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Abstract—The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2
were measured at low temperatures and in the neighborhood of Tc. In addition to the well-known superconduct-
ing transition at Tc ≈ 40 K, this compound was found to exhibit anomalous behavior of both the specific heat
and thermal conductivity at lower temperatures, T ≈ 10–12 K. Note that the anomalous behavior of C(T) and
K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expan-
sion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of
carriers and its transition to the superconducting state at Tc2 ≈ 10–12 K. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The unexpected discovery [1] of high-temperature
superconductivity in MgB2 has spurred intense interest
in the properties of this compound. A wealth of studies
dealing with MgB2 have been published thus far [2].
The interest in this compound stems, besides from its
high critical temperature Tc ≈ 40 K, from its compara-
tively simple structure, high conductivity, and relatively
high critical fields and currents, including the case of
strong magnetic fields. Critical current densities in
excess of 107 A/cm2 and critical fields of 40 T have
already been reached in MgB2 [2]. Unlike the cuprate
high-temperature superconductors (HTSCs), the prop-
erties of the new material are less anisotropic. It fea-
tures a large coherence length, which makes this mate-
rial very attractive for application in superconductor-
based electronics.

At this stage of research, it is essential to understand
whether the critical temperature of this class of super-
conductors can be increased. First of all, one has to
learn whether the MgB2 compound belongs to tradi-
tional superconductors, whose characteristics are
described by the Bardeen–Cooper–Schrieffer theory
(BCS), or if it is close in properties to the cuprate
HTSCs. The available data do not offer an unambigu-
ous answer to the question of the nature of supercon-
ductivity in this compound. Its critical temperature is
close to the theoretical limit predicted by BCS theory
and can even be in excess of it. This may be considered
an argument supporting the mechanism of supercon-
ductivity in MgB2 being unusual. On the other hand, the
high carrier concentration N ≈ 1.5 × 1023 cm–3 suggests
the standard mechanism of superconductivity in MgB2
1063-7834/03/4507- $24.00 © 21207
[3]. The carrier concentration in cuprate HTSCs is typ-
ically N ≈ (3–5) × 1021 cm–3. As follows, however, from
band structure calculations made for MgB2, the concen-
tration indicated above relates to carriers of two types
[4] deriving from different parts of the Fermi surface
(originating from different boron states). If the quasi-
two-dimensional boron pxy states with the carrier con-
centration Nxy ≈ 1022 cm–3 play the same role as the
quasi-two-dimensional states of oxygen in the cuprate
HTSC CuO2 sheets, the high-temperature superconduc-
tivity of MgB2 at T ≈ 40 K may be due to only one of
these two carrier groups. The available theoretical cal-
culations [5, 6] and experimental data on the specific
heat [7–13] and thermal conductivity [12–15] reveal
the possible existence of two superconducting transi-
tions, at T ≈ 40 and ≈10 K. Additional experiments are
needed, however, before a final conclusion can be
reached.

The cuprate HTSCs are known to exhibit a number
of characteristic anomalies in their properties. In partic-
ular, thermal expansion of high-quality samples of
cuprate HTSCs at low temperatures reveals an anom-
aly, namely, a negative thermal expansion coefficient α
[16]. In addition, a magnetic field has been found to
strongly affect the temperature dependence α(T) in the
region of this anomaly [17]. These features are not
observed in conventional superconductors. Preliminary
data reported recently in [18] show, however, the same
anomalies to exist in MgB2 at low temperatures. Thus,
there are no grounds to maintain that MgB2 is similar to
conventional superconductors.

This communication reports on measurements of
the temperature dependences of the specific heat C(T)
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and thermal conductivity K(T) of MgB2 in the neigh-
borhood of Tc and at lower temperatures.

2. EXPERIMENTAL TECHNIQUES

The temperature dependences of the specific heat
and thermal conductivity of samples were measured
using modulation calorimetry [19, 20] (temperature
modulation frequency 20 Hz) under continuous tem-
perature scanning at a rate of about 1 K/min, as well as
in quasi-isothermal conditions at different frequencies
in the range 0.05–160 Hz to monitor the measurements.
The amplitude of the modulating heat flux was 0.1,
0.45, and 0.7 mW at temperatures of 5–10, 10–20, and
20–50 K, respectively. The sample temperature oscilla-
tion amplitude was varied in the 0.002 to 0.07-K inter-
val. A variable heat flux P(T) = P0cosωt was supplied
to one side of the disk. In this way, decaying tempera-
ture waves T(t) = Re[T0exp(iωt ± kz)] were excited in
the sample. The specific heat and thermal conductivity
of the sample were derived from the measured T01 and
T02 amplitudes, as well as from the phases ϕ1 and ϕ2 of
the temperature oscillations T01sin(ωt + ϕ1) and
T02sin(ωt + ϕ2) on opposite sides of the sample. The
dependence of the specific heat and thermal conductiv-
ity on temperature could be obtained with a resolution
of 0.01 K. The relative measurement errors of the spe-
cific heat was 0.3% and of the thermal conductivity,
1%. The method of two-channel modulation calorime-
try is described in detail in [19, 20].

3. SAMPLES

The MgB2 samples were obtained by hot pressing of
MgB2 powders. The starting magnesium diboride pow-
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Fig. 1. Temperature dependence of the specific heat for the
MgB2 sample 1 plotted in the C/T vs. T coordinates. Inset
compares the interpolation relation C/T = 4.394 + 1.065 ×
10–2T2 for the MgB2 specific heat (solid line) with the
experimental data obtained for 40 < T < 45 K on the same
sample (symbols).
P

der was synthesized by reacting metallic magnesium
with elemental boron. Standard conditions were used,
with the temperature 950–1000°C maintained for four
hours at atmospheric pressure. The material thus pre-
pared was single phase. MgB2 pellets were prepared at
a high pressure, 50 kbar, and temperatures of 950–
1000°C. The sintering pressure was varied only
slightly. The sample density varied within a 3% inter-
val. The density of the MgB2 samples synthesized at a
higher pressure was 97–98% of the ideal density deter-
mined from the x-ray diffraction data. The x-ray dif-
fraction patterns of the MgB2 samples were obtained on
a DRON-4 diffractometer and agree with the standard
values quoted in review [2]. The quality of the samples
was characterized by measuring their electrical and
magnetic properties, which were found to match the
reference data [2]. The Meissner effect was over 44%.
To study the specific heat and thermal conductivity,
samples 2.8–3.2 mm in diameter and 1–5 mm high
were prepared.

4. EXPERIMENTAL DATA

Figure 1 presents the temperature dependence of
specific heat drawn in C/T vs. T coordinates for MgB2
(sample 1) obtained in this study in the range 5–45 K.
The curve exhibits two clearly pronounced features,
namely, at T ≈ 38–40 and ≈10 K. The feature at T ≈ 38–
40 K reflects the sample transition to the superconduct-
ing state. A similar curve was obtained in the region of
T = 5–50 K for sample 2. A slight difference was
observed only in the magnitude of the jumps of the spe-
cific heat; this could be assigned to the samples differ-
ing insignificantly in density (3%).

One usually estimates the jump in the specific heat
∆C by applying a strong magnetic field which destroys
the superconducting state. In this case, one can deter-
mine not only ∆C but also the entropy, free energy, and
the superconducting-transition parameters in terms of,
for instance, BCS theory [7]. If one intends, however, to
estimate the magnitude of ∆C only, one can use the dif-
ference between the experimental C(T) curve and an
interpolation relation C(T), provided the maximum in
the specific-heat jump ∆C for T < Tc lies near Tc and an
interpolation relation for T > Tc is fitted to the experiment
in the immediate vicinity of Tc. In our case, the interpo-
lation relation obtained in an extended version of the
Debye model C/T = γ + β2T2 + β4T4 was found to agree
well with experimental data for MgB2 for 40 < T < 50 K.
In the region of the specific-heat jump, however, the
difference between this interpolation expression and
the simpler relation C/T = γ + β2T2 was only 1–1.5%, to
become negligible at higher temperatures. The inset to
Fig. 1 illustrates the agreement of the interpolation rela-
tion C/T = 4.394 + 1.065 × 10–2T2 obtained by least
squares fitting with the experimental data for MgB2
sample 1 in the temperature interval 40 < T < 45 K. The
applicability of such simple expressions to interpola-
tion is due to the temperature of the interpolation
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003



LOW-TEMPERATURE ANOMALIES IN THE SPECIFIC HEAT 1209
region (T ≈ 40 K) being substantially lower than the
Debye temperature for MgB2 (Θ ≈ 900–1000 K [7–
11]).Therefore, this interpolation can be safely
employed, with due account of the fact, however, that
it is valid for the narrow temperature interval ∆T ≈ 15–
20 K only [7–11].

Figure 2 shows specific-heat jumps ∆C/T in the
vicinity of Tc for both MgB2 samples, which were
obtained by subtracting the interpolation relations from
the experimental curves. The superconducting transi-
tions in both samples are seen to start at T ≈ 40 K. Thus,
the critical temperature derived from the start of the
specific-heat jump is Tc ≈ 40 K. The maxima in the spe-
cific-heat jumps lie close enough to the boundary of the
interpolation region, T ≈ 40 K, which validates the
applicability of the simple Debye interpolation relation
to estimation of the specific-heat jump ∆C near Tc. As
follows from Fig. 2, for the MgB2 samples studied,
∆C ≈ 145–152 mJ/K mol. These figures are generally in
accord with literature data [7–12] but are slightly larger.

The second feature in the C(T)/T is observed in both
samples in the region T ≈ 10–15 K. At higher tempera-
tures, the C(T)/T relation near this feature is fitted well
by the Debye expressions. The differences obtained by
subtracting the interpolation relations from the experi-
mental curves for the low-temperature specific heats of
the MgB2 samples studied are displayed in Fig. 3. Both
samples are seen to exhibit an additional sharp jump
∆C2 in the specific heat. The maxima of these features
are located at T ≈ 10–12 K. This behavior of the specific
heat attests to a phase transition occurring in MgB2 at
T = Tc2 ≈ 10–12 K. There are theoretical grounds to
believe [4–6] that this is the temperature at which the
second group of carriers becomes superconducting.
Below the temperatures corresponding to the maxima
in the features, one observes a strong decrease in the
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Fig. 2. Specific-heat jump in the neighborhood of Tc plotted
as ∆C/T. (a) Sample 1 (the dotted and solid lines are inter-
polations for the corresponding parts of the ∆C/T vs. T rela-
tion) and (b) sample 2.
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measured specific heat, as is the case with conventional
superconductors at their transition to the superconduct-
ing state. Estimation yields ∆C2 = 3.2 mJ/K mol for
sample 1 and ∆C2 ≈ 7.6 mJ/K mol for sample 2. Note
that the number of experimental points obtained for
sample 1 in this temperature interval is fairly small and,
therefore, the value of ∆C2 derived for it should be con-
sidered a lower bound.

The thermal conductivity K(T) of the MgB2 samples
studied depended considerably on the conditions in
which they were fabricated, i.e., on the temperature and
pressure. The thermal conductivity of MgB2 at low tem-
peratures is fairly small and coincides, for instance,
with that of Nb3Sn. Figure 4 presents the K(T) depen-
dence obtained for sample 1 in the interval T = 5–45 K.
The K(T) curve of MgB2 is seen to have both anomalies
observed in C(T). The K(T) anomaly in the region of the
critical temperature at T ≈ 38–40 K (shown in the inset
to Fig. 4 in expanded scale) is less pronounced and seen
as a hump above the dotted line drawn to aid the eye.
Note that the higher the sample thermal conductivity,
the weaker this anomaly. The anomaly in the low-tem-
perature domain, T ≈ 10–12 K, is more distinct. This
anomaly is displayed in Fig. 5 in expanded scale for
both samples. The dashed lines plot the interpolation
relations obtained at low temperatures near the corre-
sponding anomaly. In all cases (both at Tc and at T ≈ 10–
12 K), the falloff of K(T) with decreasing temperature
slows down as one approaches the phase transition.
One clearly sees that the three anomalies observed in
MgB2 at T ≈ 10–12 K coincide, namely, the anomalies
in the specific heat C(T) and thermal conductivity K(T)
revealed in the present study and the anomaly in ther-
mal expansion α(T) discovered by us earlier [18].
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5. DISCUSSION

(1) As follows from the results obtained for MgB2 in
this study and in [18], the temperature dependences of
the specific heat C(T), thermal conductivity K(T), and
thermal expansion coefficient α(T) exhibit anomalies in
the temperature region T ≈ 10–12 K. This coincidence
can hardly be considered accidental. However, there
should be a common reason accounting for the anoma-
lous behavior of the three different quantities in the
given temperature interval. We believe that, at T ≈ 10–
12 K, MgB2 undergoes a transition to the superconduct-
ing state (the Bose condensate) of the second group of
carriers. In this case, the C(T) anomaly has a natural
explanation. An increase in the thermal conductivity
K(T) near the superconducting transition has been fre-
quently observed to occur in various alloys and com-
pounds [21] and was assigned to a decrease in the
phonon scattering from electrons or holes caused by
their pairing. As is evident from Fig. 4, a slight increase
in K(T) of MgB2 is also seen to exist against the back-
ground of the overall falloff of the thermal conductivity
in the interval T ≈ 38–40-K, i.e., in the neighborhood of
the main critical temperature Tc. Because the concentra-
tion of the freezing-out carriers responsible for this
transition, N ≈ 1022 cm–3, is substantially lower than the
total carrier concentration N ≈ 1.5 × 1023 cm–3 [3], one
should expect a considerably stronger effect at the sec-
ond transition in the region T ≈ 10–12 K where most of
the carriers undergo pairing.

(2) It is more difficult to interpret the coincidence of
the K(T) and C(T) anomalies with the anomaly in α(T).
The presently accepted model [17, 18] relates the
appearance of negative values of α(T) at low tempera-
tures in MgB2 and the cuprate HTSCs to the structural
instability of these compounds. Note that the anoma-
lous (negative) thermal expansion can be accounted for
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Fig. 4. Temperature dependence of the thermal conductivity
of MgB2 measured in the interval 5–45 K (sample 1). The
dotted line was drawn to make the feature in the temperature
interval corresponding to the superconducting transition at
Tc more revealing. Inset shows the feature near Tc in
expanded scale.
PH
by the influence of charge density waves (CDWs) on
the lattice stability [22]. If the additional Coulomb
interaction of CDWs with the ionic lattice is disre-
garded, the structure of these compounds is unstable;
i.e., the transverse acoustic phonon frequency ωTA at the
Brillouin zone edge tends to zero. As a result of CDW
interaction with the lattice ions in these compounds, the
frequency ωTA at the zone edge becomes positive (ωTA >
0). Heating (starting from T = 0) excites first only the
low-frequency modes of the phonon spectrum with
ω ≈ kT/" (here, k is the Boltzmann constant, " is
Planck’s constant). The lowest frequency ωTA branch
near the Brillouin zone edge has a large phonon density
of states (the low-frequency peak). The major contribu-
tion to the ωTA frequency near the zone edge in such
compounds comes from CDWs. A charge density wave
appears on the oxygen sublattice in an HTSC due to the
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existence of large congruent parts of the Fermi surface
[22, 23]. In MgB2, the planes formed by boron atoms
play the role of CuO2 sheets. Electron–phonon cou-
pling in the presence of such congruent Fermi surface
regions gives rise to divergence of the dielectric suscep-
tibility and to a negative dielectric permittivity ε(ω, Q)
for the wave vectors Q connecting these regions. There-
fore, excitation of phonons with such values of Q and ω
should cause the crystal to contract because ε(ω, Q) < 0.
The temperature corresponding to this region of fre-
quencies ω is T ≈ "ω/k, and it is near this temperature
that a negative value of α should be observed. Further
heating excites phonons of other spectral modes with
higher frequencies. For those modes, ε(ω, Q) > 0, which
brings about normal behavior of α(T) (i.e., α > 0).
Thus, the anomaly α < 0 may appear without any phase
transition at all. Such an anomalous α(T) relation,
accounted for by an electronic contribution to thermal
expansion at low temperatures, is observed to occur, for
instance, in tetrahedral semiconductors (Ge, Si, GaAs,
ZnS, etc.), where the role of CDWs in our situation is
played by the so-called electronic charges on covalent
tetrahedral bonds [24, 25].

We believe that, in the case of MgB2, the freezing
out of high-frequency phonons under sample cooling
and the formation of ε(ω, Q) < 0 provides an additional
possibility of carrier pairing and transition of the sec-
ond group of carriers to the superconducting state.
Anomalies in the properties of MgB2 at temperatures
T ≈ 10–12 K have also been detected using other meth-
ods and can also be related to the existence of a second
superconducting gap [2].

(3) The above interpretation of the experimental
data (the existence of two carrier transitions to the
superconducting state) offers the possibility of estimat-
ing the value of γ (the coefficient of the linear term in
the temperature dependence of the specific heat that is
proportional to the density of states at the Fermi level)
for each carrier group. The value of γ derived from the
temperature dependence of specific heat for T > Tc is
actually a sum of the corresponding values for each
group of carriers, i.e., γ = γ1 + γ2. The coefficient γ1
relates to the first carrier group, which is responsible for
Tc ≈ 40 K in MgB2, and γ2 is associated with the second
carrier group, which accounts for the anomalies at Tc2 ≈
10–12 K. The figures obtained are γ = 4.39 mJ/K2 mol
(sample 1) and γ = 3.99 mJ/K2 mol (sample 2). Assum-
ing the contribution due to the electronic specific heat
of the second carrier group to be negligible for temper-
atures below 15 K (this is suggested by the nearly linear
C/T vs. T2 plot in this temperature region above the
anomaly), one can determine the values of γ1 and γ2
independently: γ1 = 1.48 and 1.44 mJ/K2 mol and γ2 =
2.91 and 2.55 mJ/K2 mol for samples 1 and 2, respec-
tively. Thus, our measurements yield for MgB2 γ1 =
1.4–1.5 mJ/K2 mol and γ2 = 2.55–2.9 mJ/K2 mol.

Since the magnitude of γ is proportional to the elec-
tronic density of states at the Fermi level, the ratio
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
γ2/γ1 ≈ 2 is a characteristic of the ratio of these densities
for the two groups of carriers in MgB2. A more precise
estimate of the ratio of the densities of states can be
obtained by taking into account the difference in bond
strength between these two groups. To estimate the
concentration ratio of these groups of carriers, one also
has to take into account the difference between their
effective masses. Unfortunately, we are not aware of
any reliable experimental data on these quantities for
MgB2.

(4) One can estimate the ratio of the specific-heat
jump at Tc to the product of Tc multiplied by the coeffi-
cient of the linear term in the temperature dependence
of the specific heat γ. According to the BCS theory,
∆C/γTc = 1.43. Taking for ∆C/Tc its value at the maxi-
mum (Fig. 2), we find that ∆C/γ1Tc ≈ 2.89 for sample 1
and ≈2.57 for sample 2. These values of the ratio sug-
gest the first group of carriers present at a lower concen-
tration to be strongly bound in MgB2. The ratio
∆C2/γ2Tc2 for the second (low-temperature) transition
as determined directly from the curves in Fig. 2 does
not exceed 0.2. Such a small value may indicate the for-
mation of a superconducting gap only in certain regions
of the Fermi surface corresponding to the second car-
rier group. Determination of these regions requires
additional study.

6. CONCLUSION

To sum up, we have found MgB2 to exhibit an anom-
alous behavior of the specific heat and thermal conduc-
tivity at low temperatures. The temperature region
where these anomalies are observed coincides with the
region of an anomalous (negative) coefficient of ther-
mal expansion. These anomalies are assigned to the
existence in MgB2 of a second group of carriers and to its
transition to the superconducting state at T ≈ 10–12 K.
Studies of other properties of MgB2 [2] lend support to
this conclusion.
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Abstract—A new approach is proposed for calculating the Debye temperature of a nanocrystal in the form of
an n-dimensional rectangular parallelepiped with an arbitrary microstructure and the number of atoms N rang-
ing from 2n to infinity. The geometric shape of the system is determined by the lateral-to-basal edge ratio of the
parallelepiped. The size dependences of the Debye and melting temperatures for a number of materials are cal-
culated using the derived relationship. The theoretical curves thus obtained agree well with the experimental
data. The calculated dependences of the superconducting transition temperature Tc on the size d of aluminum,
indium, and lead nanocrystals are also in reasonable agreement with the experimental estimates of Tc(d). It is
demonstrated that, as the nanocrystal size d decreases, the greater the deviation of the nanocrystal shape from
an equilibrium shape (in our case, a cube), the higher the temperature of the superconducting transition Tc(d).
The superconducting transition temperature is calculated as a function of the thickness (diameter) of a plate
(rod) with an arbitrary length. It is found that a decrease in the thickness (diameter) of the plate (rod) leads to
an increase in the temperature Tc(z): the looser the microstructure of the metallic nanocrystal, the higher the
temperature Tc(z). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are many works concerned with the analysis
of the size dependences of the physical properties of
nanocrystals. However, the majority of the theoretical
studies are based on the assumption that a nanocrystal
has a fixed (as a rule, spherical or cubic) shape. To the
best of my knowledge, the problem regarding the
dependence of a particular physical property not only
on the size but also on the shape of a nanocrystal has
never been considered before. The first attempts to
solve this problem were made in my recent works [1,
2]. In the present paper, I propose a new, more correct
approach to the solution of the formulated problem.

2. THEORETICAL BACKGROUND

We consider a one-dimensional chain consisting of
N atoms in which the distance between the centers of
the nearest neighbor atoms is equal to c. Let B be some
(linear) property of an atom located inside the chain and
having two nearest neighbors and A be an analogous
property for a terminal atom with only one neighbor. In
this case, the averaged (over all N atoms of the chain)
property 〈B1〉  can be represented as

 (1)

Next, we consider a two-dimensional rectangular sys-
tem formed by N atoms, of which Npo atoms are located
in the base and Nps = fNpo atoms occupy the lateral edge
of the rectangle. The total number of atoms in this sys-

B1〈 〉 B 2/N( ) B A–( ).–=
1063-7834/03/4507- $24.00 © 21213
tem can be defined as N = /α2, where f = Nps /Npo

is the shape parameter and α2 is the microstructure
parameter, which depends on the packing type of the
regular two-dimensional atomic lattice. Hence, for the
property 〈B2〉 , we obtain 2N〈B2〉  = [N – 2(Nfo + Nfs) –
4]2B + 2(Nfo + Nfs)(B + A) + 8A, where Nfo = Npo – 2 and
Nfs = Nps – 2 are the numbers of atoms located in the
base and along the lateral edge (without regard for the
terminal atoms) of the rectangle, respectively. Then, it
is a simple matter to derive the following relationship
for the two-dimensional rectangle:

 (2)

Similarly, in the case of a three-dimensional rectangu-

lar parallelepiped with a square base [N = ( f/α3) ],
we obtain the expression 3N〈B3〉  = (N – 4Nss – 2Nso –
8Nfo – 4Nfs – 8)3B + (4Nss + 2Nso)(2B + A) + (8Nfo +

4Nfs)(B + 2A) + 24A. Here, Nss = NfoNfs and Nso = 
are the numbers of atoms arranged on the lateral face
and the basal face (without regard for the atoms located
along the edges and at vertices) of the parallelepiped,
respectively, and Nfs = Nps – 2 and Nfo = Npo – 2 are the
numbers of atoms occupying the lateral edge and the
basal edge (without regard for the atoms located at ver-
tices) of the parallelepiped, respectively. As a result, the

f Npo
2

B2〈 〉 B α2/ f( )1/2
1 f+( )/N

1/2[ ] B A–( ).–=

Npo
3

Nfo
2
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property 〈B3〉  for the three-dimensional rectangular par-
allelepiped can be represented in the form

 (3)

From a comparison of relationships (1)–(3), we can
assume that, in the n-dimensional case,

 (4)

For the microstructure parameters αn in expression (4),
we easily found that α1 ≡ 1, α2 = π/4ky(2), and α3 =
π/6ky(3). Here, ky(n) is the packing coefficient of the
atomic lattice: 0 < ky(n) < 1.

With the use of expression (4), we determine the
mean coordination number for an n-dimensional
nanocrystal. An atom has B nearest neighbors in the
bulk of the nanocrystal (on average, B = kn/n in a linear
direction) and A nearest neighbors at the boundary (A =
kn/2n). Consequently, the expression for the relative

value of the mean coordination number  takes the
form

 (5)

The shape function Fn( f ) reaches a minimum when the
system has an n-dimensional cubic form: Fn( f = 1) = 1.
For platelike (f < 1) or rodlike (f > 1) nanocrystals, the
shape function is universally larger than unity; i.e.,
Fn( f ≠ 1) > 1.

A comparison of the results obtained from relation-
ship (5) with direct calculations of the mean coordina-
tion numbers 〈kn〉  for nanocrystals with square (n = 2)
and cubic (n = 3) lattices demonstrates exact coinci-
dence for all possible shapes of nanocrystals, provided
the number of atoms N varies from 2 to 512. Relation-
ship (5) is more accurate than the expression used in my
previous works [1, 2] and, furthermore, involves the
parameter αn accounting for the microstructure type of
the nanocrystal. This gives grounds to assert that rela-
tionship (5) holds true for arbitrary values N ≥ 1. How-
ever, it should be remembered that the dimensionality
of the structure under investigation takes values n ≤ 2
when the number of atoms falls in the range N ≤ 3 and
n = 1 when 1 ≤ N ≤ 2. This restriction stems from the
fact that the system composed of three atoms has either
a one-dimensional structure or a two-dimensional
structure, whereas the structure of the system consist-
ing of two atoms is universally linear. As a conse-
quence, from relationship (5), we obtain the trivial
results 〈kn = 1〉(N = 2) = 1 and 〈kn = 1〉(N = 1) = 0. By vir-
tue of the model restrictions, the number of atoms in an
n-dimensional system cannot be less than Nmin = 2n and
the shape parameter f must satisfy the following condi-
tions [2]: 2/Npo ≤ f ≤ Nps/2, where the quantity on the
left side determines the shape parameter for an n-

B3〈 〉 B α3/ f( )2/3
2 f 1+( )/3N

1/3[ ] 2 B A–( ).–=

Bn〈 〉 B=

– αn/ f( ) n 1–( )/n
n 1–( ) f 1+[ ] /nN

1/n{ } 2 B A–( ).

kn*

kn* kn〈 〉 /kn 1 Fn f( )αn
n 1–

/N[ ]
1/n

,–= =

Fn f( ) n 1–( ) f 1+[ ] n
/n

n
f

n 1–
.=
PH
dimensional biatomic plate and the quantity on the right
side specifies the shape parameter for an n-dimensional
rod with a biatomic diameter. From the expressions
Nps = INT[Nαn/2n – 1] for an n-dimensional rod with a
biatomic diameter and Npo = INT[Nαn/2]1/(n – 1) for an n-
dimensional biatomic plate, we obtain the following
relationships for the minimum and maximum shape
parameters at a given number of atoms N (hereafter,
INT[x] is the integer part of the number x):

 (6)

For a two-dimensional structure (n = 2), the shape
parameter satisfies the condition fmax = 1/fmin.

It can easily be verified that, at arbitrary constant
values of N, kn, and αn, the mean coordination number
〈kn〉  [see relationship (5)] as a function of the shape
parameter f reaches a maximum at f = 1. This indicates
that the cubic (square) shape of a three-dimensional
(two-dimensional) system corresponds to a maximum
value of 〈kn〉 . Therefore, a nanocrystal of cubic (square)
shape should possess maximum thermodynamic stabil-
ity (for at least zero values of the temperature and exter-
nal pressure).

As follows from relationship (5), three-dimensional
crystals are characterized by a U-shaped dependence of
the function F3( f ) on the shape parameter with a mini-
mum at f = 1 and, consequently, can exhibit a dimor-
phism. This phenomenon is observed under the condi-
tion 〈k3〉(N)plate = 〈k3〉(N)rod at a3 = const. A nanocrystal
has the form of a cube only in the case when the number

of atoms satisfies the relationship Ncube = INT[ /α3],
where Npo = 2, 3, …. Hence, at a given number of atoms
N ≠ Ncube, nanocrystals of different (for example, oblate
and prolate) shapes are characterized by the same bind-
ing energy. This is responsible for the dimorphism of
nanocrystals: under identical external conditions, plate-
like and rodlike nanocrystals containing the same num-
ber of atoms can be formed with an equal probability.

The thickness of an n-dimensional parallelepiped
can be represented as

 (7)

where c is the distance between the centers of the nearest
neighbor atoms. Form relationship (5), we obtain the
expression relating the mean coordination number  to
the thickness d of the n-dimensional parallelepiped:

(8)

f min 2/Npo 2/INT Nαn/2[ ] 1/ n 1–( )
,= =

f max Nps/2 1/2( )INT Nαn/2
n 1–[ ] .= =

Npo
3

d* d/c Npo n 1– f
2

+( )
1/2

,= =

Npo Nαn/ f( )1/n
,=

kn*

kn* d( ) 1 αnn
1/2

Ln f( )/d*,–=

Ln f( ) n 1–( ) f 1+[ ] /nf{ } n 1–( ) f
2

+[ ] /n{ }
1/2

.=
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It follows from expressions (7) and (8) that, at f = 1, the
function d*(f) reaches a minimum whereas the function

(d) reaches a maximum. These results confirm the
validity of the above expressions.

Now, we use formula (8) and the results presented in
[1] to calculate the size dependences of the physical
properties determined by the coordination number

(d). If the energy of zero-point vibrations is consid-
erably less than the energy of interatomic bonds (this
conditions is satisfied for all substances, except crystal-
line helium, hydrogen, and neon), the size dependence
of the Debye temperature Θ can be described by the
expression [1–3]

 (9)

According to the Lindemann criterion [4], the melting
temperature Tm as a function of the size d can be esti-
mated from the relationship

 (10)

The size dependence of the superconducting transition
temperature Tc for metallic nanocrystals can be calcu-
lated using the Garland formula (which is more correct
than the McMillan formula) [5–7]:

 (11)

where the function Fg(d) is defined by the expression

 (12)

Here, µ is the Coulomb pseudopotential and the elec-
tron–phonon coupling constant λ(d) and the parameter
A(d) as functions of the size d are given by

 (13)

In expressions (12) and (13), the parameters A, λ, β, and
µ, which are constant for each metal, fall in the follow-
ing ranges: A ≅  0.9–0.76, λ ≅  1.54(Hg)–0.41(Al), β ≅
0.52, and µ ≅  0.08–0.12 [5, 6].

3. RESULTS AND DISCUSSION

From formulas (8), we can easily determine the crit-
ical size of nanocrystals as follows [1, 4, 8, 9]:

 (14)

As a result, for three-dimensional nanocrystals of
cubic shape (i.e., at n = 3 and f = 1), we obtain

kn*

kn*

Θ* d( ) Θ d( )/Θ ∞( ) kn* d( )[ ]
1/2

.≅=

Tm* d( ) Tm d( )/Tm ∞( ) Θ* d( )[ ] 2
kn* d( ).≅ ≅=

Tc* d( ) Tc d( )/Tc ∞( )=

≅ Θ * d( ) Fg ∞( ) Fg d( )–[ ] ,exp

Fg d( ) 1 λ d( )+[ ] / 1 0.5µ–( )A d( )λ d( ) µ–[ ] .=

λ d( ) λ / Θ* d( )[ ] 2
, A d( ) A Θ* d( )[ ] β

.≅ ≅

dcr* n( ) dkn*/d 1/d*( )[ ]
d* ∞→
lim=

=  

1 n 1=

α2/2 f( ) f 1+( ) 1 f
2

+( )
1/2

, n 2=

α3/3 f( ) 2 f 1+( ) 2 f
2

+( )
1/2

, n 3.=
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For the majority of metals studied in [4, 8, 9], the dis-
tance c between the centers of the nearest neighbor
atoms lies in the range 0.3–0.4 nm. Hence, for close-
packed (fcc and bcc) nanocrystals of cubic shape, we
obtain the critical size dcr = 0.37–0.52 nm. These results
are in good agreement with the experimental estimates
made from the size dependences of the Debye temper-
ature and the melting point [see relationship (10)] for
metallic nanocrystals: dcr = 0.6 nm [8] and 1 ± 0.25 nm
[9]. It should be noted that the metallic nanocrystals
deposited on a substrate during experiments could
undergo a Jahn–Teller distortion [10]. Upon distortion,
the critical size dcr of a cubic nanocrystal increases
drastically. According to expression (14), the critical
size of a nanocrystal at f = 0.5 is estimated as dcr = 0.43–
0.62 nm.

The size dependences of the superconducting transi-
tion temperature of aluminum, indium, and lead nanoc-
rystals were calculated from formulas (11)–(13). For
aluminum nanocrystals with a face-centered cubic
structure [ky(n = 3) = 0.7405], the calculation was per-
formed with the following parameters: the distance
between the centers of the nearest neighbor atoms c =
0.286 nm [11], Tc(∞) = 1.18 K [11], β = 0.52 [5], λ =
0.41 [5], µ = 0.1 [5], A = 0.9 [5], and Fg(∞) = 5.6276.
For indium nanocrystals with a tetragonal structure
[ky(n = 3) = 0.6981], the parameters used in the calcu-
lation are as follows: c = 0.325 nm [11], Tc(∞) = 3.4 K
[11], β = 0.48 [6], λ = 0.84 [6], µ = 0.09 [6], A = 0.85
[6], and Fg(∞) = 3.1088. For lead nanocrystals with a
body-centered cubic structure, we used the following
parameters: c = 0.35 nm [11], Tc(∞) = 7.193 K [11], β =
0.52 [5], λ = 1.22 [5], µ = 0.09 [5], A = 0.9 [5], and
Fg(∞) = 2.316. The calculated dependences Tc(d) for
aluminum and indium nanocrystals of different shapes
are shown in Figs. 1 and 2, respectively. The experi-
mental data taken from [6, 12, 13] are also presented in
these figures. As is clearly seen from Figs. 1 and 2, the
calculated and experimental dependences Tc(d) are in
good agreement. For lead nanocrystals, the supercon-

dcr* 3( ) 3
1/2α3=

=  

1.225 for a face-centered   cubic  structure 
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ducting transition temperature Tc(d) depends on the
nanocrystal size only slightly, which also agrees with
the experimental results reported in [7].

As the nanocrystal size decreases, the superconduct-
ing transition temperature Tc(d) first increases, passes
through a maximum, and then decreases. The calcu-
lated size dependences of the superconducting transi-
tion temperature in the vicinity of the maximum of the
function Tc(d) for aluminum nanocrystals of different
shapes are depicted in Fig. 3. The table lists the param-
eters corresponding to the maxima of the function Tc(d)
for aluminum and indium nanocrystals of different
shapes. It can be seen from the table that, at large
parameters λ, the dependence (d) exhibits a maxi-
mum for a large size d, even though the value of (d)
at the maximum is relatively small. For example, the
electron–phonon coupling constant for bulk lead is
comparatively large: λ(Pb) = 1.22 [5]. This is the reason
why the calculations performed with the use of formu-
las (11)–(13) for lead nanocrystals resulted in a very
weak dependence (d). The function (d) even at
the maximum observed for the nanocrystal size d =

0.366 nm proved to be (max) = 1.0063. According
to the experimental data obtained in [7], the size depen-
dence of the superconducting transition temperature 
is not observed. It can be assumed that, for mercury
nanocrystals characterized by the electron–phonon
coupling constant λ(Hg) ≅  1.54 [5], the size depen-
dence of the superconducting transition temperature is
considerably less pronounced. The weaker the elec-
tron–phonon coupling λ in the metal, the higher the
temperature of the superconducting transition (d)
with a decrease in the nanocrystal size.

Tc*
Tc*

Tc* Tc*

Tc*

Tc*

Tc*

4 8 12 16 200

1.5

2.0

2.5

3.0

3.5

d, nm

T c
, K

Al

1
2

f = 4

f = 0.5

f = 1

1.0

Fig. 1. Calculated dependences of the superconducting tran-
sition temperature on the size of cubic (lower line, f = 1),
platelike (intermediate line, f = 0.5), and rodlike (upper line,
f = 4) aluminum nanocrystals. Points are the experimental
data taken from (1) [12] and (2) [13].
PH
For an n-dimensional rod whose diameter accom-
modates zR atoms, the shape parameter is defined as

fR = αnN . In this case, relationship (5) can be trans-
formed into the expression

 (16)

For an n-dimensional plate of thickness zp, the shape

parameter is given by the formula fp = /(Nαn)1/(n – 1).
Hence, from expression (8), we derive the relationship

zR
n

kn* N zR,( )rod

=  1 n 1–( )/n[ ] α n/zR( )– zR
n 1–

/nN( ).–

zp
n/ n 1–( )

5 10 15 20 250

3.6

3.8

4.0

4.2

4.4

3.4

In

d, nm

T c
, K

Fig. 2. Calculated dependences of the superconducting tran-
sition temperature on the size of cubic (thick line, f = 1),
platelike (thin line, f = 0.5), and rodlike (dashed line, f = 4)
indium nanocrystals. Points are the experimental data taken
from [6].
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f = 0.5

d, nm

T c
, K

Fig. 3. Calculated dependences of the superconducting tran-
sition temperature in the vicinity of the maximum of the
function Tc(d) on the size of cubic (thick line, f = 1), rodlike
(thin line, f = 1.5), and platelike (dashed line, f = 0.5) alumi-
num nanocrystals.
YSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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Parameters corresponding to the maxima of the function Tc(d) for face-centered cubic aluminum and tetragonal indium nanoc-
rystals of different shapes according to the calculation from formulas (11)–(13)

Metal f d* d, nm N k3 Θ, K Tc, K

Al 0.5 1.82 0.52 1 0.223 2.67 201.7 7.254 8.560

c = 0.286 nm [11] 1 1.57 0.45 1 0.222 2.66 201.5 7.254 8.560

Θ(∞) = 428 K [11] 1.5 1.64 0.47 1 0.212 2.54 196.9 7.252 8.557

Tc(∞) = 1.18 K [11] 4 2.90 0.83 2 0.224 2.70 202.9 6.912 8.156

In 0.5 3.08 1.00 6 0.512 5.12 77.31 1.278 4.345

c = 0.325 nm [11] 1 2.62 0.85 5 0.503 5.03 76.62 1.278 4.344

Θ(∞) = 108 K [11] 1.5 2.77 0.90 5 0.504 5.04 76.65 1.278 4.345

Tc(∞) = 3.4 K [11] 4 4.77 1.55 8 0.500 5.00 76.34 1.278 4.345

k3* Tc*
 (17)

It is easy to verify that functions (16) and (17) exhibit a
maximum at f = 1. As can readily be seen, expressions
(16) and (17) at n = 2 coincide with each other, which
also confirms the validity of the calculation technique
proposed in this work. Consequently, we can write the
following relationship for a two-dimensional strip
whose width accommodates zs atoms:

 (18)

From expressions (16) and (17) for a rod and a plate
at n = 3, we obtain

 (19)

kn* N zp,( )plate 1 αn/nzp( )–=

– αn
n 2–( )/ n 1–( )

n 1–( )/n[ ] zp/N( )1/ n 1–( )
.

k2* N zs,( )strip 1 α2/2zs( )– zs/2N( ).–=

k3* N zR,( )rod 1 2α3/3zR( )– zR
2
/3N( ),–=

1.8

105 15 20 25 30

1.6

1.4

1.2

zR

ky = 0.63

Al

ky = 0.7405

T c
, K

Fig. 4. Calculated dependences of the superconducting tran-
sition temperature on the diameter (expressed in atomic
diameters) of aluminum rods with face-centered cubic
(thick line, ky = 0.7405, k3 = 12, α3 = 0.7071) and amor-
phous (thin line, ky = 0.63 [14], k3 ≈ 7, α3 = 0.831) micro-
structures.
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It is evident from analyzing the above relationships that
the looser the microstructure of the metallic nanocrys-
tal, the stronger the thickness (diameter) dependence of

(plate) [ (rod)]. Note that, in the case of a rod, this
dependence is more pronounced. For a macrorod,
expression (19) can be transformed as follows:

(N  ∞, zR)rod = 1 – (2α3/3zR).

Figure 4 depicts the calculated dependences of the
superconducting transition temperature on the diameter
of aluminum macrorods with face-centered cubic (thick
line) and amorphous (thin line) microstructures. It can
be seen that, at the same diameter zR, the looser the
microstructure of the aluminum nanocrystal, the higher
the temperature Tc(zR).

4. CONCLUSIONS

Thus, the main results obtained in the above analysis
of the temperatures of superconducting transitions in
metallic nanocrystals of different shapes can be sum-
marized as follows.

(i) A deviation of the nanocrystal shape from an
equilibrium shape (in our case, a cube) leads to a
decrease in the Debye temperature Θ(d) and an increase
in the temperature of the superconducting transition
Tc(d). Therefore, the temperatures Θ(d) and Tc(d) for a
particular metal can be controlled by varying the shape
of the metallic nanocrystal.

(ii) The weaker the electron–phonon coupling in the
metal, the higher the temperature of the superconduct-
ing transition (d) with a decrease in the nanocrystal
size.

(iii) As the thickness (diameter) of the plate (rod)
decreases, the looser the microstructure of the metal,
the higher the temperature of the superconducting tran-
sition.

When designing high-temperature superconductor
compounds, it is possible to use the currently available
techniques of preparing platelike, needle-shaped, and

k3* N zp,( )plate 1 α3/3zp( )– 2/3( ) α3zp/N( )1/2
.–=

kn* kn*

k3*

Tc*
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more complex-shaped nonequilibrium modifications of
existing superconducting metals, as well as metal
nanocrystalline materials with an amorphous loose
microstructure.
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Abstract—The temperature evolution of the current–voltage characteristic (CVC) of a “break junction” with
metal-type conductivity on the polycrystalline La1.85Sr0.15CuO4 high-temperature superconductor is investi-
gated. The CVC exhibits gap peculiarities and hysteresis, which is observed in the region of negative differential
resistance. The experimental results are described well in terms of the Kümmel–Gunsenheimer–Nicolsky the-
ory for an S–N–S junction (S is a superconductor, N is a normal metal) this theory takes into account multiple
Andreev reflection of quasiparticles. It is shown that the shape of the CVC and the existence and the shape of
hysteresis are determined by the ratio of “long” and “short” grain boundaries in the polycrystal under investi-
gation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the current–voltage characteris-
tic (CVC) of a Josephson junction makes it possible to
obtain information on the physical properties of super-
conductors. The peculiarities of a CVC contain infor-
mation about the energy gap [1, 2] and may depend on
the symmetry of the superconductor order parameter
[3]. Since the discovery of high-temperature supercon-
ductivity (HTSC), different Josephson structures [4]
and polycrystalline high-Tc materials [5–7] in which
Josephson medium is realized [8] have been actively
studied. Technically, it is very difficult to prepare a sin-
gle Josephson junction with high-quality superconduct-
ing “banks” because of the high chemical activity of
high-Tc compounds, and on polycrystalline samples
inevitable heating makes it difficult to measure the tem-
perature evolution of a CVC in a wide range of currents,
including the range where the CVC becomes linear.
Many experimental investigations of the transport
properties of polycrystalline superconductors with dif-
ferent compositions have been carried out with the use
of break junctions [9–12]. Break-junction technology
allows one to decrease the self-heating of a sample sig-
nificantly. Break junctions prepared on bulk samples
require small measuring currents, like films, but they
are free from a number of drawbacks inherent to the lat-
ter (lower critical temperature, smaller energy gap).
While a microcrack develops, the cross section of the
sample decreases until only a narrow conducting chan-
nel is left and a tunneling junction is formed in the
limit. In the first case, the current density flowing
through the crystallites in the break region significantly
exceeds the current density in the sample volume. Thus,
1063-7834/03/4507- $24.00 © 21219
the break region determines the critical current in the
whole sample. This fact allows one to use relatively
small measuring currents to obtain CVC sections
reflecting the gap peculiarities of the superconductor. In
the present work, break junction CVCs of a exhibiting
a hysteretic behavior are measured on La1.85Sr0.15CuO4
at different temperatures. The first measurements on a
polycrystalline sample of this system [13], which rep-
resents a network of weak links, were carried out soon
after the discovery of HTSC. In the experiment in [13],
the CVC of a sample had a number of peculiarities,
which probably resulted from the presence of foreign
phases and self-heating of the sample. This makes com-
parison with the theoretical characteristics of weak
links junctions extremely difficult. From the presence
of excess voltage on the CVC in [13], it follows that the
boundaries between superconducting granules in
ceramics were probably insulating and, thus, a chaotic
network of Josephson junctions was formed in the
material. The synthesis technology for high-Tc super-
conductors of lanthanum and yttrium systems has been
significantly improved since the pioneering work per-
formed in [13] and make it possible to provide natural
boundaries of metal character between high-Tc super-
conductor crystallites.

2. EXPERIMENTAL

La1.85Sr0.15CuO4 is prepared using the solid-state
reaction technique. Samples with a typical size of 2 ×
2 × 10 mm3 were sawed out from synthesized tablets.
The samples were glued onto a sapphire substrate. The
central part of a sample was ground down to a cross
section S ~ 0.2 × 1 mm2. A further decrease in S is
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extremely difficult to control because of the inevitable
mechanical stresses at current- and potential-lead ter-
minals. To obtain a break junction, a sample with the
cross-sectional area S mentioned above, together with
the substrate, was bent by means of screws on pressed
current-lead terminals, which caused a microcrack to
appear in the part of the sample between the potential-
lead terminals. In this case, either a tunneling junction
(resistance R > 100 Ω) or a junction with metal-type
conductivity (R < 10 Ω) appeared. For the measure-
ments carried out in this work, the samples with the
lowest resistance were chosen. During the measure-
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Fig. 1. Temperature evolution of the CVC of a break junc-
tion: (a) experiment and (b) theory.
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ments, samples were held in a heat-exchange helium
atmosphere. CVC measurements were carried out
under isothermal conditions by slowly scanning a bias
current.

3. RESULTS AND DISCUSSION

The temperature evolution of the CVC of a break
junction on La1.85Sr0.15CuO4 is shown in Fig. 1a. All
CVCs are characterized by the presence of a critical
current and a region with a small differential resistance;
at low temperatures, this region is followed by a hyster-
etic jumplike increase in voltage U. In the region of
high values of current I and U, the U(I) dependence is
close to linear; its extrapolation to the value U = 0 gives
the value of excess current Iex, the existence of which
confirms the metallic character of the conductivity of
the junction under investigation [14]. The hysteretic
peculiarity of a CVC obtained in the current-scanning
mode is often observed on S–N–S junctions [5, 7, 14].
Such a peculiarity was shown in [15] to appear if there
is a region of negative differential resistance (NDR) on
a CVC; this region can be observed only in the bias
voltage regime on an S–N–S junction.

Figure 2 presents the temperature dependence of the
resistance R(T) of the break junction. The inset to Fig. 2
shows the R(T) dependence measured up to 300 K
before the break formation. The linear character of the
R(T) dependence above Tc confirms the metal type of
conductivity of the sample. A comparison of the resis-
tance R of the sample just above, superconducting the
transition temperature before (0.15 Ω) and after the
microcrack appearance (4 Ω) indicates that the contact
area decreased by approximately 27 times. After the
break junction was created, the temperature at which
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Fig. 2. Temperature dependence of the break-junction resis-
tance. Inset: temperature dependence of the resistance of a
bulk sample. 
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the resistance disappears became 2.5 K lower than that
in a bulk sample. It is known that thermal fluctuations
in weakly coupled superconductors (thermally acti-
vated phase slip [16]) decrease the transition tempera-
ture from a resistive state into the state with zero resis-
tance. The dispersion of the parameters of individual
weak-link junctions leads to dispersion of the tempera-
tures at which the resistances of separate weak-link
junctions disappear. In a bulk sample, current flows
through the “best” weak links and the influence of the
dispersion of these parameters is insignificant. In a
break junction, the majority of percolation paths are
broken up; therefore, “poorer” weak links (with smaller
critical currents and lower temperatures at which the
resistance disappears) begin to influence the transport
characteristics, in particular, to decrease the tempera-
ture at which the resistance of the whole sample disap-
pears. Thus, when a microcrack is formed, the current
flows not through a three-dimensional network but
rather through a network of a smaller dimensionality.

Consider a chain of weak links connected in series
which have different thickness of normal-metal region
between the superconductive banks. The current–volt-
age relation for this chain is 

 (1)

where Ui(I, T, Si, di) is the CVC of an individual S–N–S
junction whose N layer has a thickness di and cross sec-
tion Si and Vi is a weighting coefficient showing the
degree of influence of this junction on the resulting
CVC of the chain (  = 1). In the model under
investigation, the dispersion of cross sections is ignored
and Si = S (the dispersion of cross sections, as well as
the presence of parallel-connected junctions, smears
the of the CVC).

There are several theories which could be applied to
calculate Ui(I, T, di) of a single S–N–S junction. The
RSJ model and its modifications [17–19], in our opin-
ion, cannot adequately describe the physical processes
operating in S–N–S junctions. The current flowing
through an S–N–S junction and the CVC peculiarities
accompanying it are determined by the Andreev reflec-
tion [20]. Currently, a number of theories [1, 2, 21–23]
are used for the description of CVCs of weak-link junc-
tions. Kümmel–Gunsenheimer–Nicolsky theory
(KGN) [2], unlike the other theories, describes the
appearance of an NDR region in the CVC of an S–N–S
junction observations; the other theories do not take
into account the contribution from bound states in the
S–N–S junction to the current [24]. The KGN theory
deals with weak-link in which the Fermi velocities in
the superconductor and the normal metal are equal. We
assume that high-Tc ceramics meet this requirement
and, thus, the KGN theory can be used to calculate
Ui(I, T, di) in Eq. (1). The KGN theory is also conve-

U I T,( ) ViUi I T Si di, , ,( ),
i

∑=

Vii∑
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nient because in this theory the ratio di/l (where l is the
mean free path of electrons in the N metal) is used as
the weak-link parameter determining the CVC shape.
The current flowing through a weak link in the KGN
theory [2] is given by

 (2)

where f0(Ek) is the Fermi function describing the energy
distribution of quasiparticles, PN is the probability of
the presence of quasiparticles in the N region, e is the
electronic charge, m is the electronic mass, n is the
number of Andreev reflections undergone by a quasi-
particle before it escapes from the quantum well (the

normal metal between the superconductors), (E)

and (E) are the probabilities of the nth Andreev
reflection of quasiparticles with directions of hole prop-
agation parallel or antiparallel to the electric field, and
ke and kh depend on the energy and direction of motion
of electrons and holes and are determined in [2].

The experimental CVC obtained can be qualita-
tively described using only one term in sum (1). How-
ever, the inclusion of longer junctions (with larger val-
ues of d) significantly improves the agreement between
the experimental data and the theoretic dependence.
With two terms in sum (1), the calculated curve well
describes the experimental CVC (Fig. 1). In this case,
the best-fit curve corresponds to the values d1/l = 0.2,
V1 = 0.93, d2/l = 0.6, and V2 = 0.07. By using our results
and the data from review [25], we obtained l ~ 10 Å for
La1.85Sr0.15CuO4; therefore, d1 = 2 and d2 = 6 Å.

This model allowed us to describe the unusual shape
of experimental CVCs. The arch-shaped peculiarity of
an experimental CVC corresponds to the last arch-
shaped peculiarity on the calculated curve. This peculiar-
ity is due to multiple Andreev reflection in the S–N–S
junction. According to the theories mentioned above,
multiple Andreev reflection of quasiparticles leads to
the appearance of a subharmonic gap structure on the
CVC of the S–N–S with minima at U = 2∆(T)/en,
where ∆ is the energy gap of the superconductor. The
last arch-shaped peculiarity corresponds to n = 1 and 2.

In [3], the authors come to the conclusion that, in the
case of d-wave symmetry of electron pairs in the super-
conductor, the peculiarities of the CVC of a weak-link
junction that correspond to subharmonics of the energy
gap are heavily suppressed. The arch-shaped peculiari-
ties distinctly visible on our CVCs probably confirm
that the symmetry of the superconducting order param-
eter is different from the d-wave symmetry.

The literature data on the symmetry and temperature
dependence of the energy gap in a high-Tc supercon-
ductor are contradictory (see, e.g., reviews [26–30]).
Special points Usgs1(T) and Usgs2(T), marking the arch-
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shaped peculiarity, are shown on the experimental
CVCs in Fig. 1. The relations Usgs1(T) = 2∆(T)/e and
Usgs2(T) = ∆(T)/e are not strictly satisfied because the
current flows through several weak-link junctions.
However, the proportionality to ∆(T) should remain for
these special points. The observed Usgs1(T) and Usgs2(T)
dependencies are slightly different from the tempera-
ture dependence of the energy gap in the BCS theory.

In polycrystalline high-Tc superconductors, crystal-
lites are also distributed in orientation [8] and, due to a
strong anisotropy of these crystallites, there is a disper-
sion of energy gap values on a current-flow path. One
can simply, but not sufficiently correctly, take this dis-
persion into account by substituting different energy
gap values into the KGN equation for different terms in
Eq. (1). This operation improves the agreement of the
theoretical curves with the experimental CVCs only
insignificantly, but the number of fitting parameters
increases in this case. It should be noted that the thick-
ness distribution function of grain boundaries and the
energy-gap distribution function of crystallites on a
current-flow path may be related because of the pecu-
liarities of ceramic synthesis. Our further investigations
will be devoted to this issue.

4. CONCLUSIONS

Thus, we have successfully described both the CVC
shape with a hysteretic peculiarity and its temperature
evolution by means of the KGN theory [2], which takes
into account multiple Andreev reflection. This allows
us to conclude that, for natural grain boundaries of a
metallic type in the polycrystalline high-Tc supercon-
ductor La1.85Sr0.15CuO4, Andreev reflection determines
the characteristic features of the current-voltage curve.
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Pseudogap and Its Temperature Dependence in YBCO 
from the Data of Resistance Measurements
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Abstract—The temperature dependence of the excess conductivity ∆σ for ∆σ = A(1 – T/T*)exp(∆*/T) (YBCO)
epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resis-
tance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the tem-
perature dependence of the excess conductivity is adequately described by the relationship ∆σ = A(1 –
T/T*)exp(∆*/T). The pseudogap width and its temperature dependence are calculated under the assumption that
the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at tem-
peratures well above the critical temperature Tc of superconductivity. The results obtained are compared with
the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical tem-
perature Tc is discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental investigations of high-temperature
superconducting single crystals with a carrier concen-
tration corresponding to the maximum critical tem-
perature Tc (optimally doped crystals) and of crystals
with a lower carrier concentration (underdoped crys-
tals) have revealed that specific features in the electri-
cal, magnetic, and optical properties are observed
below the temperature T* (T* > Tc), which increases
with a decrease in the carrier concentration [1]. A pos-
sible explanation for these features is based on the
assumption that a pseudogap is formed in the excita-
tion spectrum of high-temperature superconducting
single crystals at temperatures considerably above the
critical temperature Tc. This implies that the density of
states near the Fermi level in an energy range of sev-
eral tens of millielectron-volts decreases to a finite
value rather than to zero (as would be the case with a
superconducting gap at T < Tc). At present, there exist
two basic approaches to the problem of the origin of
the pseudogap. Within the first approach, the forma-
tion of the pseudogap is associated with fluctuations
of the dielectric type (such as antiferromagnetic,
charge density wave, and phase separation fluctua-
tions). According to the second approach, the
pseudogap has superconducting nature. This problem
is under continuing discussion [2, 3]. In our consider-
ation, we will adhere to the latter approach, which, in
essence, is as follows: superconducting pairs are
formed at the temperature T*, whereas the coherence
(of the phase of the order parameter) in the sample
bulk and, hence, superconductivity arise at the critical
temperature Tc [4–7]. Consequently, the existence of
superconducting pairs at Tc  < T < T* should manifest
themselves in the temperature dependence of the
resistance in this temperature range.
1063-7834/03/4507- $24.00 © 21223
2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Epitaxial films of the composition YBa2Cu3O7 – δ
(YBCO) were grown through laser-induced evaporation
on SrTiO3 substrates [8]. The x-ray diffraction investiga-
tions demonstrated that the c axis of the films was per-
pendicular to the substrate plane. Bridges 3 µm wide and
40 µm long were prepared from 260-nm-thick films.
Electrodes were produced through evaporation of silver
films. Wires were cemented to the electrodes with a con-
ducting adhesive prepared from a silver powder. The
high degree of structural perfection of the films was
judged from the low resistivity at room temperature
(ρ300 ~ 160 µΩ cm), the large ratio ρ300/ρ100 ~ 2.1, and
the narrow transition range ∆Tc = T(0.9Rn) – T(0.1Rn) =
2.7 K. The oxygen content in the films was slightly less
than the optimum content, because the films were pre-
pared in situ without additional annealing in an oxy-
gen atmosphere. The oxygen content was estimated at
(7 – δ) ~ 6.85 from the critical temperature Tc(0.5R100) =
89.5 K and the lattice parameter. The temperature
dependences of the resistance of the studied films
were measured by the four-point probe method at a dc
density from Ja = 103 A/cm2 at room temperature to Ja =
10 A/cm2 at low temperatures. The temperature was
changed in steps of 1.5–2.0 K at high temperatures and
0.2 K in the superconducting transition range. The tem-
perature was measured with the use of copper–constan-
tan thermocouples and maintained accurate to within
~0.02 K. In order to decrease the systematic error in
measuring the temperature of the sample, the tempera-
ture gradient in the vicinity of the sample at each temper-
ature was minimized using an additional heater. The
measuring technique and storage of the sample between
experimental cycles at the liquid-nitrogen temperature
provided reproducibility of the measurements to within
experimental accuracy ~0.005 Ω.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of the resistance R, the derivative dR/dT, and the function Rn approximating the dependence R(T)
in the range 200–300 K [the root-mean-square deviation of Rn(T) at these temperatures is equal to 0.01 Ω]: (1) the experimental

dependence R(T), (2) the extrapolated dependence Rn(T) = –1.749 × 10–4T2 + 0.2774T + 13.98, (3) the derivative d[R(T)]/dT, and
(4) the extrapolation of the high-temperature portion of the dependence d[R(T)]/dT. The inset shows the dependence of Rn(T) – R(T).
3. EXPERIMENTAL RESULTS
AND THEIR PROCESSING

Figure 1 shows the temperature dependence of the
resistance for one of the bridges (curve 1). At high tem-
peratures (from 300 to ≈ 200 K), the dependence R(T) is
adequately described by the relationship Rn(T) = AT2 +
BT + C, where the coefficient A is small in magnitude.
The extrapolation of this dependence to the low-tem-
perature range is depicted by solid curve 2 in Fig. 1.
The dependence of the difference between the extrapo-
lated and measured resistances Rn(T) – R(T) is shown in
the inset to Fig. 1. It can be seen that, as the temperature
decreases, a decrease in the resistance beginning with
the temperature T* ≈ 203 K becomes more pronounced
than that at high temperatures. A similar behavior of the
resistance has been observed for many optimally doped
and underdoped YBCO single crystals and other
cuprates [1, 9–11]. The temperature dependence of
dR/dT (curve 3) is also plotted in Fig. 1. As can be seen,
the dependence dR(T)/dT exhibits a linear behavior
(curve 4) in the temperature range T = 300–200 K and
noticeably deviates from linearity at T ~ T*. Curves 3
and 4 clearly illustrate a change in the behavior of the
dependence R(T) when passing through the tempera-
ture T*.

By assuming that a sharper decrease in the resis-
tance below the temperature T* is caused by the forma-
tion of superconducting pairs at this temperature, we
analyzed the experimental data in terms of the excess
conductivity ∆σ, which was calculated from the mea-
sured and extrapolated resistivities ∆σ = 1/ρ(T) –
P

1/ρn(T). This approach is similar to that used in analyz-
ing the fluctuation component of the conductivity in
superconductors at temperatures slightly higher than
the critical temperature. Figure 2 depicts the depen-
dences of the excess conductivity ∆σ (curve 1) and
ln∆σ (curve 2) on the reciprocal of the temperature. It
can be seen that, over a wide range of temperatures, the
curve ln∆σ(T) is well approximated by the linear rela-
tionship ln(∆σ) = a + b/T (curve 3). Consequently, we
can write the expression

 (1)

where a, b, and D are constants. The inclusion of the
factor (1 – T/T*) allows us to improve substantially the
approximation of the experimental curve at high tem-
peratures; that is,

 (2)

where ∆* and A are the constants determined by fitting
the experimental data to the theoretical curve described
by this formula. The temperature dependence of the
function ln∆σ calculated as the logarithm of relation-
ship (2) is represented by curve 4 in Fig. 2.

A comparison of curves 2 (experiment) and 4 shows
that formula (2) adequately describes the experimental
data in the temperature range from 95 to 165 K. At
higher temperatures (165 < T < T* = 203 K), as the tem-
perature T* is approached, the excess conductivity
decreases faster than follows from formula (2). The
behavior of the function ln∆σ at these temperatures can
be analyzed in more detail in inset (a) to Fig. 2. Inset (a)

∆σ D b/T( ),exp=

∆σ A 1 T /T*–( ) ∆*/T( ),exp=
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dependences ln∆σ(T–1) calculated from formulas (1) and (2), respectively (T* = 203.3 ± 0.5 K, D = 1.244 Ω–1 cm–1, b = 676 K,
A = 10.9 ± 0.3 Ω–1 cm–1, and ∆* = 524 ± 3 K); and (5) the dependences ln∆σ(T–1) for ∆σ calculated with formula (2) in which
∆* = ∆*(T) satisfies relationship (3). Inset (a) illustrates (I) the experimental data and the dependences ln∆σ(T–1) calculated accord-
ing to formula (2) at ∆* = (1) 524, (2) 400, (3) 300, (4) 200, and (5) 0 K. Inset (b) presents the results of the processing of the data
taken from [9] for the YBa2Cu3O6.78 single crystal: (I) the experimental data, (1, 2) the curves ln∆σ(T–1) calculated from formula

(2), and (3, 4) the curves ln∆σ(T–1) obtained from formula (A2). Parameters T*, ∆*, A, and M are given in the text and the table.
The value of M was determined from the experimental data in the immediate vicinity of T* with a small ratio ∆*(T)/T (the contri-
bution to ln∆σ is less than 0.5%). (5) Dependence ln∆σ(T–1) in which the excess conductivity is calculated from formula (A2) for

∆* = ∆*(T) = 37.5 .198 T–

I

shows the curves plotted with formula (2) at parameters
∆* varying from 524 to 0 K (the constant A remains
unchanged for all the curves). Curves 2, 3, and 4 inter-
sect experimental curve I at points corresponding to the
parameters ∆*(T) = 400, 300, and 200 K, respectively.
It is evident that the deviation of the experimental
dependence from curve 1 in inset (a) (see Fig. 2) at tem-
peratures T ≥ 165 K (or, what is the same, the deviation
of curve 2 from curve 4 in Fig. 2) can be described by
the temperature-dependent function ∆*(T). Conse-
quently, the temperature dependence of the function ∆*
up to the temperature T* can be constructed from the
experimental temperature dependence of ln∆σ. The
dependence ∆*(T) obtained in this way is depicted by
curve 3 in Fig. 3. The parameter ∆* is nearly indepen-
dent of the temperature over a wide temperature range.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
At temperatures close to T*, the function ∆*(T) is well
approximated by the square-root relationship

 (3)

which is represented by curve 5 in Fig. 2.

In this processing of the experimental data, we intro-
duced the quantity ∆*, which possesses the following
properties.

(1) As follows from the form of relationship (1), the
quantity ∆* determines a thermal activation process
through the energy gap.

(2) The inequality ∆* ≠ 0 holds in the same temper-
ature range in which cuprates exhibit deviations from a
Fermi-liquid behavior due to the presence of a
pseudogap in the excitation spectrum [1, 9–11].

∆* T( ) 95.5 203.2 T– ,=
3
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Fig. 3. Temperature dependences of the pseudogap width ∆* for YBa2Cu3O7 – δ single crystals at oxygen contents (7 – δ) = (1) 6.93,
(2) 6.88, (3) 6.85, (4) 6.78, and (5) 6.68. Solid lines indicate the results of the fitting with the square-root relationships whose param-
eters are listed in the table. The temperature dependence of the pseudogap width ∆* calculated from formula (2) (curve 4a) is shown
for comparison with the dependence ∆*(T) calculated from formula (A2) (curve 4).
(3) The quantity  ≈ 520 K (45 meV) correspond-
ing to the low-temperature plateau is close to the
pseudogap width ∆* ≈ 500 K, which was obtained by
Kabanov et al. [12] for YBaCuO thin films with the
same oxygen content from an analysis of the relaxation
of a photoinduced decrease in the light transmission
measured by picosecond time-resolved optical spec-
troscopy.

(4) The behavior of ∆* at temperatures close to T* is
characteristic of the temperature dependence of the
order parameter in the vicinity of the second-order
phase transition point [this is admitted by the theory
proposed in [13], even though a smooth transition
(crossover) from the normal state to the state with a
nonzero pseudogap is assumed to be more probable].

In our opinion, the dependence ∆σ(T) satisfying
relationship (2) can be interpreted as follows: the
excess conductivity is proportional to the density of
superconducting carriers, which, to a first approxima-
tion, can be estimated as ns ~ (1 – T/T*) at temperatures
not far from T*, and inversely proportional to the num-
ber of pairs broken by thermal motion [~exp(–∆*/kT)].
It is assumed that the formulas appropriate in the
Bardeen–Cooper–Schrieffer (BCS) theory are applica-
ble, as a first approximation, in the temperature range
T ≤ T*. This assumption is based on the inferences
made by Emery et al. [4]. According to [4], the temper-
ature T* is treated as the mean-field temperature of the
superconducting transition and the temperature range
Tc < T < T*, in which the pseudogap state occurs, is
determined by the order-parameter phase stiffness

∆m*
P

decreasing with a decrease in the doping level (i.e., the
carrier concentration). Oda et al. [14] analyzed the
experimental data for different cuprates and drew a
similar conclusion that T* ~ TMF, where TMF is the
superconducting transition temperature in the mean-
field approximation.

The above properties give grounds to believe that
the quantity ∆* determined from analyzing the temper-
ature dependence of the excess conductivity can be
identified with the pseudogap revealed in high-temper-
ature superconductors by a number of experimental
techniques [1]. Since the pseudogap is observed in
materials with a carrier concentration variable over a
wide range below the optimum concentration (with Tc <
Tcmax), it is of interest to investigate more thoroughly
the excess conductivity with the use of the available
data on R(T) at different oxygen contents in YBCO. For
this purpose, we processed the experimental data
obtained by Takenaka et al. [9] for the temperature
dependence of the resistance of YBa2Cu3O7 – δ twin-
free single crystals with different oxygen contents (δ =
0.07, 0.12, 0.22, and 0.32). The dependences f(T) ≡
[ρ(T) – ρ0]/αT [9] (where ρ is the resistivity of the sin-
gle crystal along the a axis and α is the coefficient in the
linear dependence ρn(T) = ρ0 + αT) permitted us to cal-

culate the excess conductivity ∆σ = ρ–1 –  = [1 –
f(T)]/[(1 + ρ0/αT)ρ(T)] and to determine the depen-
dence ∆*(T) from relationship (2). Figure 3 depicts the
dependences ∆*(T) for single crystals with δ = 0.07
(curve 1) and 0.12 (curve 2). The excess conductivity in
strongly underdoped single crystals (δ = 0.22 and 0.32)

ρn
1–
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Parameters determined from analyzing the temperature dependence of the resistance of YBa2Cu3O7 – δ high-temperature
superconductors with different oxygen contents

(7 – δ) Tc, K T*, K Tsqr, K Q, K1/2 k
K meV

6.93 91.2 133 133 180 15.5 72.2 4.62

6.88 90.8 189 189 602 52 148 3.38

6.85 89.5 203.3 203.2 524 45 95.5 2.6

6.78 80.5 220 198 298 25.7 37.4 1.86

6.68 58.7 268 231 299 25.7 33.8 1.72

Note: Tc is the critical temperature, T* is the temperature of pseudogap opening in the excitation spectrum,  is the pseudogap width in

the plateau at temperatures considerably below the temperature T*, and Tsqr is the fitting parameter in the formula approximating

the dependence ∆*(T  T*) by the square-root relationship ∆*(T) = Q  or ∆*(t)/  = k .

∆m*

∆m*

Tsqr T– ∆m* 1 T /Tsqr–
can also be described by relationship (2), except in the
temperature range in the immediate vicinity of T*, in
which the preexponential factor decreases faster than
1 – T/T*. This situation for the single crystal with δ =
0.22 is illustrated in inset (b) to Fig. 2. The experimen-
tal dependence lnσ(T) (curve I) at ≈ 200 K < T lies
below curve 2 calculated from relationship (2) at ∆* =
0. Therefore, in order to describe the excess conductiv-
ity ∆σ up to the temperature T* (by eliminating the val-
ues of ∆* < 0 from our consideration), it is necessary to
introduce a stronger dependence of the decrease in the
preexponential factor on the temperature as compared
to that used in relationship (2). The possibility of mod-
ifying relationship (2) for describing the excess con-
ductivity in strongly underdoped single crystals is con-
sidered in Item 1 of the Appendix.

Figure 3 shows the dependences ∆*(T) for single
crystals at different doping levels (7 – δ) and the curves
approximating the high-temperature portions of ∆*(T)

by the square-root relationship ∆* ~ . As
can be seen, the descending portion of the curves ∆*(T)
can be described by the square-root relationship over
almost the entire range (up to T*) for materials at dop-
ing levels (7 – δ) = 6.93–6.85 or over a sufficiently wide
range of temperatures for materials at lower doping lev-
els (in the latter case, the parameter of the square-root
approximation must satisfy the inequality Tsqr < T*).
The possibility of constructing the square-root approx-
imation will be discussed in Item 2 of the Appendix.
The parameters derived in the above processing for
materials with different δ are given in the table.

Figure 4 depicts the dependences ∆*(t)/  on the

reduced temperature t = T/T*, where  is the value of
∆* in the plateau at temperatures considerably below
T*. This figure also shows the dependences ∆*(t)/∆(0)
calculated by Babaev and Kleinert [6] in the framework
of the theory of the crossover from the Bardeen–Coo-
per–Schrieffer mechanism to the Bose–Einstein con-
densation (BEC) mechanism at different parameters

T sqr T–( )

∆m*

∆m*
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µ/∆(0) of the theory, where µ is the chemical potential
of charge carriers and ∆(0) is the energy gap at T = 0.
Theoretical curves 6–9 lie between experimental curves
1–3 [(7 – δ) = 6.93, 6.88, and 6.85] and experimental
curves 4 and 5 [(7 – δ) = 6.78 and 6.68].

The inset in Fig. 4 shows the dependences ∆*/
on the reduced temperature t = T/Tsqr; i.e., the tempera-
ture in the inset is normalized to Tsqr rather than to T*
as in Fig. 4. Curves 1 and 2 in the inset correspond to
(7 – δ) = 6.78 and 6.68, respectively. Note that the
experimental curves in the inset to Fig. 4, especially
curve 1, are very similar to theoretical curve 3 at
µ/∆(0) = –2.

4. DISCUSSION 

An exponential temperature dependence of the
excess conductivity has been observed for a number of
high-temperature superconductors. In particular,
Prekul et al. [15] demonstrated that the excess conduc-
tivity in YBaCuO and LaSrCuO ceramic materials can
be described by relationship (1) at b ≈ 800 and ≈400 K,
respectively. Vyas et al. [16] also revealed an exponen-
tial dependence of the excess conductivity of
YBa2(Cu1 – xMgx)3O7 – δ samples. In this case, a linear

portion in the dependence of ln(ρ–1 – ) on T–1 was
observed approximately in the same temperature range
as in our work (curve 3 in Fig. 2) and [15]. In [16], the
authors assumed that the parameter b in the numerator
of the exponent in expression (1) is equal to the
pseudogap width, which decreases from 1000 K for
compounds at a doping level close to the optimum
value x = 0.002 to 170–200 K with an increase in the
Mg content to x ≈ 0.02. The parameters b determined
in [15, 16] agree well with our results obtained by pro-
cessing the experimental data with the use of formula
(1): b ≈ 900 K at (7 – δ) = 6.88 and b ≈ 680 K at
(7 − δ) = 6.85 (especially when taken into account that
the carrier concentration is known only approximately).

∆m*

ρn
1–
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Fig. 4. Experimental and theoretical temperature dependences of the pseudogap width in reduced coordinates. (1–5) Dependences

of ∆*(t)/  (normalized to the maximum pseudogap width) on the reduced temperature t = T/T* at oxygen contents (7 – δ) =

(1) 6.93, (2) 6.88, (3) 6.85, (4) 6.78, and (5) 6.68. (6–9) Graphs of the reduced pseudogap width ∆*(t)/∆(0) calculated as a function
of the reduced temperature t = T/T* in terms of the BCS–BEC crossover theory [6] in the mean-field approximation at the crossover
parameters µ/∆(0) = (6) 10 (BCS limit), (7) –2, (8) –5, and (9) –10 (BEC limit). µ is the chemical potential of charge carriers, and

∆(0) ≡ ∆(T = 0). The inset shows the dependences ∆*(t)/  on the reduced temperature t = T/Tsqr at oxygen contents (7 – δ) =

(1) 6.78 and (2) 6.68 (corresponding to curves 4 and 5 in the main part of Fig. 4) and the theoretical dependences of the reduced
pseudogap width ∆*(t)/∆(0) [6] at crossover parameters of (3) –2 and (4) –5. Tsqr is the parameter of the square-root approximation
of ∆*(T  T*).

∆m*

∆m*
However, relationship (1) enables one to describe only
a portion of the experimental curve ∆σ(T) in the tem-
perature range 100–140 K. At the same time, the excess
conductivity is adequately described by relationship (2)
over the entire temperature range of existence of the
pseudogap in YBa2Cu3O7 – δ single crystals at doping lev-
els (7 – δ) = 6.93–6.85 (close to the optimum level) and,
after an appropriate modification [see formula (A2)], at
doping levels (7 – δ) = 6.78 and 6.68.

The dependences ∆*(T) shown in Fig. 3 are charac-
terized by the following features. 

(i) The dependences ∆*(T) for compounds at doping
levels (7 – δ) = 6.88 and 6.85 exhibit a plateau with
∆*(T) ~ const over a wide temperature range. 

(ii) The quantity ∆*(T) for the compounds doped at
levels close to the optimum value increases drastically
with a decrease in the temperature from T*, and the
dependence ∆*(T) becomes progressively smoother
with an increase in δ. 

(iii) As the oxygen content δ increases, the quantity
 corresponding to the plateau in the dependence

∆*(T) varies in a nonmonotonic way; i.e., it passes
through a rather sharp and asymmetric maximum at
doping levels δ slightly below the optimum value. 

∆m*
PH
(iv) The temperature T* monotonically increases
with an increase in δ. 

(v) The properties of the materials at doping levels
(7 – δ) = 6.93, 6.88, and 6.85 differ significantly from
those of the lightly doped materials at levels (7 – δ) =
6.78 and 6.68. For the former materials, the excess con-
ductivity is adequately described by formula (2), the
obtained dependence ∆*(T) exhibits a wide plateau at
low temperatures and obeys the square-root relation-
ship at temperatures close to T*, and the temperatures
Tsqr and T* coincide with each other. For the latter com-
pounds, the excess conductivity should be described by
the more complex expression (A2) (see Appendix) and
the dependence ∆*(T) calculated according to this for-
mula deviates from the square-root behavior in the
immediate vicinity of the temperature T*, which results
in Tsqr < T*.

These properties of the pseudogap revealed from
analyzing the temperature dependence of the resistance
of YBa2Cu3O7 – δ compounds can be compared with the
data available in the literature.

It should be noted that a monotonic increase in the
temperature T* with a decrease in the doping level has
been observed in all the works dealing with pseudogaps
[1]. Angle-resolved photoelectron spectroscopic inves-
tigations performed by Ding et al. [17] revealed a gap
YSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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in the spectrum of Bi2Sr2CaCu2O8 at Tc < T, which
depends on the wave vector and rather rapidly
decreases with an increase in the temperature T.
According to our data for the compound with the opti-
mum doping (δ = 0.07), the dependence ∆*(T), which
is characterized by a rapid decrease from  ≈ 16 meV
at T = 110 K to 0 at T = 133 K, is qualitatively similar
to the dependence ∆*(T) obtained from the angle-
resolved photoelectron spectroscopic and electronic
heat capacity data [1]. A pseudogap ∆* independent of
temperature over a wide range was observed for
YBaCuO films (according to the data on a photoin-
duced decrease in the light transmission) [12] and for
Bi2.1Sr1.9CaCu2O8 + δ crystals (scanning tunneling
microscopy) [18], which is in agreement with our
results at δ = 0.22–0.25. The pseudogap width is close
to that found in [12] at this concentration. A difference
is observed in the temperature range close to the tem-
perature T*. In this range, the resolution of the method
used to examine the relaxation of a photoinduced
decrease in the light transmission is insufficient for
observing the temperature dependence of ∆*  0 at
T  T*.

The results obtained in this work demonstrated that
a further increase in δ leads to a nonmonotonic change
in the value of . This behavior differs from the data
reported in [12, 14], according to which the pseudogap
width increases monotonically with a decrease in the
doping level: ∆* ~ 1/(0.6 – δ). As in our work, Vyas et
al. [16] investigated the temperature dependences of
the excess conductivity. In [16], it was found that an
increase in the Mg content in YBa2(Cu1 – xMgx)3O7 – δ
compounds results in a decrease in the parameter b in
formula (1). This parameter is proportional to the
pseudogap width  derived when the experimental
data are processed using relationship (2). Since an
increase in the Mg content is accompanied by an
increase in the resistivity of the material and a decrease
in the critical temperature, it is reasonable to assume
that an increase in x leads to a decrease in the carrier
concentration below the optimum level, i.e., to an
increase in the “degree of underdoping” of the material.
Therefore, in [16], the authors most likely observed a
decrease in the pseudogap width with a decrease in the
carrier concentration from a concentration slightly
lower than the optimum level at a lowest content equal
to 0.002 at. % Mg, i.e., when going far into the under-
doped region. This behavior is similar to the decrease in
the value of  calculated in our work with a decrease
in (7 – δ) from 6.88 to 6.78. However, the data obtained
in a number of works are inconsistent with a simple
monotonic increase in the pseudogap width with a
decrease in the doping level. In particular, Blumberg et
al. [19] noted that the suppression of low-frequency
excitations in BiSrCaCuO (i.e., the manifestation of the
pseudogap) becomes less pronounced with a decrease

∆m*

∆m*

∆m*

∆m*
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in the doping level in the range of relatively low con-
centrations. Moreover, these authors revealed [19]
that, as the doping level decreases from a level slightly
above the optimum level, the 2∆ quasiparticle Raman
peak at λ–1 = 420 cm–1 (52 meV) transforms first into
a peak at λ–1 ~ 540 cm–1 (67 meV) at the optimum
doping level and then into a partially coherent peak at
λ–1 ~ 600 cm–1 (75 meV). Consequently, in [19], it was
demonstrated that a decrease in the carrier concentra-
tion can lead to a decrease in the pseudogap width at a
shift of ≈10 meV (in the range of low concentrations)
and to an increase in the energy of the peak (i.e., in the
value of 2∆* ≈ 50–75 meV) at doping levels close to
the optimum level. Mihailovic et al. [20] measured the
relaxation times of quasiparticles excited by laser pulses
in YBa2Cu3O7 – δ compounds and revealed that the con-
centration dependence of the quasiparticle relaxation
time drastically changes in character at (7 – δ) ≈ 6.8–
6.85. At higher values, the relaxation time sharply
increases with an increase in the oxygen content (to the
optimum level). At the same time, at lower contents, the
relaxation time virtually does not depend on δ. Hence,
there are grounds to believe that a decrease in the oxygen
content below 6.8 results in a considerable change in the
properties of YBa2Cu3O7 – δ compounds, which accounts
for the specific features observed in the behavior of the
pseudogap determined from the resistance data. In our
opinion, the discrepancy between our results and the
data obtained in [12, 14] stems from the fact that, at rel-
atively low contents, the excitation of the studied sys-
tem in measurements of the Raman shifts and relax-
ation after optical pumping and also in observations
with scanning tunneling microscopy is substantially
higher than that in experiments on the conductivity
measurement.

It should be noted that, compared to other tech-
niques, the analysis of the excess conductivity provides
a means for determining the dependence ∆*(T) up to
the temperature T*. Consequently, it becomes possible
to compare the obtained results with theoretical data.
As can be seen from Fig. 4, the results of the BCS–BEC
crossover theory disagree with the dependences ∆*/
on T/T*, which were calculated from the experimental
data. In the case of materials with concentrations close
to the optimum level, the dependences determined from
the experimental data cannot be described within the
theory developed in [6] due to the occurrence of a pla-
teau over a wide temperature range with ∆*(T) ≈ const
and a sharp decrease in ∆* in the vicinity of the temper-
ature T*. Mathematically, the last fact is reflected in the
large parameter k = 2.5–4.6 in the reduced square-root

dependence ∆*(t)/  =  for these materi-
als (for comparison, k ≈ 1.74 in the BCS theory). For
materials at a lower doping level, the dependences
∆*(t)/  are in satisfactory agreement with the depen-
dences ∆*(t)/∆(0) obtained in [6] at the crossover
parameter µ/∆(0) = –2 after replacing t = T/T* by t =

∆m*

∆m* k 1 T /T sqr–

∆m*
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T/Tsqr. Here, Tsqr is the parameter of the square-root
approximation of the descending portion in the depen-
dence ∆*(T). The exception is provided by the range in
the immediate vicinity of the T* temperature. This
agrees with the theoretical concept according to which
the transition at the temperature T* is treated as a
smooth crossover (more probable than the phase transi-
tion). For this reason, in [6], it was not expected that the
dependences ∆*(t)/∆(0) deduced in the mean-field
approximation could be applicable in the vicinity of the
temperature T*. Thus, the comparison of our results
with the theoretical data, first, demonstrates that the
YBa2Cu3O7 – δ compounds at concentrations slightly
less than the optimum level possess specific properties,
second, confirms the proposed interpretation of the data
for materials at (δ – 7) < 6.8 [more precisely, the intro-
duction of the characteristic temperature Tsqr and the
use of formula (A2) for processing the results], and,
third, provides further evidence supporting the applica-
bility of the mean-field theory to rather lightly doped
YBa2Cu3O7 – δ compounds at temperatures well below
T* (the experimental results in the vicinity of this tem-
perature should be explained in terms of other theories).
The last inference directly follows from our interpreta-
tion of the excess conductivity ∆σ with the use of
expression (2). At temperatures close to T*, the preex-
ponential factor in formula (2) decreases faster than 1 –
T/T* [as a result, it is necessary to use relationship
(A2)]; i.e., the density of superconducting carriers ns

deviates from that predicted by the mean-field theory
and, hence, this theory is inapplicable. This is also sup-
ported by the fact that the square-root approximation of
the dependence ∆*(T) [curve 5 in inset (b) in Fig. 2]
becomes invalid approximately at the temperature
(≈195 K) at which expression (2) becomes inapplicable.

Finally, we consider the crossover to fluctuation
conductivity in the case when the critical temperature
Tc is approached. It can be seen from Fig. 3 that, with a
decrease in the temperature, the curves ∆*(T) in the
vicinity of the critical temperature Tc begin to deviate
upward from the plateau. In this range (down to Tc),
there arises fluctuation conductivity characterized by a
more rapid increase in the excess conductivity ∆σ with
a decrease in the temperature as compared to the excess
conductivity considered above. It seems likely that
superconducting pairs cease to be independent in the
range of the crossover to paraconductivity. In any case,
the excess conductivity ∆σ in the paraconductivity
range cannot be described by the exponential depen-
dence proposed above. For the sample at the doping
level (7 – δ) = 6.85 (for which the most exact results
were obtained, we revealed that the excess conductivity
∆σ in the temperature range T = 92.5–106 K is well
described in the framework of the Aslamazov–Larkin
theory [21] for a two-dimensional system; that is,

 ∆σ e
2
/16"d( )Tc/ T Tc–( ),=
P

where d is the thickness of the layer in which supercon-
ducting fluctuations occur. The transformation into a
three-dimensional system is observed at ≈92.3 K. In
this case, the excess conductivity can be written in the
form

 

where ξ(0) is the coherence length at T = 0. The deter-
mined layer thickness d ≈ 91 nm agrees with the data
obtained in [22], and the calculated coherence length
ξ(0) ≈ 0.23 nm is close to that reported in [23]. In the
present work, we are interested in the temperature up to
which the dependence ∆σ(T) can be described within
the concept of fluctuation conductivity, because the
excess and fluctuation conductivities are calculated
from the experimental data according to the same for-
mula ∆σ = 1/ρ(T) – 1/ρn(T). Previously, Hopfengartner
et al. [24] experimentally found that, at temperatures
substantially higher than the critical temperature Tc, the
fluctuation conductivity decreases more rapidly than
that predicted theoretically. It was assumed that this
stems from the underestimation of the contribution
from short-wavelength order parameter fluctuations,
whereas this contribution increases with an increase in
the temperature. Reggani et al. [25] performed micro-
scopic calculations of the excess conductivity ∆σ with
allowance made for all the order parameter compo-
nents. A comparison shows that our data for the sample
at (7 – δ) = 6.85 and the theoretical results obtained in
[25] are in agreement up to a temperature of approxi-
mately 118 K. Therefore, in the temperature range 100–
118 K, the excess conductivity ∆σ can be described to
within our accuracy of measurement both by the afore-
mentioned exponential relationship [formula (2)] and
in the framework of the fluctuation conductivity theory
developed in [25]. With a further increase in the tem-
perature, the excess conductivity ∆σ decreases faster
than follows from the theory proposed in [16]. How-
ever, the exponential description remains valid and
∆* ~ const up to T ≈ 160 K. In concluding, one further
remark should be made. Let us assume that the cross-
over to the fluctuation conductivity with a decrease in
the temperature occurs at the temperature Tfl at which
the dependence ∆*(T) deviates upward from the pla-
teau. Then, it turns out that the relative temperature
range of the paraconductivity (Tfl – Tc)/Tc decreases
from 0.217 to 0.137, 0.106, and 0.0646 with a decrease
in (7 – δ) from 6.93 to 6.78. Therefore, we can draw the
inference that a weakening of superconducting correla-
tions with a decrease in the doping level with respect to
the optimum level leads to a decrease in the critical
temperature and the temperature range characterized by
a pronounced fluctuation conductivity.

5. CONCLUSIONS

Thus, the main results obtained in this work can be
summarized as follows:

∆σ e
2
/32"ξ 0( )( ) Tc/ T Tc–( )( )1/2

,=
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(1) It was found that the temperature dependence of
the excess conductivity for YBaCuO films and single
crystals with carrier concentrations slightly lower than
the optimum concentration exhibits an exponential
behavior over a wide range of temperatures. The
assumption was made and justified that the exponent in
the expression describing the corresponding depen-
dence in this concentration range can be represented in
the form ∆*/T, where ∆* is the pseudogap width.

(2) The temperature dependence of the pseudogap
width in the range from T = T* to temperatures (above
the critical temperature) at which the fluctuation con-
ductivity plays the decisive role was obtained under
simple assumptions.

(3) It was shown that the temperature dependence of
the excess conductivity for compounds with concentra-
tions close to (and including) the optimum concentration
0.07 ≤ δ < 0.2 can be interpreted in terms of the mean-
field theory. For compounds in this concentration range,
the temperature dependence of the pseudogap width in
the vicinity of the temperature T* exhibits the behavior
characteristic of second-order phase transitions
described in the framework of the mean-field theory.

(4) When changing over to samples at a lower dop-
ing level (δ > 0.2), the pseudogap width increases and
its temperature dependence transforms such that good
agreement can be achieved with the BCS–BEC cross-
over theory (except in the temperature range close to
T*). It was demonstrated that, at these concentrations,
the low-temperature portion of the dependence ∆*(T)
can be described within the mean-field theory; how-
ever, this approximation is inapplicable at temperatures
close to T*.

APPENDIX

1. Let us modify formula (2). The dependences calcu-
lated using formula (2) for the compound with (7 – δ) =
6.78 at A = 270 Ω–1 cm–1 and ∆* = 294 K (curve 1) and
0 K (curve 2) are depicted in inset (b) in Fig. 2. At
≈195 K < T, experimental curve 1 lies below curve 2.
Therefore, as was noted above, in order to describe the
excess conductivity up to the temperature T*, it is nec-
essary to transform formula (2) in such a way as to pro-
vide a faster decrease in the preexponential factor in
this temperature range. For this purpose, the excess
conductivity ∆σ can be written in the form

 (A1)

where β = 1 at T < 195 K increases to β(T*) ~ 1.34 at
T  T*. The factor (1 – T/T*)β(T) can be replaced by
the expression (1 – T/T*)exp[–M/(T* – T)] (where M is
a constant), which is more convenient for comparing
with the experimental data. Inset (b) in Fig. 2 shows
curves 3 and 4 constructed using the relationship

 (A2)

∆σ A 1 T /T*–( )β T( ) ∆*/T( ),exp=

∆σ = A M/ T* T–( )–[ ] 1 T /T*–( ) ∆*/T( )expexp
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with the same parameters A and ∆* = 294 K (curve 3)
and 0 K (curve 4) as for curves 1 and 2 and M = 5.86 K.
It can be seen that the curves calculated from relation-
ship (A2) at T < 200 K are sufficiently close to the
curves constructed with formula (2) and the use of rela-
tionship (A2) makes it possible to describe the temper-
ature dependence of the conductivity up to the temper-
ature T*. Curves 4 and 5 in Fig. 3 depict the depen-
dences ∆*(T) obtained by applying relationship (A2)
for processing the experimental data for single crystals
at doping levels (7 – δ) = 6.78 and 6.68, respectively.
For comparison, the dependence ∆*(T) calculated from
formula (2) is represented by curve 4a in Fig. 3. As
could be expected, the difference between curves 4 and
4a is insignificant at low temperatures T < 190 K. At the
same time, we believe that curve 4 qualitatively reflects
the behavior of the dependence ∆*(T) in the immediate
vicinity of the temperature T*.

2. The possibility of describing the dependence
∆*(T) in the vicinity of the temperature T* with the use
of the square-root relationship was determined in the
following way. (1) The dependence of ∆* on (T* – T)1/2

was analyzed for the occurrence of a linear portion in
the range close to T*. (2) The characteristic tempera-
ture, which is referred to as the temperature Tsqr (square
root), was varied so that the linear dependence had the
form ∆* = Q(Tsqr – T)1/2 (the free term should be equal
to zero). The dependences ∆*(T) calculated from the
obtained parameters Q and Tsqr are shown by the solid
lines in Fig. 3.
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Abstract—The A-exciton series in the absorption spectra of β-ZnP2 monoclinic zinc diphosphide samples is
investigated at different directions of the wave vector and different polarization states of radiation. It is shown
that the oscillator strengths determined for the observed transitions are adequately described by the relationship
Fn ∝  n–3 characteristic of S-type exciton states. The assumption is made that the A-exciton series is associated
with the partially allowed dipole transitions to nS states of the orthoexciton with (x) symmetry at ms = 0.

These states are mixed, to a first approximation, with nS states of the (z) singlet exciton due to the spin–orbit
interaction and are split off by the long-range (nonanalytical) part of the exchange interaction. The Fano anti-
resonances arise in the absorption spectra at resonances of the A-exciton series when the radiation vector E (or
the induction vector D) has a component along the crystallographic axis c. These antiresonances are induced
by the configurational interaction of discrete exciton states of the A series with the continuum of the exciton–
phonon spectrum due to indirect transitions to the 1S band of the singlet exciton with phonon emission. © 2003
MAIK “Nauka/Interperiodica”.
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–
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–

1. INTRODUCTION

Monoclinic zinc diphosphide β-ZnP2 is a low-sym-
metry direct-band-gap semiconductor in which several
hydrogen-like exciton series can be excited as a result
of electric-dipole [1–4] and dipole-forbidden [1, 3, 5]
transitions. However, unlike cubic Cu2O and other thor-
oughly studied direct-band-gap semiconductors (for
example, CdS), all the series for β-ZnP2 are most likely
associated with the same pair of electron energy bands,
because these series converge virtually to the same
limit E∞ = 1.6026 ± 0.0002 eV [3, 6]. It is significant
that, since the crystal lattice has low symmetry of the
class 2/m(C2h), the orbital degeneracy of exciton states
(except for the degeneracy caused by the time inver-
sion) is completely removed by the anisotropic crystal
field and the series of exciton absorption lines are
observed for different directions of the wave vector s =
q/q and different polarization states of radiation [6].

In the universally accepted setting of the crystallo-
graphic axes in the monoclinic system, i.e., C2 || b || Y,
the well-known C series of the singlet exciton (with a
large oscillator strength of the exciton transition) asso-
ciated with the electric-dipole (E1) transitions is
observed for the polarization E || c at s ⊥  (100) [1–4]. A
mixed mode of the singlet exciton arises when the wave
vector s is aligned with the dipole moment Pm(c) of the
exciton polarizability tensor [6]. For the polarization
E || b, the absorption spectra observed for all orienta-
tions of the wave vector with respect to the crystallo-
graphic axes are characterized by the dipole-forbidden
1063-7834/03/4507- $24.00 © 21233
B series of the orthoexciton [1, 5, 6]. The higher energy
A series of the absorption lines has not been adequately
studied. In our earlier work [6], we uniquely estab-
lished that the A series observed upon normal incidence
of radiation on the (110) plane at the polarization E ⊥  c
is the exciton series of monoclinic zinc diphosphide and
is not related to ZnP2 crystals of the so-called orthorhom-
bic modification [7]. The maximum intensity of the
absorption lines of the A series is reached at s ⊥  (010) and
E || X || 〈100〉  [6]. Gorban et al. [8] assumed that the
A series should be assigned to the orthoexciton.

Moreover, the considerable interest expressed by
researchers in β-ZnP2 stems from the fact that, in this
compound, the biexciton gas undergoes condensation
[9] into an electron–hole quantum liquid [10]. In this
respect, monoclinic zinc diphosphide is a convenient
model material for use in the study of Wannier–Mott
excitons and related phenomena in low-symmetry crys-
tals.

In this work, we thoroughly investigated the proper-
ties of the A-exciton series with the aim of elucidating
its origin.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Large-sized single crystals of β-ZnP2 were grown
for the purpose of examining the exciton absorption at
different directions of the wave vector of radiation [6].
Plates oriented parallel to natural crystallographic faces
with indices of the (100), (110), (210), and (102) types
and plates oriented parallel to the (010) and (001)
003 MAIK “Nauka/Interperiodica”
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planes (absent in natural crystal faces) were cut from
single crystals with the use of a diamond wheel. Fur-
thermore, we also used plates cut in such a way that,
upon normal incidence of radiation on the section
plane, the vector s lying in the XY plane formed a spec-
ified angle ϕ with the X axis or the 〈100〉  direction. The
misorientation of the section planes with respect to the
crystallographic planes or directions was no more than
0.3°. After mechanical grinding and subsequent polish-
ing with an ASM-1/0 diamond paste, the samples were
subjected to soft chemical etching in a dilute methanol
solution of bromine. The absorption spectra were deter-
mined from the transmission spectra recorded on a
modified DFS-12 automated spectrometer with diffrac-
tion gratings (1200 grooves/mm) operating in a first-
order spectral mode. The other experimental proce-
dures and parameters were described in our earlier
works [6, 11].
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Fig. 1. Absorption spectrum of the β-ZnP2 crystal at s ⊥
(010) and polarization E || X || [b × c]. T = 1.7 K. The sample
thickness is 0.060 mm. The inset shows the orientation of
the wave vector s and the parallel (Ep) and perpendicular
(Es) components of the radiation polarization with respect
to the basis vectors of the monoclinic lattice a, b, and c in
the general case in the spherical coordinate system. β =
102.3° is the monoclinic angle.

Energies of the absorption lines of the A series in the geome-
try s ⊥  (010) at E || [b × c] || X, the energies calculated in the
hydrogen-like approximation, and their differences

Line no. Eexp, eV EH, eV ∆E = Eexp – EH, eV

1 1.57553 1.56703 0.00850

2 1.59410 1.59357 0.00053

3 1.59848 1.59848 0

4 1.60020 1.60020 0

5 1.60097 1.60099 –0.00002
PH
3. RESULTS

Figure 1 depicts the absorption spectrum of the β-
ZnP2 crystal upon normal incidence of radiation with
the polarization E || [b × c] || X on the (010) plane, i.e.,
in the geometry s ⊥  (010) or s || b || C2. The spectrum
contains two exciton series, namely, the known B series
and the higher energy A series. The absorption coeffi-
cient α for the An = 1 line at the maximum reaches
780 cm–1 for the sample thickness d = 0.060 mm. Note
that the line is asymmetric in shape and has a short-
wavelength tail. The half-width of the line is found to
be H = 0.62 meV, and the asymmetry parameter [12] is
determined to be δ = (H+/2 – H–/2)/H = 0.08. The ener-
gies of the lines of the A series, the corresponding ener-
gies calculated in the hydrogen-like approximation,
and their differences are listed in the table. As in [5, 6],
the calculations were performed using the photon ener-
gies for the lines with n = 3 and 4 in order to minimize
the disturbance of a hydrogen-like regularity by correc-
tions for a central unit cell, i.e., by a change in the
potential energy of an electron due to the non-Coulomb
part of the potential of interaction with a hole in the
vicinity of r = 0 and also by a change in the exciton
energy owing to the anisotropic part of the Hamiltonian
[13, 14]. The energies of the lines of the A series also
obey the hydrogen-like regularity but with deviations
that are noticeable for the line with n = 1 and insignifi-
cant for the line with n = 2. The deviation of the ener-
gies of these lines toward the high-energy range indi-
cates that either there are contributions from the repul-
sive part of the non-Coulomb interaction potential
between electrons and holes in the vicinity of r = 0 [15]
and from the nonspherical part of the Hamiltonian
[13, 14] or this deviation is predominantly caused by
other interactions, for example, the exchange interaction.
It should be noted that the A spectrum in the geometry
s ⊥  (010) is slightly shifted toward the high-energy range
with respect to the spectrum in the geometry s ⊥  (110).
In this case, the spectral shift of the An = 1 line is deter-
mined to be ∆E = 0.0002 eV and the deviation of the
energy of this line from the hydrogen-like regularity
increases by 0.25 meV as compared to the analogous
deviation at s ⊥  (110) [6]. The exciton Rydberg for the
A series in the geometry under consideration, i.e., RyA =
35.4 meV, is considerably less than the exciton Rydberg
RyC = 42.4 meV for the singlet exciton [6, 8]. However,
the convergence energy for the A series E∞ = 1.60240 eV
is very close to the band gap Eg = 1.60263 eV [6, 8].

It is important that, in the traditional geometry s ⊥
(100) and E || b, i.e., upon normal incidence of radiation
on the bc plane, we for the first time succeeded in record-
ing a very weak line with α ~ 0.5 cm–1 at 1.57507 eV in
the absorption spectra of the samples d * 0.5 mm in
thickness. This line is observed at a small step with the
edge at 1.5728 eV against the background of continu-
ous absorption (Fig. 2). If the sample with the (100)
plane is rotated about the c axis through a certain angle
i such that the refracted beam deviates from the initial
YSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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direction s || 〈100〉  || X and makes an angle ϕ with the X
axis, the intensity of the observed line at 1.57507 eV
increases noticeably. This is also accompanied by the
appearance of weak lines at photon energies corre-
sponding to the lines with n ≥ 2 in the A spectrum.
Hence, we can draw the inference that the weak line
observed at 1.57507 eV in the geometry s ⊥  (100) and
E || b is the line of the A series with n = 1. Consequently,
the A spectrum is considered to be “forbidden” when
the wave vector q of radiation (or the vector k of the
exciton) is aligned with the crystallographic direction s
|| 〈100〉  || [b × c] || X at the polarization E || b. On the
other hand, in the geometry s || 〈010〉  || b || C2 at the
polarization E || X, the A spectrum is “allowed,”
because the absorption intensity is maximum in this
case. If the wave vector s forms an angle ϕ with the X
axis in the XY plane, the lines of the A series are char-
acterized by intermediate intensities. It should be noted
that the change in the direction of the wave vector s
from s || 〈100〉  || X (ϕ = 0) to s || 〈010〉  || Y (ϕ = π/2) leads
to a shift in the A series by ≈0.45 meV toward the high-
energy range. As a result, the half-width of the line with
n = 1 increases from H = 0.47 meV to H = 0.62 meV
and the asymmetry parameter increases from approxi-
mately zero to δ = 0.08. The changes in the half-width
H and the asymmetry parameter δ indicate that the exci-
ton–phonon interaction in β-ZnP2 is anisotropic, and
the small asymmetry parameter suggests that this inter-
action is weak.

The quantitative measurements of the integrated
absorption coefficient A (in terms of eV cm–1) for dif-
ferent directions of the wave vector s in the XY plane
demonstrate that the absorption for the lines of the A
series can be adequately described by the relationship
An ∝  n–3 characteristic of S-type exciton envelope func-
tions [16]. Note that, when the wave vector s makes a
small angle ϕ with the X axis (for example, ϕ = 10°) at
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Fig. 2. Absorption spectrum of the β-ZnP2 crystal at s ⊥  (100)
and polarization E || b. T = 1.7 K, d = 0.445 mm. The arrow
in the enlarged fragment of the spectrum indicates the edge
of the exciton–phonon step.
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E ⊥  c, the ratio of the integrated absorption coefficients
for the first two lines of the A series An = 1/An = 2 = 8.2 ±
0.2 strictly obeys the relationship An ∝  n–3. With an
increase in the angle ϕ, this ratio decreases to
An = 1/An = 2 = 6.54 at ϕ = 49.9° [s ⊥  (110) and E ⊥  c] and
An = 1/An = 2 = 5.75 at ϕ = 90° [s ⊥  (010) and E || X]. A
decrease in this ratio indicates that, with an increase in
the absorption coefficient (i.e., when the transition
becomes more allowed), the oscillator strength appears
to be not proportional to the area under the absorption
curve. This fact is well known for the exciton absorp-
tion at low temperatures and is explained by the polari-
ton effects and the spatial dispersion [5, 17–20]. Note
that, at low temperatures, the violation of the classical
relationship between the area under the absorption
curve and the oscillator strength [21] is pronounced for
the exciton resonances at n = 1 and weak for the exciton
resonances at n = 2 [5, 18–20].

The integrated absorption coefficient for the lines of
the A series was investigated as a function of the tem-
perature at two angles ϕ = 10° and 90°. As could be
expected, with an increase in the temperature, the inte-
grated absorption coefficient for the An = 1 line remains
nearly constant at the small angle (Fig. 3a) and
increases by a factor of approximately 1.4 at ϕ = π/2
(Fig. 3b). In the latter case, the integrated absorption
coefficient for the plate d = 0.060 mm in thickness
reaches saturation at the critical temperature Tc = 55 K.
On the other hand, the integrated absorption coefficient
for the Bn = 1 line increases by one order of magnitude
and reaches saturation at a higher critical temperature
Tc, as is the case at s ⊥  (100) and E || b [5]. This suggests
that the scattering of mechanical energy of exciton
polaritons at the An = 1-exciton resonance predomi-
nantly proceeds not through the exciton–phonon mech-
anism. The dominant mechanism can be, for example,
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Fig. 3. Temperature dependences of the integrated absorp-
tion coefficient for the lines An = 1, Bn = 1, An = 2, and Bn = 2
in two geometries: (a) ϕ = 10°, E ⊥  c, and d = 0.372 mm;
and (b) ϕ = 90°, E || X, and d = 0.060 mm.



1236 KROKHMAL’ et al.
a fast conversion of a higher lying A orthoexciton to the
ground state of the singlet exciton due to the spin–lat-
tice relaxation or the polariton–polariton scattering.
The ratio of the integrated absorption coefficients for
the first two lines of the A series at s ⊥  (010) and E || X,
which is decreased at a low temperature, increases to
An = 1/An = 2 = 8.05 at Tc = 55 K. This ratio corresponds
to the theoretically predicted ratio for S-type excitons.
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At the critical temperature Tc (above which the polari-
ton effects and the spatial dispersion can be ignored),
we determined the oscillator strengths for the An-exci-
ton transitions according to the procedure described in
[21]. The oscillator strengths per molecule (the unit cell
involves eight formula units) for the transitions in the A
series at s || 〈010〉  || b and the polarization E || X are as

follows:  = (2.02 ± 0.03) × 10–6,  = 2.52 ×

10–7, and  = 8.1 × 10–8. In the calculations of the
oscillator strength, the refractive index, which is deter-

mined as  for the direction s || 〈010〉 and the polar-
ization E || X, was taken to be εa = 9.1 [22]. For the for-

bidden direction s || 〈100〉  || X and E || b, the  tran-
sition is characterized by the oscillator strength

 = (6.5 ± 1.2) × 10–10. The superscript indicates
the crystallographic direction of the unit wave vector s
of incident radiation or the vector k of the exciton. The
obtained oscillator strength of transitions to the state
with n = 1 for the A series turns out to be more than
three orders of magnitude larger than that of transitions
to the state with n = 1 for the electric-dipole singlet C

exciton (  = 6.0 × 10–3) [5, 6]. We experimentally
measured the dependence of the integrated absorption
coefficient on the angle ϕ upon changing the direction
of radiation propagation in the XY plane at E ⊥  c for the
line of the A series in the exciton state with n = 2, for
which the resonance is weakly affected by the polariton
effects (Fig. 3b). It was found that this dependence for
the An = 2 line is similar to that described by the relation-

ship An = 2(ϕ) = sin2ϕ (Fig. 4). It should be
emphasized that, in the present work, we apparently for
the first time revealed experimentally an enhancement
of the polariton effect with an increase in the oscillator
strength of the exciton transition.

Figure 5 shows the absorption spectra of the β-ZnP2
crystal in the geometry s ⊥  (102) at the polarizations
E || b and E ⊥  b, which correspond to the s and p polar-
izations of the vector E in the spherical coordinates (see
inset in Fig. 1). This geometry is characterized by the
meridional angle ϕ = 0° and the azimuthal angle θ =
33.2°. At the polarization E || b, the weak A series is
clearly observed in addition to the B series. The A series
is shifted by 0.0015 eV toward the low-energy range
with respect to the very weak An = 1 line observed in the
forbidden geometry s ⊥  (100) at E || b (ϕ = 0° and θ =

90°). The oscillator strength  = (7.7 ± 0.1) × 10–9

for the  transition in this geometry is one order of

magnitude larger than that for the  transition.

It can be seen from Fig. 5 that, at the polarization
E ⊥  b (p polarization), the pronounced Fano antireso-
nance [23] occurs in place of the An = 1 line. Note that

Fn 1=
010〈 〉

Fn 2=
010〈 〉

Fn 3=
010〈 〉

εxx

An 1=
100〈 〉

Fn 1=
100〈 〉

Fn 1=
100〈 〉

An 1=
010〈 〉

Fn 1=
102〈 〉

An 1=
102〈 〉

An 1=
100〈 〉
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the configurational interaction of discrete A-exciton
states should be characterized by a wider continuum of
the same nature and in the same energy range. As was

noted above, the  line is always observed at a
small step with the edge at 1.5728 eV against the back-
ground of continuous absorption. By assuming that this
step is associated with the indirect transitions to the 1S
band of the dipole-forbidden orthoexciton with phonon
emission, the above phenomenon appears to be similar
to that observed for cubic CuO2 [24, 25]. In this situa-
tion, the energy separation between the edge of the step
and the Bn = 1 line of the orthoexciton (1.55775 eV) is
equal to the energy of a phonon involved in the indirect
exciton transition: "Ω = 15.05 meV. This energy is in
agreement with the phonon energy (14.76 meV)
obtained from an analysis of the Raman spectra in [26].
Apparently, the transitions that are forbidden at the
polarization E || b to the 1S band of the singlet exciton
at k = 0 become allowed with the participation of
phonons with a nonzero wave vector. However, the cor-
responding absorption should be small because of the
weak exciton–phonon interaction. At the polarization
E || c, the transitions to the 1S exciton band of the sin-
glet exciton is likely also attended by indirect transi-
tions with phonon emission, but these transitions are
difficult to observe experimentally due to a large oscil-
lator strength of the direct exciton transition and a weak
exciton–phonon coupling. Consequently, it can be
assumed that the interference interaction of exciton
polaritons at discrete nS resonances of the A series
occurs with the continuum of the exciton–phonon spec-
trum of the Cn = 1-exciton band, because these antireso-
nances are observed at such a polarization at which the
vector E (or the induction vector D) has a component
along the c axis. The antiresonances of the A series are
also observed at s ⊥  (010) and E || c, but they are hard
to record against the background of strong absorption
of the C series. The shape of the absorption curve in the
case of the configurational interaction of a discrete state
with a continuum depends on the asymmetry parameter
q [23]. This parameter is determined as the ratio
between the matrix element of the transition to the dis-
crete state that has already interacted with the contin-
uum and the matrix element of the transition to the
undisturbed continuum with the width of the discrete
level. The absorption coefficients are additive at q @ 1.
At q = 1, the absorption line modified by the interaction
has a symmetric dispersion contour. The antiresonance
is observed at q  0. The oscillator strength for the
transitions to the An = 1-exciton state modified by the
interaction with the continuum was estimated at

 = 3.7 × 10–8. The oscillator strength for the indi-
rect exciton–phonon transitions is approximately four
orders of magnitude less than that for the direct transi-
tions. Consequently, the approximate estimate of the
asymmetry parameter gives q ≈ 0.29. Analysis of the
antiresonance shape according to the technique pro-

An 1=
100〈 〉

Fn 1=
102〈 〉
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posed in [27] offers the asymmetry parameter q = 0.18,
which agrees with the above estimate. It should be
noted that the interference interaction substantially
depends on the sample thickness and the phase of the
dispersion antiresonance contour can change by π.

A fragment of the absorption spectrum of the
β-ZnP2 crystal at s ⊥  (001) and E || b is displayed in
Fig. 6 (curve 1). This geometry corresponds to the
meridional angle ϕ = 0 and the azimuthal angle θ =
12.3°, which is less than that in the case of the geometry
s ⊥  (102) and E || b. In our earlier work [6], we demon-
strated that the absorption spectrum of β-ZnP2 crystals
in the geometry s || (001) and E || b contains two series
of lines. The first series is the well-known B series in
which the intensities of lines at n ≥ 2 are approximately
identical to those observed in the geometry s ⊥  (100) and
E || b. In the second series, the line intensities are sub-
stantially lower and the leading line with n' = 1 is located
at 1.5690 eV. The line with n' = 1 is noticeably shifted
toward the low-energy range as compared to the An = 1
lines observed at s ⊥  (100) and E || b (by ~6.1 meV) and
at s ⊥  (102) and E || b (by 4.7 meV). The line with n' = 1
has a relatively large half-width (H ≅  2 meV) and an
asymmetric contour with a high-energy tail. As was
noted in [6], an interesting feature of this series is an
appreciable nonlinear shift of the lines (especially the
leading line with n' = 1) upon vertical rotation of the
sample with the (001) or ab plane around the b (C2)
axis through a certain angle i with respect to the inci-
dent radiation. When the sample is rotated such that the
direction of the refracted beam approaches the direc-
tion of the c axis (i.e., the initial angle θ0 = 12.3°
between the vectors s and c decreases), the line with
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Fig. 6. Evolution of the Bn = 1 and An = 1 absorption lines
upon incidence of radiation with polarization E || b at differ-
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(3) 20°, (4) 32°, and (5) 36°. Dashed curves correspond to
the absorption lines measured at the angles of incidence –i.
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n' = 1 (and the entire series) shifts toward the low-
energy range and the intensities of the lines increase.
With an increase in the angle of incidence to i ≈ 32°, the
line with n' = 1 is shifted to 1.5649 eV, which almost

coincides with the energy of the mixed mode  =
1.56491 eV at the frequency of the longitudinal exciton
in the Y direction [6]. Moreover, the half-width of the
line with n' = 1 decreases to 0.4 meV. Upon opposite
rotation of the (001) plane (when the angle between the
vector s of the refracted beam and the c axis increases;
i.e., θ > θ0), the line with n' = 1 (and the entire series)
shifts toward the high-energy range to the position of
the An = 1 line. However, the intensities of the lines in
this case increase more slowly. The parameters Ry' =
37.65 meV and E∞ = 1.60230 eV for this series are
close to those determined for the A series. This suggests
that the high-energy series of the absorption lines
observed at s ⊥  001 and E || b is also the A series. The
specific feature of the absorption spectra with the line
at n' = 1 shifting toward either the low- or high-energy
range is that this line increases in intensity and is super-
imposed on the weak residual line observed upon oppo-
site rotation of the crystal, i.e., when the angle of inci-
dence changes from i to –i. It should be noted that the
intensity and location of the lines of the B series upon
rotation of the sample remain almost unchanged.

4. DISCUSSION

As follows from the group-theoretic analysis [6], the
quadruply degenerate nS states of an exciton in a low-
symmetry crystal with simple electron energy bands
(for example, β-ZnP2) consist of four simple odd-parity

terms: Dex  2  + 2 . The degeneracy of the exci-
ton state is partially removed by the exchange electron–
hole interaction or, more precisely, by the exchange
interaction of conduction band electrons with valence
band electrons. The short-range (analytical) part of the
exchange interaction leads to the formation of singlet
and triplet exciton states or paraexcitons and orthoexci-
tons with different energies. In [6], it was experimen-

tally shown that the singlet exciton has (z) symmetry
with wave functions transformed along the Z coordi-

nate. The other three states with symmetry 2  + 
belong to the orthoexciton and should remain randomly
degenerate in the absence of an external magnetic field.
In the electric-dipole approximation, the optical transi-
tions to the triplet exciton states are forbidden, because
they require the flip of the spin of the bound electron,
whereas the electric-dipole transition operator does not
act on the spin operator. However, these transitions can
be observed owing to the mixing of triplet and singlet
exciton states with the same symmetry by the spin–
orbit interaction or the mixing of upper valence bands
[28]. One of the aforementioned states of the triplet
exciton with ms = 0, (x) symmetry, and wave func-
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PH
tions likely transformed along the X coordinate, to a
first approximation, is mixed with the (z) singlet
exciton through the spin–orbit interaction. Moreover,
owing to the mixing with the singlet exciton by the
spin–orbit interaction, the (x) orthostate in an aniso-
tropic crystal can be split off by the long-range (nonan-
alytical) part of the exchange interaction and behave
like a longitudinal orthoexciton [21, 29]. In turn, this
longitudinal orthoexciton can be mixed with the longi-
tudinal paraexciton of the same symmetry (z) in a
particular direction [6]. It is known that the energy of
the exciton state determined by the long-range
exchange interaction depends on the direction of the
wave vector [29]. This agrees well with the observed
dependence E(k) for the A series, especially in the
geometry s ⊥  (001) (when the vector s lies in the ac
plane) and E || b upon rotation of the crystal around the
axis b || Y || 〈010〉  and also in the geometry s || c and
E || b upon rotation of the XY plane of the sample
around the direction [b × c] or X (see the evolution of

the  absorption line at an energy of 1.56491 eV in
Fig. 5 in [6]). In this case, the other two states of the
orthoexciton are unmixed, degenerate due to the time
inversion, and split off by the short-range exchange

interaction; have 2 (y) symmetry and ms = ±1; and
remain purely triplet states. These states are responsible
for the B series, and their energy should not depend on
the direction of the wave vector [29], which is actually
observed for the B series [6]. An external transverse
magnetic field removes the degeneracy, and the lines of
the B series are split into two components [13, 30].

In order to confirm the validity of the proposed
hypothesis, we measured the exciton absorption in the
β-ZnP2 crystals at s ⊥  (010) or s || b || C2 and the polar-
ization E || X in magnetic fields with an induction up to
5 T in two geometries: at the transverse field s ⊥  B || X
(the Voigt configuration) and the longitudinal field
s || B || b (the Faraday configuration) (Fig. 7). As could
be expected, the lines of the A series are not split either
in the transverse magnetic field or in the longitudinal
magnetic field and exhibit a diamagnetic shift at n ≥ 2,
which is characteristic of the S states. No diamagnetic
shift in the used magnetic fields is observed for the
states with n = 1 due to the small Bohr radius. By con-
trast, the lines of the B series are split into two compo-
nents in the transverse magnetic field and are not split
in the longitudinal magnetic field, as was previously
observed in longitudinal fields at s ⊥  (100) and E || b in
[13, 30]. It should be noted that an additional mixing of
the nS orthostates at ms = 0 with the nS states of the
paraexciton by the magnetic field leads to a consider-
able increase in the intensity of the absorption lines of
the A series with an increase in the field induction.

The probability of transitions to mixed triplet states
depends on the degree of overlap of the corresponding
wave functions. However, since the spin–orbit interac-
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tion in β-ZnP2 is hypothetically weak [6], the mixing of
these states should also be insignificant. The degree of
admixture of the wave functions of the orthoexciton
(with ms = 0) split off by the long-range interaction to
the wave functions of the longitudinal exciton (or, more
exactly, the mixed mode along the c direction [6]) is
estimated at ≈3.8 × 10–3 from the experimental ratio
between the integrated absorption coefficients for the

An = 1 line and the line of the  mixed mode at the polar-
ization E || b and s || c (Fig. 6). At s ⊥  c and E || X, the
degree of admixture of the wave functions of the singlet
exciton to the wave functions of the orthoexciton with

ms = 0 is estimated as  ≅  3.33 × 10–4.

An attempt to assign the A series to the nS states of
the electric-dipole singlet exciton, which is excited
with a small oscillator strength from the lower valence
band and whose dipole moment Pm(s) of the exciton
polarization is aligned along the X (or a) direction,
involves considerable problems. First, the absorption
intensity for the studied series upon radiation propaga-
tion in the geometry s || c || Z at the polarization E || X is
lower than that in the geometry s || b || Y at the same
polarization E || X [6]. Second, the absorption intensity
for the A series is characterized by a strong anisotropy,
especially when the vector s remains perpendicular to
the c axis. On the other hand, the assumption that the A
series is associated with the lower valence band possi-
bly split off by the crystal field (by ∆cf ≈ 15 meV) could
be supported by the very small increase in the inte-
grated absorption coefficient of the An = 1 line with an
increase in the temperature and also the Fano effect
observed for this series. However, we did not reveal
noticeable differences in the shift of the lines in the A
and B series under the temperature deformation of the
lattice in the range from 1.7 to 170 K nor in the A, B,
and C series under uniaxial compressive deformation of
the crystal along the b or c crystallographic axis up to
360 MPa [5, 31]. The data on the uniaxial deformation of
crystals and the convergence of all three exciton series
virtually to the same limit E∞ = 1.6026 ± 0.0002 eV with
an increase in the principal quantum number n indicate
that the same pair of electron energy bands is responsi-
ble for the formation of the A, B, and C series in the
absorption spectra of the β-ZnP2 crystals. This is in
agreement with the inferences made in [6, 30] that, in
β-ZnP2, the splitting of the p valence band by the aniso-
tropic crystal field substantially exceeds the spin–orbit
splitting and the lower valence subbands are located
deeply.

The concept proposed above is confirmed by the
results of investigations into the exciton spectra of β-
ZnP2 crystals with a high concentration of intrinsic
defects (most probably, ~1019 cm–3) at which the distur-
bance of the long-range order becomes pronounced.
For these crystals, the A spectrum appears to be
strongly suppressed and its lines are distorted, whereas
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the B spectrum (except for the Bn = 1 line [5, 6]) remains
almost unchanged (Fig. 8a).1 

For comparison, the spectrum of a high-quality sam-
ple with a thickness comparable to that of the impurity
sample in the same geometry s ⊥  (210) and E ⊥  c is

1 It seems likely that the presence of lattice defects also leads to a
decrease in the integrated absorption coefficient for the lines in
the A spectrum shown in Fig. 4.
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shown in Fig. 8b. The specific feature of the spectra of
impurity crystals is the weak absorption line at
1.56026(4) eV, which is frequently observed as a shoul-
der in the high-energy wing of the B line at s ⊥  c and
E ⊥  c. We can assume that the breaking of the transla-
tional symmetry of the lattice results in a violation of
the selection rules at k = 0; consequently, a weak line of
the C series at n = 1 appears at the forbidden polariza-
tion (E ⊥  c) for the electric-dipole singlet exciton.
Hence, the energy of this line at the maximum
[1.56026(4) eV] is equal to the energy ET of the trans-
verse exciton, because the spatial dispersion effects in
this case are of no significance [32]. This energy coin-
cides with the energy ET estimated in the hydrogen-like
approximation from the analysis of the mixed mode
made in our earlier work [6] and from the examination
of the dispersion contour of the exciton reflection spec-
trum performed in [2]. The coincidence of the energy
ET obtained in the hydrogen-like approximation [6]
with the energy En = 1 of the C-exciton series suggests
that, for the singlet exciton in the β-ZnP2 crystal, the
energy corrections for a central unit cell compensate for
the energy associated with the anisotropic part of the
Hamiltonian. It is worth noting that, in the spectra of
defect crystals, the weak line of the transverse C exci-
ton with n = 1 always manifests itself at s ⊥  c and the
polarization E ⊥  c (i.e., when the A series is observed)
and is not observed in the geometry s ⊥  (100) at E || b,
when the A series is forbidden. Note that, at the polar-
ization E ⊥  c (forbidden for the singlet exciton), the
Cn = 1 line is more pronounced in the absorption spectra
of more imperfect crystals. This conclusively indicates
that the admixture of the split-off state with ms = 0 to
the states of the transverse singlet exciton increases
most probably due to strong local fields.

The presence of a large number of lattice defects in
the studied samples is confirmed by the intense line
attributed to the exciton-impurity complex in the
absorption spectra (Fig. 8a) at an energy of 1.54732 eV
(α ≈ 83 cm–1). This line nearly coincides with the most
intense line in the narrow-line spectrum [6] but exhibits
a different nature, because it is not accompanied by a
narrow-line spectrum. In addition to this line of the exci-
ton-impurity complex, the spectrum contains a narrow
asymmetric band at 1.56583 eV with a short-wavelength
tail (hereafter, this band will be referred to as the α band)
and also two high-energy lines, which are most probably
associated with the excited states of the exciton-impurity
complex. The α band can be attributed to photoneutral-
ization of small-sized ionized centers, because this band,
first, is located in the range of the intrinsic exciton spec-
trum and, second, has a characteristic shape with a sharp
long-wavelength edge and an extended short-wavelength
wing (see inset to Fig. 8a). It seems likely that the ionized
centers have an acceptor nature (according to rough esti-
mates, EA ≈ 0.037 eV). This can be judged from the fact
that the β-ZnP2 samples without special doping possess
p-type conductivity [6].
P

5. CONCLUSION

Thus, the experimental results obtained in this work
demonstrated that the A series observed in the absorp-
tion spectra of β-ZnP2 crystals is associated with the
partially allowed dipole transitions to nS states of the

(x) orthoexciton with ms = 0. These states are most
likely split off by the long-range (nonanalytical) part of
the exchange interaction due to their mixing, to a first
approximation, with nS states of the (z) singlet exci-
ton through the spin–orbit interaction.
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Abstract—The conductivity and magnetic susceptibility of disordered titanium monoxide TiOy (0.920 ≤ y ≤
1.262) containing vacancies in titanium and oxygen sublattices are investigated. For TiOy monoxides with an
oxygen content y ≤ 1.069, the temperature dependences of the conductivity are described by the Bloch–Grü-
neisen function at a Debye temperature ranging from 400 to 480 K and the temperature dependences of the
magnetic susceptibility are characterized by the contribution from the Pauli paramagnetism due to conduction
electrons. The behavior of the conductivity and magnetic susceptibility of TiOy monoxides with an oxygen con-
tent y ≥ 1.087 is characteristic of narrow-gap semiconductors with nondegenerate charge carriers governed by
the Boltzmann statistics. The band gap ∆E between the valence and conduction bands of TiOy monoxides with
y ≥ 1.087 falls in the range 0.06–0.17 eV. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Disordered nonstoichiometric titanium monoxide
TiOy has a B1-type cubic crystal structure, is homoge-
neous over a wide range from TiO0.70 to TiO1.25, and
contains 10–15 at. % structural vacancies simulta-
neously in each of the titanium and oxygen sublattices
[1]. Since the formulation of the composition of tita-
nium monoxide as TiOy does not carry information on
the concentration of structural vacancies in the metallic
and nonmetallic sublattices, it is more correct to repre-
sent the titanium monoxide composition taking into
account the content of structural vacancies in each of
the sublattices, i.e., as TixOz ≡ Tixj1 – xOzh1 – z ≡ TiOy
(where y = z/x and j and h stand for the structural
vacancies in the titanium and oxygen sublattices,
respectively). This formula accounts for both the real
composition and the structure of the titanium monox-
ide. For example, titanium monoxide of formal stoichi-
ometry TiO1.00 contains 16.7 at. % vacancies in both
titanium and oxygen sublattices and, hence, its real
composition is ~Ti0.833O0.833.

At present, the properties of TiOy have not been ade-
quately investigated. This can be explained as follows.
Titanium monoxide TiOy is difficult to synthesize,
because its composition is unstable at temperatures in
the range 700–800 K and, even at a controlled partial
pressure of oxygen, this compound itself can undergo
disproportionation to form Ti2O (TiO0.50) or Ti3O2
(TiO0.67) and cubic oxide or cubic oxide and Ti2O3
(TiO1.50) and other phases of the homologous series
TinO2n – 1, where n is an integer (n = 2–10). The disor-
1063-7834/03/4507- $24.00 © 21242
dered state of titanium monoxide is thermodynamically
stable at temperatures T > 1500 K. At temperatures
below 1500 K, a few ordered phases of different types
and symmetries form in several concentration and tem-
perature ranges. However, the disordered state of tita-
nium monoxide TiOy can easily be stabilized by
quenching from T > 1500 K, whereupon it can exist as
a metastable state at room temperature for any length of
time. At temperatures of ~700, ~1000, and ~1100 K,
TiOy undergoes phase transformations associated with
the formation of superstructures. The type and symme-
try of the superstructures depend on the real initial com-
position of titanium monoxide TiOy. The monoclinic
[space group C2/m (A12m/1)] superstructure Ti5jO5h

[2–6] has been firmly established and repeatedly con-
firmed experimentally. The structure of the ordered tet-
ragonal phase Ti4jO5 that corresponds to titanium
monoxide of nominal composition TiO1.25 is also satis-
factorily described in [2, 4]. As regards the other
ordered phases [orthorhombic TiO0.7–0.9, TiO1.19, and
Ti2.5O3 (Ti5jO6) and cubic Ti22.5O22.5 (Ti5jO5h)], the
available information amounts to determining their
symmetry from electron microscopy and diffraction
data and to speculating about their possible belonging to
one of three or four space groups [4, 7]. Watanabe et al.
[4] and Hilti [7] considered these phases transient from
the disordered cubic phase TiOy to the ordered mono-
clinic phase Ti5O5. The possible existence of the
ordered orthorhombic (space group Immm) phases
Ti3O2h and Ti2jO3 was predicted theoretically in [8]. It
was shown that oxygen atoms and nonmetallic struc-
003 MAIK “Nauka/Interperiodica”
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tural vacancies are ordered in the Ti3O2h phase,
whereas the ordering of titanium atoms and metallic
structural vacancies in the Ti2jO3 phase occurs in the
titanium sublattice with a random distribution of non-
metallic vacancies.

Almost without exception, all the titanium monox-
ide samples synthesized using traditional methods are
in a two-phase state and contain both disordered and
ordered phases simultaneously. The preparation of sin-
gle-phase disordered samples of TiOy requires a special
quenching procedure. In the 1960s–1970s, the temper-
ature measurements performed for kinetic and mag-
netic properties of TiOy titanium monoxides revealed
that the same samples prior to and after the measure-
ments had different chemical and phase compositions.
This circumstance inevitably led to contradictory
results. For example, the temperature coefficient dρ/dT
of the resistivity ρ measured for disordered monoxides
TiOy at y ~ 1 had positive sign in [9–11] and negative
sign in [12]. At the same time, all the authors of exper-
imental investigations drew the same conclusion that
the thermopower and the Hall coefficient of TiOy mon-
oxides at y > 0.85 are negative in sign [9–12].

The unreliability and discrepancy in the available
experimental data gave impetus to a large number of
theoretical investigations into the electronic structure of
TiOy monoxides. However, the results of calculations,
including ab initio calculations, also proved to be con-
tradictory. In particular, it was shown in [13–17] that, in
the energy spectrum of cubic titanium monoxide, the
O 2p and Ti 3d electron energy bands are separated by
a wide gap of several electron-volts. Huisman et al. [17]
believed that structural vacancies are responsible for
the appearance of local peaks in the electron density
(vacancy peaks) in the p–d gap. This is in agreement
with the results of theoretical calculations carried out
by Gubanov et al. [18] and Ivanovsky et al. [19],
according to which the energy spectrum of TiOy is char-
acterized by vacancy states in unoccupied regions
below the Fermi level. The calculations performed by
Barman and Sarma [20] also demonstrated that the
band gap in the energy spectrum for a hypothetical
defect-free titanium monoxide TiO1.0 is approximately
equal to 2.0 eV; however, in this case, the formation of
vacancies is attended by the appearance of vacancy
states only in the vicinity of the conduction band bot-
tom and does not lead to the disappearance of the p–d
gap. According to the calculations carried out by Leung
et al. [21], the energy gap between the O 2p and Ti 3d
electron energy bands is approximately equal to 1.8 eV
for a defect-free titanium monoxide TiO and 1.2 eV for
an ordered monoclinic titanium monoxide Ti5O5. The
existence of the band gap in disordered titanium mon-
oxides TiOy has been confirmed by experimental inves-
tigations of x-ray photoemission spectra [20, 22], UV
photoemission and bremsstrahlung spectra [20], and
optical conductivity [23].
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As follows from the results of another series of the-
oretical works [24–26], the electron energy spectrum of
TiOy does not contain the p–d gap. The theoretical
inferences regarding the absence of the p–d gap in the
energy spectrum of titanium monoxide has been sup-
ported by experimental investigations of the x-ray
emission spectra of TiOy monoxides with different oxy-
gen contents [27] and also the x-ray photoelectron and
x-ray emission spectra of the monoclinic ordered tita-
nium monoxide Ti5O5 and defect-free cubic titanium
monoxide TiO1.0 prepared under high pressure [28].

Thus, the available experimental and theoretical
data are rather contradictory. It remains unclear
whether titanium monoxide is a metal or a semiconduc-
tor.

In this work, we experimentally investigated the
electrical conductivity (resistivity) and the magnetic
susceptibility of titanium monoxide TiOy over the entire
homogeneity region of the cubic phase.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples of nonstoichiometric cubic titanium mon-
oxide TiOy with different oxygen contents (0.920 ≤ y ≤
1.262) were synthesized through solid-phase sintering
from powder mixtures of metallic titanium and titanium
dioxide TiO2 at a temperature of 1770 K for 70 h under
vacuum at a residual pressure of 0.001 Pa. In the course
of the synthesis, the sintering products were ground at
20-h intervals. All the diffraction experiments were per-
formed on Siemens D-500 and STADI-P (STOE) auto-
mated diffractometers (Cu  radiation). In order to
prepare titanium monoxide in a disordered state, the
synthesized samples were placed in quartz ampules
evacuated to a residual pressure of 0.0001 Pa and were
then annealed at a temperature of 1330 K for 3 h. After
annealing, the samples in the ampules were quenched
in water. The quenching rate was approximately equal
to 200 K s–1. The x-ray diffraction patterns of the
quenched samples contain either reflections of the dis-
ordered phase TiOy with a B1-type structure (samples
with an oxygen content y ≥ 1.112) or reflections of the
disordered TiOy and monoclinic ordered Ti5O5 [5]
phases (samples with an oxygen content y ≤ 1.087). The
oxygen content in the TiOy quenched samples proved to
be higher than the oxygen content predicted from the
starting mixture. This means that, during the synthesis
and annealing, the samples were partially depleted in
titanium and enriched in oxygen.

The resistivities ρ of the samples prepared were
measured by the four-point probe method in the tem-
perature range 77–300 K. The resistivities of TiO1.262,
TiO1.087, and TiO0.920 monoxides were also measured at
4.2 K. In order to ensure electric contact, the contact
surfaces of the samples were coated with an In–Ga
paste.

Kα1 2,
3
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Fig. 1. Dependences of the magnetization M on the mag-
netic field strength H for titanium monoxides TiOy with dif-
ferent oxygen contents at T = 4 and 300 K. The absence of
remanent magnetization implies that the TiOy samples con-
tain no ferromagnetic impurities.

Fig. 2. Temperature dependences of the electrical resistivity
ρ(T) for disordered cubic titanium monoxides TiOy with
different oxygen contents. Solid lines represent the experi-
mental results approximated by function (3) for TiOy mon-
oxides at y ≤ 1.069 and by function (13) for TiOy monoxides
at y ≥ 1.087.
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The magnetic susceptibility χ of TiOy monoxides
(0.920 ≤ y ≤ 1.262) was measured on an MPMS-XL-5
Quantum Design vibrating-coil magnetometer at tem-
peratures ranging from 4.0 to 400 K in magnetic fields
of 8.8, 25, 30, and 50 kOe. The magnetic susceptibili-
ties of TiO0.946, TiO1.069, TiO1.087, and TiO1.262 monox-
ides were also measured using the Faraday method on
a Domenicalli pendulum magnetic balance in the range
from 300 K to the temperature of the onset of the disor-
der  order transition (at approximately 1000 K).

The chemical and phase compositions of the sam-
ples were checked prior to and after the measurements.

3. RESULTS AND DISCUSSION

The results of measurements of the magnetization M
in magnetic fields with a strength H up to 50 kOe and at
temperatures of 4, 130, and 300 K demonstrate that the
studied samples of TiOy monoxides do not possess
remanent magnetization, because the dependences
M(H) measured at different temperatures pass through
the origin of the coordinates (Fig. 1). The absence of
remanent magnetization implies that the TiOy samples
contain no ferromagnetic impurities.

The temperature dependences of the electrical resis-
tivity ρ(T) for TiOy titanium monoxides of different
compositions are shown in Fig. 2. In the temperature
range covered, the electrical resistivity ρ increases
when changing over from TiO0.920 to TiO1.262.

The electrical resistivity of TiO1.069, TiO0.985,
TiO0.946, and TiO0.920 monoxides increases with an
increase in the temperature, even though the tempera-
ture coefficient of resistivity remains small. For materi-
als with n-type conductivity, the temperature depen-
dence of the mean free time  associated with scatter-
ing by phonons at T < 300 K is adequately described by
the Bloch–Grüneisen semiempirical function

 (1)

where λ is the electron–phonon coupling constant and
θD is the Debye characteristic temperature. In the gen-

eral case, the integral  can be cal-

culated as follows:

 (2)

Since the resistivity is defined by the formula ρ =
m/ne2  (where m and n are the mass and the concentra-
tion of carriers, respectively), the temperature depen-
dence of the resistivity with allowance made for rela-
tionship (2) and the residual resistivity ρ(0) can be writ-
ten in the form
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 (3)

In different temperature ranges, the integral

 takes different forms. For T < 80 K

and θD ~ 400–500 K, we have the ratio θD/2T > 3.14. In

this case, the integral  can be rep-

resented in the following form:

 (4)

After the appropriate transformation with due regard
for the limits of integration, expression (4) takes the
form
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For T > 80 K and θD ~ 400–500 K, we have the ratio

θD/2T < 3.14. Hence, the integral  can

be represented as the series  =

/[(4 + 2k)(2k)!], where B2k are the
Bernoulli numbers. As a result, we obtain

 (6)

Substitution of formula (6) into expression (2) gives

 (7)

Here, x = θD/2T (where θD/2T < 3.14). After substitut-
ing formula (7) into relationship (3) and performing
simple manipulations, we obtain the expansion of the
Bloch–Grüneisen formula into a series at θD/2T < 3.14;
that is,

 (8)

For θD/2T > 3.14, the temperature dependences of
the resistivity of TiO1.069, TiO0.985, TiO0.946, and TiO0.920
monoxides were approximated by formulas (3) and (5);
in this case, series (5) was limited by the term with the
exponential factor exp(–8x). For θD/2T < 3.14, the tem-
perature dependences of the resistivity of the same
monoxides were approximated by function (8) taking
into account only the terms with factors up to x13.

The experimental dependences ρ(T) for TiO1.069,
TiO0.985, TiO0.946, and TiO0.920 monoxides (Fig. 2) are
well approximated by function (3). The calculated
parameters ρ(0) and θD are presented in Table 1. The
Debye characteristic temperature θD for TiOy monox-
ides (0.920 ≤ y ≤ 1.069) falls in the range 400–480 K,
which is in good agreement with the data available in
the literature. According to Denker [10], the character-
istic temperature θD for an equiatomic monoxide
TiO1.00 varies from 350 to 410 K and increases with a
decrease in the annealing temperature. Leung et al. [21]
established that the characteristic temperature θD for an
ordered monoclinic monoxide Ti5O5 is equal to 500 K.
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Table 1.  Parameters of functions (3) and (13) for the electrical conductivity σ (resistivity ρ) of cubic titanium monoxides
TiOy ≡ TixOz (y = z/x) in the temperature range 4.2–300 K

Chemical 
composition

of TiOy

Composition of 
TixOz with due 

regard for imper-
fection of the

sublattices

Lattice
constant aB1, 

nm
Function

Parameters of the functions

ρ(0), µΩm σ(0), µΩ–1m–1 ∆E, eV θD, K

TiO0.920 Ti0.887O0.816 0.41867 3 2.01 0.4969 – 471

TiO0.946 Ti0.877O0.829 0.41840 3 2.10 0.4773 – 470

TiO0.985 Ti0.868O0.855 0.41834 3 2.02 0.4952 – 400

TiO1.069 Ti0.837O0.895 0.41808 3 2.56 0.3911 – 481

TiO1.087 Ti0.833O0.906 0.41738 13 3.81 0.2626 0.028 –

TiO1.112 Ti0.816O0.907 0.41711 13 4.17 0.2397 0.025 –

TiO1.153 Ti0.804O0.927 0.41704 13 6.16 0.1623 0.006 –

TiO1.201 Ti0.792O0.952 0.41688 13 7.99 0.1251 0.006 –

TiO1.227 Ti0.787O0.965 0.41674 13 5.47 0.1828 0.021 –

TiO1.233 Ti0.780O0.961 0.41665 13 5.99 0.1668 0.034 –

TiO1.262 Ti0.771O0.973 0.41662 13 6.54 0.1528 0.032 –
The resistivity of TiOy monoxides with an oxygen
content y ≥ 1.087 decreases rapidly as the temperature
increases from 4.2 to 300 K. The low resistivity
(~10−6 Ω m) obtained for all the titanium monoxides
studied is characteristic of metals. However, the nega-
tive temperature coefficient of resistivity dρ/dT for TiOy
monoxides with y ≥ 1.087 is a basic indication of dielec-
tric behavior. In the temperature range 4.2–300 K, the
change ∆ρ in the resistivity due to this factor reaches
20–50%. Therefore, ∆ρ cannot be treated as a small
correction within the relaxation time approximation.

The electrical conductivity σ is proportional to the
carrier concentration n multiplied by the carrier mobil-
ity u; that is,

 (9)

Under the conditions where carriers are governed by
the Boltzmann statistics and the energy bands are para-
bolic (this virtually always holds true in the vicinity of
the band edges [29]), the carrier concentration can be
written in the form

 (10)

where m* is the effective mass of charge carriers and
∆E is the energy parameter, which has the meaning of
an activation energy and, in the case of intrinsic con-
ductivity, is equal to the energy gap Eg between the
valence and conduction bands. For a Boltzmann distri-
bution, the carrier mobility is inversely proportional to
the temperature; that is,

 (11)

Since all the titanium monoxide samples are character-
ized by a nonzero residual resistivity, the conductivity of

σ T( ) ehe h, ue uh+( ).=

ne 2 m*( )3/2 kBT /2π"
2( )3/2 ∆E/2kBT–( ),exp=

u AT q– .∼
P

TiOy monoxides (y ≥ 1.087), according to formulas (10)
and (11), can be represented in the form

 (12)

The constant component σ(0) has the meaning of an
extrinsic conductivity of the system and implies that the
conductivity at T = 0 K is nonzero.

The experimental dependences σ(T) for TiOy mon-
oxides (y ≥ 1.087) were described by function (12) and
the relationship σ(T) = σ(0) + Bexp(T–1/4), which is
characteristic of Mott semiconductors at low tempera-
tures [30]. The numerical approximation demonstrated
that the dependences σ(T) are more closely approxi-
mated by function (12); in this case, the parameter q
falls in the range 0.9–1.1. Therefore, with due regard
for the experimental error, we can assume that q ≈ 1;
hence, the conductivity can be written as

 (13)

The parameter q = 1 is observed for many polyatomic
semiconductors in which scattering occurs through
acoustic and optical phonons. The numerical parameters
of function (13) used to describe the dependences σ(T)
for TiOy monoxides (y ≥ 1.087) are listed in Table 1.

The temperature-dependent component of the con-
ductivity [see formula (13)] for TiOy monoxides (y ≥
1.087) in the ln{[σ(T) – σ(0)]/T1/2} – 1/T coordinates is
presented in Fig. 3. It can be seen from Fig. 3 that the
dependence exhibits linear behavior over the entire
temperature range. The activation energy ∆E for tita-
nium monoxides from TiO1.087 to TiO1.227 is relatively
low (~ 0.01–0.03 eV). Only for the TiO1.233 and TiO1.262
monoxides is the activation energy slightly higher than

σ T( ) σ 0( ) 2 kBm*/2π"
2( )3/2

T 3/2 q–( )+=

× ∆E/2kBT–( ).exp

σ T( ) σ 0( ) BT1/2 ∆E/2kBT–( ).exp+=
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0.03 eV [calculation with the more exact formula (12)
for the TiO1.262 monoxide gives the activation energy
∆E = 0.043 eV). If the intrinsic conductivity manifests
itself at temperatures of approximately 300 K and
above, we cannot state with confidence that the deter-
mined quantity ∆E is the band gap of an intrinsic semi-
conductor or that it is the activation energy of an impu-
rity level. The correct answer to this question can be
obtained from analyzing the magnetic susceptibility.

The measured temperature dependences of the mag-
netic susceptibility χ(T) for TiOy samples are depicted
in Figs. 4 and 5. As can be seen from these figures, the
curves χ(T) contain two portions with opposite behav-
ior of the magnetic susceptibility χ as a function of the
temperature. A decrease in the magnetic susceptibility
in the low-temperature range (at T < 150–200 K) is
characteristic of the paramagnetic component, which
is described by the modified Curie law χ(T ) = χ(0) +
C/(T + ∆) with the temperature-independent paramag-
netic contribution χ(0) and ∆ > 0. At temperatures
above 150–200 K, the magnetic susceptibility  χ(T)
involves the term χ(0) + C/(T + ∆) and a contribution
described by a linear, quadratic, or more complex func-
tion of the temperature.

The Curie paramagnetic contribution to the mag-
netic susceptibility per unit volume of the material is

defined by the formula χV = Nnm /3kBT, where N is
the number of atoms per unit volume, nm is the relative
concentration of atoms with magnetic moments, µeff =
pµB is the effective magnetic moment, and µB is the
Bohr magneton. Since the number of atoms per unit
volume is determined by the expression N = NAd/M
(where NA is the Avogadro number, d is the density, and

µeff
2
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Fig. 3. Temperature dependences of the electrical conductiv-
ity σ(T) for TiOy titanium monoxides in the 1/T–ln{[σ(T) –

σ(0)]/T1/2} coordinates.
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M is the molecular mass), the measured magnetic sus-
ceptibility per unit mass can be written as χ = χV/d =
(nmNA/M)(pµB)2/(3kBT) ≡ C/T. From this relationship,

we have p2 = (CM/nm)(3kB/NA ). After substitution of

the quantities NA, µB, and kB, we obtain p ≈ ,
where the Curie constant C is expressed in cm3 K g–1.

µB
2

8CM/nm
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Fig. 4. Temperature dependences of the magnetic suscepti-
bility for disordered cubic titanium monoxides TiOy with
different oxygen contents in the temperature range from 4.0
to 400 K (measurements are performed in a magnetic field
with strength H = 25 kOe).
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Table 2.  Parameters of functions (14) and (16) for the magnetic susceptibility χ and the magnetic characteristics of cubic tita-
nium monoxides TiOy

TiOy Function
Tempera-

ture
range, K

Parameters of the functions

χ(0) × 106,
cm3 g–1

C × 106,
cm3 K g–1 ∆, K b × 1012,

cm3 K–2 g–1
a × 109,

cm3 K g–1 ∆E, eV pav, µB

TiO0.920 14 4.0–400 1.629 17.9 55.0 0.501 – – 0.089

TiO0.946 14 4.0–1000 1.410 22.9 88.6 0.493 – – 0.100

TiO0.985 14 4.0–400 1.290 10.7 55.4 0.469 – – 0.069

TiO1.069 14 4.0–1000 1.237 0.54 8.5 0.659 – – 0.015

TiO1.087 16 4.0–1000 1.196 14.9 71.8 – – 0.061 0.081

TiO1.112 17 4.0–400 1.059 44.9 96.0 – 0.889 – 0.225

TiO1.153 17 4.0–400 0.909 56.4 89.7 – 0.898 – 0.224

TiO1.201 17 4.0–400 0.798 58.3 39.5 – 1.243 – 0.195

TiO1.227 17 4.0–400 0.806 51.7 34.6 – 1.025 – 0.178

TiO1.233 17 4.0–400 0.917 28.1 14.5 – 0.578 – 0.118

TiO1.262 16 4.0–1000 0.847 24.1 7.8 – – 0.173 0.101
In the case when the concentration nm of atoms with
magnetic moments is unknown, the magnetic moment
averaged over all atoms can be determined from the

expression pav ≈ . It should be noted that, in
order to estimate the quantities p or pav correctly, it is
necessary to use the molecular mass M corresponding
to the real composition of the titanium monoxide with
allowance made for the vacancy content in each sublat-
tice, i.e., TixOz.

As follows from the calculations with the use of the
determined constants C, the effective magnetic moment
µeff, which was obtained by averaging over all atoms,
amounts to 0.015–0.225 µB (Table 2). The low value of
µeff indicates that the Curie contribution to the magnetic
susceptibility can be associated with impurities. It
seems likely that, in the TiOy monoxide, the majority of
Ti2+ ions have paired electrons or there occurs an
exchange cation–cation interaction. The EPR measure-
ments of the TiOy monoxide failed to reveal ions with
uncompensated magnetic moments because of the high
concentration of delocalized electrons. Since the TiOy
samples are free of ferromagnetic impurities, the small
effective magnetic moment can be due to the presence
of Ti2+ and Ti3+ impurity ions in TiOy monoxides. Judg-
ing from the values of p, the content of the above impu-
rity ions varies from 2 to 8 at. %. The Curie paramag-
netic contribution is most pronounced for TiOy titanium
monoxides with a relatively high oxygen content y >
1.2 (Fig. 5).

The dependence  χ(T) for TiOy titanium monoxides
with an oxygen content y ≤ 1.069 (Figs. 4, 5) over the
entire temperature range (4.2–400 or 4.2–1000 K) is
well described by the function

 (14)

8CM

χ T( ) χ 0( ) C/ T ∆+( ) bT2.+ +=
PH
In relationship (14), the quadratic term bT2 is character-
istic of the Pauli paramagnetism due to conduction
electrons. This agrees with the metallic conductivity
observed in these monoxides.

The temperature dependences of the magnetic sus-
ceptibility for TiOy monoxides with an oxygen content
y ≥ 1.087 exhibit a more complex behavior, especially
in the high-temperature range (Fig. 5). Let us consider
the situation where the concentration of charge carriers
in TiOy monoxides with y ≥ 1.087 at temperatures T >
300 K is described by relationship (10). According to
the Curie formula χp(T) = ne(µB)2/kBT, the temperature-
dependent component of the magnetic susceptibility
involves the paramagnetic contribution

 (15)

where A = 2(m0/2π"2)3/2(kB)1/2(µB)2(m*/m0)3/2 = 3.008 ×
10–9(m*/m0)3/2 [K–1/2] and m0 is the electron mass. Note
that expression (15) describes the dimensionless sus-
ceptibility per unit volume. Making allowance for the
aforementioned features of the dependences  χ(T) and
introducing the designation Am = A/d, the measured
mass susceptibilities of TiOy monoxides (y ≥ 1.087) in
the temperature range from 4.2 to 1000 K can be
approximated by the function

 (16)

which includes the temperature-independent contribu-
tion χ(0), the Pauli paramagnetic contribution of the
electronic system with an energy gap, and the Curie
paramagnetic contribution. At T < 400 K, the second
term in relationship (16) can be replaced by the term aT,
which is linear in temperature. Hence, the susceptibility

χ p T( ) 2 m*/2π"
2( )3/2

kB( )1/2 µB( )2T1/2=

× ∆E/2kBT–( )exp AT2 ∆E/2kBT–( ),exp≡

χ T( ) = χ 0( ) AmT1/2 ∆E/2kBT–( )exp C/ T ∆+( ),++
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of TiOy monoxides (y ≥ 1.087) in the temperature range
4.0–400 K can be described by the relationship

 (17)

The numerical parameters of functions (14), (16), and
(17), which were used to approximate the depen-
dences  χ(T ) for the TiOy monoxides studied, are
given in Table 2.

In expression (16), the coefficients Am for the
TiO1.087 and TiO1.262 monoxides are equal to 0.012 × 10–6

and 0.034 × 10–6 cm3 g–1 K–1/2, respectively. The densi-
ties of the TiO1.087 and TiO1.262 monoxides are 4.97 and
4.82 g cm–3, respectively. The effective mass of charge
carriers in terms of m0 can be written in the form m* =
4.799 × 105(Amd)2/3m0. The calculations of the effective
masses of charge carriers from this formula give ~7m0
for TiO1.087 and ~14m0 for TiO1.262. The sufficiently
large effective mass of charge carriers confirms the
validity of the Boltzmann distribution used in the
description of the carrier concentration in TiOy monox-
ides with y ≥ 1.087.

The values of ∆E determined from the dependences
χ(T) [formula (16)] for the TiO1.087 and TiO1.262 monox-
ides are equal to 0.061 and 0.173 eV, respectively. The
values of ∆E calculated from the temperature depen-
dences of the conductivity for the same monoxides are
0.028 and 0.032 eV, respectively. It can be assumed that
the values of ∆E obtained from the low-temperature
dependences of the conductivity correspond to the acti-
vation energy of impurity levels, whereas the values of
∆E derived from the dependences of the magnetic sus-
ceptibility over a wider temperature range are associ-
ated with the band gap in the case of intrinsic conduc-
tivity. The low value of the band gap makes it possible
to assign the TiOy monoxides (y ≥ 1.087) to narrow-gap
semiconductors.

Thus, the kinetic and magnetic data obtained allow
us to draw the inference that an increase in the oxygen
content leads to the formation of a narrow energy gap
between the valence and conduction bands in the elec-
tronic structure of the disordered cubic titanium mon-
oxide TiOy. Consequently, the TiOy monoxide can
behave either like a d metal or like a semiconductor,
depending on the oxygen content. Therefore, the
metal–semiconductor transition is experimentally
observed with an increase in the oxygen content in the
disordered titanium monoxide TiOy, i.e., with a
decrease in the concentration of oxygen vacancies and
a simultaneous increase in the concentration of tita-
nium vacancies. The question now arises as to whether
this concentration transition is a Mott transition. In
actual fact, according to [30–32], heavily doped semi-
conductors (with an impurity-atom concentration of up
to tenths of a percent) have disordered structures. These
materials undergo a metal–insulator concentration tran-
sition at a temperature of 0 K and a metal–semiconduc-
tor transition due to correlations at T > 0 K. Examples
of these semiconductors are provided by transition-

χ T( ) χ 0( ) C/ T ∆+( )+ aT .= =
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metal oxides of the NiO type [30]. Upon the metal–
insulator transition, the electrical conductivity can be
measured depending on a certain external parameter
whose variation leads to a change in the lattice constant.
This parameter can be either the composition, the pres-
sure, or the magnetic field strength. The material can
possess n-type conductivity at a smaller lattice constant
and can become an insulator with an increase in the lat-
tice constant [29, 33, 34]. In the case of the TiOy tita-
nium monoxide, an increase in the lattice constant aB1
with an increase in the oxygen content is accompanied
by a crossover from metallic conductivity to semicon-
ductor conductivity. However, the temperature depen-
dence of the conductivity for Mott semiconductors in
the low-temperature range is described by the relation-
ship σ(T) ~ exp(T–1/4) [30], whereas our numerical anal-
ysis demonstrates that the temperature dependences of
the conductivity for TiOy monoxides at y > 1 obey the
law σ(T) ~ T1/2exp(T–1). Moreover, the concentration of
structural vacancies in titanium monoxide is several
orders of magnitude (by a factor of thousands and even
tens of thousands) higher than the concentration of ran-
domly distributed impurity atoms in Mott semiconduc-
tors. On this basis, we can infer that the metal–semicon-
ductor concentration transition in the disordered tita-
nium monoxide TiOy is not a Mott transition.

The high concentration of structural vacancies in the
titanium and oxygen sublattices of the TiOy monoxide
is a prerequisite to ordering. In our recent work [35], we
demonstrated experimentally and theoretically that a
monoclinic superstructure of the Ti5O5 type involves
continuous vacancy channels along particular crystallo-
graphic directions (the Ti5O5 structure was described
and analyzed in detail in monograph [36]). In this
respect, it is of considerable interest to investigate the
electrokinetic and magnetic properties of an ordered
nonstoichiometric titanium monoxide.
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Abstract—The variation of the lattice thermal conductivity of Bi2Te3 induced either by alloying it with tin
alone or by codoping the lattice with an acceptor or donor impurity was studied. The experimental data obtained
at room and liquid nitrogen temperatures argue for the validity of the model of quasi-local impurity states asso-
ciated with tin atoms. © 2003 MAIK “Nauka/Interperiodica”.
Bismuth telluride, like lead telluride, possesses a
high lattice polarizability. Therefore, neutral and
charged impurities differently affect phonon scattering
in these materials [1, 2]. The effective phonon scatter-
ing cross section Φ from charged impurities in these
compounds exceeds that from neutral impurities by a
few times. We use this observation in our study to probe
the charge state of tin impurity atoms in Bi2Te3.
The unusual effect of tin atoms on the electrophysical
properties of bismuth telluride was reported earlier in
[3–5]. The observed features were attributed to the
presence of resonance states in the allowed valence
band spectrum. In addition, bismuth telluride is a com-
pound with a high concentration of antisite defects,
with part of the bismuth atoms (about 1 at. %) occupy-
ing the two possible tellurium positions,  and

BiTe(2). The atomic arrangement in a layer can be repre-
sented as Te(1)–Bi–Te(2)–Bi–Te(1).

Therefore, the tin atoms incorporated through the
substitutional doping Bi  Sn may occupy three dif-
ferent positions, namely, the Te(1), Te(2), and Bi sites.
The charge states of Sn in these positions will naturally
be different.

The experiment was conducted in two stages. We
first studied the effect of the concentration of the
alloyed tin atoms on the lattice thermal conductivity of
Bi2Te3. After this, we carried out experiments on
codoping; more specifically, we studied the variation of
the lattice thermal conductivity of Bi2Te3 doped both by
tin and by a donor (halogen) or acceptor (lead) impu-
rity.

Single-crystal Bi2Te3 samples were grown by the
Czochralski and directional-crystallization methods.
The composition of the samples doped by tin alone
had the chemical formula Bi2 – xSnxTe3, with x = 0,
0.002, 0.005, 0.007, 0.01, and 0.02 (x = 0.01 corre-

Bi
Te

1( )
1063-7834/03/4507- $24.00 © 21251
sponds to the concentration 6 × 1019 cm–3). The sam-
ples codoped by tin and iodine (or chlorine) had the
formula Bi2 – xSnxTe3 + ySbI3(CdCl2), where x = 0.005,
0.01, and 0.02 and y = 0.05, 0.1, and 0.15 wt %. The
samples alloyed with both tin and lead had the compo-
sition Bi2 − x – zSnxPbzTe3 (with the same values of x, and
with z = 0.005, 0.01, 0.02, 0.03). The impurity content
was verified by chemical and x-ray analysis. The uni-
formity of the impurity distribution in the samples was
estimated at room temperature with a thermal probe.
Measurements of the thermal conductivity κtot were
complemented by a study of the following independent
components of the kinetic tensors: Hall coefficients
R123 and R321, Seebeck coefficients S11 and S33, and elec-
trical conductivity σ11. Thermal conductivity was mea-
sured using a steady-state technique. The heat flux and
electric current were directed along the cleavage planes
(indices 1, 2). The Hall coefficient was measured using
two techniques, in ac and dc electric and magnetic
fields.

In heavily doped semiconductors, the total thermal
conductivity in the region of extrinsic conduction can
be written as κtot = κL + κe, where κL is the lattice ther-
mal conductivity and κe is the electron thermal conduc-
tivity, which was derived using the Wiedemann–Franz
law κe = LσT (L is the Lorenz number). The Lorenz
number L was calculated with inclusion of the electron
gas degeneracy [2].

Consider the results obtained. As seen from Fig. 1,
doping with tin alone practically does not change the
magnitude of the total thermal conductivity κtot, which
remains nearly constant, with the exception of the ini-
tial region. Thermal resistance of the lattice Wr doped
by tin to Nimp = 0.2 at. % grows. As long as tin atoms are
present in small amounts (below 0.2 at. %), they appar-
ently sit primarily at the Te(2) sites, where they are elec-
trically active and donate their electrons to the valence
003 MAIK “Nauka/Interperiodica”
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band. This conjecture is supported by a decrease in hole
concentration (points 1 in Fig. 2). The Sn atoms are
charged and the lattice thermal resistance grows
because of the phonons suffering additional scattering
from the charged impurity.

As the tin dopant concentration was increased still
more (to 1 at. %), the thermal lattice resistance
decreased to the value characteristic of undoped Bi2Te3
and then remained at this level as the tin content was
further increased. It may be conjectured that, after the
Sn atoms have filled the  sites, they begin to

occupy predominantly the  positions. Sn atoms

sitting at the Te(1) sites are believed [7] to create reso-
nance levels. In these positions, the Sn atoms are neu-
tral with respect to the lattice. The resonance level,
being located at a small depth in the valence band,
accepts a very small number of electrons from higher
lying valence-band states (the total hole concentration
in the valence band is p ~ 1 × 1019 cm–3 ! NSn). The
measurements of the thermal conductivity lend support
to this conjecture. The lattice thermal resistance in this
range of the Sn impurity concentrations is fitted well by
the law of phonon scattering from neutral impurities
(Fig. 1).

Consider now the variation of the lattice thermal
resistance under codoping of the material with Sn and
an acceptor (Pb) or donor (I, Cl). Codoping
Bi2 − xSnxTe3 with acceptors (Pb atoms) also leaves the
lattice thermal resistance practically unchanged (points
7–9 in Fig. 3). By contrast, additional doping
Bi2 − xSnxTe3 by donors, i.e., atoms of Cl (points 4–6) or
I (points 10–12), results in an increase in the lattice
thermal resistance. Wr(Nimp) was observed to behave in
this way at both room and liquid nitrogen temperatures,
which may be assigned to the phonon scattering from
impurities being a dominant process. Assuming the dif-
ference in the pattern of Wr variation under doping with
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Fig. 1. Dependences (1) of the thermal conductivity κtot and
(2–4) of the relative thermal lattice resistance dW/Wr of
Bi2Te3 on dopant concentration. (1, 2) tin impurity,
(3) charged impurity, and (4) neutral impurity (3, 4) are data
from [6]).
P

donors and acceptors to be associated with specific fea-
tures of phonon scattering in Bi2Te3 : Sn caused by
additional doping, one can use Ioffe’s relation to esti-
mate the phonon scattering cross section Φ from the
data on thermal conductivity:

 k0/k Wr/W0 1 N /N0( )Φ l0/a( ),+= =
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Fig. 2. Variation of the hole Hall concentration in Bi2Te3
(1) doped by tin and codoped by (2, 3) Cl, (4) Pb, and (5, 6) I.
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where N is the impurity concentration, N0 is the number
of atoms per 1 cm3, a is the distance between neighbor-
ing atoms, l0 is the phonon mean free path in an impu-
rity-free crystal, Φ is the coefficient in the relation S =
Aa2 (cross section of phonon scattering from impuri-
ties), k and k0 are the lattice thermal conductivities and
Wr and W0 are the lattice thermal resistances in a crystal
with and without an impurity, respectively.

It was found that the value of Φ is practically con-
stant, Φ ~ 1.3, throughout the region of Bi2Te3 : Sn
codoping by an acceptor impurity (Pb atoms) or a donor
impurity (Cl and I atoms) to a level of 0.5 mol %. As the
concentration of additional donors increases to 1 mol %,
the scattering cross section grows to Φ ~ 8. The values
of Φ thus obtained agree well with available literature
data on Bi2Te3 [6] for the case of phonon scattering
from neutral and charged impurities.

The experimental data obtained in this study are
similar to those observed earlier in PbTe : Tl codoped
by Na. The Tl impurity produces a band of resonance
impurity states in the valence band of PbTe, and the Na
strong acceptor impurity completely depletes these
states, with the Fermi level leaving the band of reso-
nance states [8]. These data reveal a similarity with ours
obtained on Bi2 – xSnxTe3 in Wr being only weakly
dependent on the codopant as long as the Fermi level
remains within the resonance band; in Fig. 2, this case
corresponds to the region of relative hole concentration
stability, in which small variations of p300 are observed
to occur. However, in contrast to PbTe : Tl doped by Na,
we cannot unambiguously interpret the behavior of Wr
under codoping of Bi2 – xSnxTe3 by Pb atoms. The
explanation of this quite ambiguous and complex char-
acter of the effect of codopants may lie not only in the
variation of the filling of Sn resonance states but also in
that the Pb impurity is capable of occupying different
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
positions in the crystal lattice and, through this, differ-
ently influencing the Bi redistribution between these
positions.

Thus, the experimental data obtained in this study
on the effect of the Sn impurity on the lattice thermal
conductivity of Bi2Te3 single crystals, as well as the
data bearing on codoping Bi2 – xSnxTe3 by an acceptor
or donor impurity, argue for the existence of quasi-local
tin impurity states.
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Abstract—An algorithm is proposed for constructing a Debye-type self-consistent model of a nonmetallic iso-
tropic solid. Using germanium as an example, it is demonstrated that the thermodynamic quantities can be ade-
quately described over a wide range of temperatures even under significantly simplifying assumptions about
the thermodynamic parameters. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that thermodynamic properties of real
solids have defied adequate description in the frame-
work of the Debye model, which is in essence the sole
universally accepted thermodynamic model of non-
magnetic solids [1, 2]. This stems from the fact that the
Debye model is extremely simplified and self-contra-
dictory. In particular, one of the most important param-
eters of the theory is the Debye characteristic tempera-
ture θ, which, according to classical representations, is
a material constant and does not depend on tempera-
ture. The Debye temperature is determined by the form
of the phonon spectrum. In an ideal case, the phonon
spectrum is assumed to be quadratic in frequency and is
limited from above by the Debye frequency. The char-
acteristic temperature θ can be expressed through the
bulk and shear moduli, density, and molar volume.
Simple thermodynamic calculations have demonstrated
that these quantities explicitly (and substantially)
depend on temperature. From the foregoing, it immedi-
ately follows that the quantity θ should also be temper-
ature dependent. This inference contradicts the original
assumptions of the Debye model in the traditional inter-
pretation but agrees with experimental calorimetric
data on the heat capacity of solids (see, for example,
[3–8]). The temperature dependence of the Debye char-
acteristic temperature is directly associated with a non-
ideal vibrational spectrum of a real solid (phonon
anharmonicity) and accounts for the specific features
observed in the thermal properties, which cannot be
explained in the framework of the traditional approach
[5–13]. Specifically, the deviation of the actual temper-
ature dependence of the heat capacity of a solid from
the Dulong–Petit law has defied explanation in terms of
the classical Debye theory even in the absence of the
1063-7834/03/4507- $24.00 © 21254
electronic contribution and requires inclusion of the
dependence θ(T). Similarly, the temperature depen-
dence of the thermal expansion coefficient α(T) devi-
ates from the classical Debye behavior, according to
which the thermal expansion coefficient α(T) should
approach a constant value asymptotically with an
increase in the temperature [2].

It should be noted that, according to the theory of sol-
ids [2], there is a correlation between the temperature
dependences of the heat capacity and the thermal expan-
sion coefficient. However, the well-known experimental
fact that the temperature dependences of the heat capac-
ity and the elastic moduli also correlate with each other
has not been interpreted theoretically (see [14]).

The above contradictions still remain unresolved. In
this respect, it is important to construct a self-consistent
thermodynamic model of solids that would make it pos-
sible to describe and predict the temperature depen-
dences of the heat capacity and the elastic moduli for
solid paramagnets within a unified approach.

In the present work, we developed a model concept
of the Debye theory and formulated the basic principles
of the construction of a model providing a self-consis-
tent description of the most important thermodynamic
properties of an isotropic nonconducting nonmagnetic
solid: the heat capacity C, the bulk thermal expansion
coefficient α, the bulk modulus K, etc.

For this purpose, a germanium semiconductor was
chosen as the model object, because a large amount of
reference experimental data on the thermal properties
of this material is available in the literature [3, 4, 15–
18]. In our case, the electronic conductivity of germa-
nium can be ignored without loss of accuracy.
003 MAIK “Nauka/Interperiodica”
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2. DEBYE TEMPERATURE 
AND ITS THERMODYNAMIC DERIVATIVES

One of the most important notions in the Debye the-
ory is the Debye characteristic temperature θ. This tem-
perature is an averaged characteristic of the phonon
spectrum of thermal atomic vibrations. The phonon
spectrum is considered to be quadratic in frequency
and, moreover, is limited from above by the Debye fre-
quency [1, 2]. Evidently, the true vibrational spectrum
of a real solid is far from ideal. Therefore, the deviation
from the ideal spectrum, as far as possible, should be
taken into account properly in terms of macroscopic
thermodynamics in order to describe the actual thermo-
dynamic properties more correctly.

The characteristic temperature can be obtained by
Debye averaging of the partial Debye temperatures;
that is,

 (1)

In the framework of the classical Debye interpreta-
tion, the Debye temperature is a function of the volume
V of a solid (or the pressure P) and does not depend on
temperature. The longitudinal Debye temperature is
associated with the longitudinal mode of acoustic
vibrations and can be conveniently represented in the
form

 (2)

The transverse Debye temperature corresponds to the
transverse mode of acoustic vibrations and can be writ-
ten as

 (3)

In relationships (2) and (3), kB is the Boltzmann con-
stant, NA is the Avogadro number, V is the molar vol-
ume, ρ is the mass density, M is the molar weight, K is
the bulk modulus, and G is the shear modulus. It should
be noted that there is no convenient thermodynamic
definition of the shear modulus G. Hence, this modulus
can be expressed through the bulk modulus and the
Poisson ratio σ as follows [19]:

 (4)
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The so-called modulus of elongation L (an analog of the
Young’s modulus) can also be expressed in terms of the
bulk modulus K and the Poisson ratio σ; that is,

 (5)

For the majority of materials, the Poisson ratio is
close to 1/4 and depends on the temperature only
slightly. Hereafter, the Poisson ratio will be assumed to
be constant (independent of the temperature). Under
these conditions, the temperature dependence of the
Debye characteristic temperature, when it cannot be
disregarded, is determined by the temperature depen-
dences of the bulk modulus and the molar volume,
which, as will be shown below, follow directly from the
Debye theory.

In further analysis, we will use the isothermal deriv-
atives of the averaged and partial Debye temperatures
with respect to the volume. These thermodynamic
derivatives can be conveniently represented by intro-
ducing the following designations:

 

In the theory of solids, the parameter γθ and the Grü-

neisen parameter Γ = –  coincide to the first

decimal place. For the majority of solids, the Grüneisen
parameter is of the order of unity.

It can easily be verified that the parameters γθ and

 satisfy the relationships

 (6)

 (7)

In some cases, the temperature dependence of the
parameters γ (the generalized Grüneisen parameters)
can be ignored. In the general case, the temperature
dependence of the parameters γθ is governed by the
temperature dependences of the partial parameters γθ

(γθl, γθt and , ) and the Debye temperatures (θl

and θt).

3. THE FIRST AND SECOND THERMODYNAMIC 
DERIVATIVES

With due regard for the problems formulated in this
work and the set of physical properties to be analyzed,
the thermodynamics of the objects under consideration
(weakly anisotropic nonmetallic solid paramagnets)
will be described not only in terms of the Helmholtz
thermodynamic potential (free energy) F(T, V) as a
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function of the temperature T and the volume V but also
in terms of the Gibbs thermodynamic potential Φ(T, P)
as a function of the temperature T and pressure P. It is
known [2] that the molar free energy and the molar
thermodynamic potential in the differential representa-
tion have the form

 (8)

 (9)

where S is the molar entropy. Expressions (8) and (9)
are similar to each other and differ only in their vari-
ables. As will be shown below, the thermal properties of
materials (the heat capacity and thermal expansion) are
more conveniently analyzed in terms of the thermody-
namic potential Φ(T, P). This analysis allows one to
derive thermodynamically exact relationships for the
experimentally measured thermal expansion coefficient
and heat capacity at a constant pressure. At the same
time, the elastic properties can be more conveniently
treated in terms of the free energy F, because this
parameter permits one to obtain a thermodynamically
exact relationship for the isothermal bulk modulus. It
should be noted that the choice of the pressure as an
independent variable is justified in the majority of
cases: it is this pressure that can be arbitrarily varied in
the experiments.

By ignoring the electronic contribution, the total
molar free energy of an isotropic nonmetallic solid,
according to thermodynamic concepts, can be written
in the form

 (10)

Here, F0(V) is the temperature-independent part of the
free energy, which depends on the volume, and Fp(T, θ)
is the Debye (lattice, phonon, paramagnetic) part of the
free energy, which, as follows from the Grüneisen law
of corresponding states [2], is a function of the ratio of
the temperature T to the Debye temperature θ = θ(V).
The molar thermodynamic potential can be represented
in a form similar to expression (10); that is,

 (11)

Here, the terms have the same meaning as for the free
energy but with allowance made for the replacement of
V by P.

We omit the intermediate calculations described in
our previous works [11, 13] and present only final
results, namely, thermodynamically exact relationships
for the main physical characteristics of a nonmetallic
solid.

3.1. The First Thermodynamic Derivatives

The first-order thermodynamic derivatives of the
free energy and thermodynamic potential are necessary
for further calculations. These are the molar entropy at
a constant pressure, the isothermal molar volume, the
mass density, and the isothermal pressure. Taking into

dF T V,( ) SdT– PdV ,–=

dΦ T P,( ) SdT– VdP,+=

F F0 Fp.+=
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PH
account the possible temperature dependence of the
Debye characteristic temperature θ(T), these quantities
can be determined from the expressions

 (12)

 (13)

 (14)

 (15)

In expressions (12)–(15), S0 = 0; V0 = ; P0 =

; D(z) is the standard tabulated Debye function

[2], which depends on the reciprocal of the reduced
temperature z = θ/T; and R is the universal gas constant.

Although the density or, in some cases, the volume
can be measured directly, it is common practice to
determine the physical quantities corresponding to sec-
ond-order thermodynamic derivatives, namely, the
molar heat capacity, the bulk thermal expansion coeffi-
cient, and the bulk modulus.

3.2. The Second Thermodynamic Derivatives

Making allowance for the possible temperature
dependence of the Debye characteristic temperature
θ(T), thermodynamically exact relationships for the
molar heat capacity at a constant pressure, the bulk
thermal expansion coefficient, and the bulk modulus of
a nonmetallic solid have the form
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 (17)

 (18)

We leave aside the cumbersome analysis of different
limiting cases (for details, see [6–13]) and note only
that, by ignoring the temperature dependence θ(T), it is
possible to obtain thermodynamic results correspond-
ing to the classical Debye theory (the Dulong–Petit law,
the Grüneisen law of corresponding states, etc.). In the
case when the temperature dependence of the Debye
characteristic temperature is taken into account under
the conditions (∂θ/∂T)P < 0 and (∂2θ/∂T2)P < 0, which
are usually satisfied, the calculated heat capacity C(T)
and bulk thermal expansion coefficient α(T) exceed the
classical limiting values even without regard for the
electronic contribution. This is in agreement with the
experimental results and can be taken into consider-
ation in the experimental data processing for real solids.

Note that, here, it is also expedient to use the rela-
tionship (∂θ/∂P)T = (–θ/K)γθ.

4. ALGORITHM FOR CONSTRUCTING
A SELF-CONSISTENT THERMODYNAMIC 

MODEL

In order to eliminate the aforementioned contradic-
tions of the classical Debye model, it is advisable to use
a self-consistent scheme of calculating the thermody-
namic characteristics. For numerical calculations, this
scheme is based on the method of successive approxi-
mations. Using germanium as an example, we will
demonstrate below that the inclusion of the deviation of
the phonon spectrum from the ideal spectrum through
the allowance made for the temperature dependence
θ(T) even under the simplest assumptions (the temper-
ature independence of the parameters γθl, γθt, , ,
and σ) will make it possible to achieve reasonable
agreement between the experimental and calculated
data on the thermal characteristics of the studied mate-
rial over a wide temperature range covering several
hundreds of degrees Kelvin.
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4.1. The Initial Approximation

In order to perform the approximate calculations,
we specified the bare thermodynamic parameters V0,
K0, γθl, γθt, , , and σ. This permits us to calculate
the initial values of the averaged and partial Debye tem-
peratures θ0, θ0l, and θ0t; the density ρ0; and the aver-
aged generalized Grüneisen parameters γθ0.

4.2. The Zeroth Approximation (n = 0)

The parameters thus obtained provide a means for
calculating the temperature dependences V(T), K(T),
and ρ(T) in the zeroth approximation (i.e., under the
assumption that the Debye temperature is constant: θ =
θ0). Next, it becomes possible to determine the temper-
ature dependences θ(T), θl(T), and θt(T) and the corre-
sponding derivatives with respect to the temperature.
Then, we calculate the averaged Grüneisen parameters
γθ, which makes possible the determination of the
remaining thermodynamic characteristics C(T) and
α(T) in the above approximation.

4.3. First and Subsequent Approximations (n = 1, 2, …)

In the first and subsequent approximations, the cal-
culations are performed in the same manner as in the
case of the zeroth approximation, with the only differ-
ence that the dependence θ(T) is taken into account,
which leads to renormalization of the temperature
dependences of the thermodynamic parameters. The
iterative self-consistent process can be terminated in
accordance with an arbitrarily specified condition, for
example, when the difference between the Debye tem-
peratures θ in two successive approximations becomes
less than 0.01 K. As follows from the calculations, this
can be achieved using the first three to five approxima-
tions.

By applying the aforementioned iterative procedure,
varying the bare parameters, and minimizing the least
root-mean-square difference between the available
experimental data and the calculated thermodynamic
parameters, it is possible to obtain the self-consistent
temperature dependences of all the physical quantities
determining the thermodynamic properties of the stud-
ied solid material. In the present work, these calcula-
tions were performed using germanium as an example.

5. DISCUSSION
The principal thermodynamic functions calculated

for germanium according to the proposed algorithm are
compared with the available reference data in Figs. 1–
3. The temperature dependences of the molar heat
capacity, the bulk thermal expansion coefficient, and
the bulk modulus for germanium are depicted in
Figs. 1, 2, and 3, respectively. The theoretical tempera-
ture dependence of the Debye characteristic tempera-
ture and the dependence θ(T) calculated using the calo-
rimetric data taken from [3] are presented in Fig. 4.

γθl* γθt*
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Despite the simplicity of the assumptions made in our
calculations (the Grüneisen parameters γθl, γθt, , and

 and the Poisson ratio σ were assumed to be indepen-
dent of temperature), we succeeded in achieving quite
reasonable agreement between the calculated and refer-
ence thermodynamic functions over a wide range of tem-
peratures. Excellent agreement is observed for the molar
heat capacity. The calculated thermodynamic parame-
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Fig. 1. Temperature dependence of the heat capacity of ger-
manium. Points are the data taken from [17] (below 300 K)
and [16] (above 300 K). The solid line corresponds to the
results of calculations.
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P

ters, which varied as free parameters in our calculations,
are as follows: V0 = 1.43 × 10–5 m3 mol–1, K0 = 78.5 GPa,
γθl = –3.86, γθt = –0.588,  = −1.89,  = –2.37, and
σ = 0.261. The relative error (the relative root-mean-
square difference between the calculated and reference
data) is equal to ±2.4% for the heat capacity, ±11.1% for
the bulk thermal expansion coefficient, ±2.2% for the
bulk modulus, ±5.5% for the density, ±8.6% for the
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Debye temperature, and ±0.5% for the Poisson ratio. The
Poisson ratio at room temperature was taken from [18].

The calculated and reference bulk thermal expansion
coefficients [15, 18] are in rather poor agreement as com-
pared to the other thermal parameters. This can be
explained by two circumstances. First, the reference
books [15, 18] contain linear thermal expansion coeffi-
cients for single-crystal germanium (without indicating
the crystallographic directions of measurement),
whereas thermodynamic calculations hold true for the
averaged bulk thermal expansion coefficient of the poly-
crystalline solid. Second, the thermal expansion of ger-
manium in the low-temperature range exhibits an invar
anomaly: the thermal expansion coefficient of germa-
nium is negative in the temperature range 16 < T < 40 K.
This anomaly in the thermal expansion is accompanied
by anomalous behavior of the temperature dependence
of the Debye characteristic temperature (Fig. 4). The
well-known anomalous behavior of the physical proper-
ties of germanium has hitherto defied satisfactory expla-
nation. It seems likely that these anomalies cannot be
described thermodynamically under the aforementioned
simplifying assumptions, in particular, regarding the
temperature independence of the Grüneisen parameters
γθl and γθt (for more detail, see [15]).

6. CONCLUSIONS

Thus, the results obtained in this work demonstrated
that, over a wide temperature range covering several
hundreds of degrees Kelvin, the entire set of thermody-
namic characteristics of a solid can be adequately
described in the framework of the Debye-type self-con-
sistent thermodynamic model even under strongly sim-
plifying assumptions. Further refinement of the results of
these calculations requires correct inclusion of the tem-
perature dependence of the Grüneisen parameters γθ.
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Abstract—New experimental data illustrating the effect of deep traps on the luminescence properties of anion-
defective α-Al2O3 single crystals are presented. It was established that deep traps have electronic nature and
their filling occurs through photoionization of F centers and is accompanied by F  F+-center conversion.
Model concepts were developed that describe the luminescence mechanism in anion-defective aluminum oxide
single crystals with inclusion of thermal ionization of the excited F-center states. The validity of the model was
supported by experimental data obtained in a study of thermoluminescence, thermally stimulated exoelectron
emission, and thermally stimulated electrical conductivity. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The luminescence properties of anion-defective alu-
minum oxide single crystals grown in reductive condi-
tions are a subject of intense study in connection with
their application in the dosimetry of ionizing radiations
[1–5]. Investigation of the luminescence mechanisms
that are operative in the temperature range 300–600 K
is of the most interest. In this region, coinciding with
the main peak of thermoluminescence (TL), one
observes quenching of the F-center luminescence and
the attendant TL features, more specifically, a depen-
dence of the TL yield in the main peak at 450 K on the
heating rate and a decrease in the average activation
energy when the fractional glow technique is applied
[6]. Establishment of the role played by deep trapping
centers in this process has highlighted progress in the
understanding of the nature of quenching. It has been
revealed, in particular, that the occupation of deep traps
is directly connected with the above-mentioned TL fea-
tures. The results obtained were interpreted within a
model of an interactive trap system; according to this
model, quenching sets in as a result of competing cap-
ture of the carriers, which are released during the for-
mation of the main TL peak, by deep traps. The carrier
trapping cross section by deep traps was assumed to be
a temperature-dependent process, which permitted us
to achieve a good enough fit of the experimental data to
the model concepts [7].

At the same time, our studies of electrical properties
other than the TL revealed that some of the features of
the thermally stimulated electron emission (TSEE)
observed in the same crystals cannot be accounted for
in terms of the above model. The temperature positions
of the main peaks in TSEE and TL roughly coincide.
1063-7834/03/4507- $24.00 © 21260
However, unlike the TL, the TSEE yield in the 450-K
peak does not depend on the crystal heating rate and the
average activation energy does not decrease within this
peak [6]. According to the data quoted in [8], the ther-
mally stimulated conductivity (TSC) of the crystals
under study likewise does not depend on the heating
rate.

The present communication reports on a further
study of the part played by deep traps in the mechanism
of F-center luminescence in aluminum oxide, as well as
on a broadening of the model concepts to cover experi-
mental results, both new and obtained earlier.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The study was conducted on samples of nominally
pure anion-defective α-Al2O3 single crystals grown by
directional crystallization in severe reductive condi-
tions due to the presence of graphite; this technique
produces a high concentration of anion vacancies
(1017 cm–3). The method employed to fill the deep traps
and measure the TL was described in [7]. In studying
radioluminescence (RL), the sample was excited by a
BIS-10 90Sr/90Y beta source with an activity of 3 mCi.
The dose rate at the sample was 0.05 Gy/min. To reduce
the effect of TL on the RL studies, the sample was
heated to 580 K at a rate of 5 K/s prior to each measure-
ment to deplete the traps responsible for the main peak
of α-Al2O3, followed by rapid cooling to a given tem-
perature. Interference filters were used to isolate the
spectral luminescence bands. Optical absorption (OA)
spectra were taken with a Specord M-40 spectropho-
tometer. The spectra of photostimulated electron emis-
003 MAIK “Nauka/Interperiodica”
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sion (PSEE) were measured in a ~10–5 Pa vacuum with
a secondary-emission multiplier. The photon energy
range required (4.1–6.2 eV) was covered using a deute-
rium lamp with a monochromator.

3. RESULTS AND DISCUSSION

Deep traps in anion-defective α-Al2O3 crystals were
identified at temperatures of 730 and 880 K [7]. Despite
the reliably established effect of deep traps on the lumi-
nescence properties of the crystals under study, many
aspects of their filling still remain unclear. The OA of
the anion-defective aluminum oxide crystals with deep
traps in different states was investigated to determine
the origin of the carriers and their sign in the course of
deep-trap filling. The results obtained are displayed in
Fig. 1. We readily see that, as the deep traps are filling,
the OA band intensity at 205 nm, which is associated
with the F centers, decreases, while the intensities of
the bands at 230 and 259 nm, originating from the F+

centers, increase. High-temperature heat treatment
restores the band intensities to their initial level. These
results suggest that the deep traps are filled by electrons
when the F centers are photoionized, with this process
being accompanied by a rise in the F+-center concentra-
tion.

The F  F+-center conversion in the F-center
absorption band of our crystals becomes particularly
manifest in studies of PSEE spectra due to the high den-
sity of optical excitation of the thin (about 100-nm
thick) surface layer serving as an electron emitter
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Fig. 1. Optical absorption spectra of samples of anion-
defective aluminum oxide obtained in different deep-trap
states: (1) deep traps not filled intentionally, (2) the deepest
trap filled at 775 K, (3) both deep traps filled at 620 K, and
(4) after filling, both deep traps depleted by heat treatment
at 1220 K for 15 min.
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(Fig. 2). The PSEE spectrum has a maximum in the
region of the F-center optical absorption at 205 nm
(curve 1). This suggests that the electrons we observe
arise during photoionization of the F centers. Follow-
ing exposure of the sample to light with a wavelength
of 205 nm for a few minutes, the PSEE spectrum was
observed to shift. The maximum of the spectrum was
located now at 230 nm, which corresponds to the posi-
tion of the F+-center absorption peak (curve 2). The
data illustrated in curves 1 and 2 in Fig. 2 directly illus-
trate the F  F+-center conversion.

The change in the relative concentrations of the F
and F+ centers caused by the deep-trap filling modifies
the TL spectral response in the main peak. As shown by
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Fig. 2. PSEE spectra of anion-defective aluminum oxide:
(1) starting sample and (2) after illumination by light
(200 nm, 300 s).

Thermoluminescence intensity I of the main peak in the
luminescence bands of F– and F+ centers

Sample no.

I (420 nm)/I (330 nm) 

before deep-trap 
filling

after deep-trap
filling

1 5.7 0.95

2 6.2 0.91

3 6.1 1.21

4 6.7 0.77

5 7.0 1.22

6 6.6 1.18
3
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measurements of the TL intensity ratio in the F and F+

luminescence bands (420 and 330 nm, respectively)
conducted before and after the deep-trap filling, the
420-nm luminescence band is dominant in the starting
crystals. After the deep-trap filling has come to comple-
tion, the intensities of the 420- and 330-nm bands
become comparable (see table), which is in accord with
the above-mentioned F+-center concentration growth
features observed to occur under deep-trap filling.

These results stress the need to modify the model
describing the mechanisms of thermally stimulated
processes in the crystals under study. Note the follow-
ing point. In [7], the temperature dependence of the car-
rier trapping probability to deep levels was determined
by that of the trapping cross section:

 (1)

where W is the quenching activation energy, C is a
quenching constant, T is the absolute temperature, k is
the Boltzmann constant, and δ0 is a temperature-inde-
pendent factor. In this model, the function

 is identical to the relation used to

describe electron transfer from excited F-center levels
in CaO to the conduction band as a result of thermal
ionization [9]. Thermal ionization of excited states in
F-type centers was also observed earlier in alkali halide
crystals [10]. Some of the stages in this process may
also be expected to occur in α-Al2O3. In particular, the
electrons released from TL-active traps and trapped on
the excited levels of F centers may again end up in the
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Fig. 3. TL yield in the dosimetric peak plotted vs. the tem-
perature of excitation by (1, 3) UV light and (2, 4) beta radi-
ation. (1, 2) Experiment and (3, 4) calculation.

0

P

conduction band through thermal ionization, from
where they can be captured by deep traps. If the latter
are fully occupied, the probability of the electrons
returning from the conduction band to the F-center
excited levels increases, thus bringing about an increase
in the TL yield in their luminescence band. Thus, the
parameters of the main TL peak at 450 K turn out to be
sensitive to the state of the deep traps, more specifi-
cally, to the degree of their filling by carriers, exactly
what was observed by us experimentally in [7]. In such
an approach, the quenching activation energy W can
carry the meaning of the energy of thermal ionization of
the F-center excited state.

The existence of thermal ionization of F-center
excited states requires experimental substantiation. To
do this, we carried out a comparative study of the tem-
perature dependences of the TL yield in the 450-K peak
in crystals excited by UV light in the F-center absorp-
tion band and by beta radiation of the 90Sr/90Y source.
As seen from Fig. 3, the TL yield increases with UV
excitation temperature but is independent of excitation
temperature when irradiated by beta radiation. A simi-
lar growth in the TL yield of UV-excited anion-defec-
tive aluminum-oxide samples with increasing excita-
tion temperature was reported in [11]. It thus follows
that the increase in the main-trap filling probability
with increasing temperature is not connected in any
way with the temperature dependence of the trapping
cross section but is rather due to the temperature depen-
dence of the F-center ionization efficiency observed
under UV excitation.
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Fig. 4. Variation of optical density in the absorption bands of
F (205 nm, curve 1) and F+ centers (230 nm, curve 2; 259 nm,
curve 3) following 5-min illumination by unfiltered UV light
of a deuterium lamp performed at various temperatures.
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Another series of experiments was devoted to the
variation of the optical absorption band intensity of the
F and F+ centers with the temperature of the sample
after its excitation with unfiltered UV light. The results
are presented graphically in Fig. 4. It is seen that, as the
temperature at which the spectrum was measured
increases, the intensity of the 205-nm band associated
with the F centers decreases and the intensities of the
230- and 259-nm bands belonging to the F+ centers
increase. The relative variation of the band intensity
also increases with temperature. This experiment indi-
cates that the efficiency of the F  F+ conversion
grows with temperature as a consequence of thermal
ionization of the F-center excited states. The assump-
tion of the existence of this process underlies the model
proposed here to describe the luminescence mecha-
nisms of anion-defective aluminum oxide crystals.

According to present-day concepts, the electronic
structure of the F center in aluminum oxide is believed
to resemble that of the helium quasi-atom [12]. The
ground state is 1S. There are also a singlet (1P) and a
triplet (3P) excited state. Excitation of the F center cor-
responds to the 1S  1P transition [the absorption
band peaking at 6.1 eV (205 nm)]. Excitation by light
into this band gives rise to the luminescence peaking at
3.0 eV and having a decay time of 36–40 ms (the 3P–1S
transition). The highest excited state of the F center lies
close to the conduction band bottom. Excitation into
the 6.1-eV band brings about optical ionization of the F
centers and electron trapping from the conduction
band, which results in an increase in the F+-center con-
centration.

Figure 5 presents the energy band diagram of the
model of the luminescence mechanism for the crystals
under study, including thermal ionization of the F cen-
ters. The modification of the well-known interactive-
trap system [13] is based on the assumption that ther-
mal ionization of the F-center excited states is a possi-
ble common cause of the probabilities of trapping into
the main and deep states being temperature-dependent.
The diagram corresponds to optical excitation into the
F-center absorption band. In the case of RL (for
instance, initiated by beta radiation), excitation (the f
transition) occurs in the region of band-to-band transi-
tions. In this diagram, N is the main trap, M1 and M2 are
deep traps, and 1P and 3P are excited states of the F cen-
ter. When excited by light in the absorption band, the
center transfers to the 1P excited state (the f transition).
The PF transition brings about thermal ionization of the
excited state (3P). The thermal ionization reduces the
fraction of radiative intracenter transitions and is the
main cause of photo- and radioluminescence quenching
in the crystals under study. Optical (w1 transition) or
thermal ionization produces an F+ center (F* – e = F+),
which can trap an electron (γ transition) to become
again an excited F center (F + e = F*). The F-center
luminescence (420 nm) corresponds to the w3 transi-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
tion. The free electrons that form during ionization of
the F centers can be captured subsequently into the
main or deep traps. The TL modeling in [7] did not
include the process of thermal ionization of the F cen-
ters; by contrast, the model proposed here takes this
process into account:

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

At any instant of time, the system under study obeys the
charge neutrality condition

(10)

In these equations, N, M1, and M2 (cm–3) are the total
concentrations of the dosimetric and deep traps, respec-
tively; n, m1, m2, n1p, and n3p (cm–3) are the concentra-
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+
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Fig. 5. Model of thermally stimulated processes in anion-
defective aluminum oxide crystals.



1264  KORTOV et al.
tions of the filled N, M1, M2, 1P, and 3P levels, respec-
tively;  (cm–3) is the F+-center concentration;

nc (cm–3) is the electron concentration in the conduction
band; α, δ1, δ2, and γ (cm3 s–1) are the carrier trapping
coefficients for the corresponding levels (Fig. 5);
w1, w2, and w3 (s–1) are the transition probabilities;
f (cm–3 s–1) is the excitation intensity; and IL is the lumi-
nescence intensity. The thermal ionization probability
for the excited state of the F center (3P) can be found
from the expression PF = Cexp(–W/kT), where W is the
excited-state ionization energy (quenching activation
energy). The transition probability w1 is assumed to be
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Fig. 6. Radioluminescence quenching in the F-center lumi-
nescence band obtained for different deep-trap states.
(a) Experiment: (1) deep traps not filled intentionally, (2)
the deepest trap filled at 775 K, and (3) both deep traps filled
at 620 K. (b) Calculation: the filling of the first deep trap
m1/M1 is (1) 0, (2) 0.1, (3) 0.8, and (4) 1.0.
P

temperature independent, because the 1P level is
located close to the conduction band bottom. The prob-
ability of depletion of the dosimetric traps is given by
the expression PN = Sexp(–E/kT), where E is the trap
depth and S is a frequency factor.

This model was used to calculate the temperature
dependences of the steady-state photo- and radiolumines-
cence intensities for a range of deep-trap occupations.
The coupled equations (2)–(9) were solved by the numer-
ical method proposed by Gear, and the results were pre-
sented in the form of plots of the photo- and radiolumi-
nescence intensities vs. time. The dependences of these
quantities on excitation temperature characterized the
luminescence quenching process. The parameters used in
the calculations were identical to those employed earlier
when considering thermoluminescence within the inter-
active trap system model (quenching parameters, transi-
tion probabilities, trap concentrations) [7]: E = 1.3 eV, S =
1013 s–1, α = 10–14 cm3/s, δ1 = 10–12 cm3/s, δ2 = 10–14 cm3/s,
γ = 10–11 cm3/s, N = 1013 cm–3, M1 = 1014 cm–3, M2 =
1014 cm–3, W = 1.1 eV, and C = 1011 s–1. The criterion for
selecting the remaining parameters (w1 = 1 s–1, w2 =
10 s−1, w3 = 1 s–1, f = 1010 cm–3/s) was the obtainment of
a stable solution providing the best fit to the experimen-
tal relations. The variable parameters were the temper-
ature and deep-trap filling (m1/M1). A test of the model
showed the radio- and photoluminescence quenching
curves to be well approximated analytically. We readily
see that, in full agreement with the observations
(Fig. 6), the efficiency of thermal quenching decays
with deep-trap filling.

The above model was employed to calculate the
dependence of the main-trap filling on sample temper-
ature under irradiation. It was established that the TL
yield grows with increasing temperature under photo-
excitation in the F-center absorption band and does not
depend on temperature under excitation in the inter-
band transition region, which corresponds to the case of
beta excitation. The calculated curves 3 and 4 are close
qualitatively to the experimentally observed curves 1
and 2 (Fig. 3).

The modeling of the TL, TSEE, and TSC features
observed in anion-defective aluminum oxide crystals
was done with the use of the band diagram presented in
Fig. 5. Because of the absence of the 1S–1P transition
corresponding to excitation at the instant of measure-
ment, the quantity f in Eq. (8) was assumed to be zero.
The data obtained in the modeling show that thermal
ionization of the excited states of the F center results in
the integrated intensity of the TL peak becoming
dependent on the heating rate. The relative variation of
the integrated intensity decreases with increasing deep-
trap filling, exactly what was observed experimentally
in [7].

The dependences of the TSEE yield and of TSC on
the heating rate were modeled assuming the intensities
of these effects to be proportional to the electron con-
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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centration in the conduction band, i.e., to the quantity nc
for which Eqs. (2)–(8) were solved.

The results of the modeling showed the appearance
of the main TL peak at 450 K to be accompanied by
TSEE and TSC peaks shifted relative to the TL maxi-
mum by 10–15 K toward higher temperatures (Fig. 7).
Unlike TL, the magnitude of TSC and the TSEE yield
do not depend on the heating rate, which is in accord
with the experimental data from [6, 8].

The proposed model is also capable of explaining
the experimentally observed [7] effect of deep-trap
occupation on the TL yield in the main peak (sensitiv-
ity) and its shape.

This model also offers an explanation for the exper-
imentally observed leveling off of TL sensitivity (esti-
mated from the TL yield in the main peak at 450 K) in
samples of anion-defective aluminum oxide under
deep-trap filling. It was established that deep-trap fill-
ing in a series of samples differing in sensitivity to
within an order of magnitude reduces the scatter of this
parameter by a factor 1.5–2. Calculations show that one
of the reasons for the scatter in sensitivity could be the
difference in the total deep-trap concentration between
the samples. After the deep traps have filled to a state
close to saturation, the sample sensitivity no longer
depends on their presence. Another possible reason for
the observed decrease in the sensitivity scatter could be
the formation of an additional number of F+ centers in
the course of deep-trap filling. According to [14], the
TL sensitivity of the crystals studied correlates with the
F+-center concentration. The F+-center concentration in
samples with deep traps filled to saturation is high and
approximately equal. Also, in samples with an initially
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Fig. 7. (1) TL, (2) TSC, and (3) TSEE curves calculated in
terms of the interactive model with inclusion of the F-center
thermal ionization.
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low sensitivity, the centers formed in photoionization of
the F centers provide the largest contribution to the total
F+-center concentration. High-sensitivity samples have
from the outset a high F+-center concentration. This
conjecture is supported by the observation that, in sam-
ples with a low TL sensitivity, the relative growth of
this parameter with the filling of deep traps is substan-
tially larger than that in the originally high-sensitivity
samples. Filling of the deep traps levels off the F+-cen-
ter concentration in the samples and, as a consequence,
reduces the spread in their sensitivity.

4. CONCLUSIONS

To sum up, we have presented new experimental
data on the role of deep traps in the luminescence
mechanism of anion-defective aluminum oxide single
crystals. It was found that the deep traps are filled as a
result of F-center photoionization and that this process
is accompanied by an increase in the F+-center concen-
tration and a decrease in the F-center concentration. A
model was put forward describing the mechanism of
photo-, radio-, and thermoluminescence of anion-
defective aluminum oxide single crystals with inclu-
sion of thermal ionization of the F-center excited states.
This model accounts for the following experimental
observations: thermal quenching of the photo- and radi-
oluminescence; the temperature dependence of trap fill-
ing under photoexcitation in the F-center absorption
band and the absence of this dependence when excita-
tion is made in the interband transition region; the
effect of deep-trap filling on the thermoluminescence
yield, its dependence on the heating rate, and the shape
of the thermoluminescence curve; and the indepen-
dence of the TSEE yield and TSC value from the heat-
ing rate.
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Abstract—Depth-sensing (indentation) testing is used to study the characteristics of a serrated plastic flow in
a Pd40Cu30Ni10P20 bulk amorphous alloy, and the boundaries between the regions of serrated and homogeneous
plastic deformation are determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Although plastic deformation is always atomically

inhomogeneous (contrary to elastic deformation), the
physics of plasticity recognizes homogeneous and
inhomogeneous flow modes [1–7]. A conventional
boundary between these modes is mainly specified by
the test temperature T; strain rate ; and history, size,
and state of the surface of a sample [2, 5, 8–14]. The
position of this boundary depends substantially on the
characteristics of the testing machine, in particular, its
stiffness, response time, and sensitivity to changes in
the deforming force or in the sample size. Traditional
equipment, such as an Instron testing machine, makes
it possible to record only relatively large jumps of mac-
roscopic deformation with low repetition frequency
appearing due to the collective behavior of a huge num-
ber of elementary carriers of plastic deformation, while
the other possible instabilities of a flow remain unde-
tected. As a result, the statistics of detected jumps are
scarce and not representative and the contribution from
jumps to the total stored deformation is strongly under-
estimated.

To study the dynamics and correlation of deforma-
tion jumps on a smaller spatial scale (in particular, on
the mesoscopic scale), it is necessary to substantially
increase the space–time resolution of the equipment
and to decrease the sample volume. A higher resolution
is also required to analyze the instabilities of a plastic
flow in the context of the theory of self-organization in
nonequilibrium dissipative media (to which plastically
deformed solids belong), since the number of recorded
jumps should increase under these conditions and cor-
relation relations between them will be more apparent.

In this work, we used depth-sensing testing to obtain
the dependence of the load P on the indentation depth h
(an analog of the σ = f(ε) diagram for uniaxial deforma-
tion) and the P(t) and h(t) time dependences for submi-
cron regions. The limiting resolutions of modern com-

ε̇
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mercial nanoindentometers are 0.1 nm for the indenta-
tion depth, several micronewtons for the load, and 10–2 s
for the time, which are several orders-of-magnitude
higher than those of the standard testing machines. This
performance allows one to study fine and rapid jumps,
as well as to extend the range of strain rates toward
higher values of  (since  ≈ dh/hdt and h can be 1 µm
during depth-sensing testing) and to work on one sam-
ple. Apart from these advantages, the factors mentioned
above can serve to establish the boundaries of the size-
strain-rate invariance for stable and unstable flow
modes in nanoscale samples.

Pioneering studies [15–17] on the serrated deforma-
tion by nanoindentation were carried out several years
ago and dealt with an unstable flow in fcc metals and
polycrystalline aluminum–magnesium alloys that had
been previously well studied using the methods of mac-
rodeformation [18, 19]. Related information for amor-
phous alloys is limited, as far as we know, to papers [20,
21], in which multiple deformation nanojumps were
detected during local deformation of a palladium-based
bulk amorphous alloy by using nanoindentation.

Macroscopic measurements [4] show that, at mod-
erate strain rates (10–5 ≤  ≤ 10–3 s–1) and temperatures
T < 400 K, a flow is localized, whereas at higher tem-
peratures the flow becomes uniform. The transition is
assumed to be due to the equalizing of the strain rates
and a directed structural relaxation [4, 5, 12, 13]. It is
obvious that, at room temperature, this transition is

characterized by a very low critical strain rate ,
which cannot be achieved under the conventional con-
ditions of active deformation. On the other hand,

Kimura and Masumoto [22] showed that, at  ~ 0.1 s–1,
the reverse transition (from inhomogeneous to homoge-
neous flow) can proceed; the nature of this reverse tran-
sition was not discussed.

ε̇ ε̇

ε̇

ε̇c'

ε̇c''
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The purpose of this work is to determine the ranges
of stable and unstable plastic flows in a Pd40Cu30Ni10P20
bulk amorphous alloy under the conditions of local
deformation at various rates and depths and to measure
the parameters of jumps and their contribution to the
total mass transfer produced by an indenter.

2. EXPERIMENTAL

Bulk samples of a Pd40Cu30Ni10P20 amorphous alloy
were prepared by water-cooling of the melt in a cylin-
drical glass ampoule with an inside diameter of 4 mm.
After cooling, the glass shell was broken and the rod
obtained was cut into pellets 2 mm high. Before mea-
surements, the sample surface was polished with a dia-
mond paste. For investigation, we used an original
device developed at the Laboratory of Nanoindentation
(TSU) [23, 24]; this computer-aided nanotester
employs Berkovich’s diamond pyramid, with a depth
resolution of 1–10 nm depending on the limiting load
and strain rate. The time resolution (the periodicity of
discrete readings) was 50 µs, which significantly
exceeds (by several orders of magnitude) the capabili-
ties of the corresponding commercial devices and pro-
vided a resolution of the jumps with a leading-edge
time longer than ~100 µs without integration.
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Fig. 1. (a) Typical kinetic dependences of the load P(t) and
depth h(t) for dynamic indentation and (b) the correspond-
ing P–h diagram. The inset shows the fragments of the P–h
diagram at various values of µ: (1) 1120, (2) 56, (3) 1.12,
and (4) 0.56 mN s–1.
P

Loading was performed by applying a triangular
force pulse P, with the amplitude varied from 50 to
85 mN and the duration τ varied from 20 ms to 500 s,
and we simultaneously recorded the time dependences
of P(t) and h(t) or the P(h) dependence (Fig. 1). The
data obtain were stored on a computer and included
more than ten different parameters characterizing the
mechanical properties of the thin surface layers of the
material being studied. Under the test conditions, the
maximum indentation depth in the alloy under study
was about 700 nm and no cracks detectable with an
optical microscope were observed. We performed
about 1000 individual loadings and obtained a data
array sufficient for statistical processing of the jumps.

3. RESULTS AND DISCUSSION

A preliminary analysis of the data obtained showed
that deformation jumps could appear both in the stage
of increasing load and in the stage of unloading but not
everywhere over the range of loading parameters cov-
ered. For example, the number of jumps in one inden-
tation cycle could change from several tens at low load-
ing rates µ = dP/dt to zero at µ ≥ 1 N/s. Contrary to the
jumps in aluminum–magnesium polycrystalline alloys
[15–17, 25], the jumps appeared irregularly, and their
amplitude ∆h varied from several micrometers to sev-
eral tens of micrometers and was not clearly connected
with h or µ. Although our apparatus had the highest res-
olution available, we could not measure the actual jump
duration τj for the majority of jumps, as was the case
with Al–Mg alloys, since the jumps proceeded much
faster (within a time shorter than the digitization time
τd = 50 µs). With the mean jump amplitude ∆hm ~
20 nm, this fact allows us to make a lower estimate of
the average velocity of the indentation surface during a
jump 〈v 〉  = ∆hm/τd = 10–1 cm/s. We failed to detect the
case of τj > τd for any of the several hundreds of jumps
processed; therefore, the actual velocity was believed to
be far above this estimate.

For the sake of convenience and comparison with
data obtained by other authors, we arranged our data on
~600 jumps according to their value and plotted them
as h against  (Fig. 2), where  = (dh/dt)/h is the strain
rate averaged over the whole locally deformed volume.
It is seen from Fig. 2 that, at low  and high h, the
experimental points approach the boundaries (solid
lines) of the region studied in the phase space. In other
words, we could not determine the minimum  values
and maximum h values at which serrated deformation
disappears. Conversely, a clear boundary (marked by
dashed lines) between the serrated- and homogeneous-
flow modes is observed at high  values. The critical
rate increases from 10–2 to 10 s–1 in the range 0 < h <
100 nm; at h > 100 nm, this rate is virtually independent
of h and is equal to  ≈ 10 s–1. This indirectly indicates
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that localized shear is retarded by the boundaries of the
severely deformed region with a linear size of R ~ h
under the indenter at h ≤ 100 nm. Since neither the
number nor the amplitude of jumps changes drastically
at h ≥ 100 nm (Fig. 3), their characteristics may be
assumed to be specified by inherent causes rather than
by the value of R.

The data on the number and amplitude ∆h of jumps
allow us to estimate their role in the mass transfer pro-
duced by the indenter during indentation. Figure 4
shows the fraction of the volume ejected by an individ-

ual jump α =  as a function of h and , where

 =  is the volume of the material ejected by

the ith deformation jump , Vj is the volume of the
indentation formed by the end of the ith jump, and k is
the coefficient taking into account the indenter shape
(for Berkovich’s indenter, k = 23.969). Figure 5 illus-
trates the fraction of volume displaced as a result of ser-

rated deformation β =  and the number of

jumps N as a function of τ, where  is the total

volume of the material ejected because of serrated
deformation and Vmax is the volume of the final inden-
tation. From Fig. 4, it follows that α varies from 0 to
40% depending on h and  and that the boundary
between the regions of serrated- and homogeneous-
flow modes is rather diffuse.

In recent phenomenological theories, the N-shaped
dependence of flow stresses on  has been widely used
to explain the limited  range over which the serrated
mode of plastic deformation is observed [19]. Depend-
ing on the material and the type of process analyzed, the
cause of the occurrence of a segment with a negative
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depth, and  is the strain rate.ε̇
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slope can be different: local heating and strain aging
during a plastic flow, nonmonotonic dependence of the
critical stress intensity factor on  upon cracking, hys-
teresis during pressure-induced polymorphic phase
transformations, etc. In our case, all these mechanisms
are unlikely or impossible. Estimates made by a num-
ber of authors (see, e.g., [26, 27]) show that the short-
term heating in a localized shear band in glass at room
temperature does not exceed several tens of degrees
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Fig. 3. Dependence of the average jump amplitude  on

the strain rate  and the indentation depth h.
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Celsius even in the adiabatic mode. Moreover, this

heating cannot decrease with increasing . A thorough
electron microscopic examination of the surface of an
indentation and the near-indentation region shows that
the deformation jumps occurring in an amorphous pal-
ladium alloy during nanoindentation are caused by
localized plastic deformation rather than by fracture
[21]; therefore, cracking cannot cause the transitions
detected. On the other hand, the time of reaching a

given indentation depth decreases with increasing ,
which should lead to a decrease in the probability of ini-
tiating a jump and to a decrease in the total number of
jumps in the case where jumps are thermally activated.
This behavior was observed experimentally (Fig. 5).

The unstable flow during indentation can arise not
only because of the formation of localized shear bands
but also due to phase transformations induced by a high
pressure under the indenter. For example, Kim et al.
[26] observed the formation of nanocrystals in local-
ized shear bands during low-rate nanoindentation of an
amorphous palladium alloy at room temperature. It
takes a rather long time for the nanocrystals to form at
such a low temperature. The total loading time τ in [26]
was 10 s. As τ decreases (with increasing  in all stages
of indentation), a new phase may have no time to nucle-
ate and grow and this mechanism of unstable flow can
be blocked. As a result, the fraction of serrated defor-
mation in the total volume should decrease with τ. To
reveal the nature of the transition from the serrated-
deformation mode to the homogeneous one with
increasing  at room temperature, special investiga-
tions are required.
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4. CONCLUSION

Thus, we have shown that the continuous local
deformation of a Pd40Cu30Ni10P20 amorphous alloy is
accompanied by a serrated plastic flow during both
loading and unloading. The boundaries of the region
where the serrated-flow mode arises in the h–  phase
space during nanoindentation were determined, and the
basic characteristics of jumps (their amplitude, number,
fraction in the mass transfer produced by the indenter,
etc.) were found.
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Abstract—Using high-speed photography, dynamic magnetic structures are studied in Bi-containing (210)-ori-
ented single-crystal films of (Bi,Y,Lu,Pr)3(Fe,Ga)5O12 grown through liquid-phase epitaxy from an overcooled
solution in the melt on (Gd,Ga)3(Mg,Zr,Ga)5O12 substrates. At various temperatures, the ranges of pulsed mag-
netic fields are determined in which unidirectional anisotropy of domain wall velocity and spatial distortions of
moving domain walls are observed. © 2003 MAIK “Nauka/Interperiodica”.
Domain wall (DW) dynamics in Bi-containing gar-
net-ferrite (GF) single-crystal films with orthorhombic
magnetic anisotropy, in contrast to that in magnetically
uniaxial films, exhibits some specific features, such as
the anisotropy of DW velocity, distortion of the shape
of dynamic domains, unsteady motion of DWs, and
the local rotation of magnetization near moving DWs
[1–10]. These features are most pronounced in Bi-con-
taining (210)-oriented GF films with the composition
(Bi,Y,Lu,Pr)3(Fe,Ga)5O12 grown through liquid-phase
epitaxy from an overcooled solution in the melt on
(Gd,Ga)3(Mg,Zr,Ga)5O12 substrates [8].

In this paper, we report on the results of studying the
effect of a pulsed magnetic field and temperature on the
unidirectional anisotropy of DW velocity and distor-
tions of the shape of dynamic domains in these films.

Data were obtained on two samples. Sample 1 had a
highly pronounced unidirectional anisotropy of DW
velocity. In sample 2, this anisotropy was small, but the
DW shape was distorted. In the table, the following
parameters of the samples are listed: the film thickness
h, the equilibrium width of stripe domains w, the satu-
ration magnetization 4πMs, the uniaxial anisotropy
field HK, the quality factor of the material Q, and the
orthorhombic anisotropy field .

The magnetic anisotropy parameters were deter-
mined using the phase-transition method; more specif-
ically, we made a Fourier analysis of measured azi-

muthal dependences of planar  and normal 
components of the static magnetic field corresponding
to the uniform nucleation of domains [11, 12]. The azi-

muthal dependences of (ϕ) and (ϕ) are shown
in Fig. 1.

Dynamic domain structures were observed with the
aid of high-speed photography; the time of single-shot

HKr

H in* Hb*

H in* Hb*
1063-7834/03/4507- $24.00 © 21272
exposure was approximately 10 ns [13]. This method
was chosen, because the details of dynamic domain
structures were not reproduced in the experiments per-
formed under the same conditions (Fig. 2). In the initial
state, the films were magnetized to saturation by apply-
ing a bias field Hb normal to the film surface. A pulsed
field Hp was applied in the opposite direction with the
aid of two flat coils, with the film being placed halfway
between them. Two kinds of domain images were
taken: images of expanding stripe domains initially
subjected to a field Hb close to the saturating field and
images of domains of reversed magnetization nucleated
on the film defects during the pulsed remagnetization.
In the latter case, if a DW is located sufficiently far
away from the center of nucleation, the acting magnetic
field is [14]

 (1)

The field  for sample 1 being 4.3 times higher than
that for sample 2 (see table) is probably responsible for

H H p Hb.–=

HKr

Parameters of Bi-containing (210)-oriented
(Bi,Y,Lu,Pr)3(Fe, Ga)5O12 garnet-ferrite films at room tem-
perature

Parameter Sample 1 Sample 2

h, µm 6.9 17.7

w, µm 14.0 20.2

4πMs, G 70 83

HK, Oe 3200 2700

Q 46 36

HKr, Oe 913 208
003 MAIK “Nauka/Interperiodica”
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the absence of unidirectional anisotropy of DW veloc-
ity in sample 1, because the effective dimensionless
damping parameter, which depends on the in-plane
(external or effective internal) magnetic field [15–18],
is larger in this sample.

Spatial distortions of the moving DW of a stripe
domain in sample 1 are most clearly seen in Figs. 3h, 3i,
3k, 3l, and 3o. The moving DW of a domain of reversed
magnetization nucleated on a point defect is also dis-
torted, although the distortions are less pronounced
(Fig. 4).

The dependence of DW velocity V on the acting
magnetic field H for sample 1 is shown in Fig. 5a. It is
seen that the initial linear part of the V(H) curve inter-
sects the abscissa axis at a negative value of H. As in
[19], this can be explained by the fact that the easy mag-
netization axis in a (210)-oriented Bi-containing GF
single-crystal film is inclined to the film surface [20,
21]; therefore, formula (1) cannot be used to calculate
the acting magnetic field.

Images of the dynamic magnetic structures
observed in sample 2 in various acting fields are shown
in Fig. 6. The nucleation of reversed domains occurs in
fields H ≥ 25 Oe. In weak fields, these domains have a
cylindrical shape, and, in the range 60 ≤ H ≤ 70 Oe, the
domain become elliptical without distortions of their
walls. When the field attains the value H ≈ 110 Oe, uni-
Fig. 2. Configurations of domains of reversed magnetization in sample 2 in a bias field Hb = –127 Oe at the same instant of time of
action of a magnetic field pulse with amplitude Hp = 284 Oe.
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Fig. 3. Configurations of expanding stripe domains in sample 1 in a bias field Hb = –34 Oe during the action of a magnetic field
pulse with amplitude Hp = (a–c) 43, (d–f) 59, (g–i) 74, (j–l) 115, and (m–o) 147 Oe at the following instants of time t: (a) 0, (b) 29,
(c) 98; (d) 0, (e) 17, (f) 80; (g) 0, (h) 19, (i) 39; (j) 0, (k) 20, (l) 40; (m) 0, (n) 18, and (o) 34 ns.
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(a) (b) (c)

Fig. 4. Configuration of domains of reversed magnetization in sample 1 in a bias field Hb = –49 Oe during the action of a magnetic
field pulse with amplitude Hp = 134 Oe at various instants of time t: (a) 20, (b) 27, and (c) 39 ns.
directional anisotropy of DW velocity arises along a
certain direction. This process is accompanied by the
appearance of a wedge-shaped section in a DW; the rest
of the DW remains cylindrical. On a further increase in
H, the parts of the DW that move with an increased
velocity occupy a progressively larger area of the DW
of a reversed domain (the remaining part of the DW
moves without distortions) and the unidirectional
anisotropy of the DW velocity attains a maximum
(Figs. 6a–6f).

As the field H is increased still further, the unidirec-
tional anisotropy of DW velocity becomes weaker; how-
ever, the DW becomes almost entirely distorted and
some sections of the image of the DW become thicker
(Figs. 6g–6l). In the range of H ≥ 280 Oe, the unidirec-
tional anisotropy of DW velocity disappears (Figs. 6m–
6o), and, in the fields H ≥ 340 Oe, the entire DW of a
reversed domain becomes thicker (Figs. 6p, 6q).

From comparison of Figs. 6b, 6e, and 6i, it follows
that the orientation of the axis of unidirectional anisot-
ropy (the direction of the maximum DW velocity) var-
ies with the acting magnetic field.

When the field Hb is smaller than the saturating
field, a stripe domain structure arises, with its orienta-
tion being determined by the magnetic anisotropy in the
film plane (Fig. 7a).

The threshold field for nucleation of reversed
domains during pulsed remagnetization is H ≈ 45 Oe.
The shape of reversed domains depends on the magni-
tude of the acting magnetic field. In relatively small
fields H ≤ 110 Oe, the DWs of reverse domains have the
shape of an ellipse whose axes differ by 30–40%; the
DW images for these domains are rather thin and
smooth. When the acting field is above this range, dis-
tortions arise in some sections of the DW and the DW
image thickens in these sections (the rest of the DW
image remains thin and smooth); distortions occupy a
progressively larger fraction of the DW area with
increasing H. The strongest distortions occur in the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
field H ≈ 150 Oe, in which case the dimensions of a
reversed domain in two mutually perpendicular direc-
tions differ more than two times (Fig. 7b). Note that the
orientation of the axis of unidirectional DW velocity
anisotropy is not related to the orientation of the axes of
magnetic anisotropy in the plane of the film (compare
Figs. 7a, 7b).

The V(H) dependences for the parts of a DW mov-
ing with the minimum and the maximum velocity
(Fig. 5b, curves 1, 2, respectively) also testify that the
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Fig. 5. DW velocity V as a function of the acting magnetic
field H for (a) sample 1 and (b) sample 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. Configurations of domains of reversed magnetization in sample 2 in the acting magnetic field H = (a–c) 130, (d–f) 154,
(g−i) 228, (j–l) 257, (m–o) 286, (p–r) 350, (s–u) 400, and (v–x) 500 Oe at the following instants of time t: (a) 30, (b) 110, (c) 190;
(d) 40, (e) 100, (f) 200; (g) 30, (h) 80, (i) 130; (j) 30, (k) 60, (l) 100; (m) 20, (n) 40, (o) 70; (p) 10, (q) 30, (r) 60; (s) 5, (t) 18, (u) 24;
(v) 3, (w) 14, and (x) 20 ns.
unidirectional anisotropy of DW velocity takes place in
a limited range of values of the acting magnetic field.

The results obtained show that the origin of the uni-
directional anisotropy of DW velocity can be associ-
ated with the excitation of spin waves causing local
rotation of the magnetization vector in the vicinity of
the moving DW. Note that the spin-wave excitation by
a DW takes place in the range H* ≤ H ≤ H** [15, 16],
where the threshold fields H* and H**, as well as the
P

threshold field for magnetization rotation Hrot, in GF
films with orthorhombic magnetic anisotropy are aniso-
tropic [18]. Therefore, the directions along which a DW
moves with the highest velocity in the film plane
depend on the acting magnetic field.

Temperature dependences of the maximum and min-
imum DW velocities in sample 2 are shown in Fig. 8
(curves 1, 2, respectively). It can be seen that both the
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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Fig. 6. (Contd.)

Fig. 7. Configurations of (a) stripe domains and (b, c) domains of reversed magnetization for opposite directions of the acting mag-
netic field H = 150 Oe after a time interval t = 0.16 µs following the instant of application of a magnetic field pulse.

(a) (b) (c)
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values of these velocities and the difference between
them decrease upon heating.

Figure 9 shows the temperature dependences of the

upper (T) and lower limit (T) of the field range
in which the walls of stripe domains are distorted, as
well as the temperature dependence of the amplitude of
a pulsed magnetic field Hpd(T) for which the DW distor-
tions are the strongest. Figure 10 shows the temperature

dependences of the upper (T) and lower limit

(T) of the field range within which the unidirectional
anisotropy of DW velocity takes place in sample 2, as
well as the temperature dependence of the amplitude
Hpa(T) of the pulsed magnetic field at which this anisot-
ropy is the highest.

Notwithstanding the fact that the field ranges shown
in Figs. 9 and 10 overlap, the following relations are
always obeyed:

 (2)

 (3)

 (4)

 (5)

All these quantities decrease with increasing tempera-
ture.

Thus, the following conclusions can be drawn from
the studies of Bi-containing (210)-oriented GF single-
crystal films.
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Fig. 8. Temperature dependences of (1) the lowest and
(2) highest DW velocity in sample 2 in the acting field H =
180 Oe.
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ple 2. Curve 3 is the temperature dependence of the ampli-
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highest anisotropy.
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curve 3 is the temperature dependence of the amplitude of a
pulsed magnetic field Hpd(T) corresponding to the maxi-
mum DW distortion.
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(1) Both distortions of moving DWs and the unidi-
rectional anisotropy of DW velocity occur within lim-

ited ranges of values of the acting magnetic field (  ≤

H ≤ ,  ≤ H ≤ , respectively), where  <

 and  < .

(2) The orientation of the axis of unidirectional
anisotropy of DW velocity varies with the acting mag-
netic field.

(3) Experimentally observed features of the
dynamic behavior of domain structures can be
explained assuming that these features are associated
with the excitation of spin waves by a moving DW and
that the corresponding threshold fields H* and H** are
anisotropic.
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Abstract—This paper reports on the results of investigations into the magnetic and magnetoelastic properties of
Nd0.5Sr0.5MnO3 single crystals in pulsed magnetic fields up to 250 kOe, the magnetic and kinetic properties of
these crystals in weak static magnetic fields, and their thermal expansion. It is demonstrated that the studied prop-
erties exhibit a number of anomalies due to a transition from the antiferromagnetic semiconducting state to the
ferromagnetic metallic state upon suppression of charge ordering. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last decade, great interest has been
expressed by researchers in substituted manganites of
the R1 – xAxMnO3 system (R is a rare-earth ion and A is
Sr or Ca) due primarily to the discovery of the giant
magnetoresistance effect in these compounds. Recent
investigations into the properties of these manganites
revealed a number of new interesting phenomena which
are associated, for example, with the localization of
current carriers, charge ordering of Mn3+ and Mn4+

ions, orbital ordering of Mn3+ ions, magnetic field–
induced structural phase transitions, and semiconduc-
tor–metal phase transitions.

Owing to the spin, charge, and orbital ordering,
which is characteristic of rare-earth manganites, com-
pounds in the Nd1 – xSrxMnO3 system have complex
phase diagrams [1].

For this system, spin, charge, and orbital ordering
of the CE, A, and C types was observed by Kajimoto
et al. [1].

It is of particular interest to examine the composi-
tion with x = 0.5, for which the Coulomb interaction of
electrons results in their localization and charge order-
ing. The charge ordering can be suppressed by a mag-
netic field, because the field-stimulated spin orientation
leads to an increase in the charge carrier mobility and a
decrease in the tendency to carrier localization. It is
upon the suppression of charge ordering that the mag-
netoresistance increases.

As can be seen from the phase diagram presented in
[1], the CE-type charge-ordered antiferromagnetic state
is observed only in the region close to the composition
with x = 0.5 and coexists with the A-type antiferromag-
netic state and the ferromagnetic state [1, 2].
1063-7834/03/4507- $24.00 © 21280
According to the phase diagram, the ferromagnetic
ordering is observed for the composition with x = 0.5 at
a temperature of 250 K. A decrease in the temperature
results in charge antiferromagnetic ordering at temper-
atures close to the charge ordering point TCO = 140 K.

2. SAMPLE PREPARATION

Single crystals of Nd0.5Sr0.5MnO3 were grown by
zone melting with optical heating.

3. RESULTS AND DISCUSSION

The temperature dependences of the magnetization
and resistivity for Nd0.5Sr0.5MnO3 single crystals (Fig. 1)
exhibit anomalies at temperatures TC and TCO. For these
crystals, we also measured the thermal expansion dl/l
along the direction of the magnetic moment in the
absence of a magnetic field (Fig. 2). As can be seen
from Fig. 2, an increase in the temperature leads to a
positive jump in the thermal expansion to 2 × 10–3 at
temperatures close to the charge ordering point TCO =
140°C. This jump is associated with the transition from
the antiferromagnetic state to the ferromagnetic state.
The large thermal expansion of the crystal can be
explained by the fact that, for this composition,
according to Mahendiran et al. [3], there coexist three
phases with different unit cell volumes. In the ferro-
magnetic phase, the unit cell has the largest volume
(VHTO = 159.4 Å3). In the A-type antiferromagnetic
phase, the unit cell has the smallest volume (VLTO =
158.65 Å3). It should be noted that both the ferromag-
netic and A-type antiferromagnetic phases belong to the
orthorhombic crystal system. The main phase in the
low-temperature range is the CE-type charge-ordered
003 MAIK “Nauka/Interperiodica”
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antiferromagnetic monoclinic phase with the unit cell
volume VLTM = 159.1 Å3. The anomaly observed in the
thermal expansion is apparently due to a structural
phase transition from the monoclinic crystal system to
the orthorhombic system. It is worth nothing that the
phase transition accompanied by a sharp increase in the
crystal sizes is preceded by a negative jump in the ther-
mal expansion dl/l to 2 × 10–4 (Fig. 2). This jump can be
caused by a partial change in the ratio between antifer-
romagnetic phases of the A and CE types. Moreover, a
small anomaly in the thermal expansion is observed
near the temperature of ferromagnetic ordering (TC =
250 K).

For the Nd0.5Sr0.5MnO3 single crystal, the magneti-
zation and magnetostriction were also measured in
strong pulsed magnetic fields up to 250 kOe in the tem-
perature range 10–300 K.

As can be seen from Fig. 3, the magnetizations mea-
sured at temperatures below TCO = 140 K in a critical
magnetic field that destroys the charge ordering exhibit
jumps associated apparently with the phase transition
from the antiferromagnetic semiconducting state to the
ferromagnetic metallic state. It is also seen that this
transition is characterized by a considerable field hys-
teresis. We determined the threshold magnetic fields of
the phase transitions and constructed the H–T phase
diagram, in which there is an extended region of coex-
istence of different phases (Fig. 4). At temperatures
from the charge ordering point to the Curie temperature
TC = 250 K, the magnetization jumps in the curves van-
ish, because the crystal becomes ferromagnetic in the
absence of the magnetic field (Fig. 3).

It should be noted that, at temperatures below 50 K,
a nonzero magnetic moment is observed in weak mag-
netic fields (Fig. 3), even though the crystal seemingly
occurs in the antiferromagnetic state. Such a small
moment can be associated with the existence of ferro-
magnetic impurities in addition to the antiferromag-
netic phase at low temperatures. As the temperature
increases, the impurity ferromagnetic moment persists
up to a temperature of 50 K and then vanishes (see inset
in Fig. 3).

The change in the magnitude of the initial magnetic
moment with variations in the temperature and in the
magnetic field suggests that the ratio of the phases
coexisting in the Nd0.5Sr0.5MnO3 compound can change
under external actions.

Note also that, in a strong magnetic field, the mag-
netic moment in the ferromagnetic state does not
exceed 3µB, which is smaller than the theoretically pre-
dicted value 3.5µB. This can be explained by the fact
that, in the ferromagnetic state, the studied compound,
most likely, contains impurities of the A-type antiferro-
magnetic phase, which leads to a decrease in the total
magnetic moment.

The magnetostriction of the crystals was measured
under the same conditions. The magnetic field depen-
dences of the longitudinal magnetostriction along the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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direction of the magnetic moment at different tempera-
tures are depicted in Fig. 5. It can be seen that, at a tem-
perature of 10 K, the magnetostriction is small in mag-
netic fields H < HCR = 100 kOe. As the magnetic field
increases to HCR, the magnetostriction undergoes a neg-
ative jump to –6 × 10–4. This jump can be caused by
changes in the ratio between phases with different unit
cell volumes. An increase in the temperature from 50 K
to TCO leads to a sharp increase in the magnetostriction
against the background of the negative magnetostric-
tion. With a further increase in the temperature in the
range TCO < T < TC, the magnetostriction first remains
positive, then drastically decreases in magnitude,
changes sign, and exhibits exchange nature.

Mahendiran et al. [3] measured the magnetostric-
tion of the Nd0.5Sr0.5MnO3 compound only for poly-
crystalline samples in the temperature range 50–250 K.
In this case, the magnetostriction had positive sign and
was attributed to the structural phase transition. The
negative magnetostriction observed in our case pre-
cedes the appearance of positive magnetostriction and
can be explained by the fact that, as was mentioned
above, three phases coexist for the Nd0.5Sr0.5MnO3
composition. Correspondingly, the ratio between the
phases with different unit cell volumes can change
upon the transition from the antiferromagnetic state to
the ferromagnetic state. This assumption is confirmed
by both the negative peak observed in the temperature
dependence of the thermal expansion, which precedes
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4. CONCLUSIONS
Thus, all the anomalies observed can be explained if

we take into account that there are two tendencies in a
change in the temperature and magnetic field. The first
tendency is associated with the preferable formation of
the ferromagnetic state in a magnetic field upon sup-
pression of the charge-ordered state. The second ten-
dency apparently stems from the fact that, with allow-
ance made for the elastic and magnetoelastic contribu-
tions to the free energy, the A-type orthorhombic phase
is more preferable than the CE-type monoclinic antifer-
romagnetic phase. The change in the magnetostriction
sign with variations in the magnetic field and the tem-
perature, which is observed in our experiment, can be
caused by the fact that the first tendency leads to posi-
tive magnetostriction, whereas the second tendency
results in negative magnetostriction. The complex char-
acter of the anomalies observed in the magnetostriction
is explained by the fact that the magnetic field induces
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
a structural phase transition in addition to the metal–
semiconductor phase transition.
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Abstract—The enhancement of the nonlinear magnetoelectric effect in a magnetic field is predicted for a fer-
roelectric film in a system consisting of ferroelectric and paraelectric layers in the vicinity of the size-induced
ferroelectric phase transition. This effect is assumed to be maximum in semiconductor ferroelectrics. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelectrics do not belong to the class of materials
with a linear magnetoelectric effect in which the magne-
toelectric interaction manifests itself most strongly. By
contrast, ferroelectrics are characterized by nonlinear
magnetoelectric effects, including an insignificant shift
in the Curie temperature in an external magnetic field
[1, 2]. The magnetic field primarily affects the electronic
subsystem by varying the electron states (the Zeeman
effect); as a result, the crystal lattice undergoes deforma-
tion and polarization due to the electron–phonon interac-
tion and the Jahn–Teller effect [3, 4]. The ions in the
crystal lattice are also directly affected by the magnetic
field; however, this effect is considerably weaker than the
action of the magnetic field on the electronic subsystem.
As a consequence, the temperature shift of the ferroelec-
tric transition in response to a magnetic field in semicon-
ductor ferroelectrics [1] is one order of magnitude larger
than that in dielectrics [2].

It is known that the higher the dielectric susceptibil-
ity, the greater the magnetoelectric susceptibility (see,
for example, [5]). Recent studies revealed giant dielec-
tric susceptibilities for structures consisting of thin fer-
roelectric (PbTiO3) and paraelectric layers [6, 7]. It is
found that the dielectric susceptibility of a thin ferro-
electric layer is three orders of magnitude higher than
the susceptibility of the bulk sample. This effect is
explained by domain-wall pinning at defects and the
size-induced ferroelectric phase transition [8–10].
Since the effect under investigation is observed in sys-
tems composed of alternating ferroelectric and
paraelectric layers that do not interact with each other,
the same effect can be observed for an individual ferro-
electric film.

In this work, we demonstrated that, in a ferroelectric
film without electric polarization at the boundary, the
magnetoelectric effect is considerably enhanced in the
vicinity of the size-induced phase transition.
1063-7834/03/4507- $24.00 © 21284
2. THEORETICAL ANALYSIS

Let us consider a cubic-ferroelectric film of thick-
ness l (0 < z < l) with the electric polarization P directed
along the film plane (x, y) in an external constant mag-
netic field H, whose direction is insignificant in the fur-
ther consideration. The free energy of the system can be
represented in the form

 (1)

Here, a = a0(Tc – T) is a constant, a0 > 0, and Tc is the
Curie temperature for a bulk sample. The last term in
functional (1) is the magnetoelectric energy of interac-
tion of the electric polarization with the magnetic field.

The equation for equilibrium values of the polariza-
tion can be derived by varying the polarization P in
functional (1). As a result, we obtain

 (2)

It is assumed that the electric polarization is absent
at the boundary of the film (this corresponds to the
experimental situation where the ferroelectric layers
alternate with paraelectric layers); that is,

 (3)

We are interested here in the magnetoelectric suscepti-
bility α = (∂P/∂H), for which an equation can be
derived by differentiating Eq. (2) with respect to the
magnetic field H:

 (4)

Hereafter, the magnetic field will be considered weak.
Hence, in Eq. (4), only the terms linear with respect to
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the magnetic field H remain and we assume that P =
Ps. The spontaneous polarization Ps satisfies Eq. (2) in
the magnetic field H = 0 with boundary conditions (3)
and, at temperatures T < Tc, can be represented in the
form [10]

 (5)

Here, Pst = (a/b)1/2 is the spontaneous polarization of a
thick film; l0 = (λ/a)1/2 is the correlation length; and
sn(u, m) is the elliptic sine, for which the parameter m
is determined from the equation

 (6)

where K(m) is the complete elliptic integral of the first
kind.

After changing over to the variable u = z/ ,
the equation for the magnetoelectric susceptibility and
the corresponding boundary conditions take the follow-
ing form:

 (7)

Here, αt is the magnetoelectric susceptibility of the
bulk sample, which can be easily obtained from Eq. (4)
for uniform electric polarization.

The solution to Eq. (7) has the form

 (8)

where α1 and α2 are the solutions of the homogeneous
equation and α3 is the solution of the inhomogeneous
equation:
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dn(u, m) is the delta amplitudinis. We determine the con-
stants c1 and c2 from boundary conditions (7); that is,

 (10)

Here, E is the complete elliptic integral of the second
kind.

The mean value of the magnetoelectric susceptibil-
ity  in a ferroelectric film,

,

can be determined from expressions (8)–(10). As a
result, we obtain

 (11)

For the parameter m  1, the magnitude of K increases
logarithmically, K(1 – m)  0, and E  1. From
expression (11), we find that   αt. The value m =
1 corresponds to a bulk sample. In this case, as follows
from relationship (6), we have l @ l0.

The value m  0 corresponds to a size-induced
phase transition [9, 10]. In this situation, the following
relationships are satisfied:

 (12)

For the mean magnetoelectric susceptibility
described by relationship (11), we derive the expression

 (13)

It follows from relationship (6) that, at m  0, the
film thickness l tends to the least value l  πl0 = lc,
for which the spontaneous polarization becomes zero.
For l < lc, the spontaneous polarization is nonexistent.
Therefore, the transition from the ferroelectric phase to
the paraelectric phase at a constant temperature T < Tc

can occur with a decrease in the film thickness (the so-
called size-induced phase transition). For a film thick-
ness l > lc, the temperature of the ferroelectric phase
transition Tcl depends on the thickness [9, 10]:

 (14)
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where lc0 is the critical thickness of the film at T = 0. For
l < lc0, we have Tcl < 0; i.e., the transition to the ferro-
electric state becomes impossible. For small parame-
ters m, from relationship (6) for films with a nearly crit-
ical thickness, we obtain

 (15)

According to expressions (15), the magnetoelectric
susceptibility of the film with l > lc at a constant tem-
perature T < Tc should exceed the magnetoelectric sus-
ceptibility αt of the bulk sample at this temperature to
such an extent that the film thickness l will be close to
the critical thickness lc.

On the other hand, from the expression relating the
correlation length l0 to the temperature through the
parameter a and relationship (14), at temperatures close
to Tcl, we have

 (16)

At temperatures close to Tcl for l = lc = πl0, from expres-
sions (6), (7), (13), and (16) for the magnetoelectric
susceptibility of a ferroelectric, we obtain

 (17)

The magnetoelectric susceptibility αt of the bulk sam-
ple [see relationship (7)] exhibits a temperature depen-
dence similar to that described by expression (17) in the
vicinity of the Curie temperature Tc when a  0. Note
that the magnetoelectric susceptibility of the nonlinear
effect at temperatures close to the temperature of the
ferroelectric transition increases anomalously. By con-
trast, the magnetoelectric susceptibility of the linear
effect in magnetoelectrics decreases and becomes zero
at the magnetic transition temperature.

The parameter of the magnetoelectric interaction γ
can be evaluated from the shift in the Curie temperature
in a magnetic field in BaTiO3 [2]. This shift implies
renormalization of the parameter a = a0(Tc – T) in
expression (1) for the free energy (a  a – γH2). As a
result, we obtain

 (18)

where |∆Tc | is the shift in the Curie temperature. For
BaTiO3, we have ∆Tc = 0.1 K at H = 10 T [2]. The
parameters a0 and b for BaTiO3 can be obtained using
their values for PbTiO3 [11] and the results of the
comparison of the corresponding data for these com-
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pounds [12]. As a result, for BaTiO3, we have a0 =
18.4 × 10–5 K–1 and b = 9.4 × 10–13 CGSE. We obtain
|γ | = 1.8 × 10–15 CGSE. Hence it follows that the mean
magnetoelectric susceptibility of BaTiO3 in the vicin-
ity of the size-induced phase transition can be esti-
mated as

 (19)

The same order of magnitude of the magnetoelectric
susceptibility was obtained for PbTiO3 at temperatures
close to the size-induced phase transition (Tcl ≅  533 K
[6, 7]). In this case, we used the parameters a0 = 7.7 ×
10–5 K–1 and |b | = 4.27 × 10–13 CGSE [11] and the mag-
nitude of parameter γ for BaTiO3.

3. RESULTS AND DISCUSSION

An analysis of expression (19) demonstrates that, in
a magnetic field of approximately 10 T, the magneto-
electric susceptibility can reach values comparable to
the highest susceptibility of the linear magnetoelectric
effect known to date for magnetoelectrics (for example,
α ≈ 10–2 for LiCoPO4).

For estimation, we used the parameters a0 and b for
the bulk sample. Therefore, expression (19) also gives
the order of magnitude of the magnetoelectric suscepti-
bility for the bulk sample at temperatures close to the
Curie point in the case when the temperature Tcl is
replaced by Tc in expression (19). In the model used
here, the coefficients in functional (1) were considered
to be independent of the sample size. In actuality, the

Curie constant C ~  for a PbTiO3 thin film [7] is two
orders of magnitude larger than the Curie constant for
the bulk sample. Consequently, the magnetoelectric
susceptibility in the vicinity of the size-induced phase
transition should exceed the value predicted from
expression (19).

The shift in the Curie temperature in a magnetic
field for semiconductor ferroelectrics is one or two
orders of magnitude greater than that for BaTiO3 (for
example, ∆Tc ≅  1 K for Pb1 – xGexTe in the magnetic
field H = 3 T). Therefore, the constant γ and, corre-
spondingly, the magnetoelectric susceptibility, accord-
ing to the estimate obtained from expression (19),
should be one order of magnitude larger than those for
nonconducting ferroelectrics.

For the effect considered above, the spontaneous
electric polarization must go to zero at the layer
boundary. In particular, this condition is satisfied in
the case of contact with paraelectric layers. Therefore,
the effect studied in this work can be observed in fer-
roelectric films and paraelectric–ferroelectric multi-
layer systems [6, 7].

α 10
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Abstract—A technique is proposed for determining the specific features in the potential distribution over a free
surface of polarized ferroelectric electrets from analyzing the anomalous electron emission spectra. This tech-
nique is applied to examine the potential distribution over the surface of a lead magnoniobate single crystal and
ferroelectric ceramics. Reasoning from the results obtained for the lead magnoniobate crystal, the inference is
drawn that the degree of perfection of surface layers of ferroelectric single crystals can be controlled using the
anomalous electron emission spectra. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our earlier works [1–7], we revealed and investi-
gated both experimentally and theoretically the anoma-
lous electron emission from the surface of ferroelectrics
with electret properties. The term “ferroelectric with
electret properties” is used in reference to a ferroelec-
tric that exhibits an electret effect and ferroelectric
polarization generated by a field of electret charges. In
[7], it was demonstrated that the shape of the anoma-
lous electron emission spectra is determined by the
potential distribution over the surface of the polarized
sample under investigation. It should be noted that the
potential distribution is the most important energy char-
acteristic of the surface of ferroelectrics. In this respect,
it was of interest to assess the possibility of solving the
inverse problem, namely, to calculate the potential dis-
tribution over the surface of a polarized ferroelectric
sample or, at least, to obtain information on the specific
features of this distribution from analyzing the anoma-
lous electron emission spectra.

The purpose of this work is to investigate analyti-
cally the anomalous electron emission spectra and to
establish the relation between the potential distribution
and surface characteristics of a polarized ferroelectric
sample. The theoretical principles of the technique used
for processing the experimental spectra will be consid-
ered below.

2. CALCULATION OF THE FUNCTION n(ϕ)

The potential distribution can be determined from
analyzing the function n(ϕ), which, in turn, can be
obtained from an experimental anomalous electron
1063-7834/03/4507- $24.00 © 21288
emission spectrum with the use of the relationship [7]

 (1)

where ε is the kinetic energy of the electron, I(ε) is the
experimental spectrum, j0(ε) is the spectral density of

emission from the neutral surface, n(ϕ) = ,

and ϕ(ρ) is the surface potential. The summation in the
integral for the function n(ϕ) is performed along equi-
potential lines. Hence, it can be concluded that n(ϕ) is
proportional to the number of points with a given
potential on the surface of the sample. The fine struc-
ture of the function n(ϕ) indicates a potential distribu-
tion over the surface. The larger the number of specific
features in the fine structure of the function n(ϕ) and the
larger its energy width, the more nonuniform the poten-
tial distribution. And vice versa, the smaller the energy
width of the function n(ϕ), the more uniform the poten-
tial distribution.

Expression (1) is a convolution-type integral equa-
tion [8], in which the sought function n(ϕ) formally
represents a true intensity distribution in the spectrum
and j0(ε) is a distortion function. Therefore, the deter-
mination of the potential distribution on the surface of
the polarized ferroelectric can be reduced to the solu-
tion of the problem frequently encountered in spectros-
copy, namely, to correction of spectral distortions. In
this case, the experimental anomalous electron emis-
sion spectrum is treated as a standard approximation to
the function n(ϕ) and the evolution of this spectrum (its
shape and structure) during charge relaxation on the
surface of the ferroelectric electret is associated with
the change in the potential distribution over the surface
in the course of relaxation. For a symmetric distortion
function, the use of the available methods of solving the

I ε( ) j0 ε ϕ–( )n ϕ( ) ϕ ,d∫=

l/ ∇ϕ ρ( )d∫
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integral equation does not lead to a change in the num-
ber of specific features in the experimental spectrum
but renders them more resolved. However, in our case,
the function j0(ε) is asymmetric. Therefore, the distor-
tion of the true spectrum by this function should result
not only in a smearing and smoothing of the specific
features in the function n(ϕ) but also in a change in their
shape and, possibly, in a shift of the energy location of
maxima in the experimental spectrum. At present, there
exist a number of efficient methods for solving Eq. (1)
[8–11]. Traditional methods that are based on the Fou-
rier transform and the use of a symmetric distortion
function turn out to be inapplicable in the case under
consideration. For this reason, we used the method
based on the probability Bayes theorem, which permits
one to correct a spectrum by applying an asymmetric
function [11]. Moreover, this method, in principle,
excludes the appearance of negative intensities, is sta-
ble to insignificant statistical experimental errors, and
offers equal areas of the corrected and experimental
spectra, which considerably facilitates practical use of
the method.

In [7], the function j0(ε) was approximated by the
expression j0(ε) ≈ exp(ε/γ)θ(ε), where θ(ε) = 0 at ε < 0
and θ(ε) = 1 at ε > 0 and γ is the half-width (~10 eV).
In the present work, the form of the function j0(ε) was
determined from the experimental data obtained for the
surfaces of a ferroelectric ceramic sample and a lead
magnoniobate single crystal. Figure 1a shows the elec-
tron emission line, which represents the distortion func-
tion in the integral equation (1).

The functions n(ϕ) calculated in such a manner are
displayed at the right of Figs. 1 and 2. However, the
above approach does not provide a way of reliably
revealing the specific features of the potential distribu-
tion. This can be done in the framework of the follow-
ing approach.

3. SIMULATION OF THE SPECTRA

The proposed approach is based on the assumption
that the experimental anomalous electron emission
spectrum can be represented as the sum of the compo-
nents, each being a theoretically calculated electron
emission spectrum [7] accounting for a particular fea-
ture of the potential distribution. In [7], it was shown
that the main contribution to the anomalous electron
emission spectra should be made by surface regions
with small gradients of the potential in the vicinity of its
extrema. There are three types of extrema: maxima,
minima, and inflection points. The theoretical electron
emission spectra that correspond to surface regions in
the vicinity of these extrema in the potential distribu-
tion were calculated in [7] within the one-dimensional
approximation. The shape of the spectra for the maxi-
mum, minimum, and inflection point in the potential
distribution is depicted in Figs. 1 and 2. When the
experimental anomalous electron emission spectra and
the theoretical electron emission spectra corresponding
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
to the extrema are available, the problem is reduced to
the decomposition of the experimental spectra into the
theoretical components or, what is the same, to the sim-
ulation of the experimental spectra from the theoretical
curves. In this case, the number of peaks in the function
n(ϕ) and their energy positions determine the number
of components of the decomposition and their energy
locations in the spectrum. Similar simulation tech-
niques have been sufficiently well developed, for exam-
ple, in electron and x-ray spectroscopy [12, 13]. They
can be employed with due regard for the differences
arising in our problem. These differences reside in the
fact that the spectral components associated with max-
ima, minima, and inflection points in the one-dimen-
sional potential distribution have different shapes. This
substantially complicates the problem, because all
components of the decomposition within traditional
approaches have identical Gaussian or dispersion
shapes [8, 12, 13].

The results of simulation, i.e., the quality of the sim-
ulated spectra, can be assessed using the weighted
parameter χ2 [12–14]. This criterion is relative and
depends on the absolute intensity of electron emission
lines. Therefore, the parameter χ2 cannot be used for
comparing the quality of the simulation of different spec-
tra. However, when the spectra are normalized to unit
area and the parameter χ2 is treated not as a statistical
parameter (as, for example, in [14]) but as a quantity pro-
portional to the difference between the experimental and
simulated spectra (as follows from its definition [12–14]
and this meaning holding at a sufficiently large number
of points in the spectrum), such a comparison becomes
possible. These modified parameters χ2 are given below
for the anomalous electron emission spectra (Figs. 1, 2).
The simulated and experimental spectra are shown at the
left of Figs. 1 and 2.

4. RESULTS OF CALCULATIONS 
OF THE FUNCTION n(ϕ) AND SIMULATION 

OF THE SPECTRA

The functions n(ϕ) and the results of the decompo-
sition of the experimental anomalous electron emission
spectra of lead magnoniobate (PMN) single crystals
and PKR-70 ceramics are presented in Figs. 1 and 2,
respectively. The conditions for polarization of the
samples and recording of the spectra are described in
[1, 15, 16].

The spectra in Figs. 1b and 1d were measured for
different polarizations of the PMN single-crystal sam-
ple. Consequently, these spectra are different in shape
[1]. It can be seen that the main components of the
decomposition are the theoretical spectra associated
with the minima and steps in the potential distribution.
The functions n(ϕ) corresponding to these experimen-
tal spectra have a very complex form (indicating a con-
siderable polarization inhomogeneity on the PMN sur-
face) and, hence, are difficult to interpret. However,
unlike single crystals, the ferroelectric ceramic sam-



 

1290

        

KOZAKOV 

 

et al

 

.

                             
0 5 10 15 20 25 30

(a)

j 0
(ε

),
 a

rb
. u

ni
ts

εkin, eV

50

100
0

100

150

200

250

300

150 200 250 300 350

(b)

εkin, eV

I,
 p

ul
se

s/
s

0
40 60 80 100 120 140 160

100

200

300

400

500

I,
 p

ul
se

s/
s

(d)

εkin, eV

150100 200 250 300 350

n(
ϕ)

, a
rb

. u
ni

ts

(c)

ϕ, V

(e)

40 60 80 100 120 140 160
ϕ, V

n(
ϕ)

, a
rb

. u
ni

ts

Fig. 1. (a) Distortion function j0(ε) determined from the experimental data. (b, d) Experimental anomalous electron emission spectra
(points and heavy lines passing through them) of the surface of PMN single-crystal samples for different polarizations. Thin lines
show the simulated anomalous electron emission spectra. Dashed lines under the experimental and simulated spectra represent the
components of the spectral decomposition. (c, e) Functions n(ϕ) calculated from the experimental spectra.
ples, in a number of cases, are characterized by suffi-
ciently narrow spectra. As a result, these spectra can be
decomposed into a small number of components, which
simplifies their interpretation. It is this situation that is
illustrated in Fig. 2.
P

Figures 2a, 2c, and 2e display the experimental
anomalous electron emission spectra of the surface of
the PKR-70 ceramic sample at the same polarization
for different mean electret potentials ϕ = 300, 18, and
14 V. The electret potential was measured by the vibrat-
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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ing probe technique [17]. Initially, the spectrum is
recorded for the surface with a higher potential. The
electret potential decreases with time. This is accompa-
nied by a change in the potential relief on the sample
surface, which results in a change in the fine structure
and the energy width of the anomalous electron emis-
sion spectrum. The functions n(ϕ) calculated with the
use of the above technique from the corresponding
experimental spectra are displayed in Figs. 2b, 2d, and
2f. The components of the spectral decomposition and
the spectra simulated using these components are
shown under each experimental spectrum in Figs. 2a,
2c, and 2e. It can be seen that the experimental spectra
agree sufficiently well with the simulated spectra. The
best agreement is observed for the spectra in Fig. 2a.
This is confirmed by the modified parameters χ2. These
parameters for the simulated spectra presented in
Figs. 2a, 2c, and 2e are equal to 2.36, 6.90, and 11.16%,
respectively. The modified parameters χ2 for the spectra
depicted in Figs. 1b and 1d are equal to 0.49 and 0.97%,
respectively. This indicates that the experimental and
simulated spectra of the surface of the single crystals
are in better agreement than the spectra of the ceramics.
A comparison of Figs. 2c and 2d shows that, in the
function n(ϕ), peak 1 is associated with the emission at
the minimum in the potential, whereas peaks 2 and 3
are attributed to the emission at the steps in the poten-
tial. In the function n(ϕ) shown in Fig. 2f, the peak with
the highest intensity is determined by the components
corresponding to the minimum and the step in the
potential, the second peak is associated with the step,
and the third peak is attributed to the maximum in the
potential. A similar analysis can also be performed for
the spectra observed in a wider energy range with a
larger number of components of the spectral decompo-
sition. However, in this case, it is not always possible to
identify the peaks in the spectra uniquely (for example,
in the spectra displayed in Figs. 1b, 1d, and 2a).

As can be seen from the anomalous electron emis-
sion spectra and the calculated functions n(ϕ) presented
in Fig. 2, the potential distribution over the surface of
the polarized ceramics originally exhibits two principal
peaks at energies of approximately 85 and 135 eV. A
large number of peaks with lower intensities in the
function n(ϕ) in Fig. 2b indicate that regions with other
potentials also exist on the sample surface. However,
the number of points with these potentials is limited as
compared to points with potentials of 85 and 135 eV.
An analysis of the potential distribution over the sur-
face of the polarized sample indicates polarization
inhomogeneity on the sample surface. This state is
unstable and changes with a decrease in the net electret
charge. These processes can be investigated in detail
with the use of the anomalous electron emission spec-
tra, the calculated functions n(ϕ), and the components
of the spectral decomposition.

Thus, the proposed technique makes it possible to
obtain data on the specific features of the potential dis-
tribution over the surface of polarized samples, namely,
P

the number of maxima, minima, and inflection points;
the degree of polarization inhomogeneity; and the evo-
lution of the potential during relaxation of the electret
charge injected into the surface layer.

5. DISCUSSION

The theoretical electron emission spectra used in
our simulation for surface regions in the vicinity of
extrema in the potential distribution were calculated in
[7] within the one-dimensional approximation and with
the aforementioned model distortion function. Conse-
quently, the agreement obtained in the present work
between the experimental and simulated anomalous
electron emission spectra is not accidental but is justi-
fied physically. This agreement indicates that, for the
most part, the one-dimensional model appears to be
adequate for the ferroelectric electrets under investiga-
tions. The one-dimensional approximation implies the
formation of surface anisotropic stripe structures in the
distributions of the electric field and polarization [7].
Moreover, the assumption that the emission occurs
from the sample regions corresponding to extrema in
the potential distribution over the surface should also be
considered valid. This result is of interest in the study
of emission from cold cathodes based on ferroelectrics.
It should be noted that, for a number of ferroelectric
samples, the theoretical spectra cannot be fitted well to
the experimental spectra. In this case, the experimental
spectra have a shape characteristic of two-dimensional
polarization structures [7].

It is interesting to elucidate the physical nature of
stripe charged (potential) structures on the studied sur-
faces. It is evident that these structures on the surfaces
of both single-crystal and ceramic ferroelectrics can
differ in nature. The nonuniform potential distribution
over the surface of ferroelectric samples can be caused
by initial structural imperfections of the crystals (dislo-
cations, block and grain boundaries, etc.) and the spe-
cific features of the domain structure (the formation of
a and c domains and their quantitative ratio, domain
walls, etc.) [18, 19]. In order to identify the specific fea-
tures of the anomalous electron emission spectrum with
particular physical objects on the surface of the ferro-
electric, we carried out the following experiment. One
PMN single-crystal sample 10 × 10 × 1 mm in size was
subjected to different physical actions (polishing,
annealing, and polarization). This resulted in the forma-
tion of a pronounced optical inhomogeneity 2 × 6 mm
in size, which was located asymmetrically with respect
to the geometric center of the sample. X-ray diffraction
examination of the sample revealed a block structure
with a mutual crystallographic misorientation of the
order of several angular seconds.

Figure 3 shows the anomalous electron emission
spectrum of the entire surface of this sample (curve 1).
It can be seen from Fig. 3 that spectrum 1 is character-
ized by a complex fine structure over a wide energy
range (more than 120 eV). The anomalous electron
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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emission spectra of two different surface regions of the
single-crystal sample (curves 2 and 3) were measured
by screening, in turn, these regions with a metallic
shield. Spectra 1–3 are depicted in Fig. 3 on the same
energy scale. Compared to the spectrum of the entire
surface, the spectra of different surface regions cover a
narrower energy range and exhibit a smaller number of
specific features. Furthermore, spectrum 2, which was
measured for the surface region involving the inhomo-
geneity, has a more complex structure, covers a wider
energy range, and is shifted toward high energies as
compared to spectrum 3, which was recorded for the
more homogeneous surface region. The specific fea-
tures in the fine structures of the spectra obtained for
both surface regions agree reasonably in energy with
the corresponding features in the spectrum of the entire
sample surface. This spectrum is a superposition of the
above two spectra of the surface regions. Note that the
integrated intensity of the spectrum of the entire surface
is equal to the sum of the integrated intensities of the
spectra of both surface regions to an accuracy of 5%.
All the foregoing demonstrates with confidence that the
specific features in the potential distribution over the
surface of the PMN single crystal due to crystal imper-
fection manifest themselves in the shape and energy
location of the anomalous electron emission spectra. It
should be noted that the anomalous electron emission
spectra of the surface of the PMN samples without
visually observed block structure also have a suffi-
ciently complex structure. In this case, the experimental
and simulated spectra agree well with each other (see,
for example, Fig. 1b). Therefore, we can assume that
other physical mechanisms can also be responsible for
the formation of the stripe potential structures on the
surface. In particular, the stripe potential distribution
can be associated with the fragments of a domain struc-
ture, as can be judged from x-ray powder diffraction
and scanning electron microscopic investigations of the
domain structure in a number of ferroelectric materials
[20]. In [18–20], the authors actually examined the
potential relief, which predominantly had a stripe struc-
ture in the images. Morlon et al. [21] observed the
stripe domain structure on the BaTiO3 surface in photo-
electron images obtained upon excitation with UV radi-
ation. This type of electronic excitation is similar to that
used in our experiments. In [21], it was also noted that
the surface image in the form of a set of parallel stripes
is associated with the potential relief that has the same
shape and is hypothetically formed by positively and
negatively charged stripe regions composed of c
domains. Moreover, a number of other factors can also
be responsible for the stripe potential relief in ferroelec-
tric materials. One of the most studied factors is the for-
mation of antiparallel domains upon polarization
switching by applying a dc electric field to a material
[18, 19]. The antiparallel domains are formed by
charges localized in traps, which are different defects
arranged near the crystal surface or along the bound-
aries of 180° domain walls. The exposure to radiation
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
favors the growth of antiparallel domains with a posi-
tive screened charge [18]. With the use of gamma irra-
diation, domain boundaries can be frequently revealed
from defects retained in their vicinity in the crystal
prior to the polarization in a dc electric field [18]. Tak-
ing into account the method of exciting the anomalous
electron emission (x-rays at hν ≤ 3 keV), we cannot rule
out the formation of antiparallel domains on the studied
surface and their manifestation in the anomalous elec-
tron emission spectra of the PKR-70 ceramic sample.
Note that the anomalous electron emission spectrum
shown in Fig. 1 contains components of the spectral
decomposition that correspond to the minima and
steps in the potential distribution. This also indicates
a complex energy distribution over the surface of the
polarized PMN crystal, which calls for further inves-
tigation.

Therefore, quite different structures formed on the
surface of polarized ferroelectrics can give rise to a
stripe potential relief, which, in turn, is responsible for
the structure of the anomalous electron emission spec-
trum. In each specific case, it is necessary to perform
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Fig. 3. Anomalous electron emission spectra of the surface
of the PMN single crystal with a block structure: (1) spec-
trum of the entire surface of the sample, (2) spectrum of the
surface region with a visually observed block structure, and
(3) spectrum of the surface region without a visually
observed block structure.
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detailed investigations in order to elucidate the particu-
lar physical cause for the appearance of a fine structure
in the anomalous electron emission spectrum. At the
same time, such an examination leads to the refinement
of the energy distribution and the parameters of energy
processes on the surface of polarized ferroelectrics.
This is a usual way of developing a spectroscopic
method according to which the spectra are calculated
within model concepts of the nature of the object under
investigation. When the experimental and theoretical
spectra are in agreement, these concepts are considered
true. This provides information on a particular property
of the studied object. In this respect, the above tech-
niques of analyzing the potential distribution offer
promise for investigation of the energy characteristics
associated with the surface levels, defects, different-
type traps, dislocations, and block and domain struc-
tures of the electrode-free surface of polarized ferro-
electrics.

The problems associated with the surface properties
of ferroelectrics were theoretically discussed in detail
in the 1970s [22, 23]. Their experimental investigation
becomes possible with the advent of the technique pro-
posed in the present work for the processing of anoma-
lous electron emission spectra.

6. CONCLUSIONS

Thus, in this work, we proposed a technique for pro-
cessing anomalous electron emission spectra. It was
demonstrated that this technique provides a means for
obtaining information on the specific features of the
potential distribution over the electrode-free surface of
ferroelectric electrets.

The potential distribution over the surface of polar-
ized PMN single crystals and PKR-70 ceramic samples
was investigated using the proposed technique. It was
established that the main features of the potential distri-
bution in these materials are the minima and inflection
points, whereas the high-energy tails in the anomalous
electron emission spectra are formed by several maxima.

It was revealed that the anomalous electron emis-
sion spectra of the surface of the PMN single-crystal
and PKR-70 ceramic samples exhibit a complex fine
structure, which is associated with the stripe potential
relief due to the formation of different-type charged lin-
ear structures on the surface. The inference was made
that the anomalous electron emission spectra can be
used to control the degree of perfection of the surface
layers of PMN single crystals.
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Abstract—A new model of the elastic matching of phases is proposed, and heterophase structures near the mor-
photropic phase boundary in 0.10PbTiO3–0.90Pb(Zn1/3Nb2/3)O3 crystals are studied. Unique behavior of the unit
cell parameters is found to favor the elastic matching of the ferroelectric tetragonal and orthorhombic phases under
the conditions of complete or partial relaxation of internal mechanical stresses at a volume concentration ratio of
these phases of about 20/80% and temperatures of T = 20–300 K. Interrelations between the volume concentra-
tions of different domain (twin) types and of the coexisting phases are analyzed. © 2003 MAIK “Nauka/Interpe-
riodica”.
Interest in xPbTiO3–(1 – x)Pb(Zn1/3Nb2/3)O3 (xPT–
PZN) solid solutions with a perovskite-type structure is
evoked by the following factors. First, the xPT–PZN sys-
tem is characterized by unique physical properties owing
to a combination of ferroelectric and relaxor components
[1–3]. Second, near the morphotropic boundary (x ≈
0.08–0.09), heterophase structures are observed which
significantly affect the piezoelectric, dielectric, and elas-
tic properties of xPT–PZN crystals [4–7]. Third, the low-
symmetry ferroelectric phases detected recently in xPT–
PZN [2, 8–10], Pb(Zn1 − yTiy)O3 [11], and zPbTiO3–(1 –
z)Pb(Mg1/3Nb2/3)O3 [12, 13] are considered a common
feature of perovskite solid solutions with high piezoac-
tivity [9]. Fourth, the effect of a constant electric field E
on xPT–PZN crystals near the morphotropic boundary
is ambiguous because of the induced intermediate
phases with different symmetries and of the related het-
erophase, domain, and twin structures [4, 8, 10]. One of
the manifestations of such an ambiguity is the appear-
ance of a new orthorhombic (O) ferroelectric phase in
crystals with x = 0.08 and 0.09 ≤ x ≤ 0.10 at E ≠ 0 and
E = 0, respectively [9].1 The purpose of this work is to
analyze the interaction between polydomain (twinned)
phases in xPT–PZN crystals near the boundary of the
O-phase field.

La-Orauttapong et al. [9] found that, as tempera-
ture T decreases, a 0.10PT–PZN crystal undergoes the
first-order phase transformations: cubic paraelectric
phase  tetragonal (T) ferroelectric phase  O fer-
roelectric phase. Below the temperature of the T–O
phase transformation (Tt–o ≈ 320 K), the crystal remains
heterophase and the volume concentration of the meta-
stable T phase in the range 20 ≤ T ≤ 300 K remains vir-
tually the same. To analytically determine the volume

1 This orthorhombic phase is considered as a limiting case of a
monoclinic phase with symmetry Pm and a spontaneous polariza-
tion vector oriented along the [101] direction in a perovskite cell
[2, 9].
1063-7834/03/4507- $24.00 © 201295
concentrations and optimum conditions for the elastic
matching of the T and O phases in the two-phase crys-
tal, we propose the following model. A crystalline sam-
ple is represented as a set of two types of heterophase
regions with phases I and II in each of them (Fig. 1).
The volume concentrations in these regions are w and
w' = 1 – w (we call them w- and w'-type regions, respec-
tively). Each region is two-phase, so that the inclusion
phase in a region (e.g., phase I in a w-type region; see
Fig. 1) becomes the “matrix” phase in the neighboring
regions (e.g., phase I in w'-type regions) and vice versa.
To quantitatively describe the heterophase regions, we
introduce the volume concentrations of “inclusions”: rt

(T phase) and ro (O phase) in the case of an xPT–PZN
crystal. Assuming that the w- and w'-type regions are
uniformly distributed in the crystal and that their con-
centrations are the same, we have w = w' = 1/2. Under
this condition, the volume concentrations rt and ro

describe the fractions of T and O phases, respectively,
in the volume of the whole crystal and, hence, are con-
nected by the relation

 (1)rt ro+ 1.=

II I

w'
w

Fig. 1. Schematic of the 0.10PT–PZN crystal: (I) the O
phase and (II) the T phase.
03 MAIK “Nauka/Interperiodica”
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We denote the matrices of distortions in the w- and w'-
type regions as ||K || and ||K ' ||, respectively, and deter-
mine them with allowance for the electromechanical
interaction between the T and O phases inside each het-
erophase region. Taking into account Eq. (1), we can
write the matrix equations

 (2)

In the right-hand sides of Eqs. (2), the first terms char-
acterize the effect of the neighboring w- or w'-type
region on the inclusion phase in a given region and ||No ||
and ||Nt || are the matrices of distortions in the coexisting
O and T phases, respectively.2 The T phase is assumed
to be divided into 90° domains [2] with the basis vec-
tors (at, bt, ct) oriented along the directions ([100],
[010], [001]) and ([010], [001], [100]) of the perovskite

2 Distortion matrices for polydomain phases of various symmetries
for xPT–PZN crystals can be found in [7].

K 1 rt–( ) K ' No rt Nt ;+=

K ' rt K Nt 1 rt–( ) No .+=
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unit cell and with the volume concentrations nt and 1 –
nt, respectively. According to the results in [2], the O
phase is represented by domains of four types with the
basis vectors (ao, bo, co) and the volume concentrations

nok, so that ao || [100] and bo || [ ] for k = 1, ao ||
[ ] and bo || [010] for k = 2, ao || [010] and bo || [100]

for k = 3, and ao || [ ] and bo || [ ] for k = 4; co ||
[001] in all domains of the O phase. The volume con-
centrations of these domains no1 = fov o, no2 = (1 – fo)v o,
no3 = fo(1 – v o), and no4 = (1 – fo)(1 – v o) are expressed
in terms of the parameters fo and v o, which are the vol-
ume concentrations of mechanical twins in the O phase.
The domains of the T and O phases are assumed to be
separated by planar boundaries (walls), according to
the concepts developed in [14]. The analysis of the elas-
tic matching of the w- and w'-type regions is based on
the algorithm proposed in [15, 16] and on the matrix
elements

 (3)

expressed through the matrix elements  and Kit

involved in Eqs. (2). For further calculations, we use the
experimental temperature dependences of the parame-
ters of the perovskite unit cell in an xPT–PZN crystal
[9]. Thus, we determine the dependences of the opti-
mum concentrations for domains or twins of various
types in coexisting phases (e.g., nn, opt, v o, opt, fo, opt) on
the volume concentration rt of the T phase. These opti-
mum concentrations correspond to the T–O interphase
boundaries, namely, zero mean strain planes (ZMSPs)
[15–18], such that internal mechanical stresses are
completely relaxed and the conditions det ||D || = 0 and

 – DiiDjj ≥ 0 are met, where ij = 12 and 13 and the
matrix elements Dij are specified by Eq. (3).

The most interesting case of elastic matching of the
T and O phases along ZMSPs is actualized at fixed fo

and T values. The corresponding optimum concentra-

tions of domains in the T phase  and twins in the

O phase  (g = 1 or 2; see Fig. 2) are nonmono-

tonic functions of rt. Extrema in the (rt) and

(rt) curves are observed at rt ≈ 0.1–0.2, and their
positions and values considerably vary with fo, one of
the parameters of the twin structure in the O phase.
Changes in the temperature T at fo = const lead to
changes in the values of the extrema without changing
their positions on the rt axis. It should be noted that the

correlated behavior of (rt) and (rt) leads to
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the following rather original result: the differences in
the volume concentrations

 (4)

are maximum at fo = 0.5 and rt ≈ 0.2. A decrease in the
temperature from 300 to 20 K causes the values of dif-
ferences (4) near rt = 0.2 to decrease (compare Figs. 2a
and 2b). The orientations of the T–O interphase bound-
aries (ZMSPs) determined by the equations derived in
[15, 16] are specified at fo = 0.5 and rt ≈ 0.2 by a family
of {h0l} planes in terms of the perovskite axes of the
crystal, where the Miller indices h and l are functions of
the temperature T. An analysis of the invariants of the
equation  = 0 for the surface of an inter-
phase boundary [17], where the xi axes of the rectangu-
lar coordinate system are parallel to the axes of the per-
ovskite unit cell, leads to the following conclusion.
Given fo and T, regions with the volume concentrations

(rt) < nt(rt) < (rt) and (rt) < v o(rt) <

(rt) correspond to conic T–O interphase bound-
aries and to partial relaxation of internal mechanical
stresses in the crystal. The fact that max(∆nt(rt)) are
simultaneously reached and max(∆v o(rt)) near rt = 0.2
allows us to characterize this volume concentration of
the T phase as the most favorable for the stress relax-
ation in 0.10PT–PZN heterophase crystals and the
value fo = 0.5 as the concentration corresponding the
most probable (uniform) distribution of mechanical
twins in the O phase along one of the perovskite axes.

The result obtained in this work agrees well with the
experimental data from [9]; namely, the volume concen-
tration of the T phase coexisting with the thermodynam-
ically stable O phase in 0.10PT–PZN at T = 20–300 K is
about 20%. One of the reasons rt(T) is constant is
related to the temperature dependences of the perovs-
kite cell parameters ao(T) and co(T) of the O phase and
at(T) and ct(T) of the T phase [9]. According to our esti-
mation, the equality ao(T1)/ao(T2) = co(T1)/co(T2) is sat-
isfied with an accuracy of 2% in the temperature range
20 ≤ Ts ≤ 300 K (s = 1, 2), and the changes in at(T) and
ct(T) in this range do not exceed 0.12 and 1%, respec-
tively. Earlier, we noted in [16, 18] that the volume con-
centrations of domains of different types in the
Pb(Zr1 − yTiy)O3 monoclinic and T phases were virtually
constant at T = 20–300 K and y = 0.45–0.46, i.e., at the
morphotropic boundary [11]. However, contrary to the
Pb(Zr1 – yTiy)O3 system, the T phase in 0.10PT–PZN
crystals coexists with the phase of different symmetry
and the relaxation of mechanical stresses is caused by
more complex heterophase structures (Fig. 1). There-
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fore, we believe that it is important to further consider
the conditions for the formation of ZMSPs in the case
of coexisting polydomain (twinned) low-symmetry
phases in various ranges of T, E, and molar concentra-
tions of the components, as well as in the case of vari-
ous orientations of the developed faces in the crystal
with respect to E.
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Abstract—Polarization and repolarization of a (100)-oriented lead magnoniobate crystal in slowly varying and
dc electric fields were measured in a temperature interval including the relaxor and field-induced ferroelectric
states. Throughout the interval covered, the polarization was shown to exhibit features characteristic of relaxors,
namely, open, nonreproducing polarization trajectories in the first few cycles of quasi-static dielectric hysteresis
loops and very long relaxation times. The slow thermally activated relaxation stage follows the universal power
law evolution, which permits one to determine possible simple spectra of the relaxation time distribution. Tem-
perature dependences of some relaxation and spectral parameters were derived, and their differences in the
relaxor and ferroelectric phases are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

PbMg1/3Nb2/3O3 (PMN) is a typical representative of
the oxide solid solutions with perovskite structure,
which were first synthesized by G. A. Smolenskiœ and
coworkers and termed ferroelectric relaxors [1, 2]. In
contrast to conventional ferroelectrics, the relaxors
have a strongly disordered structure because of compo-
sitional fluctuations and the phase transition to the polar
state is diffuse over a broad temperature range (the
Curie region) [2, 3].

In the Curie region, the inhomogeneous macro-
scopic structure of PMN can be approximated by a non-
polar matrix containing small polar regions ~100 Å in
size (nanodomains) whose net polarization averaged
over the crystal volume is zero, and the dielectric polar-
ization passes through a broad maximum at Tm ≅  270 K
and a clearly pronounced dispersion in the low-fre-
quency region, with the dielectric hysteresis loops
revealing poorly seen “saturation” and degrading
slowly under heating [4]. Application of an external
electric field at T ≅  215 K drives a phase transformation
from the relaxor to ferroelectric state with the symme-
try lowering from the m3m to 3m group, birefringence
appearing, a conventional large-scale domain structure
forming [5], and distinct dielectric anomalies emerging
[6, 7]. A tentative electric field vs. temperature phase
diagram of PMN can be found in [6–8].

Because of the unusually high values of their polar-
ization and dielectric permittivity and many other
related physical characteristics, ferroelectric relaxors
are attracting interest both fundamentally and for prac-
tical application, which accounts for the intensive
research being conducted in this area. More than ten
publications appear annually on new materials exhibit-
ing relaxor properties (see, e.g., [9, 10]) and new fea-
1063-7834/03/4507- $24.00 © 21298
tures observed in the physical properties of relaxors.
The dielectric properties of PMN have been studied, as
a rule, in ac low-frequency electric fields [1–17] or in ac
fields with a superposed dc bias [6–8, 11–14, 18]. It has
been shown that the major contribution to the high
dielectric permittivity is due to domain wall motion
[13]; that the electric field–induced ferroelectric transi-
tion is observed from anomalies in dielectric permittiv-
ity apparently in three crystal orientations, namely,
(111), (110), and (100) [14, 18]; and that the most prob-
able relaxation time derived from measurements of the
dielectric permittivity dispersion attains giant values at
low temperatures [8, 15]; the mechanism of the nonlin-
ear-in-field polarization component was analyzed in
[13, 15, 18].

This communication reports on a study of the polar-
ization of a (100)-oriented PMN crystal measured in a
slowly varying (quasi-static) electric field and on real-
time measurements of the polarization relaxation and
switching in dc fields [19] performed in a temperature
interval including the relaxor and ferroelectric states.
The results provide an idea of the longest lived metasta-
ble states of the crystal with response times to an exter-
nal field in excess of 3 h, which corresponds to field fre-
quencies ≤10–4 Hz.

2. EXPERIMENTAL TECHNIQUES

The dielectric permittivity ε was measured using the
standard bridge technique in a weak 1-kHz field, and
the polarization and depolarization were studied using
electrometric compensation with an equal-arm bridge
equipped with a V7-29 electrometer serving as a null
indicator. The sample under study, the reference capac-
itance C, and the sources of the polarizing U(t) and
compensating u(t) voltages made up the four arms of
003 MAIK “Nauka/Interperiodica”
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the bridge. The voltage across the bridge diagonal was
compensated using a program on an IBM PC interfaced
with the peripheral devices. The compensating-voltage
variation u(t) was displayed visually on the monitor in
real-time mode. These data were used to calculate the
polarization P = Cu(t)/S (S is the electrode area) and its
variation with time t and voltage U. The maximum
bridge sensitivity to voltage was 20 µV and to charge,
2 × 10–9 µC, for C = 10 pF. A detailed description of the
device and of the operation of the computerized elec-
trometric bridge in measurements of the polarization
relaxation with time can be found in [20] and in mea-
surements of the dielectric hysteresis loops in a quasi-
static field, in [21]. The field variation period was ~1 h.
The polarization relaxation measurement time was
~3 h, which corresponds to a lowest frequency bound-
ary of 10–4 Hz. This time was chosen based on the
acceptable errors in estimating the parameters of the
PMN relaxation time spectra, because the error
decreases with increasing measurement time [22]. The
sample used for the studies was a rectangular plate 3 ×
2 × 0.2 mm in size, with its larger face being the PMN
(100) cut. The measurement electrodes were deposited
by silver paste on the larger side.

3. RESULTS AND DISCUSSION

3.1. Dielectric Permittivity

The phase transformations in PMN induced by a
decrease in temperature are marked by two maxima in
the dielectric permittivity ε measured in a weak ac elec-
tric field with a frequency of 1 kHz (Fig. 1). The large
broad maximum in ε corresponds to the sample-aver-
aged temperature Tm ≅  270 K of the transition to the
relaxor state. The small narrow peak is located at the
temperature Tc ≅  215 K of the ferroelectric phase tran-
sition and is observed only under simultaneous applica-
tion of a weak ac and a 3-kV/cm dc field to the sample
(see inset to Fig. 1). The amplitude of this narrow peak
is much smaller than that of the one reported in [6–8,
14] to occur in (111)- and (110)-oriented samples.
Dielectric anomalies occurring in a (100)-oriented sam-
ple at the ferroelectric transition under an electric bias
were also reported in [14, 18].

3.2. Quasi-Static Dielectric Hysteresis Loops

Each loop in the electric field dependence of the
polarization was measured after a sample was heated to
T = 300 K > Tm and subsequently zero-field cooled to a
given temperature; i.e., samples were not subjected to
annealing, which is usually conducted at a higher tem-
perature [15]. After the cooling, the initial sample-aver-
aged polarization is always zero, because the PMN
crystal does not exhibit the pyroelectric effect in a zero
field. The hysteresis loops for different temperatures
presented in Fig. 2 do not have clearly pronounced sat-
uration, and the polarization amplitude grows rapidly
with increasing amplitude of the switching field,
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
because (100)-oriented PMN samples, as follows from
the optical observation of domains [7], do not become
single domain even in fields of up to 150 kV/cm. The
PMN hysteresis loops have an unusual shape. Unlike
homogeneous ferroelectrics, the trajectories of the first
few loop cycles represent open, nonreproducing curves
decreasing in amplitude. The decrease in the amplitude
finally stops, and the loops take on the customary
shape, i.e., become, as usual, reproducible. The differ-
ence between the first few loop cycles is particularly
large in the field-induced ferroelectric phase; in the
relaxor state, this difference decreases under heating, to
become practically indistinguishable above Tm (Fig. 2).
These features of the loops are apparently characteristic
of all relaxor ferroelectrics and were first detected and
studied in [23] by us and later in [24] in strontium–bar-
ium niobate (SBN) containing impurities, in contrast to
the conventional loops observed in the homogeneous
ferroelectric TGS in [25].

These peculiar loops probably originate from ran-
dom internal local electric fields Ei, which are gener-
ated in the bulk of the relaxor in response to composi-
tional fluctuations and a lowering of local symmetry.
The field Ei distorts the pattern of the dependence of
local free energy F on polarization P, which becomes
an asymmetric double-minimum function of P [4].
Therefore, before a loop measurement, one part of the
crystal can reside in a metastable state (with a shallow
F minimum) and the other, in a stable one (with a deep
minimum of F). When an ac quasi-static field E of a
certain amplitude is applied, many regions of the crys-
tal may reach the stable state with a deep F minimum,
from which the reverse transition to the previous state
is practically impossible because the barrier is too high.
As a result, part of the crystal is not involved in the fur-

5000

4000

3000

2000

ε

180 220 260 300
T, K

205 215 225
T, K

410

450

ε

Fig. 1. Temperature dependence of the PMN dielectric per-
mittivity ε measured at a frequency of 1 kHz. Inset shows ε
in the region of the ferroelectric phase transition studied in
a bias field E = 3 kV/cm.
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Fig. 2. Quasi-static dielectric hysteresis loops of the PMN crystal measured at different temperatures T: (1) 200, (2) 210, (3) 230,
(4) 274, and (5) 283 K.
ther repolarization process and the loop trajectories are
open and decrease in amplitude until transitions to sta-
ble states become no longer possible in the field of cho-
sen strength [23]. In a high field, which should destroy
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Fig. 3. Quasi-static dielectric hysteresis loops of the PMN
crystal measured for different initial directions of the
switching field at T = 210 K.
P

all barriers under polarization switching, a dielectric
hysteresis loop should apparently be always reproduc-
ible, as is the case with all homogeneous ferroelectrics.

The loops in Fig. 2 are unipolar; i.e., the PMN crys-
tal, which was initially unpolarized, becomes partially
polarized in one of the two opposite directions after
multiple cyclic field variation. The unipolarity is more
pronounced, the closer the crystal is to the field-
induced ferroelectric state with a large-scale inhomoge-
neous (domain) structure. We observed the SBN
relaxor ferroelectric to have the same hysteresis loop
feature [23]. The unipolarity of a crystal sample is not
determined by the original electric field direction,
because it does not change under reversal of the field
(Fig. 3). The independence of the unipolarity induced
by an ac field on the sign of the field in the first quarter
of the field period implies that this feature of the polar-
ization is a characteristic of the given sample having
unequal polarizabilities in the two symmetry-equiva-
lent directions. A similar situation is observed, as a rule,
in all samples of conventional ferroelectrics with a
large-scale domain structure, in particular, in the SBN
relaxors [26], which exhibit a readily detectable pyro-
electric effect in the polar phase even in the absence of
an electric field; this effect is used frequently to identify
the ferroelectric phase transition. A PMN crystal with a
relaxor and a ferroelectric phase makes it possible to
follow the variation of the field-induced unipolarity
with the scale size of the inhomogeneities.

We demonstrate below, using the data obtained in
polarization and depolarization measurements, that the
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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Fig. 4. Slow processes of (a) polarization and (b) depolarization of the PMN crystal and (c, d) f(τ) spectra of the relaxation time τ
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PMN dielectric hysteresis loops characteristic of relax-
ors cannot be identified with a unique coercive field and
equilibrium polarization, whose magnitude in homoge-
neous ferroelectrics is always constant and equal to
spontaneous polarization.
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3.3. Polarization Relaxation

An analysis of the measurements of polarization P
in dc electric fields offers data on the time variation of
some parameters of a crystal with long-lived metastable
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Parameters of polarization relaxation and f(τ) distribution for PMN crystals in a field E = 3 kV/cm

Process T, K P0, µC/cm2 Pe, µC/cm2 a, min n τm, min S

Polarization 257 3.37 9.3 ± 0.7 0.45 ± 0.02 0.037 ± 0.001 0.44 ± 0.02 0.09

230 3.95 9.6 ± 0.1 0.252 ± 0.004 0.062 ± 0.001 0.24 ± 0.004 0.15

215 3.28 10.38 ± 0.07 0.244 ± 0.003 0.080 ± 0.001 0.23 ± 0.003 0.18

205 2.71 16.7 ± 0.12 0.362 ± 0.002 0.046 ± 0.005 0.346 ± 0.002 0.11

Depolarization 257 2.18 0 ± 0.2 0.89 ± 0.06 0.086 ± 0.011 0.65 ± 0.06 0.2

230 3.64 0 ± 0.5 0.57 ± 0.03 0.034 ± 0.006 0.55 ± 0.03 0.09

215 3.66 0 ± 0.26 0.287 ± 0.005 0.022 ± 0.002 0.281 ± 0.005 0.06

205 3.62 2.67 ± 0.02 0.18 ± 0.005 0.09 ± 0.003 0.165 ± 0.005 0.42
states over long times. Figure 4 presents P relaxation
curves for a PMN crystal obtained under application
(polarization process) and removal (depolarization) of
a field E = 3 kV/cm. Both processes start with a jump
∆P (see insets to Fig. 4), after which the thermal activa-
tion mechanism prevails. ∆P jumps always appear, irre-
spective of whether E is larger or smaller than the hys-
teresis loop halfwidth; the larger E, the larger ∆P. The
initial fast stage in relaxation, seen in the form of the
jump ∆P for any strength of field E is an argument for
the absence of a unique coercive field Ec; this quantity
is distributed over the crystal volume within a large
range of values. In a conventional homogeneous ferro-
electric, the field Ec has a well-defined magnitude and
the application of E < Ec immediately initiates a slow
relaxation process without any preliminary jump,
which appears only for E > Ec [25].

The slow thermally activated stage in the P(t) relax-
ation in PMN, as in other relaxors [25], is described
with a high accuracy by a universal power law:

 (1)

where P0 is the initial polarization and Pe is the equilib-
rium polarization; Pe, a, and n are fitting parameters.

The circles in Fig. 4 indicate experimental values of
P(t), the solid curves are plots of Eq. (1), and the solid
horizontal lines refer to the equilibrium Pe values,
which are approached asymptotically by P(t). The devi-
ation of the experimental data from the calculations
does not exceed 0.5%. The experimental P(t) data were
least squares fitted by the power-law relation (1) with
three free parameters Pe, a, and n using a standard pro-
gram. Note that the empirical power law (1) used for
the relaxation is apparently applicable to many inhomo-
geneous systems, because, with certain bounds
imposed on the fitting parameters, it practically does
not differ from individual nonexponential functions
proposed earlier for approximation of the relaxation in
certain materials [26]. One can also readily verify that,
unlike the well-known relaxation relation of Kohl-
rausch, Eq. (1) provides a more correct description of
P(t) relaxation on short time scales, because the deriv-
ative dP(t)/dt must always be finite. Furthermore,

p t( ) Pe P t( )–( )/ Pe P0–( ) 1/ 1 t/a+( )n
,= =
P

assuming the relaxation centers to be independent, rela-
tion (1) corresponds to a simple distribution function
f(τ) of the relaxation times τ. The function f(τ) and the
dimensionless polarization p(t) in Eq. (1) are related
through

 

The variables τ2f(τ) and p(t) are an original function
and its Laplace transform [27]. Therefore, if the power-
law relation (1) holds with a satisfactory accuracy, the
f(τ) function can be written in the form

 (2)

where Γ(n) is the gamma function. The f(τ) distribution
passes through a maximum at τ = a/(1 + n). One may
sometimes conveniently use the dimensionless function
g = τf(τ), which is a lnτ distribution, or the barrier
height distribution in energy U for the relaxation cen-
ters, where, according to the Arrhenius law, U =
kT ln(τ/τ0), with τ0 being a kinetic coefficient.

The f(τ) functions calculated using Eq. (2) and the
experimental data on P(t) for the polarization and depo-
larization processes occurring at the same temperatures
are also presented in Fig. 4. The f(τ) functions are nor-
malized; i.e.,

 

One can readily verify that the areas S bounded in the
figure by the f(τ) curves and the horizontal lines drawn
at the level f(τ) = 0.1fmax (fmax is the maximum value)
are much less than unity. This means that the f(τ) distri-
bution should include very long relaxation times τ
which are not plotted in the graphs. As all the times τ in
the spectrum decrease, it becomes narrower and higher,
its maximum shifts to the left, and the area S bounded
by the f(τ) curve increases. The table lists some param-
eters of relaxation and of the f(τ) distribution spectra
calculated from the experimental data, as well as the
areas S.
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∞
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The polarization P(t) relaxation and the f(τ) spectra
were measured over a broad temperature range. Figure 5
presents temperature dependences of the relaxation and
spectral parameters for a polarizing field E = 3 kV/cm.
We readily see, that at the ferroelectric transition at T ≅
215 K, the parameters Pe and S increase and that, in the
transition region, the most probable relaxation time
τm = a/(1 + n) corresponding to the maximum in the f(τ)
distribution reveals a clearly pronounced minimum.
Because the barrier energy U is related to lnτ linearly,
one can say that the U energies also pass through a min-
imum in the transition region. In other words, the crys-
tal cooled to its field-induced transition to the ferroelec-
tric phase becomes more receptive to an external elec-
tric field, such that the polarization and depolarization
processes are accelerated. Further cooling gives rise to
the formation of a large-scale domain structure [5], the
barrier energy increases again, and the relaxation slows
down.

Continuous polarization relaxation time spectra for
PMN were constructed earlier based on measurements
of the imaginary part of the dielectric permittivity in a
weak ac electric field of 10–3–10 Hz with no dc bias
applied. Such spectra as those displayed in this publica-
tion exhibit an anomalously large width typical of inho-
mogeneous systems which increases with decreasing
temperature; no spectra were studied, however, in dc
bias fields that induce the ferroelectric phase transition
[15, 17].

One of the most important results obtained in the
study of relaxation is the temperature dependence of
the equilibrium polarization Pe for the depolarization
process. As seen from Fig. 5b, in the temperature region
of existence of the PMN relaxor phase, Pe is zero every-
where except the ferroelectric region. This means that
the quasi-static dielectric hysteresis loops observed
under polarization switching in a field E = 3 kV/cm
with a period of ≈1 h actually represent thermodynam-
ically unstable characteristics, which should approach
the equilibrium shape and amplitude with increasing
field period. In the limit of very long field periods, the
loop in the relaxor phase should transform to a nonlin-
ear dependence of P on E with zero remanent polariza-
tion Pe and zero coercive field, while retaining their typ-
ical shape in the ferroelectric phase. This situation is
possibly realized in larger amplitude switching fields.
In this case, the thermodynamically equilibrium dielec-
tric properties of the relaxor and ferroelectric states,
which differ in the size scale of their inhomogeneities,
should be fundamentally different. The temperature
dependence of the remanent polarization, which is non-
zero in the ferroelectric phase and zero in the relaxor
state for (100)-oriented PMN crystals, was also
reported in [14]. Those data were derived from dielec-
tric hysteresis loops obtained in an ac electric field and
are in agreement with ours.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
4. CONCLUSIONS

To sum up, investigation of the slow polarization
kinetics in the lead magnoniobate ferroelectric relaxor
permits detection of its response to external action,
including the contribution from the long-lived metasta-
ble states characteristic of such essentially inhomoge-
neous materials. Measurement of this response reveals
the specific features of the PMN dielectric properties
associated with random the internal electric fields,
namely, the peculiar shape of the first nonreproducing
cycles of dielectric hysteresis loops and the strong vari-
ation in the spectral parameters of the relaxation time
distribution occurring at the electric field–induced tran-
sition from the ferroelectric to relaxor phase. Extrapo-
lation of the results of measurements to long times also
offers the possibility of estimating the crystal character-
istics close to its thermodynamically equilibrium
parameters.
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Abstract—A coordinated study of the dielectric, electrostriction, and pyroelectric properties of the lead-mag-
noniobate-based ceramic solid solutions 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 and 0.55PbMg1/3Nb2/3O3–
0.45PbSc1/2Nb1/2O3 conducted at the relaxor transition temperatures is reported. Electromechanical coupling
stimulated by the giant electrostriction effect is shown to play an essential part in the pyroelectric effect. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The ferroelectric relaxors, exhibiting a unique com-
bination of physical properties (broad range of temper-
ature anomalies, large dielectric permittivity with a
strong dispersion over a frequency domain extending
from a few millihertz into the gigahertz range, high sen-
sitivity to external factors), have been attracting the
interest of researchers for several decades [1–4].

Application of a dc electric field at transition tem-
peratures brings about the appearance of a preferred
direction with predominant alignment along the field of
polar clusters, which, as is presently believed, can also
be induced by the field. The attendant effects generated
by an external electric field, such as the induced ferro-
electric transition, strong dielectric nonlinearity, and
giant electrostriction, have been thoroughly studied [2–
8]. The processes underlying all these effects are asso-
ciated with the formation and variation of macroscopic
polarization. The electric-field-induced polarization is
temperature-dependent, and its variation manifests
itself in the form of a pyroelectric current [9, 10].
Among the factors governing this phenomenon is not
only the strength of the field but also the temperature at
which it was applied and removed, as well as the sam-
ple prehistory. At the same time, the induced pyroelec-
tric effect and its relation to other phenomena occurring
in an electric field under identical experimental condi-
tions have practically not been investigated. Interest has
been focused primarily on possible applications of the
pyroelectric effect in relaxors [9–11].

This communication reports on a coordinated study
of the dielectric, electrostriction, and pyroelectric prop-
erties of relaxors conducted under the same application
regimes of the external electric field.

For the study, we chose the lead-magnoniobate-based
solid solutions 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 (PMN–
PT) and 0.55PbMg1/3Nb2/3O3–0.45PbSc1/2Nb1/2O3
(PMN–PSN), which behave as typical relaxors (see,
e.g., [12–14]).
1063-7834/03/4507- $24.00 © 21305
2. EXPERIMENTAL TECHNIQUES

PMN–PT and PMN–PSN ceramic disks were fabri-
cated using standard ceramic technology involving
solid-phase reactions. The starting reactants were the
lead oxide PbO, magnesium carbonate MgCO3, nio-
bium pentoxide Nb2O5, and scandium oxide Sc2O3. The
solid solutions were prepared in two stages using, as
intermediate compounds, the columbite MgNb2O6
(PMN–PT) and columbite and wolframite ScNbO4
(PMN–PSN), an approach preventing the formation of
the pyrochlore phase which has a low dielectric permit-
tivity [15]. Preliminary firing was done at a temperature
of 850°C for two hours; sintering, at 1250°C in lead
oxide vapors. The completeness of formation of the
columbite, wolframite, and the solid solutions was ver-
ified by x-ray diffraction measurements with CuKα and
CoKα radiation. The ceramic thus obtained was single
phase with perovskite structure and a density of 94–
97% of the theoretical value. The x-ray diffraction stud-
ies did not reveal any superstructure in the composi-
tions investigated, which argues for their being disor-
dered [16].

Dielectric measurements were conducted in the fre-
quency range extending from 10 Hz to 1 MHz using
P 5079, E7-12, and E7-14 bridges at a measuring field
amplitude of 1 V/cm. The measurements were carried
out under slow cooling effected by Peltier thermoelec-
tric elements at a rate of 1 K/min in the temperature
region 273–353 K. The dependence of the dielectric
permittivity on an external dc electric field was studied
at a frequency of 1 kHz using the standard network with
a blocking capacitor, a high voltage source, and a bridge.
The samples employed in the dielectric measurements
were disks 8 mm in diameter and 0.5–1.0 mm in thick-
ness with electrodes of fired-on silver paste.

Longitudinal electrostriction strains were measured
with a galvanometric dilatometer in the quasi-static
mode at temperatures from 253 to 353 K. Relative
strains were measured to within 10–6. The samples
intended for these measurements were also disks 8 mm
003 MAIK “Nauka/Interperiodica”
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in diameter and 0.5–3.0 mm thick with fired-on, silver-
paste electrodes.

The pyroelectric response generated by a dc electric
field in a sample was studied using the dynamic Laser
Intensity Modulation Method (LIMM), which is a mod-
ification of the Chynoweth technique [17, 18]. In this
method, the pyroelectric signal is measured at the laser
modulation frequency. This permits one to avoid the
shortcomings inherent in other techniques, for instance,
the method of Byer–Rondy [19]. When using the latter
method, the signal of interest can be masked by leakage
currents arising in the presence of a bias field, by ther-
mally stimulated currents, and by other interference
signals, thus resulting quite frequently in incorrect
measurements [20]. The essence of the method
employed here consists in exciting a heat wave through
the absorption of a modulated light flux by the top elec-
trode of a sample. The change in the sample tempera-
ture caused by the pyroelectric effect generates a pyro-
electric current that oscillates at the modulation fre-
quency; the amplitude and phase were measured with a
lock-in detector. The source of the radiation was a laser
diode (wavelength 0.78 µm, power up to 20 mW), and
the modulation frequency was 1–4 Hz. The pyroelec-
tric response was studied in the temperature range
273–353 K and external fields of up to 20 kV/cm. The
sample temperature could be varied and stabilized with
Peltier elements. The temperature was maintained to
within 0.1 K. The penetration depth d of the heat wave
is given by the relation d = (K/πf )1/2, where K is the
thermal diffusivity coefficient and f is the light modula-
tion frequency [21]. The thickness of the measured
samples was chosen comparable to the penetration
depth of the heat wave at a frequency of 1–4 Hz. The
pyroelectric current, as well as the electrostriction
strains, was measured under sample cooling, with the
temperature stabilized at each measurement point. Fol-
lowing each measurement cycle in an electric field, the

5
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ε 
× 
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–

3

Fig. 1. Temperature dependence of dielectric permittivity
for the PMN–PSN solid solution at different frequencies of
the measuring field.
P

sample was heated to 373 K to exclude the effect of
sample prehistory on the characteristics to be studied.
All measurements were conducted on unclamped sam-
ples.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Temperature dependences of the dielectric permit-
tivity are exemplified through the PMN–PSN solid
solution in Fig. 1. The high values of dielectric permit-
tivity at the maximum (23 000 for PMN–PSN and
34000 for PMN–PT at 1 kHz) indicate the good quality
of the ceramics. The temperature dependences of
dielectric permittivity obtained at different bias electric
fields (Fig. 2) are typical of relaxors and make it possi-
ble to follow the shift of the transition point toward
higher temperatures with increasing applied field, as
well as to estimate the temperature and field ranges
most appropriate for measurement of the pyroelectric
and electrostriction properties.

Figures 3 and 4 plot the temperature dependence of
the pyroelectric coefficient in a bias electric field. No
pyroelectric signal was observed throughout the tem-
perature range covered with no electric field applied. In
electric fields above 2 kV/cm, broadened maxima
appear on the temperature dependences of the pyroelec-
tric coefficients (PECs) for the PMN–PT and PMN–
PSN solid solutions. The positions of the maxima
depend on the applied field; more specifically, the max-
ima shift toward higher temperatures with increasing
field. Figures 5 and 6 display the field dependences of
the PECs measured at different fixed temperatures.
These dependences are likewise seen to follow an
anomalous behavior. The maximum values of the PECs
for the PMN–PT and PMN–PSN ceramics are listed in
the table, which also presents, for comparison, the
pyroelectric coefficients for some of the relaxors mea-
sured in [22–24] using the method of Byer–Rondy on

290
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E = 0ε 
× 

10
–
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300 310 320 330 340
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Fig. 2. Temperature dependence of dielectric permittivity
measured at 1 kHz for the PMN–PSN solid solution at dif-
ferent bias fields.
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prepolarized samples. We believe the table presents the
most reliable values, because the scatter in the values of
the PECs obtained using this method lies within an
order of magnitude.

The modulation method and similar conditions of
measurement of the pyroelectric properties directly in a
bias electric field were employed in [9, 10]. The sample
temperature oscillation in those studies was achieved
by modulating of the black-body radiation with subse-
quent lock-in signal detection at the modulation fre-
quency.

Note that the temperature and field dependences of
the PECs of partially ordered lead scandotantalate (a
well-known relaxor) quoted in [9, 10] coincide qualita-
tively with those obtained by us for the PMN–PT and
PMN–PSN ceramics, with the values of these coeffi-
cients also being similar.

It is known that at the relaxor transition temperature,
a ferroelectric, like any system with a center of inver-
sion, possesses neither the piezoelectric nor pyroelec-
tric effect. Application of an electric field induces
polarization, which depends on temperature and is
presently believed to account for the pyroelectric
response in relaxors. At the same time, in any piezo-
electrically active medium, there can exist not only the
primary pyroelectric effect associated with the depen-
dence of the polarization of a clamped sample on tem-
perature but also a secondary pyroelectric effect, pro-
vided the sample is capable of deforming freely [25,
26]. We should stress that this condition was upheld in
our measurements. When the temperature is varied,
thermal expansion creates strain in the sample, which
provides, through the piezoelectric effect, an additional
contribution to the temperature dependence of polariza-
tion. The pyroelectric current observed in relaxors is

Fig. 3. Temperature dependence of the pyroelectric coeffi-
cient measured for the PMN–PT solid solution at different
bias fields.
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obviously governed to a considerable extent by the
electromechanical properties of the medium in a bias
electric field because of the existence of such an effect
as giant electrostriction [6, 7, 27]. The electric field–
induced polarization accounts for the generation, in the
relaxor transition region, of an electrostriction-induced
strain S, which is proportional to the square of the
polarization P or, in a first approximation, to the square
of the field E:

 (1)

where Q is the coefficient of electrostriction with
respect to polarization and M is that with respect to the
field.

S QP
2

ME
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Fig. 4. Temperature dependence of the pyroelectric coeffi-
cient measured for the PMN–PSN solid solution at different
bias fields.
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Fig. 5. Pyroelectric coefficient plotted vs. applied field for
different temperatures in the region of the relaxor transition
in the PMN–PT ceramic solid solution.
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Because the piezoelectric effect originates from lin-
earization of striction in an electric field, electrostric-
tion strain may formally be described using the effec-
tive field-dependent piezoelectric modulus deff:

 (2)

The strain itself may be considered as resulting from
the induced piezoelectric effect. The effective piezo-

electric modulus  in the best electrostriction mate-
rials may be as high as 10–9 m/V, which is comparable
to the largest piezoelectric moduli of piezoelectric
ceramics and single crystals and demonstrates the
importance of including the secondary pyroelectric
effect in studies of relaxors.

Figure 7 displays field dependences of the effective

piezoelectric modulus  calculated from the field
dependence of longitudinal electrostriction strain and
of the PEC for the PMN–PSN solid solution. Note that
these relations are practically identical and pass
through a maximum at the same value of the field.

Consider now the importance of electromechanical
coupling in the induced pyroelectric effect in relaxors.

S M E( )E
2

d
eff

E.≡=

d33
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Fig. 6. Pyroelectric coefficient plotted vs. applied field for
temperatures in the region of the relaxor transition in the
PMN–PSN ceramics.

Maximum values of pyroelectric coefficients of the PMN–PT
and PMN–PSN ceramics (the pyroelectric coefficients for
other relaxors are shown for comparison)

Composition p, 104 C m–2 K–1 References

PMN–PT 38 This work

PMN–PSN 58 "

0.93PMN–0.07PT 51 [22]

0.65PMN–0.35PT 50 [23]

0.95PSN–0.05PT 53 [24]
P

The corresponding part of the thermodynamic potential
Φ for a free sample can be written as

 (3)

where ε is the dielectric susceptibility, η is the nonlin-
ear susceptibility, and the term ME2w = ME2cαT
denotes the electromechanical contribution to the ther-
modynamic potential, because w is the component of
the mechanical strain associated with the temperature
variation [26]. Here, c is the elastic modulus, α is the
thermal expansion coefficient, and T is the temperature.
All coefficients of the thermodynamic potential are
taken at a constant mechanical strain, and the tensor
indices are dropped for the sake of simplicity.

In the neighborhood of a relaxor transition, not only
the susceptibility but also the electrostriction coeffi-
cient M are field-dependent [7]. We include this depen-
dence, in a first approximation, by adding an additional
term to the thermodynamic potential:

 (4)

 (5)

Note that, while the thermal expansion coefficient and
the elastic modulus also depend on the field, their varia-
tion, as shown by our measurements, constitutes a few
percent only, thus justifying their neglect at this stage of
our consideration. In addition, we restrict ourselves to
the first-order corrections, which take into account the
dielectric nonlinearity and the field dependence of the
electrostriction coefficient M. Recalling that ∂Φ/∂E = −D

Φ εE
2 ηE
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M ' Qε0
2ε2

, M '' 2Qε0
2εη ,–= =

Φ εE
2 ηE

4 …+ +( ) M 'E
2

M ''E
4 …+ +( )w.––=

20

0 15

40

60

80

100

20105
E, kV/cm

0

20

100

80

60

40 d 3
3ef
f , 1

0
–

11
 m

/V

p,
 1

0
–

4  C
 m

–
2  K

–
1

Fig. 7. Pyroelectric coefficient p3 and effective piezoelectric
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and, by definition, p = ∂D/∂T, we obtain the following
expression for the pyroelectric coefficient:

 (6)

This relation reveals that the pyroelectric response has
a contribution which is directly related to the tempera-
ture dependence of both the linear and the nonlinear
parts of the dielectric permittivity, as pointed out in [9,
10]. Note that neither spontaneous nor remanent polar-
ization exists in the temperature region of the relaxor
transition under study. The dielectric contribution is
determined by the temperature dependence of induced
polarization and, in principle, can be called the induced
primary pyroelectric effect. In addition, the linearized
striction (the induced piezoelectric effect) accounts for
the contribution related to the electromechanical cou-
pling, which is a manifestation of the secondary pyro-
electric effect. The pyroelectric coefficient p3 of a
ceramic measured along the applied field is due prima-

rily to the coefficients  and . Because the

effective piezoelectric modulus  can be represented
in the form

 (7)

its field dependence should become manifest in a field
dependence of the PEC, which is supported experimen-
tally. According to our preliminary evaluation, the sec-
ondary pyroelectric effect related to the induced piezo-
electric effect provides a dominant contribution to the
measured pyroelectric current. Final conclusion would
require further comprehensive studies including the
measurement of the thermal expansion and elasticity
modulus.
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Abstract—Temperature dependences of dielectric permittivity in the improper ferroelastic phase, including the
region of the improper ferroelastic phase transition occurring at T = Tc1, were studied in the betaine phosphite–
betaine phosphate solid-solution crystals. At a betaine phosphate (BP) concentration of 10%, the phase transi-
tion temperature Tc1 was found to shift toward higher temperatures by about 5 K compared to betaine phosphite
(BPI) crystals, where Tc1 = 355 K. The phase transition remains in the vicinity of the tricritical point. As the BP
concentration in BPI is increased, the dielectric anomaly at T = Tc1 weakens substantially compared to pure BPI.
The nonlinear temperature dependence of reciprocal dielectric permittivity in the improper ferroelastic phase
of BPIxBP1 – x crystals is described in the concentration region 0.9 ≤ x ≤ 1 in terms of a thermodynamic model
taking into account the biquadratic relation of the nonpolar order parameter of the improper ferroelastic phase
transition to polarization. The decrease in the ferroelectric phase transition temperature Tc1 (or in the tempera-
ture of loss of improper ferroelastic phase stability) with increasing BP concentration in the above limits is due
to the decreasing effect of the nonpolar mode on the polar instability, which is accompanied by a weakening of
the dielectric anomaly at T = Tc1. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Betaine phosphite (BPI), (CH3)3NCH2COO ·
H3PO3, and betaine phosphate (BP), (CH3)3NCH2COO ·
H3PO4, are compounds of the betaine aminoacid
(CH3)3N+CH2COO– with the inorganic acids H3PO3
and H3PO4, respectively [1]. Crystals of these com-
pounds are similar in structure and undergo similar
symmetry changes with decreasing temperature at the
improper ferroelastic (antiferrodistorsive) phase transi-
tion P21/m (Z = 2)  P21/c (Z = 4) [2–5], which
occurs at Tc1 = 355 K in BPI [6] and at Tc1 = 365 K in
BP crystals [7]. The inorganic tetrahedra HPO3 and PO4
in BPI and BP respectively, are connected to each other
by hydrogen bonds to form zigzag-shaped chains along
the monoclinic axis b. The betaine molecule is attached
to each tetrahedron by one (in BPI) and two (in BP)
hydrogen bonds and is arranged nearly perpendicular to
the chains. At Tc1, both crystals undergo ordering of
betaine molecules, which is accompanied by unitcell
doubling along the c axis. As the temperature is low-
ered even further, nominally pure BPI crystals transfer
to the ferroelectric state P21/c (Z = 4)  P21 (Z = 4)
(polarization along the b axis) at temperatures Tc2 =
196–225 K [6, 8–10], whereas in the BP crystals, as fol-
lows from their dielectric behavior, antiferroelectric
phases form with the phase transition temperatures
Tc2 = 86 K and Tc3 = 81 K [7].

The dielectric properties of BPIxBP1 – x solid-solu-
tion crystals below room temperature were studied in
[11–15]. It was shown that, depending on the actual
1063-7834/03/4507- $24.00 © 1310
component concentration, the solid solutions can reside
in an antiferroelectric (for 0 < x < 0.3), glassy (for 0.3 <
x < 0.9), or ferroelectric state (for 0.9 < x < 1). In par-
ticular, a glassy state was established to exist at x = 0.85
[14, 15] and a ferroelectric state, at x = 0.9 [11].

The dielectric properties of the BPI–BP solid solu-
tions above room temperature, including the improper
ferroelastic phase transition region, have not been stud-
ied previously. The temperature dependence of the
dielectric permittivity of BPI and BP crystals exhibits
an increase in the slope in the phase transition region at
Tc1, at the transfer from the high-temperature symmet-
ric to the improper ferroelastic phase [6, 7].

In [16, 17], the dielectric properties of BPI crystals
in the improper ferroelastic phase were considered in
terms of a thermodynamic model which relates the
polar order parameter to the nonpolar order parameter
through an expression of the type ξη2P2, where η is the
order parameter of the improper ferroelastic phase tran-
sition at Tc1, P is the polarization, and ξ < 0 is a coupling
coefficient. The model leads to an important conclusion
that the ferroelectric phase transition in the crystal is
driven by the nonpolar order parameter η of the struc-
tural phase transition and that the temperature of the
ferroelectric phase transition Tc2 depends on the extent
to which the nonpolar order parameter affects the polar
mode at the phase transition to the improper ferroelastic
phase, i.e., on the magnitude of the dielectric anomaly
at Tc1. A phenomenological model has been proposed
for the BP crystals which also assumes a biquadratic
relation between the order parameters of the type ξη2P2
2003 MAIK “Nauka/Interperiodica”
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(ξ < 0) [18]. The dielectric anomaly at Tc1 in these crys-
tals is weaker than in BPI, and the ferroelectric transi-
tion does not occur down to low temperatures.

Adding even a small amount of BP to BPI (0.9 ≤ x ≤ 1)
substantially reduces the temperature of the ferroelec-
tric phase transition in the BPIxBP1 – x solid solutions.
The reduction of Tc2 may be associated with a change in
the influence of the order parameter of the phase transi-
tion at Tc1 on the polar mode in the BPI–BP solid-solu-
tion crystals. This should also become manifest in the
magnitude of the dielectric anomaly at Tc1, which has
not yet been studied in the BPI–BP solid-solutions.
This stimulated the present investigation of the dielec-
tric properties in the improper ferroelastic phase
(including the region of the improper ferroelastic phase
transition at Tc1) of the BPIxBP1 – x solid-solution crys-
tals at concentrations 0.9 ≤ x ≤ 1, at which the ferroelec-
tric state in the low-temperature domain sets in [11–
13]. We analyzed of the dielectric behavior of the crys-
tals in terms of a model with coupled order parameters
and studied the Tc1 – x phase diagram in the above com-
ponent concentration range.

2. EXPERIMENTAL RESULTS

Figure 1 displays temperature dependences of
(a) the dielectric permittivity and (b)  in the neigh-
borhood of the improper ferroelastic phase transition
occurring at Tc1 in nominally pure BPI crystals and BPI
crystals with a BP content of 3% (BPI0.97BP0.03) and
10% (BPI0.9BP0.1), measured at 1 kHz. Introduction of
10% betaine phosphate into betaine phosphite is seen to
shift the improper ferroelastic phase transition point up
by approximately 5 K (Tc1 ≅  360 K) and strongly reduce
the dielectric anomaly (a decrease in the slope of the
temperature dependence of dielectric permittivity at the
transition to the improper ferroelastic phase at T < Tc1).
Note that approximately the same increase in the tem-
perature Tc1 was observed to occur in solid solutions of
deuterated crystals DBPI–DBP for the same compo-
nent concentration, with the phase transition tempera-
ture Tc1 in BP–DBP and BPI–DBPI being practically
independent of the degree of deuteration [19].

Dielectric losses are fairly small in all samples,
practically throughout the region of existence of the
improper ferroelastic phase (at 1 kHz,  = 0.003–
0.006), begin to increase noticeably with temperature at
a few kelvins below the phase transition point, and
grow strongly in the high-temperature symmetric
phase, with no pronounced features seen in the temper-
ature dependences of  at the phase transition point.
The region of growth of the dielectric losses shifts
towards higher temperatures with increasing concentra-
tion of BP in BPI.

Figure 2 plots the reciprocal dielectric permittivities
of BPI and BPI0.9BP0.1 as a function of temperature

δtan

δtan

δtan
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within the range 150–383 K. The phase transition to the
ferroelectric state in the BPI crystals used in this study
is observed to occur at Tc2 = 204 K; thus, the region of
the improper ferroelastic phase lies between the phase
transition points Tc1 = 355 K and Tc2 = 204 K.
BPI0.9BP0.1 crystals do not transfer to the ferroelectric
state in the temperature region covered; only the
improper ferroelastic phase transition is observed at
Tc1 = 360 K. As seen from Fig. 2, the reciprocal dielectric
permittivity of the improper ferroelastic phase of both
crystals exhibits a nonlinear temperature dependence.

Note that the dielectric permittivity of all the studied
samples with different impurity concentrations does
not reveal, as follows from experiments, a noticeable
dispersion in the frequency range of 100 Hz to 1 MHz
within the temperature region where the improper fer-
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Fig. 1. Temperature dependences of (a) the dielectric per-
mittivity εb and (b)  measured at 1 kHz in the region of
the improper ferroelastic phase transition in the BPI,
BPI0.97BP0.03, and BPI0.9BP0.1 crystals.
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roelastic phase exists. This implies that there are no
additional low-frequency contributions (not related to
phase transitions to dielectric permittivity in the
improper ferroelastic phase.

Figure 3 displays the temperature behavior of the
dielectric permittivity ∆ε = ε(E) – ε(0) of BPI and
BPI0.9BP0.1 crystals measured under an electric bias E =
105 V/m within a temperature interval 150–280 K. The
dielectric permittivity of the BPI crystal is seen to
decrease noticeably under the bias (∆ε) is negative as one
approaches the ferroelectric phase transition point Tc2 =
204 K. By contrast, in the BPI0.9BP0.1 crystal, the decrease
in the dielectric permittivity under the bias remains small
throughout the temperature interval covered.

3. ANALYSIS OF THE EXPERIMENTAL DATA

It was shown in [16, 17] that the nonlinear tempera-
ture dependence of reciprocal dielectric permittivity in
the improper ferroelastic phase of BPI crystals can be
described in terms of a thermodynamic model taking
into account the biquadratic relation between the non-
polar order parameter for the high-temperature phase
transition at Tc1 = 355 K and polarization with a nega-
tive coupling coefficient. The negative coupling coeffi-
cient means that the ferroelectric phase transition
occurring at Tc2 is driven by the nonpolar order param-
eter for the phase transition at Tc1. The existence of cou-
pling between the polar and nonpolar order parameters
is indicated by the dielectric anomaly, which becomes
manifest in the change of the slope of the temperature
dependence of the dielectric permittivity at the nonpo-
lar phase transition. The negative coupling coefficient
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0.008

0.012
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ε–
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BPI0.9BP0.1
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Tc1
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Fig. 2. Temperature dependences of the reciprocal dielectric

permittivity  in the region of the improper ferroelastic

phase in the BPI and BPI0.9BP0.1 crystals. Solid curves
(practically coinciding with experimental points) refer to
calculations made with Eq. (4).

εb
1–
P

correlates with the increase in the slope of the temper-
ature dependence of dielectric permittivity at the transi-
tion to the nonpolar ordered state, as is the case with the
crystals studied. In this model, the nonlinear tempera-
ture behavior of reciprocal dielectric permittivity is
accounted for by the high-temperature phase transition
occurring practically at the tricritical point [16, 20]. In
all three BPI–BP solid solutions, the reciprocal dielec-
tric permittivity in the improper ferroelastic phase like-
wise behaves nonlinearly with temperature. This means
that the high-temperature improper ferroelastic phase
transition in these crystals remains close to the tricriti-
cal point.

Thus, we approximate the temperature behavior of
dielectric permittivity in the BPI–BP solid solutions
studied using the following thermodynamic potential,
which includes the coupling between the polar and non-
polar order parameters and the existence of the high-
temperature phase transition at the tricritical point:

(1)

where α1 = λ1(T – Tc1), β2 > 0, ξ < 0, E is the macro-
scopic electric field, and χ0 is the background dielectric
susceptibility.

The thermodynamic potential (1) can be recast to a
dimensionless form,

(2)
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Fig. 3. Temperature dependences of the variation of dielec-
tric permittivity ∆ε = ε(E) – ε(0) induced by an electric bias
field E = 105 V/m in the improper ferroelastic phase of the
BPI and BPI0.9BP0.1 crystals. Solid curves are drawn to aid
the eye.
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003



DIELECTRIC PROPERTIES OF BETAINE PHOSPHITE–BETAINE PHOSPHATE 1313
where t = (T – Tc1)/∆T is reduced temperature,

Parameter ∆T =  determines the temperature

region of stability of the paraelectric improper fer-
roelastic (antiferrodistorsive) phase (η ≠ 0, P = 0). The

dimensionless parameter a =  < 0 defines the

region of stability of the polar phase (η ≠ 0, P ≠ 0) and
the of the ferroelectric phase transition.

For a ≤ –1, the ferroelectric phase transformation is
a continuous phase transition at the temperature Tc2 =
Tc1 – ∆T. For the values of this parameter in the range
−1 < a < –0.5, the temperature Tc2 will define the tem-
perature of first-order transition from the improper fer-
roelastic to the ferroelectric phase (the case –0.5 < a <
0, see [17]). The proximity of the ferroelectric phase
transition to the tricritical point on the sides of both the
first- and second-order phase transitions (temperature
hysteresis) is determined by parameter [(a + 1)/a]2∆T
and depends on the value of a at a fixed value of ∆T. The
magnitude of parameter a can be derived from temper-
ature dependences of the permittivity variation under
an external bias field [17].

In the absence of an external bias field, the temper-
ature dependences of reciprocal dielectric permittivity
in the high-temperature symmetric (I) and the improper
ferroelastic (II) phases and their regions of stability can
be presented in the form

(I) η = P = 0,

(3)

(II) P = 0, η ≠ 0,

(4)

where ∆T =  = Tc1 – Tc2 defines, as already men-

tioned, the stability region of the improper ferroelastic
(paraelectric) phase.

Equation (4) was used to approximate the tempera-
ture dependence of reciprocal dielectric permittivity in
the improper ferroelastic phase of the crystals studied.
For the BPI crystal, the phase transition temperatures
Tc1 and Tc2 are specified by arrows in Fig. 2. In the
BPI0.97BP0.03 crystals, acoustic and dielectric measure-
ments yield Tc2 ≅  180 K for the ferroelectric phase tran-
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sition temperature [20, 21]. In BPI0.9BP0.1 crystals, the
literature data give approximately 50 K for the ferro-
electric phase transition point, a figure outside the tem-
perature interval studied. The external field–induced
change in the dielectric permittivity of the paraelectric
phase of this crystal is small compared to that for BPI
(see Fig. 3), which implies that the ferroelectric phase
transition in it occurs at a temperature substantially
below 150 K, the lower limit of the temperature interval
covered in the present study. Figure 2 compares the
experimental and theoretical relations for the reciprocal
dielectric permittivity in BPI and BPI0.9BP0.1 obtained
with the use of Eq. (4). We readily see good agreement
between the experimental data and theoretical curves.
The best-fit values of the parameters, namely, of the
background dielectric permittivity εP = 1 + 4πχ0 and
∆T, are listed in the table for the three crystals investi-
gated.

An analysis shows that the phenomenological
model with two coupled order parameters is capable of
describing with sufficient accuracy the temperature
behavior of the reciprocal dielectric permittivity in the
improper ferroelastic phase of both BPI and the
BPI0.97BP0.03 and BPI0.9BP0.1 solid solutions within the
temperature interval studied. An important result is the
determination of the parameter ∆T = Tc1 – Tc2, which
permits one to calculate the temperature of the loss of
stability of the improper ferroelastic phase (or the fer-
roelectric phase transition point) based on the parame-
ters of the dielectric anomaly at Tc1 in the high-temper-
ature region of the improper ferroelastic phase. It
should be pointed out that the background dielectric
permittivities obtained in analyzing the temperature
dependences in the improper ferroelastic phase turn out
to be slightly lower (by no more than 10%) than the
dielectric permittivity in the high-temperature symmet-
ric phase. This suggests an additional contribution to
dielectric permittivity entailing a considerable increase
in  (see Fig. 1b) whose mechanism may not be
directly connected with the phase transition at Tc1.

The quantity ∆T is a generalized characteristic of the
effect of the nonpolar order parameter for the high-tem-
perature phase transition at Tc1 on the polar instability
in the crystal. This quantity includes the properties of
the nonpolar mode, namely, the ratio λ1/γ1, the back-

δtan

Temperatures of the improper ferroelastic (Tc1) and ferro-
electric (Tc2) phase transitions and calculated temperature
regions of stability of the improper ferroelastic phase ∆T,
background dielectric permittivy εP, and coupling coefficient
ξ in BPIxBP1 – x crystals

Crystal Tc1, K Tc2, K
(Tc1 – ∆T) ∆T, K εP ξ

BPI 355 204 151 63 –0.094
BPI0.97BP0.03 355 178 177 66 –0.082
BPI0.9BP0.1 360 39 321 56 –0.074
3
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ground dielectric susceptibility χ0, and the coupling
coefficient ξ connecting the polar mode with the non-
polar mode. Let us consider the factors affecting the
quantity ∆T in more detail. As seen from the table, the
values of the background dielectric permittivity are
practically the same for the BPI and BPI0.97BP0.03 crys-
tals and are slightly smaller for BPI0.9BP0.1. Calcula-
tions show that this small decrease in the background
dielectric permittivity in BPI0.9BP0.1 cannot give rise to
a substantial decrease in the ferroelectric phase transi-
tion temperature compared to that in BPI. The calcu-
lated temperature of the loss of stability of the improper
ferroelastic phase in BPI0.9BP0.1 (or of the ferroelectric
phase transition temperature, if the phase transition is
continuous, which corresponds to a ≤ –1), as is evident
from the table, is Tc2 ≅  40 K. This value of Tc2, while
being slightly lower, is nevertheless close to the ferro-
electric phase transition point, Tc2 ≅  50 K, measured in
[11, 13] for this solid solution. This reduction of Tc2 is
the consequence of a substantial weakening of the
dielectric anomaly observed at Tc1 in this crystal. The
ratio γ1/λ1 = (33 ± 1) K was determined for BP [22].
Because the temperatures of the improper ferroelastic
phase transition in the BPI and BP crystals differ by
only 10 K, the phase transition at Tc1 remains close to
the tricritical point in all the crystals studied, and the
order parameter in both crystals is determined by the
extent to which the betaine molecules are ordered
(order in the organic subsystem of the crystal), one may
safely assume that the λ1/γ1 ratio does not vary notice-
ably in the BPI–BP mixed crystals under partial substi-
tution in the inorganic subsystem of the crystal. This
suggestion is corroborated by acoustic studies [16, 20,
23], which suggest that the elastic modulus c22 in the
improper ferroelastic phase has a fairly large contribu-
tion that is proportional to the squared order parameter
and approximately the same for the BP and BPI crys-
tals. The magnitude of this contribution near the phase
transition at the tricritical point depends on the λ1/γ1

ratio. Since this ratio varies only weakly with the com-
ponent concentration x, the main factor responsible for
the reduction of the ferroelectric phase transition tem-
perature in the BPIxBP1 – x solid solutions (0.9 ≤ x ≤ 1)
can only be a decrease in magnitude of the coupling
coefficient |ξ| connecting the nonpolar order parameter
η for the high-temperature phase transition with the
polar instability in the crystal. The calculated values of
the coupling coefficient ξ are listed in the table. One
readily sees that, in the BPIxBP1 – x solid solutions
(0.9 ≤ x ≤ 1), an increase in BP concentration in BPI
brings about a decrease in the absolute magnitude of the
coupling coefficient ξ relating the polar order parame-
ter to the nonpolar order parameter.
P
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Abstract—A minimal model of the phonon–phason dynamics in icosahedral quasicrystals with inclusion of
the pinning effect is suggested. Resonant attenuation of low-frequency acoustic waves in the temperature range
corresponding to thermal activation of phasons is considered. In the long-wave length limit, the velocity of
acoustic phonons is isotropic; however, the phonon–phason coupling causes anisotropy of the velocity and of
the attenuation of acoustic waves with small wave vectors. These effects manifest themselves most strongly at
an acoustic wave frequency close to the inverse relaxation time of phasons with the same wave vector. The pin-
ning effect can cause a significant decrease in the anisotropy of the velocity and of attenuation of acoustic
waves. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Quasicrystals, discovered in 1984 [1], feature a

long-range quasiperiodic order combined with non-
crystallographic rotational symmetry. The quasicrystal-
line density function can be expanded into a Fourier
series. In this case, the number N of basis vectors span-
ning the reciprocal space exceeds the dimensionality of
the physical space in which the real quasicrystal (QC)
exists. Therefore, the QC is characterized by additional
Goldstone phason degrees of freedom (vector w) that
are absent in the crystalline state [2]. A uniform varia-
tion of w corresponds to a relative shift of the incom-
mensurate density waves forming the QC [2]. A non-
uniform variation of w contributes to the QC elastic
energy [3], which causes specific elastic properties of
the QC.

A set of elastodynamic equations for describing the
viscoelastic behavior of the icosahedral QC was first
suggested in [4, 5]:

(1)

where ρ is the density, g is the mass density flux, ηijkl is
the ordinary viscosity tensor, F is the ratio of the total
energy of the QC to its volume, Γu and Γw are the dissi-
pative kinetic coefficients, and v i is the velocity of a

∂tρ ∇ g+ 0,=

∂tgi ∇ j η ijkl∇ kgl( )– –
δF
δui

------- ρ∇ i
δF
δρ
------,–=

∂tui Γu
δF
δui

------- v i–+ 0,=

∂twi Γw
δF
δwi

--------+ 0,=
1063-7834/03/4507- $24.00 © 21315
given volume element. The first equation in set (1) is
the ordinary continuity equation. The second equation
is a version of the Navier–Stokes equation [6] whose
right-hand side is the elastic force acting on a unit vol-
ume. Within the model, this force is caused by a dis-
placement of the volume under consideration and by a
change in its density. The left-hand side of the second
equation in set (1) is equivalent to the statement that a
fraction of the applied elastic force imparts acceleration
to the unit volume and the rest balances the viscous
force. The third and fourth equations describe the
phonon and phason relaxation.

Recent experimental studies [7–10] have shown that
the elastic behavior of quasicrystalline systems is simi-
lar to that of ordinary metal alloys up to temperatures
close to the QC melting point. A small deformation is
always elastic, while a plastic deformation (mass trans-
fer) arises beginning from a certain critical load. How-
ever, the third equation in set (1) is, in fact, inconsistent
with the concept of the QC as an elastic solid. In this
equation, the volume element velocity v i (obviously
understood as the momentum of a volume correspond-
ing to a unit mass) differs form the time derivative of
the displacement field. This difference between v i and
∂tui is well known and is caused by material flow with
respect to an inhomogeneous spatial structure. For
example, in the case of liquid crystals (smectics and
cholesterics), the flow is initiated at indefinitely small
deformation of a considered volume [11]. In the case of
elastic (crystalline or, as the experimental results cited
above show, quasicrystalline) materials subjected to
deformation, the values of v i and ∂tui can also differ.
However, this difference takes place only if the defor-
003 MAIK “Nauka/Interperiodica”
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mation is appreciable and becomes plastic. When solv-
ing the problem of sound propagation, the medium
deformation should be considered small and Γu may be
set equal to zero. Thus, the third of Eqs. (1) is, in fact,
excluded from consideration. In the absence of plastic
deformation, the continuity equation and the second
term in the right-hand side of the second equation can
also be excluded from set (1).

Hereafter, we refer to this model of the elastody-
namics of the icosahedral QC as the minimal one. This
paper is aimed at the study and subsequent generaliza-
tion of the minimal model. In Section 2, we consider
exact solutions of the minimum model for symmetry
directions of the wave vector. The terms allowing for
the pinning of phason modes are also included in the
equations of the model. In the final section, the resonant
phonon–phason coupling is considered taking into
account the pinning effect (PE).

2. DIAGONALIZATION OF THE MINIMAL 
MODEL FOR SYMMETRY DIRECTIONS

OF THE WAVE VECTOR

With the phonon–phason elastic energy [3], the
above-formulated set of linear differential equations
can be written in the explicit form and solved using the
conventional Fourier method. A solution to the set is
sought in the form of damping phonon–phason plane
waves characterized by six-dimensional polarization
vector U and ordinary three-dimensional wave vector q
[12]. If the phonon–phason coupling is small, waves
can have predominantly phonon or phason polarization.

After expansion into a Fourier series, the differential
equations of the phonon–phason elastodynamics are
reduced to the following set of six algebraic linear
equations for the components of the six-dimensional
polarization vector U:

(2)

where k, j =1, …, 6; Gkj(q) is the matrix corresponding
to the Fourier transform of the viscosity tensor ηijkl and
having nonzero components if k, j ≤ 3; Ckj(q) is the
phonon–phason dynamic matrix (DM) [13]; Uj is the
six-component polarization, consisting of two three-
dimensional vectors, namely, ordinary polarization u
and phason polarization w; and λ(k) = ρω2 if k = 1, 2, 3

and λ(k) = iDω if k = 4, 5, 6 (i = ). Instead of the
coefficient Γw, we introduced D = –1/Γw to make set (2)
simpler. Solutions to set (2) are the dispersion relations
ω(q) and the corresponding polarizations. The homoge-
neous system admits a nonzero solution if its determi-
nant is zero. However, the determinant of set (2) is rep-
resented by a very cumbersome analytical expression.
Therefore, we analytically consider only three special
cases, corresponding to the wave vectors parallel to the

Ckj q( ) Gkj q( )+[ ] U j

j 1=

6

∑ λ k( )Uk,=

1–
P

fivefold [1, τ, 0], threefold [τ2, 1, 0], and twofold [1, 0,
0] axes, respectively. The orientation of the icosahedral
QC is identical to that chosen in [13]. For these direc-
tions, the determinant becomes the product of three
second-order determinants of the type

(3)

where ν, I, and K are the effective constants of the
phonon elasticity, phonon–phason coupling, and pha-
son elasticity, respectively, and ηeff is the effective vis-
cosity constant. In all three special cases, there are lon-
gitudinal and transverse waves. A wave is longitudinal
(transverse) if the phonon component of its polarization
vector is parallel (perpendicular) to the wave vector.

In the case of longitudinal and transverse waves, we
have ν = λ + 2µ and ν = µ, respectively. The viscosity
in the minimal model is defined by the tensor ηijkl that
is isotropic in the case of icosahedral symmetry. After
the corresponding diagonalization of this tensor, we
have ηeff = η|| for longitudinal waves and ηeff = η⊥  for
transverse waves, where η⊥  and η|| are two independent
coefficients of viscosity. It is noteworthy that a similar
phason viscosity making a contribution of the same
type to the element lying in the second row and the sec-
ond column is anisotropic [12]. The table lists the coef-
ficients necessary for calculating determinant (3). The
constant of phason internal friction D and the density ρ
are not affected by the diagonalization. The minimal
model suggests several important physical conse-
quences.

(i) The effective phonon–phason coupling and the
effective constant of phason elasticity, in contrast to the
effective phonon elastic constant, are anisotropic and
characterized by icosahedral symmetry.

(ii) The doubly degenerate transverse mode propa-
gating along the fivefold axis does not interact with the
corresponding phason mode.

(iii) The account of the phonon–phason coupling
lifts the degeneracy of a transverse wave propagating
along the diad axis.

Now, we briefly discuss some restrictions to the
applicability of the minimal model and consider some
of its generalizations.

First, quasicrystals have a discrete atomic structure.
In the case of crystals and continuous isotropic media,
normal modes are classified by their frequencies and
wave vectors.

In the case of quasicrystals, such a classification is
possible only for the acoustic branches near the center
of the Brillouin zone. In the case of modes with rather
high frequencies, it is impossible to determine an accu-
rate value of the wave vector. Atomic motion in this
case is represented as a superposition of waves with
slightly different wave vectors. Hence, the finite width

νq
2 ρω2

– iηeffωq
2

– Iq
2

Iq
2

Kq
2

iDω–
,
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Effective elastic constants K and I of the icosahedral quasicrystal depending on the direction of vector q and polarization u of
an acoustic wave

q, m–1 u, m w, m K, N/m2 I, N/m2 N

q〈1, τ, 0〉/N u〈1, τ, 0〉/N w〈τ , –1, 0〉/N K1 – (4/3)K2 –2K3

u〈0, 0, 1〉 w〈0, 0, 1〉 K1 + (2/3)K2 0 1
u〈–τ, 1, 0〉/N w〈1, τ, 0〉/N K1 + (2/3)K2 0

a〈τ 2, 1, 0〉/N u〈τ 2, 1, 0〉/N w〈1, τ2, 0〉/N K1 + (4/3)K2 (2/3)K3

u〈0, 0, –1〉 w〈0, 0, 1〉 K1 – (2/3)K2 (4/3)K3 1
u〈–1, τ2, 0〉/N w〈–τ2, 1, 0〉/N K1 – (2/3)K2 (4/3)K3

q〈1, 0, 0〉 u〈1, 0, 0〉 w〈1, 0, 0〉 K1 – (1/3)K2 K3 1
u〈0, 1, 0〉 w〈0, 1, 0〉 K1 + (τ – 1/3)K2 K3/τ 1
u〈0, 0, 1〉 w〈0, 0, 1〉 K1 + (2/3 – τ)K2 –τK3 1

τ 2+

τ 2+
3τ 3+

3τ 3+
of the acoustic dispersion curves is caused not only by
the finite lifetime of phonons, calculated from the
imaginary part of the ωphn(q) dependence, but also by
the discrete atomic structure of quasicrystals. It is
impossible to consider this effect within the model
developed in the continuum approximation. Therefore,
the minimal model is applicable only to the propagation
of acoustic waves with wavelengths sufficiently long in
comparison with the interatomic spacings.

Second, the acoustic-wave propagation causes the
local density to vary [11]; therefore, the local tempera-
ture differs from the average QC temperature and, in
order to analyze the acoustic wave propagation, one
must consider, in addition to elastic stresses, the
stresses caused by temperature variations. The above-
mentioned mechanism results in additional damping of
an acoustic wave due to the elastic-to-thermal energy
conversion. In the case of icosahedral symmetry and an
isotropic medium, such damping manifests itself only
for longitudinal waves and contributes to the phonon
elastic constant λ [12].

A third interesting extension of the minimal model
is the inclusion of the nonlinear spatial dispersion of
acoustic modes. Even in the simplest model of a linear
chain of atoms of the same species, the acoustic disper-
sion branch is linear only near reciprocal-lattice sites.
As was shown in [14], the quartic and higher order
terms in the wave vector in the DM make the icosahe-
dral QC different from an isotropic medium. In the case
of QCs, the phonon block in the DM has one additional
independent coefficient in comparison to the isotropic
case. This means that even in the low-temperature
region, where phasons are frozen, the dispersion of
acoustic phonons in the icosahedral QC is isotropic
only in the long-wavelength limit. With the quartic
terms retained in the DM, the total number of indepen-
dent coefficients is equal to nine, more specifically,
three phonon–phonon, three phason–phonon, and three
phason–phason coefficients. The DM of the icosahedral
QC with quartic terms included was calculated in [14].

Finally, the simplest modification of the minimal
model makes it possible to take into account the pin-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
ning of phason modes and to consider the influence of
the pinning on the dynamics of acoustic phonons in the
QC. The pinning of phason modes is well known for
incommensurate structures other than quasicrystalline
ones. For example, in incommensurate structures con-
sisting of mutually incommensurable periodic sublat-
tices, the PE manifests itself provided the relative dis-
placement of the sublattices as a whole gives rise to
restoring elastic forces. The resulting elastic energy of
this system depends not only on spatial derivatives of
the vector w but also on the magnitude of this vector
[15]. The phason mode in such structures is often simi-
lar to an acoustic mode; however, as the wave vector
tends to zero, the phason mode frequency tends not to
zero but to a finite value defined by the pinning
strength. After a phase transition during which the
incommensurate sublattices become commensurate,
the phason mode transforms into an ordinary optical
mode and the PE elastic constant fs defines its fre-
quency at the center of the first Brillouin zone. The qua-
sicrystalline structure cannot be represented as several
incommensurate periodic sublattices. However, in the
phenomenological dynamic model of the QC, the PE
can be taken into account in much the same way; it is
sufficient to add the term fsw2/2 to the QC elastic
energy. In this case, the phason block of the DM will
change only slightly; namely, the term fs will be added
to each of its three diagonal elements. Hence, determi-
nant (3) will be somewhat changed: the term fs will also
be added to the element lying in the second row and the
second column. The dynamics of acoustic modes in the
icosahedral QC will be considered in the next section
with allowance for the pinning.

3. INFLUENCE OF PHASONS 
ON THE DYNAMICS OF ACOUSTIC MODES

The minimal model allows quantitative estimation
of the features of the acoustic-phonon dispersion near
the long-wavelength limit. For simplicity, we consider
transverse modes, since longitudinal acoustic waves in
the case of icosahedral symmetry undergo the above-



1318 KOZINKINA et al.
mentioned additional weak damping caused by the
temperature spatial nonuniformity arising in the course
of sound propagation. Thus, we study the properties of
the solution ωphn(q) to the equation

(4)

where the coefficients K and I depend on the vector q
direction and the polarization (see table). The coeffi-
cient of phason internal friction D is considered as a
decreasing function of temperature, which corresponds
to the assumption that D is large at low temperatures
and, hence, phasons are frozen, whereas at high tem-
peratures D is small and phasons can relax. The mobil-
ity of phasons is controlled by their lifetime τphs, which,
using Eq. (4) and neglecting the phonon–phason inter-
action, can be estimated as τphs ≈ D/(Kq2 + fs). All the
other coefficients of the equation are ordinary con-
stants.

First, let us analyze the extreme cases. If the phason
friction coefficient D tends to infinity (i.e., the temper-
ature tends to absolute zero), we have

(5)

It is evident that the real and imaginary parts of the
ωphn(q) dependence are isotropic and the pinning is of
no importance.

In the opposite extreme case, the phason relaxation
time is small and D = 0. In this case, we have

(6)

We can see from Eq. (6) that Imωphn(q) is isotropic and,
if fs = 0 or Kq2 @ fs, the velocity of sound, provided that
the coefficient η⊥  is small, is written as

(7)

In the case of transverse waves propagating along vari-
ous symmetry axes, the quantity µ – I2/K is the effective
shear modulus. If the PE is taken into account, the dis-
persion relation (6) becomes less anisotropic. The
velocity of sound in the long-wavelength limit is isotro-

pic, V = .
To make estimates in the case of intermediate values

of D, it is necessary to employ material constants of
icosahedral QCs. For an Al70.3Pd21.5Mn8.2 alloy, these
constants are as follows: ρ = 5100 kg/m3 [16], µ =

µq
2 ρω2

– iη⊥ ωq
2

– Iq
2

Iq
2

Kq
2

iDω– f s+
0,=

ωphn
–iη⊥

q
2

4ρµq
2 η⊥( )

2
q

4
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2ρ
--------------------------------------------------------------------.=
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q

2
4ρq
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2
q

2
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2
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V
µ I

2

K
----–

ρ
--------------.=

µ/ρ
P

0.65 × 1011 N/m2, and λ = 0.75 × 1011 N/m2 [17].
According to various estimates [18, 19], K1 = 0.81 ×
1011 and K2 = –0.42 × 1011 N/m2. Reliable (even order-
of-magnitude) estimates of the phonon–phason cou-
pling constant K3 seem to be unavailable to date.
According to theoretical estimations [20], the phonon–
phason coupling constant K3 is ten times smaller than
other constants. According to the results of an analysis
of the profile of diffuse scattering near Bragg reflec-
tions [19], K3 exceeds the phason elastic constant K1 in
magnitude. In publications [21, 22], also devoted to an
analysis of the profile of diffuse scattering near Bragg
reflections, the constant K3 is disregarded. As far as we
know, the influence of the PE on the dynamics of
phonon–phason modes in QCs has not yet been studied
and no estimate of fs has been made in the literature.
The pinning decreases the anisotropy of the acoustic-
phonon dispersion. Below, we present dispersion
curves for the cases fs = 0 and fs = 3 × 1012 kg/m3 s2. In
the latter case, the anisotropy is approximately three
times smaller.

Finally, we estimate the isotropic viscosity η⊥ . The
internal friction Q–1 is equal to v /π, where v  is the log-
arithmic damping decrement; therefore, Q–1 =
2 |Im(ωphn)/Re(ωphn)|. The internal friction Q–1 was
measured outside the resonance range (at a frequency
of 2000 Hz and a temperature of 550 K) [23] to be
1.3 × 10–4. The form of the imaginary part in expres-
sions (5) and (6) suggests that the ratio η⊥ q2/(ρω/π) ≈
πωη⊥ /µ may be considered within the model at hand as
the contribution of the viscosity ηijkl to the logarithmic
damping decrement v. Hence, η⊥  = 670 N s/m2. We can
see from expression (5) that q2 ! 4ρµ/(η⊥ )2. Hence,
these estimates of η⊥  are valid only at q ! 10–4 nm–1. In
the case of shorter wavelengths, the dependence of the
coefficient η⊥  on the wavelength should be taken into
account.

The data on internal friction in a sample are conven-
tionally presented as a Q–1(T) dependence. In the sug-
gested model, the quantity most heavily dependent on
temperature is D and this parameter varies in a very
wide range. Therefore, it is reasonable to consider the
Q–1(ln(D)) dependence (see Fig. 1). In this and subse-
quent figures, cases a and b correspond to fs = 0 and fs =
3 × 1012 kg/m3 s2, respectively, and we set K3 = 0.1K1.
The internal friction is often measured at a fixed fre-
quency. Since the dependence of the vibration fre-
quency on the wave vector is almost linear, Reωphn ≈
q , the differences between the curves constructed
at a constant vibration frequency and at a constant wave
vector are very small in comparison with the scale of
Fig. 1. The same is also true for Fig. 2. Therefore,
Figs. 1 and 2 are constructed at a fixed wave vector
approximately corresponding to a vibration frequency
of 2000 Hz.

µ/ρ
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The experimental Q–1(T) dependence for the system
i-AlPbMn exhibits two absorption peaks. The authors
of [23] relate the high-temperature peak B to excitation
of collective atomic vibrations. Therefore, the theoreti-
cal maximum of internal friction corresponding to acti-
vation of collective phason modes (Fig. 1) can corre-
spond to this peak. As the temperature increases,
absorption peak B shifts to higher frequencies. In the
temperature range 770–920 K, the experimental posi-
tion of the absorption maximum ωmax satisfies the
Arrhenius relation

(8)

where τ∞ is the characteristic time constant, H is the
activation enthalpy, and kB is the Boltzmann constant.
In the model under consideration, the positions of reso-

1
ωmax
---------- τmax τ∞

H
kBT
--------- 

  ,exp= =

12

8

4

0

0

1

2

3

4

(a)
Q

–
1 , 1

0–
3

12

8

1 2
3

4

(a)

4

10 20 30
lnD [kg/m3 s]

Fig. 1. (a) Dependence of the internal friction Q–1 for vari-
ous transverse modes in the icosahedral QC on the loga-
rithm of the phason friction coefficient D without regard for
pinning. The vibration frequency is 2000 Hz. Straight line 1
corresponds to the transverse mode propagating along the
fivefold axis; (2) the first transverse mode propagating
along the diad axis [100] and polarized along [010], (3) the
transverse mode propagating along the triad axis, and
(4) the second transverse mode propagating along the diad
axis and polarized along [001]. (b) The same with inclusion
of pinning.
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nant absorption maxima for acoustic modes are defined
to a good accuracy by the resonance condition
τphsReωphn ≈ 1, where ωphn is the phonon frequency and
τphs is the phason relaxation time with the same wave
vector. Therefore, the acoustic-wave attenuation maxi-
mum corresponds to the value of D for which the rela-
tion

(9)

is valid and the temperature dependence of D in the
above-mentioned temperature range can be obtained by
substituting ωmax from Eq. (8) into Eq. (9). From the lat-
ter equation, as well as from a direct comparison of
Figs. 1a and 1b, one readily sees that the resonant
absorption peaks corresponding to different polariza-
tions of acoustic modes come much closer together (in
temperature) after inclusion of the pinning. Further-
more, the peaks are shifted to larger values of D, i.e., to
lower temperatures. The pinning causes a decrease in
the absorption peak heights above the isotropic-back-
ground level. Using relation (9), the absorption peak

D Kq
f s

q
-----+ 

  ρ
µ
---

KρRe ωphn

µ
--------------------------

f s

Re ωphn
-----------------+≈ ≈
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4

2

Fig. 2. (a) Dependence of the velocities of various trans-
verse modes in the icosahedral QC on the logarithm of the
phason friction coefficient D without regard for pinning.
The vibration frequency is 2000 Hz. Here and in the other
figures, the mode designations are the same as in Fig. 1.
(b) The same with inclusion of pinning.

0
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height may be analytically estimated with respect to the
level of the “background” internal friction as

(10)

In Fig. 1, the phonon internal friction associated
with the coefficient η⊥  (line 1) is given by the expres-
sion Reωphnη⊥ /µ, as follows from Eqs. (5) and (6) and
the approximate relation between Reωphn and q. Form
the table, it can be see that, in the simplest model under
consideration, the minimum internal friction corre-
sponds to transverse vibrations of a sample cut out
along the fivefold axis. The transverse mode propagat-
ing along this axis does not interact with the corre-
sponding phason mode in the harmonic approximation
(in the case of small-amplitude vibrations), and the res-
onant absorption peak is absent for such vibrations in
the model under discussion. (This peak can arise in the
model taking into account anharmonic phonon–phason
coupling.) However, the data from [23] are insufficient
for understanding whether or not the absorption peak B
height varies for samples cut out along different sym-
metry directions.

Qmax
1– I

2
q

2

2µ Kq
2
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Re ωphn( )2ρ

2µ Kρ Re ωphn( )2
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Fig. 3. (a) Dependence of the internal friction Q–1 for vari-
ous transverse modes in the icosahedral QC on the real part
of the phonon-mode frequency without regard for pinning.
The phason friction coefficient is D = exp(17.85) kg/m3 s.
(b) The same with inclusion of pinning.
P

Internal-friction measurements in the same alloy at
a frequency of 2.8 Hz and a temperature of 1000 K [24]
show that the high-temperature wing of the absorption
peak B for a sample cut out along the fivefold axis cor-
responds to smaller values of Q–1 than for a sample cut
out along the diad axis. Moreover, it was shown that, in
the high-temperature range, the effective shear modu-
lus measured for transverse vibrations of the former
sample exceeds that of the latter sample by approxi-
mately 2 GPa. This result qualitatively conforms to the
conclusion (see above) that the interaction between the
transverse mode propagating along the fivefold axis
and phason excitations is absent in the harmonic
approximation.

If we set K3 ≅  0.1K1, then at sufficiently high fre-
quencies (in the range where estimate (7) is applicable)
the velocity of transverse waves propagating along the
fivefold axis (I2/K = 0) will exceed that along the triad

axis by approximately one percent: I2/K = 16 /9[K1 –
(2/3)K2] (see table). We note that the velocity estimate
(7) is applicable only to the dependences shown in
Fig. 2a in the range where D ≤ exp(15) kg/m3 s. At the
fs value we selected, the velocity split in Fig. 2b is
smaller and reaches estimate (7) at a frequency close to
80 × 103 s–1 (cf. Fig. 4b). If K3 becomes two orders-of-
magnitude smaller than the other constants, i.e., K3 ≅
0.01K1, Fig. 2 will change such that the maximum dif-
ference between velocities 1 and 4 will decrease by
100 times and will be as low as 0.4 m/s. Probably, it
would be impossible to detect such anisotropy of the
velocity of sound experimentally. The absorption peak
height above the background level (Fig. 1) will also
decrease by 100 times. However, the Q–1 background
level can be decreased by going to lower frequencies
and the anisotropy of resonant attenuation of low-fre-
quency acoustic waves due to the phonon–phason cou-
pling seems to be still detectable. We note that the
dependences in Figs. 1 and 2 conform to the extreme
cases D = 0 and D = ∞.

To test the model suggested, it is of interest to mea-
sure the frequency dependence of the internal friction
and of the velocity of sound (Figs. 3, 4) at a fixed tem-
perature of 800–900 K (fixed D). At low frequencies,
the relative contribution of the isotropic term iDω + fs

to element (2, 2) of the determinant in Eq. (4) is the
most significant. Hence, the anisotropy of the velocity
of sound disappears and the internal friction tends to
zero. In the limit q  0, the phason components of the
six-dimensional polarization of acoustic-type waves
tend to zero. Indeed, an acoustic wave with a given
amplitude and wave vector q causes local deformation
proportional to q in the vicinity of any fixed point of the
medium. Hence, the induced phason deformation in the
vicinity of the same point, being proportional to the
ordinary deformation, tends to zero in the long-wave-
length limit. Therefore, the influence of phasons on the
phonon dispersion is negligible. Nevertheless, the slope

K3
2
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of the Q–1(Reωphn) curve in the case of fs = 0 remains
anisotropic (Fig. 3a).

If Reωphn @ Dµ/Kρ (for instance, 60 × 103 s–1, i.e.,
60 kHz, for Figs. 3a, 4a and 90 × 103 s–1 for Figs. 3b,
4b), the acoustic-wave dispersion conforms to expres-
sion (6) (similar to the case D = 0). In this limit, Imωphn

is isotropic. Therefore, the anisotropy of Q–1 is associ-
ated with the anisotropy of the real part of the frequency
and the phason effect mainly manifests itself in a weak
anisotropic decrease in the velocities of sound. This
decrease takes place in the range where the resonant
phonon–phason coupling is observed. In the case fs = 0
(Fig. 3a), the resonance corresponds to the maximum
Q–1(Reωphn) dependence. The estimated internal fric-
tion maximum with respect to the isotropic background

level is  ≈ I2/2Kµ. If the pinning is taken into
account, the maximum in the frequency dependence of
Q–1 can disappear. For example, the absorption maxi-
mum almost disappeared in curve 2 in Fig. 3b.
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Abstract—The microstructure of Gd(NO3)3 aqueous solutions in the course of cooling at different rates is
investigated using electron paramagnetic resonance. The local concentrations of Gd3+ ions in microregions are
estimated, the concentration boundary at which the solution is completely vitrified throughout its volume is
revealed, and the temperature of vitrification of liquid microregions (eutectic temperature) and the eutectic
composition are determined. It is found that the adsorption of Gd3+ aqua ions on the capillary surface affects
the crystallization of water and the process of concentration of the solute. It is demonstrated that the anomalous
experimental dependence δH(C0), which is observed for vitrified water–glycerol solutions with a uniform dis-
tribution of paramagnetic centers over the sample, agrees well with the theoretical curve in the case when allow-
ances are made not only for the dipole–dipole interactions but also for the inhomogeneous broadening of the
EPR lines in the spectra with an incompletely resolved fine structure. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Our interest in the processes observed during freez-
ing of Gd(NO3)3 aqueous solutions is motivated, among
other factors, by the lack of reliable information on the
phase diagrams of eutectic temperatures, crystalliza-
tion, and eutectic compositions. The main objective of
the present work was to investigate the transformation
of the microstructure of the studied solutions during
freezing of free water and to determine the eutectic
compositions and eutectic temperatures. For this pur-
pose, we used electron paramagnetic resonance (EPR)
spectroscopy. Electron paramagnetic resonance studies
can provide valuable information on the behavior of
both individual and interacting paramagnetic com-
plexes. It should be noted that the EPR method has
already been used for analyzing the specific features
observed in the processes of freezing and vitrifying
aqueous solutions of different ions, such as VO2+ [1, 2],
Mn2+ [3–5], and Cr3+ [6–9]. To the best of our knowl-
edge, similar investigations of Gd3+ aqueous solutions
have never been performed before. The sole exception
is the work carried out by Ross [3], who measured the
EPR spectrum of Mn2+ ions and the spectrum of a
Gd(ClO4)2 aqueous solution. However, the large width
of the EPR line made it impossible at that time to ana-
lyze the Gd3+ aqueous solutions in greater detail. The
vitrification temperatures for aqueous solutions of lan-
thanides were determined using differential thermal
analysis [10].
1063-7834/03/4507- $24.00 © 21322
The results obtained in our investigations are also of
considerable interest both from the standpoint of cry-
ochemistry and cryobiology, which concern the prob-
lems of low-temperature conservation of biological
objects, and from the point of view of catalytic reac-
tions whose efficiency can be increased by concentrat-
ing a solute in liquid microregions in the course of
cooling.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The aqueous solutions used in the experiments were
prepared from a salt of gadolinium nitrate (analytical
grade). The concentration of Gd3+ ions in the aqueous
solutions prepared varied in the range from 0.02 to
3.6 M. The samples obtained were cooled using two
methods: (i) slow stepwise cooling in liquid-nitrogen
vapors, where the sample was allowed to stand at each
temperature for approximately 20–30 min and the over-
all process of cooling from 293 to 100 K proceeded for
8–10 h; and (ii) rapid freezing through immersion of the
sample in liquid nitrogen. In order to exclude crystalli-
zation of water at low temperatures and to obtain sam-
ples completely vitrified throughout the bulk, we used
solutions containing glycerol (10–20 vol %), because,
as is known, glycerol is one of the best cryoprotectors
capable of preventing biological objects from degrad-
ing in the course of low-temperature conservation. The
EPR spectra were recorded on a JEOL production-type
spectrometer operating in the X band. The samples to
003 MAIK “Nauka/Interperiodica”
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be studied were placed in thin capillaries ~1 mm in
diameter. The electron spin–lattice relaxation times T1
were estimated using the technique of nonresonance
paramagnetic absorption in parallel fields [11].

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Let us now consider the results of investigations into
the concentration dependences of the EPR linewidth for
vitrified solutions of gadolinium nitrate. Since vitrified
solutions can be treated as momentarily frozen liquid
solutions in which rotational and translational motions
of liquid particles are absent, we assume that dissolved
particles are uniformly distributed over the volume of
the studied solutions (C0 = Cloc).

The theoretically calculated dependence of the EPR
linewidth on the initial concentration C0 of paramag-
netic centers for a Lorentzian line shape can be
described by the following relationship [12–14]:

(1)

where δH0 is the concentration-independent contribu-
tion to the linewidth due to both the relaxation broaden-
ing associated with intramolecular mechanisms and the
possible contribution from the unresolved fine struc-
ture, C0 is the initial concentration expressed in M, and
A is the coefficient accounting for the line broadening
attributed to dipole–dipole interactions. For equivalent
spins, the coefficient A can be determined from the
expression

(2)

In the case when the paramagnetic centers with spin S =
7/2 are uniformly distributed over the volume of the
sample, we have A = 223.7 G/M.

At high concentrations of paramagnetic centers, the
Lorentzian line can transform into a Gaussian line. In
order to determine the shape of the resonance line, we
used two simple techniques described in [15]: (i) the
method of normalized graphs and (ii) the method of the
slope of differential absorption curves. It was found
that the resonance line has a Lorentzian shape over a
wide range of concentrations and takes a shape inter-
mediate between the Lorentzian and Gaussian line
shapes at concentrations C0 > 3 M. Since the dipole–
dipole interactions are very strong (S = 7/2), the differ-
ence between the linewidths for the Lorentzian and
intermediate shapes is of little significance. Moreover,
we note that the concentrated vitrified solutions can be
considered a system in which the distribution of para-
magnetic centers is intermediate between irregular and
regular. In this case, the resonance line has a Lorentzian
shape in the central portion and a Gaussian shape at the
edges [14]. For this reason, the experimental linewidths
were theoretically treated by assuming a Lorentzian
line shape over the entire range of concentrations.

δH δH0 AC0,+=

A 30.4 10
20

gβ S S 1+( ).×=
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Figure 1 shows the concentration dependence of the
total EPR linewidth δH for vitrified water–glycerol
solutions of Gd(NO3)3 at a temperature of 77 K. It is
seen from Fig. 1 that the dependence δH(C0) is not
strictly linear with the same slope over the entire range
of concentrations, as might be expected from relation-
ship (1) at a constant value of δH0. In actual fact, the
dependence δH(C0) exhibits a kink at a concentration
C0 ~ 1.5 M.

First, we verified the assumption (even though
highly improbable) that dilute aqueous solutions of
gadolinium nitrate with ~15 vol % glycerol undergo an
incomplete vitrification. It turned out that an increase in
the concentration of a glass-forming agent (in our case,
glycerol) from 10 to 30 vol % does not affect the exper-
imental dependence δH(C0). Then, we assumed that the
similar behavior of the EPR linewidth can be associated
with the overlap of a number of fine components in the
EPR spectrum due to an enhancement of dipole–dipole
interactions, which is usually observed at small values
of the fine structure parameter D. Indeed, the linewidths
in the EPR spectra simulated within the framework of

1
2
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0 0.5 1.0 1.5 2.0 2.5 3.0
C[Gd(NO3)3], M

δH, G
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Fig. 1. Dependences of the total EPR linewidth on the
Gd(NO3)3 concentration in (1) aqueous solutions rapidly
frozen at a temperature of 77 K and (2) vitrified water–glyc-
erol solutions at 77 K. The solid line represents the concen-
tration dependence of the linewidth in the EPR spectra sim-
ulated in the framework of the theory of dipole–dipole inter-
actions at fine structure parameters δH0 = 100 G and D =
180 G.
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the theory of dipole–dipole interactions in the concen-
tration range 0.2–3.6 M for a Lorentzian line shape at
the fine structure parameter D = (185 ± 5) G, which was
determined from the relaxation data and is characteris-
tic of the majority of Gd3+ aqua ions in solutions [16],
and the concentration-independent contribution (δH0 =
100 G) to the linewidth at C0  0 are in good agree-
ment with the experimental results (Fig. 1).

The concentration dependence of the total EPR lin-
ewidth δH for Gd(NO3)3 aqueous solutions subjected to
rapid freezing at a temperature of 77 K is also depicted
in Fig. 1. At low initial concentrations (C0 < 0.2 M), the
linewidth δH increases rapidly with an increase in the
concentration C0. In the concentration range 0.2 ≤ C0 ≤
1.5 M, there appears a plateau at δH = (1150 ± 20) G.
Judging from the constancy of the linewidth δH(C0) in
this range, we can assert that, whatever the initial salt
concentration, the crystallization of water is accompa-
nied by the displacement of solute molecules into
microregions of constant composition. The number of
microregions in the volume of the solution depends on
the initial salt concentration. With the aim of determin-
ing the degree of concentration of the dissolved salt in
the microregions, we compared the EPR linewidths for
Gd3+ ions in frozen aqueous solutions with those for
Gd3+ ions in water–glycerol solutions completely vitri-
fied over the volume. For microregions of constant

1.2 M

0.4–0.6 M

1200

1000

800

600

400

200
80 120 160 200 240

T, K

δH, G

280 320

2.0 M

3.6 M

Fig. 2. Temperature dependences of the EPR linewidth
measured for Gd(NO3)3 aqueous solutions with different
initial concentrations during slow cooling.
P

composition, we obtained the local concentration Cloc =
3.6 M. In this case, the minimum local concentration
was estimated to be Cloc = 2.1 M. The impossibility of
forming microregions of constant composition with
low concentrations of Gd3+ ions even at a temperature
of 77 K is most likely associated with intensive adsorp-
tion of Gd3+ aqua ions on the capillary surface [17]. The
degree of concentration of the dissolved salt Cloc/C0 in
the microregions changes from 18 at C0 = 0.2 M to 2.4
at C0 = 1.5 M, depending on the initial concentration of
Gd(NO3)3.

A further increase in the initial concentration from
1.5 to 1.8 M leads to a considerable decrease in the EPR
linewidth. At C0 > 1.8 M, the dependence δH(C0) mea-
sured for rapidly frozen aqueous solutions is similar to
that obtained for vitrified water-glycerol solutions; i.e.,
at concentrations above 1.8 M, the aqueous solution is
vitrified over the entire volume. The vitrification
becomes possible in the case when all water molecules
are in the bound state and no freezing responsible for
the segregation of dissolved substances occurs. Now,
we should take into account that, for each Gd(NO3)3
molecule at C0 = 1.8 M, there are 26 water molecules
and that each nitrate anion is capable of binding three
water molecules [18]. On this basis, we found that, in
addition to the first hydration shell, each Gd3+ ion at
C0 = 1.8 M forms the second hydration shell composed
of eight or nine water molecules. It is worth noting that
the second hydration shell is sufficiently stable to be
revealed by EPR spectroscopy. The shortest distance
between the complexes was estimated from the formula

d =  [14]. As a result, the radius of the aqua com-

plex was determined to be r = 4.87 Å. For the initial
concentration C0 = 3.6 M, at which there are 11 water
molecules for each Gd(NO3)3 molecule and only one
hydration shell can be formed, we obtained the radius
r = 3.87 Å, which is in good agreement with the x-ray
diffraction data (r = 3.81 Å[19]). It seems likely that
the narrow concentration range from 1.5 to 1.8 M cor-
responds to a crossover from vitrification in microre-
gions to vitrification over the entire volume of the
solution.

The temperature dependences of the EPR linewidth
measured for Gd(NO3)3 aqueous solutions with differ-
ent initial concentrations of Gd3+ ions in the course of
slow cooling are shown in Fig. 2. It is seen from Fig. 2
that, at initial concentrations ranging from 0.4 to 2.0 M,
the dependence δH(T) can be divided into three por-
tions. As the temperature decreases, a slow increase in
the linewidth δH gives way to a more rapid increase. At
a temperature of (186 ± 2) K, the EPR linewidths for
Gd(NO3)3 aqueous solutions with different initial con-
centrations of Gd3+ ions coincide to within the limits of
experimental error and become independent of the tem-
perature: δH = (1150 ± 25) G. It should be noted that,

1

C0( )3
---------------
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upon slow and fast cooling, the linewidths δH corre-
sponding to the plateau coincide with each other. Con-
sequently, the solutions in both cases have similar
structures. For a Gd(NO3)3 aqueous solution with an
initial concentration of 3.6 M, which is close to the sol-
ubility limit of the Gd(NO3)3 salt in water, the linewidth
δH changes insignificantly with a decrease in the tem-
perature.

The behavior of the dependence δH(T) upon slow
cooling agrees with the phase diagram of the solutions
under investigation. A decrease in the temperature
beginning from 273 K leads to a gradual freezing of
free water, whereas the dissolved salt is displaced to
nonfreezing regions and, hence, the local concentra-
tions increase. As a consequence, the intermolecular
dipole–dipole interactions in microregions are
enhanced and the EPR linewidth increases. Moreover,
an increase in the EPR linewidth δH is due to a weak-
ening of the averaging effect of the molecular motion
with a decrease in the temperature. At the eutectic tem-
perature, the liquid regions containing the dissolved
salt solidify and the EPR linewidth becomes indepen-
dent of the temperature, as was predicted from the the-
ory of intermolecular interactions in solids. The results
of measurements of the spin–lattice relaxation times
demonstrate that the microregions remain liquid at
temperatures above T = (185 ± 5) K (the electron spin–
lattice relaxation times were estimated as T1 ~ 10–9 s)
and undergo solidification below this temperature
(T1 ~ 10−7 s).

Therefore, the temperature T = (185 ± 5) K can be
considered the eutectic temperature and the composi-
tion with Cloc = 3.6 M, which corresponds to the line-
width δH = (1150 ± 25) G, can be treated as the eutec-
tic composition. Unfortunately, we failed to compare
our results of the EPR measurements with data on the
phase diagrams because of the lack of reliable infor-
mation on aqueous solutions of gadolinium nitrate.
Such a comparison performed in our earlier work [5]
for aqueous solutions of manganese nitrate demon-
strated excellent agreement between the results
obtained using electron paramagnetic resonance and
dynamic calorimetry.

It should be noted that, at the initial stage of cooling,
the weaker concentration of the solute in relatively
diluted solutions of Gd(NO3)3 can be due to a manifes-
tation of the aforementioned adsorption on the capillary
surface [16, 17]. We believe that, as the temperature
decreases to some value, the Gd3+ aqua complexes
directly interacting with the capillary surface are either
not involved or involved only partly in the segregation
of the solute in microregions. A further decrease in the
temperature brings about the activation of the above
process; as a result, the local concentrations of gadolin-
ium ions in microregions increase drastically. It is
worth noting that, in Mn2+ and Cr3+ aqueous solutions
(where no adsorption effect is observed), the solutes are
concentrated at the same rate during freezing of free
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
water [4–7]. In highly concentrated solutions, free
water is either contained in insignificant amounts or
absent [recall that, at C0 = 3.6 M, there are 11 water
molecules for each Gd(NO3)3 molecule]. Conse-
quently, no appreciable concentration of the solute is
observed in the course of cooling. A slight increase in
the EPR linewidth δH with a decrease in the tempera-
ture to the eutectic point is most likely associated with
the change in the rate of molecular motion in the
solution.

In conclusion, we note that, upon slow cooling at the
rates used in this work, the solidified microregions
should be considered to be vitrified, because the EPR
spectra of Gd3+ ions in these microregions are similar to
the spectra of Gd3+ ions in solutions vitrified over the
entire volume, provided the local concentrations Cloc
correspond to the initial concentrations C0. As was
shown in our previous studies of the frozen solutions of
Cr3+ and Mn2+ salts [4–9], the crystallization of vitrified
microregions requires a slower variation in the temper-
ature. In this case, the EPR spectrum has a shape typical
of polycrystalline hydrates. For gadolinium nitrate,
similar investigations will be performed in the immedi-
ate future.
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Abstract—Analytical expressions for dispersion curves of plasmons in a metal cylinder and a cylindrical cavity
in metal are derived at small radii of the cylinder. The plasmon path length and the plasmon energy transfer in
such structures are estimated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, considerable attention has been paid to the
effects of the interaction of optical radiation with con-
ducting nanostructures. In particular, experiments have
been carried out on efficient light transmission through
small holes in a metal, with the hole diameters being
much smaller than the wavelength [1]. A conceivable
physical mechanism responsible for this effect can be a
plasma mode excitation at one end of the channel, prop-
agation of the plasmon through the channel, and its de-
excitation at the other end of the channel. The effi-
ciency of this light transmission is controlled by the
efficiency of the conversion of the incident electromag-
netic wave energy into the energy of a plasma wave
(and vice versa), as well as by plasmon damping as it
propagates in the channel.

In the context of the development of surface probe
microscopy, the possible plasma wave excitation and
propagation over a metal probe of a near-field micro-
scope is of great interest. This method would increase
the efficiency of radiation energy transport to the micro-
scope tip and improve microscope resolution [2–4].

Plasma modes in resonant nanostructures, e.g., in
narrow slits and gaps, are also of considerable interest.
Plasma modes whose field is localized in the spacing
between the tip of a probe microscope and the surface
under examination can cause amplification of the elec-
tromagnetic field in the spacing and light emission. We
note that plasma waves can transport excitation energy
in such structures where other types of electromagnetic
eigenwaves are absent. This energy may then be output
and de-excited as ordinary photons [5–14].

The evolution of nanotechnology has made it possi-
ble to produce metal structures that are a few nanome-
ters in diameter. In this context, it also seems of interest
to study the mechanisms of resonant excitation of
plasma waves in such structures and to analyze the con-
ditions for the propagation of plasma waves, including
the conditions of their minimum damping.

All the effects listed above relate to the currently fast
developing field of plasma optics. In this study, we con-
sider the effects of resonant excitation and propagation
1063-7834/03/4507- $24.00 © 21327
of plasma waves in conducting nanostructures. As a
simple model, we consider a thin cylindrical conductor
and a cylindrical hole. The types of eigenwaves in an
insulating rod are well known. However, they were ana-
lyzed in detail for the case of waveguide modes whose
wavelengths are comparable to the diameter [15, 16]. In
Section 2, we analyze the eigenmodes in the limit λ !
a, where a is the waveguide radius. Based on the disper-
sion relations obtained, we analyze the possible types
of plasma oscillations in finite structures. To this end,
we use a simple model in which the appearance of
boundaries does not change the spatial field structure
and the boundary itself is characterized by the plasma
wave reflectance.

We describe the metal permittivity within the Drude

model as ε = I – /ω(ω + iγ). In the case of metals, the
characteristic frequency of electron collisions with
impurities γ = 1/τ is much lower than the plasma fre-
quency, τωP @ 1. In the nanostructures under consider-
ation, scattering at wall roughnesses (diffuse scattering)
should be taken into account in addition to collisions
with impurities, τ = l/vF + a/vF, where l is the average
distance between impurities, vF is the Fermi velocity,
and a is the characteristic size of roughnesses. Along
with collisions, there is another mechanism of energy
dissipation of electromagnetic waves, namely Landau
damping, corresponding to energy transfer from the
plasma collective degree of freedom of electrons into
single-particle degrees of freedom of electrons. In the
structures under study, we are concerned with a wave
propagating along the cylinder axis and a standing
wave in the cross section. Therefore, we can distinguish
between Landau damping, arising when the phase
velocity of the plasma wave along the axis becomes
equal to the Fermi velocity, and transverse Landau
damping. The latter is caused by the fact that the cross-
sectional distribution of the field, when expanded into a
Fourier series, contains Fourier components with any
wave vectors, including those with phase velocities
equal to the Fermi velocity. The Landau damping
caused by mirror reflection of particles at the bound-

ωP
2
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aries is weaker than the damping due to collisions in the
systems under consideration.

2. EIGENMODES IN A THIN CYLINDER

Let us consider an infinite metal cylinder with per-
mittivity ε(ω) placed in a medium with permittivity ε1.
We study eigenwaves under the assumption that a ! λ,
where a is the cylinder radius and λ is the wavelength.
The z axis of the cylindrical coordinate system is
directed along the cylinder axis.

From the boundary conditions, we obtain the disper-
sion relation for the wavenumbers χ1 and χ2:

(1)

where χ1 =  and χ2 = .

First, we consider the symmetric mode. As follows
from Eq. (1), the dispersion relation for the symmetric
mode (m = 0) splits into two equations for E and H
waves. This split does not take place in the case of
asymmetric (in angle) eigenwaves, which means that Ez

and Hz are simultaneously nonzero. The dispersion
curve for the symmetric E wave in the cylinder is shown
in Fig. 1.

The plasmon spectrum is defined by two dimension-
less parameters: q = kza and b = ωpa/c. In the case of
metals such as Ag and Cu type (ωp ~ 1016 s–1), we have
b2 ≈ 0.1 at the conductor diameter 2a = 20 nm. In
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Fig. 1. Dispersion curves for (1) the symmetric E mode in
the cylinder, (2) the first asymmetric (m = 1) mode in the

cylinder, (3) the surface plasmon (ω/ωp = 1/ ), and
(4) the light (ω = ckz); q = kza.

2

P

extreme cases, the dispersion relation takes on a simple
form:

for (2)

(3)

In the limit q @ 1 (q @ bω), the dispersion relation
asymptotically approaches the surface plasmon fre-

quency ωp/ . The dispersion relation (3) suggests
that, as the wave vector decreases, the dispersion curve
approaches that for light but does not cross it at any q
and does not leave the radiation stability region.

Let us find the plasmon group velocity vG in a thin
metal fiber. At q @ exp(–2/b2), we have vG/c ≈
bln1/2(1/kza), while at q ! bexp(–4/b2) the group veloc-
ity tends to the speed of light in vacuum. Thus, the sym-
metric E mode in the cylinder is a slow wave over a
wide range of wave vectors.

The dispersion relation for the symmetric H wave
has no real roots. Hence, no radiation-stable H wave
exists in the metal cylinder.

Figure 1 also shows the dispersion curve for the first
asymmetric E mode.

3. POLARITONS IN A NARROW ROUND HOLE 
(CHANNEL)

Let us consider a narrow cylindrical hole in a metal
and study polariton propagation in such a channel. A
solution for plasma waves in the hole can be obtained
from solution (1) for the cylinder by interchanging ε
and ε1.

The dispersion relation for the symmetric mode in
the hole, as well as in the cylinder, splits into two equa-
tions for E and H waves.

3.1. E Wave in the Channel

In the case of the symmetric E mode in the hole at
q @ exp(–2/b2) we have

(4)

In the region q ! exp(–2/b2), we have ω = 1 – (1 +

q2/ )/2 where z0 = exp(–2/b2)/b. We can see from
Eq. (4) that the surface plasmon frequency in the cylin-
drical channel at q = 0 is not equal to the plasma fre-
quency, but is displaced downward from the latter by

/2. The dispersion curves for the zero mode and for
the first asymmetric E mode in the cylindrical hole are
shown in Fig. 2.

An analysis shows that there are no radiation-stable
H waves in thin channels.

1 q @ 2/b
2

–( ), ω/ωp kza 1/kza( );ln
1/2≅exp>

for q ! b 4/b
2

–( ),exp

ω kzc 1 4/b
2

b
2
/4q

2( )ln–[ ]
1/2

.≈

2

ω 1 q
2
/2 1/q( )ln– .=

z0
2
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2
b

4
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4. ENERGY TRANSFER BY PLASMONS

When estimating the energy transfer by plasma
modes, we come up against a curious paradox. Indeed,
the magnetic field in the electrostatic approximation is
assumed to be zero. In this case, the energy flux, which
is proportional, as is known, to the Poynting vector
~(E × H), should also vanish. On the other hand, the
energy transport is related to the group velocity of the
eigenmodes under study. If the group velocity of plas-
mons is nonzero, the energy flux should also be non-
zero.

To analyze this paradox in more detail, we consider
the energy transport by an ordinary surface plasmon
and a plasmon in a thin film. These simple cases allow
an exact solution (taking into retardation). In the case of
the surface plasmon polariton (the field components Ez,
Ex, and Hy are nonzero; the x axis is perpendicular to the
surface, the z axis is along the wave propagation direc-
tion), the dispersion relation is written as ω =

(ωp/ )[1 + 2  – (1 + 4 )1/2]1/2, where q is
the polariton wave vector along the z axis and kp = ωp/c.
The group velocity of the surface plasmon and, hence,
the energy flux vanish when the retardation effects are
disregarded. This result is confirmed by a direct calcu-

lation of the Poynting vector: Sz = A2ω3(1 – ε)κ/8πc2 ,

where κ = [  – (ω/c)2]1/2, κ1 = [  – ε(ω/c)2]1/2, and A
is the amplitude of the surface electric field.

However, as is well known, the frequency dispersion
and the nonzero group velocity of the surface plasmon
arise in the electrostatic approximation if the spatial
dispersion is taken into account. Moreover, in the case
of plasma modes in films, narrow slits, and thin chan-
nels, the group velocity differs from zero in the electro-
static limit even if the spatial dispersion and retardation
are disregarded. As shown above, the dispersion rela-
tion for the plasmon in a thin fiber is ω ~ kzln1/2(1/kza)
and the group velocity is not small. Therefore energy
transport by plasmons should also take place in the
electrostatic limit.

This paradox is resolved if we take into account the
fact that the Poynting vector is equal to the vector prod-
uct E × H multiplied by the speed of light c. In the elec-
trostatic limit, we have H  0 and c  ∞; therefore,
an accurate calculation of the energy flux requires eval-
uation of the indeterminate form obtained. To calculate
the energy transport rate, we need to determine the ratio
of the energy flux density to the total energy per unit
volume. A calculation shows that the energy transport
with the group velocity of the eigenwaves under study
takes place in the electrostatic limit. The energy flux in
a thin plane gap of width 2d (kzd ! 1) in the electro-

static limit is equal to Sz = A2 ωε/4π for the symmet-
ric plasma mode with the dispersion relation ω =

ωp(qd)1/2. The energy flux is Sz = ω/2 ln(1/kzR) in a

2 kz
2
/kp

2
kz

4
/kp

4

κ1
2

kz
2

kz
2

kz
2

kz
3
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thin cylindrical fiber and Sz = ωε/2 ln(1/kzR) and in
the cylindrical channel. The maximum energy flux for
a cylindrical channel of radius R = 100 nm at the fre-
quency ω = 0.95ωp (equal to 1.57 × 1016 s–1 for copper)
is Sz = 6 mW/cm2 at the breakdown voltage E =
30 kV/cm2.

5. PLASMA MODES IN FINITE SYSTEMS

Examples of plasma modes in finite systems are
plasmons in thin aciculae, narrow channels, gaps, small
metal particles, and holes. Such modes can be reso-
nantly excited by various external sources, e.g., light or
charged particles. Nanostructures are cavities for
plasma modes. The spectrum and Q factor of such
nanocavities are controlled by their size and bound-
aries.

The propagation of plasmons in narrow plane slits
was considered in [17]. It was shown that plasmons
could be localized at smooth inhomogeneities. In this
paper, we analyze the opposite case of sharp bound-
aries, when the inhomogeneity sizes are smaller than
the plasmon wavelength.

As an example, we consider a narrow cylindrical
channel of length L. A plasma mode can propagate in a
channel of finite length. At the channel end, reflection
takes place with the reflectance R = rexp(iϕ). The reso-
nance condition is written as kL + ϕ = πn. This condi-
tion yields a set of wave vectors kn. The spectrum of res-
onant frequencies is determined from the equation ωn =
ω(kn). In the case of the asymmetric mode with m = 1,
the eigenfrequencies are ωn = c(πn – ϕ)/L at L > 5a. At
high frequencies, the spectrum is condensed to the sur-
face plasmon frequency.

To estimate the reflectance R, we calculate the radi-
ation power of the plasma mode, assuming that the
oscillating charge source at the point where the channel

kz
3
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Fig. 2. Dispersion curves of polaritons in a cylindrical cav-
ity for (1) the symmetric mode, (2) the first asymmetric

(m = 1) mode, (3) the surface plasmon (ω/ωp = 1/ ), and
(4) light; q = kza.
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emerges to the surface is the radiation. We take the
charge distribution to be equal to that found for an infi-
nite channel. In the case of the modes with m = 1, we
have an oscillating dipole moment at the “cutoff.” For
the symmetric mode with m = 0, we have an oscillating
electric field at the cutoff, and radiation can be esti-
mated as that of a magnetic dipole with the magnetic
moment m = (EsSr/ω)et. We estimate the Q factor of the
cavity formed by the cylindrical channel of length L
from the ratio of the radiation energy flux density for

the symmetric mode [which is ~E2(ω/c)2/ ] to the
plasmon electrostatic energy inside the cavity

(~E2L/ ). An order-of-magnitude estimation of the
radiation Q factor gives Qrad ~ Lω/ckz.

6. PLASMON DAMPING

There are three sources of plasma wave damping:
dissipative damping related to electron scattering at
impurities and at boundary, radiative damping associ-
ated with photon emission, and the Landau damping. In
the optical frequency range under consideration, dissi-
pative damping, as a rule, dominates; this damping can
become weak for noble metals or at low temperatures.

kz
4

kz
2

Table 1.  Path lengths Lp of surface plasmon polaritons for
the symmetric and first asymmetric modes in a silver cylinder
at various values of the cylinder radius a and various optical
frequencies ω at 273 K

Cylinder 
radius a, nm

Plasmon
frequency ω, 

1015 s–1 (ω/ ωp 
is given in 

parentheses)

Path length 
Lp, µm;

zero mode
in cylinder

Path length 
Lp, µm;

first mode
in cylinder

4 2.5 (0.18) 1.6 8.5

4 4.8 (0.35) 0.9 8.5

40 2.5 (0.18) 28 8.5

40 4.8 (0.35) 12 8.5

Table 2.  Path lengths Lp of surface plasmon polaritons for
the symmetric and first asymmetric modes in a cylindrical
cavity in silver at various values of the cylinder radius a and
various optical frequencies ω at 273 K

Hole radius
a, nm

Plasmon
frequency ω, 

1016 s–1 (ω/ ωp 
is given in 

parentheses)

 Path length 
Lp, µm;

zero mode
in the hole

Path length 
Lp, µm;

first mode
in hole

4 1.2 (0.9) 0.3 8.5

4 1.1 (0.8) 0.1 8.5

40 1.1 (0.8) 1.0 8.5

40 1.0 (0.73) 0.1 8.5
P

To estimate the damping, we proceed from the gen-
eral expression for the imaginary part ω'' = P/2W of the
eigenfrequency ω = ω' + iω'', where P is the electro-
magnetic energy loss power and W is the stored energy.
We write the loss power and the stored energy in terms
of the electric field and permittivity as

(5)

where P is the polarization vector. We determine the
power and the stored energy, using the perturbation the-
ory, under the assumption that the field has the form
obtained above in the absence of damping.

The dissipative damping is given by ω'' = γ/2.
To estimate the Landau damping, we invoke the

kinetic equation. In the case of a weak field, we seek the
electron distribution function in the form f = f0 + f1,
where f0 is the electron distribution function unper-
turbed by the field and f1 is its field-induced change,
which meets the mirror reflection condition f1(d, v n) =
f1(d, –v n) at the boundary d, where v n is the electron
velocity component normal to the boundary. We calcu-
late a correction to the distribution function using the
method suggested in [18]. Let us expand the field and
the distribution function into a Fourier (for a narrow
plane slit or a plate) or Fourier–Bessel (for a cylinder)
series. For example, in the case of the symmetric (in
potential) plasma mode in the plate, f1 is given by

where ϕn is the Fourier component of the electric field
potential. The contribution to the power given by
Eq. (5) comes only from the imaginary part, which is
derived from the pole in the distribution function, i.e.,
from the condition ω – kzv z – πn/d = 0. It is important
that, even at kz = 0, the resonance condition can be met
at a sufficiently large n ~ ω/vF. Such large n values can
correspond to sufficiently small values of the Fourier
components of the electric field. This is the cause of the
Landau damping in such systems being weaker than the
collisional damping. In particular, for the symmetric
mode in the plate, we obtain

7. PLASMON PATH LENGTH IN A CYLINDER

It is of interest to estimate the characteristic path
length of the plasmon, which can be defined as the
product of the packet group velocity and the character-
istic damping time τ ≈ 1/2ω'', i.e., Lp ≈ vG/2ω''. The sur-
face plasmon path lengths in a cylinder and a cylindri-
cal cavity are listed in Tables 1 and 2.

W
1

8π
------ ∂ ωε ω( )( )

∂ω
------------------------ E r( ) 2 r,d∫=

P iω EP*∫ c.c.,–=

f 1 e ∂ f 0/∂ε( )ϕnkv/ ω kv–[ ] ,–=

k kn kz,( ), kn πn/d( ),= =

ω''/ω' 3/4( ) kzd( )3
v F/ dωp( ).=
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The dissipative damping appreciably weakens as the
temperature decreases. This causes an increase in the
polariton path length. Tables 1 and 2 list the path
lengths at a temperature of 273 K. At 77 K, the path
length increases approximately by an order of magni-
tude.
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Abstract—A theory is elaborated for the impurity photon drag effect in a semiconductor quantum wire exposed
to a longitudinal magnetic field B directed along the axis of the quantum wire. The phonon drag effect is asso-
ciated with the transfer of the longitudinal photon momentum to localized electrons in optical transitions from
D(–) states to hybrid-quantized states of the quantum wire, which is described by a confinement parabolic poten-
tial. An analytical expression for the drag current density is derived within the model of a zero-range potential
in the effective mass approximation, and the spectral dependence of the drag current density is examined at dif-
ferent magnitudes of B and parameters of the quantum wire upon electron scattering by a system of impurities
with short-range potentials. It is established that the spectral dependence of the drag current density exhibits a
Zeeman doublet with a clear beak-shaped peak due to optical transitions of electrons from D(–) states to states
with the magnetic quantum number m = 1. The possibility of using the photon drag effect in a longitudinal mag-
netic field for the development of laser radiation detectors is analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The photon drag effect is caused by the transfer of
photon momentum to an electron (hole) subsystem dur-
ing absorption. The inclusion of the photon momentum
leads to asymmetry in the distribution of charge carriers
in the quasi-momentum space, i.e., to the generation of
drag current. The photon drag effect of two-dimen-
sional electrons upon optical transitions between quan-
tum-confined states of a heterostructure was investi-
gated theoretically by Vas’ko [1], who demonstrated
that, under certain conditions, this effect can be suffi-
ciently strong. Rasulov et al. [2] considered the contri-
butions from intersubband and interband optical transi-
tions to the photon drag effect of holes in an infinitely
deep quantum well of a semiconductor. A reduction in
the dimension upon the 2D  1D transition should
result in significant variations in the physical properties
of quantum-confined structures. In particular, the
reduction in the dimension should be accompanied by
a more radical change in local electron states and the
appearance of specific features in the spectrum of
impurity optical absorption due to the characteristic
properties of one-dimensional electron states. The
problem of controlled modulation of the binding energy
of impurity centers [3] and, correspondingly, control of
the energies of optical transitions [4] have given impe-
tus to the investigation of the magneto-optical proper-
ties of structures with quantum wires. As was shown by
Jain and Kivelson [5] and Azbel [6], the magnetic field
B applied along the axis of the quantum wire can
noticeably affect the lateral geometric confinement.
Therefore, by varying the magnetic field B, it is possi-
1063-7834/03/4507- $24.00 © 21332
ble to change the effective geometric size of the system
and, consequently, to control the optical properties.

The purpose of this work was to investigate the pho-
ton drag effect of electrons upon photoionization of D(−)

centers of a quantum wire in a longitudinal magnetic
field. In this case, the photon drag effect of one-dimen-
sional electrons is induced by absorption of light with
the transverse polarization eλ⊥  with respect to the axis
of the quantum wire; in other words, the photon drag
effect is caused by absorption of photons with the
momentum "q|| directed along the axis of the quantum
wire.

Single-electron states in a quantum wire are
described in terms of the confinement parabolic poten-

tial V(x, y) = m* (x2 + y2)/2, where m* is the effective
electron mass and ω0 is the characteristic frequency of
the confinement potential. The vector potential of the
homogeneous static magnetic field A(r) is chosen in a
symmetric gauge: A = (–By/2, Bx/2, 0). Hence, the
effective Hamiltonian of the interaction with the field of
a light wave in the cylindrical coordinate system can be
written in the form

(1)

ω0
2

Ĥ int λ0
2π"

2α*I0

m*2ω
------------------------–=

× iqzz( ) i" Θ ϕ–( ) ∂
∂ρ
------cos

1
ρ
--- Θ ϕ–( ) ∂

∂ϕ
------sin+ 

 exp

+
e B
2

---------ρ ϕ Θ–( )sin ,
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where ρ, ϕ, and z are the cylindrical coordinates; qz is
the projection of the photon wave vector q|| = (0, 0, qz)
onto the axis of the quantum wire; Θ is the polar angle
of the polarization vector of light eλ⊥ ; λ0 is the coeffi-
cient of the local field; α* is the fine structure constant
with allowance made for the permittivity ε; I0 is the
light intensity; ω is the frequency of the light wave;
|e | is the magnitude of the elementary charge; and B is
the magnitude of the magnetic induction.

The potential Vδ(r, Ra) of an impurity center is
described within the model of a zero-range potential [7]:

(2)

where γ = 2π"2/(αm*) and α is determined by the bind-
ing energy Ei of the localized electron state at the same
impurity center in the bulk semiconductor. Within this
model, the impurity center is located at the point Ra =
(ra, za). According to Pakhomov et al. [8], this model is
applicable to the description of D(–) states correspond-
ing to the attachment of an excess electron to a shallow-
level donor. As will be shown below, the method of a
zero-range potential makes it possible to obtain an ana-
lytical solution for the wave function of a localized car-
rier in an external longitudinal magnetic field. This is of
particular importance in analyzing the positional disor-
der in a quantum wire with a parabolic potential distri-
bution and also in deriving an explicit formula for the
drag current of one-dimensional electrons. The energy
spectrum of the Hamiltonian in our model can be writ-
ten in the form [9]

(3)

where n = 0, 1, 2, … is the quantum number corre-
sponding to the Landau levels; m = 0, ±1, ±2, … is the
magnetic quantum number; ωB = |e |B/m* is the cyclo-
tron frequency; and "kz is the projection of the electron
quasi-momentum onto the Oz axis.

The impurity-unperturbed single-electron states
(ρ, ϕ, z) in the longitudinal magnetic field can

be represented in the following form1 [9]:

1 In what follows, we will consider the case of strong localization

of an impurity electron when λBa1 @ 1, where  is the radius

of the localized state in the magnetic field. This suggests that the
single-electron states in the longitudinal magnetic field are not
perturbed by the impurity potential.

Vδ r z ra za, , ,( ) γδ r ra–( )δ z za–( )=

× 1 r ra–( ) ∂
∂r
------ z za–( ) ∂

∂z
-----+ + ,

En m kz, ,
"ωBm

2
---------------=

+ "ω0 1
ωB

2

4ω0
2

---------+ 2n m 1+ +( )
"

2
kz

2

2m*
-----------,+

Ψn m kz, ,

λB
1–
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(4)

where  = a2/( ), a2 = "/(m*ω0),  =

"/(m*ωB), (x) are the Laguerre polynomials [10],

and LQW is the length of the quantum wire.

In this paper, the drag current of one-dimensional
electrons upon photoionization of impurity centers is
calculated in the case of strong magnetic quantization
when the characteristic length of the oscillator is con-
siderably longer than the magnetic length. The calcula-
tion is performed with due regard for elastic electron
scattering by a system of impurities with short-range
potentials, which is simulated by the sum of zero-range
potentials [11–13].

2. CALCULATION OF THE BINDING ENERGY 
OF A D(–) CENTER IN A LONGITUDINAL 

MAGNETIC FIELD

Let us consider the effect of positional disorder in a
semiconductor quantum wire with a confinement para-
bolic potential in a longitudinal magnetic field. It is
assumed that an impurity center is located at the point
Ra = (ρa, ϕa, za). The wave function (ρ, ϕ, z; ρa, ϕa,

za) of an electron localized at a D(–) center satisfies the
Lippmann–Schwinger equation for a bound state,
which, in the cylindrical coordinate system, can be rep-
resented in the form

(5)

Here, G(ρ, ϕ, z, ρ1, ϕ1, z1; ) is the single-electron

Green’s function corresponding to the source at the

point (ρ1, ϕ1, z1) and to the energy  = –"2 /(2m*),

[  are the eigenvalues of the Hamiltonian  =

Ψn m kz, , ρ ϕ z, ,( )

=  
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2
m 1+

2
----------------

πLQWa1
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(  + |e |A)2/(2m*) + V(x, y) + Vδ(ρ, ϕ, z; ρa, ϕa, za),
where  is the operator of the electron momentum]:

(6)

Upon substituting expression (2) into relationship (5),
we obtain

(7)

where

(8)

By applying operation (8) to both sides of relation-
ship (7), we derive an expression describing the depen-
dence of the binding energy of the impurity center on
the parameters of the quantum wire, the coordinates of
the impurity center, and the magnitude of the magnetic
induction B:

(9)

In accordance with formula (9), the energy of the bound
state of the electron in the total field is the pole of the
Green’s function, which, taking into account expres-
sions (3), (4), and (6), can be written as

(10)

p̂
p̂

G ρ ϕ z ρ1 ϕ1 z1; EλB

0( ), , , , ,( )

=  
kzLQW

2π
-------------- 
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EλB
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--------------------------------------------------------------------------------.
n m,
∑d
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∫

ΨλB
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where Cn, m = 2–|m |/2 , a* = aB/ad, ad is

the effective Bohr radius,  = /Ed, Ed is the

effective Bohr energy, β = L*/( ), L* = 2L/ad,

2L is the diameter of the quantum wire,  = U0/Ed,
and U0 is the amplitude of the potential of the quantum
wire.

The summation in expression (10) over n can be per-
formed using a trivial relationship,

(11)

and the Hille–Hardy formula for the bilinear generating
function [10],

(12)

Here, |z | < 1 and Iα(u) is the modified Bessel function
of the first kind [10]. In expression (10), the series can
be summed over m with the use of the formula for the
generating function of the Bessel functions of the first
kind Jk(z); that is,

(13)

Finally, taking into account that the integration with
respect to kz in expression (10) results in
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(15)
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the single-electron Green’s function in expression (10)
can be represented in the form

(16)

where w = .
Upon substituting relationship (16) into expression (9)

and carrying out necessary passages to the limits, we
obtain the following equation (in Bohr units) for the
binding energy of the D(–) center in the longitudinal
magnetic field:
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(17)

where  = ρa/ad.

Equation (17) can be numerically analyzed using a
computer. However, in this case, the following two cir-
cumstances must be taken into account. First, the local-
ized states can also exist at energy levels between the
quantum-well bottom and the first quantum-well level

ε0, 0 [8]. In this situation, the condition  > 0 is satis-
fied for the impurity levels lying above the quantum-
well bottom and the parameter λB becomes imaginary.
Second, by virtue of the quantum-well effect, the bind-
ing energy  of the D(–) center in the quantum wire in
the longitudinal magnetic field must be determined as
follows [14]:

or, in Bohr units,

(18)

where ε0, 0 = "ω0  and  = – .

Figure 1 presents the results of the numerical analysis
of expression (17) with due regard for relationship (18)
for D(–) states in InSb-based semiconductor quantum
wires. In these calculations, the effective electron mass
in InSb is determined as m* = 0.0133m0 (where m0 is
the rest mass of the electron), the permittivity is esti-
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mated to be ε ≈ 18, and the effective Bohr energy is Ed ≈
5.5 × 10–4 eV. It can be seen from Fig. 1 that, in both

cases, i.e., when  > 0 and  < 0 (curves 1 and 2,

respectively), the binding energy  of the D(–) center

is a decreasing function of the radial coordinate ρa. This
behavior is associated with the radical change in the
local electron states near the boundaries of the quantum
wire. In the magnetic field, the binding energy of the
D(–) center increases significantly. As can be seen from

Fig. 2 (for example, curve 2;  < 0), the gain in the

EλB
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Fig. 1. Dependences of the binding energy  of the D(–)

center at 2L = 71.6 nm and U0 = 0.2 eV on the polar radius

 = ρa/ad of the impurity (in Bohr units) for different

magnetic inductions B: (1)  > 0, |Ei | = 5 × 10–3 eV, and

B = 0; (2)  < 0, |Ei | = 3.5 × 10–2 eV, and B = 0;

(3)  > 0, |Ei| = 5 × 10–3 eV, and B = 12 T; and (4)  < 0,

|Ei | = 3.5 × 10–2 eV, and B = 12 T. Dashed lines 5 and 6 indi-
cate the locations of the energy levels in the ground state in
a quantum wire at B = 0 and 12 T, respectively.

EλB

ρa*

EλB

0( )

EλB

0( )

EλB

0( )
EλB

0( )
P

binding energy is more than 0.02 eV for the D(–) center
located at the origin of coordinates. Note that, in the
longitudinal magnetic field, the existence conditions of
the bound state become less stringent, which can be
judged from the comparison of curves 1, 3 and 2, 4 in
Fig. 1. Thus, the magnetic field stabilizes the D(−) states
in the quantum wire. It should also be noted that the
gain in the binding energy of D(–) centers with an
increase in the magnetic field B has been observed
experimentally in systems with multiple quantum
wells, for example, GaAs–Ga0.75Al0.25As [15]. The
problem concerning efficient control of the energies of
optical transitions in a magnetic field is of fundamental
importance in view of the prospects for creating photo-
detectors with a controlled operating frequency and
sensitivity in the range of impurity optical absorption.
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Fig. 2. Dependences of the binding energy  of the D(–)

center located at the point Ra = (0, 0, za) for 2L = 71.6 nm

and U0 = 0.2 eV on the magnetic induction B: (1)  > 0,
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3. CALCULATION OF THE DRAG CURRENT 
OF ONE-DIMENSIONAL ELECTRONS

IN A LONGITUDINAL MAGNETIC FIELD

It follows from relationship (7) that the wave func-
tion (ρ, ϕ, z; ρa, ϕa, za) of the localized electron
with the short-range potential differs from the single-

electron Green’s function G(ρ, ϕ, z, ρa, ϕa, za; ) by
only a factor:

(19)

where

and

is the normalizing factor. In the case when the D(–) cen-
ter is located at the point Ra = (0, 0, za), from relation-
ship (10), we obtain

(20)

where ζ(s, u) is the generalized Riemann zeta func-
tion [10].

The problem of the impurity photon drag effect in a
quantum wire can be solved in terms of the Boltzmann
kinetic equation written in the relaxation-time approxi-
mation. The source term of this equation is determined
by the photon-induced quantum transitions of carriers
from the D(–) center to the hybrid-quantized band,
which are calculated in the approximation linear with
respect to the photon momentum. For a short circuit,
the density j(ω) of drag current of electrons in a quan-
tum wire placed in a longitudinal magnetic field can be
represented in the form
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where N0 is the concentration of D(–) centers in the
quantum wire, ηλ is the linear concentration of D(–) cen-
ters located at points Ra = (0, 0, za) along the axis of the
quantum wire, "ω is the photon energy, τ( ) is the
relaxation time of electrons in the quantum wire, f0(E)
is the quasi-equilibrium distribution function of elec-
trons in the quantum wire, δ(x) is the delta function,
Mf, λ are the matrix elements determining the optical
transitions of an electron from the ground state of the
D(–) center to the hybrid-quantized states of the quan-
tum wire, θ(s) is the Heaviside unit function (θ(s) = 1 at

s ≥ 0 and θ(s) = 0 at s < 0) [16], and Ω =  is
the hybrid frequency.

By using relationship (1), the expression for the
matrix elements Mf, λ can be written as the sum of two
terms: Mf, λ = I1 + I2, where

(22)

(23)

When calculating the component I1, we obtain the inte-
grals
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(25)

Upon integrating in formula (22) with respect to ρ and
using the standard relationship [10]

(26)

we derive the following expression:
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In the case of I2, the integrals with respect to the coor-
dinates z and ρ coincide with integrals (25) and (26),
respectively, and the integration with respect to ϕ is
reduced to calculating the integral

(28)

It follows from formulas (24) and (28) that the optical
transitions from the impurity level become possible
only in the state with the quantum number m = ±1. Tak-
ing into account formulas (25), (26), and (28), we
obtain the following relationship:
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After substituting expression (30) into formula (21), the drag current density takes the form
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(31)
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where X = "ω/Ed is the photon energy expressed in
terms of the effective Bohr energy Ed; N = [A0] is the

integer part of the number A0 = β(X –  + a*–2)/(2w) –
1; and δ|m |, 1 is the Kronecker delta, which accounts for
the selection rules for the magnetic quantum number m.

When deriving relationship (31) for the drag current
density, we took into account that, upon integration
with respect to kz in formula (21), it is necessary to cal-
culate the roots of the argument of the δ function (kz)1, 2

that satisfy the equation
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Before proceeding to an analysis of the spectral
dependence of the drag current density, we consider the
mechanism of charge carrier scattering in a quantum
wire and, correspondingly, determine the relaxation
time in relationship (31). Let us assume that electrons
in the hybrid-quantized conduction band of the quan-
tum wire undergo elastic scattering by a system of
impurities with short-range potentials [17]. In the
approximation of strong magnetic quantization, when
a1 ! a (ω0 ! Ω), the expression for the relaxation time

τ(Ed(X – )) can be written as [17]
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According to Geœler et al. [17], the distribution func-
tion f0( ) of electrons in the quantum wire in the

case under consideration can be represented in the form

(34)
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Fig. 3. Spectral dependences of the drag current density
j(ω)/j0 (in relative units) at the parameters |Ei| = 5.5 × 10–2 eV,

nλ = 1.4 × 105 cm–1, 2L = 71.6 nm, U0 = 0.2 eV, ne = 1.36 ×
1016 cm–3, ni = 2.7 × 1015 cm–3, λs = 28.6 nm, and T ≈ 7 K.
Magnetic induction B: (1) 10 and (2) 12 T.
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where ne is the electron concentration, δT = Ed/(kT), and
T is the temperature.

Let us consider the situation where δT = 1. For an
InSb quantum wire, this case corresponds to T ≈ 7 K
and the impurity states can be considered completely

filled; i.e., in relationship (31), we have f0(– ) = 1.
Hence, with allowance made for expressions (33) and
(34), relationship (31) for the drag current density takes
the form

(35)

where j0 = –4π–3 α*N0 |e | I0qz.

Now, we estimate the drag current density for an
InSb quantum wire. For this purpose, we use the fol-
lowing numerical parameters in relationship (35): Ei =
0.06 eV, L ≈ 43 nm, nλ = 1.4 × 105 cm–1, ni = 2.7 ×
1015 cm–3, ne = 1.4 × 1016 cm–3, U0 = 0.2 eV, λs ≈ 29 nm,
hν = 0.21 eV, and B = 10 T. As a result, we obtain j(ω) ≈
(1.7 × 10–18N0) A/m2. In the case when N0 = 1015 cm–3,
we have j(ω) ≈ 1.7 × 10–1 A/cm2, which is one order of
magnitude greater than the drag current density in a
semiconductor single quantum well in the absence of a
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magnetic field [18]. Figure 3 shows the spectral depen-
dences of the drag current density j/j0 of one-dimen-
sional electrons (in relative units) upon photoionization
of D(–) centers in a longitudinal magnetic field. As can
be seen from Fig. 3, the spectral dependence of the drag
current density is characterized by a Zeeman doublet
with a clear beak-shaped peak associated with the opti-
cal transitions of electrons from the D(–) states to the
states with the magnetic quantum number m = 1. As the
magnitude of the magnetic field increases, the beak
shifts to the short-wavelength range of the spectrum
and the beak height increases (curves 1, 2). The dis-
tance between the band and the peak in the doublet is
equal to "ωB, and the mean period of the occurrence of
the doublet is "Ω; i.e., it is determined by the hybrid
frequency. It can also be seen from Fig. 3 that, as the
magnetic field changes by 2 T, when one goes from
curve 1 to curve 2, the wavelength corresponding to the
beak decreases by approximately 104 Å. This shows
promise for the creation of photodetectors on the basis
of the photon drag effect in one-dimensional semicon-
ductor structures with sensitivity controlled in a mag-
netic field.

The proposed theory of the impurity photon drag
effect in a longitudinal magnetic field can form a basis
for the design of laser radiation detectors. Since the drag
current density j is proportional to I0 [see formula (35)],
these detectors can possibly determine the energy char-
acteristics of laser pulses, in particular, the pulse power.

Unfortunately, as far as we know, there has been no
experimental work dealing with the photon drag effect
of charge carriers in semiconductor low-dimensional
systems, in particular, involving impurity centers.
However, it seems likely that the level of δ-doping tech-
nology (see review in [9]) can provide a means for set-
ting up the above problem. It should also be noted that
the high sensitivity of the photon drag effect to the
energy spectrum, the relaxation mechanism of charge
carrier momenta, and the type of optical transitions is of
interest from the standpoint of the theoretical physics of
semiconductor quantum-confined structures.

Let us now estimate the sensitivity G of a photode-
tector operating on the basis of the photon drag effect
of one-dimensional electrons in a longitudinal mag-
netic field. According to Agafonov et al. [20], the sen-
sitivity can be represented by the formula G = V/W,
where V is the photovoltage, W = I0hνS is the power of
radiation incident on the photodetector, ν is the fre-
quency of the light wave, and S is the cross-sectional
area of the light beam. In the free-running mode, the
photovoltage V can be found from the condition that the
drag current in the given direction is equal to the corre-
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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sponding conduction current. As a result, the expres-
sion for G takes the form

(36)

where S0 is the cross-sectional area of the quantum wire
and ρ0 is the resistivity of the quantum wire material.

For a semiconductor structure consisting of an InSb
quantum wire, we use the following parameters in rela-
tionship (36): S0 ~ L2 ≈ 1.8 × 10–11 cm2, I0hν =
1010 W/m2, LQW ≈ 7.2 × 103 nm, B = 10 T, and ρ0 ~
10−4 Ω m. For λ ≈ 6 × 104 Å, we obtain G ≈ 6.8 ×
10−2 V/W.

Thus, the photon drag effect of one-dimensional
electrons in a longitudinal magnetic field is quite acces-
sible for experimental observation.
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Abstract—The effect of an external homogeneous electric field on the states of charge carriers in a size-quan-
tized spherical layer is considered. An explicit dependence of the energy shift on the external field strength and
the geometric sizes of the sample is obtained, and the electro-optical absorption coefficient for intraband dipole
transitions is calculated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the optical and electro-optical properties
of quasi-zero-dimensional structures with spherical
symmetry, such as quantum dots (see the review by
Gaponenko [1]) and multilayer spherical nanohetero-
structures [2–6], have been studied intensively. This
stems from the fact that heterophase systems are very
promising for use in designing new elements and
devices in optoelectronics. It is clear that a necessary
stage of the comprehensive study of these structures is
investigation of the physical properties of a single
nanocrystalline spherical layer. From the physical and
practical points of view, such a nanocrystal is interest-
ing, first and foremost, because it exhibits a unique
combination of properties inherent in size-quantized
films and spherical quantum dots and, consequently,
can be used both in a pure form and as a constituent of
multilayer spherical nanoheterostructures with
required characteristics. In this connection, it is of par-
ticular interest to investigate the effect of an external
electric field on the states of charge carriers in a nanoc-
rystalline spherical layer. There are many experimental
and theoretical works concerned with the Stark split-
ting of levels and electro-optical phenomena in size-
quantized films. A number of papers [8–10] deal also
with the quantum-confined Stark effect in quantum
spherical dots. In particular, Ekimov et al. [8] and
Nomura and Kobayashi [9] experimentally revealed a
dependence of the Stark shift in the energy levels on the
geometric sizes of the sample due to quantizing of the
motion of electrons and holes. Pokutniœ [10] developed
a theory of the Stark effect in quantum dots under con-
ditions where a separate quantization of the motion of
each of the charge carriers can be accompanied by the
creation of a bulk exciton from an electron–hole pair.
Moreover, Pokutniœ [10] proposed a new electro-optical
method for determining the critical sphere size above
which the generation of a three-dimensional exciton in
this sphere becomes possible. Among the wide variety
of optoelectronic phenomena in low-dimensional semi-
1063-7834/03/4507- $24.00 © 21342
conductors, intraband optical transitions between quan-
tum-confined states in different quantum wells are of
the greatest interest owing to their possible use in the
design of infrared detectors, high-speed modulators,
emitters, and cascade lasers [11].

The goal of this work was to analyze theoretically
the evolution of the energy spectrum of charge carriers
in a size-quantized spherical layer under the action of a
homogeneous electric field and to investigate how the
external field affects the band of intraband optical
absorption.

2. ELECTRONIC STATES IN A LAYER

Let us consider the situation where a layer is suffi-
ciently thin and the quantum confinement is very pro-
nounced, i.e., when the thickness L of the layer is sub-
stantially less than the Bohr radius a0 of a three-dimen-
sional exciton. However, from the practical standpoint,
it is more appropriate to use a spherical layer of large
radius when the thickness L of the layer is also appre-
ciably less than the radii of the core R1 and the external
shell R2; that is,

(1)

In this case, the layer under consideration can be ade-
quately described in the framework of the model of a
quantum well rolled into a sphere [12]:

(2)

Within this model (see Appendix) in the approximation
of the isotropic effective mass µ, for the energy and the
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envelopes of the wave functions for unperturbed single-
electron states in the layer, we obtain the relationships

(3)

(4)

where n, l, and m are the radial, orbital, and azimuthal
quantum numbers, respectively; Yl, m(ϑ , ϕ) are the nor-
malized spherical functions in the spherical coordinate
system; r, ϑ , and ϕ are the spherical coordinates; and
R0 is the effective rotational radius, which is deter-
mined from the condition

(5)

Now, we assume that an external homogeneous electric
field with the strength F is directed along the z axis: F =
F(0, 0, F). In the general case, when the permittivities
of the core ε1, the layer ε2, and the external shell ε3 dif-
fer from one another, we derive the following expres-

sion for the perturbation  related to the electrostatic
potential in the layer [13]:

(6)

The external field can be considered a perturbation
under the condition

(7)

where q is the particle charge, ε = (2ε2, 3 + ε2, 1)/3, ε2, 3 =

ε2/ε3, ε2, 1 = ε2/ε1, and  is the ground-state energy
of the particle in the layer in the absence of the external
electric field, i.e., in the case when the energy imparted
to the particle by the field is considerably less than the
quantum-confinement energy.
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It follows from expressions (6) that the linear Stark
effect in the system is absent. For the second-order cor-

rection  to the energy of an arbitrary state |n, l, m〉 ,
we can write in the general form,

(8)

where Vn, n' is the matrix element of the operator deter-
mined by expression (6), which is constructed using the

radial wave functions (r) described by formula (4);
that is,

(9)

For the matrix elements Vl, l ± 1, we have

(10)

Upon substituting expressions (9) and (10) into for-
mula (8) and summing over n' [14], the second-order

correction  can be represented as
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In the general form, the expression for the perturbed part

of the wave function (r, ϑ, ϕ) can be written as

(14)

3. INTRABAND TRANSITIONS
IN A HOMOGENEOUS ELECTRIC FIELD

According to Ansel’m [15], for a perturbation asso-
ciated with the action of a light wave, we can write the
relationship

(15)

where A0 is the amplitude of the light wave, m0 is the
mass of the free electron, e is the charge of the free elec-
tron, c is the velocity of light in free space, and  is the
three-dimensional operator of the momentum. It is
assumed that the incident wave with the frequency ω is
linearly polarized and the polarization vector e is
directed along the Z axis. Now, we calculate the dipole
matrix elements of operator (15) for the intraband tran-
sitions i  f. Upon integrating over the azimuthal
angle, we obtain the selection rule for the azimuthal
quantum number: ∆m = 0. This rule is common to all
the transitions |ni , li , mi 〉  |nf , lf , mf 〉 . The selection
rules for the orbital quantum number are as follows:
∆l = ±1 for the matrix elements of the zeroth order of

smallness  and ∆l = 0, ±2 for the matrix elements

of the first order of smallness . For these matrix
elements, we obtain the following expressions:
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where k = 0, 1, 2, …. Hereafter,  ≡ , which
follows from relationships (4), (6), and (15). The form
of the matrix elements Vl, l ± 2 is well known from [16],
and we will not present them explicitly. According to
the selection rules, the final expression for the absorp-
tion coefficient α(ω) does not involve interference

terms of the  type and the coefficient α(ω) can
be represented as the sum of two components, for
which the explicit form is given incompletely; that is,

(18)

where ω is the frequency of the light wave, δ(x) is the
delta function, and

(19)

In relationships (18), the upper sign corresponds to
absorption and the lower sign, to photon emission in the
course of intraband dipole transitions.

4. RESULTS AND DISCUSSION

The following inferences can be made in the frame-
work of the proposed model.

(1) The band of intraband optical absorption con-
sists of two series, namely, the main series α(0)(ω) and
the field satellite α(1)(ω) with different threshold fre-
quencies and different selection rules, which excludes
superposition of these two series.

(2) For diagonal transitions with respect to the radial
quantum number, the frequencies of absorption (emis-
sion) for a given orbital quantum number l differ from
one another by the same value of ∆ω:

In the absence of the external electric field, when nf =
ni ≡ n, the resultant absorption for a given orbital quan-
tum number l would be observed at equidistant fre-
quencies

(3) The diagonal transitions with respect to the radial
quantum number are also associated with the finiteness
of the sample size. It follows from formulas (11), (16),
and (18) that, when R1, R2  ∞, not only the transi-
tions between the states with nf = ni are absent but the
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Table

Material a, nm ε0 Eg, eV µc/m0 µv /m0 Uc, eV Uv, eV ∆Uc, eV ∆Uv, eV aex

CdS 0.5818 9.1 2.5 0.2 0.7 –3.8 –6.3 – – ≈3

HgS 0.5851 18.2 0.5 0.036 0.044 –5 –5.5 1.2 –0.8 ≈50

Note: µc and µv  are the effective masses of the charge carriers; a is the lattice constant; Eg is the band gap of the bulk sample; Uc is the
conduction band bottom measured from the vacuum level; Uv  is the valence band top; ∆Uc and ∆Uv  are the energy discontinuities
for the conduction and valence bands, respectively; aex is the Bohr radius of a three-dimensional exciton in the given material; and
ε is the static permittivity.
complete series α(0)(ω) transforms into a band charac-
teristic of intraband absorption in a plane-parallel film
in an external homogeneous electric field [7].

(4) Compared to the series α(0)(ω), the series α(1)(ω)
is characterized by an additional modulation due to the
field factor:

Moreover, the intensity of the transitions in this
series depends on the effective mass of the charge car-
riers in the band, which is also associated with the
external electric field.

Thus, the intraband absorption under the given con-
ditions substantially depends on the external field. The
frequency and the magnitude of the intraband absorp-
tion can be controlled by varying the field strength and
the geometric sizes of the sample.

APPENDIX

Let us apply the model approach developed in this
work to the heterostructure CdS/HgS/CdS. The table
presents selected characteristics for the β modifications
of CdS and HgS semiconductor crystals (data are taken
from [2–4, 17, 18]).

A.1. APPLICABILITY OF THE PROPOSED 
MODEL

We consider an HgS layer of thickness L ~ 5–10 nm.
In this case, the Coulomb interaction can be disre-

garded (L2/  ~ 0.01–0.04) and the quantum confine-
ment of charge carriers in the layer is very pronounced.
If the radius of the core is taken as R1 ~ 15–30 nm, size
effects for charge carriers are absent in the core (and in
the external shell) (R1/aex ~ 5–10). At the same time,

conditions (1) are satisfied (L2/  ~ 0.1) and the sepa-
ration of the particle motion into radial and rotational
components is justified. For the chosen sizes of the sys-
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tem, the energies Econf and Erot for electrons c and holes
v  are estimated as follows:

(A.1.1)

(A.1.2)

A comparison of the quantum-confinement energies

of the charge carriers  [see formulas (A.1.1) and
(A.1.2)] with the band discontinuities ∆Uc, v presented
in the table clearly demonstrates that, in the case when
the states are not strongly excited, the model of a quan-
tum well specified by expression (2) is also valid, to
sufficient accuracy, for the chosen composition.

A.2. THE EXTERNAL FIELD 
AS A PERTURBATION

For the chosen composition, we have ε = (2ε2, 3 +
ε2, 1)/3 = 2; hence, condition (7) takes the form

. (A.2.1)

For the strength F, we obtain the following limitations:
(a) at L = 5 nm, F ! 1.7 × 105 V/cm, and (b) at L =
10 nm, F ! 4.2 × 104 V/cm. In other words, when the
layer thickness L falls in the range 5–10 nm, the upper
limits for the external field as a perturbation can be
taken as F ~ 104 and F ~ 103 V/cm, respectively.

A.3. ESTIMATION OF THE STARK SHIFT

By virtue of the relationships ε2 = 2ε1 = 2ε3 for the
permittivities of the core, the layer, and the external
shell, the dependence of the perturbation V(R1, R2) on
the radii R1 and R2 in formula (9) turns out to be very
weak. As a result, the second-order correction to the
ground state (n = 1, l = 0), which is of principal interest,
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can be represented by the following rather exact work-
ing formula:

(A.3.1)

For L = 5 nm and F = 2 × 104 V/cm, the second-order

correction  is estimated as

The same result can be obtained by direct calcula-
tions according to formula (11).

In the case when the field strength F and the thick-
ness L vary in the ranges allowed by the approximation
used, the key parameter in experiments is the quantity
FL2. The quantitative results of the experiment substan-
tially depend on this parameter and, hence, are very
sensitive to variations in both the strength of the exter-
nal field and the geometric sizes of the system.
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Abstract—A diagrammatic technique developed for Green’s functions with inclusion of multiphonon pro-
cesses is used to investigate the electronic energy levels and the phonon replicas corresponding to them in a
semiconductor quantum dot (QD) embedded in a dielectric matrix. It is shown, with reference to GaAs, CdSe,
and CuCl quantum dots embedded in glass, that in the case of QD potential wells of a finite depth the shifts of
the electronic energy levels decrease with decreasing QD size, irrespective of the strength of electron–phonon
coupling in the nanoheterostructure. Theoretically calculated positions of the phonon replicas for CdSe in glass
agree with the experimental data on Raman scattering. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In developing the theory of electron–phonon inter-
action in low-dimensional systems [1–3], including
quantum dots (QDs) [3–8], considerable attention has
been given to the study of the effect of the nanosystem
size on the lowest energy bands or ground levels renor-
malized by interaction with phonons.

Quantum dots with weak electron–phonon interac-
tion have been studied using perturbation theory [3–5].
In this case, different mechanisms make virtually addi-
tive contributions to the shift of the ground level, which
made it possible to investigate the effect of confined (L)
and interface (I) phonons, as well as of intra- and inter-
level interaction, on the electronic energy levels within
different models of nanosystems. Emphasis was placed
on the analysis of the influence of the QD size on the
relative contributions from different mechanisms to the
ground-level shift.

In nanosystems with intermediate and strong elec-
tron–phonon interactions, the contributions from dif-
ferent mechanisms to the electronic-level shifts are not
additive and can be separated rather arbitrarily. In this
case, different methods, models, and approximations
have been used [8] to investigate the dependence of the
phonon-induced shift of the electronic ground level on
the QD size and the results obtained have been com-
pared.

However, it should be noted that even if different
methods give similar results for any QD size, this does
not necessarily mean that the results are adequate for
QDs of small radii. For example, it was shown in [5, 8]
that, as the radius of a spherical semiconducting QD
embedded in a dielectric medium is decreased, the shift
of the electronic ground level in the nanosystem sharply
1063-7834/03/4507- $24.00 © 21347
increases irrespective of the strength of electron–
phonon coupling. This result, being formally correct, is
not adequate, because it was obtained in [5, 8] under the
assumption that the potential well is infinitely deep,
which is not the case for QDs of small sizes. On physi-
cal grounds, it is clear that, as the radius of a QD with
an infinitely deep potential well is decreased, a quasi-
particle in the well becomes localized to a greater
extent and, hence, its interaction with phonons
strengthens, causing the energy level shift to increase.
However, in a real QD, the potential-well depth is
finite; therefore, as the QD radius is decreased, the qua-
siparticle will become less localized and, hence, its
interaction with phonons will be weaker, which will
cause the electronic energy level shift to decrease. The
objective of this paper is to substantiate this conclusion.

It should be noted that up to now, there has been no
method enabling one to theoretically study the phonon
replicas arising in the spectrum of a nanosystem as the
result of the electron–phonon interaction, although
such replicas have already been studied experimentally
[3] (using, in particular, Raman scattering).

In this paper, we modify the diagrammatic tech-
nique for Green’s functions in such a way as to effec-
tively include both the electronic energy spectrum and
virtual multiphonon processes. With this technique, we
investigate the renormalization of no-phonon electronic
energy levels and their phonon replicas in nanosystems
consisting of spherical semiconducting QDs embedded
in a dielectric medium in the case of arbitrarily strong
electron–phonon interaction. Calculation of the elec-
tronic spectrum renormalized by interaction with L and
I phonons at T = 0 is illustrated through the examples of
semiconducting GaAs, CdSe, and CuCl quantum dots
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Diagrammatic expansion of the self-energy.
in glass with weak, intermediate, and strong electron–
phonon interactions, respectively.

The reasonable agreement, shown in this paper to be
between the theoretically and experimentally deter-
mined electronic levels and their phonon replicas on the
frequency scale, shows promise for extending our the-
ory to the case of arbitrary temperatures in studying the
excitonic QD spectrum. By applying the Kubo method
to an exciton–phonon system interacting with an elec-
tromagnetic field, one will be able to calculate the
Raman spectrum of a QD without considering the exci-
tonic line width Γ as an adjustable parameter [9].

2. THE HAMILTONIAN, GREEN’S FUNCTIONS, 
AND THE SELF-ENERGY

The Hamiltonian of the electron–phonon system of
a spherical semiconducting QD embedded in a dielec-
tric matrix is a particular case of the Hamiltonian of a
multilayered QD considered in [6, 7]. In those papers,
electrons were treated in the effective-mass approxima-
tion and confined and interface phonons were described
in terms of the dielectric-continuum model. Within
these approximations, the second-quantized Hamilto-
nian of the electron–phonon system was found to be

(1)

Here, Eµ is the energy of an electron in a state charac-
terized by quantum numbers µ{p, l, m}, where p = {n,
k}; n is the radial quantum number, which characterizes

the discrete energy spectrum;  (E > 0) char-
acterizes the continuous spectrum; m1 is the electronic
mass in the dielectric medium; and l and m are the
orbital and magnetic quantum numbers, respectively.
Ωβ is the phonon energy, with β = {σ, l, m}, where σ =
{L, I±} characterizes confined and interface phonons.

H Eµaµ
+
aµ Ωβ bβ

+
bβ 1/2+( )

β
∑+

µ
∑=

+ ϕµ1µ2
β( )aµ1

+
aµ2

bβ bβ
+

+( ).
µ1µ2β
∑

k 2m1E/"
PH
Comprehensive information on the energy spectrum
and wave functions of quasiparticles, as well as on the
polarization potentials and phonon spectrum, can be
found in [6, 7]. It will be recalled that the energy spec-
trum of bare electrons was calculated for a potential
well of a finite width using the effective-mass approxi-
mation and boundary conditions for which the wave
functions and the probability flux densities are continu-
ous at the boundary of the nanoheterostructure. The
phonon spectrum and polarization potentials were cal-
culated within the dielectric-continuum model with
electrodynamic boundary conditions. In this approach,
the energies of electrons and phonons, as well as their
coupling constants

(2)

are determined unambiguously from first principles;
that is, fitting parameters are absent and only experi-
mentally measurable quantities are involved: the effec-
tive masses and potential energies of electrons and the
energies of optical phonons in the different media of the
system and the dielectric constants of these media.

In order to investigate the electronic spectrum renor-
malized by interaction with phonons at low tempera-
tures (strictly speaking, at T = 0), it is convenient to use
Fourier transforms of the electron Green’s functions
that satisfy the Dyson equation:

, (3)

where Mµ(ω) ≡ Mµµ(ω) are the diagonal self-energy
operators. In terms of the Pines diagrammatic tech-
nique [10], these operators are represented by an infi-
nite series of diagrams, as presented in Fig. 1. Accord-
ing to this technique, the first three diagrams in Fig. 1
correspond to the expressions

(4)

ϕµ1 µ2, β( ) Φp1l1m1

p2l2m2 σlm( )=

Gµ ω( ) Gµµ ω( ) ω Eµ– Mµ ω( )–{ } 1–
= =

a( )
ϕµµ1

β1( )ϕµ1µ β1( )
ω Eµ1

– Ωβ1
–

-----------------------------------------,
µ1β1

∑
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Fig. 2. Series of diagrams without phonon line crossings.
(5)

(6)

The Pines diagrammatic technique allows one to
write out an analytical expression corresponding to an
arbitrary diagram of the series presented in Fig. 1.
However, the series itself cannot be described by a sim-
ple analytical expression. It is known [6, 7] that the
series consisting of all diagrams without phonon line
crossings (Fig. 2) can be summed analytically and is
described by the integral equation

(7)

which is equivalent to the nonterminating continued
fraction (with sums or integrals)

(8)

b( )
ϕµµ1

β1( )ϕµ1µ2
β2( )

ω Eµ1
– Ωβ1

–( )
-------------------------------------------

µ1µ2β1β2

∑

×
ϕµ2µ1

β2( )ϕµ1µ β1( )
ω Eµ2

– Ωβ1
– Ωβ2

–( ) ω Eµ1
– Ωβ1

–( )
----------------------------------------------------------------------------------------,

c( )
ϕµµ1

β1( )ϕµ1µ2
β2( )

ω Eµ1
– Ωβ1

–( )
-------------------------------------------

µ1µ2β1β2

∑

×
ϕµ2µ1

β1( )ϕµ1µ β2( )
ω Eµ2

– Ωβ1
– Ωβ2

–( ) ω Eµ1
– Ωβ2

–( )
----------------------------------------------------------------------------------------.

Mµ
l ω( )

ϕµµ1
β1( ) 2

ω Eµ1
– Ωβ1

– Mµ1

l ω Ωβ1
–( )–

-----------------------------------------------------------------------,
µ1β1

∑=

Mµ
l ω( )

=  
ϕµµ1

β1( ) 2

ω Eµ1
– Ωβ1

–
ϕµ1µ2

β2( ) 2

ω Eµ2
– Ωβ1

– Ωβ2
– …–
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µ2β2

∑–

--------------------------------------------------------------------------------------------------------
µ1β1

∑

–
ϕµn 1– µn

βn( ) 2

ω Eµn
– Ωβi

…–
i 1=

n

∑–

---------------------------------------------------.
µnβn

∑
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While (ω) includes virtual multiphonon pro-
cesses, this quantity is only a lower estimate of the full
self-energy, because in each order in perturbation the-
ory the diagrammatic series in Fig. 2 contains only part
of the diagrams of the exact series in Fig. 1. An upper

estimate (ω) can be found as follows. On physical
grounds, it is clear that, at T = 0, the system contains
only virtual phonons, which interact with an electron
when they are emitted. Since real phonons are absent at
T = 0 (the average occupation numbers for them are
zero), there is no mechanism causing the electron life-
time in the discrete states to be finite in the electron–
phonon system. Mathematically, this is due to the fact
that the signs of the energies of the electron and
phonons in the energy denominators of the expressions
corresponding to diagrams of any order are always neg-
ative and there are no integrals which, according to
Dirac’s rule, have both real and imaginary parts. Thus,
the contribution from any diagram to the full self-
energy is real. A calculation of low-order terms of the
self-energy for the Hamiltonian of the system under
study shows that diagrams with the same maximum
number of phonon lines above the electron line in each
order make comparable contributions, although the
contributions from crossed diagrams are smaller than
those from uncrossed diagrams (Fig. 3).

Therefore, we will obtain an upper estimate of the
full self-energy if the contributions from the diagrams
with the same maximum number of phonon lines over
the electron line are taken to be equal. The sum of these
diagrams (Fig. 4) can be shown to correspond to the
nonterminating continued fraction (with sums or inte-
grals):

Mµ
l

Mµ
u

, <~

Fig. 3. Crossed diagrams.
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(9)Mµ
u ω( ) =  

ϕµµ1
β1( ) 2

ω Eµ1
– Ωβ1

– 2
ϕµ1µ2

β2( ) 2

ω Eµ2
– Ωβ1

– Ωβ2
– …– N

ϕµN 1– µN
βN( ) 2

ω EµN
– Ωβi

…–
i 1=

N

∑–

----------------------------------------------------
µNβN

∑–

-----------------------------------------------------------------------------------------------------------------------------------
µ2β2

∑–

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ .
µ1β1

∑

We note, by the way, that, for a single-level (E) elec-
tron–phonon system (or for a system without interlevel
configuration interaction), expression (9) for the self-
energy is exact. As shown in [6], the self-energy in this
case can be written as the nonterminating continued
fraction:

(10)
M ω( )

=  
ϕ 2

ω E– Ω– 2 ϕ 2

ω E– 2Ω– …– N ϕ 2

ω E– NΩ– …–
----------------------------------------–

--------------------------------------------------------------------------------------–

---------------------------------------------------------------------------------------------------------------------.
PH
This self-energy includes multiphonon processes
for any value of the coupling constant ϕ, and the results
based on this self-energy coincide with those following
from the exact solution found by using the unitary-
transformation method.

The summed continued fractions (8) and (9) have
the same structure and are a lower and an upper esti-
mate of the full self-energy, respectively. An approxi-
mate self-energy can be obtained by replacing the coef-

ficients of the Nth sums in the expressions  and 
(N and 1, respectively) by their arithmetic average (N +

1)/2. Therefore, the approximate expression ( (ω))
of the self-energy is

Mµ
u

Mµ
l

Mµ
a

. (11)Mµ
a ω( ) =  

ϕµµ1
β1( ) 2

ω Eµ1
– Ωβ1

–
3
2
---

ϕµ1µ2
β2( ) 2

ω Eµ2
– Ωβ1

– Ωβ2
– …–

N 1+
2

-------------
ϕµN 1– µN

βN( ) 2

ω EµN
– Ωβi

…–
i 1=

N

∑–

----------------------------------------------------
µNβN

∑–

--------------------------------------------------------------------------------------------------------------------------------------------
µ2β2

∑–

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
µ1β1

∑

This approximate self-energy includes both virtual
multiphonon processes and the interlevel configuration
interaction, and, therefore, it can be used to investigate
the renormalized electronic energy levels and their
phonon replicas in systems differing in the magnitude
of the electron–phonon interaction strength.

The sums in expression (11) for the self-energy are
of the same type, and the calculation procedure can be
+ 23

+ 3 . 3!

+ 4!

+ 4!

+ ...

+ 22

+ 2!

+ 2!

Fig. 4. Series approximating the self-energy.
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easily programmed for a computer. First, we put the
(N + 1)th sum equal to zero and, using a recurrent for-

mula, compute (ω) to the Nth approximation. Next,
the energy levels and their phonon replicas computed in
the Nth and (N + 1)th approximations to the self-energy
are compared. By making computations for progres-
sively increasing values of N, the electronic energy
spectrum of the system can be determined with the
required accuracy. If we retain only the first sum in
Eq. (11), we will have the so-called one-phonon
approximation (corresponding to diagram (a) in Fig. 1);
this approximation is valid in the weak-coupling case
and contains information on the renormalized energy of
the no-phonon electronic state and on the bare one-
phonon replicas (for a multiphonon system).

By successively including the other sums in the self-
energy, we can refine the renormalized electronic
energy levels and phonon replicas calculated in the pre-
ceding cycles and obtain new phonon replicas. As the
coupling constants are increased, we should retain a
progressively larger numbers of terms (sums) in the
continued fraction (11) in order to compute the energy
spectrum with the required accuracy. The convergence

of the calculations of  must be investigated sepa-
rately in each specific case. However, it is well known
that the convergence of expressions like the nontermi-
nating continued fraction in Eq. (11) is more rapid than
that of usual power series.

3. ELECTRONIC ENERGY LEVELS 
AND PHONON REPLICAS IN GaAs, CdSe,
AND CuCl QUANTUM DOTS EMBEDDED 

IN GLASS

The theory developed in the previous section allows
one to find the quasiparticle energy spectra in arbitrary
nanoheterostructures. Here, we present the results of
calculations performed for GaAs, CdSe, and CuCl
quantum dots embedded in glass. These QDs cover a

Mµ
a

Mµ
a
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fairly wide range of electron–phonon interactions
(from a weak one in GaAs to a strong one in CuCl). The
calculated renormalized energies of the electronic
ground states are compared with the results obtained
using other methods [4, 5]. The calculated phonon rep-
licas in the energy spectrum are compared for the first
time with the experimental data on Raman scattering in
CdSe quantum dots incorporated into glass [3].

The physical parameters of the nanosystems used in
the calculations (electronic mass me, dielectric con-
stants ε0 and ε∞, the bulk values of optical-phonon ener-
gies ΩL and ΩT for the QD materials, potential-well
depth U) are listed in the table (the electronic mass in
glass was taken to be equal to its value m0 in vacuum).
The potential-well depths for electrons in QDs are
taken from [11], and the values of the other parameters
are the same as in [8].

For a spherical QD embedded in a dielectric
medium, the electronic energy spectrum renormalized
by the interaction with confined and interface phonons
is characterized by an energy density, which can be
expressed, in terms of the Green’s function [12], as

(12)

Here, the approximate self-energy includes the elec-
tronic energy spectrum of the system and multiphonon
processes. This self-energy was found in Section 2 to be

ρnlm
a ω( ) 2Im Gnlm ω( )–=

=  –2Im ω Enl– Mnlm
a ω( )–{ }

1–
.

Crystal parameters

Medium U, 
meV me/m0 ε0 ε∞

ΩL, 
meV

ΩT, 
meV

CdSe 1820 0.13 9.3 6.1 26.54 21.49

GaAs 2028 0.067 12.9 10.9 36.2 33.3

CuCl 1100 0.504 7.9 3.61 35.54 17.33

Glass 0 1 6.0 – – –
. (13)Mnlm
a ω( )

Φnlm

p1l1m1 λ1
' l1

' m1
'( )

2

ω Ep1l1
– Ωλ1' l1'

– …–
N 1+

2
-------------

ΦnN 1– lN 1– mN 1–

pNlNmN λN
' lN

' mN
'( )

2

ω EpNlN
– Ωλ i' li'

i 1=

N

∑– …–

-----------------------------------------------------------
pNlNmN

λN' lN' mN'

∑–

-----------------------------------------------------------------------------------------------------------------------------------------------
p1l1m1

λ1' l1' m1'

∑=
In Eq. (13), we explicitly indicated the dependence
of the coupling constants on the quantum numbers (n,
l, m), in accordance with Eq. (2). Analytical expres-
sions for the coupling constants were derived and used
in [6, 7]. Those expressions, as well as the expressions

for the energy density (ω) and the self-energyMnlm
a

(λlm), allow the following general conclusions

to be drawn.

Since the electron–phonon interaction at T = 0 takes
place only in the process of emission of L and I
phonons, expression (13) for the self-energy has no
finite imaginary part for any energy; therefore, the

Φn1l1m1

n2l2m2
3
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spectral lines described by Eq. (12) are δ-function
peaks, whose positions (in energy units) are given by
the dispersion relation

(14)

Solution of Eq. (14) gives the renormalized energy
spectrum of the system, i.e., the electronic energy levels

 and their NLth L-phonon, NIth I-phonon, and com-

bined (NL, NI) phonon replicas ( ), ( ), and

( ), respectively.
Due to the electron–phonon interaction, the elec-

tronic energy levels shift by ∆nlm and their phonon rep-

licas  arise, defined by

(15)

As seen from expression (13) for the self-energy, the
electron–phonon interaction removes the degeneracy
with respect to the magnetic quantum number m; there-

ω Enl– Mnlm
a ω( )– 0.=

Ẽnlm

Ẽnlm
NL

Ẽnlm
NI

Ẽnlm
NL NI,

∆nlm

NL NI,

∆nlm Ẽnlm Enl,–=

∆nlm

NL NI,
Ẽnlm

NL NI,
Enl NL I, Ωl I,+( ).–=
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P

fore, the lth purely electronic energy level splits into l + 1
levels for each value of l.

Another general conclusion is drawn from the fact
that there are no interface phonons in spherically sym-
metric states (l = m = 0) [6, 7, 13] and electrons in such
states do not interact with I phonons in other states (due
to the symmetry of the coupling constants); therefore,
only L-phonon replicas will arise for the electronic
energy levels corresponding to the spherically symmet-
ric states.

Before discussing the renormalized spectra of spe-
cific nanoheterostructures, we note that, in a real QD,
the potential-well depth is finite and, therefore, summa-
tion over the quantum number p in calculating the elec-
tronic self-energy covers not only the discrete energy
spectrum (n = 1, 2, …) but also the continuum (0 ≤ k <
∞), i.e.,

(16)

The presence of a continuous spectrum makes the
inclusion of electron–phonon interaction and numerical
computations much more complicated. However, the
continuum should be taken into account, because, as
computations show, its contribution to the renormalized
characteristics of the energy spectrum is larger than
10%, irrespective of the electron–phonon interaction
strength.

Now, we discuss the results of computing the elec-
tronic energy spectra renormalized by interaction with
phonons performed on the basis of self-energy (13) for
GaAs, CdSe, and CuCl quantum dots embedded in
glass. The calculated ground-state energy shifts (∆ =
∆100) as a function of the radius r0 of QDs of these three
types are shown in Fig. 5 by thick and thin solid lines
for finite and infinite potential-well depths, respec-
tively. For the sake of comparison, Fig. 5 also shows the
dependences of ∆ on r0 calculated using the Lee–Low–
Pines unitary-transformation method [8] (long-dashed
lines), adiabatic approximation [8] (short-dashed
lines), and perturbation theory [5] (dotted lines).

It can be seen from Fig. 5 that, in the case of a poten-
tial well of an infinite depth, our method and the Lee–
Low–Pines method give similar results for the energy
shift for any QD size. In the more realistic case of QD
potential wells of a finite width, the dependence of the
energy shift on the QD radius is radically different; our
calculations (Fig. 5) show that, in this case, a decrease
in the QD size causes the energy shift to decrease (as
one might expect on physical grounds) rather than
increase. Indeed, as the QD size is decreased, the elec-
tronic energy level in the potential well shifts upward
and the electron becomes less localized. As a result, the
electron–phonon interaction becomes weaker (irre-
spective of the strength of the polarization field, which
is confined to the QD boundary) and the energy shift
decreases in absolute value. Therefore, the dependence
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of ∆ on r0 found in [5, 8] for small values of the QD
radius (r0 ≤ 50 Å) is inadequate; this is not due to the
inadequacy of the methods applied but is rather due to
the infinitely deep potential-well model inadequately
describing real nanosystems with small semiconduct-
ing QDs incorporated into a dielectric medium.

In GaAs and CdSe quantum dots, the electron–
phonon coupling is fairly weak; therefore, the contribu-
tions from I and L phonons to the shift ∆ are additive,
∆ = ∆L + ∆I. The relative values of these contributions
are seen from the insets to Figs. 5a and 5b, where the
contribution from interface phonons to the energy shift
(∆I) is shown as a function of r0. It is seen that the con-
tribution from I phonons is an order of magnitude
smaller than that from L phonons. In CuCl quantum
dots, the electron–phonon coupling is fairly strong;
therefore, the contributions from I and L phonons are
not additive and cannot be separated.

Expression (13) for the self-energy includes virtual
multiphonon processes and, hence, allows one to calcu-
late not only the renormalized energy level of the no-
phonon ground state but also its phonon replicas.
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(c) Ma and Ml as a function of frequency ω for r0 = 19 Å.
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Figures 6 and 7 show the frequency dependences of
the calculated self-energies Ma(ω) and Ml(ω) (Figs. 6c,
7c), the calculated energy densities ρa(ω) and ρl(ω)
(Figs. 6b, 7b), and the experimental Raman scattering
intensity IR(ω) (Figs. 6a, 7a) [3] for a nanosystem con-
sisting of CdSe quantum dots incorporated into glass
for two values of the QD radius, r0 = 19 and 40 Å. It can
be seen from these figures that the L-phonon replicas

( ) calculated from the self-energy Ml(ω) given by
Eq. (8) are in rather poor agreement with the experi-
mental data and the disagreement becomes progres-
sively worse as the phonon replica energy increases.
The calculations based on the approximate self-energy
Ma(ω) agree with the experimental data for any phonon
replica energy.

According to the theory developed above, an elec-
tron in the S state (l = 0) does not interact with interface
phonons in l ≠ 0 states (interface phonons cannot be in
the S state). Therefore, I phonons contribute only to the
energy shifts of the renormalized ground state and of its
L-phonon replicas (as seen from Figs. 6, 7), but the
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I-phonon replicas are absent because there is no direct
interaction between an electron in the S state and I
phonons. An electron in an l ≠ 0 state can interact with
an I phonon in the same state. Therefore, such electronic
states must be accompanied by I-phonon replicas.

The results presented above are valid for a QD of
ideal spherical shape. In actual systems, the shape of
QDs can differ from spherical to a greater or lesser
extent and, hence, the electronic ground state can be a
superposition of the S and l ≠ 0 states. In this case, an
electron in the ground state directly interacts with I
phonons (l ≠ 0) and I-phonon replicas of the ground
level can arise. It is clear that the larger the deviation of
the QD shape from spherical, the larger the contribution
from the l ≠ 0 states to the wave function of the electron
in the ground state and the stronger the interaction of
the electron with I phonons, which should be mani-
fested experimentally by an increase in the intensity of
I-phonon replicas at T ≠ 0.

The arguments presented above can qualitatively
explain the experimental Raman scattering spectra [3].
Indeed, the absence of I-phonon replicas in the experi-
mental spectrum presented in Fig. 6a for CdSe quantum
dots embedded in glass indicates that the shape of the
QDs under study is close to spherical. The spectrum
presented in Fig. 7a exhibits the first I-phonon replica,
faintly visible against the background, which may indi-
cate that the QD shape in this case is different from
spherical. A consistent theory of the electron–phonon
and electron–exciton interactions and of the electronic
Raman scattering spectrum in nonspherical QDs
embedded in a dielectric medium will be presented in
our future publications.
PH
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Abstract—The nonlinear absorption in copper nanoparticles contained in glass matrices is investigated using
the Z-scan technique at the wavelength of a picosecond Nd : YAG laser (λ = 1064 nm). The experimental data
obtained for copper nanoparticle–containing composites synthesized through ion implantation are analyzed. It
is demonstrated for the first time that, upon exposure to laser radiation at frequencies outside the range of sur-
face plasma resonance, the nonlinear absorption in metallic particles can be caused by the two-photon effect.
The optical limiting due to two-photon absorption is discussed for composites containing copper particles.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last twenty years, composite materials
based on dielectrics containing metallic nanoparticles
have been the subject of extensive investigations in the
field of nonlinear optics [1–5]. Moreover, research in
this direction continues to attract considerable attention
of many physicists [6–10], because these materials hold
promise for application both in optical switches with an
ultrashort response [9] and in optical limiters embody-
ing the specific features of nonlinear absorption in their
operation [7, 10]. The dielectric composites containing
metallic nanoparticles possess high third-order nonlin-
ear susceptibilities χ(3), which are responsible for the
optical Kerr effect, especially in the case when the fre-
quency of laser radiation lies in the spectral range of
linear selective absorption due to surface plasma reso-
nance in metallic nanoparticles. This stems from the
fact that the nonlinear response of nanoparticles is most
pronounced under resonance excitation of free elec-
trons involved in these particles, which is observed at
surface plasma resonance frequencies. It is known that
the frequencies of surface plasma resonance in nano-
particles of different metals embrace a fairly wide spec-
tral region (from UV to near-IR), depending on many
factors (such as the metal type; the shape, structure, and
size of particles; and the properties of the surrounding
dielectric matrix). For example, in the case of spherical
particles, the location of the surface plasma resonance
peak within the quasi-static approximation can be
determined by the relationship [11]

(1)ε1 ωp( ) 2εm ωp( )+ 0,=
1063-7834/03/4507- $24.00 © 21355
where ε1 is the real part of the permittivity of the metal-
lic particle (the imaginary part of the permittivity satis-
fies the inequality ε2 ! 1), εm is the permittivity of the
surrounding matrix, and ωp is the frequency of surface
plasma resonance in the particle. It follows from rela-
tionship (1) that the surface plasma resonance peak of
copper nanoparticles lies in the visible spectral range
(at approximately 600 nm).

A large number of studies concerned with the non-
linear optical characteristics of the composite materials
under consideration have been performed with lasers
operating at frequencies that correspond to the spectral
range of the surface plasma resonance in metallic parti-
cles [3, 4, 8]. In particular, Serna et al. [9] studied com-
posite layers based on copper clusters incorporated into
Al2O3. The nonlinear absorption coefficient β was
examined using the Z-scan technique at a wavelength
of 596 nm (the surface plasma resonance in copper
clusters is observed at 590 ± 5 nm). The nonlinear
absorption coefficient β was measured as a function of
the pumping intensity of a dye laser (τ = 6 ps). It was
established that the value of β varies from 0.8 × 10–4 to
0.2 × 10–4 cm W–1 with an increase in the intensity from
2 × 107 to 2 × 108 cm W–2. In [12], the spectral depen-
dence of the third-order nonlinear susceptibility χ(3) in
composites formed by silver nanocrystals in the BaO–
B2O3–P2O3 glass was investigated by the degenerate
four-photon mixing and Z-scan techniques with the use
of femtosecond laser radiation in the visible range. The
maximum value of the imaginary part of χ(3) was exper-
imentally found to be equal to –1.5 × 10–10 CGSE in the
vicinity of the peak of the surface plasma resonance in
003 MAIK “Nauka/Interperiodica”
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silver nanocrystals (420 nm). It was demonstrated that
the imaginary part of χ(3) is positive in the wavelength
range 441–576 nm and negative in the range 385–
437 nm.

The manifestation of surface plasma resonance in
nanoparticles provides a means for examining compos-
ites with these particles at frequencies of laser radiation
such that nonlinear responses reach maximum values.
However, from the viewpoint of actual applications of
such materials in practice, it should be remembered that
currently available and practically used Nd : YAG (λ =
1064 nm), Ti : Al2O3 (λ = 800 nm), and other lasers
operate at strictly fixed frequencies. Therefore, when
designing and searching for new optimum materials
suitable for complex use in existing laser systems, it is
necessary to investigate the nonlinear optical properties
of composite materials not only in the spectral range of
the surface plasma resonance in metallic particles but
also at specific frequencies of commercial lasers.

In this work, the nonlinear absorption in composites
based on glasses with copper nanoparticles synthesized
through ion implantation were investigated by the Z-
scan technique at the wavelength of a picosecond Nd :
YAG laser (λ = 1064 nm). The experimental results
obtained were used to estimate the optical limiting in
the samples. The possible fields of application of the
studied materials were discussed.

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

Silicate glass SiO2 (SG, Heraeus) and soda–lime–
silica glass (SLSG, Societa Italiana Vetro) with a homo-
geneous composition of the chemical components
(70 at. % SiO2, 20 at. % Na2O, 10 at. % CaO) were used
as substrates for preparing composite materials. The
refractive indices n0 of silicate and soda–lime–silica
glasses were 1.5 and 1.54, respectively. The glasses
were prepared in the form of plates 2 × 2 cm in size. The
thicknesses of the plates were equal to 1.05 mm for sil-
icate glass and 3.1 mm for soda–lime–silica glass. The
implantation was performed with Cu+ ions at an energy
of 60 keV, a dose of 8.0 × 1016 ions/cm2, and an ion cur-
rent density of 10 µA/cm2. The glasses were cemented
to a massive metal plate with a heat-conducting paint.
The temperature of the metal plate was controlled and
carefully regulated using a system composed of a resis-
tance heater and a gas cooler. The plate temperature
during the implantation was approximately equal to
40°C. The mean size of the metallic particles synthe-
sized was estimated with the use of x-ray reflectometry
in an angular dispersive mode [13]. The composite
samples were analyzed by grazing-incidence small-
angle x-ray scattering (GISAXS). The optical transmit-
tance was measured on a Perkin-Elmer Lambda 19
double-beam spectrophotometer in the wavelength
range 300–1100 nm.
P

The nonlinear optical characteristics of the samples
were investigated on λ a Z-scan setup with an open
aperture. The experimental scheme was similar to that
described in our previous work [14] and made it possi-
ble to examine the nonlinear absorption in the samples.
The output parameters of Nd : YAG laser radiation were
as follows: pulse duration, 35 ps; pulse energy, 1 mJ;
and λ = 1064 nm. The laser radiation was focused on a
sample through a lens with a focal distance of 25 cm.
The beam diameter in the focal waist was equal to
150 µm. The studied samples were transferred in steps
of 2 mm along the Z optical axis when scanning the
focal region. The fluctuations of the laser energy from
pulse to pulse did not exceed 10%. The radiation energy
of single laser pulses was recorded with a calibrated
FD-24K photodiode and measured on a V4-17 digital
voltmeter. Calibrated neutral filters were used for mea-
suring the laser radiation energy. The signal from the
second FD-24K photodiode, which was positioned at a
distance of 50 cm from the focal region, was sent to the
V4-17 digital voltmeter. This distance was chosen such
that the detector accumulated the total radiation passed
through the sample. In order to eliminate the effect of
instability of the output energy laser parameters on the
results of measurements, the signal detected by the sec-
ond photodiode was normalized to the signal detected
by the first photodiode. The scheme with an open aper-
ture enabled us to determine the nonlinear absorption
coefficient.

3. RESULTS AND DISCUSSION

In the course of implantation, metallic nanoparticles
nucleate and grow in the glass when the concentration
of metal atoms exceeds the solubility limit, which, in
turn, is determined by an ion dose of the order of
1016 ions/cm2 at an ion energy of 60 keV [15, 16]. In the
present work, the formation of metallic nanoparticles
was revealed by x-ray diffraction and optical spectros-
copy. The GISAXS measurements made it possible to
estimate the mean size of spherical nanoparticles at
3.4–4.5 nm and showed that nanoparticles are charac-
terized by a sufficiently narrow size distribution [8]. At
the given implantation energy, metallic particles in the
glasses are located at a depth of no more than 60 nm [17].

The formation of nanoparticles is confirmed by the
appearance of selective absorption bands with minima
at wavelengths of 550–600 nm in the optical transmit-
tance spectra of the implanted glasses (Fig. 1). These
bands are associated with the surface plasma resonance
in copper particles [11]. Depending on the ion implan-
tation conditions, the incorporation of accelerated ions
into silicate glasses leads to the generation of radiation-
induced defects, which can initiate reversible and irre-
versible transformations in the glass structure [16].
This can result in structural imperfections of different
types, such as the generation of extended and point
defects, local crystallization and amorphization, the
formation of a new phase either from atoms involved
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003



        

NONLINEAR ABSORPTION IN DIELECTRIC LAYERS 1357

                                               
the glass structure or from implanted ions, etc. In par-
ticular, the formation of metallic particles in the glass
brings about an increase in its volume and the genera-
tion of internal stresses within an implanted layer. The
radiation-induced defects are responsible for an
increase in the absorption in the range of the UV funda-
mental absorption edge in the spectrum of the glass. In
our case, this effect can be observed in the short-wave-
length range of the optical transmittance spectra dis-
played in Fig. 1. It should be noted that, in this work, all
nonlinear optical investigations were performed upon
exposure of the samples to laser radiation at a wave-
length of 1064 nm, which lies far from the UV spectral
range of the linear absorption attributed to the surface
plasma resonance and interband transitions in metallic
particles and glasses. For this reason, in what follows,
the contributions associated with interband transitions
and radiation-induced defects will be eliminated from
the analysis of the experimental results.

Figure 2 shows the experimental dependences of the
normalized transmittance measured for both glasses
containing copper nanoparticles in the scheme with an
open aperture. Recall that the measurements carried out
in this scheme make it possible to determine the nonlin-
ear absorption coefficient β. It can be seen from Fig. 2
that the experimental dependences exhibit specific fea-
tures inherent in nonlinear absorption: the normalized
transmittance decreases as the focal point is
approached and reaches a minimum at z = 0. Each point
in the graphs was obtained by averaging over the values
measured for 40 pulses. The scatter of the experimental
points in the graphs is caused, to some extent, by the
energy instabilities and, for the most part, by the time
instabilities of laser radiation.

The nonlinear absorption coefficient β of composite
materials can be determined from the relationship for
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Fig. 1. Optical transmittance spectra of (1) SG, (2) SLSG,
(3) SG : Cu, and (4) SLSG : Cu samples.
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the normalized transmittance, which, in the case of the
scheme with an open aperture, can be written in the
form [18]

(2)

Here, q(z) = βI(z)Leff is the laser beam parameter, Leff =
(1 – e–αL)/α is the effective optical path in the sample,
L is the sample thickness, α is the linear absorption
coefficient at the laser radiation wavelength, and I(z) is
the intensity of the light passed through the sample as a
function of its position along the z axis. The parameter
q(z) describes the propagation of the laser beam in the
material, because the following relationship holds:

(3)

where P(z) = z[1 + ( )] is the radius of the wave
front curvature in the z direction, z0 = kw2/2 is the dif-
fraction length of the beam, k = 2π/λ is the wave vector,

∆φ = ∆Φ0/(1 + z2/ ), w(z) = w0(1 + z2/ )2 is the beam
radius at the point z, and w0 is the beam radius at the
focal point (at a level of e–2).

At z = 0 (focal plane), the parameter q(0) = q0 is
defined by the expression

(4)

where I0 = I(0).
From formulas (2) and (4), we obtain

(5)

where T0 is the minimum normalized transmittance in
the focal plane in the scheme with an open aperture.
Expression (5) permits us to determine the nonlinear
absorption coefficient β. The values of β calculated in
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this way from the experimental data for the SLSG : Cu
and SG : Cu composites are equal to 3.42 × 10–6 and 9 ×
10–6 cm W–1, respectively. As can be seen, the nonlinear
absorption coefficients for these composites differ by a
factor of 2.63.

Let us now consider the possible mechanisms of
nonlinear absorption in the studied media with metallic
nanoparticles. In order to compare correctly the nonlin-
ear absorption coefficients β for the SLSG : Cu and
SG : Cu composites, it is necessary to take into account
the linear absorption coefficients α for layers with copper
nanoparticles in different matrices (αSG:Cu = 9340 cm–1

and αSLSG:Cu = 5800 cm–1). By assuming that the thick-
nesses of the layers with nanoparticles in the studied
glasses are virtually identical (~60 nm) [17], we nor-
malize the nonlinear absorption coefficient β to the lin-
ear absorption coefficient α for the relevant composite
(G = β/α). As a result, we obtain the parameters
GSG:Cu = 9.64 × 10–10 cm2 W–1 and GSLSG:Cu = 6.73 ×
10−10 cm2 W–1, which differ by a factor of 1.432. To
account for this discrepancy between the parameters G
for different samples, proper allowance must be made
not only for the difference in the linear absorption coef-
ficients α but also for the specific features in the loca-
tion of the surface plasma resonance peaks attributed to
copper nanoparticles. As can be seen from Fig. 1, the
surface plasma resonance peak assigned to metallic
particles is observed at 565 nm (ωp = 17699.1 cm–1) for
the SG : Cu composite and at 580 nm (ωp =
17241.4 cm–1) for the SLSG : Cu composite. Now, we
assume that, in our systems, there can occur a two-pho-
ton resonance related to the surface plasma resonance.
It is known that, in the range of excitations and their
associated transitions in nonlinear systems, the optical
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P

nonlinearities become more pronounced with a
decrease in the detuning of the frequency from the res-
onance (in our case, two-photon) excitation [19]. In our
experiment, the frequency detuning should be treated
as the difference between the frequency of the surface
plasma resonance and the frequency of two photons of
the laser radiation used (ω20 = 18 797 cm–1). The differ-
ence in the location of the surface plasma resonance
peaks for copper nanoparticles in the SG and SLSG
composites can be estimated from the following ratio:

(6)

This value is in qualitative agreement with a ratio of
1.432 between the nonlinear absorption coefficients β
normalized to the linear absorption coefficients α.

Therefore, we can draw the following inferences:
(1) In the near-IR range, the large nonlinear absorp-

tion coefficients determined experimentally for glasses
containing copper nanoparticles are explained by the
surface plasma resonance in metallic particles.

(2) The locations of the surface plasma resonance
peaks attributed to copper nanoparticles determine the
intensity of two-photon absorption in the studied com-
posites at a wavelength of 1064 nm.

Note that the possibilities of using two-photon
absorption associated with the surface plasma reso-
nance in silver colloidal particles in solutions were
demonstrated earlier in [14, 20].

When analyzing the results obtained in the present
work, it is expedient to dwell on the possible fields of
practical application of the studied composites. As is
known, media with nonlinear (in particular, two-pho-
ton) absorption are very promising as materials for
optical limiters, which can serve, for example, for the
protection of eyes and highly sensitive detectors against
intense optical radiation. The majority of studies in this
field have been performed using nanosecond laser
pulses. In this case, the main mechanisms responsible
for nonlinear effects are associated with the reverse sat-
urable nonlinear absorption (fullerenes and organic and
metalloorganic compounds) and nonlinear scattering
(solutions of colloidal metal aggregates). Picosecond
and subpicosecond laser pulses have been used only to
examine the optical limiting in media belonging prima-
rily to semiconductor materials (two-photon absorption
and strong nonlinear refraction).

Since two-photon absorption at a wavelength of
1064 nm is observed in the SG : Cu and SLSG : Cu
samples, it is of interest to investigate the optical limit-
ing in these composites in the scheme with an open
aperture. In the theoretical analysis, it was assumed that
the sample is located in the region corresponding to a
minimum transmittance, i.e., in the focal plane of a
beam (z = 0). The nonlinear absorption was studied
experimentally at an operating intensity of 1010 W cm–2.
The breakdown intensity for samples containing copper
nanoparticle is equal to 6 × 1010 W cm–2. On this basis,

M ω20 ωp
SG:Cu

–( )
1–
/ ω20 ωp

SLSG:Cu
–( )

1–
1.42.= =
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003



NONLINEAR ABSORPTION IN DIELECTRIC LAYERS 1359
the upper limit of the intensity for theoretical estimates
was taken equal to 5 × 1010 W cm–2. With the use of the
linear and nonlinear (two-photon) absorption coeffi-
cients, we obtained the dependences of the normalized
transmittance on the laser radiation intensity (Fig. 3). It
can be seen from Fig. 3 that, at the maximum intensity,
the SG : Cu composite is characterized by an approxi-
mately fifteenfold limiting, whereas the SLSG : Cu
composite exhibits an approximately threefold limit-
ing. Consequently, these composites can serve as non-
linear materials for optical limiting. It is clear that the
SG : Cu composite is more preferable from the practical
standpoint.

4. CONCLUSIONS

Thus, we experimentally investigated the nonlinear
optical characteristics of silicate glasses with copper
nanoparticles incorporated through ion implantation.
The nonlinear absorption coefficients for glasses con-
taining copper nanoparticles were measured using the
Z-scan technique. It was demonstrated that the nonlin-
ear absorption can be associated with two-photon
absorption at a wavelength of 1064 nm. The optical
limiting was analyzed for the composite materials stud-
ied. It was predicted that the SG : Cu composite is char-
acterized by a 15-fold limiting.
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Abstract—The behavior of the optical-orientation signal under resonant optical excitation of localized excitons
in quantum wells with semimagnetic layers was studied both experimentally and theoretically. The most
remarkable experimental observation made in this study is the increase in the degree of polarization of the quan-
tum well radiation in the conditions in which the Hanle effect is observed. The behavior of magnetically
induced circular luminescence polarization in a slightly tilted field (quasi-Voigt geometry) also appears
unusual. Possible specific contributions to the optical exciton orientation in semimagnetic nanostructures are
discussed. A theoretical model is proposed which, while being based on the well-known concepts of collective
spin dynamics of magnetic ions in the exchange field of a photoexcited hole, takes into account fluctuations of
the local magnetization. The calculations agree quantitatively with experiment for reasonable values of the
parameters. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the 1920s, at the dawn of optical spectroscopy,
Wood and Hanle discovered that a magnetic field can
act on the polarization of resonance fluorescence of
mercury and sodium vapors. A systematic investigation
of the relevant phenomena was initiated by the studies
of Kastler, which laid the foundation for the method of
optical pumping (optical orientation) [1]. In optical-
pumping experiments, the circular polarization of sec-
ondary luminescence disappears if the emitting
medium is placed in a transverse magnetic field. The
depolarization of radiation in a transverse magnetic
field was called the Hanle effect.

Progress reached in the methods of optical pumping
in solids made the Hanle effect a major tool for probing
the optical orientation of spins, and this effect has been,
for a long time, nearly the only possible way to study
fast spin evolution in crystals [2]. In the classical ver-
sion of the Hanle effect applied to semiconductors, the
degree of photoluminescence polarization in zero mag-
netic field and the halfwidth of the depolarization curve
make it possible, given the g factor of conduction band
electrons, to derive their lifetime and spin relaxation
time. In other cases, the shape of the Hanle depolariza-
tion curve may contain information on carrier and non-
equilibrium spin transport, diffusion, photon reemis-
sion, and surface recombination [3, 4]. Hanle curves do
not always exhibit a monotonic decay of the degree of
polarization; indeed, there have been observations of
oscillating depolarization in cascade processes [2, 5]
and even of a temporary recovery of the original polar-
ization in the conditions where the external field can-
cels the nuclear exchange field [2, 6].
1063-7834/03/4507- $24.00 © 21360
The present communication deals with Hanle curves
of a specific type which are frequently observed in
CdTe/(Cd,Mn)Te or (Cd,Mn)Te/(Cd,Mg,Mn)Te quan-
tum wells (QWs) containing Mn magnetic ions. The
strongly anisotropic g factor of heavy holes in such
QWs favors unusual collective dynamics of the exciton
and manganese spins in a magnetic field applied paral-
lel to the QW plane. Starting from the mid-1990s, var-
ious manifestations of these dynamics were revealed in
experiments on multiple spin-flip scattering of light by
manganese ions [7], ultrafast magnetization oscilla-
tions detected using a pump probe with an ultrahigh
time resolution [8–11], and energy transfer from the
Zeeman to magnetic-polaron reservoir [12]. A theoret-
ical consideration of the spin dynamics in this system
can be found in [13].

That such systems could exhibit, under the Hanle
effect conditions, an increase in the degree of polariza-
tion in place of depolarization, i.e., a “negative” or
anomalous Hanle effect (AHE), was first reported in
[14]. This effect was qualitatively explained as being
due to the fact that the manganese ion magnetization
induced by an external magnetic field leaves the QW
plane as a result of precession in the net effective mag-
netic field (external field + the exchange field of a pho-
toexcited hole) [14, 15]. We are still following, in gen-
eral terms, this interpretation.

It has been established in recent years that the AHE,
rather than being a specific property of one sample, is
frequently observed (under resonance photoexcitation)
in QWs with semimagnetic layers and that the magnetic
ions may reside both in the QW and barrier layers, with
the manganese concentration varying over a broad
003 MAIK “Nauka/Interperiodica”
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range. On the other hand, development of a model
capable of quantitatively describing the observed
curves required that a proper understanding of the
important part played by thermal fluctuations of the
local magnetization in the photohole spin dynamics in
semimagnetic QWs be attained [16] and was spurred by
an experimental observation of the enhancement of
hole spin relaxation in a transverse magnetic field [9].

The present communication reports on experimental
data obtained on the AHE and related effects in multi-
ple quantum-well structures. A fluctuation-dynamic
AHE model that provides a satisfactory description of
the experiment is also proposed. The theory takes into
account the effect of fluctuations in the local magneti-
zation on the collective spin dynamics of the hole inter-
acting with magnetic ions. While the physical mecha-
nisms underlying the model are not novel, the AHE as
a whole is a new and interesting phenomenon, which
demonstrates, in particular, that the “Voigt configura-
tion” (more specifically, the “Hanle effect conditions”)
and the “luminescence depolarization” are in no way
synonymous.

2. EXPERIMENT

We studied QW heterostructures CdTe/Cd1 – xMnxTe
(x = 0.18) and Cd1 – xMnxTe/Cd1 – x – yMnxMgyTe (x =
0.07, y = 0.29) grown by molecular-beam epitaxy on
(001)InSb and (001)CdTe substrates, respectively. The
CdTe/Cd1 – xMnxTe structures had two QWs each,
which were 40 and 80 Å wide and separated by
Cd1 − xMnxTe barriers 60 Å (sample 1) and 150 Å (sam-
ple 2) wide. The Cd1 – xMnxTe/Cd1 – x – yMnxMgyTe
structure contained five quantum wells 9, 16, 45, 80,
and 300 Å wide (sample 3). The structures were opti-
cally pumped by a tunable Al2O3 : Ti laser. The exciting
light was propagated along the growth axis of the struc-
ture, and the radiation was detected at a small angle to
this axis. The circular polarization of the radiation was
measured with a photoelastic polarization modulator
and a double-channel photon-counting system. The
magnetic field was generated by a superconducting coil
or electromagnet and was applied either parallel to the
growth axis (Faraday geometry) or perpendicular to it
(Voigt geometry).

Because of the existence of an efficient channel of
spin relaxation through exchange scattering from mag-
netic ions in semimagnetic semiconductors and QWs
with semimagnetic layers, their electrons and holes
usually exhibit short spin relaxation times. This makes
observation of the optical spin orientation effect in such
systems under continuous excitation a difficult prob-
lem. Nevertheless, the optical orientation signal can be
detected by properly varying the relative magnitude of
the lifetime and spin relaxation time. This can be
attained either by choosing sufficiently wide QWs with
manganese ions in the barriers to reduce the carrier
wave function penetration depth into the magnetic lay-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
ers [17, 18] or by reducing the lifetime efficiently by
providing carrier escape by tunneling through a semi-
transparent barrier [14, 19]. Even so, the degree of
luminescence polarization is usually small (on the
order of a few percent).

It should be pointed out that semiconductors con-
taining magnetic ions can exhibit a specific pseudody-
namic effect of optical exciton orientation, which was
discovered and explained by Warnock and coworkers
[20]. The existence of this effect in size-quantized
structures was reported in [21]. The Warnock orienta-
tion effect is due to the splitting of excitonic states by
the exchange fields of magnetic fluctuations; it differs
from the “traditional” optical orientation in that the
exciton spin polarization produced by light practically
does not change during the exciton lifetime [20, 22].
Optical orientation through the Warnock mechanism
requires resonant excitation of localized excitonic
states; therefore, in the absence of a strong magnetic-
polaron shift, this effect is observed at pump frequen-
cies close to the luminescence light frequency. Reso-
nant excitation of localized excitons can be efficiently
achieved through both the traditional dynamic and the
Warnock mechanism; in these conditions, the question
of the nature of the optical-orientation signal (in a zero
field) should be answered taking into account both
these possibilities. We stress this point, because it is the
resonant excitation that is required to make AHE obser-
vation possible (see below).

Hanle effect experiments made under optical-orien-
tation conditions on QWs with magnetic ions exhibit, in
many cases, the expected monotonic radiation depolar-
ization caused by precession of the average spin of car-
riers (or excitons) in a transverse magnetic field. The
Hanle curve usually has a Lorentzian shape [19], some-
times with the addition of a field-independent part,
which was interpreted in [18] as a hole contribution to
the optical-orientation signal. At the same time, in other
cases, application of a magnetic field in Voigt geometry
brings about, in place of depolarization, enhancement
of the luminescence polarization. The first curve of this
kind was obtained by us in a study of optical orientation
in a 40-Å wide CdTe/CdMnTe QW that was tunneling-
coupled with a 80-Å wide QW (sample 1) [14].
Because of the high tunneling transparency of the inner
barrier, excitons transfer from the 40-Å wide QW to the
neighboring well in a time shorter than that required for
their recombination; therefore, the luminescence emit-
ted from this QW is two orders of magnitude weaker
than that from the 80-Å wide QW. However, when
excited in resonance with localized excitonic states in
the 40-Å wide QW, a secondary luminescence is
observed in the form of a long-wavelength wing near
the laser line (Fig. 1a) and a separate peak spaced from
the latter by the optical phonon energy. The long-wave-
length wing exhibits a structure when excited in a cer-
tain energy region. What we have is actually resonant
scattering of light by excitons. The excitation profile of
the wing nearly coincides with that of the luminescence
3
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spectrum (i.e., it lies in the region of localized excitonic
states), whereas the LO-line excitation profile is shifted
shortward by 18 meV. This result apparently means that
the observed features in the secondary-luminescence
spectrum are accounted for by various intermediate
states; more specifically, in the case of the wing, such
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Fig. 1. Quantum-well emission spectra under excitation in
the region of localized exciton states (T = 2 K) for (a) a
40-Å-wide QW in sample 1 measured in different longitu-
dinal magnetic fields (pump photons "ωex = 1.712 eV) and
(b) a 80-Å-wide QW in sample 3 measured at B = 0 and in
a transverse magnetic field B = 0.5 T (pump photons "ωex =
1.743 eV). Panel (b) also displays an optical-orientation
spectrum obtained in a zero field.

Energy, eV
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intermediate states are the localized excitons and, in the
case of the LO line, most probably quasi-free excitons.
Both features can be observed simultaneously in the
same spectrum (at the same excitation energy) due to
the strong inhomogeneous broadening in the sample.
Application of a magnetic field (both in the Voigt and
Faraday geometry) affects the radiation intensity sub-
stantially (Fig. 1a), which indicates variation of the
density of states (and, hence, of the absorption coeffi-
cient) at the pump frequency because of the giant Zee-
man splitting. The variation in radiation intensity
depends on the exciting photon energy ("ωex), so that,
for the energy "ωex = 1.712 eV chosen in Fig. 1a, the
intensity of the wing decreases and that of the LO line
increases with increasing magnetic field. When excited
by photons of energy "ωex = 1.721 eV (it is at this
energy that the AHE curves were measured) in a longi-
tudinal magnetic field, the radiation intensity decays
both in the wing and in the LO line. That different fea-
tures of the emission spectrum vary differently in a
magnetic field lends support to the above hypothesis on
the nature of the intermediate states. We shall see that
polarization measurements are likewise in accord with
this conjecture.

If circularly polarized light is used for the pumping,
the radiation also turns out partially polarized. The opti-
cal-orientation signal at the wing decays, as usual [18],
with increasing distance from the laser line, to increase
again near the LO line. The detected signal was not
related to penetration of diffusely scattered laser light
into the monochromator slit. Measurement of the Hanle
effect in the LO line reveals the expected monotonic
depolarization of the radiation (Fig. 2a) approximated
by a Lorentzian. By contrast, a similar measurement
performed in the wing shows a substantial growth in the
degree of circular polarization of the radiation, to be
replaced by polarization decay only in stronger fields
(Fig. 2b). We call the phenomenon of the latter kind the
anomalous Hanle effect. The effect is an odd function
of the field, as should be expected from the experiment
symmetry. The different behavior of polarization in the
wing and in the LO line under a magnetic field lends
support to the hypothesis of these spectral features
being of different natures. A decrease in circular polar-
ization of the exciting light proportionally reduces both
the polarization of radiation in zero magnetic field and
the amplitude of the polarization rise in a magnetic
field. Studies of the spectral response of AHE revealed
that the amplitude of the polarization increase also
decays as one moves away from the laser line. It should
be pointed out, however, that, as follows from the
dependence of the amplitude of the effect on excitation
density (see below), the magnitude of AHE does not
show a distinct correlation with polarization in a zero
field. Note also that the effect does not depend on the
exciton lifetime; indeed, in sample 2, in which the life-
time in the 40 Å wide QW is a few orders of magnitude
longer (the luminescence from both QWs has the same
efficiency), we observed the same magnetic field
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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dependences of the polarization. One might think that
polarization in zero magnetic field and the anomalous
behavior of the magnetic field dependence are not
related in any way with each other and have different
sources. (In the normal Hanle effect, the effect of the
magnetic field on the spin evolution of the carriers
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Fig. 2. (a) Normal and (b) anomalous Hanle effect in a
40-Å-wide QW (sample 1). Emission measurement: (a) in
the LO line and (b) in the wing near the laser line (Fig. 1a).
Panel (b) also plots (filled circles) the magnetic field depen-
dence of radiation polarization obtained under unpolarized
pumping (thermal polarization generated in quasi-Voigt
geometry). Solid curves a Lorentzian profile with halfwidth
∆H = 0.24 T (panel (a)) and theoretical relation, Eq. (15),
with τs0 = 1.6 ps and Ω0 = 0.11 ps–1 (B0 = 0.63 T) (panel (b)).
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responsible for zero-field polarization accounts for the
monotonic decrease in the polarization.)

The AHE in sample 3 is observed in similar condi-
tions, i.e., under excitation into the band of localized
exciton states (Fig. 3). Note that the zero-field radiation
spectrum also has the shape of a wing on the laser line,
with a peak seen to split off in a magnetic field, which
indicates dynamic formation of a hole magnetic
polaron through the mechanism proposed in [12] (see
Fig. 1b). Measurements of the AHE in this sample, per-
formed in various conditions, showed that the degree of
optical orientation in a zero field varies strongly with
the pumping power (Fig. 4a), from zero under strong
pumping (>12 mW) to 10% under weak pumping
(~0.5 mW). At the same time, the AHE is affected by
power variation more weakly (Fig. 4a). Figure 4b illus-
trates more comprehensive measurements of circular
polarization as a function of the magnetic field carried
out at a high excitation power in sample 3. It is known
that, in semimagnetic QWs, high-power optical pump-
ing may give rise to heating of the manganese spin sys-
tem, with absorption in the substrate having been iden-
tified in sample 3 as the main heating channel [23].
Therefore, the inessential changes in the AHE occur-
ring as the pumping is increased can be assigned to a
heating-induced decrease in the magnetic susceptibility
of the manganese system. The nature of the strong
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Fig. 3. Magnetic field dependence of circular radiation
polarization measured in a QW with L = 80 Å (sample 3) in
quasi-Voigt geometry: (1) experimental data for circularly
polarized excitation, (2) same for linearly polarized pumping
(thermal polarization), and (3) difference between data 1 and
2 (an attempt to compensate for the misalignment in geom-
etry).
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dependence of the magnitude of zero-field polarization
on excitation power is more difficult to comprehend.
Because the power dependences, as well as the spectral
response, do not exhibit a distinct correlation between
zero-field polarization and the behavior of the AHE, we
assume in what follows that the AHE is an independent
phenomenon which occurs in magnetic QWs under
experimental conditions favoring the Hanle effect and
which can be accompanied (but not necessarily) by
radiation polarization in a zero field.

Note one more specific feature of AHE experiments.
Such experiments require precise alignment of the
magnetic field with respect to the QW layer plane; oth-
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Fig. 4. Anomalous Hanle effect in a 80-Å-wide QW (sam-
ple 3) measured under different optical-excitation densities:
(a) (1) P = 0.5 and (2) 10 mW; (b) expanded plot for P =
8 mW. Solid curves are theoretical dependences based on
the plots in Eq. (15). For the curve in panel (b), τs0 = 3.1 ps

and Ω0 = 0.04 ps–1 (B0 = 0.2 T).
P

erwise, a small magnetic-field component along the
growth axis z may induce a z component of the magne-
tization, which will give rise to an explosive growth of
“thermal” circular polarization of the radiation. Ther-
mal polarization is observed to exist under both circular
polarized and unpolarized pumping and is enhanced in
QWs with magnetic layers because of the giant spin
splittings of the electrons and holes. Therefore, if the
angle between the field and the QW plane is only a few
degrees, the signal produced by thermal polarization
may turn out comparable to that due to optical polariza-
tion and the AHE.

To combat thermal polarization, we employed a sys-
tem designed to rotate a sample about its surface nor-
mal in the Voigt geometry. At room temperature, the
parallelism of sample fixing on the holder stage can be
monitored by directing the laser beam on the holder
surface, rotating the stage, and following the movement
of the reflected spot on a distant screen. The rotation
system can also be conveniently used for fine positional
adjustment of a sample already immersed in helium.
Experience points to the following typical error in sam-
ple positioning: while the system rotation axis and the
magnetic field direction are perpendicular to each other
with a satisfactory accuracy, the sample axis z is not
parallel to the rotation axis. In these conditions, one can
adjust the magnetic field parallel to the sample surface
(and the QW layer) by rotating the stage properly. The
Voigt geometry precision can be conveniently con-
trolled by exciting the sample with unpolarized light
and trying to zero the thermal polarization signal at an
applied magnetic field. As we shall see, however, the
field applied must not be too strong.

It might seem that the above measures are unneces-
sary because the Hanle effect (including the AHE) and
thermal polarization have different symmetry with
respect to magnetic field inversion: the expected mag-
netic field dependences are even and odd in the field,
respectively. True, the AHE is even in precise Voigt
geometry, and thermal polarization is odd in a slightly
tilted field but only in the case of unpolarized excitation
(Figs. 2b, 3)! If pumping in a tilted field is done with
circularly polarized light, the field dependence of the
polarization cannot be represented as the sum of an
even- and an odd-in-field contribution at all; this is par-
ticularly true for strong fields (Fig. 3). In other words,
the contributions due to the AHE and to the thermal
polarization are not additive. This result is not at odds
with common sense, because the situations with posi-
tive and negative longitudinal field components are not
physically equivalent without simultaneous switching
of pumping from the right- to left-hand polarization [a
manifestation of the (σ, H) invariance]. It appears clear,
however, that AHE measurements should be performed
in as close to the Voigt geometry as possible and, at any
rate, not in fields so high that the AHE curve can no
longer be symmetrized by subtracting the odd-in-field
contribution.
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Interestingly, while pure thermal polarization (pro-
duced by unpolarized pumping) in an inclined field is
odd in field, it exhibits an unexpected behavior in
strong magnetic fields (Fig. 3). As the magnetic field
increases, the longitudinal component of the field also
increases. If only the longitudinal field component
acted on the thermal polarization, the latter would con-
tinue to grow and saturate close to 100%, as occurs in
the Faraday geometry (see, e.g., [24]). Instead, the
polarization increases to a few percent only (the actual
magnitude depends on the field tilt), after which the
growth of the polarization is replaced by its decay. This
behavior of thermal polarization should be assigned to
the presence of a transverse (Voigt) magnetic-field
component. That the growth of polarization with
increasing field transfers to its decay permits the con-
clusion that the Voigt component begins to dominate
over the Faraday component starting at certain fields.
Because the action of the Faraday field component, that
induces thermal polarization is linear in field, the Voigt
component destroying this polarization cannot involve
the transverse g factor of electrons or heavy holes [25]
(because the energies associated with them are also lin-
ear in field). Therefore, it appears probable that the
mechanism of action of the Voigt component is based
on the field-induced mixing of the hole subbands, in
which the hole doublet splitting in weak fields is cubic
in field [26] and which, hence, is capable of overcom-
ing the linearly growing contribution.

Note that it is in the fields in which the state mixing
occurs and thermal polarization decays (Fig. 3) that the
possibility of symmetrizing the AHE curves in a tilted
field (i.e., the additivity of the even and odd contribu-
tions to polarization) breaks down. On the other hand,
judging from the position of the maximum in thermal
polarization in Fig. 3, state mixing occurs in fields of
the same order (slightly higher) as the transition of the
AHE curve from the polarization growth to decay. This
gave us grounds to use the concept of magnetic-field-
induced subband mixing in explaining the polarization
decay in the AHE conditions theoretically.

3. CALCULATION AND DISCUSSION

The main universal features observed in anomalous
Hanle curves are (a) a fast growth of polarization in a
weak field; (b) the passage of polarization through a
maximum, with this maximum value being ρmax ~
0.1 ! 1; and (c) a slower decay of polarization with a
further increase in the field. We take, as a starting point,
the chief qualitative cause for the growth of polariza-
tion, which was pointed out as far back as in [14],
namely, the formation of a longitudinal component
(along the QW normal) of local magnetization as a
result of its precession in the effective magnetic field.

It appears appropriate to recall here the scenario
proposed in [14]of the phenomena bringing about sign
reversal of the Hanle effect, because that interpretation
is pertinent to the present consideration. Circularly
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      200
polarized light resonantly excites localized excitons
with the angular momentum projection |+1〉  (heavy
hole |+3/2〉  and electron |–1/2〉) in the QW. In a zero
magnetic field, the nonequilibrium spin of the electrons
and holes interacts with magnetic ions to relax on a
picosecond scale [9, 10, 27] and, thus, does not live up
to recombination, which occurs on a time scale of hun-
dreds of picoseconds [28, 29]. As a result, the recombi-
nation radiation ends up weakly polarized or entirely
unpolarized. If, however, a magnetic field B = (B, 0, 0)
is applied in the QW plane, a field-induced local mag-
netic moment (LMM) M = (MB, 0, 0) builds up; i.e., the
manganese ion spins undergo an alignment with the
field (along the x axis) to a certain extent in the region
where a localized hole is generated by light. Because
the effective hole exchange field Bp (the polaron field),
directed along the z axis, is added to the external field
B, generation of a hole with a strongly anisotropic g
factor changes the magnitude and direction of the field
acting on M [12, 13]. Due to Larmor precession of vec-
tor M in the net field, the component of this vector
along the z axis becomes nonzero (Fig. 5). Because the
hole g factor has only one large component, gzz, it is the
appearance of the z component in the local magnetiza-
tion that brings about splitting of the |+3/2〉  and |–3/2〉
hole states. As a result, starting from a certain moment
in this evolution, the polarization of holes will be deter-

z

x

y

x

Mf

M

MB
–Bp

+Bp

Fig. 5. Local magnetic moment M induced by an external
magnetic field B in the quantum-well plane (xy) precessing
around an effective field representing the sum of field B and
the hole exchange field Bp (polaron field). Also shown are
trajectories of the magnetic-moment precession about the
upper and (dashed line) lower polaron state. Inset: expanded
fragment of the figure showing the region of M fluctuations.
3
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mined not by their short intrinsic “spin memory” but
rather by the fact that the average hole polarization in
the quasi-static exchange field of magnetic ions is non-
zero.

The process outlined above is actually nothing other
than energy transfer from the Zeeman reservoir (energy
of the magnetic ion interaction with the field) to the
exchange reservoir (energy of the magnetic ion interac-
tion with the hole) or, in other words, dynamic forma-
tion of a hole magnetic polaron [12]. It goes without
saying that the hole acts with its exchange field on the
spins of magnetic ions to reach the magnetic polaron
state in the absence of a magnetic-field as well. In this
case, however, the characteristic polaron formation
time is not the period of manganese magnetic moment
precession in a field of the order of Bp (tens of picosec-
onds) but rather the longitudinal-magnetization relax-
ation time T1, which, in such structures, while being
longer than or on the order of the exciton lifetime [28,
29], is certainly in excess of the precession period.
Therefore, although the final emitting state in a given
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Fig. 6. (a, c, e) LMM phase trajectories plotted using
Eqs. (1) and (2) and (b, d, f) the corresponding hole spin
dynamics. Parameters for panels (a, b): kT = 0.5 meV, τs =
3 ps, T2 = 200 ps, B = 1 T, Bp = 0.6 mT, χ = 50 000 µ/T, and

χ−1(d∆/dB||) = 10–4 meV/µ (reconstruction of the conditions
chosen in [10]). Parameters for panels (c–f): kT = 0.16 meV,
τs = 3 ps, T2 = 45 ps, B = 1 T, Bp = 0.8 T, χ = 100 µ/T, and

χ–1(d∆/dB||) = 0.1 meV/µ (reconstruction of our experimen-
tal conditions). In the cases (c) and (d), the original LMM
orientation is M0 = (χB, 0, 0), and for the (e) and (f) cases,
M0 = (χB, 0, –0.1χB).
P

QW is a polaron even in a zero field, this state forms
slower than in the same QW in a transverse magnetic
field and the original orientation of the hole spin exerts
a weaker effect on the radiation polarization.

While being certainly attractive in its simplicity, the
above purely dynamic scenario is difficult to fit to a
quantitative description of the experimental data.

3.1. Difficult Points in the Dynamic Approach

The collective spin dynamics of a localized hole and
magnetic ions in a transverse field was studied in [10,
13]. We write the dynamic equations in the form

(1)

where T2 and τs are the transverse magnetization relax-
ation and hole spin relaxation times, respectively;
∆(Mz) is the spin (exchange) splitting of the |+3/2〉  and
|–3/2〉  hole states caused by the z component of the local
magnetic moment; kT is thermal energy; and

(2)

is the “vector” Larmor frequency (WB = µgB/", Wp =
µgBp/", µ and g are the Bohr magneton and the manga-
nese g factor (g = 2), and Bp is the z-oriented exchange
field exerted on the LMM by the fully spin-aligned
hole).

In the first of Eqs. (1), we neglected the longitudinal
relaxation. Equation (2) for the field acting on the
LMM is represented in the short correlation time
approximation; since τs the shortest of the various
times, it is assumed that the exchange field of a hole is
proportional to its average polarization. Neglecting
LMM fluctuations, the initial conditions for coupled
equations (1) are as follows: P = 1 and M = (χB, 0, 0),
where χ has the meaning of the magnetic susceptibility
normalized to the hole localization volume.

The equations describing the dynamics of the spin
system considered have solutions of two types.
Depending on the values of the parameters, the phase
trajectories wind either on the external field direction or
on one of the two low-symmetry magnetic polaron
states. The first version corresponds to the weak
exchange field of the hole. In particular, Eqs. (1) closely
approximate the solutions for M presented in [10]. The
solutions of this type (Fig. 6a) apparently satisfy the
conditions of most experiments on ultrafast spin
dynamics measured by the time-resolved Faraday or

dM
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Kerr rotation method [9–11].1 Note that, in these con-
ditions, the average hole spin relaxes to zero (Fig. 6b)
in a time much shorter than the exciton lifetime, so that
in a steady state one may expect the radiation to be
practically entirely unpolarized.

The approach proposed in [16] permitted us to esti-
mate the magnetic polaron parameters of interest from
the experimental data on Zeeman splitting ∆ and the
degree of magnetically induced circular polarization of
the luminescence ρMCPL in a longitudinal field. Estima-
tion made for the original values d∆/dB|| = 10 meV/T
[31] and dρMCPL/dB|| = 5 T–1 (40-Å-wide QW, sample 1)
yields the following values:

(3)

The situation realized in the 80-Å-wide QW in sample 3
is qualitatively similar: for the original values d∆/dB|| =
20 meV/T [12] and dρMCPL/dB|| = 10 T–1, estimation
yields Ep ≈ 4 meV, Bp ≈ 0.4 T, Mp ≈ 160 µ, and Mf ≈ 26 µ.
These figures can be commented on as follows. First,
the equilibrium polaron energy Ep has a sizable magni-
tude (4 meV), whereas the photoluminescence line
obtained in a zero-field experiment does not exhibit the
polaron shift [32]. This argues for slow magnetic-

1 The question of why (for similar samples) Kerr rotation experi-
ments allow their interpretation with a hole exchange field of the
order of 1 mT [10], whereas experiments on cw-excited lumines-
cence and Raman scattering require fields three orders of magni-
tude higher (about 1 T) for their explanation, ([12, 16, 30], see
also below), certainly deserves discussion. This discrepancy was
also pointed out in [10]. We believe that its origin lies in the dif-
ference between the experimental conditions accepted in the two
types of experiments. Estimates based on the data from [10] sug-
gest that the peak power of optical excitation when pumped by
subpicosecond laser pulses is six to seven orders of magnitude
higher and the hole concentration (1010 cm–2) is two to three
orders of magnitude higher than the respective values measured
in stationary experiments. It may be conjectured that, at such high
concentrations, the holes are primarily delocalized and the aver-
age exchange (molecular) field exerted on the manganese ions by
them (which is proportional to the hole concentration) is exactly
three orders of magnitude lower than the polaron field of a local-
ized hole. Considered along these lines, millitesla-scale exchange
fields involved in Kerr rotation experiments have meaning not
only on the average [10] but on the local scale as well. Otherwise,
it would be difficult to explain the linear dependence of the mag-
netization precession frequency on magnetic field in the range of
weak fields (see [10, Fig. 3a]).
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polaron formation T1 (on the exciton lifetime scale)
[29], i.e., for the possibility of neglecting the longitudi-
nal relaxation in Eq. (1). Second, the equilibrium
polaron moment Mp substantially exceeds (by a factor
of 6.5) the fluctuation moment Mf, whose existence is
associated with the smallness of the hole localization
radius [16]. This relation will be employed subse-
quently. Third, the figures presented in Eq. (3) permit
direct estimation of the parameters of the dynamic
model, because the susceptibility is χ = Mp/Bp ≈
100 µ/T and the splitting is ∆(Mz) = (d∆/dB||)(Mz/χ).

By substituting the values thus obtained in to
Eqs. (1) and solving it numerically, one can readily ver-
ify that, in the case of interest to us here, the system
evolves in the polaron regime (Figs. 6c, 6d). The field-
induced magnetic moment relaxes to the direction of
the equilibrium polaron moment (Fig. 6c). The average
hole polarization relaxes very rapidly to a nonzero
value, which is close to unity already in comparatively
low fields (Fig. 6d). Thus, the hole in the final polaron
state is fully polarized, which should correspond to
100% luminescence polarization. The variation in τs by
one or two orders of magnitude does not change the sit-
uation. There is also no factor which could bring about
polarization decay within this model. Because the max-
imum luminescence polarization in our experiments is
ten percent at most, we have to admit that the dynamic
model is invalid for description of the available experi-
mental data.

Note two more points. First, our choice of the values
of T2 was based on the reasoning that the nonuniformity
of the exchange field should be of the order of the
exchange field itself because of the nonuniform density
of the hole wave function in the polaron, so that the
time T2 should be on the order of the LMM precession
period. As the external field increases, the total field
becomes increasingly more uniform, so that transverse
relaxation can slow down somewhat. However, Eqs. (1)
include an additional transverse-relaxation mechanism
that is disregarded in T2. It is related to retardation of
the hole exchange field (because of the nonzero τs).
Therefore, transverse relaxation occurs efficiently
enough even for an infinitely long T2.

The second point provides, in our opinion, the key
to understanding the experimental results. Although the
general pattern of the solutions to Eqs. (1) of interest to
us here and, in particular, the complete average hole
polarization during all of its lifetime are fairly stable
with respect to variation of the parameters of Eqs. (1),
even a slight change in the initial conditions for M may
suffice to transfer the system to another final state
(Figs. 6e, 6f). While this will be again a polaron state,
it will have a negative z component of the local mag-
netic moment, with the oppositely directed hole spin
and, accordingly, negative radiation polarization. One
would have only to take into account fluctuations of the
initial conditions for M, and then part of the polarons
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would be in the spin-up final state and the other part in
the spin-down final state. The polarization of the radia-
tion will now be determined by the balance between the
concentrations (or formation probabilities) of such
polarons.

A direct way to realize this idea could be by averag-
ing the solutions to Eqs. (1) over the initial conditions.
The efficiency of such an approach is, however, ques-
tionable, and its computational complexity only too
obvious, because the equations are not integrable. In
the next section, we formulate a model that permits the
inclusion of LMM fluctuations in a physically more
revealing way.

3.2. Fluctuation-Dynamic Model

To understand the way in which holes created in
states with nonzero LMM fluctuations become distrib-
uted between the final polaron states of two types (spin-
up and spin-down), consider first the case of a suffi-
ciently strong external field (B ~ Bp). Based on the
results obtained in the preceding section, we assume
the holes to separate within the first few picoseconds
after their creation and that, if the LMM starts to pre-
cess in a large circle around one of the polaron states
(Fig. 5), it is finally attracted to this state because of
efficient transverse relaxation and the hole no longer
relaxes in spin.

Figure 7 presents the section of the LMM space by
the Mx = χB plane. The circle conventionally defines the
bounds of scatter of the LMM components transverse
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Fig. 7. Section of the LMM phase space by the plane Mx =
χB (see text and inset to Fig. 5). The critical line (thick
solid) separates the “trapping zones” of the upper and lower
polaron states. Several versions of trajectories are shown:
hole (a) is created in the upper zone and attracted to the
upper polaron state; (b) is created in the lower zone and
attracted to the lower polaron state; (c, d) is created in the
lower zone, crosses the critical surface, and is attracted to
the upper polaron state; or (e) is created in the lower zone
and returns there after two crossings of the critical surface
(reentrant trajectory). The points of hole creation are speci-
fied by circles, and those of spin flip, by stars.
P

to the Mx axis. Thus, the circle confines the possible
positions of the end point of the LMM vector at the
instant of hole creation. Also shown are two critical tra-
jectories (I, II), namely, the trajectories of rotation of
the LMM vector end point around the upper and lower
polaron states which touch the My axis. The critical tra-
jectories are actually circles of large radius centered on
the upper and lower polaron states.2 

The two critical trajectories and the My axis divide
the fluctuation circle into six regions (1–6). Consider
first the case of zero temperature and an infinitely fast
spin relaxation of holes with a highly anisotropic g fac-
tor. In these conditions, immediately after the hole cre-
ation, its spin aligns with the LMM z component in the
region where the hole was borne. As for the LMM, it
may occupy any position at the point of hole creation
within the fluctuation circle. When speaking subse-
quently about “hole creation at a point within the cir-
cle”, we assume that the hole was created in the region
where the LMM is directed exactly as it is at this point
in the circle.

Thus, in the case of instantaneous hole spin relax-
ation, the hole exchange field in the upper half-plane is
always directed upward and the LMMs move along tra-
jectories with a positive curvature (such as trajectory I).
The holes created in regions 1 and 2 drive the LMMs up
from the fluctuation region to eventually form spin-up
polarons. The trajectories of the holes borne in region 3
cross the My axis with a spin flip; the LMMs transfer to
trajectories with a negative curvature (as trajectory II)
and leave the fluctuation region downward. Similarly,
the final state of the holes created in the lower semicir-
cle in region 6 is the spin-up polaron state and of those
borne in regions 4 and 5, the spin-down state. Thus, in
the case of instantaneous hole relaxation, half of the
fluctuation realizations (regions 1, 2, 6) result in the
formation of spin-up polarons and the other half
(regions 3–5) evolve to the lower polaron state. The net
radiation polarization is zero. The “upper” zone (1, 2,
6) and the “lower” zone (3–5) are separated from each
other by a critical line (a critical surface in space) made
up of parts of critical trajectories I and II.

Let us now take into account the finiteness of the
hole relaxation time. Viewed from a qualitative stand-
point, this means that, if holes are created with spin up,
their spin do not flip for a time on the order of τs even if
the holes are created on the lower half-plane. Within
this time interval, therefore, the LMMs move along
type-I trajectories on the lower half-plane. As a result,
the LMMs from regions 3–5 have a certain chance of
reaching region 6 before the hole relaxation, i.e., to
transfer from the lower to the upper zone, which corre-
sponds to a change of the final state. It is easy to verify
that the radiation polarization in such a scenario will be

2 The critical trajectories do not lie in the Mx = χB plane; therefore,
parts of these trajectories are given in Fig. 7 as projected onto the
plane in the form of arcs of ellipses with the semimajor axis
directed along My.
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twice the fraction of the LMMs that passed into the
upper zone.

This reasoning permits us to reduce the AHE prob-
lem to a calculation of the probability flux through the
critical surface separating regions 5 and 6. Assuming
the LMM fluctuations to obey a Gaussian distribution

(4)

(κ = χ"/µg), one can calculate the probability flux from
regions 3–5 through the boundary as

(5)

where trel is the time accepted for the hole spin relax-
ation. A few words on the meaning of this parameter
would be appropriate at this point. In our theory, trel, the
time taken to cross the fluctuation region, plays an
important part similar to that of lifetime in the tradi-

tional theory of optical orientation [2]. The quantity 
characterizes the rate of trapping of an optically ori-
ented photohole to a polaron state. After the trapping,
spin relaxation stops, i.e., the hole preserves its spin.
Thus, the spin relaxation of holes competes with trap-
ping into a polaron state, whereas in optical orientation
it competes with recombination. As already mentioned,

the spin relaxation rate  in semimagnetic systems is
very high. The optical-orientation signal in the AHE
conditions increases because the hole trapping through
the fluctuation-dynamic mechanism turns out to be a
sufficiently fast process.

The time trel for holes created in regions 4 and 5 is
the total time of LMM motion from the point of cre-
ation M0 to that of crossing the critical surface (by a
type-I trajectory). In this communication, we invariably
neglect the possibility of hole spin flip from the state
“along” the LMM to that in the opposite direction. In
view of the typically large values of hole spin splitting
in semimagnetic semiconductors (substantially higher
than the temperature), this conjecture should probably
be considered reasonable. However, it is along the
LMMs that the holes created in region 3 are spin
aligned from the instant of their creation until they
cross the Mz = 0 plane. Therefore, to be consistent in
our reasoning, we have to exclude the possibility of
spin relaxation for Mz > 0 for these holes, so that the
time trel for them will be the time in which they move
(by a type-I trajectory) from the boundary between
regions 3 and 4 to the critical surface.

Note that the holes that have crossed the critical sur-
face retain the potential to spin flip on the way to the
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upper half-space (in region 6). These holes will eventu-
ally enter the region Mz > 0, because both types of tra-
jectories leaving region 6 end there. A spin-down hole,
however, may continue moving by a type-II trajectory
in the upper half-space as well, to return finally to the
lower half-space. We disregard such reentrant trajecto-
ries, because it can be shown that the corresponding
correction to F is small.

In conclusion to the above qualitative analysis of the
model, let us discuss the decay of polarization which
replaces its growth with increasing magnetic field
(Figs. 2b, 3, 4). We have to recall here experimental
studies [8, 9], which revealed, in direct measurements,
a considerable reduction of the hole spin relaxation
time in semimagnetic QWs placed in a transverse mag-
netic field. If the acceleration of the hole spin relaxation
is associated with the light- and heavy-hole subband
mixing, then the dependence of τs on ΩB (i.e., on mag-
netic field) will have a Lorentzian shape [33]:

(6)

where Ω0 is a parameter dependent on the subband
splitting. True, this interpretation of the τs(ΩB) relation
is questioned in [9], but even if the doubts expressed in
[9] are justified this should affect only the meaning of
the parameter Ω0. One way or the other, acceleration of
the hole spin relaxation is observed to occur experi-
mentally and the relation follows a close-to-Lorentzian
pattern. As applied to our model, the reduction of τs

implies a decrease in the flux through the critical sur-
face, i.e., a tendency of the radiation polarization to
decrease with increasing field.

3.3. Calculation of the Flux
through the Critical Surface

The LMM dynamics equations become simplified
on short time scales of the order of τs and trel because
one may neglect transverse relaxation (T2  ∞). On
the other hand, the concept of average hole polarization
and, accordingly, the second of Eqs. (1) lose their
meaning to a considerable extent in this time domain,
because the time trel featuring now in the problem is not
short compared to τs. Therefore, the hole exchange field
must now be considered constant and the hole spin
relaxation, a probabilistic (Poisson) process. We
assume, for the sake of simplicity, that the probability
for the hole spin to flip from the state counter to M to
that along M does not depend on the magnitude of M
and is characterized by the time τs and we also disre-
gard the possibility of reverse spin flips altogether.

With such an approach, the first of Eqs. (1) trans-
forms to an equation of precession with a frequency
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W = WB + Wp. This equation, subject to arbitrary initial
conditions, is readily solved to give

(7)

where

(8)

We bear in mind subsequently that My0, Mz0 ~ Mf,
whereas the external field is assumed to be sufficiently
strong (so that Mx0 ~ κΩB @ Mf). Recalling that for
times t ~ τs the arc Ωt ! 1, we expand Eq. (7) into a
power series:

(9)

where we have retained terms quadratical in time (in
addition to linear ones) but only in the cases where they
enter combinations with a large field-induced magneti-
zation Mx0.

The critical trajectories I and II each have a single
common point with the Mz = 0 plane. Therefore, the
easiest way to find these trajectories is to equate Mz(M0,
t) in Eq. (9) to zero and consider this equality as a qua-
dratic equation with respect to t:

(10)

Equating to zero its determinant yields an equation for
the critical surfaces:

(11)

with one of the surfaces corresponding to positive val-
ues of Ωp and Mz and the other, to negative values of
these parameters.

Let us now find the time tk the LMM takes to reach
the critical surface. Because Mx0 ~ κΩB @ Mf, the pro-
jection Mx changes very little in crossing the fluctuation
region, a process entailing a change in the LMM vector
coordinates of the order of Mf. Combining Eqs. (11)
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and (9) and retaining terms of the same order of small-
ness as before, we obtain

(12)

The minus sign on the right in Eq. (12), compared to
Eq. (11), arises from the fact that the LMMs move
along a trajectory with a positive curvature (Ωp > 0,
expressions in parentheses), whereas the curvature of
the critical surface is negative (Ωp < 0). Therefore, one
may conveniently take into account the difference in the
signs explicitly and understand under Ωp the same (pos-
itive) quantity in what follows. Solving Eq. (12) yields,
for holes created in regions 4 and 5,

(13)

(for the chosen direction of motion along the orbit, we
should choose the plus before the root sign). As already
pointed out in the preceding section, for holes from
region 3, the initial part of motion (before crossing the
Mz = 0 plane) does not involve spin relaxation. There-
fore, the easiest way to find trel for these holes lies in
subtracting the time (10) from time (13); in this case,
the root in Eq. (10) should be taken with the minus sign.
As a result, we obtain for region 3

(14)

Equations (13) and (14), combined with distribution (4)
and boundaries of the regions (11), suffice to find the
probability flux (5). A calculation of the integral is pre-
sented in detail in the appendix.

Retaining only the first two terms in (A12), chang-
ing back to the previous variables, and including the
τs(B) relation given by Eq. (6), we obtain finally for the
polarization

(15)

The solid lines in Figs. 2b and 4 show the fits of
Eq. (15) to the experimental data. The fitting parame-
ters were τs0 and Ω0, and the ratio Mp/Mf for each sam-
ple was estimated from Eq. (3). The experimental and
calculated relations are seen to be in good qualitative
agreement. The best-fit values of τs0 are of a few pico-
seconds, which is in accord with direct measurements
[8–10] and validates the expansions in Ωτs.
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4. CONCLUSIONS

To sum up, we have studied the anomalous behavior
of the optical-orientation signal in QWs with semimag-
netic layers under a magnetic field applied parallel to
the QW plane. In place of a decrease in the degree of
circular photoluminescence polarization (the Hanle
effect) observed under resonant excitation in the region
of localized excitonic states, many samples exhibit an
increase in the polarization, replaced subsequently by
its decay [14]. We have called relations of this kind the
anomalous Hanle effect [15].

In this communication, we have presented new
experimental results, analyzed various versions of col-
lective spin dynamics of a localized hole and magnetic
ions, and proposed a theoretical model for the AHE.
Considered on a qualitative basis, the model is as fol-
lows. The luminescence originates from magnetic
polaron states, with the polaron itself forming in a
dynamic manner through the mechanism put forward in
[12]. The polarization of the radiation is determined by
the balance between the probabilities of formation of
spin-up and spin-down polaron states. Excitons are dis-
tributed over these two types of states within the first
few picoseconds following the exciton creation, and
this distribution depends on the local magnetization
fluctuation which has been realized by the instant of the
photogeneration event in the given region. When unori-
ented holes are excited, one half of the fluctuation real-
izations relaxes to the spin-up state and the other half,
to the spin-down state. The excitation of spin-polarized
holes with their exchange field imparts the starting
impulse to the magnetic-fluctuation distribution, and
this biased distribution produces spin-up and spin-
down polaron states already with unequal probabilities.

In the theoretical treatment, we abandoned numeri-
cal averaging of the dynamic equations over the initial
conditions, one of the reasons for this being that the
applicability of equations of type (1) to short time
scales is questionable. Instead, we calculated the fluc-
tuation flux through a critical surface separating the
“trapping zones” of the upper and lower polaron states.
The price paid for the simplicity of the analytical result
represented by Eq. (15) was a number of approxima-
tions, in particular, the assumption of Mp @ Mf and
ΩB, pτs ! 1. Estimates show, however, that for typical
experimental conditions these approximations are more
or less justified.

In conclusion, we should like to focus attention on a
recent study [34], in which M-shaped Hanle curves,
qualitatively similar to the ones considered by us, were
observed in GaAs/(Ga,Al)As nonmagnetic QWs (see
[34, Fig. 2d]). These M-shaped relations apparently
find a radically different interpretation involving spin-
dependent formation of “trions” (three-particle elec-
tronic excitations X–) consisting of optically oriented
excitons and electrons [34].
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APPENDIX

The flux through a boundary is given by the integral

(A1)

Here and subsequently, we drop the subscript “0” of
the vector M and of its components, while nevertheless
assuming integration over the initial LMM orientations.
One can conveniently transfer in Eq. (A1) from integra-
tion over Mz to that over time. Using Eqs. (13) and (14)
for the first and second integrals, respectively, we
obtain

(A2)

where

(A3)

(A4)
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We transfer now in Eq. (A2) to dimensionless variables

mα = Mα / , τ = t/τs, and ωB, p = ΩB, pτs, to come to

(A5)

We do not write out here expressions for renormalized
, mz–, and mz+, because they are very simple to derive.

Rearranging Eq. (A5) and replacing mx –   mx,
which corresponds to translating the reference frame to
the point of equilibrium magnetization, we obtain

(A6)

The change of the variable also affects the expressions
for mz– and mz+, which now take on the form

(A7)

(A8)

In Eqs. (A6)–(A8), we neglected the fluctuation magne-
tization mx compared to  and took into account that

 = mp, which is the (dimensionless) equilibrium
moment of the magnetic polaron (see Eq. (3)).
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To follow the logic underlying the theory, after fac-
toring out ωB in the solution, we should retain terms
either of order unity or of order ωBmp. An analysis of
Eqs. (A7) and (A8) reveals that each of the terms in the
right-hand parts of these expressions is small in a cer-
tain parameter (for instance, the first term in Eq. (A7) is

small in parameter ; the second, in ωB; and the

third, in ), so that the corresponding exponentials
in Eq. (A6) can be replaced by unity.

The last simplification makes the expressions
readily integrable. Integration over mx yields every-

where the factor . The second triple integral in
Eq. (A6) can be taken without any difficulty. In calculat-
ing the first and the third integrals, we change the order of
integration, and in the case of the first integral, we have
also to take into account that when integrating an odd
function of my the integral taken in the limits symmetric
with respect to my = 0 vanishes. We come finally to

(A9)

where

(A10)

and erf(x) is an error integral. If mpωB ≤ 1, we can use
the asymptotic expression [35]

(A11)

to obtain a simpler functional relation,

(A12)

which clearly demonstrates how the flux under study
depends on the parameters of the model.

Figure 8 plots the function F(ωB) for mp = 4.5; one can
find here the exact result (A9), (A10) and relation (A12),
with the contributions from the first term and from the
sum of first and second terms in (A12) shown separately.
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One readily sees that, in the range of interest to us,
namely, ωB ! 1 and F ≤ 0.1, the simple result (A12) is
quite satisfactory; moreover, it is sufficient to restrict
oneself to the sum of the first two terms in (A12).
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Abstract—Resonance Raman scattering (RS) spectra of a ZnCdSe/ZnSe sample containing a single quantum
well and quantum well–based open nanowires were studied at T = 300 K. The longitudinal optical (LO)
phonons involved in the formation of the observed spectra of the quantum-well and nanowire regions differ
noticeably in energy. The LO phonon energies in the structures under study were calculated taking into account
the compositional effect (doping of Cd into ZnSe) and biaxial strain. When excited in the exciton resonance
region, RS is shown to occur via free (extended) excitonic states with the involvement of LO phonons of the
ZnCdSe strained layer with final wave vectors near the Brillouin zone center. When excited below the excitonic
resonance in the ZnCdSe layer, resonance scattering via localized exciton states provides a noticeable contri-
bution to the observed RS lines. Because of the finite size of a localized state, phonons with large wave vectors
are involved in these scattering processes. The RS lines produced under excitation in the excitonic region of
the thick barrier layers are due to scattering from the ZnSe barrier phonons. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Raman scattering (RS) is a widely used method for
probing the lattice vibration spectra of quantum-well
(QW) structures. One of the components in most of
such structures (either the well or the barrier) is formed
by a binary compound, and the second is realized by
adding a third component to the binary substance. Add-
ing a third component changes the phonon frequencies
in the ternary compound (compositional effect) as com-
pared to the starting binary substance. The characteris-
tic phonon energies can also vary as a result of a lattice
misfit both between the constituents of the QW struc-
tures and between these constituents and the substrate.
For low concentrations of the third component in ter-
nary solid solutions, the phonon frequencies in the bar-
rier and the well materials are similar, a factor that con-
siderably complicates analysis of the observed RS
spectra. Assignment of the phonon states involved in
the formation of RS spectra is also made difficult by the
fact that the compositional effect and strains can par-
tially cancel each other and bring the characteristic
phonon energies of the binary-compound layers and of
the ternary solid solution closer.

This communication reports on a study of resonance
RS spectra in a ZnCdSe/ZnSe QW structure. RS in
these structures has been dealt with in many publica-
tions (see, e.g., [1–4]). Interpretation of the observed
spectra was, however, fairly controversial in view of the
above factors. Some authors assigned the RS lines to
scattering from the QW-material (ZnCdSe) phonons,
while others attributed such lines to scattering from
phonons of the barrier (ZnSe). This was partially due,
1063-7834/03/4507- $24.00 © 21374
apparently, to the lack of a quantitative analysis of the
phonon spectra, which could have taken into account
the compositional effect and the strains simultaneously.
The present study deals with RS spectra measured
under excitation both in the region of the ZnSe barrier
excitonic transitions and in the excitonic region of the
ZnCdSe quantum wells and wires. The experimental
data obtained are compared with theoretical estimates
of the characteristic phonon energies made with due
account of both the compositional effect and strains.

2. EXPERIMENT

The starting ZnCdSe/ZnSe structures with a single
quantum well were grown by molecular-beam epitaxy
(MBE) on a GaAs(100) substrate. The 5-nm-thick QW
with an ~13% Cd content is sandwiched between the
buffer (25 nm) and cap (20 nm) ZnSe barrier layers.
One-dimensional structures (nanowires) were fabri-
cated on part of the surface of the original samples by
using interference lithography followed by reactive ion
etching [5]. Etching was performed practically down to
the GaAs substrate. The period in the one-dimensional
structure studied was ~260 nm, and the wire width was
L ~ 70 nm. The effect of one-dimensional confinement
on exciton spectra for these wire widths is insignificant
[1], and we call the one-dimensional structures thus
obtained nanowires. The wire axis was aligned with the
[011] direction. The presence of both etched regions
with nanowires (NWs) and the original unetched areas
with QWs on the sample surface made it possible to
compare the properties of NWs and QWs.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Raman spectra obtained in (a) the nanowire and (b) quantum-well regions of the sample under excitation with (1) the 476.5-,
(2) 457.9-, and (3) 488.0-nm laser lines. T = 300 K.
RS was excited by the 457.9-, 476.5-, and 488.0-nm
Ar+ laser lines. The studies were conducted at room
temperature. The scattering was measured in the z(yy)
geometry (with the z axis coinciding with the growth
direction perpendicular to the QW plane and the y axis
aligned with the wire axis). The spectral resolution was
~0.5 cm–1.

3. EXPERIMENTAL RESULTS
The RS spectra of our structures, produced by any of

the laser lines used and under excitation in both the QW
and the NW regions (Figs. 1, 2), feature two main lines.
The line at 290 cm–1 maintains a fixed position in all the
spectra studied. Varying the excitation energy or chang-
ing the sample area being probed brought about only a
change in the intensity of this line. Based on its energy
position, this line can be assigned to RS by longitudinal
optical (LO) phonons of the GaAs substrate [6].

The position of the second line, at ~250 cm–1,
depends on both the excitation energy and the sample
area probed (QW or NW region). This line is close in
position to the energy of LO phonons in materials of the
barrier (ZnSe) and of the well (ZnCdSe) [1–4, 7]. While
the component of the ZnCdSe/ZnSe structure to which
this line belongs cannot be identified a priori, this line
is certainly due to LO phonons in the structures under
investigation; subsequently, we call it the LO line.

Figure 1a displays RS spectra of the NW part of the
sample obtained with two laser excitation lines, 457.9
and 476.5 nm. When excited by the 476.5-nm line
(spectrum 1), the scattering lines are superposed on a
broad luminescence band denoted by squares. This
band corresponds to emission of the ground-state E1H
exciton (heavy exciton) in the ZnCdSe NW. Estimation
of the E1H resonance energy in NWs from the position

z
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of the luminescence maximum (when excited above the
ZnSe band edge) made with due account of the position
of the maximum in the reflection spectrum yielded
2.570 eV (the E1H resonance energy in the well is less
than this energy by ~4 meV [8]). The 457.9-nm line
excitation (2.707 eV) corresponds to the energy region
of the ZnSe barrier exciton ground state, whose posi-
tion at T = 300 K was estimated by us to be ~2.70 eV.
As seen from Fig. 1a, the LO line excited in the region
of the ZnSe excitonic resonance (spectrum 2) shifts
toward higher energies as compared to the case of exci-
tation into the region of ZnCdSe resonance. Excitation
in the QW region of the sample by the same laser lines
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Fig. 2. Raman spectra obtained under excitation with the
476.5-nm line of (1) the quantum-well and (2) nanowire
regions. T = 300 K.
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(457.9 and 476.5 nm) brings about a similar shift of the
LO line, but the magnitude of the shift is noticeably
smaller (spectra 1, 2 in Fig. 1b). Excitation by the
488.0-nm line below the exciton ground state of
ZnCdSe shifts the LO line maximum still further
toward lower energies (spectrum 3 in Fig. 1b). This also
brings about a noticeable broadening of the LO line;
interestingly, this broadening is asymmetric, with the
low-frequency wing of the line increasing in intensity.

Figure 2 compares the RS spectra obtained under
excitation by the 476.5-nm line from the QW sample
region (spectrum 1) and the NW region (spectrum 2).
We readily see that the LO line produced under this
excitation in the NW region is shifted noticeably
toward low frequencies relative to its position in the
QW region.

4. ESTIMATION OF LONGITUDINAL OPTICAL 
PHONON ENERGIES IN THE STRUCTURES 

STUDIED

The phonon spectrum of the structures studied may
differ from that of the bulk ZnSe material because of
more than one factor, namely, the compositional effect,
strains in the material, and, finally, size quantization.

An analysis shows that the effect of size quantiza-
tion on the phonon spectrum in our structures with
quantum wells 5-nm-thick QWs may be neglected [1].

We conducted a quantitative analysis of the influ-
ence of the compositional effect and strains on the opti-
cal phonon energy in these structures in [8, 9]. Figure 3
displays estimates of the room-temperature energy lev-
els of the fundamental LO mode for unstrained and
biaxially strained ZnSe and Zn0.87Cd0.13Se crystals. The
LO phonon energy of the starting ZnSe material pre-
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Fig. 3. LO phonon energy in unstrained (left) and biaxially
strained (right) ZnSe and Zn0.87Cd0.13Se crystals. T = 300 K.
Dashed lines identify the energy levels corresponding to
phonons with wave vectors along the z axis.
P

sented in Fig. 3 corresponds to the energy of the LO
mode derived from our room-temperature measure-
ments of RS spectra in a bulk ZnSe sample. The LO
mode energy for the free Zn0.87Cd0.13Se solid solution
was calculated using the equations given in [10]. The
data required for the calculation were taken from [7].

The total thickness of the ZnCdSe and ZnSe layers
in our structure is 50 nm. This value is substantially less
than the thickness of coherent growth in the
ZnSe/GaAs system (~1000 nm [11]). As a result, the
ZnCdSe and ZnSe layers are biaxially compressed in
the xy plane, because the lattice constant of the thick
GaAs substrate (0.5653 nm) is substantially smaller
than that of Zn0.87Cd0.13Se (0.5721 nm) and ZnSe
(0.5668 nm). Using equations from [12], we estimated
the LO phonon energy in a biaxially strained
Zn0.87Cd0.13Se solid solution. As seen from the right-
hand part of Fig. 3, biaxial strain brings about an
increase in energy for the LO phonon and its doublet
splitting. The levels with the highest energy in such
doublets are due to LO phonons with wave vectors
aligned with the z axis (dashed lines in Fig. 3). While
the ZnSe and ZnCdSe layers are similar in terms of the
pattern of the phonon energy level shift and splitting,
the corresponding values for the former layers are sub-
stantially smaller (Fig. 3), because the lattice misfit
between ZnSe and GaAs is smaller than that between
GaAs and ZnCdSe.

The results displayed in Fig. 3 show that the redshift
of the phonon energy levels (relative to those in the
starting material ZnSe) caused by the compositional
effect in the ZnCdSe layers is compensated to a large
extent by the blueshift originating from the influence of
biaxial strains. As a result, the phonon energies in
ZnCdSe layers turn out fairly close to those of the bulk
ZnSe material. This proximity apparently accounts for
the observation that the scattering processes occurring
in the QW material have been assigned in some publi-
cations to interaction with the barrier-material phonons
(see, e.g., [4]).

5. DISCUSSION

Scattering in the barrier and the well materials may
both contribute to the observed RS spectra. The scatter-
ing intensity is proportional to the scattering volume. In
our structures, the ZnSe barrier material substantially
exceeds the well material in volume. When excitation is
far from the QW-material resonances, this factor may
cause the dominant contribution from scattering in the
barrier material to the observed RS spectra to be and, as
a consequence, give rise to the emergence of barrier
phonons in the RS spectra. However, the Ar+ laser lines
used most frequently in RS studies lie close to the exci-
tonic resonances of the ZnCdSe/ZnSe structure. When
analyzing the observed variability of RS spectra, it is
crucial to take into account the position of the exciting
lines relative to the excitonic resonances.
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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The 457.9-nm-line excitation is close to the energy
of the excitonic resonance of the ZnSe barrier material
(see above). In this case, both because of the resonance
excitation conditions being met and as a result of the
larger volume of the barrier material, the observed RS
spectra should undoubtedly originate from scattering in
ZnSe. The excitation photon energy (2.602 eV) for the
476.5-nm line is separated from E1H (2.570 eV) by
approximately the LO phonon energy and meets the
resonance condition for scattered light where the scat-
tered photon energy coincides with the exciton reso-
nance energy E1H in ZnCdSe. In this case, as shown by
us in low-temperature studies of RS profiles [8, 9], the
observed LO line is due to scattering of light in the
ZnCdSe layer by its phonons. It is because of the exci-
tation being resonant that scattering in a thin well layer
dominates over that in substantially thicker barrier lay-
ers. Thus, the small long-wavelength shift of the LO
line observed to occur in RS studies of the QW region
in going from excitation by the 457.9-nm line to that
with the 476.5-nm line (Fig. 1b) should obviously be
assigned to a transition from scattering in the barrier to
that in the well material by LO phonons of the ZnCdSe
layers. This leads us to the conclusion that the energy of
the ZnCdSe LO phonons involved in the formation of
the observed LO lines is smaller than that of ZnSe LO
phonons.

The estimates presented in Fig. 3 show that LO
phonons in the strained ZnCdSe layer with wave vec-
tors in the well plane fit this conclusion. This is in
accord with the formation of the LO line of resonant RS
in QWs via intermediate states of free (extended) exci-
tons; this mechanism was proposed in [8, 13]. Elastic
scattering was demonstrated in [8, 13] to provide an
important contribution, in addition to the direct inelas-
tic scattering by LO phonons, to the observed scattering
lines. Elastic scattering occurring under excitation
above the resonance involves additional intermediate
states (real excitonic states with large wave vectors) in
the scattering. This accounts for the strong enhance-
ment of the RS intensity [14]. The additional elastic
processes in QW structures are associated to a consid-
erable extent with scattering from interface roughness
[8, 13]. Roughness can be approximated by a set of
“roughness wave vectors” in the well plane (kxy) [15].
As a result, the wave vector conservation law in RS
brings about the involvement of excitons and phonons
with kxy wave vectors in the scattering. LO phonons
with kxy wave vectors correspond to the low-energy
component of the phonon doublet in strained ZnCdSe
(Fig. 3). The energy of this component is less than the
LO phonon energy of the strained ZnSe layer, which is
in agreement with experiment (Fig. 1).

Note that because of the LO phonons involved in the
RS under study have finite wave vectors, their energies
should be redshifted relative to their values at kxy = 0
[16]. The magnitude of this shift is, however, small. As
follows from our estimates based on the energy and
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
momentum conservation laws for scattering via states
of the E1H exciton band, the wave vectors of the LO
phonons under consideration are not large (less than
10% of their values at the Brillouin zone edge), which
yields ~1 cm–1 for the above 1LO-line redshift. Because
the exciton ground states in ZnCdSe and ZnSe differ
only very slightly in effective mass, this shift is practi-
cally the same for the two materials; therefore, its inclu-
sion does not affect the above conclusions bearing on
the relative energies of the LO components which con-
tribute to the RS lines produced in scattering in the well
and barrier materials.

The LO line shift observed in the NW region under
excitation with the 457.9- and 476.5-nm lines (Fig. 1a)
greatly exceeds that in the QW region (Fig. 1b). The
wires used in this study are open (not buried). Strain
relaxation at the open wire edges may affect the struc-
ture of the observed RS lines [1, 2]. Our estimates
(Fig. 3) show that the difference between the phonon
energies in ZnCdSe and ZnSe for free materials is
noticeably larger than that for strained ones. The
increase in this LO line shift should obviously be
assigned to a manifestation of strain relaxation. The
effect of strain relaxation on the phonon states of a wire
becomes obvious when comparing the spectra obtained
from the QW region with those associated with the NW
region under laser excitation at 476.5 nm (Fig. 2).

The 488.0-nm line produces excitation below the
excitonic ground state of the well. We believe the emer-
gence of the low-energy wing on the LO line to be
related to an enhanced contribution from resonant scat-
tering via localized exciton states. When excited in the
region of the exciton ground state, RS occurs via free
exciton states [8, 13]. In this process, phonons with
small wave vectors close to the Brillouin zone center
are involved. As one moves away from resonance, the
probability of such scattering naturally decreases. At
the same time, moving toward lower energies may
enhance the probability of resonant scattering via local-
ized exciton states, whose density-of-states tail may
extend down energywise to large distances. This scat-
tering is similar in nature to the RS via bound exciton
states observed earlier in [17, 18]. In this case, because
of the finite size of the localized states phonons with
larger wave vectors and, accordingly, with lower ener-
gies can be involved in scattering. This is apparently
what accounts for the intensity enhancement of the
low-energy wing on the RS line under excitation below
the exciton ground state in the well (Fig. 1b).

6. CONCLUSIONS

Thus, we have analyzed the influence of the compo-
sitional effect and strains on the LO phonon spectrum
in biaxially strained ZnCdSe/ZnSe structures. It was
shown that, for low Cd concentrations, these two
effects compensate each other to a considerable extent,
thus bringing the LO phonon energy levels in the
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ZnCdSe layers closer to those in unstrained bulk ZnSe
crystals. Studies were made of RS under excitation in
the neighborhood of excitonic resonances in both the
ZnCdSe and ZnSe layers. When excited into the exci-
tonic region of thick barrier layers, the observed RS
lines are due to scattering by phonons of the ZnSe layer.
RS originating from excitation into the excitonic reso-
nance region of a thin ZnCdSe layer occurs via free
(extended) exciton states. In this case, LO phonons of
this strained layer with small in-plane wave vectors par-
ticipate in the scattering. When excited below the exci-
tonic resonance in the ZnCdSe layer, resonant scatter-
ing via localized exciton states provides a noticeable
contribution to the observed RS lines. Because of the
small size of the localized state, the scattering in this
case involves phonons with large wave vectors far from
the Brillouin zone center.
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Abstract—Low-temperature (T ~ 8 K) secondary emission spectra of open Zn0.87Cd0.13Se/ZnSe nanowires
were studied comprehensively in the region of the ground excitonic state under tunable laser excitation. The
spectra revealed a fine structure produced in the interaction of excitons with optical phonons. The observed res-
onance exciton–phonon (REP) lines are shown to be formed through two different mechanisms. The strongest
component is due to Raman scattering via free excitonic states. The other REP lines are generated in the hot
luminescence of localized excitons. The spectrum of the optical phonons involved in the formation of the REP
lines in the biaxially strained Zn0.87Cd0.13Se/ZnSe structures was analyzed. © 2003 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The secondary emission spectra obtained at helium
temperatures under laser excitation in the region of
excitonic resonances of ZnCdSe layers reveal a number
of narrow lines formed in the interaction of excitons
with various optical phonons (see, e.g., [1–10]). Such
resonance exciton–phonon (REP) lines were found ear-
lier to exist in the spectra of both thick ZnCdSe layers
[1, 6] and of various ZnCdSe/ZnSe quantum-well
structures [2–5]. The interpretation of these lines was
fairly controversial. In some communications, these
lines were considered as being due to Raman scatter-
ing, while in others, they were assigned to hot lumines-
cence. The nature of the excitonic and phonon states
involved in the observed REP lines was also regarded
from different standpoints.

This communication reports on a comprehensive
investigation of the dependence of the fine structure and
intensity of REP lines produced at T ~ 8 K in open
ZnCdSe/ZnSe nanowires as a function of laser excita-
tion energy. The observed spectra were found to exhibit
REP lines of two types simultaneously. The strongest
REP component is due to Raman scattering via
extended exciton states. The other, weaker components
are produced in the hot luminescence of localized exci-
tons. The spectrum of the optical phonons involved in
REP-line formation in the strained Zn0.87Cd0.13Se/ZnSe
structures studied is analyzed. The preliminary results
of this study were published in [7].
1063-7834/03/4507- $24.00 © 21379
2. EXPERIMENTAL TECHNIQUE

The original ZnCdSe/ZnSe single quantum-well
(QW) structures were grown through molecular-beam
epitaxy on a GaAs(100) substrate. A 5-nm-thick QW
with 13% Cd fabricated in these structures was sand-
wiched between a buffer (25 nm) and a cap (20 nm)
ZnSe barrier layer. Nanowire (NW) structures were
fabricated on part of the surface of the original samples
by interference lithography followed by reactive ion
etching down to the GaAs substrate [8]. The wires were
L ~ 70 nm wide and separated by ~180 nm. The wire
axis was aligned with [011]. The presence of both
etched regions with NWs and the original unetched
regions on the sample surface permitted comparison of
the properties of NWs and QWs.

Excitation was provided by a tunable dye laser (Stil-
bene 3) pumped by an Ar+ laser UV line. The studies
were conducted at T ~ 8 K in the backscattering geom-
etry. Both emission and excitation spectra (dependence
of the intensity in a selected spectral interval on excit-
ing energy) were measured. The pump and detected
light beams were polarized parallel to the wire axis.

3. EXPERIMENTAL RESULTS

Figure 1 presents excitation spectra (ESs) of the sec-
ondary emission from the NW (solid line) and QW
region (dashed line) of the sample. The ESs displayed
were measured at the detection energy (Edet) in the low-
energy region of the photoluminescence (PL) bands of
the ground exciton state E1H (heavy exciton) of
ZnCdSe. Shown on the left in Fig. 1 are the QW and
NW PL bands obtained under excitation in the ZnSe
003 MAIK “Nauka/Interperiodica”
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barrier absorption region. The exciton state energy E1H

can be derived from the position of the main maximum
in the ES. As seen from Fig. 1, the E1H excitonic state in
the NW (2.667 eV) is shifted to lower energies com-
pared to its position in the QW spectrum. This redshift
results from a partial strain relaxation in the structure
due to the presence of free side ZnCdSe walls in open
NWs [11]. The absence of a blueshift implies that one-
dimensional quantization insignificantly affects the
position of excitonic levels in our NWs (L = 70 nm); it
is this that accounts for our calling these structures
nanowires rather than quantum wires. The weaker
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Fig. 1. Excitation spectra of the emission from nanowires
(solid line) and the quantum well (dashed curve). The exci-
tation spectra were measured at the detection energy Edet =
2.650 eV at T ~ 8 K. Shown on the left are the corresponding
photoluminescence spectra obtained at an excitation energy
(2.83 eV) considerably in excess of the ZnSe absorption
edge.
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Fig. 2. Excitation spectra of the emission from nanowires
measured at the detection energy Edet = 2.671 eV (T ~ 8 K).
Inset shows part of the spectrum in expanded scale.
P

broad E1L maxima in ESs at about 2.72 eV should evi-
dently be assigned to the light-exciton ground state.

The ES contains, besides broad bands correspond-
ing to absorption maxima, narrow 1LO, 2LO, and 3LO
lines due to exciton scattering by longitudinal optical
(LO) phonons [12]. As is evident from Fig. 1, at the
same detection energy, the relative intensity of these
LO lines in the NW ES is substantially higher than that
in the well emission ES. The relative intensity of the LO
lines in the ES increases strongly for Edet in the E1H res-
onance region. This is seen clearly from Fig. 2, which
presents the ES of NW emission obtained for Edet =
2.667 eV. In this case, one can observe up to five LO
lines. Figure 2 also shows that the LO lines in the peri-
odic structure are not strictly equidistant. The interval
between the detection energy and position of the 1LO
line (~31.7 meV) is noticeably larger than the energy
separations between the 1LO and 2LO (~31.3 meV)
and between the 2LO and 3LO (~31.4 meV) lines.

Three weaker but still discernible lines a, b, and c
are seen on the low-energy side of the 1LO line (see
inset to Fig. 2). Similar lines are also present near the
2LO and 3LO lines. The energy position of the a, b, and
c lines and of their replicas is given by the relation E =
Edet + (ωi + nωLO), where i = a, b, c; n = 0, 1, 2; and the
energies ωa, ωb, and ωc are 24.8, 26.4, and 28.4 meV,
respectively. These energies lie in the region of longitu-
dinal–transverse splitting for ZnSe optical phonons
[13] and correspond apparently to some optical
phonons in the structures under study.

In addition to the ES, we thoroughly studied emis-
sion spectra as a function of excitation energy Eex
(Fig. 3). A characteristic feature of these spectra is the
presence of REP lines with maxima at the emission
energies Eem = Eex – ωi, where ωi are the above-men-
tioned optical phonon energies (i = LO, a, b, c). The

LO
Eex = 2.650 eV

1 2 3 4 5
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LO LO
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Fig. 3. Nanowire emission spectra obtained at various exci-
tation energies Eex (T ~ 8 K).
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broad PL background band is also seen in the emission
spectra at the corresponding Eex (spectrum 3 in Fig. 3).
While the original QW structures emit similar REP
lines, the relative intensity of the PL bands in this case
is substantially larger.

We obtained spectra corresponding to “pure” exci-
ton–phonon optical transitions by subtracting the PL
band background. After this, we decomposed these
spectra into phonon constituents. This decomposition is
exemplified in Fig. 4, in which the horizontal axis plots
the phonon shift energy relative to the excitation
energy, ωi = Eex – Eem. The strongest component of this
deconvolution corresponds naturally to the 1LO maxi-
mum (~31.7 meV). The slightly asymmetric shape cho-
sen by us for this component is characteristic of excita-
tion far from the resonance. The other components
were fitted by Gaussian profiles with energies ωa, ωb,
and ωc. It was found to be impossible to fit the shape of
the REP spectra without introducing a fourth compo-
nent d (~31.1 meV).

We measured resonance profiles (RPs), i.e., the
dependence of the component intensity on excitation
energy, for all the phonon components obtained. The
RP maxima of different phonon components are shifted
in energy with respect to one another. To facilitate com-
parison of the RP pattern for different components, the
normalized component intensities are plotted in Fig. 5
as a function of energy: E = Eem – E1H = Eex – (ωi + E1H),
where E1H = 2.667 eV. Figure 5 shows clearly that the
RPs for the a, b, c, and d components (open symbols)
coincide to within experimental error while being at the
same time substantially different from the RP of the LO
component (filled circles).

The horizontal axis in Fig. 5 shows the energy shift
of the final (emitting) states plotted vs. energy E1H. The
luminescence spectra can likewise be represented as
functions of energy E = Eem – E1H. This offers the pos-
sibility of comparing the efficiency of REP processes
with that of luminescence for states with the same final
energy. The solid line in Fig. 5 depicts a luminescence
spectrum obtained at an excitation energy 2.712 eV [the
narrow 1LO and 2LO lines in this spectrum are Raman
lines (see below)].

The a, b, and c lines are observed in emission spec-
tra only in the energy regions with a noticeable PL
background intensity (spectra 2–4 in Fig. 3). When
excited far from the resonance, where there is no PL
background, the emission spectrum contains LO lines
only (spectra 1, 5 in Fig. 3). When the temperature is
raised, the relative intensities of lines a, b, and c fall off
gradually to a negligible level. At room temperature,
only the LO lines persist in emission spectra as seen
from Fig. 6, which displays the emission spectrum
obtained when pumping with the 476.5-nm argon laser
line (2.602 eV). The position of the E1H resonance
(2.57 eV) at T = 300 K, identified by an arrow, was esti-
mated from those of the maxima in the reflectance and
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
luminescence spectra (when excited far from the reso-
nance). In addition to the LO line corresponding to
Raman scattering in the ZnCdSe/ZnSe structure (see
below), the spectrum contains an LOGaAs line associ-
ated with Raman scattering in the GaAs substrate. The
broad emission band under the lines corresponds to the
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Fig. 4. Decomposition of a “pure” (see text) resonance exci-
ton–phonon emission spectrum (Eex = 2.698 eV).
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Fig. 5. Resonance profiles (filled and open symbols) of REP
components. The dashed line was drawn to isolate the
experimental values corresponding to the 1LO component
(filled circles). The solid line is the emission spectrum of the
nanowires measured at an excitation energy Eex = 2.712 eV
(1LO and 2LO are Raman scattering lines).
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PL of the exciton ground state in the ZnCdSe quantum
well.

4. DISCUSSION AND ANALYSIS 
OF THE EXPERIMENTAL DATA

4.1. Lines a, b, and c (Hot Luminescence
of Localized Excitons)

It is well known (see, e.g., [14]) that, at low temper-
atures, the PL in QW structures is actually the emission
of localized excitons. That the RPs of the a–d compo-
nents coincide in shape with the PL band indicates that
these components form apparently through a mecha-
nism similar to that responsible for localized-exciton
luminescence. In view of this, and taking into account
that the intensity of the a–d components is noticeable
only in the region where the PL background exists, we
assume the a–d components to originate from the hot
luminescence (HL) of localized excitons.

The luminescence intensity for emission from a
state with energy E can, in general, be written as

where Wr(E) and N(E) are the probability of radiative
recombination and the population of states with energy
E, respectively. The population function is determined
by the distribution function F(E) and the density of
states ρ(E):

At low temperatures, the equilibrium distribution of
excitons over localized states cannot be attained. As a

IPL E( ) N E( )Wr E( ),∼

N E( ) ρ E( )F E( ).=

LOZnCdSe

LOGaAs

E1H

ab
c

2.56 2.57 2.58
Eem, eV
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Fig. 6. Room temperature emission spectrum obtained
under excitation by the 476.5-nm (2.602 eV) Ar+ laser line.
Arrows a, b, and c specify expected energy positions of the
corresponding resonance exciton–phonon components. The
E1H arrow shows the energy (~2.57 eV) of the exciton
ground state of the nanowire at T ~ 300 K.
P

result, the distribution function should be derived from
the kinetic equation

where G(E) is the generation rate of localized excitons
with energy E and Wnr(E) is the probability of nonradi-
ative decay of the localized excitons.

Under stationary excitation, the population of local-
ized exciton states of energy E is given by the expres-
sion

Excitation in the neighborhood of the resonance
offers the possibility of isolating two main channels of
population of a localized exciton state with energy E.
One channel involves direct generation of a localized
exciton in a light absorption event accompanied by the
generation of phonons of the corresponding frequency
ωi (phonon-assisted absorption). The population pro-
duced under monochromatic excitation (δ-function
generation) exhibits a strongly nonequilibrium (quasi-
δ-function, “hot” [15]) character. It is the emission
from such states, populated in a nonequilibrium man-
ner, that apparently accounts for the appearance of the
a–d components in the spectrum. The other channel is
the population of emitting states through transitions
from other (previously excited) states. In this case, in
the first stage, absorption of light in the region above
the resonance gives rise to the formation of free or
localized excitons. Subsequent energy relaxation and
localization processes populate localized states with
different energies in the vicinity of the E1H resonance.
It is the emission from these states that apparently
forms the observed luminescence band background.
Thus, in the case of monochromatic excitation near the
resonance, the luminescence spectrum can be repre-
sented by the sum of two contributions, namely, the HL
lines (IHL) and the PL band background (IPL):

where

(1)

(2)

The energy positions of the HL lines are connected rig-
idly with the excitation energy Eem = Eex – ωi. This
offers the possibility of presenting the resonance pro-
files of the HL lines as functions not of excitation
energy but rather of the energy of emitted photons.
Such functions are given by Eq. (1). The PL band spec-
trum is determined by Eq. (2). It follows form Eqs. (1)
and (2) that all the factors determining the shape of the
HL RPs and of the PL bands (as functions of the emit-
ted photon energy E) are identical, with the exception
of the G(E) functions.

As already mentioned, the shape of the RPs of the
a–d components is close to that of the PL bands. This

dF E( )/dt G E( ) F E( ) Wr E( ) Wnr E( )+[ ] ,–=

N E( ) G E( )ρ E( )/ Wr E( ) Wnr E( )+[ ] .∼

I E( ) IHL E( ) IPL E( ),+=

IHL E( ) GHL E( )ρ E( )Wr E( )/ Wr E( ) Wnr E( )+[ ] ,=

IPL E( ) GPL E( )ρ E( )Wr E( )/ Wr E( ) Wnr E( )+[ ] .=
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suggests the conclusion that the shape in both cases is
dominated by the density of states and the energy
dependence of the probabilities Wr(E) and Wnr(E). The
possible differences are obviously associated with dif-
ferences in the energy dependence of the generation
functions for the HL lines and the PL band; these func-
tions, however, are apparently fairly smooth and do not
affect the shape of the spectra under consideration sub-
stantially. It should be pointed out that the shape of the
PL band itself depends noticeably on the excitation
energy. This dependence, however, is determined by the
difference between the G(E) functions for different Eex
and is not very significant; the difference in shape
between the PL bands obtained at different Eex does not
exceed the error in the REP line profile measurement.

The observed temperature quenching of the HL
lines (Fig. 6) is obviously caused by the depopulation
of localized states through their delocalization. These
processes affect the magnitude of Wnr, and their proba-
bility is proportional to ~exp(–Eb/kT), where Eb is the
exciton localization energy. The localization energies
are fairly small in our case (the averaged localization
energies in the ZnCdSe/ZnSe QW structures are esti-
mated as ~2–5 meV [16]), so that, at room temperature,
all localized states should be depleted. As a result, the
HL lines are no longer seen in the emission spectra
(Fig. 6). The temperature quenching of the a, b, and c
lines can be considered direct proof of their lumines-
cence nature.

4.2. LO Lines (Raman Scattering)

In view of the fact that the LO lines do not suffer
temperature quenching (Fig. 6) and that they are also
observed, unlike the HL lines, under excitation below
the excitonic ground state (no luminescence occurs
under such excitation), one can maintain with confi-
dence that the LO lines are produced in Raman scatter-
ing (RS).

The RP of an LO line has a characteristic shape with
a clearly pronounced outgoing resonance at the scat-
tered light frequency (Eex = E1H + ωLO) and with an
incoming resonance at the excitation frequency (Eex =
E1H) which manifests itself as a shoulder. Such a shape
is typical of resonant Raman scattering (RRS) via inter-
mediate free-exciton states and was observed earlier in
studies of RRS in bulk semiconductors [17, 18] and
QW structures [19, 20]. In view of the RP shape of LO
lines, we may conjecture that the LO lines correspond
to optical-phonon RRS occurring via free exciton
states.

The motion of free excitons in real QW structures is
limited by localization processes, so that only exciton
states with energies in excess of the amplitude of poten-
tial fluctuations are extended and can be considered
free particles with a “good” wave vector in the QW
plane. Obviously enough, it is such extended exciton
states that are responsible for the observed LO lines.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
In contrast to the HL, which originates from a
sequence of two one-photon processes (absorption fol-
lowed by emission [21, 22]), RS is a direct two-photon
process [21]. In RS, the disappearance of the exciting
photon of energy Eex is accompanied simultaneously by
the creation of a phonon and the appearance of a scat-
tered photon of energy Es. Figure 7 presents a sketch to
illustrate the formation of RRS lines (it represents a
perturbation-theoretical approach). Let the z direction
be perpendicular to the QW plane. Extended excitons
are characterized in this case by kxy wave vectors. The
exciting and the scattered photons have very small
wave vectors (kxy  0) and, therefore, are shown as
dots on the vertical axis of Fig. 7. Due to the wave-vec-
tor conservation law, the first and last steps in the pro-
cess (interaction with photons) involve virtual excitonic
states (µ and µ") with kxy ~ 0.

If only phonons participated in RS, only the exci-
tonic states µ and µ" with kxy ~ 0 would be intermediate
states. In Fig. 7, this process is shown by dashed lines
(i–µ–µ''–f sequence). In this case, the maxima in the RP
that correspond to the incoming and outgoing reso-
nances should both have approximately the same inten-
sity [19, 20].

The presence of additional, elastic scattering pro-
cesses under excitation above the exciton resonance
results in scattering via real excitonic states (µ') with
large wave vectors kxy (the solid lines and sequence i–
µ–µ'–µ''–f in Fig. 7). The involvement of real excitonic
states, on the one hand, increases the RRS intensity
substantially [23] but on the other, makes the outgoing
resonance dominant [17–20]. In QW structures, elastic
processes are related, to a considerable extent, to scat-
tering from QW interface roughness [20]. We believe
that, in our case, the elastic processes are also con-
nected with roughness at the ZnSe/ZnCdSe interface.

Eex

ωLO

Es

E1H µ'' µ

µ'

LO phonon

Roughness

kxyf

i

E

LO phonon

Fig. 7. Schematic diagram of the Raman scattering.
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4.3. Spectral Analysis of Optical Phonons Involved
in the Formation of the Observed Resonance 

Exciton–Phonon Lines

The fine structure associated with the emergence of
various phonon components of ZnCdSe layers in opti-
cal spectra was also observed earlier (see, e.g., [1–6]),
but its interpretation proposed at the time was fairly
controversial. The appearance of four observed phonon
components in the RS spectra of thick (>300 nm)
Zn1 − xCdxSe (x ~ 15%) epitaxial layers was assigned to
RS from the phonon modes corresponding to those of
the ZnCdSe solid solution, i.e., they were attributed to
a compositional effect (introduction of Cd into ZnSe)
[1]. The three phonon components seen in the PL spec-
tra of Zn1 – xCdxSe/ZnSe (x > 30%) [3] QW structures
were assigned to the ZnSe LO phonon, the impurity
phonon mode of Cd in ZnSe, and the LO mode of CdSe.
The structure observed in the PL spectra of
ZnCdSe/ZnSe systems was related [2] to exciton inter-
action with phonons at Brillouin zone points with a
high density of states. It was assumed that interaction
with phonons having large wave vectors is made possi-
ble through the breaking of the wave-vector conserva-
tion law by the localization effect [2].

Figure 8 shows the characteristic phonon energies
required to analyze the observed spectra. The phonon
energies corresponding to bulk ZnSe and CdSe crystals
were taken from [1] and are specified in the left-hand

~~ ~~ ~~~~
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Fig. 8. Optical phonon energies in free and biaxially
strained ZnSe and Zn0.87Cd0.13Se crystals (T ~ 8 K). The
energies for bulk, free CdSe and ZnSe materials were taken
from [1]. The energies for the strained materials were esti-
mated in accordance with [27]. Dotted lines refer to phonon
energies corresponding to lattice vibrations along the z axis.

Strained Strained
P

part of Fig. 8. The LO and TO energy levels refer to the
energies of longitudinal and transverse optical phonons
at the Γ point of the Brillouin zone (for T < 10 K). The
phonon levels of ZnSe : Cd and CdSe : Zn correspond
to Cd impurity local lattice vibrations in ZnSe and to Zn
vibrations in CdSe, respectively [1].

The phonon mode spectrum in our ZnCdSe/ZnSe
structures can differ from those of the base bulk mate-
rial ZnSe because of the following factors: size quanti-
zation, strains, and compositional effects.

The possibility of phonon quantum-confinement
effects becoming manifest in RS scattering in ZnCdSe
quantum wells was considered in [24]. The correspond-
ing analysis permitted neglect of the effect of size quan-
tization on the phonon mode spectrum in 4-nm-thick
QWs. Since the thickness of the ZnCdSe layers was
noticeably larger (5 nm) in our case, we also considered
disregarding this effect justifiable.

Rather than being described by a one- or two-mode
behavior, the phonon spectra of Zn1 – xCdxSe solid solu-
tions belong to an intermediate case [1]. The main com-
ponents (LO1, TO2) of optical phonon modes at the Γ
point of the Brillouin zone follow the one-mode behav-
ior; namely, their energies displace continuously from
one extreme point of the solid solution (x = 1) to the
other extreme (x = 0). The two remaining phonon
modes (LO2, TO1) become local impurity modes at x =
1 or 0, with their energies being equal within the longi-
tudinal–transverse splitting region [1]. We estimated, in
accordance with [25], the energies of the above phonon
modes for a free Zn1 – xCdxSe solid solution with x =
13% (right-hand part of Fig. 8).

The total thickness of our ZnCdSe/ZnSe structure is
50 nm, which is substantially smaller than the thickness
of coherent growth in the ZnSe/GaAs system (~1000 nm
[26]). Therefore, the lattice constants of thin ZnCdSe
and ZnSe layers (for free layers, these values are
aZnCdSe = 0.5721 nm and aZnSe = 0.5668 nm, respec-
tively) should become equal to that of a thick GaAs
substrate (aGaAs = 0.5653 nm). As a result, the ZnCdSe
and ZnSe layers are biaxially strained (compressed in
the xy plane), which should affect the optical phonon
energy [27]. We used the relations derived in [27] to
estimate the energies of all optical phonon modes for a
biaxially strained ZnCdSe solid solution with x = 13%
(the ZnSe and CdSe crystal parameters were taken from
[27]). Biaxial strain brings about an increase in the
energy of all phonon levels and their splitting. The
highest energy levels in such doublets correspond to
lattice vibrations along the z axis (in Fig. 8, these com-
ponents are identified by dashed lines). The shift and
splitting of the phonon energy levels in ZnSe layers are
smaller than those in ZnCdSe, because the lattice misfit
between ZnSe and GaAs is smaller than that between
GaAs and ZnCdSe. It should be stressed that the
phonon energies shown in Fig. 8 correspond to the Bril-
louin zone center, i.e., to zero values of the wave vec-
tors (q = 0).
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Since the thickness of the ZnSe barriers in our struc-
tures is much larger than that of the ZnCdSe layer, scat-
tering in the ZnSe regions can, in principle, provide a
certain contribution to the observed spectra. The LO
series observed in multiphonon RRS in the energy
region of the ZnCdSe well (and below the ZnSe barrier)
were assigned in [28] to scattering by ZnSe barrier LO
phonons. Our experiments show, however, that when
excited in the energy region of ZnCdSe, the observed
LO lines are due to scattering in the ZnCdSe layer and
are related to lattice vibrations of this layer. This con-
clusion draws from the following two observations.

(1) The 1LO line intensity grows resonantly by two
orders of magnitude in the region of the ZnCdSe
ground state. This resonant increase implies that it is in
the ZnCdSe layer that the scattering occurs.

(2) The measured energy of the 1LO component is
noticeably closer to the estimated values of the LO1
(qxy) mode of the ZnCdSe layer than to those of the
ZnSe layers (Fig. 8). Moreover, room-temperature
measurements conducted with a better spectral resolu-
tion [29] showed that the energy of the 1LO component
in the QW region, when excited at the ZnCdSe exci-
tonic resonance, was redshifted by ∆ ~ 0.1 meV with
respect to its position under excitation at the ZnSe res-
onance. This observation corroborates our estimates.
The energy of the LO1 (qxy) mode at the zone center
estimated for a strained Zn0.87Cd0.13Se layer is red-
shifted by ~0.15 meV relative to the corresponding val-
ues calculated for a strained ZnSe layer (Fig. 8).

Thus, a comparison of the measured energies of
phonons involved in the formation of the LO line with
their estimates suggests that the phonons participating
in the line formation have small wave vectors qxy near
the Γ point of the Brillouin zone. This correlates with
the above diagram of the Raman scattering process
(Fig. 7). Indeed, the smallness of the wave vectors
argues for the RS under study being close to the process
in which the wave vector is conserved and, hence, for
the involvement of free excitons in this process. The
closeness of the LO component energy to the values
estimated for LO1 phonons with wave vectors qxy lends
support to the conjecture that additional elastic scatter-
ing from roughness contributes to the Raman process,
because the roughness profile both at the ZnCdSe/ZnSe
interface and at the sidewalls of open wires can be rep-
resented by a set of “roughness wave vectors” lying in
the xy plane [30].

As is evident from Fig. 8, the energy position of the
a–d components differs noticeably from the energies
estimated for all optical modes at the zone center. This
is in accord with the proposed assignment of the corre-
sponding lines as being due to HL. Indeed, the HL lines
are produced in emission of localized excitons, which
form in the absorption of light with simultaneous cre-
ation of the corresponding phonon states. The wave-
vector conservation law is not valid for this absorption
process, and this process can involve phonons from dif-
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ferent points of the Brillouin zone. The resulting popu-
lation of localized states, which determines the fine
structure of HL spectra, should be a complex function
depending both on the density of states of phonons cre-
ated in the process of absorption and on the dependence
of the probability of localized-exciton formation on the
wave vector of the phonons involved in the process. In
view of the above, it appears difficult to associate the
observed components with specific features in the
phonon spectra, all the more so since the phonon dis-
persion and, hence, the phonon density of states for the
ZnCdSe solid solution are not known. Figure 8 shows
that the b–d components lie in the range between the
estimated energies for the main optical modes (LO1,
TO2) into which the LO2 and TO1 modes originating
from the compositional effect also fall. Because the
phonon density of states is concentrated usually in the
region between the main longitudinal and transverse
optical phonons [13], we can only maintain, in view of
the above difficulties, that the b–d components form
with the involvement of various optical phonons with
large wave vectors far from the zone center. One also
readily sees from Fig. 8 that, while the energy of
phonons corresponding to the a line is noticeably less
than all the estimated energies, this energy is fairly
close to that of the Zn impurity mode in CdSe [1]. In
this connection, it may be conjectured that the a line is
related to lattice vibrations of CdSe clusters, whose for-
mation in ZnCdSe layers is very likely [31]. An alterna-
tive explanation could lie in the existence of a singular-
ity in phonon mode dispersion, which would create a
noticeable density of phonon states in the correspond-
ing energy region.

4.4. Multi-LO-Phonon Scattering

The presence of strong nLO lines in excitation spec-
tra is a characteristic feature of most polar semiconduc-
tors [32]. The formation of these lines is usually treated
as multi-LO-phonon RRS via real excitonic states with
large wave vectors or as the HL emerging in cascade
scattering by LO phonons via the same exciton states
[12]. Because the type and number of the phonons, as
well as the character of the intermediate states involved
in RRS and HL, are the same, these processes are diffi-
cult to separate [12]. In any case, in bulk semiconduc-
tors, the RS involving LO phonons obeys the wave-vec-
tor conservation law. The nLO lines in our structures
(Fig. 2) are apparently identical in nature to the analo-
gous lines in bulk semiconductors. In this case, the LO
phonon–mediated scattering involving extended exci-
tonic states should obey the wave-vector conservation
law in the xy plane. As a result, the LO phonons
involved in the process under consideration should
have finite values of the kxy wave vectors and their ener-
gies should be redshifted relative to their values for
kxy = 0 [13]. As shown by our estimates (based on the
energy and momentum conservation laws for scattering
via the states of the E1H band), the wave vectors of
3
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phonons involved in RS are not large (less than 10% of
their values at the zone edge). The corresponding red-
shift for the 1LO line in the excitation energy region
used should be in the range ~0–0.17 meV, and that for
the 2LO line, within the interval 0.17–0.9 meV. Such
estimates are in accord with the fact that the energy of
the LO phonons involved in the formation of the 1LO
line is noticeably larger than the corresponding ener-
gies for the 2LO and 3LO lines (Fig. 2). Thus, the
observed properties of the LO lines indicate the appli-
cability of the wave-vector conservation law to the
exciton–phonon interaction and, thus, support the con-
jecture that the exciton states involved in the formation
of an RS line may indeed be considered free extended
states.

The LO lines are the strongest ES components in
our structures (Fig. 2). Their presence in the observed
spectra indicates the operation of an efficient channel of
LO phonon–mediated energy relaxation [12, 32]. In
view of the fact that the LO phonon energy also agrees
with the period of the weaker replicas associated with
the a–d components, we come to the conclusion that
free-exciton scattering by LO phonons is responsible
for the initial relaxation stages in the formation of local-
ized excitons. The a–d phonon components participate
in the final stage of energy relaxation. This stage con-
sists obviously in trapping the free exciton into the
region of the fluctuating-potential minimum. In this
stage, the wave-vector conservation law is no longer
valid and, as a result, exciton trapping into a localized
state is mediated by phonons from the whole Brillouin
zone.

5. CONCLUSIONS

To sum up, exciton–phonon interaction in
ZnCdSe/ZnSe structures maintained under resonance
excitation and at low temperatures has been shown to
give rise to the simultaneous appearance of RS and HL
lines in resonance secondary luminescence spectra. The
RS proceeds via intermediate states of free, extended
excitons. The HL is associated with the emission of
localized excitons. The elastic scattering from rough-
ness and inelastic scattering from LO phonons in the
ZnCdSe layer near the Brillouin zone center are respon-
sible for the observed RRS lines. The HL lines involve
phonons with large wave vectors. Lattice vibrations in
CdSe clusters also possibly take part in HL. The HL
lines disappear with increasing temperature, to leave
only RS lines in room-temperature spectra.
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Abstract—The variation of the work function of the (111)Si surface under deposition of submonolayer Sm,
Eu, and Yb films was calculated with inclusion of the dipole–dipole adatom repulsion and the metallization
effects. The results of the calculations agree satisfactorily with experiment. © 2003 MAIK “Nauka/Interperi-
odica”.
1. Interaction of the rare-earth metals (REMs) Sm,
Eu, and Yb with the (111)Si surface was studied exper-
imentally in [1–3]. Those studies involved measure-
ment of the variation of the work function ∆ϕ of an
adsorption system as a function of surface coverage
Θ = N/NML by adatoms (N is the adatom concentration
and NML is their concentration in a monolayer). We
recently proposed a simple model capable of satisfacto-
rily describing ∆ϕ(Θ) for the case of alkali metal
adsorption on (100)Si [4] and (110)TiO2 [5]. It is this
model that we employ in this study to interpret the
results of [1–3].

Strictly speaking, the model proposed in [4, 5] is
inapplicable to REMs. Indeed, while alkali metals con-
tain only one electron in the outer s shell, the 6s shell in
REMs is completely filled. However, as follows from
experiments [1–3], the maximum reduction of the work
function ∆ϕmax caused by REM adsorption is on the
order of 1.6–1.7 eV, whereas in the case of adsorption
of alkali metals on silicon we have ∆ϕmax ~ –3 eV.
Hence, the number of electrons donated by REM atoms
interacting with silicon to the substrate is smaller than
that transferred from alkali metals. For this reason
alone, one may formally assume that only one 6s elec-
tron is involved in adsorption,1 which validates the use
of the model from [4, 5]. We present, however, an addi-
tional substantiation of the above statement.

2. Consider a single adatom in terms of the Ander-
son Hamiltonian (see, e.g., [6, 7]). The s-shell occupa-
tion numbers n0± for the spin-up and spin-down elec-

1 We assume here that only one electron can tunnel from an REM
adatom to the substrate, a process accounting for the formation of
a double layer, which brings about the reduction of the work
function of an adsystem. As for the adsorption bonding, f elec-
trons also take part in its formation, which makes the desorption
energy of REMs two to three times higher than that for the alkali
metals.
1063-7834/03/4507- $24.00 © 21388
trons, respectively, are given by the self-consistent cou-
pled equations

(1)

Here, ε is the unperturbed single-particle energy of the
s state, εF is the Fermi energy for the substrate, U is the
energy of electron Coulomb repulsion in the s shell, and
Γ0 is the quasi-level halfwidth of a single adatom.

We look for a nonmagnetic solution to the problem
by setting n+ = n– = n0/2 and assuming the total adatom
occupation number to be n0. In this case, Eqs. (1)
reduce to one self-consistent equation,

(2)

We next assume that only one electron per adatom
can tunnel into the substrate. By introducing the ada-
tom charge Z0 = 1 – n0, Eq. (2) can be recast in the form

(3)

The charge of a single adatom in the model at hand
[4, 5] is defined as

(4)

where I is the s-shell ionization energy; ϕ is the sub-
strate work function; e is the positron charge; 2λ is the
double adsorption bond length, which is equal, within
the chosen model, to the thickness of the double electric
layer [8, 9]; and ∆is the Coulomb shift of the adatom
energy level caused by interaction of the adatom elec-
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tron with the substrate electrons. Note that the last term
in the second of expressions (3) relates to the Coulomb
interaction of the adatom electron with the electrons of
the substrate, which is disregarded in the standard
Anderson model [6]. A comparison of Eqs. (3) and (4)
shows that the two-electron model from [6] differs from
the single-electron model only in the renormalization
of the quasi-level position.2 

3. In accordance with the model from [4, 5], the ada-
tom occupation number Z(Θ) for a finite coverage can
be written as

(5)

Here, ξ is the adatom dipole–dipole repulsion constant,
A = 10 is a dimensionless coefficient weakly dependent
on the adatom lattice geometry, and γ is a dimensionless
parameter accounting for the band broadening, i.e., the
metallization effects [4, 5]. The adsorption-induced
variation of the work function ∆ϕ is given by

(6)

To determine the model parameters, we use the
scheme proposed in [4, 5]. The monolayer adatom con-
centration is estimated from the nearest neighbor sepa-
ration in bulk REM samples [10] (we believe the NML
values quoted in [1–3] to be exaggerated). The adsorp-
tion bond length is derived from the magnitude of the
REM atomic radii ra [11] assuming λ ~ 0.7ra.

3 Taking
ϕ = 4.6 eV for the (111)Si surface [1–3, 11], we obtain
the values of the energy parameters listed in the table.

Figures 1–3 compare the results of a numerical cal-
culation of ∆ϕ(Θ) with experimental data. For
europium and ytterbium (Figs. 2, 3) the agreement is
quite satisfactory. For samarium (Fig. 1), there is a
clearly pronounced minimum in the work function at
Θ ≈ 0.7, which is not explained in the theory. Because
the calculated value of ∆ϕ(Θ) is less in magnitude than
the observed value, this means that the theory overesti-
mates the depolarization effects. The same conclusion
can be drawn from the table; indeed, the values of
parameters Γ0 and γ for Sm are considerably larger than

2 It should be stressed that the self-consistency is lost in going from
Eq. (3) to Eq. (4). Moreover, finite coverages give rise, in accor-
dance with Eq. (3), to a shift of the quasi-level center of gravity
caused by the intratomic Coulomb repulsion U (in addition to the
shift due to dipole–dipole interaction; see below). It is essential,
however, that screening by the substrate electrons substantially
reduces the value of the parameter U, which is ~10 eV for an
REM atom, and this parameter can apparently be neglected com-
pared to the dipole–dipole interaction constant.

3 Generally speaking, the choice of the parameters is not unique.
This ambiguity stems, however, from objective factors. Indeed,
even the monolayer concentration of adatoms is a poorly deter-
mined parameter; as a result, many experimental studies quote
only the exposure time.
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those for Eu and Yb. It appears appropriate to stress
here once more (see also [4, 5]) that our model of the
adlayer does not have a structure and that the coverage
affects only the adatom density in the layer. Experiment
reveals, however, structural phase transitions.

It is of interest to analyze why the present model is
applicable to the case of adsorption on semiconductors
even though it draws on studies dealing with adsorption
on metals. The answer to this question is not so difficult
to find as it might seem at first glance. Because the posi-
tion of the center of gravity for an adatom quasi-level Ω
(reckoned from the Fermi level) exceeds the silicon
band gap width Eg = 1.11 eV, the quasi-level at zero
coverage is certain to overlap the conduction band,
which is typical metallic behavior. The positions of the

quasi-level under monolayer coverage,  = Ω – ξZML,
for Sm, Eu, and Yb are 0.95, 0.47, and 0.23 eV, respec-
tively. Because the Si samples used in [1–3] were n
type, the center of the quasi-level in those samples also
lies above the conduction band bottom.

4. A model describing the effect of temperature T on
the work function of metal substrates bearing sub-
monolayer metal films was proposed in [12]. It was
assumed that the temperature coefficient of the work

Ω̃

Model parameters

Ω Γ0 Φ ξ γ NML λ Z0 ZML

Sm 1.725 2.55 17.6 10.0 1.87 7.5 1.3 0.38 0.08

Eu 1.50 1.87 15.5 8.6 0.45 6.0 1.4 0.43 0.12

Yb 1.12 1.37 15.3 8.1 0.10 6.5 1.3 0.44 0.11

Note: Parameters Ω, Γ0, Φ, and ξ are in electrovolts, λ in ang-
stroms, and NML, in units of 1014 atom/cm2.
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Fig. 1. Work function change plotted vs. coverage for
adsorption of samarium on silicon. Crosses are experimen-
tal points.
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function of the adsystem κ is presentable in the form of
a sum:

(7)

where κs is the temperature coefficient of the substrate
work function and κa is that of the adsorption-induced
variation of the work function. The model proposed in
[12] provided a satisfactory explanation for the effect of
temperature on the work function of the Eu/W(100)
adsystem studied in [13], which also dealt with adsorp-
tion of Eu on Si(111). Unfortunately, the approach
developed in [12] for metal substrates is not directly
applicable to semiconductor substrates. We use, how-
ever, the observation that the work function of a clean
(111)Si surface ϕ is practically temperature-indepen-
dent [13]. The only thing left now is to estimate the
temperature coefficient κa, which is defined, as shown
in [12], by the expressions

(8)

where the static contribution to the temperature coeffi-
cient is

(9)

and the dynamic contribution is

(10)

Here, αa = (kB/Eads) and ρ0 = Γ0/λ(Ω2 + ), where

kB is the Boltzmann constant, Eads is the adsorption
energy, and  = 1 Å–1 is the characteristic reciprocal
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Fig. 2. Same as in Fig. 1, but for adsorption of europium on
silicon.
PH
length of decay of the adatom–substrate-atom inter-
atomic matrix element. Despite the fact that the Cou-
lomb shift ∆ and the metallization effects γ were disre-
garded in [12], we use Eqs. (8)–(10) for rough estima-
tion of κa. Substituting the values of the parameters
from the table into Eqs. (8)–(10) and recalling that

Eads = 4.8 eV [3], we obtain  ≈ –2.72Θ × 10–4,  ≈
–1.10Θ × 10–4, and κa ≈ –3.82Θ × 10–4 eV K–1. Thus,
for Θ = 0.1, the temperature coefficient is κa ≈ –0.4 ×
10–4 eV K–1. In the temperature range T = 300–1000 K
and for Θ = 0.1 [13, curve 2 in Fig. 2], experiment
yields κa ≈ –1.4 × 10–4 eV K–1, which is larger (in mag-
nitude) than the theoretical value by a factor of 3.5.
Generally speaking, there is nothing strange in this dis-
crepancy and the fact that the experimental and calcu-
lated values of κa are of the same sign and the coeffi-
cients are of the same order of magnitude is in itself an
argument for the validity of our model for analyzing
(although only semiquantitative) the temperature
effects. At the same time, it should be pointed out that
a semiconductor substrate is much more sensitive to
metal adsorption (compared to a high-melting d sub-
strate, where the coefficient κ is, by the way, an order of
magnitude smaller [13]), which becomes manifest, in
particular, in complex structural rearrangements of the
surface of both the substrate and the adlayer. It is, there-
fore, not inconceivable that representing the work func-
tion ϕ as  = ϕ + ∆ϕ is fully appropriate for calculation
of the coverage dependence of the work function (i.e.,
essentially, of the first derivative ∂ϕ/∂Θ) while being
too simplified to analyze temperature effects. Indeed, to
calculate the coefficient κ in the zero coverage limit
would now require determination of the second deriva-
tive of the type ∂2ϕ/∂T∂Θ, and we know only too well
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from theory that calculation of each successive deriva-
tive entails an increase in the error [14].
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Abstract—The characteristic electron-energy-loss (EEL) spectra of the pure surface of metallic yttrium and of
this surface in the initial stages of oxidation are recorded. The energy of the primary electron beam Ep is 200–
1000 eV. The spectra exhibit high- and low-frequency peaks. During oxidation, the positions of the basic peaks
in the EEL spectra are significantly shifted. The peaks corresponding to the bulk energy loss shift toward higher
energies upon oxidation. The peak corresponding to the low-frequency surface oscillations also shifts, but
toward lower energies, and its intensity monotonically decreases with increasing oxygen dose. The differences
between the spectra recorded at different Ep are explained as resulting from an increase in the electron escape
depth with Ep. © 2003 MAIK “Nauka/Interperiodica”.
The discovery of high-temperature superconductiv-
ity in complex nonstoichiometric oxides [1] has evoked
great interest in the study of oxides of various metals.
Moreover, investigation of the surface of a pure metal
and its interaction with oxygen is extremely important
for solving problems in surfaces physics and physical
metallurgy and enhances the understanding of the prop-
erties of metals and, in particular, the interaction of
metals with their environment. Earlier, we studied the
oxidation of metallic lanthanum and revealed interest-
ing features in its electronic structure [2]. Therefore, it
is interesting to compare those data with analogous
results on yttrium, whose electronic configuration is
close to that of lanthanum. Interest in yttrium is also
stimulated by the fact that its oxide is used as insulating
dielectric layers in modern microcircuit production
technologies.

The purpose of this work is to study the electronic
structure of metallic yttrium and its variation with oxi-
dation of yttrium by using characteristic electron-
energy-loss spectroscopy (EELS).

We performed investigations using a synchrotron
radiation source at the photoelectron spectroscopy sta-
tion located at the Kurchatov Institute. We used a high-
purity (99.9%) polycrystalline yttrium sample 10 ×
15 × 4 mm in size. Its surface was cleaned using a
unique method with a tungsten brush consisting of
1200 wires 0.037 mm in diameter. A layer ~2–5 µm
thick was removed from the sample surface in one cycle
of cleaning. It should be noted that, after the oxidized
surface had been cleaned, no photoelectron emission
was observed from oxide states characteristic of insuf-
ficiently clean sample surfaces. Hence, the method of
cleaning the sample surface provided a clean, though
not ideally smooth, surface. The residual pressure in the
chamber during measurements was ~10–10 Torr. These
1063-7834/03/4507- $24.00 © 21392
vacuum conditions allow measurements on a clean
yttrium surface for 1.0–1.5 h, after which the emission
caused by oxide forming due to interaction with resid-
ual gases becomes considerable.

Samples were oxidized by bleeding pure oxygen
into a chamber over 14–400 s. Oxygen was prepared by
heating copper oxide CuO, which decomposes to yield
copper and oxygen at temperatures above 500°C. The
oxygen content in the chamber was determined in situ
during oxidation by using mass spectrometric analysis.
Oxidation was carried out in one leak-in of oxygen by
both small and large (up to 45 L, where 1L = 10–6 Torr s)
doses. A dose of 1L (langmuir) means that approxi-
mately one monolayer grows onto a material under
study in a time t at a pressure p (pt = 1L), provided the
accommodation coefficient is equal to unity. If this
coefficient is smaller than unity, the actual amount of
oxygen adsorbed on the surface can be significantly
smaller than that calculated in langmuirs. To record
EEL spectra from samples with various degrees of oxi-
dation, we cleaned their surfaces before each leak-in of
oxygen.

All manipulations with samples and measurements
were performed at room temperature. To record elec-
tron energy spectra, we used a Perkin-Elmer
15-255GAR energy analyzer equipped with an electron
gun. The energy resolution of the energy analyzer is
less than 0.1 eV at energies from 0 to 1500 eV. The
electron gun built in the first stage of the analyzer
allows one to record EEL spectra (in the reflection
mode) at an electron energy Ep in the range 5–5000 eV.
To measure the optical absorption, we used synchrotron
radiation monochromatized in the same way as in [3].
Spectra were recorded in the electron-counting mode
depending on the electron kinetic energy at each spec-
003 MAIK “Nauka/Interperiodica”
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trum point; the energy analyzer and recording of spec-
tra were controlled using a microcomputer.

EEL spectra of the yttrium sample are shown in
Figs. 1 and 2. They were recorded at a primary electron
beam energy of Ep = 200 (Fig. 1) and 1000 eV (Fig. 2)
at room temperature. The abscissa is the energy of sec-
ondary electrons, and the ordinate is I/Imax for each
spectrum (the signal in each spectrum is normalized to
its maximum intensity). A complete EEL spectrum is
shown in Fig. 1 (curve 7). The full width at half-maxi-
mum of elastically reflected electrons (Fig. 1, curve 7)
does not exceed 0.65 eV, which means that the spectra
are recorded with an energy resolution of about
0.65 eV. The spectra were recorded in the electron-
counting mode at each point in the spectrum. The
energy step was 0.05 eV. The zero in the energy axis
was taken to be the energy of an elastically reflected
peak. Figures 1 and 2 (curve 1) show EEL spectra for
the yttrium sample with a cleaned surface; high- and
low-frequency peaks are clearly visible in them. The
high-frequency peak at ~12.4 eV corresponds to the
excitation of a bulk plasmon, and the low-frequency
peak near ~3.9 eV is due to the superimposition of a
surface plasmon on the d–d interband transition [4].
The fraction of the low-frequency plasmon excitations
in the spectrum taken at Ep = 1000 eV is low. The low-
frequency plasmon is weakly pronounced in the left
slope of the bulk plasmon in this spectrum, because the
surface energy loss length at this energy is shorter. At
the primary electron energy Ep = 200 eV, the surface
plasmon interferes with the d–d interband transition to
form a total peak. The shape of the spectrum agrees
well with the EEL calculation results [4] and the exper-
imental results [5, 6]. Although the calculation was per-
formed for the bulk electronic states of yttrium, many
specific features agree well with the data for the surface
of pure yttrium. Based on optical measurements,
Weaver and Olson [7] calculated EEL spectra for both
the bulk and surface states. Those calculated spectra [7]
correspond to our data obtained at various energies of
the primary electron beam. The spectrum at Ep =
200 eV contains peaks at 3.3 and 12.4 eV, and that at
Ep = 1000 eV, peaks at 3.9 and 12.3 eV.

We also measured light absorption in pure metallic
yttrium by using the CFS (quantum-yield) method at
photon energies of 10–20 eV. The absorption spectra
usually agree well with the corresponding EEL spectra.
The spectrum in Fig. 3 contains one peak correspond-
ing to an increase in the light absorption due to excita-
tion of a bulk plasmon. The position (12.5 eV) of the
absorption maximum agrees well with the EELS data
for pure yttrium (Figs. 1, 2). At photon energies below
10 and above 22 eV, the desired signal was extremely
low, which led to large errors at the edges of the spec-
trum. It should be noted that the light penetration depth
is much greater than the photoelectron escape depth
and is equal to 40–80 nm in this range of photon ener-
gies.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
Figures 1 and 2 also show the EEL spectra recorded
at the incident electron energies Ep = 200 and 1000 eV
for yttrium with various degrees of oxidation of the pre-
liminarily cleaned surface. As the dose of bleeding-in
oxygen increases, the spectrum structure changes (see
curves 2–6).

The positions of both (low- and high-frequency)
peaks significantly shift in this set of curves. The peak
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Fig. 1. EEL spectra of the yttrium surface at various oxygen
doses (L): (1) 0, (2) 5.5, (3) 9.3, (4) 15.2, (5) 22.7, and
(6) 45. Curve 7 is curve 6 drawn on a scale such that the
peak of elastically reflected electrons is visible. The energy
of the primary electron beam is Ep = 200 eV.
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corresponding to the bulk energy loss shifts toward
higher energies due to oxidation. At large oxygen
doses, the shift is more pronounced and an additional
peak appears on the left slope of the bulk plasmon at
~6–8 eV. This phenomenon is explained by an inter-
band transition from the oxide energy band to elec-
tronic states above the Fermi level. The peak corre-
sponding to low-frequency surface excitations also
shifts, but toward lower energies, and its intensity
monotonically decreases with increasing oxygen dose.
Figure 4 shows the variation of the energy of the low-
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Fig. 3. Optical absorption spectrum of metallic yttrium.
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Fig. 4. The energy of the low-frequency peak in the EEL
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dose at (1) Ep = 200 and (2) 1000 eV.
P

frequency peak from the spectra given in Figs. 1 and 2
with the oxygen dose. At low oxygen doses, the energy
of the low-frequency peak varies with Ep only insignif-
icantly. However, as the dose increases further, the low-
frequency peak “splits” into two branches with differ-
ent energies at the saturating oxygen doses. It should be
noted, however, that these branches were measured at
different energies of the primary electron beam. To
interpret this behavior, it should be taken into account
that the electron penetration depth in solids depends
significantly on the electron energy. For electrons with
Ep = 200 eV, the penetration depth is typically 0.5–
1.0 nm, whereas for electrons with Ep = 1000 eV it can
bears large as 3–4 nm. Then, all the data in Fig. 4 can
be explained if we suppose that, as the oxygen dose is
increased above 40L, the thickness of the oxide layer
changes only insignificantly and is larger than the pen-
etration depth for electrons with Ep = 200 eV but is
smaller than the penetration depth for electrons with
Ep = 1000 eV. In this case, the low-frequency peak for
Ep = 200 eV corresponds to the excitation of a surface
plasmon at the oxide–vacuum interface, whereas that
for Ep = 1000 eV is due to the excitation of a plasmon
at the metal–oxide interface. It should be noted that the
energy of the low-frequency peak is lower than the
band gap of the oxide (about 4.5 eV).

It can be seen from Fig. 2 that the EEL spectra
recorded at the primary electron beam energy Ep =
1000 eV change even at oxygen doses higher than
100L. This behavior is due to the fact that the electron
penetration depth in solids significantly increases at
Ep = 1000 eV and, hence, the effective thickness of the
layer analyzed by this method increases by several
times as compared to the case with Ep = 200 eV. There-
fore, the spectra become saturated at substantially
larger oxygen doses, for which a thicker metal layer is
oxidized. Curves 6 in Figs. 1 and 2 are the EEL spectra
of the heavily oxidized sample surface. These spectra,
like the others, contain two pronounced peaks; how-
ever, their intensities are lower than those in spectrum 1,
which is caused by the appearance of a thicker oxide
film on the sample surface. The shapes of the spectra
agree well with the data from [6] on bulk plasmons in
yttrium oxide. Unfortunately, a poor energy resolution
(>1 eV) did not allow Lynch and Swan [5] to reveal the
specific feature that was clearly visible in our case in
the EEL spectrum near the elastic peak. The spectrum
recorded at Ep = 200 eV for the yttrium surface sub-
jected to the maximum oxidation exhibits peaks at 1.3
and 13.7 eV, and that recorded at Ep = 1000 eV, peaks
at 2.8 and 14 eV. It is probable that the oxide can pene-
trate further into the bulk of the sample, but the data
obtained do not allow us to confirm this. The oxide
formed on the surface is likely close to the stoichiomet-
ric composition, Y2O3; however, small deviations are
possible, which is indicated by the 1.3-eV surface plas-
mon observed in the spectrum taken at Ep = 200 eV.
This plasmon is not usually detected when studying
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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bulk oxide samples. The whole process of oxidation is
basically close to the oxidation of lanthanum [2]; the
only difference is that the yttrium surface is less active
than the lanthanum surface and, hence, the oxide signal
is saturated at by an order-of-magnitude higher oxygen
dose. 
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Abstract—A classification of two-shell carbon nanotubes with commensurate structures of shells is proposed.
The classification is based on the concept of equivalence classes as a set of shells with chiral indices of the (kf,
kg) type, where f and g are the chiral indices of the equivalence class and k is the index of the shell diameter.
All two-shell nanotubes with commensurate shells that are characterized by the chiral indices (k1f1, k1g1) and
(k2 f2, k2g2), where k1 and k2 are integral numbers, make up a family of nanotubes of different radii but with
equal geometric parameters (such as the intershell distance, the unit cell length of the nanotube, and the differ-
ence between the chiral angles of the shells). The geometric parameters of nanotubes are calculated for a num-
ber of families, the distribution of different types of two-shell nanotubes with commensurate shells over the
outer-shell radii is determined, and the threshold forces required to induce relative motion of nanotube shells
are evaluated. The possible use of two-shell nanotubes with commensurate shells in nanostructures is discussed.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A unique combination of electronic and mechanical
properties [1, 2] renders carbon nanotubes very attrac-
tive for practical applications in nanoelectronics and
nanomechanics. In particular, carbon nanotubes can be
used in nanometer-size devices, for example, diodes
[3], transistors [4], memory unit cells [5], nanopincers
[6, 7], and atomic-force microscope tips [8–10]. The
above examples of the possible areas of nanotube usage
are based on the electronic and mechanical properties
of single-shell nanotubes or individual shells of multi-
shell nanotubes. However, recent experimental investi-
gations revealed that individual shells of multishell
nanotubes can readily move relative to each other due
to weak van der Waals interactions; furthermore, it was
demonstrated that the relative motion of nanotube
shells can be arbitrary [11, 12] or controlled using a
special manipulator [13]. The theoretical principles of
the operation of nanometer-size devices embodying the
concept of the relative motion of nanotube shells have
been described for a nanobearing [14], a nanogear [15],
a nanospring [13], a mechanical nanoswitch [16], and
an electric nanoswitch and a nanodrill [17].

From the aforesaid, it is evident that an analysis of
the geometric relationships for the structures [18] and
the parameters of interaction [19–23] between two
neighboring shells of a nanotube is an important prob-
lem in nanomechanics. It should be noted that two-shell
nanotubes have already been produced through arc-dis-
charge synthesis [2], heating [24], and electron irradia-
tion [25] of single-shell nanotubes containing
fullerenes. At present, there exists a classification of
nonhelicoidal two-shell nanotubes [18]. Moreover, the
1063-7834/03/4507- $24.00 © 21396
energy barriers to relative motion and rotation of shells
in several two-shell nanotubes [19–23] and the barriers
to relative rotation of shells of two-shell nanoparticles
[26, 27] are calculated theoretically.

Since the nanotube shell is considered a one-dimen-
sional crystal [28, 29], the structures of the neighboring
shells can be either commensurate or incommensurate
[22]. As will be shown below, the threshold force F
required to induce motion of one nanotube shell relative
to the neighboring shell in the case of commensurate
structures of the shells is several orders of magnitude
greater than the threshold force needed to induce rela-
tive motion of shells with incommensurate structures.
In addition, the threshold force F for shells with incom-
mensurate structures is determined by the shell length.
Consequently, nanotubes with commensurate and
incommensurate structures of shells can be used in rad-
ically different mechanical nanometer-size devices. In
this respect, the purpose of the present work was to
elaborate a classification of two-shell nanotubes with
commensurate structures of shells and to calculate the
relevant geometric parameters. The proposed classifi-
cation of two-shell nanotubes can also be considered a
classification of pairs of neighboring shells with com-
mensurate structures in multishell nanotubes.

2. STRUCTURE AND RELATIVE MOTION 
OF SHELLS IN TWO-SHELL NANOTUBES

The structure of a nanotube shell is specified by a
pair of integral numbers, namely, the chiral indices (n,
m), which correspond to the components of the vector
of the graphite lattice c = na1 + ma2 (where a1 and a2 are
003 MAIK “Nauka/Interperiodica”
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the unit vectors of the graphite plane). Upon rolling a
fragment of the graphite plane into a nanotube shell, the
segment corresponding to the vector c transforms into a
circumference (Fig. 1) [28, 29]. The radius R of the
nanotube shell can be represented by the formula

(1)

where a0 is the magnitude of the unit vector of the
graphite plane. The unit cell length of the nanotube
shell can be written as

(2)

where GCD(2m + n, 2n + m) is the greatest common
divisor of the numbers 2m + n and 2n + m. The chiral
angle defined as the angle between the vectors a1 and c
is represented by the relationship

(3)

Since the graphite plane has a sixfold symmetry
axis, only the shells determined by the vectors c lying
within an angle of 60° (i.e., when m > 0 and n > 0) are
inequivalent. Nanotube shells with chiral indices of the
(n, n) and (n, 0) types are nonhelicoidal, and the
remaining shells are helicoidal. The nanotube shells
specified by the chiral indices (n, m) and (m, n) exhibit
mirror symmetry; i.e., they have a left-handed helicoi-
dal structure for n > m and a right-handed helicoidal
structure for m > n.

The structures of the nanotube shells are commen-
surate to each other if the ratio of their unit cell lengths
b1/b2 is a rational fraction. For commensurate shells,
the two-shell nanotube can be treated as a one-dimen-
sional crystal with a unit cell length equal to the least
common multiple of the unit cell length of the shells.

In the case when the contribution from atoms
located at the edges of the nanotube shells to the inter-
shell interaction energy is ignored, the energy barrier
∆Uc for relative motion of shells with commensurate
structures can be determined from the expression ∆Uc =
∆U1Nc, where ∆U1 is the energy barrier per unit cell of
the nanotube and Nc is the number of unit cells in the
nanotube. In other words, if the nanotube is sufficiently
long, the energy barrier ∆Uc is proportional to the nan-
otube length.1 This implies that, in the case of nanotube
shells with commensurate structures, the possibility
exists of synthesizing a nanotube with a specified
energy barrier ∆Uc. The energy barrier ∆Ui for relative

1  In recent years, it has become possible to synthesize nanotubes
with a length ranging from 200 nm (nanotubes prepared through
evaporation of carbon on a substrate [30]) to 30 µm (nanotubes
produced through thermal decomposition of acetylene with a cat-
alyst [31].
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motion of nanotube shells with incommensurate struc-
tures does not increase with an increase in the nanotube
length but fluctuates about a mean value, as is the case
with the sum of the terms in the expansion of cosj [22,
23]. The energy barriers to relative motion of commen-
surate and incommensurate shells along the nanotube
axis (see [19, 22, 23]) are given in Table 1. It follows
from the above consideration and the results presented
in Table 1 that, for nanotubes approximately 10 µm
long, the energy barrier to relative motion along the
nanotube axis for commensurate shells is three or four
orders of magnitude higher than the barrier for incom-
mensurate shells. The mean threshold force, which is
required to induce relative motion of shells along the
nanotube axis, can be estimated as F ≈ 2∆U/l, where
∆U is the barrier to relative motion of the nanotube
shells and l is the displacement of the nanotube shells
between their relative positions corresponding to the
minima of the intershell interaction energy. Since there
is only one equivalent minimum for each atom of the
shell, according to Damnjanovic et al. [23], the dis-
placement l cannot be less than a0/2. In our case, this
value of displacement l was used to estimate the thresh-
old forces needed to induce relative motion of commen-
surate and incommensurate shells along the nanotube
axis. The estimates obtained are also presented in Table 1.
It can be seen from Table 1 that, for nanotubes approx-
imately 10 µm long, the threshold forces exerted to
induce relative motion along the nanotube axis for com-
mensurate shells is three or four orders of magnitude
greater than those for incommensurate shells. An exam-
ination of the relative motion of nanotube shells with
the use of an atomic-force microscope revealed two
types of relative shell motion, for which the threshold
forces required to induce relative motion of the shells
differed from each other by several orders of magnitude
[12]. For relative shell motion of the first type, the
threshold forces were found to be of the order of
100 nN/µm, which is in agreement with our estimates
made for relative motion of shells with commensurate
structures (Table 1). For relative shell motion of the sec-

a1

b

c
θ

a2

Fig. 1. A fragment of the graphite plane rolled into a nano-
tube shell. Designations: a1 and a2 are the unit vectors of the
graphite plane, b is the unit vector, and θ the chiral angle.
The nanotube shell is uniquely determined by the vector c.
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Table 1.  Energy barriers and threshold forces required to induce relative motion of nanotube shells along the nanotube axis

Nanotube Commensurability 
of shell structures ∆Um, meV ∆U, eV/µm Fm, nN F, nN/µm

(14,0)@(16,10) Incommensurate 300 [22] 0.8

(12,12)@(18,6) " 400 [23] 1.0

(12,12)@(29,1) " 400 [23] 1.0

(12,12)@(24,9) " 600 [23] 1.6

(7,7)@(12,12) Commensurate 200 [22] 500

(7,7)@(12,12) " 1000 [23] 2600

(12,12)@(17,17) " 500 [23] 1300

(5,5)@(10,10) " 37 [19] 100

Note: ∆Um is the maximum barrier to relative motion of nanotube shells with incommensurate structures, ∆U is the energy barrier to rel-
ative motion of nanotube shells with commensurate structures (per unit length of the nanotube), Fm is the threshold force required
to induce relative motion of nanotube shells with incommensurate structures, and F is the threshold force required to induce relative
motion of nanotube shells with commensurate structures (per unit length of the nanotube).
ond type, the threshold forces proved to be less than the
force sensitivity of the microscope. It can be assumed
that these two types of relative shell motion correspond
to commensurate and incommensurate shells, respec-
tively. Therefore, the threshold forces required to
induce relative motion of nanotube shells with com-
mensurate structures are more accessible for exact con-
trol of this motion in mechanical nanodevices, for
example, with the use of a special manipulator [13].

Moreover, according to the calculations of the
energy barrier to relative motion of nanotube shells
with incommensurate structures as a function of the
nanotube length [22, 23], a change in the length of one
of the nanotube shells by only 1 nm causes the energy
barrier ∆Ui to change by one order of magnitude. In this
case, the synthesis of nanotubes with a specified barrier
∆Ui and, hence, with a specified force controlling the
relative motion of the nanotube shells involves consid-
erable difficulties.

Thus, we believe that relative motions of nanotube
shells with commensurate and incommensurate struc-
tures can be used in radically different mechanical nan-
odevices. In particular, fast relative motions of nano-
tube shells with incommensurate structures that occur
under the action of forces considerably stronger than
the threshold force hold promise for use in nanodevices
for which one of the important performance character-
istics is the rate of relative motion of the nanotube shell.
As an example, we refer to a nanobearing [14], a nan-
ogear [15], a nanospring [13], and a nanodrill [17].
Slow relative motions of nanotube shells with commen-
surate structures that proceed under the action of forces
with magnitudes of the order of the threshold force can
be applied in nanodevices for which one of the impor-
tant performance characteristics is the accuracy in
determining the relative position of the nanotube shell.
Examples of such nanodevices are provided by
mechanical [16] and electric [17] nanoswitches.
P

3. CLASSIFICATION AND GEOMETRIC 
PARAMETERS OF NANOTUBES 

WITH TWO COMMENSURATE SHELLS

It follows from relationship (2) that all nanotube
shells with chiral indices of the (kf, kg) type, where k is
an integral number, have equal lengths of the unit cells,

(4)

and, hence, commensurate structures. For these shells,
the chiral angles are also equal to each other. In what
follows, a set of nanotube shells will be referred to as
the equivalence class, provided f and g are relatively
prime numbers; a pair of numbers (f, g) will be termed
the chiral indices of the equivalence class; and k will
stand for the index of the shell diameter. The equiva-
lence classes with chiral indices (f, g) and (g, f) are
assumed to be different, because, in the general case,
the relevant shells of mirror symmetry with chiral indi-
ces (n, m) and (m, n) should be characterized by differ-
ent energy barriers to motion relative to the neighboring
shells. For the same equivalence class, the distance
between nanotube shells with chiral indices (k1f, k1g)
and (k2 f, k2g), where k2 > k1, can be determined from
the expression

(5)

and depends only on the difference between the indices
of the shell diameters ∆k = k2 – k1. Consequently, for
each equivalence class, there are families of two-shell
nanotubes with an identical intershell distance deter-
mined by the difference ∆k. In the case when the nano-
tube shells are formed simultaneously [32], the inter-
shell distance corresponds to a minimum intershell
interaction energy [33]. According to the calculations,
this energy is close to the minimum energy for nano-
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tubes with an intershell distance ∆R ranging from 3.3 to
3.5 Å. When the inner shell is formed after the outer
shell (for example, under electron irradiation of
fullerene-containing nanotubes), the intershell distance
∆R reaches 3.7 Å [25]. By virtue of the relationship
∆R ≤ 3.7 Å, the shells belonging to the same equiva-
lence class can be adjacent to each other in a particular
nanotube only under the following condition:

(6)

The bond length a0/  (the distance between the
nearest neighbor carbon atoms in the nanotube shell) is
taken to be equal to 1.41 Å, which is in agreement with
both the calculations carried out in [34] and the experi-
ments performed in [33]. Condition (6) is satisfied only
for the equivalence classes with small chiral indices
(f, g). All these equivalence classes and the correspond-
ing geometric parameters of two-shell nanotubes with
left-handed helicoidal shells of the same equivalence
class are presented in Table 2. The upper part of this
table contains all equivalence classes for which the dis-
tance ∆R between nanotube shells of the same class
falls in the experimentally found range I ≡ [3.3; 3.7] Å.
The surprising thing is that the number of aforemen-
tioned equivalence classes is equal to only six. It should
also be noted that two-shell nanotubes composed of
shells belonging to the equivalence classes with chiral
indices (f, g) and (g, f) exhibit mirror symmetry and,
consequently, are characterized by equal geometric
parameters.

Let us now consider a nanotube composed of shells
belonging to different equivalence classes. For this nan-
otube with chiral indices ((k1f1, k1g1)@(k2 f2, k2g2), the
difference between the shells is determined by the for-
mula

(7)

In the case when nanotube shells belonging to different
equivalence classes have commensurate structures, i.e.,
when b1/b2 = p/q (where p and q are relatively prime
numbers corresponding to the ratio of the unit cell
lengths of the shells), there are families of two-shell
nanotubes with identical intershell distances for each
pair of equivalence classes. It can easily be demon-
strated that nanotube shells with commensurate struc-
tures always satisfy the relationship

(8)
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For each family, the indices of the shell diameters can
be written as

(9)

where  and  are the indices of the shell diameters
for any of the nanotubes of the family and l is an inte-
gral number. For each pair of equivalence classes, there
is only one family with a specified intershell distance

∆R. Note that the indices of the shell diameters  and

 are positive for nanotubes with chiral indices

( f1, g1)@( f2, g2) and negative for nanotubes

with chiral indices (– f2, – g2)@(− f1, – g1), in
which the equivalence classes corresponding to the
inner and outer shells change places.

Multishell nanotubes with an outside diameter up to
30 nm were obtained experimentally by Iijima [2]. For
different equivalence classes, pairs of nanotube shells
with commensurate structures in a multishell nanotube
with an outside diameter up to 30 nm can belong to one
of several hundreds of families. Since the number of
these families is very large, they are not presented in
this paper. The geometric parameters of two-shell nan-
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Table 2.  Families of two-shell nanotubes with left-handed
helicoidal shells of the same equivalence class with intershell
distances ∆R < 3.7 Å

(f, g) ∆k ∆R, Å b, Å θ, deg

(1,0) 9 3.50 ∈  I 4.23 0.00

(1,1) 5 3.37 ∈  I 2.44 –30.00

(3,2) 2 3.39 ∈  I 18.44 –23.41

(4,1) 2 3.56 ∈  I 6.46 –10.89

(7,3) 1 3.45 ∈  I 37.60 –17.00

(8,1) 1 3.32 ∈  I 36.14 –5.82

(2,1) 4 3.09 11.19 –19.11

(3,1) 3 2.80 15.25 –13.90

(4,3) 1 2.36 25.73 –25.28

(5,1) 1 2.17 23.55 –8.95

(5,2) 1 2.43 8.81 –16.10

(5,3) 1 2.72 29.61 –21.79

(5,4) 1 3.04 33.04 –26.33

(6,1) 1 2.55 27.74 –7.59

(7,1) 1 2.93 10.65 –6.59

(7,2) 1 3.18 34.62 –12.22

Note: f and g are the chiral indices of the equivalence class; ∆R is
the intershell distance; ∆k = k2 – k1 is the difference between
the indices of the shell diameters, which corresponds to the
intershell distance ∆R; and b and θ are the unit cell length
and the chiral angle of the shells, respectively. The charac-
teristics of the nanotubes with intershell distances ∆R ∈   I ≡
[3.3; 3.7] Å are given in the upper part of the table.
3
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Table 3.  Families of two-shell nanotubes with left-handed helicoidal shells of different equivalence classes with intershell
distances ∆R ∈  I = [3.3; 3.7] Å

(f1, g1) (f2, g2) p q ∆R, Å , Å H, Å ∆θ, deg

(1,0) (5,3) 5 2 1 7 3.50 5.44 29.61 21.79

(1,0) (8,7) 4 1 1 13 3.50 5.05 54.99 27.80

(8,7) (5,3) 2 5 13 7 3.50 13.60 384.93 6.01

(1,1) (11,2) 2 1 1 7 3.37 4.71 17.10 21.79

(1,0) (16,5) 10 1 1 19 3.50 7.39 80.37 13.17

(16,5) (5,3) 1 4 19 7 3.50 10.88 562.59 8.61

(16,5) (8,7) 5 8 19 13 3.50 40.42 1044.81 14.62

(4,1) (20,17) 5 1 1 7 3.56 12.47 45.23 16.43

(1,1) (22,1) 8 1 1 13 3.37 8.75 31.75 27.80

(11,2) (22,1) 3 2 7 13 3.37 17.50 222.24 6.01

(1,0) (24,11) 22 1 1 31 3.50 12.05 131.13 17.90

(5,3) (24,11) 12 3 7 31 3.50 36.15 917.91 13.89

(24,11) (8,7) 6 15 31 13 3.50 75.79 1704.69 9.90

(3,2) (25,9) 5 1 1 7 3.39 11.86 129.07 8.61

(1,1) (26,11) 14 1 1 19 3.37 12.79 46.40 13.17

(11,2) (26,11) 2 1 7 19 3.37 12.79 324.81 8.61

(3,2) (30,1) 5 1 1 7 3.39 11.86 129.07 21.79

(1,0) (33,7) 28 1 1 37 3.50 14.38 156.51 9.43

(5,3) (33,7) 4 1 7 37 3.50 14.38 1095.57 12.36

(1,0) (35,13) 34 1 1 43 3.50 16,71 181.89 15.18

(5,3) (35,13) 11 2 7 43 3.50 33.43 1273.23 6.61

(8,1) (37,32) 6 1 1 7 3.32 23.25 252.99 21.79

(1,0) (39,16) 40 1 1 49 3.50 19.05 207.27 16.43

(4,1) (43,25) 11 1 1 13 3.56 23.16 84.00 10.42

(7,3) (45,26) 6 1 1 7 3.45 24.18 263.18 4.22

(1,0) (45,32) 58 1 1 67 3.50 26.04 283.41 24.43

(1,1) (46,13) 26 1 1 31 3.37 20.87 75.71 17.90

(46,13) (11,2) 3 14 31 7 3.37 65.98 529.96 3.89

(4,1) (47,20) 11 1 1 13 3.56 23.16 84.00 6.01

(1,1) (47,26) 32 1 1 37 3.37 24.91 90.36 9.43

(8,1) (48,19) 6 1 1 7 3.32 23.25 252.99 10.15

Note: (f1, g1) and (f2, g2) are the chiral indices of the equivalence classes for the inner and outer shells of the nanotube, respectively; 

and  are the indices of the diameters of the inner and outer shells in the nanotube with the smallest radius of the outer shell

 in the family with the specified indices (f1, g1) and (f2, g2), respectively; p and q are relatively prime numbers corresponding

to the ratio of the unit cell lengths of the shells; H is the unit cell length of the nanotube; and ∆θ is the difference between the chiral
angles of the shells. The families included in the table are characterized by chiral indices of the equivalence classes f1, f2 < 50 and
radius R2 < 100 Å for at least one of the nanotubes of the family.
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otubes with commensurate structures of the shells for a
number of families are given in Table 3. All nanotubes
of the same family are characterized by equal geomet-
ric parameters: the intershell distance ∆R, the unit cell
length of the nanotube H, and the difference between
the chiral angles of the shells ∆θ.
P

Thus, we constructed a complete classification of
two-shell carbon nanotubes with commensurate struc-
tures of the shells. The nanotube shells can be helicoi-
dal and nonhelicoidal. In this respect, the two-shell
nanotubes can be separated into three types: (1) nano-
tubes with two nonhelicoidal shells, (2) nanotubes with
HYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
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a helicoidal shell and a nonhelicoidal shell, and (3) nan-
otubes with two helicoidal shells. Figure 2 presents the
total number Ntot (with allowance made for the differ-
ence between the left-handed and right-handed helicoi-
dal shells) of different-type two-shell nanotubes with
commensurate structures of shells with an outer-shell

radius less than  as a function of the largest outer-

shell radius . The distribution of the numbers Nd of
different-type two-shell nanotubes with commensurate
shells over the outer-shell radii is shown in Fig. 3. Since
all nanotubes with two nonhelicoidal shells belong to
only two families [(1, 0), (1, 0) and (1, 1) (1, 1)], the
total number of nanotubes of this type increases lin-
early with an increase in the largest outer-shell radius.
The total number of nanotubes of the other two types
increases more rapidly, because the number of different
families contributing to the total number of nanotubes
also increases with an increase in the largest outer-shell
radius.

The classification proposed in this work is applica-
ble not only to carbon nanotubes but also to nanotubes
whose shells are formed by rolling up a two-dimen-
sional crystal with a unit cell similar to the unit cell of
the graphite plane (a rhomb with a 60-degree angle
between the elementary vectors of the lattice). Since the
initial two-dimensional crystal has an nc-fold symmetry
axis, the nanotube shells determined by the crystal lat-
tice vectors with an angle of 360°/nc are indistinguish-
able. As a result, the number of different equivalence
classes of the nanotube shells decreases by a factor of
nc as compared to the crystal without symmetry axes. In
the case where the initial two-dimensional crystal, like
the graphite plane, has a sixfold symmetry axis (for
example, the crystal with a triangular lattice), the num-
ber of different equivalence classes of nanotube shells
rolled up from these crystals coincides with the number

R2
max

R2
max

100 200 300

2000

4000

6000

8000

0
R2

max, Å 

N
to

t

Fig. 2. The total number Ntot (with allowance made for the dif-
ference between the left-handed and right-handed helicoidal
shells) of different-type two-shell nanotubes with commensu-
rate structures of shells with an outer-shell radius less than

 as a function of the largest outer-shell radius .R2
max

R2
max
PHYSICS OF THE SOLID STATE      Vol. 45      No. 7      2003
of equivalence classes of the shells forming carbon nan-
otubes. If the initial two-dimensional crystal is charac-
terized by a threefold (or twofold) symmetry axis or has
no symmetry axes, the number of different equivalence
classes of nanotube shells rolled up from these crystals
is two (three) or six times greater than that of the shells
forming carbon nanotubes. An interesting example of
such nanotubes is provided by WS2 nanotubes [35],
whose shells are rolled up from a two-dimensional
crystal with a threefold symmetry axis. In these nano-
tubes, the chemical interaction between atoms inside a
shell is considerably stronger than the van der Waals
interaction between atoms of neighboring shells, as is
the case in carbon nanotubes. For this reason, we
assume that, in WS2 nanotubes, the shells can also
readily move relative to each other.

Furthermore, the proposed classification can easily
be extended to nanotubes whose shells are considered
one-dimensional crystals. It can be demonstrated that a
nanotube shell rolled up from a two-dimensional crys-
tal with the elementary vectors d1 and d2 of the lattice
represents a one-dimensional crystal only in the situa-
tion where α2 and α cosφ are rational numbers. Here,
α = |d2 |/ |d1| and φ is the angle between the vectors d1
and d2. (Examples of such two-dimensional crystals are
crystals with a square lattice or crystals with a rectan-
gular lattice for which the ratio between the elementary
vectors is a rational fraction.) For these nanotubes, like
carbon nanotubes, the shell is uniquely determined by
the vector h = nd1 + md2. It is worth noting that nano-
tube shells with the chiral indices (n, m) and (m, n) have
an identical structure but different helicities. As in the
case of carbon nanotubes [see relationship (4)], all
shells of the nanotubes with chiral indices of the (kf, kg)
type, where k is an integral number, belong to the same
equivalence class and are characterized by equal
lengths of the unit cells:

1
2
3

1000

500

0 100 200 300

N
d

R2, Å

Fig. 3. Distribution of the numbers Nd of different-type two-
shell nanotubes with commensurate shells over the outer-
shell radii R2: (1) nanotubes with two nonhelicoidal shells,
(2) nanotubes with a helicoidal shell and a nonhelicoidal
shell, and (3) nanotubes with two helicoidal shells.



1402 LOZOVIK et al.
(10)

where s1 and s2 are natural numbers.
Since the number of possible two-shell nanotubes

with commensurate structures of the shells is relatively
large, there arise considerable difficulties in examining
the correlations between the geometric parameters and
the characteristics of the relative shell motion. We
believe that the proposed classification can be useful in
analyzing these correlations and determining the pairs
of nanotube shells promising for applications in nano-
mechanics. For example, this classification can be used
in searching for pairs of neighboring shells with maxi-
mum and minimum energy barriers to relative rotation
and motion of the shells along the nanotube axis. More-
over, Saito et al. [21] made a prediction regarding two-
shell nanotubes with incommensurate shells for which
the potential relief of the intershell interaction energy
would be similar to a male–female screw thread. How-
ever, as was already noted in the present work, nano-
tubes with commensurate and incommensurate struc-
tures of shells can be used in radically different nanode-
vices. In our opinion, the proposed classification can
also be applied in searching for pairs of neighboring
nanotube shells with commensurate structures for
which the potential relief of the intershell interaction
energy is similar to a thread.
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Abstract—An efficient algorithm is proposed for the numerical generation of fullerenes of an arbitrary struc-
ture. The algorithm is a combination of the method for unwinding fullerenes into a triangular network and the
topological-invariants method for describing quasi-two-dimensional closed clusters. Graphs of possible
structures of Cn fullerenes are found satisfying the isolated-pentagon rule for numbers of atoms in the range
100 < n ≤ 150. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable recent attention has been focused on
fullerenes and other cluster structures based on quasi-
two-dimensional carbon atomic networks [1, 2]. Such
structures are candidates for nanoelectronic technolo-
gies; in particular, podlike carbon structures (a nano-
tube with a fullerene which can move within it) [3] may
serve as a basis for nanoswitches and the system con-
sisting of two nanotubes and a fullerene placed between
them can be used as a nanovariometer, with its resis-
tance varying by several orders of magnitude when one
of the nanotubes is rotated through a small angle rela-
tive to the fullerene. Fullerenes find application as high-
quality masks against photochemical etching used for
preparing nanostructures. Since the first excited triplet
level of a fullerene molecule is close to resonance with
the metastable singlet level of an oxygen molecule,
fullerenes can be employed as a sensitizer in photo-
chemical reactions with the release of singlet oxygen
and are candidates for photodynamic therapy.
Fullerenes are used as initial elements for the molecular
design and fabrication of new materials with unique
properties, such as ultrahard materials (obtained
through polymerization of fullerenes) and new super-
conducting materials [4]. Therefore, the task of finding
possible isomers of the Cn fullerene is of considerable
importance from both a theoretical and technological
standpoint.

Various algorithms have been developed for numer-
ical generation of fullerene structures [1, 5–7]. The
most popular generating scheme is the ring-spiral algo-
rithm, based on the assumption that the surface of any
fullerene can be unwound into a spiral of touching pen-
tagons and hexagons [8]. Although it was found later
that there are fullerenes which cannot be unwound into
a spiral (e.g., the fullerene with tetrahedral symmetry
with n = 380 [9]), the ring-spiral algorithm remained a
1063-7834/03/4507- $24.00 © 21403
convenient and reliable method for describing small
and medium-sized fullerenes. In various studies, it has
been confirmed that this algorithm generates all possi-
ble fullerene structures for n ≤ 100. However, in the
case of large values of n, other methods should be
applied for investigating all possible fullerene struc-
tures.

There are several methods of fullerene generation
[1, 10, 11] based on fullerene unwinding into a planar
hexagonal or triangular network. In this paper, one of
those methods [1] is used and developed further. Any
Cn fullerene can be cut so that, when it is unwound into
a triangular network, the sites corresponding to the pen-
tagonal faces of the fullerene will be at the corners of a
closed, 22-sided polygon. This polygon can be
uniquely determined by 11 vectors of the triangular net-
work, and the area S(n) of the polygon is equal to

n, where n is the number of carbon atoms in the
fullerene molecule. The face-dual network (FDN) can
be inverted to obtain the original fullerene. By con-
structing all possible FDNs of area S(n), we will find all
isomers of the Cn fullerene. Given a triangular FDN of
a fullerene, we can construct the fullerene graph and,
using quantum-chemical calculations, find all required
characteristics.

However, a fullerene can be cut in a variety of ways;
therefore, one isomer can be associated with a large
number of FDNs (the upper estimate is 12, which cor-
responds to the number of permutations of 12 pentam-
ers). In the method developed in [1], one calculates the
atomic coordinates for the fullerenes corresponding to
all FDNs to be tested and then the structures found are
compared using the HMO full energies and the HOMO
and LUMO eigenvalues. The number of isomers tends
to increase with increasing n. Indeed, for n = 80, we
have seven fullerenes with isolated pentagons (IPRs);
for n = 90, this number is 46; and for n = 100, we have

3/4( )
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450 IPR isomers [1]. Therefore, for n > 100, a more
efficient method for eliminating equivalent FDNs is
called for instead of quantum-chemical calculations, as
the latter are very time consuming.

The distance matrix D of the fullerene-dual graph
uniquely determines the structure of the fullerene
graph. One can calculate the invariants of the distance
matrix that are independent of the order of numbering
the graph vertices. Based on a triangular FDN of a
fullerene, we can find the distance matrix D and calcu-
late its invariants. If the invariants for different FDNs
are identical, these FDNs correspond to the same
fullerene. This algorithm is very efficient, because cal-
culations are performed, for the most part, for an inte-
ger-numbered network.

2. METHOD

We consider fullerenes of an arbitrary structure, i.e.,
closed clusters of sp2-hybridized carbon consisting of
five- and six-membered rings only. An idealized model
is used (unless otherwise specified) in which a fullerene
is treated as a convex polyhedron, with its vertices cor-

Cap 1

Cap 2

Tubule

Fig. 1. Triangular face-dual network of the fullerene C70
(D5h).
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Fig. 2. Structure of a cap segment.
P

responding to carbon atoms and its edges, to σ bonds.
In accordance with Euler’s theorem, we have

(1)

where f, v, and e are the numbers of faces, vertices, and
edges of the polyhedron, respectively. It follows that an
arbitrary fullerene always has 12 five-membered rings
(pentagonal faces).

There is a one-to-one correspondence between a tri-
angular and a hexagonal network: the centers of the
faces of the hexagonal network correspond to the sites
of the triangular network, and the centers of the faces of
the triangular network, to the sites of the hexagonal net-
work. A fullerene can be cut and unwound into both a
planar hexagonal and a planar triangular network. In
the latter case, the centers of hexagonal and pentagonal
fullerene faces will be at the network sites. According
to the method proposed in [1], an arbitrary fullerene can
be cut and unwound into a planar triangular network so
that the network is a plane 22-sided polygon consisting
of two cap segments and of one tubular segment
(Fig. 1).

Let us consider the structure of a cap segment in
more detail (Fig. 2). The cap consists of five nonover-
lapping triangles whose bases form a continuous bro-

ken line O1O2O3O4O5  and whose vertices opposite
to the bases lie on one side of this line. The adjacent lat-
eral sides of neighboring triangles are equal, and the
angle between them is π/3. Thus, there is a sequence of
five equilateral triangles which complements the cap
segment. The angles αk (k = 1, …, 5) are not fixed, but
their values satisfy the equality

(2)

The cap segment is unambiguously determined by the
five triangular-network vectors bk. The vector w (Fig. 2)
also characterizes the cap segment and is related to the
vectors bk through the relation w = .

Thus, the FDN consists of two cap segments (the
other cap segment is rotated through an angle of π/2)
and one tubular segment. A necessary condition for
fullerene unwinding to be possible is the equality of the
vectors w of the two cap segments. The tubular segment
lies between the cap segments and is a closed dodeca-
gon without self-crossings. The “lateral” sides of the
tubular segment are equal and parallel and are deter-
mined by the vector h (Fig. 2). The area of the FDN is

, where n is the number of fullerene atoms.
The scheme we employed to search for isomers of

the Cn fullerene is as follows. Iterations are performed
with respect to the vectors w and h. For each value of
w, all possible pairs of cap segments with a given vector
w are tested. Enantiomorphous structures are consid-
ered to be identical; therefore, it will suffice to deal with

f v e–+ 2,=

O1'

α k

k 1=

5

∑ 5π/3.=

bk1
5∑

3n/4
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only cap segments characterized by a vector w = 

with i ≥ j ≥ 0. Only FDNs having area  and sat-
isfying the isolated-pentagon rule are chosen.

Since a fullerene can be cut in various ways, the
generation algorithm described above gives a great
quantity of isomorphic configurations (Fig. 3). The
number of different FDNs corresponding to the same
fullerene depends on the structure of the specific
fullerene. An upper estimate is given by the number of
ways in which the pentamer vertices can be enumerated
and is equal to 12 (the number of permutations of
12 pentamers). In order to eliminate isomorphic config-
urations, we perform the following procedure. One or a
few invariants IG* are calculated for each FDN (see
below). Next, FDNs are checked, one by one, for
whether or not a configuration with the given invariant
or the given set of invariants has already been dealt
with. If this is the case, the configuration at hand is
ignored and we pass to the next FDN; otherwise, the
configuration at hand and its invariant IG* are stored.

Let G* be a graph that is dual to the fullerene graph
G; that is, the vertices of the graph G* correspond to the
faces of the fullerene graph G and the vertices of the
graph G correspond to the faces of the graph G*. There
is a single way in which the fullerene graph can be
arranged on a sphere; therefore, there is a one-to-one
correspondence G  G*. We define the distance
between two vertices of a graph as the length of the
shortest simple path connecting these vertices. A trian-
gular FDN of a Cn fullerene carries complete informa-
tion on the incidence of the N vertices (N = n/2 – 2) of
graph G* dual to the fullerene graph. For each FDN, we
calculate the N × N distance matrix of graph G*. The
distance matrix of a graph determines the incidence
matrix of the graph and, hence, the graph itself.

There are invariants that are independent of the
order of numbering of the graph vertices. For example,
as such an invariant for a given vertex i of graph G*,
one can take a function (symmetric under any permuta-
tion of its arguments) of the distances between the
given vertex and all other vertices of the graph:

(3)

where dij is the distance between the vertices i and j and
the prime on the sum indicates that the summation is
carried out over all vertices except the vertex i. The
function f can be taken to be a power-law function:

(4)

where p is an arbitrary integer, rational, or real number.
Each vertex i of graph G* is characterized by the

distribution (dk) of its distances from the other verti-

i j,( )
3n/4

Vi f( ) ' f dij( ),
j

∑=

Vi p( ) 'dij
p
,

j

∑=

nk
i
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ces of the graph, where  is the number of vertices
whose distances from the vertex i are equal to dk

(belonging to the set of distances {dij}). The function f
should be chosen such that, for any two vertices a and
b of graph G* characterized by different distributions

(dk) and (dk), the respective invariants Va( f ) and
Vb( f ) are also different.

We calculated the invariant Vi(h) of a vertex i using
the values of the so-called hash function, which gives a
hash value (integer) corresponding to an entered key
(set of integers). The key was the distance distribution

(dk) for the vertex i. The hash function was defined
using the XOR operation and bit-by-bit shift as is done
for the standard hash function in the STL library [12].

Invariants of the full graph G* are the expressions

(5)

where g1 is an arbitrary function symmetric under per-
mutation of its two arguments and g2 is an arbitrary
function. In our calculations, we used the invariant

(6)

where Vi(h) and Vj(h) are values of the hash function.
The function δ(dij – 1) is equal to unity when the verti-
ces i and j are incident; otherwise, it is zero.

We also performed calculations using different
combinations of several invariants (5). The results
obtained in this case are identical to those obtained with

nk
i

nk
a

nk
b

nk
i

IG* f g1 g2, ,( ) g1 Vi f( ) V j f( ),( )g2 dij( ),
i j>
∑=

IG* Vi h( )V j h( )[ ] 1/2δ dij 1–( ),
i j>
∑=

(a) (b)

(c) (d)

Fig. 3. Fullerene C60 (Ih), cut and unwound into a triangular
network in four different ways: a, b, c, and d.
3
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invariant (6). Therefore, invariant (6) uniquely deter-
mines the graph of the Cn fullerene in the range 20 ≤ n ≤
150 considered in this paper.

(a) (b)

Fig. 4. Dual graphs G* and G of the fullerene C150 arranged
on a sphere. The vertices on the back side of the sphere are
represented by open circles. (a) Fullerene graph G*; the
pentamer vertices are represented by larger circles.
(b) Graph G of the same fullerene with the same orientation
in space; the vertices of graph G correspond to the centers
of the faces of graph G*, and vice versa.

Numbers of isomers of isolated-pentagon fullerenes Cn for
different values of n (100 < n ≤ 150)

n k

102 616

104 823

106 1233

108 1799

110 2355

112 3342

114 4468

116 6063

118 8148

120 10 774

122 13 977

124 18 769

126 23 589

128 30 683

130 39 393

132 49 878

134 62 372

136 79 362

138 98 541

140 121 354

142 151 201

144 186 611

146 225 245

148 277 930

150 335 569
P

3. RESULTS

Using the scheme described above, we found possi-
ble configurations of Cn fullerenes with isolated penta-
gons for 100 < n ≤ 150. The results obtained for
fullerenes satisfying the isolated-pentagon rule in the
case of 60 ≤ n ≤ 100 and for arbitrary fullerenes in the
case of 20 ≤ n ≤ 60 agree with the results obtained ear-
lier [1]. Figure 4 shows the graphs G* and G arranged
on a sphere for one of the isomers found for the C150
fullerene. The numbers of isomers of IPR fullerenes Cn

for different values of n (100 < n ≤ 150) are listed in the
table.1 

The number of isomers of Cn fullerenes increases
sharply (by three orders of magnitude) as n increases
from 100 to 150. Fullerenes of high symmetry (T, Td,
Th, I, Ih) have been found earlier [5]. A comparison with
the data from [5] shows that fullerenes with n > 100 are
predominantly of low symmetry. For instance, accord-
ing to our calculations for n = 120, there are 10774 iso-
mers of isolated-pentagon fullerenes and only one of
them has tetrahedral symmetry. It should be noted that
here we deal with the highest possible symmetry of
fullerenes; in actuality, the symmetry of a fullerene may
be lower due to Jahn–Teller distortions.

4. CONCLUSIONS

Thus, a scheme for the numerical generation of
fullerenes has been proposed in which a modified
method for unwinding a fullerene into a planar triangu-
lar network is used. In order to find possible configura-
tions, topological invariants of the fullerene graph have
been calculated. Such calculations are much less time
consuming than quantum-chemical calculations. Using
the method proposed, we have found face-dual net-
works of all possible isomers of isolated-pentagon
fullerenes Cn with n ≤ 150.

A face-dual network of a fullerene carries informa-
tion on all σ bonds of the fullerene; therefore, it can be
taken as a starting point for quantum-chemical calcula-
tions.
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