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Abstract—The self-diffusion (D0) and isotope diffusion (D*) coefficients of oxygen in YBa2Cu3O6 + x are cal-
culated as functions of the temperature (600–1200 K) and the oxygen content (0 < x < 1). The Monte Carlo
simulation is performed with due regard for both the interaction of oxygen ions at lattice sites in the basal planes
of YBa2Cu3O6 + x and the interaction between a jumping ion at a saddle point and the environment. Equilibrium
thermodynamic characteristics (including the phase diagram and the heat capacity) are calculated in terms of
the Hamiltonian of interaction between oxygen ions at the lattice sites. It is found that an increase in the oxygen
content leads to a decrease in the diffusion coefficients D0 and D*, an increase in the effective activation ener-
gies for diffusion by 0.3–0.5 eV, and a decrease in the Haven ratio from 1 to ~0.5. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

A large number of theoretical and, especially, exper-
imental works have been concerned with oxygen trans-
port in YBa2Cu3O6 + x compounds (see, for example, [1,
2] and references therein). The available data on the dif-
fusion coefficients and the diffusion activation energies
agree reasonably in order of magnitude [1, 2]. A some-
what poorer agreement is achieved in the case of con-
centration dependences of the oxygen transport coeffi-
cients, which are of our prime interest in the present
work. However, if we disregard data on the diffusion
coefficients determined in a methodically incorrect way
(for example, data obtained for samples with a variable
oxygen content without inclusion or with incorrect
inclusion of the finite rate of oxygen exchange at the
oxide–gas interface, etc.), the reliably established regu-
larities in oxygen transport can be summarized as fol-
lows. (In this work, we will restrict our consideration to
the temperature range 600–1200°C and will not touch
on the diffusion anisotropy observed in the basal plane
at lower temperatures [1].) (i) An increase in the oxygen
content only slightly affects the isotope diffusion coef-
ficients D*. In particular, the diffusion coefficient D*
either remains constant to within the limits of the exper-
imental error of secondary ion mass spectrometry [1]
or, according to the results obtained by the isotopic
exchange technique with analysis of the gas phase,
somewhat decreases [3]. (ii) The chemical diffusion
coefficient increases with an increase in the oxygen
content x [2]. (iii) As follows from the internal friction
data [4], an increase in the oxygen content x results in
an increase in the diffusion activation energy, which
jumpwise changes upon the transition from a tetragonal
phase to an orthorhombic phase. These findings agree
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with each other and can be explained theoretically
when the correlations between mobile oxygen ions in
the basal plane are taken into account. The above regu-
larities can be interpreted in the framework of the
dynamic cluster approach with consistent inclusion of
the interionic interactions at lattice sites and the inter-
action between a jumping ion at a saddle point and the
environment [5]. Earlier, analogous results were
obtained by Choi et al. [6] with the use of the Kikuchi
path probability method. In [6], the authors ignored the
interaction at saddle points, which led to somewhat
poorer agreement with the experimental data. (Note
that the results obtained in [5] and [6] agree closely
with each other when the interaction at saddle points is
disregarded within the approach used in [5].)

Salomons and de Fontaine [7] carried out direct
numerical Monte Carlo simulation of oxygen diffusion
with allowance made for interionic interactions and
obtained the results inconsistent with the available
experimental data. As follows from the calculations
performed in [7], an increase in the oxygen content x
brings about an increase in the isotope diffusion coeffi-
cient by three to five orders of magnitude, a drastic
increase in the diffusion activation energy, and a
decrease in the chemical diffusion coefficient of oxy-
gen. Note that, in the high-temperature range, the
Hamiltonians used in [5–7] to describe the interaction
of oxygen ions at lattice sites differ insignificantly;
hence, their application for describing the thermody-
namic properties at these temperatures offers similar
results. Possibly, the strong dependence of the diffusion
coefficient on the oxygen stoichiometry in [7] is caused
by the use of the Metropolis scheme in the Monte Carlo
calculation. For strong correlations between mobile
003 MAIK “Nauka/Interperiodica”



 

1006

        

URITSKY, TSIDILKOVSKI

                                                                                                               
particles, the Metropolis algorithm can lead to an incor-
rect description of migration processes (see below).

In this work, the mobility µ and the isotope diffusion
coefficient D* were calculated within the schemes
allowing for the finite barrier to the jump with and with-
out inclusion of the interaction between mobile ions.
The calculations were performed with allowance made
for both the interaction of oxygen ions at lattice sites in
the basal planes of YBa2Cu3O6 + x and the interaction
between a jumping ion at a saddle point and the envi-
ronment. The diffusion coefficient D* was determined
using a standard method of calculating the root-mean-
square displacements of traced particles. In order to
evaluate the mobility µ, we calculated the steady-state
current induced in the system by an external dc electric
field. The independent calculations of the quantities D*
and µ made it possible to determine the dependence of
the Haven ratio H on the temperature and the oxygen
content. The Haven ratio—an important characteristic
of the correlated transport—is defined as H = D*/D0,
where D0 is the self-diffusion coefficient. In turn, the
self-diffusion coefficient D0 and the mobility µ are
related by the standard expression D0 = µkT/q, where
T is the temperature and q is the carrier charge.

2. MODEL

It is known that, in YBaCuO, oxygen transport
occurs in the basal planes involving the O1 and O5 oxy-
gen sites and the Cu1 copper sites and diffusion in the
perpendicular direction (i.e., along the c axis) proceeds
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Fig. 1. A schematic drawing of the basal plane. Circles and
squares correspond to the O1 and O5 oxygen sites, respec-
tively. Points indicate the Cu1 copper sites. The interaction
of oxygen ions at the lattice sites according to the model
proposed in [9] is illustrated at the top right. The interaction
constant V2 is equal to the half-sum of the constants  and

, which characterize the direct interaction and the inter-

action through an intermediate Cu ion. The interaction
between the oxygen ion located at the saddle point S (jump
from site 1 to site 2) and the environment is shown at the
bottom left. The constant γ1 in relationship (2) is defined as

γ1 = (  + )/2.
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at a considerably lower rate [1, 2]. The lattice formed
by the O1 and O5 sites is similar to a square lattice. The
interaction between oxygen ions in the basal plane is
relatively strong and brings about ordering effects (see
[6–8] and references therein). As was shown in [8], the
tetragonal (space group P4/mmm) and orthorhombic
(space group Pmmm) modifications of YBaCuO are sta-
ble at sufficiently high temperatures, which are actual
for diffusion.1 The transition from the tetragonal phase
to the orthorhombic phase is accompanied by ordering
of mobile oxygen ions in the basal plane with predom-
inant occupation of the O1 (or O5) sites. As in [5], the
interaction of oxygen ions at lattice sites in the basal
plane will be described in the framework of a model
similar to that proposed earlier in [9]. In [9], within the
Bethe–Kikuchi approximation, the pair interaction of
the O1–O5 nearest neighbors was properly taken into
account and the interaction of the next-to-nearest
neighbors (O1–O1 and O5–O5) was included in the
mean-field approximation without regard for the inter-
action anisotropy (Fig. 1).

According to [5, 9], the energy U of interaction
between the oxygen ions in the basal plane can be writ-
ten in the form

(1)

Here, ni is the occupancy of the ith site and  and

 are the sums over the nearest and next-to-nearest
site pairs (i, j), respectively. The interaction constants
are as follows: V1 = 1200 K is the energy of a nearest
neighbor pair and V2 = –580 K is the averaged energy
of the next-to-nearest neighbor interaction, which is
equal to the half-sum of the constants of the direct inter-
action and the interaction through an intermediate cop-
per ion (Fig. 1). At the sufficiently high temperatures of
interest, the approximation used is fairly adequate and
allows one to describe not only the ordering effects but
also the thermodynamics of oxidation of YBaCuO with
a high accuracy (provided the contribution of the elec-
tronic subsystem in taken into account) [9].

As in [5], the energy of interaction between a jump-
ing ion at a saddle point and the environment can be
represented in the following form:

(2)

where  and  are the sums over the occu-
pancies of lattice sites in the first and second coordina-
tion spheres, respectively. In this work, the oxygen

1 At temperatures below room temperature, the YBa2Cu3O6 + x
crystals contain superstructures with a more complex ordering in
the basal plane.
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transport coefficients are calculated using different sets
of interaction constants γ, namely, the set proposed in
[5] (according to [5], the set of constants γ close to γ1 =
V1/2.5 and γ2 = V1/1.5 permits one to describe the main
features of diffusion), the set corresponding to the
absence of interaction at the saddle point, and the set of
intermediate interaction constants.

3. COMPUTATIONAL TECHNIQUE

The Monte Carlo simulation was performed using
an N × N square lattice in the basal plane (N = 16, 32,
64) with periodic boundary conditions. The value of x
was changed from 0.02 to 1 (this corresponds to a vari-
ation in the occupancy from 1% to half the number of
lattice sites) with the step ∆x = 0.02. The temperature
was varied from 600 to 1200 K with a step of 25 K.

The simulation procedure involved the following
three stages.

At the first stage, the empty sites were filled with
particles to a specified concentration. For this purpose,
each time, one of the empty sites was chosen in a ran-
dom way and, then, a particle was placed at this site.

The generated state was not equilibrium at a non-
zero temperature. At the second stage, in order to bring
the system to the equilibrium state, we accomplished
1000–2000 initial Monte Carlo runs. Since we were not
interested in the kinetics of relaxation of the system to
the equilibrium state, the Metropolis algorithm (see the
Appendix) was used for accelerating the convergence.
The attainment of the required state can be judged from
the relaxation of the corresponding parameters. In par-
ticular, the attainment of the equilibrium state can be
judged from the behavior of the order parameter. For
the system in the equilibrium state, we calculated a
number of thermodynamic parameters, including the
phase diagram and the heat capacity.

At the last stage, when the system reached the equi-
librium state, the migration of oxygen ions was simu-
lated by the Monte Carlo method. It was essential that
the procedure allowed for the finite energy barrier to the
jump both with and without inclusion of the interaction
between mobile ions. In this case, we used a standard
scheme of the Monte Carlo run (see the Appendix).

The isotope diffusion coefficient D* was determined
from the calculated root-mean-square displacement of
an ensemble of traced particles. In the isotropic approx-
imation for the basal plane (we consider the high-tem-
perature range, see Section 2), the isotope diffusion
coefficient can be written as

Here, 〈X2〉  is the sum of the displacements squared over
all particles per particle and Nt is the number of Monte
Carlo runs. The effective activation energy was calcu-
lated using a linear-regression procedure in which the

D* X
2〈 〉 /4Nt.=
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dependence D(t) was approximated by an Arrhenius
function in the vicinity of chosen temperatures.

The mobility µ was calculated from the steady-state
current that arises in the system upon application of a
weak dc electric field E. In order to determine the
mobility, which is defined as the ratio of the total dis-
placement of all the particles toward the chosen direc-
tion to the number of particles and the number of Monte
Carlo runs, it is necessary to take into account the
change in the probability pij of jumping between the
adjacent sites i and j in the electric field; that is,

Here, pij is the probability of the jump i  j in the
absence of an electric field, a is the distance between
the ith and jth sites, and the field direction is chosen to
be parallel to the vector (Rj  – Ri).

The self-diffusion coefficient was calculated from
the standard relationship D0 = µkT/q.

The relationships for kinetic coefficients involve the
root-mean-square displacement determined by the par-
ticle displacements associated with individual ion
jumps occurring with different probabilities. The
attainment of a steady-state contribution from all the
jumping modes characterized by different probabilities
requires a certain time. The calculated diffusion coeffi-
cients on this time interval depend on the number of
Monte Carlo runs and, eventually, converge to their
limiting values. With the aim of reliably excluding this
dependence from our consideration and determining
the time-independent transport coefficients, their val-
ues were calculated every 5000 Monte Carlo runs. In
the model under consideration, the initial time it takes
for the calculated quantities to converge corresponds to
15000–20000 Monte Carlo runs.

4. RESULTS AND DISCUSSION
For temperatures T = 600–1200 K and oxygen con-

tent x = 0–1, the calculated phase diagram is in agree-
ment with the available experimental data. Figure 2
depicts the calculated curve indicating the boundary
between the ordered orthorhombic phase and the tet-
ragonal phase. The experimental data obtained by dif-
ferent authors are also presented in Fig. 2. The inset
shows the temperature dependence of the heat capacity
at x = 0.7 in the vicinity of the phase transition. It can
be seen that the transition is rather smeared in temper-
ature, which is associated with the finite sizes of the
system. As a consequence, the order parameter upon
transition to the ordered phase vanishes over a temper-
ature range. On this basis, it was assumed that the
boundary between the tetragonal phase and the orthor-
hombic phase corresponds to the order parameter in the
range 0–0.03.

The dependences of the self-diffusion and isotope
diffusion coefficients on the oxygen content at different
temperatures are plotted in Figs. 3 and 4. With an

pij
E

pij 1 qEa/2kT±( ).=
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increase in the oxygen content x, the coefficients D*
and D0 decrease by less than one order of magnitude at
high temperatures and within two orders of magnitude
at low temperatures. The calculated diffusion coeffi-
cients agree well with the results obtained by the isoto-
pic exchange technique with analysis of the gas phase
[3] (Fig. 3). Agreement with the secondary ion mass
spectrometric data is poorer (see [1, 2] and references
therein). The diffusion coefficients D* determined by
the latter method for several values of x do not depend
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Fig. 2. Phase diagram of YBa2Cu3O6 + x (0 < x < 1) in the
temperature range 600–1200 K. Symbols are experimental
data taken from (1) [10], (2) [11], (3) [12], (4) [13], (5) [14],
(6) [15], and (7) [16]. The inset shows the calculated tem-
perature dependence of the heat capacity cv  in the vicinity
of the phase transition.
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Fig. 3. Dependences of the isotope diffusion coefficient
D*(x) [normalized to D*(x  0)] on the oxygen content
at temperatures T = 600°C (triangles) and 800°C (rhom-
buses). Triangles and rhombuses correspond to the calcu-
lated dependences D*(x)/D*(x  0) in the case when the
interaction at the saddle point is characterized by the con-
stants γ taken from [5]: γ1 = V1/2.5 and γ2 = V1/1.5 (where
V1 is the energy of the interaction between the nearest
neighbors). The solid line shows the dependence
D*(x)/D*(x  0) calculated for the halved constants γ at
T = 600°C. The dashed line represents the same dependence
calculated in the absence of the interaction at the saddle
point (T = 600°C). Crosses are the experimental data
obtained in [3] according to the isotopic exchange tech-
nique with analysis of the gas phase (T = 600°C).
P

on the oxygen content. However, the discrepancy
between the experimental and theoretical data becomes
insignificant in the case when not only the experimental
error of the method itself but also the error in the deter-
mination of the diffusion coefficient D* from the exper-
imental data obtained by this method for a finite rate of
oxygen exchange at the oxide–gas interface are taken
into account.

Figure 5 shows the calculated dependences of the
Haven ratio H = D*/D0 on the oxygen content at differ-
ent temperatures. For low oxygen contents x, when the
contribution of the correlations between mobile parti-
cles can be ignored, the diffusion coefficients D* and
D0, as expected, coincide with each other. As the oxy-
gen content x increases, the contribution of the correla-
tions increases and the Haven ratio H decreases. An
increase in the temperature leads to an increase in the
mobility of the environment of a diffusing ion and an
increase in the Haven ratio H.

The calculated dependences of the effective activa-
tion energies Ueff for diffusion and self-diffusion on the
oxygen content in YBa2Cu3O6 + x are shown in Figs. 6
and 7. The activation energies Ueff were determined
from the diffusion coefficients D*(x) and D0(x) normal-
ized to D*(0) and D0(0) (numerically calculated for dif-
fusion of one particle), respectively. Therefore, the
effective activation energy Ueff is reckoned from the
activation energy in the absence of correlations, i.e.,
from the energy barrier for one particle in the lattice.

As can be seen from the theoretical dependences, an
increase in the oxygen content x leads to an increase in
the effective activation energy Ueff, which changes pre-
dominantly in the range of existence of the orthorhom-
bic phase. The total change over the entire range of oxy-
gen concentrations does not exceed ~0.5 eV. The
dependences of the activation energy Ueff at the phase
transition points do not exhibit features (which can
occur and are revealed in terms of the analytical theory
[5]). This can easily be explained by both the aforemen-
tioned smearing of the transition in the framework of
the Monte Carlo method and the fact that the activation
energy Ueff is determined from the derivative of the
smoothed dependences of the diffusion coefficients.

The calculated gain in the effective activation
energy Ueff is in agreement with the experimental data
obtained by the internal friction method [4, 17, 18].
Indeed, according to Bonetti et al. [17], the difference
between the activation energies Uact in the orthorhom-
bic and tetragonal phases is approximately equal to
0.24 eV. Moreover, Schaller et al. [18] determined that
the activation energy Uact changes by ~0.2 eV when the
oxygen content x decreases from approximately unity
to x ~ 0.5–0.6.

It seems likely that sufficiently reliable data were
obtained by Xie et al. [4]. In [4], the experiments were
carried using frozen samples (annealed at different tem-
peratures) with a constant stoichiometry. According to
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003



MOBILITY AND DIFFUSION OF OXYGEN ISOTOPES 1009
[4], the stoichiometry-independent portion of the acti-
vation energy for relaxation is equal to 1.03 eV, which
virtually coincides with the universally accepted trans-
fer activation energy [1, 2]. The experimental activation
energies Uact determined in [4] are presented in Fig. 7.
It can be seen that these energies agree well with the
results of our calculations.

Finally, we dwell on the problem regarding the fac-
tors responsible for the physical-time interval equal to
one time step of a stochastic procedure in different
Monte Carlo schemes. This problem is of fundamental
importance, because the time intervals involved in cal-
culations of kinetic coefficients are measured in terms
of Monte Carlo time steps. The physical-time interval
can be related to the mean frequency of occurrence of a
random event, i.e., a jump of a particle over a barrier at
a given temperature. Within the Metropolis algorithm,
the barrier heights determining the jump probability are
specified in an artificial way (see the Appendix). In gen-
eral, this should not lead to an adequate description of
the dynamics in the presence of interaction; the same is
also true for the model proposed in [7]. In this case, the
Monte Carlo time step has no physical meaning. For
example, all transitions proceeding with a decrease in
the energy are characterized by the same probability
and, correspondingly, by the same barrier height. It
should be noted that the calculated kinetic coefficients
depend on the interaction parameters and, hence, on the
height of local interstitial barriers (Figs. 3, 4). In our
algorithm, the jump probabilities are directly deter-
mined by the interaction parameters. Therefore, the
Monte Carlo time step has a specific physical meaning.
According to the proposed model, for a jumping ion at
a specified temperature and specified interaction
parameters there is a finite set of possible energy barri-
ers. Let us now choose the time scale so that the mean
frequency of occurrence of an event, namely, the jump
of an ion over the lowest barrier, per unit time (or the
probability of this event in a chosen unit time) is equal
to unity; that is,

(3)

Here, ν is the preexponential factor (having the fre-
quency dimension) in the activation jump probability
and ω is the same preexponential factor expressed in
terms of the Monte Carlo time steps τMC. In order to
determine the relative probabilities of events required
for generating the discrete step Monte Carlo run (see
the Appendix), the probabilities of jumps over other
barriers must be normalized to probability (3). Note
that the relative frequencies of occurrence of events
remain unchanged and the Monte Carlo time step is
equal to the mean (and most probable) expectation time
for the particle jump over the barrier Emin at the temper-
ature T: τMC = 1/[νexp(Emin/kT)].

pij
max

 = ω Emin/kT–( )exp

=  ντMC Emin/kT–( )exp 1.=
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The transition probabilities chosen above for the
simulation of a random process in the framework of the
Monte Carlo method correspond to the transition prob-
abilities in the exact master equation, which describes
the change in the distribution of particles over sites due
to single jumps [5]. This choice seems to be reasonable.
Furthermore, we believe that the displacement distribu-
tion function will be similar to the solution of the exact
master equation, all other factors being the same.

5. CONCLUSIONS

Thus, the results obtained have demonstrated that
consistent inclusion of the correlations between oxygen
ions in the basal plane makes it possible to describe the
thermodynamic properties in the framework of the
Monte Carlo method and to achieve reasonable agree-
ment with experimental data on the oxygen diffusion in
YBaCuO. According to [5], correct description of the
oxygen diffusion in this compound requires inclusion
of both the interaction of mobile ions at the lattice sites
and the interaction between the jumping ion at the sad-
dle point and the environment. The proper choice of the
computational scheme is essential for the Monte Carlo
simulation of the correlated transport. In our opinion,
the results of our theoretical calculations are in better
agreement with the experimental and analytical data (as
compared to the results obtained in [7]) owing to the
choice of the more appropriate algorithm, which
accounts for the finite barrier to jumps in the lattice
without an interaction between mobile particles.
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APPENDIX

The Monte Carlo algorithm used in this work is as
follows.

(1) A particle is randomly chosen from the set of
particles.

(2) One of the four directions of the possible ion
jump into the nearest site is chosen in a random manner.

(3) The probability of a randomly chosen particle
jumping from the ith site into the jth site chosen at the
preceding step is represented as

where nj is the occupancy of the jth site and depends
on the procedure used for describing the dynamics in
the Monte Carlo simulation.

In the Metropolis algorithm, we assume that

where ω is an arbitrary coefficient that does not affect
the balance. As a rule, it is assumed that ω = 1.

In the method allowing for the actual energy barrier

at the saddle point, the probability  (  ≤ 1) is given
by an appropriate relationship for describing the jump
dynamics; that is,

Here, ω has a specific physical meaning; more pre-
cisely, it is the frequency normalizing the Monte Carlo
time step (see Section 4).

(4) Steps (1)–(3) are repeated Np times, where Np is
the number of particles in the lattice. At this point, the
Monte Carlo run is considered complete and the time is
shifted by one Monte Carlo time step.
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Abstract—Experimental data on the superconductivity of In-doped PbzSn1 – zTe alloys (z = 0.2) are discussed.
The superconducting transition was detected from simultaneous measurements of the resistivity and magnetic
susceptibility of a series of samples with different indium contents (2–12 mol % InTe). The superconducting
transition detected by the magnetic susceptibility was observed at a temperature which was, on the average,
0.1 K below that determined from the resistivity. The increase in the superconducting transition temperature Tc
with increasing indium content is of a threshold character, with Tc being proportional to the inverse electronic
density of states at the Fermi level. The observed features in the experimental data are accounted for in terms
of indium impurity resonance states in the material. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The In-doped PbSnTe solid solutions studied in this
work, as well as the nontraditional superconducting
materials currently enjoying widespread interest, such
as HTSC compounds [1], heavy-fermion superconduc-
tors [2], in which the effective carrier mass may be on
the order of 100 free-electron masses, and MgB2 inter-
metallic compounds [3], belong to a new class of super-
conducting materials. These materials are IV–VI semi-
conductors doped by Group III elements (In, Tl). They
exhibit unusual physical properties due to the reso-
nance states these impurities have in the valence band
[4, 5].

The interest in In-doped IV–VI semiconductors is
spurred by the unique properties of the In impurity,
which include a high solubility (up to 20 at. %) and a
small radius of electronic states. The indium impurity
states are localized within one to two unit cells (6 Å [6])
and lie, in most solid solutions, in the allowed energy
bands of electronic states because of the small band
gap. In particular, the In energy level position in
PbzSn1 – zTe : In solid solutions varies with matrix com-
position. In PbzSn1 – zTe : In alloys (z < 0.72), the In res-
onance level lies in the valence band. The existence of
resonance states becomes most clearly manifest in the
Fermi level pinning (stabilization) and resonance scat-
tering of holes with energies falling in the impurity
band. Fermi level pinning brings about a high spatial
electric homogeneity of IV–VI compounds, a feature of
particular practical importance for this class of materi-
als, which are characterized by considerable deviations
1063-7834/03/4506- $24.00 © 21012
from stoichiometry (the deviations may be as high as
0.1 at. % or greater).

Interest in these compounds additionally stems from
their superconducting properties, with the critical tem-
perature Tc (up to the helium temperatures [4, 5, 7])
being fairly high for semiconductors.

This communication reports on simultaneous mea-
surements of the magnetic susceptibility and electrical
conductivity of (Pb0.2Sn0.8)1 – xInxTe with the indium
content varied from 2 to 20 mol % InTe. The earlier
studied [5, 8] PbzSn1 – zTe system with 16 at. % indium
and variable z showed a superconducting transition to
occur in the resistivity, but no magnetic susceptibility
measurements were carried out in support of this obser-
vation.

2. EXPERIMENT

All measurements were conducted on polycrystal-
line samples with an average grain size of the order of
200 µm. The samples were prepared by powder metal-
lurgy and annealed at 650°C for 100 h. The samples
were no more than 2 cm in length, with a cross section
no greater than 5 mm2 and a weight of ~1 g.

The ac magnetic susceptibility and resistivity mea-
surements were performed simultaneously. The mag-
netic susceptibility was measured using inductance
coils (of a geometry similar to that described by Max-
well [9]) along with a lock-in detector and a digital
multifunctional generator. Digital control made it pos-
sible to maintain the excitation frequency at a level
003 MAIK “Nauka/Interperiodica”
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from a few hertz to a few kilohertz. The magnetic sus-
ceptibility was measured at 208 Hz to avoid interfer-
ence from the main carrier harmonics. The inductance
coils were wound around a thin-walled glass Dewar
flask immersed in liquid 4He. The sample temperature
was varied from 1.3 to 300 K and measured with a cal-
ibrated silicon diode or was determined from the 4He
vapor pressure.

To measure the electrical resistivity, four contacts
were pasted on the samples with silver-loaded epoxy
resin, which showed good characteristics under
repeated cooling of the samples to helium tempera-
tures. The ac and dc resistivity measurements were con-
ducted at 100 µA and 10 mA, respectively. The ac mea-
surements were performed at a frequency of 500 Hz.
Thermoelectric effects at the contacts and the possible
temperature gradient along the sample were disre-
garded, although measures were taken to reduce their
influence to a minimum.

The sample housed in the thin-walled Dewar flask
was cooled to a temperature T ~ 80 K, during which
time the resistivity measurements were performed. The
experimental data were recorded with a LabView
16-channel information retrieval package. Next, liquid
helium was pumped into the cryostat to cool the sole-
noid coils. After the solenoid coils had been immersed
fully in liquid helium, they were calibrated, without
interrupting parallel resistivity measurements. This was
followed by radiative cooling of the inner Dewar flask
containing the sample to T ~ 5 K. Next, liquid helium
was fed through a capillary into the flask containing the
sample, from which it was subsequently pumped out to
lower the temperature still further. To make an increase
in temperature possible, a heater was double-wound on
the boron nitride sample holder.

The superconducting transition was detected from a
jump in resistivity under variation of the temperature
and of the external magnetic field, as well as from mag-
netic measurements. The electronic density of states at
the Fermi level g(εF) was estimated from data on the
second critical field Hc2 measured near the supercon-
ducting transition temperature Tc. We have, for the two
spin orientations [10],

(1)

where ρ is the electrical resistivity in the normal state
near the phase transition point to the superconducting
state.

3. EXPERIMENTAL RESULTS
Figure 1 displays the temperature dependence of

electrical resistivity normalized to its 300-K value (see
table), which was measured for (Pb0.2Sn0.8)1 – xInxTe
samples with different indium contents. As the temper-
ature is lowered, the resistivity ρ(T) of all samples is
seen to undergo a decrease followed by a rise. The tem-

g εF( ) 5.68 10
141

ρ
---

∂Hc2

∂T
------------

T Tc→
,×=
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perature at which the resistivity reaches a minimum
depends on the In content in the sample and reveals a
general trend toward a decrease with increasing indium
concentration NIn. Note the relatively high values of
ρ(T) of the samples, of the order of a few mΩ cm,
which are in accord with the concept of resonance scat-
tering of holes into the In impurity band [11].

Figure 2 shows the temperature behavior of the elec-
trical resistivity and magnetic susceptibility of a sample
with 8 at. % In in the neighborhood of the supercon-
ducting transition. The electrical resistivity is normal-
ized against its value at 4.2 K and translated by an arbi-
trary constant to make it more revealing. The magnetic
susceptibility was also normalized against the magni-
tude of its jump at the superconducting transition.

The superconducting transition is seen clearly in the
resistance, with the resistivity dropping by approxi-
mately four orders of magnitude. The transition width

1.0

0.9

0.8

0.7

0.6

ρ/ρ300 K

0 100 200 300
T, K

1
2
3

5
4

Fig. 1. Temperature dependences of the electrical resistivity
of (Pb0.2Sn0.8)1 – xInxTe (x = 0.02–0.12) normalized against
its value at 300 K. The values of the electrical resistivity at
300 K are listed in the table. The values of x are (1) 2, (2) 3,
(3) 5, (4) 8, and (5) 12.

Superconducting transition temperature derived from data on
the electrical resistivity (Tc[ρ(T)]) and magnetic susceptibility
(Tc[χ(T)]), electronic density of states at the Fermi level
g(εF), and electrical resistivity of samples with different
indium contents (ρ300, T = 300 K)

In, at. % Tc, K 
[χ(T)]

Tc, K 
[ρ(T)]

g(εF), 1021 
eV–1 cm–3

ρ300,
mΩ cm

2 1.50 1.67 0.973 1.79

3 2.24 2.37 3.05 2.17

5 2.80 2.85 4.68 1.35

8 2.95 3.05 8.51 1.11

12 2.95 2.98 10.3 0.714
3
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∆T (measured between 0.9ρN and 0.1ρN, where ρN is the
normal-state resistivity near the superconducting tran-
sition) is less than 0.05 K.

The superconducting transition was detected simul-
taneously from the temperature dependence of the
magnetic susceptibility χ(T); as is evident from Fig. 2,
the ρ(T) and χ(T) dependences obviously correlate in
the vicinity of the superconducting transition. The tran-
sition seen in magnetic susceptibility is slightly more
diffuse in temperature in all samples than the transition
detected from ρ(T), the width of the resistive transition
varying from one sample to another. The superconduct-

–1.0

ρ, χ, arb. units

2.0 2.5 3.0 3.5
T, K

1

2

3

–0.5

0

0.5

1.0

4.0 4.5

Fig. 2. (1) Electrical resistivity χ and (2) real χ' and
(3) imaginary χ" magnetic susceptibilities plotted vs. tem-
perature in the neighborhood of the superconducting transi-
tion in the (Pb0.2Sn0.8)0.92In0.08Te sample. The electrical
resistivity is normalized against its value at T = 4.2 K and
translated by an arbitrary constant to make the plot more
revealing. The magnetic susceptibility is normalized to the
magnitude of its jump at the superconducting transition.

1.5

2

2.0

2.5

3.0

4 6 8 10 12

3

6

9

0

1

2

3

NIn, at. %

T c
, K

N
(0

),
 1

0
21

 e
V

–
1 

cm
–

3

Fig. 3. Dependence of the superconducting transition tem-
perature in (Pb0.2Sn0.8)1 – xInxTe derived from the tempera-
ture dependences of the (1) resistivity, (2) magnetic suscep-
tibility, and (3) electronic density of states at the Fermi level
on indium content x.
P

ing transition temperature detected from the resistivity
(at 0.5ρN) is higher (by 0.1–0.2 K) than Tc derived from
the magnetic susceptibility. Note that this difference in
the values of Tc is of about the same order of magnitude
as the width of the superconducting transition deter-
mined from ρ(T) (see table).

Figure 3 displays the data on Tc derived from ρ(T)
and χ(T) and plotted vs. indium content, as well as the
electronic density of states g(εF). We readily see that the
transition temperature first grows strongly with the
indium content increasing to 5 at. % and then its growth
becomes smoother. Thus, the observed Tc(NIn) relation
is clearly of a threshold character. We also note that the
value of Tc correlates with the density of states at the
Fermi level in the normal state, g(εF).

4. DISCUSSION OF THE RESULTS

First, we note that the superconducting transition
(Fig. 2) was detected not only from the drop in resistiv-
ity (with conduction being possible over grain bound-
aries and polycrystal surfaces) but also from the sharp
jump in the magnetic susceptibility, i.e., by the Meiss-
ner effect [12]). In addition to available data on the spe-
cific heat in similar systems [13]), these results indicate
a volume character of the superconductivity in the class
of materials under study. Note also that the supercon-
ducting transition temperature in (Pb0.2Sn0.8)1 – xInxTe is
higher by at least an order of magnitude than that in
PbzSn1 – zTe (z = 0.2) samples [14] because of the exist-
ence of In resonance states.

The position of the Fermi level relative to the energy
bands and the impurity band plays an important part in
these systems [4, 5]. Indium atoms produce a resonance
impurity band in the (PbzSn1 – z)1 – xInxTe solid solu-
tions; this band is approximately 0.1–0.2 eV below the
top of the valence L band [11] (the main conduction and
valence band extrema of cubic IV–VI compounds are
located at the L points of the Brillouin zone). The effect
of the band structure and filling factor k (i.e., the ratio
of the number of resonance states filled by electrons to
their total number, assuming there to be two states per
impurity atom [14]) on the superconducting parameters
has been discussed on several occasions in the literature
[4, 5]. We may add that superconductivity at tempera-
tures T > 0.4 K was found to occur only in samples with
the Fermi level lying within the resonance state band.

Figure 3 plots the dependence of the superconduct-
ing transition temperature Tc on indium content in the
system under study. In contrast to the weak and practi-
cally linear growth of Tc (up to 0.3 K) with increasing
hole concentration p in PbzSn1 – zTe without indium (as
described quantitatively by Cohen [10] in terms of the
Bardeen–Cooper–Schrieffer theory), the In-doped
material exhibits relatively high Tc temperatures at a
lower hole concentration (p ~ 1020 cm–3) and, in addi-
tion, a distinct threshold character of the Tc(NIn) depen-
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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dence. This Tc(NIn) dependence in (PbzSn1 – z)1 – xInxTe
finds natural explanation within the concept of In impu-
rity resonance states and is due to the Fermi level enter-
ing the In band with an increase in hole concentration.

Indeed, as the indium content in the samples
increases, the partly filled impurity states can accom-
modate more electrons from the higher lying electron
states in the valence band (on the electron energy
scale). This will bring about an increase in the density
of In impurity states. As the indium content in the alloy
continues to grow, the Fermi level is pinned and the
increase in the hole concentration in the valence band
slows down. The slight growth in the hole concentra-
tion and in Tc (Fig. 4) is associated, however, with the
In band shifting into the valence band with increasing

1 × 1022

50
NIn, at. %

P300 K, cm–3

1 × 1021

1 × 1020

10 15 20

Fig. 4. Hole concentration at the Fermi level (T = 300 K)
plotted vs. indium content in (Pb0.2Sn0.8)1 – xInxTe. The
data for x = 0.16 and 0.20 were taken from [5].

0.4

0.40 0.8 1.2

0.5

0.3

0.2

lnTc, K

1/g(εF), 10–21 eV cm3

Fig. 5. Correlation between the logarithm of the supercon-
ducting transition temperature in the (Pb0.2Sn0.8)1 – xInxTe
samples and the reverse electronic density of states at the
Fermi level 1/g(εF). Dashed line is the least squares fit to the
experimental data.
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NIn [5]. The impurity band filling factor k remains
nearly constant (if one disregards the variation of point
defect concentration in the matrix), and the Tc(NIn)
dependence saturates.

Note also that the data on Tc and on the electronic
density of states at the Fermi level g(εF) are correlated
(the straight line in Fig. 5 is the least squares fit to the
experimental data), which should be expected from
BCS theory. It is therefore possible that a modified BCS
model (to include resonance states) would be applica-
ble to describing the main features of the superconduct-
ing transition in the class of semiconductors–supercon-
ductors with deep resonance impurity states, to which
the indium-doped PbzSn1 – zTe belongs.

5. CONCLUSIONS

In summary, we have experimentally studied the
superconducting transition in indium-doped PbzSn1 – zTe
by using both electrical resistivity and magnetic sus-
ceptibility. Both physical quantities undergo a jump at
the superconducting transition, but at slightly different
temperatures. The transition temperature increases with
increasing indium content, and this dependence is of a
threshold character. There is a correlation between the
superconducting transition temperature and the elec-
tronic density of states at the Fermi level. The above-
mentioned relations support the resonance character of
the superconductivity and indicate that the key role is
played by impurity states in physical phenomena
observed to occur in the class of materials under study.
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Abstract—A simple, exactly solvable model of a pseudogap state induced by fluctuations of dielectric short-
range order is used to study the peculiarities of the electronic spectral density and density of states of a super-
conductor in the model of the Fermi surface with hot patches. The problem is considered for arbitrary values of
the short-range order correlation length ξcorr. It is shown that the absence of self-averaging of the superconduct-
ing order parameter over the random field of dielectric fluctuations causes the spectral density and density
of states to change significantly. The superconducting character of these quantities persists in a wide tempera-
ture range above the temperature Tc of the superconducting transition, which is uniform over the whole sample.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The pseudogap state [1, 2] observed in a wide region
of the phase diagram of HTSC cuprates gives rise to a
number of anomalous properties of these materials in
both the normal and superconducting states. There are
two plausible explanations for these anomalies. One of
them is based on the assumption that Cooper pairs form
above the superconducting transition temperature [3].
The other explanation (more preferable, in our opinion)
assumes that the pseudogap state is due to strong scat-
tering of the charge carriers on well-developed fluctua-
tions of short-range order of dielectric type (antiferro-
magnetic ordering or charge-density waves) [2]. This
scattering leads to electronic-spectrum rearrangement
of a “non-Fermi-liquid” type in certain regions of the
momentum space in the vicinity of the Fermi surface,
more specifically, near the so-called hot points or hot
(flat) patches on this surface [2].

Most relevant theoretical papers have been focused
on the influence of the pseudogap on the properties of
the system in the normal state, whereas the supercon-
ductivity in the pseudogap state has been considered
only in a few works [4–7]. In particular, superconduc-
tivity was studied in [5] in a simple, exactly solvable
model of the pseudogap state based on the model of the
Fermi surface of a two-dimensional system with hot
patches [4]. In this case, the exact solution for the
pseudogap, which had been obtained earlier [8] for the
one-dimensional case, was used in the limit of very
large values of the correlation length of fluctuations of
dielectric short-range order. The use of the exactly solv-
able model of the pseudogap proposed by Bartosch and
Kopietz [9] made it possible to generalize the results
obtained in [5] to arbitrary values of the correlation
1063-7834/03/4506- $24.00 © 21017
length [7]. It was shown in those papers that the super-
conducting gap averaged over short-range order fluctu-
ations is generally nonzero even in a range of tempera-
tures exceeding the mean-field superconducting transi-
tion temperature Tc, which corresponds to the
appearance of the superconducting state that is uniform
over the sample [5]. These results made it possible to
conclude that superconducting droplets appear in the
system at T > Tc [5, 7]. In [5], this effect was attributed
to the absence of self-averaging of the superconducting
order parameter (gap width) in the case where the cor-
relation length ξcorr of fluctuations of short-range order
is larger than the coherence length ξ0 of superconduc-
tivity (the size of Cooper pairs). However, it was shown
in [7] that total self-averaging of the superconducting
gap is also absent in the case of ξcorr < ξ0 [7], which is
inconsistent with the predictions of the standard
approach [2, 6].

The absence of self-averaging, which brings about
the appearance of strong fluctuations of the gap, can
significantly change the physical properties of the
superconducting material. In particular, the supercon-
ductivity can also manifest itself at temperatures above
Tc, for example, in the spectral density and density of
states in the limit of extremely large values of the cor-
relation length of the dielectric short-range order [5].
Anomalies in the behavior of the spectral density and
density of states in the superconducting phase have
been observed experimentally [1, 2].

The aim of the present paper is to study the behavior
of the spectral density and density of states of a super-
conductor with due regard for the absence of self-aver-
aging of the superconducting gap in the framework of
003 MAIK “Nauka/Interperiodica”
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the aforementioned simple model of the pseudogap
state developed in [7] for describing superconductivity.

2. SIMPLE MODEL OF THE PSEUDOGAP STATE

Let us consider the one-dimensional motion of an
electron in a periodic field:

(1)

where Q = 2pF – k, pF is the Fermi momentum, and
k ! pF is a deviation from the selected scattering vector
2pF, implying incommensurability of the correspond-
ing fluctuations. In the vicinity of the Fermi level, the
electronic spectrum is chosen in the linearized form

(2)

where η = vFk (vF is the Fermi velocity) is a variable,
and this variable is widely used in what follows.

In the two-wave approximation of the ordinary band
theory, the one-electron Green’s functions (both diago-
nal ones corresponding to the transitions p  p and
p – Q  p – Q and nondiagonal ones corresponding
to the umklapp processes p  p – Q and p – Q  p)
actually form a matrix and have the following form in
the Matsubara representation:

(3)

In what follows, we consider a rather specific model
of disorder [9] in which the deviation vector k is sup-
posed to be a random variable, with the distribution
function determined by the Lorentzian1 

(4)

the corresponding distribution for the variable η is

(5)

1 Actually, we consider a model of phase fluctuations of the field
described by Eq. (1).

V x( ) 2D Qx φ+( ),cos=
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3η η( ) 1
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v Fκ
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v Fκ( )2

+
-----------------------------,=
P

where κ ≡ . The phase φ in Eq. (1) is also supposed
to be randomly and uniformly distributed over the
range from 0 to 2π:

(6)

Both the phase and the amplitude D of the field
described by Eq. (1) can fluctuate. The amplitude is
assumed to be distributed following a Rayleigh distri-
bution [8–10]:

(7)

where W determines the width of the energy
pseudogap.

If the field described by Eq. (1) is produced by fluc-
tuations of a dielectric order parameter (for example, a
parameter characterizing a charge-density wave or anti-
ferromagnetic ordering), then the distribution given by
Eq. (7) will describe Gaussian fluctuations of this
parameter at sufficiently high temperatures [8, 11, 12].
When the temperature becomes smaller than some
characteristic temperature, amplitude fluctuations are
“frozen out” even before the onset of long-range order
(see [3, 13]) and it can be supposed that D = W, whereas
phase fluctuations exist down to extremely low temper-
atures. For this reason, we consider two regimes of
dielectric fluctuations in what follows: the high-tem-
perature regime, in which both the amplitude and phase
fluctuate, and the low-temperature regime, in which
amplitude fluctuations are frozen out.

In the low-temperature regime of fluctuations, the
Fourier transform of the correlation function of fields (1)
at different points 〈V(x)V(x')〉 is a Lorenzian determin-
ing the effective interaction of an electron with short-
range order fluctuations [2]:

(8)

Inclusion of amplitude fluctuations in the high-temper-
ature regime results in the substitution of W for D in
Eq. (8). The random field with such a correlation func-
tion has been considered in a number of papers [8, 10–
12, 14] focused on the dielectric pseudogap. However,
this field was supposed to be Gaussian in those papers,
whereas the random field V(x) considered in this paper
is, in general, non-Gaussian [9].
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SPECTRAL DENSITY AND DENSITY OF STATES IN A SUPERCONDUCTOR 1019
In this model [7, 9], the Green’s function is deter-
mined by averaging g11 over distributions (4) and (6) in
the low-temperature regime of fluctuations,

(9)

and by additional averaging over the amplitude with
distribution (7) in the high-temperature regime,

(10)

In the limit of large values of the correlation length of
fluctuations of the field in Eq. (1), i.e., for ξcorr  ∞
(κ  0), the solution given by Eq. (10) coincides with
that found in [8] for a Gaussian random field. It has
been shown [9, 12] that the density of states corre-
sponding to the Green’s function (10) contains a char-
acteristic smeared pseudogap in the vicinity of the
Fermi level and that the values of the density of states
are close to those found in [10] (see [9, 12, 15]; for the
incommensurate case, this is the case for virtually any
energy), as well as to the results of exact numerical cal-
culations for a Gaussian random field [16–18].

A generalization to the two-dimensional electron
system typical of HTSC cuprates can be made in the
model of the Fermi surface with hot patches proposed
in [4–6]. In this case, it is assumed that there are two
independent systems of fluctuations of type (1) in the
system which are oriented along orthogonal axes x and
y and strongly interact only with the electrons corre-
sponding to the flat (hot) patches of the two-dimen-
sional Fermi surface that are orthogonal to these axes.
In addition, the two-dimensional potential in which the
electrons move is supposed to be factorized with
respect to these directions: V(x, y) = V(x)V(y) [4–6]. In
this model, different characteristics determined by inte-
grals over the Fermi surface consist of additive contri-
butions from the hot and cold parts. The pseudogap-
type rearrangement of the electronic spectrum occurs
only on the hot patches, whose relative fraction on the
Fermi surface is α, whereas on the cold sections, whose
relative fraction is 1 – α, the Fermi-liquid behavior per-
sists [2].

This picture is in qualitative agreement with the
results of numerous ARPES experiments on under-
doped HTSC cuprates [1, 2], which indicate that
pseudogap anomalies occur in the vicinity of the (0, π)
point of the Brillouin zone and vanish as we go to its
diagonal. The presence of the flat parts on the Fermi
surface of HTSC cuprates has also been reliably estab-
lished in ARPES experiments by several independent
groups of researchers [2].

G iεn p,( )
iεn ξ p iv Fκ+ +

iεn ξ p–( ) iεn ξP iv Fκ+ +( ) D
2

–
-----------------------------------------------------------------------------,=

G iεn p,( ) D3D D( )d

0

∞

∫=

×
iεn ξ p iv Fκ+ +

iεn ξ p–( ) iεn ξP iv Fκ+ +( ) D
2

–
-----------------------------------------------------------------------------.
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3. SUPERCONDUCTIVITY
IN THE PSEUDOGAP STATE

In the model of the pseudogap state, superconduc-
tivity was studied in [7]. Hereafter, we follow the
approach used in that work. To consider superconduc-
tivity in the system with a pseudogap due to fluctua-
tions of dielectric short-range order, we use the sim-
plest BCS approximation. As usual, the BCS interac-
tion is assumed to be characterized by the constant V in
an energy interval 2ωc wide in the vicinity of the Fermi
level (ωc is the characteristic frequency of photons
responsible for the attraction between the electrons).
Following the approach used in [7], we consider the s-
electron pairing only. There are no serious difficulties
in the analysis of the d-electron pairing typical of
HTSC cuprates; however, the angle dependence
(anisotropy) of the superconducting gap [4, 5] results in
additional integration, which significantly increases the
time of numerical computation, leaving the basic qual-
itative results unchanged.

On the cold sections of the Fermi surface, supercon-
ductivity is described by the standard equations of the
BCS theory. On the basis of the Green’s functions for
the normal state given by Eq. (3), a set of Gor’kov equa-
tions was found in [7] for the hot patches and the nor-
mal and anomalous Green’s functions were derived for
the specific random field of Eq. (1) (i.e., for certain val-
ues of η and D):

(11)

where

The superconducting gap is determined in the regular
way as

(12)

From Eqs. (11) and (12), we obtain an equation for
the superconducting gap ∆(η, D) at fixed values of η
and D [7]:

(13)
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where the first term corresponds to the contribution
from the hot patches, whose relative fraction is α:

(14)

The second term in Eq. (13) gives the standard BCS
contribution from the cold sections, whose fraction on
the Fermi surface is 1 – α; λ = N0(0)V is the dimension-
less constant of the pairing interaction (N0(0) is the
free-electron density of states at the Fermi level); and

 = .

The numerical ∆(η, D) dependence, which was
found in the explicit form [7], makes it possible to find
the superconducting gap 〈∆〉  averaged over distribu-
tions (5) and, for high-temperature fluctuations, (7)
without the standard assumption about self-averaging
of the superconducting order parameter.

In most papers on superconductivity in disordered
systems, the self-averaging of the superconducting
order parameter is assumed; that is, the superconduct-
ing gap ∆ is supposed to be virtually equal to the mean-
field gap ∆mf, which is independent of the random char-
acteristics of the field (η and D in our model). In this
case, ∆mf is determined by the equation2 

(15)

Here, the angle brackets denote averaging over η and D
(in the high-temperature regime) with the distributions
given by Eqs. (5) and (7), and the superconducting gap
∆ in Eq. (11) for F+(εn, p) is considered equal to ∆mf.
The equations for ∆mf are presented in [7] for both fluc-
tuation regimes within the model of the pseudogap state
in question. It is also shown in [7] that the supercon-
ducting gap 〈∆〉  averaged over short-range order fluctu-
ations can significantly differ from the mean-field gap
∆mf. In particular, 〈∆〉  is nonzero above the mean-field
superconducting transition temperature Tc, correspond-

2  It should be emphasized that we consider the mean-field approx-
imation with respect to the averaging over fluctuations of the ran-
dom field. The mean-field approximation in the ordinary thermo-
dynamical sense is used in all equations, which is implied in the
framework of the BCS theory.
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P

ing (according to the assumption made in [5, 7]) to the
onset of a superconducting state that is uniform over the
whole sample. At temperatures T > Tc, the supercon-
ducting phase is likely to be in the form of isolated
regions (droplets), which appear due to random fluctu-
ations of the local electronic density of states.

As shown below, the absence of self-averaging of
the superconducting order parameter significantly
affects the electronic spectral density and the tunneling
density of states in the superconducting phase [5].

4. SPECTRAL DENSITY AND DENSITY
OF STATES

The spectral density is determined in the regular
way as

(16)

In Eq. (11) for the normal Green’s function, we substi-
tute real frequencies for the Matsubara frequencies:
iεn  E + iδ. In this case, the spectral density in the
vicinity of the hot parts of the Fermi surface corre-
sponding to specific realizations of η and D is

(17)

In the low-temperature regime of the dielectric fluc-
tuations, the amplitude of the dielectric gap is frozen
out and only the phase η fluctuates; averaging over
these fluctuations should be performed using the distri-
bution given by Eq. (5). The averaged spectral density
on the Fermi surface (ξp = 0) is

(18)

(19)

It should be taken into account that the supercon-
ducting gap appearing in Eq. (18) also fluctuates; i.e., it
depends on η and D. The ∆(η, D) dependence is deter-
mined from Eq. (13) numerically. It turns out that f+ is

minimal for η = 0 ( f+ = ) and increases
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with η > 0. The value of f– decreases with increasing η
in both cases of η ! D and η @ D, but it can have a
local maximum fmax at a value of η close to 2D and cor-
responding to the maximum of ∆(η, D). The f–(η) func-
tion also has a minimum fmin in this case. Figure 1a
shows the typical dependences of f+, f–, and ∆ on η at
fixed values of D, and Fig. 1b shows the dependences

of fmax, fmin, and  on D.

For E > , only the first δ function in
Eq. (18) makes a nonzero contribution (for E > 0, the
argument of this δ function has a unique root η0,
f+(η0) = E; this root was found numerically):

(20)

For E < , only the second δ function
contributes to Eq. (18). In the case of fmin < E < fmax, the
argument of this function can have several roots; for
E < min( fmin; ∆0), where ∆0 is the gap in the absence of
dielectric fluctuations, the argument of the δ function
can have no roots (the spectral density is equal to zero
in this case). Thus, we have

(21)

where ηi are the roots of the equation f–(η) = E.
It should be noted that if E is equal to fmin, fmax, or ∆0,

the spectral density diverges, because the derivative

, appearing in the denominator of Eq. (21),
vanishes at the points of the maximum and minimum of
f–, as well as at η  ∞, which corresponds to E = ∆0
(Fig. 1a).

Thus, there are three peaks in the spectral density in
the low-temperature regime of the dielectric fluctua-
tions at sufficiently small values of the amplitude D (in
the case where f–(η) has a minimum and a minimum).
These peaks correspond to E = fmin, fmax, and ∆0; the
behavior of the spectral density is shown in Fig. 2.3 One of
the peaks is at the edge of the gap in the spectral den-
sity, which is observed when E < min(fmin; ∆0). At suf-
ficiently large values of D, the minimum and maximum
of f–(η) disappear (Fig. 1b) and the spectral density

3 In what follows, calculations are performed for λ = 0.2 and
α = 2/3.
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diverges only in the vicinity of the edge of the gap at
E = ∆0. Although the f–(η) curve has no peak, a signifi-
cant decrease in df–/dη is observed near the value of η
corresponding to the maximum of ∆(η, D); therefore,

(a)
f+

f–

g

∆(η, D)

(b)

0 2 6 10
η/2

1

2

gmin

∆max
∆0

3

4

fmax fmin

gmin

∆max

∆(0, D)

(D2 + ∆2(0, D))1/2

0 2 6 10
D

1

2

3

4

∆0Efmin

Egmin

Fig. 1. Dependence of the calculated characteristic energy
parameters on (a) the phase η and (b) amplitude D of the
random field of dielectric fluctuations. All energy quantities
are expressed in units of Tc0; T/Tc0 = 0.1, λ = 0.2, and
α = 2/3.

fmax

fmin
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an additional peak appears in the spectral density (see
Fig. 2, inset b). When the temperature exceeds Tc0, the
gap in the spectral density and the peak corresponding
to E = ∆0 disappear but the peak at E = fmax remains. In
passing through the mean-field superconducting transi-
tion point Tc, the behavior of the spectral density
remains qualitatively the same.

In the high-temperature regime, where fluctuations
of the amplitude D of the dielectric gap are also signif-
icant, the averaging over the distribution given by
Eq. (7) should also be carried out:

(22)

The behavior of the spectral density in the high-tem-
perature regime is shown in Fig. 3. The spectral density
has a gap for E < Ef min < ∆0, where Ef min = min( fmin(D))
(see Fig. 1b). At E = ∆0, the spectral density diverges,
because AD(E, 0) diverges at any value of D at this
point. As the temperature becomes larger than Tc0, both
the gap and peak in the spectral density disappear, but
negligible distinctions from the pure pseudogap behav-
ior are observed even above Tc0. In the pseudogap-state
model in question, a decrease in the correlation length
ξcorr (an increase in κ) results in a strong smearing of the

A E 0,( ) D3D D( )AD E 0,( ).d

0

∞

∫=

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4

2 4 6 80

1

23

4

Dip

Dip

Dip

(a)

(b)

E/Tc0

1 2 3 40

0.8

0.4

0
0.3

0.2

0.1

0
10

E/Tc0

A
(E

)T
c0

E/Tc0

A
(E

)T
c0

Fig. 2. Spectral density in the low-temperature regime of
dielectric fluctuations. D/Tc0 = 3, vFκ/Tc0 = 1, Tc/Tc0 = 0.52,
and T/Tc0 is equal to (1) 0.52, (2) 0.8, (3) 1.01, and (4) 1.05.
Inset a: D/Tc0 = 3, vFκ/Tc0 = 1, and T/Tc0 = 0.1; the dashed
line corresponds to the approximation of self-averaging of
the superconducting gap; here and in the other figures, the
dotted line describes pure pseudogap behavior in the normal
phase. Inset b: D/Tc0 = 7, vFκ/Tc0 = 1, and T/Tc0 = 0.1.
P

spectral-density pseudogap in the high-temperature
regime of fluctuations; therefore, the pseudogap maxi-
mum is weakly pronounced at the values of the param-
eters chosen for the calculations (W/Tc0 = 3, κ/Tc0= 1,
and, hence, Tc/Tc0 = 0.61) and the superconducting peak
superimposes on it. As the width of the pseudogap and
the correlation length increase, the superconducting
peak and pseudogap maximum can be separated from
each other4 (Fig. 3, inset b). In this case, a characteristic
dip appears after the main peak in the spectral density.5

A similar dip has been observed in ARPES experiments
[1, 2], and its interpretation is still in dispute.

On the assumption that the superconducting order
parameter is self-averaging, the superconducting gap is
independent of the random parameters η and D and is
equal to the mean-field gap ∆mf, which was determined
in [7] from Eq. (15). Replacing the integration variable
η by –η for the second δ function in the integral over η
in Eq. (18) yields an integral with one δ function,

4 In this model, such behavior is observed at the parameters
(W/Tc0 = 7, κ/Tc0 = 0.1) corresponding to unrealistically strong
damping of the critical temperature (Tc/Tc0 ≈ 0.1).

5 In the low-temperature regime of dielectric fluctuations, the cor-
responding dip in the spectral density (Fig. 2) is pronounced even
more clearly; however, several peaks appearing in this case are
not observed in ARPES experiments.
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Fig. 3. Spectral density in the high-temperature regime of
dielectric fluctuations. W/Tc0 = 3, κ/Tc0 = 1, Tc/Tc0 = 0.61,
and Tc/Tc0 is equal to (1) 0.1, (2) 0.61, (3) 0.8, (4) 0.99, and
(5) 1.01. Inset a: W/Tc0 = 3, vFκ/Tc0 = 1, and T/Tc0 = 0.1; the
dashed line corresponds to the approximation of self-aver-
aging of the superconducting gap. Inset b: W/Tc0 = 7,
vFκ/Tc0 = 0.1, and T/Tc0 = 0.1.
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δ(  – E2). The unique root for the argument of this δ
function is

(23)

On the assumption of self-averaging of the supercon-
ducting order parameter in the low-temperature regime
of fluctuations, the spectral density takes the form

(24)

In the high-temperature regime, the spectral density
should be averaged over the random amplitude D:

(25)

The behavior of the spectral density in the low- and
high-temperature regimes of fluctuations, provided that
the superconducting gap is self-averaging, is shown in
the insets to Figs. 2 and 3, respectively. Inclusion of
fluctuations of the superconducting gap results in sig-
nificant changes in the behavior of the spectral density
in both regimes.

The density of states in this model consists of addi-
tive contributions from the cold and hot sections. The
density of states for a specific realization of the random
field (η, D) is

(26)

On the cold sections, whose fraction is 1 – α, there is no
interaction with dielectric fluctuations. The normal
Green’s function and the contribution to the density of
states NBCS(E) have the form typical of the BCS theory
with a gap depending on η and D:

(27)

On the hot sections, AD(E, ξp) is given by Eq. (18). The
integration over ξp in Eq. (26) can be performed analyt-
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ically, and the averaged density of states in the low-
temperature regime of fluctuations is found to be

(28)

where  = .
Assuming that the superconducting order parameter

∆ is self-averaging, which means that this parameter is
independent of η and D and equal to ∆mf, one can
rewrite Eq. (28) in the low-temperature regime as

(29)

where  = .

The behavior of the density of states in the low-tem-
perature regime of dielectric fluctuations is shown in
Fig. 4. If there is no self-averaging of the superconduct-
ing order parameter, the behavior of the density of
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Fig. 4. Density of states in the low-temperature regime of
dielectric fluctuations. D/Tc0 = 3, vFκ/Tc0 = 1, Tcc/Tc0 =
0.33, Tc/Tc0 = 0.52, and T/Tc0 is equal to (1) 0.33, (2) 0.52,
(3) 0.9, (4) 1, and (5) 1.01. Inset: D/Tc0 = 3, vFκ/Tc0 = 1, and
T/Tc0 = 0.1; the dashed line corresponds to the approxima-
tion of self-averaging of the superconducting gap.
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states changes qualitatively (see inset to Fig. 4). The
gap in the density of states is observed for E < ∆(0, D) <
∆mf. Let us introduce a characteristic temperature Tcc

corresponding to the condition ∆(0, D) = 0. As the tem-
perature becomes higher than Tcc, the gap in the density
of states disappears, while no qualitative changes occur
in the density of states as one passes through the mean-
field superconducting transition point Tc. Let us intro-

duce the quantity g(η) = ,
whose behavior is shown in Fig. 1a. This function has a
minimum gmin at η/2 ~ D. For ∆(0, D) < E < min(gmin; ∆0),
only the cold section [the second term in Eq. (28)] make
a contribution to the density of states. The density of
states undergoes abrupt changes at E = gmin and E = ∆0,
which disappear at temperatures above Tc0. The density
of states has a peak at E = ∆max > (gmin; ∆0), where ∆max

is the maximum of ∆(η), which takes place at η/2 ~ D
(Fig. 1a). Thus, the superconducting gap determined by
the peaks in the density of states corresponds to the
condition ∆max > ∆0 > ∆mf in the low-temperature
regime of fluctuations and the peaks in the density of
states remain even at T > Tc0.

In the high-temperature regime of dielectric fluctua-
tions, averaging should also be performed over the
amplitude of the dielectric gap D:

(30)
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Fig. 5. Density of states in the high-temperature regime of
dielectric fluctuations. W/Tc0 = 3, vFκ/Tc0 = 1, Tc/Tc0 = 0.61,
and T/Tc0 is equal to (1) 0.2, (2) 0.5, (3) 0.61, (4) 0.8, and
(5) 1.01. Inset: W/Tc0 = 3, vFκ/Tc0 = 1, and T/Tc0 = 0.1; the
dashed line corresponds to the approximation of self-aver-
aging of the superconducting gap.
P

Assuming self-averaging of the superconducting order
parameter, we have

(31)

In the limit of the infinite correlation length (κ  0),
Eqs. (30) and (31) reduce to those derived in the model
of the pseudogap state with a infinite correlation length
of the dielectric fluctuations [5].

The behavior of the density of states in the high-
temperature regime of dielectric fluctuations is shown
in Fig. 5. The absence of self-averaging of the super-
conducting order parameter strongly affects the behav-
ior of the density of states (see inset to Fig. 5). There is
no gap in the density of states6 despite the fact that we
consider the case of s-electron pairing! For E < Eg, min =
min(gmin(D)) (see Fig. 1b), only the cold sections of the
Fermi surface contribute to the density of states, and at
E = Emin (when the contribution from the hot sections
becomes nonzero), the density of states shows a discon-
tinuity in slope, which is associated with the peculiarity
of the chosen model of the Fermi surface (separation
into sharply defined hot and cold sections). The maxi-
mum in the density of states is observed at E = ∆0. Thus,
the width of the superconducting gap determined as the
distance between the peaks in the density of states cor-
responds to ∆0 rather than to ∆mf. The density of states
does not change as one passes through the mean-field
critical temperature Tc; the peaks in the density of states
disappear only at T = Tc0 > Tc, and nonsignificant dis-
tinctions from the pure pseudogap density of states in
the normal phase are observed even at T > Tc0.

5. CONCLUSIONS

Thus, we have studied the spectral density and den-
sity of states of the superconductor in the framework of
a very simplified model of the pseudogap state in a two-
dimensional electron system that permits exact solution
[7, 9]. The main advantage of the model is that it allows
one to consider the case where there is no self-averag-
ing of the superconducting order parameter (i.e., to
include significant fluctuations of the superconducting
gap observed in [5, 7] in the presence of strong fluctua-
tions of dielectric short-range order) and the case of
arbitrary values of the short-range order correlation
length ξcorr (in contrast to the case of ξcorr  ∞ con-
sidered in [5]).

6 The gap appears only at very low temperatures T < Tc∞ = Tc0

(  = λ(1 – α)), such that ∆(0, D  ∞) is nonzero [5].

Nmf E( )
N0 0( )

------------------
E
ε̃

------θ E
2 ∆mf

2
–( ) α η 3η η( )d

∞–

∞

∫=

× D3D D( ) ε̃ η /2+

ε̃ η /2+( )2 D
2

–
-----------------------------------------d

0

ε̃ η /2+

∫ 1 α–+ .

λ̃

HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003



SPECTRAL DENSITY AND DENSITY OF STATES IN A SUPERCONDUCTOR 1025
The absence of self-averaging of the superconduct-
ing order parameter over the random field of dielectric
fluctuations causes the spectral density and density of
states to change significantly. The superconducting
character of these quantities persists in a wide temper-
ature range above the temperature Tc of the supercon-
ducting transition occurring uniformly over the sample;
in this range, superconductivity appears to exist in sep-
arate regions (droplets) [5, 7], which arise due to ran-
dom fluctuations of the local electronic density of
states. The peculiarities found correlate with a number
of anomalies observed in the superconducting state of
underdoped HTSC cuprates.
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Thermal Stability of GaN Epilayers with Different Degrees
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Abstract—Thermal stability of GaN epilayers grown through metal-organic compound vapor deposition on a
(0001) sapphire substrate was studied using atomic-force spectroscopy. Samples differing in quality were ther-
mally annealed in ultrahigh vacuum in the range 700–950°C. Mosaic spread in the epitaxial layers is shown to
strongly affect their thermal stability. Epilayers with a well-ordered mosaic structure exhibit surface degrada-
tion at a temperature of ~950°C. The surface morphology of layers with a large mosaic spread starts to change
at lower temperatures, ~780°C. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Reviews dealing with the properties of nitrides [1, 2]
stress the high thermal stability of gallium nitride as a
characteristic feature. The few available studies of the
thermal stability of GaN epilayers have shown that the
surface morphology of hexagonal GaN epilayers grown
through metal-organic compound vapor deposition
(MOCVD) and annealed in a nitrogen environment
undergo noticeable changes at temperatures above
1200°C [3]. Epilayers prepared following other tech-
niques exhibit such changes at lower temperatures,
800–900°C. There is practically no information on the
thermal stability of GaN epilayers annealed at a high
temperature in vacuum. At the same time, such data are
of both scientific and applied interest, because studies
of the electronic properties of a surface, such as the
work function, surface energy band bending, and the
spectrum of surface states, are usually conducted after
annealing directly in vacuum at various temperatures,
up to ~800 [4], ~900 [5], and ~1000°C [6, 7]. Informa-
tion on how annealing in vacuum modifies the GaN sur-
face is also essential from the standpoint of its applica-
tion potential (for instance, for use in photoemission
devices).

We report here on an investigation of the thermal
stability of GaN epilayers of hexagonal modification by
using atomic-force microscopy (AFM); the layers were
MOCVD grown and thermally annealed in a high vac-
uum. One of the goals of such investigations consists in
establishing the extent to which the degree of order in
the mosaic structure of an epitaxial layer affects the
results of thermal treatment. The mosaic structure of
epitaxial layers of hexagonal GaN is a fundamental
property that is also characteristic of films of all nitrides
employed in light-emitting diodes, photodetectors, and
high-voltage devices based on these materials.
1063-7834/03/4506- $24.00 © 21026
2. EXPERIMENTAL TECHNIQUE

The n-GaN epilayers studied were MOCVD grown
on (0001) sapphire substrates at a pressure of 200 mbar.
The layers had a carrier concentration of (1–3) ×
1017 cm–3, a thickness of ~3 µm, and a room-tempera-
ture carrier mobility of 300–600 cm2 V–1 s–1. The mor-
phology of the GaN(0001) samples before and after
thermal annealing in ultrahigh vacuum was studied
using AFM. To quantify the mosaic spread in epitaxial
layers, the structural data obtained by AFM were
treated using multifractal analysis [8, 9].

The main results bearing on thermal treatments are
presented for two GaN(0001) epilayers. Sample I is the
most perfect from the standpoint of surface morphol-
ogy and x-ray structural and electrical characteristics;
the mosaic spread of its structure is –0.32, and the car-
rier mobility is 600 cm2 V–1 s–1. Sample II has a carrier
mobility of 300 cm2 V–1 s–1 and a mosaic spread of
−0.335. Note that sample II, while being somewhat
inferior to sample I in terms of its parameters, is in no
way of poor quality. Poor-quality layers have typically
low mobilities (~100 cm2 V–1 s–1) and a mosaic spread
index of –0.36.

The thermal-stability limit of the above samples was
deduced from a change in the layer surface morphology
as revealed by AFM. We also employed the surface-
sensitive method of threshold photoemission spectros-
copy [10], which makes it possible to monitor the sur-
face quality in situ from the change in the photoemis-
sion current of the GaN(0001) sample caused by the
adsorption of Cs atoms. Adsorption was used in this
case to probe the quality of the substrate. The results of
these photoemission studies will be published in a sep-
arate communication.

A series of annealings, each 15 min long, were con-
ducted in a high vacuum (P ~ 10–10 Torr) at tempera-
003 MAIK “Nauka/Interperiodica”
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tures of 700, 780, 850, 900, and 950°C. The annealing
temperature was measured with a WRe5-WRe20 ther-
mocouple and a PYRO optical pyrometer. The error in
temperature determination did not exceed 20°C.

3. EXPERIMENTAL RESULTS

Figures 1 and 2 present AFM images of the surface
morphology of GaN epilayers with different degrees of
mosaic order in the initial stage before the annealing in
vacuum. The mosaic spread of the samples studied was
determined by applying multifractal analysis to the
treatment of AFM images [9, 11]. The algorithm used
reduces to the following operations.

1. The AFM images are transferred by modern
methods of image acquisition and processing in BMP
graphic files in the bitmap mode.

2. The image obtained is represented by a digital set
by dividing the image under study into unit boxes con-
taining dark and bright dots (pixels), to which the val-
ues “1” and “0” are assigned, respectively. Next, the
image is divided into larger square grid boxes. Using
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Fig. 1. AFM image of the surface (top) and the roughness
profile (bottom) of an epitaxial GaN(0001) layer. Sample I,
∆ = –0.32.
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the formalism developed for digital sets, one can con-
struct a probability density function to describe the den-
sity distribution of the set in each box, with the measure
chosen such that the measures of different boxes are
self-similar. This approach permits numerical descrip-
tion of specific features of complex objects with a
higher precision than if only one measure were selected
for the total set. It should be stressed that the set of the
correlation functions obtained in this approximation
establishes the relations connecting different parts of a
complex structure and their place in the total set
through such multifractal parameters as the extent of
breaking of the general and local symmetry and the
degree of order of the structure as a whole.

The results obtained in the multifractal analysis of the
more perfect sample I (Fig. 1) with a surface roughness
amplitude less than 1 nm show that the mosaic spread of
the sample is ∆ = –0.32, and those for sample II (Fig. 2)
with a surface roughness of ~1 nm yield ∆ = –0.335.
The smaller absolute value of ∆ for sample I indicates
that its mosaic structure is better ordered than that of
sample II. Furthermore, as follows from the AFM

0.3

0 1000

H
ei

gh
t, 

nm

Distance, nm

0
0 1000 2000 3000

1000

2000

3000

1

2000 3000

0.6

0.9

1.2

Fig. 2. AFM image of the surface (top) and the roughness
profile (bottom) of an epitaxial GaN(0001) layer. Sample II,
∆ = –0.335.



 

1028

        

BENEMANSKAYA 

 

et al

 

.

                      
–40

0 1000

H
ei

gh
t, 

nm

Distance, nm
2000

0

3000

0

40

80

1000 2000 3000
0

1000

2000

3000

80

60

40

20

0

–20

–40

–60

–80

(a)

0 500

H
ei

gh
t, 

nm

Distance, nm

0

50

200 400 600
0

1000

2000

3000
50

(b)

800

40

30

20

10

0

–10

–20

–30

–40

–50

30

10

–10
0

–30
1000

Fig. 3. AFM image of the surface (top) and the roughness profile (bottom) of an epitaxial GaN(0001) layer. Sample I after thermal
annealing in vacuum at 950°C. Span size: (a) 3.5 × 3.5 µm and (b) 1 × 1 µm.
images (Figs. 1, 2), the pattern of growth in sample I is
close to two-dimensional, with distinct growth steps
seen. Sample II exhibits a growth pattern closer to
three-dimensional, because one clearly sees large
blocks with lateral dimensions of ~1000 nm that disrupt
the stepped growth.

AFM studies conducted after thermal annealing in
vacuum showed that noticeable changes in the surface
morphology of these layers begin at different tempera-
tures, namely, at 950°C for the more perfect sample I
and at 780°C for the less perfect sample II. Note that
both samples exhibit a similar trend in the character of
modification of the surface morphology. Figure 3 dis-
plays the surface morphology of the more perfect sam-
ple I after thermal annealing performed at 950°C. One
clearly sees a strong change in the degree of mosaic
structure order and more distinct boundaries between
large and small domains, which were only weakly pro-
nounced before the annealing (compare Fig. 1 with
Fig. 3). It was established that the average surface
roughness amplitude increases by an order of magni-
tude, from 0.5–1.0 nm in the initial stage to 40–100 nm
P

after the annealing. The growth steps disappear.
Annealing also brings about the emergence of Ga onto
the surface, with its condensation observed to occur on
the layer cleavage planes. Thus, the boundaries of the
mosaic structure domains on which nonequilibrium
defects aggregate turn out to be the least stable to ther-
mal treatment.

The above results indicate a strong effect of mosaic
spread on the thermal stability of GaN(0001) epilayers.
The temperature of the onset of surface degradation
under thermal treatment in vacuum for sample II with a
less ordered mosaic structure was found to be 170°C
lower than that for sample I with a smaller mosaic
spread.
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Abstract—Potential applications of electron paramagnetic resonance (EPR) for investigating and controlling
the process of neutron transmutation doping (NTD) of semiconducting germanium, silicon, and silicon carbide
are discussed. It is shown that EPR enables one to control the process of annealing of radiation-induced defects
in semiconductors subject to neutron irradiation and to detect the shallow donors restored in the process of
annealing of donor-compensating defects by observing EPR signals from these donors. EPR can be used to sep-
arately detect isolated donors and clusters of two, three, and more exchange-bound donor atoms and thereby
determine the degree of nonuniformity of the impurity distribution over the crystal. Neutron transmutation dop-
ing is demonstrated to produce a fairly uniform arsenic-donor distribution in a germanium crystal. It is argued
that semiconductors enriched in the selected isotopes should be used for NTD. The results of an investigation
of phosphorus donors in silicon carbide are presented. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem that arises in doping semiconductors is
how to obtain uniform distributions of donor and accep-
tor impurities and to control the content of these impu-
rities over a wide concentration range. Neutron trans-
mutation doping (NTD) is one of the promising meth-
ods for producing a uniform impurity distribution in a
crystal [1–6]. The nuclei of stable isotopes can absorb
slow (thermal) neutrons, and this process is character-
ized by a certain capture cross section. The neutron
absorption is followed by nuclear reactions, because of
which stable isotopes of new elements can arise. The
impurity concentration N produced in the process of
NTD is proportional to the thermal-neutron dose Φn (in
units of cm–2), the thermal-neutron cross section σi (in
units of 10–24 cm–2) for the ith isotope, and the content
Ci of this isotope:

(1)

The NTD method is of considerable technological
importance, because this method allows one to produce
highly homogeneous n-type silicon films for high-
power devices [7]. Natural silicon contains three stable
isotopes: 28Si (92.3%), 29Si (4.7%), and 30Si (3.1%) [8].
Silicon is doped with phosphorus donors through the
process of slow-neutron capture by the silicon isotope
30Si (capture cross section σ(30Si) = 0.11 [8]) followed
by its transmutation into phosphorus:

30Si + n  31Si  (β– decay, T1/2 = 2.62 h) 31P, (2)

where T1/2 is the half-life.

N ΦnσiCi.=
1063-7834/03/4506- $24.00 © 21030
Due to the small 30Si content and the secondary
NTD process resulting in transmutation of 31P into 32S,
the doping level is restricted to a value of the order of
1015 cm–3. Obviously, the doping level will be increased
considerably if the initial material is enriched in the iso-
tope 30Si. A similar scheme is used to dope silicon car-
bide with phosphorus; in this case, NTD was the only
method that made it possible for the first time to intro-
duce phosphorus donors into SiC [9–11]. According to
recent investigations [12], doping of SiC with phospho-
rus is very promising, because SiC heavily doped with
phosphorus through ion implantation exhibits a sharp
increase in electrical resistivity in comparison with the
resistivity of SiC doped with nitrogen to a similar con-
centration. It has been proposed that at high concentra-
tions, nitrogen donors form clusters [12], which is a
hindrance to the production of low-resistivity materials.

In principle, in addition to scheme (2), slow neu-
trons in SiC can be captured by the carbon isotope 13C,
which will then be transmuted into nitrogen according
to the reaction 13C(n, γ)  14C  (β– decay) 14N.
However, this process is inefficient and, hence, is of no
practical significance, because the thermal-neutron
capture cross section is very small (9 × 10–24 [8]) and
the half-life of the isotope 14C is very long.

In studying NTD, germanium is of particular impor-
tance, because, first, this material can be of the highest
purity grade and, second, there are five stable germa-
nium isotopes, three of which are involved in the pro-
cess of NTD. The nuclear reactions that were used to
fabricate doped semiconducting germanium and that
003 MAIK “Nauka/Interperiodica”
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Isotopic percentage composition of natural and enriched germanium

70Ge 72Ge 73Ge 74Ge 76Ge

Natural germanium [8] 20.5 27.4 7.8 36.5 7.8

Enriched germanium 1.7 2.4 1.0 93.9 1.0
involved slow-neutron capture by germanium isotopes
70Ge, 74Ge, and 76Ge followed by their transmutation
into gallium, arsenic, and selenium, respectively, are as
follows [5, 6]:

70Ge + n  71Ge  (EC, T1/2 = 11.2 d) 71Ga,

74Ge + n  75Ge

 (β– decay, T1/2 = 82.8 min) 75As, (3)

76Ge + n  77Ge  (β– decay, T1/2 = 11.3 h)

 77As(β– decay, T1/2 = 38.8 h) 77Se.

In this case, shallow Ga acceptors, shallow As donors,
and deep double Se donors are created. In Eq. (3), EC
stands for the K-electron capture. The other two germa-
nium isotopes are transmuted into heavier stable ger-
manium isotopes. Since the isotopes are uniformly dis-
tributed over the material and the slow-neutron capture
cross sections for the Si and Ge isotopes are fairly small
(for 70Ge, 74Ge, and 76Ge, these cross sections are 3.25,
0.36, and 0.16, respectively [8]), one might expect a
uniform distribution of the impurity produced in the
process of NTD. The NTD method enables one to
simultaneously incorporate donor and acceptor impuri-
ties into germanium; in this case, the relationship
between their concentrations (the compensation ratio)
is determined by the contents of different isotopes in
the material. For example, neutron-transmutation-
doped natural germanium is p type, with the compensa-
tion ratio being approximately 40% [3].

The materials mentioned above (Si, SiC, Ge) belong
to Group IV of the periodic table and have qualitatively
similar electronic band structures despite having many
significant distinctions. Incorporation of Group-V
impurities (such as nitrogen, phosphorus, arsenic) into
these materials produces donor energy levels located
near the bottom of the conduction band (shallow donor
levels). Germanium, silicon, and silicon carbide are
indirect-gap semiconductors; their conduction band
consists of several valleys shifted from the center of the
Brillouin zone. The character of this shift depends on
the nature of the semiconductor. For example, in ger-
manium, there are four equivalent valleys, shifted along
the 〈111〉  directions, and in silicon, there are six valleys,
shifted along the 〈100〉  directions. In silicon carbide,
the character of the conduction band depends on the
polytype. In the case of the multivalley conduction
band, the shallow donor levels (which can be treated as
those split off from the conduction band) are degener-
ate, with the degeneracy factor being equal to the num-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
ber of valleys. For instance, the donor level in germa-
nium is fourfold degenerate and split into a singlet and
a triplet because of the interaction of the donor electron
with the atomic core; in silicon, a sixfold degenerate
donor level is split into a singlet, a doublet, and a triplet.
In silicon carbide, the degeneracy and splitting depend
on the polytype. For example, in the cubic polytype
3C-SiC, the situation is similar to that in silicon. In hex-
agonal polytypes, the situation is more complicated; in
polytypes 4H- and 6H-SiC, the conduction bands are
significantly different in character. The properties of
electrons of shallow donors can be described in terms
of the effective-mass theory developed in [13].

In this paper, we discuss the process of NTD of
semiconducting germanium, silicon, and silicon car-
bide and potential applications of EPR for controlling
this process. EPR is one of the most informative meth-
ods for detecting impurities (including nitrogen, phos-
phorus, and arsenic donor impurities) and intrinsic
defects in semiconductors and for determining the elec-
tronic structure of these defects [14–19]. Therefore,
EPR can be used to control impurity atoms created in
the process of NTD. EPR also enables one to control
radiation damage effects [14] which arise in the process
of NTD, because a neutron flux contains not only ther-
mal but also fast neutrons initiating various damage
processes in the crystal. In order to optimize the process
of NTD of semiconductors, it is important to monitor
the defects and impurity centers and their transforma-
tion during annealing of the materials. The defects pro-
duced in a semiconductor under neutron irradiation
shift the Fermi level to the middle of the band gap, with
the consequence that the EPR spectra of donors cannot
be observed. The type and concentration of radiation-
induced defects depend on such parameters as the value
of the neutron flux, the relationship between the fluxes
of fast and slow neutrons, and the temperature of the
semiconductor during neutron irradiation. The energy
distribution of fast neutrons is also of importance. EPR
can be very helpful in optimizing the process of NTD
with the aim of minimizing the yield of radiation-
induced defects that are characterized by high thermal
stability and, hence, can be annealed only at high tem-
peratures.

At sufficiently low temperatures, shallow donors are
occupied by electrons; hence, EPR can be used to
investigate such donors. The temperature at which a
shallow donor can be detected depends on the ioniza-
tion energy of the donor. For example, in crystalline
germanium, the temperature must be less than 10 K; in
silicon, less than 40 K; and in silicon carbide, less than
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~40–100 K (depending on the polytype and the position
of the donor center in the crystal).

According to the theory [13], only in a singlet state,
the donor electron wave-function density at the donor
nucleus site is isotropic; hence, only in this case exists
isotropic hyperfine interaction between the unpaired
electron and the magnetic moment of the donor impu-
rity nucleus. EPR measurements showed that there is
significant isotropic hyperfine interaction in shallow
donors in germanium, silicon, and silicon carbide, and
the conclusion has been drawn that the ground state in
such donors is a singlet [15–17]. The experimentally
observed hyperfine structure allowed one to unambigu-
ously identify the type of donor impurities. It should be
noted that in silicon carbide (except cubic 3C-SiC), the
situation is more complicated than in germanium and
silicon, because there are a few nonequivalent positions
for donor centers in the crystal.

Using EPR spectra, one can obtain information on
the degree of nonuniformity of the donor impurity dis-
tribution in the material, because the EPR spectra of
isolated impurity atoms and of clusters consisting of
two, three, or more atoms differ significantly. Since the
NTD method is based on the presence of only one iso-
tope 30Si (in Si, SiC) or 74Ge (in Ge), it is natural to use
increased contents of the selected isotopes in order to
increase the donor concentration. There is also another
good reason to use crystals enriched in the 30Si and 74Ge
isotopes for EPR measurements. The point is that, in
such crystals, the EPR lines of shallow donors become
significantly narrower; therefore, the intensity of the
EPR signal increases in proportion to the ratio of the
squares of the EPR line widths in the crystal with the
natural isotopic composition and in the crystal enriched
in the selected isotope. The increased intensity of EPR
signals allows one to investigate very thin (e.g., ion-
implanted) semiconductor layers.

The reason for the EPR lane narrowing is the
decrease in the content of isotopes 29Si (in Si, SiC) and
73Ge (in Ge) with nonzero nuclear magnetic moments,
because the EPR line widths of shallow donors in these
crystals is determined chiefly by the superhyperfine
interaction of the unpaired electron with the neighbor-
ing nuclei of odd isotopes 29Si (in Si, SiC) and 73Ge (in
Ge). Let us discuss this issue in more detail. We assume
that the EPR line width is determined by the unresolved
superhyperfine structure, i.e., that the EPR line is inho-
mogeneously broadened, which is usually the case with
shallow donors in germanium, silicon, and silicon car-
bide. Since the wave function of a shallow donor
extends over a few coordination shells, a large number
of the nuclei of isotopes 29Si (in Si, SiC) and 73Ge (in
Ge) are involved in the hyperfine interaction. In SiC
crystals, the 13C nuclei should also be taken into
account.
P

The probability Pm of finding m selected atoms
(atoms of the selected isotope in the case under discus-
sion) in a defect coordination shell consisting of n
equivalent sites is given by

(4)

where f is the relative concentration of the selected iso-
tope. In natural germanium, silicon, and carbon, the
contents of the 73Ge, 29Si, and 13C isotopes are f(73Ge) =
0.078, f(29Si) = 0.047, and f(13C) = 0.011, respectively.

The width ∆B of an EPR line with unresolved struc-
ture in the case where this width is determined by the
superhyperfine interaction is given by

(5)

where NX stands for 73Ge, 29Si, or 13C; ni is the number
of equivalent sites for atoms X in the ith coordination
shell; ai is the superhyperfine interaction constant for
atoms NX located at equivalent sites in the ith coordina-
tion shell; g is the electronic g factor; µB is the Bohr
magneton; and I is the nuclear spin for the NX isotope
(I = 9/2, 1/2, 1/2 for isotopes 73Ge, 29Si, 13C, respec-
tively).

It follows from Eq. (5) that the concentration of an
isotope with a nonzero nuclear spin significantly affects
the EPR line width only if the superhyperfine interac-
tion constant for this isotope is sufficiently large.
Clearly, the superhyperfine interaction constants can be
estimated only approximately from the EPR line width;
the exact values of these constants have been found for
a number of shallow donors in silicon [15, 18] and shal-
low nitrogen donors in silicon carbide [19] by using
electron–nuclear double resonance.

Virtually any semiconductor can be doped using the
NTD method. A nuclear reaction producing Ga can also
be used for uniform donor doping of wide-band-gap
semiconductors such as ZnO, which has attracted con-
siderable recent attention because of its application
potential in optoelectronics [20]; the corresponding
reaction proceeds according to the equation 68Zn +
n  69Ge  (β– decay) 69Ga.

In the ZnO crystal, gallium substitutes for zinc and
is a donor impurity, whose EPR spectrum can easily be
recorded.

All isotopes in semiconductors GaAs (68Ga, 71Ga,
75As) and AlAs (27Al) can be transmuted into shallow
donors in the process of NTD; using the NTD method,
one can fabricate isotopic superlattices consisting of
layers with different properties.

It should be noted that the magnetic properties of
nuclei and the corresponding atoms can differ radically

Pm Cn
m

f
m

1 f–( )n m–
,=

∆B 8 2ln( )1/2 1
gµB
---------=

× f XN( )ni X( )
ai

2
XN( )I I 1+( )

3
-------------------------------------

i

R

∑
1/2

,

HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003



ELECTRON PARAMAGNETIC RESONANCE 1033
for the same element; for example, even and odd iso-
topes can have zero and nonzero nuclear spins and
magnetic moments, respectively, or different nuclear
spins, as in the case of hydrogen and deuterium. On the
other hand, the nuclei and atoms of different elements,
even those positioned in different corners of the peri-
odic table, may have similar magnetic properties (e.g.,
hydrogen, fluorine, thallium). Thus, in specific cases,
the EPR method offers significant advantages over the
isotope mass spectroscopic methods, because the EPR
spectra of different isotopes are determined by the
superhyperfine interaction of the unpaired electrons
with the nuclear magnetic moments and, hence, may be
considerably different.

2. EXPERIMENTAL TECHNIQUE

Experiments were performed using a commercial
Jeol EPR spectrometer operating at a frequency of
9.3 GHz (X band) with a custom-made helium gas flow
cryostat, which enabled the temperature to be varied
within the range 4–300 K. All EPR spectra presented in
this paper are single scans (i.e., they were recorded
without accumulation).

The germanium, silicon, and silicon carbide crystals
investigated were cleaved or cut in the form of a plate
with known crystallographic orientation. A sample
mounted in the cavity of the EPR spectrometer could be
rotated in certain planes. The crystals studied are char-
acterized below.

3. EXPERIMENTAL RESULTS

3.1. Neutron Transmutation Doping of Germanium 
Enriched in Isotope 74Ge

Germanium crystals were grown using the Czo-
chralski method. Crystals enriched in the isotope 74Ge
were grown from a melt containing the selected iso-
tope. Then, plates 1 mm thick were cut along the (111)
plane. Samples were cut in the form of a rod with its
length along the 〈110〉  direction. Mounted in the cavity
of the EPR spectrometer, the samples could be rotated
about the vertical 〈110〉  axis. The orientation of the
samples was determined to within ~0.5° using x-ray
diffraction. The isotopic composition of the samples
and, for the sake of comparison, the isotopic composi-
tion of the natural germanium are listed in the table.

The germanium crystals were subjected to slow-
neutron irradiation (the irradiation temperature was
close to room temperature, the neutron flux was ~5 ×
1016 cm–2, the ratio between the thermal- and fast-neu-
tron fluxes was equal to three) in order to transmute the
74Ge isotopes into 75As donors. The concentration of
uncontrolled electrically active impurities before NTD
was ~5 × 1013 cm–3, which is much less than the con-
centration of donors and acceptors created in the pro-
cess of NTD. In the natural germanium, only 9.8% of
the captured slow neutrons bring about the creation of
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
75As, whereas in the enriched germanium, this propor-
tion was approximately 75%. Then, the samples were
annealed in quartz ampoules at 460°C for 24 h in order
to remove the radiation damage produced by fast neu-
trons. The concentration of arsenic donors was esti-
mated from Hall effect measurements to be ND ≅
1016 cm–3 (the concentration of compensating shallow
gallium acceptors was insignificant because of the low
content of the isotope 70Ge). Crystals from the same
series were used previously for preliminary EPR mea-
surements [21] and were fabricated by one of the
authors of this paper (A.N.I.).

As indicated above, EPR of shallow donors in ger-
manium should be studied at low temperatures. It is
also of importance to minimize stresses in the crystal,
which significantly broaden the EPR lines, with the
result that EPR signals decrease and become less infor-
mative.

There are two dominant mechanisms of EPR line
broadening of shallow donors in Ge. One of them is the
spread of the electronic g factors caused by stresses in
the crystal. This effect can be explained qualitatively as
follows. The g factor of electrons occupying one of the
four valleys of the conduction band of germanium is
strongly anisotropic because of the anisotropy in the
electronic effective mass. If the four valleys are filled
by electrons to the same extent, the g factor will be iso-
tropic and equal to g = g||/3 + 2g⊥ /3 = 1.71, where g|| =
0.98 and g⊥  = 2.07 are theoretically calculated g factors
for the magnetic field directed along the axis of the val-
ley (the 〈111〉  direction) and perpendicular to this axis,
respectively [16]. Due to stresses in the crystal, the val-
leys are filled differently, which causes a spread in the
g-factor values and, hence, a broadening of the donor
EPR lines. It was shown in [16] that this mechanism of
EPR line broadening depends on the orientation of the
crystal relative to the magnetic field and that the broad-
ening vanishes to first order when the magnetic field is
directed along the 〈100〉  axis; therefore, the axes of all
four valleys make the same angle with the magnetic
field direction. This effect is explained qualitatively by
the fact that the relative fillings of the valleys are of no
importance in this case, because the valleys are identi-
cally oriented relative to the magnetic field and, hence,
are characterized by identical g factors. The second
mechanism of EPR line broadening was already men-
tioned above and is associated with the hyperfine inter-
action of the unpaired electron with the nuclei of the
germanium isotope 73Ge. According to the effective-
mass theory, the wave function of a donor in germa-
nium is highly delocalized, because the binding energy
is small, 9.2 meV (the Bohr radius is large, ~32 Å).
Therefore, the donor electron will interact with a large
number of germanium atoms whose nuclei have a non-
zero magnetic moment. The interaction of the unpaired
electron with the magnetic fields produced by these
nuclei will be positive or negative depending on the ori-
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entation of the nuclear magnetic moment of 73Ge (the
number of possible orientations is equal to 2I + 1 = 10
for each nucleus). Therefore, the EPR line will be
broadened in accordance with Eq. (5). It follows from
Eq. (5) that the EPR line can be made significantly nar-
rower by decreasing the concentration of the germa-
nium isotope 73Ge. For example, for the 73Ge content in
the enriched germanium presented in the table, the EPR
line becomes narrower by a factor of (7.8/1)1/2 = 2.8
according to Eq. (5); therefore, the EPR line intensity
increases by almost an order of magnitude.

Figure 1 shows EPR spectra of arsenic donors in a
germanium crystal enriched in the isotope 74Ge; the
spectra were recorded in the X band at 4 K for the fol-
lowing four crystal orientations: B || 〈100〉 , θ = 10°, 20°,
and B || 〈111〉 , where θ is the angle between the mag-
netic-field direction and the 〈100〉  axis of the crystal,
with the crystal being rotated in the {110} plane. The
EPR lines are the narrowest for the orientation B || 〈100〉
and become considerably broadened as the crystal devi-
ates from this orientation. The EPR line width for
arsenic donors in the germanium crystal enriched in the
isotope 74Ge is ∆B = 0.45 mT, which is significantly
smaller than that in the germanium crystal with natural
isotopic composition (∆B = 1.2 mT). The experimental
ratio between the EPR line widths of arsenic donors in
the natural and enriched germanium crystals agrees
with Eq. (5), which suggests that the inhomogeneous
broadening of the EPR lines is due to the superhyper-
fine interaction with 73Ge nuclei. Therefore, in this
experiment, the EPR line broadening mechanism asso-

B ||  〈100〉

B || 〈111〉

20°

Ge : As
X band
T = 4 K

10°

415 425
Magnetic field, mT

Fig. 1. EPR spectra of arsenic donors in a germanium crys-
tal enriched in the isotope 74Ge. The spectra were recorded
at 4 K for four crystal orientations.
P

ciated with a spread of the g factors virtually does not
operate in the case of the crystal orientation B || 〈100〉 .

The four strongest lines in the EPR spectrum can be
described using the conventional spin Hamiltonian

(6)

where the first term is the Zeeman energy of the impu-
rity center (with spin S = 1/2 and the electronic g factor

represented by the  tensor) in a magnetic field B, the
second term is the hyperfine interaction (described by

the tensor ) between the unpaired electron of the
shallow donor and a 75As nucleus with spin I = 3/2, and
the third term is the superhyperfine interaction

(described by the tensor ) between the unpaired elec-
tron of the shallow donor and the nucleus of the ith
atom of germanium 73Ge. The hyperfine interaction
constant and the g factor are isotropic to within the
experimental error: A = (26 ± 0.5) × 10–4 cm–1 (the aver-
age line splitting is 3.53 mT) and g = 1.57. The super-
hyperfine structure is not resolved and determines the
EPR line widths. Thus, the EPR spectrum consisting of
four lines of width 0.45 mT and of approximately the
same intensity belongs to isolated arsenic donors. The
experimental value of the g factor is close to its theoret-
ical value indicated above.

In addition to the four EPR lines belonging to iso-
lated arsenic donors, the EPR spectrum in Fig. 1 has a
few weaker lines positioned between the four basic
EPR lines and most clearly defined in the crystal orien-
tation B || 〈100〉 , where the EPR line widths are mini-
mum. These EPR signals belong to pairs and triplets of
arsenic donors, whose formation is caused by the rela-
tively strong isotropic exchange interaction arising
between neighboring donors with overlapping wave
functions. Earlier, this effect was observed for phos-
phorus [22–25] and arsenic [23, 26] shallow donors in
silicon and arsenic donors in germanium [21], as well
as for shallow nitrogen donors in silicon carbide [27–
29]. A theoretical interpretation of the observed EPR
spectra of exchange-coupled pairs was offered in [24].

The Hamiltonian of an exchange-coupled pair
including the isotropic exchange interaction between
two identical magnetic centers with spins S1 = S2 = 1/2
and the Zeeman interaction (without regard for the
hyperfine and superhyperfine interactions) has the form

(7)

where J is the isotropic-exchange constant and  is the
g tensor of the dimer, which is equal to the g tensor of
an isolated donor to within the experimental error. If
J @ gµBB (which is the case for pair centers in our
experiments), the system can be conveniently described
in terms of the total spin, equal to 0 or 1. For an isotro-
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pic system with spin S = 1, the spin Hamiltonian is writ-
ten as

(8)

in this case, the hyperfine and superhyperfine constants
become twice as small.

A similar Hamiltonian can be used for a cluster of
three arsenic atoms with total electronic spin S = 3/2;
the hyperfine and superhyperfine constants for isolated
atoms will be three times as small in this case.

Figure 2a shows the EPR spectrum of arsenic
donors in a germanium crystal enriched in the isotope
74Ge; the spectrum was recorded in the X band at a fre-
quency of approximately 9.3 GHz at 4 K. The crystal
orientation corresponded to B || 〈100〉 . An EPR spec-
trum calculated by means of the Win-EPR SimFonia
computer code is presented at the bottom of Fig. 2a. In
calculating the spectrum, it was assumed that the g fac-
tors and EPR line widths of isolated As donors, pair
centers, and clusters of three atoms were identical and
that the hyperfine interaction constants for pairs and
triplets were smaller than that for isolated donors by a
factor of two and three, respectively. The ratios of the
total amplitudes of all EPR lines of isolated arsenic
donors, pairs, and triplets were 1 : 0.12 : 0.04. The same
ratios will be observed for the integrated numbers of the
corresponding impurity centers if one assumes that the
EPR line widths of isolated donors and pairs are equal.
The calculated EPR spectrum contains a noise compo-
nent, which was added in order for this spectrum to
resemble the experimental one more closely. Figure 2b
shows EPR spectra calculated for isolated donors
(1As), as well as for clusters of two (2As), three (3As),
four (4As), and ten donor atoms (10As). The first three
spectra with the corresponding intensity ratios were
used to calculate the EPR spectrum presented in
Fig. 2a.

In [21], EPR spectra were presented in which, in
addition to the lines corresponding to pairs and triplets
of arsenic atoms (whose percentages were approxi-
mately equal to those in our experiments), there was a
relatively strong EPR line with an unresolved structure;
the maximum and minimum of the derivative for that
line corresponded approximately to the internal compo-
nents of the EPR lines of isolated arsenic donors, and
the integrated intensity of that line was equal to that of
the EPR lines of isolated arsenic donors. The conclu-
sion was made that the unresolved line belonged to
weakly interacting donors, with the exchange interac-
tion constant being of the order of the hyperfine inter-
action constant for isolated arsenic atoms, J ~ A. In our
experiments, such a line was not observed. Further-
more, our calculations performed by means of the
R-spectr computer code [30] for J ranging from 0 to
~100A showed that, in the case of J ~ A, the EPR spec-
trum is radically different and cannot be represented in
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the form of the unresolved line presented in [21]. Such
a line may belong to clusters n-As (with n > 3, Fig. 2b)
of arsenic atoms strongly interacting via exchange
interaction; therefore, we arrive at a conclusion oppo-
site to that drawn in [21] as to the donor distribution in
germanium. The EPR spectra consisting of seven lines
with intensity ratios 1 : 2 : 3 : 4 : 3 : 2 : 1 for donor pairs
and the EPR spectra having ten lines with intensity
ratios 1 : 3 : 6 : 9 : 12 : 12 : 9 : 6 : 3 : 1 for donor triplets
(Fig. 2b), which were used to calculate the EPR spec-
trum presented in Fig. 2a, appear only in the case of J >
~50A. It is significant that as the exchange interaction is
increased further, these spectra remain virtually
unchanged and, therefore, have a well-defined struc-
ture. In the opposite case of J < ~50A, the EPR spec-
trum changes radically with decreasing J down to val-

Ge : As
X band
T = 4 K

B ||  〈100〉(a)

(b)

Exp.

Sim.

1As

2As

3As

4As

10As

412 416 420 424 428
Magnetic field, mT

Fig. 2. (a) EPR spectrum of arsenic donors in a germanium
crystal enriched in the isotope 74Ge (see table); the spec-
trum was recorded at 4 K in the geometry B || 〈100〉 . A cal-
culated EPR spectrum is shown at the bottom. (b) Calcu-
lated EPR spectra of one As donor and of clusters of
exchange-coupled two, three, four, and ten As donor atoms.
3
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ues of J < ~0.1A, which are less than the widths of sep-
arate EPR lines. As the value of J is decreased further,
the EPR spectrum remains virtually unchanged and
consists of four lines corresponding to isolated arsenic
donors. Thus, EPR signals can be observed only in the
cases of strong (J > ~50A) and weak (J < ~0.1A)
exchange interactions. For intermediate values of J, the
EPR spectrum depends on J and, when averaged over
all possible values of J, represents a wide band with a
complicated shape and low intensity that is difficult to
detect; in addition, this band will blend into the wide
background produced by stresses in the crystal. Thus,
the only reliable data which should be used to charac-
terize the actual donor distribution in germanium are
the intensity ratios (presented above) of EPR signals
from isolated donor centers, pairs, and triplets and the
total donor concentration, determined, e.g., from elec-
trical measurements.

The exchange interaction energy (J), causing the
singlet and triplet energy levels to split, decreases expo-
nentially with increasing separation between isolated
impurity atoms. This energy can be estimated from the
formula derived for the exchange interaction between
two atoms in a hydrogen molecule. Of course, this for-
mula should be modified with regard to the effective
masses of identical hydrogen-like donor atoms in the
ground state and to the dielectric constant of the semi-
conductor crystal. In [31], the exchange energy of two
identical donor atoms in a semiconductor was found
to be

(9)

where, for germanium, m* = 0.23me is the average
effective mass of a donor, ε = 16 is the dielectric con-
stant of germanium, AH = 9.66 eV and BH = 7.84 ×
1022 cm–3 are coefficients calculated for the hydrogen
molecule, and V = (4/3)πr3, with r being the separation
between the interacting donor atoms. For germanium,
we obtain J = 0.0087exp(–2.33 × 1017V). For the
exchange splittings J = 50A = 1.62 × 10–5 eV and J =
0.1A = 0.324 × 10–7 eV, the corresponding separations
between the interacting donor atoms are found to be
185 and 235 Å, respectively.

Now, we estimate the concentrations of donors for
which r < 185 Å and r > 235 Å in the case where the
concentration of uncompensated donors is ND ≅
1016 cm–3 (this value was determined from the electrical
measurements).

We assume that the impurity distribution is random
and, following [31], use the Poisson distribution

(10)

where N is the number of events. The expected value G
in this case is the number of donors NDV in the volume
V. Let a donor atom be at the origin of coordinates.
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Then, the probability that there will be no donors at dis-
tances less than r is found from Eq. (10) to be

(11)

The probability of finding one donor atom in the shell
of radius r and thickness dr (i.e., in the range from r to
r + dr) is

(12)

The product of the probabilities given by Eqs. (11) and
(12) is the probability that there will be no donors at
distances less than r and that there will be only one
donor in the spherical shell of radius r and thickness dr;
that is, this product is the probability that the separation
between two donor atoms will be equal to r:

(13)

Therefore, the concentration of donors separated by a
distance less than a certain value R0 (the case of strong
exchange interaction between the members of a donor
pair, J > ~50A) is given by

(14)

The concentration of donors separated by a distance
larger than a certain value R0 (the case of weak
exchange interaction between virtually isolated donor
atoms, J < ~0.1A) can be found in the same way. In this
case, integration is performed from R0 to infinity.

The probability of finding three donor atoms in a
sphere of radius r is equal to the probability that there
will be one donor within the sphere of radius r and one
donor within the spherical shell of radius r and thick-
ness dr:

(15)

It was shown in [31] that for a small volume V <
1/ND, which is of interest for us in the case of strong
exchange interactions, the ratio of the number of trip-
lets to the number of pairs is approximately equal to
NDV, which corresponds to our experimental condi-
tions, where ND ≅  1016 cm–3. For this donor impurity
concentration, the expressions derived above give the
concentration ratios 1 : 0.3 : 0.08 for isolated donors,
pairs, and triplets, respectively. A comparison of these
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ratios with the experimental data 1 : 0.12 : 0.04 pre-
sented above shows that, despite the crude model used,
there is qualitative agreement. The results obtained
indicate that the As donor distribution in a Ge crystal is
fairly uniform. The agreement between the theoretical
and experimental concentration ratios will become bet-
ter if one assumes that the concentration of uncompen-
sated donors is approximately 0.5 × 1016 cm–3. This
estimate is not unreasonable, because it is known [16]
that for arsenic donor concentrations higher than
approximately 1016 cm–3 (for phosphorus donors, this
value is still lower) motion-induced EPR line narrow-
ing occurs for arsenic donors and the hyperfine struc-
ture disappears. Since no motion effects on the EPR
spectra were observed in our experiments, we can
assume that the actual concentration ND is lower than
that estimated from the electrical measurements and is
approximately 0.5 × 1016 cm–3.

It should be noted that the observed EPR spectra can
be associated not only with pairs and triplets formed by
exchange-interacting donor atoms. Similar EPR spectra
can arise when ionized arsenic donors are located near
nonionized ones, for example, in the case where two or
three closely spaced arsenic donors have a common,
single, unpaired electron and form a cluster with spin
S = 1/2. Such impurity centers are very likely to exist in
partially compensated semiconductors, where a propor-
tion of the donors is compensated, e.g., by radiation-
induced defects or acceptor impurities.

We also note that EPR has been very rarely used to
study defects in germanium, in contrast to those in sili-
con. This does not mean that the quantity of defects
produced under irradiation is smaller in the former
case; rather, the reason is that the EPR spectra in ger-
manium are more difficult to interpret because of the
large line widths, and therefore low temperatures
should be used. Thus, it is not improbable that complex
centers, such as a vacancy plus arsenic or phosphorus
donor, which were studied comprehensively in silicon,
can also form in germanium.

3.2. Neutron Transmutation Doping of Silicon

In the process of NTD, the isotope 30Si (3.1%) is
transmuted into phosphorus in accordance with Eq. (2).
Figure 3 shows EPR spectra recorded in the X band for
a silicon crystal irradiated with neutrons to a dose of
1018 cm–2. Spectra 1 and 2 were recorded before anneal-
ing, and spectrum 3, after annealing at 800°C for
30 min. Spectra 1 and 2 were measured at 35 K in a
magnetic field parallel to the 〈111〉  and 〈100〉  axes,
respectively; spectrum 3 was measured at 15 K in a
magnetic field parallel to the 〈111〉  axis. Before the
NTD, the crystal was p type due to a small boron con-
tent (~1013 cm–3); the oxygen content was less than
<5 × 1016 cm–3. The EPR spectrum of isolated phospho-
rus donors was observed only after annealing and con-
sisted of two isotropic lines resulting from the hyper-
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fine interaction of the unpaired electron with the phos-
phorus nucleus (I = 1/2); therefore, in the process of
NTD, the semiconductor changed to n type. The EPR
spectra taken before annealing contain anisotropic
bands of radiation-induced defects, whereas the lines of
phosphorus are absent because the phosphorus donors
were ionized. The EPR spectra of radiation-induced
defects were not analyzed in this work; these spectra
can be interpreted using the results of numerous studies
[14]. The strong isotropic line at the center of the EPR
spectra in Fig. 3 marked by an asterisk belongs to sur-
face defects and will not be discussed in this paper,
because this line does not overlap with the EPR signals
of interest to us here. Dashed lines in Fig. 3 indicate the
EPR signal from phosphorus donors in a silicon crystal
depleted in the isotope 29Si (0.1%) and possessing a
nonzero nuclear magnetic moment. This signal in the
case where the 29Si content is equal to 0.1% is approx-
imately seven times narrower, and, hence, the intensity
of this EPR signal from the phosphorus donors is
approximately 50 times higher (in proportion to the
ratio of the line widths squared) than in the case of the
natural silicon with the same phosphorus donor con-

B || 〈111〉  35 K

B || 〈100〉  35 K
Before annealing

Before annealing

B ||  〈111〉  15 K

1

2

3

×0.2×0.2

After
annealing

P

Si
n-irr. 1018 cm–2

327 329 331 333
Magnetic field, mT

*

Fig. 3. EPR spectra for silicon crystals irradiated with neu-
trons to a dose of ~1018 cm–2. Spectra 1 and 2 were
recorded at 35 K before annealing for two different crystal
orientations, and spectrum 3 was recorded at 15 K after
annealing at 800°C for 30 min. The EPR line belonging to
surface defects in silicon is marked by an asterisk. Dashed
lines represent a calculated EPR spectrum of phosphorus
donors in a silicon crystal enriched in the isotope 30Si (the
29Si content is ~0.1%).
3
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centration. The increase in the intensity of the EPR sig-
nal is of importance, because in the process of NTD of
silicon the doping level increases considerably if the
initial material is enriched in the 30Si isotope and,
hence, depleted in the 29Si isotope. This increase in the
EPR intensity can be helpful in studying thin silicon
films enriched in the isotope 30Si and doped with phos-
phorus by using NTD.

3.3. Neutron Transmutation Doping of Silicon Carbide

In contrast to crystals of germanium and silicon, in
which shallow arsenic and phosphorus donors have
been well studied using EPR, the situation with silicon
carbide is less well understood. In 6H-SiC crystals irra-
diated with slow neutrons to a dose of 1020 cm–2 and
then annealed at temperatures of the order of 2000°C, it
has been found that there are two different types of EPR

⇑ ⇑

B ⊥  c

329 331 333 335

B ⊥  c*

*

*

*
50°

65°

B ||  c

Before annealing
300 K

1

2

3

dP(k1)
dP(k2)

dP(h)
Ann.
1900°C
9 K

95 K

Ann.
1900°C

dP(h)
dP(k2)

(Si)

sP(k1)

N

6H-SiC

Magnetic field, mT

Fig. 4. EPR spectra of a 6H-SiC crystal (ND ≈ 5 × 1016 cm–3)

irradiated with neutrons to a dose of ~1020 cm–2 at 90°C.
Spectrum 1 was recorded at 300 K in the geometry B || c
before annealing, spectrum 2 was recorded at 9 K for three
crystal orientations after annealing, and spectrum 3 was
recorded at 95 K in the geometry B ⊥  c after crystal anneal-
ing. The triplet belonging to shallow nitrogen donors in the
two quasi-cubic positions is indicated by arrows, and the
EPR lines of shallow sP(k1) phosphorus donors are indi-
cated by open arrows. Spectrum 1 was recorded with an
effective amplification (including the decrease in the modu-
lation amplitude) approximately 105 times lower than those
for spectra 2 and 3. The reference signals from quartz are
marked by asterisks.
P

spectra of phosphorus; these spectra were observed
only at relatively high (77 K) [9] or low temperatures
(4–10 K) [10]. The conclusion was made that these
types of EPR spectra belong to different shallow phos-
phorus donors. Later, it was proposed [32] that the
occupied energy levels of shallow phosphorus impuri-
ties are different at low and high temperatures (because
of the multivalley character of the conduction band)
and, hence, the EPR spectra are also different. In com-
parison with nitrogen donors, the sequential order of
the energy levels is reversed in this case; that is, the sin-
glet energy level of phosphorus donors corresponding
to the EPR spectra observed in [9] is an excited level.
Thus, until recently, there was no consensus on the EPR
spectra of shallow phosphorus donors. In a recent work
[33], it was shown that there are two types of phospho-
rus impurities, namely, shallow (sP) and deep (dP) P
donors; both impurity types were observed experimen-
tally at the same temperature (4.2 K). Therefore, it was
proved in [33] that the EPR spectra under discussion
belong to different impurity centers. For one of the two
types of impurity centers, it was also shown that there
is fairly strong superhyperfine interaction with ligand
silicon atoms, which is characteristic of deep impurity
centers. In addition, it was found that, for each of the
two impurity types, three different EPR bands exist cor-
responding to three nonequivalent positions of the
impurity in the crystal lattice of the polytype 6H-SiC:
one with hexagonal symmetry [sP(h), dP(h) centers]
and two with quasi-cubic symmetry [sP(k1), sP(k2),
dP(k1), dP(k2) centers]. Two models were proposed in
[33] for shallow and deep phosphorus impurities.
According to those models, a shallow phosphorus
impurity atom is positioned at a silicon site with a reg-
ular environment, whereas a deep phosphorus impurity
is located at a silicon site adjacent to a carbon vacancy.
In this paper, we assume that the shallow and deep
phosphorus impurities substitute for carbon and silicon
atoms, respectively, and that in the latter case, the phos-
phorus atom is displaced from the silicon site, much as
the nitrogen atom is displaced in silicon, which brings
about the formation of a deeper impurity center. Such
an off-center displacement may also be responsible for
the enhanced superhyperfine interaction with the near-
est neighbor silicon atoms observed in [33].

Figure 4 presents the EPR spectrum of a 6H-SiC
crystal irradiated with neutrons to a dose of ~1020 cm–2.
Before the irradiation, the crystal was n type with a
nitrogen donor concentration of ~5 × 1016 cm–3. Spec-
trum 1 was taken in the geometry B || c at 300 K before
annealing; this spectrum has a very strong isotropic line
with an unresolved structure, which belongs to silicon
vacancies of a high concentration. Here, we do not dis-
cuss these defects, even though their nature has been
fairly well studied. After annealing at a temperature
below 1800°C, the EPR spectra of numerous defects
were observed, including multivacancy complexes.
Spectra 2 and 3 were recorded after annealing of the
crystals at 1900°C for 30 min. Spectra 2 were taken at
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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9 K for three values of the angle between the magnetic
field and the c axis: 50°, 65°, and 90° (B ⊥  c). Spectrum 3
was recorded at 95 K for the annealed crystal in the
geometry B ⊥  c. The triplet belonging to shallow nitro-
gen donors in the quasi-cubic positions is indicated in
Fig. 4 by arrows, and the EPR lines of shallow sP(k1)
phosphorus donors are indicated by open arrows.

Spectra 2 in Fig. 4, recorded at a low temperature,
can be described using the spin Hamiltonian (6) and
belong to the three different positions of the deep phos-
phorus centers characterized by the following parame-
ters [33]: g|| = 2.0044, g⊥  = 2.0027, A||(P) = 1.0 G,
A⊥ (P) < 1.0 G, and a(Si) = 11.2 G for dP(h); g|| =
2.0037, g⊥  = 2.0025, A||(P) = 6.2 G, A⊥ (P) < 3.8 G, and
a(Si) = 8.8 G for dP(k1); and g|| = 2.0037, g⊥  = 2.0024,
A||(P) = 4.8 G, A⊥ (P) < 1.9 G, and a(Si) = 7.6 G for
dP(k2). It should be noted that the relative intensities of
the EPR spectra of the different dP centers depend sig-
nificantly on the crystal orientation; for this reason, the
relative contributions from these centers to spectra 2 in
Fig. 4, recorded for three crystal orientations, are differ-
ent. The superhyperfine structure resulting from the
interaction with Si (presumably, with two Si atoms) is
also indicated by arrows. The reference signals from
quartz are marked by asterisks.

Signals from shallow phosphorus donors were not
observed at low temperatures because of saturation (in
[33], such signals were observed at 4.2 K under special
rapid-sweep conditions). At 95 K, only EPR spectra of
sP(k1) centers were observed (spectrum 3 in Fig. 4),
because the other sP centers were ionized. The EPR
spectra of shallow phosphorus donors occupying differ-
ent positions are characterized by the following param-
eters [33]: g|| = 2.0041, g⊥  = 2.0022, A||(P) = 9.0 G, and
A⊥ (P) = 7.2 G for sP(h); g|| = 2.00375, g⊥  = 2.00276,
A||(P) = 55.0 G, and A⊥ (P) = 54.2 G for sP(k1); and g|| =
2.0038, g⊥  = 2.0025, A||(P) = 51.0 G, and A⊥ (P) = 51.0 G
for sP(k2).

The EPR spectra of phosphorus donors exhibit no
effects from interaction between donors, because the
donor concentrations are low and, in addition, the Bohr
radius of shallow donors in silicon carbide is small in
comparison with those in silicon and germanium crys-
tals. However, at sufficiently high nitrogen donor con-
centrations, EPR spectra of pairs and triplets were
observed in these crystals [27–29]. It is believed that
the exchange interaction between donors gives rise to
antiferromagnetic ordering, i.e., that the ground state is
a nonparamagnetic singlet. This conclusion is sup-
ported by the temperature dependences of EPR spectra.
The theory based on the hydrogen molecule model also
predicts antiferromagnetic ordering. In this work, using
numerous 6H-SiC samples (including commercial
CREE n-type substrates and samples subjected to
heavy neutron irradiation followed by annealing at tem-
peratures up to 2400°C), the EPR intensity of nitrogen
pair centers was observed to decrease and finally vanish
with increasing temperature of observation, which is
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
inconsistent with antiferromagnetic spin ordering of
interacting donors. [We note, however, that for small
exchange splittings (less than 1 cm–1) temperatures
lower than 4.2 K should be used to detect changes in the
population of the singlet and triplet levels.] The initial
EPR intensity of nitrogen pairs was comparable to and
even in excess of the EPR intensity of isolated nitrogen
donors. Figure 5 shows EPR spectra recorded in the X
band for a 6H-SiC crystal in the geometry B ⊥  c. Spec-
tra 1a and 1b were measured on an n-type CREE crystal
at 80 and 10 K, respectively; spectrum 2 was recorded
at 10 K for an n-type 6H-SiC crystal (ND ≈ 5 × 1017 cm–3)
irradiated with neutrons to a dose of ~1020 cm–2 and
then annealed at 2400°C. Calculated EPR spectra of
one N donor and clusters of exchange-coupled two and
three N donors are presented at the bottom of Fig. 5. In
calculating these spectra, the hyperfine interaction con-
stant averaged over the two nonequivalent quasi-cubic
positions was used. As the temperature is increased, the
EPR signals from pairs and triplets of N donors

*

*

B ⊥ c6H-SiC
1a

1b

2

N(k1, k2)

2N(k1, k2)

3N(k1, k2)

326 327 328 329
Magnetic field, mT

Fig. 5. EPR spectra of a CREE n-type 6H-SiC crystal
recorded in the geometry B ⊥  c at (1a) 80 and (1b) 10 K and
(2) an EPR spectrum (recorded in the geometry B ⊥  c at
10 K) of an n-type 6H-SiC crystal (ND ≈ 5 × 1017 cm–3)

subjected to neutron irradiation to a dose of ~1020 cm–2 fol-
lowed by annealing at 2400°C. Calculated EPR spectra of
one donor and clusters of exchange-coupled two and three
N donors are shown at the bottom. Spectra 1a and 1b con-
tain a reference signal from quartz marked by an asterisk.
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decrease in intensity and finally vanish (at ~50 K),
whereas the signals from isolated impurity centers are
well pronounced. The EPR spectrum of nitrogen pairs
consists of five lines with intensity ratios of 1 : 2 : 3 :
2 : 1. We note that the central (strongest) line of impu-
rity pairs is superimposed on one of the three EPR lines
of isolated nitrogen donors (I = 1); therefore, the EPR
intensity of impurity pairs can be judged only from the
intensity of the side lines, in contrast to the case of As
donor pairs in Ge, where the central line of impurity
pairs is located between EPR lines of isolated donors.
Calculations of the EPR spectra for different values of
the exchange interaction constant showed that the
shape of side lines of impurity pairs ceases to vary with
increasing J when J > ~20A (the analogous condition
for the central line of impurity pairs is more restrictive,
J > ~50A). In the case of weak exchange interactions,
the condition for the EPR spectra of isolated nitrogen
donors being observable remains unchanged and is J <
~0.1A. It should be noted that the central lines of iso-
lated N donors and their clusters coincide, with the con-
sequence that the central line is the strongest. In spectra
1a and 1b in Fig. 5, the reference signals from quartz
are marked by asterisks.

The relative intensities of the EPR signals from
nitrogen donor pairs and isolated nitrogen donors in
Fig. 5 are significantly different from those presented in
[27, 29]. Furthermore, the intensities of the three EPR
lines of isolated donors are approximately equal, which
suggests, in accordance with the data from [27], that the
concentration of isolated nitrogen donors is relatively
low. Therefore, the strong signals from donor pairs can-
not be explained in terms of the statistical distributions
presented above. Thus, it is likely that the nitrogen
impurity distribution in the SiC crystal is highly non-
uniform and there is a mechanism (operative, probably,
in the process of annealing) through which nitrogen
clusters are created. Furthermore, antiferromagnetic
ordering cannot arise in this case and the ground state
is paramagnetic. Such a reversed sequential order of the
energy levels may be due to the adjacent nitrogen atoms
being close to the impurity, with the consequence that
the spin state of the complex follows the Hund rules
rather than being similar to the spin state of the hydro-
gen molecule. Another conceivable reason may be the
presence of clusters of two or three nitrogen atoms hav-
ing one common unpaired electron (ionized nitrogen
molecules). In this case, the impurity state is paramag-
netic and the temperature quenching of EPR signals is
due to ionization.

In this work, we did not study SiC crystals with a
changed isotopic composition. However, it is clear that
crystals enriched in the isotope 30Si should be used to
increase the P donor doping level. Estimates show that
in this case the intensity of EPR signals increases sig-
nificantly because of the EPR line narrowing.
P
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Abstract—In the context of spin-fluctuation theory, the possibility of formation of Anderson localized states
caused by a strong scattering of electrons by spin density fluctuations in almost ferromagnetic semiconductors
is considered. The results are applied to FeSi. © 2003 MAIK “Nauka/Interperiodica”.
1. Magnetic semiconductors based on transition-
and rare-earth-metal compounds undergo electron
insulator–metal transitions which manifest themselves
differently in various substances and are characterized
by features whose nature remains unclear. The
observed correlation between magnetic and electrical
properties undoubtedly attracts interest of both experi-
mentalists and theoreticians in such compounds. Nev-
ertheless, despite the numerous approaches proposed to
explain this phenomenon, there is still no adequate
commonly accepted theory.

For example, in ferromagnetic semiconductors
based on lanthanum manganites with the perovskite
structure, the transition from the metallic to semicon-
ducting state occurs as the temperature is increased.
This phase transition takes place in a ferromagnetic
phase, and its temperature virtually coincides with the
Curie temperature TC. Further, this transition is accom-
panied by an abrupt change in the transport and optical
properties. In [1], it was shown that the relevant effects
observed in lanthanum manganites cannot be associ-
ated with the specific features of these compounds
(Jahn–Teller effect, double exchange), since in ferro-
magnetic semiconductors with similar properties, such
as EuO, EuS, and CdCr2Se4, these features are absent.
For the description of the properties of lanthanum man-
ganites, a phase-separation model was suggested in [1,
2], from which it follows that an increase in tempera-
ture results in the creation of a magnetically nonuni-
form state, because the ferromagnetic order near impu-
rity centers is destroyed to a lesser degree than in the
remainder of the crystal. As a result, spatial fluctuations
of magnetization occur and grow with temperature
(only below the Curie temperature), which enhances
the conduction electron scattering and, consequently,
causes an abrupt nonmonotonic change in conductivity
and in other electrical properties. In [3], it was sug-
gested that, in compositionally homogeneous ferro-
magnetic semiconductors, strong scattering and even
Anderson localization of the charge carriers can be
1063-7834/03/4506- $24.00 © 21042
caused by thermodynamic magnetic fluctuations grow-
ing with temperature. This idea is supported by the rela-
tionship between the squared magnetization and activa-
tion energy of charge carriers established from the tem-
perature dependence of resistivity for these
compounds. This relationship made it possible to quan-
titatively describe the metal–insulator transition in
heavily doped ferromagnetic semiconductors based on
lanthanum manganites [3].

Although the existing models of electron transitions
[1–3] are applicable only to ferromagnetic semiconduc-
tors with localized magnetic moments (LMMs), similar
transitions are also observed in almost ferromagnetic
semiconductors, e.g., in FeSi [4] and Fe1 – xCoxSi, x !
0.05. These compounds have low magnitudes of mag-
netization per site M0(0) near absolute zero. The char-
acteristic feature of such compounds is an increase in
the LMM amplitude with temperature and its subse-
quent saturation. As shown in [5], below the tempera-
ture of LMM saturation, transverse fluctuations of spin
density (fluctuations of direction) are not dominant (as
in ferromagnetic semiconductors based on transition-
and rare-earth-metal compounds); in parallel with
transverse fluctuations, there exist longitudinal fluctua-
tions caused by the temperature variation of the modu-
lus of LMMs. According to [6], the fluctuations cause
renormalization of the electronic spectrum and its
transformation with temperature. For example, it was
shown in [7] that, in the almost ferromagnetic semicon-
ductor FeSi, this renormalization results in the reduc-
tion of the band gap and its subsequent disappearance.
In [5–7], it was admitted that in weak itinerant magnets
there exist large, transverse and longitudinal, dynamic
d-electron spin density fluctuations that grow with tem-
perature and are not caused by the compositional inho-
mogeneity of magnetic semiconductors. However, the
issue of the scattering of electrons by these fluctuations
and the possibility of the Anderson localization was not
considered in those papers.
003 MAIK “Nauka/Interperiodica”
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2. To analyze the scattering of strongly correlated
electrons by their spin and charge fluctuations, we
invoke the Hubbard model with the Hamiltonian in the
form

(1)

where

(2)

is the Hamiltonian of noninteracting d electrons;

(3)

is the Hamiltonian of interatomic Habbard repulsion of
d electrons, which can be expressed in terms of the Fou-
rier transforms of the operators of charge and spin den-
sities (see, e.g., [5])

(4)

εk are the one-electron band energies; (ak, σ) is the
operator of creation (annihilation) of a d electron with
a quasi-momentum k and spin σ; U is the parameter of
interatomic Coulomb repulsion of d electrons; Nq =

, Nq, σ =  is the Fuurier trans-
form of the number density operator of d electrons at a

site with spin σ; q is the quasi-momentum; and  =

 is the Fourier transform of the operator of
the spin-density vector projection of d electrons at a site
on the quantization axis.

Calculation of the partition function of a system of
strongly correlated electrons is a complicated many-
body problem. One of possible methods of solving it is
based on the use of the Stratonovich–Hubbard transfor-
mation [5]

where a is an arbitrary real operator. The integration
variable can be considered to be a random quantity,
which fluctuates according to a Gaussian distribution.
Thus, the Stratonovich–Hubbard transformation allows
one to reduce the many-body problem of the motion of
interacting electrons to the one-particle problem of the
motion of a free electron in the field of a random poten-
tial.

Taking into consideration the well-known definition
of the partition function

(5)

H H0 HU,+=

H0 εkak σ,
+

ak σ,

k σ,
∑=

HU U Nn ↑, Nn ↓,

n
∑=

HU U Sq
z( ) 2

U Nq/2
2
,

q

∑–
q

∑=

ak σ,
+

Nq σ,σ∑ ak σ,
+

ak q σ,+k∑
Sq

z( )

σNq σ,σ∑

a
2( )exp π–1/2

x –x
2

ax+( ),expd∫=

Z Sp T τ H τ( ) τd

0

β

∫–
 
 
 

exp=
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[where Y(τ) is the Hamiltonian (1) in the Matsubara
interaction representation, β = 1/T and applying the
Stratonovich–Hubbard transformation to the partition
function (5), we obtain

(6)

Here, Z(V) = SpTτ{exp[–βH(V)]} is the partition func-
tion describing the motion of electrons in the field of
one of the configurations of a random potential with the
effective Hamiltonian

(6a)

in which Vν, σ is the random interaction potential of an
electron with inner exchange field ξ and charge field η,

(7)

ξq =  + (1 – δq, 0), ηq =  + (1 – δq, 0),
q = (q, ω2n), ω2n is the Matsubara boson frequency,

 and ak, σ are the Fourie transforms of the operators

of creation ( ) and annihilation (aν, σ) (in the Mat-
subara interaction representation) of d electrons with
spin σ at site n, k = (k, ω2n + 1), ω2n + 1 is the Matsubara

fermion frequency, and Nν, σ = aν, σ is the particle
number operator at site n in the Matsubara interaction
representation.

The Hamiltonian (6a) is similar to the Hamiltonian
of the random model alloy with “vertical” disorder con-
sidered by Anderson in [8] but differs from the latter in
that the depth Vν, σ of periodically located potential
wells varies randomly not only in space (as assumed in
[8, 9]) but also in time. In addition, the random poten-
tial Vν, σ (in which field an electron is moving) depends
on spin. However, these distinctions do not affect the
key conclusion (following from the solution of the
problem of the motion of an electron in potential wells
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with vertical disorder) that the Anderson localization of
electrons is possible.

As shown in [10], in the context of the present
approach and in the uniform local field approximation
[11], the one-electron Green function has the form

(8)

where

is the average over all possible configurations of ran-
dom potential,

is the Green function describing the motion of electrons

in the random potential Vν, σ, Σ(V) =  is the
self-energy, and

characterizes the scattering of electrons by fluctuations
of the random potential Vν, σ and describes the damping
of electron states.

In order to calculate the functional integrals deter-
mining the partition function (6) and to average the
Green functions, we invoke a method of steepest
descent. This procedure, as well as the results of esti-
mating the most probable values of the potential-well
depths and their fluctuations, is thoroughly described in
[6]; however, only the energy spectrum of electron
states with weak damping (Γ ! |µ ± Um |, where the
chemical potential µ is reckoned from the nearest band
edge) was found in [6]. It was shown that the spin and
charge fluctuations result in renormalization of the
electron density of states while splitting it into two sub-
bands corresponding to different spin projections onto
the quantization axis (fluctuating in space and time) and
thus changing the capacity of these subbands:

(9)

Gk σ, Gk σ, V( )〈 〉 ,=

…( )〈 〉 1
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2
/ UT( )

ν
∑–exp∫∫=

× Z V( ) ……( ) ξ ηdd( )

Gk σ, V( ) 1 ασVν σ,
z

/ Vν σ,+( ) 1
ω εk– αΣ V( )–
-------------------------------------

α
∑=

Vν σ,
2 Γ+

Γ k ω,( ) Gk σ–
1–

Gk qσ+ Gkσ–( )Vqz
2

q

∑=

+ Gk σ–
1–

Gk q σ–,+ Gk σ–,–( ) Vqx
2

Vqy
2

+( )
q

∑

gσ ε( ) 1
2
--- g0 ε αU ξν

2〈 〉+( )
α 1±=

∑=

× 1 ασ
M0 H/U+

ξν
2〈 〉

-------------------------+
 
 
 

,

P

where M0 is the uniform magnetization per site, H is an
external magnetic field in units of the doubled Bohr

magneton, 〈|ξν |2〉  = 1/N0  +  = 〈m2〉  +  =

m2 is the mean-square magnetic moment per site, mq =

1/ (D–1 + Xq) is the saddle-point value of the variable
rq at q ≠ 0, g0(ε) is the density of states of noninteracting
electrons (U = 0), σ = ±1 is the spin quantum number,

is the exchange enhancement factor, and

To estimate the damping, we take into account that
the Gaussian fluctuation halfwidth at a site is

(10a)

for spin fluctuations and

(10b)

for charge fluctuations. Eventually, the amplitude
(mean-square value) of fluctuations of the random-
potential magnitude at a site becomes equal to

(11)

where g(µ) = g0(µ + Um) + g0(µ – Um).

Next, we take into consideration that, according to
Anderson, the localized states form within the energy
width EC (EC is the mobility edge or the percolation
threshold reckoned from the nearest band edge). The
value of EC can be calculated at this point only within
simple models of electron density of states to within a
constant factor, EC = 〈(δVν, σ)2〉/∆, where ∆ is the effec-
tive band width. Then, following the chosen analogy
and in the context of spin fluctuation theory, we have

(12)

In the particular case of Um ! µ (the chemical
potential is measured from the band edge), the mag-
netic moment m changes with temperature only
slightly and
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Therefore, we have

A similar expression for the percolation threshold
was obtained in [3] for magnets with LMMs.

From Eq. (12), it follows that if the spin fluctuations
are strong (e.g., near the temperature of magnetic disor-
der or in strongly paramagnetic materials) and the g0(ε)
dependence is weak [i.e., g0(µ + Um) ≈ g0(µ – Um)],
then the percolation threshold is markedly shifted with
respect to the band edge and can become higher than
the chemical potential. Therefore, for strong magnets
(such as iron and nickel) with almost entirely filled d
bands and with the amplitude of spin fluctuations so
high that Um becomes larger or equal to the distance
from the chemical potential to the bang edge [i.e.,
g0(µ + Um) = 0 and (µ) = 0], we have EC = 0 and
localized states in the band are absent.

Thus, spin density fluctuations result not only in a
splitting of the electronic spectrum, but also in the cre-
ation of localized electronic states (rapidly decaying
with distance) within the energy range between EC and
the nearest band edge. The temperature dependence of
the mobility edge in this situation should be the stron-
gest in almost ferromagnetic semiconductors, in which
the energy gap in the electronic spectrum is small and
the magnitude of spin fluctuations changes consider-
ably with temperature and becomes comparable to the
gap width.

The metal–insulator transition temperature TMI can
be determined from the condition EC(TMI, H) = µ(TMI,
H). For this purpose, we expand the equation of the
magnetic state [7] into a power series in 〈m2(T)〉  –
〈m2(TC)〉 ,

(13)

and, considering that according to [15] 〈m2〉  = m2 –

 = (T/TC)4/3  (  is the magnetic moment near
the Curie temperature; this moment is defined from the
condition that the denominator of susceptibility tends
to zero at T  TC), finally obtain

(14)

where α = γ(TC, B) , and β = (5/2)α, B = UM0(H) + H.
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Expression (14) differs from the corresponding for-
mula derived in [3] in the exponent controlling the field
dependence, which is the result of the inclusion of
dynamic spin fluctuations. However, in the static limit
(ω ! T), this distinction disappears. Furthermore, the
coefficients α and β depend on the external magnetic
field rather than being constant, as in the case consid-
ered in [3]. This dependence is determined by the band
structure and can be different.

3. To discuss the possibility of electron phase transi-
tions in almost ferromagnetic semiconductors caused
by Anderson localization, we consider FeSi, whose
band structure is known [12]. According to band calcu-
lations [12], the one-electron spectrum of this com-
pound consists of two bands separated by an energy gap
Eg ≈ 0.02 eV (Fig. 1). Although the lower (valence)
band in FeSi is entirely filled, and the upper (conduc-
tion) band is empty, experiments show [13] that the
ground state of FeSi is metallic. Such a discrepancy
between the results of band calculations and the exper-
iment, as shown in [6], can be related to the fact that, at
ultralow temperatures, there exist relatively high zero-
point spin fluctuations in iron monosilicide. The esti-
mation of the amplitudes of zero-point spin fluctuations
made in [6] showed that, in accordance with Eq. (9), the
energy gap between the valence and conduction bands
is absent (Fig. 2a) and the chemical potential is located
in the allowed energy range. However, the charge and
longitudinal spin fluctuations were not considered in
[6]; i.e., the possible strong spin-fluctuation scattering
was ignored. The results obtained in this way described
the variation of electron characteristics of FeSi only at
T < 5 K and contradicted the experimental results in the
range from 5 to 100 K. Furthermore, in order to explain
the experimentally observed Curie–Weiss law for mag-
netic susceptibility, it was assumed in [6] that the den-
sity of states near the upper and lower edges of the
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Fig. 1. Simulation curve of the electron density of states
without renormalization due to spin fluctuations con-
structed using the data from [12]. Dotted vertical line corre-
sponds to the position of the chemical potential.
3
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valence and conduction bands must have large values of
the first derivative. This assumption is in contrast with
the results of band calculations made in [14] (see inset
to Fig. 1). Within our approach, the existence of spin
fluctuations (zero-point ones in the case of FeSi) should
lead to longitudinal spin and charge fluctuations and, as
a consequence, to Anderson localization of the elec-
tronic states with energies falling within an interval of
width EC below the top of the valence band and above
the bottom of the conduction band. If we assume that
the effective widths of the valence band ∆1 and of the
conduction band ∆2 are equal to each other, ∆1 = ∆2 =
0.33 (estimating them from the condition of equality of
the densities of states at the mobility edges), then the
electron states of the valence band at T  0, accord-
ing to Eq. (11), should be localized within the energy

range  > E(1) – ε > 0 and the conduction band states,

within the range  < ε – E(2) < 0;  and  are
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EC
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Fig. 2. Electron density of states in FeSi as a function of
energy at various temperatures. Dotted line corresponds to
the position of the chemical potential. Crosshatched regions
correspond to localized states.
P

the positions of the top and the bottom of the valence

and conduction bands, respectively, and  and 
are the mobility thresholds for the valence and conduc-
tion bands measured from E(1) and E(2), respectively
(Fig. 2a). Because of spin-fluctuation splitting, the
chemical potential lies in the range of delocalized elec-
tronic states (Fig. 2a) and the ground state of FeSi is
metallic. Further, with increasing temperature, the
amplitude of zero-point spin fluctuations reduces to a
greater extent as compared with the increase in ampli-
tude of thermal spin fluctuations [6]; therefore, the
spin-fluctuation splitting of electronic spectrum
reduces and the chemical potential at 5 < T < 50 K
becomes located within the range of the localized states
(Figs. 2b, 2c). In this temperature range, the spin-fluc-
tuation splitting of the electronic spectrum is so large
that the energy gap is closed (Figs. 2b, 2c). In this tem-
perature range, the hopping mechanism of conductance
is operative and the resistivity ρ must obey the law
lnρ ~ T1/4, which is observed in the experiment [13,
15]. The magnetic susceptibility in this temperature
range follows the Curie–Weiss law with the Curie con-

stant C = nloc, where nloc is the number of occupied
localized states. The latter value can be found from
Eqs. (9) and (11) to be

The obtained magnitude of the Curie constant C =
8.81 × 10–5 emu K/mol coincides with that found exper-
imentally [13]. A further increase in temperature makes
the zero-point spin fluctuations disappear and results in
the energy gap in the electronic spectrum opening
(Fig. 2d). Since thermal fluctuations of spin density
increase with T to a lesser extent than zero-point spin
fluctuations decrease, the energy gap opens abruptly.
Because of spin-fluctuation splitting, the gap width

Eg(T) is smaller than  (found from one-electron
band calculations) by the value 2Um:

(15)

Because of this, FeSi undergoes a phase transitions
to the semiconducting state at T ~ 50 K; its resistance,
temperature dependence typical of hopping mecha-
nism, abruptly changes to that typical of the activation
type of conduction. The activation energy Ea is
expected to differ from the energy gap because the

energy range of width  located below the energy

gap and the energy range of width  located above
the energy gap correspond to localized electronic
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states. Therefore, the activation energy of charge carri-
ers is determined as

(16)

and decreases with increasing temperature. However,
because of the linear increase in the amplitude of ther-
mal spin fluctuations with temperature, a decrease in Ea

with increasing T cannot be observed experimentally
through measuring the resistivity [ρ(T) ~ exp(–Ea/T)
and m(T) ~ T]. The activation energy found from the
temperature dependence of resistivity is determined by

the relation  =  +  +  and, according to
the estimation of the percolation threshold, should be

equal to  = 0.088 eV. This explains the discrepancy
between the activation energy found from the band cal-
culations and the experimental results. A further
increase in the amplitude of thermal spin fluctuations
with increasing temperature T again results in the dis-
appearance of the energy gap, in a shift of the percola-
tion threshold in the valence (conduction) band upward
(downward) with respect to the chemical potential and,
as a consequence, in the activation energy vanishing at
TMI ~ 81 K [see Eq. (13)]. Thus, at TMI ~ 81 K, FeSi
once again displays an electron phase transition, but
this time from a semiconductive to metallic state. Other
features and mechanisms of the formation of electrical
properties occurring in FeSi with a further increase in
temperature were considered in [10]. It was established
that the spin-fluctuation renormalization of the spec-
trum remains a deciding factor up to the temperature
T ~ 300 K, above which the formation of the metallic
state (particularly, an increase in the number of charge
carriers) is completed. Above 300 K, the dominant pro-
cesses regulating the temperature variation of electrical
resistance become the scattering mechanisms and ρ(T)
in FeSi increases with increasing T. Investigation of
FeSi in this temperature range was not the subject of
this study as results on this were published in [10].

Thus, the generalization of spin-fluctuation theory
given in this study has allowed us to describe the suc-
cession of electron transformations observed in almost
ferromagnetic semiconductors. Based on the present
analysis of the experimental data on FeSi, we may con-
clude that strong spin-fluctuation scattering can occur
and may be responsible for the occurrence of localized
electronic states. Taking account of this factor is impor-

Ea EC
1( )

EC
2( )

Eg
0( )

2Um–+ +=

Ẽa EC
1( )

EC
2( )

Eg
0( )

Ẽa
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tant for further development of our insight into electron
phase transitions in almost ferromagnetic semiconduc-
tors and semimetallic weak itinerant magnets. We may
also predict that the considered mechanism of electron
transitions will also take place in Kondo systems (e.g,
in SmB6), which behave similarly to FeSi [16].
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Abstract—The integrated-intensity ratio R of the Lβ and Lα lines in x-ray emission spectra of 3d transition
metal oxides was measured. The magnitude of the ratio was found to depend nonmonotonically on the atomic
number of the 3d elements, with a sharp rise in the middle of the series. In terms of the theory of one-electron
resonant x-ray scattering in a solid, a simple relation was derived connecting this ratio with the spin polarization
of occupied and empty d states. The calculated values of R qualitatively reflect the behavior of the measured
I(Lβ)/I(Lα) ratio on the atomic number of 3d elements. Thus, the existence of a dependence of the integrated-
intensity ratio of Lβ and Lα lines on the atomic magnetic moment has been established. All calculated R curves
lie above the I(Lβ)/I(Lα)exp data, because not all factors accompanying the x-ray emission process were included
in the calculation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The x-ray emission spectra of transition metal com-
pounds exhibit multiplet splitting into two lines, Lα and
Lβ (Fig. 1). The first line derives from the radiative elec-
tron transition from the 3d valence states to the inner
2p3/2 (L3) level, while the Lβ line is emitted in transition
of the 3d electron to the 2p1/2 (L2) level. The energy
level splitting of states with a total angular momentum
j = l + s equal to 1/2 or 3/2 (l is the orbital angular
momentum, and s is the 2p-hole spin) is caused by the
spin–orbit coupling and varies from 5 eV for Sc to
17 eV for Ni. The number of states with different pro-
jections of the total angular momentum is given by the
factor 2j + 1; hence, the L2 subshell contains two states
and the L3 subshell, four. Considered in terms of a sim-
ple diagram, the excitation probability of the L2 level is
one half that of the L3 level; therefore, it follows that the
intensity ratio of the Lβ and Lα emission lines should be
the same for all transition elements and equal the statis-
tical value 1/2. Experiments, however, yield a com-
pletely different pattern: the integrated line intensity
ratio depends on the atomic species, and its value varies
over a broad range from 0.2 to 0.7.

A similar problem of the ratio between the L2 and L3
line intensities was studied in absorption spectra (see,
e.g., [1]). The deviation of the magnitude of the ratio
from its statistical value 1/2 is caused by the interaction
of the core hole with the valence electrons, which par-
tially destroys spin–orbit coupling or, in other words,
mixes states with total angular momenta j = 1/2 and 3/2,
thus bringing about a redistribution of the intensity
1063-7834/03/4506- $24.00 © 21048
between the two main lines. The intensities can be
quantified only by way of complete numerical calcula-
tion for a free atom or an atom acted upon by a crystal
field. Within this many-electron approach, it is fairly
difficult to establish the main physical factors govern-
ing the magnitude of the intensity ratio.

The ratio between the Lβ and Lα x-ray emission
intensities in copper compounds was studied in [2].
This ratio is usually less than its statistical value
because of the stronger absorption the Lβ radiation suf-
fers in matter compared to Lα (the self-absorption
effect), as well as due to the shorter lifetime of the L2

hole. The latter is determined by the additional decay
channel associated with the L2L3V Koster–Kronig tran-
sition [3, 4]. This transition involves valence electrons
and, hence, one may expect the transition probability to
depend on the type of chemical bonding.

The main efforts of researchers have been focused
on revealing fine differences in Lβ and Lα emission
between various compounds of the same transition ele-
ment and on establishing an empirical correlation of the
magnitude of the ratio with valence in chemical com-
pounds. For the manganese oxides, the I(Lβ)/I(Lα) ratio
decreases in the order MnO–Mn3O4–Mn2O3–MnO2,
i.e., with increasing degree of manganese ion oxidation
[5, 6]. In copper oxides, one observes the opposite situ-
ation, with the I(Lβ)/I(Lα) ratio increasing as one
crosses over from Cu2O to CuO. This effect was
employed to analyze the chemical state of copper [7–
11]. It was shown that an increase in covalency of
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) X-ray Mn Lα, β emission spectra of the manganese oxides MnO, Mn2O3, LiMnO2, LaMnO3, SrMnO3, and MnO2. MnO
was chosen to illustrate isolation of the Lα and Lβ components. (b) Fe Lα, β spectra of the iron oxides FeO, FeTiO3, Fe2O3, LiFeO3,
CuFeO2, La0.85Sr0.15, FeO3, and SrFeO3.
cuprates for the same formal copper ion valence results
in a decrease in I(Lβ)/I(Lα) [10].

This study was aimed at establishing the main rela-
tions governing the formation of the Lβ and Lα emission
lines; therefore, we investigated spectra of compounds
of elements of the whole transition series. A compari-
son of experimental data obtained in emission with
similar data for absorption [12, 13] demonstrates a
clearly pronounced difference in behavior between the
emission and absorption spectra. The L2/L3 absorption
ratio is the largest at the beginning of the transition
series, in atoms with a small number of 3d electrons,
whereas the maximum of the Lβ/Lα emission ratio falls
on the manganese atom located in the middle of the
series and possessing a large magnetic moment, with
the ratio falling off as one proceeds to the extremes of
the series. This apparently means that emission forms
through an additional physical mechanism which does
not operate in absorption. Note that this mechanism
plays an active role: rather than reducing the magnitude
of the I(Lβ)/I(Lα) ratio, as is characteristic of the above
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
relaxation mechanisms (self-absorption, Koster–Kro-
nig transition), this mechanism increases the ratio
above its statistical value. This is the mechanism of
atomic magnetic moments. The absorption intensity for
each of the states of the subshell depends on the spin
polarization  of the empty 3d states to which the
electron transfers from the inner 2pj, mj state. Similarly,
the emission cross section contains a contribution from
the 3d electron spin polarization M. Summation over
the states making up an energy level results, however,
together with averaging over photon polarization, in a
reduction of this M-odd contribution to the resultant
signal, both in absorption and emission. This occurs if
the emission transition is considered, as usual, sepa-
rately from the core hole excitation process. In actual
fact, photon emission is only a closing event in the pro-
cess of resonant scattering of exciting primary photons
or electrons with the participation of the inner-shell
states. This approach sheds light on new features in
emission spectra [14, 15] which defy explanation
within the concept of independent absorption and emis-
sion events. In this particular case, it will be shown that

M

3
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a second-order process gives rise to an explicit depen-
dence of spectral emission intensity on atomic mag-
netic moment, because the emission cross section
depends on the product . This even contribution is
preserved under subsequent summation over states
with different angular-momentum projections mj.

This communication provides a quantitative
description of inelastic resonant x-ray scattering in a
solid with allowance for the angular dependence of the
cross section of this process and its dependence on the
exciting radiation polarization. The theoretical results
obtained can be used to devise new experiments on res-
onant scattering of synchrotron radiation and for
extracting information from such experiments on the
local characteristics of compounds. Next, we consider
emission spectra averaged over the emergence angles
and polarization and derive simple relations for the
integrated-intensity ratio of the Lβ and Lα lines. The
results are employed in the interpretation of the experi-
mental data obtained for the oxides of transition metals.
The intensity ratio is shown to be related to the magni-
tude of the atomic magnetic moments.

2. MEASUREMENT OF X-RAY SPECTRA

All the compounds studied, with the exception of
Co2O3 and Ni2O3, were single phase and close to sto-
ichiometric in composition, except FeO, which is
always deficient in metal. Co2O3 contains a Co3O4
impurity, and the so-called Ni2O3 reagent contains,
when used in air, a certain amount of water [16]. Sam-
ples of binary oxides were prepared by solid-phase syn-
thesis. The techniques employed in the preparation and
characterization of these samples are described in con-
siderable detail elsewhere [17–19]. The FeO and
CuFeO2 samples were single crystals [20, 21].

X-ray Lα, β emission spectra were obtained on an
RSM-500 x-ray spectrometer under electron excitation.
The x-ray radiation was decomposed with a grating of
600 lines/mm having a 6-m radius of curvature. The
spectra were calibrated with the Lα lines of the corre-
sponding metals, whose energies were taken from [22].
The x-ray tube was operated at 4 kV and a current of
about 0.3 mA, which prevented the materials from
decomposing under electron beam bombardment. The
x-ray radiation was measured with a VÉU-6 open-aper-
ture secondary electron multiplier with a CsI photo-
cathode. The spectra were corrected for detector effi-
ciency.

3. X-RAY L EMISSION SPECTRA
OF TRANSITION METAL OXIDES

Figure 1a presents Mn Lα, β x-ray emission spectra
of the manganese oxides MnO, Mn2O3, LiMnO2,
LaMnO3, Li2MnO3, SrMnO3, and MnO2. The case with
MnO exemplifies isolation of the Lα and Lβ compo-

MM
PH
nents. In Fig. 1b, Fe Lα, β x-ray emission spectra of the
oxides FeO, FeTiO3, Fe2O3, LiFeO2, CuFeO2,
La0.85Sr0.15FeO3, and SrFeO3 are displayed.

The I(Lβ)/I(Lα) ratio for the manganese oxides
decreases with increasing degree of oxidation of the
manganese ions (in Fig. 1a, from top down). In iron
oxides, this effect is less pronounced, although one also
observes a falloff of the relative intensity I(Lβ)/I(Lα)
with increasing formal valence of iron ions in the
oxides.

A comparison of the I(Lβ)/I(Lα) values obtained on
the same sample under different excitation conditions
(by photons and electrons) did not reveal any system-
atic differences between these cases. The observed dif-
ference does not exceed the average error of either
method of ±(0.03–0.04).

To find the I(Lβ)/I(Lα) ratio for TiO and Ti2O3, we
made use of the spectra from [23]; for V2O3, from [24];
and for Cr2O3, spectra measured by us and from [25].

4. THEORETICAL ANALYSIS

The cross section of scattering of monochromatic
radiation accompanied by emission of a photon of
energy "ω' and polarization vector u' into a solid angle
dΩ' in direction k', resulting from an electron transition
from an occupied valence state m' of energy  to the
inner-shell state c of energy Ec, can be written in the
form

(1)

Here, α = e2/"c is the fine-structure constant, c is the
velocity of light, " is Planck’s constant, and e is the
electronic charge. The process starts with excitation of
an electron in an inner-shell state through a dipole tran-
sition to empty valence-band states with quantum num-
bers m and energies εm by absorption of a photon of
energy "ω and polarization vector u propagating in
direction k. The imaginary part of the energy Γc pro-
vides the decay rate of the core-level hole. The transi-
tion matrix elements are written in the dipole approxi-
mation.

Figure 2 sketches the energy diagram of the inelastic
scattering process. As follows from Eq. (1), in the case
of normal emission, the processes of the core-level hole
excitation and of the emission itself are separable.
Using the relation

(2)

εm'

dσc k' k,( )
dΩ'd "ω'( )
-------------------------- α 2"

2ω'
3ω

c
2

----------------- c〈 |u'r' m'| 〉 m〈 |ur c| 〉
Ec "ω εm– iΓ c–+
--------------------------------------------

2

m'm

∑=

× δ εm' "ω εm– "ω'–+( ).

1
Ec "ω εm– iΓ c–+
--------------------------------------------

2 π
Γ c

-----δ Ec "ω εm–+( ),≅
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one can present the resonant scattering cross section at
the core level c as

(3)

Here,

(4)

is the cross section of the core-hole excitation through
electron transition to empty valence states with an
energy ε = "ω – |Ec |.

The quantity

(5)

describes the probability of radiative transitions of
valence electrons from states with energy ε' = "ω' – |Ec |
to the core level. The photon energy in Eqs. (4) and (5)
can be replaced by the binding energy of the core level
"ω ≅  "ω' ≅  |Ec |.

The inner-shell 2p states in atoms of transition ele-
ments are split by spin–orbit coupling into two groups
with a total angular momentum j = l + s, which can take
on two values, j = 1/2 and 3/2. Their angular and spin
wave functions are given by well-known combinations
of spherical harmonics and spin functions [15]. The

valence states |m〉  =  (k is the wave vector, i is the
band index, s is the spin) in a solid can also be expanded
in spherical harmonics Ylm centered on the excited atom

(6)

Here, Rel, ik(r) are the radial parts of the solution of the
Schrödinger equation with an orbital angular momen-

tum l and energy ε =  inside an MT sphere. The

expansion coefficients  can be found from calcu-
lations of the band structure.

We express the scalar product of vectors in dipole
matrix elements through spherical functions

(7)

and cast the absorption amplitude squared 

(8)

dσc

dΩ'dε'
---------------- σc ε( )

dγc ε'( )
Γ cdΩ'dε'
----------------------.=

σc ε( ) α4π2
"ω m〈 |ur c| 〉 2δ εm ε–( )

m

∑=

dγc ε'( )
dΩ'dε'
-----------------

α"ω'
3

4π2
c

2
--------------- c〈 |u'r' m'| 〉 2δ εm' ε'–( )

m'

∑=

Φik
s

Φik
s r( ) alm ik,

s
Rεl ik, r( )Ylm

s r( ).
lm

∑=

εik
s

alm ik,
s

ur 1–( )q
u q– rq,

q 1± 0,=

∑=

m〈 |ur c| 〉 2δ εm ε'–( )
m

∑ f q
c ε( )u q– u q–*=
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in terms of the functions

(9)

The integrals of the angular parts in Eq. (9) can be cal-

culated in an explicit way. The coefficients 
squared are summed with the energy δ function to yield
the partial electronic spin densities of states (DOSs):

(10)

According to the dipole selection rules, in the case of
scattering at the L2, 3 level one can limit oneself to d
states with an orbital angular momentum l = 2; there-
fore, we subsequently drop this index. The functions

(ε) can be expressed through partial DOS of 3d
states with orbital angular momentum projections m
and spin orientations s = ↑ , ↓ . For instance, for an elec-
tron transition from state c = 2p1/2, 1/2 to the 3d band, we
find

(11)

The quantum numbers m = 0, ±1, ±2 are determined by
the dipole selection rules, and their weight, by the
matrix elements of the angular parts (Clebsch–Gordan
coefficients). The quantity R denotes the radial matrix
element of the 2p–3d dipole transition, which we
assume the same for all the six 2p states.

In what follows, we neglect the dependence of the
partial DOSs on the quantum number m and retain only
their dependence on the spin. This approximation

f q
c ε( ) 1

N
---- Φik

s〈 |rq Φc| 〉
2
δ εik

s ε–( ).
iks
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alm ik,
s

glm
s ε( ) 1

N
---- abn ik,

s 2
δ εik

s ε–( ).
ik
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f q
c

f q
c ε( ) R

2
/15( )
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↓

g1
↑
, q+ 1=

2/3( )g0
↓

g1
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, q+ 1–=
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↑
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=

SpinM4, 5

q', ω'

L2 L3

q, ω

Emission

Absorption

EF

3d2p1/2 2p3/2

Fig. 2. Energy diagram of inelastic x-ray scattering (q,
ω  q', ω') involving inner-shell L2,3 and spin-polarized
valence M4, 5 states.
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implies that the valence band is dominated by electron
exchange interaction.

We finally obtain for the absorption cross section (at
the core level c)

(12)

where σ0 = 4π2α|Ec | is a constant and the DOS-depen-
dent quantities

(13)

relate to the contributions from the scalar, dipole, and
quadrupole moments of the atom. The Stokes vector
components

(14)

characterize the degree of circular and linear polariza-
tion, respectively, of the incident electromagnetic wave.

The dependence on the angle θ between the spin
polarization of the atom and the direction of propaga-
tion of exciting radiation characterizes the anisotropy
of the absorption cross section. For unpolarized radiation
(Stokes vector P = 0), the angular dependence is deter-
mined by the small transition quadrupole moment Q:

(15)

For the “magic” angle θ = 55° (sin2θ = 2/3), cross sec-
tion (12) is determined only by the scalar part, σc(ε) =
σ0S. Averaging over all incidence angles θ produces the
same result.

Similar expressions are obtained for the emission
coefficient (5). Because the polarization of emitted
photons is not detected in the experiments, one should
sum over both their polarizations. Furthermore, obser-
vation is usually carried out at angles close to θ = 55°,
at which the quadrupole transition provides a negligible
contribution, thus permitting one to write the emission
probability in the form

(16)

The prime labels electron emission transitions from the
filled part of the valence band.

4.1. Integrated Line Intensity

The normal-emission cross section (3) for one
inner-shell state can be calculated as the product of the
absorption and emission probabilities. In experiments,
one determines the total signal due to two states (mj =
±1/2) with total angular momentum j = 1/2 and to four

σc ε( ) σ0 S P3D θcos+[=

+ Q/2( ) 1 P1+( ) 3/2( ) θsin
2

1–( ) ] ,

S 1/3( ) f 1 f 1– f 0+ +( ), D 1/2( ) f 1 f 1––( ),= =

Q 1/3( ) 2 f 0 f 1– f 1––( )=

P3 u–
2

u+
2
, P1– u–u+* u+u–*+= =

σc ε( ) σ0 S Q/2( ) 3/2( ) θsin
2

1–( )+[ ] .=

dγc

Γ cdΩ'dε
---------------------

αEc
3

Γ c2π"
2
c

2
-----------------------Sc' ε'( ),=

Sc' ε'( ) 1/3( ) f 1' f 1–' f 0'+ +( ).=
P

states (mj = ±1/2, ±3/2) with j = 3/2. Because a sum of
the products does not reduce to a product of the sums,
the emission signal is in no way proportional to the
absorption spectrum and is rather complex. In what fol-
lows, we consider integrated intensities of the emission
lines Lβ (2p1/2  3d transition) and Lα (2p3/2  3d
transition), which are determined by energy integrals
from a sum of expressions of the type of Eq. (3) over the
corresponding inner-shell states c = (j, mj)

(17)

Integrals (10) over the empty part (ε > εF) of the den-
sity of states of the 3d band (10), which enters functions

(ε) of Eq. (9), yield the number of empty d states 
(per atom), and integration over the filled part of the
DOS (ε' < εF) gives the number of d electrons, Ns, with
spin projections s = ↑ , ↓ . With the notation N = N↑ + N↓,

M = N↑ – N↓, and, for the empty states,  =  + 

and  =  – , we obtain (neglecting the differ-
ence in population between states with different quan-
tum numbers m) the following expressions for the inte-
grated cross sections for the Lβ and Lα lines:

(18)

(19)

where

(20)

a0 is the Bohr radius, E2p is the binding energy of the 2p
level, R is the radial dipole-transition matrix element,
Γj is the halfwidth of the level with j = 1/2, 3/2, and P3
and P1 are the degrees of circular and linear polariza-
tion of the exciting radiation, respectively.

The above relations can be compared with the
expressions for integrated intensities of absorption
lines obtained in the same approach

(21)
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Table 1.  Integrated intensity ratio for the transition metal monoxides: experimental values of I(Lβ)/I(Lα) and the ratio R cal-
culated from Eq. (27); mexp is the experimental value of the atomic magnetic moment

Compound TiO MnO FeO CoO NiO CuO ZnO

I(Lβ)/I(Lα) 0.40 0.73 0.46 0.38 0.24 0.34 0.28

M = mexp, µB 0.51 [29] 4.79 [30] 3.36 [31] 3.35* [32] 1.77 [33] 0.65 [34] 0

R 0.5 0.92 0.65 0.59 0.55 0.5 0.5

* With inclusion of the orbital contribution of 2.6µB [35].
The integrated intensity of absorption lines is deter-
mined by the number of empty spin 3d states in the
band. For unpolarized (P = 0) and even linearly polar-
ized exciting radiation, this intensity does not depend
on the magnetic moment of the atom. The emission
lines are determined as a sum of the products of the
numbers of filled and empty states in the band. Even in
the case of unpolarized excitation (or when averaged
over all incidence angles), the emission intensity
depends on the atomic magnetic moments

(24)

(25)

Using the above relations, we find the ratio of inte-
grated intensities of the 2p1/2 (Lβ) and 2p3/2 (Lα) lines:

(26)

where Γ2 and Γ3 are the halfwidths (decay rates) of the
corresponding levels, N = N↑ + N↓ is the number of d
electrons in the excited atom, M = N↑ – N↓ is the mag-

netic moment of the atom (in Bohr magnetons),  =

 +  is the number of empty states, and  =  –

 is the difference between the numbers of spin-up
and spin-down empty states.

Estimate (26) is also applicable to the case of x-ray
emission induced by electron excitation, because the
transition of a core 2p electron to valence 3d states
rather than to higher lying nd states is also most proba-
ble here since the Coulomb excitation intensity is
inversely proportional to the square of the energy trans-
fer. In this case, the part of the polarization vector is
played by the high-energy electron momentum transfer,
which is also approximately perpendicular to the beam
direction, as is the polarization vector of an electromag-
netic wave.

In deriving Eq. (26), we neglected the effect of self-
absorption on the Lβ line intensity; calculation of Γ2
requires knowledge of the mechanism of the Koster–
Kronig transition in solids. These processes, considered
in [26–28], remain presently open to question. Assum-
ing these factors to vary little along the 3d period, we
disregarded them, and, in our analysis of the depen-
dence of the Lβ-to-Lα line intensity ratio on the spin
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polarization of the filled and empty d states, used
Eq. (26) in a simplified form,

(27)

While the R figures are, for the above reasons, a priori
overestimates, the dependence of R on the atomic num-
ber of d elements is seen to mimic the experimental
I(Lβ)/I(Lα) relation well.

5. DISCUSSION OF EXPERIMENTAL 
RESULTS

Consider the monoxide series of transition ele-
ments. Table 1 lists measured values of the intensity
ratio of the Lβ and Lα lines, as well as the atomic mag-
netic moments derived from neutron diffraction mea-
surements [29–35].

We take the iron monoxide FeO as an illustrative
case to show how one can calculate the spectral-line
intensity ratio. The iron atom donates two s electrons to
an oxygen atom while retaining six d electrons; hence,
N = 6 and the number of empty states is  = 10 – 6 =
4. The experimental value of the magnetic moment is
3.36 Bohr magnetons. Thus, the difference between the
numbers of empty spin-up and spin-down states is  =

 –  = (5 – N↑) – (5 – N↓) = –M = –3.36 and their

product is  = –M2. Substituting these values into
Eq. (27) yields R = 0.65.

Results obtained in this way are presented in Fig. 3a
together with the experimentally measured integrated
line intensity ratios for the 3d metal monoxides and the
FeTiO3 compound. We readily see that estimate (27)
correctly reflects the general pattern of variation of this
quantity along the total series of divalent ions of the
transition elements. The ratio is maximum for the MnO
compound, which has the largest magnetic moment.
The experimental curve in Fig. 3 passes below the the-
oretically predicted values for the reasons pointed out
above.

A specific feature of the trivalent-metal compounds
Me2O3 is the direct involvement of the d electron in
chemical bonding. Table 2 presents measured values of
the intensity ratio for the Lβ and Lα lines, experimental
values of the atomic magnetic moments [36, 37], the

R 1/2( )NN 1/9( )MM+
NN 5/9( )MM+
---------------------------------------.=

N

M

N↑ N↓

MM
3
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Table 2.  Integrated-intensity ratio for the trivalent transition metal oxides: experimental values of I(Lβ)/I(Lα) and the ratio R
calculated from Eq. (27); mexp is the experimental value of the atomic magnetic moment; N ↑ N ↓  are spin configurations of
atomic electrons plus the d electron in the chemical bond at the times of absorption and emission

Compound TiO MnO FeO CoO NiO CuO ZnO

I(Lβ)/I(Lα) 0.40 0.37 0.48 0.41 0.34 0.19

mexp, µB 2.0* [36] 2.76* [36] 4.0* [36] 4.64 [37] 1.4* [36]

N ↑ N ↓  + bond

Absorption 1 ↑  + 1 ↑ 1.5 ↑ 0.5 ↓  + 1 ↑ 2.5 ↑ 0.5 ↓  + 1 ↑ 4 ↑  + 1 ↑ 4 ↑ 1 ↓  + 1 ↑ 4 ↑ 2 ↓  + 1 ↑ 4 ↑ 3 ↓  + 1 ↑
Emission 2 ↑ 2.5 ↑ 0.5 ↓ 3.5 ↑ 0.5 ↓ 5 ↑ 5 ↑ 1 ↓ 5 ↑ 2 ↓ 5 ↑ 3 ↓
R 0.53 0.52 0.55 0.74 0.61 0.55 0.52

* Atomic moment derived from effective moment in the Curie–Weiss relation.
intensity ratio calculated from Eq. (27), and the elec-
tronic configurations of atoms at the instants of excita-
tion and emission that were used in the calculation. The
atomic magnetic moments M labeled by an asterisk
were derived from the effective moments Meff obtained
in measurements of the temperature dependence of the
paramagnetic susceptibility using the expression

M(M + 2) = .

The magnetic moment in the Mn2O3 compound is
four Bohr magnetons. The fifth d electron with spin up
is involved in an oxygen bond. This result is indicated
in the third line of Table 2 as the sum 4↑  + 1↑ . Thus, we
obtain  = –4 and  = 10 – 4 = 6 for the absorption
stage. At the instant of emission, the d electron transfers
from the bond to the metal atom by screening the x-ray
hole to produce the 5↑  state with the values M = 5 and

Meff
2

M N

(a)

(b)
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Fig. 3. Integrated-intensity ratio I(Lβ)/I(Lα) for (a) divalent
transition-metal oxides and (b) trivalent-metal compounds
Me2O3. Vertical bars specify experimental error.
PH
N = 5. Substituting these figures into Eq. (27) yields R =
0.74.

According to neutron diffraction data, the magnetic
moment of the ground state in Fe2O3 is m = 4.64µB. This
state is not very stable; in any case, when a core hole
forms, the atom can transfer to a state of type 4↑1↓
(plus one spin-up electron in the bond). In this case, we
have  = –3 and  = 5. Similarly, for cobalt and
nickel, we assumed the configurations 4↑2↓  and 4↑3↓
specified in Table 2.

The calculated and experimental values of the inte-
grated line intensity ratio are shown in Fig. 3b. The Lβ-
to-Lα line intensity ratio is again the highest in the mid-
dle of the transition-metal series, for atoms with large
magnetic moments. As follows from Eq. (27), the mag-
netic-moment influence becomes less significant for
atoms with magnetic moments less than two Bohr mag-
netons. The relative line intensity in such substances is
dominated by other mechanisms, which above all con-
trol the lifetime of the L2-level hole [28].

Thus, an analysis of spectra based on the proposed
approach suggests that, in compounds with the d elec-
tron involved in chemical bonding, the effects associ-
ated with the formation of a core hole begin to play a
significant part in emission processes. These processes
include both spin flip and d-electron transfer from a
bond to the excited atom and, for heavy 3d elements,
another spin flip.

6. CONCLUSIONS

To sum up, experimental and theoretical studies
show that magnetic moments of atoms directly affect
the intensities of the Lβ and Lα lines. In atoms with large
magnetic moments, the magnetic mechanism is domi-
nant. It is this mechanism that accounts for the anoma-
lously large Lβ-to-Lα line intensity ratio in the series of
transition-metal compounds. As follows from theoreti-
cal estimates, the influence of magnetic moments on
the emission spectra should manifest itself most
strongly in experimental dependences of the fluores-
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cence on the angle of incidence and polarization of the
exciting synchrotron radiation.
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Abstract—The kinetics of pulse conduction in silver chloride single crystals is investigated in the temperature
range 12–300 K upon picosecond excitation with x-ray bremsstrahlung. It is found that the experimentally
observed concentration of conduction electrons is nearly twice as high as the concentration of electron–hole
pairs generated by an exciting pulse. This effect is associated with the chain multiplication of band charge car-
riers. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our earlier work [1], we investigated the kinetics
of pulse conduction in AgBr single crystals in the tem-
perature range 30–300 K upon excitation with x-ray
bremsstrahlung pulses of an electron accelerator. As
was shown in [1], the anomalous behavior revealed in
pulse conduction of AgBr differs drastically from the
behavior of pulse conduction in classical ionic crystals
[2–4]. The anomalies observed are as follows:

(1) The conductivity of AgBr upon picosecond exci-
tation increases for 3 ns after completion of the action
of an exciting pulse.

(2) The conduction pulse amplitude of AgBr consid-
erably exceeds (by at least two orders of magnitude) the
amplitude of conduction pulses in classical ionic crys-
tals under similar conditions.

(3) A comparison of the pulse conductivity upon
picosecond excitation with dosimetric data demon-
strated that the number of conduction electrons is
almost one order of magnitude larger than the number
of electrons generated by an exciting pulse in a sample.

An analysis of the observed anomalies revealed that
electronic excitation occurring in AgBr crystals
undergo a previously unknown multiplication with a
characteristic time of ~10–9 s.

In this work, we investigated the pulse conduction in
single crystals of the AgCl compound (also used in
photography) in order to elucidate whether the anoma-
lies observed in [1] are the specific features of AgBr or
if they are characteristic of silver halides.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The experiments were performed with an AgCl
crystal grown by the Stockbarger method from a high-
purity initial material, which was preliminarily purified
using zone melting (50 runs). Samples were cut from
1063-7834/03/4506- $24.00 © 21056
the single crystal and ground to a thickness of 100–
130 µm. Electrodes were applied by the development
technique, which made it possible to prepare a homoge-
neous silver film on the sample surface.

A GIN-540 needle-gap electron accelerator with an
anode from an aluminum film 0.9 mm thick was used
as an excitation source. This aluminum film completely
absorbed the electron beam. The pulse duration was
approximately equal to 50 ps, and the maximum energy
of electrons was ~200 keV. The use of the aluminum
foil as the anode was caused by the fact that we failed
to prepare samples of thickness d < 50 µm, which is
necessary for ensuring the uniformity of electron beam
excitation. For this reason, the excitation was achieved
by the bremsstrahlung generated upon complete
absorption of electrons in the aluminum anode.

A conduction current pulse induced in the sample
under x-ray bremsstrahlung was recorded using an
S7-19 oscilloscope. The scheme of the measuring setup
was described in detail in [1]. The time resolution of the
measuring technique was equal to 150 ps. The measure-
ments were performed in the temperature range 12–
300 K. The radiation dose absorbed in the sample per
exciting pulse was determined with TLD-K thermolu-
minescent dosimeters based on SiO2. The calculation of
the absorbed dose in the sample was carried out accord-
ing to the procedure described in [1].

The error in measuring the amplitude of conduc-
tion current pulses was no more than ±10%, and the
dosimetric measurements were performed accurate to
within ±20%.

3. EXPERIMENTAL RESULTS

Figure 1 displays a typical oscillogram of a conduc-
tion current pulse at a temperature of 300 K. It is worth
noting that the conduction current pulse in AgCl, as in
AgBr [1], rises with a lag (~2 ns) that is more than one
order of magnitude greater than the time resolution of
003 MAIK “Nauka/Interperiodica”
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the recording channel (150 ps). This effect is observed
over the entire temperature range 12–300 K. Under the
same experimental conditions, the amplitude of the
conduction current pulse in AgCl is five times smaller
than that in AgBr but at least one order of magnitude
larger than the amplitudes in alkali halide crystals and
α-Al2O3 [1–4].

The current–voltage characteristics are linear and
symmetric without any specific features. The resistance
of the samples was calculated from the slope of the cur-
rent–voltage characteristics. Then, the radiation-stimu-
lated conductivity at the maximum of the conduction
current pulse was determined with due regard for the
geometric sizes of the samples.

The dependence of the maximum conductivity σ(T)
calculated by this method is depicted in Fig. 2. This
dependence exhibits a nonmonotonic behavior with a
maximum at T = 70 K.

The data presented in Fig. 2 were processed using
the formula

(1)

where n is the concentration of conduction electrons
generated by an x-ray pulse, e is the elementary charge,
and µd is the drift mobility. The behavior of the temper-
ature dependence of the conductivity indicates the pres-
ence of electron attachment centers. In this case, the
drift mobility and the Hall mobility µh differ from each
other and are related by the expression [5]

(2)

where E is the energy separation between the trap and
the conduction band bottom; q1 and q2 are the statistical
weights of filled and empty traps, respectively; and
Nc = 2(2πmkT/h2)3/2 is the effective density of states in
the vicinity of the conduction band bottom. The statis-
tical weights q1 and q2 are related by the following for-
mula [5]:

(3)

Since the effective electron mass is determined to be
m = 0.3m0 [5], the quantity Nc can be represented in the
form

(4)

The Hall mobility at temperatures T > 40 K was
approximated by the expression [6]

(5)

The solid line in Fig. 2 corresponds to the results of
calculations from formula (1) with allowance made for
relationships (2)–(5) at the following parameters: E =
0.02 eV, N = 6.9 × 1016 cm–3, and n = 2.6 × 1016 cm–3

(according to the scale factor). It can be seen from

σ neµd,=

µd µh
1

1
q1

q2
----- N

Nc

------e
E/kT

+
---------------------------------,=

q1/q2 2.=

Nc 7.9 10
14

T
3/2

.×=

µh 30 e
280/T

1–( ) cm
2
/V s.=
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Fig. 2 that the results of the calculations are in good
agreement with the experimental data. The activation
energy E for attachment centers coincides with that
obtained by van Heyningen [5] in time-of-flight exper-
iments on the determination of the drift mobility in
AgCl. The nature of the attachment centers remains
unclear. In [5], it was assumed that these centers are
associated with mechanical defects formed upon treat-
ment of the samples.

The next series of experiments was carried out at a
fixed temperature T = 300 K by varying the excitation
density. For this purpose, we changed the distance
between the accelerator diode and the sample. The
experiments were performed as follows. The conduc-
tivity of the crystal was measured at a fixed distance

0.08

0.04

0

I, A

10 20 30 40

(a)

0.04

0.08

0 1 2 3 4 5
t, ns

(b)

Fig. 1. Oscillograms of the conduction current pulses for the
AgCl crystal. Time base: (a) 10 and (b) 2.5 ns/div. The
dashed line shows the exciting pulse.

0

0.4

0.8

1.2

100 200 300
T, K

σ × 103, Ω–1 cm–1

Fig. 2. Temperature dependence of the maximum conduc-
tivity for the AgCl crystal. Points are the experimental data.
The solid line represents the results of calculations accord-
ing to formula (1) with due regard for relationships (2)–(5).
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between the diode and the sample. The results were
averaged over ten pulses. Then, the dosimeters were
mounted in place of the sample and the dose D
absorbed in the sample was measured and calculated
according to the procedure described in detail in our
previous work [1]. In the calculations, we used the dose
averaged over ten dosimeters. The absorbed radiation
dose density in the sample was determined from the
formula

W = Dρ, (6)

where ρ = 5.56 g/cm3 is the density of AgCl. The exper-
imental dependence is depicted in Fig. 3.

4. DISCUSSION

From the above results, it is evident that anomalies
similar to those revealed in AgBr [1] are also observed
in AgCl. These anomalies are as follows: (i) a rise in
conduction current pulses for ~2 ns after completion of
the action of exciting pulses and (ii) anomalously large
conduction pulse amplitudes (even though this effect is
less pronounced than in AgBr [1]).

0

0.1

0.2

0.3
σ × 103, Ω–1 cm–1

1 2 3 4 5
W × 105, J/cm3

Fig. 3. Dependence of the maximum conductivity on the
absorbed radiation dose density for the AgCl crystal.

2.5

2.0

1.5

η

1 2 3 4 5
W × 105, J/cm3

Fig. 4. Dependence of the multiplication factor for free
charge carriers on the absorbed radiation dose density for
the AgCl crystal.
P

As was noted in [1] and Section 1 of the present
work, these findings suggest that the multiplication of
electronic excitations occurs after completion of the
action of an x-ray pulse. The experimental data pre-
sented in Section 3 make it possible to calculate the
multiplication factor η for free charge carriers. The
multiplication factor η can be represented in the form

(7)

Here, n is the concentration of electrons involved in the
conduction [this concentration can be calculated from
formulas (1)–(5) and the measured conductivity σ] and
ng is the concentration of electron–hole pairs generated
by the exciting pulse. As a rule, the concentration ng is
described by the relationship

(8)

where W is the absorbed radiation dose density [see
expression (6) and Fig. 3] and ε is the mean energy of
generation of an electron–hole pair. The concentration
ng in AgCl was estimated from the experimental value
ε = 7.6 eV/pair taken from [7].

The results of calculations with the use of the data
presented in Fig. 3 are shown in Fig. 4. According to
these calculations, we have η = 1.93 ± 0.08. Therefore,
as in the case of AgBr, we can draw the conclusion that
the experimentally observed concentration of conduc-
tion electrons is approximately twice as high as the con-
centration of electrons generated by the exciting pulse.
It is worth noting that this effect in AgCl is somewhat
less pronounced than in AgBr [1].

5. CONCLUSIONS

Thus, the anomalies revealed in pulse conduction of
silver halides indicate that electronic excitations occur-
ring in these systems undergo multiplication.

The observed multiplication differs from the well-
known collision ionization multiplication that is widely
used for recording nuclear radiation (the time scale of
the revealed process is approximately equal to 10–9 s,
whereas the time scale of the processes associated with
the collision ionization is shorter than 10–12 s). Possibly,
the revealed multiplication is a chain process similar to
that observed earlier in heavy metal azides [8, 9].

It should also be noted that the quantitative differ-
ence in the effect of electronic excitation multiplication
in AgBr and AgCl correlates qualitatively with the dif-
ferent photosensitivities of these materials. This
implies that the observed effect is associated with the
high yield of centers of a latent image and the high pho-
tosensitivity of silver halides.

η n
ng

-----.=

ng
W
ε
-----,=
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Abstract—This paper reports on the results of investigations into the effective complex elastic compliances of
a composite in the form of a multilayer piezoactive medium consisting of layers of polar dielectrics connected
in series. Exact solutions for normal and inverse Maxwell–Wagner relaxations of elastic compliances are
derived for the first time. The mechanical hysteresis loops corresponding to either a decrease or an increase in
the elastic energy are analyzed. It is demonstrated that relaxation of elastic constants occurs only in piezoactive
media. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interlayer polarization that is accompanied by
dielectric dispersion and losses in ac electric fields,
which are referred to as the Maxwell–Wagner relax-
ation, arises in inhomogeneous dielectrics due to the
accumulation of free charges at interfaces between the
components. This mechanism of polarization has been
most thoroughly described by Maxwell and Wagner in
their classical works (see, for example, [1, 2]). For a
long time, all problems associated with the Maxwell–
Wagner relaxation were regarded to be completely
investigated and well understood and this subject did
not attract research attention. Interest in the Maxwell–
Wagner relaxation, especially in the Maxwell–Wagner
relaxation occurring in piezoactive media [3, 4], was
renewed only in the 1980s–2000s with a drastic
increase in the number of research works and expan-
sion of the commodities market for thin ferroelectric
films, which are widely used in integrated memory
devices, microprocessors, smart cards, actuators, sen-
sors, etc.

However, theoretical investigations in this field have
been started only in the very recent past; for the most
part, they are based on substantial simplifications. For
example, in their pioneering work on the Maxwell–
Wagner piezoelectric relaxation in layered ferroelectric
heterostructures, Damjanovic et al. [4] used a simpli-
fied model which was proposed earlier by Newnham
et al. [5]. Within this model, the mechanical boundary
conditions and the lateral piezoelectric response are
ignored. It should be noted that, for layered composites
with a connectivity of the 2–2 type [5], it is possible to
obtain exact, but cumbersome, solutions. In our recent
work [6], we analyzed an accurate model with primary
emphasis on piezoelectric and dielectric relaxations,
but formulas for elastic compliances were not given and
1063-7834/03/4506- $24.00 © 21060
the relaxation of elastic constants was considered very
briefly. Some indications of elastic Maxwell–Wagner
relaxation were described by Ueda et al. [3]. The
present work was devoted to the study of the elastic
Maxwell–Wagner relaxation in a bilayer (multilayer)
piezoactive system consisting of layers of polar dielec-
trics connected in series. A theoretical approach was
proposed and computer programs were developed in
order to investigate the normal and converse piezoelec-
tric effects. These programs permitted simulation and
analysis of the Maxwell–Wagner relaxation of the
effective elastic constants. The formulas derived and
the results of our calculations were compared with the
model used in [4, 5].

2. MODEL

Let us consider a multilayer composite with a con-
nectivity of the 2–2 type [5], which consists of two
components with numbers n = 1, 2 and volume concen-
trations θ1 and θ2. It is assumed that the composite lay-
ers have an infinite length along the directions OX1 and
OX2 in a rectangular coordinate system (X1X2X3). The
vectors of the normal to the interface between the layers
are parallel to the OX3 direction. Both components are
polarized along the OX3 direction and are transversely
isotropic in the X1OX2 plane. In what follows, we will
use the symbols ξi, σj, Ek, and Dk for the components of
the strains, stresses, electric field, and electric induc-
tion, respectively, and the matrix forms for all the elas-
tic compliances sij (at E = 0) and piezoelectric coeffi-
cients dki.

If the homogeneous external harmonic stress 
with the frequency ω (quantities averaged over the
composite layers are denoted by asterisks) is applied

σ3*
003 MAIK “Nauka/Interperiodica”
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along the polar axis OX3 in the absence of other compo-
nents of the external electric fields and mechanical

stresses, the internal electric fields  and mechanical

stresses  =  are induced in both layers. The

appropriate piezoelectric equations and boundary con-
ditions are as follows:

(1)

where  = ε(n) – iγ(n)/ω are the complex permittivities

of the mechanically free (σ = 0) crystal. After averaging

the strain components  in Eqs. (1), we obtain

(2)

Next, we determine  and  from Eqs. (1) and

substitute these quantities into relationship (2). As a
result, we obtain the general formula for the elastic

compliance :

(3)

where

(4)

A similar procedure of averaging the strain components

 makes it possible to derive the general formula for

the elastic compliance :
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(5)

The terms proportional to θ1θ2 appear with the inclu-

sion of the internal mechanical stresses  =  and

electric fields , which are induced in both layers by

the external stress . Formulas for  and  can be
derived using the above procedure upon applying an
external harmonic stress  to the composite.

Since the permittivities  are complex quantities,
all the permittivities, piezoelectric coefficients, and
elastic compliances of the composite also prove to be
complex and frequency dependent.

The frequency dependences of the elastic compli-
ances  of the composite are determined from the
Debye formulas [2, 4]:

(6)

where  =  – , , and  are the relax-
ation strength and the static (ω  0) and high-fre-
quency (ω  ∞) elastic compliances of the compos-
ite, respectively. The relaxation time τ, which was
determined from the positions of the maxima of the
imaginary parts of the elastic compliances for the com-
posite, takes the form

(7)

3. RESULTS AND DISCUSSION

In the case when ωτ ! 1, the distribution of the

internal electric fields  and  is determined by
the imaginary parts of the complex permittivities; i.e.,
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γ(n)/ω  ∞. Hence, for the static elastic compliances,
we can derive the following expressions:

(8)

From the boundary condition  = , it fol-
lows that, at low frequencies (when ω  0), we have

  0 and   0; i.e., the short-circuit mode
is observed. As a result, the elastic compliances s*E of
the composite can be calculated from formulas (8). In
the case when ωτ @ 1, the distribution of the internal

electric fields  and  is determined by the real
parts of the complex permittivities ε(n). In this situation,
the short-circuit mode is disturbed and the elastic com-
pliances of the layers and the composite change and
tend to the quantities s(n)D and s*D but do not become
equal to them. As can be seen from Eqs. (3)–(5) and the
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Fig. 1. Normal Maxwell–Wagner relaxation of the effective
elastic compliances of a bilayer composite consisting of

PKR-7M and PKR-1 ceramics: (1) , (2) , (3) ,
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corresponding equations for  and , the real parts

of , , and –  decrease (normal relaxation) and

only the real part of –  increases with an increase in
the frequency (inverse relaxation). The type of relax-
ation of the effective elastic compliances  of the
composite is determined by the magnitude and sign of
the piezoelectric coefficients dij, which contribute to the

quantities sij and . For all the elastic compliances,

except , it is possible to trace the hysteresis loop
counterclockwise, which corresponds to energy losses.
The inverse relaxation of  is in accordance with an

uncommon relationship: –  = –[  – ( )2/ ] >

– , which is satisfied for both single-domain and
polydomain ferroelectric crystals with different types
of domain structure [7, 8]. It should be emphasized that
the hysteresis loop of , contrary to classical notions
(see, for example, [4]), is traced clockwise, which cor-
responds to a partial gain in the elastic energy. How-
ever, as will be shown below, the total energy losses are
always positive. The signs of the real and imaginary
parts of all the elastic compliances, except for ,
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coincide with each other. Thus, the mechanism of elas-
tic Maxwell–Wagner relaxation involves redistribution
of the electric fields with variations in the frequency of
the mechanical stress applied and resembles the clamp-
ing effect [7–9]. The elastic Maxwell–Wagner relax-
ation occurs only in piezoactive media and is absent in
composites with nonpolar components.

Figures 1–3 illustrate the elastic relaxation of a com-
posite consisting of two piezoelectric ceramics with
significantly different properties, namely, the PKR-7M
ceramic used as the first layer and the PKR-1 ceramic
used as the second layer (see [10] and table); both were
prepared at the Rostov State University. Although the
Maxwell–Wagner relaxation of the elastic constants
was not analyzed in [4], the relaxation of the elastic
compliance  can also be considered in the frame-
work of the simplified model described in [4, 5]. The
appropriate expressions can be obtained from relation-

ships (3)–(7) under the assumption that  =  = 0.
With this simplification, the contribution from the inter-

nal mechanical stresses  =  to the elastic com-

pliance  is disregarded and the curve (ω) which
was constructed from the data obtained within the
model used in [4], passes above the curve calculated in
terms of the precision model proposed in the present
work. A comparison of these curves demonstrates that
the inclusion of the additional internal mechanical

stresses  [11], which develop upon applying an

external mechanical stress  to the layered compos-
ite, is of considerable importance.

Another interesting, qualitatively new result (as
compared to the simplified model [4]) is the depen-
dence of the elastic compliance  and the relaxation

time τ on  and  which is observed for normal
and inverse relaxations. It should be noted that the
curve (ω) coincides completely with the curve

(ω) curve; i.e., we have (ω) = (ω)at any fre-
quency, as can be seen from Figs. 1 and 2. This coinci-

dence results from the equality  –  =  –

 = ( )2/  due to the transverse isotropy of the
composite under consideration (isotropy in the plane,
∞mm symmetry). Therefore, upon simultaneous appli-
cation of the mechanical stresses  and  to the
composite (biaxial stress), the total energy loss

(9)
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is positive for any sign of  and , even though the

contribution (ω)  to the energy loss can be
negative, which, in turn, can lead to a partial increase in
the elastic energy.

We focused main attention on the case of equal con-
centrations θ1 = θ2 = 0.5, when the degree of dispersion

of the effective elastic constants  is relatively
large. For θ1/θ2  0 or θ1/θ2  ∞, the degree of dis-
persion approaches zero. Consequently, the possibility
exists of controlling the degree of elastic Maxwell–
Wagner relaxation not only through the specific choice
of the physical constants of the components but also by
varying their relative volume concentrations (Fig. 3). It
is interesting to note that, in the case under consider-

ation, all the quantities  have a maximum at
the same concentration θ2 = 0.27.

4. CONCLUSION

It was demonstrated that, for a piezoactive compos-
ite consisting of two types of layers with complex per-
mittivities, the majority of the effective elastic compli-
ances undergo normal Maxwell–Wagner relaxation.
However, for certain elastic constants, the Maxwell–
Wagner relaxation can be inverse.
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Abstract—A system of two different isotropic dielectric plates aligned parallel to each other and separated by
a gap is considered. For a sufficiently large gap, electromagnetic eigenwaves in the plates are virtually indepen-
dent and dispersion curves for the studied system are characterized by an infinite set of intersections. A decrease
in the gap thickness leads to coupling between the wave fields and the disappearance of the intersection points
due to divergence of the dispersion curves. Each of the dispersion curves of the spectrum transformed under the
action of coupling is formed by a set of adjacent portions of initially independent branches corresponding to
different plates. A gradual change in the frequency along one of the new dispersion curves results in a periodic
displacement of the localization zone of the wave field from one plate to the other. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION
The purpose of this paper is to demonstrate that a

sufficiently weak coupling between electromagnetic
waves in a sandwich structure consisting of two isotro-
pic plates separated by a gap leads to a radical transfor-
mation of the whole system of dispersion curves for
eigenwaves in noninteracting plates. This transforma-
tion is characterized by a specific frequency depen-
dence of the localization of the main zones of the wave
field: a gradual change in the frequency is accompanied
by a periodic displacement of these zones from one
plate to the other. Let us describe this phenomenon in
more detail.

2. FORMULATION OF THE PROBLEM
We consider a system of two isotropic plates that are

aligned parallel to each other and have thicknesses 2d

and  (Fig. 1). The plates are characterized by the
permittivities ε and , respectively. They are located in
a medium with the permittivity ε0 and are separated by
a gap of thickness h. In the case when the gap substan-
tially exceeds the wavelength, the plates do not interact
with each other. Based on the general electrodynamic
principles (the Maxwell equations and standard bound-
ary conditions for electric and magnetic fields [1, 2]),
the unperturbed wave fields for the isolated lower plate
can be represented in the following form:

(1)

Here, E and H are the vectors of the electric and mag-
netic fields, respectively; x and y are the coordinates of

2d̃
ε̃

E x y t, ,( )
H x y t, ,( )

E y( )
H y( )

iω 1
c
---n||x t– 

  .exp=
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the variable point; t is the time; ω is the frequency; c is
the velocity of light in free space; n|| = kc/ω; and k is the
wave number, which corresponds to the total projection
of the wave vectors of all the partial waves onto the x
axis parallel to the surfaces. In this case, the y projec-
tions of the wave vectors of the partial waves propagat-
ing in the plane and in adjacent media are defined as

 = ±ωn⊥ /c and  = ±iωp/c, respectively. Here,

(2)

These parameters are the components of the dimen-
sionless wave vectors of the corresponding partial
waves,

(3)

ky
+

k0y
+

n⊥ ε n
2

– , p n||
2 ε0– .= =

n±
n|| n⊥± 0, ,( ), n0

±
n|| ip± 0, ,( ).= =

ε~ 2d
~

ε0 h

ε 2d

y

x

Fig. 1. System of two interacting plates.
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In what follows, we will assume that the material
parameters of the media and the wave number k are
chosen in such a manner as to satisfy the condition

(4)

Under condition (4), the parameters defined by rela-
tionships (2) are real quantities. This corresponds to the
propagation of bulk waves in the plate and an exponen-
tial decay of the wave field outside the plate with the
distance from the plate surfaces. This decay can be
described by the following relationships:

This field provides a weak coupling with the second
plate.

3. THEORETICAL ANALYSIS

Let us analyze the specific features of the wave
fields generated in the lower plate in more detail. As
usual, when the sagittal plane (xy) is the plane of sym-
metry, there should exist two independent families of
eigenwaves, namely, families I and II. In family I, the
electric field E is perpendicular to the sagittal plane,

ε0 n||
2 ε.≤ ≤

E y( )
H y( )

ω1
c
--- py– 

  , yexp d ,≥

ω1
c
--- py 

  , yexp d .–≤








∼
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Fig. 2. Four types of configurations of electric and magnetic
fields for eigenwaves propagating in an isolated plate:
(a) (SEAH)I, (b) (AESH)I, (c) (SEAH)II, and (d) (AESH)II.

ε

ε0

n||
2

0 0.5 1.0 1.5 2.0 ω–

Fig. 3. Dispersion curves for electromagnetic eigenwaves in
an isolated plate. Solid and dashed lines are the dispersion
curves for the configurations (SEAH)I and (AESH)I, respec-

tively.  = ωd .ω ε ε0– /πc
P

whereas the magnetic field H related to it is parallel to
this plane. Conversely, in family II, the magnetic field
H is perpendicular to the sagittal plane and the electric
field E is parallel to it. One more simplification
emerges because of the symmetry of the problem with
respect to the central plane of the plate (y = 0). By virtue
of this symmetry, the waves belonging to families I and
II are subdivided into symmetric and antisymmetric
waves with respect to the plane y = 0. If the wave of the
electric field is symmetric (SE), the wave of the mag-
netic field is antisymmetric (AH), and vice versa. In
other words, four independent families of eigenwaves
should propagate in the plate; these four families will
be designated hereafter as (SEAH)I, (AESH)I, (SEAH)II,
and (AESH)II (Fig. 2). The amplitude factors correspond-
ing to these families in formula (1) can be determined
from the expressions

(7)

Here, –d ≤ y ≤ d and AI and AII are the amplitude factors.
In expressions (7) and (8), the upper and lower signs
refer to the configurations SEAH and AESH, respectively.

Each of the families is characterized by its own dis-

persion curve ω( ), which, in turn, is described by the
appropriate relationship:

Here, mI, II and lI, II are integers satisfying the condition

ω( ) > 0. Figure 3 depicts the dispersion curves for
wave fields of mode I [defined by expression (7)], which
are described by relationships (9) and (10). The disper-
sion curves for mode II [defined by expression (8)],
which are described by relationships (11) and (12), are
qualitatively similar to the dependences shown in Fig. 3.
Dispersion curves for modes I and II emerge from the
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same points on the line  = ε and have a common

asymptote  = ε0. However, the branches correspond-
ing to symmetric and antisymmetric fields should
exchange places for mode II. The run of the dispersion
curves for mode II differs from that for mode I due to
the distortion caused by the ratio ε/ε0 appearing in for-
mulas (11) and (12). It can be easily verified that, for all
four families, the dispersion curves have no intersec-

tions at  ≠ ε0. It should be noted that, at any thickness
h of the gap, dispersion curves for modes I and II also

emerge from the same common points on the line  =
ε0 (when p = 0).

The isolated upper plate (–h – d – 2d ≤ y ≤ –h – d) is
described by similar relationships. At the same time,

since ε ≠  and d ≠ , the configuration of the disper-
sion curves of the upper plate essentially differs from
the corresponding configuration of the dispersion
curves of the lower plate: the distances between the dis-

persion curves and the upper limiting value of 
change.

Now, we consider a system of two plates. In the case
when the gap thickness h is sufficiently large, wave
fields induced in the plates are virtually independent
and the dispersion curves determined by different
parameters superpose onto one another and have a great
number of intersections. A decrease in the gap thick-
ness leads to coupling between the wave fields in the
plates and a breaking of the symmetry of the fields with
respect to the central planes of the plates. However, two
families of wave fields persist because the sagittal plane
remains the plane of symmetry as before. As a result,
the points of intersection of the branches corresponding
to the same family (I or II) disappear and the divergence
of the dispersion curves is observed (Fig. 4). It follows
from the calculations that the degree of divergence is
determined by the quantity

(13)

Here, we assume that exp(–H) ! 1, where H =

hω  is the dimensionless thickness of the gap

and the value of  should correspond to the relevant
coordinate of the point of intersection. In this case, the
points of intersection of branches belonging to different
families are retained.

In this work, we considered the features of the dis-
persion spectrum for isotropic plates forming a sand-
wich structure. In our recent paper [3], we described
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similar features of the dispersion spectrum for a single
anisotropic plate prepared from an optically uniaxial or
biaxial crystal. The anomalous transformation of the
spectrum of electromagnetic eigenwaves described in
[3] was caused by a small deviation of the direction of
propagation of the wave field from symmetric orienta-
tions. The dielectric anisotropy proved to be responsi-
ble for coupling between the wave fields. It was demon-
strated that a gradual change in the frequency along the
perturbed dispersion curve is accompanied by a sharp
periodic change in the polarization of the wave field.

The situation described in the present work essen-
tially differs from that analyzed in [3]. In the case stud-
ied here, the plates are isotropic and a change in the fre-
quency along one of the dispersion curves corresponds
to a periodic displacement of the zones of the intense
wave field from one plate to the other.
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Abstract—A simple dislocation model is proposed for relaxation of thermoelastic stresses generated during
the growth of single crystals from a melt. This model does not require a solution of the kinetic equations for
dislocations involved in relaxation and makes it possible to obtain the lower estimate of the dislocation density
in the bulk of a grown crystal. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The growth of perfect (dislocation-free) single crys-
tals of different shapes is an important problem in solid-
state physics [1, 2]. In the present paper, we will deal
with melt-grown single crystals in which dislocations
can be generated by thermoelastic stresses [1–3]. In this
case, dislocations play the role of carriers of the plastic
strain responsible for relaxation. In order to control the
degree of perfection of single crystals, it is necessary to
determine the dependence of the dislocation density ρ
on the main physical factors, specifically on the temper-
ature field T(r). A rigorous treatment requires self-con-
sistent solution of the problem including equations for
determining the temperature field T(r), thermoelastic
stresses σik(r), and dislocation distribution functions
f q(r, t) in different slip systems q. This problem is
rather complex and tedious and involves cumbersome
calculations. The elastic–plastic problem remains com-
plicated even within the macroscopic approach (see, for
example, [4]).

In this respect, even in the first works on dislocation
generation during the growth of single crystals,
researches repeatedly attempted to obtain approximate
estimates of the dislocation density from partial charac-
teristics of the temperature field, such as the first and
second derivatives in the growth direction (i.e., along
the crystal axis) or in the radial direction. The theoreti-
cal models were constructed under the assumption that
arising dislocations completely compensate for the
temperature bending of the crystal, which is caused by
a nonuniform temperature distribution along one of the
axes [5–7]. In some cases, the obtained estimates have
offered satisfactory results.

Moreover, in the majority of works, the above prob-
lem was solved using an approach based on an analysis
1063-7834/03/4506- $24.00 © 21068
of thermoelastic stresses rather than on an analysis of
the crystal lattice bending. Since the uncompensated
dislocations are responsible for both the lattice bending
and thermoelastic stresses, in our opinion, it is possible
to develop a model that combines the two aforemen-
tioned approaches. Such a model should be constructed
with due regard for strick separation of different sorts
of dislocations, depending on their effect on the charac-
teristics of the crystal. Construction of this model was
the main objective of the present work. We proposed
the dislocation model of ideal relaxation of thermoelas-
tic stresses. This model is valid under certain physical
assumptions and allows one to obtain a lower estimate
of the dislocation density ρ without solving kinetic
equations for the dislocation distribution functions
f q(r, t)

2. FORMULATION AND PHYSICAL 
JUSTIFICATION OF THE MODEL

FOR IDEAL RELAXATION OF THERMOELASTIC 
STRESSES

Let us consider a single crystal of volume V with a
nonuniform temperature distribution T(r). It is assumed
that a physical small-sized volume δV is cut from the
volume V in such a way that the temperature T(r) at the
point r (the center of the volume δV) remains constant.
In this case, the volume δV should undergo a free ther-
mal expansion (distortion) uik(r); that is,

(1)

where δik is the Kronecker symbol and χ is the thermal
expansion coefficient. For simplicity, the thermal
expansion is assumed to be isotropic. The distortions
uik(r) can be incompatible (we are interested precisely
in this case) and induce thermoelastic stresses σik(r).

uik r( ) χT r( )δik,=
003 MAIK “Nauka/Interperiodica”
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The internal stresses are also produced by dislocations.
In the framework of the continuum theory, the stresses
σmn are directly determined by the dislocation density
tensor αpl [8–10]. On this basis, the incompatible ther-
mal distortions uik(r) (1) can be replaced by the equiva-

lent fictive-dislocation density tensor  (responsible
for the same elastic stresses):

(2)

where Epmk is the unit antisymmetric tensor and the sub-
script after the comma indicates differentiation with
respect to the corresponding coordinate. Here, expres-
sion (1) was used when changing over to equality (2).
In the general case, the fictive-dislocation density

includes the active part  and the nonactive part

. Unlike the active part, the nonactive part does
not produce internal elastic stresses σmn and can be

rejected. For the present, we will assume that  = 0

and  = ; i.e., the tensor  consists of the
active part. The changes associated with the contribu-

tion of the nonactive part  ≠ 0 will be considered
at the end of the paper.

Our subsequent reasoning is as follows. The ther-
moelastic stress relaxation due to the generation and
motion of real (lattice) dislocations can be treated as
relaxation of stresses that are induced by fictive dislo-

cations with the density tensor  defined by relation-
ship (2). We believe that the relaxation proceeds to
completion (this is one of the assumptions of the model
of ideal thermoelastic-stress relaxation); i.e., the ther-
moelastic stresses σik(r) are eliminated completely. In

this situation, the tensor  of the density of real (lat-
tice) dislocations should exactly compensate for the fic-

tive-dislocation density tensor . To put it differently,
at any point r ∈  V, the following equality should be sat-
isfied:

(3)

Since the growth of crystals from a melt occurs very
slowly even at premelting temperatures, the assumption
regarding the complete relaxation of thermoelastic
stresses [equality (3)] should hold under natural condi-
tions. (In actual fact, equality (3) should be valid in the
vicinity of the crystallization front, where the ther-
moelastic stresses and dislocation mobility are suffi-
ciently high.)

Equality (3) enables us to determine the lattice dis-
location density tensor

(4)

α pl
F

α pl
F

Epmkukl m,– Epml χT m,( ),= =

α pl
F α pl

F 1( )

α pl
F 2( )

α pl
F 2( )

α pl
F α pl

F 1( ) α pl
F

α pl
F 2( )

α pl
F

α pl
R

α pl
F

α pl
F α pl

R
+ 0.=

α pl
R r( ) α pl

F r( ).–=
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Substitution of expression (2) into equality (4) gives

(5)

Thus, we derived formula (5) for the tensor  of
the density of lattice dislocations that are required for
ideal (complete) relaxation of the thermoelastic stresses
associated with the specified temperature field T(r) in
the single crystal. Note that we obviated the need for
solving the kinetic equations with respect to the distri-
bution functions f q(r, t) of lattice dislocations.

However, the density tensor  does not contain
detailed information on dislocations distributed in the
volume V. Moreover, experimenters prefer to deal with
the so-called scalar dislocation density ρ. In this
respect, our next step consists in deducing the expres-

sion relating ρ and . This expression can be
obtained for the known relative densities (contribu-
tions) of dislocations in different slip systems q.

The real-dislocation density tensor  can be
expressed through the distribution function f q(r, t)
according to the relationship [9]

(6)

where tq is the unit vector of the tangent to the disloca-
tion line, bq is the Burgers vector of the dislocation, and
the summation is performed over all sorts q of disloca-
tions. The scalar dislocation density ρ can be written in
the form

(7)

As can be seen from formulas (6) and (7), the quantities

 and ρ are not directly related, because they are
expressed through different moments described by the
unknown function f q(r, t). The scalar dislocation den-
sity ρ can be approximately evaluated under reasonable
assumptions regarding the form of the function f q(r, t).

In the general case, this function involves two terms 

and ; that is,

(8)

where the terms  and  correspond to uncompen-
sated and compensated dislocations, respectively. By
definition, a set of compensated dislocations contains
an equal number of dislocations with different signs

and does not contribute to the tensor . Taking into

α pl
R

Epml χT m,( ).–=

α pl
R

α pl
R

α pl
R

α pl
R

α pl
R τ p

q
bl

q
f

q
,

q

∑=

ρ f
q
.

q

∑=

α pl
R

f 1
q

f 2
q

f
q r t,( ) f 1

q
f 2

q
,+=

f 1
q

f 2
q

α pl
R
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account this circumstance, from relationships (6) and
(8), we have

(9)

The scalar dislocation density does not depend on the

dislocation sign. Therefore, both terms  and  con-
tribute to the density ρ. As a result, according to formu-
las (7) and (8), we obtain

(10)

In the framework of the proposed model of ideal ther-

moelastic-stress relaxation, we assume that  = 0.
Consequently, we have

(11)

Relationships (9) and (11) can be closed under the
simplifying assumption that dislocations of one sort
make a contribution to each component of the tensor

 (9). The subscripts p and l refer to the sole sort
q(pl) of dislocations. Hence, from expression (9), we
obtain

. (12)

Substitution of relationship (12) into formula (11) gives
the expression for ρ1 in the following form:

(13)

where q = q(pl) is the dislocation sort specified by the
subscripts p and l. It should be noted that the function

 can also be derived in other ways, for example, with
the use of experimental data on relative contributions of

different slip systems to the tensor .

All the theoretical results obtained above hold true

under the initial assumption that  =  and

 = 0 (see Section 2). When these conditions are
not satisfied, the above scheme must be modified; spe-

cifically,  in formulas (3) and (4) must be replaced

by  and the temperature T(r) in expression (5)

must be replaced by T (1)(r). Here, , and T (1)(r) are
defined by the relationships

(14)

(15)
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F 1( )
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F q( )

Epml χT m,
1( )( ),=

T
1( )

T T
2( )

,–=
P

where T (2)(r) is the temperature distribution that does
not lead to elastic stresses σmn in the crystal. As a result,
the solution of the problem is reduced to the determina-
tion of the temperature distribution T (2)(r) correspond-
ing to the real situation.

In order to determine the function T (2)(r), we will
use the strain compatibility conditions (p, q = x, y, z)

(16)

where the symmetric incompatibility tensor ηpq for the
thermal distortions (1) can be expressed through the
derivatives of the temperature T(r); that is,

(17)

By definition, we have ηpq(T (2)) = 0. Making allowance
for expression (17), this condition can be rewritten in
the form

(18)

The solution to the set of second-order differential
equations (18) is any linear function of the type

(19)

where a, b, c, and d are arbitrary coefficients. Conse-
quently, the function T (2) cannot be uniquely deter-
mined from the compatibility conditions (18). There-
fore, it is necessary to invoke additional physical condi-
tions. In the framework of the proposed model of ideal
thermoelastic-stress relaxation, it is reasonable to
assume that the function T (2)(r) should satisfy the min-
imum condition for the integrated scalar dislocation
density R; that is,

(20)

Here, the functional R of the function T (2)(r) can be rep-
resented in the form

(21)

where δR/δT (2) is the variational derivative and V is the
crystal volume.

Let us consider the one-dimensional problem when
the temperature T(z) depends on one variable z. It is
approximately this situation that arises during the
growth of single crystals from a melt. We assume that
the crystal is located in the range z1 ≤ z ≤ z2 and the tem-
perature T(z) satisfies the boundary conditions T(z1) =
T1 and T(z2) = T2. At T = T(z), the set of equations (18)
is reduced to one equation

(22)

η pq 0,=

η pq η pq T( ) χ T mm, δpq T pq,–( ).= =

T mm,
2( ) δpq T pq,

2( )
– 0.=

T
2( )

x y z, ,( ) ax by cz d ,+ + +=

δR

δT
2( )------------ 0.=

R T
2( ) r( )[ ] ρ 1 T

2 r'( )[ ] r',d

V

∫=

T zz,
2( )

0=
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and its general solution is represented by the linear
function

(23)

where k and c are arbitrary coefficients. Substitution of
formula (23) into expression (15) permits us to deter-
mine the function T (1). By substituting T (1) for T in rela-
tionship (5), we obtain the nonzero components of the

real-dislocation density tensor :

(24)

A dislocation density tensor of the type given by rela-
tionship (24) allows us to represent edge dislocations in
the form of a square network in the xy plane normal to
the z axis. According to this representation and formu-
las (13) and (24), the density ρ1 can be written as fol-
lows:

(25)

where b is the magnitude of the Burgers vector of edge
dislocations. The appearance of the modulus sign in
expression (25) is explained by the fact that the sign of
the quantity (τpbl)–1 in formula (13) is dependent on the
sign of the term (∂T/∂z – k). Note that formula (25) is
invariant with respect to the inversion transformation of
the coordinate system (z' = –z). Substitution of formula
(25) into expression (21) gives the functional R of the
integrated scalar dislocation density:

(26)

where S is the cross-sectional area of the crystal. At a
given temperature field T(z), the functional R depends
on the unknown constant k entering into the general
expression (23) for the function T (2)(z). With due regard
for this circumstance, the minimum condition (20) is
reduced to the equation for the constant k; that is,

(27)

Now, we consider the linear temperature field

(28)

which satisfies the boundary conditions T(z1) = T1
and T(z2) = T2. It is easy to see that the minimum of
the functional R corresponds to the equality

(29)

In this situation, we obtain the integrated scalar dis-
location density R = 0. Therefore, a linear temperature

T
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kz c,+=
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α12
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R
– χ ∂T /∂z k–( ).= =

ρ1 2/bχ ∂T /∂z k– ,=
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z2
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d/dk T z, z'( ) k– z'd

z1

z2

∫
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T z( ) T̃ z( )≡ T1 k0 z z1–( ),+=

k0 T2 T1–( )/ z2 z1–( ),=

k k0.=
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field of the type represented by relationship (28) is ideal
from the viewpoint of growth of dislocation-free crys-
tals.

We now assume that T(z) differs from (z) by a
small quantity δT and has the form

(30)

As follows from the foregoing, the constant k in this
case only slightly differs from k0, so that

(31)

and, taking into account relationship (25), we have

(32)

3. DISCUSSION

The proposed model of ideal thermoelastic-stress
relaxation can be used to obtain the lower estimate of
the scalar density ρ of dislocations generated during the
growth of single crystals from a melt. It seems likely
that the assumption regarding the complete relaxation
of thermoelastic stresses holds good. The conditions for
the relaxation are especially favorable in the vicinity of
the crystallization front, where crystals have a maxi-
mum temperature. This is supported by the exponential
dependence of the dislocation velocity on the tempera-
ture for single crystals of silicon, germanium, and other
similar materials (see, for example, [11, Chapter 5]). In
this region, the temperature gradient ∇ T can be approx-
imately treated as directed along the z axis (perpendic-
ular to the crystallization front) and, hence, formula
(25) can be used for estimating the density ρ1. Accord-
ing to expression (10), the scalar dislocation density ρ
can also involve the component ρ2 associated with the
compensated dislocations. Therefore, by assuming that
ρ = ρ1 [see condition (11)], we can obtain the lower
estimate for the scalar dislocation density ρ.

Let us now discuss the experimental data taken from
[12, 13]. The growth of germanium ribbons with the
use of an apparatus with passive shields is characterized
by the temperature gradient T,z ≈ –0.25 K/m in the
vicinity of the crystallization front (see Fig. 1 in [12])
and the constant k0 ≈ –0.18 K/m. On this basis, we
found that |Tz – k0 | ≈ 0.07 K/m in the vicinity of the
crystallization front. Substituting this value into for-
mula (32) and setting χ ≈ 10–5 K–1 and b = 2 × 10–10 m,
we obtain the estimate ρ = ρ1 ≈ 0.7 × 108 m–2. The scalar
dislocation densities were experimentally determined
to be ρ ≈ (108–1010) m–2 [12, p. 242]. As can be seen,
the theoretical estimates based on the model of ideal
thermoelastic-stress relaxation actually correlate with
the lower bound of the scalar dislocation densities
observed. Our theoretical estimates are also in agree-
ment with the experimental data presented in [13].

Formulas (25) and (32) correspond to a general case.
For example, the expression derived earlier in [6] can

T̃

T z( ) T̃ z( ) δT z( ).+=

k k0≈

ρ1 2/bχ( ) ∂T /∂z k0– .≈
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be deduced (within an insignificant factor) as a case of
these formulas. Therefore, our theoretical data also
agree with the particular theoretical results available in
the literature. The approach developed in the present
work provides a way of analyzing three-dimensional
problems when the temperature field depends on all
three coordinates. In this case, the minimum of the
functional R defined by relationship (21) can be sought
using trial functions that are the solutions to the set of
equations (18) [in particular, it is possible to use func-
tions of the type represented by formula (9)].

Relationships (9) and (13) describe the dependence
of the dislocation density on the orientation observed in
the experiments. However, this problem calls for spe-
cial consideration.

4. CONCLUSIONS
Thus, we proposed a model of ideal relaxation of

thermoelastic stresses. This model adequately
describes the effect of the temperature field on the den-
sity of dislocations generated during the growth of sin-
gle crystals. Moreover, the model proposed makes it
possible to predict the minimum dislocation density
that can be attained under particular conditions.
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Abstract—The low-temperature plasticity of solid polycrystalline parahydrogen doped with an isotopic impu-
rity (deuterium) is studied. The dependences of the rate of steady-state creep in p-H2 on the impurity concen-
tration and stress are obtained. The deformation of p-H2 is described with inclusion of the zero-point mean-
square displacements 〈x2〉  of particles making up a crystal. The calculated and experimental values of 〈x2〉  are
compared for two possible isotope molecules (HD and D2) at three stress levels. A correlation between the 〈x2〉
values and an increase in the force constants of a p-H2 crystal doped with the isotopic impurity is established.
An increase in the mean-square displacements of p-H2 with the tensile load is discussed. Deformation-induced
purification of a p-H2 crystal from the isotopic impurity is suggested to occur. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Solid parahydrogen is a unique crystalline material
with a rather high degree of quantization [1], which can
easily be controlled and suppressed [2–4]. The high
zero-point energy of H2 fully specifies its lattice
dynamics and deformation kinetics, as well as the
dynamics of the dislocation subsystem, over the whole
range of existence of the crystal, since its solidification
temperature is well below the Debye temperature Θ [1].

Quantum tunneling effects in the plasticity of solid
parahydrogen are suppressed by, in particular, local lat-
tice imperfections, e.g., even small proportions of
orthohydrogen or deuterium impurity.

Quantum-mechanical features are most strongly
suppressed by an isotopic impurity. Therefore, the
influence of this impurity on the deformation kinetics
of parahydrogen is one of the fundamental problems in
the physics of quantum crystals. Progress in investigat-
ing the plastic and strength properties of p-H2 depends
on the amount of experimental data available on the
effect of the isotopic impurity on deformation parame-
ters.

In this work, we studied the effect of the isotopic
impurity on the low-temperature plastic properties of
solid parahydrogen. We measured the concentration
dependences of the strain rate  in the steady-state
creep under a static stress σ at liquid-helium tempera-
tures. In addition to the data from [5], where the effect
of deuterium impurity on the steady-state strain rate 
of p-H2 was investigated at only one level of stresses σ,
we measured  as a function of the content of the H2
heavy isotope and the applied load. The results

ε̇

ε̇

ε̇
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obtained were analyzed using the calculated tempera-
ture dependences of the mean-square particle displace-
ments. Based on this analysis, we drew inferences
about the changes in the intermolecular interaction in
solid p-H2 doped with its stable isotopes.

2. EXPERIMENTAL

We studied polycrystalline p-H2 specimens grown
from liquid parahydrogen in a cryostat ampoule [6].
The concentration of orthohydrogen was reduced to
~0.2% by long-term holding of conventional hydrogen
in a converter in the presence of the conversion catalyst
Fe(OH)3 at the boiling temperature. To remove impuri-
ties other than hydrogen, gaseous hydrogen bled in the
converter was passed through activated carbon cooled
to the boiling temperature of nitrogen and the extracted
vapor over liquid p-H2 was passed through a filter hav-
ing high H2 selectivity at a temperature of 20.4 K. Due
to the high filter selectivity, the purity of the p-H2 under
study with respect to foreign impurities was signifi-
cantly increased (to above 99.9999 mol % [5] with
allowance made for the extremely low vapor pressure
of nonhydrogenic impurities [7]).

Hydrogen is characterized by the maximum relative
difference of its isotopic masses, and the saturated
vapor pressures over the liquid fractions of its isotopes
also considerably differ [7]. Therefore, hydrogen
becomes depleted of the less volatile isotope and
enriched in the more volatile basic component during
the initial slow extraction of the gas for growing speci-
mens due to the difference in the partial pressures of H2
and the isotope [8]. Concentrating the less volatile iso-
003 MAIK “Nauka/Interperiodica”
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tope in the liquid phase and, accordingly, in the vapor
of molecular p-H2 led to an increase in the concentra-
tion of the isotopic impurity in each subsequently
grown solid parahydrogen sample with respect to that
in the previous sample. This increase was verified by
isotopic analyses performed with an ROMS-1 and an
MX-7304 mass spectrometer. The analyses revealed
that the ratio of the number of D atoms to that of H
atoms varied with the sample from c = 0.01% ±
0.005 at. % to c = 0.2 ± 0.002 at. %.

Grown samples were released from the containers
through evacuating the vapor over them, then annealed
at T = 11 K, and slowly cooled to a given temperature.
Then, they were loaded using a highly sensitive bal-
ance. The elongation of crystals was measured, using a
variable-induction displacement pickup, with an accu-
racy of ±10–4 cm, and the temperature was measured on
semiconductor resistance thermometers with an accu-
racy of ±2 × 10–2 K. The variation of strain ε with time
t was recorded with a KSP4 potentiometer. The poly-
crystalline nature of specimens (grain size of up to
1.5 mm) was verified by visual inspection using
crossed polarizers. The temperature was varied in the
range 1.8–4.2 K.

3. RESULTS AND DISCUSSION

Figure 1 shows the typical ε(t) creep curves of the
p-H2 polycrystalline specimens recorded at a stress of
53.9 kPa for three different concentrations c (0.01,

0.6

0.4

0.2

0.8

ε, %

0 12 24 36
t, 102 s

0.2%

0.04%

<0.01%

Fig. 1. Creep curves for p-H2 specimens with the concentra-
tions c shown on the curves (σ = 53.9 kPa, T = 1.8 K).
PH
0.04, 0.22%). The variation of the concentration is seen
to substantially affect the ε(t) curves and the plasticity
parameters determined from them. It follows from
Fig. 1 that a decrease in c leads to an increase in the
strain of p-H2 reached in the same time period at σ =
const and to a significant decrease in the time it takes
for steady-state plastic flow (with a time-independent
strain rate dε/dt) to be established in the p-H2 polycrys-
tals. Figure 1 also shows that, as c decreases, the strain
rate  of the p-H2 crystals in the stage of steady-state
creep substantially increases and reaches its maximum
value at c = 0.01% (the lower limit of the concentration
range studied).

When studying specimens with the same isotope
composition at different temperatures, we found that,
although the strain rate  depended strongly on the
concentration of the isotopic impurity, the  values
measured at many different concentrations under the
same load were independent of temperature throughout
the σ, c, and T ranges studied. This behavior is illus-
trated in Fig. 2, which shows the strain rate  measured
for p-H2 specimens with various [D]/[H] ratios under
the same load (σ = 53.9 kPa). For comparison, Fig. 2
also demonstrates the temperature dependence ε(t) of
the creep rate (solid line) measured in n-H2 (75% ortho-
H2) polycrystals at approximately the same value of σ
(58.8 kPa) [6]. It is seen that an increase in the temper-
ature from 1.8 to 4.2 K virtually does not change ;

ε̇

ε̇
ε̇

ε̇

ε̇

0.01%

0.02%

0.03%

0.04%

0.06%
0.22%

3

2

1

ε × 106, s–1.

0 4 8 T, K

Fig. 2. Temperature dependences of the creep rate of p-H2
obtained at the stress σ = 53.9 kPa and the concentrations c
indicated on the curves. The solid line shows the data for
n-H2 polycrystals [6] (see text).
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therefore, we may neglect the effect of temperature on
the low-temperature  values as compared to the effect
of impurity.

Thus, these experimental dependences indicate the
decisive role of the heavy-hydrogen isotope impurity in
developing the deformation in p-H2 at a constant stress.
Even low doping results in significant strengthening of
p-H2. When a relatively small amount of the isotopic
impurity (the ratio of the numbers of atoms [D]/[H] ~
0.2%) is introduced into parahydrogen, the values of
strain rate  in steady-state flow of polycrystalline p-H2
specimens approach those for polycrystalline hydrogen
with the conventional ortho–para composition (75%
o-H2). The effect of the isotopic impurity on the strain
rate  is similar to that on other physical quantities, in
particular, the thermal conductivity of H2 [9].

Our experiments showed that the rate of steady-state
plastic flow of p-H2 in the temperature range 1.8–4.2 K
is a quantity that is very sensitive to the concentration
of isotopes in the specimens. The sharp dependence of
the creep rate  on the concentration of the isotopic
impurity in p-H2 indicates that the low-temperature val-
ues of  measured at σ = const are due to the interaction
of dislocations with impurity molecules. The indepen-
dence of  from temperature against the background of
the high sensitivity of  to the content of the isotopic
impurity shows that quantum rather than thermal fluc-
tuations play the basic role in the dislocation break-
away from impurity centers in p-H2 [10].

For cryocrystals (including p-H2 [11]), the plastic
strain rate as a function of temperature can be repre-
sented in the limit T  0 K in the form of the law of
corresponding states [12]:

(1)

Here, the  values are determined by the relative level

of the zero-point mean-square displacements  of
particles making up a crystal. Using the law of corre-
sponding states [12], we can write the creep rate of
p-H2-based solid solutions at low temperatures (to
within a multiplicative constant approximately equal to
unity) in the form of an Arrhenius-type expression:

(2)

where  and  are the mean-square displace-
ments of particles at 0 K and the melting temperature
Tm, respectively. This expression implies that deforma-
tion proceeds via directed stress-induced dislocation
flow through the saddle point of a barrier U caused by
elastic stresses that appear in the p-H2 lattice because of
the size misfit between impurity and matrix molecules.
The energy related to the stress σ is also specified by

ε̇

ε̇

ε̇

ε̇

ε̇

ε̇
ε̇

ε̇ f x0
2〈 〉 / xm

2〈 〉( ).∼

ε̇
x0

2〈 〉

ε̇ ε̇0
U γσ–
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2〈 〉( )kTm
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x0
2〈 〉 xm
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the size γ of the activation volume in which an elemen-
tary act of deformation develops. The dependence of γ
on the impurity concentration determines the behavior
of  as a function of the impurity concentration. In the
presence of impurities in a crystal, rectilinear disloca-
tions become unstable. Dislocations take a complex
zigzag shape, which provides excess of the gain in the
binding energy of a dislocation and impurity molecules
over the loss in the energy of line tension due to an
increase in the dislocation length [13]. Therefore, con-
figurations with dislocation segments pinned by impu-
rities begin to prevail even in the early stages of defor-
mation in the p-H2 crystals under study. In this case,
when describing the behavior of plasticity parameters
in classical (e.g., metallic) crystals, it is necessary to
take into account the probability of passing dislocations
through impurity-induced barriers because of the exist-
ence of the length distribution of dislocation segments
[14–16].

Figure 3 shows the concentration dependences (on a
semilogarithmic scale) of the rate of steady-state creep
in the p-H2 specimens for three different values of the
applied stresses (16.7, 53.9, 99.0 kPa). Based on the
theoretical results [16], we chose the product c–2/3σ as
the abscissa. As is seen, all three dependences ln  =
f(c−2/3σ) obtained have extended straight-line segments,
which indicates that the decisive role is played by
impurity molecules existing in the bulk of the crystal in
the deformation of p-H2 [17]. Deviations from the
straight lines at low values of c are due to retardation
mechanisms associated with the residual o-H2 impurity

ε̇

ε̇

–12

–14

–16

lnε
.

0 1 2 3 4 5
(c–2/3σ) × 10–4, kPa

1 2

3

Fig. 3. Concentration dependences of the creep rate of p-H2
in semilogarithmic coordinates obtained at various stresses:
(1) 16.7, (2) 53.9 [5], and (3) 99.0 kPa.
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Experimental values of normalized zero-point mean-square displacements (exp) in p-H2 at three values of tensile stress

Molecule (∆V/V) Quantity
σ, kPa

16.7 53.9 99.0

HD –0.068 (exp), HD 0.628 0.837 1.004

D2 –0.138 (exp), D2
0.496 0.661 0.794

δ0
2

δ0
2

δ0
2

in the specimens and operating at high dislocation
velocities. The effective mean free path of dislocations
can be affected by both individual orthomolecules and
their clusters [18] (mainly pair clusters for an orthohy-
drogen content of ~0.2% [19]). The character of the
interaction of these molecules with dislocations differs
only weakly from that of ordinary dilatation impuri-
ties. Dislocations can overcome such obstacles through
both thermal and quantum fluctuations (for more
detail, see [19]).

At c ≥ 0.03–0.04%, energy barriers for dislocations
in a p-H2 specimen are mainly due to local breaking of
the translational rather than rotational symmetry of the
crystal caused by the isotope forms of the stable H2
molecule. In this case, when analyzing the behavior of
the function (T, c, σ), we have a unique opportunity to
determine the relative mean-square displacements

(exp) = /  of hydrogen molecules in real
p-H2 specimens [even if it is only a qualitative estima-
tion using Eq. (2)], which cannot be measured directly
and are of great interest. To this end, we express the vol-

ε̇

δ0
2

x0
2〈 〉 xm

2〈 〉

2

1

0

〈x2〉 , arb. units

5 10
T, K

Fig. 4. Temperature dependences of the mean-square dis-
placements of molecules in the ideal crystal (upper curve)
and of impurity molecules with the mass defect equal to 0.5
(middle curve) and 1.0 (lower curve) in units of "2/(kmΘ)
with Θ = 118.5 K [24].
P

ume involved in a fluctuation through the known values
(∆V/V) of the dilatation of the p-H2 lattice around HD
and D2 impurity molecules [20, 21] and use the slopes

 of the straight-line segments in the experimental
ln –c–2/3 curves obtained at σ = const. Thus, the values

of (exp) are found from Eq. (2) to be

(3)

where  = ∆(ln )/∆(c–2/3), d = 2–1  (a and d
are the spacings between the nearest neighbors and the
adjacent basal planes in the hcp p-H2 crystal, respec-
tively),  is the average stress, b = a is the magnitude
of the Burgers vector, and k is the Boltzmann constant.

The (exp) values are calculated (see table) for the
case where deuterium is present in p-H2 as HD and D2
molecules. The parameter a was taken to be equal to its
extrapolated value at T = 0 K (a = 0.37835 nm [22]).
The measured values  were used to calculate the

(exp) values of the zero-point mean-square displace-
ments of particles in p-H2 from Eq. (3). These values
are given in the table for both isotope forms in p-H2 and
for three values of tensile stress.

To analyze the results obtained, we estimate the 
values for p-H2, including for the specimens with impu-
rity molecules represented by natural isotopes. To this
end, we used the temperature dependence of the atomic
root-mean-square displacements in pure and isotopi-
cally mixed fcc crystals [23]. The mean-square dis-
placements in perfect structures are mainly specified by
the number of nearest neighbors. Taking into account
the ratio c/a for the perfect hcp p-H2 structure [1] and
the fact that the numbers of nearest neighbors in fcc and
hcp lattices are the same, we may expect that the values
of 〈x2〉  calculated using the Jacobian matrices in the fcc
crystal model should be similar to those for the ideal
hcp structure.

Figure 4 shows the temperature dependences of 〈x2〉
for the matrix p-H2 molecules in the ideal crystal and
for isotopic impurity molecules with ∆µ equal to 0.5

αtan
ε̇

δ0
2

δ0
2

exp( ) ∆V /3V( ) 1/3– σdb
2

k αTmtan
------------------------------------------,=

αtan ε̇ 8/3a
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and 1.0, where ∆µ = (m1 – m)/m is the mass defect, with
m1 being the mass of the impurity atom (∆µ = 0.5 cor-
responds to the HD impurity, and ∆µ = 1, to the D2
impurity). As is seen from Fig. 4, the mean-square dis-
placements of impurity particles are significantly lower
than the values of 〈x2〉  for the ideal lattice. Whence it
follows that the isotopic impurity in p-H2 should
“freeze” molecular motion, including the zero-point
oscillations of the matrix molecules in a crystal. This

conclusion follows from the calculated values of 
equal to 0.910, 0.878, and 0.836 for the H2 matrix mol-
ecules and the D2 and HD impurity molecules, respec-

tively. A comparison of the calculated values of  with
those given in the table shows that the molecular
motion in the real specimens fabricated under labora-
tory conditions is less intense as compared to the hypo-
thetic ideal infinite p-H2 crystal with perfect structure.
A decrease in the mean-square displacements of parti-
cles is equivalent to a significant increase in the inter-
molecular interaction (corresponding to a more rigid
lattice) in the solid p-H2 caused by impurity molecules.
The degree of rigidity of the lattice and the decrease in
the intensity of molecular motion in the solid p-H2 are
significantly different for the HD and D2 impurity mol-
ecules present in the crystals. The features found are of
purely quantum nature, since they are completely spec-
ified by the difference in the amplitudes of zero-point

oscillations of isotopes. Interestingly, the (exp) val-
ues obtained are closer to those calculated for the HD
impurity than to those for D2. This finding suggests that
the majority of deuterium-containing molecules in the
p-H2 crystal studied are in the form of HD molecule
rather than D2, which agrees with the results of analysis
of the specimens and with the fact that natural deute-
rium is present in hydrogen as deuterium–hydrogen
(HD) molecules [8, p. 295].

The results obtained allow us to analyze the effect of
the load applied to p-H2 specimens on the mean-square
displacements. It is seen from Fig. 3 that the slopes of
the linear dependences ln  = f(c–2/3σ) measured for
p-H2 at a constant load (σ = const) decrease with
increasing σ. It follows from the table that, as σ

increases, the (exp) values significantly increase.
The authors of [2–4] showed that point defects in quan-
tum crystals can be considered as quasiparticles and
can freely move to grain (block) boundaries or to the
outer surface. The increase in the mean-square dis-
placements in p-H2 with increasing σ can indicate that
deuterium impurities go out of the bulk of a parahydro-
gen crystal under a load (deformation-induced purifica-
tion). The properties of this crystal become close to
those of the ideal impurity-free crystal, in which the
mean-square displacements of particles are noticeably

δ0
2

δ0
2

δ0
2

ε̇

σ0
2
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higher than in the impurity crystal. The ability of solid
p-H2 to self-repair has been noted earlier [25–27].
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Abstract—The size effect of magnetically ordered nanoparticles on the Curie temperature is discussed. For a
system of Fe3O4 nanoparticles with different dispersities, it is demonstrated that the smaller the size of the par-
ticles, the larger the thickness of their surface layer, which is characterized by considerable distortions of the
regular structure. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, great interest has been expressed by
researchers in the structure and properties of ultrafine
particles. This is caused not only by the unique physic-
ochemical properties of nanoparticle systems but also
by the wide possibilities of using these properties in
practice [1, 2]. In particular, nanoparticles have an
anomalously large coefficient of thermal expansion,
which suggests that the anharmonicity of atomic vibra-
tions plays a significant role in the surface layers of the
nanoparticles [3]. The smaller the particle size, the
more noticeable the influence of different factors on the
surface layers and, consequently, on the properties of
the particle as a whole [4].

One of the most important problems concerning the
properties of ultrafine particles is associated with the
elucidation of the interrelation between the specific fea-
tures of the structure of the surface layers and the mac-
roproperties of the particle as a whole. In this work, we
would like to call attention to a relatively simple way of
obtaining quantitative information on the structural fea-
tures of the surface layer of nanoparticles from data on
the Curie temperature. The proposed approach is based
on the following obvious assertion. The larger the frac-
tion of atoms in the surface layer of the particle, the
greater the number of dangling exchange bonds
between the atoms (as compared to the case of a large-
sized particle).

2. THEORETICAL BACKGROUND

Let us first consider the situation where the surface
layers of particles have a magnetic crystal structure
similar to the structure of bulk particle regions. The
particles are treated as identical sphere with radius r. If
the particle size is not very small (for example, r ≥ 10
nm), approximately half the exchange bonds between
1063-7834/03/4506- $24.00 © 21079
the magnetically active surface atoms are dangling. It
is these bonds that are responsible for magnetic order-
ing inside the particle below the Curie temperature

TC(r) ≡ .

It is assumed that, for a large-sized particle, the
number of exchange bonds per unit volume is equal to
n. From the aforesaid it follows that, for the magneti-
cally active surface atoms of a nanoparticle, this num-
ber amounts to n/2. In the case when the Curie temper-
ature for a nanoparticle, as in our approximation, is pro-
portional to the mean number of exchange bonds per
unit volume, it is easy to show that the ratio between the
Curie temperatures for ultrafine and large-sized parti-
cles can be expressed by a simple formula

(1)

where ∆r is the thickness of the layer that is half-
depleted of exchange bonds.

The quantity ∆r is a convenient averaged parameter
that characterizes the features of the defect structure of
nanoparticles. If ∆r is independent of the particle radius
r, then, according to relationship (1), the relative cor-
rection to the Curie temperature, which is caused by the
decrease in the particle size, changes with varying r in
accordance with the hyperbolic law

(2)

3. RESULTS AND DISCUSSION
The deviation from this law would unambiguously

indicate that the quantity ∆r is a parameter characteriz-
ing the influence of the surface layer on the Curie tem-
perature rather than the thickness of the layer depleted
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of exchange bonds. In this case, an analysis of the
dependence ∆r(r) for particular systems of magneti-
cally ordered particles would permit us to trace the vari-
ation in this parameter with a decrease in the particle
size.

0.1

40
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2

0.2

0.3

8 12 16
r, nm

–
∆T

' C
/T

C

Fig. 1. Correction ∆ /TC applied to the Curie temperature

(due to the decrease in the particle size) as a function of the
radius r of Fe3O4 nanoparticles: (1) experimental data taken
from [5] and (2, 3) variants of the fitting of the experimental
data with the use of formula (2) for ∆r = 0.5 and 0.1 nm,
respectively.
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Fig. 2. Parameter of imperfection ∆r for Fe3O4 nanoparti-
cles as a function of the particle radius r.
P

As an example, we can use the experimental data
obtained by Sadeh et al. [5], who measured and inves-

tigated the experimental dependence (r) for nano-
particles of magnetite Fe3O4. As can be seen from Fig. 1,
the attempts to fit theoretical curves calculated from
relationship (2) at ∆r = const to the experimental data
taken from [5] were unsuccessful. In other words, using
the quantity ∆r as the fitting parameter, we failed to
achieve reasonable agreement between the calculated
and experimental dependences.

For a system of Fe3O4 nanoparticles with different
dispersities, it is possible to show that the quantities ∆r
and r, which are related to the correction to the Curie

temperature ∆ /TC through relationship (2), charac-
terize the interrelation between the degree of imperfec-
tion of the magnetic structure and the particle size. The
dependence ∆r(r) for Fe3O4 nanoparticles (Fig. 2) is in
agreement with relationship (2) and the results obtained
in [5]. This dependence suggests a progressively
increasing role of the surface layer with a decrease in
the particle size. To put it differently, the smaller the
size of the particles, the larger the effective thickness ∆r
of the layer characterized by considerable distortions of
the regular structure. Therefore, the quantity ∆r can be
actually treated as the parameter of imperfection of the
magnetic structure of the nanoparticles.

An analysis of the dependence ∆r(r) shown in Fig. 2
makes it possible to refine the size corresponding to the
notion of large-sized particles. In the case of magnetite,
particles with r ≥ 20 nm can be considered to be large-
sized. For these particles, the parameter of imperfection
∆r is approximately equal to zero.
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Abstract—Magnetization reversal in ferrite-garnet films placed in an ac magnetic field, bringing about the for-
mation of metastable dynamic domains with sizes exceeding those of quasi-static domains by an order of mag-
nitude or greater, was studied using a stroboscopic method. The formation of giant dynamic domains (GDDs)
is due to the finite domain wall velocity and depends on the density of domain nucleation centers. It was shown
that the GDD comblike boundary forms during the part of a field period near the moment of field polarity
change. GDDs arise when the dynamic hysteresis loop shape changes from a triangle to an ellipse. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When ferrite-garnet films are placed in an ac mag-
netic field at sound and ultrasonic frequencies, a great
variety of dynamic domain structures appear in the pro-
cess of magnetization reversal. In the phase diagram of
dynamic systems of magnetic domains [1], there are
more than ten regions corresponding to different kinds
of domain structures. In general, these structures can be
divided into two groups. The first group includes
dynamic domain structures whose sizes are approxi-
mately equal to those of quasi-static stripe, dumb-bell,
and bubble domains at the respective effective mag-
netic-field values. Such structures differ from quasi-
static domains in the appearance of a new order in the
domain arrangement, more specifically, in the forma-
tion of spiral and ring domains [1–5] and two-dimen-
sional domain lattices [6–8]. Such structures are, as a
rule, reflexive and retain their properties partly or fully
after switching-off of the ac magnetic field or in the
periods between pulses [3] (in the case of a pulse field).

The second group includes dynamic domain struc-
tures whose characteristic sizes exceed quasi-static-
domain sizes by an order of magnitude or greater.
These structures have the shape of concentric ring
domains [2, 9], distorted bubble domains, etc. [1, 9, 10]
and can either move along the film area [1] or be rigidly
fixed to certain centers (defects) in the film [10]. The
formation of giant dynamic domains (GDDs) takes
place at a sufficiently large ac field amplitude, exceed-
ing the static saturation field of a domain structure Hs

[1, 2, 9, 10]. GDDs are relatively stable and retain their
average shape almost unchanged over hundreds and
thousands of field periods. When the field frequency is
increased, the GDD maximal sizes decrease [1]. GDDs
exist only under dynamic conditions; after switching-
off of the ac field, these domains are transformed into a
1063-7834/03/4506- $24.00 © 21081
network of labyrinth domains with sizes typical of
equilibrium domains.

Because of the complex character of dynamic-
domain phase diagrams and the variety of dynamic
domain structures that appear, much in the origin of the
phenomena under investigation remains unknown.
Because of limitations of an experimental technique,
the published GDD photographs represent average
images of domains over tens of magnetic-field periods;
the question of interconnection of GDD formation con-
ditions and sample parameters remains open.

In order to find the mechanisms of GDD formation
and evolution, we studied such domains using a strobo-
scopic method with a domain structure exposition time
at least an order of magnitude shorter than the field
period and with simultaneous measurement of the inte-
gral characteristics of magnetization reversal (dynamic
hysteresis loops).

2. EXPERIMENTAL

The dynamic domains were observed using a mag-
netooptic method based on the Faraday effect; time res-
olution of the stroboscopic unit was 0.8 µs [5]. Infor-
mation on the domain shape evolution was obtained by
sweeping a light source pulse (helium–neon laser with
microwave pumping) over a magnetic-field period. By
changing the strobing ratio, the transition from the stro-
boscopic mode of domain observation to the high-
speed photography mode was made; such a transition
was necessary for investigating processes that were not
repeated. Part of a magnetooptic signal was fed to a
photoelectric multiplier with the help of a semitrans-
parent mirror for recording of the hysteresis loop. A
homogeneous ac magnetic field (field homogeneity
~1% over the sample region under investigation) was
003 MAIK “Nauka/Interperiodica”
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produced using Helmholtz coils 2.5 mm in diameter.
An ac field was applied along the easy magnetization
axis of the film under investigation.

The results for a (Bi, Tm)3(Fe, Ga)5O12 ferrite-gar-
net film with (111) orientation [5] are presented below.
The film parameters are the following: thickness h =
5.6 µm, stripe-domain equilibrium width w = 8.9 µm,
bubble domain collapse field H0 = 46 Oe, and saturation
magnetization Ms = 9.9 G. The sample possessed sig-
nificant uniaxial anisotropy: the quality factor was Q =

Ku/2π  = 20 (Ku is the uniaxial anisotropy constant),
with the easy axis being perpendicular to the film plane.
In the absence of an external magnetic field, a labyrinth
domain structure was observed in the film (Fig. 1a). In
ac magnetic fields with frequency f in the range from 15
to 80 kHz and with amplitude HM in the range from 70
to 160 Oe, GDDs were formed (Fig. 1b).

The choice of the sample was determined to a large
extent by the simple dependence of the domain wall
(DW) velocity V on the applied field H. Measurements
of the DW velocity in a pulse magnetic field by using
high-speed photography showed that, in a wide field
range (from several oersteds to H > 200 Oe), the veloc-
ity V almost does not depend on field amplitude H and
does not exceed 10 m/s. Such a V(H) dependence for
practically the entire range of instantaneous values of
the ac field used in this work significantly facilitates
interpretation of the experimental results.

Ms
2

100 µm

(‡)

(b)

Fig. 1. (a) Equilibrium domain structure (Hb = 0) and (b) a
giant dynamic domain in an ac magnetic field at field ampli-
tude Hm = 85 Oe and field frequency f = 40 kHz.
P

3. EXPERIMENTAL RESULTS

We will consider the regularities of transition to
GDD formation mechanisms, which become operative
with increasing ac field amplitude, for field frequency
f  = 40 kHz (Fig. 2). At this frequency or near it, domain
sizes can reach their maximum values. Microphoto-
graphs for the same field amplitudes but for different
phases (Fig. 2) correspond to different field periods,
which allows one to establish whether or not the mag-
netization reversal process is repeated.

If the field amplitude is HM < H0, then, as one goes
from one field period to another, a rearrangement of the
domain structure takes place, but the structure remains
a labyrinth (Fig. 2a). It is easy to see that such a struc-
ture differs from a labyrinth structure formed quasistat-
ically (Fig. 1a). The domain period becomes smaller
and the disclination density in the domain structure
increases. The last difference, as pointed out in [3, 6,
11], is an indirect but reliable sign of changes in the
DW structure and of an increase in the Bloch line den-
sity in DWs. These changes can take place if DWs
move with a velocity close to the saturation velocity.
Thus, as the field frequency increases, obvious indica-
tions of transition from the quasi-static to the nonlinear
dynamic regime of DW motion appear. The coercive
force calculated from the half-width corresponding to a
minor hysteresis loop somewhat increases (Fig. 3).

As the field amplitude increases, all the above-men-
tioned indications of the dynamic nature of DW motion
(domain branching, an increase in disclination density,
a decrease in the domain structure period at Hb ~ 0, a
decrease in distortion period along the domain length)
become more and more evident and are the most pro-
nounced at HM  H0 (Fig. 2b). With an insufficient
instrumental resolution, the dynamic domain structures
shown in Figs. 2a and 2b may be perceived as a gray
background [1] because of a significant change in the
domain location as one goes from one field period to
another.

When the ac field amplitude exceeds the static satu-
ration field, part of the domains collapse during a field
period, which results in the transition to a dynamic
structure radically differing in shape and size from the
equilibrium structures (Fig. 2c). As the field increases
further, almost all domains collapse during a field
period and only one or a few giant domains are left in
the observable area (Fig. 2d). Their sizes exceed equi-
librium domain sizes by an order of magnitude or
greater.

As the period of a dynamic domain structure
increases by several times in a magnetic field at an
ultrasonic frequency, the hysteresis loop shape is mod-
ified. Figure 3 shows a dynamic hysteresis loop corre-
sponding to the middle of the field amplitude and fre-
quency ranges of GDD formation (Fig. 3e) and hyster-
esis loops outside these ranges (Figs. 3a–3d, 3f–3k).
The following features are characteristic of GDD for-
mation: (i) a hysteresis loop has the form of a distorted
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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100 µm

(‡)

(b)

(c)

(d)

Fig. 2. Dynamic domain structures corresponding to phases ϕ = 90°, 180°, and 270° of an applied ac magnetic field of frequency f
= 40 kHz and amplitude Hm = (a) 30, (b) 40, (c) 79, and (d) 98 Oe.
ellipse, (ii) the loop is shifted along the ordinate axis
relative to the line corresponding to magnetization M =
0, and (iii) loop instability is possible.

In fields with amplitude HM ≤ H0 (below the GDD
formation region), the dynamic hysteresis loops are
minor. The opening of loops (and the DW coercive
force) increases with the field frequency because of a
lag in DW motion (Figs. 3a, 3d, 3g). As the field ampli-
tude increases, the maximal magnetization of the sam-
ple reached during a field period increases. Neverthe-
less, even at field amplitude HM > Hs, the saturation is
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
not always reached during a field period because of the
finite DW velocity (Figs. 3e, 3h, 3i). Above the fre-
quency range of GDD formation, distortions of the
elliptical shape of loops decrease.

An increase in amplitude or a decrease in frequency
of the field (relative to the middle of the region of GDD
formation) leads to a change in the domain nucleation
field on a hysteresis loop and a decrease in the vertical
size of the loop (Figs. 3b, 3c, 3f); during one of the field
half-periods, the sample is magnetized to saturation
and, during the other half-period, the sample does not
3
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(g)
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(h)

(e)

(b)

(i)

(f)

(c)

Fig. 3. Dynamic hysteresis loops in an ac magnetic field of frequency f = (a–c) 20, (d–f) 50, and (g–i) 100 kHz. For each frequency,
the field amplitudes are (from left to right) Hm = 50, 100, and 150 Oe.
have time to demagnetize because of a delay in domain
nucleation and growth and a limited number of nucleus
formation centers. The hysteresis loop looses its sym-
metry about the origin of coordinates and shifts to a
region of, say, positive magnetization (Figs. 3b, 3c, 3f).
When the amplitude of the ac magnetic field increases,
the tendency of the magnetization to be saturated along
the preferred direction strengthens. The existence of the
preferred direction may be due to insignificant asym-
metry in the field sinusoid or in the sample parameters.
It is easy to reverse this direction by applying a small
static bias field Hb ! H0 along the easy axis of the film.

It is more convenient to analyze the GDD evolution
during a field period in the case of a medium-sized (not
the largest) domain (Fig. 4), which periodically nucle-
ates in the same place on the film. The microphoto-
graphs, like those in Fig. 2, show domains in the same
place on the sample but at different field periods. Small
dynamic domains, upon expanding, have a cylindrical
form (Figs. 4a, 4b). In the region of field polarity
change (at phase ϕ = 180° ± 30°), the decrease in the
effective acting field leads to bending instability of the
domain walls and an array of stripe domains (a “comb”)
forms (Fig. 2d; Fig. 4) instead of smooth DWs. The rea-
son for the formation of the comb is analogous to that
of petal distortions arising when a bubble domain
P

exhibits radial expansion [12, 13] due to its magneto-
static instability. It is likely that the presence of such a
comb leads to blurring of GDD boundary images in the
photographs presented in [1, 9].

The time dependences of domain sizes in Fig. 5 are
found from data which are partly presented in Fig. 4. It
is seen that the domain diameter d varies practically lin-
early with time both upon expansion (one half-period
of the field) and upon compression (the other half-
period); i.e., the DW moves with a constant velocity
V ~ 7 m/s. This saturation velocity value agrees with
both the calculated values obtained with the use of dif-
ferent models [14–16] and those measured by us exper-
imentally in a pulse magnetic field.

4. DISCUSSION
The mechanism of GDD formation and time evolu-

tion in an ac magnetic field are determined by the pecu-
liarities of domain nucleation and dynamic properties
of the domain walls, primarily by the effect of satura-
tion of the DW velocity. Since the DW saturation veloc-
ity is finite, the DW displacement during a time equal
to a magnetic-field half-period τ/2 (for the frequency
range where the GDD formation occurs, τ/2 ~ 10 µs)
does not exceed a fraction of the GDD diameter. As a
result, the saturation state is not reached during a field
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 4. GDD evolution in a field with frequency f = 40 kHz and amplitude Hm = 98 Oe. Moments of time relative to the change of
field polarity t: (a) 0.8, (b) 6, (c) 7, (d) 9, (e) 11, (f) 12, (g) 13, (h) 14, and (i) 15 µs.
half-period. For this reason, such domain structures are
relatively stable and significant changes take place only
after 105–107 magnetic-field periods.

The changes in the GDD form and size, taking place
as one goes from one field period to another, should
lead to blurring of a hysteresis loop. It is seen from
Fig. 3 that the blurring is small, but there is some insta-
bility of the loop shape. Therefore, the most significant
changes in a GDD take place not continuously but in
steps of 500–1000 magnetic-field periods (as in Fig. 3).

The transition to a triangular shape of a hysteresis
loop is connected to the delay of the formation and
growth of the reverse magnetic phase [17]. The satura-
tion of a sample, reached during one field period, makes
the existence of stable GDDs impossible during many
subsequent field periods. An asymmetric hysteresis
loop is characteristic of the region of GDD formation,
as is the case with two-dimensional domain structures
[8]. In the case of GDDs, the shape of the hysteresis
loop is intermediate between those of triangular and
elliptical loops (Fig. 3).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
In a number of studies on the properties of ferrite-
garnet films placed in an ac magnetic field, DW oscilla-
tions were investigated using integral methods [18–20]
and, for the most part, at field amplitudes HM ! Hs. The
dynamic mechanisms of magnetization reversal in
strong ac fields with HM ≥ Hs (nucleation of domains,
DW motion) practically have not been studied; there-
fore, further investigation is required for determining
the quantitative characteristics of the domain structure
formation. The following peculiarities of magnetiza-
tion reversal in an ac field, revealed in the course of this
work, should be mentioned here (without elaboration of
the reasons for doing so): domain nucleation may take
place in a relatively long time (several microseconds)
after field polarity change (for comparison, in a pulse
field, t ~ 0.1 µs is sufficient for domain nucleation [21,
22]). Collapse of domain walls drawn close to the dis-
tance ~1 µm takes the time t > 2 µs (Figs. 4g–4i); the
same time is required for the change in the comb
motion direction when the field polarity changes
(Fig. 5). The DW velocities have close values under dif-
ferent conditions: in the case of motion of relatively flat
3
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portions of the DW of an expanding domain and of the
leading parts of a comb (DW rounding radii ~100 and
~5 µm, respectively) and in the case of domain expan-
sion and compression.

5. CONCLUSIONS

Thus, the comparison of the results of direct investi-
gation of dynamic domain structures using a strobo-
scopic method with the integrated characteristics of
magnetization reversal (dynamic hysteresis loops)
allows one to conclude that GDD formation in an ac
magnetic field is possible under the following condi-
tions.

(1) The field amplitude exceeds the static saturation
field of the sample domain structure, but some of the
domains do not have time to collapse because of the
limited time of influence.

(2) The density of the surviving nuclei and domain
pinning centers and the DW velocities are such that,
during a field half-period, domain walls cover a dis-
tance not exceeding half the average distance between
the domain centers.

(3) The existence of the lower limit of the field
amplitude range and of the upper limit of the field fre-
quency range of GDD formation is due to the impossi-
bility of domains collapsing during a field period, in the
former case because of a small field amplitude HM ≤ Hs

and in the latter case because of the lack of time for
DWs to approach each other during half a field period.

(4) The upper limit of the field amplitude range and
the lower limit of the field frequency range of GDD for-
mation are determined by a practically complete sup-
pression of domain nuclei during at least one field half-
period, which, in turn, leads to a triangular form of a
hysteresis loop and makes retention of the domain
structure during many field periods impossible.

200

100

–100

–200

0
5 10 15 200

a b
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, O
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t, µs

Fig. 5. (a) Magnetic field intensity H and (b, c) the change
in GDD sizes during a field period: (b) GDD outer diameter
and (c) GDD diameter without regard for the comb.
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Abstract—Free magnetization oscillations in garnet ferrite films with quasi-planar anisotropy was studied. The
oscillations were excited by a pulse of an in-plane magnetic field. An analytic expression relating the oscillation
frequency to the film parameters and the external magnetic field was derived; the expression is in good
agreement with the experimental data. The planar anisotropy is shown to increase the free-oscillation damping.
© 2003 MAIK “Nauka/Interperiodica”.
Investigation of the free oscillations of magnetiza-
tion considerably broadens the possibilities for study-
ing the spin–lattice interaction in transient processes
occurring in magnets [1–6]. In particular, studies of free
oscillations can yield important characteristics of mag-
netic materials, such as the Landau–Lifshitz damping
and magnetic-anisotropy constants. Until recently, free
oscillations had been investigated primarily in permal-
loy films [1–8]. It would be desirable to carry out such
research on other magnetic materials differing in mag-
netic structure, magnetization, the nature of anisotropy,
etc.

We report here on the observation of free magneti-
zation oscillations in garnet ferrite films with quasi-pla-
nar anisotropy. These films are intended for the visual-
ization of information stored on magnetic carriers [9,
10]. In their preparation, measures are taken to obtain
easy-plane-type anisotropy. In real films, the influence
of uncompensated cubic anisotropy is observed and
manifests itself in the magnetization vector not being
confined exactly to the film plane in the absence of an
external magnetic field. Furthermore, noticeable
anisotropy is observed to exist in the film plane itself.
The easy magnetization axes (EMAs) are aligned along
two mutually perpendicular directions [11]. We take
into account the effect of planar anisotropy confining
the magnetization to the film plane and characterized
by a constant K1 and the effect of biaxial anisotropy in
the film plane (with a constant K2).

The investigation was performed on an induction
setup [12]. A removable longitudinal sense loop was
employed to measure variations in the magnetization.
The sample under study was saturated along one of the
EMAs with the use of a bias magnetic field H0. Oscilla-
tions were excited by applying a magnetic field pulse
Hp perpendicular to the EMA. The pulse leading-edge
duration was close to 0.3 ns. The pulse amplitude could
be varied from 4 to 6 Oe.
1063-7834/03/4506- $24.00 © 21087
The sample used had the following characteristics:
(Y, Lu, Bi)3.0(FeGa)5.0O12 composition, a thickness of
4 µm, technical saturation field along the EMA Hsat ≤
3 Oe, saturation magnetization MS = 14 G, effective
planar-anisotropy field HK1 = 1300 Oe, and an angle
between the magnetization vector and the film plane
with no external field applied of β0 ≈ 5°. The values of
HK1 and β0 and the EMA directions were determined
with a magnetooptic setup [11, 13]. No technique for
measuring the effective biaxial-anisotropy field in the
material in question was available. The need to develop
such a technique additionally motivated us to study free
oscillations.

It was found that free magnetization oscillations are
excited in the material under study and are fairly easily
detected, provided the leading edge of the exciting
pulse is substantially shorter than the oscillation period.
Figure 1 illustrates an oscillographic trace of the mag-
netization oscillation signal. The signal was obtained at
a bias field H0 = 19 Oe. After the ≈1-ns-long peak,
which identifies the initial rotation of the magnetiza-
tion, one observes signal voltage oscillations associated
with oscillations of the magnetization about a new
equilibrium position. The oscillation frequency is close
to 960 MHz for the field H0 used. Similar to the case of
permalloy films [1–3, 6, 7], the oscillation frequency
squared was found to be proportional to the field H0
(Fig. 2).

Interpretation of the above results can be facilitated
by invoking the experience gained in studies of tran-
sient processes in permalloy films [1, 6, 14]. One has to
bear in mind that the material under investigation dif-
fers from permalloy films in its substantially lower
magnetization. Because of the planar anisotropy, how-
ever, the angle ψ the magnetization vector makes with
the film plane in oscillations is small. As in permalloy
films, this fact makes it possible to reduce the Landau–
003 MAIK “Nauka/Interperiodica”



 

1088

        

 IL’ICHEVA 

 

et al

 

.

                                                                                                                   
Lifshitz equation to a one-dimensional equation
describing the variation of the angle ϕ between the
instantaneous and initial directions of the projection of
vector MS on the film plane. For small values of ψ, the
free-energy density can be written in the form

(1)

where the first two terms describe the energy of the pla-
nar and biaxial anisotropy [15], the third term repre-
sents the demagnetizing-field energy, and, finally, the
last two terms are the energy of magnetization in an
external field. An analysis of Eq. (1) shows that the
effective field of the planar anisotropy HK1 = 2K1/MS

greatly exceeds all other effective fields acting on the
magnetization. As a result, the equation of motion
acquires a simple form,

(2)

W K1ψ
2

K2 2ϕcos– 2πMS
2ψ2

+=

– H pMS ϕcos H0MS ϕ ,sin–

ϕ̇̇ aλϕ̇ aγ2∂W /∂ϕ+ + 0,=

1.4

1.2

1.0

0.8
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Fig. 2. Squared free oscillation frequency plotted vs. bias
field H0.

2 ns

Fig. 1. Signal caused by free magnetization oscillations.
H0 = 19 Oe.
P

where

(2a)

λ is the Landau–Lifshitz damping constant, and γ is the
gyromagnetic ratio. For small values of Hp, Eq. (2)
reduces to a linear relation,

(3)

where HK2 = 16K2/MS [15]. As seen from Eq. (3), the
free-oscillation frequency is

(4)

and their amplitude falls off exponentially with the
damping rate

(4a)

An analysis of the signals reveals that the damping
rate δ < 108 Hz (λ < 2 × 106 Hz). It follows that the
oscillation frequency for characteristic values of MS,
HK1, and HK2 is dominated by the first term under the
square root sign of Eq. (4). Thus, we have

(5)

where the coefficient of proportionality b =
(γ2/4π2)(4πMS + HK1).

By extrapolating the straight line fitting the experi-
mental dependence of the frequency squared on field
H0 to the intersection with the horizontal axis (Fig. 2),
we find that for the sample under study HK1 = 40 ± 4 Oe.
Thus, investigation of free magnetization oscillations
permitted us to estimate the effective field of biaxial
anisotropy in the films under discussion.

The straight-line fit yields for the coefficient of pro-
portionality b = 1.3 × 1016 Hz2 Oe–1. Using the above
values of MS and HK1 and accepting |γ| = 1.76 ×
107 Hz Oe–1, we calculate this coefficient to be b =
1.15 × 1016 Hz2 Oe–1, which agrees with the experimen-
tal results.

As follows from Eqs. (2), (2a), (3), and (4), the
existence of planar anisotropy should increase the
damping and, accordingly, degrade the Q factor of the
oscillation system under study. For small values of δ,
the Q factor is approximately Q ≈ πf/δ. Thus, we have

(6)

The Q factor is seen to decrease with increasing
ratio HK1/MS. This can be interpreted in the following
way. It is known [6] that the demagnetizing field
appearing when the magnetization vector leaves the
film plane (to make an angle ψ with it) generates addi-
tional torque, which substantially enhances the magne-

a
4πMS HK1+

MS

------------------------------,=

ϕ̇̇ aλϕ̇ aγ2
MS HK2 H0+( )ϕ+ + aγ2

H pMS,=

f 1/2π( ) aγ2
MS HK2 H0+( ) δ2

– ,=

δ aλ /2.=

f
2

b HK2 H0+( ),=

Q γ/λ( )
MS HK2 H0+( )
4π HK1/MS+
-----------------------------------.=
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tization variation rate. However, the magnitude of this
effect decreases with increasing ratio HK1/MS.

Substituting the above-estimated value of δ into
Eq. (4a), we find that the Landau–Lifshitz damping rate
λ does not exceed 2 × 106 Hz, a figure two orders of
magnitude smaller than that for permalloy. Thus, the
decrease in the Q factor that may be caused by the
increasing HK1/MS ratio should be more than compen-
sated, in the material under study, by the small value of
the damping rate, and this is what makes reliable obser-
vation of free oscillations possible.
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Abstract—The behavior of the electrical resistivity and magnetoresistance of 40- to 120-nm-thick
La0.67Ca0.33MnO3 films grown on differently oriented lanthanum aluminate substrates was studied. The cell
volume in thin (40 nm) La0.67Ca0.33MnO3 films grown coherently on (001)LaAlO3 was found to be substantially
smaller. Mechanical stress relaxation in biaxially strained La0.67Ca0.33MnO3 films is accompanied by an
increase in the cell volume. The temperatures at which the electrical resistivity and magnetoresistance in biax-
ially strained La0.67Ca0.33MnO3 films were maximum can differ by 60–70 K from those observed in bulk single
crystals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Thin layers of the perovskite-like manganites
La1 − xCaxMnO3 have application potential for use in
read and write heads in magnetic storage devices, IR
radiation sensors, etc. [1, 2]. For proper use of them in
microelectronics and measurement techniques, manga-
nite films should be grown epitaxially on the corre-
sponding substrates. The rigid bonding to the substrate,
whose unit cell parameters and temperature coefficient
of linear expansion may differ substantially from those
of the grown layer, is one of the reasons for the genera-
tion of biaxial mechanical strains in the film.

The influence of mechanical strains on the parame-
ters of perovskite-like manganites has been the subject
of many publications [3–5]. Hydrostatic compression
was shown to substantially increase the Curie tempera-
ture TC in bulk La1 – xCaxMnO3 samples [5]. According
to [6], biaxial mechanical strains in heteroepitaxial
manganite films should favor carrier localization and
the values of TC may differ by tens of kelvins from the
corresponding values for bulk samples.

We report here on a study of the structure and elec-
tronic parameters of thin, biaxially stressed
La0.67Ca0.33MnO3 (LCMO) films grown on polished
(001) and (110)LaAlO3 (LAO) plates. Using substrates
of different types is essential for establishing the depen-
dence of the orientation, microstructure, and electronic
properties of LCMO films on the symmetry and effec-
tive parameter of the plane ion array on the LAO sur-
face.
1063-7834/03/4506- $24.00 © 21090
2. EXPERIMENT

Laser ablation (COMPEX 100, KrF, λ = 248 nm, τ =
30 ns) was employed to grow LCMO films on lantha-
num aluminate substrates. The laser radiation density
on the surface of the original LCMO target was 2 J/cm2.
The oxygen pressure in the growth chamber was main-
tained at 0.3 mbar. LCMO films of thickness d = 40, 60,
80, and 120 nm were grown under identical conditions
on each of the above substrate types. The growth of epi-
taxial LCMO films is described in detail in [7, 8].

The orientation, phase composition, and unit cell
parameters of the grown LCMO films were determined
using x-ray diffraction (Philips X’pert MRD, CuKα1,
ω/2θ and φ scans, rocking curves). The lattice parame-
ters of the LCMO/(001)LAO films were derived from
the values of 2θ for the (004) and (303)LCMO reflec-
tions, and those of the manganite films grown on
(110)LAO were calculated from the values of 2θ for the
(330) and (222)LCMO x-ray peaks measured with
high-precision x-ray optics.

The morphology of the free surface of LCMO films
was studied by atomic-force microscopy (AFM, Nano-
scope-IIIa).

The resistance R of the LCMO films was measured
under an ac current in the Van der Pauw configuration
using an hp 4263A LCR meter, both with and without
a magnetic field (f = 100 Hz). The electrical resistivity
of the films was calculated from the relation ρ =
(πd/ln2)R [9]. A magnetic field H = 0.4 T was applied
parallel to the substrate plane. Four silver contacts,
located at the corners of a square, were deposited on the
003 MAIK “Nauka/Interperiodica”
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manganite film surface through thermal evaporation
from a tungsten boat.

3. THE STRUCTURE OF GROWN LCMO FILMS

The orientation of an LCMO film relative to the sub-
strate is determined by the actual conditions of nucle-
ation and subsequent growth. First to become stable are
the LCMO nuclei with the lowest free energy of the free
surface γ and the lowest elastic strain energy η in the
nucleus–substrate system. In the absence of mechanical
strain relaxation, it is these nuclei that govern the orien-
tation of a heteroepitaxial LCMO layer with respect to
the substrate.

The parameter of the LAO pseudocubic unit cell
(~3.79 Å [4]) is smaller than that of the LCMO unit cell
(~3.86 Å [10]), and the temperature coefficients of lin-
ear expansion of LAO and LCMO are similar [4, 11].
The lattice misfit m [m = (aL – aS)/aS, where aL and aS

are the layer and substrate unit cell parameters, respec-
tively] for the LCMO and LAO is about 1.8%, with
m > 0. This should give rise to the generation of in-
plane compressive mechanical strains in the manganite
layer. The elastic strain energy η per unit film–substrate
interface area depends quadratically on m and grows
linearly with layer thickness.

We could not find literature data on the magnitude
and anisotropy γ for LCMO. Structural data available
on LCMO films grown on substrate materials which are
chemically unstable with respect to LCMO (Y–ZrO2,
TS ≈ 750°C) indicate, however, that the (110)LCMO
plane has the smallest value of γ [12].

X-ray diffractograms of both (40–120 nm)
LCMO/(001)LAO and (40–120 nm)LCMO/(110)LAO
revealed reflections only from the manganite film and
the substrate (Fig. 1), which implies the absence of
microinclusions of secondary phases in the grown lay-
ers. As follows from the x-ray ω/2θ and φ scans, the
grown manganite layers coincided in orientation with
the lanthanum aluminate substrates, which implies
fully coherent growth.

3.1. Orientation and Lattice Parameters of LCMO 
Films Grown on (001)LAO

In manganite films (d = 40–120 nm) grown on
(001)LAO, the (001) planes were parallel to the sub-
strate plane and the [010]LCMO direction was parallel
to [010]LAO (Figs. 1a, 2a). We did not succeed in
revealing, in the x-ray diffractograms of (40 nm)LCMO
films (even for 2θ > 100°), any complex x-ray
(00n)LCMO peak structure (see inset to Fig. 1a) which
could be assigned to mechanical strain relaxation. The
cell parameter c in a (40 nm)LCMO/(001)LAO film
measured along [001]LCMO (i.e., perpendicular to the
substrate plane) was substantially larger than the
parameter b determined along the [010]LCMO direc-
tion, parallel to the substrate plane (b = a, where a is the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
cell parameter along [100]LCMO) (see Fig. 2a and
table). The parameter b coincided with a high accuracy
with the measured parameter of the lanthanum alumi-
nate pseudocubic lattice, which implies that the manga-
nite films (d = 40 nm) were grown coherently on the
(001)LAO surface. The difference between the mea-
sured values of c and b for (40 nm)LCMO/(001)LAO
indicates a substantial tetragonal unit cell distortion in
thin (d = 40 nm) manganite films grown on (001)LAO.
The cell volume Veff = (cxb2) ≈ 56.7 Å3 in the
(40 nm)LCMO/(001)LAO films was noticeably
smaller than that in stoichiometric LCMO bulk sam-
ples [10].

The decrease in Veff observed in 40-nm-thick
LCMO/(001)LAO films suggests that the Mn4+ concen-
tration in their volume is higher than 33%; this value
follows from the chemical formula of the target mate-
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Fig. 1. (a) X-ray diffraction pattern (CuKα1, ω/2θ) of an
80-nm-thick LCMO film grown on (001)LAO. The (00n)
diffraction peaks from the manganite film are split in two.
Inset shows a fragment of an x-ray scan made for a
(40 nm)LCMO/(001)LAO film; the diffractogram does not
exhibit any (00n) peak splitting. (b) X-ray diffraction pat-
tern (CuKα1, ω/2θ) of an 80-nm-thick LCMO film grown
on (110)LAO. Inset shows (110) x-ray peaks measured on
LCMO films of thickness (1) 60 and (2) 80; the (110) x-ray
peak from the 80-nm-thick manganite film is distorted
noticeably on the low-angle side.



1092 BOŒKOV et al.
rial. The ionic radius of Mn4+ is smaller than that of
Mn3+, and this is what accounts for the decrease in Veff

with increasing relative concentration of the Mn4+ ions.
Using the data on the dependence of the effective lattice
parameter on the concentration of quadrivalent manga-
nese in bulk La1 – xCaxMnO3 ceramic samples [11], we
obtained 45% for the relative Mn4+ concentration in the
(40 nm)LCMO/(001)LAO films. The main reason for the
increase in concentration of quadrivalent manganese
ions in 40-nm-thick manganite films is the compressive
in-plane strains acting on LCMO nuclei. The increase in
the Mn4+ concentration in (40 nm)LCMO/(001)LAO
films is accompanied by the formation of vacancies on

Parameters of LCMO epitaxial films grown on (001) and
(110)LAO

Substrate d, nm c, Å b, Å Veff , Å
3 TM, K

(001)LAO 40 3.948 3.789 56.7 179

3.950* 3.789* 56.7

80 3.875** 3.833** 56.9 237

(110)LAO 60 3.788 3.893 57.4 234

3.787* 3.894* 57.4

120 3.839** 3.872** 57.6 257

  * Unit cell parameters of the LCMO buffer coherently grown on
substrate.

** Unit cell parameters of the LCMO buffer after partial strain
relaxation.

a = b < c

a = b > c

LCMO

LCMO

3.79 Å

5.34 Å

3.79 Å

3.79 Å

(110)LAO

(001)LAO
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b

c

(a)

(b)

a
c

b

Fig. 2. (a) The lattice unit cell parameters a and b of a man-
ganite film grown on (001)LAO are substantially smaller
than the parameter c measured along the substrate plane
normal ([001]LCMO direction). (b) The lattice cell param-
eters a and b of a manganite film grown on (110)LAO are
larger than the parameter c measured along [001]LCMO.
P

the cation sublattice and enrichment of the films in cal-
cium.

The (ω–2θ) rocking curve halfwidth of the (002)
reflection obtained from a (40 nm)LCMO/(001)LAO
film was 0.09°–0.1°, which implies a high quality of the
microstructure in the bulk.

The (00n) reflections in the x-ray diffractograms of
LCMO/(001)LAO films with d ≥ 60 nm were actually
doublets (Fig. 1a). This is the result of a film becoming
stress-relieved after it has reached a critical thickness
dK (for (001)LCMO || (001)LAO, dK ≈ 45–50 nm). A
manganite film with only partially relieved mechanical
strains consists of two parts, namely, (i) the substrate-
adjoining layer, whose cell parameters are approxi-
mately equal to those in the (40 nm)LCMO/(001)LAO
film, and (ii) the top part, whose parameter c is smaller
and parameter b is larger than those of the
(40 nm)LCMO/(001)LAO film (see table). A narrow
interlayer with a high concentration of structural
defects is sandwiched between the top and bottom parts
of the LCMO/(001)LAO film (d ≥ 60 nm) [13, 14]. The
cell volume in the part of the LCMO film where the
mechanical strains were partially relieved is larger than
Veff of a (40 nm)LCMO/(001)LAO film (see table) but
is smaller than the value of Veff for stoichiometric bulk
samples, in which the Mn4+ concentration is 33%.
Thus, the cell volume in an LCMO/(001)LAO film does
not remain constant as its thickness decreases in the
range 120–40 nm. The rocking curve width for the
(002) x-ray peak from (d ≥ 60 nm)LCMO/(001)LAO
films was 50–80% larger than those for thin LCMO lay-
ers grown coherently on (001)LAO.

It is practically impossible to reduce the cell param-
eters in a (001)LCMO || (001)LAO film along the
[010]LCMO and [100]LCMO directions without
changing the valence of the manganese ions, because
the double sum (Σ ≈ 3.92 Å) of the ionic radii of oxygen
(r(O2–) = 1.32 Å [15]) and manganese (r(Mn3+) =
0.66 Å, r(Mn4+) = 0.60 Å [15]) is in excess of the
LCMO pseudocubic lattice parameter.

3.2. Orientation and Lattice Parameters of LCMO 
Films Grown on (110)LAO

The (110) plane in LCMO films (d = 40–120 nm)
grown on (110)LAO was parallel to the substrate plane
(Figs. 1b, 2b), and the [100] and [010]LCMO direc-
tions made an angle of 45° with this plane. The param-
eter c of (d ≤ 60 nm)LCMO/(110)LAO films calculated
using the x-ray data obtained was noticeably smaller
than the b parameter (see table: b = a, as shown in
Fig. 2b). The parameter c in LCMO films (d ≤ 60 nm)
grown on (110)LAO practically coincided with the
pseudocubic lattice parameter of lanthanum aluminate.

In contrast to manganite layers grown on (001)LAO,
the doubling of the (110)LCMO peaks in x-ray ω/2θ
scans was observed only for d ≥ 80 nm; i.e., mechanical
strain relaxation in (110)LCMO || (110)LAO films
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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started at larger thicknesses than in the case of
(001)LCMO || (001)LAO films. The increase in dK in
(110)LCMO || (110)LAO compared to (001)LCMO ||
(001)LAO films is due to the value of η for a manganite
film grown on (110)LAO being smaller than that for a
film of the same thickness prepared on (100)LAO. This
is due both to the difference between the effective elas-
tic moduli and to the oxygen ion density on the
(110)LAO substrate surface being about 40% lower
than that on the (001)LAO surface. The width of the
rocking curve for the (110)LCMO peak from mangan-
ite films grown on (110)LAO was within 0.19°–0.22°.

Similar to the manganite film grown on (001)LAO,
the LCMO layer prepared on (110)LAO was acted
upon by in-plane compressive mechanical strains. It is
the mechanical strains that are responsible for the
parameter c measured in the LCMO/(110)LAO film in
the substrate plane being substantially smaller than unit
cell parameters a and b (see table). However, the cell
volume Veff in the (40 nm)LCMO/(110)LAO film was
larger than that of (40 nm)LCMO/(001)LAO while
being slightly smaller than the corresponding value for
bulk stoichiometric ceramic samples; i.e., the relative
concentration of Mn4+ ions in LCMO/(110)LAO was
slightly above 33%. Unlike LCMO/(001)LAO films, an
increase in the thickness of manganite films grown on
(110)LAO from 40 to 120 nm did not change the cell
volume noticeably. The weak dependence of Veff in
manganite films grown on (110)LAO on thickness (d =
120–40 nm) suggests that mechanical stresses applied
in the (110)LCMO plane initiate elastic deformation of
the unit cell without a substantial change in the effec-
tive valence state of the manganese ion sitting at the
center of the oxygen octahedron.

3.3. Surface Morphology of Grown LCMO Films

No systematic difference in surface morphology
was observed between LCMO films of the same thick-
ness grown on the (001)LAO and (110)LAO substrates.
Figure 3a presents a micrograph of the surface of the
(40 nm)LCMO/(110)LAO film obtained with an atomic
force microscope. One clearly sees characteristic
depressions which decorate crystal grains on the sur-
face of the manganite film. The grains are 20–30 nm in
size. The reasons for grain boundary formation in epi-
taxial films of perovskite-like oxides grown coherently
on single-crystal substrates were analyzed in [16, 17].
The granular nature of LCMO films grown coherently
on lanthanum aluminate plates is primarily due to dis-
tortions in the stoichiometry of the phase adsorbed on
the surface of the growing layer. The density of grain
boundaries on the surface of LCMO films decreases
with increasing d (Fig. 3). For thicknesses d > dK, the
composition of the phase adsorbed on the surface of a
growing layer approaches that of the starting LCMO
target, a factor that favors an increase in the average
grain size.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
4. TEMPERATURE BEHAVIOR
OF THE ELECTRICAL RESISTIVITY 

AND MAGNETORESISTANCE OF LCMO FILMS

The electrical resistivity of the grown LCMO films
depended substantially on their thickness and the type
of substrate used, with the highest values of ρ being
obtained for (40 nm)LCMO/(001)LAO layers (Fig. 4a).
The low conductivity of thin, coherently grown
LCMO/(001)LAO films appears only natural, consider-
ing the estimates of the quadrivalent-manganese con-
centration in their volume derived from x-ray measure-
ments. An analysis shows [18] that the conductivity in
(La,Ca)MnO3 solid solutions should be the highest for
Mn4+ ion concentrations on the order of 32%. The high
values of ρ in (40 nm)LCMO/(001)LAO films can also
be partially accounted for by the formation of grains in
their bulk with antiferromagnetically ordered spins;
this has been observed in bulk ceramic La0.6Ca0.4MnO3

samples [11] containing Mn4+ in relative concentrations
of about 44%. The absolute values of ρ for the
LCMO/(001)LAO and LCMO/(110)LAO films which
underwent partial mechanical strain relaxation were
similar in magnitude (Fig. 4).
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(b)

100
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100

200

300
nm

Fig. 3. (a) Surface micrograph of a (40 nm)LCMO film
grown on a (110)LAO substrate. Grain boundaries in the
film are decorated by characteristic depressions on the free
film surface. (b) Surface micrograph of a (120 nm)LCMO
film grown on a (110)LAO substrate. The density of grain
boundaries in the top layer of the film with partially relieved
mechanical strains was three to four times smaller than that
in the thin LCMO layer grown coherently on a lanthanum
aluminate substrate.
3
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As in the case of bulk LCMO single crystals, ferro-
magnetic spin ordering in the grown films was accom-
panied by a drop in their electrical resistivity, which
accounted for the appearance of a clearly pronounced
maximum in their ρ(T) relations. The temperature TM at
which ρ reached a maximum in LCMO/(001)LAO and
LCMO/(110)LAO films with thicknesses d < dK was
lower than that for manganite films with d > dK (Fig. 4).
The higher temperatures TM obtained for the LCMO
films with partially relieved mechanical strains agree
well with the data on the dependence of the Curie tem-
perature in bulk (La,Ca)MnO3 ceramic samples on the
relative concentration of quadrivalent manganese ions
quoted in [11]. According to [11], TC in perovskite-like
(La,Ca)MnO3 manganites decreases by about 80 K as
the Mn4+ concentration in their volume increases from
33 to 45%.
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Fig. 4. (a) Temperature dependences of (1–4) the electrical
resistivity ρ and (5, 6) magnetoresistance MR obtained for
(001)LCMO || (001)LAO films of thickness (1, 2, 5) d = 40
and (3, 4, 6) 80 nm (curves 3 and 4 for the film with d =
80 nm are scaled up by ten). (1, 3) H = 0 and (2, 4) H = 0.4 T.
(b) Temperature dependences of (1, 2) the electrical resistiv-
ity ρ and (3, 4) magnetoresistance MR obtained for
(110)LCMO || (110)LAO films of thickness (1, 3) 60 and
(2, 4) 120 nm. Inset shows ρ(T) relations at temperatures
close to TM measured on the same films (2, 4) in a magnetic
field and (1, 3) without it. d (nm): (1, 2) 60 and (3, 4) 120.
P

A magnetic field favors spin ordering in perovskite-
like manganites, which was clearly pronounced in the
decrease in the electrical resistivity of grown films. In
the (d ≥ 60 nm)LCMO/(001)LAO and (d = 40–
120 nm)LCMO/(110)LAO films, the electrical resistiv-
ity was found to decrease substantially in a magnetic
field in the interval TM – 60 < T < TM + 10 K. A notice-
able decrease in ρ in (40 nm)LCMO/(001)LAO films
was observed to occur as the temperature was lowered
from TM + 20 K to 50 K. The maximum in the ρ(T, H =
0.4 T) relations measured for grown LCMO films
shifted by 3–5 K toward higher temperatures relative to
its position on the ρ(T, H = 0) curves (see Fig. 4a, inset
to Fig. 4b).

The temperature dependences of magnetoresistance
MR = [ρ(H = 0.4 T) – ρ(H = 0)]/ρ(H = 0) measured on
the (d ≥ 60 nm)LCMO/(001)LAO and (d = 40–
120 nm)LCMO/(110)LAO films revealed a sharp peak
at a temperature 10–20 K below TM (Fig. 4). The max-
imum values of MR for the LCMO films with partially
relieved mechanical strains agree well with the litera-
ture data reported for thick (d > 100 nm) epitaxial man-
ganite layers and bulk ceramic samples [19].

The maximum in the MR(T) curves measured on
(d = 40 nm)LCMO/(001)LAO films was not sharp
(Fig. 4a), with large values of MR also observed at tem-
peratures of about 50 K. The fairly large magnetoresis-
tance obtained for strongly elastically strained (d =
40 nm)LCMO/(001)LAO films at low temperatures can
be associated with the substantial manganese ion spin
disorder occurring at temperatures below TM.

5. CONCLUSIONS

Thus, lattice misfit accounts for the compressive
biaxial mechanical strains in LCMO films grown epi-
taxially on (001)- or (110)-oriented lanthanum alumi-
nate plates. The effective unit cell volume in an LCMO
film grown coherently on a (001)LAO substrate is sub-
stantially smaller than Veff in a manganite film of the
same thickness grown on a (110)LAO substrate. The in-
plane compressive biaxial mechanical strains favor the
enrichment of LCMO films in quadrivalent manganese
ions. The parameters of the (110)LCMO films are
affected by mechanical strains induced by the film/sub-
strate lattice misfit to a lesser extent than the parameters
of the (001)LCMO films.
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Abstract—The magnetic phase diagram of the CeAl2 magnetic Kondo lattice was studied using microwave
magnetoabsorption spectroscopy at frequencies of 37–118 GHz, temperatures of 1.8–4.6 K, and magnetic fields
of up to 70 kOe. The observed anomalies in magnetoabsorption, when combined with the change in the carrier
scattering pattern in (established in galvanomagnetic measurements) CeAl2 near H* ≈ 35 kOe at liquid-helium
temperatures, suggest that this compound undergoes a sequence of magnetic transitions accompanied by strong
spin fluctuations. The nature of the magnetic phases and the mechanisms driving the phase transformations in
CeAl2 are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. The series of Ce-, Sm-, Eu-, Tm-, and Yb-based
intermetallic compounds stands out among the rare-
earth magnets [1]. The onset of a complex magnetic
ground state in these compounds and, as a conse-
quence, the realization of a complex magnetic phase
diagram originate, as a rule, as a result of competition
between indirect exchange interaction mediated by
conduction electrons (the RKKY mechanism) and fast
charge and spin fluctuations associated with localized
magnetic moments (LMMs) of rare-earth ions (see,
e.g., [2, 3]).

One of the best known compounds in this class of
intermetallic compounds is cerium dialuminide, whose
magnetic Kondo lattice undergoes a transition, at low
temperatures T ~ TN ≅  3.85 K, to an antiferromagnetic
phase associated with cerium LMMs reduced through
Kondo scattering of band carriers [4]. According to [4],
the antiferromagnetic state in CeAl2 has an incommen-
surate sine-modulated structure (KI type); note also
that, in addition to the negative Ce–Ce exchange inter-
action, this compound also revealed the existence of a
ferromagnetic exchange component of comparable
magnitude [4–6].

The conclusions drawn in [4] regarding the structure
of the antiferromagnetic phase in CeAl2 have been
repeatedly discussed over the past decades. In particu-
lar, neutron diffraction studies of CeAl2 single crystals
[7] culminated in a description of the antiferromagnetic
modulated (AFM) state in terms of a 3-component
(characterized by a wave vector k) magnetic structure
(KIII type) with a 24-component order parameter (see
also [8]). Arguments were put forward [9, 10] for the
formation in CeAl2 of a magnetic structure in the form
of a double elliptical helix with Ce magnetic moments
1063-7834/03/4506- $24.00 © 21096
rotating in opposite directions in different fcc sublat-
tices and with a slight change of the LMMs in magni-
tude along each of the helicoidal components (KII type
of magnetic structure). The mechanism responsible for
the change in the magnitude of cerium localized mag-
netic moments along the helical axes (the so-called
magnetic-structure modulation), which is about 30% of
the amplitude value of the cerium LMM in the neigh-
borhood of TN [10], is apparently the Kondo compensa-
tion [9, 10].

The magnetic structure of CeAl2 has also been a
recent subject of intensive studies by µSR spectroscopy
[11–13]; the results obtained in those studies and the
conclusions drawn turned out, however, to be fairly
contradictory. One of the factor that make investigation
of the magnetic ground state of CeAl2 difficult may be
the dependence of the transition temperature TN and of
the specific features of establishment of long-range
order on internal local strains and low-concentration
impurities present in the samples studied [11, 14–16].
These factors that cause a spread of the Néel tempera-
ture within the interval TN = 3.4–3.9 K [11], as well as
the occurrence in CeAl2 samples [14] of a sequence of
two magnetic transitions with similar values of TN, are
apparently responsible for the above-mentioned diffi-
culties encountered in attempts to interpret the mag-
netic structure and specific features in the H–T phase
diagram of this compound. It should be stressed that
despite the large number of studies and the obvious
interest expressed in the investigation of the CeAl2
magnetic Kondo lattice, the data available to date on the
H–T magnetic phase diagram of this compound have
been obtained primarily in measurements of the spe-
cific heat, thermal expansion, and magnetostriction [14,
003 MAIK “Nauka/Interperiodica”
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15, 17, 18]. Recent high-precision measurements of the
transport characteristics [19] showed CeAl2 to indeed
undergo two magnetic phase transitions at temperatures
TN = 3.85 K and TN1 = 3.0 K, with anomalies observed
[19] in the Hall coefficient and magnetoresistance argu-
ing for the existence of ferromagnetic correlations
in the CeAl2 matrix at low temperatures TN ≤ T ≤ 12 K
[4–6].

Microwave magnetoabsorption spectroscopy is an
efficient experimental tool for studying magnetic phase
diagrams of cerium-based heavy-fermion, mixed-
valence (MV) systems. In particular, this technique was
employed earlier to advantage in studying specific
ground-state features of the CeB6 magnetic Kondo lat-
tice [20], as well as of the MV superconductor CeRu2
[21]. In this connection, and with the aim to obtain
additional information on the structure of the H–T mag-
netic phase diagram, we carried out a comprehensive
investigation of microwave absorption at low tempera-
tures T < 5 K both above the magnetic transition point
TN ≈ 3.85 K and in the antiferromagnetic phase.

2. The measurements were carried out on polycrys-
talline CeAl2 samples synthesized using arc melting in
an argon environment from stoichiometric amounts of
high-purity (4N–5N) components, with subsequent
homogenization annealing of the intermetallic com-
pound thus obtained. The polished plane-parallel CeAl2
samples prepared for microwave studies typically mea-
sured 5 × 5 × 1 mm; this permitted two-bolometer mea-
surements in a bridge arrangement on a millimeter-
range magnetooptic spectrometer, which is an
upgraded version of the one used in [22, 23].

The scheme of the low-temperature part of the spec-
trometer is shown in Fig. 1. Ampoule 1 with a measur-
ing unit evacuated and filled by exchange helium gas
was placed in a superconducting solenoid 15 inside a
helium cryostat. Microwave magnetoabsorption mea-
surements were carried out in the range 1.8–4.6 K in
magnetic fields of up to 70 kOe on the CeAl2 samples
employed earlier in galvanomagnetic studies [19]. The
output of backward-wave tube generators (BWT) in the
frequency range 37–118 GHz (output power of about
10 mW, stability of 10–4) was propagated over
waveguide line 14 and focused with an adjustable
waveguide section and a Teflon lens 3 on a measuring
unit consisting of two bolometers 13 and sample 4,
which was pasted directly onto one of the bolometers.

The measuring unit contained essentially a sapphire
(6) and a brass (8) stage, which were insulated ther-
mally from the body of the inner ampoule 2 by two
Teflon washers 12. Insertion of two carbon bolometers
13 into the measuring bridge, combined with the above-
mentioned thermal insulation, substantially reduced the
instabilities associated with temperature fluctuations
and increased the instrument sensitivity by more than
an order of magnitude as compared with the parameters
obtained in [22, 23]. To reduce to a minimum the effect
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
of standing waves, the inner surface of the measuring-
unit brass body 9 was coated by an absorbing layer (10)
of activated carbon. A special standing-wave damper
(16) of an isolating material mounted at an angle to the
ampoule axis was also provided.

The temperature of the measuring unit containing
the sample was measured with a carbon thermometer
(7) screened from external radiation. A heater (11) was

15

14

1

2

3

413

12

11

10

16

8

7

6
5

9

Fig. 1. Low-temperature part of the spectrometer. (1) Exter-
nal ampoule, (2) internal ampoule, (3) Teflon lens, (4) sam-
ple, (5) clamping nut, (6) sapphire stage, (7) carbon ther-
mometer, (8) brass stage, (9) brass sensor cell body,
(10) microwave absorber layer, (11) heater, (12) Teflon
washers, (13) two bridge-connected bolometers, (14) wave-
guide, (15) superconducting solenoid, and (16) standing-
wave damper.
3
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used for measurements above the liquid-helium tem-
perature. Measurements in the interval 1.8–4.2 K were
carried out with the helium vapor pumped out of the
cryostat with the loaded heater 11 circuit, and the tem-
perature stabilization level needed for the measure-
ments was reached by properly varying the exchange
gas pressure in the ampoule.

3. Figure 2 displays the temperature dependences of
the electrical resistivity ρ and of the Hall coefficient RH

obtained when testing CeAl2 samples directly prior to
microwave studies together with the temperature
dependence of the parameter µH = RH/ρ. As is evident
from Fig. 2, the temperature dependences of the electri-
cal resistivity and of the Hall coefficient are essentially
nonmonotonic and exhibit a broad maximum in ρ and
RH slightly below the Kondo temperature TK ≈ 5 K [6,
19], as well as a sharp kink in the ρ(T) relation and a
narrow peak in RH(T) in the vicinity of the transition to
an antiferromagnetic state at TN ≈ 3.85 K [5, 6, 19]. The
behavior of the µH = RH/ρ parameter (Fig. 2) is also
nonmonotonic, with the µH(T) relation having two nar-
row maxima in the neighborhood of TN ≈ 3.85 K and
TN1 ≈ 3.0 K, which argue in favor of a complex mag-
netic ground state in the CeAl2 magnetic Kondo lattice.

Figures 3 and 4 display typical microwave absorp-
tion curves obtained on a CeAl2 sample in the mag-
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Fig. 2. Temperature dependence of the electrical resistivity,
Hall coefficient, and µH parameter of CeAl2.
P

netic-field ranges H ≤ 15 kOe (I) and 25 ≤ H ≤ 70 kOe
(II), respectively. As seen from Fig. 3, the steplike fea-
ture in the –  interval is detected in the CeAl2

microwave magnetoabsorption graphs in both the anti-
ferromagnetic (T < TN, Fig. 3a) and the paramagnetic
(T > TN, Fig. 3b) phases. The curve obtained at 3.05 K
(Fig. 3a) also shows a noticeable hysteresis of magne-
toabsorption for opposite directions of the magnetic
field variation. Note that, as follows from the results
reported in [17, 18] for CeAl2, the anomalies in magne-
tostriction and thermal expansion observed to occur in
fields H ≤ 15 kOe in the AFM phase (T < TN) may be
related to magnetization reorientation in the antiferro-
magnetic domains in this magnetic Kondo lattice, i.e.,
to the change from the random orientation of domains
to their ordered, transverse orientation (with respect to
the external magnetic field). The anomalous behavior
of the physical characteristics of CeAl2 in this range of
temperatures and magnetic fields may be exemplified,
in addition to the magnetoabsorption feature (Fig. 3a),
by the formation of an anomalous Hall coefficient mag-
netic component in the antiferromagnetic phase, which
peaks near 15 kOe [19]. The existence of strong antifer-
romagnetic fluctuations above TN at temperatures up to
5.5 K in magnetic fields of up to 35 kOe is also believed
[17, 18] to account for anomalies in the physical prop-
erties of CeAl2. The boundary of the region of strong
antiferromagnetic (AF) fluctuations (Fig. 5) was deter-
mined in [18] from measurements of the anomalies in
thermal expansion in a magnetic field. Thus, following
the arguments presented in [17, 18], the microwave
magnetoabsorption anomalies observed in magnetic
fields H ≤ 15 kOe at temperatures TN < T < 5 K (Fig. 3b)
should be considered to originate from strong antiferro-
magnetic fluctuations existing in the CeAl2 matrix;
therefore, the features seen in the I(H, T0) curves in
Figs. 3 and 4 can be used to construct the H–T magnetic
phase diagram of the CeAl2 magnetic Kondo lattice
(Fig. 5).

Let us dwell in more detail on the microwave mag-
netoabsorption measurements made in range II (25–
70 kOe), in which the AFM state in CeAl2 is, in accor-
dance with [4–6, 14–18], suppressed by a magnetic
field. The experimental data presented in Fig. 4 show a
steplike anomaly in the I(H, T0) curves occurring in this
region of H variation in the vicinity of the Néel temper-
ature TN ≈ 3.85 K. As the temperature is lowered in the
antiferromagnetic phase still further, down to 3.4 K, the
amplitude of this feature grows noticeably, with an
additional maximum in magnetoabsorption appearing
on the I(H, T0) curves at temperatures T < 3.4 K
(Fig. 4). As a result, the magnetoabsorption anomaly
associated with destruction of the AF state in CeAl2 by
a magnetic field has a complex character and the begin-
ning ( ) and end ( ) of the interval where this I(H)
feature is observed (Fig. 4) may be used to refine the

H0* H1*

H2* H3*
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Fig. 3. Magnetoabsorption of CeAl2 at low fields H ≤ 15 kOe (range I).
magnetic phase diagram of CeAl2. Figure 5 combines
all the data related to the anomalies in the physical
characteristics of CeAl2 in the neighborhood of the

magnetic phase transformations. The (T), (T),

(T), and (T) curves, as well as the features corre-
sponding to the critical behavior of the Hall coefficient
and resistivity [19, 24], are displayed in Fig. 5 together
with the results obtained in studies of the magnetostric-
tion [17], thermal expansion [14, 15, 18], specific heat
[25, 26], and elastic moduli [27, 28] of CeAl2.

A comparison of the present measurements of
microwave magnetoabsorption and galvanomagnetic
characteristics of CeAl2 with the magnetic and thermo-
dynamic data used in [17, 18] to construct an H–T
phase diagram suggests that the true magnetic phase
diagram is substantially more complex than the one
proposed in [17, 18]. For instance, the anomalous-mag-
netoabsorption region in the vicinity of the AFM state
suppression by a magnetic field turns out to be substan-
tially larger than the part of the phase boundary derived
in [15, 17, 18] from studies of single-crystal and poly-
crystalline CeAl2 samples. It should also be stressed

that the beginning of the –  interval of anomalous

magnetoabsorption at  ≈ 35 ± 4 kOe is practically
temperature-independent within a broad interval from 2
to 5 K and coincides with good accuracy both with the
change in the carrier-scattering regime, which accounts
for the appearance of anomalies in the magnetoresis-
tance [24] and Hall coefficient [19], and with the onset
of qualitative changes in the elastic properties of CeAl2

H0* H1*

H2* H3*

H2* H3*

H2*
YSICS OF THE SOLID STATE      Vol. 45      No. 6      200
(see symbols in the phase diagram of Fig. 5). It should
also be pointed out that the upper boundary of the
anomalous-magnetoabsorption region is located sub-
stantially above the critical-field curve of the AFM
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Fig. 4. Magnetoabsorption of CeAl2 at high fields H ≥
25 kOe (range II).
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phase obtained in [15, 17, 18] (  in Fig. 5), which is
particularly well defined in the temperature interval
between TN1 and TN. As a result, in the range 3.0–3.8 K,
noticeable anomalous microwave magnetoabsorption is

also observed above the critical curve , which sug-
gests, in our opinion, a rearrangement of the magnetic
structure occurring in both the paramagnetic and an
unknown magnetic phase ([15, 17, 18] (M || H in
Fig. 5) in CeAl2.

Because the change in the carrier-scattering regime
and the appearance of anomalous magnetoabsorption in
CeAl2 at  ≈35 kOe suggest, in our opinion, rear-
rangement of the magnetic state, the data obtained
argue for the existence of a more complex magnetic
phase diagram than the widely accepted one [17, 18];
considered in this vein, the additional plane boundary

 ≈ const in the phase diagram of this compound,
which was established experimentally by us, is new
supportive evidence. This conclusion is also supported
by the noticeable increase in the amplitude of the λ
anomaly of specific heat, which was observed in [26] at
31 kOe and assigned to the proximity to the tricritical
point in the CeAl2 phase diagram.

4. Turning now to a discussion of the results
obtained in this study (see Figs. 2–5), we note that all
the trivalent rare-earth dialuminides in the series of
Laves phases LnAl2 (Ln stands for Ce, Nd, Tb, Dy,
etc.), except CeAl2, are ferromagnets. It is apparently
the competition between the magnetic RKKY interac-
tion and the mechanism of Kondo compensation of
rare-earth LMMs (which dominates the formation of a
nonmagnetic ground state and, thus, underlies the
noticeable instability of the ferromagnetic structure)
that accounts for the establishment of long-range AF
order in the CeAl2 magnetic Kondo lattice. At the same
time, strong ferromagnetic fluctuations were observed
in the CeAl2 matrix both in strong magnetic fields H >
60 kOe at liquid-helium temperatures and at intermedi-
ate temperatures of 5–50 K [6, 15, 17, 18, 24]. In par-
ticular, measurements of quasi-elastic neutron scatter-
ing [6] revealed in CeAl2 the coexistence of ferromag-
netic correlations at intermediate temperatures with an
AF-type short-range order; crude estimates of the lower
bound on the ferromagnetic correlation length yield ξ ≥
20 Å [6]. Similarly, diffuse neutron magnetic scattering
experiments made on CeAl2 at liquid-helium tempera-
tures [29] revealed the existence of two characteristic
spatial scales, ξ1 and ξ2, and, accordingly, of two criti-
cal exponents.

Because an external magnetic field H ~ HK ≈
kBTK/µB ≈ 70 kOe [(TK(CeAl2) ≈ 5 K] suppresses Kondo
fluctuations of the Ce magnetic moment in this mag-
netic Kondo lattice, one may expect, in addition to
destruction of long-range AF order, an enhancement of
ferromagnetic correlations and, consequently, the

Hc
AF

Hc
AF

H2*

H2*
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appearance of new phases in the magnetic H–T diagram
of CeAl2. In this connection, one may recall the calcu-
lations from [30] made within the model of a linear
chain of Ce ions featuring ferromagnetic interaction J1
between nearest neighbors and antiferromagnetic Ce–
Ce interaction J2 between second-to-nearest neighbors.
Inclusion of the Kondo correlation term kBTK results in
a fairly complex magnetic phase diagram within this
model [30] (Fig. 6). Assuming the AF exchange to be
relatively strong, J2 > 1/4|J1|, and the values of TK to be
sufficiently low, the authors of [30] obtained for CeAl2
a complex H–T–TK phase diagram, according to which
the AFM phase is replaced, with increasing external
magnetic field, by a noncollinear magnetic structure
(Fig. 6), with a subsequent metamagnetic transition to
the M || H state.

In our opinion, this sequence of transitions is the
most probable scenario for the magnetic Kondo lattice
and it is apparently this sequence that was detected in
the present study in microwave magnetoabsorption
experiments and in galvanomagnetic measurements
performed on polycrystalline samples in the magneti-
cally ordered state of the CeAl2 concentrated Kondo
system.
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Abstract—Anisotropy of garnet ferrite films is investigated in the framework of the two-parametric model. It
is shown that a garnet ferrite film with an arbitrarily oriented surface is characterized by biaxial anisotropy. The
directions of the easy, intermediate, and hard magnetization axes are determined as functions of the misorien-
tation angle and weak cubic anisotropy. It is demonstrated that the region of existence of homogeneous states
in a magnetic field is bounded by a slant astroid. The magnetic susceptibility tensor and the ferromagnetic res-
onance frequency are calculated, and the dispersion law of spin waves is determined. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable interest has been
expressed by researchers in epitaxial garnet ferrite films
with a tilted easy magnetization axis (EMA). On the
one hand, this is associated with the great variety of
unique physical properties manifested by these systems
as compared to conventional films with an easy magne-
tization axis perpendicular to the film surface. On the
other hand, this interest stems from the fact that, as a
rule, real films are characterized by anisotropies other
than uniaxial. The tilted easy magnetization axes render
these materials more promising for use in the design of
magneto-optical data-processing devices and visualiza-
tion of inhomogeneous magnetic fields whose period of
inhomogeneity is comparable to the domain period of
the epitaxial garnet ferrite films.

It is well known that one of the factors responsible
for the physical properties of epitaxial garnet ferrite
films is the crystallographic orientation of the substrate.
This is caused primarily by the fact that the crystallo-
graphic orientation of the substrate determines the form
of the anisotropy energy. In particular, films of the
(111) type possess uniaxial anisotropy with an easy
magnetization axis perpendicular to the film surface.
Epitaxial garnet ferrite films with a small (no larger
than 8°) deviation of the substrate orientation from the
(111) plane were studied in [1–3]. It was demonstrated
that these films are characterized by tilted easy magne-
tization axes and that the tilt of the easy magnetization
axis with respect to the normal is determined by the
misorientation angle of the substrate. A similar situa-
tion is observed for (112)-oriented films [4], in which
the tilt of the easy magnetization axes can reach several
tens of degrees.

However, no significance has hitherto been attached
to the fact the inclination of an easy magnetization axis
1063-7834/03/4506- $24.00 © 21102
is accompanied by the emergence of anisotropy in a
plane perpendicular to this axis, i.e., in a plane other
than basal. The biaxial anisotropy thus induced is
responsible for the specific features of the magnetiza-
tion reversal, determines the type of domain structure
[4], and leads to variations in the spin- and elastic-wave
spectra [5]. Films in which the magnetization vector in
the ground state deviates only slightly from the basal
plane also belong to this type. It should be noted that
such films, i.e., films with a quasi-easy magnetic plane,
offer a number of advantages over uniaxial films both
for use in magneto-optical visualization of magnetic
fields in the bulk of high-temperature superconductors
[6, 7] and magnetic carriers [8] and for research into
nanostructured magnetic materials [9].

Despite the broad spectrum of application of the
aforementioned magnetic structures, the nature of their
anisotropy has not been adequately investigated. From
the practical standpoint, it is of interest to elucidate how
the orientation of the substrate affects the magnetic
properties of the film.

In this work, we investigated the anisotropy of epi-
taxial garnet ferrite films with arbitrarily oriented sur-

faces and a normal aligned with the ( 10) plane. For
these films, we determined the stability boundaries of
homogeneous states in a magnetic field, deduced the
dispersion law of spin waves, and calculated the ferro-
magnetic resonance frequency and the magnetic sus-
ceptibility tensor.

2. ANISOTROPY AND THE GROUND STATE

For the studied system, the energy density of anisot-
ropy can be represented in the form

(1)

1

Wa Wa
G

Wa
K

.+=
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Here,  is the energy density of growth induced
anisotropy, which is defined by the relationship

(2)

and  is the energy density of cubic crystalline
anisotropy, which is expressed by the formula

(3)

In relationships (2) and (3), A and B are constants of
the two-parametric model of growth induced anisot-
ropy [10]; mi and γi are the respective direction cosines
of the magnetization vector and the growth direction of
the film in a coordinate system specified by the unit
vectors e1, e2, and e3, which are chosen parallel to the
crystallographic directions [100], [010], and [001],
respectively; and K1 is the cubic anisotropy constant.

Let us now change over to a new coordinate system
related to the film; that is,

(4)

Here, the unit vector ey is aligned parallel to the film

plane and coincides with the [ ] direction; the unit
vector ez coincides with the normal to the film plane,

whose orientation in the ( ) plane is specified by the
misorientation angle δ measured from the [111] direc-
tion to the [112] direction; and

(5)

are the direction cosines of the unit vector ex in the

( ) plane.
In the coordinate system (ex , ey , ez), the energy den-

sity of growth induced anisotropy  takes the form

(6)

where Ku, Kort, and Kt are the uniaxial, orthorhombic,
and tilted anisotropy constants, respectively:
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The function  represents a quadratic form (m,
Km) with the matrix

(8)

for which the eigenvalues are given by

(9)

Here,

(10)

are the spur and the determinant of the matrix K,
respectively. Their values are determined by the orien-
tation of the substrate:

(11)

The eigenvectors corresponding to the eigenvalues
given by relationships (9) at J ≠ 0 can be represented in
the following general form:

(12)

where

(13)

For σ = +1, the in-plane anisotropy component domi-
nates and the θ0angle falls in the range π/4 ≤ |θ0 | ≤ π/2.
For σ = –1, the |θ0 | angle lies in the range 0–π/4.

In the basis of eigenvectors of the matrix K, the qua-
dratic form (6) can be reduced to the sum of squares. In
this case, the eigenvalues are the anisotropy constants
and the eigenvectors are directed along the easy, inter-
mediate, and hard magnetization axes. The eigenvector
aligned with the easy magnetization axis corresponds
to the smallest eigenvalue, whereas the eigenvector
directed along the hard magnetization axis (HMA) is
associated with the largest eigenvalue.

The nature of anisotropy substantially depends on
the parameter J. For J ≠ 0, all the eigenvalues differ
from one another and the anisotropy is biaxial; that is,

(14)
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which have the following form for different values of I
and J:

(15)

Therefore, according to relationship (14), films of
the given type are characterized by three phase states,
namely, the Φ1, Φ2, and Φ3 phases:

(16)

Here, IMA is the intermediate magnetization axis. For
J = 0, one of the eigenvalues (λ+ or λ–, depending on the
sign of the spur I) goes to zero and the anisotropy
becomes uniaxial with the preferred direction along the
normal:

(17)

Here, β = 2(Ku + Kort). It follows from relationships (11)
that, at B ≠ 0, the (001)- and (111)-oriented films should
possess uniaxial anisotropy. At B = 0, the preferred
direction coincides with the unit vector e3; in this case,
we have β = 2A.

For slightly misoriented (111) films (δ ! 1), the θ0
angle and the corrections to the anisotropy constants
are linear in δ; that is,

(18)

In the case where the substrate is oriented nearly
parallel to the (001) plane, the α angle is small. Then,

(19)

The linear dependence of the θ0 angle on α was con-
firmed experimentally in [1].

The energy density of cubic anisotropy can be con-
veniently represented in the form

(20)
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The easy magnetization axes are the directions
R−1〈111〉  at K1 < 0 and R–1e1, R–1e2, and R–1e3 at K1 > 0.
Here, R–1 is the matrix of the inverse transformation
with respect to that described by expressions (4).

For the Φ1 phase, the corrections to the θ0 angle can
be determined under the assumption that my = 0. In the
approximation linear with respect to K1/ρ, we obtain
the following relationship for a weak cubic anisotropy
(K1 ! B, ρ):

(21)

where θ0(K1) is the angle specifying the orientation of
the vector nζ at K1 ≠ 0 and

(22)

The aforementioned misorientation effects manifest
themselves only in samples with a finite size, because,
for infinite crystals, these effects can be taken into
account through a simple rotation of the coordinate
system.

3. HOMOGENEOUS STATES
IN A MAGNETIC FIELD

In the presence of an external magnetic field H, the
anisotropy energy should contain an additional term:

(23)

Here, M0 is the saturation magnetization, θH is the polar
angle of the magnetic vector H, ϕH is the azimuthal
angle of the magnetic vector H, θ is the polar angle of
the magnetization vector M0 and ϕ is the azimuthal
angle of the magnetization vector M0.

Our prime interest here is in the homogeneous state
of the noncollinear phase Φ1, for which the condition
ϕ = ϕH = 0, π is satisfied and the equation of the curve
of regular rotation θ(H) takes the form

(24)

Here, HA is the anisotropy field defined by the expres-
sion

(25)

The field region of existence of homogeneous states
lies outside the astroid:

(26)
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where

(27)

The astroid contains two pairs of characteristic
points specified by the relationship

(28)

These states exist in the magnetic field satisfying the
equation

(29)

The static susceptibility  = ∂Mα /∂Hβ of the Φ1

phase can be represented in the form

(30)

where

(31)

In this case, the static susceptibility  on the
astroid exhibits a polar singularity characteristic of sec-
ond-order phase transitions.

The inclusion of the magnetic dipole interaction for
a film whose normal is aligned parallel to the z axis cor-

responds to the replacement Ku   = Ku + 2π .

4. HIGH-FREQUENCY PROPERTIES
OF THIN FILMS

As is known, the dynamic properties of ferromag-
netic materials can be described in terms of the high-
frequency magnetic susceptibility tensor (k, ω),
which relates the oscillations of the internal field to the
magnetization oscillations. (Here, k and ω are the wave
vector and the oscillation frequency, respectively.)
Within the phenomenological approach, the tensor

(k, ω) can be determined from the Landau–Lifshitz
dynamic equations. In order to take into account the
spatial dispersion, the exchange interaction energy
must be allowed for in the total energy of the ferro-
magnet.
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After linearization of the Landau–Lifshitz equations
by analogy with the calculations performed in [11], we
can determine the tensor (k, ω) in the case when the

[ ] direction coincides with the direction of hard
magnetization and ϕ = ϕH = 0 (the Φ1 phase):

(32)

Here, ω0 = gM0, g is the gyromagnetic ratio,

(33)

a is the inhomogeneous exchange interaction constant,
and θ = θ(H) is determined from expression (24).

From the equations of magnetostatics and the defi-
nition of the tensor (k, ω), we can easily derive the
dispersion relation

(34)

which determines the dispersion law of spin waves
ωs(k), that is,

(35)

Here,  = k/ |k |.
The frequency is the root of the equation

(36)

from which we obtain the relationship

(37)

For ∆0 = 0, the dispersion law for a spin wave prop-
agating along the y axis becomes activationless. This
suggests that a phase transition to an inhomogeneous
state with a stripe domain structure oriented perpendic-
ularly to the hard magnetization axis occurs on the
astroid. For (112)-oriented films, similar domains were
observed earlier in [4]. The orientation of the magneti-
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zation inside the domains (in the vicinity of the astroid)
can be determined from expression (27). Since the
plane of the domain boundaries is perpendicular to the
hard magnetization axis, they can be considered Bloch
domain walls. The formation of a domain structure sat-
isfying the condition θ = 0, π is accompanied by the fer-
romagnetic resonance frequency vanishing.

5. CONCLUSIONS

Thus, the misorientation of the substrate gives rise
to a tilted anisotropy, which, in turn, affects both static
and dynamic properties of the films. Specifically, the
easy magnetization axis turns out to be tilted and
orthorhombic anisotropy is observed in a plane perpen-
dicular to this axis. The curve of lability is represented
by an astroid whose axis coincides with the easy mag-
netization axis. The magnetization of the films along
the normal or in the basal plane occurs in tilted fields.
In the same fields, the ferromagnetic resonance fre-
quency becomes zero. The astroid is characterized by a
substantial change in the spectrum of spin waves,
which is typical of phase transitions.
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Abstract—The nature of physical phenomena in ferroelectric relaxors, i.e., ferroelectrics undergoing smeared
phase transitions, is discussed. These phenomena are closely related to the dynamics of polar regions (PRs), in
which thermal fluctuations cause relaxation processes that control the crystal properties. The PRs interact with
one another not only via electrical but also via mechanical interactions, and the deformed paraelectric interlay-
ers between PRs play an important role in the transition to a macrodomain state. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The ferroelectric relaxor (ferrorelaxor) is a crystal
which undergoes a smeared ferroelectric phase transi-
tion (FEPT) and whose dielectric polarization in the
vicinity of the smeared FEPT is relaxational in charac-
ter. Currently, ferrorelaxors are the subject of numerous
studies. The author of this paper dealt with ferrorelax-
ors in 1951 in studying FEPTs in Ba(Ti1 – xSnx)O3 when
doing graduate work under the supervision of
G.A. Smolenskiœ. It was detected that, at x ≥ 0.10–0.15,
the permittivity ε'(T) exhibits a flat maximum instead of
a classical distinct maximum at the FEPT point. Smo-
lenskiœ related this fact to internal stresses arising in the
solid solution [1]. However, this phenomenon could
also be caused by the incorporation of extraneous ions
(Sn4+) into the lattice, which could be nonuniformly
distributed over the lattice sites (composition fluctua-
tions). Due to the dependence of the Curie temperature
on the concentration of the components, these fluctua-
tions could result in different values of the local Curie
temperature (TC, loc) in crystal microvolumes and,
hence, in the smeared phase transition (PT). (This con-
cept was also considered in [1].) However, it would be
inadequate to consider only composition fluctuations.
A fluctuation is always associated with a certain vol-
ume and is significant only in a small volume. At the
same time, the volumes under consideration must be
sufficiently large when such macroscopic concepts as
the component concentration and the Curie temperature
are discussed. Thus, the question arises: what should
the volume at which these macroscopic concepts are
valid be? The answer was given in [2]: the volume of a
region should allow the occurrence of spontaneous
polarization Ps in it in the absence of Ps in the surround-
ings. It was shown that the smeared-FEPT temperature
range is reasonable if the size of this polar region (PR)
is of the order of 100 Å. Thus, the FEPT smearing is
adequately explained by the presence of numerous PRs
surrounded by the paraelectric (PE) phase. The number
1063-7834/03/4506- $24.00 © 1107
of PRs increases upon cooling; therefore, the amount of
the ferroelectric (FE) phase increases. 

The PR concept also allowed one to explain other
phenomena associated with the smeared FEPT, since
many properties of such ferroelectrics directly follow
from the small PR sizes (e.g., relaxation electric polar-
ization detected in PbMg1/3Nb2/3O3 (PMN) and
PbNi1/3Nb2/3O3 (PNN), i.e., the first known ferrorelax-
ors [3]). The small PR sizes cause large temperature
fluctuations ∆T in these PRs. If the crystal temperature
T is approximately equal to TC, loc, the local temperature
alternately increases and decreases due to the PR tem-
perature fluctuations. Therefore, the PRs will alter-
nately lose and gain Ps (i.e., they will alternately disap-
pear and appear again) [4]. In this case, the Ps direction
in a revived PR can differ from the preceding one. Thus,
the vector Ps can jump to another crystallographic
direction through a state with zero polarization, which
explains the relaxation behavior of the electric polariza-
tion in the vicinity of the smeared FEPT [4]. In [4],
relaxation of unit cell groups at the PR boundary (in
practice, PR boundary relaxation) is also allowed.

The PR concept also allowed explanation of the fact
that the quadratic equation (see [5, 6])

 (1)

(rather than the Curie–Weiss law) is met for 1/ε' above
the temperature Tm of the permittivity maximum. This
fact was explained in [5, 6] by the specificity of the
relaxation polarization in the vicinity of the smeared
FEPT, differing from the ordinary relaxation in the tem-
perature dependence (maximum) of the number of
relaxing units. It was accepted that the number of PRs
varies according to the Gaussian law upon cooling,
while the PR activation energy (identical for all PRs
and equal to a certain small value U0 at TC, loc) rapidly
increases upon cooling, as does the ferroelectric coer-
cive field. As a result, “old-living” PRs do not partici-
pate in the relaxation, and only “newborn” PRs relax,

1/ε' A B T Tm–( )2
.+=
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whose TC, loc is approximately equal to the crystal tem-
perature T and activation energy is a minimum (U0).
This results in a maximum number of PRs participating
in polarization near the smeared FEPT:

 (2)

where σ is the PT smearing parameter. By expanding
the exponent into a power series in T – Tm and dropping
the higher powers, one can obtain Eq. (1). Therefore,
the maximum number of newborn PRs causes a qua-
dratic dependence (1).

The significant role being played by the lattice atom
ordering in ferroelectrics undergoing a smeared FEPT
was indicated in [7]; complete or partial ordering
improves the material homogeneity. These conclusions
were experimentally confirmed in [8, 9], where it was
detected that the long-range order of atoms B = Sc, Nb,
and Ta in PbSc1/2Nb1/2O3 (PSN) and PbSc1/2Ta1/2O3

(PST) (varying in the course of annealing) has a signif-
icant effect on the FEPT: the relaxor properties arise in
the case of disordering, and the PT becomes sharp in
the case of ordering. Interest in ordering phenomena
was significantly aroused after the detection of the
phase transition referred to as the “spontaneous PT
from the relaxor state to the normal FE state” and
observed below Tm [10–12]. As a result, extensive
experimental data on ferrorelaxors are now available,
and a great number of theorists undertook to interpret
these data. Nevertheless, a number of aspects of this
problem have yet to be dealt with. This study is aimed
at elucidating these aspects.

2. ENSEMBLE OF POLAR REGIONS

A ferrorelaxor is conventionally considered as a set
of dipoles chaotically distributed over the crystal bulk.

n C
T Tm–( )2

σ2
-----------------------– ,exp=

Schematic of atomic planes and unit cell distortions caused
by the appearance of polar regions in a ferrorelaxor (in the
case of the tetragonal FE phase).
P

Unfortunately, the dipole type is not always indicated,
which sometimes oversimplifies the description of the
phenomenon. Nevertheless, specific PRs of different
sizes are considered in most of the papers rather than
abstract dipoles.

The PR size should be considered in more detail. As
indicated above, the PR size should somewhat exceed
the critical size of an FE nucleus in the PE phase. We
assumed in [2] that PRs formed at TC, loc have a size D0

close to 100 Å. The question arises as to whether a
smaller size PR can arise. We are of the opinion that this
can take place but at a lower temperature T than TC, loc.
It is evident that the negative difference of the free ener-
gies of the FE and PE states, which affect the PR size,
increases in absolute value upon cooling. Therefore, the
PR formation becomes possible at a certain T < TC, loc in
a sphere of size D < D0, where PRs do not arise at TC, loc.
Thus, a size of 100 Å is not the smallest.

We note that the case in point in many relevant stud-
ies is polar clusters rather than PRs. However, the term
cluster, as a rule, is not formulated, which creates
uncertainty. It is the author’s opinion that this term
means the above-mentioned PR in most cases. If the
polar cluster is understood as something else, this
should be specified.

Thus, PRs are chaotically distributed over the crys-
tal. They develop at various local Curie temperatures
and have various sizes, shapes, dipole moments, spon-
taneous strains, and activation energies. In brief, there
is an ensemble of PRs in the crystal in the vicinity of a
smeared FEPT [13, 14]. The question arises as to
whether the PE–FE spontaneous phase transition is
possible in such an ensemble of PRs chaotically distrib-
uted over the crystal bulk. This problem has not yet
been considered even in a simplified form (neglecting
the PR various-parameter distribution). Meanwhile,
this is of doubtless interest, since this problem is asso-
ciated with the problem of spontaneous relaxor-to-nor-
mal FE phase transitions. The author a priori leaves
room for the possibility of such an FEPT. However, it is
probable that this process takes an infinite time in the
absence of an external electric field, because there is
mechanical interaction between PRs that prevents their
coalescence [13, 14] (see below).

3. INTERACTION OF POLAR REGIONS

The electrostatic interaction between PRs and their
PE surroundings is determined by the charges at the PR
surfaces normal or inclined with respect to the vector
Ps. In this case, not only a PR influences its surround-
ings but the surroundings also affects the PR, decreas-
ing its dipole moment. As for the mutual electrostatic
influence of PRs, it may be considered as the interac-
tion between elementary dipoles in the only case where
PRs are widely spaced.
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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It is more intricate to calculate the deformational
interaction. From the figure, one can see that PRs create
a complicated pattern of normal and shear strains in the
PE surroundings. The mechanical interaction between
PRs depends not only on spacings between them but
also on their mutual arrangement and the direction of Ps

in them. In this case, a strongly deformed PE interlayer
(see figure) arises between PRs that are close together,
with their vectors Ps being parallel or antiparallel [13,
14]. This interlayer prevents coalescence of PRs with
parallel spontaneous moments and the formation of FE
macrodomains. In order that these PRs coalesce, the
interlayer has to disappear. Hence, compression in the
interlayer should give way to extension and vice versa.
Furthermore, a spontaneous electric moment should
arise in the interlayer; in other words, the PE–FE phase
transition should take place in it.

It is worth noting the reverse process, when the mac-
rodomain state is again split into PRs upon heating and
the interlayer gives way to an indistinct FE phase layer.
As this takes place, this layer should return into the PE
state and deformations within the layer should reverse
sign again.

As follows from the abovementioned, there is an
energy barrier between adjacent PRs that prevents their
coalescence and, vice versa, prevents large PR splitting
into small ones. It is evident that the role of interlayers
between PRs should be taken into account in the cases
of an applied electric field and spontaneous PTs. Unfor-
tunately, these interlayers and their important role in the
ferrorelaxor dynamics are neglected in all the available
papers, except for the author’s articles [13, 14].

It is evident that the processes associated with the
interlayer dynamics are relaxation in character and
depend heavily on time. A prominent example of such
time dependences was considered in [15]. A dc electric
field (2.5 kV cm–1 or higher) applied to PMN at low
temperatures caused a transition to a macrodomain
state after a lapse of time rather than instantaneously.
This time (the expectation time of a sufficient thermal
fluctuation) increased as the field weakened.

Spontaneous relaxor-to-normal FE phase transitions
should be considered within the same concepts as the
phase transition to the macrodomain state caused by an
electric field, with the difference that this field should
be weakened to zero in order for the transition to be
spontaneous. In [14], we cast doubt on the spontaneous
and ferroelectric character of this PT. Indeed, it was not
substantiated that macrodomains arising in this case
feature a spontaneous electric moment until the crystal
was exposed to an electric field. Mechanical stresses
can also rearrange PRs; after this reorientation, all the
major axes of unit cells (directions of Ps) will be ori-
ented along the extension axis. As a result, a ferroelastic
macrodomain will form consisting of 180° micro-
domains (PRs) and its total electric moment (the sum of
the PR moments) will be zero. The crystal state (before
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
exposure to the field) will be macroferroelastic rather
than macroferroelectric. Since internal mechanical
strains always take place in crystals and ceramic grains,
they can cause such a PT. It is evident that this PT will
not be a spontaneous PT from the relaxor to the normal
FE state. Meanwhile, as indicated above, the author
leaves room for the possibility of the spontaneous tran-
sition from the relaxor to the normal FE state in a PR
ensemble under zero field; however, the PT duration
(the time required to overcome the energy barriers in
interlayers between the PRs) must be infinite [14].

It seems that it will be difficult to distinguish
between ferroelastic and ferroelectric macrodomains,
in particular, if it is taken into account that the electric
field applied to the crystal transforms ferroelastic mac-
rodomains into ferroelectric ones and that it is difficult
to determine their initial state (before exposure to the
field).

4. DIPOLE-GLASS CONCEPTS

The dipole-glass concepts applied to ferrorelaxors
allowed a number of achievements to be made in the
study of these objects, since extension of the results
obtained for spin glasses (see, e.g., [16, 17]) to ferrore-
laxors was made possible. Abstraction from the actual
nature of dipoles was efficient at the beginning and
made it possible to closely relate the observed phenom-
ena to dipole freezing at a certain temperature. In many
studies, PRs are considered as dipoles. However, such
important PR parameters as the volume and interaction
are generally neglected.

Meanwhile, new differences between ferrorelaxors
and spin glasses have become known. For example, it
was shown in [18] that the Vogel–Fulcher relation in the
case of PMN should be replaced by the formula

 (3)

where p < 1. According to [19], the Vogel–Fulcher rela-
tion can be derived as a direct consequence of gradual
broadening of the relaxation time spectrum as the tem-
perature decreases, rather than under the assumption of
freezing in the system.

It seems that the conventional dipole-glass concepts
neglecting the interaction between dipoles have been
exhausted. Further steps require consideration of the
actual nature of dipoles, i.e., PRs. However, the line of
inquiry to be taken has not been determined.

5. SUPERPARAELECTRICITY IDEAS

In 1987, Cross [20] coined the term superparaelec-
tricity for the PE phase of ferrorelaxors saturated with
PRs. In fact, this is an extension of one of the ferromag-
netism concepts to FE objects. Since that time, the term
superparaelectricity has been used in scientific articles

ω ω0 T /Tm( ) p
–[ ] ,exp=
3
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on several occasions. However, this term is not quite
adequate.

Let us consider the corresponding concept in mag-
netism. According to [21, 22], “superparamagnetism is
a quasi-paramagnetic behavior of materials consisting
of very small and weakly interacting ferro- or ferrimag-
netic particles. Very small particles (10–100 Å) transfer
to the ferro- or ferrimagnetic state. However, the mag-
netization direction of such particles chaotically varies
due to thermal fluctuations…. Therefore, the system
behaves similar to paramagnetic gas and obeys the
Curie law in weak magnetic fields…. Typical represen-
tatives of superparamagnetism are fine Co particles pre-
cipitating in the course of Cu–Co (2% Co) solid-solu-
tion decomposition, fine Fe precipitate in β-brass (0.1%
Fe), Cu precipitate in Mn, and Ni in Au, as well as some
antiferromagnetic oxides.”

As follows from this citation, there exists a certain
nonmagnetic host in which the smallest ferromagnetic
particles are distributed. These particles precipitate in
the course of solid solution decomposition and almost
do not interact.

In the case of ferrorelaxors, we have a PE crystal
rather than a simple dielectric. This crystal contains
already formed PRs surrounded by PE regions which
have not yet become polar but are ready to do so. The
regions that are already polar and the regions that are
still nonpolar fill the whole crystal volume. It is obvious
that the concept of paraelectric gas is invalid in this
case.

Unfortunately, the term superparaelectricity is used
even in [23], where the chemical inhomogeneity of
material and the (Gaussian) distribution of PRs (30 Å in
size) in local Curie temperatures were taken into
account and, as a result, good agreement between the
calculated and the experimental data was achieved. In
this case, the interaction between PRs was neglected;
thus, the model may be referred to as superparaelectric.
However, the actual state of the material does not
become superparaelectric, since PRs contact each other
or are very narrowly spaced.

The theory of the phenomena in ferrorelaxors
advanced by the author in [2, 4–7, 13, 14] and in this
paper is adequate and, hence, intricate. However, the
latter is not associated with the model; this property is
an objective feature of the phenomena themselves, in
which well-defined characteristics are almost absent
and almost all the parameters obey a distribution: the
PR coordinates, composition, local Curie temperature,
PR shape, size, electric moment, and activation energy.
Furthermore, there exist interlayers between PRs that
can disappear and emerge again. It seems still impossi-
ble to take into account all these factors; therefore, rea-
sonable simplifications are allowed and required.

As indicated above, one of the reasonable simplifi-
cations was the assumption that only PRs with a local
Curie temperature close to the crystal temperature par-
P

ticipate in relaxation [5, 6] (old-living PRs with an acti-
vation energy significantly increased upon cooling
were omitted from the relaxation process). This simpli-
fication allowed us to explain not only the quadratic
dependence of 1/ε' on T (see Eq.(1)) but also the drastic
shift of the relaxation rate spectrum to lower frequen-
cies upon cooling. It is worth mentioning the author’s
attempt to take into account relaxation of all PRs inde-
pendently of their local Curie temperature [24] under
the assumption that the PR activation energy increases
linearly upon cooling. Unfortunately, this attempt did
not yield an analytical expression for ε'(T).

6. CONCLUSIONS

(i) Ferroelectric relaxors represent crystals with
atomic disordering on one of their sublattices.

(ii) In the vicinity of a smeared FEPT, a ferrorelaxor
represents an ensemble of PRs chaotically arranged in
the crystal.

(iii) Below Tm, a ferrorelaxor represents a set of con-
tacting regions that have already transformed into the
FE state or are ready to do so.

(iv) Contacting PRs interact with surrounding PE
regions and with each other not only through electric
fields but also through mechanical strains.

(v) There are deformed PE interlayers between con-
tacting PRs that prevent PR coalescence and play an
important role in the transition into a macrodomain
state.
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Abstract—The electric-field-induced variation of the optical properties (small-angle light scattering, birefrin-
gence) of PBSN-6 solid solutions was studied. It was found that in the absence of an electric field, the cubic
nonpolar matrix contains, at temperatures below the dielectric permittivity maximum, spontaneously polarized
regions of the ferroelectric phase not less than 104 Å in size. It was shown that a weak electric field (~0.4 kV/cm)
is capable of inducing a kinetic phase transition to the ferroelectric state, with the temperature of this transfor-
mation depending on the sample heating rate. The destruction of the induced state was accompanied by a sharp
peak in the temperature dependence of the small-angle light scattering intensity (indicating the percolation
nature of the transition) and was independent of the sample heating rate. The boundaries of stability of the
induced state in various modes of application of an external electric field were determined, and the E–T phase
diagram was constructed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Compounds of the type PbSc0.5Nb0.5O3 (PSN) and

PbSc0.5Ta0.5O3 (PST) occupy a particular place among
a large number of disordered materials. By varying the
amount of order s of Sc and Nb (Ta) ions through
appropriate heat treatment of samples or by changing
the temperature regime of growth [1, 2], one can mod-
ify the properties of these substances within a broad
range without changing their chemical composition.
Crystals featuring long-range order (s ≈ 1) undergo a
distinct ferroelectric phase transition. In a disordered
state (s  0), the ferroelectric transformation
becomes diffuse and the compound exhibits character-
istics typical of relaxors. In the PSN and PST com-
pounds, however, one does not succeed in obtaining a
stable relaxor behavior similar to the one observed in
lead magnoniobate (PMN), a classical relaxor, even
under complete Sc and Nb (Ta) site disorder; indeed, in
practically disordered compounds, a spontaneous phase
transition (PT) from the relaxor (microdomain) to the
macrodomain ferroelectric state also takes place at tem-
peratures below the maximum of the dielectric permit-
tivity ε [3]. For a stable relaxor behavior to set in, the
crystal lattice has to undergo additional lattice disorder-
ing. A stable relaxor state in such compounds is usually
reached by producing additional disorder on the lead
ion sublattice. A comparatively small PbO deficiency
(~2.5–3%) or substitution of Ba (~6–7%) for the lead
ions quenches the relaxor state in the PSN and PST
compounds [3–5].

It has been shown [4, 5] that, in the absence of an
electric field, crystals with a barium content ≤4 mol %
1063-7834/03/4506- $24.00 © 21112
(PBSN-4) still retain features characteristic of both a
normal ferroelectric and a relaxor. The spontaneous PT
from the relaxor to macrodomain state which occurs in
PBSN-4 crystals, as well as in PST and PSN, manifests
itself in the form of a jump in ε below the temperature
of the permittivity maximum and is accompanied by a
sharp peak in the small-angle light scattering (SAS)
intensity (or a minimum in the optical transmission,
OT) [6–9]. The presence of the peak indicates the per-
colation nature of the transition and the formation of a
large-scale structure in this transition. A theoretical
description of anomalous light scattering in the neigh-
borhood of first- and second-order phase transitions can
be found in [10].

A further increase in Ba content to 6 mol % brought
about disappearance of the spontaneous PT in these
compounds and a manifestation of pure relaxor proper-
ties. At temperatures 40–50°C below the maximum in ε
and with no electric field applied, already no anomalies
accompanying the spontaneous PT were seen in the
temperature dependences of ε and OT [6]; however, the
macrodomain ferroelectric phase in these compounds
can be nucleated by comparatively weak electric fields.
Application of an electric field in excess of a threshold
value to a zero-field-cooled sample induces a kinetic
phase transition to the ferroelectric state a certain time
after the field is turned on. This time depends strongly
on both temperature and field amplitude [11].

The fairly scarce experimental studies, with the
exception of [6], have focused primarily on the investi-
gation of the dielectric properties of PBSN. The
observed anomalies, however, were not always clearly
003 MAIK “Nauka/Interperiodica”
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enough pronounced, which made their detection diffi-
cult. Optical methods of crystal studies (OT, SAS, bire-
fringence ∆n) are more sensitive, particularly for inves-
tigation of processes associated with variations of inho-
mogeneities in size. If the size of optical
inhomogeneities changes at a phase transition, this will
affect not only light scattering but also OT. Light scat-
tering depends on the ratio of the scattering-particle
size a to the light wavelength λ. If this ratio is small,
then the scattered intensity is low, the sample is practi-
cally transparent, and there is no ∆n in the cubic phase.
Optical methods have been employed to advantage in
studies of phase transitions in relaxors. The existence of
polar nanoregions in the cubic nonpolar matrix is one of
the reasons accounting for the relaxor behavior. If the
size of these nanoregions changes slightly at the phase
transition and remains smaller than λ, then ∆n should
not reveal any changes. For instance, the overall crystal
structure of the classical relaxor PMN remained cubic
with no electric field applied down to low temperatures
and no ∆n was observed. The absence of ∆n within a
broad temperature region correlates with the small
dimensions of nanoregions in this crystal, which were
found from x-ray and neutron measurements [12].
Application of an electric field to the PMN crystal ini-
tiated a kinetic, percolation-type ferroelectric phase
transition to a macrodomain state [13]. This transition
was accompanied by a sharp peak in the SAS intensity
and a dramatic rise in scatterer size (from nanodomains
in the relaxor phase to macrodomains in the ferroelec-
tric state), and a nonzero ∆n was observed [14].

The size of the inhomogeneities responsible for the
relaxor behavior and their change at the phase transi-
tion in PBSN-6 crystals remain an open problem. This
motivated the present comprehensive study of the het-
erophase state in the region of the diffuse phase transi-
tion, as well as of the conditions favoring the onset of a
homogeneous ferroelectric state in these compounds,
by using dielectric and optical methods.

2. GROWTH OF SINGLE CRYSTALS
AND EXPERIMENTAL TECHNIQUES

PBSN-6 single crystals were grown from a melt
solution. The technique of growth, as well as the x-ray
and dielectric characterization of these crystals were
described in [4, 5]. The crystals thus obtained were uni-
form in composition and shaped as {100}-faced plates.
To avoid introducing additional strains, all measure-
ments were performed on samples that were not
mechanically treated. A dc electric field was applied in
the [100] direction, and the light was propagated along
[001]. The electric field was applied in various modes,
namely, zero-field cooling (ZFC), zero-field heating
(ZFH), field heating after ZFC (FHaZFC), field cooling
(FC), field-heating after FC (FHaFC), and zero-field
heating after FC (ZFHaFC). Prior to a measurement,
the sample subjected previously to a field was heated at
150°C for 0.5 h. To obtain reproducible results and to
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
exclude dielectric ageing, an effect strongly pro-
nounced in PBSN-6 crystals [5], the dielectric and opti-
cal measurements were carried out immediately after
annealing of the sample. The sample temperature vari-
ation rate was adjusted from 2 to 10°C/min.

A He–Ne laser was employed in the optical mea-
surements. We studied OT and SAS in the transmission
geometry [12]. The sample birefringence ∆n was
derived from the relation I = I0sin2π∆nd/λ, where I0 is
the incident light intensity; I is the light intensity trans-
mitted through a sample placed between two crossed
polarizers, with the optical axis of the sample making
an angle of 45° to the incident polarization; and d is the
sample thickness.

The dielectric measurements were conducted at
100 kHz.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1a presents temperature dependences of the
birefringence ∆n measured in the ZFC (1) and ZFH (2)
modes with no electric field applied and under
ZFHaFC following sample cooling in a field of 1 kV/cm
(curves 3, 4). Curve 3 was obtained after the sample
had been cooled to +5°C, and curve 4, to –20°C. When
zero-field-cooled (curve 1), the sample exhibits a
smooth increase in ∆n, which becomes steeper in the
temperature range ≈–4 to –20°C. The monotonic
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Fig. 1. Temperature dependences of (a) birefringence ∆n
and (b) dielectric permittivity ε measured in different elec-
tric field application modes for a PBSN-6 crystal. (1) ZFC,
(2) ZFH, (3) ZFHaFC (E = 1 kV/cm, crystal field-cooled to
+5°C), and (4) ZFHaFC (E = 1 kV/cm, crystal field-cooled
to –20°C).
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increase in ∆n under cooling is due most likely to the
polar nanoregions growing in size and to a transition of
part of the regions to the macrodomain ferroelectric
state. The scatterer size becomes comparable to the
light wavelength (~104 Å). This discriminates the crys-
tal under study from the classical relaxor PMN, in
which the dimensions of the nanoregions did not grow
noticeably down to low temperatures. Since the number
of regions undergoing a spontaneous PT is small, phase
transition to the macrodomain state does not occur
throughout the whole crystal and ∆n does not change in
a jump. When the sample is heated subsequently in a
zero field (curve 2), ∆n is first only weakly tempera-
ture-dependent and then decreases substantially in the
region 20–30°C, with the variation of ∆n being the fast-
est in the interval ~22–24°C. These temperatures coin-
cide with those of the anomalous variation of ε
(Fig. 1b). The difference in the behavior of ∆n and ε
between the heating and cooling runs made in a zero
electric field can apparently be assigned to the exist-
ence of internal fields in the crystal. When heated to
+150°C, the space charge and the internal fields in the
crystal practically disappear; therefore, in the cooling
run measurements (curve 1), they are much lower than
under heating. Furthermore, a sample may contain
regions in which the critical field required to induce the
ferroelectric state is very weak, so that even low inter-
nal electric fields are capable of driving the ferroelec-
tric transition in these regions under cooling. Note that
the temperature at which ∆n decreases sharply (curve 2
in Fig. 1a) and ε increases (Fig. 1b) under heating is
close, as follows from dielectric measurements [5, 11],
to the Vogel–Fulcher temperature [3] and can be identi-
fied with the average temperature of spontaneous PT
from the ferroelectric to the relaxor state. The fast vari-
ation of ∆n observed to occur under sample heating is
apparently due to collective processes of two types,
namely, (i) a ferroelectric-to-relaxor phase transition in
the crystal regions where the spontaneous PT takes
place and (ii) depolarization of the macrodomain ferro-
electric phase in the polar regions where the internal
fields were strong enough to initiate the ferroelectric
phase transition. These processes may be related; for
instance, a spontaneous PT that has occurred in some
regions stimulates a similar transition in neighboring
regions. Since the number of polar nanoregions with a
very low critical field is small, the ∆n (T) dependence
measured in the ZFH mode does not exhibit the anom-
aly corresponding to the depolarization temperature of
these relaxor regions.

The conjecture of the existence of regions of the two
types is supported by birefringence measurements
made in the ZFHaFC mode following sample cooling
in an electric field of 1 kV/cm (curve 3 in Fig. 1a).
Indeed, the ∆n (T) plot clearly shows two characteristic
temperatures at which the slope undergoes a sharp
change, namely, Tds ≈ 22°C and Tdr ≈ 29–30°C. Tds cor-
responds to the depolarization temperature of the spon-
taneous PT regions, and Tdr, to that of the nanoregions
P

in which cooling in an electric field induces formation
of the ferroelectric phase. These temperatures are in
good agreement with our dielectric measurements
(Fig. 1b) and the data quoted in [11]. Note that when a
sample is cooled to +5°C (which is above the average
relaxor–ferroelectric spontaneous PT point [11]), the
quantity ∆n(T) does not saturate, although it is consid-
erably higher than in the ZFC case. This may be due to
a ferroelectric phase transition being induced under
field cooling in a larger number of polar regions. The
absence of saturation of ∆n in curve 3 indicates that not
all of the crystal volume has transferred to the ferro-
electric phase. After cooling the sample in the same
field to a lower temperature (–20°C) and maintaining
the sample at this temperature for ~10 min, ∆n did sat-
urate, and after the field turnoff, the ∆n(T) relation mea-
sured in the subsequent heating run exhibited normal
ferroelectric behavior (curve 4). ∆n starts to decrease
sharply in the vicinity of Tds ~ 22–25°C, and extrapola-
tion ∆n  0 yields Td ~ 30–32°C for the sample depo-
larization temperature. The ∆n(T) saturation implies
that the crystal has transferred to the macrodomain state
completely. Hence, the ferroelectric phase extends now
not only through the spontaneous PT regions but also to
all polar nanoregions. The depolarization temperature
Td being the same throughout the sample means that the
destruction of this state has become a collective pro-
cess. We attempted to at estimate the volume fraction of
the ferroelectric phase regions in the paraelectric matrix
from the relative magnitude of ∆n measured in a zero
electric field and in a field of 1 kV/cm (curves 2, 4 in
Fig. 1a). This volume fraction was found to be ~30%
already at –20°C.

Dielectric measurements performed on PBSN-6
crystals in an electric field [11] revealed a kinetic phase
transition at a field-dependent temperature Tph to the
ferroelectric state, which was destroyed at Td ~ 30–
32°C. The ferroelectric phase formed in a threshold
manner. Earlier [6], we reported that, in the same crys-
tals acted upon by an electric field (FHaZFC mode) at
the temperature of destruction of the ferroelectric state
(Td), which had been induced at a low temperature, a
narrow SAS intensity peak was observed, implying that
this destruction was of a percolation nature. We did not
succeed in [6] in observing the SAS anomaly caused by
the onset of the ferroelectric state.

We carried out more comprehensive studies of the
temperature behavior of SAS intensity in the FHaZFC
mode at different sample heating rates. Figure 2 dis-
plays the temperature dependences of the SAS intensity
obtained in a field of 1 kV/cm. We see only a broad SAS
intensity maximum at the temperature Tph correspond-
ing to the onset of electric polarization, whereas the
SAS peak at the sample depolarization temperature Td

is narrow. The Tph temperature increases with heating
rate (see inset to Fig. 2), while Td remains practically
constant. The observed dependence of the temperature
Tph on the sample heating rate indicates that the elec-
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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tric-field-induced switching of polar nanoregions
depends on time and that the induced ferroelectric tran-
sition is kinetic. It may be conjectured that the effect of
heating rate on the position of the SAS intensity anom-
aly at the onset of induction of the ferroelectric state is
related to the polarization orientation processes having
long relaxation times in the glassy state. As a result, the
formation of ferroelectric regions with dimensions
large enough for the phase transition to occur requires
a long time. This transition takes place over a wider
temperature interval than does the destruction of the
induced phase. The broad SAS intensity maximum
observed in an electric field near Tph is associated with
the formation of fairly large macrodomain regions. The
field does not, however, give rise to the formation of an
infinite cluster nor, hence, to a percolation-type phase
transition. Note that the induced phase transition in the
PMN relaxor is of the percolative type and is accompa-
nied by a narrow peak in the temperature dependence of
SAS intensity [13]. The observed difference in the
behavior of SAS intensity between the PBSN-6 and
PMN crystals at the temperature Tph correlates well
with the time evolution of the dielectric permittivity of
these crystals in an electric field. Indeed, the stepped
decrease in ε at this transition observed in PBSN-6
crystals is not as sharp as that in PMN [11, 15].

The dielectric and optical properties of the PBSN-6
compounds were shown [5, 6] to depend strongly on
the electric-field application regime employed. Figure 3
displays the temperature dependences of birefringence
obtained on a PBSN-6 crystal with an electric field of
1 kV/cm applied in the following order: ZFC 
FHaZFC  FC  ZFHaFC. Unlike the PMN and
0.9PMN–0.1PT crystals, in which ∆n is practically zero
in the absence of an electric field down to low temper-
atures [14], ∆n in PBSN-6 cooled in the ZFC mode
grows slightly with decreasing temperature because of
the existence of regions of spontaneous PT (curve 1 in
Fig. 1a; Fig. 3). When measured in the FHaZFC mode,
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Fig. 2. (1–3) Temperature dependences of small-angle light
scattering intensity measured on a PBSN-6 single crystal in
the FHaZFC mode (E = 1 kV/cm) at different sample heat-
ing rates V: (1) 2, (2) 5, and (3) 10 °C/min. Inset plots the
temperature of induced ferroelectric transition Tph vs. heat-
ing rate. Scattering angle, 30°.
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∆n grows substantially and passes through a broad
maximum (with a width ~40°C). The variation of ∆n in
this process depends on the actual rate of sample tem-
perature variation; more specifically, the higher this
rate, the narrower the region of existence of the induced
ferroelectric phase (Fig. 2) and, hence, the smaller the
width of the ∆n (T) maximum. The difference observed
in the temperature behavior of ∆n measured in the ZFC
and FHaZFC modes indicates the latter process to be
metastable. On the other hand, the temperature depen-
dence of ∆n (T) measured in the ZFHaFC mode reveals
a normal ferroelectric behavior, with the extrapolation
∆n  0 yielding the depolarization temperature Td ≈
30–32°C (Fig. 3). This dependence is depicted graphi-
cally in Fig. 1a (curve 4) and was discussed in detail
above.

The above behavior of PBSN-6 suggests the conclu-
sion that the presence of spontaneously polarized
regions in a paraelectric matrix possessing relaxor
properties is a fairly typical feature of solid solutions
near the boundary of stability of the relaxor state. This
domain of Ba ion concentrations is actually a morpho-
tropic region separating the macroscopically cubic
relaxor from the rhombohedral macrodomain ferro-
electric phase. Since the structural differences between
the cubic and rhombohedral phases are small, there is a
fairly broad region of Ba ion concentrations where both
phases coexist. Crystals of the PMN and 0.9PMN–
0.1PT compositions are typical relaxors and are far
from the boundary of stability of the relaxor state, and
compositional fluctuations (~10 mol % PbTiO3) affect
their properties only insignificantly. It may be conjec-
tured that as the PbTiO3 content is increased still further
(to ~20 mol %), with the composition approaching the
stability boundary of the relaxor state, the optical prop-
erties of the corresponding compounds should
approach those of PBSN-6.

We used the above data on the temperature depen-
dences of ∆n and ε to construct an E−T phase diagram
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Fig. 3. Temperature dependences of birefringence mea-
sured in a field of 1 kV/cm. Field application mode
sequence, ZFC–FHaZFC–FC–ZFHaFC.
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for PBSN-6. Figure 4 presents diagrams obtained in the
cooling (Fig. 4a) and heating runs (Fig. 4b) for this
crystal. Consider the cooling mode of the sample
(Fig. 4a). By analogy with PSN and PST [16], the
paraelectric phase (I) exists in PBSN-6 crystals appar-
ently only above the Burns temperature T ~ 400°C.
Below this temperature, the crystal placed in a field E <
Eth is first in the ergodic relaxor phase (II), and below
the Vogel–Fulcher point Tf, in the nonergodic relaxor
phase V. The temperature Tf was derived from the fre-
quency dependence of ε [5]. The vertical dashed line at
Tf in Fig. 4a is a boundary separating the ergodic from
the nonergodic relaxor phases. As the temperature is
lowered still further, the crystal transfers to phase III in
electric fields above Eth. The boundary between phases
II and III was determined as the point where a sharp
decrease in ε was observed in the FC mode. At the II–
III boundary, the induced phase transition has already
occurred in most of the polar nanoregions. Phase III is
an inhomogeneous macrodomain ferroelectric phase, in
which not all of the polar nanoregions have transferred
to the ferroelectric state. A further decrease in tempera-
ture initiates the transition of the remaining polar nan-
oregions to the ferroelectric phase (phase IV). As fol-
lows from [11], the spontaneous PT takes place under
cooling in part of the sample volume in the temperature
interval from –5 to +5°C, depending on the magnitude
of the electric field; hence, region IV is a homogeneous
macrodomain ferroelectric phase. The boundary
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Fig. 4. E−T phase diagrams derived for a PBSN-6 crystal in
(a) cooling and (b) heating runs from optical (open sym-
bols) and dielectric (filled symbols) measurements. Sample
temperature variation rate 2°C/min. I is the paraelectric
phase; II is the ergodic relaxor phase; III is the inhomoge-
neous, macrodomain ferroelectric phase; IV is the homoge-
neous macrodomain ferroelectric phase; and V is the noner-
godic relaxor phase. Tf is the Vogel–Fulcher temperature
from [5]. Dashed line at Tf is the boundary separating the
ergodic from nonergodic relaxor phase.
P

between phases III and IV is the temperature region
within which birefringence saturates.

When heated from low temperatures up (Fig. 4b),
the sample which resided initially in the nonergodic
relaxor phase V transfers in fields E > Eth to the macro-
domain ferroelectric phase IV, which persists to the
temperatures corresponding to the IV–II boundary.
Note that the boundary position depends on the sample
heating rate. The higher the rate, the narrower the tem-
perature interval of existence of the ferroelectric phase.
The boundary separating phases IV and II was derived
both from the temperature of the narrow SAS intensity
peak and from the depolarization temperature Td corre-
sponding to the jump in ε.

Thus, the phase diagram constructed provides a clue
to understanding the reason for the observed differ-
ences in the phase transition inducing the ferroelectric
state in PMN and PBSN-6. One of possible explana-
tions lies in the low-temperature phase in these crystals
being of different nature. At low temperatures, PMN in
a zero electric field resides in a nonergodic glassy state,
whereas in PBSN-6 at these temperatures, nanoregions
coexist side by side with macrodomain ferroelectric
regions in which the spontaneous PT has occurred.
Therefore, the temperature interval of coexistence of
the relaxor state and the electric-field-induced ferro-
electric phase in PBSN-6 is considerably broader than
that in PMN.
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Abstract—The relaxor properties of Fe-doped TlInS2 crystals are investigated. It is shown that Fe-doped
TlInS2 compounds exhibit all features inherent in relaxor ferroelectric materials. The temperature range of
existence of the microdomain (relaxor) state and the temperature of the transition from this state to a macro-
domain state are determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent investigations into the temperature depen-
dences of the permittivity ε(T) of the TlInS2 compound
in the temperature range of phase transitions have
revealed that the curves ε(T) measured for TlInS2 sam-
ples prepared from different batches differ significantly
from one another. As was shown in our previous work
[1], the differences in the shape of the curves ε(T) for
TlInS2 crystal samples are associated with the fact that
TlInS2 belongs to the class of berthollides, i.e., com-
pounds characterized by a composition redistribution
during crystal growth. However, this feature does not
lead to smearing of the phase transitions and the depen-
dence ε–1(T) obeys the Curie–Weiss law with a constant
of ≈10–3 beginning from the submillimeter range of the
spectrum up to values of ε(T) measured in the kilohertz
range [2, 3]. According to neutron diffraction data, the
TlInS2 compound is an improper ferroelectric with an
incommensurate phase [4].

It has been found that the temperature range of
instability of the TlInS2 crystal lattice is very sensitive
to trivalent cation impurities with different ion radii and
coordination numbers. It is worth noting that the phase
transition temperatures can either increase or decrease
depending on the impurity type (the results of these
investigations have already been submitted for publica-
tion). In this respect, it is of interest to elucidate the ori-
gin and mechanisms of the phase transitions occurring
in TlInS2 crystals. Transition metals of the iron group
represent multiply charged ion impurities and can form
deep centers of strong localization that are capable of
interacting with a highly polarized crystal lattice of
TlInS2.

This paper reports on the result of investigations into
the dielectric polarization and pyroelectric properties of
TlInS2〈Fe〉 crystals.
1063-7834/03/4506- $24.00 © 21118
2. EXPERIMENTAL TECHNIQUE

Single crystals of TlInS2〈Fe〉  were grown using a
modified Bridgman–Stockbarger method. No anisot-
ropy of the dielectric properties in the plane of the layer
was observed. The measurements were performed at
crystal faces cut out perpendicular to the polar axis. The
crystal faces were ground, polished, and coated with a
silver paste. The permittivity ε and the dielectric loss
tangent  were measured on E7-8 and E7-12 alter-
nating-current bridges in the temperature range 150–
250 K at frequencies of 1 kHz and 1 MHz, respectively.
The rate of change in the temperature was equal to
0.1 K/min. The dielectric hysteresis loops were exam-
ined according to a modified Sawyer–Tower scheme at
a frequency of 50 Hz. The pyroelectric effect was mea-
sured using the quasi-static method on a V7-30 univer-
sal voltmeter.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependences of the
permittivity ε(T) measured for TlInS2 and TlInS2〈Fe〉
crystals during cooling and heating. As can be seen
from Fig. 1, the TlInS2 crystals (curves 1, 2) undergo a
sequence of phase transitions [3] that begins with the
phase transition from the paraelectric phase to the
incommensurate phase at a temperature of 216 K. The
origin of the two other phase transitions occurring at
temperatures of 204 and 200 K was thoroughly dis-
cussed by Suleœmanov et al. [5]. Most likely, these tran-
sitions are associated with a transformation of the modu-
lated structure. The observed sequence of phase transi-
tions ends with the transition to the polar phase at 196 K.

In the temperature range T – T1(216) ≤ 50 K, the
dependence ε(T) obeys the Curie–Weiss law with the
Curie constant C+ = 5.3 × 103 K. An anomaly manifests
itself at a temperature of 196 K upon cooling, and all
the peaks are well pronounced without even insignifi-
cant indications of smearing. As is clearly seen from
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Fig. 1, the dielectric hysteresis for TlInS2 is observed
only in the vicinity of 196 K. For iron-doped samples,
the dielectric hysteresis is revealed at temperatures
close to Tm [the temperature at which the permittivity
ε(T) reaches a maximum] and amounts to approxi-
mately 2 K (Fig. 1; curves 3, 4).

At these temperatures, the dependence ε(T) of
(TlInS2)1 – x(Fe)x crystals with x = 0.001 shows a differ-
ent behavior: there is a wide spread of experimental
points, the phase transition temperatures are shifted to
the low-temperature range by 10 K, and the incommen-
surate phase is observed in a wider temperature range
with two anomalies at 190 and 209 K. This raises the
question as to why the introduction of 0.1 mol % Fe
into the TlInS2 compound leads to such a radical
change in the dependence ε(T).

As is known [6, 7], the smearing of phase transitions
is caused primarily by the composition fluctuations.
However, it does not always happen that an increase in
the defect concentration brings about smearing of the
phase transitions. According to Benguigai and Bethe
[8], the phase transitions become smeared upon the for-
mation of defects whose dipole moments induce local
electric fields in the adjacent regions of the crystal.
Moreover, as was shown by Mamin [9–11], upon dop-
ing of the TlInS2 semiconductor compound, there arise
centers of carrier localization that can generate local
electric fields, which, in turn, induce polarization in the
vicinity of the phase transition. An important feature of
ferroelectric materials with smeared phase transitions is
that the dielectric polarization above the temperature
Tm changes with temperature in accordance with the
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Fig. 1. Temperature dependences of the permittivity ε(T) for
(1, 2) TlInS2 and (3, 4, 5) TlInS2〈Fe〉  crystals upon (1, 3, 5)
cooling and (2, 4) heating. Frequency of measurements:
(1−4) 1 kHz and (5) 1 MHz.
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relationship (ε')–1 = A + B(T – T0)2 rather than with the
Curie–Weiss law (ε')–1 = C–1(T – T0).

The temperature dependence of the permittivity
ε−1/2(T) for the TlInS2〈Fe〉  crystal is depicted in Fig. 2.
In the case when the temperature decreases from the
range of existence of the high-temperature phase, the
curve ε–1/2(T) intersects the abscissa axis at T = 164 K,
which coincides with the temperature of the maximum
in the low-temperature pyroelectric coefficient (Fig. 3).
Investigations into the polarization properties of the
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TlInS2〈Fe〉  crystal have revealed dielectric hysteresis
loops at temperatures below 164 K. The maximum
spontaneous polarization observed in this case reaches
7.5 × 10–8 C/cm2. For undoped TlInS2 crystals, we obtained
the spontaneous polarization PS = 1.8 × 10–7 C/cm2. In
the temperature range 164–190 K, the spontaneous
polarization was determined to be PS = 1.5 × 10–8 C/cm2.
The dielectric hysteresis loops for the TlInS2〈Fe〉 crystal
are displayed in the insets to Fig. 2. The upper inset
shows the hysteresis loop observed in the temperature
range 164–190 K. As is seen from this inset, the hyster-
esis loop is narrow and prolate in shape, which is char-
acteristic of relaxor ferroelectrics. The lower inset
shows the dielectric hysteresis loop at temperatures
below 164 K. It is evident that, in this case, the hyster-
esis loop has a shape typical of conventional ferro-
electrics.

The frequency dispersion was investigated at two fre-
quencies of the measuring field: f = 1 kHz and 1 MHz. It
turned out that an increase in the frequency f does not
affect the location of the maxima observed at the tem-
perature Tm in the curve ε(T) for the TlInS2 crystal,
whereas the smeared maxima in the dependence ε(T)
for the TlInS2〈Fe〉  crystal are shifted by 3 K (Fig. 1;
curves 3, 5).

Figure 3 depicts the temperature dependences of the
pyroelectric coefficient γ(T) for pure TlInS2 (curve 1)
and iron-doped TlInS2 (curve 2) crystals. The pyroelec-
tric measurements were performed by the quasi-static
method. The pyroelectric coefficient γ was calculated
from the following relationship: γ = J/A0dT/dt, where
J is the pyroelectric current intensity, A0 is the surface
area of the electrodes, and dT/dt is the heating rate. For
these measurements, the samples were preliminarily
polarized in an external electric field. It is clearly seen
from Fig. 3 that, for the pure TlInS2 crystal at a temper-
ature of 196 K, the pyroelectric coefficient γ reaches a
maximum value of 1.4 × 10–7 C/K cm2. For iron-doped
TlInS2 samples, the dependence γ(T) exhibits two
anomalies at Tm  = 190 K and T0 = 164 K. Moreover, the
behavior of γ(T) at temperatures above 190 K (i.e., in
the range of existence of the incommensurate phase)
suggests that weak current flows through the sample.

An analysis of the curves shown in Figs. 1–3 dem-
onstrates that the TlInS2〈Fe〉  crystals exhibit all the fea-
tures inherent in relaxor ferroelectrics: (i) doping of
TlInS2 with Fe3+ cations brings about the smearing of
the phase transitions, (ii) the permittivity is character-
ized by the frequency dispersion, (iii) the dielectric hys-
teresis loop has a prolate shape in the temperature range
of the smeared phase transition, and (iv) the tempera-
ture dependence of the permittivity in the range of
existence of the high-temperature phase is described by
the relationship (ε')–1 = A + B(T – T0)2 rather than by the
Curie–Weiss law.
P

The smearing of phase transitions and the specific
features observed in the ferroelectric properties of
TlInS2〈Fe〉  crystals are undeniably associated with the
structural disordering, which, in turn, is responsible for
local distortions of crystal symmetry and the generation
of internal electric fields over a wide temperature range.
Although the phase transitions have long since been
studied, no satisfactory explanations have been offered
for their mechanisms. In our opinion, this circumstance
can be explained by the fact that all these investigations
of the phase transitions in TlInS2 compounds were per-
formed without due regard for their semiconductor
properties. This is especially true for TlInS2 crystals
doped with cation impurities that can form attachment
levels (traps) in the vicinity of the conduction band bot-
tom. Moreover, proper allowance must be made for
both the localization of charge carriers at the impurity
centers and their influence on the phase transitions. A
detailed analysis of this problem was carried out by
Mamin [9–11], who demonstrated that thermal filling
of the traps gives rise to a branching sequence of phase
transitions and can be responsible for the formation of
an unstable intermediate state between the incommen-
surate and commensurate phases.

A comparison of the data presented in Figs. 1 and 3
shows that the maximum observed in the dependence
γ(T) at a temperature of 164 K does not manifest itself
in the curve ε(T). According to [11], this feature is
inherent in relaxors and stems from the fact that the
characteristic frequency of oscillations of the induced
polarization is determined not only by the characteristic
relaxation time of the lattice subsystem (as is the case
with conventional ferroelectrics) but also by the relax-
ation times of the electronic subsystem. It is quite rea-
sonable that the characteristic times of variations in the
order parameter η and the electron concentration m in
traps differ significantly (τη /τm ! 1). On this basis,
Mamin [11] investigated the above problem with due
regard for the separation of the contributions from fast
and slow processes. It was established that the effective
temperature Tcm of the phase transition decreases as a
result of thermal filling of the attachment levels. The
phase transition to the state with spontaneous polariza-
tion is observed at the temperature Tcm. For TlInS2〈Fe〉
crystals, this temperature is equal to 164 K (Fig. 2). As
can be seen from Fig. 2, the hysteresis loop at tempera-
tures below 164 K increases in size along the vertical
axis. Note that the localized charges generate local
electric fields. In this case, the spontaneous polariza-
tions induced in separate microregions in weak external
fields can be oriented along different directions due to
the spatial distribution of localized charges. As a result,
the hysteresis loop in the temperature range 164–190 K
becomes narrow and prolate in shape. For this reason,
the specific features associated with the phase transi-
tion occurring at the temperature Tcm are not observed
in the dependence ε(T).
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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4. CONCLUSIONS

Thus, it was demonstrated that, for TlInS2 crystals
doped with iron, there exists a temperature range in
which Fe-doped TlInS2 compounds exhibit all features
inherent in relaxor ferroelectric materials. The phase
transition from a microdomain (relaxor) state to a mac-
rodomain ferroelectric state is observed at a tempera-
ture of 164 K. This transition is accompanied by a jump
in the pyroelectric coefficient γ(T).

REFERENCES

1. R. M. Sardarly, O. A. Samedov, I. Sh. Sadykhov, et al.,
Izv. Nats. Akad. Nauk Azerb., Ser. Fiz.–Mat. Tekh. Nauk
22 (2), 31 (2002).

2. A. A. Volkov, Yu. G. Goncharov, G. V. Kozlov, et al., Fiz.
Tverd. Tela (Leningrad) 25 (12), 3583 (1983) [Sov.
Phys. Solid State 25, 2061 (1983)].

3. R. A. Aliev, K. R. Allakhverdiev, A. I. Baranov, et al.,
Fiz. Tverd. Tela (Leningrad) 26 (5), 1271 (1984) [Sov.
Phys. Solid State 26, 775 (1984)].
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
4. S. B. Vakhrushev, V. V. Zhdanova, O. E. Kvyatkovskiœ,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 39 (6), 245 (1984)
[JETP Lett. 39, 291 (1984)].

5. R. A. Suleœmanov, M. Yu. Seidov, F. I. Salaev, and
F. A. Mikailov, Fiz. Tverd. Tela (St. Petersburg) 35 (2),
348 (1993) [Phys. Solid State 35, 177 (1993)].

6. I. P. Raevskiœ, V. V. Eremkin, V. G. Smotrakov, et al., Fiz.
Tverd. Tela (St. Petersburg) 42 (1), 154 (2000) [Phys.
Solid State 42, 161 (2000)].

7. M. D. Glinchuk, E. A. Eliseev, V. A. Stefanovich, and
B. Hilczer, Fiz. Tverd. Tela (St. Petersburg) 43 (7), 1247
(2001) [Phys. Solid State 43, 1299 (2001)].

8. L. Benguigai and K. Bethe, J. Appl. Phys. 47, 2728
(1976).

9. R. F. Mamin, Fiz. Tverd. Tela (Leningrad) 33 (9), 2609
(1991) [Sov. Phys. Solid State 33, 1473 (1991)].

10. R. F. Mamin, Pis’ma Zh. Éksp. Teor. Fiz. 58 (7), 534
(1993) [JETP Lett. 58, 538 (1993)].

11. R. F. Mamin, Fiz. Tverd. Tela (St. Petersburg) 43 (7),
1262 (2001) [Phys. Solid State 43, 1314 (2001)].

Translated by O. Borovik-Romanova
3



  

Physics of the Solid State, Vol. 45, No. 6, 2003, pp. 1122–1127. Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 2003, pp. 1070–1075.
Original Russian Text Copyright © 2003 by Afrosimov, Il’in, Karmanenko, Sakharov, Serenkov.

                                                                            

MAGNETISM 
AND FERROELECTRICITY
Effect of Substrates on the Morphology of BaxSr1 – xTiO3 
Nanometer-Scale Films

V. V. Afrosimov*, R. N. Il’in*, S. F. Karmanenko**, V. I. Sakharov*, and I. T. Serenkov*
*Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

e-mail: r.ilin@mail.ioffe.ru
**St. Petersburg State Electrotechnical University, ul. Prof. Popova 5, St. Petersburg, 197376 Russia

Received November 25, 2002

Abstract—The initial stages in the growth of BaxSr1 – xTiO3 films on various dielectric substrates were studied
using the middle-energy ion scattering spectroscopy, and the results obtained were used to analyze microdefects
in the film. The character of film growth was found to depend on the shape, size, and electrostatic state of crys-
tallographic unit cells of the substrate surface. The growth was epitaxial on an SrTiO3 substrate. The film pre-
pared on an LaAlO3 substrate consists of slightly disordered crystallites. Films on MgO substrates demon-
strated island-type growth up to a thickness of 20 nm, with foreign phases observed to form; as the film thick-

ness increased, the growth acquired an epitaxial pattern. The film grown on the α-Al2O3( ) surface was
polycrystalline and contained textured blocks. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

An important step in the development of production
technologies of thin-film structures for nanoelectronics
devices consists in monitoring the initial stages in thin-
film growth and determination of the effect these stages
exert on the structure and electrical characteristics of
the final product. One needs, in particular, information
on the formation of transition layers at the interface and
on the relative magnitude of the thickness of these lay-
ers and the transverse dimension of the layered struc-
tures themselves. It is important to know the extent to
which the presence of transition layers affects further
growth and properties of the film and its structural
order, because the number and orientation of the blocks
and crystallites making up a film dominate its electrical
properties.

The electron and atomic force microscopy
employed traditionally in studies of the initial stages of
growth provide information on selected local areas
only. X-ray and electron diffraction methods offer inte-
grated data, with no depth resolution in the objects
under study. The methods based on probing a sample
with ion beams yield information on the composition
and structure of thin films; this information, while
being averaged over the surface, is differentiated in
depth [1]. Thus, the middle-energy ion scattering
method (MEIS), based on the analysis of the spectra of
ions that were scattered through large angles or under-
went channeling, represents a nondestructive way of
determining the composition of a sample, the thickness
of its various layers, and the perfection of the crystal
structure both of the film as a whole and of its constitu-
ent blocks [2, 3]. MEIS may be considered a version of
1063-7834/03/4506- $24.00 © 21122
the Rutherford backscattering (RBS) method, with the
probing ion energy reduced by an order of magnitude,
from 106 to 105 eV, which permits measurement of the
ion energy with high-resolution electrostatic analyzers
and, as a consequence, improvement of the resolution
at depths down to 1 nm in the near-surface region. In
addition, lowering the probing beam energy reduces the
radiation load on the sample. As in RBS, channeling
can be used in MEIS to estimate the quality of the film
structure.

The energy spectra of backscattered ions are mea-
sured in RBS and MEIS in the channeling mode, with
the beam aligned with one of the low-index single-crys-
tal directions [the Yc(E) spectrum] or under a random
beam orientation [the Yr(E) spectrum]. The channeling
factor is defined by the normalized dependence of the
yield of scattered ions on their energy, χ(E) =
Yc(E)/Yr(E). The minimum relative yield χmin, i.e., the
value of the χ(E) function immediately after the surface
peak on the Yc(E) curve, was accepted as a characteris-
tic of the perfection of single crystals.

An analysis of the initial film growth stages should
discriminate between such microdefects as foreign
inclusions, misoriented crystallites in an epitaxial film,
and the presence of a polycrystalline phase. The meth-
ods of determining the average angle of crystallite mis-
orientation employed in the RBS and MEIS methods
are based on measuring the angular dependences of the
yield of backscattered ions at different incident ener-
gies and/or using various probing ions [4]. This study
made use of two factors to analyze the structural fea-
tures of a film, namely, the dependence of χmin on the
probe ion charge and the character of the dependence of
003 MAIK “Nauka/Interperiodica”



        

EFFECT OF SUBSTRATES ON THE MORPHOLOGY 1123

                                                                                                                   
the minimum relative yield in MEIS spectra on depth t.
If the probe ions have a nuclear charge Z1 and initial
energy E0, then the minimum yield χmin for a film with
both crystallite misorientation (described by a normal
distribution with a variance σ) and inclusions of a non-
channeling polycrystalline fraction can be written as [4]

 (1)

where δ is the volume fraction of polycrystalline inclu-
sions, χ0(Z1, E0) is the minimum yield for a perfect
crystal, and ψc(Z1, E0) is the characteristic channeling
angle. Because all the measurements performed in this
study were made at the same value of E0, the depen-
dences of the quantities χ0, ψc, and, accordingly, of χmin
on this parameter will be subsequently disregarded. As
follows from Eq. (1), if there is no crystallite misorien-
tation (σ = 0), the χmin(Z1) relation is dominated by the
χ0(Z1) function and is a rising curve [1]. Misorientation,
even as small as σ ~ 1°, makes χmin(Z1) a decreasing

function, because the quantity  is proportional to the
ion charge Z1.

An analysis of films with thicknesses in excess of
100 nm should include detection of extended defects.
The MEIS method enables one to detect such defects by
using the χ(t) dependences, which can be found by
combining the χ(E) relations with the known stopping
cross sections. For backscattered ion energies E < E1
(where E1 is the energy corresponding to the minimum
in the Yc(E) and χ(E) curves immediately beyond the
surface peak), the quantity χ, as a rule, grows with
decreasing energy. Assuming the increase in χ with
depth t to be determined by dechanneling caused by
extended defects with a constant concentration, this
relation can be empirically presented in the form

 (2)

where λ is the dechanneling length determined by the
rate of dechanneling due to thermal vibrations of the
perfect lattice and by the sum of dechanneling rates due
to various extended defects (dislocations, grain bound-
aries, stacking faults, etc.). If additional information on
the type of defects and the dechanneling cross sections
is lacking, the value of λ can be used to judge the per-
fection of the prepared films (Fig. 1).

This communication reports on a MEIS study of the
initial stages in the growth of ultrathin ferroelectric
BaxSr1 – xTiO3 (BSTO) films deposited on various
dielectric substrates, including an analysis of defects in
the films and of the influence the initial growth stages
of films have on their quality in subsequent growth.

2. EXPERIMENT
The initial stages in BSTO film growth were studied

on films deposited on single-crystal substrates of four

χmin δ 1 δ–( ) 1 1 χ0 Z1 E0,( )–( )–[+=

× 1 2σ2
2ln( )ψc

2–
Z1 E0,( )+( )

1–
] ,

ψc
2

χ t( ) χmin 1 χmin–( ) 1 t/λ–( )exp–[ ] ,+=
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materials. The substrates used were the (100) surfaces
of SrTiO3 (STO), LaAlO3 (LAO) and MgO single crys-

tals and r cut ( ) from sapphire Al2O3 (AlO),
which differ in their lattice structure and parameters. Of
the 13 films with a thickness of up to 40 nm, three were
deposited on STO, two on LAO, and four each on MgO
and AlO. The films were rf magnetron sputtered at a
substrate temperature of 700–800°C at a rate of about
100 nm/h in an oxygen environment at a pressure of
20 Pa, with subsequent cooling in O2 for two hours [5].
In addition, to determine the film characteristics under
steady-state deposition conditions, four BSTO films of
thickness on the order of 100 nm or greater deposited
on MgO and LAO were studied.

The experimental MEIS setup was described else-
where [2]. The energies of the ions scattered through an
angle 120° were determined using an electrostatic ana-
lyzer (ESA) with a resolution ∆E/E = 5 × 10–3. The ion
energy spectra for films of thickness 100 nm or greater
were also measured in a channel consisting of a spec-
trometric semiconductor detector (SCD) and a pulse
height analyzer.

The probe ions were H+, He+, and N+ with an initial
energy of 230 keV. We obtained for each sample the ion
energy spectra Yc(E) and Yr(E) in the channeling and

1102
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Fig. 1. Experimental (circles) and calculated (lines) χ(E)
graphs for films BSTO/LAO (sample 7) and BSTO/MgO
(sample 13). The lines are plots of Eq. (2) with λ as the fit-
ting parameter. Channel numbers >320 relate to the surface
peak. The measurements were performed with an H+ beam
and an SCD as a detector.
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Parameters of the films studied 

Sample no. Substrate h, nm σh , nm C τ = Ch χmin(H+) χmin(He+) χmin(N+)

1 SrTiO3 3.3 0.85 0.3 1.0 – 0.25 –

2 SrTiO3 5.5 0.5 1.0 5.5 – – 0.06

3 SrTiO3 40.0 3.6 1.0 40.0 0.20 – 0.15

4 LaAlO3 11.0 2.4 1.0 11.0 0.7 0.38 0.25

5 LaAlO3 27.0 5.0 1.0 27.0 0.7 0.42 0.25

6 LaAlO3 94 – 1.0 94 – 0.32 –

7 LaAlO3 >400.0 – 1.0 >400.0 0.25 – –

8 MgO* 8.1 (2.4) 9.9 (1) 0.11 (0.15) 0.9 (0.4) 0.95 0.80 –

9 MgO* 13.5 (12.9) 1.7 (8.6) 0.40 (0.25) 5.4 (3.2) – 0.85 (0.7) 0.75

10 MgO 21.4 6.0 0.85 18.1 0.72 0.57 0.50

11 MgO 29.0 17.6 1.0 29.0 0.25 – 0.18

12 MgO 130 – 1.0 130 – 0.07 –

13 MgO 172 – 1.0 172 0.02 – –

14 Al2O3 8.0 6.0 0.9 7.2 – 1 0.9

15 Al2O3 11.0 4.0 1.0 11.0 – 0.95 0.9

16 Al2O3 24.0 10.0 1.0 24.0 1.0 – 0.8

17 Al2O3 26.0 5.0 1.0 26.0 – 0.9 0.7

* The figures in parentheses are parameters of the TiO foreign-phase islands.
random-orientation modes, respectively, and measured
the dependence of the normalized yield of scattered
ions χ(E) on their energy. The Yr(E) relation thus
obtained was used to deduce the composition of the
films and their total thickness h, as well as the scatter in
thickness σh and the substrate coverage C by the film,
by following the method described in [6].

3. RESULTS AND DISCUSSION

The table lists the results obtained on the films stud-
ied. It specifies the substrate type, the average height of
the islands or (in the case of complete coverage) the
film thickness h, the spread of this quantity σh, the sub-
strate coverage C, the average thickness of the depos-
ited layer τ = hC, and the values of the minimum yield
χmin for various probing ions. For films 8 and 9 which
exhibit mosaic coating, the values of h, σh, and C are
given separately for BSTO and TiO islands.

The parameter x for the BaxSr1 – xTiO3 compound
varied in the interval 0.35–0.5 for all films.

Using probing ions with different Z1 offered the pos-
sibility of establishing the specific features of film
growth during the course of deposition especially in the
case of the MgO and LAO substrates. For the LAO sub-
strates, the value of χmin is determined by the ion spe-
cies and is nearly independent of τ, which implies the
presence of crystallite misorientation starting from the
interface up. In the case of MgO, however, the depen-
dence on the ion species is weak but χmin falls off rap-
P

idly with increasing film thickness, which indicates
improvement of the film crystal structure. The reasons
for these phenomena will be dealt with in the corre-
sponding sections below.

Let us consider the pattern of BSTO film growth on
various substrates in more detail.

3.1. SrTiO3 Substrate

This substrate is the closest in lattice constant and
structure to the BSTO film. The substrate and the film
have a perovskite cubic lattice in which the TiO2 and
SrO layers are not charged. The lattice misfit ξ = 2|as –
af |/(as + af) (where as and af are the lattice constants of
the substrate and the film, respectively) is the smallest
in this case: ξ = 0.007. Starting from a thickness of
5 nm, the substrate is completely covered by the film
and the film thickness nonuniformity σh does not
exceed the lattice constant (0.4 nm), which implies
layer-by-layer growth. As the film thickness increases
to 40 nm, the average nonuniformity σh grows but the
layer-by-layer growth mode persists. The minimum
yield depends only weakly on the probing ion species;
in other words, there is no crystallite misorientation. As
shown by measurements of the χ(E) dependence for a
film 40 nm thick, the yield of scattered ions in the
region of the film is χf = 0.15 and in the region of the
substrate, χs = 0.2. The slight increase in χ observed as
the interface is crossed may be assigned to dechannel-
ing caused by misfit dislocations. No noticeable misori-
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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entation was observed in the film. The film starts to
grow epitaxially from the interface up.

3.2. LaAlO3 Substrate

Lanthanum aluminate crystals have perovskite
structure with a slight rhombohedral distortion at room
temperature (α = 90.4°). A transition to the cubic phase
occurs at 544°C. The lattice misfit between the film and
the substrate is small (ξ = 0.029). As seen from the
table, the minimum yield χmin for BSTO films depends
strongly on the probing ion species while being inde-
pendent of the film thickness. This means that the main
film defect is the crystallite misorientation. Estimates
made using Eq. (1) suggest that the average misorienta-
tion of the crystallites making up the film is about 2°.
Note that the columnar structure with numerous small-
angle tilted grain boundaries was also detected using
high-resolution electron microscopy in [7].

The crystallite misorientation in a film may be
caused by twinning occurring at the phase transition in
the LAO substrate as the sample is cooled. Specific fea-
tures of the electrostatic interaction at the interface may
be another cause of the misorientation. The crystal lat-
tice of the LAO substrate can terminate either in LaO+

or (AlO2)– surfaces, whereas the outermost layers of a
TiO2 and BaO (SrO) film are neutral. As pointed out in
[8], electrostatic misfit between the film and the sub-
strate may give rise to the formation of a rough strained
film or a transition defected layer.

The dechanneling length λ calculated from Eq. (2)
for films thicker than 100 nm (Fig. 1) was found to be
about 300 nm, which is an order of magnitude smaller
than that for the best BSTO films. This quantity is prac-
tically independent of the actual deposition conditions;
this may be due to the fact that dechanneling occurs pri-
marily at grain boundaries and is determined by the
grain transverse dimensions, which, in turn, are fixed
by the distances between the misfit dislocations at the
BSTO/LAO interface [7].

Thus, a BSTO film on an LAO substrate is charac-
terized by epitaxial growth in the form of crystallites,
for which the rms deviation of the [100] axes from the
substrate surface normal is about 2°.

3.3. MgO Substrate

The MgO crystal has a cubic lattice with a constant
a = 0.4213 nm, which is substantially larger than that of
BSTO (the misfit ξ = 0.067). The strains caused by this
misfit are relieved by misfit dislocations. It is these dis-
locations that are responsible for the probe ion dechan-
neling, and this makes it possible to estimate the dislo-
cation density from the increase in the normalized yield
at the energies corresponding to the interface depth [9].
Estimates of the dislocation density made for films 8–
13 (see table) give a figure of 1.5 × 106 cm–1.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
An important difference between the deposition of a
BSTO film on MgO and that on other substrates is the
island growth pattern, which is characteristic of a weak
interphase binding and brings about incomplete sub-
strate coverage. This growth pattern persists up to a film
thickness of 20 nm, whereas complete coverage by other
films occurs at a thickness of no greater than 10 nm.

The interaction between different phases at the
interface separating the MgO substrate from a BaTiO3
film is discussed in [10]. The electrostatic interaction at
the interface was found [10] to interfere with the depo-
sition of a BaO (SrO) layer on a MgO substrate and give
rise to the formation of three-dimensional misoriented
nuclei. Epitaxial growth of BaTiO3 (SrTiO3) can also
start with a TiO2 layer; however, this layer can form
only if titanium atoms do not attach to a part of the oxy-
gen atoms. This suggests that, in our case, the deposi-
tion of BaO (SrO) layers in the initial stage of BSTO
growth also nucleates three-dimensional misoriented
islands, while the deposition of titanium oxides with
the formation of a TiO2 layer initiates growth of BSTO
islands through the mechanism described in [10].

It follows from our results that, in addition to the
above two mechanisms of nucleation in the deposition
of BSTO on MgO, one can also conceive of epitaxial
growth of islands of a foreign phase. An analysis of the
composition of thin films 8 and 9 revealed an excess of
titanium with respect to the level expected from the
amounts of barium and strontium. Figure 2 displays
MEIS spectra of these films. In the channel number inter-
val 440–460 (excess titanium at the interface), film 9
(Fig. 2b) exhibits a decrease in the minimum yield
compared to the energy region corresponding to the Ba
and Sr signals (channel numbers >500), which is evi-
dence that there is a higher degree of structural order in
the phase containing excess titanium. Of all the appro-
priate titanium compounds, the structure of titanium
monoxide TiO is closest to that of MgO. This com-
pound has a cubic lattice and, in contrast to the other
titanium oxides, its lattice constant a (0.424 nm) is very
close to the MgO lattice constant (0.4213 nm). This
gives us grounds to assume that the observed excess
titanium signal is due to the growth of TiO islands. Fig-
ure 2 presents, side by side with experimental spectra,
model spectra calculated under the assumption of the
main film having the composition Ba0.42Sr0.58TiO3 and
of the presence of titanium monoxide TiO as a foreign
phase. The peak due to titanium of the monoxide in the
model spectrum starts at the same energy as the peak of
titanium of the film, which means that this phase forms
isolated islands with a free surface.

The differences between films 8 and 9 in the amount
of deposited material and the surface coverage suggest
that these films corresponding to different stages of
growth; namely, film 8 corresponding to the stage of
BSTO nucleation and film 9, to that of the beginning of
coalescence. The variation in the shape of the parts of
MEIS spectra related to BSTO islands indicates a
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decrease in the island height spread with increasing
amount of deposited material. Our earlier model calcu-
lations [11] show that this change in shape indicates a
transition from island growth to layer-by-layer deposi-
tion. The increase in height of the BSTO islands is
slower than the growth in their transverse size, which is
proportional to the square root of the film-covered area.
In contrast, the spread in the TiO island height
increases, which may be assigned to a partial overlap of
these islands by the laterally growing main film. Chan-
neling is only weakly pronounced in these two films,
but it depends on ion charge, which argues for a rise (in
addition to the polycrystalline fraction) in misoriented
BSTO crystallites.

The minimum yield χmin of backscattered ions falls
off rapidly as the film thickness increases even further.
This suggests a transition from the island to layer-by-
layer growth pattern. We succeeded in obtaining films
with thicknesses on the order of 100 nm exhibiting
χmin = 0.02 and a dechanneling length λ ≅  2000 nm
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Fig. 2. Experimental and model MEIS spectra of samples
(a) 8 and (b) 9. Circles are experimental data, dashed lines
are model spectra of the BSTO film components, and dotted
lines are model spectra for titanium monoxide. Solid lines
are envelopes of the model spectra. The measurements were
performed on a He+ beam, with ESA used in the detection
channel.
PH
(Fig. 1), which is close to the figures quoted for single
crystals.

Thus, the initial stage in BSTO film growth on a
MgO substrate differs substantially from that on the
other substrates studied by us. In the beginning, the film
growth has an island character and is accompanied by
the formation of foreign phases. The rate of film depo-
sition in the island formation stage is lower than that on
the other substrates, namely, 1.5 nm/min (for STO,
2 nm/min; for LAO, 3–4 nm/min; for AlO, 3 nm/min).
As the thickness of the deposited layer increases, tran-
sition to the layer-by-layer growth occurs. The presence
of a 10- to 20-nm thick defected layer, which shows a
high χmin and contains foreign phases, does not impede
epitaxial growth of subsequent layers with a lower
value of χmin.

Interestingly, our earlier study of the growth of per-
ovskite-like YBa2Cu3O7 – x superconducting films on
the same substrates revealed that complete surface cov-
erage in the initial stage of deposition was attained lat-
est of all for the MgO substrate. This process of
YBa2Cu3O7 – x film formation followed a clearly pro-
nounced island character, and microcrystalline islands
of the Cu2O phase were detected on the interface [6].

3.4. Al2O3 Substrate

The r-cut ( ) sapphire surface has a rhombohe-
dral lattice that does not match the BSTO lattice either
in shape or dimension. These substrates are employed,
however, to prepare BSTO films due to their high
dielectric and mechanical properties and wide use in
microelectronics. The film thickness at which complete
coverage of an AlO substrate is reached is larger than
that for the STO and LAO surfaces but is smaller than
that for MgO. The minimum yield χmin for the H+ and
He+ ions is close to unity; i.e., channeling is practically
absent. The decrease in the minimum yield observed to
occur for N+ probe ions with increasing film thickness
suggests that the film contains a textured component
whose volume fraction increases with film thickness.
The fact that an epitaxial BaTiO3 film cannot be
obtained on the r-cut sapphire without coating the latter
with a buffer layer was pointed out in [12].

4. CONCLUSIONS

To sum up, our MEIS study of the initial stages of
growth of BaxSr1 – xTiO3 films on various substrates
revealed specific features in this process that are deter-
mined both by the extent to which the substrate fits the
film in lattice shape and in its dimensions and by the
electrostatic interaction of the interface layers. The
SrTiO3 substrate supports layer-by-layer epitaxial
growth. Films on LaAlO3 grow epitaxially directly
from the substrate up. Such films are made up of
slightly misoriented crystallites growing in a direction
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close to the surface normal. The film growth on MgO
starts with the formation of BaxSr1 – xTiO3 islands with
a small volume fraction of the single-crystal phase, as
well as of islands of a foreign phase; however, as the
thickness of the film increases, its structure improves in
quality, culminating in the onset of epitaxial growth,
although a defected layer up to 20 nm in thickness per-
sists. The film growing on α-Al2O3 is polycrystalline,
and it may contain textured blocks.
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Abstract—X-ray structural studies and dielectric measurements of BaTiO3 single crystals were performed in
the dc electric field range 0 ≤ E ≤ 5.5 × 107 V/m. The field dependence of the tetragonal cell parameter obtained
was used to calculate the field dependence of the piezoelectric modulus d33. The piezoelectric modulus d33 and
the dielectric permittivity vary in magnitude by a factor of two with the field varied in the above range. The
observed nonlinear behavior is shown to fit well to a relation connecting the dielectric with the electromechan-
ical characteristics of the crystal. © 2003 MAIK “Nauka/Interperiodica”.
The phase transitions induced by a strong electric
field in ferroelectric crystals have been extensively
studied to date [1–5]. However, there is apparently only
one communication [6] that reports on the variation of
structural parameters in single-phase states in electric
fields far in excess of the coercive field. It was shown in
[6] that the dependence of the piezoelectric modulus on
electric field E calculated from the field dependence of
the unit cell parameter for the PbZr0.958Ti0.042O3 single
crystal is strongly nonlinear and can saturate in a strong
electric field [6]. It was conjectured [6] that this nonlin-
earity is a characteristic property of piezoelectric crys-
tals, and this motivated our study of the lattice parame-
ters and piezoelectric activity of other piezoelectric
crystals in an electric field.

We chose for the next object barium titanate, whose
C4mm phase exhibits a broad region of stability in the
E−T plane [7]. BaTiO3 crystals were grown through
spontaneous crystallization from a KF melt solution of
BaTiO3 [8]. The crystals selected for the study were c-
and c–a-domain platelets 10 to 20 µm in thickness.
Semitransparent graphite electrodes were deposited by
sputtering on the larger sample sides, which were par-
allel to the (100) plane of the perovskite. After the elec-
trode deposition, the crystal was attached to glass using
glycerol, thereby minimizing accidental bending and
displacement of the unclamped sample in measure-
ments.

The parameters of the perovskite unit cell were mea-
sured with a DRON-2.0 diffractometer (CuKα1, CuKα2
radiation). The field dependence of the cell parameters
was found by studying the (00l) reflections. The posi-
tions of diffraction maxima were refined separately in
the angles 2θ and ϕ. The error in measuring the param-
eter was ∆c = 5 × 10–4 Å. When an electric field was
applied along the [001] direction to the thin crystals,
1063-7834/03/4506- $24.00 © 21128
they bent toward the positive electrode [9], which
resulted in a slight crystal misalignment. Prior to each
measurement, the crystal was adjusted, and after this,
the positions of the diffraction maxima were refined.
The (001) face under study, which was irradiated by
x-rays, served as a positive electrode. However, no side
maxima corresponding to the formation of a surface
layer with anomalously large piezoelectric strains were
revealed [10–12]. This is apparently due to the fact that,
as the crystal thickness decreases, the electric field
strength at which the side maxima were observed to
appear increases considerably [13].

With no field applied, the BaTiO3 samples studied
have a perovskite tetragonal cell with parameters c =
4.0345 Å and a = 3.9980 Å at room temperature. The
dependence of the cell parameter c on applied electric
field (Fig. 1) fits well to a polynomial:

 (1)

with coefficients c0 = 4.0344 Å, c1 = 5.3712 × 10–10, c2 =
–2.2865 × 10–17, c3 = 5.7563 × 10–25, and c4 = –4.7563 ×
10–33 Å m4/V4 and a correlation coefficient of 0.999.

The differential coefficient of inverse piezoelectric
effect d33 can be expressed through the parameter c of
the tetragonal cell as

 (2)

Substituting Eq. (1) into Eq. (2) yields

 (3)

(line 1 in Fig. 2).

c E( ) c0 c1E c2E
2

c3E
3

c4E
4

+ + + +=

d33 1/c( ) dc/dE( ).=

d33 E( )
c1 2c2E 3c3E

2
4c4E

3
+ + +

c0 c1E c2E
2

c3E
3

c4E
4

+ + + +
------------------------------------------------------------------------=
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In the alternative definition of the piezoelectric coef-
ficient [6], the strain is reckoned from c = c0:

 (4)

(line 2 in Fig. 2). As seen from Fig. 2, lines 1 and 2
diverge noticeably in fields below 5 × 106 V/m.

In addition to x-ray structural studies, we conducted
dielectric-permittivity measurements in electric fields
0 ≤ E ≤ 5.5 × 107 V/m; the results obtained were used to
calculate the electric field dependence of induced
polarization (line 1 in Fig. 3).

The relation of the piezoelectric modulus d33 to the
dielectric permittivity and polarization is given by an
expression similar to the one presented in [14, p. 163]:

 (5)

where Q11 is the electrostriction coefficient, which is
equal, according to [14], to 1.23 × 10–2 m4/C2; χ33 is the
unclamped-crystal dielectric permittivity; and Ps and Pi

are the spontaneous and induced polarizations, respec-
tively (line 3 in Fig. 2).

Equation (5) can be readily used to derive the function
χ33(E) satisfying the condition d33 = const(E) = d33(0):

 (6)

Recalling that χ33(E) > 0 for any value of E, we obtain

 (7)

(line 3 in Fig. 3).
Figure 3 shows how strongly the χ33(E) dependence

calculated from Eq. (7) differs from the measurements.

d33 E( ) 1
c 0( )
----------c E( ) c 0( )–

E
----------------------------=

d33 ε0Q11 2Ps Pi+( )χ33,=

ε0Eχ33
2

2Pcχ33+
d33

ε0Q11
-------------.=

χ33 E( ) 1
ε0
----

Pc
2

Ed33/Q11+ Pc–
E

--------------------------------------------------=

4.048

4.044

4.040

4.036

0 20 40 60
E, 106 V/m

c, 10–10 m

Fig. 1. Perovskite unit cell parameter c of single-crystal
BaTiO3 plotted vs. electric field.
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(Note that, in the case of χ33(E) = const, d33 is a linear
function of E.)

Thus, the experimentally observed χ33(E) depen-
dence brings about a nonlinear dependence of the
piezoelectric modulus on electric field in the field range
specified.

1.6

1.2

0.8

0.4
0 20 40 60

d33, 10–10 C/N

1
2

3

E, 106 V/m

Fig. 2. Electric field dependences of the piezoelectric mod-
ulus d33 of single-crystal BaTiO3. Curves 1, 2, and 3 are
plots of Eqs. (2), (4), and (5), respectively.
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Fig. 3. Electric field dependences (1) of the induced polar-
ization Pi of a BaTiO3 single crystal and of the dielectric
permittivity χ33 (2) derived from an experiment conducted
at 1.5 kHz and (3) calculated from Eq. (7).
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Abstract—Raman spectra of Hg2(Br,I)2 mixed crystals were studied. The spectra revealed multimode behavior
of optical vibrations, which were assigned to the existence in these crystals of molecules of three types, namely,
Hg2Br2, Hg2I2, and Hg2BrI. The spectra exhibit a manifestation of phase transition effects associated with soft
modes, the density of states of IR-active vibrational branches, and of nanoclusters, whose nucleation is induced
by the Br–Hg–Hg–I dipole molecules. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The crystals of mercurous halides Hg2Hal2 (Hal =
Cl, Br, I) have, at room temperature, a tetragonal body-

centered  structure with two linear molecules (for-
mula units) per unit cell [1]. The molecules form linear
chains along the C4(Z) axis in these crystals, which
accounts for very strong anisotropy in their physical
characteristics. They exhibit unique properties, among
them record-high birefringence, a record-low sound
velocity, and large acoustooptical constants [2]. For
instance, Hg2I2 crystals are characterized by a record-
low transverse sound (TA) velocity among solids,

 = 254 m/s, a record-high birefringence, ∆n =
+1.5, and strong acoustooptical coupling (M2 = 4284 ×
10–18 CGSU for the TA wave) [2]. These crystals are
widely used as principal components of polarizers,
acoustic delay lines, acoustooptical filters, etc.

The interest aroused in these objects stems from
their serving as model crystal systems in studies of gen-
eral problems associated with structural phase transi-
tions. The improper ferroelastic phase transitions

   (from the tetragonal to orthorhombic
structure), which are driven by condensation of the
slowest soft TA wave at the X point on the Brillouin
zone edge and are accompanied by unit cell doubling
and X  Γ zone folding, were revealed in these crys-
tals under cooling to Tc = 186 K (Hg2Cl2) and 144 K
(Hg2Br2) [3]. We succeeded in achieving a phase tran-
sition in Hg2I2 crystals only at a high hydrostatic pres-
sure (Pc = 9 kbar at T = 293 K) [4].

Recent years have witnessed an increased interest in
lattice dynamics and phase transitions in mixed mercu-
rous halides. In [5], Hg2(Cl,Br)2 was studied, and inves-
tigation of Hg2(Cl,I)2 [6] and Hg2(Br,I)2 [7] was begun.
The present communication reports on a low-tempera-
ture (down to liquid-helium temperature) study of the

D4h
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110[ ]
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17
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lattice dynamics and phase transition effects in mixed
Hg2(Br,I)2 crystals by using Raman spectroscopy. The
spectra were used to investigate the vibrational-mode
behavior with concentration, phase transition effects,
the influence of the anion sublattice disordering on the
breaking of translational symmetry and selection rules
in vibrational spectra, and the manifestation of sym-
metric (Hg2Br2, Hg2I2) and asymmetric (Hg2BrI) mixed
molecules in the vibration spectra and nanoclusters
formed by them.

2. EXPERIMENTAL TECHNIQUE

Optical spectra were measured on a Dilor-Z24 triple
Raman spectrometer with an argon (λ = 5145 Å) and a
He–Ne (λ = 6328 Å) laser, whose power could be var-
ied from a few tens to hundreds of milliwatts. The
helium cryostats employed in low-temperature mea-
surements were closed-cycle Cryogenics with good
temperature stabilization (~0.1 K). The samples used in
the measurements were 5 × 5 × 5-mm, (001)-cut
Hg2(Br,I)2 single crystals cleaved along the (110) and

( ) planes and ground and polished properly.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents Raman spectra of pure starting
Hg2Br2 and Hg2I2 single crystals of this solid solution.
The spectra exhibit two lines (ν1, ν2) in the XZ(YZ)
polarization (Eg symmetry) and two lines (ν3, ν4) in the
ZZ polarization (A1g symmetry), which is in agreement
with group theory predictions. According to this theory,
first-order Raman spectra of the Hg2Br2 and Hg2I2 crys-

tals having tetragonal  structure and one formula
unit per primitive cell (four-atom linear molecule Hal–
Hg–Hg–Hal) at room temperature involve four active
vibrational modes, two of which are twofold-degener-
ate with Eg symmetry (XZ,YZ) and the other two are

110

D4h
17
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fully symmetric with A1g symmetry (XX + YY, ZZ). (The
parentheses enclose Raman-active polarizability com-
ponents.) Figure 2 presents the eigenvectors of these
vibrations. Note that the first vibration with Eg symme-

500 100 150 200
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Fig. 1. Raman spectra of (a) Hg2I2 and (b) Hg2Br2 single
crystals taken at room temperature. Dashed lines corre-
spond to XZ(YZ) polarization, and solid lines, to ZZ polar-
ization. Star denotes the ν1 overtone.

Hal

Hg
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ν3 ν4ν2ν1

z
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x
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Eu A2u

ν5 ν6

Eg A1g

Fig. 2. Eigenvectors of vibrations in Hg2Hal2 crystals. R
refers to Raman-active vibrations, and IR, to vibrations
active in infrared absorption (reflection).
P

try is libration, i.e., rocking of the linear molecule as a
whole about the horizontal axis X (or Y), denoted by ν1.
The second vibration with Eg symmetry is the bending
zigzag vibration (ν2). The fully symmetric A1g stretch
vibrational modes correspond primarily to Hg–Hg (ν3)
and Hal–Hg (ν4) displacements. The odd vibrational
modes with Eu (ν5) and A2u (ν6) symmetry, correspond-
ing to the halogen and mercury sublattices being dis-
placed with respect to each other in the basal plane and
along the Z axis, respectively, are allowed in IR spectra
(Fig. 2).

X-ray structural measurements showed that, at room
temperature, the Hg2(Br1 – xIx)2 mixed crystals retain a
tetragonal lattice similar to that of pure mercurous
halides. They also retain cleavage along the {110}
plane. Assuming the bromine and iodine atoms to be
randomly distributed over the anion sublattice sites, the
selection rules for the vibrational spectra of these
mixed crystals should be the same as for pure starting
crystals.

We studied Raman spectra of Hg2(Br1 – xIx)2 mixed
crystals of the following compositions: x = 0, 0.12,
0.18, 0.30, 0.50, 0.75, 0.90, and 1.0. The measurements
were performed on these samples in different polariza-
tions and low temperatures, from room to liquid-helium
temperature, in steps of 50 K. Cooling was expected to
considerably narrow the first-order lines in the spectra,
quench second-order ones, and initiate the manifesta-
tion of phase transition effects.

Figure 3 displays low-frequency Raman spectra
obtained at T = 10 K in the region of the librational
mode ν1 (Eg) and bending vibration ν2 (Eg) in the
allowed experimental geometries. Note that the libra-
tional lines are stronger and have a small halfwidth
despite this vibration being intermolecular. The fre-
quency of this vibration, ν1, varies smoothly with con-
centration x and increases in going from Hg2I2 to
Hg2Br2 (x  0), while the halfwidth grows as one
approaches medium concentrations. In this case, when
only one line is present in the spectrum near ν1 for all
Hg2(Br1 – xIx)2 mixed-crystal compositions (0 ≤ x ≤ 1),
the spectra exhibit the so-called single-mode behavior.
From the theoretical standpoint, the spectra of these
molecular mixed crystals can be expected to behave in
the single-, double-, and triple-mode manner, because
these crystal systems allow the existence of molecules
of three types: two types of symmetric pure molecules,
Br–Hg–Hg–Br and I–Hg–Hg–I, and one type of asym-
metric mixed molecules, Br–Hg–Hg–I and I–Hg–Hg–
Br; the latter two cases are statistically not identical and
should be counted twice by probability theory. The
librational frequencies in pure starting crystals are sim-
ilar (for instance, at T = 10 K, ν1 = 32 cm–1 for Hg2I2 and
38 cm–1 for Hg2Br2), and the dispersion of these lattice
vibrations in the Brillouin zone is apparently suffi-
ciently large. When the starting matrix Hg2Br2 (Hg2I2)
is doped by the impurity component Hg2I2 (Hg2Br2),
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003



LOW-TEMPERATURE RAMAN SPECTRA 1133
the frequencies of the impurity gap vibrations fall in the
region of high density of librational and acoustic vibra-
tional states and are no longer discernible. As a result,
only vibrational modes of the starting matrix are
observed experimentally. Thus, the single-mode behav-
ior of the libration may be due to the frequencies ν1 in
pure starting crystal components being similar, to a
noticeable dispersion of this vibration over the Bril-
louin zone, and to a high density of vibrational, includ-
ing acoustic, states in this spectral region.

In the region of the bending vibration ν2 in the
XZ(YZ) polarization, one observes a single weak broad
line, whose frequency, halfwidth, and intensity depend
strongly on concentration x. This line is also broadened
somewhat in the pure starting components Hg2Br2 and
Hg2I2, which should be attributed to the fairly strong
anharmonicity of this vibration. Note that the halfwidth
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Fig. 3. Low-temperature (10 K), low-frequency Raman
spectra of Hg2(Br1 – xIx)2 mixed crystals in XZ(YZ) polar-
ization, the ν2 vibrations are identified by an arrow, and the
star refers to the overtone of the phonon branch correspond-
ing to the ν1 librational mode at the Brillouin zone center.
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of this line in pure components decreases by a few
times under cooling from room to liquid-helium tem-
perature, which supports the above interpretation. The
frequency interval here is substantially larger than in
the preceding case (at T = 10 K, we have ν2 = 75 and
92 cm–1 for the Hg2I2 and Hg2Br2 crystals, respec-
tively), and the dispersion of this intramolecular vibra-
tional branch in the Brillouin zone should be smaller
than that of the intermolecular librational mode. How-
ever, as in the case of the ν1 vibration, the ν2 bend vibra-
tion exhibits a single-mode behavior in the spectra of
Hg2(Br1 – xIx)2 crystals.

Figure 4 presents Raman spectra obtained at a low
temperature (10 K) in the region of fully symmetric A1g

stretch vibrations. The ν4 vibration associated with the
Hal–Hg displacement exhibits a strong concentration
dependence on frequency and a considerable broaden-
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Fig. 4. High-frequency Raman spectra of Hg2(Br1 – xIx)2
crystals taken in ZZ polarization at T = 10 K.
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ing, including a slight asymmetry of this line at medium
concentrations (x = 0.5). One observes here again only
single-mode behavior, the reasons for which are appar-
ently the same as in the two preceding cases.

The intramolecular stretch vibration ν3, which is
associated primarily with the Hg–Hg displacement,
exhibits the most interesting and instructive behavior.
At room temperature, a strong, asymmetric band
appears in the spectra of the Hg2(Br1 – xIx)2 mixed crys-
tals in the ν3 region; this band shifts gradually from
ν3 = 135 cm–1 (Hg2Br2) to 113 cm–1 (Hg2I2), is broader
than that of the pure starting compounds, particularly at
medium concentrations, and has a complex structure
[7]. At low temperatures (10 K, Fig. 4), in the Raman
spectra of Hg2(Br1 – xIx)2 mixed crystals close in compo-
sition to pure Hg2Br2, i.e., with x close to zero (for
instance, x = 0.12 or 0.18), in the ν3 region one can

clearly see not only the above-mentioned strong 
line, which shifts smoothly toward lower frequencies
with increasing x and is associated with the Hg–Hg
vibrations in the Br–Hg–Hg–Br molecules, but also a

weak symmetric  triplet on the low-frequency wing
of this line, at about 120 cm–1. This triplet is seen to
consist of three narrow lines with halfwidths on the
order of 3–4 cm–1, its central component having an
intensity nearly an order of magnitude higher than
those of the side components. The intensity of the trip-
let grows with increasing x relative to that of the main
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Fig. 5. Concentration dependences of integrated intensities
of the Hg–Hg vibrations ν3 in pure molecules (1) Hg2Br2,
(2) Hg2I2, and (3) Hg2BrI mixed molecules; the lines are
drawn to guide the eye.
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ν3 line (see Figs. 4, 5), which appears reasonable if one
assigns this triplet to Hg–Hg vibrations in Br–Hg–Hg–
I mixed molecules. As one approaches medium concen-
trations of the Hg2(Br1 – xIx)2 mixed crystals, for
instance, compounds with x = 0.3 or 0.5, the intensities
of the side components in this triplet grow anomalously
fast, approaching that of the central component. In this
process, all the lines of the triplet broaden noticeably
and overlap partially to form a complex profile on the
low-frequency wing of the main line ν3. Note also that
the ν3 line in mixed crystals with x = 0.5 is already a
clearly pronounced doublet with approximately equal
component intensities; the high-frequency component
originates from the Hg–Hg vibration in the Br–Hg–

Hg–Br molecules ( ), and the low-frequency one,

from that in the I–Hg–Hg–I molecules ( ).

Figure 5 plots integrated intensities of the Hg–Hg

stretch modes (ν3) in pure Hg2Br2 ( ) and Hg2I2 ( )

and in mixed molecules Hg2BrI ( ) as functions of
concentration. As x increases from zero to unity, the

intensity of the  vibration drops sharply and the

intensity of  grows accordingly. The intensity of

these vibrations in mixed molecules, , is a sum of
the integrated triplet intensities and behaves differently
by passing through a distinct maximum at medium con-
centrations near x ≈ 0.5. Assuming the halogen atoms in
Hg2(Br1 – xIx)2 to be randomly distributed over the anion
sublattices, the probability of formation of the Hg2BrI
molecules is proportional to 2x(1 – x); that of Hg2I2, to
x2; and that of Hg2Br2, to (1 – x)2. The numerical values
of the probability of formation of asymmetric Hg2BrI
molecules are 0.21 (for x = 0.12), 0.29 (x = 0.18),
0.42 (x = 0.3), 0.5 (x = 0.5), 0.37 (x = 0.75), and 0.18
(x = 0.90). The observed dependence of the total inte-
grated intensity of this triplet on concentration corre-
lates with the concentration dependence of the proba-
bility. The concentration dependences of the experi-

mental integrated intensities for  and , which
correspond to the Hg–Hg vibrations in the symmetric
Br–Hg–Hg–Br and I–Hg–Hg–I molecules, behave as
expected from theory. However, in order to quantita-
tively estimate the ratios of the integrated intensities of
these vibrations in pure and mixed molecules, one has
to assume slightly different oscillator strengths for the
symmetric and asymmetric molecules.

The spectra of these mixed crystals also exhibited
new weak lines which do not have counterparts in the
Raman spectra of the pure starting components Hg2Br2
and Hg2I2. These broad lines, labeled in Figs. 3 and 4
by ω5 and ω6, lie in the high-frequency wing of the
librational mode ν1 and in the frequency interval
140−170 cm–1, respectively. The frequencies of these
lines are close to those of the IR-active modes ν5 and ν6,
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LOW-TEMPERATURE RAMAN SPECTRA 1135
which are forbidden in the Raman spectra of pure mer-
curous halides Hg2Br2 and Hg2I2. However, the random
arrangement on the anion sublattice of mixed crystals
and the corresponding violation of translational sym-
metry bring about a certain breakdown of the momen-
tum selection rules, which entails the appearance of a
density of states of IR-active vibrational branches in the
Raman spectra, with the major contribution being due
to vibrational states at the high-symmetry points on the
Brillouin zone edge. Note also that the Raman spectra
of asymmetric mixed molecules Br–Hg–Hg-I, which
lack a center of symmetry, may exhibit the above-men-
tioned IR-active vibrations ν5 and ν6 (allowed on the
molecular level).

Our earlier spectroscopic and x-ray studies of mixed
Hg2(Br1 – xIx)2 crystals [8], including a preliminary
investigation of the phase transitions in them, showed
that some of these crystals undergo ferroelastic transi-
tions at real temperatures, while in others, only incipi-
ent transitions occur. In the first case, we have in mind
the Hg2(Br1 – xIx)2 mixed crystals with x = 0, 0.12, 0.18,
and 0.30, whereas incipient transitions are expected to
occur in the compounds with x = 0.75, 0.90, and 1.0.
The phase transition in Hg(Br0.5I0.5)2 (x = 0.5) is
strongly diffused and takes place within a limited tem-
perature interval near 0 K. The Raman spectra of these
mixed crystals in the vicinity of real phase transitions
(T < Tc) should exhibit zone-edge-related odd vibra-
tions (X point), more specifically, the acoustic and
IR-active modes [3]. The most clearly pronounced is
the rise in the intensity of the soft modes related gener-
ically to the slowest TA branches at the Brillouin zone
X point, which is induced by unit-cell-content doubling
and X  Γ zone folding. Soft modes νsm of com-
pounds with x = 0, 0.12, and 0.18 are seen to appear
reliably in Raman spectra in the low-frequency region
(a few cm–1) (Fig. 3). Detection of the emergence of
other odd vibrational branches at second-order phase
transitions is an extremely difficult problem, even in the
case of pure starting crystals, for instance, of Hg2Br2. In
mixed crystals, this problem becomes still more com-
plicated, because all spectral lines, including the
emerging ones, are broadened and extend into the fre-
quency region of density-of-states maxima of the vibra-
tional modes (primarily at the zone-edge X point) that
appear in the Raman spectra because of the breaking of
translational symmetry.

Figure 6 shows concentration dependences of the
vibration frequencies in these mixed crystals, some of
which were obtained by simulating the spectral lines by
oscillators. The vibrations ν1, ν2, and ν4 are seen to fol-
low single-mode behavior, in which the vibrations of
one starting matrix transform smoothly into those of the
other starting matrix, with the spectra having one line
for each vibrational mode. The ν3 vibration exhibits a
complex multimode behavior, which is primarily due to
its dispersion in the Brillouin zone being too small as
compared to that of the other vibrational branches (see,
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
e.g., the case of Hg2Cl2 and Hg2Br2 in [9]). As already
mentioned, the corresponding modes are denoted by

 (Hg–Hg stretching vibration in the Hg2Br2 mole-

cule),  (Hg–Hg stretching vibration in the Hg2I2 mol-

ecule), and  triplet (Hg–Hg vibrations in the
Hg2BrI mixed molecule). The concentration depen-
dences of the Hg–Hg vibration frequencies (ν3) in the

symmetric molecules Hg2Br2 ( ) and Hg2I2 ( ) are
clearly pronounced. There is no ambiguity in the fre-
quency behavior of the triplet as a function of concen-
tration x, which originates from the Hg–Hg vibrations
in asymmetric Hg2BrI mixed molecules. The origin of
the triplet is directly related to different nearest neigh-
bor environments of the Hg2BrI dipole molecule (along
the linear chain):
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Fig. 6. Concentration dependences of vibration frequencies
measured in Hg2(Br1 – xIx)2 crystals at a low temperature
(10 K). Circles are experiment; solid lines (drawn to guide

the eye) relate to the ν1, ν2, , , and ν4 modes; and
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and of the ω5 and ω6 frequencies related generically to the
IR-active branches.
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Br–Hg–Hg–Br…Br–Hg–Hg–I…Br–Hg–Hg–Br, (1)

Br–Hg–Hg–Br…Br–Hg–Hg–I…Br–Hg–Hg–I, (2)

Br–Hg–Hg–Br…Br–Hg–Hg–I…I–Hg–Hg–Br. (3)

For low x, configuration (1) is the most probable,
because the number of mixed molecules is still small,
so that the nearest environment may consist only of
pure symmetric (non-dipole) Hg2Br2 molecules. It is
this configuration that accounts for the strongest central
component of this triplet. The probabilities of the other
two configurations, in which two neighboring asym-
metric mixed molecules along the chain form a ferro-
electric and an antiferroelectric local state (nan-
odomains), are considerably lower, and this is what
accounts for the very weak intensity of the two satel-
lites in this triplet. However, as x increases to approach
the region of medium concentrations of these mixed
crystals, the probability of formation of these nan-
odomains increases and approaches that of the first con-
figuration, which manifests itself in the leveling off of
all three triplet components in intensity (Fig. 4).

Figure 6 displays the concentration dependence of
the frequencies of the maxima in the one-phonon density
of states of IR-active vibrational branches (ν5 and ν6 at
the center of the Brillouin zone) that appear in Raman
spectra because of the breaking of translational symme-
try and selection rules in momentum. The above
IR-active vibrations, denoted in Figs. 3–5 by ω5 and ω6,
exhibit single-mode behavior and a smooth dependence
of the frequencies on concentration. In mixed crystals
undergoing real phase transitions at T < Tc, these Raman
lines should also become superposed by IR-active modes
(at the Brillouin zone X point) that are induced by unit-
cell-content doubling and X  Γ zone folding; this
effect can, however, be observed only in high-precision
polarization measurements.
PH
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Abstract—The temperature dependences of the permittivity of TlInS2 crystals doped with 0.1 at. % Cr, Mn,
Yb, Sm, Bi, or La are investigated, and the dependence of the phase transition temperature on the ion radius of
the dopant impurity is determined. It is revealed that manganese and chromium substitute for indium in the
TlInS2 crystal lattice, whereas ytterbium, samarium, bismuth, and lanthanum ions occupy octahedral holes in
an In4S10 tetrahedral complex and, thus, produce an internal pressure responsible for the shift in the temperature
of phase transitions toward the high-temperature range. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known [1–4], TlInS2 belongs to the small fam-
ily of semiconductor compounds that undergo a
sequence of phase transitions from an incommensurate
phase to a ferroelectric phase. According to neutron dif-
fraction and x-ray diffraction investigations [2, 5], the
incommensurate phase observed in the temperature
range TC = 201 K < T < Ti = 216 K is characterized by
the wave vector ki = (δ, δ, 0.25), where δ = 0.012 is the
incommensurability parameter. It should be noted that,
in the temperature range of existence of the incommen-
surate phase, the dynamics of the phase transition is
rather complex and very sensitive to structural defects.

The origin of the sequence of phase transitions
occurring in the TlInS2 compound with a layered struc-
ture has been the subject of many investigations. How-
ever, no unified concept has been offered for the mech-
anism of the phase transitions in this crystal. The situa-
tion is complicated by the fact that the temperature
dependences of the permittivity ε(T) measured for sam-
ples prepared from different batches differ significantly
from one another. As was shown in our recent work [6],
this feature is associated with the fact that TlInS2
belongs to the class of berthollides, i.e., compounds
characterized by a varying composition in the homoge-
neity region. Nonetheless, we can assert that the TlInS2
compound of stoichiometric composition is an
improper ferroelectric with an intermediate incommen-
surate phase. In particular, this means that, as the tem-
perature decreases, the TlInS2 compound undergoes the
following sequence of phase transitions: (i) the transi-
tion from the initial paraelectric phase to the incom-
mensurate phase at 216 K (according to Henkel et al.

[7], the paraelectric phase has  symmetry); (ii) the
transition from the incommensurate phase to the ferro-
electric commensurate phase with the formation of a

C2h
6

1063-7834/03/4506- $24.00 © 21137
new incommensurability, which manifests itself as a
specific feature in the dependence ε(T) at 201 K; and
(iii) the final phase transition to the commensurate
phase upon further cooling [2].

The purpose of this work was to elucidate how cat-
ion impurities with different ion radii affect phase tran-
sitions that are incommensurate to the initial translation
of the TlInS2 lattice and to investigate the ferroelectric
properties of doped TlInS2 crystals.

2. EXPERIMENTAL TECHNIQUE
Single crystals of TlInS2 doped with 0.1 at. % Cr,

Mn, Yb, Sm, Bi, or La were grown using the Bridgman
method.

The measurements were performed with samples
5 × 2 × 2 mm in size. Since no anisotropy was observed
in the (001) plane, the electrodes were applied to the
surface of the crystals in the direction perpendicular to
the layers. The contacts were prepared from a silver
paste.

The temperature dependences of the permittivity
were measured on an E7-12 alternating-current bridge
at a frequency of 1 MHz with the use of a copper–con-
stantan thermocouple at a rate of 0.1 K/min.

3. RESULTS
Figure 1 shows the temperature dependences of the

permittivity ε(T) measured for the studied samples dur-
ing cooling in the temperature range 250–170 K. The
anomalies observed in the temperature dependence
ε(T) for the TlInS2 single crystal (curve a) indicate that
this crystal undergoes a sequence of phase transitions at
temperatures TC1 = 196 K, TC2 = 200 K, TC3 = 204 K,
and Ti = 216 K. The dependences ε(T) for TlInS2〈Mn〉
and TlInS2〈Cr〉 single crystals are represented by
003 MAIK “Nauka/Interperiodica”
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curves b and c, respectively. All the impurity ions used
for doping of TlInS2 are trivalent. The dependence of
the temperature of the phase transition in the TlInS2

compound on the ion radius of the dopant impurity is
plotted in Fig. 2. The ion radii of manganese and chro-
mium are smaller than the ion radius of indium (RCr =
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Fig. 1. Temperature dependences of the permittivity ε(T) for
different compositions: (a) TlInS2, (b) TlInS2〈Mn〉 ,
(c) TlInS2〈Cr〉, (d) TlInS2〈Yb〉, (e) TlInS2〈Bi〉, (f) TlInS2〈La〉,
and (g) TlInS2〈Sm〉 .
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Fig. 2. Dependence of the temperature of the phase transi-
tion in the TlInS2 crystal on the ion radius of the impurity:
(a) In, (b) Mn, (c) Cr, (d) Yb, (e) Bi, (f) La, and (g) Sm.
Curves 1–4 correspond to the shifts in the maxima of the
temperature dependence of the permittivity ε(T) on the
impurity ion radius.
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0.615 Å, RMn = 0.67 Å, RIn = 0.82 Å). An examination
of the dependences ε(T) for these compositions (Fig. 1)
revealed that the phase transitions are considerably
smeared and shifted toward the low-temperature range.
In both cases, the curves ε(T) are characterized by two
anomalies at temperatures TC = 189 K and Ti = 207.5 K
for the TlInS2〈Cr〉  single crystal and TC = 189.9 K and
Ti = 207 K for the TlInS2〈Mn〉  single crystal.

For TlInS2〈Yb〉 , TlInS2〈Bi〉 , TlInS2〈La〉 , and
TlInS2〈Sm〉  single crystals, the dependences ε(T) are
represented by curves d, e, f, and g, respectively
(Fig. 1). In this case, the ion radii of ytterbium, samar-
ium, bismuth, and lanthanum are larger than the ion
radius of indium (RYb = 0.868 Å, RSm = 0.958 Å, RBi =
1.03 Å, RLa = 1.032 Å). It can be seen from Fig. 1 that
these crystals undergo a sequence of phase transitions,
as is the case with the initial compound TlInS2. It is
worth noting that the specific features in the curves ε(T)
and their shifts substantially depend on the ion radius of
the relevant dopant. For convenience, the group of
dopant impurities whose ion radii are smaller than the
ion radius of indium will be designated by A (Cr, Mn)
and the group of dopant impurities whose ion radii
exceed the ion radius of indium will be denoted by B
(Yb, Sm, La, Bi).

As can be seen from Fig. 2, an increase in the ion
radius leads to an increase in the phase transition tem-
perature. It should also be noted that, although the ion
radii of bismuth and lanthanum are close in magnitude
and the atomic weight of bismuth is approximately
1.5 times larger than that of lanthanum, the displace-
ments ∆T of the phase transition temperatures for these
impurities with respect to those for the TlInS2 single
crystal are nearly equal in magnitude (positions e and f
in Fig. 2, respectively).

4. DISCUSSION

An analysis of the results presented in Fig. 2 demon-
strates that the dopant impurities are not involved in
thermal vibrations of atoms in the TlInS2 crystal lattice,
whose displacements are responsible for the occurrence
of the phase transitions. The sole exception is the situa-
tion where the dopant impurities (in our case, lantha-
num or bismuth ions) neither substitute for indium ions
in lattice sites of the TlInS2 crystal nor contribute to the
soft mode. The curves ε(T) for impurity atoms of group
B are identical in shape. This suggests that ytterbium
and samarium (like lanthanum and bismuth) do not
substitute for indium in lattice sites of the TlInS2 crystal
structure.

In this respect, the question now arises as to where
impurity atoms of group B can be located in the crystal
lattice. As follows from the crystal chemical parame-
ters, these atoms can occupy two types of possible posi-
tions in the TlInS2 crystal structure (Fig. 3): (i) they can
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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substitute for In3+ cations in an InS4 tetrahedron, and
(ii) they can occupy interlayer cavities or octahedral
holes between InS4 tetrahedra inside an In4S10 tetrahe-
dral complex.

It is highly improbable that impurity ions of group B
will substitute for indium ions in InS4 tetrahedra. This
stems from the fact that the radii of the former ions
exceed the ion radius of indium. At the same time,
impurity ions of group B could be located in interlayer
cavities, because the spacing between layers in the
TlInS2 crystal structure is approximately equal to 3 Å.
However, this situation is also unlikely; otherwise,
impurity cations would not substantially affect the in-
layer vibrations responsible for the observed dielectric
dispersion.

Judging from the chemical bonding between impu-
rity atoms of group B, the coordination numbers of
these atoms in crystal structures of all known com-
pounds should be equal to six or greater [8, 9]; i.e.,
impurities of this group can occupy octahedral holes
inside an In4S10 tetrahedral complex with a high proba-
bility (Fig. 3).

Moreover, Allakhverdiev et al. [10] investigated the
effect of hydrostatic pressure on the behavior of the per-
mittivity in the vicinity of the phase transitions occur-
ring in TlInS2 crystals. It was established that an
increase in the pressure brings about an increase in the
temperature of the phase transitions observed in the
TlInS2 compound. On this basis, it can be assumed that
dopant impurities of group B occupy octahedral holes
in the TlInS2 crystal lattice and, owing to the large ion
radii, produce an internal pressure, which leads to an
increase in the temperature of the phase transitions, as
is the case with hydrostatic pressure. It should be noted
that an increase in the ion radius of dopant impurities of
group B does not affect the curves ε(T), which remain
similar to the curve ε(T) characteristic of pure TlInS2
crystals and only shift toward the high-temperature
range. Therefore, we can assert that impurity atoms of
group B neither substitute for indium nor occupy lattice
sites in the TlInS2 crystal structure. Only in the case
when the TlInS2 crystal is doped with lanthanum does
there appear an additional well-pronounced maximum
at T = 216 K. However, the nature of this maximum is
beyond the scope of the present work.

A different situation is observed upon doping of the
TlInS2 crystals with manganese and chromium (group A)
(curves b and c in Fig. 1, respectively). For this group
of dopant impurities, the temperature dependences of
the permittivity ε(T) of doped TlInS2 exhibit a behavior
typical of smeared phase transitions, whereas the phase
transition temperatures decrease (positions b and c in
curves 1, 4 in Fig. 2). These findings indicate that impu-
rity atoms of group A substitute for indium in lattice
sites of the TlInS2 crystal structure (Fig. 3). This cir-
cumstance leads to a violation of the translational
invariance and aperiodic damping of the soft mode.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
It is known that, during the growth of TlInS2 crys-
tals, even an insignificant deviation from the growth
conditions results in a stoichiometry violation, which,
as a rule, manifests itself in a metal deficit (Tl, In) [6, 8,
11]. The fluctuations of the vacancy density are nonuni-
formly distributed over the crystal bulk and can be con-
sidered intrinsic structural defects. There is no doubt
that these fluctuations can lead to spontaneous dielec-
tric dispersion and, consequently, a distortion of the
phase diagram of the TlInS2 compound with a layered
structure. Earlier [6], we analyzed the influence of the
aforementioned defects on the permittivity of the
TlInS2 crystal in the temperature range of the phase
transitions. It turned out that, in this crystal, the intrin-
sic structural defects neither cause a shift in the phase
transition temperatures nor affect the shape of the spe-
cific features observed in the curve ε(T).

In our opinion, it is of interest that, irrespective of
the ion radius of dopant impurities (Fig. 2), the temper-
ature range of existence of the incommensurate phase
does not change in magnitude and only shifts toward
low and high temperatures for impurities of groups A
and B, respectively. For clarity, the curves ε(T) mea-
sured during heating are not shown in the figure. Inves-
tigations into the temperature dependences of the per-
mittivity ε(T) upon heating and cooling revealed that
the hysteresis for TlInS2 crystals doped with impurities
of group A is more pronounced than that for TlInS2
crystals doped with impurities of group B.

Lebedev et al. [12] determined the generalized sus-
ceptibility of the system in the incommensurate phase
with point frozen defects interacting with the phase of
the order parameter in the case when the phase at the
defect site is governed primarily by the field of this
defect (strong pinning). According to the authors' esti-

(a)

(b)

In
S

1
2

Tl1+
C C*

Fig. 3. Structure of the TlInS2 crystal. (a) A fragment of the
TlInS2 crystal structure, namely, an InS4 tetrahedron. (b) A
fragment of the TlInS2 crystal structure, namely, an In4S10
tetrahedral complex (composed of four InS4 tetrahedra)
with impurities of groups (1) A and (2) B (octahedral holes).
Designations: C is the crystallographic axis, and C* is the
pseudotetragonal axis of the crystal.
3
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mates [12], strong pinning universally takes place at
temperatures close to Ti in the presence of defects with
a component of the random-field type. This range
proved to be very large for systems with displacive
phase transitions. A completely different situation
occurs with defects that have no component of the ran-
dom-field type due to their high symmetry. In this case,
the defect is characterized only by a component of the
random-anisotropy type and weak pinning should be
observed.

The results of our investigations are in agreement
with the inferences made by Lebedev et al. [12]. Atoms
of group A substitute for indium in lattice sites of the
TlInS2 crystal structure and, thus, induce local random
fields. According to [12], this should lead to strong pin-
ning, which is observed in the experiments. Atoms of
group B occupy octahedral holes (i.e., positions of
higher symmetry) and can be treated as defects respon-
sible for random anisotropy. This means that the condi-
tion of weak pinning is satisfied.
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Abstract—Stationary localized states of nonlinear waves propagating in a focusing medium along two plane-
parallel interfaces repulsing the wave flux are investigated analytically. It is established that the nonlinear wave
beam can be localized in the region between these interfaces. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, particular emphasis has been placed
on theoretical and experimental investigations into the
spatial localization of high-power nonlinear waves in
periodic (layered and modulated) systems in the direc-
tion perpendicular to the direction of their propagation
[1–3]. In our previous work [4], we studied the spatial
localization of nonlinear wave fluxes in layered media
under the condition of propagation of a nonlinear wave
beam in anharmonic medium along a system of two
identical narrow plane-parallel layers playing the role of
waveguides “attracting” the waves. For this purpose, we
proposed a new analytical method of analyzing the prob-
lem, which was reduced to a model of coupled anhar-
monic oscillators. Under the assumption that the
waveguides and the medium between them are nonlinear
and differ in refractive indices, we derived discrete non-
linear dynamic equations describing the wave ampli-
tudes in waveguides and demonstrated the possibility of
localizing a nonlinear wave flux in one of the
waveguides. The problem under consideration is closely
related to nonlinear optics, because numerical and natu-
ral experiments on this problem have been intensively
performed precisely in this field of the physics of real
systems and systems of parallel optical waveguides have
been used as optical switches in existing devices [5–8].

In this paper, we examine an opposite limiting case
when a nonlinear wave flux is localized predominantly in
the region between the defect planes repulsing the non-
linear wave and, thus, simulating the behavior of inter-
faces between optical media. However, in this case, the
description of the system in terms of the field amplitudes
at isolated interfaces becomes inconsistent and a theoret-
ical treatment of the formulated problem does not lead to
a system of coupled anharmonic oscillators. We demon-
strated that, when a nonlinear wave propagates in a
focusing medium along a system of two parallel thin lay-
1063-7834/03/4506- $24.00 © 21141
ers repulsing the wave, the wave flux can be localized in
the region between these plane-parallel interfaces.

2. ANALYTICAL TREATMENT 
OF THE FORMULATED PROBLEM

Let us consider a nonlinear focusing medium with
two plane-parallel thin layers that exhibit linear proper-
ties differing from those of the surrounding matrix and
are located perpendicularly to the z axis at a distance 2a
from each other, which substantially exceeds their
thickness (Fig. 1). We assume that, in this system, a
nonlinear monochromatic wave propagates along the
parallel defect layers (along the x axis) and the envelope
E(z, t) of this wave depends on the time and the trans-
verse coordinate. An equation describing the envelope

–a a z

k

x

0

Fig. 1. System of two plane-parallel defect planes (inter-
faces).
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E(z, t) can be represented by a standard Schrödinger
equation with two δ-function perturbations:

 (1)

Here, it is assumed that the parameter λ is positive (λ >
0); i.e., the defect layers repulse the wave flux and play
the role of interfaces between the optical media (see,
for example, [9]).

The Lagrangian density corresponding to relation-
ship (1) has the following form:

 (2)

The problem is to solve the homogeneous equation (1)
in the region outside the isolated layers with the bound-
ary conditions (at z = )

 (3)

 (4)

and zero asymptotics at infinity (z  ±∞). For this
system, we will restrict our consideration to the special
case of spatially localized stationary states described by
the equation

 (5)

and will not analyze nonstationary phenomena.
It can easily be shown that, in this case, the function

E(z) for spatially localized states should be chosen to be
real. Indeed, from Eq. (1) and boundary conditions (3)
and (4) for the complex function E(z) = A(z)exp[iϕ(z)],
it follows that

 

where C is a constant and the phase ϕ and its derivative
dϕ/dz are continuous at z = . It follows from the
equation for the function A(z) and the condition of its
decrease when z  ±∞ that C = 0 outside the inter-
faces and, consequently (from the condition of continu-
ity of the derivative dϕ/dz at z = ), C = 0 between
them, i.e., ϕ = const.

The purpose of this work was to elucidate how the
nonlinearity of the medium affects the localization of
the wave beam in a system of two plane-parallel inter-
faces repulsing the wave. In this system, the wave flux
can be localized between the interfaces. The symmetric
solutions to the system of equations (1)–(5) in the

i
∂E
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dϕ
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2

z( )
-------------,=

a+−
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P

regions z < –a (I), z > a (II), and –a < z < a (III) have the
following form:

 (6)

Here, ε =  is the parameter characterizing the
wave amplitude, ω is the frequency, cn(p, q) is the Jaco-

bian elliptic function with the module q(q' = ),

and η = ε/ . The elliptic module q varies in the

range from 1/  to 1, and the state localized between
the interfaces corresponds to values of z0 > –a. Solu-
tion (6) is one-parametric and is completely specified
by the parameter ε. The parameters q and z0 can be
expressed in terms of ε through the boundary condi-
tions at z = .

As in our recent paper [4], it is appropriate to intro-
duce the field amplitude U = E(z = ) in defect planes,
even though, in this case, it does not correspond to a
maximum in the density of the wave flux. Then, from
the boundary conditions (3) and (4) and the definition
of the field amplitude U, we can deduce three relation-
ships between the parameters ε, q, z0, and U:

 (7)

 (8)

From these relationships in the limit q  1 (q' ! 1),
it follows that the module q and the frequency of the
solution (the parameter ε) are related by the expression

 (9)

As a result, we obtain the inequality εa @ 1. In [4], this
inequality corresponds to a weak coupling between the
plane-parallel defect layers. Since the inequality q' ! 1
holds in the case under consideration, the propagating
flux has a typical soliton profile, that is,

 (10)

and the width of the localized flux is considerably less
than the distance between the interfaces: ∆ ~ 1/ε ! a.
The interaction of the localized wave with repulsing
boundaries is exponentially small: E(a)/E(0) ~ exp(–εa).

EI II, z( ) ε
ε z z0+−( )[ ]cosh

-------------------------------------,=
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Using the definition of the total power of the wave
flux

 (11)

we can obtain the dependence of the quantity N on the
frequency ε, which is characteristic of solitons and has
the following form:

 (12)

It should be noted that the relationships q' ! 1 and ∆ !
a, which correspond to a large distance from the local-
ized flux to the interfaces, also hold for frequencies ε ≅
λ/2 (ε = λ/2 corresponds to the frequency of the wave
localized in the vicinity of the isolated defect plane in a
linear medium [9]).

Another limiting case, namely, z0 = –a with frequen-
cies ω close to the band edge of linear waves, corre-

sponds to the module q somewhat exceeding 1/ :

 (13)

where K(q) is the complete elliptic integral of the first
kind.

In this limit, the solution in the central region has the
form

 (14)

and the frequency of the flux is determined by the crit-
ical parameter εc as follows:

 (15)

In the case when the distance between the defect planes
is large (2a @ 1), we have εc ! 1; i.e., the critical fre-
quency is close to the band edge of linear waves.

It follows from the form of solutions (14) and (15)
that the flux, as before, is localized predominantly in
the region between the planar repulsing interfaces,
because the amplitude at the center of the flux E(0) ~
1/a is considerably larger than the field at the interfaces
E(a) ~ 1/a2. However, in this case, the characteristic
width of the wave flux, according to relationship (14),
has the same order of magnitude as the distance
between the interfaces: ∆ ~ a.

At the critical point ε = εc, the solution changes:
additional maxima of the amplitude appear in regions I
and II; i.e., the wave flux escapes from the region
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between the defect planes repulsing the wave. Earlier
[9], we proved that the solutions with two maxima on
different sides of this interface are unstable. On this
basis, we can assume that these states are unstable with
respect to the escape of the wave flux from the system
of the interfaces. Thus, we will not discuss these addi-
tional solutions.

The total power of the wave flux at the critical point
can be determined from the relationship

 (16)

and the dependence ε(N) in the vicinity of this point can
be represented by the expression

 (17)

where

 (18)

An analysis of relationship (17) demonstrates that a
rapid variation in the dependence ε(N) occurs in a narrow
region in the vicinity of the critical point ∆N ~ 1/a5 ! 1.
Figure 2 shows this dependence over the entire range of
the variation in the frequency with due regard for
asymptotics (12) and (17).

3. CONCLUSION
Thus, the analytical treatment performed in this

work demonstrated that a nonlinear wave beam propa-
gating in a focusing medium can be localized between
the plane-parallel interfaces repulsing the nonlinear
wave.

Nc
K 1/ 2( )
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---------------------dK 1/ 2( )

dq
-------------------------,≈

ε εc– A
N Nc–
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3

----------------– B N Nc–( )2
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2
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2
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λ
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2
1/ 2( )
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NNc

ω
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0

Fig. 2. Dependence ω(N) for a state localized between the
interfaces in a nonlinear focusing medium.
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Abstract—A theory of the Anderson localization of light in randomly arranged ultrathin layers (quantum
wells) uniform in lateral dimensions and possessing intrinsic optical resonances is put forward. To solve the
multiple-scattering problem, a model of layers with a δ-function resonance dielectric polarization is pro-
posed. The model is an electromagnetic counterpart of the electronic model of zero-radius potentials. Inter-
layer disorder is included under the assumption of a low average concentration of identical layers in order to
calculate analytically the one- and two-photon characteristics of electromagnetic-radiation transport, in par-
ticular, the average energy density and the Anderson localization length of light. The analysis is carried out
for a structure with randomly distributed quantum wells in which quasi-two-dimensional excitons of differ-
ent quantum wells are in resonance while their wave functions do not overlap. It is shown that the average
electromagnetic field propagates through this disordered structure in the form of polaritons but are produced
in exciton reemission between quantum wells. The localization length of light in the polariton spectral region
decreases substantially, because the scattering (reflection) of light by individual quantum wells grows near
the excitonic resonance. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Radiation energy transport, light localization phe-
nomena, and the related spectroscopic effects have
aroused considerable interest in the optics of disordered
systems [1]. Of particular importance are the properties
of dielectric media that are nonuniform in one dimen-
sion; in such media, a perturbation in uniformity can
give rise either to the Anderson localization of light, if
the perturbation is of a random nature [1], or to a pho-
tonic band gap, if the perturbation is strictly periodic [1,
2]. In both cases, electromagnetic waves of certain fre-
quencies are attenuated exponentially and cannot prop-
agate in the system, which becomes manifest in a
strong reflection from the sample (disappearance of
transmission) [1, 2].The similarity between the spectral
features of these two phenomena reveals the impor-
tance of both independent and comparative studies of
photon localization in one-dimensionally disordered
systems [3] and of photonic band gaps in periodic struc-
tures (Bragg semiconductor [4] and dielectric [5] nano-
structures, photonic crystals [2, 3]). The Anderson
localization of photons also has considerable applica-
tion potential; indeed, it underlies the development of
multilayer broad-band optical reflectors, filters, etc. [6].

Theoretical studies of one-dimensional localization
of light have been made primarily for nonabsorbing
multilayer systems with random thicknesses of uniform
layers and/or distances between them [7–12]. Those
studies related to one-dimensionally disordered sys-
tems, which are, on the average, uniform [7–10] or peri-
odic [5, 12]. In contrast to electron [13, 14], acoustic
1063-7834/03/4506- $24.00 © 21145
[15], and other scalar waves, electromagnetic waves are
polarized, and their character changes substantially in
interaction with resonance states of the medium. Both
these factors are capable of affecting photon localiza-
tion noticeably, which is important in controlling the
localization process. Resonance light localization in the
conditions of non-one-dimensional disorder was inves-
tigated in the spectral regions of excitons [16], bulk
exciton polaritons [17], and surface plasmon polaritons
[18]. No systematic study of resonance light localiza-
tion has apparently been made in one-dimensionally
disordered systems (see [11]).

In this paper, we report on a theoretical investigation
of the spectral features of optical localization in systems
made up of randomly arranged layers (quantum wells)
which are laterally uniform and possess quasi-two-
dimensional optical excitations. The main results are
obtained using the model of δ-function exciton polariza-
tion of the layers. The results include prediction of the
electromagnetic field in a disordered quantum-well sys-
tem having a polariton structure and calculation of the
length of the Anderson resonance polariton localization.
The model of δ-function exciton polarization in one-
dimensionally disordered quantum-well structures is
described in Section 2. Section 3 formulates equations
for the theory of multiple light scattering in terms of this
model, and Section 4 discusses the propagation charac-
teristics of mean-field polaritons. Section 5 puts forward
a general theory of propagation and one-dimensional
localization of exciton polaritons, and Section 6 deals
with resonance features of the localization.
003 MAIK “Nauka/Interperiodica”
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2. MODEL OF RESONANCE QUANTUM-WELL 
POLARIZATION

The model with a potential in the form of δ-function
scatterers [13] is considered to be the most informative
for electrons. In this section, we formulate a similar
model of electromagnetic scatterers (quantum wells)
with theirs dielectric polarization modeled by δ-func-
tion contributions. The possibility of describing multi-
ple quantum wells in terms of such a model is sup-
ported by the following considerations: (i) the poten-
tial-well width under carrier confinement conditions is
small compared to the light wavelength, (ii) the induced
polarization fields of different quantum wells do not
overlap, and (iii) the optically observable quantities
(coefficients of reflection, transmission, etc.) are
expressed in theory [4, 19–22] through parameters
obtained by spatial averaging of the characteristics of a
low-dimensional exciton. These parameters depend
only weakly on fine features in the exciton polarization
distribution and are usually assumed to be phenomeno-
logical in the treatment of experimental data.

Next, we study the propagation of light waves in a
medium (with a background dielectric permittivity εb)
containing a disordered quantum-well structure. The
wells are perpendicular to the z axis and are stacked in
a random manner along this axis. We consider waves
with linear polarization s having only one electric-field
component E = E · ey, where ey is the unit vector of the
Cartesian axis y. Following [19–21], we introduce a
constitutive relation for the Fourier components of
induced dielectric polarization P = P · ey of laterally
uniform quantum wells:

 (1)

where (ω) is the susceptibility tensor component of
the nth quantum well, k0 = ω/c, ω is the frequency, c is
the velocity of light in vacuum, z = zn is the median
quantum-well plane, and N is the number of wells. In

Eq. (1), κ = k0sinθ is the tangential component of
the wave vector of a monochromatic wave of the form
E(r, t) = E(z; κ, ω)exp(iκx – iωt) and θ is the angle of
incidence.

In view of Eq. (1), Maxwell’s equations for the elec-
tric field E(z) and the Green’s function G(z, z') for an s-
polarized wave take the form

 (2)

4πk0
2
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where k = . For z = zn, we use the boundary
conditions

 (3)

for the field E(z) and the same conditions in z for the

Green’s function G(z, z'), where  = zn ± 0 (here and
in what follows, the parameter κ is not specified in an
explicit form).

In the absence of quantum wells (  = 0), we
obtain from Eq. (2) the equations

 (4)

The second of Eqs. (4) can be solved to yield the one-
photon Green’s function G(0)(z – z') = i/(2k)exp(ik |z –
z' |) for a uniform medium. In view of Eq. (4), Eq. (2)
can be recast in the equivalent forms

 (5)

where χn = /(1 – ). As follows from Eq. (2) or
(5), the field between the nth and (n + 1)th wells (zn < z <
zn + 1) can be written as 

 (6)

(the corresponding amplitudes on the left of the well
with n = 1 are A0 and B0). The coordinate  = (zn + 1 +
zn)/2 inside the structure defines the position of the
right-hand boundary of the region in to which the nth
Wigner–Seitz cell of the superlattice transforms when
the latter becomes disordered.

The amplitudes of field (6) to the right and to the left
of the nth well are related through the transfer matrix

(n) defined by

 (7)

Equations (5) and (6) yield

 (8)

where Θn = k(zn + 1 – zn – 1)/2 and Ψn = k(zn + 1 – 2zn +
zn – 1)/2. The coefficients of reflection rn = iχn and trans-
mission tn = 1 + rn = 1 + iχn are derived from Eqs. (2)
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and (3) for the single nth well centered in the z = 0
plane.

To reveal the physical meaning of the model intro-
duced by phenomenological expression (1), we use the
results of microscopic theory [19–21]. For a quasi-two-
dimensional exciton of the nth quantum well with exci-
tation frequency , we introduce in Eqs. (1) and (5)
the exciton susceptibility component 

 

which manifests itself in s-polarized light. Going to the
second equality in Eq. (5), we obtain

 (9)

The frequency  takes into account size quantization
of the carriers and their Coulomb interaction, and ωn

also includes the radiative shift; γ and Γn/cosθ are the
rates of nonradiative and radiative exciton decay,
respectively, with Γn being independent of θ [20, 21].
Taking into account Eq. (9), the light reflection and
transmission coefficients in the transfer matrix (8) can
be written as 

 (10)

If the quantum wells are identical, one can use
Eqs. (9) and (10) with the notation

 (11)

If such wells make up a superlattice with a period d,
then zn = dn and matrix (8) for an individual quantum
well assumes the form

 (12)

The quantities in Eqs. (10) and (12), derived from
Eqs. (1) and (9), define the observable characteristics of
electromagnetic-radiation transport. Expressions (10)
and (12) are identical to the corresponding expressions
from microscopic theory [21, 22] derived for quasi-
two-dimensional excitons by using a nonlocal constitu-
tive relation in place of Eq. (1) [19, 20]. This means
that, from the standpoint of description of light propa-
gation in multiple quantum wells, the above-formulated
phenomenological theory is equivalent to the micro-
scopic models proposed in [19–22]. Application of
Eqs. (1)–(3) with a two-component susceptibility and
boundary conditions differing from Eqs. (3) to the case
of p-polarized waves leads one to the same conclusions;

ωn

χn
0( ) ω( )

Γn/ θcos
ωn ω– iγ–
---------------------------,=

χn ω( )
Γn/ θcos

ωn ω– i γ Γn/ θcos+( )–
----------------------------------------------------------.=

ωn

rn ω( )
iΓn/ θcos

ωn ω– i γ Γn/ θcos+( )–
----------------------------------------------------------,=

tn ω( )
ωn ω– iγ–

ωn ω– i γ Γn/ θcos+( )–
----------------------------------------------------------.=

χn = χ , rn = r, tn = t, ωn = ω0, Γn = Γ0.

Λ̂ 1
t
--- t

2
r

2
–( )e

ikd
r

r– e
ikd–

 
 
 
 

.=
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
the expressions for the quantities χ, r, and t thus
obtained differ from Eqs. (9) and (10) in the presence of
two excitonic resonances [21].

The electromagnetic equations (2) and (3) coincide
formally with the Schrödinger equation for electrons in
the one-dimensional model of δ-function potentials
[13]. The properties of optical scatterers are, however,
considerably more complicated than those of electron
scatterers; indeed, the susceptibilities of Eq. (9) depend
on frequency and are always complex, because the radi-
ative-decay parameter Γn, which is a measure of exci-
ton–photon coupling, cannot be arbitrarily small. The
absence of electronic counterparts to the optical scatter-
ers limits the applicability of the comparatively simple
methods of the theory of one-dimensional electron
scattering [13, 14], in particular, those that use time-
reversal symmetry, to the optical problem. In develop-
ing an analytical theory of localization, we invoke a
self-consistent diagrammatic technique [23] that has
been applied to one-dimensional systems in some stud-
ies [10, 11, 15].

3. MULTIPLE-SCATTERING PROBLEM

The present theory of multiple scattering will be
based on the one-photon Green’s function G(z, z'),
which is a solution to the second equation in (2). For a
disordered quantum-well structure, an integral equation
that is equivalent to this differential equation can be
expressed in terms of the Green’s functions

 (13)

in the wave-number (q, q') representation.
Following [10, 11, 15], we obtain from Eq. (4) [or

Eq. (2) with  = 0] the following expression for the
one-photon Green’s function for a uniform medium:

 (14)

where k = k(ω). In the case of a single nth quantum well
located at zn = 0, the one-photon Green’s function is
found to be 

 (15)

The elements of the T matrix defined by the integral
relation [11, 15]

 (16)

can be found from Eq. (15) to be 

(17)

G q q',( ) z z'G z z',( ) iqz– iq'z'+( )expdd

∞–

∞

∫
∞–

∞

∫=

χn
0( )

G
0( )

q q',( ) 2πδ q q'–( )G
0( )

q( ),=

G
0( )

q( ) q
2

k
2

– i0–( )
1–
,=

G
n( )

q q',( ) = G
0( )

q( ) 2πδq q'–( ) 2ikrnG
0( )

q'( )–[ ] .

G
n( )

q q',( )

=  2πδ q q'–( )G
0( )

q( ) G
0( )

q( )Tn q q',( )G
0( )

q'( )+

Tn q q',( ) 2ikrn– 2kχn.= =
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Significantly, the matrix elements of Eq. (17) do not
depend on q and q', because each quantum-well pro-
vides a δ-function contribution to the polarization in
Eq. (1).

Note that, with Eq. (17), the optical theorem for
scattering from the nth quantum well can be written as 

 (18)

which formally coincides with that for the model of
thick scattering layers [10, 11]. In Eq. (18), the quantity

 (19)

denotes the absorptivity of the quantum well.
In terms of the multiple-scattering theory [24], the

one-photon Green’s function for a quantum-well struc-
ture can be described by the integral equation

 (20)

This equation is valid for structures with an arbitrary
one-dimensional (linear) quantum-well concentration
ν = N/L (N @ 1, L is the sample thickness); note that, in
general, both the susceptibilities {χn} and the quantum-
well positions {zn} can be random quantities. We
restrict ourselves subsequently to the case of “dilute”
structures with ν/k ! 1 (2π/k is the light wavelength),
which precede the formation of photonic crystals and
short-period superlattices as ν is increased.

4. MEAN-FIELD POLARITON STRUCTURE

To address the problem of light propagation with
Eq. (20), we simplify the model by assuming the quan-
tum wells to be identical; in this case, in accordance
with Eq. (11), the quantities Tn in Eqs. (17)–(20) are no
longer dependent on the quantum-well index n. The
quantum-well coordinates {zn} are randomly distrib-
uted along the z axis of the structure with a uniform
average concentration ν (the average well separation is
1/ν). In an unlimited medium (N  ∞), the averaged
one-photon Green’s function 〈G(z – z')〉  is translation
invariant (the angle brackets denote averaging over
uncorrelated quantum-well positions {zn}). The Fourier
transform of 〈G(z – z')〉  satisfies the condition

 (21)

In the lowest approximation in the concentration ν ! k,
Eq. (20) yields

 (22)

Im Tn k k,( ) = 
1

4k
------ Tn k k,( )

2
Tn k– k,( )

2
+( ) kAn,+

An 1 rn
2

– tn
2

– 2 Re rn rn
2

+( )–= =

G q q',( ) G
0( )

q( ) 2πδ q q'–( ) ∫=

+
q''d

2π
--------Tn q q'',( )e

i q q''–( )zn–
G q'' q',( )∫

n 1=

N

∑ .

G q q',( )〈 〉 2πδ q q'–( ) G q( )〈 〉 .=

G q( )〈 〉 1/ q
2

k
2

– Σ q( )–( ),=

Σ q( ) νT q q,( ) 2ikνr.–= =
P

Taking the inverse Fourier transform of the averaged
one-photon function (21) and using Eq. (22), we obtain 

 (23)

which has the same form as the solution to Eq. (4) for a
uniform medium. In Eq. (23),

 (24)

is a complex characteristic of propagation of the mean
field (23) excited by an external polarization in the z =
z' plane. Substituting r(ω) given by Eq. (10) in to
Eq. (24), we find

 (25)

 (26)

Equation (25) is the dispersion relation of the averaged
s-polarized electromagnetic wave, and Eq. (26) is the
effective attenuation of this wave in the disordered
quantum-well structure. It is essential that wave (23)
decays in space (Im (ω) ≠ 0) even in the absence of
dissipative exciton decay, i.e., for γ  0. This prop-
erty reflects attenuation (extinction) of the average light
flux |〈G(z)〉|2 over the length scale ~1/(2Im (ω)),
caused by light scattering from randomly arranged lay-
ers. Because of the low scatterer concentration (ν ! k),
quantities (25) and (26) satisfy the weak-decay condi-
tion Im (ω)/ |Re (ω)| ~ ν/k ! 1.

Figure 1 plots the values of Re (ω) and 2Im (ω)
calculated from Eqs. (25) and (26), respectively. Near
the exciton frequency ω0, the dispersion curves acquire
a pattern typical of polaritons. As in superlattices [22],
the polariton effect in our disordered structure, which is
uniform on the average, originates from interaction of
the electromagnetic wave with quasi-two-dimensional
excitons of various wells having the same frequency ω0.
According to Eqs. (25) and (26), this effect is deter-
mined, for θ = 0, by the exciton–photon coupling
parameter (ν/k)Γ0/(γ + Γ0), where Γ0/(γ + Γ0) < 1 and
ν/k ! 1. The polariton effect reaches the maximum
value (ω)/k(ω) – 1] = (ν/k)Γ0/[2(γ + Γ0)] ≤
(1/2)(ν/k) at ω = ω0 ± (γ + Γ0).

5. CALCULATION OF THE ANDERSON 
LOCALIZATION LENGTH OF LIGHT 

Now, we consider multiple electromagnetic-wave
scattering in the above disordered quantum-well struc-
ture and calculate the Anderson localization length fol-
lowing [10, 11, 23]. Let the electromagnetic field be
excited at the instant t = 0+ by a source of current (polar-

G z z'–( )〈 〉 i

2k
------ ik z z'–( ),exp=

k ω( ) k
2

2ikνr– k iνr–≈=

Re k ω( ) k 1
ν
k
---

ω0 ω–( )Γ0/ θcos

ω ω0–( )2 γ Γ0/ θcos+( )2
+

------------------------------------------------------------------+ 
  ,=

Im k ω( ) ν
γ Γ0/ θcos+( )Γ0/ θcos

ω ω0–( )2 γ Γ0/ θcos+( )2
+

------------------------------------------------------------------.=

k

k

k k

k k

max
ω

[Re k
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ization) of the type ~eyδ(z)δ(t – 0+). Each monochro-
matic field component of frequency ω undergoes one-
dimensional multiple elastic scattering from the disor-
dered chain of quantum wells (the frequency ω lies in
the continuum in the absence of scatterers). We further
follow wave propagation along the z axis, i.e., at an
angle θ = 0, conditions under which there is no differ-
ence between the s and p polarizations. The distribution
of excitation energy in space and time

 (27)

is determined by the spectral density

 (28)

Here, Gω(q, q') is the one-photon Green’s function (20),
Kω(q, q') is the two-photon Green’s function averaged
over the well positions {zn}, and

 (29)

The Anderson localization results from the constructive
interference of waves passing, in propagating in oppo-
site directions, through the same set of randomly
arranged scatterers [1]. When excitation of frequency ω
is localized, the energy density entering Eq. (27) satis-
fies the condition

 (30)

where ξ(ω) is the localization length. Whence follows
one of the criteria of Anderson localization [13]: for
t  ∞, the quantity Wω(t, z = 0) in Eq. (30) should be
finite, which is equivalent to the condition of finiteness
of the Fourier transform –iΩwω(Ω , z = 0) in the limit
Ω  0 [25].

Let us now calculate the Anderson photon localiza-
tion length in the quantum-well structure using the self-
consistent diagrammatic technique [23]. Based on
Eq. (20), we assume, as before, that the well concentra-
tion is low (ν/k ! 1) and that the system is, on the aver-
age, translation invariant. Since the general solution to
a similar problem for layered media is given elsewhere
[10, 11], we limit ourselves here to a brief formulation
of the results obtained.

W t z,( ) ωd
2π
-------Wω t z,( )∫=

=  
ωd

2π
------- Ω Qdd

2π( )2
--------------- iΩt– iQz+( )wω Ω Q,( )exp∫∫

wω Ω Q,( ) q q'dd

2π( )2
-------------Kω q q',( )∫=

=  
q q'dd

2π( )2
------------- 1

L
--- Gω+

q+ q+',( )Gω–
* q– q–',( )〈 〉 .∫∫

ω± ω Ω/2, q±± q Q/2.±= =

Wω t z,( )
t ∞→
lim z /ξ ω( )–{ } ,exp∼
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The averaged two-photon Green’s function Kω(q, q')
entering Eq. (28) satisfies the Bethe–Salpeter equation

 (31)

where Uω(q, q') is the irreducible vertex part. Equa-
tion (31) was formulated with due account of expres-
sions (21) and (22). We define the quantities

 (32)

with m = 0 and 1, the first of which, F0(ω; Ω , Q) =
wω(Ω , Q), is the Fourier transform of energy density,
and the second, F1(ω; Ω , Q) is that of the energy flux.
We use Eqs. (29), (31), and (32) to find coupled equa-
tions to the lowest orders in spatial, Q, and temporal, Ω ,
spectral variables:

 (33)

 (34)

Kω q q',( ) Gω+
q+( )〈 〉 Gω–

* q–( )〈 〉=

× 2πδ q q'–( ) q''d
2π
--------Uω q q'',( )Kω q'' q',( )∫+ ,

Fm ω; Ω Q,( ) q q'dd
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ΩF0 Q
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Fig. 1. Dimensionless dispersion relation Re (ω)/(k0 )

(curves 1–4) and attenuation parameter 2Im (ω)/(k0 )
(curves 1'–4') of electromagnetic waves plotted vs. (ω –
ω0)/Γ0 for θ = 0. The calculation was performed using
Eqs. (25) and (26) for the following values of the parame-

ters {ν/(k0 ); γ/Γ0}: (1, 1') 1, 0; (2, 2') 0.3, 0; (3, 3') 0.3,
1; and (4, 4') 0.3, 2.
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To stress the polariton character of propagation, we
specified here the variable  ≡ Re (ω) with θ = 0 from
Eq. (25) in the explicit form and introduced the nota-
tion

 (35)

(36)

where

 (37)

 (38)

In deriving Eq. (34), we also used the identity

 

Equations (33) and (34) for function F0 can be
employed to find the expression 

 (39)

which is the (Ω , Q) Fourier transform of the solution to
the diffusion equation. The diffusion coefficient

 (40)

is determined by functions Σ and U, with the first of
them being defined by Eq. (22).

To lowest order ν/k ! 1, the irreducible vertex part
in the case of identical quantum wells can be written as

 (41)

with the quantity Tω(q, q') being given by Eq. (17) with
the reflection coefficient rn = r(ω). Expression (41) was
obtained by summing the ladder diagrams, i.e., in the
Boltzmann approximation, which takes into account
incoherent scattering [11, 15, 23]. With Eqs. (35)–(38)
and (41), Eq. (40) reduces to

 (42)

(here and subsequently, we keep in mind that  ≈ k).
Function (39), with Eq. (42) substituted for D, pos-
sesses the property that –iΩwω(Ω , Q)  0 for Ω 
0. According to the localization criterion introduced
above, there is no localization in the Boltzmann

k' k
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q q',( ) νTω+
q+ q+',( )Tω–

* q– q–',( ),=

D
B 1

2ν
------ c

εb

-------- 1
Re r
------------=

k'
P

approximation and an electromagnetic excitation
spreads diffusively along the z axis of the structure, this
process being characterized by coefficient (42).

In the case of Anderson localization, the wave prop-
agation differs in character from the diffusive pattern
because of constructive interference described by max-
imally crossed (fan) diagrams [11, 15, 23]. In the case
of weak absorption (under the assumption of time
reversal invariance), summation of these diagrams
yields a correction,

, (43)

to the quantity UB. Function (43) has a singularity for
Ω  0 if q ≈ –q', which implies that backscattering is
a preferred process. In these conditions, substituting
UB + ∆U for U in Eq. (40) yields the relation

 (44)

As in [11, 15, 23], we use a self-consistent approach to
the problem, for which purpose we replace the diffu-
sion coefficient DB in Eq. (43) [and, therefore, in the
integral J[∆U] in Eq. (44)] by the exact value D. Setting
the limit of integration over P = q + q' in J[∆U] to be
equal to Pm, we obtain the following equation for the
diffusion coefficient D:

 (45)

This equation can be solved to lowest order in Ω to
yield

 (46)

With Eq. (46), the Fourier transform wω(Ω , z) ~
(−iΩξ)–1exp(–|z |/ξ) of Eq. (39) over Q provides finite-
ness of the quantity –iΩwω(Ω , z = 0) in the limit
Ω  0. Hence, the localization criterion is now met
and the quantity ξ(ω) is the Anderson photon localization
length. The dimensionless localization length X = ξPm

satisfies the equation

 (47)

which follows from Eq. (45) under substitution of
Eq. (46). It appears natural to assume that Pm is equal,
in order of magnitude, to the inverse hydrodynamic
length; i.e., Pm = 1/lD, where

 (48)
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Now, the solution to Eq. (47) takes on the form

 (49)

In the next section, we discuss the frequency spectrum
of the localization lengths (49).

6. SPECIFIC FEATURES OF RESONANCE 
LOCALIZATION OF LIGHT 

The right-hand part of Eq. (49) can depend on fre-
quency in a resonance manner through the reflectivity
r(ω) = iχ(ω). The presence of random scatterers exhib-
iting resonance is an important feature of the electro-
magnetic model (1); one-electron δ-function potentials
are energy-independent. Another essential feature of
the photonic model consists in the finite rate of sponta-
neous decay of an optical excitation, as a result of
which the response function χ(ω) is complex and lim-
ited. We shall discuss the resonance photon localization
effects for the χ(ω) models corresponding to quasi-two-
dimensional excitons and Lorentzian oscillators.

6.1. Exciton Polaritons

Using the exciton response function (9), Eq. (49) for
the one-dimensional photon localization length in a dis-
ordered quantum-well sequence can be written as

 (50)

The localization length (50) is comparable to the
extinction length 1/2Im (ω) = 1/2ν|Rer | in Eq. (26)
and to the hydrodynamic length lD in Eq. (48), with all
the three lengths having the same frequency depen-
dence (50).

We take the value of the radiative decay rate Γ0
entering Eq. (9) as an energy scale (the vanishing of
this parameter has no physical meaning, because this
would entail disappearance of optical effects). To con-
trol the exciton resonance width in quantum-well struc-
tures, one can conveniently take the nonradiative exci-
ton decay parameter γ, which, unlike Γ0, varies within a
broad range with variation of the sample temperature.
Figure 2 shows the general behavior of the 1/ |Rer(ω)|
function for a quantum well (expressed in terms of
dimensionless variables):

 (51)

where x = (ω – ω0)/Γ0 and g = γ/Γ0. According to
Eq. (50), far from the resonance, i.e., for |ω – ω0 |/Γ0 @
1, the localization length ξ(ω) ≈ (1/ν)(ω – ω0)2/[Γ0(γ +
Γ0)] substantially exceeds the average separation
between the scatterers 1/ν. The function ξ(ω) reaches a
minimum in the polariton region, to decrease at reso-
nance (ω = ω0) to ξ(ω0) ≈ (1/ν)(1 + γ/Γ0). As seen from

ξ 1.567lD
0.78

ν Re r
----------------.≈ ≈

ξ ω( ) 0.78
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----------
ω ω0–( )2 γ Γ0+( )2

+
Γ0 γ Γ0+( )

---------------------------------------------------.=

k

Re r
1–

1 g+( ) 1–
x

2
1 g+( )2

+[ ] ,=
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Eqs. (50) and (51) and Fig. 2, the resonance decrease in
the localization length with x = (ω – ω0)/Γ0 depends
noticeably on the ratio g = γ/Γ0. The deepest minimum
is reached in the dashed curve (Fig. 2), corresponding
to the absence of dissipative decay (γ  0). As the
parameters γ and/or Γ0 increase, the resonance dip in
the ξ(ω) dependence broadens and the localization
length at the minimum increases.

6.2. Lorentzian-Oscillator Model

For comparison, we consider a model assuming
identical layers of thickness a randomly arranged along
the z axis with a concentration ν ! k. The dielectric per-
mittivity is ε1 outside the layers and is equal to 

 (52)

inside them. This function relates to a model of Lorent-
zian oscillators for which ω0 is the frequency, γ–1 is the
relaxation time, and the quantity Ω2 is proportional to
the oscillator strength and is a measure of the oscillator
coupling with light. The response function (52) can
describe bulk excitons with weak spatial dispersion or
polar optical phonons (in the θ = 0 case, the interface
phonons are insignificant).

ε2 ω( ) εb
Ω2

ω0
2 ω2

– iωγ–
----------------------------------.+=

1

2

3

12

8

4

|R
e 

r|
–

1

630–3–6
(ω – ω0)/Γ0

Fig. 2. The quantity |Rer |–1 (dimensionless localization
length ξν/0.78) plotted vs. x = (ω – ω0)/Γ0 for structures
with randomly distributed quantum wells containing quasi-
two-dimensional excitons of frequency ω0. The calculation
was made using Eq. (51) for the following values of param-
eter g = γ/Γ0: (1) 0, (2) 1, and (3) 10.
3
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The reflectivity of a thin layer (a ! c/ω0 & c/Ω) can
be written as

 (53)

with the relation  = 1 + . Following [11] and using
Eqs. (52) and (53), we obtain, for ε1 = εb, a relation for
the localization length:

 (54)

At resonance, ω = ω0, this quantity assumes a (ω0) =

( )(Ωa/c)–3/2(γ/Ω)3/2, where γ/Ω ! 1 and Ω & ω0.
Far from the resonance (γ ! |ω – ω0 | < ω0), the local-
ization length (54) obeys the same frequency depen-

dence (ω) ≈ ( )(Ωa/c)–3/2(γ/Ω)–1/2(ω – ω0)2/Ω2

as Eq. (50) but is substantially larger because of the
conditions Ωa/c ! 1 and γ/Ω ! 1.

7. CONCLUSIONS 

We note in conclusion that the above theory of fre-
quency-dependent localization allows, in principle,
generalization to two-dimensional plasmons in ran-
domly arranged semiconductor quantum wells or atom-
ically thin metal layers. The susceptibility of plasmons,
which enters Eq. (1), is proportional to their spontane-
ous emission rate (the squared plasma frequency of

two-dimensional electron gas  ~ sinθ). As a conse-
quence, for θ = 0, light does not couple to two-dimen-
sional plasmons. Therefore, to study the plasmon-
induced localization of light, one has to generalize the
theory put forward in Section 5 to arbitrary values of
the angle of light incidence.

As follows from the above study, light propagation
in low-dimensional quantum-well structures is ade-
quately described in terms of a model of layers with a
δ-function dielectric polarization. Despite the formal
analogy to models involving electron zero-radius
potentials, the electromagnetic model differs from them
fundamentally. Indeed, the excitonic susceptibility (an
analog of the potential for electrons) depends on fre-
quency and includes the radiative and nonradiative
exciton decay rates. As a consequence, the resonance
excitonic susceptibility, responsible for the appearance
of induced polarization and light-wave scattering, is a
finite complex function of frequency.

We used structures with randomly distributed iden-
tical quantum wells containing quasi-two-dimensional
excitons to show that, near the resonance frequency, the
average field has a polariton character. The polariton
scattering accounts for the disorder-induced frequency-
dependent extinction, multiple scattering, and Ander-
son localization of light waves in a structure. The light

r̃
i ε1ωa

2c
------------------

ε2 ε1–
ε1

--------------- 
  ,=

t̃ r̃

ξ̃ ω( ) π
ν

------- c
ωa
------- 

 
3/2 ω2 ω0

2
–( )

2
ωγ( )2

+

Ω3 ωγ
----------------------------------------------.=

ξ̃
π/ν

ξ̃ 4 π/ν

ωp
2

P

localization length in the polariton region of the spec-
trum decreases substantially because of the resonantly
increased light scattering (reflection) from individual
quantum wells. We have considered localization under
normal light incidence, but there are grounds to hope
that the main conclusions will remain valid in the case
of oblique incidence. Polarization effects expected to
occur in one-dimensional localization of light in quan-
tum-well structures, as in other layered systems [5–11],
are of considerable interest, because s- and p-polarized
waves may reveal essentially different characteristics in
these structures. In particular, p-polarized light inter-
acts with two excitonic resonances (rather than with
one, as is the case for s-polarized light), which should
give rise to a resonantly reduced localization length in
the above two spectral regions. Finally, the strong
dependence of the radiative decay rate of quasi-two-
dimensional optical excitations on the angle of light
incidence should manifest itself in an angular depen-
dence of the localization length in the resonance region.
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Abstract—The influence of the composition and short-range order of the cluster formation type on optical
phonon localization in two-dimensional pseudobinary substitutional solid solutions is studied. Direct numerical
calculations of the so-called inverse participation ration (IPR) are carried out, and the scaling of this parameter
is studied for the fundamental modes of the spectral density of states at the Brillouin zone center of the averaged
crystal. It is shown that cluster formation promotes phonon delocalization, although the nature of this effect is
different for resonant and local (in the low-concentration limit) modes. The influence of the ionicity of a solid
solution on localization is considered. It is shown that the Coulomb interaction neutralizes the effect of cluster
formation while simultaneously decreasing the observed IPR. Based on the form of the distribution of local site
absorption of an external electromagnetic field, a new physical criterion is suggested, which allows one to ana-
lyze the localization degree of phonon modes in ionic alloys. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The localization of elementary excitations in solids,
caused by atomic disorder, is one of the important prob-
lems in the theory of disordered systems. Studies of the
localization of electronic and vibrational states in disor-
dered alloys began close to forty years ago [1]. How-
ever, this problem has been solved only in part, mostly
for simple models of low-dimensional systems. For
example, in the case of two- and lower dimensional sys-
tems, it is generally believed that arbitrarily weak dis-
order causes localization of all the electron states. This
conclusion was allowed by the one-parametric scaling
theory [2]. However, in some recent papers dedicated to
experimental studies of the metal–insulator transition
in two-dimensional systems based on the metal–oxide–
semiconductor structure (see, e.g., [3]), the validity of
this statement was called into question for any two-
dimensional system. The major factor, previously
neglected when studying the localization, is the elec-
tron–electron interaction. A modified scaling theory
was suggested that takes into account the influence of
the electron–electron interaction, along with disorder,
and allows the existence of delocalized states in disor-
dered two-dimensional systems [4]. It is conceivable
that not only the interaction between elementary exci-
tations but also other factors can have a significant
effect on their localization.

It is known that, although the distribution of impuri-
ties in actual disordered alloys is random, it is often
characterized by spatial correlation extending over
many interatomic spacings. For example, impurity
1063-7834/03/4506- $24.00 © 21154
atom clusters are formed in alloys that have a tendency
to decompose [5]. It is not inconceivable that the corre-
lations of the random potential can significantly change
the localization of elementary excitations in low-
dimensional systems. For example, it is known that cer-
tain types of randomly correlated distribution of impu-
rities in one-dimensional systems give rise to weakly
localized states with wave functions that decrease with
distance following a power law [6, 7]. This conclusion
was made not only for electrons but also for other types
of elementary excitations, e.g., magnons in randomly
correlated linear chains [8].

Phonon localization in randomly correlated alloys
has been studied theoretically [9] and using numerical
simulation [10]. In [9], field-theoretic methods were
applied to show that all acoustic phonon modes are also
localized in two-dimensional systems with isotopic dis-
order even with correlations that can only have an effect
on the localization radius. In [10], the acoustic-phonon
localization was considered numerically in terms of the
percolation problem. This allowed understanding of the
mechanism of formation of localized and propagating
phonon states in two- and three-dimensional model
binary alloys. Furthermore, differences in the localiza-
tion degree of phonon modes were detected. These dif-
ferences depend on whether the modes are local or res-
onant in the limit of small impurity concentrations;
however, the small size of the systems under study does
not allow quantitative conclusions. It should also be
noted that a continuum model (rather than a lattice one)
with the simplest (elastic) interaction was considered in
003 MAIK “Nauka/Interperiodica”
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[9]; the localization of optical phonons (OPs), to our
knowledge, was not studied at all. Meanwhile, the
degree of OP localization is important for mesoscopic
systems in terms of the electron–phonon interaction
and far-IR radiation absorption, even if the general con-
clusion on localization of any noninteracting elemen-
tary excitation in infinite two-dimensional systems with
disorder also remains valid for OPs.

In this paper, we present numerical results on the
influence of the correlation (short-range order) in the
impurity atom arrangement on the localization of opti-
cal phonon modes in two-dimensional pseudobinary
substitutional solid solutions (SSs). The calculations
were carried out within a model that takes into account
the Ising-type correlations in the arrangement of isova-
lent impurity atoms in one of the SS sublattices. The
model is aimed at describing the properties of
CdxHg1 − xTe and AlxGa1 – xAs semiconductor SSs of
various compositions.

2. SHORT-RANGE ORDER MODELS 
AND LATTICE DYNAMICS

The thermodynamic–equilibrium short-range order
(SRO) of substitutional atoms in one of the sublattices
of the two-dimensional pseudobinary SS was simulated
using the algorithm described in [11]. The algorithm is
based on the Ising model of the static interaction
between neighboring atoms in the sublattice. Random
alloys with various SRO were constructed using the
Monte Carlo method. The SRO was controlled by the
given temperature of SS formation.

The influence of two SRO types that are feasible in
the Ising model (cluster formation and superstructure
formation due to ordering) on the total and spectral den-
sities of SS phonon states without regard for the Cou-
lomb interaction between ions was discussed in detail
in [11]. We use a (more realistic) model of the lattice
dynamics based on an analysis of published calculated
data on the vibrational properties of Si, Ge, and III–V
compounds [12, 13].

The equations of motion are written as

 (1)

where  is the force constant matrix,  is the diagonal
matrix of atomic masses, and V is the displacement
vector. The interactions with the nearest and next-to-
nearest neighbors were taken into account for each
atom. Within the harmonic approximation, the potential
energy is given by

 (2)

 (3)

F̂ ω2
M̂–( )V 0,=

F̂ M̂

U0
k
2
--- V0 VS–( )2

,
S nn{ }=

∑=

U0
k

2a
2

-------- a0S V0 VS–( )( )2
,

S nnn{ }=

∑=
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for the nearest and next-to-nearest neighbors, respec-
tively; here, k is the elastic constant, a0S is the transla-
tional vector, and V0 and VS are the displacement vec-
tors of the corresponding atoms. As usual, the force

constants  are equal to the second derivatives of the
total potential energy.

To simulate the Coulomb interaction, we used the
potential (for like-sign ions)

 (4)

where A2 = (  – );  and  are the

frequencies (squared) of longitudinal and transverse
long-wave-length OPs, respectively, in the binary com-
pound without impurity; µ is the reduced mass of a pos-
itive and a negative ion; S0 is the unit cell area; and r0 is
a constant. This “Coulomb” potential allows simulation
of LO–TO splitting in a two-dimensional pseudobinary
SS [14].

3. PARAMETERS OF PHONON MODE 
LOCALIZATION

The lattice dynamics of model SSs, constructed fol-
lowing the procedure outlined in Section 2, was studied
by making direct numerical calculations using a soft-
ware package developed by us. This package allows
one to form a dynamic matrix of a square supercell of a
pseudobinary SS on the basis of selected potentials
with allowance for the periodic boundary conditions
and to determine all its eigenvalues and eigenvectors
using the QR algorithm [15]. The data obtained were
used to calculate the parameters characterizing the
localization of phonon modes.

In the calculations neglecting the Coulomb interac-
tion (homopolar alloy), atomic displacements were
considered to be scalar; the dynamic matrix was an N ×
N matrix (N is the number of atoms). To determine the
localization degree of phonon modes, we calculated the
spectral dependence of the parameter referred to as the
inverse participation ration (IPR):

 (5)

where  is the displacement (multiplied by the square
root of the mass) of the ith atom for the jth eigenvalue.
Formula (5) was derived by replacing the modulus of

the electron wave function with the quantity  in the
conventional IPR definition and by averaging over the
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eigenmodes with close frequencies (the latter operation
is convenient for analyzing the IPR variation in certain
spectral regions). As is known [16], the parameter IPR
is inversely proportional to the number of atoms partic-
ipating in the formation of the eigenstate with fre-
quency ωj. Delocalized modes correspond to small val-
ues of IPR ~ N–1, while localized modes correspond to
IPRs of the order of unity. It should be mentioned that,
as far as we know, it is not substantiated that the IPR
parameter is a self-averaging quantity (in terms of
[17]). A localization criterion based on the variations of
the IPR is basically intuitive; nevertheless, this criterion
is rather widely used.

If the Coulomb interaction is taken into account,
displacements should be considered as vectors, which
causes an increase in the dynamic matrix size. In this
case, the parameter IPR was also calculated from for-
mula (5) using the displacement magnitudes. The
phonon state localization in the heteropolar alloy was
studied not only by using the IPR spectral characteris-
tics but also by using the distribution of the local inten-
sity of forced vibrations excited by an external ac elec-
tric field. It turned out that the distribution of the local
site absorption of an external field of frequency ω at
various SS lattice sites is very sensitive to the localiza-
tion degree of phonon modes of this frequency. This
can readily be understood considering the following
two extreme situations. In the case of a strongly local-
ized mode, only a few neighboring atoms vibrate. In
this small region (“hot zone”), the energy of the exter-
nal field of resonant frequency is absorbed, while
absorption is almost zero at lattice sites outside this
region. In the case of a completely delocalized mode,
however, the external-field absorption should be
approximately identical at all crystallite sites. Thus, the
distribution function of local absorption should signifi-
cantly differ for localized and delocalized modes.

To formulate the suggested criterion quantitatively,
we consider forced vibrations of a partially ionic
pseudobinary AxB1 – xC solid solution in more detail.
For simplicity, let the charges of isovalent A and B
atoms be identical. It can be shown that the lattice sus-

ceptibility (to within the factor ) is given by (see
Appendix)

 (6)

The energy absorption rate by the whole crystallite
is written as

 

eτ
2

χ eτ
2 1
N
---- Jlk.

l k,
∑=

Q
E0

2
eτ

2

2
-----------ωIm Jlk.

lk

∑–=
P

Let us introduce the distribution function of the imagi-
nary part of the quantities Jlk,

 (7)

As shown in the next section, this function allows one
to judge the character of optical phonon modes of the
corresponding polarization with frequencies close to
the frequencies of the external field.

4. RESULTS AND DISCUSSION

4.1. Homopolar Solid Solution

The spectral dependences of the IPR were calcu-
lated for pseudobinary SSs with atomic-mass disorder.
There exist at least two semiconductor SSs that can be
adequately described by the isotopic approximation
[18], CdxHg1 – xTe and AlxGa1 – xAs. The spectra of
long-wavelength OPs of these SSs involve two modes;
i.e., the spectral density of phonon states at the Bril-
louin zone center of such solid solutions contains two
optical modes, e.g., the HgTe-like and CdTe-like modes
in the case of CdxHg1 – xTe. The influence of clusters on
the localization of specifically these modes is of pri-
mary interest. In calculations, we took the atomic
masses equal to those of elements composing the SSs
under study; the force constants and the charge A were
selected such that accurate phonon frequencies were
obtained at the Brillouin zone center. Hereafter, the
model alloys under consideration are referred to as,
e.g., CdxHg1 – xTe; however, the calculation results
obtained should not be extended to actual SSs in the
strict sense.

Figure 1 shows the dependences of the IPR of opti-
cal modes on the composition x for random and cluster-
ized SSs. First, we discuss the behavior of the IPR for
the CdTe-like mode as the Cd content increases. The
IPR significantly decreases with x for random and clus-
terized SSs; in both cases, the dependence is almost lin-
ear. The IPR decrease observed indicates that the CdTe-
like mode tends to delocalization with x. At x = 0.9, the
IPR is proportional to ~N–1 for both random and clus-
terized SSs. This means that the localization radius
becomes equal to the crystallite size.

The IPR(x) dependence in the case of the HgTe-like
mode is significantly different. The values of IPR are
much smaller than those of the CdTe-like mode virtu-
ally over the whole composition range (0.1–0.9). This
is not unexpected since HgTe-like vibrations are reso-
nant within the model we suggested, i.e., their frequen-
cies fall within the CdTe optical-vibration range. In the
case of a random SS, the IPR of the HgTe-like mode
initially increases up to a maximum (at x ~ 0.25) in the

f t( ) 1
N
---- δ t

Im Jlk

Im J〈 〉
---------------– 

  ,
l k,
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Q Im Jlk
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∑∼ N Im J〈 〉 f t( )t t.d
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range of low Cd concentrations (x < 0.3) and then
abruptly decreases; beginning from x ~ 0.3, this
decrease is almost linear. It is worth noting that the IPR
maximum in the IPR(x) dependences takes place for
any crystallite size. In our opinion, this maximum is
due to the fact that the Cd atoms in random SSs are, for
the most part, arranged singly at low concentrations,
which results in stronger scattering of HgTe-like vibra-
tions. As the Cd concentration increases, the band of
CdTe-like vibrations begins to form. Vibrations with
frequencies close to that of the long-wavelength HgTe-
like mode arise; however, these vibrations are not asso-
ciated with vibrations of the Hg atoms. The density of
states increases in the frequency range under consider-
ation, and the IPR per state decreases. Thus, the behav-
ior of the IPR, which seems unusual in the case of the
HgTe-like mode, may be explained by the fact that this
mode is quasilocal (i.e., resonant) in the limit of low Hg
concentrations.

Similar calculations of the dependence of the IPR on
the composition for optical modes in AlxGa1 – xAs con-
firm this explanation. The case of AlxGa1 – xAs differs
from the preceding case in the fact that the GaAs-like
mode is outside the AlAs band; i.e., it is local rather
than resonant. We can see from Fig. 2 that the localiza-
tion of the GaAs-like mode increases with the alumi-
num atomic fraction in the cation sublattice for both
random and clusterized SSs. The shape of the AlAs-like
mode curve virtually coincides with that of the CdTe-
like mode in Fig. 1. However, the IPR(x) dependence
for the HgTe-like mode is similar to that for the GaAs-
like mode only in the range of small values of x. Thus,
the local and resonant modes behave differently as the
composition is varied (as indicated in [10]).

0.01

0 0.2 0.4 0.6 0.8 1.0

IPR

x

1

2 3
4

Fig. 1. Dependences of the IPR of OP fundamental modes on
the composition of CdxHg1 – xTe solid solutions (the crystal-
lite size is 30 × 30): (1, 2) HgTe-like and (3, 4) CdTe-like
modes of (1, 3) clusterized and (2, 4) random solid solutions.
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Let us enlarge on the influence of the SRO on the OP
localization. We can see from Fig. 1 that cluster forma-
tion promotes a decrease in the IPR of the HgTe- and
CdTe-like modes; i.e., it decreases their localization
almost over the entire composition range. An analogous
effect is also seen from Fig. 2 for AlxGa1 – xAs. To check
this conclusion, we studied the “scaling” of the degree
of phonon mode localization. The dependence of the
IPR on the number of atoms in the CdxHg1 – xTe crystal-
lite with x = 0.5 is shown in Fig. 3 in the log–log scale.
The localization is determined by the exponent in the
dependence

IPR ~ N–γ. 

0.01

0 0.2 0.4 0.6 0.8 1.0

IPR

x

1

2

3

4
0.10

Fig. 2. Same as in Fig. 1 but for AlxGa1 – xAs solid solu-
tions: (1, 2) GaAs-like and (3, 4) AlAs-like modes of
(1, 3) clusterized and (2, 4) random solid solutions.
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1000
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Fig. 3. Dependences of the IPR of fundamental phonon
modes on the total number of atoms in the crystallite for
clusterized and random Cd0.5Hg0.5Te (the crystallite size
varied from 16 × 16 to 40 × 40): (1, 2) the HgTe-like mode
of clusterized (γ ≈ 0.897) and random (γ ≈ 0.87) solid solu-
tions, respectively, and (3, 4) the CdTe-like mode of cluster-
ized (γ ≈ 0.8) and random (γ ≈ 0.71) solid solutions, respec-
tively.
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The data represented in Fig. 3 indicate that cluster for-
mation appreciably decreases the localization of funda-
mental phonon modes (γ approaches unity). With clus-
ter formation, the HgTe-like mode becomes almost
delocalized (γ ≈ 1). The CdTe-like mode exhibits a frac-
tal behavior with scaling where we have 0 < γ < 1 and
this parameter depends on the degree of cluster forma-
tion. In the case of strong cluster formation (T = 0.95TC,
TC is the critical temperature in the two-dimensional
model), we have γ ≈ 0.8. We will return to these values
of the exponent γ below.

4.2. Heteropolar Solid Solution

In order to answer the question as to whether the
influence of cluster formation on phonon mode local-
ization is retained in the presence of the Coulomb inter-
action, we studied the dependences of the IPR on the
“charge” A. These dependences for HgTe- and CdTe-
like modes of clusterized and random Cd0.5Hg0.5Te are
shown in Fig. 4 (z = A/A0, where A0 corresponds to

“proper,” i.e., experimental, values of  and ).
We can see that an increase in the charge lowers the
localization of phonon modes. This fact is explained by
the range of the ion interaction being unlimited, which
effectively increases the dimensionality of the system.
We recall that this interaction does not involve disorder
within the (isotopic) model we suggested.

At the same time, the influence of cluster formation
on the IPR somewhat differs in the cases of the HgTe-
like (low-frequency) and CdTe-like (high-frequency)
modes. The localization of the high-frequency mode in
the range of small charges (z < 0.5) significantly
decreases due to cluster formation, as is the case in the

ωLO
2 ωTO

2

0.015

0 0.4 0.8 1.2 1.6

IPR

z

1

2

3

4

0.020

0.025

0.010

0.005

Fig. 4. Dependences of the IPR of the HgTe- and CdTe-like
LO modes of random and clusterized Cd0.5Hg0.5Te on the
ion charge: (1, 2) CdTe-like and (3, 4) HgTe-like LO modes
of (1, 3) random and (2, 4) clusterized solid solutions.
PH
homopolar SS. At z = 0.5–1.3, the Coulomb interaction
neutralizes the influence of the cluster formation. In
this case, the IPR takes on virtually identical values for
random and clusterized SSs. In the case of the low-fre-
quency mode, the cluster formation causes a weak
decrease in the degree of localization in the whole
charge range. This mode is almost delocalized even in
the homopolar SS with x = 0.5.

The IPR of AlAs- and GaAs-like LO modes in
Al0.5Ga0.5As depends on the charge and the degree of
cluster formation in a similar way (Fig. 5). However,
certain differences are observed. For example, the influ-
ence of cluster formation on the high-frequency mode
localization at z > 0.5 is not compensated by the Cou-
lomb interaction in full. Furthermore, the initial degree
of the low-frequency mode localization and the range
of its decrease due to cluster formation are much larger
in this case. This mode remains localized even in the
presence of strong Coulomb interaction, which is prob-
ably due to smaller effective values of the dynamic
matrix elements corresponding to the interaction of Ga
ions in comparison with those for Al ions (the ion mass
is in the denominator). We also note that the same
trends in the behavior of the IPR with composition are
retained throughout the entire charge range, as is the
case within the SS model without Coulomb interaction.
It seems that the Coulomb interaction causes an
increase in the scaling parameter, even though we were
restricted to much smaller crystallite sizes in the calcu-
lations for the heteropolar SS.

We now discuss the results on the distribution
function (DF) of the local intensity of absorption (see
Eq. (7)), which is different for the low- and high-fre-
quency modes. Figure 6 displays the DFs of the CdTe-
and HgTe-like LO modes of Cd0.5Hg0.5Te. The DF of

0.03

0 0.4 0.8 1.2 1.6

IPR

z

1

2

3

4

0.04

0.06

0.02

0.05

0.01

Fig. 5. Same as in Fig. 4 but for Al0.5Ga0.5As: (1, 2) AlAs-
like and (3, 4) GaAs-like LO modes of (1, 3) random and
(2, 4) clusterized solid solutions.
YSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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Fig. 6. Distribution functions of the intensity of local site absorption for fundamental phonon modes of Cd0.5Hg0.5Te: (a, b) HgTe-
like and (c, d) CdTe-like LO modes. Solid and dashed lines correspond to random and clusterized solid solutions, respectively. The
ion charge is (a, c) z ≈ 0 and (b, d) 1. 
the HgTe-like mode can be approximated by a Gauss-
ian distribution with the average equal to unity, while
the DF of the high-frequency CdTe-like mode is
strongly asymmetric. In the case where the frequency
of an external (longitudinal) field is in the range of the
low-frequency LO mode, there exist lattice sites at
which the local intensity of absorption is negative, i.e.,
where the energy is emitted rather than absorbed. Such
sites correspond to Cd and Hg atoms which are not
inside CdTe and HgTe clusters, respectively, and move
in counterphase to the external field. As the SRO
increases, the CdTe and HgTe clusters become larger
and the number of anomalously moving atoms
decreases. The oscillation of atoms at a frequency equal
to the external field frequency in the range of the high-
frequency (CdTe-like) mode is limited by CdTe clus-
ters, and sites with negative absorption are virtually
absent (see Figs. 6c, 6d). We emphasize that the effects
under consideration are virtually independent of ion
charge.

Similar calculations carried out for Al0.5Ga0.5As and
for a model SS whose anion mass mC significantly
exceeds the masses of two intersubstitutable cations
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
(mA, mB) confirm the above interpretation of the DF
shape (Fig. 7). The amplitude of optical vibrations can
be of the same order of magnitude (at different phases)
almost at all lattice sites only in the case of a low-fre-
quency resonant mode. Indeed, the DF of the GaAs-like
LO mode is already appreciably asymmetric (Fig. 7a).
In the case of the model SS, the DF of the low-fre-
quency mode has the form characteristic of the high-
frequency mode (Fig. 7c), which is approximately iden-
tical for all the alloys under study.

Thus, notwithstanding the fact that the values of the
IPR of fundamental optical phonon modes are close in
the SS with Coulomb interaction, especially in the case
of intensive cluster formation, the localization of these
modes can differ. The resonant low-frequency mode is
delocalized in the sense that the amplitude of atomic
displacements does not vanish for most of the crystal-
lite ions. Disorder results in the possibility of the phase
significantly differing for various sites. Cluster forma-
tion somewhat reduces variations in the atomic dis-
placement phase, decreasing the variance of the DF of
local site absorption.
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Fig. 7. Distribution functions of the intensity of local site absorption in (a, b) Al0.5Ga0.5As and (c, d) a model solid solution (mA =
69.72, mB = 26.98, mC = 174.92) for (a, c) low- and (b, d) high-frequency LO modes. Solid and dashed lines correspond to random
and clusterized solid solutions, respectively. The ion charge was taken to be the same and corresponded to z = 1 for Al0.5Ga0.5As in
all cases.
In contrast to the typical situation described for the
HgTe-like mode in CdxHg1 – xTe, all high-frequency
modes and those low-frequency modes that are local
(rather than resonant) in the low-concentration limit are
virtually localized inside the corresponding clusters,
which are separated from each other. The typical size of
clusters increases with the system size, causing scaling
with an exponent γ close to unity (according to our
numerical calculations). Electromagnetic energy
absorption due to such vibrational modes takes place in
the hot zones. Their existence is especially evident in
the case of the model SS with specially selected masses
(see Fig. 7d), where the majority of ions are immobile
and do not interact with the external field. The absorp-
tion with the intensity variance near a certain typical
value characterizes a cluster whose size corresponds to
the external field frequency.

5. CONCLUSIONS

Thus, our direct numerical calculations have shown
that the localization of the fundamental phonon modes
PH
in two-dimensional pseudobinary SSs depends heavily
on the composition. The cluster-type SRO and the Cou-
lomb interaction intensity (SS ionicity), promoting
delocalization of optical phonon modes, also have a
significant effect.

The delocalizing effect of the long-range Coulomb
interaction can be explained by an effective increase in
the dimensionality of the system (the initiation of addi-
tional channels for transferring the vibrational excita-
tion between lattice sites). The analysis of the DF of
local site absorption of an external electromagnetic
field has shown that the high-frequency and nonreso-
nant low-frequency optical modes are localized at clus-
ters of a corresponding binary compound that are opti-
mal in size. An electromagnetic field with a frequency
corresponding to such modes is absorbed locally, which
can be very important for the SS nonlinear properties.
The tendency to delocalization in the course of cluster
formation, manifesting itself in the IPR, is explained by
an increase in the size of the clusters on which the exci-
tation is localized. On the contrary, the resonant low-
YSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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frequency mode is characterized by appreciable ampli-
tude throughout the crystal. The scaling (γ ≈ 1) we
detected for such a mode indicates its delocalization;
however, this statement is of course valid at certain
dimensions of the crystallites studied numerically.
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APPENDIX

In the case where an external electric field is
applied, the equation of motion of ions composing the
solid solution takes on the form

 (A1)

where  is the dynamic matrix; U is the displacement

vector multiplied by ; ek = (–1)keτ and Mlk are the
ion charge and mass, respectively, in the lth unit cell of
the kth sublattice; eτ is the parameter referred to as the
longitudinal charge; and E is the external spatially uni-
form ac electric field. The forced displacements defined
by Eq. (A1) are given by

 (A2)

where  is the phonon Green function,

 (A3)

uν(l, k) are the eigenvectors corresponding to the νth
eigenvalue of the dynamic matrix, and α and β are Car-
tesian superscripts.

The rate of local absorption of an electromagnetic
field by the lattice at site (l, k) is given by

 (A4)
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where E0 is the field amplitude. In Eq. (A4), the angle
brackets mean time averaging and

 (A5)

where

 

In Eqs. (A4) and (A5), uν is the component of the νth
eigenvector that is parallel to the external field.
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Abstract—A precession mechanism of spin relaxation of conduction electrons in a square quantum well is ana-
lyzed. The dependence of the spin relaxation time on the width of a quantum well and the height of its barriers
is calculated under the assumption that the electron–electron collisions dominate over other processes of carrier
scattering. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, spin relaxation processes have
attracted the particular attention of researchers due to
the possible use of spin relaxation in the field of spin-
tronics. One of the most efficient mechanisms of spin
relaxation of conduction electrons in a quantum well
over a wide range of temperatures is the D’yakonov–
Perel’ (precession) mechanism [1, 2], which is associ-
ated with the splitting of spin branches in the dispersion
relation for electrons in systems without an inversion
center. This splitting can be treated as a manifestation
of an effective magnetic field with the Larmor preces-
sion frequency Wk, which is dependent on the magni-
tude and direction of the electron wave vector k. The

spin relaxation time can be estimated as  ∝  ,
where the angle brackets indicate averaging over the
electron energy distribution and τ is the microscopic
relaxation time. In a quantum well, the Larmor fre-
quency Wk is a linear function of the electron wave vec-
tor k; in this case, it is common practice to assume that
τ is the time of momentum relaxation of electrons [2–
4]. However, recent investigations have demonstrated
that the contribution to the reciprocal of the relaxation
time τ is additively made not only by different mecha-
nisms of momentum relaxation but also by electron–
electron collisions [5, 6]. Actually, the electron–elec-
tron collisions bring about random changes in the wave
vector k and, hence, in the Larmor frequency Wk.
Therefore, the spin relaxation occurring through the
precession mechanism is controlled by electron–elec-
tron collisions as well as by other scattering processes.
In our previous work [5], we calculated the time of spin
relaxation for a two-dimensional electron gas under the
condition that the electron–electron collisions are pre-
dominant. However, in contrast with the case consid-
ered in [5], it is of interest to take into account that, in a

τ s
1– Wk

2〈 〉 τ
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real quantum well, the wave function for an electron
proves to be quasi-two-dimensional due to its delocaliza-
tion inside the quantum well and the penetration of tun-
neling tails of this function into regions under the barri-
ers. In this respect, the aim of the present work was to
calculate the dependence of the relaxation time τ on the
width of a quantum well and the height of its barriers.

2. THEORETICAL BACKGROUND

Let us consider square quantum wells grown from
materials with a zinc blende lattice in the [001] direc-
tion. In the parabolic approximation, the effective
Hamiltonian for an electron located in the lowest con-
duction subband can be represented in the form

 (1)

where m is the effective electron mass, σl stands for the
Pauli matrices, and kn are the components of the elec-
tron wave vector in the plane of the quantum well. For
a quantum well with symmetric interfaces, the term lin-
ear with respect to the electron wave vector k is associ-
ated with the absence of an inversion center in the bulk
material and can be written in the form [2]

 (2)

Here, the x and y axes are chosen parallel to the [100]
and [010] crystallographic directions, respectively;
β1 ∝   is a constant; and the angle brackets indicate
the quantum-mechanical average. For an asymmetric
quantum well, the effective Hamiltonian, in addition to
term (2), contains the following spin-dependent contri-
bution to the terms linear in k [7]:

 (3)

where β2 is a constant.
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Now, we introduce the Cartesian coordinates x' ||
[110], y' || [110], z' || [001], in which the part of the
Hamiltonian that is linear with respect to the wave vec-
tor can be written as

 (4)

In relationship (4), we introduced the effective Larmor
frequency with components Wkx' = b–ky', Wky' = b+kx',
and Wkz = 0 and the coefficients β± = 2(β2 ± β1).

The electron distributions over the wave vector and
over the spin will be described by the spin density
matrix, which, in turn, can be conveniently represented
as a linear combination of 2 × 2 basic matrices:

 

where fk = Sp( ) is the spin-averaged electron dis-

tribution function, sk = Sp[ (s/2)] is the average spin
vector for an electron at the point k, and the identity
matrix is omitted. In the case when the splitting of spin
states is disregarded, the spin-polarized nondegenerate
electron gas with an equilibrium energy distribution

can be described by the density matrix  = (1 +

2S0s), where  = exp[(µ – Ek)/kBT] is the Boltzmann
distribution function, Ek = "2k2/2m, µ is the chemical
potential, and S0 is the spin per electron. If the spin
splitting is small compared to "/τ, the distribution func-
tion remains unchanged, whereas the spin vector

acquires the nonzero correction δsk = sk – 2 S0,
which is proportional to the spin splitting. Hence, the
density matrix can be represented in the following
form:

. (5)

By ignoring the spin flip in electron–electron collisions,
the kinetic equation for sk can be written in a standard
form:

 (6)

Here, Qk{s, f 0} is the electron–electron collision inte-
gral, which accounts for the mixing of the spins in the
k space; other processes of electron scattering are
ignored; and the electron distribution function fk is
assumed to be an equilibrium function. If the exchange
interaction is ignored, the electron–electron collision
integral takes the form [5]

(7)
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Here, Vq is the Fourier transform of the effective poten-
tial of the electron–electron interaction in the quantum
well, which can be obtained by averaging the three-
dimensional Coulomb potential energy; that is,

 

where e is the elementary charge, κ is the permittivity,
ρ is the separation between the electrons in the plane of
the interface, and ϕe1 is the envelope of the electron
wave function describing the quantum confinement
along the growth direction. After the Fourier transfor-
mation, we obtain the relationship [8]

 (8)

where Σ is the surface area of the sample in the plane

of the interfaces and H(q) = |z –

z' |) (z) (z')dzdz' ≤ 1 is the form factor character-
izing the delocalization of the electron wave function in
the quantum well. The inclusion of the form factor in
the calculation of the spin relaxation time is the main
objective of the present work. The form factor H(q)
suggests a weakening of the electron–electron interac-
tion as compared to the limiting case of a two-dimen-
sional electron gas when H(q) ≡ 1. In the special case of
infinitely high potential barriers, the envelope of the
electron wave function for a quantum well of width a

has the simple form ϕe1(z) = cos(πz/a) and the
form factor is given by the relationship

 In the limiting case where the separation between elec-
trons is large (qa ! 1), we obtain the form factor H(q) ≅
1 and the interaction between the electrons becomes
strictly two-dimensional. In the opposite limiting case,
the form factor H(q) is inversely proportional to q; con-
sequently, we have Vq ∝  q–2, as is the case with a three-
dimensional electron gas.

The state of an electron in a quantum well with bar-
riers of finite height V can be described by the envelope

 (9)

where C is the normalization constant, k = (2mE/"2)1/2,
and k = [2m(V – E)/"2]1/2. In this case, the difference
between the electron masses in the materials of the
quantum well and barriers is ignored. The boundary
conditions of continuity of the functions ϕ and dϕ/dz
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can be reduced to the matching condition cosξ = γξ,
where ξ = ka/2 and γ = "/a(2/mV)1/2 is the dimensionless
parameter characterizing the well depth. For the square
quantum well under investigation, the form factor H(q)
depends on two parameters of the well, namely, the
quantum well width a and the barrier height V.

After the summation of expression (6) over the wave
vector, we obtain an equation describing slow relax-
ation of the average spin:

 

Here, the tensor of the inverse spin relaxation times is
determined from the equation

 (10)

where N is the electron concentration in the quantum
well.

Let us assume that Fk is the angle between the elec-
tron wave vector k and the axis x' || [110]. In order to
derive an appropriate equation for the correction δs to
the spin distribution function, we retain the terms pro-
portional to cosFk and sinFk in the kinetic equation:

 (11)

3. SOLUTION OF THE EQUATIONS 
AND DISCUSSION

When solving Eqs. (10) and (11), the projection of
the vector product Wk × S0 is conveniently represented
in the form ΛαβγkβS0γ. Here, we introduce the third-rank
tensor Λ with four nonzero components, namely, Λxxz =
–Λzxx = β+/" and Λyyz = –Λzyy = –β–/". Since the operator
Qk{δsα, f 0} conserves the angular distribution of the
spin in the k space, the function (1/kβ)Qk{kβFk, f 0} is
independent of the azimuthal angle Fk, provided the
arbitrary function Fk depends solely on the magnitude
of the wave vector k. Equation (11) can be conveniently
represented in dimensionless units. For this purpose,
we write the solution in the form

 (12)

where v (K) satisfies the integral equation

 (13)

Here, we used the following designations: K = k/kT ,
kT = (2mkBT/"2)1/2, Θ is the angle between the vectors
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By substituting δsk in the form of expression (12) into
Eq. (10) and summing over k, we obtain the principal
values of the tensor of the inverse spin relaxation times:

 (14)

Here, the parameter τ, which characterizes the spin
relaxation occurring through the D’yakonov–Perel’
mechanism, is defined as

 (15)

In relationship (13), the inhomogeneous term and the
function v (K) were expanded in series using the basis

set ln(ε) = exp(–ε)Ln(2ε), where Ln(x) are the
Laguerre polynomials and ε = K2. Upon substituting the
series expansions into relationship (13) and performing
Monte Carlo summation over the dimensionless wave
vectors, we obtain a system of linear inhomogeneous
equations for the expansion coefficients of the function
v (K). The coefficient I involved in expression (15) was
calculated as a function of the dimensionless parame-
ters α and γ in the same manner.

The calculated dependence of the coefficient I on the
barrier height V (V > 200 meV) at a constant width of the
quantum well (a = 42 Å) can be approximately described
by the following formula: I ≈ 0.032 + 1.2 meV/V.
A decrease in the barrier height leads to a decrease in
the coefficient I and the time τ controlling the spin
relaxation, because the electron wave function is dis-
tributed on a larger scale and the electron–electron
interaction weakens.

The figure shows the calculated dependence of the
coefficient I on the quantum well width. For a quantum
well with infinitely high barriers, the coefficient I
increases monotonically with an increase in the quan-
tum well width. For a quantum well with a zero width,
we obtained I ≈ 0.027, as is the case with a two-dimen-
sional electron gas in the absence of exchange interac-
tions [5]. The dependence I(α) can be approximated by
a linear function: I(α) ≈ 0.027 + 0.009α. In the case
when the quantum well width increases to a ~ π/kT, the
relative change in the coefficient I becomes of the order
of unity, because the quantum-confinement energy is
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comparable to the energy of thermal motion of the elec-
tron.

For a quantum well with barriers of a finite height,
the characteristic time of electron–electron collisions τ
changes nonmonotonically with variations in the quan-
tum well width and passes through a minimum a = am ~
2"(2mV)1/2 when the electron wave function is subject
to a minimum delocalization in the quantum well. As
the quantum well width increases (or decreases) as
compared to am, the integral I and, therefore, the time

τ =  increase monotonically.

4. CONCLUSIONS

Thus, the precession mechanism of spin relaxation
in a quantum well with barriers of a finite height was
investigated theoretically. The characteristic time τ of
electron–electron collisions responsible for spin relax-
ation was examined as a function of the width of a
quantum well and the height of its barriers. It was dem-
onstrated that the dependence of the relaxation time τ
on the quantum well width exhibits a nonmonotonic
behavior. In this case, the minimum of the parameter τ
is determined by the maximum localization of the elec-
tron density in the quantum well. It can be clearly seen
from the figure that, in the situation where the values of
kTa fall in the range from 0.2 to 1.8, the time τ differs

τee* I

0.06

0.04

0.02
0 0.4 0.8 1.2 1.6

α = kTa

I

Dependence of the coefficient I determining the spin relax-
ation time [according to relationships (14) and (15)] on the
quantum well width. Squares indicate the calculated depen-
dence of the coefficient I on the dimensionless parameter
α = kTa for the barrier height V = 300 meV. For comparison,
crosses show the calculated values of I for a quantum well
with infinitely high barriers.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
from that for a two-dimensional electron gas by no
more than 50%.

It should also be noted that the parameter τ is
involved in the expressions for the tensor of the

inverse spin relaxation times with factors  [see rela-
tionships (14)], which can strongly depend on the
quantum well width. In particular, for a quantum well
with symmetric interfaces (when β2 = 0), in the limiting

case of infinitely high barriers, the factor  decreases
as a–4 with an increase in the quantum well width.
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Abstract—A solution to the equation of grain-boundary diffusion is obtained under conditions where migra-
tion of the diffusant from the boundaries into the grains is absent and the diffusion coefficient decreases with
time from an increased value to a value characteristic of equilibrium grain boundaries. The specific features of
the grain-boundary diffusion in nanocrystals are qualitatively analyzed in terms of this solution. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Direct measurements of the coefficient of grain-
boundary diffusion Db in nanocrystalline materials lead
to contradictory results. The first investigations demon-
strated that, for nanocrystals prepared through conden-
sation in a gas with subsequent compaction of the pow-
der, the diffusion coefficient Db is many orders of mag-
nitude greater than the coefficient of grain-boundary
diffusion in the materials with a standard grain size [1].
As a result, even the averaged diffusion coefficient for
nanocrystals turns out to be larger than the coefficient
Db for usual materials. The activation energy of grain-
boundary diffusion in nanocrystals, as a rule, is approx-
imately equal to half the activation energy in coarse-
grain materials and is close to the activation energy of
surface diffusion [1]. More recent studies revealed that
this effect is most likely associated with the porosity of
nanocrystalline samples, which was found to be equal
to 10% and greater [2]. For nanocrystals with a density
close to that of the crystal, the diffusion coefficient at
nanocrystal boundaries proved to be equal or somewhat
greater than the diffusion coefficient at usual grain
boundaries [2, 3]. However, in submicrocrystalline
nickel with a grain size of about 300 nm and a density
approximately equal to that of the crystal, the coeffi-
cient of copper grain-boundary diffusion in the temper-
ature range 398–448 K is four or five orders of magni-
tude larger than the diffusion coefficient determined
from extrapolating the data for coarse-grain nickel in
the high-temperature range [4]. Preliminary annealing
of submicrocrystalline nickel at a temperature of 623 K
leads to the complete disappearance of the effect of an
increase in the diffusion coefficient.

From the aforesaid, it follows that the coefficient of
grain-boundary diffusion in nanocrystals depends pri-
marily not on the grain size but on the structure of the
grain boundaries that exist in a nonequilibrium state in
1063-7834/03/4506- $24.00 © 21166
the as-prepared samples. In particular, nonequilibrium
grain boundaries involve free volumes, which is con-
firmed by positron annihilation spectroscopy [2] and
dilatometry [5]. Consequently, the diffusion coefficient
for nonequilibrium grain boundaries can exceed the dif-
fusion coefficient for equilibrium grain boundaries.
Possible mechanisms leading to this effect have been
discussed recently (see, for example, [6, 7]). Direct
experimental measurements of the diffusion coeffi-
cient, as a rule, are carried out at sufficiently high tem-
peratures in order to provide appreciable penetration of
the diffusant into the studied material. Under these con-
ditions, the nonequilibrium structure of the grain
boundaries undergoes relaxation due to grain-boundary
diffusion [8]. The relaxation is accompanied by a grad-
ual decrease in the grain-boundary diffusion coeffi-
cient. Thus, the actual diffusion experiment with
nanocrystals is necessarily accomplished with a time-
dependent diffusion coefficient. This can substantially
affect the experimentally measured diffusion coeffi-
cient.

The purpose of this paper is to analyze the available
experimental data on the coefficient of grain-boundary
diffusion in nanocrystals in terms of the solution to the
diffusion equation with a time-dependent coefficient.

2. SOLUTION OF THE DIFFUSION EQUATION 
WITH A VARIABLE COEFFICIENT

In order to estimate the diffusion coefficient at non-
equilibrium grain boundaries characteristic of the struc-
ture of as-prepared nanocrystals, we use the Borisov
relationship [9]

 (1)Db
ne

Db
eq ∆E

kT
------- 

  ,exp=
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where  and  are the diffusion coefficients at non-
equilibrium and equilibrium grain boundaries, respec-
tively, and ∆E is the excess energy of nonequilibrium
grain boundaries per atom.

Investigations into the recovery kinetics of nonequi-
librium grain boundaries have demonstrated that relax-
ation of the excess energy of these boundaries occurs
according to the exponential law [8]:

 (2)

Here, the time t0 is equal to half the characteristic time
of decreasing the density of extrinsic grain-boundary
dislocations, because the excess energy is proportional
to the square of the dislocation density; that is,

 (3)

Here, d is the grain size,  is the product of the
grain-boundary self-diffusion coefficient by the diffu-
sion breadth for equilibrium grain boundaries, G is the
shear modulus, and Va is the atomic volume.

It is assumed that the gradient of the diffusant con-
centration is directed along the x axis lying in the
plane of the grain boundary. Taking into account rela-
tionships (1)–(3), the diffusion equation can be repre-
sented in the form

 (4)

This equation can be solved by changing the vari-
ables:

 (5)

As a result, we obtain a standard diffusion equation,

 (6)

For diffusion in mode C, which is characterized by
the absence of migration of the diffusant from the
boundaries into the grains and is most commonly used
to measure the grain-boundary diffusion coefficient in
nanocrystals [1–4], the solution to Eq. (6) takes the
form

 (7)

With due regard for expression (5), this solution can
be transformed into a function of the coordinate x and
time t.
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3. ANALYSIS OF THE SPECIFIC FEATURES 
OF DIFFUSION IN NANOCRYSTALS

As a rule, the experimental diffusion coefficient can
be determined from constructed concentration profiles,
i.e., dependences of the diffusant concentration on the
diffusion depth at the instant of time corresponding to
the time of diffusion annealing. It follows from rela-
tionship (7) that, upon changing over from the variable
τ to the variable t, the dependence of the concentration
on the depth remains unchanged. Consequently, the
time dependence of the diffusion coefficient does not
affect the functional form of the concentration profiles.
However, from the analysis of the experimental profiles
constructed in the c–t coordinates, we can determine
the effective diffusion coefficient satisfying the condi-
tion τ = Deft; that is,

 (8)

The dependence of the ratio τ(t)/t on t is shown in
Fig. 1. As an example, the ratio /  at the initial
instant of time is chosen equal to 100.

Let us now consider two limiting cases. In the first
case, the diffusion experiment is performed under the
condition that the time of annealing is considerably
longer than the time of relaxation (t @ t0). This becomes
possible at a sufficiently high temperature of annealing.
Hence, we have τ ≈ t and the measured diffusion coef-
ficient coincides with the diffusion coefficient at the

equilibrium grain boundaries: Def ≈ . In the second
case (t ! t0), we obtain τ ≈ exp(∆E0/kT)t @ t. This sit-
uation can occur in short-time annealing at low temper-
atures. Under these conditions, the effective diffusion

Db
eq

Def/Db
eq τ t( )/t.=

Db
ne

Db
eq

Db
eq

20

40

40

60

8 12
t/t0

τ/t

Fig. 1. Time dependence of the ratio τ/t characterizing the
relative increase in the diffusion coefficient.
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Characteristic relaxation times of nonequilibrium grain boundaries in comparison with the annealing times in measurements
of the diffusion coefficient of nanocrystals

Metal d, nm T, K Db , m2/s t0, h td , h

Pd 100 430 2 × 10–21 15 240

577 1 × 10–18 0.04 48

Ni 300 398 6 × 10–21 80 3

448 3 × 10–19 1.8 3

Fe 25 450 1 × 10–22 3 386

500 1 × 10–20 0.03 1.5–69
coefficient exceeds the diffusion coefficient at the equi-
librium grain boundaries by several orders of magni-
tude. In the range between the limiting cases, the time
of annealing is of the same order of magnitude as the
time of relaxation and an increase in the temperature (or
in the time of diffusion annealing) leads to a gradual
decrease in the ratio / .

It can be seen from Fig. 1 that, at /  = 100, the
effective diffusion coefficient exceeds the value of 
by approximately one order of magnitude even after a
lapse of time t ≈ 3t0. Therefore, the measured diffusion
coefficient substantially depends on the time of diffu-
sion annealing; i.e., the shorter the time of diffusion
annealing, the larger the effective diffusion coefficient.
In order to determine the diffusion coefficient , it is
necessary to perform the diffusion annealing for a time
considerably longer than t0.

The above behavior of the diffusion coefficient is
confirmed by the experimental data. For example, the
measured coefficient of grain-boundary self-diffusion
in nanocrystalline iron with a grain size d = 19–38 nm

Db
ne

Db
eq

Db
ne

Db
eq

Db
eq

Db
eq

logDb

12

3

1/T

Fig. 2. Temperature dependences of the diffusion coeffi-
cient for (1) equilibrium grain boundaries at high tempera-
tures, (2) nonequilibrium grain boundaries at low tempera-
tures, and (3) nonequilibrium grain boundaries at interme-
diate temperatures. 
P

decreases by one order of magnitude in the case when
the time of diffusion annealing at the same temperature
(473 K) increases from 1.5 h to 3 days [10]. In submi-
crocrystalline nickel, the copper diffusion coefficient
decreases by three orders of magnitude after annealing
at a temperature of 523 K [4].

The disagreement between the available experimen-
tal data can be explained to some extent in terms of the
time dependence of the effective diffusion coefficient
considered above. The table presents the calculated
relaxation times t0 for the nonequilibrium structure of
the grain boundaries in comparison with the times of
diffusion annealing used in the experiments. It is evi-
dent from the table that, in the measurements per-
formed with nanocrystalline palladium and iron, the
diffusion annealing over the entire temperature range
covered was carried out during a period of time consid-
erably longer than the time of relaxation. Under these
conditions, the effective diffusion coefficient is close to
the coefficient , which is observed in the experi-
ment. On the other hand, three-hour annealing is obvi-
ously not sufficient for relaxation of grain boundaries in
nickel and the effective diffusion coefficient in submi-
crocrystalline nickel substantially exceeds the diffusion
coefficient .

The processes of relaxation proceeding during the
diffusion experiment cause another significant effect,
namely, a drastic decrease in the apparent activation
energy of diffusion. According to relationship (1), the
activation energy of diffusion decreases by ∆E; conse-
quently, the activation energy of diffusion at the grain
boundaries appears to be Eb – ∆E. Figure 2 depicts the
dependences (1/T) with activation energies Eb

(straight line 1) and Eb – ∆E (straight line 2). As the
temperature increases, the temperature dependence of
the diffusion coefficient is represented first by branch 2
and then (after the complete relaxation of the grain
boundaries) by branch 1. At intermediate temperatures
and times of annealing, the relaxation decreases the dif-
fusion coefficient at nonequilibrium grain boundaries
as compared to that represented by branch 2 and the
actual dependence deviates downward along curve 3.
The slope of this branch is less than that of branch 2.
Therefore, the diffusion activation energy measured in

Db
eq

Db
eq

Dblog
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the experiment should be less than the value of Eb – ∆E.
This can explain the fact that the measured activation
energy of grain-boundary diffusion in nanocrystals is
approximately half that for usual polycrystals [4].

In the case when the time of diffusion annealing is
chosen without regard for the relaxation time t0 and is
identical for all the temperatures studied above, we can-
not rule out the possibility that the diffusion coefficient
exhibits an anomalous behavior when portion 3 in
Fig. 2 has a negative slope, i.e., when the apparent acti-
vation energy of diffusion is negative.
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Abstract—Microcrystals of iodates of mercury, lead, thallium, and bismuth were grown in pores of glass and
polymer matrices from solutions or through sublimation in vacuum. Images of these microcrystals embedded
in matrices were obtained with an electron microscope. Exciton absorption and luminescence spectra of the
microcrystals revealed a strong difference in the temperature regions of stability of the various structural mod-
ifications between bulk crystals and microcrystals of some iodates. The absorption and luminescence spectra
are broadened inhomogeneously because of considerable size dispersion of the microcrystals and exhibit quan-
tum confinement effects. The exciton emission spectra show that exciton interaction in microcrystals becomes
significant at very low optical pumping levels because of efficient excitation transfer from the matrix. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The past decade has witnessed increased interest in
the properties of metal halide microcrystals embedded
in zeolites and other porous host matrices. The optical
spectra of metal halides exhibit strongly pronounced
excitonic effects, which makes the spectra sensitive to
variations in the parameters of porous matrices and the
conditions in which the microcrystals were loaded, as
well as to transformations occurring in the course of
sample ageing. Metal halides possess the characteristic
property of being soluble in some liquids and having a
low sublimation temperature, thus offering the possibil-
ity of microcrystal growth in matrices with low melting
temperatures. Among the factors responsible for the
difference between the optical spectra of microcrystals
embedded in matrices and the optical spectra obtained
from bulk crystals are quantum confinement, size dis-
persion, and the strong effect of near-surface regions, as
well as a relation between the restrictions on microcrys-
tal growth and the stability of some crystal modifica-
tions.

The present communication reports on a study of
microcrystals of iodates of thallium, mercury, lead, and
bismuth grown in a polymer and a glass porous matrix;
presents micrographs of these systems; and compares
the spectra of microcrystals with those of bulk crystals.
The micrographs were obtained with a JSM-5600 scan-
ning electron microscope having a resolution of 10 nm.
Since the systems studied have a low electrical conduc-
tivity, the surface of the samples was coated with a gold
film a few nanometers thick to make electron micro-
scope measurements possible. 
1063-7834/03/4506- $24.00 © 21170
2. MERCURY IODATE

Mercury iodate emits bright luminescence, whose
structure was studied comprehensively with a high res-
olution in [1]. Crystalline HgI2 consists of heavy ele-
ments and is therefore used for the detection of ionizing
radiation [2], and attempts are under way to employ, for
these purposes, not only bulk crystals but also hetero-
structures containing layers of HgI2-based solid solu-
tions [3]. This makes investigation of thin films and
microcrystals of mercury iodate an urgent problem.
Bulk HgI2 crystals crystallize usually in the tetragonal
red modification (RM); however, the orthorhombic
orange modification (OM), which transforms eventu-
ally to the RM, has been found to be stable in microc-
rystals grown in porous glasses with pore diameters of
up to 50 nm and in porous polymer materials [4, 5].
Copper iodate has recently been shown to have the
same property; indeed, CuI microcrystals embedded in
a polyethylene methacrylate matrix are predominantly
hexagonal, whereas bulk crystals have tetragonal sym-
metry [6]. The present study dealt with structural prop-
erties of HgI2 microcrystals and their optical spectra
obtained at different excitation levels, as well as with
variation of these properties with time for a range of
temperatures. The microcrystals were grown from sat-
urated solutions of mercury iodate in acetone in (and
partially, on the surface of) a porous polymer matrix.
The pores are produced in the matrix by ion bombard-
ment, and their diameters are, on the average, about one
micrometer.

The two exciton luminescence peaks near 2.32 and
2.45 eV are due to the RM and OM of mercury iodate
003 MAIK “Nauka/Interperiodica”
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(Fig. 1a). The spectra of an as-prepared sample practi-
cally do not have any indication of the presence of the
RM. While the RM luminescence in the sample stored
for a week at room temperature is already significantly
stronger than the OM emission, the transformation of
the OM in to the RM is not completed. The transition to
the RM involves diffusion of material and growth of
crystals in size, and we believe the residual OM to be
due to the OM microcrystals, which were originally
fairly large and, therefore, more stable. The importance
of thermally activated diffusion of the material for a
structural transition is also supported by the observa-
tion that, in a sample stored at 77 K, no OM-to-RM
transformation is seen to occur and the sample does not
change color. An increase in the concentration of the
material in the matrix favors the formation of RM crys-
tals, so that after several cycles of loading of a saturated
solution with its subsequent evaporation, it is the RM
that originally predominates in the sample. This obser-
vation stresses the relation between the crystal size and
stability of a specific lattice modification.

In addition to an intensity redistribution between the
OM and RM emission bands with time, the peaks of
both exciton bands exhibit a long-wavelength shift
(Fig. 1a). HgI2 microcrystals in as-prepared samples
have substantial size dispersion; for this reason, the
quantum confinement effect, typical of microcrystals,
contributes noticeably to the inhomogeneous broaden-
ing of the emission bands. Because sample ageing
favors growth of RM microcrystals in size and it is the
comparatively large OM microcrystals that persist the
longest, the luminescence bands weaken in the high-
energy regions. This scenario correlates with the time
evolution of the spectra, where the increase in the RM
contribution and the low-energy shifts of the maxima of
both exciton bands (by 0.015 eV for the RM and by
0.025 eV for the OM) are accompanied by broadening
of the maxima. The low-energy shift of the lowest exci-
ton level can be treated with the well-known expression
for the case of weak size quantization, ∆E = h2π2/2MR2,
where M is the exciton translational mass and R is the
microcrystal radius. The average radii of mercury
iodate microcrystals in an as-prepared sample are esti-
mated as 5 nm for the RM and 3 nm for the OM. As
seen from photomicrographs, the comparatively large
OM microcrystals present in an as-prepared sample are
surrounded by clouds of small microcrystals (Fig. 2a),
whereas the sample stored for several days at room
temperature contains large RM microcrystals (Fig. 2b).
Thus, the photomicrographs of the system support the
idea of the transformation of its luminescence and
absorption spectra with sample ageing.

Let us turn now to the dependence of the emission
spectra on the excitation level by a pulsed molecular
nitrogen laser (photon energy 3.68 eV) at T = 2 K
(Fig. 1b). The ratio of the integrated RM to OM band
intensities in the sample where the RM predominates
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
varies by a few times as the pump level W0 increases
from 10–1 to 102 W/cm2. As the excitation level
increases, the RM and OM emission band maxima shift
toward lower energies by 0.015 and 0.010 eV, respec-

5
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1

B

(b)

(a)

12

2.1 2.2 2.3 2.4 2.5 2.6
Photon energy, eV

Fig. 1. Exciton luminescence spectra of HgI2 microcrystals
grown in porous polymer matrices. The bands at 2.32 and
2.45 eV correspond to the red and orange modifications,
T = 4 K. (a) Ageing-induced transformation of the spec-
trum: (1) as-prepared sample and (2) sample stored at room
temperature for a week. (b) Spectra of the aged sample
obtained at different levels W0 of pulsed nitrogen laser exci-
tation (pump photon energy, 3.68 eV). W0 increases from

(1) 10–1 to (5) 102 W/cm2. B is the band originating from
exciton–exciton interaction.
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tively. These features can be assigned to the saturation
of emission from small microcrystals of both modifica-
tions and emission saturation of all OM microcrystals.
The luminescence characteristics of HgI2 microcrystals

(a)

(b)

(c)

1.5 µm

10 µm

5 µm

Fig. 2. Micrographs of a porous polymer matrix containing
HgI2 and PbI2 microcrystals. (a) As-prepared sample with
mercury iodate (clouds of small microcrystals of the orange
modification), (b) the same sample stored for a week at
room temperature (large microcrystals of the red modifica-
tion), and (c) sample with platelets of hexagonal lead iodate.
P

become nonlinear at W0 levels that are several orders of
magnitude lower than those quoted for bulk crystals
[7]. This difference is determined by efficient excitation
transfer from the matrix to HgI2 microcrystals, a con-
jecture supported by the luminescence of the matrix
becoming weaker with increasing concentration of the
mercury iodate in it. Already at W0 = 10–1 W/cm2, band
B produced by exciton interaction (biexcitons, inelastic
exciton–exciton and carrier–exciton scattering) appears
on the low-energy wing of the RM exciton band. We
assign the much stronger manifestation of nonlinearity
in the emission of the RM compared to OM microcrys-
tals to the existence of local levels in the matrix, which
lie above the RM electron band extrema in energy but
below the extrema of the OM bands. It is via such levels
that carriers can transfer from the matrix to the RM
microcrystals.

3. LEAD IODATE

There is a wealth of publications on optical spectra
of lead iodate microcrystals embedded in various matri-
ces and of lead-iodate-based metal-organic nanostruc-
tures (see, e.g., [8–12]). Since PbI2 is a layered crystal,
its microcrystals should be modeled by microdisks, in
which case the quantum confinement energy level shift
is determined primarily by the thickness of the microc-
rystal rather than by its comparatively large lateral
dimensions. In microcrystals grown in alkali borosilicate
glass with an average pore size of 6 nm from a water
solution saturated at 60°C, the high-energy shift of the
lowest exciton level with respect to its bulk crystal posi-
tion varies from 0.06 to 0.08 eV for various samples,
which corresponds to a characteristic geometric size of
the nanocrystals of about 2 nm. Assuming this dimension
to be in the direction perpendicular to the crystal layers,
the microdisk thickness should be 6–8 PbI2 elementary
layers. This estimate was made under the assumption of
the microcrystals belonging to the 2H polytype charac-
teristic of bulk crystals. However, because of the crystal
growth being spatially confined, the layer packet stack-
ing order may change. If PbI2 microcrystals in porous
matrices grow in the 4H structure, the exciton level shift
will be governed, at least partially, by the difference
between the band gap widths, which in the 4H polytype
is slightly larger. While the luminescence spectrum of
an as-prepared sample exhibits only free-exciton emis-
sion, repeat measurement shows the exciton to have
completely relaxed to the bound state (Fig. 3). This is
due to the photoinduced formation or recharging of
defects.

While PbI2 crystallized from a water solution in a
porous polymer matrix does not exhibit a noticeable
quantum confinement shift of the exciton luminescence
maximum, the spectrum contains a high-energy tail,
which corresponds to emission exceeding the band gap
of the bulk 2H polytype in energy. A the photomicro-
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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graph of this system shows that the lateral dimensions
of the microcrystals greatly exceed their thickness
(Fig. 2c).

4. THALLIUM IODATE

A remarkable property of the thallium halides is
their very large low-frequency dielectric permittivity.
In standard conditions, thallium iodate has orthorhom-
bic structure, which transforms into CsCl-type cubic at
170°C and atmospheric pressure (at room temperature,
this structural transition requires a pressure of about
5 kbar to take place).

We grew microcrystals of thallium iodate in porous
alkali borosilicate glass through immersion of the
matrix in a TlI water solution saturated at 60°C, which
was followed by its dehydration, a procedure repeated
several times. At the sites where pores emerge onto the
matrix surface, microcrystals with a size in excess of
the pore diameter form. The exciton peak of the direct
interband transition in the absorption spectrum of the
orthorhombic TlI lies at 2.867 eV at T = 2 K [13], and
the indirect edge starts 0.1 eV below it [14]. The sharp
direct absorption edge of the system studied by us lies
near 2.85 eV at T = 77 K (Fig. 4), thus implying orthor-
hombic symmetry of the microcrystals, because the
direct exciton peak energy in the cubic TlI is 2.7 eV.
The orthorhombic symmetry of TlI is corroborated by
the shape of the microcrystals forming on the matrix
surface (Fig. 5a).

The luminescence band peak of the TlI microcrys-
tals is shifted by 0.1 eV relative to the direct edge, so
that this peak lies in the region of the indirect absorp-
tion edge. Note that, because of the direct and indirect
edges being very closely located, the oscillator strength
of the indirect transition in the orthorhombic TlI is
comparatively large. At high energies, the TlI emission
band overlaps with the matrix luminescence band
(Fig. 4), thus complicating analysis of its shape; it is
obvious, however, that the microcrystal emission tail
lies considerably higher in energy than the exciton peak
in the bulk crystal spectrum. Thus, this system also
exhibits the emission of small microcrystals, whose
energy levels are shifted toward higher energies by
quantum confinement. Our estimates place the exciton
radius in TlI at 5–6 nm, which allows one to conclude
that there are microcrystals a few nanometers in size in
the matrix. Significantly, heating the samples to nearly
the melting point of TlI (440°C) does not transfer the
microcrystals to the cubic phase, whereas in bulk crys-
tals, this structural transition occurs at a much lower
temperature. This indicates a broadening of the stability
region for the low-symmetry modification of the micro-
crystals, which is also characteristic of mercury and
copper iodates.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
5. BISMUTH IODATE

Porous-glass platelets and BiI3 single crystals were
placed in an evacuated ampoule and heated to 300–
400°C, a process in which microcrystals grew under
sublimation in the pores (Fig. 5b). After termination of
the growth, the matrices with the microcrystals were
cooled either gradually or abruptly. In the latter case,
the spectra were more diffuse because of large strains.
The growth on the glass matrix surface starts primarily
at the pore entrances, near which a dendritic microcrys-
talline structure forms (Fig. 5c). One can also grow BiI3
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Fig. 3. Luminescence (solid lines) and absorption (dashed
line) of PbI2 microcrystals in a porous glass matrix. (1) As-
prepared sample at T = 77 K and (2, 3) spectra of the same
sample after relaxation at T = 77 and 4 K, respectively. FE
stands for free exciton, and BE, for bound exciton.
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line) spectra of a polymer matrix containing TlI microcrys-
tals at T = 77 K. (1) Emission of TlI microcrystals and
(2) emission of the matrix.
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microcrystals in a polymer matrix from a solution of
bismuth iodate in hydrochloric acid.

In glasses with large pores, the absorption spectrum
of microcrystals is close to that of bulk BiI3 in the posi-
tion of the direct-exciton maximum and of the indirect-

(‡)

(b)

(c) 1 µm

0.2 µm

2 µm

Fig. 5. Micrographs of a porous glass matrix containing TlI
and BiI3 microcrystals. (a) Microcrystals of thallium iodate,
(b) microcrystals of bismuth iodate embedded in the matrix,
and (c) dendritic structure of bismuth iodate on the matrix
surface.
P

exciton phonon replicas. Matrices with pore dimen-
sions of 6 nm exhibit a short-wavelength shift of the
exciton absorption maximum by 20 to 50 meV as com-
pared with bulk BiI3 (Fig. 6a) [14]. Assuming the shift
to be determined primarily by the thickness of the lay-
ered microcrystal, one can estimate the bismuth iodate
microcrystal thicknesses in the weak size quantization
approximation from known exciton parameters as
seven to three layer packets. In matrices with a low BiI3

microcrystal concentration, the absorption spectrum
contains, in addition to a structure close in energy to the
bulk-crystal absorption edge, bands observed earlier in
spectra of small BiI3 clusters [8].

Let us briefly compare the luminescence spectrum
of relatively large BiI3 microcrystals grown in pores of
the glass matrix and on its surface with that of bulk
crystals (Fig. 6b). The size-quantized shift of the exci-
ton band center for such microcrystals does not exceed
10 meV. The microcrystal emission band X2 lies in the

region 1.91–1.93 eV, where bulk BiI3 (  symmetry)
exhibits a sharp structure due to excitons imprisoned in
mesoscopic domains; these domains can be modeled by
quantum disks one, two, and three layer packets thick.
The exciton light emission from such domains consists
of groups of narrow lines, denoted by W1, W2, and W3

in the spectra presented in [14–16]. The BiI3 lattice in
these domains has D3d symmetry; therefore, the energy
of emission from the domains is determined by the
band gap of bulk BiI3 with D3d symmetry (which is con-
siderably less than the band gap of the conventional

BiI3 crystal of  symmetry) and by the size-quan-
tized shift of energy levels in domains of different
thickness. As in bulk crystals with domains, the emis-
sion of microcrystals in the range 1.91–1.93 eV varies
from one sample to another, depending on the actual
concentration of the mesoscopic domains and their size
distribution. The maximum of the other band, X1, varies
in position in different microcrystalline samples from
1.97 to 2.02 eV, which overlaps the region of the narrow
T, S, and R lines of excitons bound to stacking faults.
These lines are seen in absorption (Fig. 6a) and lumi-
nescence of bulk BiI3 crystals [16, 17]. We believe that
the strong microcrystal emission band X1 of a complex
structure contains contributions from both excitons
bound to stacking faults and W1-type domain excitons.
The spectra of strongly strained BiI3 microcrystals are
dominated by low-energy components of this band. The
position of the weak X2 band can be identified with the
W2 and W3 domain excitons, which have a lower energy
than W1 and belong to comparatively large mesoscopic
domains. Mesoscopic domains (disks) in microcrystals
should be, first, dominated by thin disks (exciton W1)
and, second, confined in lateral disk dimensions, which
should shift the groups of the W1, W2, and W3 narrow

C3i
2

C3i
2
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Fig. 6. Spectra of BiI3 microcrystals grown in porous glass matrices, T = 4 K. (a) Absorption spectra of matrices with (1) high and
(2) low bismuth iodate concentrations; shown below for comparison is a spectrum of a 500-nm-thick BiI3 single crystal (T, S, R are
the lines of stacking-fault-bound excitons; FE stands for free exciton; arrows identify the indirect-exciton edge steps). (b) Lumines-
cence spectra of matrices with (1) low and (2) high microcrystal concentration and (3) spectrum of a sample with strongly strained
microcrystals. Bands X1 and X2 are due to the emission of comparatively large microcrystals, and band X3 relates to small microc-
rystals.
lines to even higher energies. The broad band peaking
at 1.6 eV is the strongest in samples with a low BiI3

microcrystal concentration. It originates most likely
from an emission of small microcrystals characterized
by large Stokes losses [14], which determine the posi-
tion of the luminescence band in the low-energy spec-
tral region. This band weakens with increasing quantity
of BiI3 in the matrix, an observation that can reasonably
be assigned to a decrease in the volume fraction of
small microcrystals.

Thus, for metal iodates having several structural
modifications, the temperature region of modification
stability changes radically in going from large crystals
to microcrystals. The optical spectra of layered iodate
microcrystals are governed primarily by the number of
layer packets, which increases with an increasing the
loading of matrix pores by the material under study.
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Abstract—The structure and mechanical properties of nanostructured thin films based on carbides, nitrides,
and borides of transition metals are described. The mechanisms of localized deformation of the films during
indentation are compared. It is shown that the tendency of a material to form shear bands during deformation
can be predicted using the parameter H3/E2, which describes the resistance of the material to plastic deforma-
tion. The columnar structure of the films is found to play an important role during deformation, which proceeds
via slipping of columnar structural elements along the direction of an applied load. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The structures of nanomaterials differ from those of
ordinary materials, which thus leads to the discovery of
new physical phenomena as a result of the unique struc-
ture and properties of nanomaterials. Surface engineer-
ing has currently reached the nanometer scale. However,
significant problems were encountered regarding both
fundamental understanding of the behavior of nanosys-
tems and quantitative measurements and interpretation
of their properties, and this has hampered the develop-
ment and application of nanotechnologies [1, 2].

Tribological coatings should have low abrasive
wear, high fatigue strength, and high resistance to
deformation and fracture. According to the classical
theory of wear, low abrasive wear is ordinarily related
to high hardness (which has been repeatedly borne out
for films [3, 4]) and high fatigue strength corresponds
to high values of the Young’s modulus. In real practice,
the hardness H of a material is usually measured; how-
ever, this quantity is a dependent characteristic and is
connected with the elastic and plastic properties of the
material. The hardness of nanostructured films can be
as high as 50–70 GPa [3] and even exceed that of poly-
crystalline diamond [5]. Most bulk materials with high
hardness exhibit high values of the modulus of elastic-
ity E, which makes them brittle. To estimate the resis-
tance of materials to elastic strain to failure, the ratio of
the hardness to the elastic modulus H/E, which is also
called the plasticity index, is used. To estimate the resis-
tance of materials to plastic strain, the parameter H3/E2

is applied [6]. Whence it follows that, in order to pos-
sess an increased resistance to elastic breaking strain
and a decreased plastic strain, a material should have
high hardness and a low modulus of elasticity. One of
1063-7834/03/4506- $24.00 © 21177
the methods for producing materials with a high H/E
ratio is the deposition of nanostructured coatings.

An interesting feature of hard, superhard (H ≥ 40 GPa),
and ultrahard (H ≥ 70 GPa) nanostructured films is that,
apart from high hardness, they also have high strength
and elastic recovery We (up to 90%) [7, 8]. Thus, we
deal with a new class of materials that have high hard-
ness and elasticity and allow intentional variation of the
values of H, E, and We. The elastic behavior of nano-
structured films can be caused by an absence of internal
sources of dislocations in nanocrystals of sizes below a
certain critical value [9]. In this case, the mechanism
limiting the deformation of nanostructured films is dif-
fusion mass transfer and/or grain-boundary slip,
whereas dislocation motion is hindered because of
small crystallite size and the presence of intergrain
amorphous layers. The strength of the interface, whose
volume fraction can be as high as 50%, becomes one of
the key factors determining the deformation of nano-
materials. Moreover, the critical crack size in nanoma-
terials coincides with the size of crystallites and is only
a few nanometers. Therefore, it was assumed that nano-
structured materials cannot deform plastically. ˇVeprek
and Reiprich [10] believe that multiple nanocracks,
which cannot grow above a critical size specified by
crystallite size, appear during deformation of nano-
structured films. Upon unloading, these nanocracks
become closed, thus leading to the partial or complete
recovery of deformed regions. This hypothesis is in
conflict with a number of experimental results. For
example, the authors of [9, 11–13] showed that the
deformation of nanostructured films can be both homo-
geneous and inhomogeneous (localized, with the for-
mation of shear bands). Plastic deformation in localized
003 MAIK “Nauka/Interperiodica”
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Table 1.  Basic deposition parameters and film structures

Film
composition

Deposition parameters Film structure

temperature, °C bias voltage V, V nitrogen partial 
pressure (N2/Ar) crystal structure grain size, nm film

morphology

Ti–B–N (1) 250 –250 0 NaCl 10–40 Equiaxed grains

Ti–B–N (2) 400 0 0 NaCl 4–10 "

Ti–Cr–B–N 250 0 0.15 NaCl 2–7 "

Ti–Si–N 250 0 0.15 NaCl 10–30 Columnar grains

Cr–B 250 –250 0 AlB2 1000* "

* Each columnar grain consists of grains and subgrains 20-–40 nm in size.

Table 2.  Mechanical properties and roughness of films

Film
composition

Hardness H, GPa 
(Si substrate)

Elastic modulus 
E, GPa H/E H3/E2, GPa Rrms, nm Elastic recovery 

We , %

Ti–B–N (1) 34 250 0.136 0.63 1.15 81

Ti–B–N (2) 42 300 0.140 0.82 4.5 77

Ti–Cr–B–N 27 240 0.112 0.34 0.3 73

Ti–Si–N 24 210 0.114 0.31 1.3 76

Cr–B 33 276 0.119 0.47 1.0 73
regions is typical for amorphous materials and was also
observed in some nanostructured and ceramic materi-
als. Although there are various models for the deforma-
tion of materials via the formation of shear bands [14],
this phenomenon has not been properly explained.

The microstructure of single-phase films is usually
well described by the model of structural zones [15,
16]. According to this model, films prepared under the
conditions of low mobility of adsorbed atoms have a
strongly anisotropic columnar structure. This structure
often appears in films grown through physical deposi-
tion and causes undesirable stresses parallel to the sur-
face of the substrate. Localized strain in films with a
pronounced columnar structure is assumed to develop
homogeneously, whereas the formation of shear bands
is typical of films with an equiaxed-grain structure [9,
11–13].

The purpose of this work is to describe the behavior
of nanostructured films based on carbides, nitrides, and
borides of transition metals under localized deforma-
tion and to reveal an interrelation between their struc-
ture and physical-mechanical properties.

Composite targets to be sputtered were fabricated
through the process of force SHS compacting (self-
propagating high temperature synthesis) from exother-
mic blends of different powders [17]. Thin films were
deposited through magnetron sputtering of the compos-
ite targets in an argon atmosphere or a gaseous mixture
of argon and nitrogen. The temperature and bias volt-
age were varied (Table 1). For substrates, we used (001)
silicon single crystals, nickel, stainless steel, and a VK-
P

type hard alloy. The structure of coatings was studied
using a Hitachi S-4200 scanning and a Hitachi-
9000NAR transmission electron microscope. Foils for
a high-resolution electron microscopic study of trans-
verse sections were prepared following the standard
technique [1]. A Geigerflex diffractometer was used for
x-ray diffraction analysis. Depth profile analysis of the
film composition was performed using Auger electron
spectroscopy on an LHS-10 SAM apparatus. The hard-
ness, modulus of elasticity, and elastic recovery were
measured on a TriboScope device (Hysitron, Inc.,
USA) and a nanohardness tester (CSM Instruments,
Switzerland) by following the Oliver and Pharr tech-
nique [18]. Localized deformation in films was initiated
with a tetrahedral Vickers pyramid under loads of 10,
25, and 50 g. Film surface topography before and after
indentation was studied using NanoScope III (Digital
Instruments, US) and NanoScan (Russia) atomic-force
microscopes (AFMs).

2. FILM STRUCTURES

Table 2 gives the root-mean-square values of the
surface roughness Rrms of films measured using AFM
with an accuracy of 5%. The film roughness is seen to
depend on both the chemical composition and parame-
ters of the physical deposition. The smoothest surface
was detected in the Ti–Cr–B–N films, which inherited
the roughness (0.2 nm) of the silicon substrate after ion
etching. When a bias voltage is applied, the outer layers
of a film are sputtered by ions of a working gas and then
deposited, which smoothens the film surface. However,
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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in the case of multicomponent films, a perfect surface
can be prepared without applying a bias voltage. With
increasing substrate temperature, the film surface
roughness increases because of the increased mobility
of deposited atoms and their diffusion to islands formed
earlier. AFM images (Fig. 1) show that the film surfaces
are covered with three-dimensional hillocks 40–50 nm
(Ti–Cr–B–N), 60–70 nm (Ti–Si–N), 80–100 nm (Ti–
B–N (1)), 130–140 nm (CrB2), and 170–190 nm (Ti–B–
N (2)) in size. The nature of these hillocks is usually
connected with the film growth mechanism, i.e., with
the formation of separate islands on the substrate sur-
face (the Volmer–Weber mechanism) and their growth
and coalescence, which result in the formation of inter-
grain cavities due to the shielding effect.

The results of the structural analysis are given in
Table 1. The structures and morphology of the films are
seen to differ significantly. The Cr–B and Ti–Si–N
films have a pronounced columnar structure with col-
umns 10–30 nm and 0.1 µm in diameter, respectively
(Fig. 2). Columnar grains in the latter films, however,
contain many equiaxed grains and subgrains, which
means that the actual size of crystallites in them

0.5

Ti–Si–N

1.5

µm

60 nm

0.5

Ti–B–N

1.5

µm

60 nm

Fig. 1. Surface topography of Ti–B–N (2) and Ti–Si–N
films.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
(20−40 nm) turns out to be substantially smaller than
the width of columnar macrograins. Note that a colum-
nar structure with many crystallites inside its elements
was observed earlier in [19]. The cross-sectional elec-
tron microscopic study of the Ti–B–N and Ti–Cr–B–N
films showed the absence of a columnar structure
(Figs. 3a, 3b). A dark-field image of the structure of the
Ti–Cr–B–N film demonstrates crystallites 2–7 nm in
size (Fig. 3c). The corresponding electron diffraction
pattern shows that they have a cubic NaCl-type struc-
ture. Note that the film grows along the image plane,
which indicates the absence of a columnar structure.
Instead, TiN-based equiaxed grains and intergrain
amorphous regions are formed. Figure 3d shows a high-
resolution micrograph of a Ti–Cr–B–N film with a sep-
arate TiN nanocrystallite 3–4 nm in size oriented along
the 〈001〉  zone axis.

It is interesting that Ti–Si–N and Ti–Cr–B–N films
deposited under identical conditions (T = 250°C, V = 0,
N2/Ar = 0.15) have different morphology, namely, a
columnar grain structure in the former case and an equi-
axed-grain structure in the latter. The formation of a
strongly anisotropic columnar structure is ordinarily

10 nm

(a)

(b)

382
nm

0

5.6 µm

5.6 µm

Fig. 2. Films with a columnar structure: (a) electron micro-
scopic dark-field image of the cross section of a Ti–Si–N
film and (b) fractograph of the fracture surface of a CrB2
film.
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0.1 µm
(a)

0.2 µm

2 nm10 nm

(b)

(d)(c)

Ti–B–N (1) Ti–Cr–B–N

Ti–Cr–B–N Ti–Cr–B–N

(010)

(100)

111
200
220

Fig. 3. Electron microscopic images of films with an equiaxed-grain structure: (a, b) scanning, (c) dark-field, and (d) high-resolution
images.
1
2

µm

Fig. 4. Fractograph of the fracture surface of a Ti–Cr–B–N
film after scratching its surface with a diamond pyramid.
PH
related to segregation of impurities along grain bound-
aries when the mobility of adsorbed atoms is low [15,
16]. Our results indicate that the structure of a multi-
component film cannot be unambiguously predicted
using the model of structural zones, which performed

0.2 µm

Fig. 5. Electron microscopic image of an indentation made
by a Vickers pyramid in a Ti–Cr–B–N film at a load of 25 g.
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well for single-phase films. For a multiphase system, it
seems to be difficult even to establish the basic param-
eter T/Tm (Tm is the melting point), which specifies the
surface mobility of deposited particles of a material.
The introduction of additional elements into the com-
position of coatings can hinder the growth of a colum-
nar structure and stimulate the nucleation of new
grains, thus leading to an equiaxed-grain structure at
various temperatures.

Three-dimensional islands on the surface of the
films with a columnar structure are the places where the
ends of individual grains come to the surface. The char-
acteristic scale of the surface relief for the films with an
equiaxed-grain structure (80–100 nm for Ti–B–N (1),

Table 3.  Deformation types of nanostructured thin films
(published data)

Composition Crystal
structure Morphology References

Homogeneous deformation

TiN NaCl Columnar [9]

(Ti, Al)N NaCl " [11–13]

Ti(B, N) AlB2 " [11–13]

Inhomogeneous deformation

TiB2 AlB2 Partially colum-
nar or lumplike

[9]

AlN ZnS " [11–13]
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
180 nm for Ti–B–N (2), and 40–50 nm for Ti–Cr–B–N)
exceeds the size of crystallites in these films (10–40, 4–
10, and 2–7 nm, respectively) by an order of magnitude.
When films are deposited onto a surface, hollows and
grooves form, decreasing the total surface energy [20].
These regions have a low density because of the high
volume fraction of pores, defects, and incoherent inter-
faces. The formation of such interfaces results in a
latent columnar structure. Although this structure can-
not be revealed when cross-sectional fracture surfaces
of films are examined with a scanning electron micro-
scope, it plays a decisive role in deformation. Figure 4
shows a fracture micrograph for a Ti–Cr–B–N film
after scratching its surface with a diamond indenter. A
pronounced columnar structure is visible after defor-
mation, and its geometry correlates with the film sur-
face topography. It is seen that, in the process of defor-
mation, individual columns or columnar structural ele-
ments (CSEs) consisting of many crystallites slip with
respect to each other.

3. LOCALIZED DEFORMATION IN THIN FILMS

For fractography analysis, we chose films differing
in crystal structure, grain size, and grain morphology
(Table 1), according to data on the deformation types of
nanostructured films obtained earlier (Table 3).

Figure 5 shows an electron microscopic image of an
indentation made with a Vickers pyramid at a load of
25 g in a Ti–Cr–B–N film deposited onto a silicon sub-
strate. The applied load is seen to cause shear bands
Table 4.  Formation of shear bands and particles rejected outside (PROs) in regions of localized deformation

Film
composition

10 g 25 g 50 g

shear bands PROs shear bands PROs shear bands PROs

Ti–B–N (1) – + – +

Ti–B–N (2) – – – – – –

Ti–Cr–B–N + + + + + +

Ti–Si–N – – + – + +

Cr–B – – – – + +

Table 5.  Comparison of the values of hardness, elastic modulus, and elastic recovery obtained in this work for multicompo-
nent films with published data

Film composition Hardness H, GPa Elastic modulus
E, GPa

Elastic recovery 
We, % H3/E2, GPa References

Ti–Si–N 42.3 273 78 1.02

Ti–Zr–C–O 41.9 289 77 0.88

Ti–B–N 42.0 300 77 0.82

Ti–Ca–C–O 41.4 325 68 0.67

Ti–Al–N 41.9 397 74 0.46 [24]

Ti–Mo–N 43.0 442 68 0.41 [25]
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along the faces of the indenter pyramid. Table 4 gives
the critical applied loads for the formation of shear
bands. The topography of the Ti–Cr–B–N film surface

200 nm

10 g

1

200 nm

(a)

3 µm

(b) 25 g

2

4

µm

400 nm

(c) 50 g

4 µm

8

Fig. 6. AFM images of regions with localized deformation
in a Ti–Cr–B–N film indented with a Vickers pyramid at a
load of (a) 10, (b) 25, and (c) 50 g. Particles rejected outside
are shown by arrows.
P

in the regions of localized deformation at loads of 10,
25, and 50 g is shown in Fig. 6. The height and width of
the plastic-strain steps are 5–15 and 100–200 nm,
respectively (irrespective of the applied load). As the
load increases, the number of steps increases but the
spacing between them remains unchanged.

Figure 7a shows an image of an indentation made
with the Vickers pyramid at a load of 50 g in the Ti–B–
N (2) film; the image was taken with an atomic-force
scanning microscope. In the Ti–B–N system, no shear
bands or radial cracks were observed over the whole
range of applied loads, which indicates the homoge-

(a)

20

0 2.5

10 g

1

3

µm
(b)

0

–20

Ti–B–N (1)

nm

5.0 µm

50

0 2.5

25 g

0

–50

Ti–B–N (2)

nm

5.0 µm

Fig. 7. (a) AFM image and (b) line scans of regions with
localized deformation in Ti–B–N films indented with a
Vickers pyramid at a load of (a) 50 and (b) 10 and 25 g.
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neous character of the film deformation. From line
scans taken from vertical sections of indentations
(Fig. 7b), it follows that the film surface relief in a
deformed region and the roughness of the initial film
surface have virtually the same scale. This is evidence
that localized deformation develops via slipping of
CSEs along the direction of an applied load. This con-
clusion is illustrated by an AFM image of an indenta-
tion made with the Vickers pyramid (Fig. 8). The coop-
erative motion of columnar grains along the applied
load is seen to occur, with the width of each step being
1–3 columns. The shape of the ends of columns
remains unchanged during deformation, and the film
surface topography in the indentation is identical to that
of the film surface.

The appearance of ejected particles on the terraces
of steps is noteworthy. This phenomenon was also
observed in [12], but no explanation was provided for
it. The size of the particles (100–200 nm) agrees well
with the size of individual islands on the surface of the
initial films observed in topographic examination. It
follows that some CSEs are ejected outside in the
course of unloading. Thus, the ejected particles on the
terraces of steps are likely to be the apices of individual
CSEs (columnar grains or portions of the material).

It was assumed in [9, 11, 12] that homogeneous
deformation could occur only in films with a columnar
structure. However, the results of this work do not sup-
port this assumption. We failed to detect periodic
regions of plastic deformation in the form of steps in
the fractographs of an indentation made by the Vickers
pyramid in Ti–B–N films without a pronounced colum-
nar structure. Analysis of the results (Tables 1, 2) shows
that none of the structural parameters or mechanical
properties, taken separately, characterizes the deforma-
tion mechanism. However, it was found that the quan-
tity H3/E2, which characterizes the resistance of the
material to plastic deformation [6, 21], allows one to
predict the formation of shear bands in the process of
localized deformation: steps were formed only at low
values of the parameter H3/E2. This follows from the
theoretical analysis performed by Johnson [22], where
it was shown that the load P required for the beginning
of plastic deformation in the case where an undeform-
able ball of radius r is indented into a semi-infinite solid
is given by the expression P = 0.78r2(H3/E2). Note that
the plastic component in the case of inhomogeneously
deformed coatings is larger than in the case of the Ti–
B–N coatings deformed without step bands (see param-
eter We in Table 2). Thus, a comparison of the film sur-
face topography before deformation and the film sur-
face relief in the region of an indentation made by a
Vickers pyramid, on the one hand, with the size of par-
ticles ejected after unloading, on the other, shows that
both deformation mechanisms proceed through slip-
ping of CSEs (separate grains or multigrain portions of
the material) along the applied load. The results
obtained indicate that grain-boundary slip is the main
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
mechanism of deformation in both cases. In the case of
inhomogeneous deformation, cooperative motion of
the CSEs takes place because of the larger binding
energy between columns. Deformation proceeds at a
constant volume and is accompanied by the rejection of
an amount of deformed material outside (the formation
of hillocks) and/or by elastic compression. Upon
unloading, individual CSEs can be rejected outside due
to the elastic-stress relaxation or the reverse plasticity,
which causes the appearance of ejected particles (visi-
ble in Figs. 6, 7a).

4. PHYSICAL-MECHANICAL PROPERTIES

The values of the hardness, modulus of elasticity, and
elastic recovery of films are given in Table 2. The depth
of indentation for all loads was smaller than 15% of the
film thicknesses. The Ti–B–N (2) film had the maximum
hardness (42 GPa). Young’s modulus for coatings of this
system varied in the range 250–300 GPa, which is sig-
nificantly lower than that for bulk TiN and TiB2 com-
pounds [23]. The Ti–B–N films also had the maximum
value of elastic recovery (77–81%) and the minimum
plastic deformation (23–19%). Note that shear bands
formed only in the films with large plastic deformation.

An important advantage of multicomponent nano-
structured films is that one can fabricate superhard
materials with identical hardness and different values
of the Young’s modulus (Table 5). This means that thin
films with identical hardness can differ in their elastic
strain to failure (H/E) and the resistance to plastic
deformation (H3/E2). Their elastic properties can also
be significantly different. A combination of high hard-
ness and elastic recovery characterizes multicomponent
nanostructured films as new unique hard and, at the
same time, elastic materials. It is also important that

µm1 2 3 4

Fig. 8. Fractograph of the fracture surface of a Ti–Si–N film
indented with a Vickers pyramid at a load of 25 g.
3
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different materials can have virtually the same mechan-
ical properties (e.g., Ti–Zr–C–O and Ti–B–N films, see
Table 5). Thus, superhard coatings can be produced
with different combinations of elastic and plastic prop-
erties, which provides a wide choice of coatings for var-
ious specific tasks.

Additional studies should be made to determine the
E and We values required for high wear resistance of a
material. One of the indubitable advantages of films
with a low modulus of elasticity is that such films better
fit steel substrates (E = 205 GPa), which minimizes the
elastic stresses at the coating/substrate interface and the
internal residual stresses in the system, thereby signifi-
cantly decreasing the wear [6].

5. CONCLUSIONS

Thus, we have found that multicomponent nano-
structured films deposited through magnetron sputter-
ing have either a pronounced or a latent columnar struc-
ture; such a structure plays a significant role and mani-
fests itself in deformation. Localized deformation in
nanostructured thin films can develop both homoge-
neously and inhomogeneously (with the formation of
shear bands). To predict the formation of shear bands in
a material subjected to deformation, we can use the
parameter H3/E2, which describes the resistance of the
material to plastic deformation. Both deformation
mechanisms involve slipping of CSEs (individual
grains or multigrain portions of the material) along the
direction of the applied load. In the case of a weak
chemical bond between neighboring grains, individual
CSEs can be rejected outside as a result of relaxation of
elastic stresses upon unloading. The inhomogeneous
deformation mechanism is associated with cooperative
motion of CSEs due to the large binding energy
between grains.

ACKNOWLEDGMENTS

This work was supported by the International Sci-
ence and Technology Center (ISTC), grant no. 1852.

REFERENCES

1. D. V. Shtansky, K. Kaneko, Y. Ikuhara, and E. A. Leva-
shov, Surf. Coat. Technol. 148 (2–3), 204 (2001).

2. D. V. Shtanskiœ and E. A. Levashov, Izv. Vyssh. Uchebn.
Zaved., Tsvetn. Metall. 3, 52 (2001).
PH
3. D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, and
J. J. Moore, J. Mater. Synth. Process. 7 (3), 187 (1999).

4. D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, and
J. J. Moore, J. Mater. Synth. Process. 6 (1), 61 (1998).

5. A. Niederhofer, P. Nesládek, H.-D. Männling, et al.,
Surf. Coat. Technol. 120–121, 173 (1999).

6. A. Leyland and A. Matthews, Wear 246 (1–2), 1 (2000).
7. S. Veprek,ˇ J. Vac. Sci. Technol. A 17 (5), 2401 (1999).
8. J. Musil, Surf. Coat. Technol. 125 (1–3), 322 (2000).
9. R. A. Andrievskiœ, G. V. Kalinnikov, and D. V. Shtanskiœ,

Fiz. Tverd. Tela (St. Petersburg) 42 (4), 741 (2000)
[Phys. Solid State 42, 760 (2000)].

10. S. Veprekˇ and S. Reiprich, Thin Solid Films 268 (1–2),
64 (1995).

11. R. A. Andrievski, G. V. Kalinnikov, and D. V. Shtansky,
Mater. Res. Soc. Symp. Proc. 581, 583 (2000).

12. R. A. Andrievski, G. V. Kalinnikov, J. Jauberteau, and
J. Bates, J. Mater. Sci. 35 (11), 2799 (2000).

13. R. A. Andrievsky and G. V. Kalinnikov, Surf. Coat. Tech-
nol. 142–144, 573 (2001).

14. D. V. Shtansky, S. A. Kulinich, E. A. Levashov, et al.,
Thin Solid Films 420–421, 330 (2002).

15. V. A. Movchan and A. V. Demchishin, Fiz. Met. Metall-
oved. 83, 83 (1969).

16. J. A. Thornton, J. Vac. Sci. Technol. 11 (4), 666 (1974).
17. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and

I. P. Borovinskaya, Physicochemical and Technological
Fundamentals of Self-Propagating High-Temperature
Synthesis (BINOM, Moscow, 1999).

18. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7 (6), 1564
(1992).

19. H. Ljungcrantz, C. Engstrom, L. Hultman, et al., J. Vac.
Sci. Technol. A 16 (5), 3104 (1998).

20. V. I. Trofimov and V. A. Osadchenko, Sov. J. Technol. 60
(8), 540 (1993).

21. T. Y. Tsui, G. M. Pharr, W. C. Oliver, et al., Mater. Res.
Soc. Symp. Proc. 383, 447 (1995).

22. K. L. Johnson, Contact Mechanics, 1st ed. (Cambridge
Univ. Press, Cambridge, 1985), p. 155.

23. R. A. Andrievskiœ, G. V. Kalinnikov, N. P. Kobelev, et al.,
Fiz. Tverd. Tela (St. Petersburg) 39 (10), 1859 (1997)
[Phys. Solid State 39, 1661 (1997)].

24. J. Musil and H. Hruby,´ Thin Solid Films 365 (1), 104
(2000).

25. J. Musil, F. Kunc, H. Zeman, and H. Poláková, Surf.
Coat. Technol. 154 (2–3), 304 (2002).

Translated by K. Shakhlevich
YSICS OF THE SOLID STATE      Vol. 45      No. 6      2003



  

Physics of the Solid State, Vol. 45, No. 6, 2003, pp. 1185–1190. Translated from Fizika Tverdogo Tela, Vol. 45, No. 6, 2003, pp. 1130–1134.
Original Russian Text Copyright © 2003 by Peschanskaya, Yakushev.

                   

POLYMERS 
AND LIQUID CRYSTALS
Deformation of Solid Polymers in a Constant Magnetic Field
N. N. Peschanskaya and P. N. Yakushev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: yak@pav.ioffe.ru

Received July 8, 2002; in final form, October 7, 2002

Abstract—The effect of a constant magnetic field on the creep rate is investigated for poly(vinyl butyral), sty-
rene–methacrylic acid copolymer [poly(styrene) + 16 wt % methacrylic acid], poly(methylene oxide), and other
polymers. It is demonstrated that the constant magnetic field can variously affect different polymers and that
the effect of the magnetic field is enhanced in a particular range of strain rates. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The influence of constant magnetic fields on the
structure and properties of polymers has been inten-
sively studied in liquid-crystal and molten states [1–8].
The mechanism of interaction of constant magnetic
fields with diamagnets (including polymers) on differ-
ent structural levels has been investigated both theoret-
ically and experimentally with the use of IR spectros-
copy, x-ray diffractometry, and birefringence [5, 9–11].
It has been established that the effect of constant mag-
netic fields on molecules is reduced to their orientation
due to high diamagnetic susceptibility anisotropy of
long polymer chains [9, 11].

In many cases, the magnetic treatment of materials
makes it possible to order the structure of polymers and
to increase their strength considerably [4, 5]. According
to the data available in the literature, magnetic effects
depend on many factors (for example, on the magnetic
field strength, the time of magnetic treatment, and the
chemical structure of the molecules). In recent years, it
has been proved that constant and pulsed magnetic
fields affect the mechanical properties of solid poly-
mers [16] and other diamagnets [15, 17]. It is assumed
that the interaction of constant magnetic fields with
solid and liquid polymers proceeds through the same
mechanism. However, in the case of solid polymers, the
orientation of chain fragments capable of affecting the
mechanical properties, for example, the strain rate,
calls for prolonged magnetic treatment (10–105 s). In
our earlier work [13], the orientation of poly(methyl
methacrylate) molecules at 290 K upon prolonged
exposure to a constant magnetic field was revealed
from the change in the birefringence. However, orienta-
tional effects were observed only under certain condi-
tions. In this respect, some doubts have often been cast
on the effect of constant magnetic fields on diamagnets.
As follows from the results obtained in [12], the strain
rate of poly(methyl methacrylate) substantially
increases only after exposure to a constant magnetic
field (with the induction B = 0.2 T) for approximately
1063-7834/03/4506- $24.00 © 21185
five days. In [18], it was found that, in LiF and NaNO
diamagnetic crystals, the change in the creep in
response to a constant magnetic field is observed only
when the strain rate varies in a particular range. Thus,
both experiment [12–19] and theory [5, 9, 10] indicate
that different properties of any diamagnet can change in
constant magnetic fields under specific conditions.
Unfortunately, only a few materials, particularly poly-
mers, have been studied to date and the inference made
are ambiguous.

In this work, we analyzed the changes in the creep
of amorphous and amorphous–crystalline polymers
after preliminary treatment in a constant magnetic field
and also under exposure to this field in the course of
deformation. Moreover, we determined the conditions
corresponding to the minimum and maximum effects of
the constant magnetic field on the creep characteristics
of the polymers under investigation.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Under conditions of uniaxial compression at a con-
stant load and a temperature of 200 K, we studied the
creep rate of solid polymers, such as poly(vinyl
butyral), poly(methyl methacrylate), styrene–meth-
acrylic acid copolymer [poly(styrene) + 16 wt % meth-
acrylic acid], poly(methylene oxide), polycarbonate,
poly(vinyl chloride), and high-density poly(ethylene)
(see table). The creep curves (the dependences of the
strain ε on the time t) were compared for the initial sam-
ples and samples treated in constant magnetic fields
(B = 0.2 T). An unloaded sample was placed in a setup
between the magnet poles. The sample axis was per-
pendicular to the magnetic vector, and the polymer
structure involved no preferred directions. After treat-
ment in a magnetic field, the sample was loaded and the
strain was measured for several minutes. For substan-
tial magnetic effects, the time dependence of the strain
was measured accurate to within 0.1% with a pointer
instrument. In cases when the magnetic field was
003 MAIK “Nauka/Interperiodica”
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Correlation between the diamagnetic susceptibility and creep characteristics

Polymer

χ3, , 10–6 mg3/mol

h* = hO/hH k = x3

monomer unit main chain

Poly(ethylene)
–CH2–CH2–

–11.5 –11.5 ~1.07 ~1.05

Poly(methylene oxide)
–O–CH2–

–16 –16 ~1.08 ~1.22

Poly(vinyl chloride) –22 –20 – ~1.40–1.15

Poly(methyl methacrylate) –56.6 –22 ~1.1 ~1.35–1.17

Poly(vinyl butyral) –120 –52 ~2.3 ~1.6

Poly(styrene) –130 –33 ~1.0–0.7 ~1.40–1.25

Polycarbonate –164 –135 ~3 ~2.00–1.65

χ3'

ε̇H/ε̇Ox3'

CH2 CH

Cl

CH2 C
COOCH3

CH3

CH2 CH CH2 CH

OO
CH

CH2

CH2

CH3

CH2 CH

C
CH

CH
CH

CH

CH

O C

CH3

CH3

O C

O

applied for a short time during the creep, the process
was recorded using a laser interferometer [12, 13]. The
strain rate prior to and after application of the magnetic
field was calculated from the interferogram with the use
of the formula  = λν/2lO, where λ = 0.63 µm, ν is the
beat frequency in the interferogram, and lO is the sam-
ple height. The creep rate was measured accurate to
within 1% at small deformation increments (0.3 µm).

Precision measurements of the creep rate made it
possible to reveal weak variations in the creep that did
not manifest themselves in the conventional ε–t curve.
For the short-term action of the constant magnetic field,
we calculated the rate ratios inside and outside the mag-
net: k = .

ε̇

ε̇H/ε̇O
P

In the present work, we also investigated how the
constant magnetic field affects the stepwise creep on
the micrometer level [12, 20–22]. In this case, we
compared the ratios of the maximum to minimum
creep rates h = , which were determined in
the magnetic field (hH) and in the absence of the mag-
netic field (hO).

3. RESULTS AND DISCUSSION

Figure 1 depicts the creep curves for two samples. It
can be seen that, at the same instants of time, the strains
of the polymer exposed to a constant magnetic field are
considerably lager than those in the absence of the mag-

ε̇max/ε̇min
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netic field. As is known, the mechanical orientation of
polymer chains initially leads to disordering of the
structure [23]. The same situation should be expected
for the magnetic action. We assume that, in the case of
a weakly pronounced orientation, the magnetic field
suppresses intermolecular nonchemical interactions
hindering the deformation and leads to acceleration of
the creep (Figs. 1, 2). The kinetic approach also pro-
vides support for our view on the possibility of acceler-
ating the creep under exposure to a magnetic field. The
creep rate is usually described by the exponential rela-
tionship

 

where Q0 is the activation barrier associated with the
intermolecular interaction and the quantity ασ allows
for the action of the mechanical stress lowering the
potential barrier. According to Rodin [5], the orienta-
tional effect of the magnetic field can be described in
terms of the Boltzmann factor exp(–β), where β =
∆χH2/2kT. Here, ∆χ is the diamagnetic susceptibility
anisotropy, H is the magnetic field strength, and T is the
temperature. The term ∆χH2 determining the magnetic
energy can be introduced into the exponent, which
results in a decrease in the barrier Q0 and an increase in
the rate .

Let us now consider situations illustrating a more
complex behavior of the strain characteristics under the
action of a constant magnetic field.

The creep curves measured for the same poly(meth-
ylene oxide) sample at identical loads are depicted in
Fig. 2. The second loading of the initial sample does not
lead to a change in the strain rate (curve 1). However, the
exposure to the magnetic field results in an increase in
the creep rate (the strain at the same instant of time). It
can be seen from Fig. 2 that the treatment of the sample
in the magnetic field is accompanied by an increase in
the strain rate, even though this effect decreases gradu-
ally (see curves 3, 4 in Fig. 2). The saturation can be
caused by a decrease in the number of activation barriers
that are overcome in the course of deformation in given
force and magnetic fields. Curve 3 was measured after
prolonged exposure to a constant magnetic field and
relaxation for one day. As is known, the birefringence in
unloaded polymers decreases after removal of a constant
magnetic field, which implies a disorientation in the
structure. In our case (curve 3 in Fig. 2), the strained
sample upon holding without a magnetic field does not
regain its original state. This means that either the strain
stabilizes the effect of the constant magnetic field or the
relaxation of the orientation induced by the magnetic
field occurs in local regions and large-sized molecular
fragments retain the ability to undergo deformation
shears. Note that the largest response to the constant
magnetic field is observed for the polymers with a high
diamagnetic susceptibility χ. The constant magnetic
field only slightly affects the creep of poly(ethylene),
which is characterized by a small value of χ.

ε̇ A Q0 ασ–( )/kT–{ } ,exp=

ε̇
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Now, we dwell on other effects that are observed
upon exposure of polymers to a constant magnetic field
in the course of creep. Figure 3 shows the time depen-
dence of the strain rate for the styrene–methacrylic acid
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Fig. 1. Time dependences of the strain for the styrene–meth-
acrylic acid copolymer [poly(styrene) + 16 wt % meth-
acrylic acid] at T = 290 K, σ = 84 MPa, and B = (1) 0 and
(2) 0.2 T.
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Fig. 2. Time dependences of the strain for poly(methylene
oxide). σ = 70 MPa. The measurements are performed with
the same sample (1) unexposed and (2–4) exposed to a con-
stant magnetic field with B = 0.2 T. Curve 1 shows the
results obtained for two sequential loadings. Experimental
conditions: (2) magnetic treatment for 15 days, (3) addi-
tional magnetic treatment for 15 days and holding without a
magnetic field for 1 day, and (4) additional magnetic treat-
ment for 40 days.



1188 PESCHANSKAYA, YAKUSHEV
copolymer upon application (points H) and removal
(points O) of the constant magnetic field during the
creep. Each point corresponds to a deformation incre-
ment of 0.3 µm. As can be seen from Fig. 3, the appli-
cation of the constant magnetic field results in an
increase in the creep rate, whereas the removal of the
field leads to a decrease in this rate. The change in the
creep rate under short-term exposure to the constant
magnetic field indicates the occurrence of deformation
and magnetic orientation events with short relaxation
times (seconds and minutes). The ratio k =  can
serve as a measure of the magnetic field effect. The
dependences of these ratios determined from depen-
dences similar to those plotted in Fig. 3 are represented
in Figs. 4 and 5. It can be seen from these figures that
an increase in the rate in the presence of the magnetic
field (k > 1) is observed only when the rate varies in a
certain range. At higher and lower rates, the constant
magnetic field either does not affect or even retards the
creep (k < 1). For different polymers, the rate ranges in
which the magnetic field accelerates the creep can dif-
fer significantly.

In our earlier works [20–22], we examined the step-
wise creep on the micrometer level. It is believed that
the stepwise strain (rate) is associated with the irregu-
larity in the arrangement and interaction of polymer
molecular fragments. The strongest local bonds play
the role of stoppers (nodes) in elementary shear acts
and are responsible for the lower rate in a step. The
breaking of a strong bond leads to a sharp increase in
the rate. The ratio h =  varies differently upon
exposure of different polymers to the same constant
magnetic field [12, 13]. Most frequently, the constant
magnetic field brings about a decrease in the ratio h

ε̇H/ε̇O

ε̇max/ε̇min

0.2
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t, min
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Fig. 3. Time dependence of the creep rate for the styrene–
methacrylic acid copolymer [poly(styrene) + 16 wt % meth-
acrylic acid] at σ = 60 MPa and B = 0.2 T. Points H and O
indicate the instants of time of application and removal of
the constant magnetic field, respectively.
P

(Fig. 6). It is assumed that the decrease in the ratio h in
the magnetic field is caused by the decrease in the
bonding force just in nodes and the smoothing of the
potential along the shear plane. The ratios h* of the
rate-step steepnesses in the absence of the magnetic
field hO and in the field hH are presented in the table.
Among the studied polymers, the most pronounced
effect is observed for poly(vinyl butyral) and polycar-
bonate, in which groups of adjacent molecules can
form strong bonds. Since the response to the constant
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k

Fig. 4. The ratios k =  of the creep rates in the filed ( )
and in the absence of a field ( ) as a function of the creep rate

 for poly(vinyl butyral) at σ = 27 MPa and ε = 12%.
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Fig. 5. The ratios k =  as a function of the creep rate

 for the styrene–methacrylic acid copolymer

[poly(styrene) + 16 wt % methacrylic acid] at σ = 80 MPa
and ε = 10%.
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magnetic field can depend on both the chemical struc-
ture and the molecular mobility, the magnetic field
should variously affect the creep in different tempera-
ture relaxation regions.

Upon application of the magnetic field in the course
of creep, we obtained the largest ratios k =  for
different polymers (Figs. 4, 5).

Let us compare our data on the influence of the con-
stant magnetic field on the creep rate and the data avail-
able in the literature on the magnetic susceptibility for
monomer units of polymers (see table).

The diamagnetic susceptibilities of particular mole-
cules and bonds are given in [5, 9–11]. For nonaromatic
molecules, the susceptibility along the molecular axis
can be derived using the Pascal additive system: χ3 =
Σχi + λ, where χ3 is the magnetic susceptibility tensor
along the axis, [χi] is the magnetic susceptibility of a
particular chemical bond, and λ is the term associated
with the structure factor (in approximate calculations,
the term λ is taken equal to zero). The table lists the sus-
ceptibilities χ3 for monomer units (taken from [5, 9]).
In poly(styrene), the benzene ring in the side group is
responsible for the anomalously strong diamagnetism.
Possibly, poly(styrene) does not obey the observed cor-
relation between χ3 and h (χ3 and k), because the sus-
ceptibility χ3 is predominantly determined by the mag-
netic susceptibility of the side group, whereas frag-
ments of the main chain are involved in deformation
displacements. In this work, the approximate diamag-

netic susceptibilities  were calculated from the
above formula for χ3 only for bonds of the main chain.
Note that the presence of methacrylic acid molecules in
the styrene–methacrylic acid copolymer was disre-
garded. As can be seen from the table, a reasonable cor-

relation between the quantities  and k (  and h) is
observed for the polymers under consideration. It
should be noted that small variations in the rate (k = 1.1)
are reliably determined owing to the sensitive tech-
nique used for the rate measurement. The parameter k
depends on the strain rate, and the largest parameters
obtained at different points in the experimental creep
curves are given in the table.

The selective effect of the constant magnetic field on
the strain rate can be explained by the difference in the
magnetic and mechanical relaxation times at different
stages of the creep. It should be taken into account that
not only the external magnetic field can change the
molecular mobility (creep rate), but also an increase in
the mobility and orientation of molecules in response to
mechanical forces can affect the direction of dipole mag-
netic moments and the magnetic polarizability anisot-
ropy which determine the magnetic anisotropy [5, 10].

A constant magnetic field can have a profound effect
on the creep in the case when the relaxation time and
the direction of deformation events coincide with those
of the magnetic orientation events.

ε̇H/ε̇O

χ3'

χ3' χ3'
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
4. CONCLUSIONS
Thus, despite an ambiguity, the results obtained

allow us to make the following inferences.
(1) In solid polymers, short- and long-term pro-

cesses affecting the strain rate proceed under the effect
of constant magnetic fields.

(2) The effect of a constant magnetic field (at B =
0.2 T) manifests itself under specific conditions (in our
case, over a narrow range of creep rates).

(3) The effect of a constant magnetic field on the
steepness of creep rate steps suggests that the internal
magnetic fields are localized in regions of strong
nonchemical interactions between molecular groups of
the adjacent polymer chains.
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Abstract—The maximum alignment angle θeff and the effective rotational viscosity coefficient  of polar
liquid crystals, such as 4-n-octyloxy-4'-cyanobiphenyl (8OCB), are investigated in the vicinity of charged

bounding surfaces. The quantities θeff and  are calculated in the framework of the Ericksen–Leslie theory.
The results of calculations demonstrate that, for a homeotropic alignment of molecules on charged indium tin

oxide surfaces, the effective rotational viscosity coefficient  can increase by 7.8% as compared to the bulk
rotational viscosity coefficient γ1. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In a shear laminar flow of a nematic liquid crystal
between two bounding surfaces, the flow field v(r) is
one of the main factors affecting the director field n(r).
In the bulk of a nematic liquid crystal, the influence of
bounding surfaces can be ignored and the hydrody-
namic properties can be described in terms of the clas-
sical Ericksen–Leslie theory allowing for the interac-
tion of the fields n(r) and v(r). For a Couette flow
between two plane-parallel surfaces when one (lower)
surface is stationary and the other (upper) surface
moves with a constant velocity v, the flow field takes
the form v(r) = v (y)i. Here, the x axis is aligned with
the unit vector i oriented parallel to the bounding sur-
faces and the y axis is directed along the unit vector j
perpendicular to the bounding surfaces. At high flow
rates, the equilibrium angle θbulk between the vectors n
and v can be determined from the condition that the
hydrodynamic torques acting on an elementary volume
of the nematic liquid crystal Tvis = (1/2)(γ1 +
γ2cosθbulk)  are equal to zero [1, 2]. As a result, we
have

 (1)

where λ = –γ2/γ1, γ1, and γ2 are the rotational viscosity
coefficients of the nematic liquid crystal and  =
∂v (y)/∂y is the strain rate. However, in the vicinity of
charged bounding surfaces, the hydrodynamic descrip-
tion of anisotropic systems such as liquid crystals
should take into account the effect of elastic and surface
forces acting on the material over a depth ξ. Since these
forces make an additional contribution to the balance of

γ̇

θbulk
1
2
--- 1/λ( ),cos

1–
=

γ̇
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the torques acting on the elementary volume of the
nematic liquid crystal, they also affect the angle θbulk
and the rotational viscosity coefficients γi (i = 1, 2). In
this case, the surface forces are responsible for the cou-
pling of nematic liquid-crystal molecules with the sur-
face and the surface coupling energy can be written in
the form [3]

 (2)

where ω0 is the coupling constant having the dimension
of the surface energy density, θs is the angle between
the vectors ns and n0, and θ0 is the angle between the
vectors ns and v. Here, ns stands for the director n on the
bounding surface and n0 is the unit vector aligned along
the easy orientation axis [3] and characterizing the sur-
face anisotropy. The surface energy f0 is localized in a
narrow surface layer of depth λs ~ 10–100 nm [4]. In
this range, the order parameter of the nematic liquid
crystal varies from the surface to bulk value. When the
solid bounding surface is in contact with the nematic
liquid crystal, the surface selectively interacts with ions
involved in the nematic phase. For example, a nega-
tively charged surface with the charge density σ attracts
positive ions and repels negative ions. If the number N+
of positive ions is equal to the number N– of negative
ions, the depth of penetration of the electric field E(y)
induced by the surface charge density σ is equal to the
Debye length λD [5] (the case of a weak electrolyte).
The spatial dependence of this electric field for the bulk
screening can be represented in the following form:

 (3)

f 0
1
2
---ω0 ns n0⋅( )2

–
1
2
---ω0 θs θ0–( )cos

2
,–= =

E y( ) E0 y/λD–( ) j,exp=
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where E0 = σ/  is the electric field strength of the

charged surface, e0 is the permittivity of free space,  =
(e|| + 2e⊥ )/3 is the mean permittivity, and e|| and e⊥  are
the permittivities parallel and perpendicular to the
director n, respectively.

In the present work, we applied the Ericksen–Leslie
theory [1, 2] to analyze how the surface charge density
σ affects the angle θeff(y) and the rotational viscosity

coefficient  at distances of the order of ξ. Since
experimenters have encountered considerable difficul-
ties in measuring these parameters in the vicinity of
bounding surfaces [6], theoretical data on θeff(y) and

 are undeniably of particular importance. This
paper is organized as follows. The basic equations of
the hydrodynamic theory for nematic liquid crystals in
the vicinity of charged bounding surfaces are presented
in Section 2. The results of numerical calculations of
the angles θeff(y) and the rotational viscosity coeffi-

cients  are summarized in Section 3.

2. BASIC EQUATIONS OF THE HYDRODYNAMIC 
THEORY FOR NEMATIC LIQUID CRYSTALS

NEAR A CHARGED SURFACE

Within the classical Ericksen–Leslie approach to
considering the viscosity of nematic liquid crystals, a
preferential orientation of molecules in the vicinity of
points r is described by the director vector field n(r, t).
This orientation can vary from point to point. In the
incompressible-fluid approximation (— · v = 0), the bal-
ances of momentum and torques acting on an elemen-
tary volume are represented by the relationships [1, 2]

 (4)

 (5)

Here, ρ = N/V is the particle number density and  is
the stress tensor with the components defined by the
expressions [2]

 (6)

where

 (7)

In relationships (7), Mi, j are the components of the sym-
metric part of the Euler tensor. The formula describing
the director kinetics includes the antisymmetric part W
of this tensor (the components of the vector N) in the

e0e

e

γ1
eff

γ1
eff

γ1
eff

ρdv
dt
------ — σ,⋅=

Tvis Tel Telast+ + 0.=

σ

σij α1nlnmMlmnin j α2niN j α3Nin j+ +=

+ α4Mij α5ninlMlj α6Mimnmn j,+ +

Nm

dnm

dt
---------

1
2
--- v m k, v k m,–( )nk,+=

Mij
1
2
--- v i j, v j i,+( ).=
P

form of the convolution W · n, which is the vector with
components (1/2)(vm, k – v k, m)nk (m = 1, 2, 3). The
material derivatives of the components of the vector n

can be written as  =  + v lnm, l.

The Leslie coefficients αi (i = 1, 2, …, 6) satisfy the
Onsager–Parodi relation α2 + α3 = α6 – α5, and, hence,
only five out of six coefficients αi are independent. The
rotational viscosity coefficients γi (i = 1, 2) and the
Leslie coefficients αi are related by the expressions γ1 =
α3 – α2 and γ2 = α6 – α5. The torque with respect to the
director due to the hydrodynamic forces has the form

 (8)

the torque associated with the electric forces is given by
the relationship

 (9)

and the torque caused by the elastic forces is defined as

 (10)

Here, the components of the vector N are determined
by relationships (7) and M · n is the convolution of the
symmetric part M of the Euler tensor with the vector n.
This convolution represents the vector with compo-
nents (v i, j + v j, i)nj /2 (i = 1, 2, 3). The molecular field
associated with the gradients of the director n [3] in
the strained nematic liquid crystal is specified by the
vector h = hs + ht + hb, where hs = K1—(— · n), ht =
−K2[(n · l)l + — × (n · l)n], hb = K3[n × l × l + — × (n ×
(n × l))], and l = — × n. Here, the Frank elastic constants
Ki (i = 1, 2, 3) describe three types of strains in the nem-
atic liquid crystal, namely, the lateral bending, torsional,
and buckling strains, respectively, and ea = e|| – e⊥  is the
dielectric anisotropy of the nematic liquid crystal.

In the case of a Couette flow with a planar geometry,
the vectors v(r) and n(r) are represented by the expres-
sions v = (v (y), 0, 0) and n = (cosθeff , sinθeff , 0). Mak-
ing allowance for the sole nonzero component of the
flow field gradient  = ∂v (y)/∂y, expression (5) can be
transformed into the form [6]

 (11)

where  = B2/γ1  = eaσ2/( )exp(–2 ),  =

y/λD is the dimensionless coordinate, τ =  is the
dimensionless time, h(θeff) = (K1cos2θeff +

K3sin2θeff)/( ), and h'(θeff) is the derivative of the
function h(θeff) with respect to θeff. At high strain rates,
the director orientation is determined by the balance of
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only the hydrodynamic forces and the electric forces
affect the material over a depth 0 ≤ ξ ≤ 3 µm [6]. In par-
ticular, for 4-n-octyloxy-4'-cyanobiphenyl (8OCB) at

 = 800 s–1 and σ = 10–3 C/m2, we obtain |Telast | ~ 0.5
N/m2, |Tvis | ~ 4.0 N/m2, |Tel(y = 0.1 µm)| ~ 212 N/m2,
and |Tel(y = 1 µm)| ~ 0.2 N/m2. Taking into consider-
ation that ∆ = |Telast |/ |Tvis | ~ 0.125, the contribution of
the elastic forces to the momentum balance can be dis-
regarded at strain rates  ≥ 800 s–1.

Therefore, Eq. (11) can be rewritten in the following
form:

 (12)

For a stationary Couette shear flow and arbitrary strain
rates , Eq. (11) can be represented in the form

 (13)

where A = eaσ2 /  and D = (γ1 + γ2) /2K1.

Equation (13) was written with due regard for the
fact that the last term in Eq. (11) can be ignored in com-
parison with the other terms, because we have θeff ≤ 14°
(|θeff | < 0.18) for all liquid crystals [3, 6] and ( ) ≈
0.01. The boundary conditions for Eq. (13) are as fol-

lows: θeff( ) = 0 and ( ) = 0 at  =  = λs/λD and

θeff( ) = θbulk and ( ) = 0 at  = . Below, we will
demonstrate that σ = 10–3 C/m2 and λD = 0.545 µm for
the homeotropic orientation of the 8OCB molecules of
the nematic liquid crystal on the indium tin oxide
bounding surface at a temperature of 340 K and σ =
10−3 C/m2. The theoretical calculations performed in
terms of the statistical–mechanical theory [4] indicate
that it is reasonable to choose λs ~ 0.1 µm for 8OCB
molecules in the vicinity of the indium tin oxide sur-
faces. On this basis, the interval boundaries are deter-
mined to be  = 0.18 and  = 5.5. At |A | @ 1, Eq. (13)
without the last term D possesses the asymptotic solu-
tion [7]

 (14)

where q = exp(–2 ) and δ = . For the 8OCB nem-
atic liquid crystal, we find A . 37.71 at σ = 10–3 C/m2.
Since D . 0.004, the last term in Eq. (13) can be
ignored. Then, the asymptotic solution of Eq. (13) with

γ̇

γ̇

∂θeff

∂τ
----------

1
2
--- 1 γ2/γ1( ) 2θeffcos+[ ] 1

2
--- 2θeffB

2
sin–+  = 0.

γ̇

∂2θeff y( )

∂y
2

--------------------- A 2y–( )θeff y( )exp– D+ 0,=

λD
2

e
2
K1 γ̇λD

2

θeff'' y

y θeff' y y ya

y θeff' y y yb

ya yb

θeff y( ) q
1/4

iδ q
1/2

yd

0

y

∫±
 
 
 

1 O δ 1–( )+[ ] ,exp=

y i A
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      200
allowance made for the boundary conditions takes the
form

 (15)

where Ci = θbulkβi/β (i = 1, 2), β = β2β3 – β1β4, β1 =

exp{ /2 – [exp(– ) – 1]}, β2 = exp{ /2 +

[exp(– ) – 1]}, β3 = exp{ /2 – [exp(– ) –

1]}, and β4 = exp{ /2 + [exp(– ) – 1]}.

At high strain rates (  ≥ 800 s–1), Eq. (11) in the
vicinity of the charged bounding surface has the form

 (16)

and the equation for θeff can be written as follows:

 (17)

where C =  = α0κ[1 + (1 + (  – 1)κ–1)1/2], α0 =

λ−1 = –γ1/γ2, and κ = 1 + .

According to the theory proposed by Kuzuu and Doi
[8], the rotational viscosity coefficient can be repre-
sented in the form

 (18)

Here,  is the order parameter of the nematic liquid
crystal (the second-degree Legendre polynomial aver-
aged over molecular orientations [8]), f = ρkBTp/D⊥ , D⊥
is the coefficient of rotational diffusion with respect to
the short axes of the molecules of the nematic liquid
crystal, kB is the Boltzmann constant, p = (a2 – 1)/(a2 +
1), and a = σ||/σ⊥ is a geometric parameter equal to the
length-to-width ratio of molecules forming the nematic
liquid crystal. It should be noted that the bounding sur-
face affects the order parameter  only in a very thin
layer (~10–100 nm [4]). Moreover, the broadband
dielectric spectroscopic data obtained by Rozanski et

al. [9] indicate that the relaxation time  of molecular
rotation about the short axes for cyanobiphenyls
(including 8OCB) in pores with a diameter of up to
0.2 µm is virtually identical to that in the bulk of sam-

ples. Since the relaxation time  and the rotational
diffusion coefficient D⊥  are related through the expres-
sion

 

there are strong grounds to believe that the quantities
 and D⊥  depend only on the temperature. Therefore,

the ratio of the rotational viscosity coefficients in the
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vicinity of the charged bounding surface  and in the
bulk of the sample has the form

 (19)

Knowing the rotational viscosity coefficients in the
bulk of the nematic liquid crystal, for example, 8OCB
[10] (see table), we can calculate the effective rotational

viscosity coefficients  and the angle θeff( ). In the

case of high strain rates (  ≥ 800 s–1), the above ratio
of the rotational viscosity coefficients can be written as
follows [11]:

 (20)

γ1
eff
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eff
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eff
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Magnitudes of the rotational viscosity coefficients γ1 and γ2
in the bulk of the nematic phase of 8OCB according to the
data taken from [10]

T, K 340 345 350

γ1, kgm/s 0.046 0.033 0.021

–γ2, kgm/s 0.049 0.035 0.023

1
2
3
4

12

8

4

0

0 1 2 3
y, µm

θeff(y)

Fig. 1. Spatial dependences of the angle θeff in a shear flow
of the 8OCB nematic liquid crystal at a temperature of 340 K
for a homeotropic alignment of molecules (θs = 0) on a

charged bounding surface (σ = 10–3 C/m2). Strain rates:
(1, 2) 80 and (3, 4) 100 s−1. Calculations are performed
according to relationships (1, 4) (15) and (2, 3) (17).
PH
3. RESULTS OF NUMERICAL CALCULATIONS 
AND DISCUSSION

The derived relationships allow us to calculate the

profiles θeff( ) and the dependence of the ratio 
of the rotational viscosity coefficients on the distance to
the charged bounding surface. Hereafter, we will ana-
lyze the shear flow of the anisotropic system formed by
8OCB molecules near the indium tin oxide surface in
the temperature range from 340 to 350 K corresponding
to the nematic phase [6]. Taking into account that the
bulk concentration of ions in the liquid-crystal phase is
given by nbulk = N+/V = N–/V . 5 × 1020 m–3 [6, 12], the
Debye screening length can be calculated from the for-
mula [5, 13]

 

where e = 1.602 × 10–19 C is the proton charge and e =
e0(e||cos2θs + e⊥ sin2θs). The Debye screening length
was determined to be λd = 0.55 µm for the homeotropic
orientation of the director on the bounding surface (θs =
0) and λD = 0.28 µm for the planar alignment of the
director (θs = π/2). In our calculations, the surface
charge density was chosen to be σ = 10–3 C/m2. This
surface charge density σ = ensurf corresponds to the sur-
face concentration of charge carriers nsurf = 1016 m–2 and
agrees well with the experimental data n ~ 1015–1016 m−2

[5, 14]. The strain rate in our calculations varied from
10 to 800 s–1. Figure 1 depicts the dependences θeff(y)
calculated from formulas (15) and (17) for the homeo-
tropic orientation of the director on the bounding sur-
face (θs = 0) at the surface charge density σ = 10–3 C/m2

and a temperature of 340 K. At this temperature, the
equilibrium angle θeff(y) monotonically increases to the
bulk value θeff(y ~ 3 µm) = θbulk = 10.35° with an
increase in the distance to the bounding surface. It was
found that, for flows at high strain rates  ≥ 800 s–1, the
angles θeff(y) calculated from relationship (15) (Fig. 1,
curve 1), which takes into account the contributions of
the hydrodynamic, elastic, and electric forces to the
momentum balance, are almost identical to those calcu-
lated with expression (17) (Fig. 1, curve 2) allowing
only for the contribution of the hydrodynamic forces.
As the strain rate γ decreases, the contribution of the
elastic forces increases; as a result, the dependence
θeff(y) calculated from relationship (17) (Fig. 1, curve 3)
is shifted with respect to the dependence θeff(y) calcu-
lated using relationship (15) (Fig. 1, curve 4). There-
fore, shear flows of nematic liquid crystals in charged
channels at strain rates  . 800 s–1 and lower should be
calculated with allowance made for the elastic forces. 

The spatial dependences of the ratio /γ1 for the
homeotropic orientation of 8OCB molecules on the
indium tin oxide bounding surface (θs = 0) at two sur-

y γ1
eff
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face charge densities σ = 10–3 C/m2 (curves 1) and σ =
10–4 C/m2 (curves 2), a temperature of 340 K, and strain
rates  = 100 and 800 s–1 are displayed in Figs. 2a and
3a, respectively. The behavior of the dependences of the

ratio /γ1 suggests that the electric forces are
involved in the bulk of the shear flow over a depth of
~3 µm. As the surface is approached, the effective rota-

tional viscosity coefficient  increases by 7.8% as
compared to the bulk coefficient γ1. The surface charge
density affects the depth of penetration of the electric
forces. For shear flows at the strain rate  = 100 s–1, an
increase in σ by an order of magnitude from 10–4 to
10−3 C/m2 results in an increase in the depth of penetra-
tion of the electric field by ~1.5 µm. The calculated

ratios /γ1 for the homeotropic orientation of the
director on the bounding surface at three temperatures
T = 340 K (curves 1), 345 K (curves 2), and 350 K
(curves 3) and the strain rates  = 100 and 800 s–1 are
presented in Figs. 2b and 3b, respectively. It can be seen
that, in both cases, an increase in the temperature is

γ̇

γ1
eff

γ1
eff

γ̇

γ1
eff

γ̇

1
2

1.08

1.04

1.00 (a)

0 1 2 3

γ1
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1.08

1.04

1.00
(b)

3

y, µm

Fig. 2. Dependences of the ratio  of the rotational

viscosity coefficients on the distance y to the bounding sur-
face for the 8OCB nematic liquid crystal at the homeotro-
pic alignment of the director (θs = 0) for the strain rate  =

100 s–1 (a) at two surface charge densities (1) 10–3 and (2)
10–4 C/m2 and the temperature T = 340 K and (b) at three
temperatures T = (1) 340, (2) 345, and (3) 350 K. Calcula-
tions are performed according to relationship (19).
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accompanied by a decrease in the effective rotational

viscosity coefficient .

An analysis of the results presented in Figs. 2a and
3a demonstrates that the depth of penetration of the
electric field into the shear flow increases with a
decrease in the strain rate. In turn, this leads to an
increase in the effective rotational viscosity coefficient

.

The spatial dependences of the ratio /γ1 calcu-
lated for the planar alignment of the director on the
bounding surface (θs = π/2) are plotted in Fig. 4. The
dependences at three temperatures (T = 340, 345, and
350 K), the surface charge density σ = 10–3 C/m2, and the
strain rate  = 100 s–1 are depicted in Fig. 4a. Figure 4b
shows the dependences at the temperature T = 340 K,
the surface charge density σ = 10–3 C/m2, and three
strain rates (  = 100, 200, 300 s–1). In all cases, the
depth of penetration of the electric field into the bulk of
the shear flow is approximately equal to 1.5 µm, which
is half as large as the depth for the homeotropic orien-
tation. Knowing the magnitudes of the bulk coefficients
γi (i = 1, 2) calculated recently in [10] for the nematic
phase of 8OCB (see table), it is easy to obtain the mag-

nitudes of the coefficients . It should be noted that,
according to relationship (20), an infinite increase in

the surface potential density σ results in  =

–γ2/γ1 and an infinite increase in the depth of penetra-
tion of the electric field into the bulk of the sample.
Therefore, the maximum increment in the coefficient

 with respect to the coefficient γ1 is approximately
equal to 6–8% [10, 15]. In the other limiting case σ 

0, we have  = 1.

4. CONCLUSIONS

Thus, the influence of the charged bounding surface
on the rotational viscosity in the shear flow of the nem-
atic liquid crystal was investigated in the framework of
the Ericksen–Leslie theory. The contribution of the
long-range electric forces to the rotational viscosity
coefficient and the maximum alignment angle between
the direction of the Couette shear flow and the director
was analyzed. For this purpose, the terms associated
with the hydrodynamic, elastic, and electric forces

γ1
eff

γ1
eff

γ1
eff

γ̇

γ̇

γ1
eff

γ1
eff

/γ1
σ ∞→
lim

γ1
eff

γ1
eff

/γ1
σ ∞→
lim
PH
were included in the equation for the balance of the
torques acting on the elementary volume. It was estab-
lished that the effective rotational viscosity coefficient
increases as the surface is approached. In the case of the
8OCB nematic liquid crystal, this coefficient can
increase by 7.8% as compared to the bulk rotational
viscosity coefficient γ1. It was found that the contribu-
tion of the elastic forces to the torque balance can be
ignored for shear flows at strain rates  ≥ 800 s–1.
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Abstract—Measurements of the electrophysical properties of nanoporous carbon (NPC) samples (conductivity
and Hall effect), as well as studies of the same samples using electron spin resonance (ESR), are summarized.
Free holes are shown to play the major part in charge transport in such materials, thus permitting identification
of the ESR signal with free holes. An analysis of the shape of the resonance lines, as well as of their dependence
on temperature and the technology employed in sample preparation, established the ESR signals to consist of
two superimposed resonance lines associated with carriers, free or localized to various extents, whose magnetic
susceptibility obeys Pauli and Curie–Weiss laws, respectively. The temperature dependences of the ESR signal
parameters were studied, and the experimental relations were compared with theory to determine the model-
parameters. An analysis of the temperature behavior of these parameters suggests the conclusion that NPC sam-
ples are heterophase porous systems whose properties are dominated by structural characteristics. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Carbon nanocluster structures have been recently
attracting considerable interest because of their great
diversity and the possibility of modifying their proper-
ties. Activated nanoporous carbon systems (activated
carbon) have been employed for a long time as adsorb-
ers, filters, etc. An essentially new class of such materi-
als possessing a high nanoporosity has been prepared
recently. These materials exhibit an extremely large
specific surface area (~1300 m2/g), and, as such, can be
employed, besides in the traditional applications, as
electrodes in electrolytical double-layer capacitors and
rechargeable lithium batteries. One of the methods used
for their preparation consists in the chemical removal of
non-carbon carbide-forming atoms from various crys-
talline (polycrystalline) carbide materials to form nan-
oporous (cluster) carbon [1–3]. Methods permitting
preparation of bulk solid-state nanoporous carbon
(NPC) elements with a total porosity over 70% and a
nanoporosity of up to 50% were later developed [4–7].
The carbon nanoclusters bridging the pores in such ele-
ments approach in dimension nanopores themselves.
X-ray [8–10] and Raman [11] studies show the carbon
skeleton in these materials to be made up of small
graphene sheets, which are, as a rule, arranged arbi-
trarily between the pores to form a quasi-amorphous
network. The most probable size of small nanoparticles
was established to vary from 0.8 to 2.0 nm, depending
on the actual type of the original carbide [8, 10]. There
1063-7834/03/4506- $24.00 © 21197
are, however, larger nanoclusters with a more regular
structure in small amounts.

The electrophysical properties of NPC materials,
which play a dominant role in their applications, are
determined by the distribution and concentration of car-
riers and trapping centers, as well as by the character of
current conduction in the system of nanoclusters, with
potential barriers forming apparently at their bound-
aries. The very large specific area of the material, as
well as the presence of adsorbates on it, suggests that
carrier capture by surface traps should play a prominent
part in conduction. This confers a particular scientific
and practical importance to studies of the electrophysi-
cal properties of NPC materials.

In this communication, we report on measurements
of the conductivity and Hall effect in NPC, as well as
on studies of the same samples by using electron spin
resonance (ESR).

The existence of ESR in the graphitic form of car-
bon has been known for a long time [12–14]. It was
established that the ESR signal in single-crystal graph-
ite is determined primarily by the characteristics of free
carriers, which persist in graphite down to very low
temperatures because this material is a semimetal. The
magnitude of the g factor and its anisotropy in graphite
depend on the position of the Fermi level. The recent
discovery of new carbon forms (fullerenes, nanotubes,
nanohorns, etc.), featuring primarily graphite sp2

hybridization, spurred new interest in the magnetic
003 MAIK “Nauka/Interperiodica”
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properties of such structures (see, e.g., [15, 16]). While
the ESR in such structures was found to be also due to
graphite bonding, the behavior of the g factor and of the
ESR line width and amplitude are observed to have fea-
tures associated with the variation of the concentration
of carriers and of their interaction with temperature.

2. SAMPLE PREPARATION

The nanocluster carbon materials discussed in this
communication were prepared of polycrystalline car-
bide powder, SiC. Bulk samples were obtained from
powders with grains 40 and 2–5 µm in size (70 and
30 wt %, respectively); powder with a binder was
pressed in a disk 20 mm in diameter, and pyrocarbon
was synthesized in macropores to bind the carbide
grains, after which the sample was chlorinated at a high
temperature (~900°C) to all atoms remove other than
carbon, a process culminating in the formation of a
high-porosity carbon system. This was followed by
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Fig. 1. Temperature dependences of the conductivity of
NPC samples studied using ESR: (1) C(SiC)A, σ(0 K) =
25 Ω–1 cm–1 and (2) C(SiC)B, σ(0 K) = 31 Ω–1 cm–1.
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Fig. 2. Temperature dependences of the Hall constant in
samples studied by ESR: (1) C(SiC)A and (2) C(SiC)B.
P

placing the samples in an argon flow to remove chlo-
rine. The NPC samples thus prepared are denoted by B;
they contain a fraction (9–10 wt %) of nonporous but
chlorination-modified pyrocarbon. While the porosity
of such samples was, as a rule, in excess of 65%, the
nanopore volume in the type-B material did not exceed
35% of the total sample volume.

Part of the samples was subjected, before chlorina-
tion, to additional silicification to transform the pyro-
carbon inclusions to SiC grains, after which one could
remove the silicon by reacting it with chlorine (from
both the original SiC grains and the newly formed ones)
and obtain in this way carbon with a higher nanoporos-
ity (46–47 vol %). The NPC samples thus prepared are
denoted subsequently by A. Note that the yield of pyro-
carbon precipitation in the preliminary stage of sample-
A preparation was higher (18–20 wt %) than that for
type-B samples; the macropore volume in the final NPC
material for type-A samples was substantially smaller
than that in samples of type B.

3. STUDIES OF THE CONDUCTIVITY 
AND HALL EFFECT

Figure 1 plots the electrical conductivity ∆σ vs. T0.5

[∆σ = σ(T) – σ(0)], and Fig. 2, the Hall coefficient R vs.
T0.5, for two NPC samples of the A and B types, which
were also used in the ESR studies. The R(T) relation
follows the same pattern in both samples; namely, the
Hall coefficient increases slightly with decreasing tem-
perature. The sign of R is that for hole conduction. The
sign of the Seebeck coefficient also corresponds to the
hole mechanism and coincides, in this sense, with the
sign of the Hall coefficient. The Hall voltage depends
linearly on magnetic field for most of the samples up to
H = 30 kOe. One may thus assume the conduction to
have primarily a one-band character. In the case of one-
band conduction, the hole concentration nh in various
samples of the above type lies in the range nh = 1/eR ~
5 × 1019–1021 cm–3 [17]. The corresponding Hall mobil-
ity µ (T = 77 K) calculated from the relation µ = R/ρ (ρ
is the electrical resistivity) is of the order of 1–3 cm2/V s.
This quantity decreases in approximately linearly with
increasing temperature.

Band overlap in pure single-crystal graphite is
known to result in electron–hole anisotropic conduc-
tion with a high carrier mobility. In microcrystalline
graphite, the Fermi level shifts to the p band. The
growth of hole concentration with decreasing grain size
is usually related to the increase in the number of sur-
face states at the boundaries, which act as electron trap-
ping centers [18]. Thus, the high hole concentration in
nanoporous carbon can be due to the strongly devel-
oped free surface and, accordingly, to a high concentra-
tion of acceptor states. The low hole mobility is appar-
ently caused by band structure distortion at the bound-
aries of nanoclusters and by the mean free path being
limited by the nanocluster dimensions.
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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The existence of a linear section in the ∆σ vs. T0.5

curves at low temperatures indicates the temperature
dependence of the conductivity to be determined by
quantum corrections associated with electron–electron
scattering [19]. The decrease in the mobility with tem-
perature suggests that the conduction exhibits quasi-
metallic behavior. The effect of this decrease on the
temperature dependence of conductivity at sufficiently
high temperatures is counterbalanced by thermal acti-
vation of carriers from fluctuation potential wells.

4. ESR STUDIES OF NANOPOROUS CARBON

4.1. Experiment

The ESR signals were studied on samples measur-
ing 4.5 × 2 × 1 mm3. We analyzed the temperature-
induced variations of the ESR parameters, more specif-
ically, of the amplitude, width, and shape of the reso-
nance lines. Conclusions were drawn concerning the
character of interaction of carriers and their magnetic
properties in the samples studied.

The ESR spectra were measured with an E-112 ESR
spectrometer (Varian) equipped with an ESR-9 cryostat
(Oxford Instruments), which made it possible to record
spectra in the temperature range 3.2–300 K. ESR spec-
tra were measured at fixed temperatures in a heating run
performed after the sample cooling. After a type-A
sample was heated to 300 K, the temperature was again
lowered to 25 K and the measurements were repeated.
The samples were maintained in a gaseous helium envi-
ronment at all times.

Figure 3 displays ESR spectra of a type-A sample
obtained at various temperatures in the range 3–150 K.
At all temperatures, the signals are seen to have an
asymmetric shape characteristic of free carriers [20,
21]. This appears only natural, because the samples had
an electrical resistivity ρ ≈ (2–4) × 10–2 Ω cm, i.e., a
skin depth δ ≈ 5 × 10–2 mm, which is substantially less
than the sample dimensions. The sample resistivity
decreased by a factor of no more than 1.5 as the temper-
ature was increased from liquid-helium to room tem-
perature.

Note also that the signals in Fig. 3 are actually a
superposition of at least two lines with different reso-
nance fields and widths. Because the temperature
dependence of the skin depth is proportional to ρ1/2, one
can readily take into account the variation of this quan-
tity when analyzing the shape of the ESR spectrum.

The recorded spectra were deconvolved into constit-
uents with a “true” spin resonance (SR) shape. This
deconvolution was achieved by fitting the experimental
spectrum with the theoretical signal shape function
F(x) = Σjaj f(xj), where xj = g(H – Hres, j)T2j, f(xj) is the
theoretical SR signal shape (see, e.g., [19]), and aj is the
weighting factor of the jth signal. The fitting was done
using a FORTRAN code to compute the resonance sig-
nal and the PeakFit program to choose the parameters
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
of the signals making up the spectrum. The fitting
yielded the amplitudes, resonance fields, widths of the

spectral components, and the values of  for the jth
spin subsystem. Note that T2 = h(gβ∆H)–1; therefore,
we omit subsequently all constants in this relation and

write  = ∆H.

The concentration was estimated by integrating the
absorption curves corresponding to the spectral compo-
nents thus found and by comparing then with the absorp-
tion of a Varian reference sample reduced to the same
experimental conditions (microwave power, gain, etc.).

4.2. General Characteristics of the Signals

All samples produce ESR signals consisting of two
resonance signals with strongly varying g factors and
linewidths. We denote the original sample A by A1 and
the same sample heated to 300 K and cooled subse-
quently to 25 K by A2. The ESR signals from A1 and A2
differ in the magnitude of the g factor and its tempera-
ture behavior (see Table 1). This difference may be due
to the fact that the extremely developed surface of nan-
oporous carbon always has adsorbed oxygen (paramag-
netic center) and the changes that occur in sample A2
are probably connected with the diffusion of oxygen
atoms and the associated rearrangement of atomic
bonding. The strong effect of oxygen on the ESR signal
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Fig. 3. ESR signals of an NPC sample, type A1, measured at
various temperatures.
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parameters and their temperature behavior in a system
of porous carbon with nanohorns was studied in [16].

4.3. Integrated Intensities

The experimental ESR signals were fitted against
theoretical ESR signals of carriers calculated for differ-
ent values of the ratio of the skin depth to the diffusion
length through the skin depth R1 = d/dD (the theoretical
signals were obtained for R1 from 0.1 to 50). The first
estimate of R1 was made from the amplitude ratio of the
derivative of the absorption signal at its maximum and
minimum (line shape asymmetry parameter), after
which this ratio was varied because the signal was a
combination of two lines. After deconvolution of the

Table 1.  Parameters of ESR signals in samples A1, A2, and B

Sample g1 ∆H1, G g2 ∆H2, G

A1 2.0085–2.0128 12–22 2.0180–2.0240 12–25

A2 2.0085–2.0078 30–20 2.0268–2.0078 38–150

B 2.0018–2.0032 4–9 2.0024–2.0048 16–26
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Fig. 4. Temperature dependences of integrated intensities of
the total ESR signal and of its constituents for samples A1
and A2. (1, 2) Data for lines 1 and 2 obtained in the original
(A1) measurement, (1', 2') data for lines 1 and 2 obtained in
a repeated measurement, (1 + 2) total signal from A1, and
(1' + 2') total signal from A2. The lines represent calculation.
P

signal into its constituent parts and their theoretical
description, the integrated intensities were found; they
are displayed in Figs. 4 (for A1, A2) and 5 (for B). The
integrated intensities of total signals are, with rare
exceptions, sums of two contributions, namely, of the
contribution from the subsystem with a Curie–Weiss
paramagnetic susceptibility  and of that from the

subsystem with a Pauli susceptibility , which does
not depend on temperature. Sample A2 and, to a lesser
extent, sample B also exhibit a contribution due to the
carriers released in the ionization of shallow centers.
Thus, the integrated intensity I(T) [expressed in units of
integrated intensity of the reference sample (pitch) with
a paramagnetic center concentration 2.58 × 1015 cm–3

measured under the same experimental conditions] can
be written as

 (1)

where IP is the contribution due to the subsystem of
degenerate carriers, C is the Curie constant in relative
units, θp is the paramagnetic temperature in the Curie–
Weiss relation (which characterizes the sign and mag-
nitude of exchange interaction between localized
spins), and Ei is the ionization energy. Table 2 lists the
values of the constants entering Eq. (1) for the inte-
grated intensities of the total signal and its components.

These integrated intensities were used to derive the
concentrations (Table 3) of the localized centers Nloc
responsible for the Curie–Weiss susceptibility, of the
degenerate carriers nc contributing to the Pauli suscep-
tibility, and of the shallow carrier traps Nion providing a
contribution to the ionization term in the integrated
intensity.

As seen from Table 2, localized centers in samples
A1 and B interact antiferromagnetically with one
another (θp > 0) and only the centers producing reso-
nance line 1 in sample B are ferromagnetically coupled,
although their concentration is low and their interaction
is weak. Since the concentration of the localized cen-
ters is low, their exchange interaction is actually a hole-
mediated indirect exchange interaction.1 

4.4. g Factors

Figures 6a and 7a display the temperature depen-
dences of the g factors for the two lines responsible for
the ESR signal in samples A1, A2, and B. Prior to dis-

1 Note that although free-hole ESR in widely studied semiconduc-
tors is not observed because of the short spin-lattice relaxation
time, in graphite, whose minimum band gap is not located at a
high-symmetry point in the Brillouin zone center, there is no
band degeneracy and the spin relaxation times of the electrons
and holes can be of the same order of magnitude. Because the
signs of the Hall effect and of the Seebeck coefficient indicate the
transport effects in these materials to be associated with the hole
component, it may be safely conjectured that the observed ESR
characteristics are also dominated by free or weakly bound holes.

χC–W''

χP''

I T( ) IP C/ T θp+( ) I ion Ei/kT–( ),exp+ +=
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Table 2.  Relative contributions to integrated ESR signal intensities due to the Pauli, Curie–Weiss, and ionization subsystems

Sample ESR signal IP, arb. units C, K θp , K Iion, arb. units Ei , K

A1 1 10.15 383.7 7.5 – –

2 1.98 210 23.82 – –

Total 12.1 632 11 – –

A2 1 8.42 383.7 0 – –

2 0.31 61.9 0 127 127.7

Total 8.7 445.6 0 127 127.7

B 1 0.03 14.38 –2.39 4.7 197

2 18.8 1282 22 – –

Total 18.8 967.3 11.43 4.7 197
cussing the temperature behavior of the g factors, we
note that an analysis of the integrated intensities of the
deconvolved ESR lines suggests that the localized and
free spin subsystems are tightly coupled. Another point
is that the signals always have the line shape of free-
carrier spin resonance. This argues for a strong interac-
tion of carriers with localized states and the existence of
a phonon bottleneck, which makes the cross-relaxation
between the subsystems considerably faster than the
spin–lattice relaxation or the relaxation mediated by
spin–orbit coupling. In the phonon bottleneck condi-
tions, the magnetic moments of both subsystems pre-
cess together, so that the resonance signal amplitude
contains contributions due to the susceptibilities χ'' of
both subsystems (see, e.g., [22]). Now, if the localized
spins and carriers have different g factors, the reso-
nance field and its temperature dependence for the
resultant resonance line can be described by the follow-
ing expression, first proposed in [23]:

 (2)

Equation (2) readily yields an expression for the g
factors,

 (3)

Note that the temperature dependence of the g factor in
Eq. (3) is determined not only by the temperature factor
in the Curie–Weiss relation but also by the change in
the free carrier concentration resulting from the ioniza-
tion occurring in samples B and A2. The phonon bottle-
neck conditions play a considerable role in the behavior
of g(T) for both resonance lines, 1 and 2, in samples A1
and B, as well as for line 2 in sample A2. No phonon-
bottleneck conditions were observed for line 1 in sam-
ple A2; therefore, the g factor is determined here only by
the free-carrier g factor, slightly corrected for the
exchange coupling with local spins [22]:

 (4)

H
res χP''Hc res, χC–W'' H1 res,+( )/ χP'' χC–W''+( ).=

g 1 χC–W'' /χP''+( ) gc
1–

gloc
1– χC–W'' /χP''( )+[ ]

1–
.=

g1A2
gc/ 1 αχ C–W''+( ), α 4.2– 10

4–
,×= =
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where α is the dimensionless exchange interaction con-
stant, with α < 0 relating to ferromagnetic coupling. By
fitting Eqs. (3) and (4) to the experimental curves in
Figs. 6a and 7a, we found the values of gloc and gc for
the local centers and carriers, respectively. These values
are given in Table 4.

The  ratio in Eq. (3) can be written as

 (5)

and it would seem that the constants for each ESR line
in Eq. (5) should coincide with those in Table 2. How-
ever, as follows from curve fitting of the theory to the
experimental data obtained on samples A1 and A2, the
constants calculated for lines 1 do indeed fit to lines 1,
whereas for lines 2, one should substitute the parame-
ters of the total intensities. For sample B, the system
with C = 1282 K and θp = 22 K from Table 2 plays in
both cases the part of a localized system, while the car-
riers thermally activated from the density-of-states tails
(with an activation energy Ei = 197 K) act as exchange-
coupled carriers.

4.5. Signal Width

In the phonon bottleneck conditions, the ESR signal
width is given by an expression similar to Eq. (2) [22],

 (6)

Here, ∆Hc is the carrier ESR linewidth, ∆Hloc is the

local-center ESR linewidth, and  and  are the
values of the corresponding susceptibilities with inclu-

χC–W'' /χP''

χC–W'' /χP'' C/T( ) IP Ii Ei/T–( )exp+[ ] 1–
=

∆Heff χP''∆Hc χC–W'' ∆H loc+( )/ χP''* χC–W
''*+( ).=

χP
''* χC–W

''*

Table 3.  Spin concentration in samples

Sample A1 A2 B

Nloc, cm–3 5.2 × 1015 3.8 × 1015 8 × 1015

nc , cm–3 1.3 × 1019 1019 2.1 × 1019

Nion, cm–3 0 0.95 × 1020 0.27 × 1019
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sion of the exchange interaction between the two sub-
systems,

 (7)

For low concentrations of local centers, we have  =
∆Hc @ ∆Hloc. In this case, the signal linewidth is deter-
mined primarily by the inverse carrier spin lifetime, i.e.,
by the rate of carrier scattering from defects in a disor-
dered medium, so that, in view of Eq. (7), the signal lin-
ewidth can be presented in the form

 (8)

The second term in Eq. (8) accounts for changes in the
properties of the subsystems, e.g., carrier generation in

χP
''* χP

'' 1 αχ C–W
''+( ), χC–W

''* χC–W
'' 1 αχ P

''+( ).= =

T2c
1–

∆Heff ∆Hc/ 1 αχ C–W
''+( ) ∆Hc

' T( ).+=
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Fig. 5. Temperature dependences of integrated intensities of
the total ESR signal and of its constituents for sample B.
(1) First signal component, (2) second signal component,
and (1 + 2) total intensity. The lines represent calculation.

Table 4.  g Factors for the paramagnetic subsystems contribu-
ting to resonance absorption

Sample A1 A2 B

Line 1 2 1 2 1 2

gc 2.0141 2.0232 2.0080 2.0070 2.0037 2.0114

gloc 2.0088 2.0171 – 2.0280 2.0018 2.0024
P

sample A2 at higher temperatures. In view of this, the
linewidths for samples A2 (line 2) and B in Figs. 6b and
7b are described by the following theoretical relations.
For sample A2, line 2, 

∆HA22 = (152 + 32CA22T–1δ )/(1 + CT–1δ ), 

where CA22 and δ  = Iionexp(–Ei/T) are taken from
Table 2 for line 2 of sample A2.

For sample B, line 1:

∆HB1 = 1.6/(1 + αB1CB1/(T – 2.3)) + 2 + 12exp(–197/T), 
αB1 = –0.75,

and line 2:

∆HB2 = 5 + 24/(1 + αB2CB2/(T + 22)), αB2 = 0.58. 

One readily sees that line 2 in sample A2 broadens in
accordance with Eq. (6) under the phonon bottleneck
conditions. By contrast, while local centers in sample B
do not contribute to the linewidth, exchange interaction
between carriers and local centers dominates the tem-
perature dependence and reduces the linewidth in the
case of ferromagnetic coupling (line 1) or increases it in
the case of antiferromagnetic coupling (line 2). In addi-
tion, line 1 is broadened exponentially in the tempera-
ture region T > 80 K by carrier concentration fluctua-
tions when the carriers are activated from the density-
of-states tails.

The temperature dependence of the widths of lines 1
and 2 in sample A1 and of line 1 in sample A2 follows a
different pattern (the latter line remained practically
constant after the cooling–heating cycle). The width is
dominated here by carrier scattering. As the tempera-
ture increases, the low-temperature scattering rate
grows slightly because of the increase in the carrier
thermal velocity, but after that, the line narrows, proba-
bly as a result of variable-range hole hopping between
neighboring regions separated by a potential barrier.
For these three lines, the experimental data can be
described by the following relation

 (9)

Here, w is the hopping probability between neighboring
acceptor states, T0 is the hopping activation energy, s is
a coefficient accounting for the thermal enhancement of

carrier scattering, and ∆  is the original carrier spin
relaxation rate. The numerical parameters of the fit are
given in Table 5.

4.6. Line Asymmetry

The degree of resonance line asymmetry is another
parameter that provides valuable information on con-
ducting samples. The asymmetry of a Dyson-shaped
ESR line is known [20] to be determined by the ratio of

χ i
'' χ i

''–1

χ i
''

∆H ∆Hc
0( )

s T+( )=

× 1 w/∆Hc
0( )( )

2
2 T0/T( )1/4

–( )exp+[ ]
1–
.

Hc
0( )
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(A1), and (1', 2') data for lines 1 and 2 (A2). The lines represent calculation.
the free-electron diffusion time through the skin depth,
TD, to the spin–lattice relaxation time T2. This distortion
is expressed through the ratio of the amplitude of the
weak-field positive wing in the derivative of the absorp-
tion line, a, to that of the strong-field negative wing, b.
For TD/T2 @ 1, a/b = 2.7. This is valid for metals where
the Fermi level is located far above the conduction band
bottom. Studies of weakly degenerate Ge [24] have
shown, however, that free spins located near the con-
duction band bottom interact with fluctuations of the
conduction band bottom potential, producing an addi-
tional ac electric field. The characteristic frequency of
this field is inversely proportional to the time taken by
a carrier to travel a distance on the order of the potential
fluctuation correlation length. Therefore, the expres-
sion relating TD  to T2 contains, in place of the time
needed for a carrier to cross the skin depth, the time it
takes for a carrier to travel this correlation length. As
the temperature increases, this length can also increase,
provided the potential fluctuations are small enough. In
these conditions, the carrier no longer experiences
these fluctuations at a high temperature. In a nanopo-
rous system, however, potential fluctuations may be far
larger than kT. This may be, for instance, the case with
pore boundaries. In this case, the frequency of the inter-
nal field acting on a moving carrier will grow with tem-
perature as a result of the increase in the carrier thermal
velocity.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
Because the signal fitting procedure yields both the

quantity R1 = TD/T2 and , one can readily obtain the
temperature dependence of TD. Figure 8 displays the
temperature variation of the carrier diffusion rate. In the
original sample A1, the diffusion rate at high tempera-
tures is seen to be two orders of magnitude greater than
in A2 and B and it grows very smoothly with tempera-
ture. This is possible if the potential fluctuations greatly
exceed kT, because the carrier velocity naturally
increases with temperature.

In sample B (for the system described by line 1) and

in sample A2, a sharp decrease in  is observed for
T > 80 K; this decrease should be assigned to the gen-
eration of additional carriers (see Table 2). In sample B
(for line 1), the decrease in the diffusion rate is appar-
ently accounted for by large inhomogeneities in the

T2
1–

TD
1–

Table 5.  Parameters determining ∆H(T) for lines 1 and 2 in
sample A1 and line 1 in sample A2

Sample Line , G s, G K–1/2 w, 109 s–1 T0, K

A1 1 9.14 3.28 2.10 3309

A1 2 8.46 4.11 1.83 3309

A2 1 33 0 2.63 1430

∆Hc
0( )
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sample structure, and in sample A2, by the part played
by oxygen atoms which are released under thermal
cycling.

At higher temperatures, the decrease in  in sam-
ple B and, partially, in A2 slows down substantially. This
finds explanation if the potential fluctuations are
assumed to be distributed in amplitude such that carri-
ers gradually cease interacting with some of the fluctu-
ation as the temperature increases. The carriers will
interact with progressively larger fluctuations. Under
these conditions, the effective dimensions of a spatial
inhomogeneity increase with temperature, with the car-
rier needing increasingly longer times to cross such a
fluctuation.

5. DISCUSSION

Both components of the signal of sample A obtained
in the first measurement (A1) are spin resonance signals
of free carriers which are strongly exchange-coupled
with local centers. The contribution of the Pauli suscep-
tibility is comparable to that of the Curie–Weiss sus-
ceptibility even at 40 K. This indicates a higher concen-
tration of free carriers compared to that of localized
centers. The widths of both signals exhibit the same
temperature dependence and are similar in magnitude.
For temperatures T < 40 K, these widths grow with tem-
perature; i.e., the carrier relaxation times decrease
because of the increasing thermal velocity, which
scales with temperature as T0.5. For T > 40 K, the lines
narrow because of the decreasing cross section of inter-
action of free spins with relaxation centers.

TD
1–
P

An analysis of the temperature dependence of inte-
grated intensity suggests that the local centers contrib-
uting to lines 1 and 2 are located in different regions of
the sample. The paramagnetic temperature for centers
of one type is 7.5 K, and that for the other type, 23.8 K.
This means that indirect exchange interaction between
centers of the first type is considerably weaker than that
between centers of the second type. The latter centers
reside apparently in a more porous medium; i.e., they
are separated by wider potential barriers.

The second measurement revealed considerable
changes in the structure of sample A, but not in all of its
volume, because the g factor, the linewidth, and the
integrated intensity of line 1 behave in the same way as
those of lines 1 and 2 in sample A1. As for the second
line, all of its parameters change dramatically with
increasing temperature. An analysis showed this behav-
ior to be associated with an increase in the density of
states in the tails near the Fermi level and with thermal
ionization with a characteristic energy of 11 meV. The
carrier concentration increases by an order of magni-
tude at T = 300 K. Another remarkable change consists
in the vanishing of the paramagnetic temperature, θp =
0; in other words, there is no longer any indirect
exchange between localized paramagnetic centers. As
already mentioned, one may assume that these pro-
cesses involve oxygen diffusion initiated by the varia-
tion of the oxygen partial pressure under variation of
temperature. An analysis of the ESR signals shows
sample B to be highly inhomogeneous. The tempera-
ture dependence of integrated intensity of line 1 is con-
tributed by free spins interacting with localized spins,
which are characterized by a very large fraction of
HYSICS OF THE SOLID STATE      Vol. 45      No. 6      2003
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localized states and a pronounced antiferromagnetic
coupling (line 2). At the same time, there are ferromag-
netically coupled (θp = 2.39 K) local centers (line 1).
The fraction of these centers is two orders of magnitude
smaller than the relative concentration of type-2 cen-
ters. This behavior of the paramagnetic susceptibility,
as well as the behavior of the spin–lattice relaxation
time, implies heterogeneity of the spin system.

The signal due directly to degenerate free carriers in
sample A is not observed because of strong exchange
binding of free and bound carriers. The observed ESR
lines are due to such mixed systems. This shows that the
difference in carrier concentration between various
parts of the heterogeneous system is considerably
smaller than that in sample B.

A comparison of the temperature dependences χ''(T)
of these two samples suggests that samples prepared by
following technology A have a more uniform free-car-
rier concentration than do samples synthesized using
technology B.

As follows from high-resolution electron micro-
scope images [25], a sizable part of the carbon frame-
work in NPC samples is made up of small graphene
sheets. There are also larger aggregates, most of them
representing carbon “onions” or “quasi-onions.” They
were found in much larger numbers in type-B samples
with pyrocarbon inclusions. It is possible that the fairly
loose and not well-ordered pyrocarbon in type-B sam-
ples transforms during the high-temperature chlorina-
tion to form onion like and arbitrarily bent quasi-gra-
phitic structures in various amounts. These structures
are 30–50 nm in size, which exceeds by far the size of
graphene sheets (1–2 nm). Therefore, it is these two
types of elements of the skeleton in NPC samples that
one should most likely associate with the two spin sys-
tems derived from the ESR data. Because the onions
and quasi-graphitic inclusions have a more perfect
structure, one may expect the free-carrier concentration
in them to be lower than that in the disordered graphene
sheet network. This conjecture is borne out by data
obtained in a study of carrier transport in a system of
practically pure onions [26]. It was found that the con-
ductivity of those samples was substantially lower than
that in NPC samples even at high temperatures and
decreased exponentially with decreasing temperature
[26]. In view of the fact that carrier conductivity over
sheets within an onion or quasi-graphitic cluster should
be substantially higher than 1–3 cm2/V s (this value is
derived from conductivity and Hall effect measure-
ments on NPC samples), one may expect the concentra-
tion of mobile carriers in onions to be orders of magni-
tude less than the value extracted from the Hall effect
data available for these samples.

In this case, the observed ESR signals with a smaller
g factor should possibly be assigned to the onion part of
NPC samples and those with g > 2.01, to the skeleton
of disordered graphene sheets.
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6. CONCLUSIONS

Thus, an analysis of experimental data on ESR line
parameters obtained for NPC samples prepared by fol-
lowing technologies A and B suggests certain conclu-
sions as to the magnetic properties of free carriers and
the microstructure of the samples themselves.

(1) NPC has a heterophase structure. Experimen-
tally, one observes at least two phases differing in free-
hole spin behavior, as well as in the concentration of
localized centers (dangling bonds, apparently).

(2) The phases differ in the temperature behavior of
the paramagnetic susceptibility, spin–lattice relaxation
time, and the magnitude of exchange interaction
between the localized paramagnetic centers. The prop-
erties of the phases depend on the technology employed
in NPC preparation.

(2a) At low temperatures, a type-B sample reveals,
against the background of the large contribution from
localized paramagnetic centers, a phase with a lower
concentration of free spins with χ'' varying with tem-
perature according to the Pauli law and of local ferro-
magnetically coupled centers. The spin–lattice relax-
ation rate in this phase is weakly temperature-depen-
dent. This phase is tentatively associated with the
onionlike and bent quasi-graphitic fragments observed
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[25] to exist in samples of type B. In type-A samples,
the two phases do not differ so strongly from each
other. This suggests that the two types of structural ele-
ments of the carbon framework differ little from each
other both in size and in the degree of ordering.

(2b) At sufficiently high temperatures, the tempera-
ture behavior of χ'' in samples of both types A and B
obeys the Pauli law, because the susceptibility of local-
ized centers decreases with temperature fairly rapidly
in accordance with the Curie–Weiss law. The spin–lat-
tice relaxation in A and B samples is dominated by
exchange interaction with the relaxation centers.

The phase providing a high-temperature contribu-
tion to ESR signals is possibly related to the quasi-
amorphous network of graphene sheets arranged arbi-
trarily between the graphene sheet pores. In samples B
and A2, which was prepared from A1 through heating
and cooling, additional carriers appear at T > 80 K;
these carriers are thermally activated from density-of-
states tails with ionization energies of 11 meV in sam-
ple A2 and 16.9 meV in sample B.

(2c) The g factor was found to behave substantially
differently with temperature in samples prepared using
different technologies. The main reason for this differ-
ence lies in the magnitude of exchange interaction
between the free and bound carriers. In sample A, this
interaction is considerably stronger, which suggests
that two-dimensional fragments dominate in the carbon
framework of these NPC samples.

(3) Summing up, ESR data suggest that the structure
of the NPC framework in samples A has more elements
that are uniform in carrier concentration than does that
in samples B.
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