GPa. Symbols are experiment, and dashed
line is approximation of the experimental data by the
expression MR = –a(B)2/[1 + b(B)2], where a and b are fit-
ting parameters.
3
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tions conducted for Group V–VII materials showed that
this consideration is valid not only for ordered but also
for liquid and amorphous states [23]. The model also
yields accurate results when real interactions are con-
sistently taken into account [23, 24].

Like other chalcogens, sulfur in the simple cubic
structure should be a metal, because the p band is only
partially (to two thirds) filled by electrons [22–24]. The
Peierls lattice instability results in a threefold increase
in the period (and the corresponding threefold splitting
of the p band) and decreases the energy of the system
through the formation of a semiconducting gap that
separates the two filled lower bands from the empty one
[22, 23]. Two of the six equivalent p bonds (in a simple
cubic lattice) become strong (covalent bonding), and
the other four, weak (van der Waals bonding); i.e., chain
structures form in which each atom has only two near-
est neighbors [22, 23]. Indeed, all Group VI elements
have a structure made up of helical chains or ring-
shaped modifications of them [1, 4, 5, 25, 26]. The lat-
tice parameter c of Te and Se having chain structures
does indeed increase threefold as compared to the cubic
praphase [22], and in the orthorhombic structure of sul-
fur, the increase in the lattice parameter is still larger by
a few times (the structure consists of S8 rings) [25, 26].
Therefore, the electronic bands of sulfur, both in the
orthorhombic and in other low-dimensional semicon-
ducting phases [4], should be very narrow [19], which
may account for the low hole mobility. Distorted
Peierls structures have a lower density as compared
with the starting structure, and, as shown by calcula-
tions made for these materials, the Peierls distortion
becomes energetically unfavorable at a certain critical
pressure; i.e., the substance undergoes metallization
[23]. As sulfur transfers to the high-pressure metallic
phase with the body-centered orthorhombic (layered)
structure, the coordination number for this element
changes from two to four, and in the next phase with the
structure of β-Po, to six [4], which may be treated as
lifting of the Peierls distortion.
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Abstract—The nonlinear optical response of polar materials (ionic crystals and polar semiconductors) is stud-
ied. Within the generalized Born–Huang theory, the nonlinear response of a system is found to exhibit a char-
acteristic peak near the polariton resonance. As an example, the transparency of a plate (Fabry–Perot cavity) of
a weakly nonlinear polar material is studied. It is shown that the dependence of the output signal intensity on
the incident radiation intensity exhibits a bistable behavior for the systems under study. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The interaction between electromagnetic radiation
and optical phonons in polar materials (ionic crystals
and polar semiconductors) can be described to good
approximation in terms of the phenomenological Born–
Huang theory [1] because the light wavelength is much
longer than the lattice constants and the continual
approximation can be justified. In order to describe the
interaction between optical radiation and optical
phonons, it is sufficient to introduce a few phenomeno-
logical parameters that will completely characterize the
interaction. As is known, the phonon–photon coupling
becomes particularly strong near the phonon–photon
resonance, where polaritons form [2–4]. The interac-
tion between lattice ions and an electromagnetic field is
described by coupled equations for the fields. These
equations can be derived by constructing the
Lagrangian involving independent quadratic invariants
in the relative ion displacements and the electromag-
netic field [4, 5]. Within this approach, the energy loss
can be taken into account using the Rayleigh dissipative
function [6]. The linear version of the Born–Huang the-
ory and its modifications have recently been used to
describe optical phonons in three- and low-dimensional
structures [7–9].

In the case of strong excitation of polar materials by
laser beams, one should take into account the nonlinear
polarization of materials, which can cause a number of
interesting nonlinear effects, such as harmonic genera-
tion, optical bistability, nonlinear phase modulation,
and self-focusing [10, 11]. The nonlinear photon–
phonon interaction in crystals with a center of inversion
controls the χ(3) susceptibility and can cause optical
bistability, which is particularly pronounced near the
polariton resonance. In recent years, the optical bista-
bility [11, 12] has been actively studied in various non-
linear media: atomic systems (gases), semiconductors,
polymers, colloids, etc. [13–16]. Such studies are of
1063-7834/03/4504- $24.00 © 20623
major importance, since they make it possible to
develop optical switches with a switching rate limited
only by the characteristic response time of a nonlinear
material and the time of signal passage through a sam-
ple [11]. It appears of urgency to study the influence of
various nonlinearity mechanisms on the character of
switching and bistability of polar materials in various
frequency ranges. Nonlinear polariton-exciton mecha-
nisms have previously been studied in semiconductors
[17]. Those studies revealed the important role of the
electronic mechanism of dispersion and nonlinearity.
The nonlinear polarization of atomic systems was also
previously studied within the two-level approximation
[10, 18, 19]. To date, no studies dedicated to the polari-
ton mechanisms of bistability have been reported in the
literature.

The aim of this study is to develop a simple theory
of the dispersive nonlinearity which represents a rea-
sonable generalization of the Born–Huang linear the-
ory. To this end, we complement the linear Lagrangian
with invariants constructed from the electromagnetic
field and ion displacements describing the effective
nonlinear interaction between modes. Solution of the
field equations will allow us to determine the nonlinear
response (χ(3) susceptibility). The nonlinear response
functions exhibit a resonance behavior near the polari-
ton resonance. An expression derived for the suscepti-
bility makes it possible to study the field-amplitude-
dependent transparency of the nonlinear polariton
Fabry–Perot cavity. An interesting resonant structure is
detected and described in terms of the polariton Fabry–
Perot cavity modes. It is shown that the dependence of
the output signal intensity on the input signal intensity
exhibits a bistable behavior. The parameters defining
the nonlinear effects in polar media are estimated.
003 MAIK “Nauka/Interperiodica”
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2. NONLINEAR RESPONSE 
OF A POLAR MEDIUM

Let us consider a polar material (an ionic crystal or
a polar semiconductor) with two atoms per unit cell.
The relative-displacement field u(r, t) of charged ions
induces an ac electric field E(r, t), which, in turn,
causes ion displacements u(r, t). Hence, the dynamics
of coupled mechanical vibrations and electromagnetic
oscillations should be described self-consistently. The
interaction between electromagnetic radiation and a
separate optical vibrational mode can be characterized
by a few parameters. The Born–Huang linear theory
can be developed using the variational principle

(1)

The field Lagrangian density +lin is given by

(2)

where the notation  ≡  is used. The first and second

terms in Eq. (2) represented the mechanical and electro-
magnetic fields, respectively, and the last term
describes the interaction between them. The mechani-
cal properties of the medium are characterized by the

reduced mass ρ and the elastic constant γ = , where
ωT is the eigenfrequency of transverse ion vibrations.
The electromagnetic properties are defined by the high-
frequency permittivity β = ε(∞) (we consider a non-
magnetic medium). The field interaction is described
by the constant α:

where ε(0) is the low-frequency permittivity. The above
equations are written, in accordance with [1], using
only the quadratic invariants and describing the field
interaction by the lowest order term. The Born–Huang
theory as applied to homogeneous media neglects the
spatial dispersion of optical phonons; i.e., the terms like
~(∇ u)2 are omitted in Eq. (2). The Rayleigh dissipative
function is written as

(3)

where νu and νE are the field damping parameters.
Using the conventional approach [10], we extend

the self-consistent Born–Huang theory to the case of
weakly nonlinear media and calculate the response χ(3)

of a polar medium with an inversion center. We restrict
ourselves to the case where the characteristic frequen-
cies of the radiation field are close to the frequencies of
longitudinal and transverse optical phonons. We
assume that the characteristic frequencies of electron
transitions are far from the external-field frequency. In

δ t V+lindd∫ 0.=

+lin
1
2
--- ρu̇2 γu2

–( ) βE2 H2
–

8π
---------------------- αu E,⋅+ +=

u̇
∂u
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ωT
2 ρ

α 2 ε 0( ) ε ∞( )–[ ]γ
4π

------------------------------------,=

R
ρνu

2
--------u̇2 ρνE

2c
---------E2

,+=
P

practice, this means that the susceptibilities χ(3) and the
radiation effects described by χ(3) in the infrared region
can be calculated within the theory under consider-
ation.

In the case of an isotropic centrosymmetrical polar
medium, the quadratic Lagrangian should be comple-
mented with quartic invariants:

(4)

where g1, …, g6 are parameters characterizing the
degree of nonlinearity. It is obvious that the first term
represents the lattice anharmonic contribution. The sec-
ond term allows for the nonlinear polarization. This
means that the displacement of neighboring atoms
causes their shells to deform and induces an additional
charge in the unit cell. The additional charge, in turn,
can cause additional coupling between the atomic dis-
placements and the electric field. The corresponding
Lagrangian terms should contain the displacement vec-
tor cubed. The next terms describe the Raman scatter-
ing and higher order electronic processes. Since we are
interested in resonant processes with characteristic fre-
quencies comparable to those of optical phonons, it
would be expected that highest order terms in displace-
ments mainly contribute to the susceptibilities χ(3).

The parameters g1, …, g6 define the nonlinear
response; to determine their values, the microscopic
theory should be invoked. Numerical values of some of
these parameters are given in [20]. Simple estimates of
these parameters in terms of the parameters of the linear
medium are

where a is the lattice constant and e is the magnitude of
the electronic charge. The values of these parameters
will be used to estimate the nonlinear response func-
tions in Section 3.

Using the variational principle, the complete set of
the field equations can be found to be

(6)

(7)

(8)

+nl
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(9)

It is convenient to split the fields into longitudinal
and transverse components. It is not difficult to under-
stand that the longitudinal and transverse field compo-
nents can be excited independently. Let us study the
dynamics of transverse field components in more
detail. Supposing the nonlinear terms to be small, we
write the displacements as

(10)

where u(0) is the solution to the linear equation and u(1)

is a nonlinear correction. We retain only the first-order
corrections u(1) proportional to the constants g1, …, g6
(for now, all the nonlinear terms are assumed to be of
the same order of magnitude). The displacements can
be written as

(11)

The polarization is split into linear and nonlinear parts:

P = Plin + Pnl. (12)

The linear polarization is given by

(13)

and the nonlinear third-order polarization is written as

(14)

Substituting Eq. (10) into Eq. (6) and equating the
terms of the same order on the left- and right-hand sides
of Eq. (6), we derive equations for the linear displace-
ment,

(15)

and for the correction u(1),

(16)
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Taking the Fourier transform of Eq. (15), we obtain

(17)

The linear susceptibility χ(1)(ωn) at the frequency ωn =
ω is given by

(18)

The dielectric function can be written as

(19)

For a nondisspative medium (νu = νE = 0), the
dielectric function is given by

(20)

One can see from Eq. (20) that the dielectric function
ε(ω) is negative in the frequency range ωT < ω < ωL;
hence, the medium will reflect radiation totally.

By splitting the fields into longitudinal and trans-
verse components, it is not difficult to study wave prop-
agation in a nondissipative medium on the basis of
Eqs. (6)–(9). In particular, exist when the dispersion
relation for transverse waves has the form

(21)

where ωL = . The ω+(k) and ω–(k) dis-
persion curves are the upper and lower polariton exci-
tation branches, respectively. For longitudinal waves,
we have

The third-order nonlinear susceptibility depends on
the combination of frequencies ωq = ωn + ωm + ωs. We
look for a solution to Eq. (16) in the form

(22)
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Substituting Eq. (22) into Eq. (16), one finds

(23)

where ∆(ωq – ωn – ωm – ωs) is unity for ωq = ωn + ωm +
ωs; otherwise, it is zero.

The third-order nonlinear susceptibility (ωq;
ωn, ωm, ωs) is responsible for various optical processes.

The general properties of the tensor  are well
known [10]. For an isotropic medium, this tensor has
only three independent components. We restrict our
consideration to two cases: (i) the third-order nonlinear
polarization P(3)(ω) given by Eq. (23) with frequency
ωq ≡ ω corresponding to the frequency combinations
ωq = ω + ω – ω, ωq = ω – ω + ω, and ωq = –ω + ω + ω
and (ii) the third harmonic generation described by the
polarization P(3)(3ω) corresponding to ωq ≡ 3ω = ω +
ω + ω.

The third-order polarization of an isotropic medium
at the frequency ω can be written as

(24)

where
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Fig. 1. Real (solid line) and imaginary (dashed line) parts of
the nonlinear susceptibility χ(3)(ω) calculated using the typ-
ical parameters of a polar (NaCl-type) material: ρ =
2.2 g/cm3, a = 0.5 nm, ε(0) = 5.02, ε(∞) = 2.25, and νu =
νE = 0.15ωT; the nonlinear parameters were calculated
using Eq. (5). The frequency is measured in units of ωT, and

χ(3)(ω), in units of  = 3g1  . 2 ×

10–13 esu.
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(25)

(26)

As is evident from Eq. (24), the nonlinear polariza-
tion is expressed in terms of two functions: A(ω) and
B(ω). It is notable that in the absence of damping, the
quantities A(ω) and B(ω) incorporate terms which are
even and odd functions of ω2. In a dissipative medium,
the real part of the odd terms can reverse sign when ω
passes through the resonance frequency ωT. These
terms make a negative contribution to χ(3)(ω).

Let the system be exposed to radiation. In this case,

(27)

(28)

In other words, a polar material can be considered in
this case as an ordinary Kerr medium with the suscep-
tibility depending on the local-field intensity. A Kerr-
type medium is characterized by the effective scalar
parameter χ(3)(ω). We note that, in the high-frequency
limit, we have χ(3)(∞) = 3g6. The real and imaginary
parts of χ(3)(ω) are shown in Fig. 1. One can see that the
real part of the susceptibility χ(3)(ω) reverses sign near
the frequency ωT.

Now, we consider the third harmonic generation in
a nonlinear polar medium. The response function is
written as

(29)
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where

(30)

The function χ(3)(3ω) is shown in Fig. 2. One can see
that the real part of χ(3)(3ω) changes shape. The real and
imaginary parts reverse sign when the frequency passes
through ωT.

3. PASSAGE OF WAVES THROUGH A PLATE 
OF A NONLINEAR POLAR MATERIAL:

THE FABRY–PEROT NONLINEAR CAVITY

We employ the susceptibility χ(3) found in Section 2
to study the nonlinear wave propagation and the
bistable behavior of the transparency of a solid-state
cavity filled with a polar material. As is known, a non-
linear system with a positive feedback can exhibit a
bistable behavior under certain conditions [12]. In the
case under consideration, the polar medium plays the
role of a nonlinear element having a transparency gap
(stop band). Intriguing effects can take place in finite
systems. These effects depend on the wavelength-to-
thickness ratio and are much different for the upper and
lower polariton branches.

We consider a plate of a polar material. As usual, it
is supposed that the plate surface (“mirrors”) is charac-
terized by the transmittance t (real quantity) and the
reflectances r and r' (complex quantities). To make
things simpler, we consider the case where the incident
field with wave vector k = ω/c has transverse polariza-
tion parallel to the plate plane. The field components
outside the plate are written as

(31)

(32)

where d is the plate thickness. In Eq. (31), the first term
represents the incident field with amplitude Ain and the
second term describes the reflected wave with ampli-
tude Bref. The electric field in Eq. (32) describes the
wave transmitted through the plate.

Inside the plate, the field E(z) can be determined
from the nonlinear equation

(33)
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where q2 = ε(ω)ω2/c2. To solve Eq. (33), we follow the
method of slowly varying amplitudes. We seek the field
E(z) in the form 

(34)

where a(z) and b(z) are slowly varying functions. From
Eq. (33), it follows that functions a(z) and b(z) satisfy
the equations

(35)

(36)

where µ = . Solutions to Eqs. (35) and

(36) can be written as

(37)

(38)

where η and ζ are constants. The boundary conditions
have the form

(39)

(40)

Using Eqs. (37) and (38) and boundary conditions (39)
and (40), we find
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Fig. 2. Real (solid line) and imaginary (dashed line) parts of
the nonlinear susceptibility χ(3)(3ω). The real and imagi-
nary parts reverse sign when the frequency passes through
the polariton resonance. The parameters are the same as in
Fig. 1.
3
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where the phase φ is given by

(42)

with ϕ being the additional phase caused by the mirrors
(rr' = |r |2ei2ϕ). Equations (41) and (42) allow one to
consider radiation passage through the plate in a wide
frequency range, including the frequencies within the
stop band where q2 < 0.

As a preliminary, we consider a linear medium. In
this case, the positions of the transparency peaks
(Fabry–Perot cavity eigenfrequencies) are given by

(43)
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Fig. 3. Frequency dependence of the transparency of a polar
plate calculated in the linear approximation for d = 0.8λL
(λL = 2πc/ωL). The resonant structure of the transparency is
related to the upper and lower branches of polariton excita-
tions (quasi-coupled Fabry–Perot modes). The reflectance
of the plate surface is R = 0.9. The other parameters are the
same as in Figs. 1 and 2.
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Fig. 4. Dependence of the output signal intensity on the
incident radiation intensity. The operating Fabry–Perot
mode belongs to the lower polariton branch ω = 0.565ωL.

The radiation intensity is normalized to I0 = 1 MW/cm2.
The other parameters are the same as in Figs. 1–3.
P

Employing Eq. (20), one finds

(44)

where

(45)

It can easily be shown that the set of frequencies ω–(n)
(n = 1, 2, …) lies in the range 0 < ω–(n) < ωT and is
related to the lower branch of polariton excitations;
these frequencies correspond to transparency peaks and
condense at the point ωT. The frequencies ω+(n) (n = 1,
2, …) vary in the range ωL < ω+(n) < ∞; they correspond
to the upper branch of polariton excitations. If the plate
is exposed to radiation with the frequency lying within
the stop band, the field amplitude can either exponen-
tially damp or exponentially increase inside the plate.
Figure 3 shows the plate transparency as a function of
frequency for the thickness d = 0.8λL (λL = 2πc/ωL); one
can see transparency peaks corresponding to lower and
upper polariton excitation branches. Using Eqs. (41)
and (42) and taking into account Eq. (28), one can
readily find the dependences of the output signal inten-
sity on the input signal intensity. Figure 4 shows the
plate transparency versus the input signal intensity for
an eigenmode of the Fabry–Perot polariton cavity
belonging to the lower branch of excitations, ω =
0.565ωL. As indicated above, the bistable behavior is
caused by the feedback, i.e., by the nonlinear modula-
tion of the wave phase, depending on the wave intensity
inside the cavity.

4. CONCLUSIONS

Thus, the macroscopic approach yields both a qual-
itatively and quantitatively adequate description of the
phenomena under study and makes it possible to pre-
dict new effects. In this study, the Born–Huang phe-
nomenological theory was generalized for describing
the nonlinear effects in a disperse polar medium. The
susceptibilities χ(3) (the third-order nonlinear polariza-
tion and the third-harmonic polarization) have been cal-
culated. It was shown that these susceptibilities contain
terms that are even and odd in frequency. The odd terms
reverse sign when the frequency passes through the
polariton resonance, which can have a qualitative effect
on the phase modulation. As an application of the the-
ory developed, the transmittance of a plate of a polar
material was calculated as a function of the frequency
and intensity of the external field. An interesting reso-
nant structure, controlled by the polariton modes of the
Fabry–Perot cavity, was detected. In this case, the non-
linear transparency exhibits a bistable behavior.
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Abstract—Nonlinearity of the lux–ampere characteristics of undoped polycrystalline diamond films is
revealed. The spectral dependences of this nonlinearity and photoconductivity are analyzed in the framework
of the available models with a single impurity level or a single type of traps. It is shown that, for undoped poly-
crystalline diamond films in the range of impurity photoconductivity, the lux–ampere characteristics exhibit an
anomalous nonlinearity when their slopes change from 1/2 to approximately unity with a decrease in the wave-
length and an increase in the excitation level and the carrier lifetime. The results obtained are explained within
the model of the coexistence of two different channels of conduction in diamond films. Two ranges of carrier
photogeneration are established. For photon energies below 1.4 eV, the carrier generation with quadratic recom-
bination is observed in a single channel. At higher photon energies, the carrier generation occurs in two chan-
nels simultaneously (in addition, the carriers are excited with linear recombination in the second channel). It is
demonstrated that the equilibrium concentration of carriers in the second channel with linear recombination
substantially exceeds the equilibrium concentration of carriers in the first channel with quadratic recombina-
tion, which hampers the detection of the first channel without photoexcitation. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

In recent years, photoconductivity of carbon materi-
als has been studied in the range of fundamental
absorption with the aim of determining the basic
parameters of the band structure of fullerenes [1, 2] and
diamond [3]. In particular, Korovkin and Nikolaev [4]
examined the impurity photoconductivity induced in
fullerenes by intrinsic defects of the crystal and impu-
rities.

The impurity photoconductivity of diamond films
was investigated by Collins [5]. It was noted that, in the
near-infrared (IR) range, the photoconductivity of dia-
mond prepared through chemical vapor deposition is
characterized by a complex spectrum [5], which makes
it impossible to identify the defects without additional
studies.

The purpose of this study was to analyze the lux–
ampere characteristics and the spectral distribution of
photoconductivity of polycrystalline diamond films in
the IR range (in the range of impurity photoconductiv-
ity) in order to determine particular channels of con-
duction.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

An undoped polycrystalline diamond film was
grown on a silicon substrate with the (111) orientation
through chemical vapor deposition [6]. The volume
content of the components in the gaseous mixture was
1063-7834/03/4504- $24.00 © 20630
0.5% CH4 and 99.5% H2. The total pressure of the gas-
eous mixture was equal to 112 Torr, and the substrate
temperature was 1170 K. The thickness of the studied
film was 13.5 µm. In order to examine the photore-
sponse in the diamond film, the samples used were sep-
arated from the growth substrate and clamped to an
insulating holder.

The suitable ohmic contacts were produced by
applying an Aquadag lubricant on the surface of the
polycrystalline diamond film. We also tested other
methods of producing the electrodes on the surface of
diamond samples, for example, pressed tungsten
probes; however, they turned out to be less convenient.
The contacts were prepared in the form of strips at the
edges of the film with a width of 3 mm, a length of
3 mm, and a thickness of 0.5 mm. The distance between
the electrodes was equal to 1.5 mm. Therefore, the area
of the illuminated surface was 4.5 mm2.

The source of monochromatic radiation was an SF-4
monochromator with a quartz prism. The film was illu-
minated on the side of the free surface. The light was
modulated by a disk with sectoral slots and was then
focused into a beam with the use of a quartz lens. This
ensured uniform illumination of the interelectrode sur-
face of the diamond film, thus exciting nonequilibrium
charge carriers. Earlier [7], we examined the current–
voltage characteristics of undoped polycrystalline dia-
mond films upon exposure to modulated light and
found that the contacts remain ohmic up to fields of 6 ×
103 V/cm.
003 MAIK “Nauka/Interperiodica”
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In this work, such a dc voltage was applied to the
sample and the load resistor that the field at the samples
was 5 × 103 V/cm. A signal generated at the load resis-
tor under illumination of the sample was perceived by a
U2-8 amplifier connected in the mode of broad-band
amplification and was then transmitted to a synchro-
nous detector. The voltages supplied to the radiation
source and to the modulator drive were stabilized.

The radiation intensity at a constant wavelength was
controlled by varying the temperature of the filament of
the source and was measured on an Yu-116 standard
luxmeter. The filament temperature was determined
using an optical pyrometer in the range from 2000 to
3000 K.

3. RESULTS AND DISCUSSION

We studied the quantum efficiency of the photode-
tector based on a diamond film as a function of the
wavelength of incident radiation at different voltages
across the contacts [6]. In the present work, the quan-
tum efficiency was found to be equal to 0.08–0.12% in
the case when the voltage across the contacts was
750 V at the wavelength λ = 700 nm (Fig. 1). Here, the
photoconductivity spectra of the diamond film were
normalized to one incident photon for different light
sources.

Figure 2 illustrates how the wavelength of modu-
lated monochromatic light affects the lux–ampere char-
acteristics of undoped polycrystalline diamond films.
The power of radiation incident on the sample at a
wavelength of 700 nm varied in the range from 0.7 ×
10–6 to 2.8 × 10–6 W/cm2. It can be seen that, at a con-
stant radiation wavelength, the photocurrent Ip

increases with a rise in the level of the photon flux ϕ.
For a steady radiation flux, the photoconductivity and,
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Fig. 1. Spectral dependences of the quantum efficiency of
the undoped polycrystalline diamond film for different light
sources. For curves 1 and 2, the ratio of photon fluxes at a
wavelength of 875 nm is 2 : 1.
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correspondingly, the concentration of nonequilibrium
carriers ∆q(λ) increase as the wavelength decreases.
Therefore, the following inequality is satisfied over the
entire range studied:

(1)

where λ1 < λ2.

As can be seen from Fig. 3, the slope of the lux–
ampere characteristic tan(λ) = d(lnIp)/d(lnϕ) depends
on the wavelength λ of monochromatic radiation. At a
wavelength of 875 nm (hν = 1.4 eV), the range of exci-
tation of nonequilibrium carriers can be separated into
two ranges, namely, the short-wavelength and long-
wavelength ranges. It is clearly seen from Figs. 2 and 3
that the lux–ampere characteristic of the photocurrent
deviates significantly from linear behavior. It is also
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Fig. 2. The effect of the photon energy on the lux–ampere
characteristics of the undoped polycrystalline diamond
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evident that a decrease in the nonequilibrium carrier
concentration (a decrease in the photocurrent, see
Fig. 2) leads to a decrease in the slope of the lux–
ampere characteristic.

Let us assume that the photoconductivity in the
studied range exhibits impurity nature (the band gap of
diamond is approximately equal to 5.5 eV). We should
note that, under this assumption, the slope tanλ can
decrease with a rise in the level of the photon flux ϕ. A
similar situation exists in the case when the centers
responsible for the generation of photocarriers are
exhausted but was not observed in our experiments.
The results obtained indicate the opposite trend,
namely, an increase in the photocurrent with an
increase in the photon flux.

The increase in the slope with increasing intensity of
light for materials with a single type of traps was justi-
fied theoretically and verified experimentally for ger-
manium in [8]. This dependence takes place under the
condition that the relaxation time increases with a rise
in the level of the photon flux. Analysis of the time
dependences of the photocurrent at different wave-
lengths of modulated monochromatic light (Fig. 4)
demonstrates that the relaxation time decreases with an
increase in the photon flux [ϕ(900 nm) > ϕ(650 nm)].
Thus, it is established that, in the range of impurity pho-
toconductivity of diamond, the lux–ampere characteris-
tics of undoped polycrystalline diamond films exhibit
an anomalous nonlinearity when their slopes change
from 1/2 to approximately unity with a decrease in the
wavelength and an increase in the carrier lifetime.

In the long-wavelength range (λL range), the slope is
close to 1/2, which corresponds to a quadratic recombi-
nation of nonequilibrium carriers when the concentra-
tion of nonequilibrium carriers considerably exceeds
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Fig. 4. Photocurrent normalized to the maximum value as a
function of time for photons with energies of 1.90 (650 nm)
and 1.37 eV (900 nm) at different fluxes.
P

the total concentration of equilibrium carriers, i.e.,
when the following condition is satisfied:

(2)

In the short-wavelength range (λS range), the slope
tanλ approaches unity, which corresponds to a linear
recombination of nonequilibrium carriers when the
concentration of nonequilibrium carriers is substan-
tially less than the total concentration of equilibrium
carriers, i.e., when the following condition holds:

(3)

It follows from relationships (2) and (3) that
∆q(λL) > ∆q(λS); therefore, the photoconductivity in
the long-wavelength range should be higher than that in
the short-wavelength range. This contradicts relation-
ship (1) obtained in the experiment.

The observed anomalous nonlinearity of photocon-
ductivity can be explained in terms of the spatially
inhomogeneous model with two ranges of carrier pho-
togeneration. The first range is characterized by the
quadratic recombination of carriers. For photon ener-
gies above 1.4 eV, nonequilibrium carriers with ∆qS(λS)
are additionally excited in the second range; i.e., the
short-wavelength excitation occurs in two concurrent
channels of nonequilibrium conduction. Photocurrent
in this range of excitation can be represented as the sum
of currents: Ip = I1 + I2. Here, the first and second terms
satisfy the relationships of quadratic (dlnI1/dlnϕ = 1/2)
and linear (dlnI2/dlnϕ = 1) recombinations, respec-
tively. Hence, the slope tan(λ) takes on values in the
range from 1/2 to 1. By using these relationships and
the result presented in Fig. 3, we obtain the following
expression in the short-wavelength range:

(4)

In our case, when tan(λS) = 0.7, we have I2/I1 = 2/3.
Consequently, condition (3) should be replaced by a

new condition, that is,

(5)

where  +  is the equilibrium concentration of car-
riers in the second range.

If the carrier mobilities in the first and second short-
wavelength ranges are comparable, it follows from
expression (4) that the concentrations of nonequilib-
rium carriers ∆q(λS) and ∆qS(λS) in the first and second
ranges are also comparable. From conditions (2) and
(5), we derive the relationship

(6)

The observed anomalous nonlinear photoconductiv-
ity of polycrystalline diamond films in the near-IR
range can be interpreted within the model of the coex-
istence of two channels of nonequilibrium conduction.

∆q λL( ) @ n0 p0.+

∆q λS( ) ! n0 p0.+

I2

I1
----

λS( )tan 0.5–
1 λS( )tan–

-------------------------------.=

∆qS λS( ) ! n0
S

p0
S
,+

n0
S

p0
S

n0 p0 ! n0
S

p0
S
.+ +
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003



ANOMALOUS NONLINEARITY 633
For example, these can be holes in the valence band of
islands on the (111) relaxed surface and holes in the
valence band of islands on the (111) 2 × 1 reconstructed
surface of diamond, for which, as is known [6, 9, 10],
the distances from the valence band tops to the Fermi
level are determined to be 0.6 and 1.4 eV, respectively.
These can also be nonequilibrium carriers generated by
electrically active bulk centers and any one of the afore-
mentioned surface centers. By virtue of inequality (6),
the first channel revealed does not manifest itself under
conditions of equilibrium conduction. Only photoge-
neration made it possible to detect this channel. In order
to elucidate the nature of the active centers unambigu-
ously, it is necessary to examine the spectra of the pho-
toresponse in a wider range of wavelengths and to
resolve the complex spectra into sufficiently simple
components (using, for example, relationship (4)).
However, this is beyond the scope of the present work.
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Abstract—The cationic conductivities of Cu2Se and Ag2Se superionic conductor solid solutions in the compo-
sition region from Cu2Se to Cu0.7Ag1.3Se are measured. It is demonstrated that the activation energy of ionic
conduction depends only slightly on the chemical composition, varies from 0.14 to 0.17 eV, and exhibits a
weakly pronounced maximum for the Ag0.44Cu1.56Se solid solution. The ionic Seebeck coefficients are mea-
sured for the Ag0.23Cu1.757Se solid solution. The heat of cation transfer in this solution is found to be equal to
0.144 ± 0.014 eV from the Seebeck coefficients. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that Cu2Se and Ag2Se superionic con-
ductors form quasi-binary alloys with high mixed cat-
ionic conductivity [1–3]. At temperatures above 473 K,
there exist extended regions of solid solutions based on
the α-Cu2Se face-centered cubic phase (from Cu2Se to
Cu0.7Ag1.3Se) and the α-Ag2Se body-centered cubic
phase (from Ag2Se to Ag1.5Cu0.5Se) [4]. In our earlier
works [5–8], we examined the ion transfer in solid solu-
tions based on the α-Ag2Se body-centered cubic phase.
The present paper reports on the results of investiga-
tions into the ionic conduction in solid solutions based
on the α-Cu2Se phase.

As was shown by Gorbunov [9], grain boundary dif-
fusion in high-temperature superionic phases of poly-
crystalline copper chalcogenides with large-sized
grains is of little importance. In this respect, our results
on the ionic conductivity in solid solutions based on the
α-Cu2Se phase should be interpreted in terms of diffu-
sion in the bulk of grains. Since the Fm3m structural
type of the initial crystal lattice of α-Cu2Se is retained
in the solid solutions under consideration, we believe
that mobile cations of copper and silver in these solu-
tions migrate over interstices, as is the case in α-Cu2Se.
The crystal lattice of α-Cu2Se is strongly disordered.
Sakuma [10] proved that, in a unit cell of α-Cu2Se, four

selenium anions with the coordinates 0 0 0; 0  ;

 0 ;   0  form a rigid framework of the lattice

and eight Cu+ cations are distributed over sixteen inter-
stitial positions. Seven copper ions statistically occupy
32( f )I (tetrahedral) positions with the coordinates xxx,

, , , , , , and  (where x =
0.297). One Cu+ ion is statistically distributed over


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32( f )II (octahedral) positions with the coordinates xxx,
, , , , , ,  (where x =

0.471). The easy-diffusion paths of Cu+ ions pass
through the adjacent positions 32( f )I and 32( f )II.

The thermoelectric properties of copper chalco-
genides and their alloys are of considerable interest
because these materials can be used in thermoelectric
energy converters. The main difficulties encountered in
studying the thermoelectric properties of mixed superi-
onic conductors are associated with the measurement
and interpretation of the heat of ion transfer. In this
work, the heats of cation transfer Qi in the
Ag0.23Cu1.757Se superionic conductor were measured
using the Honders method [11].

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The experiments were performed using carefully
annealed polycrystalline samples with grain sizes of
50–100 µm. The samples were prepared through solid-
phase synthesis from binary selenides of copper and sil-
ver in ampules. The alloys thus obtained were ground,
pressed into pellets, and homogenized at a temperature
of 723 K for a period of a week. The samples were pre-
pared in the form of parallelepipeds 2 × 5 × 20 mm in
size for ionic conductivity measurements and 2 × 5 ×
30 mm in size for thermoelectric measurements. The
homogeneity of the chemical composition throughout
the sample length was checked by an electron micro-
probe analysis of the surface. The scatter of the results
was within the limits of experimental error (~1%).

The ionic conductivity of AgxCu2 – xSe solid solu-
tions was measured by suppressing the electron current
[12] with the use of ion current filters of two composi-

xxx xxx xxx xxx xxx xxx xxx
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tions (AgI/Ag or CuBr/Cu) in an electrochemical cell
of type I:

For a low density of the direct current passing
through a sample (through the contacts Pt1 and Pt2), the
stationary ion potential difference was measured
(between the contacts Pt3 and Pt4) using probes of the
same composition. The validity of the Iokota method
[12] (developed earlier for mixed electronic–ionic con-
ductors of the α-Cu2Se type), as applied to AgxCu2 – xSe
solid solutions with mobile cations of two sorts (silver
and copper), was justified by Miyatani [1].

At low densities j of the ion current (in our experi-
ments, the current density j did not exceed 10 mA/cm2),
when the applied potential difference is considerably
less than the decomposition potential of the phase, only
the Ag+ cations migrate through the sample–AgI inter-
face. The Cu+ cations and electrons (holes) are blocked
at the interfaces. This is responsible for the appearance
of the ion concentration gradient across the sample and,
hence, the diffusion flux. The polarization process
involves two stages. At the first stage, the current of
electrons is compensated for by their diffusion counter-
flux (the rate of this process is determined by the coef-
ficient of coupled chemical diffusion of cations and
electrons). At the second (slower) stage, the electron
concentration gradient across the sample (and the
related gradient of the total cation concentration)
remains constant and the current of Cu+ ions disappears
gradually (the rate of the process depends on the self-
diffusion coefficient of the cations). At equilibrium, the
Cu+ cation flux induced by the electric field is compen-
sated for by the diffusion counterflux and only the
resulting current of Ag+ ions passes through the sample.
The chemical composition of the sample remains
unchanged.

For the current density used in our measurements,
the difference between the chemical compositions of
the sample in different cross sections due to concentra-
tion polarization and the possible effect of this polariza-
tion on the ionic conductivity can be disregarded. Spe-
cial investigations demonstrated that a change in the
chemical composition of the AgI probes upon contact
with AgxCu2 – xSe alloys does not exceed 10% in the
composition range x ≥ 0.1 and decreases drastically
with an increase in x. Therefore, this factor affects the
results of measurements only slightly. The maximum
contribution (approximately 3%) to the experimental
error was associated with the finite sizes of the ion
probes.

The heat of ion transfer Q was determined directly
from the ionic thermoelectric coefficients (the ionic
Seebeck coefficients) according to the technique
described in [11]. This technique involves the replace-
ment of ion probes of the Ag/AgI type in a conventional

Pt1/Cu/CuBr/AgxCu2 x– Se/CuBr/Cu/Pt2

Pt3/Cu/CuBr CuBr/Cu/Pt4.
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cell for measuring the ionic thermopower by probes of
the studied sample/AgI type (for more details, see, for
example, [5, 10, 13]). The ionic thermoelectric coeffi-
cient thus measured can be represented by the expres-
sion

(1)

where αPt is the contribution of the platinum contacts to
the thermopower. In the majority of cases, this contri-
bution can be ignored.

The ionic thermopower  was measured using
two composite ion probes of the Ag0.23Cu1.757Se/AgI
type (contacts 3 and 4 in Fig. 1) in the absence of elec-
tric current through the sample. The thermoelectric

coefficient was determined from the relationship  =

/∆T, where ∆T = T2 – T1 is the difference between
the temperatures in the isothermal cross sections of the
sample at points of contact with the ion probes. The
thermopower was measured after the attainment of an
equilibrium state of the sample.

The ionic thermoelectric coefficients  and ionic
conductivities σi were measured in the range of temper-
atures at which the AgxCu2 – xSe alloys are solid solu-
tions based on the Cu2Se face-centered cubic phase.
The measuring cell was placed in a dried purified argon
atmosphere. In the course of measurements, the con-
stancy of the chemical composition and the attainment
of the equilibrium state of the samples were checked
against the electromotive force E of an electrochemical
cell of type II:

Pt/Sample/AgI/Ag.

The error in determining the heats of ion transfer Qi and
the ionic conductivity σi did not exceed 5%.

3. RESULTS AND DISCUSSION

Figures 2–4 show the temperature dependences of
the ionic conductivity for Ag0.1Cu1.9Se, Ag0.23Cu1.757Se,
and Ag0.44Cu1.56Se solid solutions measured by three
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Fig. 1. Schematic drawing of the electrochemical cell for

measuring the ionic thermoelectric coefficient .α i
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methods: (i) suppression of the electron current with
the use of AgI/Ag ion filters, (ii) suppression of the
electron current with the use of CuBr/Cu ion filters, and
(iii) suppression of the ion current by electron filters
(current-carrying platinum electrodes and probes). It
can be seen from Figs. 2–4 that, for each solid solution,
the results obtained by different methods coincide
within the limits of experimental error. The use of the
electron filters to suppress the cation current makes it
possible to obtain the concentration polarization curve.
From the parameters of this curve, we can determine
the total conductivity (from the potential difference
between the Pt probes at the instant of switching on the
electric current), the electronic conductivity (from the
steady-state potential difference between the Pt probes,
which corresponds to the absence of the cation current),
and the total cationic conductivity of the sample (from
the difference between the aforementioned conductivi-
ties).

In our opinion, the excellent agreement between the
results obtained with electron and ion filters confirms
the inference drawn by Miyatani [1], according to
which the use of ion filters in (AgxCu1 – x)2Se systems
with mobile cations of two sorts makes it impossible to
determine the partial ionic conductivity. The Iokota
method gives the total cationic conductivity irrespec-
tive of the conductivity of the ion (Cu+ or Ag+) filter.

The ionic conductivities presented in Fig. 5 for three
solid solutions (Ag0.6Cu1.4Se, AgCuSe, Ag1.2Cu0.8Se)
were measured using probes and electrodes of the
AgI/Ag type.

The temperature dependences depicted in Figs. 2–5
exhibit an Arrhenius behavior and can be described by
the relationship
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Fig. 2. Temperature dependence of the ionic conductivity
measured for the Ag0.1Cu1.9Se solid solution with the use of
different potential probes and current-carrying electrodes:
(1) ion probes and electrodes of the CuBr/Cu type, (2) ion
probes and electrodes of the AgI/Ag type, and (3) platinum
electron probes and electrodes.
PH
(2)

where σi0 is a constant and Ea is the activation energy.
These dependences in the 1/T–ln(σiT) coordinates are
represented by straight lines. The equations of the
straight lines and the approximation errors R2 calcu-
lated with the inclusion of all the experimental points
obtained for each solid solution are given in the figures.
Table 1 lists the activation energies of ionic conduction
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7.7

7.3

6.9

1.45 1.65 1.85 2.05

1
2

103/T, K–1

ln(σiT, K S/cm)

6.5

y = –1.8675x + 10.428
R2 = 0.9761

Fig. 3. Temperature dependence of the ionic conductivity
measured for the Ag0.23Cu1.757Se solid solution with the
use of different potential probes and current-carrying elec-
trodes: (1) ion probes and electrodes of the AgI/Ag type and
(2) platinum electron probes and electrodes.
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Fig. 4. Temperature dependence of the ionic conductivity
measured for the Ag0.44Cu1.56Se solid solution with the use
of different potential probes and current-carrying elec-
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(2) platinum electron probes and electrodes.
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and the preexponential factors σi0 determined from
these equations according to formula (2).

Analysis of the data presented in Figs. 2–5 and Table 1
demonstrates that the substitution of silver for copper in
copper selenide leads to an insignificant increase in the
total cationic conductivity of the high-temperature
phase. The activation energy of ionic conduction first
slightly increases from 0.14 to 0.17 eV (in the compo-
sition range 0.1 ≤ x ≤ 1.0), then decreases, and regains
its initial value for the Ag1.2Cu0.8Se solid solution. The
preexponential factor σi has a maximum value of 42.3 ×
103 K S/cm for the Ag0.44Cu1.56Se solid solution; this
solution is also characterized by the highest activation
energy, Ea = 0.173 eV.

As is known, the activation energy of ionic conduc-
tion in the Ag2Se binary compound is equal to 0.10 eV.
It is reasonable to assume that transfer of Cu+ and Ag+

ions in the Cu2Se–Ag2Se solid solution occurs with dif-
ferent activation energies. Consequently, a change in
the concentration ratio of these ions in the solid solution
results in a change in the effective (averaged over two
sorts of cations) activation energy, which is calculated
from the total cationic conductivity σi =  + .

In our earlier work [8], the ratios of partial conductivi-
ties /  for (AgxCu1 – x)2Se solid solutions were

determined using a combined electrogravimetric
method. The curves (x) and (x) obtained in [8]

are plotted in Fig. 6. It can be seen from Fig. 6 that,
beginning with the Ag0.23Cu1.757Se composition, an
increase in the silver content is accompanied by a
decrease in the copper ionic conductivity. The ionic
conductivities  and  become equal to each

σ
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+ σ
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+

σ
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+ σ
Ag

+

σ
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+ σ
Ag

+

σ
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+ σ
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+
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2
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2 = 0.9987

R2
2 = 0.9993
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y2 = –1.717x + 10.264

7.8

6.4

Fig. 5. Temperature dependences of the ionic conductivity
measured for (1) Ag0.6Cu1.4Se, (2) AgCuSe, and (3)
Ag1.2Cu0.8Se solid solutions with the use of potential
probes and current-carrying electrodes of the AgI/Ag type.
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other for approximately the Ag0.7Cu1.3Se composition.
For a dominant copper component in the solid solution,
this situation can be observed in the case when the acti-
vation energy of migration of silver ions is less than that
of copper ions. A further increase in the silver content
should lead to a decrease in the effective activation
energy and an increase in the total cationic conductiv-
ity, which is observed in the experiments (Table 1,
Figs. 2–6).

The obtained data on the ionic thermopower are
given in Table 2.

After averaging over the entire temperature range
covered, we obtained the heat of cation transfer for the
Ag0.23Cu1.757Se solid solution: Qi = 0.144 ± 0.014 eV.
This heat of cation transfer is close to the activation
energy of ionic conduction Ea = 0.161 ± 0.011 eV.
Close values of these quantities have also been
observed for Ag2 – δTe [14]. The heat of ion transfer and
the activation energy of ionic conduction in superionic
conductors are related in a complex fashion. This prob-

Table 1.  Activation energies of ionic conduction and preex-
ponential factors for Cu2Se–Ag2Se solid solutions

Composition Ea , eV σi0, 103 K S/cm

Cu2Se 0.14 –

Ag0.1Cu1.9Se 0.156 31.0

Ag0.23Cu1.757Se 0.161 33.8

Ag0.44Cu1.56Se 0.173 42.3

Ag0.6Cu1.4Se 0.170 36.9

AgCuSe 0.148 28.7

Ag1.2Cu0.8Se 0.140 26.3

3.5

2.5

1.5

0 0.3 0.5 0.7

1
2
3

x

σi , S/cm

0.1

0.5

Fig. 6. Dependences of the (1) total, (2) silver, and (3) cop-
per ionic conductivities on the silver content x in the
(AgxCu1 – x)2Se solid solutions at a temperature of 623 K
according to the data taken from [8].
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lem remains unclear even though it has long been a sub-
ject of investigation [13, 15, 16]. In particular, Tsi-
dil’kovskiœ and Mezrin [17, 18] theoretically treated
this problem for superionic conductors of the channel
type, including the high-temperature phase of copper
selenide [10, 19, 20]. Reasoning from the results
obtained in [17, 18], the close values of Qi and Ea for
the Ag0.23Cu1.757Se solid solution can be due to a weak
interaction of mobile ions with lattice vibrations and
the absence of a correlation between ion hoppings.
According to Wada et al. [16], the interaction of mobile
ions with free electrons can be responsible for the dis-
crepancy between the values of Qi and Ea. Therefore,
we can state that electrons have no noticeable effect on
the motion of ions in the Ag0.23Cu1.757Se solid solution.
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Abstract—A first study of the effect of weak pulsed magnetic fields (PMFs) on Sb1 – xAsx solid solution crys-
tals is reported. An effect of long-time (months) redistribution of the solid solution components at room tem-
perature after a short (seconds) exposure to a PMF was revealed. The effect includes stages of enrichment of
the crystal surface in antimony with the formation of clusters, antimony cluster breakup, and a decrease in sur-
face antimony content, which is accompanied by a substantial improvement in solid-solution homogeneity. The
PMF-induced component redistribution entails a decrease in the crystal melting temperature. Rupture of
stressed chemical bonds in arsenic vacancy complexes, which is induced by a change in their multiplicity under
PMF exposure, is considered as a possible trigger mechanism. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The binary Sb–As system is known to form a con-
tinuous series of solid solutions with a minimum in
their phase diagram [1]. A thermodynamic analysis
based on tensometric measurements showed a trend to
decomposition of a solid solution at low temperatures
[2]. However, no experimental evidence for the exist-
ence of a heterophase region in this system has thus far
been produced. The possibility of solid solution decom-
position in the Sb–As system initiated by an external
factor has not been established either.

On the other hand, there have been reports on the
unique capability of weak (<1 T) pulsed magnetic fields
(PMFs) to affect the real structure of solids and the
character of the processes occurring in them [3–5]. In
particular, short exposures to PMFs were found to ini-
tiate long-term low-temperature decomposition of a
solid solution of oxygen in Czochralski-grown silicon
crystals (Cz-Si), which entails a radical change in the
whole microstructure of the crystal [6].

The above observations account for the interest in
the possibility of initiating structural changes in
Sb1 − xAsx solid solutions using PMFs.

This study deals with the effect of PMFs on the sta-
bility and real structure of solid solutions in the Sb–As
system.

2. EXPERIMENTAL TECHNIQUE

The studies were conducted on crystals of an
Sb0.8As0.2 solid solution whose composition corre-
sponded to the minimum in the antimony–arsenic phase
diagram. The starting components used to prepare the
solid solution crystals were Su-000-grade antimony
and OSCh-9-5 arsenic, which was additionally vac-
1063-7834/03/4504- $24.00 © 20639
uum-sublimated to remove oxides. The synthesis was
performed using the one-temperature method in thick-
walled glass ampules evacuated to a base pressure of
5 × 10–4 Pa. To homogenize the solid solutions and
remove intracrystallite segregation, the ingot was sub-
jected to directed crystallization followed by annealing
for 100 h at 823 K. The alloys thus obtained had a large-
block structure. The studies were carried out on sam-
ples measuring 5 × 4 × 4 mm cut from the central part
of the same crystal.

The PMF exposure was made at T = 300 K in a low-
inductance solenoid through which a capacitor bank
was discharged periodically. The experiment consisted
in applying a train of 3000 symmetric triangular-shaped
pulses of amplitude B = 0.3 T, length τ = 3 × 10–5 s, and
repetition frequency f = 50 Hz. The samples thus treated
were stored at T = 300 K between reference measure-
ments together with the samples that were not subjected
to PMF action.

The effect of PMFs on the Sb1 – xAsx crystals was
studied using x-ray microprobe analysis, scanning elec-
tron microscopy, and differential thermal analysis.

The x-ray microprobe analysis was used to investi-
gate the distribution of chemical elements on the sam-
ple surface. Measurements were conducted on a Cam-
Scan S4 scanning electron microscope equipped with a
Link AN10/55S x-ray energy-dispersive-analysis sys-
tem. The planar element distribution was determined in
a surface layer ~1 µm thick using the characteristic x-
ray radiation excited by an electron beam scanning the
sample surface. The same CamScan scanning electron
microscope was used to obtain surface micrographs of
the samples before and after PMF exposure.
003 MAIK “Nauka/Interperiodica”
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(a) (b) (c)

Fig. 1. Planar distribution of the elemental composition in a surface layer of an Sb0.8As0.2 sample: (a) before, (b) five days later,
and (c) 100 days after PMF exposure. Sb is shown in black; As, in white; and the Sb–As solid solution (elements present in com-
parable concentrations), in gray. Image size, 500 × 500 µm.
The differential thermal analysis was performed fol-
lowing the standard technique on FRU-64 and NTR-
75-type instruments.

3. EXPERIMENTAL RESULTS

The results of the x-ray microprobe analysis of the
Sb0.8As0.2 samples are shown in Fig. 1.

The initial elemental distribution is given in Fig. 1a.
Note that arsenic is a volatile component of the binary
system and builds up, in the course of crystal prepara-
tion, in defect regions, which are clearly seen in the
electron micrographs of the same region of the sample
in Fig. 2a.

A short (seconds) exposure of the Sb0.8As0.2 crystals
to a PMF initiates long-term (thousands of hours at T =
300 K) spatial redistribution of the solid solution com-
ponents. In the first stage, the crystal surface becomes
enriched in antimony, which segregates in clusters
(Figs. 1b, 2b). In the second stage, the reverse process
sets in, i.e., the antimony clusters formed dissolve
(Fig. 2c), and the Sb content in the surface layer
decreases (Figs. 1c, 2c).

The percentage contents of the Sb and As aggregates
and of the Sb0.8As0.2 solid solution in the surface layer

Relative contents of arsenic, antimony, and the solid solution
(%) in a surface layer of an Sb0.8As0.2 sample

Com-
ponent

Before PMF
exposure

Time elapsed after PMF
exposure (days)

5 10 50 100

As 2.1 2.6 1.2 1.6 0.4

Sb 31.5 42.6 34.6 12.1 4.4

Sb + As 66.4 54.8 64.2 86.3 95.2
PH
(~1 µm) at various times after the PMF action are given
in the table.

As seen from the table, the concentration of free
antimony aggregated in clusters was the highest five
days after the PMF exposure, after which the antimony
concentration decreased monotonically by nearly an
order of magnitude to a level considerably below the
initial value.

The x-ray microprobe studies were accompanied by
measurements of the melting temperature of reference
samples prepared from the same ingots.

It was found that exposure to a PMF brings about a
considerable decrease in the sample melting point in
the course of the PMF-induced element redistribution.
It should be pointed out that an alloy having a compo-
sition corresponding to the minimum in the phase dia-
gram (azeotrope) melts not within a temperature inter-
val (a feature characteristic of a solid solution) but
rather at a fixed temperature (878 ± 3 K). After the
exposure to a PMF, the phase transition temperature
decreased by 25–30 K; however, 300–350 h thereafter,
the melting points of the treated and reference samples
became practically the same.

4. DISCUSSION

The totality of the experimental results obtained can
be summed up as follows. A short-term (seconds)
action of a weak PMF on crystals of Sb1 – xAsx solid
solutions brings about a long-term (thousands of hours
at T = 300 K) redistribution of the components in con-
secutive stages of enrichment in antimony of surface
layer with the formation of clusters, segregation of
these clusters, and a decrease in antimony content on
the crystal surface accompanied by a substantial
increase in the homogeneity of the Sb1 – xAsx solid solu-
tion. The observed structural changes are followed by a
temporary decrease in the crystal melting point.
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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Thus, the enrichment of the Sb1 – xAsx crystal surface
in antimony and the subsequent homogenization of the
solid solution accompanied by a temporary decrease in
its melting temperature require explanation.

Because the above results are completely new and
the dependence of the effect on the PMF parameters has
not yet been established, we can attempt, in this stage
of investigation, only to qualitatively interpret the
revealed phenomenon.

We note immediately that the PMFs employed sat-
isfy the condition µnB ! kT (µn is the Bohr magneton,
and B is the magnetic field induction); i.e., the change
in electron energy in the magnetic field caused by the
Zeeman effect is negligible compared to the kinetic
energy of thermal motion per degree of freedom of the
electron. In other words, the energy involved in the
PMF effect is small and cannot account for the observa-
tions.

The electric field induced by magnetic pulses, as
follows from earlier estimates [5], does not exceed 5 ×
103 V/m, which is likewise not large enough to produce
radical changes in the crystal structure.

According to the currently accepted model con-
cepts, the effect of weak magnetic fields on the forma-
tion and rupture of chemical bonds is of a spin nature.
Developed originally to account for the effect of mag-
netic fields on the kinetics of radical reactions in liquid
phase [6, 7], these concepts were later successfully
used to explain the magnetoplastic phenomenon (dislo-
cation depinning from paramagnetic stoppers) in dia-
magnetic crystals [8].

The concepts involving spin-dependent PMF-
induced breakup of impurity–defect complexes with
the release of rapidly diffusing point defects were con-
sidered earlier as an approach to accounting for the
long-term changes in the parameters of Si–SiO2 hetero-
structures subjected to a PMF [9].

We interpret the effects exerted by PMFs on crystals
of an Sb–As solid solution by taking into account the
unavoidable presence of intrinsic defects.

While the vacancy concentration in a crystal
depends on the actual conditions of its growth, it is
always in excess of the thermodynamically equilibrium
level. In view of the smaller size of a arsenic atom as
compared to that of an antimony atom and the high vol-
atility of this component, one may expect the presence
of an excess of arsenic vacancies in the structure of an
Sb1 – xAsx alloy. It is known that aggregation in com-
plexes is energetically more favorable for vacancies
than remaining free [10].

By acting on the spins of the electrons involved in
the formation of stressed bonds in the original vacancy
complexes, a PMF favors weakening of these bonds,
which, in turn, may give rise to breakdown of a fraction
of the original vacancy complexes, accompanied by a
release of mobile single vacancies. The vacancies thus
formed migrate to drains, the most important of them
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
being the crystal surface. Diffusion of arsenic vacancies
to the surface is equivalent to their being healed in the
bulk of the crystal by arsenic atoms that diffuse toward
their vacancies from the surface. The arsenic transport
into the bulk of the crystal results in the surface layer
becoming enriched in the second component of the
solid solution, antimony. In this way, the equilibrium
vacancy concentration corresponding to the tempera-
ture of observation sets in the sample. After this, anti-
mony atoms start to diffuse from the regions where they
are present in a high concentration into the bulk of the

(a)

(b)

(c)
100 µm

×230

Fig. 2. Electron micrograph of an Sb0.8As0.2 crystal surface
(a) before, (b) five days later, and (c) 100 days after PMF
exposure. The sample region chosen is the same as in Fig. 1.
3
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crystal and the component distribution becomes more
uniform than in the original state.

The weakening and rupture of bonds in vacancy
complexes induced by a PMF and followed by a loss of
diffusion stability in the crystal provide a reasonable
explanation for the temporal lowering of the crystal
melting temperature observed to occur during the sub-
sequent diffusion of the components making up the
solid solution.
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Abstract—This paper reports on the results of investigations into the dynamics of surface dislocation ensem-
bles in silicon under conditions of mechanical and magnetic perturbations. The motion of defects is described
with due regard for barriers of three types, including magnetically sensitive point defects and dislocations.
Within the concept of spin-dependent reactions between structural defects, a kinetic model is proposed for the
magnetic-field-stimulated changes observed in the dislocation mobility due to the formation of long-lived com-
plexes involving paramagnetic impurities. It is experimentally proved that the preliminary treatment of dislo-
cation-containing crystals in a magnetic field (B = 1 T) for 5–45 min leads to an increase in the velocity of dis-
locations in n-Si and p-Si samples by factors of two and three, respectively. The magnetic memory effect is
observed in dislocation-containing silicon crystals. Consideration is given to the decay kinetics of the magnetic
memory during storage of the silicon samples under natural conditions after magnetic treatment. The basic
quantitative characteristics of the motion of linear defects in a magnetic field (for example, the partial velocities
of dislocations, the dynamics of dislocation segments at stoppers of different types, and the expectation times
for the appearance of the appropriate stoppers) are determined by fitting the experimental data to the theoretical
results. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a magnetic field with an induc-
tion B ~ 1 T can affect the mobility of linear defects in
ionic crystals, metals, and semiconductors [1–8]. The
physical mechanism of the influence of weak magnetic
fields on the dynamics of the dislocation structure, as a
rule, is interpreted within the model of spin-dependent
reactions [1–12]. This model describes the magneti-
cally stimulated evolution of impurity electron spin
centers that are capable of removing the spin forbidden-
ness from particular electron transitions. As a result, the
defect structure undergoes a transformation. Specifi-
cally, the rate of motion of linear defects changes in
both the field of internal stresses of the crystal and the
field of external forces.

Although available experimental data relevant to
this subject matter are rather reliable, many problems
regarding the magnetically stimulated dynamics of dis-
locations remain unclear. In particular, the mobility of
dislocation segments in elemental semiconductors sub-
jected to magnetic field treatment for different times is
poorly understood. There are no data on the kinetic and
field dependences of the mean free path of dislocations
in elemental semiconductors exposed to a magnetic
field. Nothing definite is known about the role played
by different-type stoppers that interact with a disloca-
tion moving in a doped semiconductor. Information on
the kinetics of variation in the mean free path of dislo-
cations in crystals with an inhomogeneous spatial dis-
1063-7834/03/4504- $24.00 © 20643
tribution of linear defects is lacking. The present study
is aimed at analyzing these important problems.

2. THEORETICAL BACKGROUND

Let us consider a dislocation moving in a field of
external forces. Under these conditions, the dislocation
motion is governed by stoppers of three types: (1) stop-
pers associated with the proper potential relief of the
crystal lattice (hereafter, stoppers of this type will be
denoted by the subscript i = 1), (2) magnetically sensi-
tive (i = 2) point defects (majority doping impurities),
and (3) crossing linear defects, including dislocations
trees (i = 3).

In the field of elastic stresses, the resultant velocity
of dislocations v  and their mechanical mobility µm =
v /F are determined by the partial contributions of the
aforementioned stoppers and can be represented by the
relationship

(1)

Here, F is the force acting on the defect [N]; Ci is the
concentration of stoppers per unit length of the disloca-
tion path [m–1]; C = 1/a (a is the period of the Peierls
relief [m]); τi = τ0exp(Ei/kBT) is the expectation time
for the appearance of stoppers of type i [s]; E1 is the
Peierls barrier; E2 and E3 are the energies of pinning of
dislocations at stoppers of types i = 2 and 3, respec-

µm
1

F τ1C1 τ2C2 τ3C3+ +( )
-------------------------------------------------------.=
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tively [J]; kB is the Boltzmann constant [J/K]; and T is
the temperature [K].

Actually, a dislocation executing a motion meets
with stoppers of different types and is halted by them
for a characteristic expectation time. Depending on the
number of encountered barriers ni = xCi, the dislocation
traverses a distance x for the time

(2)

The resultant velocity of dislocations in the field of
elastic stresses can be written as

(3)

which is consistent with Eq. (1). From expression (3),
it follows that the resultant velocity of dislocations is
governed by the largest value of Ciτi (or by the smallest
value of v i).

Now, we analyze the components Ciτi. The first type
of stoppers is associated with the proper potential relief
of the crystal lattice (the Peierls relief), which is
responsible for the dislocation motion in a defect-free
crystal. Hence, the first term C1τ1 in the above expres-
sion can be represented as a constant independent of the
coordinates and the travel time of the dislocation. Con-
sequently, the partial velocity of the moving disloca-
tion,

, (4)

should also be constant.

A somewhat more intricate situation occurs with
stoppers of the second type (magnetically sensitive
stoppers with a concentration C2). In our case, stoppers
of this type are attributed to boron or phosphorus impu-
rities in silicon. Either of these paramagnetic impurities
[1–3, 10] is redistributed between the impurity centers
with concentrations C2a and C2b, which are character-
ized by different orientations of the electron spins and
the expectation times τ2a and τ2b.

From relationships (1)–(4) and the equation of
material balance

(5)

it can easily be shown that, in Eq. (1), the second term
τ2C2 satisfies the expression

(6)

Hence, the partial velocity of dislocations v 2, which is
related to the concentration of magnetically sensitive

τ τ ini

i 3=

∑ x τ iCi.
i 3=

∑= =

v
x
τ
--

1

τ iCi

i 3=

∑
-----------------,= =

v 1
1

C1τ1
----------- const= =

C2 C2a C2b,+=

τ2C2 τ2aC2a τ2bC2b+ C2τ2b C2a τ2b τ2a–( ).–= =
P

stoppers, should be governed by the equation

or

(7)

However, the C2 components, unlike the C1 compo-
nents, vary with time t, because the magnetic field ini-
tiates an active formation of stoppers with shorter
expectation times and, at t > tB (i.e., after the comple-
tion of treatment in the magnetic field), the magnetic-
field-induced system of structural defects relaxes
toward its initial unperturbed state. Therefore, proper
allowance must be made for the changes in the C2 com-
ponents at different stages of the redistribution of mag-
netically sensitive stoppers.

In the case when the relaxation processes after mag-
netic treatment occur, e.g., for the C2 components, at a
rate given by the formula

(8)

the concentration of stoppers accelerating the disloca-
tion motion owing to shorter times τ2a will satisfy the
relationship

(9)

where k is the rate constant of the recovery of the elec-
tronic subsystem [s–1], t* = (t > tB) is the relaxation time

of magnetic-field-stimulated changes [s], and  is
the initial concentration of stoppers with the corre-
sponding orientation of electron spins.

The initial concentration  is determined by the
degree of magnetic perturbation. It is evident that, at
fixed B, the rate of redistribution of magnetically sensi-
tive stoppers for C2a can be represented by the equation

or

(10)

where k2a and k2b are the formation constants for stop-
pers with the corresponding orientations of electron
spins.

v 2
1

τ2aC2a τ2bC2b+
-------------------------------------=

v 2
1

C2τ2b C2a τ2b τ2a–( )–
----------------------------------------------------.=

dC2a

dt
----------- kC2a,–=

C2a C2a
0

kt*–( ),exp=

C2a
0

C2a
0

dC2a
0

dtB
------------ k2bC2b

0
k2aC2a

0
–=

dC2a
0

dtB
------------ k2b C2 C2a

0
–( ) k2aC2a

0
,–=
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Table 1.  Parameters of the silicon samples under investigation

No. Crystallographic
orientation

Conductivity type, 
impurity, resistivity

Size (mm) and
scribing direction

Density of intro-
duced dislocations 

Nd, cm–2

Deformation 
about the crystal-

lographic axis

Mechanical 
stress, MPa

1 [111] n-type, phosphorus,
2Ω cm

30 × 10 × 0.4 104–106 [ ] 30

[ ], [ ], [111]

2 [100] p-type, boron,
0.5Ω cm

25 × 10 × 0.6 104–106 [001] 50

[100], [010], [001]

110

110 112
The solution to Eq. (10) has the following form:

(11)

where  is the equilibrium concentration at tB = 0.

Therefore, the velocity of dislocations controlled by
magnetically sensitive stoppers should satisfy relation-
ship (7) with due regard for Eqs. (9) and (11); that is,

(12)

As regards stoppers of the third type, which, accord-
ing to [13, 14], are associated with the nodes of cross-
ing of linear defects, they affect the velocity of disloca-
tions v  and the dislocation mobility µm through the dis-
location density Nd [m–2]. The concentration of
stoppers of the third type can be defined as

(13)

where γ is the number of slip planes and α and β are the
angles between the slip planes and the Burgers vectors
of the interacting dislocations, respectively.

In this case, the partial velocity of dislocations at
sufficiently high dislocation densities Nd should be gov-
erned by the expression

. (14)

At small quantities C3τ3, the partial velocity v 3 will
increase indefinitely and, hence, the dislocation motion
will be controlled by stoppers of other types.

3. EXPERIMENTAL TECHNIQUE
Experimental verification of the basic relationships

derived above was performed using single-crystal sili-
con wafers doped with boron or phosphorus. The main

C2a
0 k2b

k2a k2b+
--------------------C2=

–
k2b

k2a k2b+
--------------------C2 C2a

00
– k2a k2b+( )tB–( ),exp

C2a
00

v 2 = C2τ2b

k2b

k2a k2b+
--------------------C2

k2b

k2a k2b+
--------------------C2 C2a

00
– 

 –
–

--× k2a k2b+( )tB–( )exp 
 τ2b τ2a–( ) k t tB–( )–( )exp

1–

.

C3 γ Nd α β ,coscos=

v 3
1

C3τ3
----------- 1

τ3γ Nd α βcoscos
--------------------------------------------= =
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parameters of the studied samples are listed in Table 1.
Dislocations were introduced into dislocation-free sili-
con wafers according to the procedure described in
[15–17]. For this purpose, two parallel scratches were
cut in a specified crystallographic direction on the sur-
face of each sample (Fig. 1). The separation between
the scratches considerably exceeded the maximum path
length of dislocation half-loops. The samples with
scratches were exposed to a magnetic field (B ≤ 1 T). At
every instant, the magnetic induction vector was per-
pendicular to the scratches. The time tB of treatment in
the magnetic field was varied in the range 30–2800 s at
a fixed time interval (t* = 180 s) between the comple-
tion of the magnetic treatment and the onset of the high-
temperature plastic deformation. The choice of the con-
stant time t* was governed by the rate of relaxation pro-
cesses in magnetically sensitive stoppers after the mag-
netic treatment of the silicon samples.

The motion of surface dislocation loops in silicon
wafers was initiated under 40-min tensile stresses (up
to 50 MPa) with the use of the four-support bending
method. The maximum path length of individual dislo-
cations was measured after selective etching of the
sample in a CP-4 standard solution with simultaneous

1 2

3

4

B

[010]

1

Fig. 1. Schematic arrangement of the silicon wafers
between the magnet poles: (1) electromagnet poles, (2) sil-
icon wafer, (3) stress concentrator (scratch), and (4) etch
pits of surface dislocations (dislocation segments).
3
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recording of the concentration profile of the dislocation
ensemble for 15 different portions of each scratch. The
basic experimental results are presented in Figs. 2–6.

4. RESULTS AND DISCUSSION

After the preliminary treatment of the samples in a
magnetic field, dislocations become more active and
undergo rapid mixing in the crystal. This effect, which
we identified as the magnetic memory effect,1 persists
for at least three days, after which the mobility of dis-
locations (and, correspondingly, their velocity)
decreases drastically and approaches values character-
istic of the initial samples not treated in the magnetic
field (Fig. 2). The changes observed in the dislocation
velocity v  = f(t*) during the 73-h monotonic decay of
the magnetic memory are in good agreement with the
results obtained in calculations using relationship (12)
at fixed times tB. This made it possible to determine the
rate constants k of the recovery of the electronic sub-
system (Table 2).

As can be seen from Fig. 3, the velocity of linear
defects in the field of elastic stresses strongly depends
on the dislocation density Nd. In particular, the velocity
of dislocations in n-Si samples increases by a factor of
three with a decrease in the dislocation density from 3 ×
106 to 0.3 × 106 cm–2. It is worth noting that the maxi-
mum changes in the dislocation velocity v  are observed
in spatial regions with high dislocation densities Nd,
whereas the velocities of fast dislocations in the vicin-
ity of low densities Nd either remain nearly constant or
change insignificantly. In the temperature range under
investigation, the depth of penetration of individual dis-

1 The magnetic memory effect in magnetic-disordered crystals was
first revealed by Golovin and Morgunov [18] in 1993.

7

6

5

4

3

0 2 4 6 8
t*, 103 min

ν, 10–8 m/s

1

2

Fig. 2. Variation in the velocity of dislocations during stor-
age of (1) p-Si and (2) n-Si samples under natural condi-
tions after a 20-min treatment in a magnetic field at B = 1 T.
Points are experimental data. Solid portions of the curves
correspond to the results of calculations according to rela-
tionship (12) (v  = 3.7 and 2.4 m/s at tB = 0 for p-Si and n-
Si samples, respectively).
PH
locations in a sample depends linearly n the duration of
isothermal annealing of the crystal (0.5–16 h). These
findings indicate that dislocation stoppers with the con-
centration C3 play a dominant role only in the defect
regions adjacent to scratches, in which their effect on
the resultant velocity v  is most pronounced. Therefore,
in the case of distant dislocations, we can exclude stop-
pers with the concentration C3 from our consideration
and examine only the effects associated with magnetic
perturbations.

Figure 4 shows the dependences of the highest
velocity of dislocations in n-Si and p-Si samples on the
time of treatment in a magnetic field (B = 1 T). Despite
the quantitative difference observed in the velocities of

2

1

3

2

0

1

15 35 55 75 95
x, µm

Nd, 106 cm–2

Fig. 3. Spatial distribution of the dislocation density with
distance from the scratch in the course of plastic deforma-
tion of (1) n-Si and (2) p-Si samples for 40 min at a temper-
ature of 675°C. tB = 0.

1.4

1.0

0.6

0.2
0 0.5 1.0 1.5 2.0 2.5

0

1

2

0.4 0.8 1.2 1.6 2.0

7

6

5

4

tB, 103 s

tB, 103 s

v
, 1

0
–

8  m
/s

v
, 1

0
–

8  m
/s

Fig. 4. Dependences of the highest velocity of dislocations
in (1) p-Si and (2) n-Si samples on the time of treatment in
a magnetic field at B = 1 T. Points are experimental data.
Solid lines represent the results of calculations according to
relationship (12).
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dislocations in n-Si and p-Si samples, there exists a
clear tendency toward an increase in the velocity and,
hence, in the concentration of magnetically sensitive
stoppers C2a with increasing time of treatment of sili-
con wafers in the magnetic field. This suggests that the
C2 concentration (and its components) is the decisive
factor in the motion of dislocation segments in regions
with low densities Nd.

The excellent agreement between the experimental
results and relationship (12) allowed us to estimate the
basic parameters of the dislocation motion (Table 2) at
a fixed relaxation time t*. The curves depicted in Fig. 5
characterize the redistribution of stopper concentra-
tions C2i and partial velocities of dislocations v 2i =
1/C2iτ2i at different expectation times after the con-
trolled stages of magnetic treatment. It should be noted
that the expectation times for the appearance of dislo-
cations at magnetically sensitive stoppers are relatively
large (Table 2); in particular, they exceed the character-
istic times of spin conversion (10–11–10–10 s [1, 2, 10])
by a factor of ~1010. Therefore, the delayed response of
the partial velocity of dislocations v 2 to magnetic per-
turbations (Fig. 4) can be primarily associated not with
the spin dynamics but with the delayed formation of
complexes involving impurity centers with different
orientations of electron spins:

(15)

Here, the superscripts “+” and “–” specify the configu-
rations of electron spins of the impurity centers and ξ2i

stands for the structural components of the complexes
with concentrations C2i.

The quantitative results obtained in this work are
only appropriate for isolated dislocations that are at a
significant distance from the defect regions of the crys-
tal. At the same time, an examination of the single-crys-
tal silicon regions with high dislocation densities Nd, in
which dislocation stoppers with concentration C3 play
a dominant role, can also provide important informa-
tion. This information can be obtained by fitting the
experimental data (Fig. 6) to the velocities v 3 calcu-
lated from relationship (14).

In actual fact, the velocities of dislocations in spatial
regions controlled by stoppers with concentration C3
(Fig. 6) agree well with the results obtained in calcula-
tions using relationship (14) for all the temperature

C2a C2a
+ ξ2a,+

C2b C2b
– ξ2b.+

k2a

k2b
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regimes under investigation. This made it possible to
determine both the mean time of pinning of disloca-
tions at relevant stoppers τ3 = 50 s and the energy E =
0.9 eV required by the dislocations to overcome the
barrier for depinning from these stoppers. Specifically,
the activation barriers to depinning of dislocations from
the magnetically sensitive stoppers, according to our
data for isolated dislocations, correspond to 2.1 eV.

0

0.5 1.0 1.5 2.0
tB, 103 s

v
2i

, 1
0

–
8  m

/s

v
2a

, 1
0

–
8  m

/s

0

0.5 1.0 1.5
tB, 103 s

2.0
1

2

3

1

3

7.5

6.0

4.5

3.0

2.4
2.0

1.6

1.2

1.6

1.2

2.0

C
2i

, m
–

1

Fig. 5. Influence of the magnetic treatment duration on the
concentration redistribution of magnetically sensitive stop-
pers and partial velocities of dislocations in the n-Si sample:
(1) C2a, v2a; (2) the resultant velocity; and (3) C2b, v2b.
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, 1
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–
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1 Nd 10 6– m,⁄

1 Nd 10 6– m,⁄

Fig. 6. Dependences of the velocity of dislocations in spa-
tial regions controlled by stoppers with concentration C3

(solid lines) on the quantity 1/ , which determines the

spacing of dislocations. T, °C: (1) 630, (2) 600, and (3) 550.
The inset shows the total dependence v (Nd).

Nd

1

2

3

Table 2.  Parameters of the magnetic-field-stimulated motion of dislocations after a 40-min isothermal annealing (B = 1 T, t* = 180 s)

No. Crystal type, 
resistivity

Impurity
concentration, m–3 C2, m–1 , m–1 τ2b , s τ2a , s k2b , s–1 k2a , s–1 k, s–1

1 p-type, 0.5Ω cm 4 × 1022 3.4 × 107 3.3 × 107 0.64 0.02 1.3 × 10–2 2.0 × 10–2 1 × 10–6

2 n-type, 2Ω cm 5 × 1021 1.8 × 107 1.4 × 107 1.17 0.06 3.4 × 10–3 7.6 × 10–3 5 × 10–6

C2a
00
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These values are in agreement with the data available in
the literature [13, 14].

Finally, we note that stoppers of the first type, which
were not examined thoroughly in our study, are unre-
lated to majority impurity centers and rank below them
in quantity. These stoppers play a dominant role only in
high-purity silicon samples, in which the velocity of
dislocations is 10–150 times higher [13] than that in the
samples studied in the present work.

5. CONCLUSIONS
Thus, in this work, we analyzed the mechanism of

dislocation motion involving stoppers of three types. It
was found that the preliminary treatment of silicon
wafers in a weak magnetic field leads to an increase in
the velocity of dislocation segments by a factor of two
or three. The dependence of the maximum path of dis-
locations on the time of exposure of the studied sample
to a magnetic field was revealed. The kinetics of varia-
tions induced by a magnetic field was described within
the model of spin-dependent reactions of structural
defects. The quantitative characteristics of the disloca-
tion motion under conditions of magnetic perturbations
were determined, and the energy parameters of the
depinning of linear defects from magnetically sensitive
and dislocation stoppers were estimated.
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Abstract—The stressed state of nonlinearly elastic bodies in the vicinity of spherical and elliptical pores is con-
sidered. The development of plastic regions near such pores is analyzed. Calculations are compared with the
experimental data on pore healing under hydrostatic pressure. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microscopic pores and cracks form during plastic
deformation of solids or the processes of their fabrica-
tion [1]. An increase in the deformation-induced poros-
ity or self-porosity, as a rule, deteriorates the physical-
mechanical properties of solids, whereas the regenera-
tion of their continuity (owing to complete or partial
healing of pores) improves them [2].

The vast majority of investigations into the strength
of porous materials are based on the linear theory of
elasticity. This approach, however, has a number of
substantial disadvantages. First, it cannot take into
account the appearance and development of plastic
zones near individual or grouped stress concentrators,
including pores. Second, boundary conditions in prob-
lems of the classical theory of elasticity are satisfied at
an original (undeformed) contour in a solid; therefore,
solutions turn out to be valid for only weak changes in
the configuration of internal defects (pores, vacancies,
inclusions, microcracks, etc.).

Based on the consideration given above, the aim of
this work is as follows:

(1) To obtain an analytical solution for the problem
of severe deformation of a spherical void in an elastic
body under hydrostatic pressure with allowance for the
physical nonlinearity of this problem (within the frame-
work of a two-dimensional model).

(2) To reveal specific features of the development of
plastic deformation near an individual pore and an
ensemble of individual pores and to estimate the effect
of the surface of a body on the configuration of plastic
regions in the vicinity of near-surface pores.

(3) To experimentally study the effect of hydrostatic
pressure on elliptic pores with various degrees of
oblongness.

(4) To compare calculated and experimental data on
the effect of pressure on the healing of pores near the
surface and in the bulk of solids.
1063-7834/03/4504- $24.00 © 20649
2. SPHERICAL PORE IN ELASTIC SPACE 
UNDER HYDROSTATIC PRESSURE

Consider an infinite isotropic elastic space S with a
spherical void of radius R0. Let the space be under a
uniform hydrostatic pressure p = const at infinity. We
determine the stressed state of S. We introduce spheri-
cal coordinates r, θ, and ϕ with the origin at the center
of the pore. From the symmetry of the problem, it fol-
lows that stresses σrr , σθθ, and σrθ are principal stresses;
the tangential displacements are uϕ = uθ = 0; and the
radial displacement is ur = u(r).

The radius of the deformed void is

(1)

2.1. Linear Solution 

Within the classical theory of elasticity [3], we have

(2)

Here, E is Young’s modulus, ν is the Poisson ratio of the
material in the space, and r is the distance (prior to
deformation) from the origin of coordinates to a given
point. Unknown constants a and b in Eq. (2) are deter-
mined from the boundary conditions

Whence it follows that

R* R0 u R0( ).+=

u r( ) ar b/r
2
,+=

σrr
Ea

1 2ν–
---------------

2Eb

1 ν+( )r
3

----------------------,–=

σθθ σϕϕ
Ea

1 2ν–
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Eb

1 ν+( )r
3

----------------------.+= =

σrr R0( ) 0, σrr ∞( ) p.–= =

a
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2E
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Substituting these relations into Eq. (2), we find

(3)

The radial displacement of the spherical void is cal-
culated from the formula

Substituting this formula into Eq. (1), we obtain the
deformed void radius

(4)

Hence it follows that the spherical void in the elastic
half-space disappears when the hydrostatic pressure at
infinity becomes 

Of course, this conclusion is taken to be qualitative. As
mentioned above, quantitative estimations based on the
linear theory of elasticity are valid for small deforma-
tions of the spherical void, where |R – R0 | ! R0.

2.2. Nonlinear Solution 

Taking into account the results obtained, we note the
basic points related to the geometrical nonlinearity of
the problem. The further analysis is based on the natu-
ral assumption that an infinitesimal change in the pres-
sure at infinity causes increments in the displacements
and stresses near the spherical void; these increments
depend on the current (deformed) void configuration.
In other words, Eqs. (3) and (4) are thought to be true if
the parameter p in them is substituted by dp(|dp | ! |p |).
We denote the radius of the deformed spherical void in
the nth loading stage as Rn. Then, we have from Eq. (4)

In the limit n  ∞, we obtain

(5)

It follows from Eq. (5) that the deformed spherical void
in the elastic isotropic space will always be present at
arbitrarily high hydrostatic pressures at infinity.
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3. NONLINEAR TWO-DIMENSIONAL MODEL 
OF AN ELLIPTIC PORE IN AN INFINITE PLANE

3.1. Uniaxial Tension (Compression) 

Consider an elliptic hole in a nonlinear-elastic
plane. We place the origin of the Cartesian coordinate
system at the center of the hole and direct the x and y
axes along the semimajor (a) and semiminor (b) axes of
the hole, respectively. Let stresses

operate in the plane at infinity. Following the assump-
tion formulated above, we write the current values of
the semimajor and semiminor axes of the deformed
hole [4] as

(6)

Here, dpi is the increment of the applied stresses at
infinity (|dpi | ! |p |) and Ei is the secant modulus of
elasticity of the stress–strain curve in the segment pi <
p < pi + 1. For plane deformation, c = (1 – ν2); for the
generalized plane state of stress, we have c = 1. Note
that the contour of the deformed hole retains its elliptic
shape [3].

Let an be the length of the semimajor axis of the hole
after n steps of loading the plane with stresses dp0, dp1,
…, dpn – 1. Based on the previous formula, we have

where a0 is the length of the semimajor hole axis prior
to deformation. We rewrite this expression as 

Whence it follows that
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Since dpk/Ek ! 1 and dp0/E ! 1, we may believe that
αk ! 1. Therefore, with accuracy to higher order infin-
itesimal terms, we get

Let us assume that dp0 = p/n. Then, at the limit n 
∞, the previous equation becomes

(7)

where ε∗  and ε0 are the total and elastic strains of the
material, respectively. Performing similar manipula-
tions for the sum

we find

(8)

From Eqs. (7) and (8), we derive

(9)

If cp/E ! 1 and ε∗  = ε0, Eqs. (7) and (8) reduce to the
known dependences given by the linear theory of elas-
ticity:

(10)

Comparing Eqs. (7), (9), and (10), we arrive at the fol-
lowing conclusions:

(1) The geometrical nonlinearity of the problem
causes an exponential dependence of the dimensions of
the deformed elliptic hole on the applied stresses at
infinity.

(2) Taking the physical nonlinearity into account
generates additional terms 1 ± c(ε∗  – ε0) in the formulas
for the displacements, with (ε∗  – ε0) specifying the
plastic strain of the material.

Now, we analyze stresses at the end of the major
axis of the deformed elliptic hole. Without dwelling on
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the details of the relatively simple calculations, we give
the final relation:

(11)

Since most solids fail at p/E ! 1, we may suppose
that

By introducing this simplification into Eqs. (7) and (9)
and substituting them into Eq. (11), we obtain

(12)

The relationships derived above indicate that tension
(p > 0) decreases the pore ellipticity (ratio b/a), while
compression (p < 0), on the contrary, increases the
ellipticity.

3.2. Biaxial Tension (Compression) 

Let stresses

operate in the plane at infinity. Using the results
obtained in [4, 5] and the above assumption, we write
the current values for the major and minor axes of the
deformed elliptic pore as

Performing manipulations similar to those described
above, we find the dimensions of the deformed elliptic
pore,

(13)

(14)

σyy a* 0,( ) p 1 2a*
b*

---------+ 
  .=

cp
E
------ 

 exp 1
cp
E
------, cp

E
------– 

 exp+ 1
cp
E
------.–= =

σyy a* 0,( )

=  p 1
2 1 ε* ε0–( )–[ ]

b0/a0 2cp/E c ε* ε0–( ) 2 b0/a0+( )+ +
--------------------------------------------------------------------------------------------+ .

σyy
∞ σxx

∞
q const, σxy

∞
0= = = =

ai 1+ ai

2cbi

Ei

----------dqi, bi+ bi

2cai

Ei

----------dqi.+= =

a*
a0

2
----- 2cq

E
--------- 

  1 2c ε* ε0–( )+[ ] 1
b0

a0
-----+ 

 exp




=

+ 2sq
E

---------– 
  1 – 2 ε* ε0–( )[ ] 1

b0

a
-----– 

 exp




,

b*
a0

2
----- 2cq

E
--------- 

  1 2c ε* ε0–( )+[ ] 1
b0

a0
-----+ 

 exp




=

– 2cq
E

---------– 
  1 – 2 ε* ε0–( )[ ] 1

b0

a0
-----– 

 exp






652 BETEKHTIN et al.
and the stresses at the end of the major axis of the
deformed hole,

(15)σyy a* 0,( ) 2qa*
b*

-------------.=

1

2 3

(a)

(b)

(c)

1

2

2

3

3

1

Fig. 1. Regions of elastoplastic strain that appear (1–3) near
pores of various shapes placed (a–c) at various distances
from the surface.

Fig. 2. Regions of elastoplastic strain that appear near
closely spaced pores of the same size located near the sur-
face.

Fig. 3. Changes in the contours of pores and of the surface
over them induced by a biaxial pressure. The initial con-
tours of pores and of the surface are shown by heavy lines.
P

As follows from Eqs. (13) and (14), biaxial tension (q >
0) decreases the pore ellipticity, while compression
(q < 0), increases it.

4. THE DEVELOPMENT OF ELASTOPLASTIC-
STRAIN REGIONS NEAR ELLIPTIC PORES

For numerical calculation of plastic regions near
pores, we used the MS Nastran 4.0 software package.
We solve the problem on the plane deformation of a
body with elliptic voids subjected to biaxial compres-
sion. The applied pressure p < 0 was taken to be approx-
imately 3 times greater than the yield strength of the
body material. Pores placed near the surface and far
from it were studied.

Figure 1 shows the configuration of elastoplastic-
strain regions for pores placed at different distances
from the surface: (a) in the immediate vicinity of the
surface, (b) at a greater distance from it, and (c) far
from it. For calculation, we chose pores with principal-
axis ratios of 1, 1/3, and 1/5 (regions 1, 2, 3, respec-
tively). As can be seen in Fig. 1, the closer a pore is to
the surface, the larger the elastoplastic-strain region
near the ends of its major axis. Moreover, regions of
elastoplastic strains appear and develop over near-sur-
face pores; this process is more intense for pores with a
larger ellipticity.

Figure 2 shows the shapes of plastic zones near three
closely spaced pores of the same size located near the
surface. The middle pore is seen to interact with the two
pores adjacent to it, which induces an increase in the
plastic regions near its ends. This effect becomes more
pronounced as the system of pores approaches the sur-
face.

Finally, in the two-dimensional case, near-surface
pores substantially unload adjacent pores located at a
larger distance from the surface. Chains of three pores
located closer to the surface shield the lower system of
two pores (Fig. 2). The sizes of elastoplastic regions in
the latter system decrease. Moreover, no surface plastic
zones appear over this system.

Apart from the sizes of the elastoplastic-strain
regions, we determined changes in the contours of the
pores and of the surface over the pores induced by biax-
ial compression (the initial contours of the pores and the
surface are shown by heavy lines in Fig. 3). Figure 3
shows that biaxial compression causes significant
deformation of the contours of pores and the surface
above them; this process is most pronounced for pores
with a large ellipticity.

The data obtained provided semiquantitative depen-
dences of the degree of pore healing on various param-
eters.

The calculations also indicate that, in the case of
elongated pores located at a small angle with the sur-
face, the shapes of plastic zones change only slightly
and the general features of their appearance and devel-
opment remain the same.
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5. EFFECT OF PLASTIC REGIONS
ON THE DEFORMATION CONFIGURATION

OF PORES

The formulas derived above describe the displace-
ment of the contour of an elliptic pore for uniaxial or
biaxial compression (tension) of a solid. Unfortunately,
they cannot be used to estimate the effect of the zones
of localized plastic deformation on the displacement of
the pore contour. Rigorous theoretical analysis of this
problem is extremely difficult and labor-intensive.
Therefore, it is natural to introduce corresponding cor-
rections into the calculation formulas based on the fol-
lowing simple model. We will consider the part of the
body located over an elongated elliptic pore (a/b > 3) as
a beam under a uniform load q, with the beam ends kept
fixed. In the absence of plastic zones, the flexures and
angles of rotation at the beam ends are zero, while the
beam maximum flexure ω* is given by 

(16)

where I is the moment of inertia of the beam.
If plastic zones appear at the beam ends at a given q,

its end sections should be treated as pin-ended. In this
case, the maximum flexure is

(17)

Thus, the existence of localized plastic zones
increases the beam flexure by a factor of five. Hence it
follows that the factor α = 5 should be introduced into
Eqs. (9) and (14) as a correction for plasticity. New
plastic zones will appear predominantly over near-sur-
face pores (Fig. 1). In our model, this circumstance can
be taken into account by placing a “plastic hinge” at the
center of the beam. Due to the hinge, the beam flexure
will increase; therefore, we should introduce another
additional factor β into Eqs. (9) and (14). The value of
β for elongated near-surface pores is estimated to be
equal to α.

6. EXPERIMENTAL RESULTS 
AND COMPARISON WITH THEORY

AND CALCULATIONS

We compare the results of analytical calculations
and simulations with experimental values. This can be
done primarily for two aspects of the problem: the
effects of the pore shape and the distance of pores to the
surface during pore healing under pressure. We will
preliminarily analyze the role of interaction between
pores in this process.

The process of pore healing was experimentally
studied mainly on Cu samples and partly on an amor-
phous alloy. Copper samples were subjected to high-
temperature creep tests at T = 500°C and σ = 12.5 MPa
to failure (creep life τ ≈ 40 h). Such a test mode pro-

ω*
q 2a( )3

384EI
----------------.=

ω*
5q 2a( )3

384EI
--------------------.=
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vides the formation of a rather high concentration of
grain boundary pores (∆V/V ≈ 0.1–1%) [6]. The shape
of the pores is close to an oblate spheroid, with its
major axis oriented along a grain boundary. The spher-
oid major axis a varied from 3 to 80 µm in different
samples, and the ratio b/a was 0.1–1. Figure 4 (curve 1)
shows the dependence of the minor axis b on the major
axis a found by measuring all pores in a sample fol-
lowed by averaging the data. Relatively small pores are
seen to be almost spherical, whereas pores with large
values of a become more elongated. The pore parame-
ters were determined both in the bulk of a sample and
in its near-surface layer 50–100 µm thick. For all sam-
ples studied, the size and concentration of pores in the
near-surface layer was found to be slightly smaller than
in the bulk.

Pores in copper were studied metallographically.
Random sections of pores by the plane of polish, rather
than the actual pore sizes, were measured experimen-
tally under these conditions. Hence, we had to estimate
how much the true axes a and b differed from their mea-
sured values. As will be shown below, the ratio of b to
a, i.e., the oblateness of a pore, rather than their abso-
lute values are important for comparison with theory;
therefore, we first estimated the error of determining
this parameter. Two factors were taken into account: the
distribution of spheroid sections along an axis perpen-
dicular to a and the orientation dependence of the
spheroid with respect to the plane of polish (metallo-
graphic specimen). Calculations showed that the
former factor did not affect a/b and that the orientation
factor contributes ~10% in the averaged curve for pores
with large a/b ratios.
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Fig. 4. Minor axis b of a pore as a function of its major axis a
(1) before and after the application of a pressure of (2) 0.6
and (3) 1.0 GPa. Points represent experiment; solid lines,
theory.
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Treatment with hydrostatic pressure (up to 1.4 GPa)
was carried out in an oil medium on samples protected
against it.

Before presenting our experimental results on pore
healing under pressure, we will recall the most impor-
tant theoretical data. First, the degree of healing
depends on the ratio b/a of the spheroid axes rather than
on the size of the pore and varies in direct proportion to

b, µm

a, µm
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Fig. 5. Minor axis b of a pore as a function of its major
axis a (1) for the initial sample and after the application of
pressure to this sample for pores (2) in the bulk of the sam-
ple and (3) in its near-surface layer.
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Fig. 6. Relative change ∆b/b of the minor axis of a pore as
a function of its major axis a. Pores in the bulk of a sample:
(1) analytical calculation and (2) experiment; near-surface
pores: (3) analytical calculation, (4) experiment, and (5)
numerical calculations by using Nastran.
PH
this ratio in the linear approximation, with the value of
a remaining virtually unchanged. Second, the degree of
healing is significantly higher at distances of the order
of several pore diameters from the surface than in the
bulk of a sample.

Taking the aforesaid into account, we plotted the
data obtained as a graph of b versus a. Figure 4 shows
such curves for the initial sample (curve 1) and samples
subjected to pressures of 0.6 and 1.0 GPa (curves 2, 3,
respectively). The applied pressures are seen to sub-
stantially reduce b, whereas the maximum value of a
remains virtually the same. Moreover, pores with lower
values of b/a (which corresponds to larger values of a)
are seen to be healed more rapidly, whereas almost
spherical small pores change only insignificantly. To
quantitatively compare theory and experiment, we used
Eqs. (9), (14), and (17). The calculations are shown in
Fig. 4 as solid lines. The calculated and experimental
curves are seen to coincide. Pressures used in this cal-
culation were taken to be αP. The best agreement
between the experimental and calculated data was
observed at α ≈ 5.8, which is very close to the value
(α = 5) predicted by the theory.

Now, we consider the healing of near-surface pores.
Figure 5 shows the b vs a curves for one of the initial

samples (curve 1) and after applying a pressure of
1 GPa to this sample for pores in the bulk (curve 2) and
in the near-surface layer (curve 3) of the sample. (We
chose the initial sample such that the dependences of b
on a in the bulk and the surface layer were close to each
other.) The healing of pores in the near-surface layer is
seen to obey the same law but to proceed more rapidly.
The elongation of long pores becomes so great that it is
difficult to interpret it.

Consider the results of analytical examination,
numerical calculation, and experiment from the view-
point of the effect of the pore shape on the pore healing
in more detail. To this end, we analyze the variation in
the axis b with the initial value of b/a upon pressure-
induced healing. These curves are given in Fig. 6 for
bulk and near-surface pores. For curve 1, we took into
account the coefficient α, and for curve 3, α and β; in
other words, plasticity was partly taken into account.

It can be seen from Fig. 6 that the calculated and
experimental data almost coincide for near-surface
pores. An important and new point is that the degree of
healing for such pores increases jumpwise with a/b.

The degree of healing for bulk pores increases lin-
early with a/b. The experimental data exhibit a higher
slope for this dependence than does the analytical cal-
culation, which is likely due to the allowance made for
local plastic strain near pores being incomplete.

Based on the data obtained, we may conclude that
the degree of pore healing in a sample directly depends
on the initial pore b/a ratio distribution. If this distribu-
tion is linear and its slope is close to unity, healing is
insignificant; the healing degree increases as the slope
decreases. If the dependence falls off (which is of most
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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frequent occurrence in experiment), pressure mainly
influences pores with large values of a. Interestingly,
the total volume of pores and their mean dimensions
affect the healing degree only slightly.

After describing the experimental results, we will
briefly dwell on the effect of the interaction between
closely spaced pores on the process of their healing.
This process is rather difficult to study in real porous
materials, since it is almost impossible to select a suffi-
cient number of similar objects (chains of closely
spaced pores with a fixed spacing between them) for
investigation. Nevertheless, we tried to perform such an
investigation on copper samples.

The objects for study were chains of grain boundary
pores that occupied no less than half the length of a
boundary from a triple junction to an adjacent junction.
Most of such chains were found to be in a layer as thick
as 150 µm measured from the surface. Figure 7 shows
the variation of the mean pore volume with applied
pressure P. Curve 1 corresponds to the healing of indi-
vidual pores with the ratio a/b = 1–3, and curve 2, to the
healing of chains of pores. As is seen, the healing of
chains of pores is most efficient. The results obtained
are preliminary, although the general tendency is
beyond question.

To evaluate the degree of generality for the effects
found, we consider data on the effect of a hydrostatic
pressure of 1 GPa on the porosity in an Fe77Ni1Si9B13
amorphous alloy fabricated through ultrarapid melt-
quenching. This alloy contains ellipsoidal pores as
large as 100 nm in diameter, which are localized in a
thin surface layer of an amorphous ribbon [7, 8]. (Here,
we do not analyze pores that are in the bulk of the rib-
bon; they are smaller by an order of magnitude.) Small-
angle x-ray scattering studies showed that pores
become thinner in the direction normal to the surface
(this direction coincides with the minor axis of the
ellipsoid). In the direction parallel to the surface, the
pore dimensions remain virtually unchanged. The

1.0

0.9

0.8

0.7

0.6
0 0.2 0.4 0.6 0.8

1
2

V, rel. units

P, GPa

Fig. 7. Dependence of the mean pore volume V on the
applied pressure for (1) individual pores and (2) their
chains.
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small-angle x-ray scattering data and the relevant pub-
lished data [9, 10] indicate that the flattening of pores
under pressure should lead to a decrease in the ribbon
thickness by ≈2%. This value agrees well with the
results of measuring the thickness of ribbons subjected
to pressure treatment. Measurements showed that the
decrease in the ribbon thickness was 2.3 ± 0.4.

7. CONCLUSIONS

Thus, we have made a quantitative (or semiqualita-
tive in some cases) comparison of the experimental data
with the results of analytical and numerical calculations
and found that the agreement of rather good. Experi-
ment and theory unambiguously showed that the degree
of pore healing at a fixed pressure depends mainly on
the ratio a/b of the lengths of the pore axes. Hydrostatic
pressure or biaxial compression (two-dimensional
case) applied to either copper or an amorphous alloy
causes a decrease in the minor axis b, whereas the
major axis a remains virtually unchanged.

We have established that the process of pore healing
in the near-surface layers is more efficient than in the
bulk of a sample. Both experiment and numerical cal-
culations demonstrated that the dependence of the
degree of healing on the ratio a/b becomes more pro-
nounced in this case. Closely spaced pores were shown
to be healed more efficiently due to the interaction
between their stress fields.
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Abstract—The effect of temperature on the dynamic yield strength and ultimate tensile strength of high-purity
and commercial-purity titanium and an α + β alloy Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si upon submicrosecond-scale
shock-wave loading was studied. An anomalous increase in the dynamic yield strength with temperature was
detected in high-purity titanium, whereas the behavior of commercial-purity titanium and the titanium alloy was
similar to that under regular conditions. It was found that the dynamic ultimate tensile strength is less sensitive
to the composition and structure of the alloy and to the test temperature than is the yield strength. Our experi-
ments corroborate the occurrence of polymorphic transformation during shock compression of high-purity tita-
nium, but the transformation pressure and its temperature dependence are inconsistent with the data available
in the literature. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The crystalline-solid resistance to deformation is
known to increase with the loading rate. This depen-
dence becomes more pronounced for many metals as
the strain rate exceeds ~103–104 s–1. This is interpreted
as the consequence of a change in the mechanism of
dislocation motion [1]: at high strain rates, working
stresses are large enough to overcome obstacles with-
out an additional contribution from thermal fluctua-
tions. Here, phonon drag becomes the dominant mech-
anism of retardation of dislocations.

The mechanical properties of materials in the sub-
microsecond loading-duration range at strain rates
higher than 104 s–1 are studied by analyzing compres-
sion and rarefaction waves. Measurements are based on
the fact that the wave structure and the dynamics of
wave interactions are determined not only by the ther-
modynamic equation of state but also by the processes
of elastoplastic strain and fracture in the material [2].
Recent measurements of the single-crystalline alumi-
num resistance to strain and fracture under shock-wave
loading [3, 4] have revealed that the yield strength
anomalously increases with temperature at a strain rate
of 106 s–1 and higher. This anomaly was interpreted as a
change in the main mechanism of retardation of dislo-
cations. However, it is still unclear whether the anoma-
lous increase in the dynamic yield strength with tem-
perature is inherent in pure aluminum alone or if this
phenomenon is rather general.

Therefore, it is of interest to compare the behavior
of high-strength alloys, including titanium alloys, and
1063-7834/03/4504- $24.00 © 0656
that of pure metals with low yield strength. Titanium
alloys are also interesting because of their tendency to
localized deformation with the formation of so-called
adiabatic shear bands upon high-rate loading. In the
existing theories, the adiabatic shear is assumed to be
due to the competing contributions from strain harden-
ing and thermal softening to the resistance to plastic
deformation under adiabatic conditions [5]. A change
in the sign of the temperature dependence of the yield
strength at extremely high strain rates should restrict
the validity range of this mechanism.

In this work, we compare the results of investigating
the effect of temperature on the dynamic yield and ulti-
mate tensile strengths of high-purity and commercial-
purity titanium and the data published earlier in [6] for
an α + β alloy, Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si (Ti–6–
22–22S), subjected to submicrosecond shock-wave
loading.

2. EXPERIMENTAL TECHNIQUE

Experiments were carried out on 2- to 2.3-mm-thick
samples in which plane compression waves were gen-
erated by an impact of a flyer plate. Flyer plates of alu-
minum, titanium, or copper 0.4- to 1.0-mm thick were
thrown at speeds of 0.4–0.66 km/s with explosive [2]
and gaseous gun barrel [7] facilities. The shock com-
pression pressure was 4.5–6.5 GPa. We recorded lack-
free-surface velocity profiles using VISAR laser inter-
ference Doppler velocimeters [8]. The transmission
band of the measuring path was broader than 0–
350 MHz. The velocimeter output signals were
2003 MAIK “Nauka/Interperiodica”
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recorded using digital oscilloscopes; the time intervals
between measured points were 0.4 or 2.0 ns.

Measurements were performed at room and ele-
vated (up to 405–465°C) temperatures. Samples were
heated with resistive nichrome heaters; their power pro-
vided a desired temperature within 10 min. The temper-
ature was monitored with an accuracy of ±5°C using a
chromel–alumel thermocouple placed on the back sur-
face of a sample near the point at which the shock-wave
process was recorded.

Titanium samples of 99.99% purity were cut from a
rod 23 mm in diameter fabricated by electron-beam
crucibleless zone melting [9]. The mean grain size in
polycrystalline samples was about 1 mm.

Commercial-purity titanium contained (in wt %)
0.15 O2, 0.10 Fe, 0.018 Cr, 0.015 Ni, and 0.016 C; the
Al content was less than 0.02, and the Cu, Zr, V, and Mn
contents were less than 0.01 each. Its density was
4.53 g/cm3, the measured velocity of longitudinal
acoustic waves was cl = 6.195 ± 0.005 km/s, and the
velocity of shear acoustic waves propagating in the
plane of a sample (at right angles to the loading direc-
tion) was cs = 3.26 ± 0.01 km/s. Samples were cut out
of a rolled sheet of the corresponding thickness and
were not subjected to any additional heat treatment.
X-ray diffraction analysis showed that the material is
highly textured, with its basal plane being predomi-
nantly parallel to the surface of samples. The crystal
structure of both the commercial-purity and high-purity
titanium corresponded to that of the α phase. A mean
grain size of commercial titanium was 22 µm.

The Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si (Ti–6–22–22S)
alloy contained (in wt %) 5.75 Al, 1.96 Sn, 1.99 Zr,
2.15 Mo, 2.10 Cr, 0.13 Si, 0.04 Fe, 0.082 O, 0.006 N,
and 0.009 C. After heat treatment, this alloy consisted
of a globular α phase surrounded by α- and β-phase
lamellas. The alloy density was measured to be
4.53 g/cm3, the longitudinal sound velocity was cl =
6.01 ± 0.04 km/s, and the Poisson ratio was ν = 0.327.
The bulk sound velocity was cb = 4.87 km/s.

3. EXPERIMENTAL RESULTS

Figure 1 shows free-surface velocity profiles for
samples of the Ti–6–22–22S alloy measured at room
temperature and at 405°C [6]. From the wave profiles,
it is clearly seen that the shock wave is split into an elas-
tic precursor (with the material parameters continu-
ously increasing behind its front) and a plastic com-
pression wave. The jump in velocity at the precursor
front is proportional to the dynamic yield strength of
the material [2]. An increase in the material parameters
behind the front of the elastic precursor of the compres-
sion wave in the alloy is likely due to strain hardening.
After waves have been circulated in the flyer, a rarefac-
tion wave is formed in the sample; this wave deceler-
ates the sample surface. As a result of the compression
pulse being reflected from the sample surface, tensile
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
stresses are generated inside the sample and initiate its
fracture, so-called spalling. As the fracture develops,
the tensile stresses are relaxed. Therefore, a compres-
sion wave forms in the tensed material; as this wave
reaches the sample surface, its velocity increases again
and the so-called spalling pulse forms. The velocity
decrement before the spalling pulse front is propor-
tional to the breaking stress, which is called the spalling
strength of the material. The following surface-velocity
oscillations are caused by multiple wave reflections
inside a spalling plate. Hence, the oscillation period is
determined by the thickness of the spalling plate and
the sound velocity. A more detailed discussion of the
wave-profile structure and the dynamics of wave inter-
actions in solids is presented in monograph [2].

The wave profiles are similar in shape but differ
quantitatively. As the temperature increases, the ampli-
tude of the elastic precursor decreases and the material
parameters behind its front increase more sharply,
whereas the steepness of the plastic compression wave
remains virtually unchanged. The time interval
between the elastic and plastic waves slightly decreases
with increasing temperature because of the decreased
shear modulus and, hence, the decreased difference
between the elastic and plastic wave velocities. Heating
induces no qualitative changes in the material behavior
during sample spalling.

Figure 2 shows the experimental results for the com-
mercial-purity titanium. The behavior of this material
differs quantitatively and qualitatively from that of the
Ti–6–22–22S alloy. The elastic precursor has a charac-
teristic peak at the front; its amplitude is small at room
temperature but sharply increases with heating. Note
that a similar shape of elastic precursors has also been
detected in high-temperature experiments on aluminum
single crystals [3, 4]. Although the surface velocity at
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Fig. 1. Free-surface velocity profiles Ufs(t) for samples of
the Ti–6–22–22S alloy 2.24-mm thick after impact by a
flyer aluminum plate 0.85-mm thick at a speed of 670 ±
20 m/s at room temperature and at 405°C.
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the peak of the elastic precursor is high and even
increases upon heating, the wave velocity profiles sug-
gest that, on the whole, the dynamic yield strength
decreases with increasing temperature. Sample spalling
at an elevated temperature becomes similar to ductile
long-term fracture: the long retardation of a spalling
plate indicates a rather long bond between it and the
rest of the sample. The elastic-precursor amplitude and
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Fig. 2. Free-surface velocity profiles for samples of the
commercial-purity titanium at room temperature and at
430°C. At room temperature, a symmetrical impact was
used: the flyer plate was made of a material identical to that
of the sample. The plate thickness was 1.97 mm, and the
sample thickness was 2.03 mm. In the high-temperature
experiment, the 1.97-mm-thick sample was loaded with a
flyer copper plate 0.5-mm thick.
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Fig. 3. Free-surface velocity profiles for samples of high-
purity titanium at room temperature and at 465°C. Samples
were loaded with a 0.4-mm-thick flyer aluminum plate
moving at a speed of 640 ± 20 m/s. The sample thickness
was 2.07 and 2.30 mm in the experiments at 20 and 465°C,
respectively.
P

the velocity decrement before the front of the spalling
pulse in this material are smaller than in the Ti–6–22–
22S alloy. Metallographic and x-ray diffraction analy-
ses of samples after shock-wave treatment at room tem-
perature revealed intense twinning and a decrease in the
degree of texture.

The experimental results for the high-purity tita-
nium shown in Fig. 3 are of great importance. In these
experiments, the elastic-precursor amplitude anoma-
lously increases rather than decreases with temperature
and the precursor amplitude values at both room and
elevated temperatures are significantly lower than those
for the titanium alloy and commercial-purity titanium.
The plastic compression wave has a unique feature;
namely, the rate of increase of the surface velocity
drops abruptly after the velocity reaches about 200 m/s
at 20°C or ~270 m/s at 465°C. A similar loss of stability
of the shock wave is ordinarily related to an anomalous
increase in the compressibility and is characteristic of
materials that undergo polymorphic transformations
with decreasing volume upon compression. Obviously,
we detected the known α  ω transformation [10]
during compression in our experiments. The α  ω
transformation that proceeds during a shock compres-
sion of titanium and the relevant reported data are dis-
cussed in [2, 11]. The rarefaction wave does not exhibit
any specific features that can be associated with the
reverse ω  α transformation. Note that no clear
signs of polymorphic transformations were observed
either in compression waves or upon unloading in our
experiments on the commercial-purity titanium and its
alloy.

4. ANALYSIS AND INTERPRETATION 
OF THE RESULTS

In Fig. 4, we compare the temperature dependences
of the dynamic yield strengths that correspond to the
mean strain rate in elastoplastic compression waves of
about 5 × 105 s–1 in titanium and its two alloys. The
yield strengths Y were calculated from the stresses σe =
ρ0c1ufse/2 measured behind the elastic-precursor front
using the relationship [2]

where the initial density ρ0, the longitudinal sound

velocity cl, and the bulk sound velocity cb =  were
taken with allowance for their temperature depen-
dences; the free-surface velocities behind the elastic-
precursor front ufse were measured. The effect of tem-
perature on cl was estimated using the data on the tem-
perature-dependent shear modulus presented in [12]
(the experimental temperature derivative of the shear
modulus was ∂G/∂T= –27 MPa/K, and the generalized

Y 3/2( )σe 1 cb
2
/cl

2
–( ),=

K /ρ
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estimate of this quantity was –23 MPa/K). The temper-
ature derivative of the bulk modulus K was estimated as

where ∂K/∂p = 4.37, the Grüneisen parameter is Γ =
1.23, and the volumetric thermal expansion coefficient
is α = (2.9 ± 0.4) × 10–5 1/K. To estimate the contribu-
tion from the nonlinear compressibility of the material,
we plotted shock adiabats for titanium and its alloys as
a linear relation between the shock-wave velocity Us

and the particle velocity of the shock-compressed mate-
rial up:

where the coefficient b was assumed to be 1.05 irre-
spective of the test temperature.

Figure 5 summarizes the spalling-strength data for
titanium and the alloys as a function of the test temper-
ature. The spalling-strength values were obtained by
processing the measured free-surface velocity profiles
according to [13] with allowance for the nonlinear com-
pressibility of the materials and the difference in the
velocities of the spalling pulse front and the rarefaction
wave before it. In the experiment on commercial-purity
titanium at room temperature, a compression pulse was
excited during an impact by a flyer plate made of the
same material and having practically the same thick-
ness as the sample; therefore, stresses in this sample did
not reach the spalling strength. Figure 5 presents the
value of the spalling strength at 20°C obtained when
testing a thicker sample (6 mm).

The data in Fig. 5 demonstrate that, although the
yield strengths of the high-purity titanium, commer-
cial-purity titanium, and titanium alloy differ manyfold,
their dynamic breaking strengths are similar. The spal-
ling strength of the alloy decreases much slower with
increasing temperature than does its dynamic yield
strength; as for the pure titanium, the variations of the
yield strength and of the spalling strength with temper-
ature are different even in sign in this material.

Using the simple-wave approximation [2], we esti-
mated the compression stress at the point of a sharp
decrease in the compression wave steepness in the
high-purity titanium. This stress likely characterizes the
onset of the α  ω transformation in titanium and is
equal to 2.37 GPa at 20°C and 3.05 GPa at 465°C.
According to the titanium phase diagram, which is
based on the results of both shock-wave and quasi-
static experiments [10], the equilibrium pressure of the
α  ω transformation at room temperature is 2.0 GPa
and increases with temperature at a rate of dp/dT =
0.011 GPa/K. According to this phase diagram, the
transformation at 465°C would take place at a pressure
of 6.7–7.0 GPa.

∂K /∂T Kα ∂K /∂p Γ–( ),–≈

Us cb bup,+=
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5. DISCUSSION OF THE RESULTS

It is known [14] that, under normal conditions, the
yield strength and ultimate tensile strength of titanium
increase and its plasticity decreases with increasing
oxygen content. The strength of titanium with about
2 at. % oxygen is more than three times that of oxygen-
free titanium. Our experiments on high-purity and com-
mercial-purity titanium corroborate this effect of oxy-
gen on the yield strength at high rates, but this is not the
case with the effect of oxygen on the dynamic ultimate
tensile strength.

Ti–6–22–22S

Ti

Ti 99.99%

–200 0 200 400 600
T, °C

2.0
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0.5

0

Y, GPa

Fig. 4. Dynamic yield strength Y of titanium and the Ti–6–
22–22S alloy at the front of elastic precursors as a function
of the test temperature T. For the commercial-purity tita-
nium, the values at the peak of a precursor and behind it are
shown.
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Fig. 5. Variation of the spalling strength σsp of the high-
purity and commercial-purity titanium and the alloy with
the test temperature T.
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Our experimental results demonstrate an anomalous
increase in the dynamic yield strength upon heating
during shock compression of the soft high-purity tita-
nium, whereas the behavior of the high-strength com-
mercial-purity titanium and the titanium alloy is similar
to their behavior under regular conditions. On the
whole, this situation agrees with the assumption that
the main mechanism of retardation of dislocations
changes at high strain rates. In the high-purity titanium,
the flow stress is low and comparable to the phonon
drag forces; therefore, the increase in the latter forces
with temperature significantly contributes to the retar-
dation of plastic-strain carriers (dislocations). To
increase the flow stresses in alloys, numerous obstacles
in the form of inclusions and interphase boundaries are
intentionally created. The stresses required to over-
come such large obstacles exceed the phonon drag
forces significantly. A comparison of the results for the
shock-wave tests of the Ti–6–22–22S alloy and for the
yield strengths at lower strain rates [6] shows that all
the data follow the same logarithmic dependence of the
yield strength on the strain rate in the range 10–4–105 s–1.
Hence, the thermal activation mechanisms of overcom-
ing obstacles by dislocations in high-strength alloys
remain efficient at strain rates up to at least 106 s–1.

The different temperature dependences of the flow
stresses at high strain rates explain why the tendency
toward strain localization in adiabatic shear bands in
high-strength alloys is higher than in pure metals. Inter-
estingly, the extrapolation of the dependences of the
dynamic yield strengths to higher temperatures shows
that these dependences intersect at 800–900°C, i.e., in
the range of the high-temperature α  β transforma-
tion.

Spalling of solids during shock wave-loading is
known to proceed through the nucleation, growth, and
coalescence of numerous voids. The resistance to void
growth is determined by the yield strength and viscos-
ity of the surrounding material [15]. Therefore, it is sur-
prising that there is no correlation between the temper-
ature dependences of the dynamic yield strength and of
the spalling strength of titanium and its alloys. It is
likely that the breaking strength at its initial stage is
mainly determined by the nucleation of voids rather
than by their growth.

Our measurements supported the fact that polymor-
phic transformation proceeds during the shock com-
pression of pure titanium, although the transformation
pressure and its temperature dependence found by us
do not agree with the available data [10]. It should be
noted that an increase in the shock compression pres-
sure [11] leads to an increase in the pressure (to be
more exact, the compressive stress) at the “breakpoint”
of the compression wave. Since the volume decrease
due to the α  ω transformation is only 1.2%, we
may assume that this phase transformation does not
bring about the formation of a “closed region” in the
shock adiabat of titanium in which the shock wave
P

loses its stability and splits into two sequential com-
pression waves; instead, it only reduces the adiabat
slope. This assumption allows us to explain the change
in the compression wave steepness in terms of the
changing material viscosity at the beginning of the
transformation.

As for comparison of the experimental results for
the high-purity and commercial-purity titanium, we
would like to note that the available experimental data
exhibit a significant scatter in the pressures of the
α  ω transformation in titanium, namely, from 2 to
7.5 GPa under quasi-static conditions and up to 12 GPa
under shock-wave loading conditions. One of the pos-
sible causes of this scatter was assumed to be the effect
of impurities. In particular, oxygen in commercial-
purity titanium is an α-phase stabilizer [14, 16] and can
hinder the polymorphic transformation.

Meshcheryakov et al. [17] claim that a reversible
α  ω transformation also occurs during shock-wave
loading of titanium alloys. Our experiments, as well as
the results of [18], did not reveal any signs of transfor-
mations occurring in the high-strength titanium alloys
during their shock compression and unloading; more-
over, no solid evidence of such a transformation was
obtained in [16] either.
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Optical Harmonic Generation in Magnetic Garnet Epitaxial 
Films near the Fundamental Absorption Edge
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Abstract—Spectra of the second and third optical harmonics generated in epitaxial films of magnetic garnets
were studied in the ranges 1.7–3.2 and 2.4–4.2 eV, respectively. A large magnetic contrast was revealed in sec-
ond-optical-harmonic spectra, which reaches 100% at certain photon energies. By contrast, the symmetry-
allowed magnetic contribution to spectra of the third optical harmonic was not found. While linear absorption
in ferrite-garnet films grows by two orders of magnitude above the fundamental absorption edge at ~3.2 eV, the
intensity of nonlinear spectra did not reveal any noticeable increase over this spectral range. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

We are presently witnessing considerable progress
in various areas of nonlinear optics, which may be
attributed primarily to the development of novel
sources of coherent radiation and the synthesis of new
nonlinear-optical crystals. The interest shown in non-
linear solid-state optics is spurred by both fundamental
problems of light interaction with matter and the appli-
cation potential inherent in nonlinear optical phenom-
ena for information processing and transfer and various
diagnostics methods. New directions of research have
been appearing over the past decade in this area. For
instance, the observation of optical second harmonic
generation (SHG) depending on the sample magnetiza-
tion state [1, 2] stimulated fast development of nonlin-
ear magnetooptics. A large number of publications
dealing with nonlinear-optical studies of magnetic
materials are currently available. Many related findings
have been discussed in reviews of nonlinear magne-
tooptics research [3–6]. As follows from an analysis of
those publications, the vast majority of those studies
deal with the magnetic aspect of the problem. In many
studies, optical SHG was used in the diagnostics of the
magnetic state of a material. It goes without saying that,
in order to reveal the microscopic mechanisms of the
nonlinear interaction of light with magnetic materials,
investigations of nonlinear optical phenomena need to
be conducted over a broad spectral range. The present
communication reports on a study of the spectra of sec-
ond and third optical harmonic generation in classical
model magnetooptical materials, such as epitaxial films
of ferrite garnets. No reports on the nonlinear spectros-
copy of transition-metal oxides have been available in
the literature until recently, with the exception of a lone
study of optical third harmonic generation (THG) in
La2CuO4 [7].
1063-7834/03/4504- $24.00 © 20662
Bulk magnetic garnets and epitaxial garnet films are
two well-known groups of materials characterized by a
rich variety of magnetic, acoustic, optical, and magne-
tooptical properties [8–11]. For more than four
decades, these materials have been among the most
actively studied magnetic dielectrics, which attract
attention both from a fundamental standpoint as many-
sublattice ferrimagnets and as having application
potential. The prototype of bulk crystals and thin ferrite
garnet films is the yttrium–iron garnet
{Y}3[Fe]2(Fe)3O12 (YIG). The YIG unit cell contains
eight formula units. Ions of yttrium, Y3+, or of another
rare-earth element, R3+, occupy 24c dodecahedral posi-
tions 8{…}3, and the Fe3+ ions sit at the 16a octahedral
(8[…]2) and 24d tetrahedral (8(…)3) positions. Super-
exchange interaction between the Fe3+ magnetic ions
brings about antiparallel ferrimagnetic ordering of the
magnetic moments of the octahedral and tetrahedral
sublattices. This fairly strong interaction accounts for
the high Curie point, which lies in the range 500–600 K.
Superexchange interaction among the rare-earth mag-
netic ions and the iron sublattice results in the rare-earth
magnetic moments being oriented antiparallel to the
magnetization of the tetrahedral sublattice. A remark-
able feature of the magnetic garnets is the possibility of
ions on any of the three magnetic sublattices being sub-
stituted for by other magnetic and nonmagnetic ions of
the periodic table. This degree of freedom permits one
to vary, within a broad range, practically all physical
properties of bulk crystals and epitaxial films.

Crystals of magnetic garnets are highly transparent
in the IR spectral range 0.2–1.0 eV [12]. At energies
below 0.2 eV, absorption grows rapidly because of lat-
tice vibrations. At photon energies above ~1 eV,
absorption increases noticeably due to electronic tran-
sitions between the (3d)5 levels of the Fe3+ iron ions.
003 MAIK “Nauka/Interperiodica”
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The substantial rise in absorption at energies higher
than 3.2 eV is associated with intense interband and
charge transfer transitions. The absorption coefficient α
reaches values as high as ~5 × 105 cm–1 at energies
above 5 eV [13]. The magnetooptical properties of gar-
nets, particularly, of bismuth-substituted garnets, have
attracted considerable interest because of a high spe-
cific Faraday rotation ~105 deg/cm being observed at
room temperature. As far as we know, these values are
presently the largest ever observed at room temperature
in magnetically ordered materials.

Crystals of magnetic garnets are centrosymmetric
and belong to cubic point group m3m (space group Ia3d).
Observations of the linear magnetoelectric effect [14]
and SHG [15–17] showed, however, that the crystal
structure of thin epitaxial films of garnets is off-cen-
trosymmetric. The reason for this lies in the fact that the
lattice parameter of films grown by liquid-phase epit-
axy on substrates of cubic crystals of gadolinium–gal-
lium garnet Gd3Ga5O12 (GGG) or a substituted GGG
(SGGG) differs from that of the substrate, which brings
about noncubic lattice distortions with a loss of space
inversion symmetry and the appearance of a polar
direction along the film normal. Previous studies of
SHG in magnetic garnet films were carried out in a lim-
ited spectral range determined by the lasers employed.
Some authors reported on the use of solid-state lasers
based on Nd : Y3Al5O12 (1.17 eV) [15–17] and Ti :
Al2O3 (1.44–1.72 eV) [18–20] for this purpose.
Although breakdown of inversion symmetry in a crystal
structure does not play any role when analyzing mag-
netic properties, this point is of fundamental signifi-
cance in studies of the electrooptical and nonlinear-
optical properties. The off-centrosymmetric character
of a structure allows the existence of a crystallographic
and a magnetically induced contribution to SHG in the
electric-dipole approximation. Obviously, the observa-
tion of a nonlinear response at certain photon energies
cannot reveal a connection between the observed SHG
signals and specific features of the electronic structure
of absorption and magnetooptical spectra. In this com-
munication, we report on a spectral study of optical
SHG and TGH in epitaxial films of magnetic garnets in
the vicinity of the fundamental absorption edge at
~3.2 eV.

2. ELECTRONIC TRANSITIONS
IN FERRITE GARNETS

Optical absorption and reflectance spectra of ferrite
garnets with different compositions have been studied
in a large number of publications, the most important of
the findings being presented in [11]. Despite extensive
research carried out in this area, the spectral features
remain unresolved in most cases because of the com-
plexity of the spectra and ambiguous assignment of
electron transitions in magnetic ions occupying differ-
ent crystallographic positions. Figure 1 presents an
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
electron transition diagram for the yttrium iron garnet
derived from experimental data and electronic-level
calculations made in the crystal-field approximation.
The central part of Fig. 1 shows the experimentally
observed electron transitions in YIG reported by vari-

Nonzero components of nonlinear-optical tensors  and

, which determine the crystallographic and magnetic
contributions to THG for point group 3m (m ⊥ x) in the k || z
geometry [(111)-type films]
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Fig. 1. Energy levels of Fe3+ ions in tetrahedral and octahe-
dral crystal fields calculated with inclusion of noncubic dis-
tortions (left). Shown in the middle are experimentally
observable localized electron transitions and the continuous
spectrum above the fundamental absorption edge in YIG
[12, 13, 21–27]. The right-hand part of the figure shows the
energy range of optical pumping and harmonic generation.
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ous authors [12, 13, 21–27]. The electronic structure of
the ferrite garnets has been a subject of theoretical stud-
ies based on crystal-field and molecular-orbital theories
[12, 21, 26, 28–30]. Shown on the left of Fig. 1 are the
electronic states of the Fe3+ iron ion on the tetrahedral
and octahedral sublattices. These states were calculated
in terms of crystal-field theory with allowance for tet-
ragonal distortions in the tetrahedral sublattice and for
trigonal distortions in the octahedral sublattice [30].
Calculations reveal that the corresponding splittings
and changes in the electronic states may be of the order
of 0.5 eV and, therefore, are comparable to the elec-

tronic-state splitting in cubic-crystal fields of Td( )
and Oh(m3m) symmetry. Below the fundamental-
absorption edge, electronic transitions can be studied
using methods based on measuring the optical and
magnetooptical transmission spectra, whereas above
the absorption edge at ~3.2 eV, methods involving
reflection appear more effective [21, 23, 24]. Neverthe-
less, absorption spectra of very thin YIG films (t =
0.26 µm) have been obtained up to 5.0 eV [13]. It
should be pointed out that all optical transitions
between the localized electronic states of the Fe3+ ion
are spin forbidden. Furthermore, transitions in this ion
on the octahedral sublattice are parity forbidden in the
electric-dipole approximation and become allowed
when electron–phonon coupling is included. Optical
absorption in YIG in the IR spectral region starts in the
region ~1.2 eV and originates from the 6A1g  4T1g

localized electronic transition between the (3d)5 levels
of the Fe3+ ion on the octahedral sublattice. This transi-
tion is of the magnetic-dipole type and gives rise to the
appearance of two very weak lines in the absorption
spectrum [22]. As seen from Fig. 1, at higher energies,
the electron transitions occurring on the tetrahedral and
octahedral sublattices become superimposed, thus
making unambiguous assignment difficult. Actually,
the experimentally observed YIG spectrum exhibits a
more complex structure than expected from the theory
that takes into account tetragonal and trigonal distor-
tions. The fact is that the position of electronic levels

432
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Fig. 2. Schematic of experimental setup.
P

depends not only on the parameters of the cubic and
noncubic crystal fields but also on other intraatomic
parameters, such as the spin–orbit coupling and the
exchange interaction constant. In strongly correlated
systems, such as ferrite garnet compounds, pair transi-
tions may give rise to additional absorption bands in the
optical spectra. For instance, the absorption bands in
the spectral region near 2.5 eV are associated, at least
partially, with pair transitions. Being comparable in
magnitude and not completely established, these fac-
tors complicate unambiguous assignment of optical
absorption bands. Optical and magnetooptical studies
performed at low temperatures are capable of only par-
tially resolving the problems associated with the
assignment of optical transitions and electronic-level
splitting in the complex structures of energy spectra.

The exact position of the fundamental absorption
edge is not very well established and is usually assumed
to lie near 3.2–3.4 eV, where the optical absorption
coefficient of YIG starts to grow noticeably, to
approach ~5 × 105 cm–1 at energies above 5 eV [13].
This value of absorption is typical of intraband transi-
tions in the oxides of transition metals. Substitution of
Bi3+ ions in ferrite garnets for Y3+ results in a shift of the
absorption edge toward lower energies and a substantial
enhancement of magnetooptical effects in the visible
and UV spectral regions. The proposed microscopic
mechanisms of enhancement of the magnetooptical
Faraday and Kerr effects involve an increase in the
spin–orbit coupling as a result of the formation of a
molecular orbit between the 3d orbitals of the Fe3+ ions
and the 2p orbitals of the O2– ions. This entails mixing
with the 6p orbital of the Bi3+ ions, which have a high
spin–orbit coupling coefficient. An analysis shows that
the most important electron transitions responsible for
Faraday rotation in bismuth-substituted garnets lie at
energies of 2.6, 3.15, and 3.9 eV [31].

3. SAMPLES AND EXPERIMENTAL SETUP

The present study was made on thin films of mag-
netic garnets grown by liquid-phase epitaxy on trans-
parent nonmagnetic substrates of bulk GGG or SGGG
crystals. Films grown on substrates with four different
orientations, (001), (110), (111), and (210), differed in
thickness, chemical composition, and substrate param-
eters [20].

The experimental setup used in SHG and THG mea-
surements is shown in Fig. 2. The setup included a
pulsed solid-state Nd : YAG laser with a photon energy
of 1.17 eV and a pulse repetition frequency of 10 Hz.
The light emitted by this laser was transformed into the
second, and, subsequently, third, optical harmonic by
means of a KDP nonlinear crystal and was then used to
pump a β-BaB2O4-based optical parametric oscillator
(OPO). The OPO served as a light source. The intensity
and wavelength of light were monitored by a power
meter and monochromator, respectively. The observed
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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SHG and THG signals were normalized by measuring
the pulse energy of the light passed through the sample
at the fundamental frequency. This was dictated by the
ferrite garnet films having different compositions and
thicknesses, which affected the light intensity at the
fundamental frequency and, hence, the measured SHG
and THG signals. A half-wave plate and a polarizer
were employed to set the required light polarization at
the fundamental frequency. An optical filter mounted
before the sample was used to suppress possible para-
sitic SHG and THG signals. An optical filter placed
behind the sample served to suppress light at the funda-
mental frequency. An analyzer isolated the desired
polarization at the SHG and THG frequencies. To
exclude possible signals due to two-photon lumines-
cence, a monochromator was used in some experi-
ments. A long-focal-length objective lens was used to
focus the light of the double or triple frequency onto a
cooled CCD array or a PM tube. The spectral response
of the filter and of light-measuring systems was taken
into account in the processing of the data.

4. NONLINEAR OPTICAL SUSCEPTIBILITIES
IN MAGNETICALLY ORDERED CRYSTALS

The relation between the light-wave electric field E
at the fundamental frequency and the induced nonlinear
polarization P at the doubled and tripled frequencies in
magnetic crystals in the electric-dipole approximation
has the form

(1)

where M is the spontaneous magnetization. The polar

 and axial  nonlinear-optical tensors are
allowed in media with no inversion symmetry and
describe the crystallographic and magnetic contribu-
tions to SHG, respectively. These two contributions
can, in principle, be separated by measuring the SHG

rotational anisotropy [18]. The polar and axial 
tensors are allowed in any medium and describe the
crystallographic and magnetic contributions to THG,
respectively. In the region of transparency of magnetic

crystals, the components of the  and  tensors

are real quantities and those of  and  are purely

P 2ω( ) ε0χ̂cr
2( ) 2ω; ω– ω,( )E ω( )E ω( )=

+ χ̂m
3( ) 2ω; ω– ω 0, ,( )E ω( )E ω( )M 0( ),

P 3ω( ) ε0χ̂cr
3( ) 3ω; ω– ω ω, ,( )E ω( )E ω( )E ω( )=

+ χ̂m
4( ) 3ω; ω– ω ω 0, , ,( )E ω( )E ω( )E ω( )M 0( ),

χ̂cr
2( ) χ̂m

3( )

χ̂cr
3( ) χ̂m

4( )

χ̂cr
2( ) χ̂m

3( )

χ̂m
3( ) χ̂m

4( )
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imaginary. The SHG and THG signal intensity can be
calculated from the relations

(2)

where ϕ1 and ϕ2 are phase differences between the opti-
cal waves induced by the crystallographic and magnetic
contributions to SHG and THG, respectively. The terms
proportional to magnetization M in the relations for the
SHG and THG intensities originate from the interfer-
ence of these waves in the spectral region where optical
absorption is nonzero but the optical phases ϕ1 and ϕ2
may not equal 90°. The plus an minus signs refer to
opposite projections of the magnetization M. The sym-

metry properties of the tensors , , , and 
are strictly determined by the crystallographic point

group. The nonzero components of the tensors  and

 are given in [20], and the table lists the nonzero

components of the  and  tensors for the point
group 3m. The magnetic contrast of SHG and THG is
defined as the normalized difference between the har-
monic-signal intensities for opposite orientations of the
saturation magnetization:

(3)

5. EXPERIMENTAL RESULTS AND DISCUSSION

The optical absorption spectra of ferrite garnet films
were measured with a Cary-2300 spectrophotometer
and were found to agree with the published data. The
absorption spectra of three different films at T = 15 K
are displayed in Figs. 3c, 4c, and 5c. Optical densities
above D = 4.5 were outside the operating range of the
spectrophotometer and could not be measured.

Figures 3a and 3b present SHG spectra of a
YIG/GGG(111) film for two opposite orientations of
the magnetization M in transverse geometry, i.e., with
light waves propagating at the fundamental and double
frequencies in a direction perpendicular to the magne-
tization vector M. The spectra relate to two cases,
namely, (a) to an SHG signal obtained directly from the
free film surface (film-to-photodetector case) and (b) to
an SHG signal obtained from the film–substrate inter-
face (substrate-to-photodetector). The SHG spectra
taken in these two experimental configurations are dif-
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ferent. In particular, the splitting near 2.4 eV is clearly
pronounced for the free film surface but poorly distin-
guishable for the more strained film surface interfacing
with the substrate. Note that the magnetic contrast ρSHG

varies from 0 to 100%. This implies that the crystallo-
graphic and magnetic contributions to SHG are compa-
rable in magnitude. According to the electronic-level
diagram shown in Fig. 1, some of the features in the
SHG spectrum can be assigned to electron transitions in
Fe3+ ions in the tetrahedral and octahedral crystal fields.
The two features in the SHG spectrum near 2.57 and
2.66 eV can apparently be associated with the 6A1 
4E, 4A1 electron transitions in the tetrahedral sublattice
and 6A1g  4Eg, 4Ag electron transitions in the octahe-
dral sublattice. The oscillator strengths for the two
absorption peaks reported to have been seen in the
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Fig. 3. SHG spectra in a YIG/GGG(111) film obtained for
two opposite orientations of the magnetization M in trans-
verse geometry: (a) SHG signal from the free film surface
(film-to-photodetector case), (b) SHG signal from the film–
substrate interface (substrate-to-photodetector), and (c) lin-
ear-absorption spectrum of the YIG/GGG(111) film.
PH
region of 2.9 and 3.2 eV are an order of magnitude
larger than those for transitions near 2.6 eV. However,
the spectral features observed in the SHG spectrum in
the former region are of the same order of magnitude as
those in the region of lower optical absorption.

Bismuth-substituted garnet films were shown to
produce stronger SHG signals [20]. Figures 4a and 4b
display SHG spectra obtained on a bismuth-substituted
ferrite garnet film, Bi-YIG/GGG(111). Substitution of
bismuth for yttrium brings about a substantial enhance-
ment of SHG signals in the energy interval 2.0–2.4 eV.
SHG spectra for a bismuth-substituted ferrite garnet
film, Bi-YIG/SGGG(210), are presented in Figs. 5a and
5b. The SHG spectrum was measured in the range 1.7–
3.1 eV at T = 6 K. The spectrum clearly reveals five
bands with strong SHG signals and a high magnetic
contrast. Note that the spectra obtained from the two
sides of the film are different, as was the case with the
YIG/GGG(111) and Bi-YIG/GGG(111) films. As in
the case of (111)-type films, a substantial increase in
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the intensity of the linear-optical signal near the funda-
mental absorption edge does not entail a significant
increase in the SHG intensity.

Figures 6a and 6b present characteristic rotational
anisotropies of SHG signals observed in the Bi-
YIG/GGG(111) and Bi-YIG/SGGG(210) films. The
SHG signal intensity was measured in these experi-
ments as a function of the rotation angle of the incom-
ing and outgoing light polarization simultaneously in
the 0°–360° range for the two opposite orientations of
the magnetization M in transverse geometry. The rela-
tions thus obtained reflect the symmetry of the ferrite
garnet films grown on (111)- and (210)-type substrates.
A theoretical analysis of and experimental data on SHG
signal anisotropy in films with different crystallo-
graphic orientations can be found in [20].

Figures 7a–7c show THG spectra obtained on three
garnet films, YIG/GGG(111), Bi-YIG/GGG(111), and
Bi-YIG/SGGG(210), respectively. Note that the obser-
vation of THG signals in electric-dipole approximation
does not require violation of space inversion symmetry.
Although the optical absorption and magnetooptical
signals measured in the films studied differ substan-
tially in magnitude, their THG spectra are similar. The
6A1  4T2 electron transition near 2.4 eV in the tetra-
hedral sublattice is well resolved in the THG spectrum
and, particularly, in the weakly strained
YIG/GGG(111) film. It should be pointed out that the
strong increase in linear absorption seen to occur at
energies above 3 eV is not accompanied by an enhance-
ment of the SHG signals. Unlike in the SHG signals, no
magnetic contrast was observed in the THG spectra to
within experimental accuracy. This comes as a surprise,
because phenomenological considerations allow a
magnetic contribution to THG in both the longitudinal
and transverse geometry.
120°
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Fig. 6. Rotational anisotropies of SHG signals for Bi-YIG/GGG(111) and Bi-YIG/SGGG(210) films.
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6. CONCLUSIONS

To sum up, we have studied optical SHG spectra in
anisotropic magnetic films of ferrite garnets on sub-
strates with different crystallographic orientations
within the photon energy range from 1.7 to 3.2 eV. The
crystallographic and magnetic contributions to the total
SHG signal intensity were revealed. The optical THG
spectra were measured in the photon energy range 2.4–
4.2 eV, below and above the fundamental absorption
edge at ~3.2 eV. Whereas linear absorption increases
for photon energies above 3 eV, SHG and THG signals
do not exhibit any noticeable variation in intensity.
These experimental data suggest that local d–d transi-
tions provide a major contribution to nonlinear optical
spectra. The contributions associated with charge-
transfer and interband transitions are less significant
and contribute little to the nonlinear optical susceptibil-
ities. A very interesting and unusual result is the obser-
vation of a large magnetic contribution to SHG spectra
with a magnetic contrast as high as 100%. At the same
time, no magnetic contribution was observed in THG
spectra. The data obtained on optical harmonic genera-
tion in ferrite garnet epitaxial films open up a new
potential of nonlinear-optical methods and stimulate
further experimental and theoretical research into
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higher order optical phenomena in magnetically
ordered materials.
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Abstract—The electronic structure and x-ray absorption spectra of sulfur in normal ferromagnetic spinels of
the general formula Cd1 – xCuxCr2S4 (x = 0.05, 0.1, 0.15, 0.2) are calculated using the FEFF8 program. In these
calculations, the self-consistent crystal potential is simulated in terms of the partially nonlocal model of
exchange-correlation potential. The model is based on the Dirac–Fock approximation for core electrons and the
Hedin–Lundquist approximation for valence electrons. The S K absorption edges are calculated in the approx-
imation of full multiple scattering by a 27-atom cluster. In addition, one-, two-, and three-scattering paths within
a 981-atom clusters are taken into account. The calculation demonstrates that the introduction of even insignif-
icant amounts of copper atoms into a CdCr2S4 cluster leads to a shift in the main features of the S K adsorption
edges toward the high-energy range. This can be associated with variations in the nearest environment of the
absorbing atom and active participation of copper ions in the chemical bonding of chalcogenide spinels. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This work continues our investigations of the
K absorption edge shape for Me(Mn, Mg, Ni, Zn)Fe2O4
ferrites with a spinel structure [1]. In the present work,
solid solutions in the CdCr2S4–CuCr2S4 system with a
normal spinel structure and ferromagnetic ordering of
the magnetic moments with the Curie temperature of
approximately 90 K are chosen as the object of investi-
gation.

The chromium-containing spinels studied earlier
have the general formula ACr2X4 (X = S, Se), which is

usually valid for A1 – x Cr2X4 solid solutions over the
entire concentration range of the A' ion. However, for a
series of solid solutions with A' = Cu, the limiting solu-
bility is observed for A = Zn, Cd, and Mn. For example,
Cd1 – xCuxCr2S4 homogeneous solid solutions are syn-
thesized for copper concentrations x ≤ 0.2 and x ≥ 0.9.
These compounds are normal ferrimagnetic spinels
with p-type conduction at x ≤ 0.2 and ferromagnetic
spinels with p-type conduction for x ≥ 0.9. As regards
the Cd1 – xCuxCr2S4 solid solutions, where CdCr2S4 is a
ferromagnet with p-type semiconductor properties and
CuCr2S4 is a ferromagnet with p-type metal conduc-
tion, single-phase solid solutions can be prepared only
for copper concentrations x ≤ 0.2. It should be noted
that spinels in the Cd1 – xCuxCr2S4 system are character-
ized by ferrimagnetic ordering of magnetic moments
localized at chromium ions and metamagnetic phase
transitions.

Ax'
1063-7834/03/4504- $24.00 © 20670
To the best of our knowledge, reliable data on the x-
ray emission and absorption spectra of atoms in
Cd1 − xCuxCr2S4 solid solutions are not available. In
order to verify the reliability of the results obtained, we
performed calculations of the electronic structure in
the spinel series from pure CdCr2S4 to pure CuCr2S4

with variations in the copper concentration in
Cd1 − xCuxCr2S4 solid solutions. In our earlier work [2],
we calculated the spectra of CdCr2S4 and CuCr2S4 com-
pounds. A comparison showed that the main features
revealed in the experimental and theoretical x-ray emis-
sion spectra and the S K absorption edges were in good
agreement with the local partial densities of states.

2. CALCULATION PROCEDURE

The crystal structure of spinels with space group

–F3dm represents a close face-centered cubic pack-
ing of anions with tetrahedral and octahedral holes par-
tially occupied by the cations.

Solid solutions in the Cd1 – xCuxCr2S4 system belong
to the structural type of normal spinels in which cad-
mium and copper cations occupy tetrahedral sites and
chromium cations are located at octahedral sites. Thus,
the ACr2S4 formula unit involves one Me (Cd, Cu) cat-
ion in the tetrahedral site and two chromium cations in
the octahedral site [3]. The atomic positions in a spinel
cluster were determined from the following formulas

Oh
7
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for lengths of the tetrahedral lt and octahedral lo cation–
anion bonds [4]:

Here, a is the parameter of the spinel cubic unit cell
consisting of 56 atoms, of which 32 are sulfur anions
forming the face-centered lattice; δ ≡ u – 3/8; and u is
the anion parameter, which specifies the arrangement of
the sulfur atoms and accounts for their displacements
from ideal positions toward the [111] direction. In this
work, we used the following parameters: a = 10.242 Å
and u = 0.39 for CdCr2S4, and a = 9.814 Å and u =
0.384 for CuCr2S4 [4].

Spinels of the nonstoichiometric composition
Cd1 − xCuxCr2S4 (where x = 0.05, 0.1, 0.15, and 0.2)
have an ordered sublattice of sulfur atoms. In this sub-
lattice, chromium cations occupy octahedral holes and
a certain part of the cadmium cations are randomly
replaced by copper cations in tetrahedral sites accord-
ing to the atomic content of copper in the solid solution
(5, 10, 15, and 20 at. %) [5].

In this work, the electronic structure and S K absorp-
tion edges were theoretically calculated using the
FEFF8 program developed by Rehr, Albers, and Anku-
dinov [6]. This program is based on the approximation
of high-order multiple scattering and includes the cal-
culation of the x-ray photoabsorption cross section.

The shape of the S K absorption spectra of the
spinels under investigation was calculated within a uni-
fied model proposed earlier in [1, 2]. However, in our
case, the self-consistent crystal potential was simulated
in the framework of the nonlocal exchange-correlation
potential model. This model is based on the Dirac–Fock
approximation for core electrons and the Hedin–Lun-
dquist approximation for valence electrons. The self-
consistent crystal potential was also calculated for a
cluster containing up to 30 atoms, and the number of
iterations was as large as ten.

3. RESULTS AND DISCUSSION

The figure shows the theoretical S K absorption
edges for CdCr2S4 and CuCr2S4 compounds, as well as
for Cd1 – xCuxCr2S4 solid solutions, where x = 0.05, 0.1,
0.15, and 0.2. The theoretical and experimental [7] S K
absorption edges were superposed on the same energy
scale, in which the energy position of the principal peak
of the S K absorption edge was taken as the origin. A
comparison of the x-ray absorption near-edge structure
(XANES) calculations of the S K absorption edge and
the local partial densities of states for CdCr2S4 demon-
strated that the conduction band bottom in CdCr2S4 is
formed by mixed free p states of sulfur and s and p
states of cadmium and chromium. The b peak of the
experimental S K absorption edge is associated with the
hybridization of sulfur p states and cadmium s states.
The features c' and c'', which were not revealed in this

lt 3 1/8 δ+( )a and lo 1/4 δ–( )a.= =
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calculation but were observed in the experimental S K
absorption edge, degenerate into a single peak c. The c
peak is also attributed to the hybridization of sulfur p
states with chromium p and cadmium p states, as well
as with chromium s states.

A similar comparison for CuCr2S4 showed that, in
this case, the conduction band bottom is formed by
strongly mixed free p states of sulfur, s and p states of
copper, and s and p states of chromium. The shoulder b
in the experimental S K absorption edge, which was
also revealed in our calculation, can be interpreted as an
admixture of copper s states and chromium p states to
free sulfur p states. The c' and c'' features observed in
the experimental S K absorption edge degenerate into a
single shoulder c in the theoretical absorption edge.
This feature can be attributed to the hybridization of
sulfur p states with s and p states of chromium and cop-
per, which is confirmed by the corresponding peaks of
the partial densities of states for copper and chromium.
Similarly, the d' and d'' features in the theoretical
absorption edge degenerate into a single shoulder d,
which is interpreted as an admixture of chromium p and
copper p states to sulfur p states.

CuCr2S4 (experiment)

CuCr2S4 (FEFF8)

20 at. % Cu

10 at. % Cu

15 at. % Cu

5  at. % Cu

CdCr2S4 (FEFF8)
CdCr2S4 (experiment)
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Theoretical S K absorption edges for Cd1 – xCuxCr2S4 solid
solutions and experimental S K absorption edges for
CdCr2S4 and CuCr2S4 [7].
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After introduction of the appropriate amount of cop-
per atoms into a CdCr2S4 cluster, the b, c, and d features
in the theoretical S K absorption edges shift to the low-
energy range. Specifically, for the Cd1 – xCuxCr2S4 solid
solution with x = 0.05, the b and c peaks are shifted by
0.01 and 0.09 eV, respectively (see table). As the copper
content in the cluster increases, the specific features in
the theoretical S K absorption edges shift to the lower
energy range. It can be seen that, at a copper content of
20 at. %, the b, c, and d peaks are shifted by 0.4, 0.26,
and 0.48 eV, respectively, with respect to their energy
location for pure CdCr2S4. The tendency for the b, c,
and d peaks to shift toward the low-energy range man-
ifests itself over the entire range from 5 to 20 at. % Cu.
Therefore, we can assume that a further increase in the
number of copper atoms in the CdCr2S4 cluster should
lead to a further shift. Upon the complete substitution
of copper atoms for cadmium atoms, the aforemen-
tioned features will be shifted to the S K absorption

Energy location of the main features of the SK absorption
edges for Cd1 – xCuxCr2S4 solid solutions

Crystal b c d

CdCr2S4, experiment [7] 4.25 4.84

CdCr2S4, FEFF8 4.25 4.77 5.98

Cd0.95Cu0.05Cr2S4 4.25 4.68 5.85

Cd0.9Cu0.1Cr2S4 4.24 4.68 5.84

Cd0.85Cu0.15Cr2S4 4.22 4.57 5.58

Cd0.8Cu0.2Cr2S4 4.21 4.56 5.54

CuCr2S4, FEFF8 4.08 4.57 5.17

CuCr2S4, experiment [7] 4.12 4.55 5.05

Note: The energy position of the principal absorption peak a (eV)
is taken as the origin.
PH
edge for CuCr2S4. For this edge, the b, c, and d features
are located lower in energy as compared to the corre-
sponding features in the experimental S K absorption
edge for CdCr2S4. The observed shift of the main fea-
tures in the theoretical S K absorption edges to the low-
energy range with an increase in the copper content in
the Cd1 – xCuxCr2S4 solid solution can be explained by
the lower location of the peaks in the density of states
for copper as compared to that for cadmium. According
to the Lotgering model [8], this difference is associated
with the shift of the Fermi level in CuCr2S4 with respect
to the Fermi level in CdCr2S4, which can also be
responsible for different types of conduction in these
compounds.
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Abstract—A third portion is found in the curve of pulsed magnetization reversal of iron borate single crys-
tals with an extremely small switching coefficient Sw3 ≈ (3–5) × 10–3 Oe µs. This portion is attributed to
switching off the possible channels of energy losses by magnetoelastic vibrations. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

As is known, the problems concerning interactions
between magnetic and elastic subsystems of crystals,
energy losses due to these interactions, and their effect
on the magnetization reversal rate are fundamental in
the physics of transient processes in magnetic materi-
als. The magnetoelastic interaction most clearly mani-
fests itself in single crystals of iron borate (FeBO3) [1–
3]. A principal dynamic characteristic, namely, the
curve of the pulsed magnetization reversal, represents
the dependence of the rate of magnetization reversal τ–1

on the pulse amplitude of the magnetization reversal
field Hs. At present, it has been established that this
curve for FeBO3 single crystals is completely governed
by the specific features of the magnetoelastic interac-
tion [3–6]. Specifically, the effect of freezing of the
crystal lattice, which was observed earlier for the
FeBO3 magnet at frequencies ~1010 Hz [7, 8], becomes
clearly pronounced in transient processes for magneti-
zation reversal times τ = τcr1 = 15 ± 2 ns. For shorter
times of magnetization reversal, there occurs a sharp
decrease in the intensity of magnetoelastic vibrations
that accompany transient processes and arise from
shear strain waves propagating along the C axis. As a
result, for the magnetization reversal time τ = τcr1, the
energy loss due to excitation of magnetoelastic vibra-
tions decreases, the rate of magnetization reversal
increases drastically, and a kink appears in the curve
τ−1(Hs) at Hs ~ 3–4 Oe.

The frequency of the magnetoelastic mode studied
is determined to be Fc = 2Vc /d (where d is the thickness
of the single crystal and Vc is the velocity of the trans-
verse acoustic wave, which propagates along the C axis
and depends on the external magnetic field) [2, 7–9].
For the field range considered here, the transverse
acoustic wave velocity Vc is close to 4 × 105 cm/s. It is
evident that this mode of magnetoelastic vibrations is
not the sole possible one. We can expect that, with a fur-
ther increase in the rate of magnetization reversal, the
1063-7834/03/4504- $24.00 © 20673
freezing of another magnetoelastic mode will manifest

itself at τ–1 = . It is assumed that this freezing will
be accompanied by switching off the relevant channel
of energy losses and changes in the dependence τ–1(Hs).
The aim of the present work was to reveal and analyze
these variations.

2. EXPERIMENTAL TECHNIQUE

As in the aforementioned works, our experiments
were performed on an induction setup. However, in
order to increase the time resolution, the setup used in
our measurements was modified significantly. In partic-
ular, the setup was equipped with a low-voltage spark
peaker [10], which made it possible to decrease the
width of the front of the magnetization reversal pulse to
0.3 ns. Moreover, the use of a compact magnetization
reversal device and a removable coil of an additional
resistor (R = 500 Ω) in the circuit provided a decrease
in the voltage setting time in the recording channel to
0.25–0.3 ns. As a result, the time resolution of the setup
was brought to 0.4–0.5 ns (instead of 1.4 ns in the initial
variant).

We examined the 180° pulsed magnetization rever-
sal. The initial state of technical saturation of the sam-
ple under investigation was achieved using the field H0.
The pulsed field Hp, which initiated the studied process,
was in opposition to the field H0. The resulting magne-
tization reversal fields Hs = Hp – H0 are given below. Six
samples from 24 to 100 µm thick were used in the
experiments. For all these samples, the second kink
expected by us was observed in the curve of the pulsed
magnetization reversal.

3. RESULTS AND DISCUSSION

As an example, the curve τ–1(Hs) obtained for a
34-µm-thick sample in the saturation field Hsat = 1.8 Oe
with a mean period of shock magnetoelastic vibrations

τcr2
1–
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Tc =  = 18 ns is shown in Fig. 1. It can be seen that
another kink appears in the curve of the pulsed magne-
tization reversal in addition to the kink previously
observed at the characteristic rate of magnetization

reversal τ–1 =  = 70 µs–1 in the field Hs = Hcr1 =
3.1 Oe. For this sample, the new kink is observed in the
field Hs = Hcr2 = 6.3 Oe at the rate of magnetization

reversal τ–1 =  = 280 µs–1. The next portion of the
curve is approximated by a straight line with an
extremely small switching coefficient Sw3 = ∆Hs/∆τ–1.
For the sample under study, we obtained Sw3 = 4 ×
10−3 Oe µs. For the other samples, the Sw3 values lie in
the range (3–5) × 10–3 Oe µs. To the best of our knowl-
edge, such small switching coefficients have never
before been observed for the magnetic materials studied.

Figure 2 displays the signals recorded for the stud-
ied sample upon magnetization reversal in fields Hs =
4.8 (curve 1) and 7.3 Oe (curve 2). The former and lat-
ter fields correspond to approximately the midpoint of
the second portion and the initial point of the third por-
tion of the curve of the pulse magnetization reversal,

Fc
1–

τcr1
1–

τcr2
1–

600

400

200

0 2 4 6 8
Hs, Oe

Sw2 = 0.018 Oe µs

Sw3 = 0.004 Oe µs

Sw1 = 0.23 Oe µs

τ –1, µs–1

Fig. 1. Curve of the pulsed magnetization reversal.

1

2

0 2 4 6
t, ns

Fig. 2. Signals of magnetization reversal. Hs = (1) 4.8 and
(2) 7.3 Oe.
P

respectively. It can be seen that, when changing over to
the third portion of the curve, the signal noticeably
changes in shape. Specifically, in the field range Hs >
Hcr2, the principal change of the induction flux shifts to
the onset of the process under discussion.

We have not yet been successful in revealing the
magnetoelastic mode responsible for the magnetization
behavior in fields Hs > Hcr2. Most probably, these vibra-
tions are associated with longitudinal acoustic waves,
for which the lag of the elastic subsystem of the crystal
behind the magnetic subsystem should manifest itself
at higher rates of magnetization reversal. The afore-
mentioned waves can propagate not only along the C
axis. In contrast to the mode studied earlier, whose fun-
damental harmonic frequency Fc is determined by the
thickness of the single crystal, the magnetoelastic
vibrations assumed in this work most likely exhibit a
broader spectrum of frequencies. It is quite possible
that the change in this spectrum is responsible for the
variations in the signal shape and, on the whole, for the
magnetization behavior in fields Hs > Hcr2.
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Abstract—Reconstruction of magnetization curves for real close-packed systems of highly anisotropic ferri-
magnetic BaFe12O19 single-domain nano- and microcrystals is carried out on the basis of the results of a study
of interparticle magnetic interaction. These curves allowed us to distinguish general laws of magnetization of
ensembles of randomly oriented single-domain particles predicted by the Stoner–Wohlfarth theory and to dis-
cuss special features found for microcrystals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interparticle magnetic interaction, along with size
and surface factors, plays an important role in the for-
mation of magnetic properties of ensembles particles of
small. The necessity of considering this problem
appeared, in particular, when studying the magnetiza-
tion processes in powder materials used for the produc-
tion of media for high-density magnetic recording on
the basis of substituted barium hexaferrite [1–5].

Interparticle magnetic interaction can be both posi-
tive and negative. Negative interaction stabilizes the
demagnetized state of a sample and opposes the mag-
netization increase under the influence of an applied
magnetic field. Positive interaction promotes the mag-
netization of a sample. Predominance of either positive
or negative interaction between particles in a system
depends on many factors, such as the packing density,
texture, magnetic parameters (in particular, magnetic
anisotropy), and external factors (magnetic field, tem-
perature).

2. SAMPLE CHARACTERIZATION

In this work, magnetization processes in close-
packed ensembles of single-domain nano- and
micrometer-sized particles are considered in terms of
interparticle interaction.

The object under investigation was a highly anisotro-
pic ferromagnetic hexagonal barium ferrite with an
unsubstituted magnetic matrix (BaFe12O19) with the fol-
lowing magnetic parameters at 300 K: uniaxial magne-
tocrystalline anisotropy constant K1 = 3.3 × 106 erg cm–3,
specific saturation magnetization σs = 68 G cm3 g–1,
anisotropy field Ha = 17.8 kOe, and Curie temperature
TC = 733 K [6].
1063-7834/03/4504- $24.00 © 20675
Nanocrystalline powders were produced with the
use of cryochemical techniques, which provided high
chemical homogeneity of the initial mixture and, con-
sequently, a relatively low temperature of the reaction
of ferrite formation [7, 8]. Both traditional [9] and mod-
ified [10] methods of precipitation from melt were used
to produce microcrystalline powders. Mössbauer spec-
troscopy and x-ray diffraction investigations confirmed
that the powders obtained were single-phase. The aver-
age diameter of particles in nanodispersed sample 1 is
〈d〉  = 55 nm; the average aspect ratio was 〈d/h〉  = 2.5 (h
is the thickness of lamellar particles). Microdispersed
samples have the following morphological characteris-
tics: 〈d〉  = 0.5 µm and 〈d〉/〈h〉  = 5 for sample 2 and 〈d〉  =
1.5 µm and 〈d〉/〈h〉  = 4 for sample 3. The range of par-
ticle diameters in samples 1 and 2 completely cover the
region of single-domain state existence (for barium
hexaferrite, dcr = 1.3 µm [11]). Sample 3 also contains
multidomain particles.

Magnetization measurements were carried out on
preliminarily thermally demagnetized powder samples
(the packing factor was p ~ 0.4) in a field of up to
18 kOe at 300 K. At this temperature, as shown in [12],
magnetization processes are not influenced by transi-
tions of particles with close-to-critical volume to a
superparamagnetic state.

3. INTERPARTICLE MAGNETIC
INTERACTION

In order to investigate the interparticle interaction,
we measured two main residual-magnetization curves:
mr(H) = σr(H)/σr(∞) and md(H) = σd(H)/σd(∞). The iso-
thermal residual magnetization σr was determined by
measuring minor and saturation hysteresis loops with a
gradual increase in the amplitude of the measurement
field; σr(∞) was obtained by extrapolating the σr =
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Field dependences of residual magnetizations mr and
md: (a) nanodisperse sample 1 and (b) microdisperse sample 2.
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Fig. 2. Henkel diagram: (1) nanodisperse sample 1, (2)
microdisperse sample 2, (3) theory [13], and (4) oriented
magnetic film of substituted barium ferrite [1].
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f(1/H) dependence to an infinitely large field. The resid-
ual magnetization σd was found by magnetizing a sam-
ple to saturation, then decreasing the field down to zero
and reversing the field sign (direction), and then
increasing the field up to a specified value and switch-
ing it off; like σr(∞), σd(∞) is a value extrapolated to an
infinitely large field.

Experimental field dependences of mr and md for the
samples under investigation are presented in Fig. 1.

According to [13], the mr(H) and md(H) depen-
dences for a system of noninteracting single-domain
uniaxial magnetic particles with random uniform distri-
bution of their orientations are related through the ratio 

(1)

In a theoretical model of noninteracting particles,
the md = f(mr) dependence, known as the Henkel dia-
gram [14], is linear, with md changing from 1 for mr = 0
to –1 for mr = 1 (curve 3 in Fig. 2). For a system of real
particles, any deviation from linearity in the diagram
indicates the presence of interaction between particles
if the other parameters of the system correspond to the
theoretical model. Concavity and convexity of the
curve are indicative of negative and positive interac-
tions, respectively. It was found that Henkel diagrams
for powder samples 1 and 2, through differing in disper-
sity, have different shapes (Fig. 2). As follows from the
curves, the resulting interaction is negative in the nano-
dispersed sample and is sign-variable in the microdis-
persed sample.

In order to analyze the magnetization curves and
reveal the mechanisms determining their characteris-
tics, we used a more informative modified method of

md H( ) mr ∞( ) 2mr H( )– 1 2mr H( ).–= =

0.2
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Fig. 3. Modified Henkel diagram (Kelly diagram): (1) nan-
odisperse sample 1 and (2) microdisperse sample 2.
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Fig. 4. Illustration of typical particle clusters in (a, b) nanocrystalline and (c, d, e) microcrystalline barium hexaferrite powders.
Kelly et al. [15]. The authors of [15] introduced the
parameter 

, (2)

which characterizes the deviation of an experimental
md value from that calculated theoretically for an
ensemble of noninteracting particles. This parameter
determines the interaction sign and magnitude, depend-
ing on the applied field.

∆m H( ) md H( ) 1 2mr H( )–( )–=
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The ∆m(H) dependences in Fig. 3 show that the
interaction between particles in the nanocrystalline
powder sample is manifested over the field interval
from 3.5 to 8 kOe. A study of the hysteresis loops
revealed that this interval corresponds to magnetization
irreversible processes [16]. The interaction is the stron-
gest (∆m = –0.34) in a field of 6.5 kOe. The irreversibil-
ity range for the microcrystalline powder sample is
much wider, from 0.5 to 8 kOe. However, negative
interaction becomes noticeable only in fields from
3
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×4000

(c)

×18000

(d)
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Fig. 4. (Contd.) 
4.7 to 8 kOe and reaches its maximum magnitude
(∆m = −0.1) in a field of 5.5 kOe. For fields from 0.5 to
4.7 kOe, the resulting interaction in the system of
microparticles is positive, with the maximum ∆m = 0.3
occurring at H = 3 kOe. Sufficiently large positive inter-
action in a disordered ensemble of particles seems, at
first sight, to be unexpected, because the interaction of
such a sign suggests the presence of texture. For exam-
ple, as shown in [1], distinct positive interaction takes
place in an oriented magnetic film on the base of sub-
stituted barium ferrite over the whole range of fields
covered (curve 4 in Fig. 2).

Electron microscopy data were used to explain the
different interparticle interactions observed in the sam-
ples under investigation.
PH
4. ELECTRON MICROSCOPY

Electron-microscopical images of samples 1 and 2
particles obtained by means of an UMV-100L electron
microscope from replicas prepared using different
methods are presented in Fig. 4.

It turned out that a difference in particle aggregation
exists even in nano- and microcrystalline powders that
are not pressed. Stack clusters of particles are observed
in micropowders (Fig. 4c). Such a structure is due to
both morphological peculiarities in the particles (lamel-
lar form) and strong uniaxial magnetocrystalline
anisotropy (the easy direction coincides with crystal
hexagonal axis c). Similar stacks are present in nanoc-
rystalline powders to a significantly smaller extent
(Fig. 4c), which can be explained by the fact that,
though the morphology of nano- and microparticles is
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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the same, the role of magnetocrystalline anisotropy in
nanoparticles is less important due to the considerable
influence of surface anisotropy. As shown in [17, 18],
the surface-anisotropy energy in nanocrystals, unlike
that in microcrystals, becomes commensurate with the
magnetocrystalline-anisotropy energy. Since these
anisotropy constants are opposite in sign, their compe-
tition leads to the fact that a canted magnetic structure
caused by a distorted geometry of exchange bonds is
present throughout practically the entire volume of the
nanocrystal [19]. The average angle of magnetic-
moment deviation from hexagonal axis c can vary from
particle to particle due to the spread in particle thick-
ness. As can be seen from Fig. 4, the systems under
investigation reveal a tendency to form closed struc-
tures (ring-shaped clusters of microcrystals and quasi-
spherical clusters of nanocrystals), which is connected
with demagnetization energy minimization. The possi-
bility of having different particle arrangements and the
fact that stack clusters of particles promote magnetiza-
tion while ringlike agglomerates and quasi-spherical
clusters prevent it were taken into account in making a
comparative analysis of the magnetization curves in
systems with different dispersivity.

5. MAGNETIZATION CURVES

Magnetization curves for real systems of single-
domain particles of nano- and micrometric ranges
(samples 1, 2) are presented in Fig. 5. For their analysis,
we used an experimental curve for powder sample 3
containing multidomain particles and a numerically
calculated Stoner–Wohlfarth theoretical curve [20] for
a system of identical single-domain magnetic uniaxial
noninteracting disordered particles under the assump-
tion of coherent magnetization-vector rotation. To

1
2

3

4

1.0

0.8

0.6

0.4

0.2

0 4 8 12 16 20
H, kOe

σ/
σ s

Fig. 5. Main magnetization curves of powder samples at
300 K compared to a theoretic Stoner–Wohlfarth curve:
(1) sample 1, (2) sample 2, (3) sample 3, and (4) theory
[20].
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make the comparison convenient, the anisotropy field
in the model system was taken to be equal to that for
barium ferrite and magnetization was expressed in rel-
ative units. It can be seen from Fig. 5 that experimental
curve 1 for nanodisperse sample 1 is similar in charac-
ter to theoretical dependence (curve 4). Curve 2 for
microdispersed sample 2 has an unusual saddlelike
character that is not described in the literature dealing
with such objects, and lies between the curves for the
nanodispersed sample and sample 3, which contains
multidomain particles.

The magnetization curves obtained for single-
domain particles were transformed with allowance for
the specific interparticle interaction. The field depen-
dences of magnetization were recalculated according to
the formula σ*(H) = σ(H)[1 ± ∆m(H)], where σ is the
experimental value of the specific magnetization and
∆m is the correction for interaction [Eq. (2), Fig. 3]. The
minus sign corresponds to the case of ∆m > 0, and the
plus sign, to the case of ∆m < 0. Figure 6 shows the ini-
tial (1, 2) and reconstructed (1*, 2*) magnetization
curves. It is evident that the curve for the nanodispersed
sample did not change in character. For the microdis-
persed sample, the reconstructed curve exhibits the dis-
tinct magnetization jump (which was veiled by inter-
particle interaction) predicted by Stoner–Wohlfarth
theory to occur as a consequence of random orientation
of easy axes of particles in the system. As mentioned
above, the region of magnetization jump for both nano-
and microdispersed samples corresponds to irreversible
magnetization processes connected with the behavior
of the ensemble of randomly oriented particles as a
whole. In the initial range H = 0.5–3.5 kOe, correspond-
ing to irreversible magnetization processes, curve 2* is
basically different in character from that predicted by
the theoretical model. The anomaly observed only in

1.0

0.8

0.6

0.4

0.2

0 4 8 12 16
H, kOe

σ/
σ s

12 1*

2*

Fig. 6. Magnetization curves of close-packed ensembles of
nano- and microparticles in the absence of interparticle
interaction: (1, 2) initial curves (samples 1, 2) and (1*, 2*)
reconstructed curves.
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the microcrystalline system is obviously connected
with irreversible magnetization processes in individual
particles. The magnetic structure of a microcrystal is
more heterogeneous than that of a nanocrystal: the core
of a particle has a magnetic structure analogous to that
of a macrocrystal, while a near-surface region which
makes up approximately 10% of the particle volume
[18] has a characteristic canted magnetic structure.
Therefore, the condition of coherent magnetization
rotation assumed in the theoretical model is not satis-
fied in this case.

6. CONCLUSIONS

Thus, the main results of this work are the follow-
ing.

It has been found that the sign, magnitude, and the
field dependence of interparticle interaction in a close-
packed system of highly anisotropic hexagonal-ferrite
BaFe12O19 single-domain particles are affected by dis-
persivity: the resulting interaction between nanocrys-
tals in the field interval covered is negative, while that
between microcrystals is sign-variable. The different
balance of interparticle interactions in the samples
under investigation has been interpreted on the basis of
electron-microscopy data.

This is the first time that the reconstruction of mag-
netization curves has been carried out taking into
account interparticle interaction to reveal that the com-
plex character of a microcrystal system magnetization
curve has the features of magnetic behavior of a mag-
netic uniaxial Stoner–Wohlfarth particle ensemble with
randomly oriented easy modernization axes. A magne-
tization curve anomaly that was observed in the low-
field range is characteristic only of a microcrystalline
system and is connected with irreversible magnetiza-
tion of individual particles having spatially heteroge-
neous magnetic structure.
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Abstract—40- to 120-nm-thick (001)La0.67Ca0.33MnO3 films grown through laser evaporation on
(001)NdGaO3 were studied. The lattice parameters of the La0.67Ca0.33MnO3 films measured in the substrate
plane (a|| = 3.851 Å) and along the normal to its surface (a⊥  = 3.850 Å) practically coincided with that of the
pseudocubic neodymium gallate. The unit-cell volume of the La0.67Ca0.33MnO3 film was slightly smaller than
that of stoichiometric bulk samples. The position of the maximum in the temperature dependence of electrical
resistivity did not depend on the thickness of the La0.67Ca0.33MnO3 film. The negative magnetoresistance (MR ≈
–0.25, H = 0.4 T) of La0.67Ca0.33MnO3 films reached a maximum at 239–244 K. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The anomalously strong magnetic-field and temper-
ature dependence of the resistance R of the perovskite-
like manganites (La,Nd)1 – xQxMnO3 (Q = Ca, Sr,
Ba, …), which becomes manifest as the spins in the
manganese ion 3d shell undergo ferromagnetic order-
ing, accounts for the interest in their application in
magnetic-disk-read heads and IR detectors [1, 2].

For (La,Nd)1 – xQxMnO3 films to be of practical inter-
est, they have to be thin enough for the ferromagnetic
phase transition point Tc to be close to room temperature
and for the magnetoresistance MR to be large enough in
low magnetic fields. By now, it has been established [1]
that both R and MR of (La,Nd)1 – xQxMnO3 films
depend strongly on their structure, the value of x in the
chemical formula, and oxygen concentration. Biaxial
mechanical stresses can bring about both a substantial
growth and a decrease in Tc of manganite films [3, 4].

Using substrates with minimum lattice mismatch m
[m = (aL – aS)/aS, where aS and aL are the substrate and
film lattice parameters, respectively] favors the obtain-
ment of manganite films with reproducible values of
MR without having to apply high-temperature anneal-
ing. The dependence of the electronic parameters of
manganite films grown on substrates with a small m on
thickness may permit estimation of the characteristic
carrier localization length. Up to now, however, the lit-
erature has contained only fragmentary and quite fre-
quently inconsistent experimental information on the
structure and parameters of (La,Nd)1 – xQxMnO3 films
grown on substrates with a small m [5, 6].
1063-7834/03/4504- $24.00 © 20681
The present communication reports on a study of the
structure and electrophysical properties of
La0.67Ca0.33MnO3 (LCMO) films grown on substrates of
neodymium gallate, whose pseudocubic unit-cell
parameter practically coincides with that of the above
manganite.

2. EXPERIMENT

The starting ceramic LCMO targets were evapo-
rated in an oxygen environment (P0 = 0.3 mbar) using
the laser technique (KrF, λ = 248 nm, τ = 30 ns). The
laser radiation density at the target surface was 2 J/cm2.
The substrates were (001)NdGaO3 (NGO) single-crys-
tal plates whose temperature was maintained equal to
TS = 760 K during the manganite film formation. The
LCMO layer thickness on the substrate increased by
0.2 Å per pulse. The technology of LCMO film growth
is described in detail in [5, 7].

Data on the phase composition of the LCMO films
prepared, their orientation, and the film lattice parame-
ters in the substrate plane and along its surface normal
were obtained using x-ray diffraction techniques (Phil-
ips X’pert MRD, ω/2θ and φ scans, rocking curves). The
free-surface morphology of the LCMO films was stud-
ied with an atomic-force microscopy (Nonoscope-IIIa,
tapping mode).

The resistance R of the films was measured with an
alternating current (f = 100 Hz) using an hp 4263A
LCR meter in the van der Pauw geometry, both in a
magnetic field H = 0.4 T and without it. Four silver con-
tacts were deposited on an LCMO film in the corners of
003 MAIK “Nauka/Interperiodica”
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a square by thermal evaporation from a tungsten boat.
The electrical resistivity ρ of an LCMO film was calcu-
lated using the relation ρ = (πd/ln2)R [8], where d =
40–120 nm is the LCMO film thickness.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The mechanical stresses in a film depend on its
thickness, growth conditions, and heat treatment, as
well as on the parameters of the substrate material.
Stress relaxation in LCMO films deposited on sub-
strates with a large m can entail a strong change in the
structure and electrophysical parameters of the films
[9, 10].

In contrast to the available data on manganite films
grown on substrates with a large lattice mismatch (m >
1%) [4], we did not find a systematic dependence of
MR on the LCMO/NGO film thickness within an inter-
val d = 40–120 nm.

When using single-crystal (001)NGO plates (the
neodymium gallate orthorhombic unit-cell parameters
are a = 5.502 Å, b = 5.426 Å, c = 7.706 Å; the parameter
of the corresponding NGO pseudocubic cell is 3.851 Å
[11]) as substrates for LCMO film growth, m is about
0.2%, which is several times smaller than that for the
widely used strontium titanate and lanthanum alumi-
nate single crystals. The temperature coefficients of lin-
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Fig. 1. X-ray diffraction pattern (CuKα1, ω/2θ) for a (40-nm)
LCMO film grown on (001)NGO. Arrows identify the sat-
ellite peaks. Inset shows an ω–2θ rocking curve for the
(101)LCMO reflection obtained on the same film.
P

ear expansion of NGO and LCMO have similar values
in the interval from room temperature to TS [12, 13].

3.1. Structure and Morphology of the LCMO Film 
Surface

The small difference between the lattice parameters
provides favorable conditions for epitaxial growth of
manganite films on the (001)NGO surface. The LCMO
film cell parameter along the substrate normal a⊥  =
3.850 ± 0.003 Å was calculated using the value of 2θ
for the (004)LCMO reflection in measured x-ray dif-
fractograms. Figure 1 shows a fragment of an x-ray dif-
fraction pattern (ω/2θ, CuKα1) obtained in the case
where the plane including the incident and reflected
x-ray beams was oriented normal to the substrate plane.
The widths of the satellite peaks, which are clearly pro-
nounced near the (002) x-ray reflection from a manga-
nite film, were used to monitor the thickness of the
grown LCMO films. The effective lattice parameter in
the substrate plane a|| = 3.851 ± 0.003 Å for the LCMO
films was calculated from the relation 1/d(303) = [(3/a⊥ )2 +
(3/a||)2]1/2. The interplanar distance d(303) was derived
from the value of 2θ for the (303) reflection in the x-ray
diffraction pattern, which was measured with the sub-
strate plane oriented at 45° to the plane including the
incident and reflected x-ray beams. The parameter a||
did not depend on LCMO film thickness and coincided
with the NGO pseudocubic lattice parameter. The

effective lattice parameter aeff = ( )1/3 = 3.851 Å for
the grown films differs only slightly from the corre-
sponding values (~3.858 Å [14]) obtained for stoichio-
metric bulk LCMO samples. The x-ray φ scan made on
the (111)LCMO reflection had four equidistant peaks
(spaced 90° apart). The exact coincidence of a|| with the
neodymium gallate lattice parameter indicates that the
manganite films with thicknesses of up to 120 nm were
grown coherently on (001)NGO. In the case of
(001)NGO substrates, coherent growth of relatively
thick LCMO films is favored by the small elastic-stress
energy, which is proportional to the product m2d. When
grown on substrates for which m > 1% (LaAlO3), elas-
tic-stress relaxation in an LCMO film starts already
from thicknesses as small as 10–30 nm [4, 14].

The small difference between the a|| and a⊥  parame-
ters indicates that an LCMO film grown on an
(001)NGO substrate is subjected to weak in-plane ten-
sile mechanical stresses. The full width of the rocking
curve measured at its half maximum (FWHM) for the
(101) reflection from a manganite film 40 nm thick was
0.08°, which is approximately one third of the corre-
sponding values obtained for epitaxial LCMO films
grown on LaAlO3 and SrTiO3 [15]. As the LCMO/NGO
film thickness increases in the interval 40–120 nm, the
width of the rocking curve for the above x-ray reflec-
tion decreased by about 20–30%. The decrease in
FWHM with increasing LCMO film thickness is appar-

a||
2
a⊥
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ently due to a decrease in the concentration of the film
structural defects associated with mutual diffusion of
the components between the LCMO and the substrate
at temperatures close to TS.

Free-surface images of a 40-nm-thick LCMO film
obtained with an atomic-force microscope in the
“height” and “phase” modes are presented in Fig. 2.
The height-mode data indicate that the LCMO films
consisted of grains whose size in the substrate plane
was 20–30 nm (Fig. 2a). The grain boundaries are dec-
orated by characteristic depressions. The manganite
film also contains individual grains 60–90 nm in size.
The density of such grains is of the order of 2 × 109 cm–2.
Figure 2b shows the signal phase variation occurring as
the probe scans the LCMO film surface. The phase of a
signal depends on the nanomechanical properties of the
surface layer of the object under study. The similar sig-
nal phases obtained when scanning the surfaces of large
and small grains (Fig. 2b) indicate the absence of sig-

500

0
0 500

(a)

(b)

8 nm

0

500

0
0 500

90°

0°

Fig. 2. Atomic-force microscope image of a free (40-nm)
LCMO/NGO film surface obtained in (a) the height and (b)
phase modes.
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nificant compositional differences between them. The
fine structure inside large grains could not be resolved.

The formation of grain boundaries in an LCMO film
grown coherently on an NGO substrate can be due to a
stoichiometry violation in the phase adsorbed on the
substrate surface. The phase with distorted stoichiome-
try segregates at the boundaries of the growing stable
LCMO islands, thus entailing the formation of thin
interlayers near grain boundaries, whose composition
differs from that in the grain bulk. The density of such
boundaries can be reduced by recrystallizing the grown
layer [5].

3.2. Electrophysical Parameters of LCMO Films

The temperature dependence of electrical resistivity
of LCMO films measured at H = 0 exhibited a strong
maximum at TR ≈ 253 K (Fig. 3), which is in good
agreement with the corresponding data obtained on
bulk stoichiometric LCMO samples and epitaxial
LCMO films subjected to thermal treatment [16]. The
rise in electrical resistivity of grown manganite films
observed to occur with decreasing temperature in the
interval 400 K –TR is caused, at least partially, by carrier
localization resulting from Jahn–Teller distortion of the
LCMO unit cell [1]. The LCMO lattice distortion
increases with the temperature decreasing to Tc [17]. In
the region 400–260 K the dependence of ρ on tempera-
ture for LCMO films could be well approximated by the
relation ρ(T) ~ exp(–EA/kT), where EA ≈ 70 meV is the
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Fig. 3. Temperature dependences of (1) the electrical resis-
tivity ρ and (2) magnetoresistance MR obtained for a
(40-nm) LCMO/NGO film. Inset shows ρ(T) dependences
measured on the same film at (1) H = 0 and (2) H = 0.4 T in
the temperature interval near Tc. f = 100 Hz.
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activation energy. The onset of ferromagnetic spin
ordering in LCMO (T ≈ Tc) is accompanied by a sharp
increase in lattice symmetry [17]. The drop in the elec-
trical resistivity of LCMO films with decreasing tem-
perature (T < TR) is favored both by the decrease in the
relative spin disorder in the manganese 3d shell and by
the decrease in lattice distortion.

A magnetic field, as well as a decrease in tempera-
ture, favors ferromagnetic ordering of the electron spins
of the manganese ions. At H = 0.4 T, the electrical resis-
tivity of a manganite film passed through a maximum at
a temperature 3°–4° higher than that at H = 0 (see inset
to Fig. 3). The negative magnetoresistance MR =
[ρ(H = 0.4 T) – ρ(H = 0)]/ρ(H = 0) of grown
LCMO/NGO films depended only weakly on their
thickness (d = 40–120 nm) and reached a maximum
value (≈–0.25) at temperatures TMR = 239–244 K
(Fig. 3). The absence of a low-temperature tail in the
MR(T) dependence implies that grain boundaries do
not affect charge transport noticeably in the grown
LCMO/NGO films. In contrast to the extremely low
magnetoresistance reported in [6] for manganite films
grown on neodymium gallate substrates, the measured
values of MR for the LCMO layers prepared in this
study corroborate well with the data reported for
LCMO/LAO and LCMO/LSATO in [13].

The highest values of the temperature coefficient of
resistivity (β = 0.12–0.14 K–1) for LCMO films were
observed at temperatures close to TMR. The maximum
values of β measured on the LCMO/NGO films grown
in this study are 20–30% less than the record-low val-
ues of the temperature coefficient of resistivity obtained
for LCMO films annealed in an oxygen environment at
a high temperature [2, 5].

4. CONCLUSIONS
Our results suggest that LCMO films 40–120 nm

thick can be grown coherently on neodymium gallate
substrates, with thicker manganite layers exhibiting a
more perfect structure. LCMO/NGO films consist of
grains with an average size of 30 nm. The maximum
values of MR ≈ –0.25 obtained at H = 0.4 T on
LCMO/NGO films with thicknesses ranging from 40 to
120 nm were measured at temperatures from 239 to
244 K.
P
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Abstract—The possibility of excitation of NMR signals by an ac electric field in magnetically ordered crystals
is discussed. Such signals can be recorded using the time-dependent component of the electric polarization vec-
tor. It is assumed that the electric and magnetic characteristics are coupled to each other through magnetoelec-
tric and antiferroelectric interactions. Several types of magnetic structures are analyzed in which these interac-
tions are not forbidden by symmetry. Such structures include two-sublattice single-position ferro- and antifer-
romagnetic phases in centrosymmetrical crystals, two-sublattice magnetic crystals without a center of
symmetry (such as KNiPO4), and four-sublattice antiferromagnetic crystals with three types of antiferromag-
netism vectors (such as Cr2O3 and α-Fe2O3). © 2003 MAIK “Nauka/Interperiodica”.
1. MAGNETIC SPIN DYNAMICS ASSOCIATED 
WITH MAGNETOELECTRIC

AND ANTIFERROELECTRIC INTERACTIONS

Magnetically ordered substances are mostly distin-
guished by their behavior in (static or high-frequency)
magnetic fields [1]. The interest in their behavior in an
electric field E was inspired by the discovery by Astrov
of a magnetoelectric (ME) effect in Cr2O3 [2]. In [2], a
sample of chromium oxide was magnetized by a static
(more exactly, by quasi-static) electric field [the so-
called (ME)E effect]. In [3], the electric polarization of
this material was induced by a magnetic field H [(ME)H

effect]. The magnetoelectric interaction responsible for
this effect is described phenomenologically by invari-
ants of the type

(1)

in the thermodynamic potential Φ of a magnetic crys-
tal. Here, Mj, Li, and Pk are the components of ferro-
magnetism, antiferromagnetism, and electric-polar-
ization vectors, respectively. In a two-sublattice
model of a magnet with two different types of posi-
tions of magnetic atoms in a unit cell, characterized by
magnetic moments M1 and M2, the vectors M and L
are defined as

M = M1 + M2, L = M1 – M2. (2)

Invariance of interaction (1) requires the fulfill-
ment of certain conditions [4]. In particular, the invari-
ance of expression (1) with respect to the inversion
operation I requires the vector L to be centroantisym-
metrical [5],

IL = –L, (3)

VLMP εijkLiM jPk=
1063-7834/03/4504- $24.00 © 0685
because vector M is always centrosymmetrical, while
vector P is centroantisymmetrical. Expression (1)
leaves room for two possibilities.

(i) M = M0 = const; in this case, a change in P is
related to a change in L.

(ii) L = L0 = const; in this case, a change in P is
accompanied by a change in M. The subscript 0 indi-
cates that the basis vector corresponds to the ground
(low-energy) state.

The first case corresponds to a collinear two-sublat-
tice ferromagnet, and the second, to a collinear two-
sublattice antiferromagnet. The ME effect discovered
in [2] corresponds to the second possibility because P =
κE, where κ is the electric polarizability.

A large number of publications have been devoted to
the study of the ME effect (see, e.g., the references in [5,
Chapter 5]). However, many new effects of dynamic
nature could be expected as a consequence of ME inter-
action described by invariant (1). The authors of the
series of articles [6–10] seem to be the first to have drawn
attention to the possibility of the excitation of purely
antiferromagnetic magnons (at a constant vector M)
using an ac electric field E(t). Such electrically active
magnons were later named antimagnons [11]. The
results obtained in [6–10] actually opened a new chap-
ter in spin dynamics but, unfortunately, went unnoticed
by most readers; the author of [11] had to rediscover
them. However, the authors of [6–10] dealt only with
antiferromagnets (with four sublatices, as a rule),
whereas in [11], the analysis starts from the simple case
of a two-sublattice ferromagnet with a single-position
of multiple sites related by the center of inversion (I ×
1 = 2, I × 2 = 1). Moreover, the concept of antimagnons
covers a large number of possibilities. For example,
antimagnons can be electrically active, magnetically
2003 MAIK “Nauka/Interperiodica”
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active (in the presence of a static electric field E), and
acoustically active.

The total number of magnetic sublattices is also
very important. If a magnetic structure is characterized
by several antiferromagnetism vectors L, there can
exist the so-called antiferroelectric (AFE) interaction:

(4)

where one of the vectors L1, 2 must be a centrosymmet-
ric vector and the other, a centroantisymmetrical vector.
It turns out that electrically active antimagnons can
exist even in magnetic crystals which do not exhibit the
linear static ME effect (for example, in hematite α-
Fe2O3 and centrosymmetric orthoferrites).

An important feature of new magnons (antimag-
nons) is that they are associated with oscillations at
exchange eigenfrequencies ωex which lay in the submil-
limeter region, since the total local magnetization vec-
tor M(r) does not take part in the oscillations. Excep-
tions to this can be provided by quasi-two-dimensional
systems, specially prepared superstructures, etc. Quite
naturally, the question arises as to whether there can
exist any other low-frequency dynamic effects directly
related to the ME and AFE interactions (this problem
was not considered in [6–10]). This paper aims to
answer this question by analyzing the magnetic struc-
tures of specific crystals.

We shall analyze natural oscillations of nuclear
spins excited by an ac electric field E(t). (The effect of
a static field on the NMR frequencies was studied pre-
viously in [12]). These oscillations are usually excited
by the application of an ac magnetic field, and the effect
is, therefore, called nuclear magnetic resonance (NMR)
[13]. For magnetic substances, the corresponding fre-
quencies lie in the radio-frequency region, 108–109 Hz
[14], which is much lower than the exchange frequen-
cies ωex = 1012 Hz. Thus, the resonance excitation of
oscillations of nuclear magnetic moments by an electric
field E(t) (nuclear magnetoelectric resonance, NMER)
can be attributed to low-frequency effects of spin
dynamics, in which we are interested.

Below, we calculate the hyperfine fields [caused by
E(t)] at nucleus sites for the following cases:

VLLP εijkL1iL2 jPk,=

Table 1.  Transformation coefficients corresponding to the
symmetry elements of space group Pmmm for the vectors L
and M

I 2x 2y

Mx +1 +1 –1

My +1 –1 +1

Mz +1 –1 –1

Lx –1 +1 +1

Ly –1 –1 –1

Lz –1 –1 +1
P

(i) ferromagnetic and antiferromagnetic phases of
two-sublattice single-position magnetic crystals pos-
sessing a center of symmetry, (ii) two-sublattice anti-
ferromagnetism in crystals without a center of symme-
try (as in KNiPO4), and (iii) four-sublattice antiferro-
magnetism in two phases (with a centrosymmetric
basis vector L as in hematite α-Fe2O3, and with a cen-
troantisymmetrical basis vector L as in Cr2O3).

The purpose of our calculations is to estimate the
amplitude of the field E(t) required for the observation
of NMER signals.

2. TWO-SUBLATTICE FERROMAGNETIC 
AND ANTIFERROMAGNETIC PHASES IN A 
CRYSTAL WITH A CENTER OF SYMMETRY

Consider a two-sublattice magnetic crystal belong-

ing to space group  = Pmmm with magnetic atoms
in positions 2i. Table 1 presents the coefficients of the
transformation of the components Mα and Lα (α = x, y,
z) by action of to the symmetry operation I, 2x, and 2y,
taken as the generators of this group. These data allow
one to write the magnetic terms of the thermodynamic
potential that are invariant under the symmetry opera-
tions of the group Pmmm:

(5)

where λL and λM are the exchange parameters and Kα
are the magnetic anisotropy constants. The equilibrium
values of components Mα, Lα, and Pα are determined by
minimizing Φ and depend on the type of equilibrium
magnetic structure. Below, we analyze two types of
such a structure: (a) the ferromagnetic structure with
M || z and Lz = 0 and (b) the antiferromagnetic structure
with L || z and Mz = 0. We restrict our consideration to
the so-called “equal-in-moduli” approximation [4]:

(6)

where M0 is the sublattice magnetization. In addition,
the NMR frequency is considered to be lower than the
electron oscillation frequencies. In this case, the varia-
tions of L and M will follow, in a quasi-equilibrium
manner, variations in the exciting field E(t) (due to ME
and AFE interactions). This allows one to find L and M
by minimizing the thermodynamic potential Φ.

D2h
1

Φ = 
1
2
--- λMM

2 λLL
2

Kx Mx
2

Lx
2

+( ) Ky My
2

Ly
2

+( )+ + +( )

–
1

2M0
---------- ε1LxMxPx ε2LxMyPy ε3LxMzPz+ +(

+ ε4LyMxPy ε5LzMxPz ε6LyMyPx+ +

+ ε7LzMzPx ) 1
2
---κ 1–

P
2 PE– MH,–+

L
2

M
2

+ 4M0
2
,=
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2.1. Ferromagnetic phase with M || z
This case corresponds to the conditions λM < 0 and

λL > 0, under which the minimization of the potential in
Eq. (5) yields only one magnetically active component
of the field Ez(t) related to the component of the antifer-
romagnetism vector:

(7)

Bearing in mind that only one component of the vector M
is nonzero (Mz = 2M0) and using Eqs. (2) and (7), we
find the components of sublattice magnetizations M1α
and M2α:

(8)

To analyze the effect of oscillation of the vectors M1
and M2 on the behavior of nuclear spins, one should
take into account the hyperfine interaction of the elec-
tronic Mj and nuclear mj sublattice magnetizations (j =
1, 2) [14]:

where A is the hyperfine interaction parameter and the
quantity

(9)

is the hyperfine field at the nucleus site on the jth sub-
lattice.

The static part Hn = AM0 determines the NMER fre-
quency coinciding with the NMR frequency:

(10)

The time-dependent component

(11)

is responsible for the excitation of oscillations of mj by
the field E(t). The ratio M(t)/M0 can be estimated from
the static (ME)E effect [15]. According to the data from
[15] for Cr2O3, this ratio for E = 105 V/cm is

(12)

Taking Hn ≈ 105 Oe [12], the value of δHn is estimated
to be

δHn ≈ 10 Oe. (13)

The same value of δHnj can be obtained in the case of
ac magnetic fields H(t) with an amplitude of 0.1 Oe and
a typical value of the enhancement factor η = 102 [14].

Lx t( )
κε3

λL λM– K1+
-------------------------------Ez t( ).=

M1x M2x–
1
2
---κε3 λL λM– Kx+( ) 1–

Ez t( ),= =

M1y M2y 0,= =

M1z M2z M0.= =

Φhfi A jM jm j,
j 1=

2

∑–=

Hnj AM j=

ωn γnAM0.=

δHnj t( ) AM j t( ) Hn

M j t( )
M0

-------------= =

M j t( )/M0 10
4–
.≈
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Smaller values of the amplitude of E(t) (104–103 V/cm)
will possibly suffice to detect an NMER signal. It is
worthwhile to notice that the variations of magnetiza-
tion and polarization in the static (ME)E and (ME)H

effects, respectively, depend on the magnitude of the
ME susceptibility α. Its typical value for antiferromag-
nets is 10–3 [16], so that an external electric field E =
104 V/cm creates the magnetization 4πM ≈ 0.03 G and
an external magnetic field H = 104 Oe produced the
electric polarization 4πP = 3 × 10–9 C/cm2. Generally,
the range of values of α is wide (10–6 to 10–2); however,
one should also take into account the temperature range
in which the ME effect occurs. For example, the ME
susceptibility of the antiferromagnet TbPO4 is the high-
est (≈10–2) at T ≈ 1.9 K and that of Cr2O3, at T ≈ 290 K.

2.2. Antiferromagnetic Phase
with L || z (λL < 0, λM > 0)

As is the case with a ferromagnetic phase, the com-
ponent Ez(t) is magnetically active and is related to the
component

(14)

There is only one nonzero component of the vector L,
namely, Lz = 2M0; therefore, as in Subsection 2.1, one
can find the components of the sublattice magne-
tizations:

(15)

Neglecting the distinctions between ε3 and ε5 and
between λL and λM, the hyperfine fields δHnj at the
nucleus sites can be estimated from Eqs. (11)–(13).
However, there is a significant distinction between the
cases considered in Subsections 2.1 and 2.2 due to the
second term in Eq. (14). The matter is that the ME inter-
action described by Eq. (1) is weak; therefore, the field
E(t) excites the electric subsystem more strongly than
the magnetic subsystem. This presents difficulties in
finding how to reach a high excitation level for mag-
netic subsystem without overheating the electric sub-
system. The presence of the second term in Eq. (14)
allows one to avoid this difficulty by exciting the mag-
netic subsystem using a magnetic field Hx(t) and
recording the electric signal related to Pz(t). For brev-
ity, this effect will be referred to as the combined
NMER.

Mx t( ) κε5Ez t( ) Hx t( )+[ ] / λM λL– Kx+( ).=

M1x M2x
1
2
--- κε3Ez t( ) Hx+[ ] / λM λL– Kx+( ),= =

M1y M2y 0,= =

M1z M2z– M0.= =
3
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3. TWO-SUBLATTICE ANTIFERROMAGNETISM 
IN CRYSTALS WITHOUT A CENTER

OF SYMMETRY

This case is analyzed using compound KNiPO4 as
an example. The crystal symmetry of this compound is
described by the space group Pna21. The symmetry ele-
ments nx, ay, and 21z (glide planes and screw axis) are
taken as the generators of this group; the corresponding
transformation coefficients for the vectors M and L are
given in Table 2. As in the preceding section, by using
the transformation coefficients, one can write the ther-
modynamic potential Φ that is invariant under the sym-
metry operations of this group. We draw attention to the
fact that Φ now contains contributions from both ME
and AFE interactions:

(16)

As shown experimentally in [17], the antiferromag-
netic ordering in KNiPO4 corresponds to the phase with
L || x. Within the equal-in-moduli approximation for

the sublattices (  =  = ), the minimization of
potential (16) yields the following expression for the
components of the vectors L and M induced by the field
E(t) [18]:

(17)

From Eqs. (14) and (17), in view of condition (6), it
follows that the component My in Eq. (17) is compara-
ble in magnitude to Mx in Eq. (14) for the antiferromag-
netic phase of a crystal with a center of symmetry,

Φ = 
1
2
--- λMM

2 λLL
2

Kz Mz
2

Lz
2

+( ) Ky My
2

Ly
2

+( )+ + +( )

–
1

2M0
---------- ε1LxMyPx ε2LxMxPy ε3LyMxPx+ +(

+ ε4LzMzPy ) 1
2M0
---------- δ1LxLzPx δ2LzLyPy+( )–

+
1
2
---κ 1–

P
2 PE– MH.–

M1
2

M2
2

M0
2

Lx 2M0, Lz κδ1Ex t( )/Kz,= =

My κε1Ex t( ) Hy t( )+[ ] / λM λL– Kz+( ),=

Ly Mx Mz 0.= = =

Table 2.  Transformation coefficients corresponding to the
symmetry elements of space group Pna21 for the vectors L,
M, and E 

nx ay 21z

Ey, Mx +1 –1 –1

Ex, My –1 +1 –1

Mz –1 –1 +1

Ez, Lx +1 +1 +1

Ly –1 –1 +1

Lz –1 +1 –1
P

whereas the magnitude of Lz in Eq. (17) is much greater
than Lx in Eq. (7):

(18)

For substances with the Néel temperature close to room
temperatures (TN ≈ 300 K), we have

(19)

This means that the time-dependent hyperfine field at
the nucleus site with an amplitude δHn ≈ 10 Oe, as in
Eq. (13), can be achieved in an ac electric field E(t) with
an amplitude as low as 102 V/cm. On the other hand, the
component My can be excited by an ac magnetic field
Hy(t), and the electrical signal can be recorded; i.e., one
can use a combined NMER, which was discussed in the
previous section (see Subsection 2.2)

4. FOUR-SUBLATTICE ANTIFERROMAGNETS 
Cr2O3 AND α-Fe2O3 

Symmetry of these crystals is described by the space

group  ( ). Magnetic ions occupy fourfold
position 4c with local symmetry{3}.The exchange
magnetic structures are characterized by three antifer-
romagnetic vectors La, Lb, and Lc and one ferromag-
netic vector M:

(20)

The expression for the thermodynamic potential is
rather cumbersome, and we conveniently split it into
several parts:

(21)

where

(22)

(23)

Lz t( )
Lx t( )
------------

λL

Kz

------.≈

λL

Kz

------ 10
3
.≈

D3d
6

R3c

La M1 M2– M3– M4,+=

Lb M1 M2 M3– M4,–+=

Lc M1 M2– M3 M4,–+=

Ma M1 M2 M3 M4.+ + +=

Φ Φ0 Φhf Φab Φac,+ + +=

Φ0
1
2
--- λaLa

2 λbLb
2 λ cLc

2 λMM
2

+ + +( )=

+
1
2
---κP

2 PE– MH,–

Φhf
1

4M0
---------- εm1 Lc

x
M

x
P

y
Lc

x
M

y
P

x
Lc

y
M

x
Px+ +([–=

– Lc
y
M

y
P

y ) εm2 Lc
x
M

x
P

z
Lc

y
M

y
P

z
+( )+

+ εm3 Lc
z
M

x
P

x
Lc

z
M

y
P

y
+( )

+ εm4 Lc
x
M

z
P

x
Lc

y
M

z
P

y
+( ) εm5Lc

z
M

z
P

z
+ ] ,
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(24)

(25)

The inessential terms describing magnetic anisotropy
are omitted.

The equilibrium values of the components of vec-
tors Lj and M in the presence of a field E(t) were calcu-
lated for two types of antiferromagnetic structures
inherent in a centrosymmetric crystal of α-Fe2O3 and a
centroantisymmetrical crystal of Cr2O3.

4.1. NMER in Hematite (α-Fe2O3) (λa < 0, λb, c > 0)

The exchange magnetic structure of hematite is
determined by the vector La. For definiteness, we
restrict ourselves to the magnetic state with La || z,
which is realized below the Morin point. Minimizing Φ
of Eq. (21) yields the following components of M
and Lj:

(26)

(In the equal-in-moduli model, λb, c  λb, c – λa.)

These components are close to Lx(t) in Eq. (7) in
order of magnitude; therefore, we can estimate the
time-dependent component δHnj of the hyperfine field
using Eqs. (11)–(13). As follows from Eqs. (21)–(25), a
combined NMER in hematite does not occur.

4.2. NMER in Cr2O3 (λc < 0, λa, b > 0)

The exchange magnetic structure of Cr2O3 is deter-
mined by the vector Lc || z. Minimizing Φ in Eq. (21)
yields the following components of Lj and M:

Φab
1

4M0
---------- εb1 La

z
Lb

x
P

x
La

z
Pb

y
P

y
+( )[–=

+ εb2 La
x
Lb

z
P

x
La

y
Lb

z
P

y
+( ) εb3 La

x
Lb

x
P

z(+

+ La
y
Lb

y
P

z ) εb4La
z
Lb

z
P

z
+ ] ,

Φac
1

4M0
---------- εc1 La

x
Lc

x
P

x
– La

y
Lc

y
P

x
+([–=

+ La
x
Lc

y
P

y
La

y
Lc

x
P

y
+ ) εc2 La

x
Lc

y
P

z(+

– La
y
Lc

x
P

z ) εc3 La
z
Lc

y
P

x
La

z
Lc

x
P

y
–( )+

+ εc4 La
x
Lc

z
P

y
La

y
Lc

z
P

y
–( ) ] .

Mx = My = Mz = 0, La
x
 = La

y
 = 0, La

z
 = 4M0,

Lb
x κεb1Ex t( )/λb, Lb

y κεb1Ey t( )/λb,= =

Lb
z κεb4Ez t( )/λb, Lc

x κεc3Ey t( )/λ c,= =

Lc
y κεc3Ex t( )/λ c, Lc

z
0.= =
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(27)

(In equal-in-moduli model, λa, b  λa, b – λc.) The cor-
responding time-depending component δHnj of the
hyperfine field at the nucleus site can again be calcu-
lated using Eqs. (11)–(13); however, in contrast to
hematite, the combined NMER can be used for Cr2O3.

CONCLUSIONS

Thus, the symmetry analysis of magnetic structures
of several types shows that the most suitable objects for
the observation of NMER signals are structures similar
to KNiPO4. The main feature of such a structure is that
it does not possess a center of symmetry. This essen-
tially extends the variety of invariants in the thermody-
namic potential describing the magnetic and electrical
properties of such crystals. The invariants of the type
LαLβPγ, containing the components Lα and Lβ belong-
ing to the same vector L, are of prime importance. Such
invariants are responsible for rotation of the vector L
due to the appearance of electric polarization Pγ = κEγ
induced by the field E. It is important that such a rota-
tion is not related to changes in the exchange structure
and, hence, does not increase the exchange energy. This
rotation increases only the magnetic anisotropy energy,
but this increase is approximately 103 times smaller
than the corresponding increase in the exchange
energy; therefore, the angles of rotation of magnetic
moments of the sublattices become larger to the some
extent. Therefore, the application of alternating electric
fields with quite a moderate amplitude (102 V/cm)
makes it possible to obtain NMER signals with a sig-
nal-to-noise ratio typical of NMR. This is an essential
advantage of the dynamic effect caused by the AFE
interaction VLLP of Eq. (4) over the static ME effect.

Another possibility to make use of the dynamic
magnetoelectric properties is related to the effect which
we referred to as the combined NMER. This type of
NMER implies the excitation of nuclear spins by apply-
ing an ac magnetic field and the recording of the elec-
tric signal associated with the electric polarization vec-
tor. This possibility allows one to overcome the prob-
lem of overheating of a sample in an ac electric field of
a large amplitude.

In closing, we should point out that, everything on
the formulas obtained for NMER appears quite promis-
ing. As far as the experimental difficulties are con-
cerned, they require discussion by experimenters.

Lb
x
 = Lb

y
 = Lb

z
 = 0, Lc

x
 = Lc

y
 = 0, Lc

z
 = 4M0,

Mx κεm3Ex t( )/λb, My κεm3Ey t( )/λb,= =

Mz κεm5Ez t( )/λb, La
x κεa4Ey t( )/λa,= =

La
y κεa4Ex t( )/λa, Lc

z
– 0.= =
3
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Abstract—The dependence of the stability of a magnetic spiral domain in a film on the parameters of the film
and its domain structure and on an external magnetic field is considered within a phenomenological model. The
model allows one to explain a number of experimentally observed properties of dynamic spiral domains result-
ing from the process of self-organization of domains and domain walls in an iron-garnet film placed in an exter-
nal ac magnetic field. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When an iron-ferrite film with perpendicular anisot-
ropy is placed in an ac magnetic field (of frequency ω ~
102–105 Hz) normal to the film plane, the domain struc-
ture of the film becomes highly excited [1–3]. In this
state, self-organization of moving domain walls occurs,
bringing about the formation of various stable dynamic
domain structures (DDSs), such as spiral domains
(SDs) and systems of concentric ring domains. Each
type of DDS is characterized by its region of existence,
i.e., the ranges of magnetic-field amplitudes and fre-
quencies over which the structure is stable. Further-
more, it has been found that the formation of a DDS
depends on the parameters of the domain structure and
material [4]. Domain structures superficially similar to
DDSs (spiral and ring DDSs) but existing in a dc mag-
netic field were experimentally investigated in detail in
[5, 6]. In particular, it was reported in [5] that SDs can
also exist in the absence of an external magnetic field.

Up to now, DDSs have not been adequately studied
theoretically. A dynamic system of ring domains was
theoretically investigated in [7, 8]. The properties of
SDs have been investigated theoretically only in the
static state [9, 10]. In [11], spiral structures (vortices)
were treated as defects in magnetically ordered media.
Within a micromagnetic approach, it was shown that in
the static state, the vortices in two-dimensional ferro-
magnets are due to exchange interaction. In this paper,
we investigate the dynamic behavior of SDs in a film
and the effect of an ac magnetic field and of various
parameters of the film and of the domain structure on
the SD stability.

2. MODEL OF THE SPIRAL DOMAIN

We will not discuss the initial process of the SD for-
mation, because our aim is to study the stability of the
SD. It is probable that the SD is formed from a stripe
1063-7834/03/4504- $24.00 © 20691
domain having one freely moving end. When moving,
the end is subjected to gyrotropic force and the domain
is curved into a spiral. In this paper, we assume that an
SD with given initial geometric parameters (such as the
outer radius and the pitch of the spiral) has already
formed and investigate the time dependence of the
outer radius of the spiral for various parameters of the
film and external magnetic field.

The geometry of the problem is shown in Fig. 1. The
magnetization in the domains is normal to the plane of
the film and is reversed in a jump in going through a
domain wall of zero thickness (in Fig. 1, the white and
grey domains have opposite magnetization directions).
This approximation is valid for films of a high quality
factor Q = K/2πM2, where K is the uniaxial magnetic
anisotropy constant and M is the saturation magnetiza-
tion. Therefore, the magnetostatic energy of space
charges is ignored and the uniaxial-anisotropy and
exchange-interaction energies are included effectively
in the surface energy density σ of the domain walls.
Experimentally, SDs were observed to have the shape
of an Archimedean spiral; deviations from this shape
took place only at the periphery of an SD and were pro-

R
P

R

R

Fig. 1. Geometry of the problem. The radius R of the spiral
increases in stripe-domain winding and decreases in its
unwinding.
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duced, perhaps, by the SD surroundings. In calcula-
tions, we assumed the spiral domain walls to be
Archimedean spirals of pitch P.

Within these approximations, the SD energy [in
units of (2πM)2h3] in an infinite film was found in [9]
to be

(1)

where

(2)

is the Zeeman energy,

(3)

is the domain-wall energy,

(4)

is the long-range part of the magnetostatic energy, and

(5)

is the short-range part of the magnetostatic energy.
Here, we introduced the following notation:
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h is the film thickness, r = R/h is the reduced outer
radius of the SD, H = H0/4πM2 is the reduced amplitude

of the external magnetic field, m =  is the reduced
average magnetization of the spiral, σ is the surface
energy density of domain walls, l = σ/4πM2h is a char-
acteristic length of the material (normalized to the film
thickness), p = P/h is the reduced pitch of the spiral, and
β = 2πh/P is the inverse pitch (wave vector) of the
spiral.
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Experiment shows [1–3] that application of an ac
magnetic field H~ = H0sinωt primarily affects the outer
radius of the dynamic SD. We derived an equation
describing the dynamics of this geometric parameter
under the assumption that the SD is a stripe domain (of
uniform width) curved into a spiral. In this case, the
outer radius of the SD is determined only by the length
L of the stripe domain. The SD length is varied as the
outer end of the stripe domain moves along a trajectory
described by the equation of an Archimedean spiral.
This process is accompanied by a change in the SD
energy due to energy dissipation in the domain walls of
the outer end of the stripe domain:

(8)

where v  = dL/dt = (∂L/∂r)dr/dt is the velocity of the
outer end of the stripe domain, k = 2πph/µ is the coeffi-
cient of viscosity, and µ is the mobility of domain walls.

The final equation of motion of the outer radius of
the SD was found to be

(9)

where k* = k(1 + β2r2(t)) is the effective coefficient of
viscosity.

We solved Eq. (9) numerically using the fourth-
order Runge–Kutta method for a given initial SD
radius. The following parameters were varied: the
reduced pitch p of the spiral, the characteristic length l,
and the reduced amplitude H and frequency ω of the
external field. Our main concern was to investigate the
effect of these parameters on the behavior of the SD and
its geometric parameters.

3. RESULTS AND DISCUSSION

First, we performed calculations for the static case
(H = const); the results obtained are identical to those
presented in [9]. In particular, we found the field H (col)

at which the SD collapses and the field H (∞) (H (col) >
H (∞) > 0) at which the SD radius tends to infinity (here
and henceforth, the SD radius is taken to mean its max-
imum outer radius). At certain values of the pitch of the
spiral and the characteristic length of the material of the
film, the SD radius was found to be finite at H = 0. In
[10], it was shown theoretically that the SD can exist in
the absence of an external magnetic field, but with the
energy minimum being less pronounced. Figure 2a
shows the dependence of the SD energy on its outer
radius for p = 1.9 and l = 0.2 in a zero external field. It
can be seen that the SD energy is minimum at the SD
radius r0 ≈ 55. A small change in the pitch of the spiral
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causes the SD radius to tend to infinity in a zero mag-
netic field (Fig. 2b).

In the p–l plane, there are two regions where the
dependence of the SD energy on outer SD radius is dif-
ferent at H = 0. The curve separating these regions is
shown in Fig. 2c. The SD radius is infinite in region I
and finite in region II. In terms of our model, the larger
the SD radius, the higher the SD dynamic stability.
Indeed, the SD radius can be decreased only through
removal of the outer turn of the stripe domain from the
spiral. For an SD of infinite radius, a decrease in radius
will last for an infinite length of time; i.e., such an SD
will be stable.

There is a relation between the dynamic behavior of
the SD in an ac magnetic field and the dependence of
the SD energy on its outer radius at H = 0. Indeed, the
average value of an ac field over an oscillation period is
zero; therefore, at small field amplitudes, the dynamic
behavior of the SD is characterized by the minimum of
the SD energy at H = 0. Figure 3 shows the behavior of
the SD in an ac magnetic field in the cases where the
initial SD radius is smaller (Fig. 3a) and larger (Fig. 3b)
than the equilibrium radius r0 in Fig. 2a for a film cor-
responding to region II in Fig. 2c. It can be seen that the
SD radius averaged over an oscillation period relaxes to
r0 ≈ 55. For films corresponding to region I in Fig. 2c,
the SD radius tends to infinity (Fig. 3c).

The amplitude of oscillations of r increases with
increasing amplitude of the external ac magnetic field.
Therefore, for films corresponding to region II, the
amplitude of SD radius oscillations will become equal
to r0 at a certain field amplitude and the SD will col-
lapse. Thus, an increase in the field amplitude can be a
destabilizing factor for dynamic SDs. In films corre-
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0.18 0.20 0.22 0.24 0.26 0.28 l
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(b)
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E

Fig. 2. Dependence of the SD energy E (in relative units) on
the reduced radius r of the spiral with (a) p = 1.9 and (b) 2.0
in a film with l = 0.2; (c) regions of different SD stable states
specified by reduced pitch p of the spiral and the character-
istic length l of the material of the film.
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sponding to region II in Fig. 2c, SDs possess lower
dynamic stability because of finiteness of their radius.

On the other hand, calculations show that the ampli-
tude of oscillations in r decreases with increasing fre-
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Fig. 3. Time dependence of the reduced radius r of the SD
in an ac magnetic field of amplitude H = 0.1 and frequency
ω = 300 Hz for an SD state corresponding to region II in
Fig. 2c (l = 0.2, p = 1.9) with the initial radius (a) smaller
and (b) larger than the equilibrium radius r0 at H = 0 in
Fig. 2a and (c) for an SD state corresponding to region I in
Fig. 2c (l = 0.2, p = 2.0).



694 MAL’TSEV et al.
quency of the ac magnetic field; therefore, an increase
in the field frequency can be a stabilizing factor. Figure 4
shows the field-frequency dependences of the maxi-
mum field amplitudes at which the SD is still stable. It
can be seen that as the field frequency is increased, the
SD will be stable at progressively higher field ampli-
tudes. A qualitatively similar frequency dependence of
the upper limit of the field amplitude range within
which the SD exists was observed experimentally in [2]
at low frequencies. It is also seen from Fig. 4 that larger
SDs are more stable, because they can exist in higher
fields than can smaller SDs. This prediction is borne out
by experiments. In [3], for example, large long-lived
spirals were reported to be observed near the upper
limit of the field amplitude range of existence of
dynamic SDs. The dependences presented in Fig. 4 also
suggest that, at a fixed field amplitude, the outer SD
radius decreases with increasing frequency.

Calculations also revealed that the pitch of an SD
depends on the field frequency. Figure 5 shows the fre-
quency dependence of the maximum SD pitch above
which the SD collapses. It can be seen that the domain
structure changes as the field frequency is increased.
This dependence agrees qualitatively with the experi-
mental data presented in [2]. Our calculations presented
in Figs. 4 and 5 were carried out for the same parame-
ters of the material and domain structure as those of the
samples studied in [2]. The calculated and experimen-
tally measured quantities are of the same order of mag-
nitude. However, the frequency dependence presented
in Fig. 4 is steeper than the experimental one, which
can be due to the fact that the SD has no surroundings
in our model.

The influence of the magnetic-field frequency on the
stability and pitch of an SD can be explained by the fact
that, as the frequency increases, the amplitude of oscil-

1.0

0.8

0.6

0.4

0.2

100 140 180 220 260 300
f, Hz

H

R = 80
R = 60
R = 40

Fig. 4. Field-frequency dependence of the upper limit of the
field-amplitude range within which the SD exists for vari-
ous values of the initial SD radius; l = 0.2 and p = 1.9.
P

lations of r decreases and the minimum value of the
oscillating SD radius increases; hence, the SD becomes
more stable. On the other hand, the velocity of the outer
SD end and, hence, the frictional force increase with
increasing field frequency. Since the energy gained by
the system in an oscillation period does not change, the
outer SD end has to travel a shorter distance for this
energy to be dissipated. Therefore, the domain structure
is rearranged so that the outer SD end moves along an
arc of a smaller radius (i.e., along a spiral with a smaller
pitch), because in this case the length of a turn of the
spiral decreases.

4. CONCLUSIONS

Thus, the results obtained within our phenomeno-
logical model are in qualitative agreement with the
experimental data, which argues for the validity of the
assumptions made. It has been found that the dynamic
stability of the SD becomes higher with increasing fre-
quency of the ac magnetic field but becomes lower with
increasing field amplitude. This effect of the field
parameters on the SD stability can be explained by the
dependence of the oscillation amplitude of the outer SD
radius on these parameters. It is worth noting that the
dynamic stability of the SD is determined by its static
stability in the absence of an external magnetic field
and the static SD stability, in turn, depends on the
parameters of the domain structure and the material of
the film.
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Abstract—The electromagnetic-wave reflectivity of the surface of an insulating cubic-ferromagnet (ferrite)
plate is calculated analytically and numerically with allowance for spin-wave damping. The frequency and
magnetic-field dependences of the reflectivity are found at the orientational phase transition point and in the
vicinity of this point for various values of the plate thickness. It is shown that the reflectivity exhibits anomalous
behavior when the dynamic magnetic permeability becomes equal to the dielectric constant, as well as when
dimensional resonances occur for electromagnetic or acoustic waves or ferromagnetic resonance takes place.
At frequencies below the magnetoelastic gap in the quasi-spin-wave spectrum, the reflectivity may have anom-
alously low (down to zero) or anomalously high (up to unity) values. Such frequencies can lie in the microwave
region. © 2003 MAIK “Nauka/Interperiodica”.
It was first shown theoretically in [1, 2] that the elec-
tromagnetic-wave (EMW) reflectivity of the surface of
a semi-infinite insulating cubic ferromagnet (ferrite)
can be controlled over a wide frequency range, up to a
few gigacycles (microwave region), and its values can
be varied from unity (total wave reflection) to zero
(total absorption) by changing external parameters,
such as temperature, magnetic field, and pressure. Such
a behavior of the EMW reflectivity is associated with
the anomalous change in the dynamic magnetic perme-
ability near the orientational phase transition (OPT)
point and various resonances. In [3], the EMW reflec-
tivity of the surface of a semi-infinite insulating easy-
plane antiferromagnet was investigated and it was
shown that near the OPT point, the frequency range
over which an anomalous decrease in reflectivity
occurs becomes larger due to the exchange-induced
increase in the magnetoelastic gap in the quasi-spin-
wave spectrum. In [4], the reflectivity of EMWs inci-
dent on a semi-infinite conducting cubic ferromagnet or
on the insulating easy-plane antiferromagnet–nonmag-
netic- metal system was calculated theoretically in the
gigahertz range and experimental data were presented
on the EMW reflection from the surfaces of cobalt fer-
rite and antiferromagnetic FeBO3 in the frequency
range 8–12 GHz. It was shown that the reflectivity of a
good ferrite conductor can be decreased by 50% near
ferromagnetic resonance. The reflectivity of the insulat-
ing antiferromagnet–nonmagnetic-metal system also
exhibits dips near quasi-ferromagnetic resonance. With
properly adjusted demagnetizing factors and spin-wave
damping coefficient, the calculations agree closely with
the experimental data.

In this paper, we analytically and numerically calcu-
late the EMW reflectivity of the surface of an insulating
1063-7834/03/4504- $24.00 © 20696
cubic-ferromagnet plate both far from and near the
OPT point with allowance for spin-wave damping.

Let us consider a cubic-ferrite plate occupying the
region 0 < z < d. In the ground state, the magnetization
of the plate is M || z || H0, where H0 is an external dc
magnetic field. A linearly polarized monochromatic
electromagnetic wave h, e with hx = h0exp(ikz – iωt)
and ey = –h0exp(ikz – iωt)is incident normal from vac-
uum onto the z = 0 surface of the plate. In order to cal-
culate the EMW reflectivity of the surface of the mag-
net, we should solve the set of coupled equations
describing the propagation of interacting electromag-
netic, elastic, and spin waves in the magnet. This set
includes the elasticity equations, Maxwell’s equations,
and the Landau–Lifshitz equation for the magnetization
[5, 6]:

(1)

where ρ is the density of the material; U is the displace-
ment vector; σik = ∂F/∂Uik is the stress tensor; F is the
free-energy density; Uik is the strain tensor; H and E are
the magnetic and electric fields, respectively; B = H +
4πM is the magnetic induction; c is the speed of light in
vacuum; ε is the dielectric constant of the magnet; M is
the magnetization; g is the gyromagnetic ratio; and τ1
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and τ2 are the transverse and longitudinal relaxation
times, respectively.

The free-energy density F of the magnet has the
form [7]

(2)

where Fm , Fme , and Fe are the magnetic, magnetoelas-
tic, and elastic energy densities, respectively; Hd is the
demagnetizing field; λ is the Lagrange multiplier,
which is introduced to take into account the constancy
of the magnitude of the magnetization vector M; m =
M/M0; M0 is the saturation magnetization; α is the
exchange constant; K1 is the first anisotropy constant;
Bi are the magnetostriction constants; and Cik are the
elastic moduli.

We solve the set of equations (1) in the small-ampli-
tude approximation by assuming that all parameters of
the system vary as

(3)

where A0 is the equilibrium value and a is a small devi-
ation from this value.

Using representation (3) and linearizing Eqs. (1), we
obtain a set of equations describing the propagation of
small-amplitude waves in the ferromagnet:

(4)

where a± = ax ± iay are the circular components, µ± =
1 + 4πχ± is the dynamic magnetic permeability, and

 = C44k2/ρ is the square of the frequency of a nonin-
teracting elastic wave. The dynamic magnetic suscepti-
bility has the form
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where ωsk = ω0 + ωme + gαM0k, ω0 = ωA + ωH =
g(2K/M0 + H) is the activation frequency of the spec-
trum of noninteracting spin waves, H = H0 – 4πM0 is the

internal magnetic field, K = K1 + /(C11 – C12) –

/2C44 is the anisotropy constant renormalized due to

magnetostriction [7], ωme =  is the magne-
toelastic frequency gap, γ = 1/gτM0 is the dimension-
less spin-wave damping constant, and 1/τ = 1/τ1 + 1/τ2.

The dispersion relation following from Eqs. (4) and
relating the wave vectors of waves supported by the fer-
rite to their frequency has the form

(6)

where

ζsa = , and ζes = 4π are the wave vectors of
noninteracting spin, elastic, and electromagnetic
waves, the velocity of a transverse acoustic wave, and
dimensionless magnetoelastic and electromagnetic-
wave–spin interaction constants, respectively.

The six roots of dispersion equation (6) are wave
numbers corresponding to six combined wave modes
that can propagate in the ferrite. The amplitudes of
these wave modes and their relation to the amplitude of
the incident EMW can be found by solving the equa-
tions that follow from the boundary conditions and
Eq. (6).

The set of boundary conditions for the ferrite plate
includes the conditions of continuity of the normal
components of the magnetic induction and the electric
induction and of the tangential components of the elec-
tric- and magnetic-field strengths at the magnet bound-
aries, as well as the condition that the stress and the
derivative of the magnetization be zero at these bound-
aries [5, 6]. Let hR, eR be the reflected wave propagating
in the region z < 0, and let hd, ed be the transmitted wave
propagating in the region z > d. We will denote the
waves propagating along the inward normal to the z = 0
surface in the plate by hi± and the waves propagating in

the opposite direction, by . In this notation, the
boundary conditions at the boundaries of the plate have
the following form.
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(7)

At z = d,
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Fig. 1. Frequency dependence of the EMW reflectivity of
the surface of a ferrite plate near the OPT point for H =
4050 Oe, K = –1 × 106 erg/cm3, B2 = 1 × 107 erg/cm3, and
γ = 0.01. The plate thickness d = 0.1 cm. Insets show the
reflectivity anomalies due to dimensional resonances of
acoustic waves.
P

In deriving Eqs. (7) and (8), we used Eqs. (4) to
express the components of the magnetization, displace-
ment vector, and electric-field strength in terms of the
components of the magnetic field.

Using boundary conditions (7) and (8) and disper-
sion relation (6), one can find the EMW reflectivity of
the surface of the ferrite plate:

(9)

where R+ and R– are the reflectivities of the ferrite plate
for right- (RCP) and left-handed circularly polarized
(LCP) incident waves, respectively.

In general, the expression for reflectivity (9) derived
from Eqs. (6)–(8) is too cumbersome to be analyzed.
For this reason, we found the EMW reflectivity of the
surface of the ferrite plate by using numerical methods.

First, from dispersion relation (6), we numerically
calculated the wave numbers ki± of the RCP and LCP
wave modes supported by the magnet. Then, the wave
numbers ki± are substituted into Eqs. (7) and (8) and
from these equations the amplitudes of the RCP and
LCP reflected waves are found. With these amplitudes,
the EMW reflectivity is calculated from Eq. (9).

The numerical calculations are performed using the
following parameter values typical of cubic ferrites:

(10)

The results for circularly polarized EMWs are pre-
sented in Figs. 1–7. The reflectivity of linearly polar-
ized EMWs can be found using Eq. (9).

Before proceeding to a discussion of the results, we
note that when EMWs propagate through the ferrite
plate, standing waves arise in it. In addition to standing
EMWs, standing elastic and spin waves can also arise
in the plate due to the electromagnetic-wave–spin and
magnetoelastic interactions. The conditions of exist-
ence of standing electromagnetic, elastic, and spin
waves can be found using the results of the investiga-
tion performed in [8] (see [8, Fig. 1]). As is known, the
minimum frequency of standing waves is determined
by the condition

(11)

where ki±(ω) are the roots of dispersion relation (6).
When conditions (11) are met, the frequency depen-
dence of the reflectivity can exhibit anomalies associ-
ated with dimensional resonances. By solving disper-
sion relation (6) graphically [8], we arrive at the follow-
ing results.
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In the region ω @ ωM + ωs0 (ωM = 4πgM0, ωs0 =
ωsk(k = 0)), the first resonances can occur at the fre-
quencies

(12)

In this frequency range, we have S±(ω) ≈ St and µ±(ω) ≈
1. In Eqs. (12), the first frequency corresponds to the
appearance of standing RCP and LCP electromagnetic
waves; the second frequency, to standing RCP and LCP
elastic waves; and the third frequency, to standing spin
waves.

In the region ωM + ωs0 @ ω @ ωs0, dimensional res-
onances occur at the frequencies

(13)

Here, we can also put S±(ω) ≈ St. In this frequency
range, RCP electromagnetic waves cannot propagate
and the magnetic permeability µ–(ω) depends strongly
on frequency [see below, Eq. (15)]. The permeability
µ−(ω) can be estimated approximately as µ–(ω) ≈ (ωM +

ω πc/ εµ± ω( )[ ] 1/2d , ω πS± ω( )/d ,≈ ≈
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Fig. 2. Same as in Fig. 1, but for the plate thickness d =
1 cm.
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2ωs0)/ω. In Eqs. (13), the first frequency corresponds to
the appearance of standing LCP electromagnetic waves
over the plate thickness; the second frequency, to stand-
ing RCP and LCP elastic waves; and the third fre-
quency, to standing spin waves. Thus, in this frequency
range, there are no dimensional resonances for RCP
electromagnetic waves.

Finally, in the region ω ! ωs0, the first dimensional
resonances occur at the frequencies

(14)

In this frequency range, the permeability is virtually
frequency independent and equal to µ±(ω) ≈ (ωs0 +
ωM)/ωs0, whereas the velocities S±(ω) of RCP and LCP
elastic waves, on the contrary, can depend strongly on
frequency. Both near and far from the OPT point, we
have S±(ω) ≈ St. At the OPT point, the velocities of
quasi-elastic waves can be approximated by the expres-

sions [8] S+ ≈  and S– ≈ . In this
case, Eqs. (14) can be rewritten as

(14a)
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Fig. 3. Frequency dependence of the EMW reflectivity of
the surface of a ferrite plate at the OPT point for H =
4000 Oe, K = –1 × 106 erg/cm3, B2 = 1 × 107 erg/cm3, and
γ = 0.01. The plate thickness d = 0.1 cm.
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The first frequency in Eqs. (14) corresponds to the
appearance of standing RCP and LCP electromagnetic
waves in the plate, while the second frequency in
Eqs. (14) and (14a) corresponds to standing RCP and
LCP elastic waves, which become quasi-elastic at the
OPT point [8]. For the parameter values in Eq. (10) typ-
ical of ferrite and for K = –106 erg/cm3 and H ≈
4050 Oe, we have µ±(ω) ≈ 1.2 × 102, while for H =
4000 Oe [the OPT point, at which ω0 = ωA + ωH =
g(2K/M0 + H) = 0], we have µ±(ω) ≈ 1.3 × 104.

At frequencies ω ≈ ωM + ωs0 and ω ≈ ωs0, the condi-
tions of dimensional resonances become significantly
more complicated, because the strong interaction
between waves of different types heavily affects the
dispersion relations of combined waves, especially in
the case of RCP waves (see [8, Fig. 1]). At these fre-
quencies, as well as at ω ≈ 0 (at the OPT point), the cou-
pled electromagnetic and magnetoelastic wave modes
cannot be separated into electromagnetic, elastic, and
spin wave modes.
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Fig. 4. Same as in Fig. 3, but for the plate thickness d =
1 cm.
PH
Numerical calculations show that at high frequen-
cies (ω > 107–109 s–1 for the parameter values in

Eq. (10) typical of ferrite), the term  in the
denominator in Eq. (5) for the magnetic susceptibility
can be omitted and the spatial dispersion can be
neglected in the expression for the frequency ωsk. These
approximations correspond to the case where the
boundary conditions on the magnetization and elastic
stresses are ignored. In this case, instead of the compli-
cated problem of solving the set of coupled equations (1),
it will suffice to solve the electrodynamic problem with
the effective permeability µ±. According to Eq. (5), this
permeability can be represented in the form

(15)
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Fig. 5. Magnetic-field dependence of the EMW reflectivity
of the surface of a ferrite plate for K = 1 × 105 erg/cm3, B2 =

1 × 107 erg/cm3, and γ = 0.01. The plate thickness d =
0.1 cm. The EMW frequency ω is (1) 109, (2) 1010, (3) 1011,
and (4) 1012 s–1.
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It follows that in the frequency range

(16)

where ω1, 2 = [2ωs0 + ωM 

]/2, the real part of the per-
meability for RCP electromagnetic waves is negative
and such waves are not supported by the ferromagnet.

By solving the electrodynamic problem with the
permeability given by Eq. (15), the ratios of the ampli-
tudes of the reflected waves to the amplitudes of the
incident waves can be found to be

(17)

where k± = . Using Eqs. (15) and (17), we find
the EMW reflectivity defined by Eq. (9):

(18)

where µ1± = (  + )/2, µ2± = (  –

)/2,  = , and  = . This
analytical expression was used to test the computer
program for numerical calculations of the EMW reflec-
tivity.

Figures 1–4 show the frequency dependences of the
reflectivity for two values of the plate thickness. Fig-
ures 1 and 2 correspond to the case where the ferrite is
near the OPT point, and Figs. 3 and 4 correspond to the
ferrite at the OPT point.

It is seen from Figs. 1a and 2a that near the OPT
point, there are three characteristic ranges in the fre-
quency dependence of the reflectivity for RCP electro-
magnetic waves. At high frequencies (ω > 1011 s–1), the
reflectivity exhibits a series of alternating maxima and
minima, which is typical of the case where dimensional
EMW resonances take place in a plate. The frequency
corresponding to the first dimensional resonance can be
calculated from Eq. (12). For the parameter values in
Eq. (10) and for K = –106 erg/cm3 and H = 4050 Oe
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(corresponding to Figs. 1, 2), we have ωM + ωs0 ≈ 1.2 ×
1011 s–1 and ωs0 ≈ 1 × 109 s–1. For a plate d = 0.1 cm
thick, conditions (12) are met at ω ≈ 3 × 1011 s–1, and
for d = 1 cm, at ω ≈ 3 × 1010 s–1. In the latter case, the
frequency of the first resonance falls within the range
[defined by Eq. (16)] where RCP electromagnetic
waves cannot propagate; therefore, dimensional reso-
nances will appear only above the upper limit of the fre-
quency range in Eq. (16). These estimates correlate
well with Figs. 1a and 2a. When the plate thickness is
large, the dimensional resonances do not appear at high
frequencies; thick plates can be considered semi-infi-
nite for high-frequency EMWs. A more detailed analy-
sis revealed that the reflectivity of thick plates also
exhibits oscillations at high frequencies, but the ampli-
tude of the oscillations is very small.

In the frequency range of Eq. (16) (ω ~ 109–1011 s–1),
the reflectivity of a plate depends heavily on its thick-
ness. At small plate thicknesses, we can expand the sine
and exponential in the numerator of Eq. (18) into a
power series and keep only the first terms. In this case,
the reflectivity becomes proportional to the square of
the plate thickness. The effect of the plate thickness on
the reflectivity is clearly demonstrated in Figs. 1a and
2a. For RCP electromagnetic waves, the dimensional
resonances do not occur in the frequency range of
Eq. (16), as can be seen from Eq. (13). This conclusion
is supported by numerical calculations (Fig. 2a). For
low spin-wave damping and large plate thicknesses, the
reflectivity of RCP electromagnetic waves is close to
unity and virtually does not depend on frequency in the
frequency range of Eq. (16) (Fig. 2a).

As the frequency range of Eq. (16) is approached
both from below and from above, the reflectivity of
RCP waves increases sharply. This increase can be
explained as follows. Within the frequency range of
Eq. (16), the real part of the permeability is negative for
RCP waves. Below the lower limit of this range, the real
and imaginary parts of the permeability for RCP waves
are positive and increase sharply as the frequency ωs0 =
ω0 + ωme is approached. In this case, according to
Eq. (18), the reflectivity of RCP waves considerably
increases, up to unity for low spin-wave damping. As
the upper limit of the frequency range in Eq. (16) is
approached from above, the real and imaginary parts of
the permeability of RCP waves decrease sharply. How-
ever, as follows from Eq. (8), the reflectivity of RCP
waves also increases in this case.

At still lower frequencies (ω < 109 s–1), the plate
becomes transparent for EMWs, because the wave-
length λ ~ c/ω at such frequencies is larger than the
plate thickness (Figs. 1, 2). As the thickness of the plate
increases, the transparency region shifts toward lower
frequencies (cf. Figs. 1, 2).

For thick plates, the conditions of dimensional reso-
nance for RCP electromagnetic waves can be met
below the frequency range in Eq. (16). It follows from
3
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Eq. (14) that for the plate thickness d = 1 cm, the first
dimensional resonance for RCP waves takes place at
ω ≈ 1 × 109 s–1, which agrees with the numerical calcu-
lations presented in Fig. 2a.

From Eq. (15), it follows that the permeability for
LCP electromagnetic waves is always positive and,
near the OPT point, is much larger than unity. As the
frequency is increased, the permeability decreases and
becomes equal to the dielectric constant at a certain fre-
quency, which causes the reflectivity of LCP waves in
Eq. (18) to decrease at this frequency. This decrease
corresponds to the first broad minimum (following the
first maximum) in Figs. 1b and 2b. The subsequent min-
ima in the frequency dependence of the reflectivity of
LCP waves (Figs. 1b, 2b) correspond to dimensional
resonances of EMWs. The frequency of the first reso-
nance coincides with its estimate from Eq. (14): for the
plate thickness d = 0.1 cm, this frequency is found from
Eq. (14) to be ω ≈ 3 × 1011 s–1, and for d = 1 cm, we have
ω ≈ 3 × 1010 s–1. As the plate thickness is increased, the
dimensional resonances of LCP electromagnetic waves
shift to progressively lower frequencies and disappear
at high frequencies. The amplitude of the first maxi-
mum in the frequency dependence of the reflectivity of
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Fig. 6. Same as in Fig. 5, but for the plate thickness d =
1 cm.
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LCP waves increases with plate thickness (cf. Figs. 1b,
2b), while the width of the frequency range within
which the plate is transparent for LCP electromagnetic
waves decreases with increasing plate thickness.

In the frequency range of Eq. (16), the reflectivity of
linearly polarized waves exhibits the anomalies of both
reflectivities of RCP and LCP waves. Since the fre-
quencies of dimensional resonances for RCP waves do
not coincide with those for LCP waves, the amplitude
of oscillations of the reflectivity of linearly polarized
waves is significantly smaller than that of RCP and
LCP waves.

As the magnetic field is increased above the OPT
point, the spin-wave frequency ω0 increases, with the
consequence that the frequency range in Eq. (16) nar-
rows and the anomalies in the frequency dependence of
the reflectivity described above become smoother. With
increasing spin-wave damping, the amplitudes of the
peaks in the frequency dependence of the reflectivities
of RCP, LCP, and linearly polarized waves decrease.
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Fig. 7. Magnetic-field dependence of the EMW reflectivity
R+ of the surface of a ferrite plate for K = –1 × 105 erg/cm3,

B2 = 1 × 107 erg/cm3, and γ = 0.01. The plate thickness d =

0.1 cm. The EMW frequency ω is (a) (1) 109, (2) 1010, (3)
1011, and (4) 1012 s–1 and (b) 1.79 × 107 s–1.
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It can be seen from the insets to Figs. 1 and 2 that
there are also a series of very narrow peaks at low fre-
quencies. According to the estimates of the frequency
of the first dimensional resonance from Eq. (14) pre-
sented above, these peaks are due to the effect of stand-
ing elastic waves on the magnetic permeability. Indeed,
for the plate thicknesses d = 0.1 and 1 cm, the first
dimensional resonances of elastic waves at low fre-
quencies in the vicinity of the OPT point (K =
−106 erg/cm3, H = 4050 Oe) occur at ω ≈ 9 × 106 and
9 × 105 s–1, respectively. It follows from Figs. 1 and 2
that these peaks are, indeed, observed in the low-fre-
quency range (near the intersection point of the disper-
sion curves of noninteracting waves) where the interac-
tion between electromagnetic, elastic, and spin waves is
the strongest [8]. Below and above this frequency
range, the peaks of dimensional acoustic resonances
sharply decrease in amplitude and virtually vanish far
from this range. Since LCP electromagnetic and elastic
waves interact with spin waves in the vicinity of the
OPT point more weakly than do RCP electromagnetic
and elastic waves, the acoustic-resonance anomalies in
the reflectivity of LCP waves are smaller in magnitude
than those of RCP waves. The magnitude of acoustic-
resonance anomalies also depends strongly on spin-
wave damping: the amplitude of the resonance peaks
decreases with increasing spin-wave damping. Far
from the OPT point, the dynamic magnetoelastic cou-
pling is small and, therefore, there are virtually no
dimensional resonances due to acoustic waves.

At the OPT point, the frequency dependence of the
reflectivity is different (Figs. 3, 4). At high frequencies,
there are virtually no changes in the behavior of the
reflectivity, but at low frequencies, the changes are sig-
nificant. First, the ferrite becomes opaque over a wide
range of low frequencies (ω < 109 s–1) where it was
transparent both near and far from the OPT point. This
effect is due to the fact that the velocities (and, hence,
wavelengths) of elastic and electromagnetic waves
decrease significantly at the OPT point [8]. Second, in
the low-frequency region, there are sharp peaks associ-
ated with dimensional acoustic resonances (Figs. 3, 4).
The positions of these peaks depend on the thickness of
the plate: the frequencies of the first resonances
increase with decreasing plate thickness (cf. Figs. 3, 4).
Estimations from Eqs. (13) and (14) give the following
results for the frequencies of the first acoustic reso-
nances. For the values of the ferrite parameters pre-
sented in Eq. (10) and for K = –106 erg/cm3 and H =
4000 Oe, the acoustic dimensional resonances in the
frequency range ωM + ωs0 @ ω @ ωs0 (ωs0 ≈ 8.9 × 106 s–1

at the OPT point) appear starting from the frequency
ω ≈ 1 × 107 s–1; in the frequency range ω ! ωs0, these
resonances appear starting from 10 and 107 s–1 (for d =
0.1 cm) and from 10–1 and 105 s–1 (for d = 1 cm) for
RCP and LCP acoustic waves, respectively. These esti-
mates agree well with the numerical calculations pre-
sented in Figs. 3 and 4. The absence of acoustic reso-
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nances in the frequency dependence of the reflectivity
of RCP waves at very low frequencies ω ! ωs0 can be
due to the fact that these resonances occur at anoma-
lously low frequencies and are not manifested in the
scale used in Figs. 3 and 4. We also note that RCP
acoustic waves are strongly attenuated at the OPT
point, which can also be a reason for the absence of
acoustic dimensional resonances at very low frequen-
cies [9].

The frequency dependence of the reflectivity at the
OPT point also exhibits dimensional resonances of
RCP and LCP electromagnetic waves. At high frequen-
cies, the frequencies of the first dimensional resonances
of EMWs, as determined by Eqs. (12) and (13), are vir-
tually coincident with those in the vicinity of the OPT
point. For lower frequencies, calculations based on
Eq. (14) show that in plates d = 0.1 and 1 cm thick, such
resonances do not occur at the OPT point. This conclu-
sion is supported by the numerical calculations pre-
sented in Figs. 3 and 4.

According to Eq. (5), the anomalies in the magnetic
susceptibility for RCP and LCP waves take place at dif-
ferent frequencies. Therefore, the acoustic-resonance
peaks in the frequency dependence of the reflectivity
for these waves also differ in position (Fig. 3). The
amplitude of the acoustic resonances is maximum for
the first of them and decreases sharply with increasing
frequency. The spacing between the resonance frequen-
cies also decreases with increasing frequency. In the
frequency ranges between acoustic resonances for RCP
and LCP waves, the reflectivity of linearly polarized
waves can have anomalously small values.

The curves in Figs. 3 and 4 exhibit a broad minimum
which precedes the first dimensional-resonance peak in
the reflectivity of RCP waves and follows the first peak
in the reflectivity of LCP waves. The position of this
minimum shifts toward lower frequencies with increas-
ing plate thickness. This behavior of the reflectivity of
RCP and LCP waves can be explained in terms of
Eq. (5), from which it follows that at the OPT point, the
magnetic susceptibility of the ferrite far exceeds unity
at low frequencies. Therefore, due to the factor (ω2 –

) in the numerator of Eq. (5), the dynamic perme-
ability can decrease significantly (down to zero) at a
certain frequency or become equal to the dielectric con-
stant of the ferrite. In this case, the reflectivity is con-
siderably decreased (down to zero). From Figs. 3 and 4,
it follows that the minimum under discussion is near the
dimensional resonances; therefore, the frequency of
this minimum can be estimated as ω = ωt = Stk ≈ Stπ/d.
Using the parameter values in Eq. (10), we find that, for
plate thicknesses d = 0.1 and 1 cm, the minimum of the
reflectivity will be observed at frequencies ω ≈ 107 and
106 s–1, respectively. These estimates correlate well
with the positions of the first broad minima of the
reflectivity of RCP and LCP waves in Figs. 3 and 4. The
minimum of the RCP-wave reflectivity is so broad that

ωt
2

3
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a few resonances take place within its width in the
reflectivity of LCP waves (see, e.g., Fig. 4).

As the thickness of the plate is increased, the reflec-
tivity at very low frequencies increases in magnitude
and the ferrite becomes progressively less transparent.
For large plate thicknesses, according to Eq. (14),
dimensional resonances associated with quasi-elastic
waves can also occur at very low frequencies. With
increasing damping, the resonance peaks decrease in
magnitude, but the reflectivity in the ranges between
the peaks is affected only slightly.

The magnetic-field dependences of the EMW reflec-
tivity are presented in Figs. 5–7. An analysis of these
dependences revealed that the anomalies in them are
also associated with the anomalous behavior of the
dynamic magnetic susceptibility given by Eq. (5) and
with dimensional resonances.

As indicated above, the reflectivity at high frequen-
cies can be analyzed using Eqs. (15) and (18). It follows
from Eq. (15) that the permeability for RCP electro-
magnetic waves exhibits a resonance peak at the mag-
netic-field strength

(19)

Therefore, the reflectivity of RCP electromagnetic
waves will exhibit a resonance behavior only at the fre-
quencies

(20)

It also follows from Eq. (15) that in the range of mag-
netic fields

(21)

where

the real part of the permeability for RCP electromag-
netic waves is negative; therefore, RCP electromag-
netic waves cannot propagate in this magnetic-field
range.

The magnetic-field values at which dimensional res-
onances of EMWs occur are found from Eq. (11),
which can be rewritten as

(22)

Equations (19)–(22) allow one to interpret the numeri-
cally calculated field dependences of the EMW reflec-
tivity (Figs. 5–7).

Figures 5 and 6 show the magnetic-field depen-
dences of the EMW reflectivity at various frequencies
for K = 1 × 105 erg/cm3 and B2 = 1 × 107 erg/cm3. For

Hr
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n

2

ω2εd
2
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P

the parameter values given by Eq. (10), it follows from
Eq. (20) that at low frequencies (ω < 1 × 109 s–1), the
permeability for RCP waves does not exhibit a reso-
nance behavior for any magnetic-field strength. It also
follows from Eqs. (15) and (21) that at low frequencies,
the real part of the permeability for RCP waves is pos-
itive and varies monotonically. For LCP waves, the per-
meability is positive for any frequency and varies
monotonically, without exhibiting a resonance behav-
ior. At low frequencies, the values of the permeability
µ± can exceed the dielectric constant ε. Therefore, the
field dependence of the reflectivity at low frequencies
does not have to exhibit any sharp changes. The only
minimum in the R±(H) dependences takes place at the
point where ε = µ±; at this point, the reflectivity is vir-
tually equal to zero and this minimum is the only one-
observed in Figs. 5 and 6 at low frequencies. Numerical
calculations show that at frequencies ω < ω3 ≈ 8 ×
109 s–1, the EMW reflectivity is anomalously small for
any value of the magnetic field.

At high frequencies (ω > 1 × 109 s–1), condition (20)
is satisfied. The resonance peak in the permeability for
RCP waves at H = Hr given by Eq. (19) manifests itself
in the field dependence of the reflectivity of RCP waves
either as a shallow minimum (Fig. 5a for ω = 1 ×
1010 s–1, d = 0.1 cm) or as a sharp decrease in the reflec-
tivity (the other cases in Fig. 5a; Fig. 6a). The broad and
deep minimum in the R+(H) curve corresponds to the
condition ε = µ+. For LCP electromagnetic waves, the
permeability is close to unity at high frequencies and,
therefore, cannot be equal to the dielectric constant in
this case. Condition (22) for dimensional resonances
can be met at high frequencies; these resonances mani-
fest themselves in the field dependence of the reflectiv-
ity of RCP waves as a few narrow minima (Figs. 5a, 7a)
and in the LCP-wave reflectivity, as a few broad min-
ima (Fig. 6b). The sharp increase in the reflectivity of
RCP waves observed in Fig. 5a for ω = 1 × 1010 and 1 ×
1011 s–1 (curves 2, 3) in the range of low magnetic fields
is due to the fact that the real part of the permeability in
Eq. (22) is negative. At still higher frequencies (ω = 1 ×
1012 s–1), the increase in the reflectivity in the field
ranges beyond the resonances is due to an increase in
the wavelength of the EMWs; the plate becomes less
transparent to such waves.

If the anisotropy constant is negative, condition (20)
can be satisfied even at low frequencies. In this case, the
R+(H) curves near the OPT point exhibit sharp reso-
nance peaks at low frequencies (Fig. 7b).

At low frequencies, the field dependences of the
reflectivity can also exhibit specific features due to
dimensional resonances in magnetic susceptibility (5)
associated with acoustic waves. These resonances cor-
respond to the peaks in the field dependence of the
reflectivity in Fig. 7b.
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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Thus, our investigation of the reflection of electro-
magnetic waves from a plate of an insulating ferromag-
net allows us to make the following conclusions.

It has been shown that if the magnetoelastic interac-
tion is included, the frequency dependence of the EMW
reflectivity exhibits anomalies associated with dimen-
sional resonances of both electromagnetic and acoustic
waves. The latter resonances are particularly pro-
nounced at the OPT point.

The reflectivity for RCP electromagnetic waves can
be anomalously large (up to unity) in the frequency
range where the magnetic permeability for these waves
is negative.

The EMW reflectivity becomes anomalously small
(down to zero) when the dynamic permeability is equal
to the dielectric constant.

At the OPT point, the EMW reflectivity can be
anomalously large at low frequencies.

Analysis of the magnetic-field dependences of the
EMW reflectivity revealed that at low frequencies
(including the microwave region), the reflectivity can
be anomalously small at any value of the magnetic
field.

At higher frequencies, as the magnetic field is var-
ied, the reflectivity of RCP electromagnetic waves
becomes anomalously small when ε = µ+. This condi-
tion can be satisfied with the experimentally accessible
magnetic fields.

Thus, by varying an external magnetic field, the
EMW reflectivity of a plate of an insulating ferromag-
net can be varied from unity to zero over a wide fre-
quency range.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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Abstract—The dynamic shift in NMR frequency associated with the magnetoelastic effect is studied in FeBO3.
It is shown that the shift is proportional to the z component of nuclear magnetization. The numerical values of
parameters describing the nuclear magnetoelastic resonance are obtained, and these values agree well with the
available data. © 2003 MAIK “Nauka/Interperiodica”.
Iron borate FeBO3 attracts research attention as a
material exhibiting a number of unusual and, possibly,
practically useful properties. FeBO3 is a noncollinear
easy-plane antiferromagnet with a relatively high Néel
temperature TN = 348 K. This compound shows strong
magnetoelastic properties, which specifically manifest
themselves in the considerable renormalization of
sound velocity in an external field [1]. The NMR line
width in FeBO3 is very narrow, which is not typical for
most magnetically ordered substances. All these fea-
tures allow one to observe a certain modification of
nuclear magnetic resonance, namely, the nuclear mag-
netoelastic resonance (NMER) [2, 3]. It was shown in
[3] that NMER is characterized by its own enhance-
ment factor and a dynamic frequency shift (DFS, also
called a “frequency-pulling effect”) different from
those associated with the ordered electron subsystem of
magnetic materials [4]. DFS in NMER is a conse-
quence of the repulsion of the magnetoelastic and
nuclear dispersion branches in the vicinity of their
intersection. In [3], the main features of NMER were
studied; however, the most essential feature of the DFS
characterizing its dynamic behavior, namely, the
dependence of the magnitude of the shift on nuclear
magnetization, remained unstudied. In this article, we
present direct experimental evidence of this depen-
dence.

According to [3], the dynamic shift associated with
magnetoelastic oscillations is given by

(1)

where ωn is the unshifted (unpulled) NMR frequency,
Hhf is the hyperfine field exerted on the electron sub-
system by the nuclear system (Hhf = Amz, A is the hyper-
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fine interaction constant, mz is the z component of
nuclear magnetization), H is the external magnetic
field, Hκ is the field corresponding to the magnetoa-
coustic resonance in a sample at a given frequency, and
∆Hκ is the magnetoacoustic resonance width expressed
in units of magnetic field strength. The tilde indicates
exchange enhancement. In Eq. (1), we explicitly sin-
gled out the dependence of DFS on the relative nuclear
magnetization through the hyperfine field, Hhf =

. Here, m0 is the equilibrium nuclear magne-

tization and  = Am0 is the corresponding hyperfine
field. From Eq. (1), it follows that NMER is most pro-
nounced near the acoustic resonance of a sample. This
resonance can be made to occur at a fixed frequency by
using the dependence of the sound velocity on H [1].

Experimentally, this effect was studied by recording
beat signals occurring due to the interference of the
conventional NMR and the response of the nuclei inho-
mogeneously excited by a magnetoelastic wave (pure
NMER). According to [4], the DFS caused by the elec-
tron subsystem in an antiferromagnet is described by

(2)

where  is the effective magnetic anisotropy field.

Neglecting the small quantity ∆  [2, 5] and using
Eqs. (1) and (2), one can easily find

(3)

A single-crystal thin plate of iron borate enriched by
57Fe isotope up to 80 at. % was used in the NMR exper-
iments. The plate measured 2 × 2 × 0.2 mm. 57Fe NMR
was observed at liquid-nitrogen temperature by record-
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ing a free-induction signal excited by rf pulses 3 µs
long with a carrier frequency of ωn/2π = 75.4 MHz. The
rf field was directed along the easy-magnetization
plane, which coincided with the sample plane. A static
magnetic field was directed along the same plane per-
pendicular to the rf field and was varied within the
range 0–250 Oe. The experimental setup was similar to
that used in [3].

At 0 < H < 120 Oe and H > 230 Oe, the induction
signal exponentially decreased with the characteristic
time  ≅  60 µs. In fields H < 50 Oe, NMR from the
nuclei in domain walls was observed, and in stronger
fields H, NMR from the nuclei in domains was
observed [3, 5]. At two values of the external field
(Hκ1 = 170 Oe, Hκ2 = 192 Oe), the rf pulses also excited
short-lived signals of dimensional magnetoelastic reso-
nances decaying with a characteristic time of 1.5–2 µs
[6]. Within a sufficiently wide region of these reso-
nances (as shown in the inset to Fig. 1), the form of the
response signal qualitatively changed: the signal
became nonmonotonic, and beat signals appeared.

The experiment was based on the fact that the z com-
ponent of nuclear magnetization can be controlled by
varying the repetition period Trep of exciting pulses, i.e.,
by saturating the nuclear spin system. The dependence
of the intensity of the induction signal obtained at the rf
field amplitude corresponding to the maximum of the
response signal (90° pulse) on the repetition period is
shown in Fig. 1. The curve actually represents the
dependence of mz/m0 on Trep, since the recovery of the
equilibrium nuclear magnetization after a 90° pulse
obeys the law mz = m0[1 – exp(–t/T1)] with the charac-
teristic spin–lattice relaxation time T1. The intensity
was measured in the whole range of the existence of
exponential induction decay. It was established that the
intensity remains almost constant in magnitude for a
signal coming from the nuclei in domains (inset to
Fig. 1). Direct measurement of T1 in the region of oscil-
lations is impossible; however, as can be seen from
Fig. 1, where the curves correspond to the fields at the
edges of the oscillation range, the value T1 = 8 ms,
obtained in these fields, can be extrapolated to any field
H > 50 Oe. Thus, each repetition period Trep was related
to a particular value of mz/m0.

In the range of oscillations, changes in the beat fre-
quency ∆F = ∆Ω/2π with variation of repetition period
Trep were observed. The dependence of ∆F on mz/m0
obtained for two values of the external field close to Hκ1
is shown in Fig. 2. The curves were calculated using

Eq. (3) with parameters  ≅  60 Oe [1, 3] and Hκ1 =
170 Oe (the effect of the second resonance at Hκ2 was

disregarded) and  as a fitting parameter. The

adjusted value  = 5 × 10–3 differs only slightly from
the previously obtained value 6.4 × 10–3 Oe [3]. Figure 2
also shows curves for a purely magnetoelastic DFS, i.e.,
for the hypothetical case of Eq. (1), where the contribu-

T2*

H̃a'

H̃hf
0

H̃hf
0
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tion from the electron subsystem is disregarded. As one
goes away from the resonance, the modulation depth of
beats decreases [3]. This hampers the measurements,
increases the error, and results in a noticeable spread of
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Fig. 1. Intensity of nuclear induction signal as a function of
repetition period of rf pulses in fields (1) H = 115 and (2)
235 Oe, and (3) the saturation curve calculated for T1 = 8
ms. The inset shows spin–lattice relaxation times within the
range of field under study. The range of oscillations and the
position of the resonance fields Hκ1 and Hκ2 are shown.
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Fig. 2. Dependence of the dynamic frequency shift on the
relative z component of nuclear magnetization: (1, 2) exper-
imental data at H = 150 and 135 Oe, respectively; (3) calcu-
lation using Eq. (3) (with account of the electronic contribu-
tion); and (4) calculation using Eq. (1) (without regard for
the electronic contribution).
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the experimental points for H = 135 Oe. The decrease
in repetition period reduces the signal and makes it
impossible to obtain reliable results below mz/m0 ≈ 0.4.
Despite this, the graphs shown in Fig. 2 corroborate the
linear dependence of DFS on the z component of
nuclear magnetization and a considerable magnetoelas-
tic contribution into this dependence in the range of
magnetoacoustic resonance.

Thus, we experimentally verified the theoretically
predicted behavior of DFS in the case of a strong
nuclear–elastic coupling. These results give an addi-
tional support to the NMER model.
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Abstract—The anomalous behavior of magnetization curves (first-order magnetization process, FOMP) of
highly anisotropic rare-earth metal compounds was studied. It is pointed out that FOMP assignment to a large
contribution from higher magnetic anisotropy constants Ki comes into conflict with the point-ion approximation
of crystal field theory. An alternative interpretation based on the multisublattice model is proposed; this model
makes use only of first-order sublattice constants kj derived from independent experimental NMR data. Direct
calculations provide a satisfactory explanation of the FOMP in Tb2Fe17. A possible connection of the FOMP
with Brown’s paradox in the theory of domain structure and coercive force is proposed. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic properties of rare-earth metals
(REMs), which exhibit an anomalous (jumplike)
dependence of magnetization m on external field H,
termed the first-order magnetization process (FOMP),
have been dealt with in many studies. FOMP was first
observed on cubic crystals by Bozorth as far back as
1936 [1]. Later, this effect was shown to exist in many
highly anisotropic REM compounds, first in the RCo5
system [2, 3] and subsequently in R2Fe14B (see review
[4]), R2Fe17 [5–8], and some other systems [9, 10].

The FOMP problem is of interest in two respects.
First, the mechanism of this phenomenon remains
unclear. Second, a question immediately arises as to the
extent to which the results of FOMP investigation are
applicable to determination of the physical parameters
introduced for its description. The magnetic-anisotropy
(MA) model proposed in [11] and based on taking
1063-7834/03/4504- $24.00 © 20709
higher order MA constants into account is presently
considered to be universally accepted. This approach
permits one to describe the first-order phase transition
for magnetization and determine the crystal field (CF)
parameters  from m(H) magnetization curves. Table 1
presents data for R = Pr and Tb in the R2Fe14B com-
pounds [12]. One readily sees that, for n = 2 and n = 6,
the fitting parameters  are smaller and much larger,

respectively, than the values  calculated in the point
approximation of CF theory. A similar result was
obtained in [5] for Tb2Fe17, where the fitting values of
the MA constants K2 and K3 (Table 2) turned out to be
an order of magnitude larger than K1.

Thus, the FOMP cannot be explained by taking into
account the first-order constant alone and the higher
order constants Ki (necessary for adequate description
of an experiment) need to be very large in many cases.

An
m

An
m

Anp
m

Table 1.  Parameters  (in the CF point-ion approximation) and  (derived from the magnetic data taken from [12])
reduced to K for R2Fe14B

R Parameter
n, m

2, 0 4, 0 6, 0 6, 4

Pr 82.6 –0.96 –0.15 –0.15

550 –0.48 0.001 0.004

Tb 84 –0.98 –0.021 –0.114

560 –0.49 0.001 0.005
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In terms of the CF model in the point-ion approxi-
mation, one can readily show, using relations of CF the-
ory [see Eqs. (4) and (5) below], that 

 (1)

and, therefore, Kn/K1 ! 1, because the product of the
ratio of Stevens coefficients αn/α1 ≅  10–2 (n = 2) multi-

plied by  ≈ (0.5)2(n – 1) (〈rf 〉  is the aver-
age f-shell radius, and R is the distance to the nearest
neighbors) is found to be much smaller (for instance,
for Tb) than f2(J)/f2n(J), where f(J) are the well-known
polynomials of the REM ion angular momenta J. For
instance, for Tb, the ratio in Eq. (1) is 10–2 for n = 2,
which is at odds with the data in Table 2.

Thus, the excessively large values of K2, K3, and K4,
which are necessary to account for the FOMP, are in
contradiction with CF theory. The hypothesis [13]
according to which the major contribution to the CF is
due not to nearest neighbor ions but to the 5d and 6p
states of the rare-earth (RE) ion itself is not well devel-
oped and meets with criticism [13, 14]. Therefore, we
put forward here an alternative magnetic-anisotropy
model based on a real many-sublattice structure [15]
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Table 2.  Fitting MA constants for Tb (in J/kg) in Tb2Fe17
calculated in terms of the two-sublattice model [5] without
inclusion (top line) and with inclusion (bottom line) of sub-
lattice bending

K1 K2 K3

–65 800 –660

–200 1300 –1045

Fe

R1

x

z

R2

Fig. 1. Schematic magnetic structure of Tb2Fe17 corre-
sponding to antiferromagnetic exchange coupling between
the Tb and Fe sublattices. All magnetic moments lie in the
same plane, because the MA energy does not depend on azi-
muth ϕ if only the first MA constants are taken into account.
P

and introduce sublattice MA coefficients without inclu-
sion of higher order constants. This approach has a fun-
damental merit in that it allows experimental determi-
nation of the local sublattice constants from NMR and
Mössbauer measurements, thus making it possible to
carry out calculations practically without introducing
any fitting parameters.

2. MAGNETIZATION AND MAGNETIC 
ANISOTROPY OF A THREE-SUBLATTICE 

MAGNET

The energy of a many-sublattice uniaxial magnet,
including only the first MA constants ki (i is the sublat-
tice index), can be written as the sum of the exchange
energy Eex, the anisotropy energy EA, and the interac-
tion energy EH with an external field H:

 (2)

where Ii, j is the exchange integral between sublattices,
θi, j = θi – θj, θi is the polar angle of the ith sublattice,
and mi is its magnetic moment.

We restrict ourselves subsequently to the case of
three sublattices and consider the hexagonal structure of
R2T17. We label by i = 1 the T sublattice, with i = 2 and 3
referring to the sublattices b and d of the RE ions. In
accordance with experiment, we assume that I12 = I13 = I,
and I23 ! I, so that the latter term can be neglected by
setting I23 = 0 in Eq. (2).

Note that, in our case, Eex is independent of the dif-
ference between the sublattice azimuthal angles δϕi due
to the requirement that the total energy be extremal in
variables ϕi, which yields δϕi = 0 if the MA energy is
independent of ϕ.

The angles θi corresponding to the extremum of
energy (2) can be found from the equations ∂E/∂θi = 0:

 (3)

where f1 = f2 + f3, f2 =  + , f3 =

 + , and xi = sinθi.

Here, the field H is aligned with the z axis; the

square roots  are taken with the plus or minus
sign, depending on the sign of cosθi; the angles θ2 and
θ3 lie in the third quadrant (Fig. 1); and the angle θ1 lies
in the first quadrant.
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Equations (3) are irrational, and the number of their
roots depends on the coefficients in Eq. (3).

In our opinion, the most interesting of the R2T17 com-
pounds is Tb2Fe17 (Fig. 1). First, the m(H) dependence
for this compound was studied on a single crystal sample
within a broad range of fields up to 35 T, with a strong
FOMP-type anomaly being observed in the range
3.2−4.9 T [5]. Second, as already mentioned, the calcu-
lations conducted in [5] with inclusion of higher order
MA constants could be fitted to this anomaly only with
very large values of K2, K3, and K4 (Table 2). Finally,
NMR studies of Tb2Fe17 yielded data on the CF parame-
ters which permit independent determination of the MA
constants for the RE sublattices. For the Fe sublattice,
these data can be extracted, as is usually done from the
measurements made on Y2Fe17, which allows one to
determine the coefficients in coupled equations (3).

The sublattice MA constants can be obtained from
the relations (see, e.g., [15])

 (4)

 (5)

where  is the CF parameter in units of K/ , a0 is the
Bohr radius, NL is the number of formula units in 1 cm3,
and K is reduced to J through 1 K = 1.38 × 10–23 J. For
Tb2Fe17, we have NL = 3.87 × 1021 cm–3.

The parameter  for the positions b and d in
Tb2Fe17 was derived in [15] from NMR data [16]

 (6)

Substituting the values from Eq. (6) into Eq. (4) and
using the value of K1(Y2Fe17) for kFe, we obtain finally
the following set of MA constants (in units of J/cm3):

 (7)

To estimate the last parameter in our equations, namely,
the exchange integral I, we have to take into account
that it should be the largest; indeed, even in high fields
(above FOMP), the Fe and R = R(2b) + R(2d) sublat-
tices retain a good collinearity, because the saturated
magnetic moment for H > 15 T is 18.6 µB/f.u., which
coincides with the sum of the Fe and R ion moments. In
the region below the phase transition, the deviation
from collinearity between the Fe and R sublattices is
≈2.5° [5]. The calculated noncollinearity between the
RE sublattices (≈20°) is slightly larger because of the
MA constants of these sublattices having opposite
signs. No experimental data are available for the latter
case.

The value chosen in [5] for the exchange parameter
IRT is 0.96 × 10–22 J, which corresponds to –10 J/cm3. To
meet the condition of small noncollinearity, we choose
I = –30 J/cm3 in our calculation. On adding this value to
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the quantities in Eq. (7), we can solve coupled equa-
tions (3) numerically. 

In the region of these values of the parameters, there
are two branches of solutions {xi}, which coincide in
absolute value at H = 0 and approach each other as the
sublattices rotate in an external field.

Knowing the solutions {xi(H)}, we can calculate the
magnetizations m±(H) for the branches with projections
along and counter to the external field H from the equa-
tion (the roots are taken with the plus sign)

 (8)

and then determine the energy E±(H) from Eq. (2). The
values in Eq. (7) were varied slightly to obtain a magneti-
zation as close as possible to the experimental curve. Fig-
ures 2 and 3 plot m±(H) and m(H) = (m+ + m–)/2 curves for
the values I = –30, k1 = kFe = –3.7, k2 = kTb(2b) = –10.3,
k3 = kTb(2d) = 7.8 (all values in units of J/cm3), m1 =
36.6, and m2 = m3 = 9 µB/f.u.

As seen from Fig. 2, solutions (8) are substantially
different in character; more specifically, whereas m+(H)
is a smooth function and grows monotonically to reach
saturation at high values of H, m–(H) decreases in abso-
lute value when magnetized along the hard axis and
ends in a cutoff at H = Hcr. Note that even at H = 0 the
magnetizations m± are canted away from the easy plane
by an angle θ0; i.e., they lie on the easy-direction cones.
As H increases, the m+ cone contracts toward the z axis
and m– tends to fall onto the plane but does not reach it.
The most important consequence is the collapse of the

m– branch at H = ; this is what accounts for the jump
in m(H = Hcr). The magnitude of the jump for the above
parameters is ∆m– ≈ 11.6 µB/f.u. and ∆m ≈ 5.8 µB/f.u. at
Hcr = 2.1 T, a figure that agrees satisfactorily with
experiment [5] (Figs. 2, 3). Note that the derivative

m
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– m2 1 x2
2
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––[ ]±=
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Fig. 2. Dependences of (1) m+ and (2) m– on magnetic field
H in Tb2Fe17. m– collapses at H = 2.2 T.
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dm–/dH  ∞, which is a signature of the FOMP;
however, m+ continues to grow with increasing field
above Hcr (FOMP II, according to the classification pro-
posed in [11]).

3. ON THE RELATION OF THE FOMP 
TO THE DOMAIN STRUCTURE 

AND BROWN’S PARADOX

It is well known that, in highly anisotropic magnets,
one should expect a large coercive force HC, which in
ideal cases should reach 2K/MS. In actual fact, however,
the magnitude of HC is substantially smaller (Brown’s
paradox). In the FOMP, the magnetization of R2Fe17
drops in a jump to a low value for HFOMP = HF (= 3.2 T
for Tb2Fe17). It appears natural to assume that this
effect, similar to Brown’s paradox, is associated with
the formation of a domain structure (DS) below HF.

It should be noted that, unlike Brown’s paradox
observed under remagnetization along the easy axis,
the FOMP occurs along the hard axis. In the latter case,
DS formation under remagnetization becomes easier,
because there is no potential barrier between the hard
and easy directions associated with the anisotropy
energy. Exchange energy can also contribute in these
conditions. Unfortunately, no magnetization measure-
ments have been made in easy directions on polished
samples, although Tb2Fe17 does exhibit a weak hyster-
esis (1–2 kOe) in the hard direction [5]. In actual fact,
the jump is diffused in the 1.8-T interval and the onset
of saturation spreads to 10 T (Fig. 3).

Reported attempts to explain Brown’s paradox
reduce to two possibilities: (i) the existence of regions
(including the crystal surface) with low MA values, and
(ii) the operation of a mechanism of inhomogeneous
magnetization rotation involving nucleation of the
reverse phase and subsequent DS formation.

0 4 8 12 16
H, T

m, µB/f.u.

20 24

20

16

12

8

4

1

2

Fig. 3. (1) Calculated field dependence of m = (m+ + m–)/2
(m+ = m– for H > Hcr) and (2) experimental curve [5]. The
calculated FOMP field is H = 2.2 T.
PH
The FOMP theory also makes use of the assumption
of the existence of moving small-angle DSs, which give
rise to a first-order phase transition [11]. The restriction
to small angles draws from the necessity of expending
energy in order to rotate magnetic moments against the
external field under demagnetization. In inhomoge-
neous crystals, the restriction to the small-angle DSs, as
well as energy limitations in Brown’s paradox, can be
lifted.

Thus, both the FOMP theory and Brown’s paradox
stumble onto similar difficulties. In the latter case, an
expenditure of energy is required to surmount the
potential barrier between the easy and hard axes, while
in the FOMP, the loss of energy in a magnetic field
should be compensated by a gain in MA energy in the
transfer from the hard to the easy axis. Calculation of
the FOMP energy for a complex sublattice structure (as
in Tb2Fe17) is not an easy problem and, as shown by our
computations, does not meet the necessary condition
for an ideal lattice (as in Brown’s paradox). The situa-
tion for a real crystal could be different; i.e., the condi-
tion HC < 2K/MS will no longer have to be obeyed.

Thus, we come to the conclusion that an ideal crys-
tal (in the absence of a mechanism of inhomogeneous
rotation) should exhibit a normal hysteresis loop with
HC = 2K/MS and no FOMP. In our case, the Tb2Fe17
crystal has strong concentration inhomogeneities [6],
which may give rise to DS formation and the onset of
the FOMP. The energy needed for domains to rotate
against the field may also come from the system being
nonequilibrium. Note that REM compounds reveal pro-
nounced viscosity effects (see [17] and [4, p. 877]).

In our calculations (as mentioned in Section 2), the
FOMP field is determined by collapse of the m– branch
for reverse phase domains. However, in order to take
place, a reverse transition from m+ to m– requires extra
energy which would compensate the difference
between the interaction energy with the field EH and the
anisotropy energy EA. Inhomogeneities in either the
magnetic or crystalline state of the sample may serve as
a source of this extra energy. In particular, the pinning
and nucleation effects may play an important part in
these phenomena [17]. Pinning is equivalent to domain
wall quenching, and its inclusion may increase the
magnitude of the jump near FOMP. Note also that
domains of the reverse phase persist to fields of up to
10 T in orthoferrites and some other REM compounds
[18].

Thus, the FOMP can be considered a manifestation
of Brown’s paradox.

An issue that still remains a subject of heated debate
is spontaneous DS formation in an ideal crystal without
involvement of external factors (defects, surface, etc.).
Any evidence, either theoretical or experimental, sup-
porting the operation of such a mechanism would be of
interest. The principal effect here is inhomogeneous
magnetization rotation under variation of an external
magnetic field. According to [19], such a rotation can
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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be associated with nonlinear effects arising in differen-
tial equations for magnetization in the cases where one
goes beyond linear theory. Note that the magnetization
direction most favorable for the DS formation (see
[19]) is along the hard axis, where instabilities arise at
high enough fields H > 0. The existence of the FOMP
in Tb2Fe17 corresponds to this condition. One cannot
exclude the possibility that the FOMP effect is also a
part of this problem. This complex issue certainly
deserves further study.

Thus, we have realized a new approach to the FOMP
problem in the physics of highly anisotropic REM com-
pounds and have shown the FOMP to be related to
Brown’s paradox in the DS theory. Joint analysis of
experimental and theoretical developments reached in
these areas of magnetism may prove important for clar-
ifying unsolved problems, in particular, the mechanism
of DS formation, the nature of the coercive force, and
correct determination of the MA constants.
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Abstract—Total energies of various magnetic and orbital configurations of the La1 – yCayMnO3 manganites
were calculated for the electron doping region y > 0.5 with inclusion of the manganese eg level splitting. The
state of the system was first established by total energy minimization in both the angle between the spins of
neighboring Mn4+ ions and the two orbital-mixing angles defining the type of ordering in the system under
study. The manganite phase diagrams constructed for T = 0 correctly reproduce the alternation of magnetic
orbitally ordered structures, which is experimentally observed to occur with increasing electron concentration
in the region of actual values of the Heisenberg interatomic exchange parameter, the Hund exchange parameter,
and the hopping integral. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A specific feature in the physics of the
La1 − yCayMnO3 manganites (y = 0–1) is the observed
asymmetry of their phase diagrams with respect to the
value y = 0.5 [1, 2], whose nature remains unclear. It
was pointed out in [3] that one of the reasons for the
asymmetry in the properties is the difference in the car-
rier spectra E(k) of the antiferromagnetic (AFM) struc-
tures A, G, and C; this difference appears when orbital
degeneracy of the eg level is included in the double
exchange model. It was shown in [4] that inclusion of
orbital degeneracy not only causes the carrier spectrum
E(k) to change as one goes from one magnetic structure
to another but also affects the conditions in which either
collinear or canted (A, G, C, F) magnetic structures cor-
responding to the minimum of total energy form. To
find the ground-state magnetic configuration of the sys-
tem for a fixed value of x = 1 – y, the spectrum E(k, θ)
of carriers (electrons) in the canted A, G, C, and F mag-
netic structures, which depends on the angle θ between
the spins of manganese ions located on different mag-
netic sublattices, had to be calculated. It should be
noted that, in earlier publications [5–8], in calculating
the energies of the AFM structures A, G, and C, the
spectrum E(k) derived for the ferromagnetic (FM) type
of spin ordering (θ = 0) was used with no total-energy
minimization with respect to the angle θ made. Calcu-
lations in [4] yielded the experimentally observed
phase alternation G–C–A with increasing carrier (elec-
tron) concentration in the region of actual values of the
interatomic and intraatomic exchange. Correct qualita-
tive description of the experimental data was attained
only after taking into account the splitting of the man-
ganese eg level for the AFM structures A and C and
assigning specific orbital ordering for each structure. In
1063-7834/03/4504- $24.00 © 20714
our present study, the type of orbital ordering (depend-
ing on distortions of the oxygen octahedron), rather
than being specified, was found by minimizing the total
energy with respect to the angle θ and two angles of
orbital intraatomic mixing ϕi. In this way, the equilib-
rium magnetic and orbital configurations of the
La1 − yCayMnO3 manganites were found for T = 0 and
y = 0.5–1.

2. CALCULATION METHOD 

This study deals with a calculation of the equilib-
rium magnetic and orbital manganite structures for T =
0 and y = 0.5–1; these conditions allow neglect of the
intra- and interatomic Coulomb interactions in a first
approximation.

We made use of an effective manganite Hamiltonian
including double exchange, intraatomic Hund coupling
of the eg and t2g electrons, the Heisenberg interaction
between the local magnetic moments of t2g electrons Si,
and the Jahn–Teller splitting of the manganese eg level:

 (1)

The indices α and β label the eg orbitals, i and j are indi-
ces numbering the atoms, εiα↑  = εdα – JHS, εiα↓  = εdα +
JH(S + 1), εdα is the energy of the unperturbed α-type eg

level of the Mn4+ ion, JH is the intraatomic Hund inte-
gral (for Mn3+, its calculated [3] value is 0.25 eV),

H  = εiασdiασ
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diασ
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∑ tijαβ
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(diασ) are the creation (annihilation) operators of a
α-type eg electron at site i, σ is a spin index, Jij = JAFM

are the Heisenberg exchange integrals of localized t2g

electrons, and tijαβ are the hopping integrals between
the α and β orbitals of the ith and jth manganese ions.
The explicit form of all hopping integrals for the atomic
basis in which |α〉 = |1〉  = |z2〉  and |β〉 = |2〉  = |x2 – y2〉  can
be found in [3]. In the double-exchange model, the hop-
ping integral tijαβ depends on the angle θij between the
local magnetic moments of the nearest neighbor man-
ganese ions and the numerical value of t for manganites
lies between 0.1 and 0.3 eV [3]. In the AFM structure
G, θij = π for the nearest neighbors. In the C structure,
the Mn ion spins form FM chains perpendicular to the
xy plane. In this plane, θij = θxy = π, while in a chain, we
have θij = θz = 0. In the A structure, the adjacent FM
planes, in which θij = θxy = 0, are antiferromagnetically
ordered with respect to one another, i.e., θij = θz = 0, if
the atoms labeled i and j belong to adjacent planes. In
an FM structure, we always have θij = 0. In all the AFM
structures considered here, the angle θij can have only
one nonzero value, because more complex AFM struc-
tures characterized by two different angles θij have thus
far not been observed experimentally in manganites.
The parameter ∆i describes the Jahn–Teller splitting of
the originally degenerate eg level. To take into account
the effect of orbital ordering on the formation of a mag-
netic structure, we used an arbitrary atomic basis |α〉 i

and |β〉i related to the original basis through the trans-
formation

 (2)

where ϕi is the intraatomic orbital-mixing angle. After
such a transformation, the hopping integral tijαβ
becomes dependent on three angles: θij , ϕi, and ϕj.
Because this study deals with AFM structures consist-
ing of only two magnetic sublattices, the possible
orbital-ordering types coincide with the magnetic-con-
figuration types (A, G, C, F). For instance, an orbital
FM structure corresponds to only one mixing angle ϕi
on all sites. In the AFM orbital structures A, G, and C,
each sublattice is characterized by its orbital-mixing
angle, ϕ1 or ϕ2, and the sublattices themselves are
defined in the same way as are the magnetic configura-
tions. Orbital structures are collinear for ϕi = 0 or π and
canted for ϕi ≠ 0.

Without the last term in the Hamiltonian (1), trans-
formation (2) does not affect in any way the spectrum
and total energy of the magnetic configurations. How-
ever, if the Jahn–Teller splitting of the eg level is
included, the electronic part of the total energy of the
system becomes dependent on the type of orbital order
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(the values of ϕ1 and ϕ2). In (La–Nd)1 – ySryMnO3 (y =
0.52–0.62), experiments revealed the AFM structure A
with a predominant occupation of |2〉-type orbitals. Fur-
thermore, theory suggests [7, 10] that, in magnetic
phase A, we have 2∆ = εd1 – εd2 > 0 (except in the case
y = 0). The splitting for the magnetic phase C has the
opposite sign [10]. The splitting 2∆ was accepted pro-
portional to x = 1 – y so as to obtain in the value |εd1 –
εd2 | = 0.3–0.5 eV [11] for the A phase of LaMnO3 the
limiting case of y = 0.

Numerical calculations were carried out for various
electron concentrations x = 1 – y and sets of the param-
eters JH/t and JAFM/t, where JAFM = 1.5 meV (with no
doping, TN = 141 K for CaMnO3). These results do not
extend to a region in the immediate vicinity of the sto-
ichiometric composition x = 0.5, because, in this study,
we did not consider the magnetic CE structure related
to charge ordering. The total energies of all configura-
tions were minimized with respect to the corresponding
angles θ and ϕi, thus yielding equilibrium magnetic and
orbital structures for each value of the electron concen-
tration.

The energy per manganese atom of phase G was cal-
culated as

 (3)

where S = 3/2, εF is the Fermi level, and nG(ε, θ, ϕ1, ϕ2)
is the density of states in phase G. The density of states
was found by summation of the E(k, θ, ϕ1, ϕ2) spectrum
over the corresponding Brillouin zone; this spectrum
was calculated by diagonalizing the (8 × 8) Hamilto-
nian matrix [3] of the G structure modified by transfor-
mation (2). The total energies of all the other magnetic
structures were calculated in a similar way [4].

3. RESULTS OF CALCULATIONS
AND DISCUSSION

Figure 1 presents the band structures of the mag-
netic phases A and C. If the eg level is not split (thick
line), the band structure of both phases does not depend
on the orbital-mixing angles. If the eg level is split (∆ =
1), the electron bands undergo a change, depending on
the actual type of orbital order. One readily sees that the
|x2 – y2〉  FM orbital ordering for the A structure (ϕ1, 2 =
π, dotted line) is more favorable than the |3z2 – r2〉
ordering (ϕ1, 2 = 0, thin solid line), while for the C struc-
ture, the reverse situation is true.

In the absence of free electrons, the magnetic phases
can be arranged in order of increasing magnetic energy
as G, C, A, and F. As x increases, competition between
the kinetic and magnetic energies of the system realizes
one of the magnetic states. Figure 2 displays phase dia-
grams of the La1 – yCayMnO3 system in the region x = 0–

EG x θ ϕ1 ϕ2, , ,( ) 3JAFMS
2 θcos–=

+ εnG ε θ ϕ1 ϕ2, , ,( ) ε,d

∞–

εF

∫

3
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0.5 plotted for the unsplit eg level in the (x, JH/t) coordi-
nates with the exchange parameter JAFM = 0.015t char-
acteristic of CaMnO3 at t = 0.1 eV and in the (x, JAFM/t)
coordinates for JH = 2.5t. The thin lines identify phase
boundaries in the collinear approximation, and the
thick lines identify those with the possibility of spin
canting. The FM phase is seen to be an equilibrium
magnetic structure within a broad range of values of
JAFM and x. This is at odds with the experimental obser-
vation that for concentrations x < 0.5 the FM phase is
encountered very rarely [9]. The magnetic phases usu-
ally observed in the electron doping region are C (x ≅
0.1–0.4) and A (x ≅  0.4–0.5) [12]. Calculations show
that the “correct” phase alternation G–C–A with
increasing x can occur in the collinear approximation
only in the interval 0.033 < JAFM/t < 0.043, which cor-
responds to overly large values of JAFM. Sublattice cant-
ing only aggravates the situation; indeed, the canted
phase G displaces, to a large extent, the phases that are
still collinear (with only one narrow region C' of canted
phase C left at x ≅  0.08), with phase A completely dis-
appearing in the intermediate doping region of x > 0.4.
The corresponding canting angles for structure G are
approximately proportional to x and reach 180° at the
G–F boundary.
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Fig. 1. Band structure of phases (a) A and (b) C for the cases
of a degenerate eg level (thick lines, ∆ = 0) and split eg level
(∆ = ±t) calculated for two types of ferromagnetic orbital
order; ϕ1, 2 = 0 (thin lines) and π (dots).
PH
Figure 3 shows phase diagrams calculated with due
account of the eg level splitting, which is proportional to
the electron concentration 2∆ = 3tx, and with optimiza-
tion with respect to the spin angle θ and the orbital
angles ϕ1, 2. Splitting changes the character of the phase
diagrams dramatically. In the region x ≥ 0.4, phase A
again appears in the (x, JH/t) diagram and the phase
boundaries shift only slightly with increasing parame-
ter JH/t. As a result, the pattern of the (JAFM/t, x) phase
diagram becomes practically independent of JH. In the
canted G phase, FM orbital order of the type |3z2 – r2〉
(ϕ1, 2 = 0) sets in. This ordering is threefold generate;
indeed, the orbital orders |3y2 – r2〉 (ϕ1, 2 = 2π/3) and
|3x2 – r2〉 (ϕ1, 2 = 4π/3) are equally probable. Phase C is
collinear, with the exception of a small region C' with a
|3z2 – r2〉  FM orbital order. The two collinear A phase
regions featuring |x2 – y2〉 (ϕ1, 2 = π) FM-type orbital
order are connected by a narrow region A', where com-
petition between orbital and spin ordering creates vari-
ous combinations of the collinear or canted spin struc-
ture of type A with FM orbital order to which AFM
orbital order may become admixed. The behavior of the
canting angle (π – θ) and of the orbital angles ϕ1, 2 along
the dashed straight line passing through region A' is
illustrated in the inset in the bottom panel of Fig. 3. The
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Fig. 2. Magnetic phase diagrams for the case of the degen-
erate eg level (∆ = 0) plotted in the (a) (JH/t, x) and (b)
(JAFM/t, x) coordinates and calculated in the collinear
approximation (thin lines) and with inclusion of canting
(thick lines).
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FM orbital order of the FM phase F is similar to that of
phase G.

The eg level splitting stabilizes the magnetic and
orbital orders, which are governed primarily by the
magnitude of the splitting ∆ and by its dependence on
the degree of doping. In the region of actual values
0.013 < JAFM/t < 0.02, the alternation of the magnetic
phases G–C–A and the position of phase boundaries
agree well with experiment [9]. Numerical calculations
also corroborate the experimentally observed collinear-
ity of phases A and C, as follows, for instance, from
data on neutron scattering in the A phase of
Nd1 − ySryMnO3 (y > 0.52) [13] and in the C phase of
Sm1 – yCayMnO3 (y = 0.8) [14].

4. CONCLUSIONS

Thus, we have presented results of numerical calcu-
lations of magnetic phase diagrams of manganites in

(b)
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G C A

A
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A F

C
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Electron doping, x
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Fig. 3. Magnetic phase diagrams for the case of the degen-
erate eg level (∆ ~ x) plotted in the (a) (JH/t, x) and (b)
(JAFM/t, x) coordinates; inset shows the doping dependence
of the spin canting angle (π – θ) and orbital mixing angles
ϕ1, 2 along the dashed line passing through region A'.
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the electron-doping range based on the dispersion rela-
tions E(k) for the main types of antiferromagnetic
ordering in manganites with due inclusion of the eg
level splitting, magnetic sublattice canting, and orbital
ordering. The results obtained fit well enough to the
available experimental data, namely, alternation of the
magnetic structures with characteristic orbital order
occurring with increasing x within the electron concen-
tration range x = 0–0.5 for actual values of the intra- and
interatomic exchange parameters.
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Abstract—A method is proposed for calculating the resonance fluorescence spectrum of coherent gamma radi-
ation with a finite linewidth under conditions when the sublevels of the ground nuclear state are coupled through
a strong field. The spectrum line shape is substantially affected by both the coherent effects induced in the sys-
tem by a strong field and the finite gamma-radiation width. The results obtained earlier and in this work give
impetus to experimental investigations into the coherence of a quantum system and quantum interference of
Mössbauer gamma transitions through the excitation of coherent magnetization dynamics or an optical sub-
system in solids. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Mössbauer spectroscopy of materials in a coherently
excited state is an important direction in solid-state
physics [1, 2]. In recent years, considerable attention
has been given to the study of the quantum interference
phenomenon in the spectral region of Mössbauer transi-
tions, which arises upon coherent excitation of the sys-
tem and can be considered as a possible mechanism of
inversionless amplification of gamma radiation [3–6].
In our previous work [7], we noted that coherence and
quantum interference play a significant role in reso-
nance fluorescence of gamma radiation. In particular,
when the energy sublevels of an excited nuclear state
are coupled by a strong radio-frequency or laser field,
the intensity ratio of the spectral lines reemitted
through these sublevels turns out to be very sensitive to
the shape of the spectrum of pumping gamma radiation.
The model described in [7] can be compared with the Σ
or Λ model of a three-level system driven by two coher-
ent fields (according to the classification accepted in
optics [8, 9]). However, in the framework of our model,
which includes two fields (for example, a gamma radi-
ation field and a strong optical field) governed by dif-
ferent selection rules, this classification does not
exhaust all possible experimental schemes. In this
paper, we consider resonance fluorescence of gamma
radiation in the case when the sublevels of the ground
nuclear state are driven by a strong field (the V model).
In [7], we ascertained that, for the Σ model, the mea-
surements of the intensity ratio of lines in the scattering
spectrum can provide more detailed data on the inter-
ference phenomena (coherence induced in the system)
as compared to the analysis of the shape of the scatter-
ing spectrum. By contrast, in the case of the V model, it
is this shape of the scattering spectrum that carries valu-
able information on the coherence in the system. The
1063-7834/03/4504- $24.00 © 20718
shape of the scattering spectrum, as in the model treated
in [7], is determined, to a large extent, by the parame-
ters of the pumping gamma radiation.

2. COMPUTATIONAL METHOD

Let us consider the V three-level model (Fig. 1).
Levels 1 and 2 can be coupled through a radio-fre-
quency or optical field, and levels 1 and 3 (2 and 3) are
coupled by a gamma radiation field.

The density matrix for this system in the interaction
representation satisfies the equation

 (1)dρ'ˆ
dt
-------

i
"
--- Ĥ 'ρ'ˆ[ ]– Λρ'ˆ .+=

Ω1, ∆13

Ω0, ∆12

W32 W23

W31 W13

W21 W12

1

2

3

Fig. 1. Schematic representation of the V three-level model.
Designations: Wij are the parameters characterizing inco-
herent pumping radiation (W13, W23), spontaneous decay
(W31, W32), and relaxation (W12, W21).
003 MAIK “Nauka/Interperiodica”
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Matrix L and vector I for the V three-level model

1 2 3 4 5 6 7 8 I

1 –Γ12 0 0 0 0

2 0 –Γ13 0 0 0

3 0 0 2iΩ0 iΩ1 0 0 iΩ0

4 –iΩ0 0 –(W12 + W21 + W23) 0 0 0 –(W12 – W32) W12

5 0 –iΩ0 0 –Γ23 0 0 0 0

6 0 0 0 iΩ1 0 iΩ0 2iΩ1 –iΩ1

7 –iΩ1 0 0 0 0 0 0

8 0 –iΩ1 0 W23 – W13 0 0 –(W31 + W32 + W13) W13

Note: Γ12 = (W12 + W13 + W21 + W23)/2 + i∆12, Γ3 = (W12 + W13 + W31 + W32)/2 + i∆13, and ∆23 = (W21 + W23 + W31 + W32)/2 + i(∆13 – ∆12).

–2iΩ0* –iΩ1* –iΩ0* iΩ1*

–iΩ1* –iΩ0* –2iΩ1* iΩ1*

–Γ12* –iΩ0

iΩ0*

iΩ1*

–Γ13*

iΩ0* –Γ23*

iΩ1*
In this equation, the Hamiltonian  is defined as

 (2)

where  is the zeroth-approximation Hamiltonian,

 is the strong radio-frequency (or laser) field, and

 is the pump field. According to [8, 9], we can write

 (3)

 (4)

 (5)

Here,  and  are the Fermi operators and Ω0 and Ω1

are the amplitudes of the strong and pump fields,
respectively, which are multiplied by the relevant
matrix elements of the transitions.

In expression (5), the phase of the pump field is
assumed to fluctuate and θ(t) is a random function gov-
erned by a Wiener–Levy process. The line shape of this
field can be described by a Lorentzian function of width
2D, which is determined from the relationship [10, 11]

 (6)

Preparatory to solving Eq. (1) with the interaction
given by expression (5), we will first write out a solu-
tion to this equation in the case when expression (5)
describes an interaction without fluctuations (see [8]);
that is,

 (7)

Ĥ '

Ĥ ' iĤ0t/"( ) Ĥ
d

Ĥ
p

+( ) iĤ0t/"–( ),expexp=

Ĥ0

Ĥ
d

Ĥ
p

Ĥ0 " εiâi
+âi,

i 1=

3

∑=

Ĥ
d

"Ω0 ω0t–( )â2
+â1exp "Ω0* iω0t( )â1

+â2,exp+=

Ĥ
p

" Ω1 iθ t( )( )â3
+â1 iω1t–( )expexp[=

+ Ω1* iθ t( )–( )â1
+â3 iω1t( )expexp ] .

âi âi
+

θ̇ t( )θ̇ t '( )〈 〉 2Dδ t t '–( ).=

d
dt
-----Y LY I.+=
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
Here, L and I are a constant matrix and a constant vec-
tor, respectively (see table), which depend on Ω0, Ω1,
and the parameters of irreversible processes [the second
term in Eq. (1)]; and Y is a column vector with the fol-
lowing components:

 (8)

In these relationships, ∆12 = ω0 – ε2 + ε1 and ∆13 = ω1 –
ε3 + ε1 are the detunings of the frequencies ω0 and ω1
with respect to the corresponding resonance frequen-
cies. Hereafter, all the frequencies will be given in units
of W31 and the calculations will be performed under the
condition ε2 – ε2 = 30 (Fig. 1).

As was shown by Narducci et al. [8], it is these solu-
tions to Eq. (7) that make it possible to calculate the
correlation functions for the polarization operators and,
hence, the spectrum of spontaneous emission and the
absorption spectrum of probe radiation.

The spectrum of spontaneous emission associated
with a j  i transition is given by the Fourier trans-
form of the two-time correlation function:

 (9)

where  =  is the positive part of the polar-
ization operator.

The correlation function defined by Eq. (9) can be
calculated using the quantum-regression theorem. For

Ψ1 ρ12' i∆12t–( ), Ψ2exp ρ13' i∆13t–( ),exp= =

Ψ3 ρ21' i∆12t( ), Ψ4exp ρ22' ,= =

Ψ5 = ρ23' i ∆12 ∆13–( )t( ), Ψ6exp  = ρ31' i∆13t( ),exp

Ψ7 ρ32' i ∆13 ∆12–( )t( ), Ψ8exp ρ33' .= =

γ τ1 τ0,( ) P̂
–( ) τ1( )P̂

+( ) τ0( )〈 〉 ,∝

P̂
+( ) µijâi

+â j
3



720 SADYKOV et al.
this purpose, with the use of the solutions to Eq. (7), we
first calculate the one-time average:

(10)

When interaction (5) characterized by a pump field
with a fluctuating phase is included in Eq. (1), the form
of Eq. (7) is substantially changed; that is,

 (11)

The quantities Ψ2(τ1) and Ψ5(τ1), which are necessary
for calculating the one-time average (10), are the com-

ponents of the vector Y' ( , Ψ2, , , Ψ5, ,

, ). In turn, these components are determined
by the components involved in expressions (8):

 (12)

The matrix L and vector I in Eq. (11) are identical to
those in Eq. (7). The diagonal matrix L' has the follow-

ing nonzero components:  =  = –2,  =

 =  =  = –1.

Equation (11) is a stochastic differential equation.
After averaging over the stochastic variables, this equa-
tion takes the form [10, 11]

 (13)

A solution to this equation can be written in the follow-
ing form (hereafter, we will drop the stochastic-average
sign for the quantities Y'):

 (14)

By making the substitution of the variables τ = τ1 – τ0 and
τ'' = τ' – τ0 and using the relationship 〈exp(–iθ(τ'))〉 =
exp(–D(τ' – τ0))〈exp(–iθ(τ0))〉 , we obtain

(15)

P̂
–( ) τ1( )〈 〉  = Tr µijâ j

+âiρ̂[ ]  = µ13 iω1τ1( )Ψ2 τ1( )exp

+ µ23 iω1τ1 iω0τ1–( )Ψ5 τ1( ).exp

d
dt
-----Y' L iθ t( )L'–[ ] Y' I iθ̇ t( )–( ).exp+=

Ψ1
– Ψ3

– Ψ4
– Ψ6

––

Ψ7
–– Ψ8

–

Ψi
– Ψi iθ t( )–( ), Ψi

+
exp Ψi iθ t( )( ),exp= =

Ψi
–– Ψi 2iθ t( )–( ).exp=

L6 6,' L7 7,' L1 1,'

L3 3,' L4 4,' L8 8,'

d
dt
----- Y'〈 〉 L D L'( )2 ] Y'〈 〉– I iθ t( )–( )exp〈 〉+[=

=  L1 Y'〈 〉 I iθ t( )–( )exp〈 〉 .+

Y' τ1( ) L1 τ1 τ0–( )[ ] Y' τ0( )exp=

+ τ ' L1 τ1 τ'–( )[ ] I iθ τ'( )–( )exp〈 〉 .expd

τ0

τ1

∫

Y' τ( ) L1τ[ ] Y' τ0( )exp τ'' L1 τ τ ''–( )[ ]expd

0

τ

∫+=

× Dτ''–( )I iθ τ0( )–( )exp〈 〉exp

=  L1τ[ ] Y' τ0( )exp
L1τ( )exp Dτ–( )exp–

L1 D+
------------------------------------------------------+

× I iθ τ0( )–( )exp〈 〉 .
P

Here, D is the number D multiplied by the unit matrix
of the same order as that of the matrix L.

The quantities (τ0) can be expressed in terms of
the system operators at the instant of time τ = τ0. For
example, we have

 (16)

The two-time average 〈〈 (τ1) (τ0)〉〉  [see expres-
sion (9)], which is now also subjected to stochastic

averaging, can be calculated from 〈〈 (τ1)〉〉  with the
use of the quantum-regression theorem by substituting

 and 〈exp(–iθ(τ0)) (τ0)〉 for

 and 〈exp(–iθ(τ0))〉 , respectively. This sub-
stitution leads to the appearance of variables that are
not involved in the vector Y'. In order to determine

these variables, we introduce the vector Y'' (Ψ1, ,

Ψ3, Ψ4, , , , Ψ8), which satisfies the matrix
equation

 (17)

Here, L'' is a diagonal matrix with the following non-

zero elements:  =  = 1,  =  = –1.

Since we consider the stationary case (the steady-
state conditions), it is necessary to find an asymptotic
solution to Eq. (17). For this purpose, we take the limit
τ0, τ1  ∞ in such a way that the difference τ = τ1 –
τ0 is finite.

Next, we take the Laplace transform of the sought
correlation function in Eq. (9). The emission spectrum
is proportional to the real part of the expression thus
obtained; that is,

 (18)

where

 

 

Here, we introduced the following notation: M(z) = (z –

L1)–1, Y''(∞) = , N(z) = (L1 + D)–1[(z – L1)–1 – (z +
D)–1]; z is equal to z multiplied by the unit matrix of the

Ψ j'

Ψ2' τ0( ) iω1τ0–( )ρ13 τ0( )exp〈 〉=

=  iω1τ0–( ) 3| 〉 1〈 |〈 〉 τ0
exp〈 〉 .

P̂
–( )

P̂
+( )

P̂
–( )

i| 〉 j〈 | P̂ +( ) τ0( )〈 〉 τ0
〈 〉 P̂

+( )

i| 〉 j〈 |〈 〉 τ0
〈 〉

Ψ2
+

Ψ5
+ Ψ6

– Ψ7
–

d
dt
----- Y''〈 〉  = L D L''( )2

–[ ] Y''〈 〉 I+  = L2 Y''〈 〉 I.+

L2 2,'' L5 5,'' L6 6,'' L7 7,''

S ω( ) S1 ω( ) S2 ω( ),+∝

S1 ω( )

=  Re M2 j z1( )Ψ j 6+'' ∞( ) N2 j z1( )I jΨ6'' ∞( )
j 1=

8

∑+
j 1=

2

∑ ,

S2 ω( )

=  Re M5 j z2( )Ψ j 3+'' ∞( ) N5 j z2( )I jΨ7'' ∞( )
j 1=

8

∑+
j 3=

5

∑ .

L2
1– I
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Fig. 2. Resonant scattering spectra S = S1 + S2: (a) Ω1 = 0.01, Ω0 = 3, Ω1 = 0.01, Ω0 = 3, ∆13 = ∆12 = 0, W31 = W32 = 1, W21 = W12 =
0.1, and D = 0.5; (b) W13 = 0.01, Ω1 = 0, Ω0 = 3, ∆13 = ∆12 = 0, W31 = W32 = 1, and W21 = W12 = 0.1; and (c) the same parameters as
for panel (a) but at D = 10.
same order as that of the matrix L, z1 = i(ω – ω1), and
z2 = i(ω – (ω1 – ω0)).

It is known that, in the two-level approximation, the
resonance fluorescence spectrum of coherent radiation
can be represented as the sum of nonshifted and shifted
scattering components [12] (with a delta-shape spec-
trum and a spectrum with a finite linewidth, respec-
tively). A delta-shaped line in the scattering spectrum is
also observed upon coherent pumping of the three-level
system (for the 1–3 transition in Fig. 1). The algorithm
proposed earlier in [8, 9] for numerical calculations dis-
regards similar lines and describes only the spectrum of
the shifted scattering component. Such an approach
was justified for the problem solved by the authors in
[8, 9], who analyzed the influence of quantum interfer-
ence on the shape of spectral lines. It must also be
remembered that the results of these calculations
should be compared with experimental data after the
contribution of the nonshifted scattering component is
eliminated (see, for example, [13]). For pumping radi-
ation with a finite linewidth, the scattering spectrum
contains no delta-shaped component and corresponds
to the experimentally observed spectrum. This is the
principal feature of the technique developed in the
present work (and in [7]). In the case of the formal sub-
stitution D = 0, this technique is reduced to the compu-
tational algorithm proposed in [8, 9].

3. RESULTS AND DISCUSSION

We are interested in elucidating the influence of the
coherent mixing of states 1 and 2 (Fig. 1) on the reso-
nant scattering gamma-ray spectrum associated with
the 1–3 transition. The shape of the spectrum depends
on the linewidth D of pumping radiation. Figure 2a dis-
plays the resonant scattering spectrum S = S1 + S2 that
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
should be observed in the general case. In what follows,
we will ignore the difference between the angular depen-
dences of the intensities of the 3–1 (S1) and 3–2 (S2) tran-
sitions. The quintuplet structure of the spectra S1 and S2

is most likely attributed to both the coherence induced
in the system by the coherent field Ω0 and the coher-
ence (partial) of the pump field. In order to justify this
inference, we consider the spectra calculated under the
assumption of incoherent pumping (W13 ≠ 0, Ω1 = 0,
Fig. 2b) and in the case when the linewidth D is rela-
tively large (W13 = 0, Ω1 ≠ 0, Fig. 2c). In both cases, the
spectra consist of two doublets corresponding to the
3  1 and 3  2 transitions with Lorentzian lines
of unit width (in the units used). These lines are shifted
with respect to the centers of the doublets by the Rabi
frequency (±Ω0). According to Zhu et al. [14], this
result suggests the occurrence of coherence induced in
the system by the coherent field Ω0 rather than quantum
interference due to gamma transitions. A comparison of
the spectra shown in Figs. 2a–2c allows us to assume
that the additional triplet structure observed in Fig. 2a
most probably arises from coherence (and, hence, from
monochromaticity) of probe radiation. In our opinion,
the scattering spectrum displayed in Fig. 2a can be
observed experimentally by using conventional Möss-
bauer spectroscopy in a strong field Ω0 induced in the
system [2, 4, 5] according to the method proposed by
Artem’ev et al. [15]. It is these experimental conditions
that correspond to the parameters used in our model for
calculating the spectrum shown in Fig. 2a. Observa-
tions of the predicted spectra in Mössbauer experiments
would mean that the Mössbauer radiation could play a
particular role in the study of the coherence and quan-
tum interference effects associated with Mössbauer
gamma transitions, because there are no currently avail-
3



722 SADYKOV et al.
able sources of coherent gamma radiation in this spec-
tral region.

Deeper insight into the mechanism responsible for
the specific features in the resonant scattering spectrum
(Fig. 2a) can be gained by varying the parameters of the
proposed model.

The conditions W32 = 0, Ω0 = 0, and D = 0 coincide
with the conditions corresponding to the Mollow clas-
sical model [16]. Mollow was the first to treat a two-
level system in a strong field and revealed a substantial
change in the shape of the spectral lines. The basic
result obtained in [16] lies in the fact that the scattering
spectrum of coherent radiation with the amplitude Ω1

6

3

0

0 1 2 3
Ω1

log(σr/σs)

Fig. 3. Dependence of the ratio of the Rayleigh scattering
intensity σr to the spontaneous scattering intensity σs on Ω1
in the two-level approximation (calculations are performed
according to the formulas taken from [17]).
P

(hereafter, we will assume that D = 0, unless otherwise
specified) can be represented, according to the classifi-
cation proposed in [17], as the sum of the Rayleigh
(delta-shaped) and spontaneous scattering components
(the nonshifted and shifted scattering components,
respectively [12]). Note that the relative intensities of
these components depend on the amplitude Ω1. For
small and large amplitudes Ω1, the main contributions
to scattering are predominantly made by the Rayleigh
and spontaneous components, respectively (Fig. 3). It is
believed that the spontaneous radiation, unlike its triv-
ial manifestation in the Weisskopf–Wigner model,
reflects the coherent dynamics of the quantum system
in strong fields. In the limit of large amplitudes Ω1, the
spontaneous spectral component has a specific (triplet)
shape. In the triplet, the separation between the lines is
equal to 2Ω1 and the width ratio of the central and sat-
ellite lines is 1 : 1.5 (Fig. 4a).

If the ground state of the two-level system is cou-
pled to the third level (level 2 in Fig. 1) through a coher-
ent field (i.e., at Ω0 ≠ 0), we obtain the V model, which
is well known in optics and was first studied by Nar-
ducci et al. [8]. The situation where Ω1 > 1 is most
interesting from the optical standpoint. In this case, the
spectrum also contains a triplet and is associated prima-
rily with the spontaneous scattering. The separation
between the triplet components is equal to twice the

effective Rabi frequency Ω = . The surpris-
ing result obtained in [8] resides in an anomalous nar-
rowing of the spectrum of spontaneous emission due to
the 3–1 transition when the decay constant of state 2 is
appreciably smaller than that of state 3 and Ω0 @ Ω1. In
[8], this phenomenon was explained by the suppression
of the effect of vacuum fluctuations on the linewidth cor-

Ω1
2 Ω0

2
+

0.4

0.2

0
–20 –10 0 10 20

ω – ω1

S(ω)

0.2

0
–20 –10 0 10 20

ω – ω1

S(ω)
(a) (b)

Fig. 4. Spontaneous scattering spectra (the 3–1 transition) calculated within (a) the two-level approximation (Ω1 = 3, D = 0, W31 =
1, W32 = 0, W12 = 0, Ω0 = 0) and (b) the V three-level model (Ω1 = 1, Ω0 = 3, ∆13 = ∆12 = 0, W31 = 1, W32 = 0, W21 = 0.1, W12 = 0,
and D = 0).
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responding to the 3–1 transition. Note that the width ratio
of the triplet lines in this case is also equal to 1 : 1.5 at
W32 = 0 (Fig. 4b) but becomes invalid at W32 ≠ 0 [8].
The line narrowing revealed by the numerical method
was interpreted in terms of the dressed-state model [8].
This interpretation is also applicable in the case where
Ω1 ! 1, provided the amplitude Ω is considerably
larger than the decay constant W31 = 1. However, the
case Ω1 ! 1 is not particularly interesting because the
dominant contribution to the scattering is made by the
Rayleigh component (Fig. 3), whereas the triplet struc-
ture studied in [8] is caused by the spontaneous scatter-
ing component.

When analyzing the gamma-ray scattering, first and
foremost, it is reasonable to consider the case of small
amplitudes Ω1 when the spontaneous scattering makes
an insignificant contribution to the scattering associated
with the 3–1 and 3–2 transitions. The spectra attributed
to these transitions also have a triplet structure (Fig. 5),
in which the separation between the components is
equal to 2Ω and the width ratio is 1 : 1.5. The widths of
these lines are determined by the values of W21 and can
be noticeably less than W31. However, this triplet does
not arise from the narrowing of the spontaneous scatter-
ing spectrum (as in [8]) but is due to a broadening of the
Rayleigh component. Unlike the Mollow model [16],
the broadening of the delta-shaped spectrum stems
from the uncertainty in the energy of state 2 (W21) (the
spontaneous Raman scattering 1–3–2) and the finite
width of level 1 (owing to the 1–2 resonant coupling).
For Ω0 = 0, the spontaneous Raman scattering spectrum
is also characterized by a finite linewidth (W21).

At D ≠ 0, there occurs an additional broadening of
the triplet lines and the width ratio of these lines is not
equal to 1 : 1.5. The nonzero value of D also implies a

1.5

1.0

0.5

0
–40 –20 0 20

ω – ω1

S(ω) × 105

Fig. 5. Resonant scattering spectrum at a low intensity of the
pump field. Ω1 = 0.01, Ω0 = 3, ∆13 = ∆12 = 0, W31 = W32 = 1,
W21 = 0.3, D = 0, and W12 = 0.
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disturbance in the pumping coherence. As a conse-
quence, the spectrum exhibits a doublet against the
background of the triplet (as in Fig. 2a). The doublet is
formed by Lorentzian lines of natural width according
to the mechanism described for the spectrum shown in
Fig. 2b.

4. CONCLUSIONS

Based on the data obtained in [7, 18, 19], we pro-
posed a model of resonance fluorescence of gamma
radiation with a finite linewidth in the case when the
sublevels of the ground nuclear state are coupled
through a strong field. Under these conditions, the
shape of the scattering spectrum is associated with both
the formation of dressed states in the system of nuclear
sublevels and the finite linewidth of pumping radiation.
The results obtained in this work and in [7] demon-
strated that effects of a strong field in solids (including
quantum interference effects in the gamma-ray spectral
region) can be efficiently investigated using conven-
tional Mössbauer spectroscopy.
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Abstract—The effect of phonon decay on the characteristic propagation time and shape of a phonon nonequi-
librium signal in disordered crystals, including crystals containing inelastic phonon scattering centers, is stud-
ied theoretically. Attention is focused on slow processes, which are typical of yttrium–aluminum garnet solid
solutions and erbium-doped aluminates. It is shown that the temperature dependence of the arrival time of a
phonon nonequilibrium signal in these systems can be governed, to a considerable extent, by phonon–phonon
interactions. The results of the theoretical studies are compared with experimental data on the propagation of
weakly nonequilibrium thermal phonons in solid solutions of rare-earth yttrium–aluminum garnets and alumi-
nates. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Propagation of weakly nonequilibrium phonons

injected by a warm generator (S/T ! 1, where S is the
amount by which the temperature of the generator
exceeds that of the bath T) into a disordered crystal is
determined, in general, by many factors depending on
the actual experimental conditions, defect structure of
the object under study, and the properties of its phonon
subsystem [1–4]. The part played by phonon–phonon
interaction in the propagation of phonons in disordered
crystals has been dealt with in many theoretical and
experimental publications [5–9]. It is presently well
known that, in the case of strong anharmonicity, propa-
gation of nonequilibrium phonons is not purely diffu-
sive, i.e., is not characterized by a quadratic depen-
dence of the arrival time of the maximum in the phonon
nonequilibrium signal to the bolometer on sample
length (tm ~ L2). It has been shown [5–7] that if phonon
decay processes dominate in an anharmonic system,
i.e., if the nonequilibrium-phonon occupation numbers
n(ω) ! 1, then quasi-diffusion sets in, for which tm ~
L10/9 [5]. If, in addition to photon decay, phonon merg-
ing also plays a noticeable role [in the case of n(ω) @
1], nonlocal phonon thermal conductivity may become
realized, in which case tm ~ L8/5 [7].

These relations were derived under the assumption
of defects in crystals acting as centers of elastic phonon
scattering. This work was aimed at investigating sys-
tems which would also allow inelastic scattering asso-
ciated with trapping centers of nonequilibrium
phonons. Our earlier publication [10] proposed a theo-
retical model to describe the propagation of heat pulses
in Y3 – xErxAl5O12 solid solutions, where paramagnetic
erbium atoms act as phonon trapping centers. This
1063-7834/03/4504- $24.00 © 20725
model provided an explanation for the strong slowing
down (by up to two orders of magnitude) of diffusive
phonon propagation in these systems and permitted a
description of the main anomalies in the temperature
and concentration dependences of the time of signal
arrival to the bolometer. While the phonon–phonon
interaction effects were disregarded in [10], it was
pointed out that the role of phonon–phonon interaction
in slow heat-pulse propagation should be more signifi-
cant than in the case of elastic phonon scattering only,
because the heat pulse propagation time becomes com-
parable in magnitude to the characteristic lifetime of
phonons governed by their anharmonicity. This study
uses the model of [10] to investigate the effect of
phonon–phonon interaction on the signal shape and the
time of signal arrival to the bolometer as a function of
sample length, temperature, and defect concentration in
systems with nonequilibrium phonon trapping centers.
The theoretical relations thus obtained are compared
with the experimental data for solid solutions of
yttrium–aluminum garnets and aluminates.

2. BASIC EQUATIONS

The rate equation describing the propagation of a
phonon pulse with inclusion of phonon–phonon inter-
action cannot be solved in a general form, even under
simplifying assumptions. To investigate this effect
within the simple model of [10], we have to make two
basic approximations. First, we consider only thermal-
phonon decay processes. This restriction is validated by
the condition n(ω) ! 1 [where n(ω) is the occupation
number of injected phonons], which is always satisfied
in the experiments to be discussed in this paper. Sec-
003 MAIK “Nauka/Interperiodica”
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ond, we assume that the long-wavelength phonons
forming in the course of thermal-phonon decay propa-
gate ballistically and do not contribute to diffusion sig-
nal formation at the bolometer. While this approxima-
tion is certainly considerably more rough than the ones
made in [5–7], it permits one to derive simple analytical
expressions for the observed quantities and to analyze
their dependence on the parameters of the problem.
Furthermore, it will be shown below that these approx-
imations also provide quantitative agreement with
experimental data.

With these approximations, the coupled rate equa-
tions describing the heat pulse propagation take on the
form

 (1)

In contrast to [10], we consider here crystals with two
independent two-level subsystems (TLSs), a situation
characteristic of Y3 – xErxAl5O12 with intermediate
erbium concentrations. In Eqs. (1), nq0 and ni, t0 are the
equilibrium phonon occupation numbers at the bath
temperature and the effective temperature of the ith
TLS, respectively; Ei is the TLS energy and Γi, tq is the
rate of phonon scattering from TLSs; and ΓL =
−D0∂2/∂z2, D0 is the phonon diffusion coefficient deter-
mined only by the elastic phonon scattering from
defects, and Γa is the thermal-phonon decay rate. We
assume that the long-wavelength phonons formed in
the decay escape immediately to the helium bath; there-
fore, the corresponding term describes the thermal-
phonon loss resulting from decay.

∂nq/∂t Γa Γ1 tq, Γ2 tq, Γ L+ + +( )nq+

=  Γ Lnq0 Γanq0 Γ1 tq, nq0 Γ2 tq, nq0,+ + +

∂E1/∂t 1/2π( )3 ωqΓ1 tq, nq n1 t0,–( )d
3
q,∫=

∂E2/∂t 1/2π( )3 ωqΓ2 tq, nq n2 t0,–( )d
3
q.∫=
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Fig. 1. Spatial dispersion curves of (a) effective diffusion
coefficients and (b) weighting factors.
P

After linearization of Eqs. (1) and Laplace–Fourier
transformation made as in [10], the coupled rate equa-
tions assume the form

 (2)

Here, Si is the deviation of the temperatures of the sub-
systems (i = q, 1t, 2t) from the bath temperature; Ni is
the ith-TLS concentration; Γi is the phonon scattering
rate per ith-species defect; cp = 4π4(T/TD)3/5 and ci, t =
(∆i/T)2exp(–∆i/T)/[1 + exp(–∆i/T)]2 are the specific-
heats of the phonons and TLSs, respectively; ∆i is a
TLS parameter; and TD is the Debye temperature. As in
[10], in deriving Eqs. (2), we neglected the dependence
of Γtq on q and restricted ourselves to an approximation
linear in the defect concentration Ni.

We readily find the Fourier transform for the solu-
tion of Eqs. (2) to be

 

Figure 1 shows spatial-dispersion curves of the effec-
tive diffusion coefficients and weighting factors derived
by numerically solving the characteristic equation of
system (2). In general, the parameters Ai(k) and the

dimensionless diffusion coefficients  = Di/D0

depend on five parameters similar to those introduced

in [10];  = 2t0τi, where τi is the phonon relaxation
time for decay (i = a) and trapping by the two-level sub-
systems (i = 1, 2), and Ci = cp/(cp + citNi). The specific
points identified in Fig. 1 are expressed through these
parameters in the following way:

 

 

 

 

For definiteness, we assume subsequently that C1 > C2
and k1 > k2.

To analyze the results obtained using this model, we
consider first the effect of phonon decay on heat pulse
propagation in crystals which do not contain trapping
centers.
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3. SYSTEMS WITHOUT NONEQUILIBRIUM-
PHONON TRAPPING CENTERS

In this case, we have k1 = k2 = 0. It follows from
Eq. (2) that

 

which yields

 (3)

This expression coincides formally with that derived in
[10] and approximating the shape of the first peak in
systems with nonequilibrium-phonon trapping sys-
tems, because both expressions describe the loss of
phonons producing the phonon nonequilibrium signal.
In the case of weak anharmonicity, the additional expo-
nential cuts off the signal only at long times and, hence,
increases the curvature of the signal trailing edge. Fig-
ure 2 presents signal trailing edges calculated under the
assumption that the diffusion coefficient is dominated
by Rayleigh scattering on point defects, i.e., D0 =
v 2τR/3 = v 23BT4, where v  is the group velocity of long-
wavelength phonons and the phonon decay rate can be

expressed as Γa = AT5 (  = ABL2T9/3v 2). The parame-
ters needed to calculate the curves in Fig. 2 were taken
from [9, 11]: B = 195 s–1 K–4, A = 2.07 × 10–4 s–1 K–5, and
L = 0.5 cm. In all calculations, we set v  = 7 × 105 s–1 cm.
For the parameters chosen in this way, the theoretical
curves fit satisfactorily to experimental data (cf. [9,
Fig. 1]).

For large values of parameter ka, where the condi-
tion τa ≤ t0 becomes valid, the shape of the phonon non-
equilibrium signal varies strongly enough for the signal
maximum arrival time to change:

 (4)

This relation is nonmonotonic; indeed, for low T, it scales
as T4, and for high temperatures, it falls off as T–1/2. The
maximum in the tmax(T) curve is reached at the temper-
ature Tmax = (20v 2/3BAL2)1/9. Figure 3 shows a graphic
comparison of this relation obtained for B = 1200 s–1 K−4,
A = 800 × 10–4 s–1 K–5, and L = 0.6 cm with the function
t0(T) ~ T4 and relation tmax ~ T1.8 used in [12] to process
the experimental results (squares). These experimental
data were obtained for the solid solution Y1 – xErxAl2O3
characterized by a strong anharmonicity. It appears that
Eq. (4) fits to the experiment better; in our opinion, the
too low position of the last experimental point is a man-
ifestation of nonmonotonicity in the tmax(T) relation.

Thus, the results obtained permit the conclusion that
the proposed model describes the available experimen-
tal data satisfactorily. To come to a final conclusion, one
has to compare the theoretical curves with the results of
a similar experiment performed on samples of different
length, because, according to the above model, the sig-
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nal maximum arrival time depends in a nontrivial way
on sample length. At low temperatures, this dependence
scales in a manner typical of diffusive phonon propaga-
tion, tmax ~ L2, but grows weaker with increasing tem-
perature to become linear (in contrast to the result of the
more rigorous approach used in [5], which yielded
tmax ~ L10/9) for high T. Unfortunately, no studies of the
effect of phonon decay in samples of various lengths
(and concentrations) have thus far been carried out in
these systems. Such measurements have been per-
formed in Y3 – xErxAl5O12, in which one has to take into
account phonon trapping centers.

4. CRYSTALS WITH NONEQUILIBRIUM-
PHONON TRAPPING CENTERS

Consider a crystal with one two-level subsystem
(k1 = 0, C1 = 1). This situation corresponds, in particu-
lar, to Y3 – xErxAl5O12solid solutions with high erbium
concentrations. As pointed out in [10], in this case, the
contribution of low-energy TLSs to C0 is dominant in
the temperature region under study and the high-energy
TLSs may be neglected. Restricting ourselves to an
analysis of slow processes only, we assume, in accor-
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Fig. 2. Effect of a weak anharmonicity on the curvature of
the trailing edge of the phonon nonequilibrium signal.
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dance with [10], that k2 @ 1 and C0 = C2 ! 1. Then, we
have

 (5)

As shown in [10], the tmax(T) relation behaves for A = 0
in a nonmonotonic manner; namely, it first grows expo-
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PH
nentially (for T ≤ ∆), while at high temperatures, it
decays in a scaled manner as 1/T (∆ ! TD). Decay pro-
cesses may give rise to a stronger power-law behavior
of the high-temperature part of the tmax(T) curve, so that,
for a large anharmonicity constant, tmax(T) ~ 1/T5.5. Fig-
ure 4 presents curves calculated for various values of
parameter A (Fig. 4a) and sample length L (Fig. 4b). The
curves in Fig. 4 were calculated with the following
parameters: ∆ = 1.8 K, TD = 600 K, and B = 6500 s–1 K−4.
The concentration of low-energy TLSs, which does not
coincide with that of erbium impurity atoms [10], is x =
0.5 when reduced to Y3 – xErxAl5O12 formula units.

The curves presented in Fig. 4b fit well qualitatively
to experimental data obtained on Er3Al5O12 in [13] and
reveal a transition from the quadratic t2(L) dependence
to a linear one. Note that the possible reason for the
strong temperature dependence of tmax(T) with a nega-
tive derivative, as discussed in [10], was different,
namely, non-Rayleigh elastic scattering. Unfortunately,
experiment does not make it possible to establish the
actual character of elastic scattering.

For intermediate erbium concentrations (x = 0.5–
1.5), the contributions of the low- and high-energy
TLSs in Y3 – xErxAl5O12 solid solutions become signifi-
cant and cause the appearance of two peaks corre-
sponding to slow processes in the phonon nonequilib-
rium signal [13]. Spin–lattice relaxation experiments
indicate that the TLS energy parameters are ∆1 = 4.5 K
and ∆2 = 28.8 K [14]. Figure 5 illustrates the results
obtained in a numerical solution of coupled equations
(2) made taking into account the decay processes. The
calculations were performed for B = 1200 s–1 K–4, A =
10–2 s–1 K–5, ∆1 = 4.5 K, x1 = 0.06, ∆2 = 29 K, x2 = 0.6,
TD = 630 K, and L = 0.5 cm. As in [10], it was assumed
that the rate of energy exchange between phonons and
the TLSs depends exponentially on temperature [Γi ~
exp(–∆i/T)]. The theoretical relations thus obtained fit
well to experimental data (compare with [13, Fig. 5]),
which provides one more argument for the validity of
the proposed model. For comparison, the dashed line
shows an S(t) relation calculated disregarding the decay
processes (A = 0) for T = 3.2 K. As expected, anharmo-
nicity most strongly affects the slowest processes, with
a characteristic propagation time tm ~ t0/C0 @ t0.

In general, no approximate analytical expressions for
the temperature dependence of the arrival times of
phonon nonequilibrium signal maxima to the bolometer
can be obtained in the presence of two TLSs; therefore,
we shall restrict ourselves to the limit of very fast energy
exchange between phonons and TLSs. Under these con-
ditions, k1, k2  ∞, and an expression coinciding for-
mally with Eq. (4) can readily be derived for the slowest
process; in this expression, the parameter C0 is now
determined by both two-level subsystems and features a
more complex temperature dependence. Figure 6 pre-
sents the corresponding curves calculated using Eq. (4)
for different TLS concentration ratios. The curves in
Fig. 6 were calculated with the same parameters as those
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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in Fig. 5. One readily sees an infection point in the tm(T)
dependence at a fairly high low-energy TLS concentra-
tion, which is in agreement with the unpublished experi-
mental data obtained by S.N. Ivanov and coworkers on
solid solutions Y1 – xErxAl2O3 at x = 0.1 and 0.15. As for
the change in the temperature behavior of tm with
increasing concentration that is observed to occur in this
system, it can be interpreted as a transition from one two-
level system to the other.

5. CONCLUSIONS

Thus, taking into account decay processes within
the model proposed earlier offered the possibility of
describing a multiplicity of phenomena observed in
experimental studies of heat pulse propagation in disor-
dered systems with nonequilibrium-phonon trapping
centers. The simplicity of the model and the versatility
of its parameters gives one grounds to hope that this
model will prove useful in describing transport pro-
cesses in more complex systems, for instance, in cer-
mets. Indeed, at the temperatures for which the experi-
ments were conducted, the electron heat capacity of a
small number of metallic inclusions in the dielectric
matrix of such two-phase ceramics can be substantially
higher than the lattice heat capacity of the matrix itself,
thus resulting in small values of the parameter C,

1
2

3

4
1000

100
2 5

t, 
µs

T, K

Fig. 6. Temperature dependence of the arrival time of signal
maximum in systems with nonequilibrium-phonon trapping
centers, calculated for different low-energy TLS concentra-
tions x: (1) 0, (2) 0.03, (3) 0.06, and (4) 0.15.
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which, according to the proposed model, determines
the heat pulse propagation time in the case of fast
energy exchange between the subsystems. Due to the
heat capacities of the electron and lattice subsystems
having different temperature dependences, the contri-
bution from the metallic phase to the formation of the
phonon nonequilibrium signal can be observed experi-
mentally.
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Abstract—A formalism is developed to generalize the results obtained for “incompressible” strips exhibiting
the integral quantum Hall effect in a spatially inhomogeneous 2D electron system to the cases of finite temper-
atures, significant electron density gradients, etc. Specifically, the concept of the “quality” of a given integer
quantum Hall effect strip (channel) is introduced; the quality is proportional to the derivative dn(x)/dx in the
central part of the channel [n(x) is the electron density distribution over the channel]. For a well-defined chan-
nel, this derivative tends to zero. If a noticeable gradient arises in the n(x) distribution, the channel does not
exhibit the quantum Hall effect and ceases to exist. The conditions are determined under which a channel exhib-
iting the integral quantum Hall effect breaks down. The results of calculations are used to interpret the available
experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. It is well known that when a spatially inhomoge-
neous 2D electron system is placed in a magnetic field
normal to the plane of the system, so-called incom-
pressible strips (channels) exhibiting the integral quan-
tum Hall effect (IQHE) can form in the sample; these
channels determine the quantum Hall effect (QHE)
observed in such samples. This hypothesis was put for-
ward by several authors (see, e.g., [1–5]), but it was
developed most fully into a theory in [4, 5], where ana-
lytical expressions were derived and the limits of appli-
cability of the theory were indicated. In [4, 5], an ideal
spinless electron gas was considered at a finite temper-
ature (which allows one to neglect the electron correla-
tions that give rise to fractional QHE) and spatial inho-
mogeneities of the electron density were treated within
a semiclassical model. The latter approximation was
assumed tacitly and implies that the theory developed
in [4, 5] is valid if an inhomogeneous perturbation
eϕ(x) of the electron motion can be included only in the
semiclassical expression for the electron energy spec-
trum el:

 (1)

where ϕ(x) is the local value of the electric potential
and x0 is the position of the center of the electron orbit
in p space.

In general, however, one should also take into

account the shift  in the position of the center of the
electron orbit,

 (1a)

el "ωc l 1/2+( ) eϕ x0( ),+=

x0'

x0' x0
mc

2

e
2
H

2
------------eϕ' x0( ),–=
1063-7834/03/4504- $24.00 © 20730
which arises in spatially inhomogeneous problems.
Here, H is the magnetic field, m is the effective electron
mass, and c is the speed of light.

The aim of this paper is to lift some restrictions in
the theory developed in [4,5]. We assume the tempera-
ture to be finite as before, but include inhomogeneities
of the electrochemical potential µ(x) in Eqs. (1) and
(1a) and abandon the assumption of

  0, (2)

which was essentially employed in [4, 5] in construct-
ing the electrostatics of an IQHE channel.

Our main interest is to determine the necessary con-
ditions for an IQHE channel to exist. In terms of the
theory proposed in [4, 5], a rough lower estimate of the
width 2amin of an incompressible strip is

 (3)

where lH is the magnetic length. Indeed, each strip of
width 2al is characterized by its local integral value of
the magnetic filling factor νl. The concept of the filling
factor νl is well defined over distances larger than the
magnetic length. Therefore, for smaller distances, the
semiphenomenological theory of incompressible chan-
nels developed in [4, 5] becomes unfounded.

In describing the properties of a channel, we will not
use assumption (2); therefore, inequality (3) will not be
a necessary condition. However, we propose an algo-
rithm which enables one to estimate the derivative
dnl/dx at the center of a channel and verify the possible
fulfillment of condition (2). If this condition is not met,
the channel will not exhibit a clearly defined QHE.

2. Let us consider a two-dimensional Corbino disk
with planar terminals in the quasi-one-dimensional
approximation (R1 – R2)/(R1 + R2) ! 1, where R1 and R2

dnl x( )/dx

amin lH,≥
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are the outer and inner radii of the disk, respectively. By
finding the piecewise smooth solution to the Dirichlet
problem for the electric potential, we arrive at the fol-
lowing inhomogeneous addition δn(x) to the electron
density in the 2D region:

 (4)

Here, 2w = R1 – R2 is the width of the 2D region
between the metallic terminals, the x axis is taken to be
along the radial direction, the origin is at the center of
the 2D region, κ is the dielectric constant of the
medium, and Wab is the contact energy. In the limit of

 ! w, where  is the effective Bohr radius, Eq. (4)
is a reasonable approximation at points far from x = ±w;
the integral in Eq. (4) is taken to be equal to its principal
value.

In the presence of a magnetic field normal to the
plane of the 2D system, there are points where the elec-
tron density satisfies the condition

 (5)

These points become centers at which incompress-
ible IQHE strips arise. According to [4], these strips are
independent of one another. We will take advantage of
this fact below.

Within the lth strip, the equilibrium equation for the
2D gas of noninteracting electrons has the following
form (the one-electron approximation was also used in
[4, 5]):

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

Here, T is the temperature; integral equation (11), relat-
ing the electric potential ϕ(x) and the electron density
δn(x), is valid if there are no additional screens near the
disk. The two variants of ν(x) in Eq. (7) are defined by
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Eqs. (9) and (10) and correspond to the different
approximations used to calculate µ(x): in the former
case, inhomogeneities are included (as usual) only in el
in Eq. (1), while in the latter, perturbations of ν(x) are
included self-consistently in Eqs. (1) and (1a).

The function –T lnS, in combination with Eqs. (8)
and (9), undergoes a jump as ν  1:

 (12)

with the jump being temperature-independent and with
the transition region being of the order of T in size.

In the case of Eqs. (8) and (10), the jump is charac-
terized by Eq. (12) in which

 (13)

 (14)

Equations (6), (8), and (10) were proposed in [6] to cal-
culate µ(x) self-consistently when considering the mag-
netocapacitance of small 2D samples. We also note that
the condition ∆(x) = 0 was used in [7] as a additional
relation [in combination with Eq. (11)] between the
Hall voltage and the local electron density distribution
over the cross section of an IQHE channel carrying a
transport current. In this case, one has a closed set of
equations for ϕ(x) and δn(x) not involving the quantity
µ(x), which is not correct. In particular, instead of the
(correct) Ohm law

, 

its approximation in [7] [see formula (11) in that work],

,

was used without explanation.
Returning to Eqs. (6), (8), (9), and (11), we note that

they can be reduced to a single equation for δn(x):

 (15)

In deriving Eq. (15), we used the fact that the integral in
Eq. (4) is zero for the electron density δn0(x).

To solve Eq. (15), we employ an efficient approxi-
mate method which is conceptually identical to the one
used in [4, 5]. First of all, we note that the quantity
δn(x) is significantly affected only over the range ±a
centered at the point xl of the channel of width 2a ! 2w.
Therefore, the difference δn(x) – δn0(x) is significantly
different from zero only over this range and the limits
±w can be replaced by ±a if 2a ! 2w. Furthermore, as
in [4], we assume that the interaction between adjacent
channels is weak. In what follows, we also assume that
the filling factor of a channel is close to an integer;
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therefore, the complicated function S(ν) in Eq. (8) can
be replaced by its value for the integral value of the fill-
ing factor and Eq. (15) can be simplified to

 (15a)

It follows from Eq. (15a) that the derivative dν(x)/dx
becomes exponentially small as e  0.

In order to estimate dn(xl)/dx, we use the approxi-
mation (as in [4])

 (16)

where δx is reckoned from the center of the channel at
hand. By evaluating the integral in Eq. (15a) in the
vicinity of xl,  is found to be

 (17)

The inequality γ @ 1 can be satisfied primarily by mak-
ing e tend to zero; this inequality is a criterion for the
validity of approximations (15a) and (16) and for the
smallness of  (i.e., the high quality of the channel).

The strip width 2a in Eq. (16) can be estimated
using Eq. (15a). Rewriting this equation in the form

 (18)

and substituting  from Eq. (17), we find

 (19)

It follows from Eqs. (6) and (12) that the potential dif-
ference between the edges of the strip is "ωc. There-
fore, Eq. (19) can be written as

 (19a)

from which, in the limit of γ @ 1, we have

 (20)

The estimate of the strip width 2a in Eq. (20) differs
from the corresponding result obtained in [4] by a
numerical factor of order unity, because the electrostat-
ics of the channel in [4] is based on additional boundary
conditions not used in deriving Eqs. (6) and (15). (In [4,
5], the electric field at the edges of the channel was
assumed to vanish because of ill-founded condition (2),
which was introduced to obtain a closed set of equa-
tions of electrostatics.)

Equation (17) gives a convenient criterion for the
high quality of the strip. If

 ! i.e., γ @ 1, (21)
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we have a well-defined IQHE channel. In the opposite
extreme

 ≤  (21a)

the channel does not exhibit a pronounced IQHE.

It follows from Eq. (17) that the quality of a strip
rapidly deteriorates with increasing temperature;
numerical calculations in [8] also revealed this fact. It
is also of interest that γ ∝  a–1; therefore, the quality of a
channel becomes higher as its width decreases. This
dependence can be interpreted as follows. The initial
profile of the electron density δn0(x) in Eq. (4) does not
depend on temperature; the channel width in Eq. (20)
also does not depend on temperature (which is a partic-
ularly attractive feature of the theory developed in [4,
5], because this theory fails at T = 0). However, the

slope  in Eq. (17) is very sensitive to temperature. As

the channel width is increased, condition (21)  ! 
becomes progressively more difficult to be met, which
manifests itself in the relation γ ∝  a–1.

However, such a dependence cannot persist with
decreasing channel width down to a  0, because in
the long run the electrochemical potential in Eq. (6)
becomes sensitive to the difference between ν and ν∗ ,

which is defined by Eqs. (9) and (10), respectively. In
our natural modification of the theory proposed in [4],
the inclusion of inhomogeneities in Eq. (10) affects the
electrochemical potential and, hence, the properties of
narrow IQHE strips.

3. To modify the theory in [4], we conveniently start
with Eq. (18), which, combined with Eq. (10), takes the
form

 (22)

It is seen from Eq. (22) that the formation of a chan-
nel is controlled by two competing parameters,

 (22a)

If the former parameter is large in comparison with the
latter, we have the situation described above. In the
opposite extreme, which is highly probable in the case
of small values of a, the parameters of the channel have
to be recalculated from the beginning.

In general, we should first solve Eq. (22) for ϕ' with
the boundary conditions
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(now, these conditions can be substantiated). The result
is

 (24)

 (25)

The parameter λa in Eq. (25) is a combination of the
parameters in Eq. (22a) and controls the response of the
electron density in the IQHE channel to thermody-
namic jumps in the function S(H, T, νvar) in the vicinity
of the singular points xl defined by Eq. (2). If λa @ 1,

we have the derivative  corresponding to Eq. (9). In
the opposite limit λa ! 1, we start with the simplified
expression for eϕ'(0)

 (26)

From the representation of electric potential (11) in
the form of Eq. (15a), by using approximation (16) and
the line of reasoning that led to Eq. (17), we obtain in
this case

 (27)

In contrast to the parameter γ in Eq. (17), the parameter
δ in Eq. (27) decreases with decreasing channel width
a, as one might expect in the case where the derivatives
of the electric potential are included in the theory. As in
the case of Eq. (21a), we can find amin from Eq. (27):

 (28)

This inequality is a refinement of the rough estimate
in Eq. (3).

We also present an expression for the channel width
in the case where it is close to its minimum value:

 (29)

where δ is given by Eq. (27).
4. Let us discuss the experimental aspect of

Eq. (28). One might expect that, under equilibrium con-
ditions, for which Eq. (28) is derived, the array of
incompressible strips of a 2D system (in the case where
many channels arise in the system) would be separated
from the edges of the 2D system by “normal” spacers,
within which channels cannot form. This was indeed
the case in the experiments in [9] on the linear elec-
trooptic effect in a Corbino disk (see [9, Fig. 2]). The
corresponding experimental data are presented in Fig. 1
(courtesy of W. Dietsche). Open circles represent the
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Fig. 1. Convolution φ(x) of the electric potential ϕ(x) with a
Gaussian for a Corbino disk. The 2D region is centered at
the point x0 = 390 µm. Solid curves are calculated from
Eq. (30) for the normal state and Eqs. (31) and (32) for the
anomalous state. Open (normal state) and solid circles
(anomalous state) represent the data from [9]. The magnetic
fields corresponding to these states are indicated at the top
right of the figure. The circle at the top left gives an indica-
tion of the actual cross section of the laser beam. The arrows
at the bottom right of the figure indicate the boundaries of
the interval where the regions of the normal and anomalous
behavior of φ(x) overlap. The finiteness of this interval is
indicative of the existence of rings (near the edges of the
disk) that exhibit normal electrical conduction and surround
the anomalous region of the disk.
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Fig. 2. Curve a is the normalized convolution ϕ(x)/φc calcu-
lated from Eq. (33) for the region of the normal state
described by Eq. (30) near one of the edges of the Corbino
disk. The coordinate x is measured in units of the radius of
the laser beam; the origin is at the geometric edge of the 2D
system. Open squares are the experimental data from [9].
Curve b is the convolution ϕ(x)/φc calculated from Eq. (33)
for the anomalous state described by Eq. (31). Solid squares
are the corresponding experimental data from [9].
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electric potential for the 2D system in the normal state,
where this system is a good conductor. Solid circles
correspond to the 2D system in an anomalous state,
where an array of IQHE channels arises in the central
part of the Corbino disk (the question concerning the
number of channels arising in experiments in [9] was
discussed in [10]). It is noteworthy that the data on the
electric potential for the normal and anomalous states
overlap near the edges of the Corbino disk over a finite
range of values of the coordinate x (the range is indi-
cated by arrows). This range can exist only if there is a
mechanism that prevents narrow IQHE channels form-
ing in the regions of large electron density gradients.

We used the following parameters to describe the
behavior of ϕ(x) quantitatively. In the normal state,

 (30)

The quantity ϕ0, nominal width 2w, and radius R are
found by fitting Eqs. (30) and (32) to the experimental
data from [9].

Using Eq. (4), the anomalous potential in the multi-
channel approximation [10] can be written in the form

 (31)

The constant ϕ0 is the same in Eqs. (30) and (31). The
constants c1 and xc are chosen to fit the φ(x) distribution
in Eqs. (30) and (31) most closely to the data from [9]
in the QHE regime.

In practice, one should also allow for the finite cross
section of the laser beam scanning the 2D samples in
the experiments in [9]. For this purpose, we consider
the convolution φ(x) of the electric potential with a
Gaussian function characterized by an adjustable
parameter R (laser-beam radius):

 (32)

In Fig. 1, the convolutions calculated from Eq. (32) for
the electric potentials in Eqs. (30) and (31) (solid
curves) are compared with the data from [9] for the nor-
mal (open circles) and anomalous (solid circles) states.
The fitted values of the parameters are R . 60 µm, x0 =
390 µm, w = 240 µm, and xc . 180 µm. Here, x0 is the
center position of the φ(x) distribution presented in the
figure.

To make the picture complete, Fig. 2 presents the
convolutions of the local electric potentials φ(x) given

ϕ x( )
ϕ0, –w x +w≤ ≤
0, x w.≥




=

ϕ x( )
c1/ w

2
x

2
–( ), –xc x xc≤ ≤

ϕ0, +xc x +w≤ ≤
ϕ0, –w x xc.–≤ ≤






=

φ x( ) ϕ s( ) f x s–( ) s,d

∞–

+∞

∫=

f x( ) 1

R π
----------- x

2
/R

2
–( ).exp=
P

by Eqs. (30) and (31) with the rectangular profile of a
scanning laser beam:

 (33)

Clearly, a laser beam with a sharp profile is less suitable
for investigating the details of the ϕ(x) distribution near
the edge of the disk.

Convolutions (32) of electric potentials (30) and
(31) with a Gaussian agree well with the data from [9],
which indicates that the Corbino disk in the QHE
regime has a stripe structure. In the central region of the
disk, there is an array of incompressible stripes whose
internal structure remains unresolved because of the
finiteness of the radius R. Rings exhibiting normal elec-
trical conduction are observed near the edges of the 2D
system; the width ∆ of a ring is

 (34)

Unfortunately, the data presented in [9] do not cover the
range of magnetic fields from 7.9 to 8.5 T, which makes
it impossible to investigate the influence of a magnetic
field on the position and structure of IQHE strips. The
absolute values of the observed electric fields are also
lacking. Nevertheless, using Eq. (33), one can make an
indirect estimate of the contact energy W.

Equation (28), in combination with Eq. (4), allows
one to determine the critical interval 2xc within which
the strips in the Corbino disk can be considered to be
incompressible and a method of average description
can be used:

 (35)

Using Eqs. (28) and (35), it can be shown that the cal-
culated and experimental values of xc correlate well if
W . 1 eV.

In summary, we have shown that the width 2a of
incompressible strips in a regular inhomogeneous 2D
electron system cannot be made as small as one pleases.
The ratio of the electron density gradient dn(xl)/dx at
the center of a strip to its unperturbed value dn0/dx was
used to characterize the strip quality. This ratio changes
from an exponentially small value to a value close to
unity as the width 2a decreases. The critical strip width
2amin for this change is given by Eq. (28). Possible
experimental manifestations of the existence of the crit-
ical width are discussed using the Corbino disk as an
example.
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Abstract—A theory of spontaneous emission and elastic light scattering by quasi-two-dimensional excitons in
a quantum well placed in a Fabry–Perot microcavity is developed. The problem is solved by means of electro-
dynamic Green’s functions with inclusion of fluctuations of the quantum-well width and cavity wall shape
treated as a perturbation. General expressions are found in a zero approximation of perturbation theory (plane
interfaces) for the radiative decay rates of quasi-two-dimensional excitons and for their energy shifts in the cav-
ity. The boundary conditions for the electromagnetic field are taken into account through the coefficients of
inward light reflection from the cavity walls. Resonance contributions to the scattering cross sections, which
differ in the polarizations (p or s) of the incident and scattered waves, are derived in the lowest (Born) approx-
imation in quantum-well width fluctuations. The spectral and angular dependences of elastic light scattering are
studied numerically for Gaussian and exponential correlation functions. It is shown that the contribution from
quantum-well width fluctuations to light scattering exceeds that due to single interfaces (surfaces) of a hetero-
structure by two orders of magnitude. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An excited quantum state is quasi-stationary with
respect to spontaneous photon emission if the state is
confined in at least one dimension on a scale less than
the wavelength of light. Like atomic excited states [1],
the eigenenergies of localized collective excitations,
such as excitons, plasmons, and polar optical phonons,
undergo radiation shift and broadening. For instance,
the broadening of a plasmon of frequency ωp, which is
spatially confined in d dimensions on a characteristic
scale length a ! c/ωp, is determined by the radiative
decay rate Γp ~ ωp(aωp/c)d [2].

Radiative decay of low-dimensional excitons [3, 4],
which plays a major part in the optics of semiconductor
quantum wells (wires, dots) near the fundamental
absorption edge [3], has been attracting considerable
interest recently. The radiation shift and broadening of
exciton levels in a single quantum well [3–6] are mani-
fest in reflection and transmission spectra of light [3].
Reemission of excitons in periodic structures with mul-
tiple quantum wells gives rise to the formation of
coherent polariton states [3, 7], which become superra-
diant in Bragg structures [8]. The competition between
the radiative and nonradiative exciton decay rates affects
the character of light absorption dramatically, with the
result that the absorption mechanism changes from the
polariton to excitonic with increasing temperature,
which governs the rate of nonradiative processes [9].

The specific features of spontaneous emission in
quantum-well structures manifest themselves in inho-
mogeneous line broadening of optical spectra [10–12],
1063-7834/03/4504- $24.00 © 20736
light propagation [13], resonant elastic light scattering
[14–18], and photoluminescence [19, 20]. Elastic light
scattering, which includes absorption of a photon fol-
lowed by coherent emission of a second photon, with
the system transferring to the initial state [1], is a dom-
inant exciton emission process at low optical-excitation
densities [21]. An extremely important feature of the
spontaneous emission of low-dimensional excitons, in
addition to its being resonant, is its dependence on the
direction of propagation and polarization [18]. Viewed
from this standpoint, the existing theory of light scatter-
ing by quantum wells [16], which predominantly con-
siders time-resolved spectra, has two major drawbacks.
First, this theory treats, as a rule, quantum wells in a
uniform dielectric, even though the spontaneous radia-
tion and the associated effects may depend substan-
tially on the dielectric environment of the quantum
wells [12, 22]. Moreover, the polaritons forming in
semiconductor microcavities [23] radically modify the
radiative properties of a quantum well incorporated in
the cavity, as well as the light-scattering spectrum in the
region of the Rabi exciton–polariton splitting [24, 25].
Second, available publications usually ignore the fun-
damental issue of the absolute magnitude and angular
dependence of the scattering intensity, even though it is
these characteristics that contain most of the informa-
tion on static structural disorder [18, 24, 26]. Also, the
dynamics of light scattering may depend substantially on
the actual disorder type, which manifests itself differ-
ently in different stages of the scattering process [27].

The goal of this study is to develop a general theory
of spontaneous radiation and steady-state elastic light
003 MAIK “Nauka/Interperiodica”
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scattering due to quantum-well low-dimensional exci-
tons in a Fabry–Perot cavity. The problem is solved
using the method of Green’s functions, with exciton
polarization fluctuations associated with a random
modulation of the quantum-well width treated as a per-
turbation. The effect of the dielectric environment on
the radiative decay of quasi-two-dimensional excitons
in a quantum well of uniform width is studied in a zero
approximation. The external medium is characterized
by the coefficients of inward light reflection from the
cavity walls. The probability of resonance elastic light
scattering under steady-state conditions is calculated in
the next (Born) approximation in fluctuations of the
quantum-well width and cavity wall shape. The empha-
sis is placed on the analysis of the angular and polariza-
tion characteristics of light scattering associated with
spatial fluctuations of exciton polarization in a quantum
well.

This paper is organized as follows. The problem is
formulated in Section 2. In Section 3, the radiation cor-
rections to the eigenenergy of the quasi-two-dimen-
sional exciton caused by radiation reflection from the
cavity walls are calculated. External reflection of light
from a cavity housing a quantum well is discussed in
Section 4. A calculation of the resonant elastic light
scattering by a quantum well in a cavity, performed in
a general form, is presented in Section 5. Section 6 con-
cerns a model of exciton polarization fluctuations orig-
inating from the quantum-well interfaces being statisti-
cally rough and calculation of the light-scattering cross
sections for the case of a uniform background medium.
The correlation functions of rough interfaces are dis-
cussed in Section 7. In Section 8, the results obtained
are employed in a numerical calculation of the effi-
ciency of elastic light scattering from a quantum well
and rough walls of the cavity itself.

2. FORMULATION OF THE PROBLEM 
AND MAIN RELATIONS

Real quantum wells reside in a complex dielectric
environment and exhibit a variety of structural imper-
fections. The most essential of them are spatial fluctua-
tions of quantum-well width, which are caused by ran-
dom roughness of its interfaces [28]. With this in mind,
we will consider the model presented in Fig. 1. It
includes a quantum well placed in a Fabry–Perot
microcavity (subsequently referred to as the cavity),
i.e., a layer of thickness D with a background dielectric
constant εb. The effect of the external medium is
included through the coefficients r1 and r2 of light
reflection into the cavity from its boundaries z = 0 and
z = D, respectively. It is assumed that a ground-state
quasi-two-dimensional exciton with a Bohr radius
comparable to the quantum well width is excited in the
well. The exciton contribution to dielectric polarization
of the quantum well under monochromatic excitation
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
with a frequency ω is described by a constitutive equa-
tion [6], which can be generalized to the form [17]

 (1)

Here, E is the total electric field and (ω, R) is a ran-
dom exciton-susceptibility tensor, which depends on
the lateral position vector R = (x, y). The envelope of
the ground-state exciton wave function in Eq. (1) is
assumed to be an even function, Ψ(z) = Ψ(–z), which
indicates neglect of the weak scattering caused by the
quantum well being bent relative to the midplane z = z0
[17, 18].

Taking the Fourier transform of Eq. (1),

 (2)

we obtain

 (3)

where

 (4)

4πPex
z R; ω,( ) χ̂0 ω R,( )Ψ z z0–( )=

× z'Ψ z' z0–( )E z' R; ω,( ).d∫
χ̂0

E z; Q ω,( ) d
2
R iQ– R⋅( )E z R; ω,( )exp∫=

4πPex
z; Q' ω,( )

=  z'
d

2
Q

2π( )2
-------------χ̂0 z z'; Q' Q– ω, ,( )E z'; Q ω,( ),∫d∫

χ̂0 z z'; Q' Q– ω, ,( ) 2π( )2δ Q' Q–( )χ̂
0

ω( )[=

+ δχ̂0 Q' Q– ω,( ) ]Ψ z z0–( )Ψ z' z0–( ).

θ1 θ1'

x

z

r1

r2

z = 0

z = z0

z = D

QW

ε1

εb

ε2

εb

εb

Fig. 1. Geometry of light scattering by a quantum well (QW)
with midplane z = z0 in a Fabry–Perot cavity (0 < z < D).
Dashed lines specify the plane interfaces of an ideal struc-
ture, and solid lines present realizations of randomly rough

interfaces. The direction in which angle  for the scattered

light is reckoned is shown by an arrow.

θ1
'
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This expression contains a diagonal tensor  with
components

 (5)

which do not depend on R. In Eq. (5), δαβ is the Kro-

necker symbol and  is the transition frequency of an
exciton polarized along the Cartesian axis α and having

nonradiative and radiative decay rates γ and , respec-
tively. The latter rate is proportional to the exciton
oscillator strength, but its dependence on the quantum-
well width [29] will be subsequently neglected.
Approximation (5), which corresponds to an ideal
quantum well with planar interfaces, is conventionally
used when interpreting light reflection and transmission
experiments [3].

The effects associated with lateral disorder in the
quantum well will be described, in accordance with
Eq. (4), with a tensor:

χ̂
0

χαβ
0 ω( ) δαβ χαα

0 ω( )⋅ δαβ
Γα

0

ωα
0 ω– iγ–

---------------------------= =

=  δαβ
Γα

0

∆α
0 ω( )

---------------,

ωα
0

Γα
0

PH
 (6)

Considered from the viewpoint of statistical theory, the

introduction of tensor  in the form of Eq. (5) for real
(i.e., disordered) quantum wells implies a certain averag-
ing. In experiment, this averaging is effected by the prop-
agating light wave; however, the character of this averag-
ing cannot be analyzed in a strict enough manner.

The exciton contribution to the dielectric polariza-
tion of the quantum well can be represented in the form

 (7)

In accordance with Eqs. (3)–(6), P0 is the regular and
δP0 the fluctuation part of the quasi-two-dimensional
exciton polarization in Eq. (3), which are expressed

through  from Eq. (5) and  from Eq. (6), respec-
tively. The fluctuation contribution δP0, as well as the
tensor in Eq. (6), is considered a random perturbation
in what follows, which is responsible for elastic (Ray-
leigh) light scattering.

In view of Eq. (7), we introduce the following
sequence of equations for a layered medium with the

background permittivity tensor ε0(z) :

δχ̂0 R ω,( ) χ̂0 R ω,( ) χ̂
0

ω( ).–=

χ̂
0

Pex P0 δP0
.+=

χ̂
0

δχ̂0

Î
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 
 
 
 
 
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Î δ r r'–( )⋅

4πk0
2P0 r( )

4πk0
2 P0 r( ) δP m( ) r( )

m 0≥
∑+

 
 
 
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 
 
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 
 
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.=

(8)

(9)

(10)

(11)
Here, r = (R, z), k0 = ω/c, and  is an identity tensor with
components Iαβ = δαβ. In solving Eqs. (8)–(11), one starts

with the unperturbed operator  = curlcurl – ε0(z)
in the left-hand part of these equations. Equations (8)
and (9) define the electric field E0 and the tensor

Green’s function  for a multilayered medium with-
out a quantum well. The solution EI to Eq. (10)
describes the electromagnetic field in the same medium
with plane interfaces but with inclusion of the quan-
tum-well excitons. In stochastic equation (11), the per-
turbation for field EII is the exciton polarization fluctu-

ation δP(0) ≡ δP0 of the quantum well (m = 0,  ≡
) and the polarization contributions δP(m) from the

interfaces (m ≥ 1) that do not belong to the quantum
well.

We solve Eqs. (8)–(11) under the assumption that
the incident wave (Fig. 1) has linear polarization p (TM

Î

L̂
0

k0
2

Î⋅

Ĝ
0

δχ̂ 0( )

δχ̂0
wave) or s (TE wave) and a tangent wave vector com-
ponent Q = Q · ex, where ex is the unit vector of the x
axis. Without the quantum well, the tangential compo-
nents of the electric field excited in the cavity (0 < z <
D) can be written in the form

 (12)

where x(y) corresponds to p(s) polarization and  =

(iQ/k2) . In Eq. (12), Q =  (i.e., the
angle θ) is a parameter of the problem, k(Q) =

, and (Q) is the coefficient of internal
reflection of light from the cavity wall at z = D (Fig. 1).

We introduce operators  =  –  and  =

 – , in which, according to Eq. (4), the

Ex y,
0 r t,( ) A0

p s,
iωt– iQx+( )exp=

× e
ikz

r2
p s,

e
ik 2D z–( )

+( ),
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0
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0
/dz εbk0 θsin

εbk0
2

Q
2

– r2
p s,

L̂
I

L̂
0

k0
2χ̂

0
L̂

II
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I

k0
2 δχ̂ m( )

m 0≥∑
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quantum-well tensors  and  ≡  (m = 0) are
nonlocal in z and z'. Tensor  (m ≥ 1) in the opera-

tor  is related to the dielectric polarization [30, 31]

 (13)

caused by the roughness of the mth interface z = zm +
ξm(R) between media with dielectric constants  =
ε0(zm – 0) and  = ε0(zm + 0), where ε0(z) is the dielec-
tric function from Eqs. (8)–(11).

The corrections EI – E0 and EII – EI are calculated
successively from differential equations (10) and (11),

which can be expressed in terms of operators  with

N = I and II as {E(N), } = {0, (r – r')}. These
equations can be replaced by equivalent integral equa-
tions, which can be cast in a symbolic form [32, 33]:

 (14)

Here, F (N) stands for either vector E(N) or tensor  of
the Nth approximation and the multiplication sign
denotes integration over argument z and summation
over Cartesian indices that are common to two adjacent
operators.

3. RADIATION CORRECTIONS 
FOR A QUASI-TWO-DIMENSIONAL 

EXCITON IN A CAVITY

Considering the solutions to Eqs. (8) and (9) to be
known [30, 33], let us turn to Eq. (10), which describes
the electrodynamics of an ideal quantum well in a cavity.
Integral equations (14) for a quantum well with plane
interfaces z = z0 ± /2 and susceptibility (5) in a multi-
layered medium are given by Eqs. (A.2) and (A.3) in the
Appendix. In these expressions, the nonzero components

 of the exciton susceptibility tensor for an ideal quan-
tum well placed in a cavity can be written as

 (15)
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Here, (Q) and (Q) are the coefficients of internal
reflection of λ-polarized light from the cavity walls
(Fig. 1):

 (17)

  (18)

 (19)

 (20)

 (21)

In Eqs. (19)–(21),  ≡ (Q) and  ≡ (Q) are
the frequency and radiative decay rate of exciton,
respectively, in a quantum well located in a medium
with a uniform background dielectric constant εb. These
quantities have the form [3–6]

 (22)
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 (24)

In Eqs. (22)–(24), the following notation was intro-
duced:

 (25)

In practice, parameters (22)–(24) or  may be con-
veniently considered the starting parameters, with their
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Fig. 2. Relative magnitudes of the radiative decay parameter

1 – Im( )/γ (top series of curves) and of the frequency

shift (Re  – (0))/γ (bottom series) of excitons plotted

as functions of quantum-well position z0 in the cavity with
D = 200 nm, εb = 12.5, and ε1 = 1. The calculations were
made using Eq. (21) for the 1e–1lh light-hole exciton with

(0) = 1.6 eV, "γ = 1 meV, and  = 0.25 meV located

in a GaAs/AlGaAs quantum well of width  = 14 nm.
Curves 1–3 relate to (1) ε2 = 12.5, (2) 6, and (3) 1 for θ1 = 0°
(Q = 0), and curve 4, to ε2 = 1 for θ1 = 75°. Dashed line shows

the relative total exciton decay rate 1 + (0)/γ for the case

of a uniform background medium (ε1 = ε2 = εb = 12.5).
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values derived from experiment by fitting [3]. The con-

stants  in the complex frequencies given by
Eqs. (18)–(21) take into account exciton coupling with
photons of the uniform medium, and the cavity-wall

effect is characterized by coefficients  and . The

term "[Re (Q) – ] describes the radiation shift of

the exciton energy level, and –"Im (Q) is its radia-

tion width, which enters the total width "(γ – Im ).
According to Eq. (18), in general, the quantities

(Q) take into account electromagnetic interaction
between excitons polarized along the x and z axes.
Equations (22)–(24), derived from Eqs. (19)–(21) for

 =  = 0, relate to a quantum well embedded in a

uniform medium. In this case,  =  = 0 in Eq. (15);

i.e., excitons with frequencies  and  defined by
expressions (19) and (20) are no longer electromagnet-
ically coupled. In general, in order for the condition

 =  = 0 to be met, it is required that  =

. This can be used to determine the well posi-
tion z0 for which the x and z components of the exciton

become independent (for instance, z0 = D/2 for  = ).

The zeros of the resonance denominator in Eq. (16),
which are determined by the condition ∆y(Q, ω) = 0,
yield the dispersion law for s-polarized exciton polari-
tons of an ideal quantum well in a cavity, and the roots
of the equation ∆±(Q, ω) = 0 define the dispersion law
of p-polarized polaritons. The exciton frequency shift

Re  –  and the exciton decay rate γ – Im  oscil-
late depending on the quantum-well position z0 in the
cavity; this finding was apparently first pointed out in
[22]. This effect is illustrated in Fig. 2, which displays
the radiation corrections calculated from Eq. (21), pri-
marily for the case of normal light incidence. We
readily see that the radiation corrections to exciton fre-
quency and decay exhibit oscillations, even if one of the

coefficients,  or , is zero. The reason for this is the
interference of light associated with wave reflection
both from the cavity walls and from the quantum well
itself. These oscillations, whose amplitude is compara-
ble to the exciton radiative-decay parameter, depend
not only on z0 but also on the cavity width D, the angle
of incidence θ, and the frequency of light ω. While in
the case of p polarization and for θ ≠ 0, the oscillations
of the radiation corrections determined by the ∆±(Q, ω)
functions for hybrid modes of excitons polarized along
the x and z axes become more complex, their main fea-
tures are retained.
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4. LIGHT REFLECTION FROM A CAVITY 
WITH A QUANTUM WELL

The exciton radiation effects described in Section 3
depend substantially on the electric-field distribution
over the cavity and determine, in turn, the resonance
properties of this field. We shall assume that a light
wave of polarization λ (i.e., s or p) propagates from the
region z = –∞, where ε0(z) = ε1 (Fig. 1), and calculate first
the effect of the cavity on the optical properties of exci-
tons in an ideal quantum well. The reflection coefficient

(Q) enters the asymptotic solution (z  –∞) to
Eq. (A.2), which for a λ-polarized field takes on the
form

 (26)

where k1(Q) =  =  and  are
tangent projections of the incident wave amplitude. In
Eq. (26),

 (27)

 (28)

for p and s polarized waves, respectively. In Eqs. (27)
and (28),

 (29)

with the last expression describing the reflection coeffi-
cient for a λ-polarized wave reflected from the cavity in

the absence of the quantum well. The quantities 

are given by Eqs. (15) and (16), where  and 
denote the coefficients of electric-field transformation
taking place as light crosses the interface z = 0 from
medium 1 to the cavity and back and

 (30)

5. LIGHT-SCATTERING CROSS SECTIONS
FROM A QUANTUM WELL IN A CAVITY

5.1. General Theory

Equations (11)–(14), treated in first order of pertur-

bation theory [17, 18, 30, 31] in the quantities ,
yield the following expression for the electric field of
the scattered light:
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 (31)

Here,  = zm ± 0 for the mth plane interface (m ≥ 1)

and the notation  for the quantum well (m = 0) indi-
cates that integration in Eq. (A.4) with function Ψ(z – z0)
has been performed. In Eq. (31), the field EI(z; Q) and
the Green’s function components

 (32)

correspond to the tangential components

 (33)

of the incident and scattered wave vectors in the ideal
quantum-well structure. In Eq. (32), the nonzero matrix
elements that depend on the angle ϕ' between vectors
Q' = ( , ) and Q can be written as Txx = Tyy =

cosϕ' = /Q', –Txy = Tyx = sinϕ' = /Q', and Tzz = 1.
At the z = 0 interface, components (33) of the incident
and scattered wave vectors and the corresponding azi-
muthal angles are continuous and the polar angles θ and

θ' transform, according to the refraction law  =

, to the angles θ1 and  measured outside the
cavity (Fig. 1).

Let us use Eq. (31) to calculate the electromagnetic
energy flux scattered back into an element of solid

angle  =  (z  –∞ in Fig. 1). Next,
following [18, 30], we average this flux over the ensem-

ble of realizations of tensors { } (of their Fou-

rier components { }). The quantity d〈S 〉/
thus found, where 〈S 〉  is the average value of the Poynt-
ing vector of scattered light, can be linearly expressed
in the lowest (Born) approximation of perturbation the-
ory through the correlation functions

 (34)

The presence of the delta function δ(Q' – Q'') in Eq. (34)
indicates lateral translational invariance of the quantum
well on the average.

In what follows, we assume the absence of correla-
tion (statistical independence) between the responses of

different rough interfaces, i.e., that  = 
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in Eq. (34). Then, the ratio of the energy

cos d〈S 〉/  scattered by a unit surface area to the

energy cosθ1c | (Q)|2/(8π) of the wave of ampli-

tude  incident on this area determines the dimen-
sionless total scattering cross section:

 (35)

Here, we introduced the notation λ  λ' for the scat-
tering channel λQ  λ'Q' defined by polarization
indices λ and λ' of the incident and scattered waves,
respectively, either of which can be p or s. The elements

of the Hermitian matrix (  = ( )*)

 (36)

are given by Eqs. (A.12) in the Appendix; in fact, for
z  –∞, they do not depend on z.

Because of the interfaces being uncorrelated, scat-
tering cross section (35) reduces to the sum

 (37)

in which the second term takes into account the contri-
bution from the Fabry–Perot cavity walls to scattering.

5.2. Partial Contributions 
to the Light-Scattering Cross Section

Substituting Eq. (36) into Eq. (35), taking into
account Eq. (32), and using the general properties of
Green’s functions of multilayered dielectric media [32,
33], we obtain the following expressions for the mth
partial contribution to cross section (37) in different
λ  λ' scattering channels:

 (38)
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In Eqs. (38)–(41),

 (42)

and  ≡ ( ; Q) and  ≡ (z, ; Q') for
z  –∞; for a quantum well (m = 0), these quantities
are expressed by relations (A.10) and (A.11), into
which one should substitute Eqs. (A.5)–(A.9) with due
account of Eq. (A.4).

6. MODEL OF EXCITON POLARIZATION 
FLUCTUATIONS IN A QUANTUM WELL

6.1. Model

Following [17], we introduce a model of lateral
polarization fluctuations of quasi-two-dimensional
excitons in a quantum well. Deviations of the quantum-
well interfaces from a plane surface end up in the for-
mation of islands, i.e., finite regions within which the
quantum-well width can be considered nearly constant
[28]. An essential factor for determination of the island
size is that the quantum-well interfaces be statistically
different; for instance, in GaAs-based quantum wells,
the autocorrelation radius of the lower interface (GaAs
on AlxGa1 – xAs) is substantially larger than that for the
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upper one (AlxGa1 – xAs on GaAs) [28]. In experiment,
the cross section of a probing light beam covers an
extremely large number of various islands, which act in
this case as a statistical ensemble.

It is believed that the average distances between
atomic steps on an interface can be as large as a few
tens of nanometers [28]. One should, however, bear in
mind that the atomic interface profile cannot be identi-
fied with an optical (dielectric) interface for the follow-
ing reasons of a general nature. First, the most efficient
part played in scattering is that by the spatial scatterer
spectrum that corresponds to sizes comparable to the
probing-light wavelength [26]. Second, as follows from
atomic force micrographs, surface roughness of a semi-
conductor crystal can be characterized by two correla-
tion lengths, namely, a small-scale one (a few tens of
nanometers) and a large-scale one (a few hundreds of
nanometers) [34]. The large-scale size becomes mani-
fest in the angular dependence of elastic light scattering
from the rough surface of a semiconductor in the region
of its volume-excitonic resonances [34, 35]. Based on
this reasoning, we assume that light scattering by quan-
tum wells is substantially also contributed by large-
scale exciton-polarization fluctuations, in which the
extent of the exciton wave function within an island can
considerably exceed the Bohr radius. Such excitons are
delocalized and retain their individuality with respect to
the quasi-two-dimensional exciton in an infinite quan-
tum well of the same width.

Let the profile of the quantum-well interfaces at z =
z0 –  + ζ1(R) and z = z0 +  + ζ2(R) be determined
by random functions ζ1(R) and ζ2(R) of the vector R =
(x, y). The random quantum-well width is given by

 (43)

where  = 〈L(R)〉  is the average width of the quantum
well, which is statistically uniform in its plane. Here
and subsequently, the averaging over realization
ensembles of the random functions {ζ1(R)} and
{ζ2(R)} is denoted by 〈…〉 , with 〈ζ n(R)〉  = 〈δL(R)〉  = 0.

Because we are interested in the manifestations of
large-scale fluctuations of the interface shape in optical
spectra, we generalize Eq. (5) by accepting for the ten-
sor in Eq. (1) the expression [17]

 (44)

where the exciton transition frequency (R) is a ran-
dom function of R. Substituting Eq. (44) into Eq. (6),
with due account of Eq. (5), yields the following
expression for the fluctuation part of the susceptibility:

 (45)
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If the quantum-well width fluctuations are small

(〈(dL)2〉1/2 ! ), the frequency (R) in Eq. (45) can

be expanded in δL = ζ2 – ζ1 near  ≡ ( ). For

〈( )2〉1/2 ! , we obtain in a linear approximation
in δL,

 (46)

Within an island, the exciton transition energy as a
function of quantum-well width is given by the relation

(L) = Egap + Econf(L) – Ebind(L). Here, Egap is the
band gap width of the corresponding bulk material,
Econf is the size-quantization energy of the unbound
confined electron and hole, and Ebind is their Coulomb
binding energy in the exciton. Because of Ebind ! Econf,
which is a relation that always holds for usual quantum-
well widths [36], the dependence of the exciton fre-
quency shift in Eq. (46) on L is determined by the con-
finement energy of the unbound pair:

 (47)

where µ is the reduced electron–hole mass. Using
Eq. (47), we obtain the following estimate for the coef-
ficient Uα in Eq. (46):

 (48)

which is the same for excitons of either polarization α
provided that the effective masses of the carriers in
them are the same. In Eq. (48), R is the Rydberg energy,
aB is the bulk exciton Bohr radius, and the constant β ~ 1
depends on the dimensionality of the quantum well
modeling an island. In the model of a potential well
with infinite walls, this constant can vary from β = 1 for
a one-dimensional well (a laterally macroscopic island)
to β = 3 (an island represented by a cubic quantum box

with dimensions  ×  × ).

For  < γ, taking Eqs. (5) and (46) into
account in Eq. (45) yields

 (49)

in first order in δL(R) or in the Fourier component
δL(Q). In meaning, expression (49) relates to quasi-free
excitons whose energies are modulated in lateral direc-
tions in accordance with the quantum-well width varia-
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tion in Eq. (43). Using approximation (49) for correla-
tion function (34) of a quantum well (m = 0), we come to

 (50)

6.2. Light Scattering by a Quantum Well 
in a Uniform Medium

Let us derive now analytical expressions for the
cross section of resonant elastic light scattering by a
quantum well residing in a uniform dielectric back-

ground with ε0(z) ≡ εb. In this case, the conditions  =

 = 0,  = 0 (α ≠ β), θ1 = θ, and  = θ' are satisfied
and the quantum-well contribution (m = 0) to cross sec-
tion (37) for different scattering channels takes on the
form

 (51)
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The spectral function

 (57)

describes the resonance properties of an α-polarized
exciton. The parameters of function (57) for p-polar-
ized radiation (α = x, z) are determined by Eqs. (22) and
(23), and for s-polarized radiation (α = y), by Eqs. (24).
Equations (51)–(57) are a generalization of the results
reported in [18], which relate to the isotropic exciton
susceptibility (to make a comparison with Eqs. (51)–
(54) possible, one should enter the factor cosθ' in [18,
Eqs. (26), (30)]). As seen from Eqs. (52) and (53), in
the Born approximation, the radiation scattered in the
light-incidence plane (ϕ' = 0) is not depolarized.

7. STATISTICAL PROPERTIES 
OF ROUGH INTERFACES

For the interfaces (surfaces) z = zm + ξm(R) having
random relief shape components ξm(R), we introduce
correlation functions:

 (58)

Here, hm =  is the rms roughness height of
the mth surface; the dependence on the difference |R –
R' | in Eq. (58) indicates statistic uniformity of the sys-
tem in a plane z = const. The functions gmm'(|R – R' |)
and the coefficients Kmm' = 〈ξ m(R)ξm' (R')〉/(hmhm' )
describe autocorrelation of the surface shape for m = m'
and cross-correlation for m ≠ m', with –1 ≤ Kmm' ≤ 1 =
Kmm. The observed quantities, in particular, those given
by Eqs. (51)–(54), are expressed through the Fourier
transforms of functions (58); i.e.,

 (59)

where (Q) = ξm(–Q) because of the function ξm(R)
being real. A set of two-point functions of the type of
Eq. (58) is usually sufficient for interpretation of a
light-scattering (diffraction) experiment [26].

Because the character of the interface correlation in
real heterostructures is unknown, let us consider

 (60)

to be a Gaussian correlation function and

 (61)

to be an exponential correlation function, where Λmm' is
the transverse roughness correlation length. Elastic
light scattering through bulk exciton states has shown
[35] that Gaussian correlators (60) are appropriate for
characterization of randomly rough semiconductor sur-
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faces. On the other hand, some authors [20, 27]
reported on the possibility of manifestation of an expo-
nential correlation in quantum-well optics, which is
characteristic of stepped surfaces [26]. We compare
now the theoretical results on light scattering obtained
using correlation functions of both types.

The statistical characteristics of rough quantum-
well interfaces are determined by the correlators
〈δL(R)δL(R')〉  and the Fourier amplitudes of the type of
Eq. (59), which enter the observable quantities (38)–
(41) through Eq. (50). Let us substitute the function
ξ0(Q) ≡ δL = ζ2 – ζ1 from Eq. (43) for ξm into Eq. (59)
and the correlator 〈|δL(Q)|2〉  thus obtained into
Eq. (55); this yields

 (62)

where  =  and  ≡ (|Q' – Q|) =

〈ζ n(Q) (Q')〉 .
Inclusion of cross-correlation between statistically

rough quantum-well interfaces does not bring about
any specific effects, except an additional weak scatter-
ing caused by the quantum-well bending [17, 18].
Therefore, in what follows, we neglect the interface
roughness cross-correlation; i.e., we set  =  = 0
in Eq. (62). We also assume, for the sake of simplicity,
that both interfaces in a quantum well are statistically
identical. Under these conditions in the case of Gauss-
ian correlation (60), function (55) takes on the form

 (63)

In the case of exponential correlation function (62),
we obtain

 (64)

Each of the functions defined by Eqs. (63) and (64)
assumes that both quantum-well interfaces have the
same transverse autocorrelation length Λ and rms
roughness height h, with the quantum-well width fluc-

tuation being  = .

Figure 3 compares dependences (63) and (64) on the
correlation length Λ of the interface roughness of a
GaAs/AlGaAs quantum well calculated for various val-
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ues of the angle θ'. That these functions have maximum
values Wg ~ We ~ (h/ )2 is of fundamental importance;
note that function (63) reaches its maximum at Λg =

2/ |Q' – Q|, and function (64), at Λe = / |Q' – Q|.
These estimates depend on the dimensionality of the
roughness [24]. According to Eq. (33), |Q' – Q| ~

; therefore, the angular characteristic (indicatrix)
of light scattering will have a clearly pronounced struc-
ture if the dielectric response of rough interfaces is cor-

related over the length Λg ~ Λe ~ 1/ . This is in
accord with the general conclusion [26] that wave scat-
tering (diffraction) turns out to be most efficient in stud-
ies of static disorder whose spatial spectrum has com-
ponents with correlation lengths on the order of the
probing wavelength. By contrast, for Λ|Q' – Q| ! 1, i.e.,

Λ ! 1/ , the angular response of the radiation in
Eqs. (63) and (64) corresponds to quasi-isotropic scatter-

ing. For Λ|Q' – Q| @ 1, i.e., for Λ @ 1/ , the scat-
tered radiation is concentrated within a narrow solid
angle about the direction of mirror reflection.
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Fig. 3. Fourier components of the Gaussian Wg (thick lines)
and exponential We (thin lines) shape autocorrelation func-
tions of rough GaAs/AlGaAs quantum-well interfaces plot-
ted vs. transverse correlation length Λ. Function Wg was
calculated from Eq. (63), and function We, from Eq. (64),

for (0) = 1.6 eV,  = 14 nm, h = 0.2 nm, εb = 12.5, θ =
ϕ' = 0°, and the following values of angle θ': (1) 5°, (2) 15°,
(3) 30°, and (4) 60°.
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Fig. 4. Light scattering cross sections  ≡ (s  s)/  plotted (a) vs. (ω – (0))/γ for various angles  and (b) vs.

angle  for ω = (0) and (0) = 1.6 eV (  = 14 nm). The parameters of the 1e–1lh exciton in the GaAs/AlGaAs quantum

well are the same as in Fig. 2: "Uy = 50 meV, h = 0.2 nm, Λ = 50 nm, D = 200 nm, and z0 = D/2. The  spectra of panel (a)

relate to θ1 = 0 and (1) ε1 = ε2 = 12.5,  = 15°, ϕ' = 0°; (2) ε1 = ε2 = 12.5,  = 15°, ϕ' = 45°; (3) ε1 = ε2 = 1,  = 20°, ϕ' = 0°;

and (4) ε1 = 1, ε2 = 12.5,  = 20°, ϕ' = 0°. Thick lines relate to Gaussian (63), and thin lines, to exponential (64), correlation func-

tions of rough interfaces.
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8. NUMERICAL ANALYSIS

8.1. Light Scattering by a Quantum Well

The results of a numerical calculation of the quan-

tum-well contributions  ≡ dσ(0)(λ  λ)/  to
the scattering cross section in Eq. (37) are shown

graphically in Figs. 4 and 5. The quantity  for the
s  s scattering channel was calculated from Eq. (38),

and  for the p  p channel was calculated using
Eq. (41). The estimates were made for an anisotropic

ground state (with  =  = /4 [3, 17]) of the
1e−1lh light-hole quasi-two-dimensional exciton in a
GaAs/AlGaAs quantum well. Equations (63) and (64)
were used to take into account the Gaussian (thick lines
in Fig. 4) or exponential (thin lines in Fig. 4) correlation
between the quantum-well rough interfaces.

Let us compare the spectral and angular responses
of the scattering intensity displayed in Figs. 4 and 5 for
the s  s and p  p channels. We readily see that
the scattering spectrum of the p  p channel is more
complex than that of the s  s channel. This can be
explained by the fact that both the incident and the scat-

wλλ
0( )

dΩ1'

wss
0( )

wpp
0( )

Γ̃ x
0 Γ̃ y

0 Γ̃ z
0

P

tered p-polarized wave can interact with two reso-

nances having different frequencies,  from Eq. (22)

and  from Eq. (23), whereas the s  s scattering
component reveals the only resonance with frequency

 from Eq. (24). In the case of a uniform background,
dielectric medium (ε1 = ε2 = εb in Fig. 1), both dimen-
sionless scattering cross sections (Figs. 4a, 5a) have
the largest amplitude at resonance, which constitutes

 ~ 10–2 for Λ = 100 nm. Figures 4a and 5a also
show that the scattered intensity in vacuum (ε1 = 1) is
substantially weaker than that in a uniform semicon-
ductor due to the light refraction and reflection from the
cavity walls.

The difference between the scattering channels also

manifests itself in the dependence of the quantities 

on the angles θ1 and , as well as on ϕ' (Figs. 4b, 5b).
On the whole, the angular responses of scattering
shown in the figures are intimately connected with the
correlation properties of the interfaces discussed in
Section 7. For a given roughness correlation length Λ,

ωx
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ωz
0

ωy
0

wλλ
0( )

wλλ
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θ1'
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Fig. 5. (a) Spectral and (b) angular dependences of scattering cross sections  ≡ dσ(0)(p  p)/  for a GaAs/AlGaAs quan-

tum well with (0) = 1.6 eV, (0) = 1.602 eV (  = 14 nm),  = /4 = 0.25 meV, and "Ux = "Uz = 50 meV. The

parameters used are ε2 = 12.5, D = 200 nm, z0 = D/2, h = 0.2 nm, and Λ = 100 nm. Spectra in panel (a) were calculated for  = 0°

and (1) ε1 = 12.5, θ1 = 5°,  = 10°, ϕ' = 0°; (2) ε1 = 12.5, θ1 = 10°,  = 30°, ϕ' = 60°; (3) ε1 = 12.5, θ1 = 10°,  = 30°, ϕ' = 90°;

and (4) ε1 = 1, θ1 = 18°,  = 38°, ϕ' = 0°. The angular dependences in panel (b) correspond to frequencies (1, 4) (0),

(2) [ (0) + (0)]/2, and (3) (0).
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the dependence of the scattered intensity on angles θ
and θ' is determined by the quantity |Q – Q' |, with the
condition |Q – Q' |Λ ~ 1 providing optimum estimation
of correlation functions (63) and (64) from the stand-
point of the amount of information that can be gained
from an experiment. For Λ ! 1/k0, the light scattering
from a quantum well in a cavity is practically isotropic
in angle θ'. In these conditions, most of the radiation,

for which θ' >  = , does not leave the
cavity because of the strong dielectric contrast (ε1 ! εb)

of the semiconductor/vacuum interface (  ≈ 16° for
GaAs). By contrast, for Λ @ 1/k0, most of the radiation
scattered by the quantum well escapes to vacuum
within a small solid angle about the direction of mirror
reflection from the plane (central) surface. These fea-
tures also become manifest to a certain extent in the
angular dependences of light scattering by a quantum
well, which are plotted in Figs. 4b and 5b for the opti-
mum conditions |Q – Q' |Λ ~ 1. On the whole, the dif-
ferences in the angular dependence of light scattering
that are due to the interfaces being differently corre-
lated are insignificant; they can be, instead, considered

ε1/εbarcsin θmax'

θmax'
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quantitative. As a result, determination of the character
of the interface shape correlation appears a more com-
plex inverse scattering problem than calculation of the
characteristic statistical parameters of the interface
roughness.

The above estimates suggest that the cross sections of
resonant light scattering by a quantum well exceed, by
nearly two orders of magnitude, those measured [34, 35]
in the range of bulk-exciton frequencies in the elastic
scattering of light from a semiconductor surface with
the same roughness scale. Indeed, the probability of
light scattering by a quantum well within the total solid
angle can be estimated as WQW ~ [hΛ/( )]2, where
λ = 2π/k0, Λ is the transverse correlation length, and h
is the rms roughness height. Using Figs. 4 and 5, we
find that WQW ~ 10–3–10–2 for GaAs-based quantum
wells with roughness height h ~ 10–1 nm. In the case of
a rough semiconductor surface, the estimate of WQW

should be replaced by [35] WRS ~ (hsΛs/λ2)2, where hs

and Λs are the surface roughness parameters entering
the correlation function in Eq. (63). Hence, WQW/WRS ~

λ L
3
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( )2 if h = hs and Λ = Λs ~ 1/k0; i.e., WQW/WRS ~ 102

for the same interface roughness height. A comparison
of the estimates from Eqs. (51)–(55) with experiment
[35] shows that light scattering effects from a single
quantum well are readily observable for an interface

roughness height h ~ 10–1 nm. By increasing the h/
ratio, one can, in principle, obtain from Eqs. (38)–(41)
somewhat larger intensities scattered from a quantum

well; however, the condition h < /U of the applica-
bility of Eq. (49) must not be violated. Because this ine-
quality assumes resonant interaction between exciton
polarizations in different parts of the quantum well, its
violation would indicate the need to invoke another
model which would take into account exciton localiza-
tion in islands whose dimensions along the interfaces
are small.
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Fig. 6. Partial cross sections of light scattering by a quantum

well (curves 1 for ), and by two rough cavity walls

(curves 2, scaled by 1000 for  =  + ), which

enter the total scattering cross section of Eq. (37), plotted vs.

incidence angle θ1. Thin lines relate to (0)/c = 2π, and

thick lines, to (0)/c = 15π. The calculations were made

for the exciton resonance frequency ω = (0), (0) =

1.6 eV, ε1 = 1, ε2 = 6, z0 = D/2, θ1 +  = 18°, ϕ' = 0°, and for

the same parameters as in Fig. 4. Gaussian correlation func-
tions with the same parameters, h = 0.2 and Λ = 100 nm, were
used for all interfaces.
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8.2. Light Scattering from Cavity Walls

In real nanostructures, not only the quantum-well
interfaces but also other boundaries can be statistically
rough. The random roughness of the Fabry–Perot cav-
ity walls accounts for the presence of the second term
in the scattering cross section in Eq. (37). We compare
this contribution from the cavity walls to light scatter-
ing with the above resonance contribution originating
from quantum-well width fluctuations. To do this, we
assume that the shape of the rough cavity walls (Fig. 1)
can be approximated by random profile functions z =
ξ1(R) and z = D + ξ2(R), respectively, which are not
correlated. We take into account constitutive equations
of the type of Eq. (13) with z1 = 0 and z2 = D and calcu-
late the independent contributions to the scattering
cross section in Eq. (37) that are caused by random
roughness of the cavity walls.

Figure 6 compares the contribution due to the rough

Fabry–Perot cavity walls  =  + , with

 ≡ dσ(m)(s  s)/  (curves 2), under excitation
by an s-polarized wave given by Eq. (12) with the con-
tribution originating from quantum-well exciton reso-

nance  (curves 1) to the total scattering cross sec-

tion wss =  + . These quantities are plotted as
functions of the angle of light incidence θ1 for a fixed

angle θ1 +  = const between the incident and the scat-
tered fluxes; this condition is usually met in experi-
ments [34]. We readily see that, for the same rms rough-
ness height, light scattering from the Fabry–Perot cav-
ity walls is two orders of magnitude smaller than that
from a quantum well that is resonantly amplified by
quasi-two-dimensional excitons. In the case of the
Fabry–Perot cavity, the scattered intensity reveals an
interference structure, which becomes evident for cav-
ity widths sufficiently large as compared to the wave-
length (D @ c/ω). Interference gives rise to scattered-
intensity oscillations, but its inclusion does not affect,
in any way, the above fundamental conclusion that the
light scattering from cavity walls is relatively weak. In
closing, we stress that, because the effect of cavity
walls on the observable optical quantities has been
taken into account by us through the light reflection
coefficients, our theoretical results can be conveniently
used in analyzing the emission and scattering of light
by quantum wells located inside semiconductor micro-
cavities of various nature.

9. CONCLUSIONS

The correlation theory of resonant elastic light scat-
tering developed above suggests the following conclu-
sions. Variation of the quantum-well width and the
associated lateral fluctuations in quasi-two-dimen-
sional exciton energy account for the elastic light scat-
tering, which is resonantly amplified as compared to

wss
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wss
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wss
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the case of a single interface. As a consequence, the
intensity of resonance scattering by a quantum well
with atomically rough interfaces exceeds, by approxi-
mately two orders of magnitude, that due to single het-
erostructure interfaces with the same roughness. The
magnitude of the radiation corrections to the energy
and decay of a quasi-two-dimensional exciton confined
to a quantum well residing in a Fabry–Perot cavity
depends substantially on the actual position of the
quantum well relative to the structure interfaces. These
features of spontaneous radiation affect light scattering
in real heterostructures and are essentially different for
processes which differ in the linear polarization (p or s)
of the incident and/or scattered waves. The spectral and
angular dependences of the scattering probability
derived with Gaussian and exponential correlation
functions of interface roughness are qualitatively simi-
lar. This substantially complicates the solution of the
inverse scattering problem bearing on determination of
the type of statistics describing rough interfaces. At the
same time, the scattering cross sections are expressed
explicitly through interface shape correlation functions
and, therefore, can be employed to derive the statistical
parameters of interfaces from experimental data, as was
done in [35].

APPENDIX

SOLUTION OF THE ELECTRODYNAMIC 
PROBLEM FOR A QUANTUM WELL 

IN A CAVITY

The solutions to Eqs. (8) and (9) for a multilayered
medium with plane interfaces perpendicular to the z axis
and with an isotropic dielectric permittivity tensor

ε0(z)  can be written as

 (A.1)

In representation (A.1), the field components with Car-
tesian indices α = x, z (p polarization) and α = y

(s polarization) are separated. The tensor  of an ideal
quantum well characterized by Eq. (5) is diagonal;
therefore, representation (A.1) is valid for functions

EI(z, R) and (z, z'; R) and integral equations (14) for
their amplitudes take on the form

 (A.2)
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Ĝ
I

Eα
I

z( ) Eα
0

z( )– k0
2

Gαµ
0

z •,( )χµµ
0 Eµ

I
•( )

µ
∑=

=  k0
2

Gαµ
0

z •,( )
χµν

I

Ic
2

--------Eν
0

•( ),
µ
∑
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 (A.3)

(the parameter Q is dropped). Here, we used the rela-
tion

 (A.4)

in which f(z) is an arbitrary function, Ψ(z – z0) is the
envelope of the wave function from Eq. (1), and Ic is
given by Eq. (25). The second of the equalities in (A.2)
and (A.3) results from a self-consistent solution of the
equations corresponding to the first of the equalities in
(A.2) and (A.3). The notation used in Eqs. (A.2) and
(A.3) is

 (A.5)

 (A.6)

 (A.7)

 (A.8)

for p-polarized light and

 (A.9)

for s-polarized light.
As follows from Eqs. (A.2) and (A.3), in terms of

susceptibilities (A.5)–(A.9), the Cartesian components
of the exciting field can be expressed as

 (A.10)
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and the components of the tensor Green’s function for
the radiation problem (z  –∞) can be expressed as

 (A.11)

with (•) = (z0)Ic and (z, •) = (z, z0)Ic,
where indices α and β denote x or z. The elements of
matrix (34) assume the form (we drop the superscript 0
or I)

 

 

 (A.12)

 

 

The preceding expressions in this appendix relate to an

arbitrary layered medium. Functions  were obtained
in an analytical form for structures whose function ε0(z)
describes two, three [30], or four [33] macroscopically
thick uniform dielectric layers. For the cavity model
shown in Fig. 1, to which an unperturbed three-layer
medium corresponds, the notation introduced in
Eqs. (A.5)–(A.9) is as follows:
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The integrals Ic , Is, and I0 are given by Eqs. (25).
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Abstract—A theoretical interpretation of the fine structure in the low-energy electron total-current spectra and
low-energy electron transmission spectra measured along the normal to the (0001)MoS2 single-crystal surface
is proposed. The calculations took into account the energy dependence of band level broadening and the elec-
tronic structure of the high final unoccupied states (above the vacuum level Evac), which become occupied by
electrons entering a solid. A comparison with the available experimental and theoretical data is performed. The
effects of the bulk band structure are shown to play a dominant role in the formation of the spectra (the extrema
in the spectra identify the energy position of critical points, such as the band edges or the points of extremal
curvature of the dispersion branches). The proposed method makes it possible to separate the bulk effects in
spectra from surface effects, this approach can be used to advantage in monitoring the state of a surface in the
course of its treatment. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electron band structure E(k) is a fundamental
characteristic determining most of the physical proper-
ties of solids, for instance, the transport phenomena,
optical, and photoemission (PE) properties. The band
structure (more specifically, the electronic states near
the Fermi level EF) is also a major factor underlying the
operation of solid-state electronic devices. Note that
not only the energy positions of electronic states (which
determine, for instance, the band gap width) but also
the arrangement of these states in k space are impor-
tant. Unoccupied high-lying states are traditionally
studied using x-ray absorption spectroscopy (XAS) [1],
bremsstrahlung isochromat spectroscopy (BIS) [1, 2],
inner-shell characteristic electron energy loss spectros-
copy (EELS) [1, 3], inverse photoelectron spectroscopy
(IPES) [1, 4, 5], very low-energy electron diffraction
(VLEED) [6, 7], low-energy secondary-electron emis-
sion spectroscopy (SEES) [8, 9], low-energy total-cur-
rent (TC) spectroscopy (TCS) [5, 10–23] and its modi-
fication, and low-energy electron transmission spec-
troscopy (LEET) [24–28]. Having a high surface
sensitivity and being nondestructive, the latter two
methods are employed, in addition to analyzing ele-
mentary excitations and near-surface states, in monitor-
ing surface cleanness in the course of surface treat-
ments, determination of the work function, etc. Note
also that the technical simplicity of these two methods
permits their use in monitoring E(k) parameters
directly in the course of manufacture of semiconductor
devices. Although high-lying states cannot be classed
among states near EF, the changes are interrelated.
1063-7834/03/4504- $24.00 © 20752
Due to the specific features of their crystal and elec-
tronic structure [29], layered rare-metal dichalco-
genides (RMDC) feature a number of unique proper-
ties; as a result, the related materials do not have ana-
logs and cannot be replaced by an equivalent
counterpart. Among these materials are layered binary
compounds exhibiting strongly anisotropic atomic
interactions. This factor accounts for the rich diversity
of their anomalous properties, in particular, the struc-
ture of their energy levels, namely, their fine structure
(FS), splitting, overlapping, and mutual position in k
space. Indeed, single-crystal 2H-MoS2 (a material pro-
totype for optoelectronic and photovoltaic devices)
possesses hexagonal crystal structure with trigonal-

prismatic coordination (space group ) and is a
weakly ionic covalent compound (with 4d55s outer-
shell electron configuration of Mo). The relatively
strong intra- and weak interlayer couplings (quasi-two-
dimensionality) give rise to a strong modulation of the
crystal field potential along the normal to the layer
plane and, accordingly, to a strong scattering from this
potential (intercalation of layered materials with alkali
metals makes the former practically completely two-
dimensional [30]). The RMDCs have a large unit cell
and a hard nonlocal pseudopotential because of the
existence of d bands. Numerous theoretical RMDC
band structure calculations are fairly contradictory
(particularly in what concerns the conduction band)
and do not offer a detailed explanation of the nature of
experimentally established features in optical and PE
spectra. The band widths and their separations quoted
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in various publications differ by several times. In this
connection, investigation of TC and LEET spectra of
RMDCs is of a certain interest, because data on the
threshold characteristics of transition excitation in
these compounds permit one to obtain valuable infor-
mation on the properties of electrons in strongly
hybridized d, p, and s states.

The present communication reports on a theoretical
study and interpretation of the FS in the TC and LEET
spectra of a 2H-MoS2 (0001) surface based on bulk E(k)
and on the development of a technique of experimental-
data treatment to extract the maximum possible informa-
tion on the electron dispersion relation above Evac.

2. THEORETICAL MODEL

A comprehensive analysis of the FS of experimental
TC and LEET spectra turned out to be difficult because
of the need to take into account the diverse physical
processes occurring in the interaction of a flux of pri-
mary electrons Ip with the near-surface region of a crys-
tal [31]. For instance, the positions of the maxima in the
TC spectra Ei = –d2I/dE2 of single-crystal graphite
obtained at various primary-electron incidence angles
(wave vectors k) have been studied and the final con-
duction-band states E = Ei as a function of E(k) have
been constructed [11]. In this case, however, informa-
tion on E(k) can be distorted by the combined effect of
the structure of various bands, which requires a more
detailed theoretical consideration. There are several
approaches to the interpretation of spectral features. In
the first approach, the experimental TC [15–20] and
LEET [24–26] spectra are compared with the calcu-
lated volume density of unoccupied electronic states
ρ(E); the level broadening is neglected, and only the
positions of spectral lines rather than their shape and
intensity are analyzed; the applicability of the limiting
transition to one-dimensional (or three-dimensional
[17]) ρ(E) is not specified. Note that straightforward
model calculations [28] demonstrated that this
approach is not valid for interpretation of LEET spectra
of graphite [variations of ρ(E), except the band gaps are
not reflected in these spectra]. The dynamic theory of
low-energy electron diffraction (LEED) [20–23] (an
alternative scattering-matrix formalism in dynamic
LEED is presented in [32]) and the VLEED approach
[6], where the vacuum wave function (superposition of
the primary plane wave and of all diffracted beams)
joins the wave function in the crystal (superposition of
all Bloch waves), appear to be more adequate. Note that
multiple-scattering methods [20–23, 32] are not appli-
cable to an analysis of E(k) and, furthermore, encounter
difficulties with inclusion of the full crystal potential
into the calculation.

The physical nature of the FS observed experimen-
tally in TC and LEET spectra is determined by the
mechanisms of low-energy electron interaction with
the surface and is intimately connected with multiple
scattering of the diffracted beam from the surface
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
potential barrier. The experimentally measured spectra
are actually derivatives (with respect to primary elec-
tron energy Ep) of the total (integrated) current in the
sample circuit I as a function of Ep under the condition
of complete secondary-electron collection and constant
Ip. Note that I = Ip – Is, where Is is the current of the elec-
trons escaping from the sample, both elastically and
inelastically. Among the latter are the inelastically
reflected primary electrons, the highly excited electrons
of the solid, Auger electrons, and the true secondary
electrons, whose emergence depends substantially on
the magnitude of Ep. At low energies Ep (<10 eV), the
elastic (quasi-elastic) reflection (in the interaction of
electrons with the atoms and ions of the crystal lattice)
dominates; this reflection further becomes comparable
with the inelastic component (formation of electron–
hole pairs) for Ep ≤ 40 eV. For energies below 100 eV,
the fraction of elastic scattering is a few percent and
electron–electron scattering involving interband transi-
tion excitation dominates. In addition to the excitation
of interband transitions, the spectra can reveal threshold
excitation of the solid under electron impact, more spe-
cifically, plasma oscillations, impurity and vacancy
states, etc., which bring about broadening and a
decrease in the amplitude of a spectral structure. The
main spectral structure consists, however, of the fea-
tures that reflect the fundamental properties of the
material under study and are associated with the vol-
ume band structure E(k) of the crystal.

We considered, as in [33–36], the scattering of elec-
trons with a given momentum on a crystal within the
approximation of the scattering probability being pro-
portional to the number of final states at a given energy
level E and a given direction of the quasi-momentum W.
The current flowing through the sample can be written as

 (1)

where Enk is the electron dispersion relation E(k); Wnk
is the unit vector along the ∇ kEnk direction; fF(Enk) is the
equilibrium Fermi–Dirac occupation function, which is
zero for E > Evac; Evac = EF + eϕ, with EF = 6 eV [37]
being the midgap energy and eϕ = 4.9 eV [5] being the
work function; and V is the crystal volume. Crossing
over from summation over k to integration over the
constant-energy surface Enk = E, we obtain, neglecting
diffraction from the crystal surface,

 (2)

where N(E, W) is the number of energy bands along the
W direction for which the equality E = Enk holds. Here,
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"/τ(E) of the electronic levels by replacing the δ func-
tion in energy in Eq. (1) by the corresponding Lorentz-
ian. The excited-state lifetime τ(E) (absorption poten-
tial Vi) against inelastic interactions was determined
from the expression [38, 39]

 (3)

where E0 = 0 is the position of the valence band bottom.
Equation (2) is valid if the vector W coincides in

direction with the crystal symmetry axis (under nor-
mal electron beam incidence on the sample). The
stepped N(E, W) function was constructed using the
bulk band structure E(k) of 2H-MoS2, which was cal-
culated by following layer-scattering method [37]
developed in LEED studies. Note that the data obtained
in [37] in calculations of the lowest unoccupied bands of
2H-MoS2 (E – EF < 4 eV) are in good agreement with the
angular relations derived by IPES [5].

In taking into account the surface effects contribut-
ing to the formation of N(E, W), the following consid-
erations should be included. The specific features in the

"/τ E( ) E E0– E EF–( )2
,∼

a

b
c

d
1

2

3

4

5

6

7

MoS2
W = (0001)

×5
a

a

a

b

b

b

b

c

c

c

d

d

d

d

S(
E

, W
),

 a
rb

. u
ni

ts

0 2 4 6 8
E, eV

TC and LEET spectra measured along the normal to the
(0001)2H-MoS2 single-crystal surface: (1) TC experi-
ment, dI(E, W)/dE [18]; (2) TC experiment, dI(E, W)/dE
[15], Ip ~ 10–8 A; (3) LEET experiment, dI(E, W)/dE [27],

Ip = 3 × 10–11 A; (4) TC theory, dI(E, W)/dE [32];

(5) dI(E, W)/dE calculation; (6) –d2I(E, W)/dE2 calculation;
and (7) TC experiment, –d2I(E, W)/dE2 [5]. Curves (1–7) are
translated arbitrarily along the vertical axis. Energy E is
reckoned from Evac. Arrows identify the main features in
the curves.
P

electron spectrum of the RMDC surface originate from
the fact that the electron spectrum characteristic of the
bulk remains practically undistorted in the near-surface
region; it is against this background that local surface
states or surface resonances become manifest. This is
corroborated by numerous PE studies (see, e.g., [40] for
2H-MoS2). LEED studies [41] showed that the geomet-
ric structure of bulk 2H-MoS2 is retained and has the
same lattice parameters on the surface, the only differ-
ence being a compression of the interlayer distance by
an amount of up to 5%. Note that the sensitivity of TC
and LEET spectroscopy to the geometric structure of
the surface turns out to be weaker [6] than that of con-
ventional LEED [42] at higher energies. In [43], the
2H-MoS2 surface obtained by cleavage in high vacuum
(8 × 10–7 Pa) or by 3-keV Ar+ ion bombardment was
studied using Auger electron spectroscopy. The experi-
mental data thus obtained revealed the formation of
imperfections on the basal surface (defects and “edge”
atoms), which was not accompanied by a substantial
distortion of the volume structure.

3. RESULTS AND DISCUSSION

The figure displays experimental TC spectra
dI(E, W)/dE (obtained in [18] and [15], curves 1 and 2,
respectively) and an LEET spectrum dI(E, W)/dE
(curve 3) [27] measured under normal incidence on the
(0001) surface of a 2H-MoS2 single crystal. The half-
width ∆E of the primary-electron energy distribution
was 0.5 eV [15, 18], and the electron energy was mod-
ulated with a frequency of 430 Hz [15] (400 Hz [18])
and an amplitude of 0.15 eV [15] (0.1 eV [18]). The
intensity of the FS of the spectra is 1% of the primary-
electron distribution maximum (not shown in the fig-
ure), which appears at the energy at which the electrons
start to impinge on the sample. Also shown for compari-
son is a TC spectrum dI(E, W)/dE calculated in [32]
using dynamic LEED theory (curve 4) and a dI(E, W)/dE
spectrum (curve 5) calculated from Eq. (2) along the ΓA
direction in the volume Brillouin zone, which is
perpendicular to the layers and corresponds to nor-
mal-incidence TC and LEET spectra. The positions of
the characteristic maxima in the curves are labeled
a, b, c,… in order of increasing energy.

The differences in the position of the features in the
experimental and theoretical curves can be attributed to
the following factors.

(1) The rough character of band structure calcula-
tions for high-lying levels becomes manifest. There is a
need for a self-consistent band theory which would take
into account the strong RMDC lattice anisotropy, inter-
band hybridization of states (d–p and p–s interaction),
spin–orbit and interlayer coupling, the unusual features
of the Mo d states, and the strong electron density vari-
ation combined with noticeable wave-function delocal-
ization at high energies. According to [6], unoccupied
high-lying electronic states may feature, contrary to the
common viewpoint, considerable deviations from free-
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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electron dispersion and experience a pronounced influ-
ence from many-electron effects. The latter contribute
to the broadening of the spectral structure (Vi) and to the
decrease in its amplitude; this factor that should not be
disregarded in the energy region where Vi and the band
gap widths are of the same order of magnitude.

(2) Like any other spectroscopy, the TC and LEET
methods have an intrinsic accuracy in the sense that the
extrema in dI(E, W)/dE can be shifted slightly with
respect to the energy band edges within 0.1–0.3 eV. It
should also be pointed out that identification of the FS
in TC (calculated curve 6 and experimental data [5]
shown by curve 7) and LEET spectra through the neg-
ative second derivative –d2I(E, W)/dE2 is less efficient
(see, e.g., [11]), because, in this case, the peaks shift
markedly away from the band edges and a parasitic
structure forms between them.

(3) There are experimental errors associated with
the formation of a collimated low-energy electron
beam, complete collection of the secondary electrons,
deviation of the electron beam from the normal for the
case of the faces being oriented with error, and with the
high surface sensitivity of TC and LEET spectra, which
is determined not only by the small depth of the region
under study but also by a strong influence of the physi-
cochemical surface processes [13, 14, 18, 24, 27]. For
instance, the intensity of maximum a in the figure
(curve 1) decreases when oxygen is adsorbed [18]. Due
to adsorption, maximum b shifts to lower energies by
about 0.8 eV. Adsorbate or foreign atoms and impuri-
ties being present on the surface in comparatively high
concentrations between the layers, as well as the easi-
ness with which layer stacking faults form in the course
of RMDC crystallization, gives rise to large-angle elas-
tic scattering, thus opening new channels to electron
penetration into the crystal. Additional structures asso-
ciated with surface resonances may also appear in the
spectra [42, 44]. Such resonances are formed by dif-
fracted beams of energies slightly less than the thresh-
old for escape to vacuum and exhibit small broadening
compared to the features in bulk band structure E(k).
All these factors impose stringent requirements on the
preparation and quality of the sample surface to be
studied [27]. Cleavage and mechanical polishing of a
sample in air performed before placing the sample in a
high-vacuum chamber result in immediate contamina-
tion of the 2H-MoS2 surface, which is highly unstable.
Surface contamination of layered materials can be elim-
inated by long-term, high-temperature (up to 600 K [27],
700 K [15], 1200 K [18]) heating in ultrahigh vacuum
(<5 × 10–8 Pa [15], 10–7–10–6 Pa [27]) directly before
each measurement, with the surface cleanness (the
absence of signals due to oxygen, carbon, and other
impurities) thoroughly verified using Auger electron
spectroscopy [18] or LEED [5, 27]. The criterion for
surface cleanness should be the reproducibility of the
spectral shape and of the magnitude of the surface
potential as verified in a series of successive high-tem-
perature treatments. At the same time, one should bear
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
in mind that intense heat treatment may generally bring
about undesirable changes in the state of the target,
such as changes in its composition and crystal struc-
ture, phase transitions, and chemical reactions. Heat
treatment is sometimes currently replaced with surface
bombardment by ions of inert gases (complemented by
LEED). This method results in the formation of radia-
tion defects in the near-surface region of the crystal.
Defect clusters may order to form superlattices. In
addition to the amorphization of the surface layer,
superstructures may form on the surface and in the
course of crystal growth.

4. CONCLUSIONS

The demonstrated agreement between the main fea-
tures of experimental and theoretical TC and LEET
spectra demonstrates that a dominant part is played by
volume band structure E(k) in the formation of the
spectral structure. The possibility appears of experi-
mentally investigating the electron dispersion relation
at energies substantially above Evac and of using TC and
LEET data in more consistent E(k) calculations
through identification of individual spectral features
with the corresponding bands, which complements the
traditionally employed optical and PE spectroscopy
(PES). The extrema in the TC and LEET spectra (cor-
responding to jumps or thresholds of the N(E, W) func-
tion [33–36]) reflect the energy position of the critical
points in E(k), such as the band edges or extremal dis-
persion-branch curvature points. Investigation and
interpretation of experimental TC and LEET spectra
obtained at different primary-electron incidence angles
may yield direct information on specific features of
E(k) throughout the Brillouin zone. This information
can be used to advantage (in addition to VLEED spec-
troscopy) to analyze PES and inverse PES data. The
dependence of the FS in TC and LEET spectra on the
geometric structure and degree of order in the crystals
under study was substantiated. The features associated
with the volume band structure E(k) can be accompa-
nied in spectra by features originating from diffraction
and surface states. The latter may contribute only
monotonic variations and affect the shape of spectral
features without changing the energy position of FS
extrema. Separation of volume and surface properties
in a study of TC and LEET spectra is possible when for-
eign particles are adsorbed. In this case, a change in the
FS features will serve as a measure of defect content in
the surface layer of the sample, which can be employed
to advantage in monitoring surface quality during crystal
treatment. The method developed in [45] allows one to
separate volume from effects in spectra surface ones, as
well as to describe the FS in the experimental behavior
of the secondary electron emission coefficient σ(Ep) =
Is/Ip without invoking the bulky formalism of dynamic
LEED theory (as done, for instance, in [46, 47]).
3
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Abstract—A theory of nonlinear TE-polarized waveguide modes propagating inside a symmetrical planar
three-layer structure with a linear core and nonlinear coatings is developed. The coatings are assumed to be non-
linear due to the optical exciton–biexciton conversion. The dispersion laws of the propagating waves are derived
and investigated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In view of the rapid development in integrated
optics, investigation of the properties of waveguide
(directed) modes in complex structures and nonlinear
light guides has been of great interest in recent years [1,
2]. The spatial distributions of the fields of nonlinear
waveguide modes have been studied in a number of
papers using different model dielectric functions of
nonlinear media [3–10]. The properties of nonlinear
waveguide modes have usually been investigated using
a dielectric function of the crystal whose dependence
on the field of the propagating wave is represented by a
quadratic (Kerr) correction with respect to the field. In
a few papers, the properties of nonlinear waveguide
modes were studied for non-Kerr media. The dielectric
function of a medium should be determined self-con-
sistently from constitutive equations of the Bloch type
taking into account the specific mechanisms of the non-
linearity and the type of the quantum transitions. In this
paper, we theoretically investigate the properties of
nonlinear waveguide modes propagating inside a sym-
metrical three-layer structure.

2. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Let us consider nonlinear TE-polarized waveguide
modes propagating in a symmetrical three-layer struc-
ture consisting of a linear plate of thickness 2d (–d ≤ z ≤
+d) surrounded by semi-infinite nonlinear semiconduc-
tors on both sides. The plate is characterized by a
dielectric constant ε0, and the coatings are semiconduc-
tors. We assume that a light wave propagating in these
semiconductors can generate excitons from the ground
state of the crystal and simultaneously transform them
into biexcitons due to the optical exciton–biexciton
conversion. This effect can occur, e.g., in CdS and CdSe
1063-7834/03/4504- $24.00 © 20757
crystals type, in which the biexciton binding energy is
vanishingly small. The giant oscillator strength of the
optical exciton–biexciton conversion in these crystals
makes it possible to consider nonlinear propagation of
laser radiation at moderate excitation levels. To solve
the problem, we use the dielectric function ε of the non-
linear medium, depending on the frequency ω and
amplitude E of the electromagnetic field of the propa-
gating wave that originates from the interaction
between the light and excitons and biexcitons in the
crystal:

 (1)

This equation was obtained in [11] to investigate the

properties of nonlinear surface waves. In Eq. (1),  =
2∆2/σ2, ∆ = ω – ω0 is the resonance detuning for the fre-
quency ω of the propagating radiation from the fre-
quency ω0 of the exciton transition, ωLT = 4π"g2/ε∞ is the
frequency of the longitudinal–transverse splitting of the
excitonic state, ε∞ is the background dielectric constant,
g is the exciton–photon interaction constant, and σ is the
optical exciton–biexciton conversion constant [12].

We use Eq. (1) to investigate the regularities of the
steady-state propagation of the TE-polarized
waveguide modes in the geometry shown in Fig. 1.
Suppose that an electromagnetic wave propagates
along the x axis and is characterized by wave vector k.
The wave field contains a transverse electric E (parallel
to the y axis) a magnetic Hz component, as well as the
longitudinal component of the magnetic field Hx. The
wave equations describing the spatial distribution of the
electric field of the electromagnetic wave under steady-
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state conditions can be derived from the Maxwell equa-
tions to be

 (2)

 (3)

where n = ck/ω is the effective index of refraction of the
medium and c is the speed of light in vacuum. We study
spatially confined waveguide modes whose energy is
localized in the region of the plate. For this reason, the
amplitude of the field E and its derivative dE/dz corre-
sponding to the solution to Eq. (2) should vanish at
infinity. Introducing the new variable x = ωz/c and inte-
grating Eq. (2) with the conditions at infinity yields the
following equation for |x | > D = ωd/c:

 (4)

where

 (5)

Here, W(E) is the potential energy of a nonlinear oscil-
lator whose motion is described by the first integral (4).

It should be noted that for an optically linear
medium, we have W(E) = –E2(n2 – ε0), where ε0 is the
dielectric constant of the plate. Extending this expres-
sion to the nonlinear case, one can represent W(E) in the
form W(E) = –E2(n2 – ε*), where, in accordance with
Eq. (5), we have

 (6)
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Fig. 1. Geometry of the light guide and the directions of the
field components.
Here, ε* is referred to as the effective dielectric func-
tion of the medium. It follows from Eq. (4) that solu-
tions to this equation in the form of waveguide modes
exist only for amplitudes of the field E(x) that satisfy
the condition W(E) ≤ 0. An analysis shows that, for

−∞ < ∆ < ∞, solutions exist if εex = ε∞  and

ε* < n2 < ε0. Only waves whose amplitude varies in the
range

 (7)

can exist. Here, εex is the dielectric function of the linear
medium in the region of the excitonic transition and Em
is the maximum amplitude of the wave field. As for the
spatial distribution of the field E(x) in this wave, it has
a maximum in the region |x | > D. Integrating Eq. (4)
yields the following solution for the spatial distribution
of the field E(x) outside the plate (for |x | > D):

 (8)

in the range D ≤  ≤  and

 (9)

for x ≥ xm. Here, the position x = xm of the maximum of
the field E(x) = Em is determined from the expression

 (10)

where q =  and E0 is the field amplitude at the
boundary of the light guide x = D. It follows from
Eq. (9) that, for x @ xm, where E ! Em, the field

decreases exponentially: E ~ exp(– (x – xm)).
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First, we consider the properties of the symmetrical
(even) nonlinear waveguide modes. In the plate |x | ≤ D,
the solution to Eq. (3) has the form

 (11)

where p0 =  and C is an integration constant
which defines the field amplitude at the center of the
plate in this case. Using the condition that the tangential
components of the electric and magnetic fields should
be continuous at the boundary x = D, we obtain from
Eqs. (4) and (11)

 (12)

This formula can be considered as a dispersion relation
determining the ω(k) dependence or, in this case, the
effective index of refraction n of the medium as a func-
tion of the resonance detuning ∆ at fixed values of the
layer thickness d and the parameter E0, which is the
amplitude of the wave field at the boundary between the
media at the point x = D. It should be noted that the
energy flux of the propagating wave can be experimen-
tally controlled rather than the field amplitude. The
total energy flux P through the cross-sectional area of
the waveguide is the sum of the linear flux PL in its core
and the nonlinear flux PNL in the coatings:

 (13)

 (14)

Using Eq. (12) to eliminate E0 from Eqs. (13) and (14),
we find the P(n, ∆) dependence or, in other words, the
dependence of the effective index of refraction n of the
nonlinear light guide on the energy flux of the wave.

Now, we consider the antisymmetrical (odd)
waveguide modes. For the internal region (|x | ≤ D), the
solution is

 (15)

As before, the solution for the external region is
given by Eqs. (9)–(11). The energy flux in the plate is
equal to

 (16)
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and the dispersion law is given by

 (17)

3. DISCUSSION

Let us normalize the resonance detuning ∆ and the
Rabi frequency σE0 to the longitudinal–transverse
splitting δ = ∆/ωLT and f0 = σE0/ωLT. First, we consider
the dispersion law for symmetrical modes by using
Eq. (12). For f0 > 0, the dispersion law for each even
waveguide mode exists in a spectral region consisting

of three nonoverlapping parts: (1) –∞ < δ < –f0/ , the

long-wavelength branch; (2) –f0/  < δ < f0/ , the
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Fig. 2. Dependence of the effective index of refraction n of
the system on the resonance detuning δ at different values of
the field amplitude f0 at the boundary between the media (x =
D). ε0 = 5.6, ε∞ = 5, and D = 4.72. The arrows in panel (a)
show the direction of the f0 growth in different parts of the
spectrum labeled by the letters a–d.
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Fig. 3. The n(p, δ) dependence for parts a–d of the dispersion curves (Fig. 2). The values of the parameters ε0, ε∞, and D are the
same as in Fig. 2.
intermediate branch; and (3) f0/  < δ < ∞, the short-
wavelength branch. In the geometry shown in Fig. 1,
not only the zeroth mode but also higher modes
depending on the thickness d of the linear layer and the
values ε0 and ε∞ can exist. As the number of modes
increases, the spectral regions of their existence do not
overlap. For higher order modes, following the zeroth
mode, the value of n decreases with increasing mode
index. It should also be noted that such behavior of the
modes is typical of the case ε0 > ε∞. If ε0 ≤ ε∞, the modes
exist only in the short-wavelength region of the spec-
trum (δ > 0).

We consider the dispersion law and the behavior of
the n(δ, f0) dispersion curves for the lowest even mode
this mode using Eq. (12). In the linear approximation
(f0 = 0), the function n(δ) has two branches, short-wave-
length and long-wavelength (with respect to δ = 0). Fig-
ure 2 shows the dispersion law for the lowest even

2

P

mode n(δ) at different values of f0. If f0 ≠ 0, an interme-
diate branch appears in the vicinity of δ = 0 (Fig. 2). It
is seen that the short-wavelength branch of the disper-
sion law rises monotonically with increasing δ. At large
values of δ, however, its rise becomes slower and the
branch asymptotically approaches the limiting value of
n determined by the thickness of the internal layer d and
the ratio between ε0 and ε∞. As for the long-wave-
length branch, it rises steeply up from a threshold

value to n =  with increasing δ and undergoes a
short-wavelength shift as the value of f0 increases. The
region of existence of the intermediate branch expands
with increasing f0, and the branch itself consists of two
parts, short-wavelength and long-wavelength.

The effective index of refraction n of the system
increases sharply as δ increases and goes through the
value δ = 0. As the frequency f0 grows, a long-wave-

ε0
HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
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length shift of the lower part and a short-wavelength
shift of the upper part of this branch occur. Note that all
three branches of the dispersion law indicated above
exist in nonoverlapping spectral regions. Figure 2b
shows the three-dimensional representation of the dis-
persion law n(δ, f0) for the lowest even mode; the
behavior of each branch with varying δ and f0 is clearly
seen in this figure.

Figure 3 shows the n(p, δ) dependence for the same
values of the parameters as those in Fig. 2 (p = P/P0,
P0 = 4πω/c2n). It is seen that there are four types of
dependences for each spectral region shown in Fig. 2.
The short-wavelength part of the dispersion law is
shown in Fig. 3a. It is seen that n decreases monotoni-
cally with increasing energy flux. In the long-wave-
length region (δ ≥ 0) of this part, the allowed values of
the energy flux are vanishingly small. As the detuning
δ grows, the range of allowed values of the energy flux
expands. In the short-wavelength range of the interme-
diate branch of the dispersion law, the behavior of the
energy flux as a function of n and δ is qualitatively the
same (Fig. 3b). The longest wavelength part (Fig. 3c) is
characterized by the minimum value of the energy flux
depending on n. For this reason, an above-critical
power is necessary to excite this mode in the given
spectral region. An increase in δ leads to an increase in
the minimum flux. Finally, the long-wavelength part of
the intermediate branch of the dispersion law is shown in
Fig. 3d. It is seen that the dependence of the energy flux
on n has a maximum whose height increases with δ.

The spectral behavior of the dispersion laws of the
antisymmetrical modes determined by Eq. (17) is qual-
itatively similar to that of the even modes. It should also
be noted that, at a fixed f0, the even and odd modes alter-
nate depending on n(δ).

The results presented above show that, if the exci-
ton–photon interaction and optical exciton–biexciton
conversion are taken into account, the spectral (and
intensity-dependent) behavior of the branches of the
dispersion laws of a symmetrical waveguide with non-
linear coatings is significantly more complicated than
that in the case of a Kerr nonlinearity [2–10, 13]. This
is due to the complicated dependence of the dielectric
function of the nonlinear medium on the frequency and
amplitude of the field of the propagating wave. It is seen
from Eq. (1) that the dielectric function exhibits reso-
nance behavior not only in frequency but also in the
amplitude of the field. A change in the amplitude of the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
field results in the appearance of new resonance fre-
quencies, which are due to the renormalization of the
semiconductor energy spectrum at strong excitation
levels. In [14], it was shown that, in this case, the Aut-
ler–Towns effect occurs [14], which confirms that the
eigenfrequencies of the nonlinear bulk polaritons
change as the excitation level increases [15].
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Abstract—The InAs/GaAs structures consisting of quantum-dot layers with electronic properties typical of
two-dimensional systems are investigated. It is found that, at a low concentration of charge carriers, the vari-
able-range-hopping conductivity is observed at low temperatures. The localization length corresponds to char-
acteristic quantum-dot cluster sizes determined using atomic-force microscopy (AFM). The quantum Hall
effect–insulator transition induced by a magnetic field occurs in InAs/GaAs quantum-dot layers with metallic
conductivity. The resistivities at the transition point exceed the resistivities characteristic of electrons in hetero-
structures and quantum wells. This can be explained by the large-scale fluctuations of the potential and, hence,
the electron density. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The quantum Hall effect–insulator transition is a
fundamental phenomenon in the physics of two-dimen-
sional systems [1–5]. At temperatures close to zero,
two-dimensional electrons in a magnetic field perpen-
dicular to the plane of a disordered two-dimensional
gas can occur in three stable states: (i) an insulating
state when the diagonal elements of the conductivity
tensor σxx tends to zero and the diagonal elements of the
resistivity tensor ρxx tends to infinity at T  0; (ii) a
Hall liquid state when σxx  0, ρxx  0, and the Hall
component σxy of the conductivity tensor is quantized,
i.e., σxy = (e2/h)sxy, where sxy is an integer (the integer
quantum Hall effect) or a rational fraction (the frac-
tional quantum Hall effect); and (iii) a Hall insulating
state when σxx  0 and σxy  0 at T  0 but

σxy ∝  ( ), so that ρxy  ρxy(0) ≈ B/ne, where n is
the two-dimensional electron density, B is the magnetic
field induction, and e is the elementary charge. In gen-
eral, the state of a two-dimensional system is deter-
mined primarily by the magnetic field induction and the
degree of disordering in the system [1]. According to
the phase diagram proposed by Kivelson et al. [1] for a
two-dimensional system, an increase in the magnetic
field induction can lead to variations in the conducting
properties, i.e., to metal–insulator transitions, in
slightly disordered systems.

The metal–insulator transitions induced by mag-
netic fields have been studied to sufficient detail in two-
dimensional systems with a high degree of ordering, for
example, in heterojunctions and quantum wells [4–6].

σxx
2

1063-7834/03/4504- $24.00 © 20762
However, the specific features of this phenomenon in
two-dimensional systems with a high degree of disor-
dering call for further investigation. In particular, it
remains unclear how fluctuations of the potential and
the electron density affect the quantum Hall–insulator
transition in a two-dimensional system in the vicinity of
the localization threshold.

A layer of quantum dots with a high surface density
can be treated as a specific two-dimensional system. In
such a structure, the wave functions of electrons can be
delocalized through the overlap of the wave functions
of electrons localized in adjacent quantum dots. The
degree of disordering depends on the growth conditions
of the structure. Actually, one way to decrease the
spread in the positions and sizes of quantum dots is to
grow these dots on vicinal surfaces of semiconductors
[7, 8].

Structures with quantum-dot layers are new objects
that are particularly suitable for investigation of strong
and weak localizations of charge carriers, hoping con-
ductivity, quantum Hall effect, and metal–insulator
transitions in magnetic fields. Elucidation of the spe-
cific features of charge carrier transfer in InAs/GaAs
quantum-dot layers is of considerable practical impor-
tance, because these systems are widely used in manu-
facturing semiconductor lasers [9], single-electron
transistors, and memory elements [10] of the new gen-
eration.

In this work, we investigated the specific features of
the transport properties and the quantum Hall effect–
insulator transition in InAs quantum-dot layers in the
GaAs matrix.
003 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples containing InAs quantum-dot layers were
grown through metalloorganic chemical vapor deposi-
tion under atmospheric pressure (the so-called MOC
hydride epitaxy) at temperatures of 600–650°C. The
growth was performed on a GaAs(001) semi-insulating
substrate misoriented by 3° in the [110] direction with
respect to the (001) plane. This substrate (referred to as
the vicinal substrate) is characterized by the formation
of steps whose height is equal to the thickness of one
GaAs monolayer and width depends on the misorienta-
tion angle. The use of the vicinal surface for the dot
growth makes it possible to obtain dots with a more uni-
form size distribution [7, 8]. In our experiments, we
examined three samples. The structure of the studied
samples consisted of 10 (samples 1, 3) or 12 (sample 2)
stacks, each containing a 0.1-µm-thick GaAs layer and
an InAs quantum-dot layer. This structure was capped
with a GaAs cladding layer 0.1 µm thick. We measured
the sheet conductivity. In n-type samples 1 and 3, the
electron concentrations per layer of quantum dots were
equal to 4.0 × 1010 and 1.9 × 1011 cm–2 and the electron
mobilities were 1000 and 5500 cm2/Vs, respectively. In
p-type sample 2, we additionally prepared a δ-C doping
layer, which was separated from the quantum-dot layer
by a 5-nm-thick GaAs undoped spacer. In this sample,
the hole concentration per layer of quantum dots was
2.7 × 1011 cm–2 and the hole mobility was approxi-
mately equal to 100 cm2/Vs. The charge carrier concen-
trations were determined from the Hall effect at a tem-
perature of 4.2 K. A schematic drawing of the structure
of a p-type sample is given in Fig. 1.

The morphology of the quantum-dot layer was inves-
tigated using a TopoMetrix® TMX-2100 AccurexTM

atomic-force microscope (AFM) operating in a contact
mode in air. In order to visualize the quantum dots, the
cladding layer was subjected to selective etching in a
mixture of a 0.8 M K3[Fe(CN)6] solution in 0.3 M KOH
with water and glycerol in the ratio 1 : 5 : 2. The tech-
nique of AFM observations was described in detail in
[11]. Figure 2 displays the AFM image of the surface of
a quantum-dot layer after etching. Quantum dots with
lateral sizes of ~50 nm, a height of ~1.2 nm, and a sur-
face density NS ≈ 2 × 1010 cm–2 are clearly distinguished
in the AFM image. A histogram of the distribution of
quantum dots over sizes L at the base is depicted in
Fig. 3a. The probability density of the radial distribu-
tion W(r) of quantum-dot clusters is presented in
Fig. 3b. The probability dP(r, ∆r) of finding a cluster in
the ring (r, r + ∆r) is defined by the equation dP(r, ∆r) =
2πrW(r)∆r.

The magnetotransport measurements were per-
formed using a standard method in the temperature
range 1.35–4.2 K at a current of 1–2 µA along the quan-
tum-dot layers. The Hall resistivity ρxy(B) and the mag-
netoresistivity ρxx(B) were measured in a magnetic field
perpendicular to the quantum-dot layers, i.e., perpen-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
dicular to the current flow (hereafter, all the experimen-
tal resistivities will be given per layer of quantum dots).
A magnetic field up to 10 T was induced by a supercon-
ducting solenoid. Stronger magnetic fields (up to 40 T)
were generated at the University of Amsterdam with the
use of the pulse method at a freely decaying current.
This provided a means for the generation of quasi-sta-
tionary magnetic fields with a pulse duration of 1–2 s.
The samples were placed in liquid helium in order to
prevent their overheating. The temperature was varied
through evacuation of helium vapors.

3. RESULTS AND DISCUSSION

3.1. Strong Localization of Charge Carriers

In the structures under investigation, the quantum
dots are filled with charge carriers. At a sufficiently
high concentration, the quantum dots can form two-
dimensional electrons that exhibit the Shubnikov–de
Haas and quantum Hall effects [12–15]. A decrease in
the charge carrier concentration does not change the
two-dimensional character of conductivity but can
result in a crossover to hopping conductivity. Figure 4a
shows the temperature dependences of the resistivity
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Fig. 1. Schematic drawing of the structure of the studied
samples.
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Fig. 2. AFM image of a quantum-dot layer after removal of
a cladding layer by selective etching.
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for two n-type samples and one p-type sample. It can be
seen from this figure that, in all cases, the resistivity
passes through a minimum. This indicates that the
resistivity of the studied samples at high temperatures
increases with increasing temperature (as is the case in
metals), whereas the localization effects become pro-
nounced at the liquid-helium temperature. At low tem-
peratures, samples 1 and 2 possess variable-range-hop-
ping conductivity. In this temperature range, the resis-
tivity of samples 1 and 2 obeys the Mott law for two-
dimensional hopping conductivity and can be repre-
sented by the relationship ρ = ρ0exp{(T0/T)1/3} [16].
The low-temperature portions of the temperature
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Fig. 3. (a) Distribution of the number of quantum dots N
over sizes L at the base and (b) the probability density of the
radial distribution W(r) of quantum-dot clusters according
to the AFM data.
PH
dependences of the resistivity for these samples in the
corresponding coordinates are depicted in Fig. 4b. The
parameter T0 is related to the density of states at the
Fermi level  and the localization length a through

the expression T0 = C( )–1, where C = 13.8 is the

numerical coefficient [16]. For sample 2, we have T0 ≈
17 K; hence, it follows that, the localization length a
calculated from the above expression is approximately
equal to 80 nm. This value approximately corresponds
to the probability density W(r) of the radial distribution
of quantum-dot clusters at the maximum (Fig. 3b).
Consequently, as the temperature decreases, the charge
carriers are localized not in single quantum dots but
within an extended potential relief associated with
quantum-dot clusters.

For sample 3 with a sufficiently high electron con-
centration, the temperature dependence of the resistiv-
ity in the low-temperature range is consistent with the
quantum corrections to the two-dimensional conductiv-
ity [17]; i.e., it can be rectified in the R–lnT coordinates.
Moreover, the negative magnetoresistivity is observed
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Fig. 4. (a) Temperature dependences of the resistivity (resis-
tance per square) for (1) n-type sample 1, (2) n-type sample
3, and (3) p-type sample 2. (b) Low-temperature portions of
the temperature dependences of the resistivity for (1) sam-
ple 1 and (2) sample 2.
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in weak magnetic fields. This also corresponds to a
weak two-dimensional localization of electrons.

Figure 5 shows the dependences of the magnetore-
sistivity ρxx(B) of the studied samples at different tem-
peratures. It should be noted that the initial resistivities
of samples 1 and 2 substantially exceed the value of
h/e2 ≈ 25.8 kΩ per square (where h is the Planck con-
stant and e is the elementary charge), which is treated
as a conventional boundary between the metallic and
dielectric states. As the magnetic field increases, the
resistivity ρxx(B) passes through a minimum. The
nature of this minimum will be discussed below. The
sign of the derivative dρxx/dT is considered to be the
main criterion for metallic properties of a system
({dρxx/dT} > 0 for a metal and {dρxx/dT} < 0 for an
insulator) [3]. For samples 1 and 2, the negative deriv-
ative dρxx/dT < 0 takes place over the entire range of
magnetic fields. This result confirms the following
inference drawn above from analyzing the temperature
dependence of the resistivity without a magnetic field:
samples 1 and 2 are characterized by a strong localiza-
tion of charge carriers. The minima observed in the
resistivity are associated with the change in both the
localization length of the wave function of charge car-
riers and the density of states at the Fermi level under
the effect of a magnetic field. In weak magnetic fields,
the localization length of charge carriers increases,
because the magnetic field suppresses interference of
electron waves that experience different sequences of
scattering events in the course of tunneling [18]. As was
shown by Raikh [19], the density of states at the Fermi
level also increases. These two factors are responsible
for the negative magnetoresistivity. Strong magnetic
fields generate an additional localizing potential, which
leads to a decrease in the localization length of the wave
function [16]. An increase in the magnetic field brings
about a decrease in the density of states at the Fermi
level at a filling factor of less than unity due to a shift in
the maximum of the density of states toward the high-
energy range. As a result, there arises positive magne-
toresistivity in strong magnetic fields. The crossover
from the negative to positive magnetoresistivity is
observed in magnetic fields for which the filling factor
is two [4]. For samples 1 and 2, the magnetic fields cor-
responding to this crossover are approximately equal to
2 and 12 T, respectively.

Making allowance for the contraction of the electron
wave function in the magnetic field, we obtain the fol-
lowing relationship between the resistivity ρ and the
magnetic field B: ρ = ρ0exp(B1/2) [16]. The inclusion of
the decrease in the density of states should lead to a
stronger dependence. In our case, the magnetoresistiv-
ity in strong fields can be adequately described by the
expression ρ = ρ0exp(B) (Fig. 5). Note also that the
resistivities of samples 1 and 2 remain larger than h/e2

over the entire range of magnetic fields.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
3.2. The Quantum Hall Effect–Insulator Transition

Sample 3 with a relatively high electron concentra-
tion is characterized by the Shubnikov–de Haas effect,
the quantum Hall effect, and the intersection of the field
dependences of the magnetoresistivity measured at dif-
ferent temperatures (Fig. 6). At the intersection points,
the derivative dρxx/dT changes sign and the quantum
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Fig. 5. Dependences of the magnetoresistivity ρxx (in kΩ
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Hall effect–insulator transition occurs. The positive
derivative dρxx/dT > 0 and a plateau in the dependences
of the Hall resistivity ρxy on the magnetic field are
observed in approximately the same fields. These pla-
teaus correspond to filling factors of two and unity.
Note that the quantum Hall plateau is retained after the
intersection of the field dependences of the magnetore-
sistivity measured at two temperatures. On this basis,
the phase formed upon transition was called the quan-
tum Hall insulator [20]. The observed slope of the pla-
teau in our case can be explained by relatively high
temperatures of the measurements.

According to the existing theories of the quantum
Hall effect–insulator transition [1, 5, 21], the resistivity
ρxx at the transition point should be equal to h/e2. How-
ever, the resistivity ρxx for sample 3 upon transition at
B ≈ 9 T from the quantum Hall state with a filling factor
of unity to the insulating state with a zero filling factor
is nearly twice as large as the value of h/e2. This dis-
crepancy can be explained in terms of the specific fea-
tures of the two-dimensional system under consider-
ation. In a quantum-dot layer, the overlap of the wave
functions of electrons localized in different dots gives
rise to two-dimensional electrons. In this case, the dis-
tances between quantum dots and their sizes are distrib-
uted in a random manner. As a result, the density of
two-dimensional electrons in the layer fluctuates on a
typical scale of variation in the size of quantum-dot
clusters (Fig. 3b). Since the characteristic size of the
electron wave function in a quantizing magnetic field is
of the order of the magnetic length l = ("/eB)1/2 ≈ 28 nm
(at the magnetic field induction B = 1 T), which is less
than the cluster size, the energy at the Landau level also
fluctuates in space. In the sample, the current predomi-
nantly flows through regions that have the highest con-
centrations of charge carriers and form a network of
conducting channels. The effective length of the con-
ducting channels can be considerably larger and their
width can be appreciably smaller than those for a spa-
tially homogeneous two-dimensional system. As a con-
sequence, the resistivity of the structure in the quantum
Hall regime can substantially exceed the maximum
resistivity of a two-dimensional metal (h/e2), even
though the temperature dependence of the resistivity
exhibits a metallic behavior.

4. CONCLUSIONS

Thus, it was demonstrated that, in InAs/GaAs struc-
tures with quantum-dot layers, the wave functions of
charge carriers localized in adjacent quantum dots
overlap at low temperatures. As a result, strongly local-
ized two-dimensional charge carriers are generated and
variable-range-hopping conductivity is observed at low
temperatures. The localization length is approximately
equal to 80 nm and agrees well with the characteristic
quantum-dot cluster sizes determined from the AFM
data.
P

At a high concentration of charge carriers, the tem-
perature dependence of the resistivity and the negative
magnetoresistivity in weak magnetic fields correspond
to a weak two-dimensional localization regime. The
Shubnikov–de Haas and quantum Hall effects are
observed in stronger magnetic fields. The quantum Hall
effect–insulator transition occurs in strong magnetic
fields. It was found that the two-dimensional conductiv-
ity in the quantum Hall state at a filling factor of unity
is less than the minimum metallic conductivity. In this
case, the temperature dependence of the resistivity of
the system exhibits metallic behavior. These findings
can be explained by the strong spatial inhomogeneity of
the system, in which the current passes through a net-
work of channels formed by regions with the highest
concentration of two-dimensional electrons.
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Abstract—We show that the contribution to the fine structure of the ground exciton level in a semiconductor
nanocrystal due to the long-range part of the electron–hole exchange interaction can be equivalently described
as arising from the mechanical exciton interaction with the exciton-induced macroscopic longitudinal electric
field. Particular cases of nanocrystals with cubic and wurtzite crystal lattice in the strong confinement regime
are studied taking into account the complex structure of the valence band. A simplified model accounting for
the exciton ground-level splitting and exploiting an effective local scalar susceptibility is established. © 2003
MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The electron–hole exchange interaction in excitons
confined in semiconductor nanocrystals (NCs) of radius
R less than the bulk exciton Bohr radius aB has attracted
much attention in recent years. Such interest stems from
the fact that, due to the strong size quantization of the
electron and the hole, the exchange-induced exciton-
level splittings become very large compared with those
in bulk semiconductors. These splittings were observed
in CdSe NCs embedded in glassy matrices and polymer
films and have been intensively studied by a number of
experimental groups [1–6].

The electron–hole exchange interaction is usually
divided into long-range (nonanalytical) and short-range
(analytical) parts [7–9] and can be accounted for in dif-
ferent ways. According to Agranovich and Ginzburg
[10] (see also [11]), the term “mechanical exciton”
stands for the case where only the direct Coulomb inter-
action between the electron and the hole is taken into
account. The “Coulomb exciton” is obtained by the fur-
ther inclusion of the short-range exchange interaction
plus either the long-range electron–hole exchange
interaction or, equivalently, the mechanical exciton
interaction with the exciton-induced macroscopic lon-
gitudinal electric field. In bulk direct-gap semiconduc-
tors, the short-range exchange leads to the splitting of
the ground-state exciton level into several sublevels.
The number of these sublevels corresponds to the num-
ber of irreducible representations contained in the
direct product Γc × Γv, where Γc and Γv are the irreduc-

1 This article was submitted by the authors in English.
1063-7834/03/4504- $24.00 © 20768
ible representations according to which the electron
states at the bottom of the conduction band and at the
top of the valence band transform under symmetry
operations. The long-range electron–hole exchange
interaction, or, alternatively, the mechanical-exciton
interaction with the exciton-induced macroscopic lon-
gitudinal electric field, leads to a further splitting of the
optically active exciton states to the longitudinal and
transverse components with respect to the direction of
the exciton wave vector. This is the case of the Cou-
lomb exciton that will be studied in the present paper.
Speaking more generally, the linear part of the light–
matter interaction in semiconductors for the near-
absorption-edge spectral region can be accounted for
either by the interaction of the Coulomb exciton with
the transverse part of the electromagnetic field (scheme
A in terms of [12], which we adopt here) or by the inter-
action of the mechanical exciton (split by the short-range
exchange) with the full Maxwell field (scheme B). The
detailed analysis of the relation between these two
schemes was recently performed by Cho [12].

The theoretical study of the electron–hole exchange
interaction for both bulk materials and NCs was mainly
performed following scheme A. In the framework of the
effective mass approximation, the theory of electron–
hole exchange interaction for excitons in bulk semicon-
ductors was constructed by Pikus and Bir [7, 8] and by
Denisov and Makarov [9]. For the case of NCs of spher-
ical shape, it was generalized by one of the present
authors and Ivchenko [13, 14], who for the first time
outlined the crucial role of the long-range exchange
interaction in the fine structure of excitonic levels in
quantum dots (see also [15]). A reasonable agreement
003 MAIK “Nauka/Interperiodica”
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with experimental data was obtained for the case of
CdSe NCs [14]. Franceschetti et al. performed calcula-
tions of the electron–hole exchange interaction in CdSe
NCs based on atomistic pseudopotential wave func-
tions [16]. By expanding the Coulomb potential
between two points located in the vicinities of different
atomic sites in powers of the reciprocal separation
between the sites, they obtained the multipole decom-
position of the long-range exchange interaction in a NC
and showed numerically that the monopole–monopole
term of this expansion is predominant. It is worth not-
ing, however, that the scale of the long-range exchange
interaction with the NC size reported in [16] contradicts
that obtained in the framework of the effective mass
approximation [13, 14]. Another treatment alternative
to the effective mass approximation is the method of
expansion via Wannier functions (see [17, 18] and ref-
erences therein). For the case of quantum dots this
method was adopted by Takagahara [19]. He showed
that, for excitons confined in NCs of spherical shape,
the matrix elements of the long-range exchange Hamil-
tonian in this method vanish identically in the case of a
simple (twofold degenerate at the Γ point) valence
band. The work of Takagahara served as the basis for
[1–3], which entirely neglected the long-range
exchange interaction in its interpretation of the experi-
mental data even for the case of the complex structure
of the valence band.

Very recently one of the present authors and
Ivchenko considered the long-range exchange interac-
tion in a bulk semiconductor in the framework of the
orthogonal empirical tight-binding model [20]. They
analytically formulated the problem in terms of the
inter- and intra-atomic matrix elements of the velocity
operator and showed that these give nonequivalent con-
tributions to the long-range exchange. Expanding the
Coulomb potential between two points located in the
vicinities of different atomic sites in powers of the
reciprocal separation between the sites up to the dipole
approximation, they found that the contribution of the
monopole–monopole term of this expansion to the
long-range exchange is due to interatomic transitions.
If the latter are ignored, only the contribution of the
dipole–dipole term governed by intra-atomic transi-
tions survives in the long-range exchange Hamiltonian.
In the general case, there is also a contribution from the
monopole–dipole term which is due to both inter- and
intra-atomic transitions [21]. It was also shown that the
effective mass approximation corresponds to neglect-
ing the intra-atomic transitions while the method of the
expansion via Wannier functions applied in [17–19]
ignores the interatomic ones. The theory was naturally
generalized for the case of NCs of spherical shape. The
contribution of the monopole–monopole term to the
matrix element of the long-range exchange interaction
on the size-quantized functions was represented both in
a form similar to that of [16] and via the effective-mass
envelope functions. Although the effective-mass
method ignores both contributions of the monopole–
dipole and dipole–dipole terms, it was found to be a
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good approximation in the case of CdSe NCs, since
according to [16] the contribution of the monopole–
monopole term dominates over all other contributions.
The importance of the monopole–monopole contribu-
tion was also recently confirmed by Lee et al. [22], who
performed numerical calculations of the electron–hole
exchange interaction in CdSe NCs in the framework of
the empirical tight-binding model formulated in terms
of Coulomb and exchange integrals on atomic orbitals.
The method of expansion via Wannier functions, how-
ever, seems to be a good approach for the specific case
of CuCl NCs where the bulk exciton Bohr radius is very
small, so that the weak confinement regime (R @ aB) is
always realized [23].

The scheme B was successfully applied in [24, 25]
to the case of CuCl NCs where R @ aB, the bulk longi-
tudinal-transverse splitting is very large, and the lowest
energy exciton state is formed by the hole from the sim-
ple (twofold degenerate at the Γ point) valence band.

In the first part of the present paper we will show
that, in the case of excitons formed by the hole from the
complex (fourfold degenerate at the Γ point) valence
band in semiconductor NCs of a radius less than the
bulk exciton Bohr radius (R ! aB), the exchange-
induced splittings of the ground-state exciton level can
be also obtained following scheme B. We will derive
the expression for the polarized-light-induced linear
macroscopic polarization of the semiconductor NC in
terms of the effective-mass approximation. Once the
polarization is written, only the Maxwell equations will
be used to obtain the frequency renormalization of the
exciton resonance. Note that to solve the same problem
following scheme A, one has to deal with a 8 × 8 Hamil-
tonian [13, 14]. The difficulty of this problem is
reflected in scheme B in the fact that the linear nonlocal
susceptibility has a tensor character. Therefore, the
question arises as to whether the nonlocal tensor sus-
ceptibility can be replaced by some effective local sca-
lar one, thus in practice greatly simplifying the prob-
lem. In the second part of this paper we will present an
effective susceptibility that leads to the same frequency
renormalization of the exciton resonance as the rigor-
ous treatment presented in the first part and discuss a
simple physical picture associated with this model.

We conclude our article by showing how the formal-
ism developed in the first two parts can be applied to the
case of NCs with a wurtzite crystal lattice. In all previ-
ous works addressing this case [13, 14, 26], the long-
range-exchange-induced corrections were first found
for the cubic structure NCs and then the crystal-field-
induced corrections due to the wurtzite structure of the
material were added. We show that within scheme B the
wurtzite structure of the NC can be introduced from the
very beginning. To that end we consider two close-
lying resonances simultaneously excited by monochro-
matic light. We show how the results previously
obtained within scheme A can be derived in the frame-
work of scheme B.
3
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2. EXCITON SIZE QUANTIZATION

In this section we will specify the model describing
the electron and the hole states in a quantum dot to be
used throughout the present paper.

Let us consider a spherical NC of a cubic semicon-
ductor whose valence band may be described by the
spherical Luttinger Hamiltonian; i.e., it is assumed that
the Luttinger parameters γ2 = γ3 ≡ γ. In the strong con-
finement limit (R ! aB) the wave function of the elec-
tron–hole pair is determined primarily by the reflec-
tions of the electron and the hole from the quantum-dot
walls, while the Coulomb interaction between them is
merely a weak perturbation. Then, to a zeroth-order
approximation in the Coulomb interaction, the mechan-
ical-exciton (or rather electron–hole pair) two-particle
wave function can be written as the product of the elec-
tron and the hole single-particle wave functions. We
will accept here the model of the spherical quantum dot
with infinitely high barriers. A simple boundary condi-
tion of the electron and the hole envelope functions
vanishing at the NC-matrix interface will be applied.

The electronic states in a spherical quantum dot are
characterized by the electron orbital angular momen-
tum le. The lowest energy electron state corresponds to
le = 0. For an infinitely high barrier, the electron wave
function has the form

 (1)

where the spin index m assumes the values ±1/2.
The state of a confined hole from the fourfold spin-

degenerate band of Γ8 symmetry (the hole spin Jh = 3/2;
its projection n = ±3/2, ±1/2) cannot be characterized
by any definite value of the hole orbital angular
momentum L. In the spherical approximation for the
Luttinger Hamiltonian (γ2 = γ3 ≡ γ), this is the total hole
angular momentum Fh = Jh + L, which serves as a good
quantum number [27]. The hole state is, therefore,
(2Fn + 1)-fold degenerate due to the projection Fz of the
angular momentum Fh along an arbitrary axis z.

For the ground state we have Fh = 3/2, Fz = ±3/2,
±1/2. The wave function of the hole in this state can be
written as [3, 14]

 (2)

where the components of the matrix (r) can be
expressed through Wigner 3jm symbols,

 (3)

ψm
e( ) re( ) φ re( ) m| 〉≡ 1

2πR
--------------

πre/R( )sin
re

-------------------------- m| 〉 ,=

ψFz

h( ) rh( ) 5n Fz, rh( ) n| 〉 ,
n

∑=

5̂

5n Fz, r( ) R
3/2–

f L
r
R
--- 

  1–( )
3/2 L/2– Fz+

L 0 2,=

∑=

× 2 3/2 L 3/2

n M Fz– 
 
 

YLM
r
r
-- 

  ,
M

∑

P

YLM are the normalized spherical harmonics defined as
in [28],

 (4)

jL are the spherical Bessel functions, β = (γ1 – 2γ)/(γ1 +
2γ) is the light-to-heavy hole mass ratio, γ1 and γ are the
Luttinger parameters in the spherical approximation,
φ(h) is the first root of the equation

 (5)

and # is determined by the normalization condition

 

Note that the definition of the functions fL(x) should be
consistent with those of spherical harmonics. To keep
the definition of [14] for fL(x) we introduced a factor of
(–1)L/2 in Eq. (3).

The wave function of the mechanical exciton with the
total exciton angular momentum ^exc = 1 and its projec-
tion ̂ z = Fz + m can be composed of the electron (1) and
the hole (2) wave functions using the summation rule
for angular momenta:

 (6)

Substituting Eqs. (1) and (2) we obtain

 (7)

Using Eq. (7) we can derive an expression for the com-
plex conjugated covariant spherical σ component (σ =
±1, 0) of the NC ground state–exciton transition dipole
moment density matrix element in the form

 (8)

where e is the electron charge, m0 is the free-electron

mass, Eg is the band gap energy,  is the matrix
element of the complex conjugated covariant spherical
σ component of the momentum operator calculated
between the electron Bloch function |m, k = 0〉  and | ,

f L x( ) # jL φ h( )
x( ) 1–( )L/2 j2 φ h( )( )

j2 βφ h( )( )
-------------------------+=

-----× jL βφ h( )
x( ) ,

j0 x( ) j2 βx( ) j2 x( ) j0 βx( )+ 0,=

f 0
2

x( ) f 2
2

x( )+[ ] x
2

xd

0

1

∫ 1.=

exc 1^z,| 〉 1–( )
1 ^z+

3 3/2 1/2 1

^z m– m ^z– 
 
 

m

∑=

× ψm
e( ) re( )ψ^z m–

h( ) rh( ).

exc 1^z,| 〉 1–( )
1 ^z+

3 3/2 1/2 1

^z m– m ^z– 
 
 

m n,
∑=

× φ re( )5n ^z, m– rh( ) mn| 〉 .

0〈 | d̂σ* r( ) exc 1^z,| 〉 ie"
m0Eg

------------ n〈 | pσ* m| 〉Φmn

1^z r( ),
m n,
∑–=

n〈 | pσ* m| 〉

n
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k = 0〉  (the hole state n, k and the electron state , –k
are related through a time-reversal operation), and

 (9)

In what follows it will be convenient to recast
Eq. (9) in the form

 (10)

where we used Eq. (3) and introduced the coefficients

 (11)

3. MACROSCOPIC LINEAR POLARIZATION

In this section we will derive an expression for the
resonant exciton contribution to the macroscopic linear
polarization density. A similar derivation for the exci-
ton resonance in a quantum well was carried out in [29].

Suppose that circularly or linearly polarized light
excites from the NC ground state an exciton with the
total angular momentum ^ = 1 and its projection in an
arbitrary direction ^z. In the first order of the perturba-
tion theory we can write for the time-dependent wave
function of the NC

 (12)

where |0〉  is the wave function of the NC ground state
and ω0 is the frequency of the resonance corresponding
to the mechanical exciton (with the short-range part of
the exchange interaction taken into account). The reso-
nant exciton contribution to the macroscopic linear
polarization density is given by the matrix element of
the dipole moment operator density on functions (12).
For its covariant spherical σ component we have

 (13)

n

Φmn

1^z r( ) 1–( )
1 ^z+

3φ r( ) 3/2 1/2 1

^z m– m ^z– 
 
 

=

× 5n ^z, m– r( ).

Φmn

1^z r( ) 2 3φ r( )R
3/2–

DL m n, ,
^z f L r/R( )

L 0 2,=

∑=

× YL ^z, m– n– r/r( ),

DL m n, ,
^z 1–( )1/2 m– L/2– 3/2 1/2 1

^z m– m ^z– 
 
 

=

× 3/2 L 3/2

n ^z m– n– m ^z– 
 
 

.

t| 〉 0| 〉 #^z
t( ) exc 1^z,| 〉e

iω0t–
,+=

Pexc σ, r t,( ) t〈 | d̂σ r( ) t| 〉=

=  #^z
t( )e

iω0t–
0〈 | d̂σ r( ) exc 1^z,| 〉

+ #^z

* t( )e
iω0t

exc 1^z,〈 | d̂σ r( ) 0| 〉 .
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Here we omit the superscript in (r, t) ≡ Pexc(r, t),
although it is understood. Substituting Eq. (12) into the
Schrödinger equation

 (14)

where  is the Hamiltonian of the unperturbed elec-

tronic system and  describes the mechanical-exciton
interaction with the Maxwell electric field, we obtain

 (15)

Here Eµ(r) is the contravariant µ component of the
amplitude of the Maxwell electric field. The solution of
Eq. (15) is given by

 (16)

Taking into account that the resonant frequency ω0 has
a negative imaginary part (adiabatic switching), per-
forming integration, and omitting the nonresonant
term, we obtain

 (17)

where

 

Substituting Eq. (17) into Eq. (13) we finally obtain

 (18)

Equation (18) gives an expression for the resonant-
exciton contribution to the macroscopic linear polariza-
tion density. Note that, since we accepted the model of
the spherical quantum well with infinitely high barriers,
the macroscopic polarization density (18) satisfies the
boundary condition Pexc(r = R, t) = 0.

Pexc

^z( )

i"
∂
∂t
----- t| 〉 Ĥ0 V̂+( ) t| 〉 ,=

Ĥ0

V̂

i"
d#^z

t( )
dt

------------------- exc 1^z,〈 |V̂ 0| 〉e
iω0t

=

=  –e
iω0t

r exc 1^z,〈 | d̂µ r( ) 0| 〉
µ
∑d∫

× E
µ r( )e

iωt–
E

µ* r( )e
iωt

+( ).

#^z
t( ) i"

1–
t ' r exc 1^z,〈 | d̂µ r( ) 0| 〉

µ
∑d∫d

∞–

t

∫=

× E
µ r( )e

i ω0 ω–( )t '
E

µ* r( )e
i ω0 ω+( )t '

+( ).

#^z
t( ) "

1– e
i ω0 ω–( )t

ω0 ω–
-------------------Λ ,=

Λ r exc 1^z,〈 | d̂µ r( ) 0| 〉Eµ r( ).
µ
∑d∫=

Pexc
σ r t,( ) Pexc σ,* r t,( )=

=  "
1– iωt–( )exp

ω0 ω–
------------------------- 0〈 | d̂σ* r( ) exc 1^z,| 〉Λ

+ "
1– iωt( )exp

ω0 ω–
---------------------- exc 1^z,〈 | d̂σ* r( ) 0| 〉Λ*.
3



772 GOUPALOV et al.
4. PRINCIPAL EQUATIONS

In this section we will show how the exciton-
induced macroscopic longitudinal electric field affects
the energy of the optically active excitonic states. Since
the NC radius is much less than the wavelength of light,
we can neglect the effect of retardation within the NC.
In the nonretarded limit the Maxwell electric field does
not include the field reemitted by the polarization and,
therefore, its transverse part is represented by the elec-
tric field of incident light E(0)(r, t) (— · E(0)(r, t) ≡ 0).
The longitudinal part of the Maxwell electric field
may be expressed through the gradient of a scalar poten-
tial, ϕ(r, t). For this potential from the Maxwell equation
— · D = 0, we have

 (19)

where εb(r) = (R – r) + (r – R);  and 
are, respectively, the NC and the host medium back-
ground permittivities; and θ(x) is the Heaviside step
function. In order to avoid the second term in the right-
hand side of Eq. (19), let us make a rotating-wave
approximation about ω; i.e., we multiply both sides of
Eq. (19) be exp(iωt) and average over time. Then we
obtain

 (20)

where (r) is the contravariant µ component of the
time-averaged linear polarization density. We can write
the latter as

 (21)

where

(22)

is the time-averaged linear susceptibility of scheme B
relating the Maxwell electric field to the macroscopic

εb r( )∆ϕ r t,( ) ∇ µ4πPexc
µ r t,( )

µ
∑=

=  
4πΛ iωt–( )exp

" ω0 ω–( )
------------------------------------- ∇ µ 0〈 | d̂µ* r( ) exc 1^z,| 〉

µ
∑

+
4πΛ* iωt( )exp

" ω0 ω–( )
------------------------------------- ∇ µ exc 1^z,〈 | d̂µ* r( ) 0| 〉 ,

µ
∑

εb
1( )θ εb

2( )θ εb
1( ) εb

2( )

εb r( )∆ϕ r( ) ∇ µ4πPexc
µ r( )

µ
∑=

=  
4πΛ

" ω0 ω–( )
------------------------ ∇ µ 0〈 | d̂µ* r( ) exc 1^z,| 〉 ,

µ
∑

Pexc
µ

Pexc
µ r( ) r'χσ

µ r r',( )E
σ r'( ),d∫

σ
∑=

χσ
µ r r',( ) = 

0〈 | d̂µ* r( ) exc 1^z,| 〉 exc 1^z,〈 | d̂σ r'( ) 0| 〉
" ω0 ω–( )

--------------------------------------------------------------------------------------------
P

linear polarization density. Here we omit the super-

script at (r, r') ≡ (r, r') to simplify the notation.
Introducing the Green function G(r, r') of Eq. (20)

for the scalar potential as

 (23)

and integrating by parts [30], we can rearrange it in the
form

 (24)

where ϕ0(r) is an arbitrary solution of the homogeneous
Laplace equation satisfying boundary conditions. Thus,
for the contravariant component of the total Maxwell
electric field we obtain

 (25)

where

 

stands for the amplitude of the incident light and

 (26)

Comparing Eqs. (24) and (25) we note that in the long
wavelength limit one can formally consider the full Max-
well field to be longitudinal by letting ϕ0(r) = –(r · E(0)).

Multiplying both sides of Eq. (25) by 〈exc, 1^z | (r)|0〉,
integrating over r, and summing over σ, we obtain

 (27)

or

 (28)

where

 

 (29)

χ̂
^z( )

χ̂

εb r( )∆G r r',( ) δ r r'–( )–=

ϕ r( ) ϕ0 r( ) 4πΛ
" ω0 ω–( )
------------------------+=

× r' 0〈 | d̂µ* r'( ) exc 1^z,| 〉∇ µ' G r r',( ),d∫
µ
∑

E
σ r( ) E

σ 0( ) r( ) 4πΛ
" ω0 ω–( )
------------------------ 1–( )σ

–=

× r' G σµ– r r',( ) 0〈 | d̂µ* r'( ) exc 1^z,| 〉 ,
µ
∑d∫

E
σ 0( ) r( ) E

^z 0( )
r( )δσ ^z, E

^z 0( )
δσ ^z,≈=

G σµ– r r',( ) ∇ σ– ∇ µ' G r r',( ).=

d̂σ

Λ Λ 0( ) Λδω
1^z( )

ω0 ω–
---------------------–=

Λ
Λ 0( ) ω0 ω–( )

ω0 δω
1^z( )

ω–+
---------------------------------------,=

Λ 0( ) rE
^z 0( )

r( ) exc 1^z,〈 | d̂^z r( ) 0| 〉 ,d∫=

δω
1^z( )

4π/" r r' 1–( )σ
G σµ– r r',( )

σ µ,
∑d∫d∫=

× exc 1^z,〈 | d̂σ r( ) 0| 〉 0〈 | d̂µ* r'( ) exc 1^z,| 〉 .
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Substituting Eq. (28) into Eq. (18) we see that the exci-
ton-induced linear polarization, which is responsible
for all the exciton-related linear optical properties of

the system, has the pole at ω = ω0 + . The
expression for the Maxwell electric field (25) naturally

contains this pole as well. Thus,  is the renor-
malization of the exciton resonant frequency due to the
long-range exchange interaction. The latter can be also
expressed via the averaged linear susceptibility (22):

 (30)

Equations (29) and (30) give the difference in energy
(divided by ") between the optically active states of the
Coulomb and the mechanical (with the short-range
exchange interaction taken into account) excitons con-
fined in a semiconductor NC.

To conclude this section let us write the contravari-
ant µ component of the time-averaged linear polariza-
tion density in the form

 (31)

Here,

 (32)

is the linear susceptibility of scheme A relating the inci-
dent electric field to the time-averaged linear polariza-
tion density. It is the susceptibility most directly related
to optical spectroscopy and, as one can see, contains the
renormalized resonant pole.

5. GREEN FUNCTION

The Green function for the scalar potential defined
by Eq. (23), for both r and r' within the sphere (r < R,
r' < R), consists of two terms:

 (33)

The first term

 (34)

δω
1^z( )

δω
1^z( )

δω
1^z( )

4π ω0 ω–( )=

× r r' 1–( )σ
G σµ– r r',( )χσ

µ r' r,( ).
σ µ,
∑d∫d∫

Pexc
µ r( ) r'α^z

µ r r',( )E
^z 0( )

r'( ).d∫=

α^z

µ r r',( )

=  
0〈 | d̂µ* r( ) exc 1^z,| 〉 exc 1^z,〈 | d̂^z

r'( ) 0| 〉

" ω0 δω
1^z( )

ω–+( )
----------------------------------------------------------------------------------------------

G r r',( ) G
0 r r',( ) G

1 r r',( ).+=

G
0 r r',( ) 1

4πεb
1( ) r r'–

------------------------------=
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represents the Green function for the case  = ,
and the second term

 (35)

allows for a difference in the NC and the host medium
background permittivities.

6. RESONANT FREQUENCY 
RENORMALIZATION 

DUE TO ELECTRON–HOLE LONG-RANGE 
EXCHANGE INTERACTION

In this section we will consider the resonant fre-
quency renormalization arising due to the first term in
Eq. (33).

Substituting Eqs. (26), (33), and (34) into Eq. (29)
and integrating by parts [30] we can rewrite the latter in
the form

 (36)

where ρ(r) = –(— · 〈exc, 1^z | (r)|0〉) may be inter-
preted as an effective charge density induced by the
optical transition. In [12, 23, 25, 26] Eq. (36) was inter-
preted as the Coulomb energy of this effective induced
charge density. This interpretation is misleading. In
fact, if we have a given charge density and intend to cal-
culate its Coulomb energy, we should exclude domains
where r = r' while evaluating the integrals in Eq. (36),
unless they make infinitesimal contributions to the inte-
grals. This means that, if it turns out that the integrand of
Eq. (36) contains contributions proportional to δ(r – r'),
then the latter must be excluded from further consider-
ation. Comparing Eq. (36) with Eqs. (26), (29), and
(34) one can see that the integrand of Eq. (36) does in
fact contain a term proportional to the Dirac δ function,
since it always arises when one takes the second deriv-
ative of the Coulomb potential. This term makes the
main contribution to the resonant frequency renormal-
ization [14]. In Section 9 we will show that the same δ
function appears during a formal solution of electro-
static boundary problems. However, in practice it is
convenient to compute the exciton resonant frequency
renormalization due to the first term in Eq. (33) by
transformation into the k space [14].

Below we will apply the general equations derived
in Sections 4 and 5 to the concrete model introduced in

εb
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2( )

G
1 r r',( )

=  
εb

1( ) εb
2( )

–

εb
1( )---------------------- 1

2l 1+
-------------- l 1+

εb
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l εb
2( )

l 1+( )+
---------------------------------------- rlr 'l

R
2l 1+

-------------
l 0=

∞

∑

× Yllz
r/r( )Yllz

* r'/r '( )
lz l–=

l

∑

"δω0

1^z( )
r r'

ρ r( )ρ* r'( )
εb

1( ) r r'–
---------------------------,d∫d∫=

d̂
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Sections 2 and 3. Substituting Eq. (34) into Eq. (29)
we get

 (37)

where

 (38)

is the Fourier transform of the dipole moment density
operator matrix element. By using Eq. (8) and the expo-
nent expansion via spherical harmonics, Eq. (38) may
be further recast in the form

 (39)

where the function

 

was introduced in [14] and the coefficients  are
defined by Eq. (11). Substituting Eq. (39) into Eq. (37)
we obtain

 (40)

where

(41)

Using the technique developed in the quantum theory
of angular momentum [28], we can perform the angular

δω0
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2π2
"εb

1( )--------------------- k
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----------
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× exc 1^z,〈 | d̂σ k( ) 0| 〉 0〈 | d̂µ* k( ) exc 1^z,| 〉 ,

0〈 | d̂σ* k( ) exc 1^z,| 〉  = re
ik– r⋅

0〈 | d̂σ* r( ) exc 1^z,| 〉d∫

0〈 | d̂σ* k( ) exc 1^z,| 〉 2 3
ie"

m0Eg

------------–=

× DL m n, ,
^z n〈 | pσ* m| 〉 IL kR( )YL ^z m– n–, k/k( ),

m n,
∑

L 0 2,=

∑

IL y( ) 2 2π 1–( )L/2
xx f L x( ) πx( ) jL xy( )sind

0

1

∫=

DL m n, ,
^z

δω0

1^z( ) 6e
2
"

π2εb
1( )

m0
2
Eg

2
--------------------------- DL m n, ,

^z DL' m' n', ,
^z A m n,

m' n',

^z LL'

m n,
m' n',

∑
L 0 2,=
L' 0 2,=

∑=

× kk
2
IL kR( )IL' kR( ),d

0

∞

∫

A m n,
m' n',

^z LL'
m'〈 | pσ n'| 〉 n〈 | pµ* m| 〉 ΩkYL' ^z m'– n'–,* Ωk( )d∫

σ µ,
∑=

× YL ^z m– n–, Ωk( )
k

σ
kµ

k
2

----------.
P

integration in Eq. (41) and obtain

 (42)

Using Eq. (42) we can further recast Eq. (40) in the
form

 (43)

where

 (44)

Recalling that, for the canonical basis of the Bloch
functions |m〉 , |n〉  [31],

 (45)

where pcv = i 〈S| |X〉  is the interband matrix element of
the momentum operator, we can perform summation in

Eq. (44) and express  through a Wigner 6j sym-
bol as (see, e.g., [28])

 (46)

A m n,
m' n',

^z LL'
2l 1+( ) 2L 1+( ) 2L' 1+( )

l M,
∑

σ µ,
∑=

× 1 L' l

0 0 0 
 
  1 L l

0 0 0 
 
  1 L' l

σ ^z m'– n'– M– 
 
 

× 1 L l

µ ^z m– n– M– 
 
 
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Introducing the longitudinal-transverse splitting for a
bulk exciton by

 (47)

and substituting Eq. (46) into Eq. (43) we obtain

 (48)

Substituting explicit values of the 3jm and 6j Wigner
symbols [28], we finally obtain the renormalization of
the exciton resonant frequency:

 (49)

where the function

 (50)

was introduced in [14]. The exchange splitting given by
Eq. (49) coincides with that extracted from the corre-
sponding exchange spin Hamiltonian

 (51)

obtained in [13, 14]. Here σx , σy , σz and Jx , Jy , Jz are,
respectively, the Pauli matrices and the matrices of the
projections of the angular momentum J = 3/2, which
refers to the total angular momentum of the quantized
hole. Note that, once we know the resonant frequency
renormalization (49), we can readily reconstruct the
exchange spin Hamiltonian. One can see from Eq. (49)
that the exciton resonant frequency renormalization
does not depend on the value of ^z. That is what one
would expect, since the exchange interaction (51) splits
the exciton ground state into sublevels characterized by
different values of the total exciton angular momentum
and degenerate with respect to its projections.

"ωLT
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9

------ζ β( )ωLT
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7. INCLUSION OF DIFFERENCE 
IN THE BACKGROUND PERMITTIVITIES 
OF THE NANOCRYSTAL AND THE HOST

In this section we will study the effect of difference
in the background permittivities of the NC and the host
on the frequency renormalization of the excitonic reso-
nance. Substituting Eq. (35) into Eq. (26) we obtain

 (52)

Further substituting Eq. (52) into Eq. (29) we have

 (53)

where

 (54)

Using Eqs. (8) and (9), we obtain

 (55)

where the coefficients

 (56)

were introduced in [14] and  ≡ 〈m|p | 〉. Using
Eqs. (3) and (45) and applying the technique described
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in [28], we can perform the angular integration in
Eq. (56) to obtain

 (57)

where l can assume the values 1 or 3. Noting that for
l = 3 the Wigner 3jm symbol in Eq. (57) vanishes iden-
tically and substituting the explicit expression for φ(r)
from Eq. (1), we obtain [14]

 (58)

Substituting Eq. (58) into Eq. (55) we get

 (59)

Combining Eqs. (47), (53), and (59) we finally
obtain

 (60)

This result can be alternatively derived from the corre-
sponding part of the exchange spin Hamiltonian
obtained in [14].

8. EFFECTIVE LOCAL SCALAR 
SUSCEPTIBILITY

In this section we will construct an effective local
scalar susceptibility describing an excitonic resonance
in a spherical semiconductor nanocrystal. We will show
that even in such a simple model it is possible to
account for the fine structure of excitonic levels due to
the long-range electron–hole exchange interaction.
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∫
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PH
The first attempts to derive the long-range exchange
induced splitting using the local scalar susceptibility
were made by one of the present authors led by his
physical intuition [32]. Below we show how this can be
carried out correctly.

Consider a sphere of volume VNC = 4πR3/3 and

background dielectric permittivity  surrounded by a

medium with background dielectric permittivity .
Suppose that inside the sphere there is a concentric core
sphere of volume Vcore whose dielectric constant
εcore(ω) contains a resonant contribution,

 (61)

where ω0 is the frequency of the optically active
mechanical exciton (with the short-range part of the
exchange interaction taken into account) in the spheri-
cal NC of radius R and ωNC characterizes the oscillator
strength of the exciton transition. Vcore and ωNC are the
effective parameters of this model. To obtain the fre-
quency renormalization of the excitonic resonance due
to the mechanical exciton interaction with the exciton-
induced macroscopic longitudinal electric field we can
proceed as in Section 4. To that end we will suppose
that the electric field inside the core sphere is homoge-
neous; i.e., in Eq. (21) Eσ(r') ≡ Eσ. Then we obtain that
the time-averaged linear susceptibility

 (62)

for r and r' inside the core sphere and zero outside.
Strictly speaking, to use the equations in Section 4, the

function (r, r') should be continuous at the points
r = Rcore, r' = Rcore, where Rcore is the radius of the core
sphere. To satisfy this condition we can assume that,

when r  Rcore, r'  Rcore, (r, r') continuously
approaches zero within very small vicinities of the
points r = Rcore, r' = Rcore. Substituting Eq. (62) into
Eq. (30) we have

 (63)

where the integration is performed within the core
sphere (r, r' < Rcore). Taking into account that [14]

 (64)

εb
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3εb
1( )-----------δ r r'–( ),=
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 (65)

and 

 

we immediately obtain

 (66)

The δ function entering into Eq. (64) and hidden in
Eqs. (29) and (30) was mentioned at the beginning of
Section 6. It also appears while proceeding following
scheme A, where it enters the matrix element of the
long-range exchange interaction Hamiltonian [14, 20].
In [20] it was highlighted that this δ function has a mac-
roscopic meaning unlike the short-range exchange
interaction associated with characteristic distances of
the order of the crystal lattice constant. This statement
is further supported by the present consideration in the
framework of scheme B, where the above-mentioned δ
function appears during formal solution of a macro-
scopic electrostatic problem. Below we also present an
alternative and more traditional derivation of Eq. (66)
that does not apply any singular functions.

Comparing Eq. (66) with Eqs. (49) and (60), we can
determine the parameters of the model developed in
this section:

 (67)

 (68)

The ratio Vcore/VNC is plotted in the figure as a function
of the light-to-heavy hole effective-mass ratio β. One
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can see that Vcore < VNC for any value of β. We can fur-
ther combine Eqs. (67) and (68) to obtain

 (69)

Note that the parameter ωNC characterizing the oscilla-
tor strength of the NC ground state-exciton transition
within the present model is equal to the analogous bulk-
exciton parameter ωLT multiplied by the square of the
electron and hole envelope functions overlap integral

and by the ratio of the bulk-exciton volume  to
the core sphere volume Vcore. Substituting Eq. (69) into
Eq. (62) we have

 (70)

Comparing this expression with Eq. (22) we see that

 (71)

Equation (71) establishes the relation between the rig-
orous treatment developed in the first part of the present
paper and the simplified model of this section. It shows
that we can suppose that the only component of the
electric field different from zero is that in the direction
of the polarization of the incident light; thus, we can use
the space-averaged linear susceptibility. At the same
time we must assume that the exciton is confined within
an effective volume given by Eq. (68) which is less than
the real NC volume.
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We will conclude this section by noting that, along
with the rather formal derivation of Eq. (66) given
above, another very simple derivation may be pre-
sented. The latter is based on the fact that, as was
already mentioned in Section 4, in the long-wavelength
limit the full Maxwell field may be treated as longitudi-
nal. Then we can write the electrostatic potential as
[33, 34]
P

(72)

where A, B, C, and D are constants to be determined
from the boundary conditions. Requiring that ϕ and
ε∂ϕ/∂r be continuous at the interfaces, we obtain [34]
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3
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Substituting Eq. (61) into Eq. (73) we find that B, and,
therefore, the electric field inside the core sphere, con-
tains a pole whose frequency is different from ω0 by the

value of  given by Eq. (66).

9. APPLICATION TO WURTZITE STRUCTURE 
NANOCRYSTALS

In this section we will show how the formalism
developed above may be applied to NCs of semicon-
ductors with wurtzite crystal lattice. This case is quite
important since the most widely used CdSe NCs for
experimental studies [1–6] possess wurtzite crystal
structure.

To describe the states near the top of the valence
band in bulk hexagonal crystals with wurtzite structure,
one can add a perturbative term responsible for the
crystal-field splitting [35] to the spherical Luttinger
Hamiltonian:

 

where ∆cr is the energy of the crystal-field induced split-
ting in a bulk semiconductor and Jz now refers to the
hole spin. As a result, the valence band splits into two
bands characterized by the absolute values of the hole
spin projections in the C6 axis.

Hence, the ground level of the mechanical exciton
confined in a spherical wurtzite structure NC is split
into two fourfold degenerate sublevels. The upper level
state is a superposition of two states with ^z = 0 and
two states with ^z = ±1, where ^z stands for the
mechanical exciton total angular momentum projection
in the C6 axis. We will denote the latter two states as

± . The lower level state is a superposition of states
with ^z = ±2 and those with ^z = ±1, which will be

denoted as ± . The energy difference between the
upper and the lower sublevels of the mechanical exci-
ton will be denoted as ∆. Since ∆ is quite small com-
pared with the unperturbed resonant exciton energy, the

δω
1^z( )

*̂cr
∆cr

2
------ Jz

2
5/4–( ),–=

1
Ũ

1
L̃

circularly polarized light propagating along the C6 axis
would excite states with ^z = ±1 from both the upper
and the lower sublevels. Below we will show how to
account for this case.

The wave function of either the +  or the +
state is given by

 (74)

where –  =  = 1,  =  = 0. In what fol-
lows we will not first take into account the short-range
part of the exchange interaction. However, it is worth
noting that in the present formalism this would only

affect the values of the constants  and the initial

energy difference between the ±  and ±  states.

Comparing Eqs. (74) and (6) and using Eqs. (8),
(10), and (11) we obtain

 (75)

where
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 (77)

Suppose that the circularly polarized light propagating
along the C6 axis excites from the NC ground state an
exciton with projection in this axis ^z = +1. Then,
instead of Eq. (12), for the time-dependent wave func-
tion of the NC we will have

 (78)

where  and  are the frequencies of the lower and
the upper levels of the mechanical exciton ground state,
respectively. Repeating the derivation of Section 3 we
will find

 (79)

where

 

Then, instead of Eq. (20) we will have
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(80)

In deriving Eq. (80) and averaging over time, we
assumed  ≈  ≈ ω0. If we further proceed as in
Section 4, then instead of Eq. (27) we will find a system
of two coupled equations:

 (81)

Here

 (82)

and ,  = , . From Eq. (81) for, e.g.,  we find

(83)

The zeros of the expression in the square brackets in the
left-hand side of Eq. (83) give the new renormalized
frequencies of the exciton states:
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-----------------.–=









Ξα̃ β̃
4π r r' 1–( )σ

G σµ– r r',( )
σ µ,
∑d∫d∫=

× exc +1
α̃,〈 | d̂σ r( ) 0| 〉 0〈 | d̂µ* r'( ) exc +1

β̃,| 〉

α̃ β̃ Ũ L̃ Λ L̃

Λ L̃ ωŨ ω– ΞŨŨ
+( ) ωL̃ ω– Ξ L̃ L̃

+( ) Ξ L̃ŨΞŨ L̃
–[ ]

=  Λ L̃ 0( ) ωŨ ω– ΞŨŨ
+( ) ωL̃ ω–( ) Ξ L̃ŨΛŨ 0( ) ωL̃ ω–( ).–
(84)
ω1 2,

ωŨ ωL̃ ΞŨŨ Ξ L̃ L̃
+ + +

2
---------------------------------------------------=

± 1/2 ωŨ ωL̃ ΞŨŨ Ξ L̃ L̃
+ + +( )

2
4 ωŨωL̃ ΞŨŨωL̃ Ξ L̃ L̃ωŨ Ξ L̃ L̃ΞŨŨ Ξ L̃ŨΞŨ L̃

–+ + +( )– .
If we neglect, for the sake of brevity, the difference in
the NC and the host matrix background permittivities,

then for  we will have (the derivation is similar to
that of Eq. (49) in Section 6)

 (85)

Substituting the explicit values of the Wigner 3jm sym-

bols and –  =  = 1,  =  = 0 we obtain

Ξα̃β̃

Ξα̃ β̃
C̃m

α̃
C̃m'

β̃ 3/2 1/2 1

m 1– m– 1 
 
 

m m',
∑=

× 3/2 1/2 1

m' 1– m'– 1 
 
  4π

3
------ζ β( )ωLT

aB

R
----- 

 
3

.

C̃1/2
Ũ

C̃ 1/2–
L̃

C̃ 1/2–
Ũ

C̃1/2
L̃

 (86)

Choosing the zero of energy in the middle of the upper
and the lower sublevels so that  = ∆/2,  = –∆/2
and substituting Eq. (86) into Eq. (84) we find

 (87)

The symmetry of the problem dictates that the short-
range and the long-range parts of the exchange interac-

ΞŨŨ π
9
---ζ β( )ωLT

aB

R
----- 

 
3

η̃ ,≡=

Ξ L̃ L̃
3η̃ ,=

Ξ L̃Ũ ΞŨ L̃
3η̃ .= =

ωŨ ωL̃

ω1 2, 2η̃ 4η̃2 ∆2
/4 η̃∆–+ .±=
3
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tion lead to additive contributions to the resonant fre-
quencies renormalization. This means that the short-
range part can be taken into account if we simply sub-
stitute the value of  by the magnitude of , which
was introduced in [13, 14] and takes into account both
parts of the exchange interaction. However, it is possible
to introduce the short-range induced splitting initially. If
we denote the parameter responsible for the short-range
exchange interaction in a NC by η ≡  – , then we will
have

 

and

 

 

where f = –η + ∆/2, d = 3η2. One can check that
Eqs. (84) and (85) lead in this case to Eq. (87), where

 should be substituted by , i.e.,

 (88)

This result coincides with that obtained in scheme A
[13, 14].

Light linearly polarized along the C6 axis would
excite one of the states with ^z = 0. The other one pos-
sessing lower energy due to the short-range exchange
interaction is optically inactive [1–3, 13, 14]. Thus, this
case is quite similar to that of cubic structure NCs and
needs no special consideration.

The energy-level diagrams for excitons confined in
wurtzite structure NCs, as well as a comparison of cal-
culated splittings with available experimental data, can
be found in [14].

Generalization of the treatment developed in Sec-
tion 8 for the case of wurtzite structure NCs becomes
straightforward by using Eq. (71).

10. CONCLUSIONS
We have provided an explicit demonstration that the

contribution to the fine structure of the ground exciton
level in a semiconductor NC due to the long-range part
of the electron–hole exchange interaction can be equiv-
alently described as arising from the mechanical exci-
ton interaction with the exciton-induced longitudinal
electric field. Proceeding in this manner we reproduced
all the results initially obtained as long-range exchange
induced splittings [13, 14] in the framework of the
effective-mass approximation. However, the present
treatment is more instructive, since it enables one to
understand better the limits of validity of the calcula-

η̃ η

η η̃

ωŨ L̃,
2η 4η2 ∆2

/4 η∆–+±=

C̃1/2
Ũ L̃, f

2
d+ f±

2 f
2

d+
----------------------------,+−=

C̃ 1/2–
Ũ L̃, f

2
d+ f+−

2 f
2

d+
----------------------------,=

η̃ η

ω1 2, 2η 4η2 ∆2
/4 η∆–+ .±=
P

tion (such as those imposed by the necessity of taking
into account the retardation effect) and some peculiari-
ties of the Coulomb interaction (such as those leading
to the term in the long-range exchange Hamiltonian
proportional to the Dirac δ function). We also estab-
lished a simplified model that allows the use of a scalar
linear susceptibility averaged over space in order to
account for the effect under consideration. The price of
this simplification is the supposition that the exciton is
confined within some effective core volume which is
less than the real NC volume. This effective volume
constitutes a new parameter. However, once the param-
eter is found and the model itself is proved for a partic-
ular case of a cubic structure NC, it can be used, e.g., in
order to account for the case of a wurtzite structure NC
[36]. Nevertheless, we gave a rigorous treatment of the
latter case, since it cost us little space and allowed us to
demonstrate the power of the developed formalism.
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Abstract—New measurements are performed and a comprehensive analysis of experimental data is made on
the dependence of equilibrium carbon coverage θ on a tungsten surface on its temperature and the degree of
carbon loading. It is shown that if the volume is free of carbon, the variation of θ for T ≥ 1400 K can be approx-
imately described by the balance between the carbon flows through the boundary with the activation energy for
transition into the bulk E1 = 4.6 eV and the segregation energy ∆E = 1.7 eV. For tungsten loaded preliminarily
with carbon to a content of ≈10–2 at. %, the θ(T) relation cannot be described in terms of the equilibrium con-
ditions with constant E1 and ∆E, because these quantities depend on the degree of carbon loading; E1 grows
from 4.6 to 6.8 eV and ∆E grows from 1.7 to 2.3 eV with an increase in carbon content from 0 to 10–2 at. %.
These variations are attributed to the bonds becoming stronger in carbon-loaded tungsten with increasing car-
bon content. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation and properties of surface tungsten
carbide were studied in [1, 2] as functions of the total
amount of absorbed carbon. It was shown that high-
temperature adsorption of carbon produces first a spe-
cific state on the surface, the surface carbide (SC), with
its atomic concentration NS = NML = 1 × 1015 cm–2 (a
carbon monolayer) coinciding with that of the (100)
surface tungsten atoms. The extra carbon falling on the
surface penetrates into the bulk of the metal through the
surface carbide layer thus formed. The SC breaks up
because of carbon penetrating into the bulk at tempera-
tures T ≥ T*, with the breakup temperature T* being the
higher, the higher the carbon content in the sample. In
other words, dissolved carbon makes the SC stronger.
We also obtained annealing curves, i.e., the relations
connecting the surface coverage by carbon θ(T) =
NS(T)/NML under SC breakup with the tungsten ribbon
temperature [1, 2]. It turned out that the θ(T) relations
differ strongly depending on the actual amount of dis-
solved carbon. The θ(T) curves yielded estimates for
some activation energies of carbon transport from the
surface into the bulk and back. The present communi-
cation reports on a continuation of these studies,
including a series of measurements and a more compre-
hensive analysis of all the available experimental data.
This analysis was aimed at estimating the kinetic
parameters of the carbon interaction with tungsten as a
function of the metal bulk loading by carbon and at
developing a model description of this interaction.

2. MEASUREMENT RESULTS

Experiments were conducted in an ultrahigh-vac-
uum, high-resolution Auger spectrometer providing
direct Auger spectral studies of a high-temperature
sample, which is a point of fundamental importance
1063-7834/03/4504- $24.00 © 20782
[3]. The measurement technique described in [1–4] per-
mitted determination of the absolute surface concentra-
tion of carbon on W(100) in the course of the surface
carbide breakup. We used thin tungsten ribbons mea-
suring 50 × 1 × 0.02 mm. The textured W samples,
cleaned by high-temperature annealing at 2700 K, were
predominantly W(100) oriented. Carbon was deposited
on both sides of a ribbon L = 2 × 10–3 cm thick; there-
fore, we shall consider the results of measurements
made on one half of a symmetric plate. Each half has
m = L/2d layers of symmetry (100), where d is the inter-
layer distance. For a bcc crystal, d = a0/2, where a0 =
3.16 Å is the tungsten lattice constant. For L = 0.02 mm,
we have m = 6.33 × 104.

Tungsten loading by carbon was effected either using
a source of atomic carbon [5] or through exposure to
benzene vapor, which automatically provided double-
sided carbon deposition on the ribbon. A more detailed
description of this technique can be found in [2]. As
already mentioned, carbon deposited on clean tungsten
at temperatures from 1200 to 1400 K builds up in an
adlayer to a concentration NS = NML = 1 × 1015 cm–2 (sur-
face carbide). Figure 1 (curve 1) shows an annealing
curve θ(T) obtained immediately after the SC forma-
tion (with the substrate volume being still practically
free of carbon). This curve was found to be irreversible;
indeed, the slow cooling of the ribbon following its
heating to 2000 K did not bring about SC formation
through the release of carbon from the tungsten bulk
even though the total amount of carbon did not change,
because the loss of carbon by desorption from tungsten
occurs at higher temperatures, T ≥ (2300–2400) K.

If after the SC formation the tungsten bulk is satu-
rated with carbon (to about eight monolayers per half of
the ribbon volume), the annealing curves θ(T) become
reversible (curve 2 in Fig. 1). Each point corresponds to
20 s of annealing. Note that curve 2 was reproduced
003 MAIK “Nauka/Interperiodica”
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well under both increasing and decreasing temperature
and did not depend on the exposure time at each point.
This indicates the absence of a concentration gradient
in the volume; i.e., carbon was distributed uniformly
over the ribbon thickness. This also indicates the onset
of equilibrium between carbon atoms in the volume and
on the surface. Let us consider the mathematical for-
malism for these two cases (curves 1, 2 in Fig. 1).

2.1. Carbon Monolayer Annealing 
on a Carbon-Free Tungsten Sample

2.1.1. Without inclusion of the solubility limit. We
introduce the filling of the ith layer in the volume by
carbon, φi = Ni/NML, where Ni is the carbon concentra-
tion in the ith near-surface sample layer. We denote by
k1(T) and k2(T) the rate constants of adatom transport
from the surface into the volume and in the reverse
direction, respectively. The variation of surface cover-
age by adatoms θ(t) in the initial stage of their diffusion
into the bulk, analyzed in terms of the equilibrium
fluxes at the interface (the quasi-stationary boundary
condition),

 (1)

is given by the following equation, which was derived
in [5]:

 (2)

where θ0 is the coverage at t = 0 and D(T) = D0  ×
exp(−ED /kT) is the diffusion coefficient of carbon
atoms. Taking the diffusion parameters from [6] as
D0 = 9 × 103 cm2 s–1 and ED = 1.75 eV, we come to the
conclusion that, in the anneal time t = 20 s, the diffusion

length λ =  for carbon atoms in tungsten reaches
one half the ribbon thickness L/2 = 10–3 cm only for
T ≥ 1700 K (Table 1) and that, in the initial stage of
monolayer breakup (T ≤ 1500 K), there is a concentra-
tion gradient in the volume with the surface coverage
varying with time according to Eq. (2). By equating the
change ∆θ(T) (which can be derived from curve 1 in
Fig. 1) to the difference [θ0 – θ(t)] from Eq. (2), we find

the ratio k1/k2(T) expressed through ∆θ(t) and  for
different T ≤ 1500 K:

(3)

The Arrhenius rule permits one to present this ratio
in the form of an exponential,

 (4)

where ∆E = E1 – E2 is the difference between the acti-
vation energies for adatom transport from the adlayer

k1θ k2φ T t,( )=

θ t( ) θ0 1
2k1 T( ) Dt

πk2 T( )d
----------------------------– …+ ,≈

Dt

Dt

k1T
k2 T( )
-------------  . 

π
2

-------d∆θ T t,( )
Dtθ0

-----------------------.

k1 T( )/k2 T( ) k1
0
/k2

0
DE/kT–( ),exp=
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into the volume (E1) and back to the adlayer (E2) and 

and  are the prefactors in the rate constants. Assum-

ing that  = , we obtain ∆E(T) = kT ln[k2(T)/k1(T)]
from Eq. (4) and find the difference ∆E(T) = 1.7 eV for
1400 ≤ T ≤ 1500 K. On the other hand, if we assume
carbon diffusion to be very fast, such that the metal vol-
ume is filled by carbon uniformly at each instant of
time, i.e.,

 (5)

then the monolayer breakup with time, without having
to invoke quasi-steady state equation (2) at the bound-
ary, can be described by

(6)

The solution to Eq. (6) has the form

(7)

where

 (8)

k1
0

k2
0

k1
0

k2
0

φ θ0 θ t( )–[ ] /m,=

dθ/dt  . –k1θ k2 θ0 θ–( )/m.+

θ t( ) θ0/ 1 α+( ) 1 α k1t α 1+( )/α–( )exp+[ ] ,=

α T( ) mk1 T( )/k2 T( ) α0 ∆E/kT–( ),exp= =

α0 mk1
0
/k2

0
.=
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Fig. 1. Carbon coverage θ on the W(100) surface vs. the
substrate temperature plot obtained under annealing of a
carbon monolayer (NS = NML = 1 × 1015 cm–2): (1) the bulk
of tungsten is free of carbon (T ≤ 1400 K); (2) carbon-
loaded sample (20 monolayers of carbon in the ribbon
bulk); and (3, 4) calculations made using (3) Eq. (23) for
∆E = E1 – E2 = 1.72 eV and (4) Eq. (22) for ∆E = 1.90 eV.

Table 1.  The relative diffusion length traversed in time t = 20 s,
the equilibrium onset time te, and the loading φλ in mλ near-sur-
face layers (mλ = λ/d)

T, K 1400 1500 1600 1700

2λ/L 0.3 0.49 0.74 1.1

te, s 133 25 5.4 1.3

φλ × 10–6 1.1 2.9 4.3 4.7
3
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For t  ∞, we obtain the equilibrium coverage:

 (9)

For t  0, we have

 (10)

To estimate k1(T), we assume that the initial stage in the
adlayer breakup, when the flux into the volume becomes
larger than that going in the opposite direction, is

described by Eq. (10): ∆θ(T) = exp(–E1/kT). Sub-
stituting ∆θ(T) from curve 1 in Fig. 1 for T = 1400, 1450,
and 1500 K and t = 20 s (the time the sample is kept at
each anneal point), we come to the estimate E1 = 4.6 eV

for  =  = 1013 s–1.

We conventionally define the time at which equilib-
rium coverage is reached as

 (11)

when the term depending on time in Eq. (10) decreases
e times. The values of te(T) calculated with the use of
the above estimates, ∆E = 1.7 eV and E1 = 4.6 eV, are
listed in Table 1. We readily see that equilibrium in a
carbon monolayer annealed for 20 s can set in only for
T > 1500 K, when the anneal time becomes longer than
te. By assuming that, for T > 1500 K, the volume equi-
librium is reached in the time of annealing, we can once
more determine αe(T) from Eq. (9), but this time we
will use the experimental values of θ(T) = θe(T) taken
from Fig. 1 for T > 1500 K:

 (12)

It was found that the values of αe(T) thus obtained are
fitted well by an exponential,

 (13)

in which ∆Ee = 1.72 ± 0.02 eV, which agrees well with
the value ∆E = 1.7 eV derived from Eq. (3) with inclu-
sion of the concentration gradient for T < 1500 K. Thus,
we obtained the same estimate for the difference E1 – E2
using different approximations to describe the θ(T)
relation, namely, for T < 1500 K, where carbon is non-
uniformly distributed over the ribbon volume, and for
T > 1500 K, where the impurity is distributed uniformly
over the ribbon volume. It turned out that Eq. (9) for the
equilibrium value of θ(T), if the α(T) relation from
Eq. (13) is substituted into it with ∆E = 1.72 eV, satis-
factorily approximates the whole θ(T) curve in Fig. 1
(curve 3), which indicates that the deviation from
steady state and the nonuniformity of carbon distribu-
tion in the volume for T < 1500 K affect the behavior of
θ(T) during the annealing insignificantly.

θe T( ) θ t ∞( ) θ0/ 1 α T( )+[ ] .= =

∆θ θ0 θ t( )– αθ0/ 1 α+( )= =

× 1 k1t 1 α+( )/α–( )exp–[ ] k1tθ0.

k1
0
tθ0

k1
0

k2
0

te T( ) α T( )
k1 1 α T( )+[ ]
-------------------------------

m
k2 T( ) mk1 T( )+
--------------------------------------,= =

α e T( )
θ0

θe T( )
------------- 1.–=

α T( ) m ∆Ee/kT–( ),exp=
PH
2.1.2. Effect of the solubility limit. Let us compare
the real filling of the ribbon volume by carbon atoms,
φlim(T), with the limiting carbon solubility in tungsten.
The solubility limit, which determines the maximum
percentage of carbon atoms per substrate atom, is given
by an empirical formula [7],

 (14)

This means that there are 100nlim (at. %) carbon atoms
per tungsten atom. Because one unit cell of the (100)
atomic layer contains one W atom, the same quantity
actually represents the limiting degree of filling of one
unit cell in the atomic W layer by carbon atoms: 

 (15)

Extrapolating Eq. (14) to temperatures T < 1700 K
yields φlim(1400 K) . 2.4 × 10–5. If the fraction ∆θ of
the carbon that diffused into the volume is uniformly
distributed, we obtain φ = ∆θ/m; therefore, for
∆θ(1400) . 0.02 and m = 6.33 × 104, we have φ(1400) ~
3 × 10–7. However, as shown above, at T = 1400 K, there
is a concentration gradient in the volume and carbon is
distributed over a layer of thickness ~λ near the surface,
which is 3.3 times smaller than L/2 for T = 1400 K
(Table 1). Therefore, the average filling in this layer
φλ = ∆θ/mλ(1400 K) . 1 × 10–6, while being 3.3 times
φ(1400 K) for uniform distribution over the volume, is
still 20 times smaller than the limiting value φlim(1400 K)
(Table 2). This means that the breakup of a monolayer
with time can be described by Eqs. (6)–(10) without
taking into account φlim and that the persistence of SC
up to T* = 1400 K is due to the high activation energy
E1 = 4.6 eV rather than to the low solubility limit for
T ≤ 1400 K. Thus, annealing of a carbon monolayer on
pure tungsten is described well enough by a model that
assumes uniform carbon distribution over the volume in
accordance with Eq. (9) and with the parameters ∆E =
E1 – E2 . 1.7 eV and E1 . 4.6 eV (E2 = 2.9 eV). Accord-
ing to this model, equilibrium between the surface cov-
erage θ(T) and volume filling φ(T) is determined by the
ratio of the constants k1(T) and k2(T) involved in bound-
ary condition (1):

 (16)

At equilibrium, the θ(T) relation should be reversible,
so that under ribbon cooling, we should have obtained
the same θ(T) dependence. In actual fact, however, at
low carbon coverages θ0 ≤ 1, this is not the case and a
fraction of carbon atoms remains in the bulk of the
metal without returning to the surface under cooling, as
expected from Eq. (16); carbon atoms are possibly cap-
tured by traps or at grain boundaries. The concentration
of such traps can be estimated. Indeed, dissolution of
one carbon monolayer in m substrate layers produces an
average volume concentration nC = (mv0)–1, where v0 is
the crystal unit-cell volume. For m = 6.33 × 104 and v0 =
3.15 × 10–23 cm–3, we obtain nC . 5 × 1017 cm–3. Cooling

nlim at.  % ( ) log 2.03–6510/ T =

for 1700–2600 K

 

( )

 

.

φlim T( ) nlim at.  % ( ) 100. × =

θ T( )/φ T( ) k2 T( )/k1 T( ).=
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Table 2.  Parameters characterizing the diffusion processes in the W–C system

Ψ0 φ1 Tm T* φlim(T*) φ1/φlim(T*) E1(T*), eV

1 1.1 × 10–6* 1000 1400 2.4 × 10–5 0.05 4.55

4 4.7 × 10–5 1500 1950 4.9 × 10–4 0.1 6.3

8.5 1.2 × 10–4 1650 2100 8.5 × 10–4 0.14 6.8

10 1.4 × 10–4 1700 2100 1.0 × 10–3 0.14 6.8

Note: Ψ0 is the number of carbon monolayers diffused into one half of the ribbon; φ1 = (Ψ0 – 1)/m is the loading of bulk layers by carbon;
Tm is the lowest temperature at which the bulk can be loaded to φ1 = φlim(Tm); T* is the temperature at which a monolayer starts to
dissolve; φlim is the maximum loading of the bulk with carbon; and E1 is the activation energy for carbon transport from the mono-
layer into the bulk.

*Refers to φλ(T*).
                 

drives less than one half of the monolayer onto the sur-
face. This means that the trap concentration in the vol-
ume of the ribbon can reach ~3 × 1017 cm–3.

It was shown in [8] that if the surface coverage does
not reach a geometric monolayer in segregation during
the cooling, this implies the existence of lateral repul-
sion in the adlayer. Taking into account next-to-nearest
neighbors, surface saturation can decrease to θ = 0.25.
Although the calculations in [8] were conducted for the
case of volume loading to φc = 10–4, the results obtained
do not depend on the impurity concentration. In our
case, however, with a large amount of carbon absorbed,
the surface coverage of tungsten by C atoms returns
under cooling to the monolayer state and the θ(T)
dependences are reversible (Fig. 2). This behavior
allows only one interpretation, namely, that all traps
were filled during the preliminary loading and that
there is no lateral repulsion in the C/W adlayer.

2.2. Carbon Monolayer Annealing 
on Carbon-Loaded Tungsten Ribbons

As already noted, in the case where the tungsten vol-
ume is saturated by carbon, carbon monolayer breakup
caused by the C atoms entering the bulk of the metal
occurs at a higher temperature T* than in the case of
pure tungsten and the breakup onset temperature T* is
higher, the larger the saturation. Table 2 lists the values
of T* for various numbersΨ0 = N0/NML of carbon
monolayers loaded in one half of the ribbon (N0 is the
total amount of carbon per 1 cm2 of one half of the rib-
bon, i.e., per volume (L/2) × 1 × 1 cm).

Let us check whether the onset of the monolayer
breakup is connected with the carbon solubility limit in
this case. Let us determine the lowest temperature Tm
needed for loading of a given amount of carbon into the
ribbon. Obviously, the preliminary carbon loading φ1
should not exceed the limiting amount φlim(Tm), i.e., it
should satisfy the condition

 (17)

The values of Tm derived from a comparison of φ1(Ψ0)
with the solubility from Eq. (15) are listed in Table 2.
We readily see that the monolayer breakup onset tem-

φ1 Ψ0 1–( )/m φlim Tm( ).≤=
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                          perature is 400–450 K higher than the minimum tem-
perature Tm at which a given amount of carbon can be
incorporated into the volume. In other words, even at a
volume carbon concentration that is significantly lower
than the limit, φ1 < φlim, monolayer breakup does not
start until the temperature rises even further, reducing
the ratio φ1/φlim(T) to the values presented in Table 2. It
looks as if monolayer dissolution under preliminary
loading is impeded not by the solubility limit but rather
by the high activation energy E1 for carbon dissolution,
which is higher, the larger the amount of preliminarily
loaded carbon. To estimate E1(Ψ0) for Ψ0 @ 1, we again
invoke Eq. (10). At the very beginning of monolayer
breakup, at T ≥ T*, when ∆θ(T) is very small and is
determined by the accuracy of measurement, we have

∆θ = k1θ0t. For ∆θ(T) . (1–2) × 10–2, t = 20 s, and  =

1013 s–1, we use the relation E1 = kT ln[ /∆θ(T)] to

k1
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Fig. 2. Equilibrium carbon coverage plotted vs. temperature
for the case of Ψ0 carbon monolayers dissolved in one half
of the ribbon bulk. Experiments were made for Ψ0 equal to
(1) 4, (2) 8.5, and (3) 10. Calculations were performed for
Ψ0 = 4: (4) from Eq. (23), ∆E = 1.74 eV; (5) from Eq. (22),
∆E = 1.92 eV.
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obtain the values of E1(Ψ0) given in Table 2 for Ψ0 = 4,
8.5, and 10. As seen from Table 2, E1 increases consid-
erably (up to 6.8 eV) with increasing number of dis-
solved carbon monolayers in the tungsten volume. In

the estimates, we assumed that the prefactor  does
not depend on the degree of volume saturation by car-
bon. As mentioned above, the reversibility of the θ(T)
curves implies equilibrium in the W–C system and uni-
form carbon distribution over the ribbon thickness at
each value of T > T*. Since the carbon concentration in
the volume at a large loading may become comparable
to the solubility limit, the equation of equilibrium
should be written in a more complete form:

 (18)

Whence we obtain the relation

 (19)

which connects the rate constants on the left with the
measurable quantities on the right. We denote the quan-
tity α(T) thus found by αex(T). Representing it in the
form of exponential (8), we find ∆Eex(T) for each tem-
perature

 (20)

under the assumption of  = . Next, we determine

the average value  for the whole temperature inter-
val considered and calculate the function

 (21)

For known (T), Eq. (19) yields an equation for

(T) ≤ 1,

 (22)

Neglecting the factors (1 – θ) and (1 – φ/φlim) in
Eqs. (18) and (19), we obtain the solution

 (23)

which coincides with Eq. (9) for the carbon-free tung-
sten, i.e., for Ψ0 = θ0. The bar refers here to the quanti-
ties calculated with the use of (T) given by Eq. (21),

with the averaged value . Let us analyze the equilib-
rium curves in Fig. 2 for the case of Ψ0 @ 1. For Ψ0 = 4,
from Eq. (19) without the second factor on the right, we

k1
0

k1θ 1 φ/φlim–( ) = k2φ 1 θ–( ), φ = Ψ0 1–( )/m.

α T( ) m
k1 T( )
k2 T( )
-------------

Ψ0 θ–
θ

--------------- 1 θ–
1 φ/φlim–
---------------------- 

  ,= =

∆E
ex

T( ) E1 E2– kT m
k1

0

k2
0α ex

T( )
----------------------ln= =

k1
0

k2
0

∆E

α T( ) m ∆E/kT–( ).exp=

α
θ

θ2
1 α

mφlim
-------------– 

 

– θ α 1 Ψ0 1 α
mφlim
-------------– 

 + + Ψ0+ 0.=

θ T( ) . 
Ψ0

1 α T( )+
---------------------,

α
∆E
P

find (T), and with inclusion of this factor, (T). Pre-
senting these data in the form of exponential (21), we

obtain  = (1.74 ± 0.04) eV and  = (1.92 ± 0.12) eV.
Note that both values are close to the corresponding

figures for the case Ψ0 = 1 (  = 1.72 eV,  =

1.90 eV), for which the (T) relations calculated
from Eqs. (23) and (22), respectively (curves 3, 4 in
Fig. 1), approximate the course of experimental curve 1
in Fig. 1. In the case of preliminarily loaded tungsten,
however, the situation is radically different. Figure 2
presents experimental curves plotted for Ψ0 = 4, 8.5, and
10 and calculated θ(T) relations for the case Ψ0 = 4. Cal-
culations made using Eqs. (22) and (19) with inclusion
of (1 – θ) and φlim yield curve 5, which describes a
slower decay than the one observed experimentally and
a breakup onset for T ! T*, while Eq. (23) for (T)
does not show saturation for T < T* and describes a
temperature dependence for which the curvature has a
sign opposite to that observed experimentally. As the
deposited carbon dose Ψ0 increases, the semiempirical
θ1(T) and θ3(T) relations deviate more and more widely
from experiment. The reason for this deviation lies
apparently in that the properties of the substrate, i.e.,
the activation energies E1 and E2 and the ratio of the rate
coefficients k1(T) and k2(T), depend on the degree of
volume loading with carbon, which decreases with
increasing T, φ(T) = [Ψ0 – θ(T)]/m. Indeed, parameter
αex(T) derived from the experimental data cannot be
presented in the form of an exponential with ∆E =
const. The quantity ∆E3(T) in Eq. (19) for Ψ0 = 8.5
decreases in the temperature interval 2100–2300 K
from 2.3 to 1.6 eV and cannot be replaced by the con-

stant  = 1.9 eV obtained by averaging. It appears
reasonable to assume that the amount of loaded carbon
affects the energy difference ∆E, which governs the
kinetics of equilibrium diffusion processes in the W–C
system. As the temperature T increases, the relative sat-
uration φ(T)/φlim(T) of the volume by carbon for a given
Ψ0 decreases; hence the activation energy E1 for carbon
transfer from the monolayer into the carbon-loaded
metal volume should also decrease, with the result that
∆E1 should decrease with increasing T. The same rela-
tion can be seen in Table 2; namely, when a carbon
monolayer on pure tungsten (Ψ0 = 1) dissolves, the
ratio φ1/φlim(T) near the surface is smaller by a factor
two to three than that for Ψ0 ≥ 4, where annealing
occurs at higher T. Therefore, E1(T*) for the carbon-
loaded tungsten is larger by a factor of approximately
1.5 than that for pure tungsten. In these conditions,
Eqs. (18) and (19), which describe the equilibrium
between opposite carbon flows crossing the tungsten
surface, may serve only for a rough estimate of the
parameters α(T) and ∆E for different carbon loadings
and Eqs. (20)–(22) for θ(T) become no longer valid,

α1
ex α3

ex

∆E1 ∆E3

∆E1 ∆E3

θ1 3,

θ1

∆E3
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because they disregard the α(Ψ0) dependence. Thus,
the activation energies E1 and E2 and their difference
∆E are functions of the relative saturation φ1/φlim(T) of
the sample with carbon. Because the difference ∆E,
while decreasing with increasing T, remains neverthe-
less of the order of 2 eV for any value of Ψ0, the
increase in E1 entails an increase in the activation
energy E2 of carbon escaping onto the surface of car-
bon-loaded tungsten. It may be conjectured that the
presence of a large amount of carbon in the tungsten
bulk confers rigidity to the lattice, which enhances the
energies E1 and E2 and changes the k1(T)/k2(T) ratio,
with variation of Ψ0, θ, and φlim.

3. DISCUSSION OF RESULTS
AND CONCLUSIONS

A study of equilibrium segregation of carbon on
W(100) with the temperature decreasing from 2073 to
1400 K was also made in [9]. An analysis of those
results made on the basis of the equilibrium equation
k1θ = k2φ(1 – θ), where φ = (1 – θ)/m, yielded ∆E =
2.43 ± 0.10 eV [9]. This analysis was conducted under
the assumption that, at T = 1400 K, the metal volume
was free of carbon and that the carbon on the surface
had a density NS = 6.1 × 1014 cm–2. The segregation
kinetics yielded the activation energy of volume diffu-
sion for carbon, ED = 2.56 ± 0.35 eV [9]. Equating
ED = E2 results in E1 = 4.99 eV; this figure exceeds the
value found in our study for the dissolution of a carbon
monolayer in pure tungsten by ~0.5 eV. The figure
ED = 2.56 eV obtained in [9] is, however, substantially
larger than the carbon diffusion energy in tungsten
known from the literature, ED . 1.75 eV [7]. Our exper-
iments on the onset of carbon dissolution into the bulk
of tungsten through a carbide surface layer at T ~ 750–
800 K yield convincingly for ED a value close to or less
than 2 eV.

In [9], dissolution of a carbon layer with θ0 ≤ 1 was
studied in a carbon-free W single crystal; these are con-
ditions under which the equality of C fluxes at the
boundary roughly describes the temperature depen-
dence of coverage. This is possibly the reason why the
authors of [9] did not come up against the impossibility
of describing the dissolution of a monolayer in a car-
bon-loaded tungsten in the same manner.

To sum up, we have carried out an analysis of equi-
librium annealing curves θ(T) obtained experimentally
for tungsten ribbons with different degrees of carbon
loading. A simple model describing equilibrium
between the adsorbed and dissolved carbon was used to
estimate the difference ∆E = E1 – E2 between the acti-
vation energies E1 for transfer from the monolayer into
the bulk and E2 for escape onto the surface. This differ-
ence is usually referred to as the segregation energy [9].
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
It has been shown that carbon segregation and
monolayer recovery under sample cooling occur at car-
bon concentrations that are greatly lower than the car-
bon solubility limit. This implies that the segregation is
driven not by the carbon concentration reaching the sol-
ubility limit but rather by the ratio of the transfer rates
from the surface into the bulk and back onto the sur-
face. Based on this model, we came to the conclusion
that both the energies E1 and E2 and their difference ∆E
depend on the degree of tungsten loading by carbon.
Note that the higher the carbon loading, the higher the
dissolution activation energy E1, which varies from
4.6 eV for dissolution of a carbon monolayer on pure
tungsten (Ψ0 = 1) to 6.8 eV for carbon-loaded samples
(Ψ0 = 10). These changes may be interpreted as the
bonding in carbon-loaded tungsten becoming stronger
with increasing amount of incorporated carbon. This
entails an increase in both activation energies, E1
(4.6  6.8 eV) and E2 (2.6  4.5 eV), such that the
quantity ∆E is not a constant and varies within an inter-
val 1.6–2.3 eV. In this case, the equilibrium concentra-
tions of an impurity on the surface and in the bulk are
determined by the ratio of the impurity transport rates
into the bulk and in the opposite direction.
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Abstract—The temperature dependence of the half-width of the infrared (IR) absorption band at a frequency
of 971.5 cm–1 in the spectra of poly(ethylene terephthalate) (PET) is investigated for crystallized and amor-
phous PET samples in which the lengths of trans sequences are approximately equal to 4–7 and 2–3 nm, respec-
tively. The observed increase in the half-width with increasing temperature is explained by inelastic scattering
of phonons of stretching vibrations of the macromolecular skeleton by other phonons. The half-width of the
band at 971.5 cm–1 in the IR spectra of the amorphous polymer is approximately 1.5 times larger than that in
the spectra of the crystallized polymer. This is associated with the violation of the wave-vector selection rules
due to a small length of the trans sequences in the amorphous sample. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The first investigations into the nature of the broad-
ening of the regularity bands in the infrared (IR) and
Raman spectra of polymers were carried out in [1–5].
These bands correspond to vibrations of macromolecu-
lar segments with a regular structure (an analog of
quasi-one-dimensional crystals) [6, 7]. The broadening
of the regularity bands in the spectra of polymers, as in
the spectra of crystals, is interpreted in terms of finite
lifetimes of optical phonons due to inelastic collisions
with other phonons [8, 9]. Consequently, the regularity
bands should have a symmetric dispersion shape and
the half-width of these bands should be inversely pro-
portional to the lifetime of optical phonons. However,
the regularity bands, in some cases, have an asymmetric
shape. According to Zbinden [10], this phenomenon
can be associated with the fact that the wave-vector
selection rules are violated, and, hence, phonons with a
nonzero wave vector contribute to the spectrum.

The aim of this work was to separate the contribu-
tion of the finite lifetime of optical phonons from the
contribution of the violation of the wave-vector selec-
tion rules to the broadening of the IR absorption band
at a frequency of 971.5 cm–1 in the spectra of poly(eth-
ylene terephthalate) (PET). For this purpose, we ana-
lyzed the spectra of crystallized and amorphous PET
samples in which the lengths of regular sequences were
equal to 4–7 and 2–3 nm, respectively.

2. SAMPLE PREPARATION AND 
EXPERIMENTAL TECHNIQUE

Amorphous PET films 20–200 µm thick with the
molecular mass M = 2 × 104 were prepared through
1063-7834/03/4504- $24.00 © 20788
pressing from a melt followed by rapid cooling in water
at room temperature. Crystallization was accomplished
by annealing the amorphous films at a temperature of
430 K for 6 h. The IR spectra were measured on DS-
403G and Specord-75IR spectrophotometers at differ-
ent temperatures with the use of cells similar to those
described in [11] but without optical windows. Correc-
tion for distortions caused by radiation of the heated
sample and cell walls was made using a procedure
developed earlier in [11]. The bandwidth of the spectral
slit in the range 900–1000 cm–1 was equal to 2 cm–1 and
did not exceed 0.15 of the half-width (~13 cm–1) of the
band at a frequency of 971.5 cm–1 for the crystallized
sample at 90 K. With the aim of minimizing dynamic
distortions, the scanning velocity was no higher than
1 cm–1/min.

3. CHANGES IN THE HALF-WIDTH 
OF THE BAND ASSOCIATED 

WITH STRETCHING VIBRATIONS 
OF THE SKELETON OF PET MOLECULES 

UPON HEATING

The absorption band at a frequency of 971.5 cm–1 in
the IR spectra of the crystallized and amorphous PET
samples (Fig. 1) is assigned to the stretching vibrations
of interatomic bonds in the skeleton of the trans
sequences of PET macromolecules [6, 7]. At a temper-
ature of 20°C, the frequency at the maximum of the
band in the IR absorption spectrum of the amorphous
polymer is equal to 974.6 cm–1 and the half-width of
this band is 21 cm–1. In the spectrum of the crystallized
sample, the maximum of the band under investigation
is located at a frequency 3.5 cm–1 lower, i.e., at
971.5 cm–1, and the half-width is 15 cm–1.
003 MAIK “Nauka/Interperiodica”
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The temperature dependence of the half-width of
the band in the IR spectra was analyzed in the temper-
ature range from 90 to 540 K for the crystallized sample
and from 90 to 380 K for the amorphous sample. (At
higher temperatures, the amorphous sample underwent
crystallization, which led to an additional shift in the
frequency at the maximum of the band and a decrease
in the half-width.) It can be seen from Fig. 2 that an
increase in the temperature is accompanied by an
increase in the half-width of the band. This effect is
reversible in the above temperature ranges: the half-
width of the band upon cooling decreases and follows a
dependence similar to that observed upon heating. The
shape of the bands for the amorphous and crystallized
samples remains unchanged at all temperatures.

Three portions can be distinguished in the tempera-
ture dependence of the half-width of the band in the IR
spectra of the crystallized sample (Fig. 2, curve 1). In
the first portion (90–180 K), the slope of the depen-
dence Γ(T) tends to zero with a decrease in the temper-
ature. This made it possible to estimate the half-width
Γ(0) at T  0 as follows: Γ(0) ~ 13 cm–1. In the second
portion (180–380 K), the half-width of the band
increases almost proportionally to the temperature. The
proportionality coefficient is determined to be (∂Γ/∂T) =
0.011 cm–1/K. In the third portion (390–500 K), the pro-
portionality coefficient ∂Γ/∂T increases to 0.019 cm–1/K.

As was shown earlier by Schmidt [12], the integral
absorption coefficient of the band at 971.5 cm–1 for
unoriented PET samples increases proportionally to the
crystallinity. In the spectra of our samples, the integral
absorption coefficient of this band for the crystallized
sample is approximately 15 times larger than that for
the amorphous sample. Consequently, in the crystal-
lized PET sample, the trans sequences are predomi-
nantly located in crystallites.

1

2

2.5

2.0

1.5

1.0

0.5

960 980 1000
ν, cm–1

D

Fig. 1. IR absorption bands at 971.5 cm–1 in the spectra of
(1) crystallized and (2) amorphous PET samples at a tem-
perature of 300 K.
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The crystallinity of unoriented PET samples crystal-
lized at temperatures no higher than 470 K is usually
equal to 40–50% [13–15]. According to electron
microscopy, crystallization of PET at a constant pres-
sure from solutions [16], melts [17, 18], and vitreous
phases [19] brings about the formation of lamellas
composed of folded macromolecules. The lamella
thickness depends on the crystallization temperature
but does not exceed 10–20 nm. Upon crystallization
from the vitreous state under conditions similar to those
used in the present work (crystallization temperature,
430 K; time, 6 h), the typical large spacings (lamella
thicknesses), according to small-angle x-ray diffrac-
tion, were determined to be ≈11 nm [13]. Taking into
account the crystallinity, we can draw the inference that
the sizes of crystallites along the molecular chain are
equal to 4–5 nm.

At temperatures above 430 K, the lamella sizes in
PET increase [20]. For example, upon heating to 500 K,
the lamella thickness reaches 15 nm and the crystallite
size increases to 7 nm [14]. At the maximum tempera-
ture of heating of the crystallized sample in our work
(540 K), the crystallite size along the chain (the length
of the trans sequence) does not exceed 6–7 nm.

The maximum wavelength of vibrations of the trans
sequence is twice as large as its length; i.e., it is approx-
imately equal to 12–14 nm. This is one order of magni-
tude larger than the monomer unit length (1.075 nm
[21]). Therefore, the mechanism of broadening of the
absorption bands in the IR spectra can be analyzed in
terms of the vibration theory developed for infinitely
long molecules with a regular structure in the anhar-
monic approximation [1, 2]. According to this theory,
the broadening of the bands in the IR and Raman spec-
tra is caused by the anharmonicity of vibrations [6, 7].
In turn, the anharmonicity leads to breaking of the
dynamic independence of the vibrations and their
relaxation with the characteristic time τr. The character-
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Fig. 2. Temperature dependences of the half-width of the
band at 971.5 cm–1 in the IR spectra of (1) crystallized and
(2) amorphous PET samples.
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istic time corresponds to an uncertainty in the vibra-
tional frequency (energy), for which the measure is the
natural half-width of bands Γ = 1/2πcτr, where c is the
velocity of light.

Kosobukin [1, 2] theoretically investigated the natu-
ral broadening of the regularity bands in the spectra of
polymers within the third-order anharmonic approxi-
mation. It was demonstrated that relaxation of optical
phonons is governed by two processes in which the
phonon energy is expended in forming four new
phonons. The temperature dependence of the half-
width Γ(T) has the form

 (1)

where the subscripts t and b refer to the first and second
processes, respectively; Γt(0) and Γb(0) are the contri-
butions of the first and second processes to the half-
width at T = 0 K, respectively; and nt1, 2 and nb1, 2 are the
mean phonon occupation numbers. The occupation
numbers are related to the temperature T and the fre-
quency ν through the Bose expression [7]

 (2)

where h and kB are the Planck and Boltzmann con-
stants, respectively.

As a rule, the frequencies of phonons with sub-
scripts t2 and b2 are higher than those with subscripts
t1 and b1 [3]. Therefore, it can be assumed that the rela-
tionship nt2 ≈ nb2 ≈ 0 holds over the entire temperature
range covered. Hence, relationship (1) can be rewritten
in the following form:

 (3)

The characteristic temperature can be defined as

 (4)

where νmax is the maximum vibrational frequency.
Above the temperature TC, the mean phonon occupation
numbers vary in proportion to the temperature (n ~
kBT/hν = T/3TC). Below the temperature TC, we have
n ≈ 0. Consequently, at low temperatures (T < Tt1), the
occupation numbers are small in magnitude (nt1 = nb1 ≈
0) and the half-width can be determined as Γ(T) ~
Γ(T) ≈ Γt(0) + Γb(0) = Γ(0).

At T ≥ Tt, the occupation numbers nt increase
approximately in proportion to the temperature,
whereas the occupation numbers nb are close to zero.
As a result, the slope of the temperature dependence of
the half-width [see expression (3)] can be represented
by the relationship

 (5)

At T ≥ hνb/kB = Tb, the occupation numbers nb also
increase almost proportionally to the temperature and

Γ t( ) Γ t 0( ) nt1 nt2 1+ +( ) Γb 0( ) nb1 nb2 1+ +( ),+≈

n
hν

kBT
---------exp 1– 

  1–

,=

Γ T( ) Γ t 0( ) nt1 1+( ) Γb 0( ) nb1 1+( ).+≈

TC

hνmax

3k
-------------,≡

dΓ
dT
-------

3Γ t 0( )kB

hν t

----------------------≈
Γ t 0( )

Tt

-------------.=
P

the slope of the dependence Γ(T) should increase as fol-
lows:

 (6)

The experimental temperature dependence of the half-
width of the absorption band under investigation
(Fig. 2) is in good qualitative agreement with the afore-
mentioned theoretical predictions. In actual fact, the half-
width is temperature independent at low temperatures
(T < Tt = 170 K) and increases almost proportionally to
the temperature at T > 180 K and the slope of the quasi-
linear dependence Γ(T) increases at T ≥ Tb = 380 K. By
extrapolating the quasi-linear portions of the tempera-
ture dependence of the half-width in the temperature
ranges T < 170 K and 180 < T < 380 K to zero temper-
ature (T = 0 K), we obtain the contribution Γt(0) to the
half-width at T = 0 K: Γt(0) ≈ 1.4 cm–1. Then, we
extrapolate the quasi-linear portion of the dependence
Γ(T) at temperatures above 390 K to T = 0 K and find
the contribution Γb(0) ≈ 3.5 cm–1. The sum of these
contributions is the half-width of the band at T = 0 K:
Γ(0) = Γt(0) + Γb(0) ≈ 4.9 cm–1.

Let us now compare the experimental and theoreti-
cal [calculated from relationships (5) and (6)] slopes of
the dependence Γ(T). The calculated and experimental
values of dΓ/dT are equal to 0.008 [relationship (5)] and
0.011 cm–1/K in the temperature range 180 < T < 380 K
and 0.016 [relationship (6)] and 0.019 cm–1/K at T >
380 K, respectively. It can be seen that the experimental
slopes of the temperature dependence of the half-width of
the band at 971.5 cm–1 are close to the calculated values.
With the use of the characteristic temperatures, the fre-
quencies of the phonons involved in inelastic collisions
[see expression (3)] were estimated as νt ≈ 380 cm−1 and
νb ≈ 780 cm–1.

The temperature dependence of the half-width of
the absorption band in the spectra of the amorphous
PET sample (Fig. 2, curve 2) is approximately parallel
to that of the crystallized sample. Therefore, the
increase in the half-width of the band in the spectra of
the amorphous PET sample can also be explained in
terms of inelastic scattering of optical phonons. How-
ever, the half-width of the band in the spectra of the
amorphous sample is larger in magnitude than that in
the spectra of the crystallized sample over the entire
range of temperatures.

4. BROADENING OF THE REGULARITY BANDS 
DUE TO VIOLATION OF THE SELECTION RULE

As is known [20, 22], macromolecules of polymers
in the amorphous state adopt a statistical ball conforma-
tion. According to the large-angle x-ray diffraction data
[23], this ball is characterized by a short-range order
extending over regions ~ 2–3 nm in size. Actually, poly-
mer molecules in the studied samples involve trans
sequences whose lengths fall in the ranges 4–7 nm

dΓ
dT
-------

Γ t 0( )
Tt

-------------
Γb 0( )

Tb

-------------.+=
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(crystallized samples) and 2–3 nm (amorphous sam-
ples). The sequence length is comparable to the mean
free path of optical phonons (as a rule, it is approxi-
mately equal to ten monomer units, i.e., ~ 10 nm) in the
former case and is considerably less than this path in
the latter case. For short sequences, the selection rules
(q = 0, where q is the phonon wave vector) are violated
and phonons with a nonzero wave vector contribute to
the IR spectrum. This leads to asymmetric broadening
of the band. Now, we consider this situation in greater
detail.

The wave function of a phonon with a wave vector
q0 in a crystal whose linear size L is comparable to the
mean free path of phonons can be written in the form
[24, 25]

 

where exp(–2r2/L2) is the weighting function, which
accounts for the decrease in the vibration amplitude
u(q0, r) at the end of the sequence.

The shape of the spectral band can be described by
the expression [25]

 

where Γ0 is the natural broadening of the band, ω(q) is
the dispersion, and C(q0, q) is the Fourier coefficient of
the wave function Ψ'(q0, r). The Fourier coefficient is
defined by the equation

 

The trans sequence can be represented as a thin rod
whose diameter is substantially less than the length. In
this case, the Fourier coefficient can be given by the for-
mula [25]

 

and the expression for the shape of the spectral band
takes the form

 (7)

where a = 1.075 nm is the length of the monomer unit
of the PET molecule.

By substituting Γ0 = 10 cm–1 into expression (7) and
choosing the dispersion relation in the form ω(q) =
ω0 − (0.6q)2 (where ω0 is the frequency of the band at
the maximum at a specified temperature), we calculate
the dependences of the frequency at the maximum and
the half-width of the band on the length of the trans
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sequence. It can be seen from Fig. 3 that the frequency
at the maximum and the broadening of the band are vir-
tually independent of the size of the trans sequence at
L ≥ 7 nm and increase drastically with a decrease in the
length of the trans sequence at L < 5 nm. For example,
at L = 2 nm, the frequency at the maximum is shifted
toward the high-frequency range by 2.5 cm–1 and the
half-width increases from 10 to 15 cm–1.

5. DISCUSSION

The length of the trans sequences in the crystal
regions of PET is approximately equal to 4–5 nm at
temperatures up to 450 K. It is seen from Fig. 3 that the
broadening of the band due to the violation of the selec-
tion rule can be estimated at ≈3.5 cm–1. As the temper-
ature increases from 450 to 540 K, the length of the
trans sequence increases to ≈7 nm, whereas the broad-
ening decreases to 2 cm–1. Taking into account these
changes and the dependence depicted in Fig. 3, we cal-
culated the temperature dependence of the half-width
of the band at 971.5 cm–1 for the crystallized sample.
The results of our calculations are presented in Fig. 4
(curve 1). The extensions of the calculated dependence
in the temperature ranges 90–180, 180–380, and 390–
540 K, as well as its extrapolation to T = 0 K, are also
shown in Fig. 4 (indicated by dashed lines). The first
and second extrapolated curves intersect the ordinate
axis at the points corresponding to 10 and 8.5 cm–1,
respectively. The third extrapolated curve passes
through the origin of the coordinates. As a result, the
contribution Γt(0) is approximately equal to 1.5 cm–1;
i.e., it coincides with the value calculated without con-
sidering the violation of the selection rules. At the same
time, the contribution Γb(0) turns out to be approxi-
mately equal to 8.5 cm–1, which is 2.4 times larger than
that obtained without regard for the violation of the
selection rule q = 0. The difference between the values
of Γb(0) stems from the fact that an increase in the tem-
perature above 450 K leads to an increase in the size of
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Fig. 3. Calculated dependences of the frequency at the max-
imum and the half-width of the band at 971.5 cm–1 on the
length of the trans sequence in the PET molecule.
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the trans sequences and, hence, in the slope of the
dependence Γ(T) at T > 390 K.

In the amorphous polymer sample, the length of the
trans sequences falls in the range 2–3 nm. As is seen
from Fig. 3, the additional broadening due to the viola-
tion of the wave-vector selection rule can be estimated
at ≈5 cm–1. After subtraction of this value from the
experimental half-width at 100 K (19.5 cm–1), the half-
width thus obtained is approximately 4.5 cm–1 larger
than the value calculated for the crystallized polymer
sample with allowance made for the violation of the
selection rule. The difference between the half-widths
is associated with the fact that the amorphous polymer
contains trans sequences of different lengths. Conse-
quently, the band observed in the IR spectrum can be
considered a superposition of bands attributed to trans
sequences of different lengths.

The temperature dependence of the half-width cal-
culated with due regard to the violation of the selection
rules for the amorphous polymer (Fig. 4, curve 2) is
aligned parallel to that for the crystallized sample. This
implies that the inclusion of the violation of the selec-
tion rules does not affect the value of Γt(0). Unfortu-
nately, the crystallization of the sample at temperatures
above 390 K makes it impossible to determine the value
of Γb(0).

6. CONCLUSION

Thus, the broadening of the regularity band at
971.5 cm–1 in the IR spectra of the PET samples is due
to both inelastic scattering of phonons of stretching
vibrations of the macromolecular skeleton by other
phonons and the violation of the selection rules owing
to the small length of the trans sequences in PET mol-
ecules.
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Fig. 4. Calculated temperature dependences of the half-
width of the band at 971.5 cm–1 in the IR spectra of (1) crys-
tallized and (2) amorphous PET samples. Calculations are
performed with due regard for the violation of the selection
rules.
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Abstract—This paper reports on the results of investigations into the magnetic behavior of a chromium
mesogen containing the liquid-crystal columnar phase LCrCl3, where L is an azacyclononane ligand. It is found
that the magnetic susceptibility of LCrCl3 remains constant in the temperature range from 4.2 to 10 K. This
effect manifests itself upon rapid cooling of an LCrCl3 sample in the mesophase and exhibits relaxation
behavior. The relaxation magnetoelectric effect is explained in terms of the multiwell potential of the system
and a thermally nonequilibrium orientational distribution of electric dipole moments of the Cr–Cl bonds
involved. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent syntheses and studies of metallomesogens,
i.e., compounds that contain transition metals and are
capable of forming a liquid-crystal phase, have given a
better insight into the physics of liquid crystals and
their optical, electrical, and magnetic properties [1, 2].
It is known that, upon cooling, the liquid-crystal phase
of many metallomesogens undergoes a glass transition.
In this case, the supramolecular structure formed in the
mesophase is retained, which makes it possible to cre-
ate ordered low-dimensional molecular structures and
to investigate their properties at low temperatures. In
our earlier work [3], the specific features observed in
magnetic and electrical properties of columnar phases
of the chromium mesogen LCrCl3 (Fig. 1) were ana-
lyzed using electron paramagnetic resonance and
dielectric spectroscopy. These features manifest them-
selves at T = 328 K in a columnar (Colxd) phase and, as
a rule, are associated with the condensation of the soft
mode. It is assumed that the specific features revealed
in the properties of the chromium mesogen can indicate
a possible transition from the paraelectric state to the
dipole-ordered state. Local dipole ordering in a column
composed of LCrCl3 molecules can be due to correlated
distortions of the Cr–Cl bonds along the molecular col-
umn and displacements of Cr3+ ions from the cen-
trosymmetric sites. As a consequence, the electric
dipole moment of a Cr–Cl bond exhibits several dis-
crete orientations and for each orientation there is a
potential well.

Since the chromium mesogen characterized by a
multiwell potential exhibits both magnetic (paramag-
netic) and electric dipolar properties simultaneously,
this compound can be treated as a material possessing
1063-7834/03/4504- $24.00 © 20793
magnetoelectric properties similar to those examined in
[4–9]. In these works, an external action on the samples
under investigation was produced by a nonstationary
electric field. Another way to create an unsteady (ther-
mally nonequilibrium) state in the dipole system is to
cool the studied compound rapidly. In the present work,
we investigated the magnetic properties of the chro-
mium mesogen under these conditions.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

The magnetic resonance investigations were per-
formed on a Thomson EPR spectrometer operating at a
frequency of 9 GHz. The magnetic measurements were
carried out on an SQUID magnetometer. The tempera-
ture was stabilized with an accuracy of better than 0.1 K.
In both cases, the magnetic experiments were per-
formed with an LCrCl3 chromium mesogen prepared
from the same batch as was used earlier in [3]. How-
ever, the chromium mesogen sample studied in the
present work was obtained in a vitrified liquid-crystal
state through rapid (for ~1 min) cooling of the LCrCl3
compound in a Colxd dipole-ordered mesophase. It was
revealed that the observed magnetic behavior of the
chromium mesogen substantially depends on the pre-

Fig. 1. Structural formula of an LCrCl3 metallomesogen.
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history of the sample, i.e., on the conditions used for
preparing the low-temperature phase. During heating of
the sample under investigation, all the measurements
were conducted in the temperature range from 4.2 to
300 K. Then, similar measurements were carried out in
the course of cooling. Figure 2 shows the temperature
dependences of the magnetic susceptibility in the
course of heating and cooling of an LCrCl3 liquid-crys-
tal sample vitrified from the dipole-ordered phase. It
can be seen from Fig. 2 that, during heating of the sam-
ple preliminarily subjected to rapid cooling in the
mesophase, the magnetic susceptibility remains
unchanged in the temperature range 4.2–10 K and then
decreases drastically. In the course of subsequent cool-
ing, the magnetic susceptibility of the sample increases
monotonically with decreasing temperature in accor-
dance with the Curie–Weiss law χCW = C/(T – Θ) + χdia,
where C is a constant corresponding to the spin S = 3/2
and Θ = 0.65 K is the Curie–Weiss temperature [3]. It
should be noted that the temperature dependences of
the magnetic susceptibility measured during heating
and cooling of the LCrCl3 sample do not coincide at
temperatures below T = 11 K. At these temperatures,
the magnetic susceptibility of the chromium mesogen
exhibits a hysteresis with a memory effect; i.e., during
cooling, the temperature dependence of the magnetic
susceptibility passes through the same point at which
the magnetic susceptibility began to change in the
course of heating.

After two heating–cooling cycles, the sample was
transformed into the initial Colxd dipole-ordered
mesophase and was then vitrified. Under these condi-
tions, all the anomalies observed earlier in the behavior
of the magnetic susceptibility again manifested them-
selves.

Moreover, we examined the relaxation behavior of
the observed effect. For this purpose, the sample sub-
jected to rapid cooling was heated and allowed to stand
at T = 7 and 7.6 K. It was found that, in these cases, the
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Fig. 2. Temperature dependences of the magnetic suscepti-
bility in the course of heating and cooling of the LCrCl3
complex.
PH
equilibrium magnetic susceptibility χCW was attained
for 7 and 3.5 min, respectively.

The EPR measurements revealed a similar behavior
in the temperature dependence of the integrated inten-
sity A = I∆H2 (where I is the peak height of the first
derivative and ∆H is the linewidth between the peaks)
of the Cr3+ EPR line, which is proportional to the mag-
netic susceptibility. Figure 3 depicts the experimental
temperature dependences of the integrated intensity of
the Cr3+ EPR line in the course of heating and cooling
of the LCrCl3 sample. The EPR spectrum of the sample
vitrified from the Colxd mesophase exhibits a single
weakly asymmetric line, which is characterized by a
linewidth ∆H ~ 500 G and remains virtually unchanged
in the temperature range covered. As can be seen from
Figs. 2 and 3, the anomalies revealed in the magnetic
behavior of the studied sample with the use of the EPR
method are considerably less pronounced than those
observed in the measurements with the SQUID magne-
tometer. This discrepancy can be explained by the fact
that the recording of the observed effect calls for a fast-
response instrument for measuring the intensities of the
EPR lines, whereas, in our case, the EPR signals were
measured using a conventional recorder.

3. DISCUSSION

As was noted above, the magnetic susceptibility χ of
the sample remains nearly constant in the temperature
range 4.2–10 K and decreases drastically (by a factor of
approximately 2.7) in the vicinity of the Curie temper-
ature TC ≈ 9 K (see the heating curve in Fig. 2). This
behavior of the magnetic susceptibility formally corre-
sponds to a phase transition from a ferromagnetic state
to an ordered state with the ferromagnetic Curie tem-
perature TC ≈ 9 K. A similar behavior of the magnetic
susceptibility is observed in quasi-two-dimensional
Heisenberg layered ferromagnets (see, for example,
[10]). In this case, the exchange constant (J/k) can be

Cooling
Heating

5 10 15 20
T, K
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40
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Fig. 3. Temperature dependences of the integrated intensity
A of the Cr3+ EPR line in the course of heating and cooling
of the LCrCl3 sample.
YSICS OF THE SOLID STATE      Vol. 45      No. 4      2003



        

ANOMALIES IN THE MAGNETIC BEHAVIOR 795

                                             
estimated by two methods, namely, in disordered
(T/TC > 1) [3] and magnetically ordered (T/TC < 1) [10]
states of the material. As follows from these estimates,
the exchange constants (J/k)1 = 0.13 K above TC and
(J/k)2 = 19 K below TC differ significantly. Such a dis-
agreement and obvious relaxation behavior of the
observed effect permit us to discard this variant. Below,
we will discuss the possible manifestation of the relax-
ation magnetoelectric effect in the vitrified sample.

In paramagnetic materials, the relaxation magneto-
electric effect manifests itself in a noticeable increase
in the magnetization of the paramagnetic sample (spin
polarization) upon switching on (switching off) a dc or
ac electric field. To the best of our knowledge, this
effect was revealed in two single-crystal materials,
namely, SrO doped with Co2+ ions [4, 5] and pleochroic
quartz containing Al3+–O– centers formed upon the
Al3+  Si4+ isomorphous substitution in SiO4 tetrahe-
dra [6–9]. The relaxation magnetoelectric effect was
observed in dielectric materials involving paramagnetic
centers associated not only with the magnetic moment
but also with the electric dipole moments characterized
by several discrete orientations. In the former case
(Co2+ ions), a noncentrosymmetric impurity ion is
capable of tunneling between single potential wells. In
the latter case (Al3+–O– centers), an electron hole (at an
O– ion) can also tunnel between the two nearest neigh-
bor oxygen ions. In both cases, the above tunneling cor-
responds to a reorientation of the electric dipole.

After switching on (switching off) the electric field,
the system of reorienting electric dipoles occurs in a
nonequilibrium state. In the system where there is a
coupling between electric and magnetic dipoles, subse-
quent sufficiently slow switching off (switching on) the
electric field E can bring about short-time deviations of
the magnetization (spikes of the EPR signal) from its
equilibrium values due to an increase in the spin polar-
ization of the paramagnetic ions involved. The possible
models allowing for the observed increase in the spin
polarization were proposed in [4–9].

In the aforementioned works, the change in the
external electric field led to variations in the Stark gaps
(in other words, the spacings between minima of single
potential wells), the rate of tunneling of particles
between lattice sites, and the coupling between the sys-
tems of electric and magnetic dipoles.

The fundamental difference between our experi-
ments and earlier investigations (see above) lies in the
fact that, in our case, no external electric field was
applied and a molecular sample vitrified from the liq-
uid-crystal phase was used instead of a single-crystal
sample.

In the case when one of the coupled subsystems
(i.e., either the electric dipole subsystem or the spin
subsystem) is disturbed from an equilibrium, the other
subsystem should also come out of equilibrium owing
to the interaction between them. In the LCrCl3 com-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      200
pound, the electric dipole subsystem can be disturbed
from an equilibrium through a rapid cooling in the
dipole-ordered phase. Relaxation of this subsystem
toward an equilibrium state can be accompanied by
both the redistribution of Zeeman sublevel populations
[6–9] and displacements of the potential wells [4, 5]
due to variations in the internal electric field (i.e., due
to Stark splittings). In any case, the switching on or
switching off the external electric field in [4–9] brought
about an increase in the spin polarization.

The temperature behavior of the effect observed in
our experiments is similar in appearance to the temper-
ature dependence of the increase in the relative magne-
tization in an ac electric field [6, 11]. Compared to the
equilibrium magnetic susceptibility, which is described
by the Curie–Weiss law, the nonequilibrium magnetic
susceptibility increases by a factor of approximately
two (χheat /χcool) (see the inset in Fig. 2).

We also tested an alternative qualitative spin-glass
interpretation of the observed effect.

It is known that spin-glass systems [12] undergo
long-term relaxation due to nonergodicity of the vitre-
ous phase. This manifests itself in the fact that the mag-
netic susceptibility χFC of a spin-glass system cooled in
an external magnetic field remains unchanged in the
range below the temperature Tg, which corresponds to
freezing of orientational states of the magnetic
moments. The results presented in Fig. 2 also suggest
the presence of an external magnetic field. If the mag-
netic behavior of the studied mesogen were to be gov-
erned by the spin-glass mechanism, the magnetic sus-
ceptibility χZFC of the sample cooled in a zero external
magnetic field would decrease drastically below Tg.
However, the results of our measurements demon-
strated that, upon cooling of the chromium mesogen in
a zero magnetic field, the magnetic susceptibility χZFC
remains constant in the temperature range 4.2–6.5 K
and then sharply decreases to an equilibrium value χCW.

4. CONCLUSIONS

The relaxation magnetoelectric effect observed in
the vitrified liquid-crystal phase is of considerable
interest in respect to the search for new low-dimen-
sional materials with magnetoelectric properties. We
believe that the molecular system found makes it possi-
ble to observe the relaxation magnetoelectric effect in
external electric fields. In particular, there is great inter-
est in analyzing the quasi-stationary increase in the
magnetization of a paramagnetic material in an ac elec-
tric field [6, 7, 9] and in inducing the maser effect [5].
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Abstract—The temperature dependences of the dielectric and optical parameters for a 5-propyl-2-(p-
cyanophenyl)-pyridine (3CP) liquid crystal are investigated in the vicinity of the nematic–isotropic phase tran-
sition. The dielectric spectra of the 3CP compound in the crystalline, nematic, and isotropic phases are mea-
sured in the frequency range 1–1000 MHz, and the Debye approximations of the measured spectra are obtained.
Analysis of the dependence of the static permittivity on the director orientation with respect to the direction of
the electric pump field demonstrates that the angle between the dipole moment and the long axis of the molecule
is approximately equal to 15°. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, the frequency dispersion of the permit-
tivity is one of the basic properties of liquid crystals.
Elucidation of the nature of the dispersion, and, espe-
cially, the influence of different factors on this property,
is an important problem in both theoretical and applied
physics. At present, the region of dispersion associated
with the relaxation of liquid-crystal molecules, which,
as a rule, corresponds to frequencies of the meter wave-
length range, has been adequately studied for many liq-
uid-crystal systems. However, there exist a number of
liquid crystals whose high-frequency dielectric proper-
ties are as yet poorly understood. This can be explained
by the fact that the relaxation frequencies for this group
of liquid crystals fall in the decimeter wavelength range
in which precision dielectric measurements involve
considerable difficulties. Among these materials is a
5-propyl-2-(p-cyanophenyl)-pyridine (3CP) nematic
liquid crystal. The structural formula of the 5-propyl-2-
(p-cyanophenyl)-pyridine liquid-crystal compound is
presented in Fig. 1. Investigation into the optical and
dielectric properties of the 3CP nematic liquid crystal is
of particular interest, because this compound is similar
in molecular structure to the well-known and thor-
oughly studied liquid crystals of the alkylcyanobiphe-
nyl group nCB (n = 5–9) [1–5]. The only difference
between them lies in the fact that, in the rigid core of the
3CP molecule, one carbon atom in either of the two
benzene rings is replaced by a nitrogen atom. More-
over, the number of methylene fragments (n = 3) in the
alkyl tail of the 3CP molecule is rather small for liquid
crystals. The 3CP compound undergoes a phase transi-
tion from the solid crystalline state to the nematic liq-
uid-crystal state at T0 = 43.5°C and a transition from the
nematic state to the disordered isotropic liquid state at
Tc = 47.4°C.
1063-7834/03/4504- $24.00 © 20797
In this work, we experimentally investigated the
temperature and frequency dependences of the permit-
tivity, determined the refractive indices, and numeri-
cally approximated the dielectric spectra measured for
the 5-propyl-2-(p-cyanophenyl)-pyridine compound in
different phase states over a wide frequency range
(f = 1–1000 MHz).

2. EXPERIMENTAL TECHNIQUE

The permittivities in the frequency range 1–30 MHz
were measured on a Tesla BM560 standard Q-meter
with the use of a measuring cell in the form of a paral-
lel-plate capacitor. In the meter and decimeter wave-
length ranges, the dielectric measurements were per-
formed with specially devised high-sensitive sensors
based on microstrip resonators of a ring type [6]. The
small-step tuning of the sensors was carried out using
calibrated inductors and electrically controlled capaci-
tors (varactors), which were connected in series with
the strip conductor in the antinodal region of a micro-
wave magnetic field for the first oscillation mode of the
microstrip resonator [7]. A capacitive measuring cell
fabricated in the form of an interdigitation with a gap of
150 µm was placed at the antinode of a microwave elec-
tric field of the resonator. A liquid-crystal sample
200 µm thick was positioned on the interdigitation
bounded by a glass border. The sample was shielded
from contamination by a fluoroplastic film. The sensor

N≡C

N

C3H7

Fig. 1. Structural formula of the 5-propyl-2-(p-cyanophe-
nyl)-pyridine liquid-crystal compound.
003 MAIK “Nauka/Interperiodica”
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design made it possible to measure the dielectric spec-
tra with a high accuracy despite the relatively small vol-
ume of the studied sample.

The real permittivities ε' were determined according
to a standard technique, i.e., by measuring the differ-
ence in the resonance frequencies of the sensors with
and without the sample. The imaginary permittivities ε''
were calculated from the change in the loaded Q-factor
of the resonator after the liquid-crystal sample was
placed in it. The amplitude–frequency characteristics of
the microstrip sensors were recorded on an R4-37 auto-
mated meter intended for measuring complex transmis-
sion gain factors. The absolute errors in determining the
dielectric characteristics were no larger than δε' ~ 0.05
and δε'' ~ 0.1. The required angle ϕ between the long
axes of molecules in the 3CP sample and the direction
of the microwave electric field in the measuring cell was
specified by the appropriate direction of the static mag-
netic field H = 2500 Oe. The measurements were per-
formed in a thermostat in the temperature range 0–50°C.
The temperature was maintained accurate to ±0.1 K.

The temperature dependences of the ordinary (n0)
and extraordinary (ne) refractive indices were measured
at the wavelength λ = 0.589 µm with the use of an IRF-
454B refractometer with a homeotropic orientation of
the director in the measuring cell.

3. RESULTS AND DISCUSSION

The experimental temperature dependences of the
ordinary n0 (closed symbols 1) and extraordinary ne

(closed symbols 2) refractive indices are depicted in
Fig. 2. This figure also shows the temperature depen-

dences of the real parts of the longitudinal  (open

symbols 3) and transverse  (open symbols 4) permit-
tivities, which were measured in parallel and perpen-
dicular orientations of the liquid-crystal director with
respect to the electric pump field. The heating rate of

ε||'

ε⊥'

1

2

3

4

6

5

26

22

18

14

3 2 1 0 –1 –2

1.54

1.60

1.66

1.72
ne, n0

(Tc – T), °C

ε'||0, ε'⊥ 0

Fig. 2. Temperature dependences of the optical (closed
symbols) and dielectric (open symbols) parameters for the
3CP liquid crystal in the temperature range of the transition
from the nematic phase to the isotropic liquid phase.
P

the studied sample was approximately equal to 4 K/h.
The permittivities were measured at the pump fre-
quency f = 1 MHz, at which the frequency dispersion
does not manifest itself. In actual fact, the permittivities

thus obtained are close to the static permittivities 

and . As could be expected, the optical and dielec-
tric parameters exhibit a jump at the nematic–isotropic
transition temperature (Tc – T = 0) of the liquid crystal.
It is worth noting that the measured parameters only
slightly depend on the temperature in both the nematic
(curves 1–4) and isotropic (curves 5, 6) phases.

Figure 3 shows the dependence of the real permittiv-
ity of the studied sample in the nematic phase on the
angle between the direction of the static magnetic field
H orienting the liquid-crystal molecules and the direc-
tion of the microwave electric field. This dependence
was also measured at the pump frequency f = 1 MHz,
which lies outside the frequency dispersion region of
the sample. As is clearly seen, the dependence depicted
in Fig. 3 is asymmetric about the vertical line passing
through the point ϕ = 90°. At this angle, the long axes
of the 3CP molecules are perpendicular to the pump
field. Most likely, the observed asymmetry of the
dependence ε'(ϕ) indicates that the dipole moment µ of
the molecule deviates from the long molecular axis.
The deviation angle can be easily calculated from the
shift in the minimum of the curve ε'(ϕ) with respect to
90°. This angle is determined to be β ≈ 15°.

Judging from the sufficiently high values of the

static permittivities (  ≈ 25 and  ≈ 14.4) and the

dielectric anisotropy (∆ε' =  –  = 11.4) of the
studied sample, the 3CP molecules possess a relatively
large dipole moment. It is well known [1–4] that, for all
homologs (n = 5–9) of the liquid crystals belonging to
the alkylcyanobiphenyl group nCB, in which the dipole
moment (µ = 4.3 D) is associated with the –C≡N cyano
group, the dielectric parameters, as a rule, do not

ε||0'

ε⊥ 0'

ε||0' ε⊥ 0'

ε||0' ε⊥ 0'

24

20

16

12
0 30 60 90 120 150 180

ϕ, deg

ε'

Fig. 3. Dependence of the permittivity of the 3CP liquid
crystal on the angle between the director of molecules and
the direction of the microwave pump field.
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exceed  = 15–17,  = 6–8, and ∆ε' = 8–9 in the
temperature range +1 < (Tc – T) < +5°C. From the
aforesaid it follows that, owing to the presence of the
pyridine ring in molecules of the 3CP liquid crystal, the
dipole moment of the 3CP molecule is 40–50% larger
than that of the molecules of the alkylcyanobiphenyl
liquid crystals.

The frequency dependences of the real permittivity
for the 3CP sample in different states of the mesophase
are shown in Fig. 4. Curve 1 was measured at T = 0°C,
when the sample was in the solid crystalline state.
Curves 2 and 3 represent the frequency dependences of

the permittivities  and , respectively, which were
measured for the sample at T = 45°C in the nematic liq-
uid-crystal state. Curve 4 was recorded at T = 49°C,
when the sample was in the isotropic state. It can be
seen that, in the solid phase, the dispersion is virtually
absent and the permittivity is estimated as  = 2.63 ±
0.02. It is interesting to note that this permittivity coin-
cides very closely with the square of the refractive

index  = 2.624 for the high-temperature isotropic
liquid phase of the 3CP liquid crystal. This indicates
that, in the solid crystalline phase, the orientational
contribution from the rotation of the dipole moment to
the permittivity is absent and the observed value of 
can be associated with the quick-response processes of
displacement of intramolecular electric charges.

In order to describe the frequency dispersion of the

longitudinal (parallel) ( f ) and transverse (perpendic-

ular) ( f ) permittivities of the 3CP sample in the
nematic phase, we used different approaches. The lon-
gitudinal permittivity was approximated with due
regard for the fact that the dipole moment of the mole-
cule deviates from the long molecular axis through the
angle β. According to the universally accepted concepts

ε||0' ε⊥ 0'

ε||' ε⊥'

εs'

nis
2

εs'

ε||'

ε⊥'

24

16

8

0
1 10 100 1000

f, MHz

ε'

1

2

3

4

Fig. 4. Frequency dependences of the permittivity of the
3CP liquid crystal measured at different temperatures. T =
(1) 0, (2, 3) 45, and (4) 49°C.
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regarding the possible mechanisms of dielectric polar-
ization in liquid crystals [1–4, 8], the dispersion can be
approximated by the sum of two Debye processes with
different relaxation times [9]; that is,

 (1)

where ne is the extraordinary refractive index,  is the
static permittivity, ω = 2πf, τ||1 and τ||2 are the relaxation
times of two processes, and g1 and g2 are the weighting
factors corresponding to these processes (g1 + g2 = 1).

The occurrence of two relaxation processes in the
liquid crystal under investigation can be explained, in
particular, by the misalignment of the dipole moment µ
and the long axis of the liquid-crystal molecule. As a
result, the longitudinal permittivity contains a contribu-
tion from the transverse component of the dipole
moment µ and vice versa. Curve 1 in Fig. 5 represents
the results of the numerical approximation performed for
the experimental spectrum ( f ) according to relation-
ship (1). This curve is plotted for the following parame-
ters of the liquid crystal:  = 25.2, τ||1 = 5 × 10–9 s,
τ||2 = 3.8 × 10–10 s, ne = 1.7, g1 = 0.78, and g2 = 0.22.

As can be seen from Fig. 5, the frequency depen-
dence of the longitudinal permittivity calculated within
the proposed approximation is in good agreement with
the experimental data over the entire frequency range
covered. Dashed line 2 in Fig. 5 corresponds to the dis-
persion calculated at weighting factors g1 = 1 and g2 =
0 and fits the experimental data well only in the low-fre-
quency dispersion region. Dashed line 3 represents the
frequency dependence obtained at g1 = 0.78 and g2 =
0.22, which, by contrast, agrees reasonably with the
experimental data only in the high-frequency disper-

sion region. Dot-dashed line 4 indicates the  value to
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2
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1 ω2τ||1
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Fig. 5. Numerical approximation of the frequency depen-
dence of the longitudinal permittivity by the sum of two
Debye processes with different relaxation times.
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which the longitudinal permittivity of the 3CP liquid
crystal tends when f  ∞.

It should be noted that the relaxation times τ||1 and
τ||2 characterize the dipole relaxation upon rotation of
the molecule about the short and long axes. The ratio of
the weighting factors g2/g1 is equal to the tangent of the
angle β between the dipole moment and the long axis of
the molecule. In our case, we have β = 15.7°. As can be
seen, this value agrees closely with the angle β ≈ 15°,
which was determined from the experimental angular
dependences of the permittivity (Fig. 3).

Let us now consider the transverse permittivity of
liquid crystals whose relaxation frequency upon per-
pendicular pumping is higher than that upon parallel
pumping. Under these conditions, the approximation of
the transverse permittivity by one Debye relaxation
process or even the sum of two Debye processes, as a
rule, offers poor agreement with the experimental data.
It can be seen from Fig. 6 that an increase in the fre-
quency leads to an increase in the discrepancy between

the experimental spectrum ( f ) (points in Fig. 6) and
the Debye dependence with one relaxation time (dashed
line 2). This allows us to assume that small-scale vibra-
tions of mobile alkyl groups in liquid-crystal molecules
manifest themselves at high frequencies. In this situa-
tion, the dielectric relaxation times can be conveniently
represented in the form of a continuous distribution in a
specified time range. On this basis, the dielectric spec-
trum can be described by the expression [9]

 (2)

where n0 is the ordinary refractive index and G(τ) is the
distribution function of relaxation times. In our case,

the frequency dependence ( f ) was approximated by

ε⊥'

ε⊥' f( ) n0
2
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0
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3

Fig. 6. Approximation of the frequency dependence of the
transverse permittivity in terms of the Debye relaxation pro-
cess with a continuous distribution of relaxation times.
P

the Fröhlich distribution function [10], which is conve-
niently used in practical calculations; that is,

 (3)

where u0 is the boundary energy, which determines the
range of uniform height distribution of the potential
barriers of dipoles: 0 ≤ δu ≤ u0. The specific feature of
the distribution function (3) is that it depends on the
temperature. Since the relative width (τ1 – τ0)/τ0 of the
relaxation time distribution decreases with an increase
in the temperature, this dependence can be represented
in the form

 (4)

Next, we take the integral in expression (2) from τ0 to
τ1 with due regard for the distribution function (3). As a
result, the frequency dependence of the real part of the
transverse permittivity has the form

 (5)

The results of the numerical approximation carried out
according to formula (5) are shown by curve 1 in Fig. 6.
This curve almost coincides with the experimental

points. Dot-dashed line 3 in Fig. 6 indicates the 
level to which the transverse permittivity of the liquid
crystal tends when f  ∞. Curve 1 is constructed for
the following parameters:  = 14.4, T = 318 K, u0 =
1.52 × 10–14 erg, n0 = 1.55, τ0 = 1.85 × 10–10 s, and τ1 =
2.39 × 10–9 s. Note that, in this case, the relative width
of the continuous distribution of relaxation times
appears to be comparatively small: (τ1 – τ0)/τ0 ≈ 10.
However, the results obtained should be treated as ten-
tative because, in the present work, the dielectric mea-
surements were performed in an insufficiently wide
range of frequencies. In order to refine the parameters
of the approximation, it is necessary to use the experi-
mental data obtained over the entire dispersion region.
Moreover, as follows from the experimental results, the
dielectric spectra of liquid crystals in the high-fre-
quency dispersion region can exhibit resonance features
[11], which should also be taken into account when
approximating the spectra ε'( f ) [12]. It should be noted
that curve 2 in Fig. 6 is plotted according to the Debye
equation with one relaxation time τD = 9 × 10–10 s, which
approximately corresponds to the midpoint of the range
(τ1 – τ0).

The frequency dependence of the permittivity for
the 3CP liquid crystal in the disordered isotropic phase

G τ( ) kT
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was also approximated on the basis of relationships (2)
and (3), because it is quite reasonable that the isotropic
phase is characterized by a continuous distribution of
relaxation times. The excellent agreement between the
calculated and experimental data was achieved with the
following parameters for the liquid crystal in the isotro-

pic phase:  = 19.3, T = 322 K, u0 = 2.28 × 10–13 erg,
ni = 1.6, τ0 = 2.1 × 10–10 s, and τ1 = 6.12 × 10–9 s. A com-
parison of these parameters with those for the 3CP liq-
uid-crystal compound in the nematic phase shows that
the energy u0 increases by one order of magnitude and
that the upper limit of the relaxation time range changes
significantly. As a result, the relative width (τ1 – τ0)/τ0

increases by a factor of more than two.

4. CONCLUSIONS

Thus, the permittivities of the 5-propyl-2-(p-
cyanophenyl)-pyridine liquid-crystal compound in dif-
ferent phase states were measured over wide ranges of
frequencies and temperatures. It was found that the
dipole moment of the 3CP molecule significantly devi-
ates from the long molecular axis. The deviation angle
was determined to be β ≈ 15°. It was demonstrated that
the frequency dependence of the longitudinal permit-

tivity ( f ) for the 3CP liquid crystal in the nematic
phase is adequately described by the sum of two Debye
processes with different relaxation times. However,
when approximating the transverse permittivity ( f )
in the nematic phase and the permittivity ( f ) in the
isotropic phase of the 3CP compound, the Debye for-
mulas should account for the continuous distribution of
relaxation times in a specified time range. It was
revealed that the temperature dependences of the static
permittivities are similar to those of the refractive indi-
ces in the temperature range of the phase transition
from the nematic liquid crystal to the isotropic liquid.
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Abstract—This paper reports on the results of complex investigations into the structural, thermodynamic, and
dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure
up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic
structure with a lattice parameter a = 14.02 ± 0.05 Å. The dimeric structure of the studied sample is confirmed
by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of
the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for
the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined
using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T  0 K
to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capac-

ity (T), the enthalpy H0(T) – H0(0), the entropy S0(T), and the Gibbs function G0(T) – H0(0). The fractal
dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2
crystalline dimer from a simple compound (graphite) at T  = 298.15 K and normal pressure is calculated. © 2003
MAIK “Nauka/Interperiodica”.

Cp
0

† 1. INTRODUCTION

It is known that appropriate treatment of C60 fuller-
ite crystals at high pressures and temperatures brings
about the formation of stable (graphite or diamond) and
numerous metastable carbon states [1–9]. For example,
in the stability region of a C60 molecular cluster, crys-
talline polymerized phases of C60 can be formed as a
result of the [2 + 2] cycloaddition reaction between two
parallel C=C double bonds of the neighboring carbon
atoms on the surface of two C60 molecules [10]. Among
the most important crystalline polymerized phases are
linear (one-dimensional) C60 polyfullerenes, planar
(two-dimensional) C60 polyfullerenes of two types, crys-
tals of nearly continuous three-dimensional C60 poly-
mers, and weakly polymerized phases formed by (C60)2
dimer molecules. An increase in the pressure and tem-
perature during treatment of C60 fullerite crystals leads to
distortion and decay of the C60 molecules with the forma-
tion of amorphous disordered phases in which carbon
atoms reside in the sp2 and sp3 hybridized states [5, 8, 9].

In order to gain a better insight into the nature of C60
metastable phases, it is necessary to use a combination
of spectral, x-ray diffraction, and high-precision calori-
metric methods [11–14]. The influence of physical con-
ditions (pressure p and temperature T) of preparing the
C60 crystalline polymerized phases on their thermody-

† Deceased.
1063-7834/03/4504- $24.00 © 0802
namic properties was noted for the first time in [15].
The first results of the study of the orientational phase
transition in C60 partially dimerized phases were
reported in [16]. However, the fundamental understand-
ing of the mechanism of phase transformations in C60
calls for detailed structural investigation and physico-
chemical interpretation of the orientational transition in
the aforementioned phases.

The aim of the present work was to investigate the
structural, thermodynamic, and dilatometric properties
of the C60 dimerized phase, which was synthesized
under compression of a C60 fullerite at a pressure up to
8 GPa and a temperature of 290 K. For this purpose, we
measured the temperature dependence of the heat
capacity of the (C60)2 crystalline phase at temperatures
ranging from 6 to 340 K, examined the physical trans-
formations during heating and cooling of the dimerized
phase, and evaluated the thermodynamic characteristics
of these transformations. The results obtained were
used to calculate thermodynamic functions, namely, the
heat capacity (T), the enthalpy H0(T) – H0(0), the
entropy S0(T), and the Gibbs function G0(T) – H0(0) in
the temperature range from T  0 to 340 K and the
standard entropy of formation of the (C60)2 crystalline
dimer from a simple compound (graphite) at 298.15 K
and normal pressure. Moreover, we determined the
fractal dimension D as a function of the heat capacity.

Cp
0
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

2.1. Synthesis and Structure of the Samples 
under Investigation

The samples to be studied were synthesized using a
C60 fullerite prepared at the Institute of Organometallic
Chemistry, Russian Academy of Sciences (Nizhniœ
Novgorod). According to high-performance liquid
chromatography, the impurity content in the C60 fuller-
ite did not exceed 0.2 wt %. The C60 fullerite was
treated at a pressure of 8 GPa and a temperature of
290 K for ~1 min in a toroid-type high-pressure cham-
ber [17] with the use of a copper container. The high-
pressure chamber was calibrated against the phase tran-
sitions in Bi. Since the effective volume of the chamber
was limited, several compression cycles under identical
conditions were carried in order to synthesize the
required amount of the sample. The structure of the
studied samples was determined by x-ray diffraction
(CuKα radiation) on a diffractometer and with the use of
x-ray powder diffraction photographs. In the latter case,
a finely dispersed powder of NaCl was added for pre-
cise calibration. Hereafter, the prepared sample of the
C60 dimerized phase will be designated as DS.

2.2. Dilatometric Measurements

The thermal expansion was measured using a capac-
itance dilatometer with a design similar to that
described in [18]. The elongation per unit length of the
sample was calculated from the temperature depen-
dence of the measuring capacitance C(T) according to
the formula

 (1)

Here, αCu(T) is the thermal expansion coefficient of the
material of the measuring cell (in our case, copper), d is
the length of the sample, ∆d is the elongation of the
sample, and r is the radius of the measuring capacitor
plates. The setup was calibrated against the aluminum
(99.999%) sample. The discrepancy between the
obtained results and the data available in the literature
[19] did not exceed 5%. The temperature variation was
accomplished by cooling the measuring cell in liquid-
nitrogen vapors, followed by controlled heating at a
rate of 0.007 K/s.

2.3. Instruments and Techniques 
for Heat Capacity Measurements

The heat capacity of the DS sample was measured
on a BKT-3 automated adiabatic vacuum calorimeter.
The design of the calorimeter and the technique of mea-

∆d
d

-------
πε0r

2
1 αCu T( )+( )2

d
-----------------------------------------------=

× 1
C T( )
------------ 1

C T0 = 273 K( )
------------------------------------– dαCu T( )+ 

  .
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suring the heat capacity  were described in [20, 21].
The results of calibration and tests of the calorimeter
demonstrated that the error in measuring the heat
capacity of the materials is ± 2% at the liquid-helium
temperature, decreases to ± 0.5% at 40 K, and is
approximately equal to ± 0.2% in the temperature range
40–340 K.

The heat capacity  of the DS sample was exam-
ined in the temperature range 6–340 K. A weighed por-
tion (0.5723 × 10–3 kg) of the material was placed in a
calorimetric cell. In three series of measurements, we

obtained 209 experimental values of . In all cases,
the heat capacity of the studied sample constituted from
25 to 50% of the total heat capacity of the calorimetric

cell with the material. The experimental values of 
were averaged on a computer with the use of power and
semilogarithmic polynomials. The averaging was per-
formed in such a way that the root-mean-square devia-
tion of the experimental points from the averaged curve

 = f(T) did not exceed the error in measuring the heat
capacity.

3. RESULTS AND DISCUSSION

3.1. Structural Investigation

The x-ray diffraction data (CuKα radiation) obtained
for the DS sample are in reasonable agreement with
those for the C60 initial fullerite (see, for example, [3, 4]).
The positions of the diffraction reflections observed are
well described under the assumption of a face-centered
cubic structure composed of C60 molecules. Note that the
lattice parameter of the DS sample a = 14.02 ± 0.05 Å is
somewhat smaller than that of the C60 initial fullerite
(a0 = 14.17 Å). Owing to the decrease in the lattice
parameter, the weak reflection (200) is seen in the dif-
fraction curves of the DS sample. This reflection is
absent in the diffraction curves of the C60 initial sample
due to the extinction caused by the effect of C60 mole-
cules.

With the use of the lattice parameter a, it is possible
to estimate the fraction of pairs of the nearest neighbor
C60 molecules, which are covalently bonded through
the [2 + 2] cycloaddition reaction [10]. According to the
model of partially polymerized face-centered cubic
phases of C60 [7, 22], a pair of nearest neighbor mole-
cules (bonded through covalent or van der Waals inter-
actions) can occur in two different states. Within this
model, by analogy with the Vegard law for solid solu-
tions, the lattice parameter a for a polymerized face-
centered cubic phase can be described, to a first approx-
imation, by a linear function of the fraction of polymer-
ized molecular pairs np; that is,

 (2)

Cp
0

Cp
0

Cp
0

Cp
0

Cp
0

a a0 ap a0–( )np.+=
3
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In this case, the extreme structures are the face-centered
cubic lattice of the initial fullerite (a0 = 14.17 Å) and
the completely three-dimensionally polymerized phase
with the lattice parameter ap. In [7, 22], the lattice
parameter for the completely polymerized phase was
estimated as ap ~ 12.2–12.3 Å. Hence, we obtain np .
0.076–0.080 for the DS sample. With due regard for the

0
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Fig. 1. (a) Temperature dependences of the linear size of (1)
the pressed C60 fullerene sample and (2, 3) two DS samples.
(b) The same dependences on an enlarged scale. Arrows
illustrate the procedure of determining the volume jump
associated with the contribution of the orientational transi-
tion occurring in the C60 fullerite impurity.

Fig. 2. Temperature dependences of the heat capacity of (1)
the DS sample and (2) the C60 initial fullerite [24].
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number of nearest neighbors Z = 12 in the face-centered
cubic lattice, it is easy to calculate that the probability
of forming a covalent bond between two molecules is
approximately equal to 0.91–0.96. From analyzing the
structural data, we can make the inference that the DS
sample consists predominantly of the (C60)2 dimerized
phase with a low content of C60 (approximately 4–9%).
Note that this estimate of the fraction of the C60 initial
fullerite in the DS sample is relatively rough, because,
first, formula (2) is not exact and, second, the dimerized
phase can contain linear molecules with a higher degree
of polymerization, for example, (C60)3.

3.2. Dilatometric Investigation

The experimental temperature dependences of the
linear size of the DS sample are depicted in Fig. 1. It
can be seen that, at temperatures close to 260 K, the C60
initial fullerite is characterized by a volume jump due
to a phase transition from the orientationally ordered
simple cubic phase to the orientationally disordered
face-centered cubic phase [23]. However, the analo-
gous anomaly for the DS sample is substantially less
pronounced. It is clear that the observed decrease in the
volume jump in the phase transition range is associated
with the dimerization of the C60 fullerite.

Since the linear expansion coefficients were differ-
ent at temperatures below and above the volume anom-
aly (Fig. 1b), the volume jump ∆V upon the orienta-
tional phase transition in the DS sample was deter-
mined from the midpoint of the phase transition range.
As a result, we obtained ∆V (DS)/∆V (C60) ~ ∆d
(DS)/∆d (C60) ~ 0.03.

Under the assumption that, for the studied sample,
the residual volume anomaly observed in the vicinity of
260 K is determined by the contribution of the C60 ful-
lerite impurity, the fraction of C60 in the DS sample can
be estimated at ~3–4%. However, the actual structural
transition in the DS sample can be more intricate in
character. In particular, the orientational effects associ-
ated with (C60)2 dimers can play a significant role, on
the one hand, and the interaction of C60 molecules with
surrounding dimers can affect the volume jump, on the
other.

3.3. Thermodynamic Characteristics

All the experimental data on the heat capacity 

and the dependence  = f(T) (curve 1) are presented in
Fig. 2. For comparison, Fig. 2 also shows the tempera-
ture dependence of the heat capacity of the C60 initial
fullerite (curve 2) according to the data taken from [24].
It can be seen from Fig. 2 that, in the range 185–280 K,
the physical transformation manifests itself in the tem-

perature dependences  = f(T) for both the DS sample
and the C60 fullerite. However, judging from the ratio

Cp
0

Cp
0

Cp
0
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between the areas under the corresponding portions of
the heat capacity curves (BGDB and BCD'B in Fig. 2)
in the transition range, the enthalpy of transition in the
DS sample is several times less than that in the C60 ful-
lerite. According to [23–25], the transformation in the
C60 fullerite upon heating is associated with the phase
transition from the orientationally ordered simple cubic
phase to the orientationally disordered face-centered
cubic phase in which the C60 molecules execute almost
free rotations. This transformation is the reversible

phase transition. The transition temperature  for the
DS sample is equal to 261.2 K when it is taken as the
temperature of the maximum apparent heat capacity of

the sample in the transition range 185–280 K (  =
474.2 J K–1 mol–1). The enthalpy of the transition

∆  = 0.77 ± 0.03 kJ mol–1 was graphically deter-
mined as the area bounded by the curve BGDB (Fig. 2).
The characteristics of the transition in the C60 fullerite
are as follows [24]: the transition range, 185–275 K;

 = 260.7 K (  = 34747 J K–1 mol–1); and

∆  = 7.46 ± 0.15 kJ mol–1. It is reasonable to assume
that the transition in the DS sample under consideration
is due to the presence of the C60 initial fullerite, which
does not transform into (C60)2 in the course of treatment
under a pressure p and temperature T. On this basis, the
content of the C60 fullerite in the DS sample can be eas-
ily estimated from the relationship

 (3)

by substituting the corresponding numerical values.

T tr
0

Cp max,
0

H tr
0

T tr
0

Cp max,
0

H tr
0

n C60 mol  % ,( )  =  ∆ H tr
0 DS ( ) / ∆ H tr

0 C 60 ( )[ ] 100% ×                                                              
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Cp
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Fig. 3. Temperature dependences of (1) the calculated heat
capacity of the (C60)2 crystalline dimer and (2) the heat
capacity of the C60 initial fullerite [24].
PHYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003
The C60 content thus calculated for the DS sample is
equal to 10 mol %, which agrees well with the C60 frac-
tion determined from the x-ray diffraction data. In fur-
ther calculations, we will assume that the studied sam-
ple contains 10 mol % C60 and 90 mol % (C60)2.

The normal heat capacity of the DS sample [the
mixture of C60 and (C60)2] in the transition range were
obtained by interpolating the curve  = f(T) from the
point B to the point D (the dotted line BD in Fig. 2). By
using the heat capacities of the mixture (the DS sample)
and the C60 fullerite [24] and knowing the quantitative
composition of the mixture, the heat capacity of the
(C60)2 dimer per mole of C60 can be calculated from the
formula

 (4)

where {(C60)2}, (C60), and (DS) are the molar
heat capacities of the dimer, fullerite, and DS sample at
the corresponding temperatures. Now, we express

{(C60)2} from formula (4), substitute the numerical

values of  at the corresponding temperatures, and
calculate the heat capacities of the (C60)2 dimer per
mole of C60.

The results obtained were used to construct the tem-

perature dependence of the calculated heat capacity 
of the (C60)2 crystalline dimer (Figs. 3, 4). For compar-

ison, the dependence (T) for the C60 initial fullerite
[24] is also plotted in Figs. 3 and 4. A comparison of
these dependences shows that, in the temperature range

from T  0 K to T  = 120 K, the heat capacity  of
(C
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Thermodynamic functions of the (C60)2 crystalline dimer per mole of C60 (M = 720.66 g mol–1) at p = 101.325 kPa

T, K (T), J K–1 mol–1 H0(T) – H0(0), kJ mol–1 S0(T), J K–1 mol–1 –[G0(T) – H0(0)], kJ mol–1

5 3.11 0.00410 1.10 0.00139

10 11.9 0.0420 5.99 0.0179

15 19.24 0.1197 12.20 0.06330

20 25.10 0.2315 18.59 0.1404

25 29.83 0.3710 24.80 0.2490

30 33.36 0.5294 30.56 0.3875

40 38.14 0.8890 40.88 0.7461

50 42.24 1.291 49.83 1.201

100 87.40 4.342 90.34 4.692

150 180.6 10.85 141.8 10.43

200 302.9 22.87 210.1 19.16

250 433.1 41.40 292.3 31.68

298.15 528.3 64.49 376.5 47.77

300 532.8 65.47 379.8 48.47

340 628.5 88.62 452.1 65.10

Cp
0

                  
perature range from 120 to 250 K, the heat capacity 
of the dimer exceeds the heat capacity of the C60 fuller-
ite by no more than 2%. At T > 250 K, the heat capaci-

ties  of both compounds almost coincide (the differ-
ence is within the limits of experimental error in the
given temperature range). No indications of any physi-
cal transformation are observed in the dependence

(T) for (C60)2.
Apart from the large numerical differences between

the heat capacities  of the studied dimer and the C60

fullerite, these compounds differ in the behavior of the
temperature dependence of the heat capacity. Evi-
dently, this is associated with the difference in the het-
erodynamics of their structures. According to the Tara-
sov theory of heat capacity of solids [26, 27], which,
like the Debye theory of heat capacity [28, 29], is a spe-
cial case of multifractal generalization of the heat

capacity theory, the heat capacity  of solids with
chain, layered, and three-dimensional structures at low
temperatures is proportional to T1, T2, and T3, respec-
tively. In the fractal theory of heat capacity [28, 29], the
exponent of T in the heat capacity function is referred
to as the fractal dimension and is denoted by D. It is of
interest to evaluate the fractal dimension of the (C60)2
crystalline dimer and to compare it with the corre-
sponding dimension of the C60 fullerite. Yakubov [28]
demonstrated that the fractal dimension D can be esti-
mated from the slope of the straight-line portions in the
experimental dependence of the heat capacity lnCv on
lnT. This particularly follows from the relationship

 (5)

Cp
0

Cp
0

Cp
0

Cp
0

Cp
0

Cv 3D D 1+( )kNγ D 1+( )ξ D 1+( ) T /Θmax( )D
,=
P

          

where N is the number of particles in the molecule, k is
the Boltzmann constant, γ(D + 1) is the gamma func-
tion, ζ(D + 1) is the Riemann ζ function, and Θmax is the
characteristic temperature. According to Iztotov et al.
[29], the fractal dimension D can vary from 1 to 4.

Without loss in accuracy, we can assume that  =

Cv at T < 50–60 K. From the dependence of ln  on
lnT for the (C60)2 dimer with the use of relationship (5),
we find that D = 1 and Θmax = 120.4 K in the tempera-
ture range 20–50 K. In this temperature range, relation-
ship (5) with the above parameters D and Θmax repro-

duces the experimental heat capacities  to within an
error of 1%. At lower temperatures, the heat capacity of
any material irrespective of its heterodynamic structure
(chain, layered, chain–layered, and other structures)
obeys the Debye law (C ~ T3).

At T < 12 K, the heat capacity  of the dimer can
be adequately described by the Debye law:

 (6)

where D0 is the Debye heat capacity function and n and
 are the fitting parameters. At n = 3 and  =

41.60 K, relationship (6) reproduces the experimental

heat capacities  in the temperature range 7–12 K to
within an error of approximately 0.6%.

At T < 50 K, the C60 fullerite has the fractal dimen-
sion D = 3, which is consistent with its three-dimen-
sional structure. For a C60 dimer characterized by the
normal intermolecular interaction at temperatures from
20 to 50 K, we obtain D = 1. Most likely, this dimension

Cp
0

Cp
0

Cp
0

Cp
0

Cp
0

nD0 ΘD0
/T( ),=

ΘD0
ΘD0

Cp
0

HYSICS OF THE SOLID STATE      Vol. 45      No. 4      2003



THERMODYNAMIC AND DILATOMETRIC PROPERTIES 807
is retained at T > 50 K. Consequently, the (C60)2 crys-
talline dimer has a chain structure.

The data obtained from the dependence (T) for
the (C60)2 crystalline dimer were used for calculating its
thermodynamic functions in the range from T  0 K
to 340 K (see table). The enthalpy H0(T) – H0(0) and the
entropy S0(T) were determined by numerical integra-

tion of the curves  = f(T) and  = f(lnT) over the
temperature. The Gibbs function G0(T) – H0(0) was cal-
culated from the values of H0(T) – H0(0) and S0(T) at the
corresponding temperatures. The procedure of calculat-
ing the functions was described, for example, in [30].

The entropy ∆rS0 of the dimerization reaction at
298.15 K,

2C60(cr)  (C60)2(cr), (7)

was calculated from the entropy of the dimer (see
table) and the entropy of the C60 initial fullerite [24].
In relationship (7), the physical (crystalline) state of the
reactants is given in parentheses. According to relation-
ship (7), we have ∆rS0 = –100 J K–1 mol–1. As could be
expected, the entropy in reaction (7) decreases, as is the
case in any association reaction. When calculating the
entropy ∆rS0 of the dimer, we assumed that S0(0) = 0.

The standard entropy ∆fS0 of the formation of the
crystalline dimer from a simple compound (graphite),

120C(gr)  (C60)2(cr) (8)

was calculated from the absolute entropies of the
graphite (gr) [31] and the dimer (see table). At
298.15 K, this entropy of formation was determined to
be ∆fS0 = 64.2 J K–1 mol–1. The relatively small change
in the entropy in the process under investigation can be
explained by the fact that both the initial carbon (graph-
ite) and the final product (the C60 fullerene dimer) are
highly ordered systems with covalent bonds.

4. CONCLUSIONS

Thus, the DS sample synthesized under compres-
sion of a C60 fullerite at a pressure of 8 GPa and a tem-
perature of 290 K was thoroughly studied using struc-
tural, thermodynamic, and dilatometric methods. The
results obtained in these investigations are in good
agreement. It was demonstrated that the dimerized
phase consists predominantly of the (C60)2 dimer with
an insignificant amount of the C60 initial fullerite.
According to different techniques, the content of the
C60 initial fullerite in the studied phase was estimated at
~3–10%.
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