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Seasonal variations in extensive air showers (EASs) detected at the Yakutsk EAS array are analyzed. The atmo-
spheric pressure dependence of variations is pronounced. As the pressure increases by 1 mm of mercury, the
EAS intensity decreases by 2%. No temperature dependence is revealed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 96.40.Pq, 96.85.Ry
The ground stations of the Yakutsk EAS array are
arranged in the form of a mesh of right triangles with
sides of 500 m (small master) and 1000 m (large mas-
ter). Showers are detected by the array when signals
from three stations forming a master triangle coincide
with each other. The array does not usually operate in
summer. In this work, we analyze showers that have
axes located within the perimeter of the array, zenith
angles θ < 60°, and charged-particle densities ρ >
0.8 particles/m2 in the master stations.

Figure 1 shows the maximum and minimum diurnal
temperatures, average diurnal pressure, and the number
of showers per day (a) from October 18, 1999, to June
14, 2000, and (b) from September 12, 2000, to June 14,
2001. First, when the array begins to operate after a
summer pause, the number of showers per day
increases gradually. Then, correlation between local
pressure extrema and the number of showers is
observed. The number of showers increases as the pres-
sure decreases.

Fluctuations in the number of showers are partially
attributed to the inevitable failures and repair of indi-
vidual detectors. Such a pronounced barometric depen-
dence is not observed in earlier detection periods. The
last modernization of the master stations of the array
was performed in 1990, and the number of detected
showers increases continuously since that time: it has
tripled in ten years. It is evident that the detection peri-
ods have not tripled, and an increase in the statistics
could be achieved due to an increase in the reliability
and stability of the array operation. The atmospheric
pressure dependence of variations is manifested at sta-
ble operation.

In contrast with the pressure, the temperature varies
in time with a much fewer number of pronounced
extrema. No correlation between the number of show-
ers and the temperature is seen in Fig. 1.
0021-3640/05/8112- $26.00 0605
Figure 2 shows the average temperature, pressure,
and number of showers for several years as varying
throughout the years divided into 24 equal sections.
The fall increase in the number of showers is attributed
to the gradual beginning of the operation of the array

Fig. 1. (·) Maximum and (d) and minimum diurnal temper-
atures, average diurnal pressure, the number of showers per
day (a) from October 18, 1999, to June 14, 2000, and
(b) from September 12, 2000, to June 14, 2001.
© 2005 Pleiades Publishing, Inc.
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after the summer pause. A decrease in pressure and an
increase in the number of showers are observed from
cold to warm months. The number of showers increases
with temperature, but these increases are different in
different temperature ranges. Moreover, the number of
the detected showers increases in January at constant

Fig. 2. Average temperature, pressure, and number of show-
ers for several years vs. the time of the year divided into 24
sections.

Fig. 3. Energy dependence of the number of showers
detected in (d) January and (s) April (a) without and (b)
with the recalculation of the Moliere radius (Eo is measured
in electronvolts), and (c) the number of showers with cosθ >
0.9 that are detected by the small master vs. the charged-
particle density ρ300 at a distance of 300 m from the axis in
(j) January, (s) April, and (d) April as shifted to the left by
0.07 particles/m2.
temperature, although the array is thought to regularly
operate from December to May. Thus, an increase in
the number of showers from cold to warm months is
explained by a decrease in pressure rather than an
increase in temperature. The same conclusion is valid
for average characteristics, as well as for individual
periods. According to the average characteristics from
January to April, a decrease in pressure by 1 mbar and
1 mm of mercury leads to an increase in the number of
showers by 1.5 and 2%, respectively.

Figure 3a shows the energy dependence of the num-
ber of showers detected in (closed symbols) January
and (open symbols) April. It is seen that change in the
number of showers is independent of energy in the
range from 1017 to 1019 eV.

In order to eliminate the effect of atmospheric vari-
ations on the intensity of showers, the following proce-
dure is applied at the Yakutsk EAS array. The lateral
distribution function is described by the formula

(1)

where R is the distance from the axis and Ri is the
Moliere radius of the electromagnetic cascade theory. It
is thought that change in temperature and pressure
leads to the redistribution of charged particles in a
shower and the Moliere radius changes as

(2)

where the temperature and pressure are measured in
degrees Kelvin and millibars, respectively [4]. The total
number of particles in a shower does not change. Tak-
ing into account this circumstance, the particle density
at a distance of 300 and 600 m for the small and large
masters is recalculated to the Moliere radius Ro = 68 m
by the formula

(3)

Here, r = 300 and 600 m for ρ300 and ρ600, respectively,
and b is the parameter of the lateral distribution func-
tion.

The energy dependence of the number of showers
that are recalculated by Eqs. (2) and (3) for January and
April is shown in Fig. 3b. As is seen, the number of thus
recalculated showers for energies Eo > 1017 eV does not
change with the seasons. Differences at energies below
1017 eV are associated with the effect of the detection
threshold. The temperature dependence of the Moliere
radius in Eq. (1) is stronger than the pressure depen-
dence. From January to April, Ri changes by 14% as a
function of temperature and by 2% as a function of
pressure. As is seen in Fig. 2, seasonal variations in
temperature and pressure correlate, or more exactly,
anticorrelate with each other to a certain extent. There-
fore, taking into account the primarily temperature
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changes in Eqs. (1) and (2), we indirectly take into
account the pressure variations.

Figure 3c shows the number of showers as a func-
tion of density ρ300 at a distance of 300 m from the axis
for the small master and cosθ > 0.9. The closed and
open symbols correspond to January and April, respec-
tively. The latter symbols should be horizontally shifted
by 0.07 particles/m2 in order to superpose the data for
January and April. The absorption path in the parameter
λ upon a change in the atmospheric pressure can be
estimated using two pressure values by the formula

(4)

The absorption path obtained in this way is λ =
110 g/cm2, whereas the absorption path of the parame-
ter ρ300 that is obtained at fixed values of the integral
intensity for showers with various zenith angles is equal
to λ300 = (310 ± 20) g/cm2 [2] or, more accurately, λ300 =
(434 ± 15) – (62 ± 9)  g/cm2 [3]. The

ρ300 Apr( ) ρ300 Jan( )
1.02 pJan pApr–( )

λ
----------------------------------------- 

  .exp=

ρ300 0°( )( )log
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resulting λ and λ300 values differ from each other by a
factor of about 3. The value λ = 110 g/cm2 is probably
determined by EAS-composing electron–photon cas-
cades that almost do not overlap with each other and are
not added to each other.

This work was supported by the Ministry of Educa-
tion and Science of the Russian Federation.
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It is demonstrated that the infrared renormalon calculus indicates that the QCD theoretical expressions for the
Gross–Llewellyn Smith sum rule and for the Bjorken polarized and unpolarized ones contain an identical neg-
ative twist-4 1/Q2 correction. This observation is supported by the consideration of the results of calculations
of the corresponding twist-4 matrix elements. Together with the indication of the similarity of the perturbative
QCD contributions to these three sum rules, this observation leads to simple new theoretical relations between
the Gross–Llewellyn Smith and Bjorken polarized and unpolarized sum rules in the energy region Q2 ≥ 1 GeV2.
The validity of this relation is checked using concrete experimental data for the Gross–Llewellyn Smith and
Bjorken polarized sum rules. © 2005 Pleiades Publishing, Inc.

PACS numbers: 12.38.–t, 13.85.Hd
l It is known that, in the traditionally used 
scheme, the Borel image of the physical quantities in
QCD contain infrared renormalons (IRR), namely, the
singularities on the positive axis of integration of this
image in the complex plane of the Borel variable δ (for
reviews, see [1–3]). This related Borel integral can be
defined as

(1)

where as = αs/4π; αs is the QCD coupling constant in

the  scheme; β0 = (11/3)CA – (4/3)TfNf is the first
coefficient of the QCD β-function with CA = 3, Tf = 1/2;
and B[D](δ) is the Borel image of the physical quantity
D(as) under consideration.

From our point of view, the most important theoret-
ical works, which pushed ahead the study of the appli-
cability of the IRR calculus to the analysis of nonper-
turbative contributions to the characteristics of different
processes are those of [4, 5]. In particular, it was shown
in [5] that, since there exists a 1/Q2 nonperturbative cor-
rection of twist-4 in the characteristics of deep-inelastic
scattering, the related Borel images should have the
IRR pole at δ = 1; this does not manifest itself in the
expression for the Borel image of the Adler D function
of the e+e–-annihilation process [4]. This crucial remark
is later generalized to the discussion of the Bjorken
polarized sum rule in [6]. It should also be mentioned

¶ This article was submitted by the author in English.
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in passing that ultraviolet renormalons (UVR), which
are associated with sign-alternating asymptotic pertur-
bative contributions to the QCD perturbative series,
manifest themselves in the Borel images as the poles at
δ = –k, where k are integer numbers.

The next problem, which arises in the process of
applying the renormalon calculus to the analysis of the
structure of both asymptotic perturbative contributions
and nonperturbative corrections to physical quantities
is the calculation of the corresponding Borel images
B[D](δ). These calculations are usually performed
using large-Nf expansion (where Nf is the number of
quark flavors). What is really calculated is the so-called
one-renormalon-chain approximation to the Born
expression for the physical quantity under consider-
ation. Note that the renormalon chain is associated with
the gluon propagator, which is dressed by a large num-
ber of quark bubble insertions labeled by Nf. The con-
tributions of this chain into the theoretical expression
for the physical quantities are gauge-invariant, but they
do not reflect the whole picture of the renormalon
effects in the QCD. The latter only begin to manifest
themselves after the application of the naive non-Abe-
lianization ansatz [7], namely, after the replacement
Nf  –(3/2)β0 = Nf – 33/2 in the leading terms of the
large-Nf expansion. This procedure transforms a large-
Nf expansion into a large-β0 expansion, which is also
considered in some recent works [8], where it was asso-
ciated with a BLM-type expansion [9].

In this letter, definite new consequences of the rela-
tions between the Borel images calculated in [10, 11]
for the Gross–Llewellyn Smith (GLS) sum rule of νN
© 2005 Pleiades Publishing, Inc.
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deep-inelastic scattering (DIS) [12], the Bjorken polar-
ized (Bjp) sum rule [13] of polarized charged-lepton–
nucleon DIS, and the Bjorken unpolarized (Bjunp) sum
rule [14] of νN DIS are discussed. In particular, it is
argued that the values of the matrix elements of the
twist-4 1/Q2 corrections to the Bjp, Bjunp, and GLS
sum rule should have the same value. Together with the
similarity in the behavior of the perturbative correc-
tions of all three sum rules discussed in [11], this new
observation allows us to write theoretical expressions
to relate these a priori different physical quantities.

To be more precise, first consider the definitions of
the sum rules we are interested in, taking into account
the twist-4 operators evaluated in [15] in the case of
GLS and Bjunp sum rules and in [16] for the Bjp sum
rule

(2)

(3)

(4)

where

(5)

(6)

(7)

The explicit expressions of the numerators of twist-4
contributions are defined as in review [17], namely,

(8)

(9)

(10)

where the matrix elements on the right-hand side of
Eqs. (8)–(10) are known explicitly. Indeed, the matrix

GLS Q2( ) 1
2
--- x F3

νn x Q2,( ) F3
νp x Q2,( )+[ ]d

0

1

∫=

=  3CGLS Q2( )
O1〈 〉〈 〉
Q2

----------------,–

Bjp Q2( ) x g1
lp x Q2,( ) g1

ln x Q2,( )–[ ]d

0

1

∫=

=  
gA

6
-----CBjp Q2( )

O2〈 〉〈 〉
Q2

----------------,–

Bjunp Q2( ) x F1
νp x Q2,( ) F1

νn x Q2,( )–[ ]d

0

1

∫=

=  CBjunp Q2( )
O3〈 〉〈 〉
Q2

----------------,–

GGLS 1 4as– O as
2( ),–=

GBjp 1 4as– O as
2( ),–=

GBjunp 1
8
3
---as– O as

2( ).–=

O1〈 〉〈 〉 8
27
------ Os〈 〉〈 〉 ,=

O2〈 〉〈 〉 Op n–
NS〈 〉〈 〉 ,=

O3〈 〉〈 〉 8
9
--- ONS〈 〉〈 〉 ,=
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elements 〈〈 Os〉〉  and 〈〈 ONS〉〉  were calculated in [15],

while the matrix element 〈〈 〉〉  is calculated in [16].

Let us return to renormalon calculus. It is known
from [10] that the Borel images for the GLS and Bjp
sum rules coincide and have the following form:

(11)

It was shown in [11] that the Borel image B[CBjunp](δ)
of the Bjunp sum rule is closely related to Eq. (11),
namely,

(12)

where

(13)

The consideration of Eqs. (11)–(13) allow the fol-

lowing conclusions to be made [11]: in the 
scheme, the asymptote of the perturbative series for the
GLS, Bjp, and Bjunp sum rules is dominated by the first
δ = 1 IRR. Indeed, in the case of the GLS and Bjp sum
rules, the first UVR at δ = –1 responsible for the sign-
alternating perturbative QCD contribution to the
asymptotic behavior of the perturbative QCD series
(for a more detailed discussion, see [1, 2]) is suppressed
by the factor (1/2)exp(–10/3) = 0.018 with respect to
the dominant IRR at δ = 1 responsible for the sign-con-
stant n! growth of the perturbative coefficients for these
two sum rules. Moreover, it is obvious from the results
of [11] that, in the case of the Bjunp sum rule, the first
UVR, created by the pole at δ = –1, is absent and that
the residues of the first IRR in the Borel images for the
GLS, Bjunp, and Bjp sum rules are the same. There-
fore, it is possible to reach the conclusion that the
asymptotic perturbative QCD contributions will have
an identical structure [11]. This fact is supported by the
next-to-next-to-leading order studies of [18], which
were performed with the help of the method of effective
charges [19].

Now, I will state the new conclusion that follows
from the results of Eqs. (11)–(13) and is related to
twist-4 O(1/Q2) corrections. Since the IRR contribution
of the first δ = 1 IRR pole enter into the Borel images
of the GLS, Bjp, and Bjunp sum rules with the same
negative residue (see (11)–(13)), the normalized to
unity O(1/Q2) power correction in the GLS, Bjp, and
Bjunp sum rules, which are related to the O(Λ2/Q2)
ambiguities in the Borel integrals generated by the δ =
1 IRR pole, should have the same sign and a similar
numerical value. Indeed, the Λ2/Q2 IRR ambiguities
may be coordinated with the definitions of the twist-4
contributions (see, e.g., the reviews [1, 2]), and, if they

Op n–
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B CGLS[ ] δ( ) = B GBjp[ ] δ( ) = 
3 δ+( ) 5δ/3( )exp

1 δ2–( ) 1 δ2/4–( )
-------------------------------------------.–

B CGLS[ ] δ( ) 3 δ+
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are the same, the twist-4 1/Q2 corrections should be the
same also.

Let us check this statement using concrete results of
the calculations of the numerical values of the matrix
elements by means of the three-point function QCD
sum rules, namely, 〈〈 Os〉〉  = 0.33 GeV2, 〈〈 ONS〉〉  =
0.15 GeV2 as obtained in [20]. As to the error bars, we
propose to use 50% conservative uncertainty. This
choice is in agreement with the error bar of the following
value for the twist-4 matrix element for the Bjorken polar-

ized sum rule, namely, 〈〈 〉〉  = 0.09 ± 0.06 GeV2,
which was obtained in [21]. Now, taking gA = 1.26, we
find the following numerical expressions for the sum
rules of Eqs. (2)–(4):

(14)

(15)

(16)

One can see that, within the theoretical uncertainties
typical of the application of three-point function QCD
sum rules, the prediction of the IRR calculus is con-
firmed. So, indeed, the O(1/Q2) corrections normalized
to unity have the same negative sign and very close val-
ues.

In view of the fact that the IRR calculus also indi-
cates that the known and still unknown perturbative
QCD corrections to all three sum rules have a compara-
ble value as well [11], I now write the following rela-
tion between the three sum rules we are interested in,
namely,

(17)

These relations are valid in the energy region where it
is possible to separate the twist-4 contribution from the
twist-2 effects and the 1/Q4 contributions are smaller
than the 1/Q2 effects. The above-mentioned features
should hold at Q2 ≥ 1 GeV2. Therefore, the theoretical
comparisons [22] of the expressions for the Bjp sum
rule [23] and the GLS sum rule [24] within the analytic
approach [25] should possess the same feature.

Now, I will consider whether the left-hand side of
the basic equation (17) is respected by experiment.
I will use the values for the GLS sum rule extracted
from [26] at the energy points Q2 = 1.26, 2, 3.16, 5.01,
7.94, and 12.59 GeV2. The results presented in [26] for
these six energy points are GLS(Q2) ≈ 2.39, 2.49, 2.55,
2.78, 2.82, and 2.80, where, for simplicity, we
neglected both the statistical and systematical uncer-
tainties. The application of the left-hand side of
Eq. (17) gives one the following experimentally moti-

Op n–
NS

GLS Q2( ) 3 1 4as– O as
2( )– 0.098 GeV2

Q2
----------------------------– ,=

Bjp Q2( )
gA

6
----- 1 4as– O as

2( )– 0.071 GeV2

Q2
----------------------------– ,=

Bjunp Q2( ) 1
8
3
---as– O as

2( )– 0.133 GeV2

Q2
----------------------------– .=

Bjp Q2( ) gA/18( )GLS Q2( ) gA/6( )Bjunp Q2( ).≈ ≈
vated values for the Bjp sum rule, namely, Bjp(Q2) ≈
0.167, 0.168, 0.178, 0.195, 0.197, and 0.196 for the
same energy points, where, again, the contribution of
the statistical and systematical uncertainties are not
taken into account.

It is interesting that the value of the Bjp sum rule
extracted in [27] from the SLAC and SMC data is
Bjp(Q2 = 3 GeV2) = 0.177 ± 0.018 and, within the exist-
ing error bars, does not contradict the value Bjp(Q2 =
3 GeV2) = 0.164 ± 0.011 extracted from [28] on the
basis of measurements at CERN and SLAC before
1997. It is rather inspiring that these results agree with
the GLS sum rule value at Q2 = 3.16 GeV2.

At relatively high energies, the SMC Collaboration
gives Bjp(Q2 = 10 GeV2) = 0.195 ± 0.029 [29], which
is consistent with the high-energy results for the GLS
sum rule GLS(Q2 = 12.59 GeV2) ≈ 0.196 [26]. How-
ever, at low Q2, the result Bjp(Q2 = 1.10 GeV2) ≈ 0.136,
which was extracted from the CEBAF data in [30], is
not consistent with the estimate Bjp(Q2 = 1.26 GeV2) ≈
0.167 extracted from the low-energy results GLS(Q2 =
1.26 GeV2) ≈ 2.39 [26] with the help of Eq. (17). It may
be interesting to clarify the origin of this disagreement
taking into account the experimental uncertainties of
the two independent analyses of the νN DIS data and lN
polarized DIS data. As the next step, one could check
the consistency of the other experimental results for the
GLS sum rule and the Bjp sum rule with the IRR moti-
vated expression of Eq. (17) for the energy points in the
region 1 GeV2 ≤ Q2 ≤ 5 GeV2 using the NuTeV data for
the xF3 structure function of the νN DIS and rely on the
appearance of the future Neutrino Factory, which may
provide data for the Bjunp sum rule as well (for a dis-
cussion of this possibility, see [31, 32]).
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Curvilinear Motion of Laser Soliton Complexes
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Conditions under which the center of inertia of stable complexes of dissipative optical solitons moves curvilin-
early have been determined. Such a character of the motion of dissipative structures is caused by asymmetry in
the distribution of the intensity and energy fluxes, and it is pronounced for laser solitons with strong interaction.
The results of the numerical simulation of these complexes in the model of surface emitting lasers or laser
amplifiers with saturated amplification and absorption are presented. Such complexes may be observed in var-
ious spatially distributed nonlinear dissipative systems, in particular, in the form of discrete solitons. © 2005
Pleiades Publishing, Inc.
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The law of the rectilinear motion of the center of
inertia of mechanical systems, which follows from the
uniformity of space, belongs to the basic laws of
mechanics and relativity theory [1, 2]. This law is also
valid for the center of inertia of fields, including elec-
tromagnetic fields, both in vacuum [2] and in homoge-
neous transparent media, including nonlinear media
[3], where the existence of particle-like (localized)
structures—conservative solitons—is possible. How-
ever, of considerable interest are also media or systems
with dissipation, where inflow and outflow of energy
occur and, as a result of the energy balance, the exist-
ence of especially stable dissipative solitons is possible
[4]. In this work, we demonstrate the possibility of the
curvilinear motion of stable soliton complexes in
homogeneous systems with dissipation. Although the
results are general, we consider only 2D optical soli-
tons in surface emitting lasers with saturated absorption
in view of recent advances in experiments with semi-
conductor microcavities [5–7].

We simultaneously consider two (2 + 1) dimen-
sional schemes in which laser solitons were predicted
and analyzed (see [4] and references therein). The first
scheme is a surface emitting laser that is characterized
by a large Fresnel number and whose cavity contains a
saturated absorber. We also assume that the scheme
includes an anisotropic element such that losses are
quite small only for one of two polarized components.
Under this assumption, the problem reduces to a scalar
problem. The relaxation times for amplification and
absorption are considered to be small compared to the
field lifetime tc in the empty cavity. This relation corre-
sponds to class A lasers. In this case, in the paraxial
approximation of the mean field (after the averaging of
the envelope of the electric field strength E over the lon-
gitudinal coordinate z), the dynamics described by the
0021-3640/05/8112- $26.00 0612
generalized complex Ginzburg–Landau equation [4, 8]

(1)

Here, t is the time divided by tc;  = ∂2/∂x2 + ∂2/∂y2 is
the transverse Laplacian, where (x, y) = r⊥  are trans-
verse coordinates divided by the Fresnel band width;
d is the effective diffusion coefficient, which is
assumed to be small (0 < d ! 1); and the nonlinear
function f(I) of the radiation intensity I = |E|2 describes
nonlinear resonant amplification and linear nonreso-
nant absorption (losses). If frequency detuning is disre-
garded, the function f(I) is real; g0 and a0 are real posi-
tive coefficients of unsaturated (linear) amplification
and absorption, respectively; and b is the ratio of the
saturation intensities for amplification and absorption.
Nonresonant losses are normalized to unity due to the
time scale.

The second scheme described by the same govern-
ing equation (1) is an optical indicator also with satu-
rated amplification and absorption. In this cavity-free
scheme, the evolution variable t has the meaning of the
longitudinal coordinate z. Below, we will use the stan-
dard definitions S⊥  = Im(E*∇ ⊥ E) for the transverse
energy flux vector averaged over the optical period

(Poynting vector) and R⊥  = |E|2dr⊥ / dr⊥  for

the transverse coordinates of the center of inertia of the
field.

According to the field dynamical equations (1), if
the transverse distributions of intensity and the Poynt-
ing vector have the axis of symmetry, the center of iner-
tia can move only along this axis. If two such axes exist,

∂E
∂t
------ i d+( )∇ ⊥

2 E Ef E( )2 ),+=
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1 E 2+
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the center of inertia is at rest; therefore, asymmetry is a
necessary condition for the motion of the structure [4].
Below, we will consider complexes generated by vortex
solitons whose field envelope in the polar coordinates
(r, ϕ) has the form E(r, ϕ, t) = A(r)exp(imϕ – iηt). The
spectral parameter v  serves as an eigenvalue with a dis-
crete spectrum and it is a nonlinear frequency shift for
the laser scheme or propagation constant shift for the
amplifier. The topological charge is taken as m = ±1.
Analysis shows that asymmetry is most pronounced for
the case of the strong coupling of solitons, and the
structure of energy fluxes is a convenient quantitative
(topological) criterion of the difference between weak
and strong couplings [8]. The results below are
obtained with the following typical values of the
parameters: a0 = 2, b = 10, 0.04 < d < 0.15, and g0 =
2.108 and 2.11. The simulation is based on the splitting
method and fast Fourier transform algorithm [9].

Figure 1a shows the instantaneous distribution of
the intensity of a strongly coupled pair of vortex soli-
tons with opposite charges m1 = 1 and m2 = –1. Strongly
coupled pairs with such charges are always symmetric
and very stable and rotate with a period of T = 410 (for
the indicated parameters). According to Fig. 1c, the
center of inertia of this pair moves along a circle. The
period of this motion and pair rotation period coincide
with each other; i.e., these two motions are synchro-
nized. The Poynting vector additionally averaged over

the cross section, 〈S⊥ 〉  = dr⊥ , is directed along a

tangent of the trajectory of the center of inertia.

A strongly coupled pair of vortex solitons with the
same topological charges m1 = m2 = –1 has central sym-
metry. Correspondingly, its center of inertia is at rest,
and the pair rotates with a period of T ≈ 840. However,
if such a structure (core) is supplemented with a soliton
that is weakly coupled with the core and has the same
topological charge (satellite), a stable complex is
formed after a certain transient period. In this complex,
the periods of the rotation of the core Tcore ≈ 840 and
satellite (around the core) Tsat ≈ 4400 significantly dif-
fer from each other (see Fig. 1b and [10]). This complex
is stable and is recovered after introduction of small
perturbations. Owing to the central symmetry of the
core, the entire structure is reproduced with the rotation
by the angle α = π/(Tsat/Tcore – 1) (see Fig. 1d) after the

time interval T1 = (  – )–1. In addition to rota-

tion, the whole structure undergoes translational
motion with very low velocity on the order of the cal-
culation error, see Fig. 1d.

As a result of the nonlinear interaction between the
two rotations indicated above and synchronization, the
ratio of the rotation periods within the synchronization
band is necessarily a rational number: Tcore/Tsat =
/nsat/ncore, where Tcore = T0/ncore, Tsat = T0/nsat, T0 is the
minimum period of the rotation of the whole structure

S⊥∫

1
2
--- Tcore

1– T sat
1–
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by an angle multiple to 2π, and ncore and nsat are inte-
gers. Then, if the above negligibly slow translational
motion is disregarded, the trajectory of the center of
inertia is a closed curve consisting of a number of iden-
tical-shaped segments rotated by the angle α with
respect to each other. For the case shown in Fig. 1d,
ncore = 49 and nsat = 10, and only half the entire period
T0 is presented. We note that the period T0 = 44 000 also
characterizes the duration of the transient synchroniza-
tion process, whereas the time of complex formation is
close to Tcore ! T0. If the initial conditions are unfavor-
able, the satellite is not coupled with the core but, e.g.,
retires from it. Nevertheless, such a complex is very sta-
ble and exists over a wide parameter region (0.036 <
d < 0.15, 2.097 < g0 < 2.117). Under our conditions, the
integers ncore and nsat for the formed complex are inde-
pendent of the initial conditions but depend on the
parameters of the system. In particular, when the diffu-
sion coefficient d changes, complexes with nsat = 1 and
ncore from 4 to 9 are formed.

Calculations indicate the existence of a new com-
plex, where two satellites rotate around the same core
with a period of Tsat = 11 000 (Fig. 2). In this case, the
core rotation period is Tcore ≈ 1100, the topological
charges of four vortices are identical (m = 1), and the
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x

y

(a) 60

0

–60 0 60
x

(b)

Fig. 1. (a, b) Instantaneous transverse distribution of inten-
sity and (c, d) trajectories of the centers of mass for (a, c) a
strongly coupled pair of vortex solitons with opposite
charges at d = 0.06 and (b, d) a core-type structure with one
weakly coupled satellite at d = 0.12; and 1 and 2 are the first
[t = (73710, 78110)] and sixth [t = (95310, 99710)] rotations
of the satellite. The arrows in (a, b) show the directions of
the structure rotation, and the arrows in (c) show the direc-
tion of the average Poynting vector 〈S⊥ 〉  at various times,
and g0 = 2.108.
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rotation is counterclockwise. In order to demonstrate
weak coupling of the satellites with the core, in Fig. 3,
we represent the topological structure of energy fluxes
that is obtained by the method described in [8]. It is
seen that the core is enveloped with two common limit-
ing cycles, which testifies to strong coupling of the vor-
tices in the core. In contrast, each satellite holds three
individual limiting cycles, which testifies to their weak
coupling with the core. Thus, coupling of solitons in the
complex is mixed. A large distance between solitons
excludes their direct interaction. However, they interact
with each other through the core. This means that a sat-
ellite perturbs the core and the other satellite interacts
with the perturbed core. Therefore, the relative dis-
placement of the satellites is not arbitrary. If one satel-
lite is displaced, their opposite disposition with respect
to the core is recovered after a certain time, as is shown
in Fig. 4, which corroborates the stability of these struc-
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t = 0

3000

5400

8200

11000

–60 0 60

(a) (b)
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Fig. 2. Transverse distribution of the (a) intensity and
(b) phase for the core–two satellite structure. The rotation
period is equal to about 1100 and 11000 for the core and
satellites, respectively. The arrows show the direction of the
structure rotation. In the right panels, the phase varies from
(dark color) –π to (light color) π.
tures. It is important that the center of inertia of these
structures is nearly at rest due to symmetry.

The finite difference approximation of spatial deriv-
atives in Eq. (1) corresponds to the two-dimensional
system of single-mode waveguides, each of which is
characterized by nonlinear (saturated) amplification
and absorption, and both resonant and nonresonant
variants of the scheme are allowed. Such one-dimen-
sional schemes were studied recently [11]. A much
richer variety of the dissipative discrete solitons exists
in two-dimensional systems. For structures where the
amplitudes and phases of modes vary slowly from
waveguide to waveguide, the above results mean the
existence of moving and rotating complexes of discrete
solitons. The existence of structures with a sharp
change in the amplitudes and phases of modes is possi-
ble. These structures have no analogs for continuous
model (1).

Fig. 3. Energy fluxes for the stable localized structure
shown in Fig. 2 for t = 0. The closed trajectories correspond
to limiting cycles. Two regions shown in a larger scale are
the neighborhood of weak overlapping of the core and sat-
ellites and include nodes N and saddle points S with separa-
trices shown by the dotted lines. The large arrow shows the
rotation direction.
JETP LETTERS      Vol. 81      No. 12      2005
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Thus, we likely present the first example of the
steady curvilinear motion of the center of inertia of
complexes of dissipative optical solitons. This property
has been discovered for a wide class of axisymmetric
vortex structures with strong interaction. The cause of
the curvilinearity of the motion is the asymmetry of the
sources and sinks of energy in the dissipative systems
(in the absence of Galilean invariance). Curvilinear
motion is generally possible not only upon strong inter-
action between solitons. In particular, Gaussian beams
are exact solutions of Eq. (1) when the function f is a
constant f0 = f(0), which corresponds to a linear dissipa-
tive system. For d > 0, their center moves along a hyper-
bola (curvilinearly); however, this motion is realized
only at the transient stage that ends with the termination
of the transverse motion. In the nonlinear case, the cur-
vilinear motion of asymmetric complexes of weakly
coupled dissipative systems is observed but, as previ-
ously, only in the transient process. A soliton complex
with one axis of symmetry moves along with the axis if
there is no symmetry with respect to its front and back
parts in the direction of this axis. When axes of symme-
try are absent, the complex rotates and its center of iner-
tia moves curvilinearly. Although the position of the
center of inertia is completely determined by the inten-
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Fig. 4. Dynamics of the recovery of the opposite positions
of two satellites after initial perturbation for the parameters
d = 0.15 and g0 = 2.108.
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sity distribution, the curvature of the trajectory is asso-
ciated with the “phase degree of freedom” of the field.
We note that the complexes under consideration rotate
as rigid bodies in the absence of the weak coupling
between solitons composing a complex. For mixed cou-
pling (a part of a soliton is coupled strongly, and the
other part is coupled weakly), different parts of the
complex rotate with different angular velocities. The
nonlinearity of the system is manifested in the synchro-
nization of the rotations and affects the shape of the tra-
jectory of the center of inertia. The above type of the
transverse motion of solitons can be promising in appli-
cations to the optical processing and storage of infor-
mation, particularly in vertical-cavity surface-emitting
lasers with saturated absorption, as well as in similar
amplifiers, active waveguides, and nonlinear photon
crystals.

This work was supported by the Russian Foundation
for Basic Research (project nos. 04-02-16605 and 04-
02-81014Bel).
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Experimental data are reported on the generation of fast ions in a picosecond laser plasma at a laser-radiation
intensity of 2 × 1018 W/cm2. The results are obtained by measuring the Doppler spectra of hydrogen-like fluo-
rine ions. An important feature of the energy distribution of fast ions is a slow decrease up to an energy of
1.4 MeV. In addition, the directional motion of fast ions deep into a target is found due to the redshift of the
Doppler profile of the Lyα line. The parameters of the energy distribution of the ions are theoretically esti-
mated. © 2005 Pleiades Publishing, Inc.

PACS numbers: 32.30.Rj, 52.50.Jm, 52.70.La
1. INTRODUCTION

The generation of fast ions in a plasma produced due
to the interaction of ultrashort laser pulses with solid
targets is of considerable interest for the initiation of a
number of nuclear reactions including fusion reactions
with high thresholds. Most measurements of the energy
spectra of ions in the laser plasma were carried out for
light ions (hydrogen and deuterium). A series of mea-
surements of the energy spectrum of heavier ions
formed owing to the interaction of intense pico- or fem-
tosecond laser radiation with solids or clusters was
reported in [1–11]. In those measurements, for the flux
densities of laser radiation beginning with 1018 W/cm2,
ion energies higher than 1 MeV were detected, and the
energy increased linearly with the radiation intensity.

The standard mechanism of the acceleration of ions
is the field of the space charge that is formed by elec-
trons emitted from a target. However, various mecha-
nisms of formation of this charge and the direction of
the corresponding accelerating electric field are dis-
cussed. The situation is complicated by the presence of
strong magnetic fields generated in the laser plasma
irradiated by ultrashort laser pulses. The dominant
directional motion of fast ions deeply into the target
was recently found in [10] (see also [5, 12]). The mea-
0021-3640/05/8112- $26.00 0616
surement procedure is based on the detection of the spa-
tial distribution of neutrons arising in the D–D reaction
in deuterated targets.

In view of these circumstances, direct measure-
ments of the energy spectra and direction of the motion
of fast multiply charged ions using the Doppler contour
of their spectral lines are of interest. This work is
devoted to such measurements and their theoretical
interpretation.

2. EXPERIMENTAL PROCEDURE

Experiments were carried out at the 10-TW “Neo-
dim” laser facility [13]. This setup produces a laser
pulse with an energy of 10 J, a wavelength of 1.055 µm,
and a duration of 1.5 ps. The focusing system ensures
the concentration of no less than 40% of the laser-beam
energy onto a spot with a diameter of 15 µm and, cor-
respondingly, the peak intensity 2 × 1018 W/cm2 on the
target.

The laser radiation of the Neodim setup is character-
ized by the presence of three prepulses. Two picosec-
ond prepulses arising at 13 ns and 25 ps before the main
laser pulse have the intensities 10–4 and 5 × 10–4 of the
main-pulse intensity, respectively. The third prepulse is
© 2005 Pleiades Publishing, Inc.
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the pulse of enhanced luminescence with a duration of
about 4 ns and an intensity 10–8 of the main-pulse inten-
sity.

Figure 1 shows the experimental scheme. A laser
beam is focused by the off-axis parabolic mirror with a
focal length of 20 cm on the surface of a solid target T
at an angle of 40° with respect to the target normal. Flat
fluoroplastic plates 200 µm in thickness were used as
targets.

The x-ray radiation from the plasma produced due
to the interaction of the laser pulse with the target was
detected by the spectrograph S [14, 15] with spherically
bent quartz or mica crystals (the curvature radius of the
crystalline surface was equal to 150 mm). The observa-
tion angle for the spectrograph with respect to the target
surface normal was equal to 20° in all the experiments,
as was shown in Fig. 1. A Kodak-2492 x-ray film was
used as a detector of the radiation reflected from the
crystal. The input window of the cassette with the film
was protected from visible light by two layers of a filter
that was a polypropylene film 1 µm thick both of whose
sides are coated by an Al layer with a total thickness of
0.2 µm. The emissive spectra of the plasma were ana-
lyzed in the spectral range containing the Lyα line of the
hydrogen-like F IX ion. Under the experimental condi-
tions, the spectrograph ensured a spectral resolution
λ/∆λ no worse than 5000.

Hard x-ray radiation was detected by scintillation
plastic and stilbene detectors D1–D4 placed at dis-
tances from 20 cm to 4 m from the target. Lead filters
with thicknesses from 2 to 13.5 cm were placed in front
of the detectors. A camera obscura D5 with a CCD
matrix was used to control the size of the focusing spot
of the x-ray radiation and to estimate its brightness in
the range 1–5 keV.

Fig. 1. Experimental scheme: (T) the target, (M) the off-axis
parabolic mirror, (W) the window of the vacuum chamber,
(LR) laser radiation, (VC) the vacuum chamber, (S) the
spectrograph, (D1–D4) the scintillation detectors of γ radi-
ation, and (D5) the camera obscura with a CCD matrix.
JETP LETTERS      Vol. 81      No. 12      2005
3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The spectral range of the laser-plasma radiation that
corresponded to the Lyα line of the hydrogen-like fluo-
rine ion was detected in the experiment. Figure 2a
shows (circles) the measurement results for a pulse
duration of 1.5 ps and an energy of 10 J that correspond
to the peak intensity above 1018 W/cm2. For compari-
son, triangles show the previous measurements for the
profile of the Lyα line for a pulse energy of 1.5 J [11].
The new measurements indicate the presence of wider
wings of the Lyα line, which testifies to the more effi-
cient generation of fast ions with energies 1 MeV and
higher.

In order to interpret the measurements and to deter-
mine the energy parameters of the plasma, the observed
line contour is simulated taking into account Doppler

Fig. 2. (a) Experimental contour of the Lyα line of the F IX
ion in a plasma produced by a laser pulse with the duration
τlas = 1.5 ps and energy Elas = (circles) 10 and (triangles)
1.5 J. The solid line is the calculation by Eq. (3) taking into
account Doppler broadening for the ion temperature Ti =
3 keV and Stark broadening for the electron density Ne =

1021 cm–3 and an optical thickness of 3.7 with additional
inclusion of ions with Tint = 35 keV (A = 0.17) and Tfast =
350 keV (B = 0.052). (b) Relative contributions of various
groups of ions to the total intensity of the Lyα line given by
Eq. (2). The solid line is the first term in Eq. (2), the dashed
line is the contribution of ions with Tint = 35 keV (second
term), and the dash–dotted line is the contribution of fast
ions with Tfast = 350 keV (third term). The dotted line is the
Doppler contour with Ti = 3 keV. For fast ions, the system-
atic redshift ∆λsh = 0.0025 nm that is responsible for the
asymmetry of the wings corresponds to Eion = 24.6 keV.
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and Stark broadenings and the optical thickness of the
plasma. The central part of the spectral line is calcu-
lated as in [11], taking into account Doppler and Stark
broadening mechanisms for the plasma parameters Ne =
1021 cm–3 (critical electron density) and Ti = 3 keV
(thermal-ion temperature) by the formula (see, e.g.,
[16])

(1)

Here, W(F, Ne) is the distribution function of the ion
microfield F, λα(F) is the wavelength of the transition
for the Stark component of the line, ∆λT =
(2Ti/Mc2)1/2λ0 is the Doppler half-width of the line for
thermal ions with mass M, and λ0 is the transition wave-
length. At the chosen electron density, the contribution
from the collisional broadening in the wings of the Lyα
line of fluorine is small (i.e., the calculated curve differs
slightly from the pure Doppler curve). To describe the
observed wings of the line, the contributions from two
groups of ions characterized by the temperatures Tint

(intermediate ions) and Tfast (fast ions) are added to for-
mula (1):

(2)

where ∆λs is the systematic shift presenting the
observed asymmetry of the line wings.

S λ( ) = W F Ne,( ) λ λ α F( )–( )2/∆λT
2–[ ] F.dexp∫

α
∑

I λ( ) S λ( ) A λ λ 0–( )2/∆λ int
2–[ ]exp+=

+ B λ λ 0 ∆λ s––( )2/∆λ fas
2–[ ] ,exp

Fig. 3. Energy distribution of fast fluorine ions from mea-
surements of the contour of the Lyα line of the F IX ion. Cir-
cles correspond to ions moving towards the target (red wing
of the line) and triangles are data for ions flying from the
target (blue wing). The solid lines are the dependence
dN/dE = Bexp[–M(v  – v0)2/2Tfast], where v  is the ion

velocity in the observation direction, M /2 = 25 keV, and

Tfast = 350 keV.

v 0
2

Expression (2) is valid for the optically thin plasma.
The absorption is taken into account in the calculation
in the homogeneous layer approximation

(3)

where τ is the optical thickness of the plasma at the line
center and C is the normalization constant.

The optical thickness τ = 3.7 was taken from the pre-
vious calculations for the spectrum obtained at Elas =
1.5 J [11]. The relative contributions from ions of vari-
ous groups to the radiation yield that are characterized
by the constants A and B, as well as the parameters Tint,
Tfast, and ∆λs, are chosen by fitting the simulated line
contour to the measurement data. Figure 2a shows the
results of the approximation. They correspond to the
parameters Tint = 35 keV, Tfast = 350 keV, A = 0.17, and
B = 0.052. The shift ∆λs reproducing the observed
asymmetry of the line corresponds to an ion energy of
25 keV. The line wings obtained in the measurements
with a pulse energy of 1.5 J are almost completely
determined by ions with Tint = 35 keV, whereas the far
wing at a pulse energy of 10 J corresponds to a signifi-
cant contribution from fast ions, including those with
energies 1 MeV and higher.

Figure 2b shows the contributions from individual
terms in Eq. (2). The results show that Stark wings
(solid line) also do not make a significant contribution
to the observed line contour.

The calculated energy distribution of fast ions is
shown in Fig. 3 along with the values extracted from the
experimental data by subtracting the symmetric contri-
bution of thermal and intermediate ions [the first two
terms in Eq. (2)] from the observed line contour. The
calculated energy distribution of fast ions flying
towards the target and from it is obtained from the third
term in Eq. (2).

The observed asymmetry between the blue and red
wings of the line is attributed to the spatial anisotropy
of the scattering of fast ions from the picosecond
plasma. The red wing possibly contains a contribution
from dielectron satellites; however, their intensity for
fluorine is not considerable.

Using the scintillation detectors D1–D4 with the set
of lead filters, we conducted the experiments for deter-
mining the maximum energy of γ photons in the laser
plasma on the target. The weakening of the flux of
γ photons was measured as a function of the thickness of
a lead filter. Using the measured dependence, we esti-
mated the maximum energy of γ photons as 3.5 MeV,
and the number of such photons was on the order of 106.

The measurements with the camera obscura show
that the focusing-spot size detected in the soft x-ray
range of 1–5 keV is equal to ~15 µm.

I' λ( ) C 1 τ I λ( )/I λ0( )–( )exp–[ ] ,=
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4. THEORETICAL ESTIMATES
OF THE PARAMETERS OF THE ENERGY 

DISTRIBUTION 

The basic mechanisms of formation of multiply
charged fluorine ions are field and collisional ioniza-
tions. When theoretically analyzing the above-barrier
field ionization of fluorine atoms, it is necessary to take
into account that, according to the Bethe rule (in atomic
units), the field strength F of laser radiation is related to
the ionization potential EZ of the ion with the ionization
degree Z as

(4)

According to Eq. (4), the field ionization for a peak
intensity of 2 × 1018 W/cm2 (F = 7.4 au) can lead only
to the appearance of fluorine ions with a charge of +7
that contain two electrons. Formation of the hydrogen-
like fluorine ion containing one electron on the 1s shell
requires an energy of 953 eV (for the separation of one
of two electrons on the 1s shell). This process is possi-
ble only as a result of the collisional ionization of F7+

ions by hot electrons with energies above 1 keV. The
number of such electrons is sufficiently large, because
electrons undergoing the radial ponderomotive acceler-
ation in the laser focus acquire relativistic kinetic
energy up to the maximum value

(5)

For the above parameters, this value is equal to
165 keV. Electrons with much lower energies are really
responsible for collision ionization, because, according
to the Lots theorem, the cross section for collisional
ionization is inversely proportional to the kinetic
energy of the incident electron. Moreover, the number
of such electrons is much larger than the number of
electrons with the maximum energy in view of fast time
and spatial variation in the shape of the laser pulse.

The electric field created by radially scattered elec-
trons due to the separation of charges entrains fluorine
atomic ions. Their kinetic energy is larger than the
energy of electrons by a factor of Z. Correspondingly,
the maximum energy of ions with Z = 8 is estimated as
1.3 MeV. This value agrees with the experimental data
shown in Fig. 3.

The energy spectrum of these ions can be compared
with the following phenomenological formula for ion
spectra that we derive using numerous recent experi-
mental data [5, 6, 10, 17–19]:

(6)

Here, the intensity is measured in the units of the
atomic intensity I0 = 3 × 1016 W cm–2 and ion energy E,
in keV. According to this relation, the mean ion energy
is equal to ZI/1.5 keV. For the above parameters, this
expression yields 350 keV, which agrees with the

F EZ
2 /4Z .=

Ee
max mc2 1

1
2
--- F

ωc
------- 

 
2

+ 1– 
  .=

dN E( ) 1.5E/ZI–[ ] E.dexp∝
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experimental data discussed above and estimates of the
contribution from fast ions by Eq. (2).

It is interesting to compare distribution (6) with the
distribution obtained in [20], which has the following
form for the fluorine ions with a charge of +8:

(7)

where E is the ion energy in keV. In both cases, the
maximum ion energies are estimated using Eq. (5), but
the doubled value of this energy was used in [20]. Fig-
ure 4 shows both distributions (denoted as f1 and f2,
respectively), which are normalized to unity, and their
ratio. It is seen that these distributions differ from each
other not too strongly.

5. CONCLUSIONS

The generation of fast ions in the picosecond laser
plasma has been experimentally studied with laser radi-
ation 2 × 1018 W/cm2 in intensity. The comparison of
the observed Doppler counters of spectral lines for var-
ious intensities of laser radiation indicates that, begin-
ning with an intensity of 1018 W/cm2, an intense tail
corresponding to the generation of fast ions arises in the
energy distribution of ions. Moreover, the directional
motion of fast ions deeply into the target has been

dN E( )/dE 10 3– E 8+[ ] / E 10 3– E 16+( )[ ] ,∼

Fig. 4. (a) Normalized energy distributions of fast fluorine
ions according to the theoretical estimates f1 = e–E/356 (6)

and f2 = [10–3E + 8]/E(10–3E + 16)] (7) and (b) the ratio
f1/f2.
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detected by directly measuring the redshift of the Dop-
pler profile of the Lyman line of the hydrogen-like flu-
orine ion. The energy of this motion (near 25 keV)
agrees well with the data reported in [4] for intermedi-
ate energies of ions and the laser-radiation intensities
under consideration. The theoretically estimated
parameters of the energy distribution of ions are in rea-
sonable agreement with the experimental data.

This work was supported by the International Sci-
ence and Technology Center (project no. 2917), INTAS
(grant nos. 01-0233 and 03-546348), and the Russian
Foundation for Basic Research (project no. 05-02-
16551a).
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The plasma oscillation spectrum for 2D electrons in a double quantum well is calculated. It is shown that an
additional branch of intersubband plasmons can exist without experiencing Landau damping in the case of non-
equilibrium population of subbands. In an asymmetric structure, this branch is responsible for both the emer-
gence of instabilities and the possibility of amplification of plasma waves. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.20.Mf, 73.21.La
1. INTRODUCTION

Considerable advances in the technology of prepar-
ing multilayered structures (especially double quantum
waves) in recent years have stimulated revived interest
in collective oscillations of 2D multicomponent plas-
mas. The main theoretical results in this field were for-
mulated at the beginning of the 1980s (see [1, 2]). The
components of a 2D plasma are defined as groups of
charge carriers differing in the quantum number of the
third dimension, viz., the number of the transverse
quantization level (subband number) or the number of
the layer if tunneling between the layers is insignifi-
cant. It was proved that the plasma wave spectrum for
multicomponent systems contains a number of
branches including gapless plasmons (optical and
acoustic branches), as well as finite-frequency plas-
mons for zero momentum. The latter are known as
intersubband plasmons (ISP) since they correspond to
electron transitions between different transverse quan-
tization levels with simultaneous excitation of collec-
tive movements in the plasma. In this case, a depolar-
ization shift plays a significant role. In this effect, the
ISP frequency ω(0) for zero momentum differs from
the frequency Ω of a single-particle vertical transition
between corresponding subbands. In the simplest case
of a two-component plasma, we have [2]

(1)

(" = 1 everywhere in the further analysis). Here, N1, 2 is
the subband occupation numbers; ε is the background
permittivity; and L is a constant with dimension of
length, which is determined by the wave functions ϕ1(z)
and ϕ2(z) of transverse motion at levels 1 and 2 (L is of
the same order of magnitude as the quantum well width
or the spacing between the layers). In equilibrium, the
occupation numbers N1 and N2 are noticeably different;

ω2 0( ) Ω2 e2

ε
----LΩ N1 N2–( )+=
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in this case, only one ISP branch exists without experi-
encing attenuation in the collisionless approximation
(i.e., without Landau damping). Surprisingly, many
authors (unfortunately, including the authors of this
publication) did not notice for more than 20 years that
an additional undamped ISP branch appears in the case
of deviation of subband occupation numbers from ther-
modynamic equilibrium; for N1 = N2, this branch begins
right from zero momentum. The depolarization shift in
this case vanishes (see Eq. (1)), and two branches in the
limit kL  0 satisfy the symmetric formulas

(2)

where k is the modulus of the 2D momentum, v 0 is the
Fermi velocity in each subband, γ is equal to L/a* in
order of magnitude, a* being the effective Bohr radius
(the exact expression for γ will be given below). The
lower sign in formula (2) corresponds to the new ISP
branch.

This work is aimed at analysis of this branch and the
ISP spectrum as a function of various parameters of the
system but, primarily, occupation numbers N1 and N2.
In addition, it will be shown that the nonequilibrium
population of subbands in an asymmetric structure with
mode coupling leads to instabilities of optical and
acoustic plasma oscillations. The latter effect might be
useful for generating terahertz radiation.

2. QUALITATIVE EXPLANATION 
OF THE NEW BRANCH ORIGIN

Plasma oscillations of the ISP type exist only when
transition between different plasma components are
possible. For example, in a two-layer system without
tunneling between the layers, only the optical and
acoustic branches exist, while the ISP is absent. Let us

ω± k( ) Ω ku; u± v 0
1 γ+

1 2γ+
-------------------,= =
© 2005 Pleiades Publishing, Inc.
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now consider a quantum well with two populated sub-
bands and with a standard energy–momentum relation
E = p2/2m. Figure 1a shows the populated states in the
subbands at T = 0 in equilibrium. In this case, only
upward transitions in energy shown by the arrows are
possible. These transitions correspond to an ordinary
intersubband plasmon. Figure 1b corresponds to over-
population of the second subband and underpopulation
of the first subband. It can be seen that each electron in
the second subband with an energy lying between the
Fermi quasi-levels EF1 and EF2 can now experience
both upward and downward transitions on the energy
scale. The maximal frequency of downward transitions

is ωmax = Ω + /2m – /2m; the transferred momen-
tum k is equal to p1 – p2 (we assume that the momentum
distribution in each subband corresponds to T = 0 for a
preset Fermi quasi-level). It is important to note that
vertical (i.e., corresponding to k = 0) downward transi-
tions are ruled out and the minimal admissible value of
k is p1 – p2 (see the figure). If the occupation numbers
of the subbands are equal (p1 = p2), we have ωmax = Ω ,
and the transferred momentum vanishes in accordance
with Eq. (2). Figure 1b also shows that the frequency of
such transitions decreases with increasing k (negative
dispersion, the lower sign in Eq. (2)). We attribute these
single-particle transitions to the new ISP branch; a
quantitative theory of this effect will be constructed
below.

3. ISP IN A SYMMETRIC STRUCTURE

To find the plasma wave spectrum, it is sufficient to
employ the self-consistent field approximation. If we
disregard retardation effects, this approximation is
reduced to the Poisson equation for the induced poten-
tial U(z, k)exp{i(kr – ωt)}, where r and z are the coor-

p2
2

p1
2

Fig. 1. (a) Thermodynamic equilibrium at T = 0; p1, 2 are the
Fermi momenta of the subbands and EF is the Fermi level.
(b) Nonequilibrium population of subbands; the Fermi
quasi-levels in the subbands are different.

(a) (b)
dinates in the plane of the structure and along the nor-
mal to it, respectively:

(3)

Here, the number density perturbation δN in the linear
response theory can be expressed in terms of the polar-
ization operator (see [2]),

(4a)

(4b)

where Wn(q) = En + q2/2m, En are the bottoms of the
subbands, and fn are the Fermi occupation numbers.
Expressing the formal solution to Eq. (3) in terms of its

Green function G(z, z0) = exp(–k|z – z0|) and taking

the matrix elements in transverse functions ϕn(z), we
arrive at the system of equations

(5)

where

(6)

In a structure symmetric about its middle plane, for the
two lower subbands, we have I11, 12 = I22, 21 = 0 since
ϕ1(z) and ϕ2(z) have different parities in z. Conse-
quently, the characteristic equation of system (5) splits
into the product of two factors. One of these factors
contains Π11 and Π22 and leads to the energy–momen-
tum relation for the optical and acoustic plasmons. The
other factor is a function of Π12 and Π21 and corre-
sponds to the ISP,

(7)

where I(k) ≡ I12, 12 = I12, 21 = I21, 12 = I21, 21. Evaluating the
integrals in Eq. (4b), we arrive at the final equation for
the ISP,

(8)

d2U

dz2
---------- k2U–

4πe2

ε
-----------δN z k,( ).–=

δN ΠnmUnm k( )ϕn z( )ϕm z( ),
n m,
∑–=

Πnm k ω,( ) = 
f n q( ) f m k q+( )–

Wn q( ) Wm k q+( )– ω iδ+ +
-------------------------------------------------------------------,

q

∑–

1
2k
------

Uij
2πe2

εk
----------- Ii j nm, k( )Πnm k ω,( )Unm

nm

∑+ 0,=

Iij nm, k( )

=  ϕ i z( )ϕ j z( ) k– z z0–( )ϕn z0( )ϕm z0( ) z z0.ddexp

∞–

+∞

∫

1
2πe2

εk
----------- I k( ) Π12 ω k,( ) Π21 ω k,( )+[ ]+ 0,=

1
2e2m

2

εk3
---------------I k( ) ω+ Ω–( )Q2 ω+ Ω–( )[+

– ω– Ω–( )Q1 ω– Ω–( ) ω+ Ω+( )Q1 ω+ Ω+( )+
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where α = 1, 2 and v 1 and v 2 are the Fermi velocities of
subbands 1 and 2. The only analytically solvable limit-
ing case that we managed to find for Eq. (8) corre-
sponds to equal (or close) occupation numbers (|v 1 –
v 2|) ! v 1, 2 and small values of k (k ! mv 1, 2). In the
same limit, we can replace I(k)/k by L ≡ (k)/k since

it follows from expression (6) that I(k) tends to zero in
accordance with a linear law for k  0 in view of the
orthogonality of ϕ1(z) and ϕ2(z). In this case, for posi-
tive frequencies ω, we can disregard the last two terms
in the brackets of Eq. (8) and expand the radicals in the
first two terms in k2/m(ω – Ω). For v 1 = v 2 = v 0, we
obtain

(9)

which leads to the energy–momentum relation (2) with
γ = 2me2L/ε. For close but different occupation num-
bers, the expansion of Eq. (8) gives

(10)

It follows from this relation that for ω > Ω , only one
root exists for all values of k. It corresponds to the
known ISP and determines the polarization shift for k =
0 in accordance with formula (1), in which ω2(0) – Ω2

Qα ω± Ω±( ) 1 1 k2v α
2 / ω± Ω±( )2– ,–≡

ω± ω k2

2m
-------,±=

I
k 0→
lim

1
2e2mL

ε
---------------- 1 ω Ω–

ω Ω–( )2 k2v 0
2

–
-------------------------------------------–

 
 
 

+ 0,=

ω Ω– ω Ω–( )m v 1
2

v 2
2–( )/2sgn+

=  1 1/γ+( ) ω Ω–( )2 k
2
v 0

2
– .

Fig. 2. Dispersion curves in a symmetric structure for the
parameters N = 6.4 × 1010 cm–2, N2/N1 = 0.09, d = 2.5 ×
10−6 cm, and mdV0 = 0.7. Coupling between oscillations is
not observed.
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may be replaced by (ω – Ω)2Ω in view of the closeness
of N1 and N2. If, however, ω < Ω , no solution exists in

the interval of k from zero to kc = (  – )m/2v 0. The
new branch exists for k > kc ≈ m(v 1 – v 2) (this has
already been concluded from qualitative considerations
in Section 2).

In the case of arbitrary occupation numbers and not
small values of the plasmon momentum, Eq. (8) was
solved numerically. To calculate the form factor I(k)
explicitly, we must define functions ϕ1 and ϕ2. We used
the exactly solvable model of a two-layer system,
which was proposed by us earlier [3], where the poten-
tial of a double quantum well is defined as V(z) =
−V1δ(z – d/2) – V2δ(z + d/2). For a symmetric structure,
we assume that V1 = V2 = V0. Parameters V0 and d were
chosen so as to ensure the existence of two negative-
energy levels in the system (2mV0d > 1). Figure 2 illus-
trates a possible form of all four branches of the plasma
spectrum in a symmetric structure. The dashed lines
mark the boundaries of the continuum of single-particle
excitations.

The details in the behavior of the new branch are
determined to a considerable extent by the structure

parameters. In equilibrium (  =  + 2mΩ), only the
ordinary branch of interband oscillations exists with
ω ≥ Ω + ∆dep, where ∆dep is the depolarization shift. A
new branch appears only for a noticeable deviation
from equilibrium. For example, for the same parame-
ters as in Fig. 2, N2/N1 must be greater than 0.68 (the
equilibrium value of N2/N1 = 0.63). Various modes of
behavior of the new branch are possible depending on
the total concentration N (Fig. 3). Pay attention to

v 1
2 v 2

2

p1
2 p2

2

Fig. 3. New intersubband plasmon branch for the parame-
ters N2/N1 = 0.81, d = 2.5 × 10–6 cm, mdV0 = 0.7, and N =

(1) 2 × 109, (2) 4 × 109, and (3) 6.4 × 1010 cm–2.
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curve 2, which demonstrates a possible discontinuity
of the new ISP branch.

Finally, inverse population (N2 > N1) calculations
show that the “int” and “new” branches in Fig. 2 change
places: the frequency of a conventional ISP beginning
from zero momentum now lies below Ω since the depo-
larization shift is negative for N2 > N1.

4. ASYMMETRIC STRUCTURE (V1 ≠ V2)

In this situation, “skew” form factors I11, 12 and I22, 21
differ from zero, the interaction of branches becomes
significant, and all crossings are replaced by anticross-
ings [3, 4]. The types of anticrossings of an ordinary
ISP with the optical branch and of the new branch with
the optical or acoustic branch are basically different. In
accordance with the adopted classification of instabili-
ties [5], the interaction of an ordinary ISP with an opti-
cal plasmon corresponds to case A: functions ω(k) and
k(ω) are real-valued for all arguments. However, the
interaction of the new branch with optical and acoustic
plasmons leads to a bandgap in the spectrum along the
k axis (i.e., to a complex frequency). Analysis of the
signs of the coupling coefficients and the slopes of

Fig. 4. Coupling between the new and acoustic branches for
the parameters N = 6.4 × 1010 cm–2. N2/N1 = 0.9, d = 2.5 ×
10–6 cm, mdV1 = 0.703, and mdV2 = 0.7.
branches at the crossing point shows that we have case
D (absolute instability). Naturally, this is associated
with the initially assumed nonequilibrium nature of the
system. Figure 4 illustrates these arguments for the
interaction between the new and acoustic branches as
an example. Note that the degree of asymmetry in this
case is rather small (V1/V2 ≈ 1.004). For strong asym-
metry, the right-hand side of the graph is expelled to the
continuum region and only convergence of the new and
acoustic branches is left. Analogous graphs can also be
plotted for coupling between the new and optical
branches. In the case of population inversion, instabil-
ity emerges for coupling between the “opt” and “int”
branches (ordinary ISP); i.e., the instability region
always correspond to ω < Ω .

Thus, we have proved that an additional branch of
plasma oscillations characterizes a nonequilibrium
two-layer system. If, in addition, the structure is asym-
metric, amplification plasma waves of both optical and
acoustic types are possible.
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The temperature dependence of the Aharonov–Bohm oscillations of small quasi-ballistic ring interferometers
(effective radius R = 90–110 nm) is studied in a wide temperature range of (0.34–9) K. It is found that this
dependence is determined not only by the size of the interferometer, but also by its microscopic state. It is shown
that the effect may be associated with the influence of the fluctuation potential leading to different, but not com-
pletely stochastic, realizations of the scattering potential in conducting channels of the ring. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 73.23.–b, 73.63.–b
Theoretical and experimental studies of ring solid
interferometers have been invariably attracting the
attention of researchers over more than two decades [1–
11]. This persistent interest in a ring prepared on the
basis of a solid structure is due to the following reasons.
First, the study of ring quantum interferometers pro-
vides a unique opportunity to observe fine and unex-
pected manifestations of the Aharonov–Bohm effect in
mesoscopic systems. Second, advances in nanotechnol-
ogy in the last decades have made it possible to produce
ring interferometers of decreasingly small size, which
raises hopes for realization of a Mach–Zehnder elec-
tron interferometer operating even at nitrogen tempera-
tures. The development of lithography based on local
anode oxidation of the surface of heterostructures with
high-mobility electron gas by the probe of an atomic
force microscope has made possible a qualitative
advancement in this direction. Samples with a charac-
teristic radius of approximately 100 nm can be prepared
now without any difficulty [12]. This stimulates large-
scale studies of small ring interferometers.

In this paper, we report on the results of analysis of
the temperature dependence of the Aharonov–Bohm
(AB) oscillations in small quasi-ballistic ring interfer-
ometers with an effective radius of R = 90–110 nm.
These results show unambiguously that the temperature
behavior of the same small ring depends to a consider-
able extent on the state of the ring realized for various
cooling cycles. It is shown that such a behavior is due
to the effect of the fluctuation potential, whose specific
and different realization each time changes the energy
spectrum of electrons and, accordingly, the temperature
dependence of the AB oscillations in a quasi-ballistic
interferometer.
0021-3640/05/8112- $26.000625
The ring interferometers with an effective radius of
R = 90–110 nm studied here were prepared on the basis
of an AlGaAs/GaAs heterostructure with a small
(25 nm) distance between the plane of deposition of a
2D electron gas and the surface. The electron mobility
in the initial heterostructure was µ = 105 cm2/V s for the
2D gas density Ns = 5 × 1011 cm–2, which corresponded
to an electron mean free path l = 1.2 µm. The ring inter-
ferometer was created by simultaneous local anode oxi-
dation and mechanical action on the surface
(TINE&MeMo technology [13]) by the probe of an
atomic force microscope (Solver P-47H, NT-MDT) as
described in [12]. Figure 1 shows the image of a ring
formed with the help of this microscope. Magnetotrans-
port measurements of rings were carried out according
to the standard scheme using a phase-sensitive detector
operating on small currents to avoid heating of the car-
riers. Measurements were made in magnetic fields up to
2 T and in the temperature range 0.34–15 K.

We measured the temperature dependence of the
magnetoresistance for different states of the ring, which
were obtained as a result of different cycles of sample
cooling from room temperature to liquid helium tem-
perature. Special attention was paid to obtain stable
states and magnetoresistance curves reproducible in
repeated measurements to a high degree of accuracy.
The results of such measurements for two different
states of the sample are shown in Fig. 2. It should be
noted that, owing to the smallness of the interferome-
ters in question, the AB oscillations were observed in a
number of studied structures up to temperatures of
15 K, and saturation of the growth of their amplitude
begins even at a temperature above 1 K, which is an
order of magnitude higher than the saturation tempera-
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Topographic (a) and phase (b) atomic force microscope images of a ring interferometer. The frame size of the images is 550 ×
550 nm.
ture of the interferometers studied earlier. Large ampli-
tudes of oscillations attaining 20% in the vicinity of the
zero magnetic field is also worth noting. The magnetic-
field dependences in Fig. 2 were processed using the
rapid Fourier transformation technique. For each curve,
a Fourier spectrum was obtained with a clearly mani-

Fig. 2. Aharonov–Bohm oscillations corresponding to two
different states of the same ring, obtained as a result of dif-
ferent cooling modes. The curves in the figure correspond to
the following temperatures (from top to bottom): (a) 1.4,
2.0, 3.25, 4.2, 4.9, 5.7, 7.0, and 9.0 K and (b) 0.34, 0.4, 0.5,
0.7, 0.83, 1.1, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.1 K.
fested main peak whose position corresponds to the
effective mean radius of the ring (100 nm). Figures 3a
and 3b show that the period of AB oscillations and,
accordingly, the effective radius of the ring remain
unchanged. Thus, the main parameter of the interfer-
ometer remains unchanged for different heating and
cooling modes. The intensity of the AB oscillations at
each temperature was estimated as the relative height of
the peak in the Fourier spectrum corresponding to a
given temperature. Figure 3c shows the temperature
dependence of the amplitude of the AB oscillations,
which were obtained in this way for the states of the
sample depicted in Fig. 2. It can be seen that, in spite of
the fact that the mean radius of the rings remains
unchanged, the difference in the microscopic states of
the ring emerging as a result of the sample heat-
ing/cooling is sufficient to noticeably change the tem-
perature dependence of the AB oscillations. In the
physics of mesoscopic systems, the microscopic state
of the sample is determined by a set of parameters that
depend on a specific realization of the random potential
in the sample. In our case, such parameters include the
variation of the electrostatic potential along the ring
and, hence, the electron energy spectrum in the ring, as
well as the transmittance, reflectance, effective width of
the ring, and even insignificant variations of its shape
[11].

Let us now find out how the microscopic state of the
ring may affect the temperature dependence of AB
oscillations. It was established earlier [7–10] that two
independent processes determine this dependence:
(i) averaging over the temperature and (ii) suppression
of interference of electron waves over lengths exceed-
ing the phase coherence length. The first process is the
averaging of the transmittance T(E, B) of the ring over
an energy interval on the order of kT in the vicinity of
JETP LETTERS      Vol. 81      No. 12      2005
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the Fermi level. This averaging is described by the
expression

(1)

where G(EF, B, T) is the conductance of the ring and
f(E, EF, T) is the Fermi–Dirac function.

The second process is associated with violation of
coherence of electron waves due to inelastic collisions.
As a result of the violation of coherence of electron
waves on scales larger than the phase coherence length
Lφ, the amplitude of AB oscillations must obey the law

(2)

where R is the ring radius. The exact temperature
dependence of Lφ is determined by the type of electron
transport in the ring and by the type of elastic scattering
leading to coherence violation in the given system. A
monotonic decrease in length Lφ with increasing tem-
perature and, as a consequence, a decrease in the ampli-
tude of AB oscillations is observed in all cases. Since
such parameters as the mean radius, the type of electron
transport, and the nature of inelastic scattering are inde-
pendent of the specific microscopic state of the ring,
these parameters should not affect the temperature
dependence of AB oscillations, which is associated
with suppression of coherence in the ring and is
described by formula (2).

Let us consider in more detail the first mechanism,
viz., temperature averaging. It can be seen from for-
mula (1) that the quantity being averaged is the trans-
mission coefficient T(E, B), whose properties strongly
depend on the nature of the electron transport in the
ring. Experiment [8] and theory [7] show that tempera-
ture averaging of AB oscillations in the case of diffu-
sion does not differ from temperature averaging of con-
ventional mesoscopic fluctuations of conductance, is
independent of the specific realization of the scattering
potential in the image, and has a universal form
AmpAB ∝  (Ec/kT)1/2, where Ec = hD/L2 is the correlation
energy coinciding in order of magnitude with the mean
distance between the energy levels in the system, D is
the diffusion coefficient, and L is the size of the system.
The above-mentioned universality of the temperature
dependence is due to the fact that transmittance T(E, B)
in the diffusion-controlled sample is a stochastic func-
tion of the magnetic field and energy [7]. Upon a
change in energy, the fluctuation pattern of function
T(B)E = const varies smoothly till the correlation with the
initial dependence for ∆E > Ec vanishes completely.
Thus, for kT > Ec, the decrease in the amplitude of the
fluctuations due to temperature averaging occurs as a
result of a combination of uncorrelated fluctuation
dependences. The change in the microscopic state of
the sample in this case only changes the fluctuation pat-
tern T(B)E = const, while the statistical properties of the

G EF B T, ,( ) 2e2

h
-------- –

f E EF T, ,( )d
Ed

------------------------------- 
  T E B,( ) E,d∫=

AmpAB
πR
Lφ
-------– 

  ,exp∝
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function T(E, B) described above remain unchanged;
this imparts a universal nature to the temperature aver-
aging in the case of diffusion.

Conversely, in an ideal ballistic ring, T(E, B) is a
regular periodic function of energy and magnetic field
[1]. The period of function T(E, B) in energy in the ideal
model considered here is determined by the ring diam-
eter. In accordance with expression (1), periodic depen-
dences T(B) with opposite phases are composed begin-
ning from the instant when the temperature kT becomes
larger than this period; this ultimately leads to a
decrease in the amplitude of the conductance oscilla-
tions to zero in accordance with an exponential law.

In real interferometers prepared on the basis of a 2D
electron gas with a high mobility, the role of the fluctu-
ation impurity potential cannot be excluded completely
and all such interferometers are quasi-ballistic. A spe-
cific realization of the fluctuation potential for different
sample cooling cycles in these interferometers leads to
different forms of T(E, B), which do not differ from the
form of T(E, B) of an ideal ring, but are not completely
stochastic as in diffusion-controlled rings. Conse-
quently, such a fluctuation potential “individualizes”
function T(E, B), which leads to the experimentally
observed nonuniversal temperature dependence of the
amplitude of AB oscillations in a quasi-ballistic inter-
ferometer. This conclusion was not drawn earlier
because analysis of the temperature dependence of AB
oscillations in previous works was based on the diffu-
sion approach [8] or on the model of an ideal ballistic
ring [9, 10]; according to our results, this is not suffi-
cient for real quasi-ballistic interferometers.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 05-02-16591) and
the Russian Academy of Sciences (programs “Quantum
Macrophysics” and “Low-Dimensional Quantum
Structures”).

Fig. 3. (a, b) Fourier spectra of the dependences shown in
Figs. 2a and 2b, respectively, and (c) temperature depen-
dence of the amplitude of Aharonov–Bohm oscillations
shown in (triangles) Fig. 2a and (squares) Fig. 2b.
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The critical exponents of the β-(2 × 4)  α-(2 × 4) reconstruction phase transition on the (001) GaAs surface
are determined experimentally. It is found that the phase transition is analogous to a van der Waals transition.
The critical parameters Tc, Pc, and Θc have been measured experimentally. The mean field theory is applied,
and three-parameter isotherms are obtained that agree with the experimental results at the following values of
the parameters: Est = 0.36 eV, ∆E = 0.18 eV, and Ei = 0.134 eV. Precision measurements of the critical exponents
β and δ are carried out. Their values β = 1/8 and δ = 15 indicate that the phase transition is truly two-dimen-
sional. © 2005 Pleiades Publishing, Inc.

PACS numbers: 64.60.–i, 68.35.Bs
Extensive literature is devoted to reconstruction
phase transitions (PTs) on the (001)GaAs surface. This
is not surprising, because this surface is a model for
studying reconstructions and transitions between them
for III–V semiconductors. In addition, arsenic-stabi-
lized α(2 × 4) and β(2 × 4) surface reconstructions on
(001)GaAs are widely used in the creation of various
semiconductor structures by molecular beam epitaxy
(MBE). At present, the composition of these surface
phases is determined. Thus, the surface composition of
the high-temperature disordered α(2 × 4) modification
is 0.5 gallium atoms and 0.5 arsenic atoms, whereas
that for the low-temperature β(2 × 4) modification is
0.25 gallium atoms and 0.75 arsenic atoms; that is, in
the first case, four of eight surface atoms in the unit cell
are arsenic atoms (in the form of two arsenic dimers),
whereas there are six arsenic atoms (three dimers) on
the surface in the second case. In this case, the α  β
transition is formally associated with the adsorption of
two arsenic atoms per unit cell of the α(2 × 4) phase in
a flow of arsenic tetramers.

So far, there has been no consistent theory of recon-
struction PTs on the GaAs surface in spite of available
experimental data and significant advances in under-
standing the mechanism of particular reconstructions.
However, the following main problems have still
remained unsolved. The first problem concerns the type
of the transition between the As-stabilized (2 × 4)
reconstruction and the Ga-stabilized (4 × 2) reconstruc-
tion on GaAs(001). That is, the question is whether this
transition is of the first or the second order. The next
problem concerns the dimensionality of the transition;
that is, whether the transition on the surface is true two-
dimensional. Finally, this is the problem concerning the
microscopic mechanisms and the driving force of the
0021-3640/05/8112- $26.00 0629
transition. Thus, the authors of the review [1] argue that
the (2 × 4)  (4 × 2) PT on (001)GaAs is a continuous
second-order PT. At the same time, the authors of [2, 3]
detected the coexistence of these phase by scanning
tunneling microscopy (STM), which gave grounds to
state that the PT is of the first order. Another controver-
sial point is the suggestion that the lateral interaction
between adsorbed arsenic atoms is of attractive charac-
ter [1], whereas it is well known that lateral attraction
exists between adsorbed atoms of the same type on the
surface [4, 5].

In our papers [6, 7], we developed an approach to
the consideration of PTs on (001) GaAs and InAs as
phase transitions induced by arsenic adsorption on the
(001) surface. Within this approach, we considered
reconstruction transitions from the As-stabilized (2 × 4)
surface to the Ga-stabilized (4 × 2) surface, as was
assumed in most works. However, this transition in
reality is more complicated and proceeds through a
number of intermediate reconstructions. The analysis
of such a transition requires a successive consideration
of each elementary phase transition separately. This
work is devoted to studying such a phase transition
between the neighboring β(2 × 4) and α(2 × 4) recon-
structions. Using reflection high-energy electron dif-
fraction (RHEED), we performed precision measure-
ments of the intensity of the fractional (0 2/4) reflection
and its behavior in the β(2 × 4) and α(2 × 4) reconstruc-
tion phase transition in a wide range of surface temper-
atures and arsenic tetramer pressures in the MBE cham-
ber. The point is that the intensity of the fractional
(0 2/4) reflection in the ordered phase β(2 × 4) is com-
parable with the intensity I of the mirror reflection, but
the reflection is completely quenched in the disordered
high-temperature α(2 × 4) phase (see Fig. 1). Hence, it
© 2005 Pleiades Publishing, Inc.
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follows that the normalized intensity of the (0 2/4)
reflection can be used for an experimental determina-
tion of the order parameter η (η2 = I/I0) in the indicated
order–disorder reconstruction phase transition, and its
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Fig. 1. Reflection high-energy electron diffraction pattern
for (a) α(2 × 4) and (b) β(2 × 4) phases. The designation of
reflections are given below each photograph. The higher
brightness corresponds to a higher intensity. It is evident

that the (0 2/4) reflection and the (0 /4) reflection symmet-
rical to it in the β(2 × 4) phase have an intensity comparable
with the (0 0) mirror reflection and are quenched in the
α(2 × 4) phase.

2

Fig. 2. Fractional (0 2/4) reflection intensity vs. the arsenic
pressure at various temperatures. Arrows indicate the direct
and reverse courses.

T = 545°C
behavior upon varying the temperature and the As4
pressure will assist in elucidating the nature of the PT.

All the experiments were carried out in the chamber
of an MBE setup (Riber) equipped with a reflection
high-energy electron diffractometer with a primary
electron beam energy of 12 keV. The size of the gallium
arsenide sample with the orientation (001) ± 0.5° was
3 × 3 mm2. This provided sufficient uniformity of the
surface both in temperature and in morphological per-
fection. All the measurements were performed after the
growth of GaAs buffer layers 50 nm thick on the sub-
strate. The results did not depend on the incident angle
of the primary electron beam in the region of 1°–2°.
The evolution of the diffraction pattern was recorded by
a digital video camera followed by computer process-
ing of the reflection intensities.

The behavior of the fractional (0 2/4) reflection

intensity in the [ ] azimuth is shown in Fig. 2 as a
function of the arsenic tetramer pressure in the MBE
chamber at various substrate temperatures. The (0 2/4)
reflection intensity increases with increasing arsenic
pressure and is saturated at a certain pressure depend-
ing on the sample temperature. Because the adsorption
of arsenic on the surface increases with increasing pres-
sure, arsenic dimers are accumulated and a transition
occurs from the disordered α(2 × 4) phase with two
dimers per (2 × 4) unit cell to the ordered β(2 × 4) phase
with three arsenic dimers. The direct and reverse
courses of the intensity variation do not coincide for
sample temperatures below 595°C; that is, an hysteresis
typical for a first-order phase transition occurs. At the
same time, no hysteresis is observed for temperatures
above 595°C. Hence, we deal with a first-order PT at
temperatures below 595°C and the β(2 × 4)  α(2 ×
4) transition is a continuous second-order phase transi-
tion at temperatures above 595°C. The occurrence of
both orders of PTs points to an analogy with a liquid–
gas transition of the van der Waals type. From experi-
mental data, we determined the critical temperature of
the PT Tc = 595 ± 5°C, the critical pressure of arsenic
Pc = 7 × 10–6 Torr, and the critical surface coverage by
arsenic Θi = 0.25.

The van der Waals equation of state specifies a rela-
tion among the temperature, the pressure, and the den-
sity of the gas and liquid phases. In our case, the equa-
tion of state of the surface represents a relation among
the As4 pressure, the temperature, and the surface cov-
erage by arsenic. The long-range order parameter for a
classical van der Waals system is the difference
between the densities of the liquid and gas phases. In
our case, if we continue the analogy with the van der
Waals equation, the long-range parameter (η) is related
with the difference Θ of the number of surface dimers
in the β(2 × 4) and α(2 × 4) phases by the equation
Θ = (1 – η)/2 [5]. Measuring the behavior of the frac-
tional (0 2/4) reflection intensity in diffraction at the
β(2 × 4)  α(2 × 4) PT, we actually measure the

110
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α(2 × 4) surface coverage by arsenic atoms as a func-
tion of the arsenic pressure in the growth chamber at a
certain temperature.

Mean field theories are very useful for the analysis
of microscopic mechanisms of PTs in particular sys-
tems and specific features of the given problem. In our
case, to explain the experimental results, namely, the
formation of the dense ordered β(2 × 4) phase upon
arsenic adsorption on the α(2 × 4) phase, it is required
to assume the existence of lateral attraction between the
adsorbed arsenic dimers. In this case, the Langmuir iso-
therm (lateral interaction between adsorbate particles is
absent) P/P0 = Θ/(1 – Θ), where P is the arsenic pres-
sure and Θ is the surface coverage of the α(2 × 4) phase
by arsenic, should be replaced by the Fowler–Guggen-
heim (FG) isotherm P/P0 = Θ/(1 – Θ)exp(–4ΘEi/kT),
where Ei is the lateral attraction energy between arsenic
atoms. The FG isotherm describes both first- and sec-
ond-order PTs. In our case, we will have a coincidence
with the experiment at Ei = 0.075 eV, that is, Tc =
595°C. Such a one-parameter isotherm was already
used in [1] in studying the (2 × 4)  (4 × 2) PT on
(001)GaAs, where the authors obtained Ei = 0.11 eV,
because this transition occurred at a higher tempera-
ture. However, such one-parameter approximations are
possibly suitable for, say, PTs on the surface of single-
component semiconductors, such as silicon, germa-
nium, or a metal. In the case of two-component semi-
conductors such as gallium arsenide, arsenic and gal-
lium sublattices are involved in the reconstruction tran-
sition. Moreover, as we mentioned already, the arsenic
dimers adsorbed on the surface will repel each other. At
least three physical parameters are required in the
description of the PT on the (001) gallium arsenide sur-
face. In our opinion, a three-parameter isotherm in the
framework of the adsorbate-induced PT theory will
represent the equation of state of the surface most cor-
rectly [4, 6, 7]

(1)

This equation also describes both first-order phase tran-
sitions and continuous phase transitions at temperatures
above the critical temperature. Because, in our case,
Tc = 595°C, the following values can be chosen for the
parameters: Est = 0.36 eV, ∆E = 0.18 eV, and Ei =
0.134 eV. The stabilization energy Est of the β(2 × 4)
phase corresponds to the adsorption of one arsenic
dimer per (2 × 4) unit cell of the α(2 × 4) phase. This
value can be identified with the difference between the
surface energies of the α(2 × 4) and β(2 × 4) phases.
These values normalized to the (1 × 1) cell are pre-
sented in [8, 9]. Therefore, we obtain Est = 0.045 × 8 =
0.360 eV. The value of ∆E is the energy required for the
transition of gallium atoms from the positions that they
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occupied in the α(2 × 4) phase to the positions of the
β(2 × 4) phase. This value is more difficult to estimate,
but it may be conventionally assumed that ∆E ≈ 0.5Est
[4]. The repulsion energy Ei was varied so that the crit-
ical transition temperature coincided with the tempera-
ture measured experimentally. For Ei = 0.134 eV, Tc =
868 K, which coincides with the experimental value.
The calculated three-parameter isotherms are shown in
Fig. 3 in the vicinity of the critical region. In this region,
Eq. (1) is simplified and we obtain

(2)

where ∆T = (T – Tc)/Tc, ∆Θ = (Θ – Θc)/Θc, and ∆P =
(P – Pc)/Pc. The expansion in Eq (2) satisfies the most
general stability conditions for the α(2 × 4) and β(2 ×
4) surface phases near the critical region. For the criti-
cal exponents in the critical isotherm, when ∆T = 0, we
obtain from Eq. (2) that ∆θ = 4/15∆P1/3; that is, δ = 3,
and, under the condition ∆P = 3/2∆T, that is, in the
absence of an ordering external field, we obtain that
∆θ = 4/3∆T1/2, that is, β = 1/2. As it must be for the
mean field theory, the values of these exponents coin-
cide with the exponents of the Landau PT theory.

Note that the Est, ∆E, and Ei parameters can be
replaced by one parameter Eeff, the effective attraction
between arsenic dimers, which turned out to be equal to
Eeff = 0.075 eV in our case. However, this parameter
does not reflect the actual lateral interaction in the
adsorbate, because chemisorbed particles of the same
type repel each other [4, 5].

Note once again that the critical temperature of the
phase transition Tc depends on the lateral interaction (in
the case under consideration, on the Est, ∆E, and Ei

parameters, or on Eeff), but it is very important to
emphasize that Tc does not depend on the binding
energy of the adsorbate (arsenic atoms, in our case)
with the surface. The characteristic energy of the lateral

∆P 3/2∆T 5∆T∆Θ 15/4∆Θ3,+ +=

Fig. 3. Three-parameter isotherms calculated near the criti-
cal point for various temperatures (848–888 K) with the
parameters Ei = 0.134 eV, Est = 0.36 eV, ∆E = 0.18 eV, and
Tc = 868 K.
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interaction (Elat) does not conventionally exceed 50–
100 meV, which corresponds to PT temperatures of
400–600°C (Elat ~ kTc). However, the adsorption energy
is, as a rule, higher than the lateral interaction energy.
In our case, the arsenic binding energy with the surface
is ~3 eV, which is almost two orders of magnitude
higher than the scale of the lateral interactions! It was
found in [10] that cesium adsorption on the (001) GaAs
surface results in a decrease in the temperature of the
(2 × 4)  (4 × 2) PT by ~100°C. The authors of [10]
related this decrease to the decrease in the binding
energy of arsenic atoms with the surface (the strength
of arsenic back bonds), that is, with the so-called verti-
cal interaction, and completely disregarded the lateral
interaction. This assumption is, in essence, based on the
Langmuir model of adsorption. However, the notion of
the transition temperature between various surface
phases is absent in the Langmuir model because of the
absence of the existence of different surface phases

Fig. 4. Temperature dependence of the fractional (0 2/4)
reflection intensity in the critical isobar. The dependence in
the logarithmic scale is shown in the inset by points,
through which a solid straight line corresponding to β = 1/8
is drawn.

Fig. 5. Pressure dependence of the fractional (0 2/4) reflec-
tion intensity in the critical isotherm. The dependence in the
logarithmic scale is shown in the inset by points through
which a solid straight line corresponding to δ = 15 is drawn.

T = 545°C

4 × 10–6 1 × 10–5 2 × 10–5 3 × 10–5
0

such as in the framework of this model. Only the inclu-
sion of the lateral interaction assigns a physical mean-
ing to the PT temperature.

Let us briefly discuss the physical meaning of the P0
parameter in Eq. (1). If the experiment was performed
under equilibrium conditions of the gallium arsenide
surface with the monatomic arsenic gas, then P =

exp(–Eb/kT), where  = (2πmkT/h2)3/2kT, and Eb

would correspond to the true adsorption energy of mon-
atomic arsenic. However, experiments are, as a rule,
performed in a molecular beam of arsenic As4 at pres-
sures that are several orders of magnitude higher than
the equilibrium pressure over the GaAs surface. There-
fore, a steady-state adsorption–reaction equilibrium is
attained on the surface under given conditions and the
parameter P0 has the meaning of an effective pressure.
This was considered in more detail in our work [7]. For
the region of relatively low temperatures (540–580°C),
the following values were obtained from an Arrhenius
approximation of the experimental data:  = 2 ×
1011 Torr and the effective binding energy of arsenic
with the surface E ≈ 2.75 eV.

According to current concepts, the order parameter
exhibits a power dependence on the temperature and
pressure in the vicinity of the critical region η = ∆Tβ

and η = ∆P1/δ, where ∆T = (T – Tc)/Tc and ∆P = (P –
Pc)/Pc. The numerical values of the critical exponents β
and δ depend on the dimensionality of the space in
which the PT occurs. For a 3D transition, β = 1/3 and
δ = 5, whereas β = 1/8 and δ = 15 for a true two-dimen-
sional transition. The critical exponents of the PT do
not coincide with the Landau exponents, because the
significant contribution from the fluctuations of the
order parameter in the vicinity of the critical point is
neglected in the mean field theory. The behavior of
adsorption phases on the surface of metals often exhib-
its two-dimensional features, see [5]. It is not evident
a priori whether the reconstruction transitions on the
(001) GaAs surface will have a two-dimensional char-
acter. The As-stabilized β(2 × 4) reconstruction on
(001) GaAs spans three surface planes and is not equiv-
alent at all to simple adsorption phases on the surface of
metals. In the case of the β(2 × 4)  α(2 × 4) PT,
three surface planes are involved in the rearrangement;
therefore, the situation is not quite similar to the PT in
an adsorption monolayer on the surface of metals.

We carried out precision measurements of the tem-
perature and pressure dependences of the fractional
(0 2/4) reflection in the vicinity of the critical point with
the aim of determining the numerical values of the crit-
ical exponents. The temperature dependence of the
(0 2/4) reflection intensity in the critical isobar (Pc = 7 ×
10–7 Torr) is presented in Fig. 4. The dependence I/I0 =
((Tc – T)/Tc)2β is presented on a double logarithmic scale
in the inset, and the critical exponent β = 1/7–1/8 is
determined from the line slope. The pressure depen-

P0' P0'

P0'
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dence of the intensity in the critical isotherm is shown
in Fig. 5. Similarly, this dependence is presented on a
double logarithmic scale in the inset and gives the crit-
ical exponent δ = 13–15. Thus, the obtained values of
the critical exponents indicate that the β(2 × 4)  α(2
× 4) reconstruction phase transition is a true two-
dimensional one.

It is interesting to compare our results with the
results obtained by the research team from the Univer-
sity of Arkansas [11, 12]. The authors of these works
studied the coalescence of 2D islands of the α(2 × 4)
GaAs phase occurring on the β(2 × 4) surface and came
to the conclusion that this process is two-dimensional.
However, the critical exponent δ was not measured in
these works but was estimated from the STM data
ex situ. We believe that it is more correct to study a PT
on a surface by a diffraction technique in situ, which
has been demonstrated in this work.

Thus, we studied the α(2 × 4)  β(2 × 4) PT on
the (001) GaAs surface. It was found that the PT is anal-
ogous to a van der Waals transition. The critical param-
eters Tc, Pc, and Θc were measured experimentally. The
mean field theory of the α(2 × 4)  β(2 × 4) PT was
used, and three-parameter isotherms were obtained
with the parameters Est = 0.36 eV, ∆E = 0.18 eV, and Ei

= 0.134 eV in agreement with the experimental results.
Precision measurements of the critical exponents β and
δ were performed. Their values β = 1/8 and δ = 15 indi-
cate that the PT is a true two-dimensional transition.

This work was supported by the Russian Foundation
for Basic Research, project no. 05-03-32660.
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Motivated by recent theoretical and experimental interest in the subject, we derive the condition of interfacial
Kelvin–Helmholtz instability for a system of two flowing superfluids (one sliding on the other). The tensor
structure of superfluid densities in anisotropic superfluids, such as 3He-A and also 3He-B under an external mag-
netic field, is properly taken into account. The consequences relevant to experiments on the A–B phase boundary
in superfluid 3He are discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 47.20.Ma, 67.57.Np, 68.05.–n
1. INTRODUCTION

The Kelvin–Helmholtz (KH) instability of an interface
separating two flowing fluids manifests itself in various
everyday phenomena in nature, such as wave genera-
tion by wind blowing on water surfaces surface and
flapping of flags and sails. A direct experimental verifi-
cation of the theoretical prediction for the instability
criterion, originally studied by Lord Kelvin [1], has
nevertheless proven difficult with classical fluids. This
is because viscous effects neglected by the theory affect
the instability in an essential manner. However, as
proven by experimental studies on the interface
between the A and B phases of superfluid 3He [2], in
superfluid systems (where viscosity does not play a
role), a well-defined instability can be observed and the
original theoretical ideas tested in detail.

At the instability of the A–B interface, when a situa-
tion with shear flow is set up by rotating the sample, a
small amount of quantized vorticity is transferred from
the A phase to the B phase. Therefore, as a controllable
vortex-injection mechanism, the KH instability has
recently proven itself a valuable tool in various experi-
mental studies concerning superfluid turbulence and
the dynamics of quantized vortices in general [3]. Also,
the dispersion relation for surface waves (ripplons)
excited on the A–B interface has been shown to be
closely related to relativistic dynamics in the Schwarzs-
child metric [4]; in this work, the idea of using super-
fluid 3He as a laboratory model system for testing some
aspects of black-hole physics has been raised (see also
[5]). Furthermore, the superfluid KH instability has
been discussed in connection with multicomponent
Bose–Einstein condensates [6], phase-separated 3He–
4He mixtures [7], and even as a possible source for pul-
sar glitches [8].

¶ This article was submitted by the authors in English.
0021-3640/05/8112- $26.00 0634
Motivated by these recent developments, we derive
the condition for the superfluid KH instability. Since
both 3He-A and 3He-B in applied magnetic fields are
anisotropic, we take into account their anisotropic
superfluid densities. Also, fluid layers of arbitrary
thickness are considered. The resulting instability crite-
rion involves a different combination of density-tensor
elements than suggested previously [9].

2. KH INSTABILITY—MAIN FEATURES

The problem of the KH instability in classical
hydrodynamics considers an interface separating two
immiscible ideal fluids in relative motion (one fluid
sliding on the other, both of infinite extent), i.e., a tan-
gential discontinuity. Such shear flow becomes unsta-
ble if the velocity difference exceeds a critical value
determined by (see, e.g., [11] for the derivation)

(1)

where ρ1 and ρ2 (v1 and v2) are the densities (velocities)
of the two fluids, σ is the surface tension of the separat-
ing interface, and F is a force (per unit volume) due to
an external field stabilizing the position of the interface.
Usually, this force is provided by the gravitational field,
F = g(ρ1 – ρ2). The wave vector corresponding to the
first unstable mode, which gets excited at the instabil-
ity, is

(2)

The KH instability in the context of superfluids has
been analyzed theoretically by Volovik [9]. As pointed
out in this work, the most crucial modification as com-
pared with the classical KH instability is the breakdown
of the Galilean invariance originating from the two-
fluid nature of superfluid hydrodynamics. A preferred

1
2
---

ρ1ρ2

ρ1 ρ2+
----------------- v1 v2– 2 σF,=

k0 F/σ.=
© 2005 Pleiades Publishing, Inc.
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reference frame is provided by the frame of the con-
tainer with respect to which the normal components of
the two superfluids are stationary. In this frame, assum-
ing that v1 || v2 (which corresponds to the experimental
situation in [2]), the instability criterion emerges as [9]

(3)

with the same wave vector k0, as in the classical case,
given by Eq. (2). The densities and velocities in Eq. (3)
refer to those of the superfluid components. Note that,
here, the instability can also appear when v1 = v2 (cf., a
flapping flag in the wind, where the flagpole breaks the
Galilean invariance [10]).

Additionally, in the particular case of an A–B inter-
face in superfluid 3He, the position of the interface is
stabilized by an external magnetic-field gradient, F =

(χA – χB)|∇ (H2)|, where χA and χB are the susceptibil-

ities of the two superfluid phases (χA > χB). Therefore,
a well-defined instability occurs even though the mass
densities of the phases are equal to a high accuracy. The
threshold determined by Eq. (3) is in remarkable agree-
ment with the experimental observations [2].

3. KH INSTABILITY OF ANISOTROPIC 
SUPERFLUIDS

We now proceed to the derivation of the condition
for superfluid KH instability allowing for mass anisot-
ropy and finite thicknesses of the two liquid layers. As
shown in [9], the instability criterion can be derived in
various different ways. Here, we follow perhaps the
most transparent of them, which considers the free
energy connected with a perturbation of the interface
between the two liquids. We take the unperturbed
superfluid velocities v1(2) = v 1(2)  of the liquids (in the
rest frame of the container and the normal fractions) to
be parallel to each other, and the coordinate z to be
along the interface normal (see Fig. 1). Translational
invariance in the y direction is assumed. We then write
the superfluid velocities as vs1(2) = v1(2) + , where

 are the modifications due to the perturbation of
the interface.

The unperturbed interface is taken to be located at
z = 0, and the outer walls bounding the liquid layers are
situated at z = –h1 and z = h2. We consider small static
interfacial perturbations uniform in the y direction, and
of the form

(4)

The perturbation parts of the superfluid velocities can
be written as  = ∇ψ 1(2), where

(5)

1
2
---ρ1v 1

2 1
2
---ρ2v 2

2
+ σF,=

1
2
---

x̂

ṽ1 2( )

ṽ1 2( )

ζ a kx( ).sin=

ṽ1 2( )

ψ1 A1 k1
z z h1+( )[ ] kx( ),coscosh=

ψ2 A2 k2
z z h2–( )[ ] kx( ),coscosh=
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which satisfies (z = –h1) = (z = h2) = 0 at the
solid outer boundaries. From the equations of continu-
ity

(6)

where  =  +  +  is the
anisotropic superfluid density tensor, we obtain the
conditions

(7)

Additionally, we require that there be no mass flow
through the interface,

(8)

where  is the unit normal of the interface, we find the
further conditions (to the first order in the small pertur-
bation)

(9)

We return to the justification of Eq. (8) in more detail
below.

The free-energy functional for the perturbed flow
can be written in the form

The flow is unstable when the free energy of the per-
turbed flow is lower than that of the unperturbed flow,
i.e., when ^[ζ] < ^0 ≡ ^[ζ = 0]. Substituting Eqs. (4)–
(9), we find that the first-order modification of the free
energy vanishes and the second-order contribution
reads

(10)

ṽ 1 z, ṽ 2 z,

∇ rs1 vs1⋅( )⋅ 0, ∇ rs2 vs2⋅( )⋅ 0,= =

rs1 2( ) ρ1 2( )
x x̂x̂ ρ1 2( )

y ŷŷ ρ1 2( )
z ẑẑ

ρ1
xk2 ρ1

z k1
z( )2

, ρ2
xk

2 ρ2
z k2

z( )2
.= =

ŝ rs1 vs1⋅( )⋅ 0, ŝ rs2 vs2⋅( )⋅ 0,= =

ŝ

ρ1
z A1k1

z k1
z h1( )sinh ρ1

xav 1k– 0,=

ρ2
z A2k2

z k2
z h2( )sinh ρ2

xav 2k+ 0.=

^ ζ[ ] 1
2
--- x Fζ2 σ ζd

xd
----- 

 
2

∫+d∫=

+ z vs1 rs1 vs1⋅ ⋅( ) z vs2 rs2 vs2⋅ ⋅( )d

ζ

h2

∫+d

h1–

ζ

∫ .

^ ζ[ ] ^0 a2 F σk2 k ρ1
effv 1

2 ρ2
effv 2

2+( )–+[ ] ,∝–

Fig. 1. Geometry of the problem. Small-amplitude static
perturbations of an interface at z = 0 separating two super-
fluid layers of thicknesses h1, h2 and superfluid velocities
v1, v2 (v1 || v2) are investigated.
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with the definition

(11)

and similarly for . The criterion for the instability is
now determined, so that the expression on the right-
hand side of Eq. (10) first becomes negative for some
wave vector k. In the limiting case of thick layers
(appropriate for the experiments in [2]), kh1, kh2 @ 1;
this happens first for k = k0, and the instability condition
reads

(12)

In the isotropic limit,  =  = ρ1(2), the criterion
in Eq. (3) is recovered. The full anisotropic result, how-
ever, differs from Eq. (21) in [9].

Another limiting case, which could be experimen-
tally realized, as well as be interesting in view of [4], is
that of one thin layer, say kh1 ! 1, and v 2 = 0. In this

case, the parameters of fluid 2 (h2, , and ) do not
enter the instability criterion. It then follows that the
instability first develops with large wavelengths, k  0,
and the threshold velocity adopts the simple form

(13)

ρ1
eff ρ1

x ρ1
x/ρ1

z

kh1 ρ1
x/ρ1

z( )tanh
------------------------------------------,≡

ρ2
eff

1
2
--- ρ1

x ρ1
x

ρ1
z

-----v 1
2 ρ2

x ρ2
x

ρ2
z

-----v 2
2+

 
 
 

σF.=

ρ1 2( )
x ρ1 2( )

z

ρ2
x ρ2

z

v 1 Fh1/ρ1
x
.=

Fig. 2. Schematic representation of the A–B interface insta-
bility experiment in superfluid 3He in a state of equilibrium.
In a rotating cylindrical container, the A phase occupying
the upper volume contains the equilibrium number of vorti-
ces and the lower B-phase volume remains vortex-free. The
A-phase vortices bend to the container wall forming a vortex
sheet on the interface.
4. BOUNDARY CONDITION

To give a physical motivation to the boundary con-
dition in Eq. (8), we return again to the specific case of
the A–B phase boundary in superfluid 3He. Experimen-
tally, a situation with shear flow can be accomplished
by rotating a sample of superfluid 3He where an A–B
interface has initially been stabilized using an external
magnetic field with a gradient along the axis of rotation
(see Fig. 2). Because the critical velocity of vortex
nucleation is much lower in 3He-A than in 3He-B, with
moderate angular velocities of rotation, vortex lines
appear in the A-phase volume, while the volume occu-
pied by the B phase remains vortex-free. In this way, a
relative flow between the superfluid components of
these two quantum liquids is set up.

Since the vortices cannot terminate at the interface,
they must bend to the container wall. Actually, the vor-
tices form a surface sheet on the phase boundary [12].
In stable equilibrium, the net force on the vortex lines
coating the interface must vanish when they are station-
ary in the container frame; i.e., vL = vn. In that case,
there is no frictional force from the normal component
and the equation of the force balance reads (see, e.g.,
[13])

(14)

with the Magnus force from the local superfluid veloc-
ity field

(15)

where ρ is the total mass density of the liquid and k is
the circulation vector, the Iordanskii force from the ele-
mentary excitations (quasiparticles in the system) is

(16)

(with the normal-density tensor ) and the force from
the interface is

(17)

With these definitions, the vanishing of  × Ftot implies
Eq. (8). Obviously, for the condition of local equilib-
rium to be valid, in the above derivation, we have
assumed that the timescale characterizing the dynamics
of the vortices is short compared with that determining
the time evolution of the A–B interface.

5. CONSEQUENCES

Next, we discuss the implications of Eq. (12)
regarding the A–B phase boundary experiments of the
type reported in [2]. Since the A phase essentially con-
tains the equilibrium number of vortices, vA ≈ 0, and the
critical velocity of the KH instability is given by

(18)

Ftot FM FI Fint+ + 0,= =

FM ρk vL vs–( ),×=

FI k rn vs vn–( )⋅[ ]×=

rn

Fint f int ŝ.=

ŝ

v B

4σABF( )1/4

ρB
eff

--------------------------,=
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where, now,  = . Despite the anisotropy
inherent in the p-wave pairing of the superfluid 3He, the
unperturbed bulk B phase is isotropic in its physical
properties. In the presence of an external magnetic field
and superflow, however, a gap distortion induces an
anisotropy to the superfluid density in 3He-B [14]. The
resulting density tensor is of uniaxial form with compo-
nents given by

(19)

where the unit vector  ≡  ·  is the axis of orbital

anisotropy (  is a unit vector in the direction of the

external magnetic field and  is the rotation matrix
defining the B-phase order parameter).

In the Ginzburg–Landau regime, the mass-density
tensor components in the presence of an external field
H can be written as [14]

(20)

where H0 = pF/m*ξ0γ ≈ 1.64 T, and  is the isotropic
value corresponding to unperturbed bulk 3He-B. In a
first approximation, therefore, the tensor component

along the direction of  is suppressed, while the other
components stay unaffected. We have neglected the
small additional suppression due to counterflow, which
is justified for the typical experimental velocities of
vB ! (2m*ξ0)–1 ≈ 6.3 cm/s.

To estimate the magnitude of the effect, we insert
the values H = 367 mT and T = 0.57Tc (one particular
experiment was performed at a pressure of p = 29 bar;
see [3] and reference [30] therein) in Eq. (20), thus,

leading to . Although the extrapolation of
the Ginzburg–Landau result to such low temperatures
can certainly be questioned, we think it is safe to con-
clude that the anisotropy effects discussed here are
large enough to have experimental significance.

Of course, the actual effect of the density anisotropy

depends on the orientation of  in our coordinate sys-
tem, which is depicted in Fig. 1. This requires a careful
analysis of several different mechanisms trying to ori-
ent the order parameter [15] originating, e.g., from the
external magnetic field, counterflow, container surfaces
(the instability is expected to occur near the surface
where the counterflow is the highest), and the presence
of the A–B interface. Because a detailed investigation of
these effects is a fairly complicated problem, we list

three possible orientations of , which correspond to

ρB
eff ρB

x ρB
x /ρB

z

ρB ij, ρB
|| l̂i l̂ j ρB

⊥ δij l̂i l̂ j–( ),+=

l̂ Ĥ R

Ĥ

R

ρB
|| 1 3

H2

H0
2

1 T /Tc–( )
--------------------------------– ρB

0 ,≈

ρB
⊥ ρB

0 ,≈

ρB
0

l̂

ρB
|| 0.65ρB

0≈

l̂

l̂
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the preferred directions of different orienting influ-
ences.

(i)  || . This choice minimizes the kinetic energy
of the flow; the axis of orbital anisotropy coincides with
the flow direction, and we have

(21)

According to Eq. (20), this results in a reduction of 

as compared to the isotropic value , and an enhance-
ment of the threshold velocity in Eq. (18).

(ii)  || . For this wall-dominated order-parameter
orientation,

(22)

and the main gap suppression is along the direction per-
pendicular to the plane of Fig. 1. In this case, therefore,
no significant deviation from the isotropic result is to be
expected.

(iii)  || . This orientation would follow in the
absence of other effects than that of the axially oriented
magnetic field. We obtain

(23)

resulting in an apparent enhancement of the effective

superfluid density from the isotropic value,  > !
With the values of H and T used in the earlier estimate

above, we find  ≈ 1.25 . It is interesting to note
that the authors of [3] state (reference [30] in the arti-
cle) that a good fit to the experimental data of the insta-
bility threshold, using Eq. (3), was obtained by taking
ρB(H) ≈ 1.15ρB(H = 0).

Even though the choice of  ||  appears difficult to
justify in the circumstances of the experiment (the A–B

phase boundary has a strong tendency to orient to  ⊥
 [16]), it is clear that any attempts aiming at a quanti-

tative understanding of the A–B interface instability
should take anisotropy effects into account.
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Starting from an essentially commutative exponential map E(B|I) for generic tensor-valued 2-forms B, which
were introduced in [10] as a direct generalization of the ordinary noncommutative P exponent for 1 forms with
values in matrices (i.e., in tensors of rank 2), we suggest a nontrivial but multiparametric exponential %(B|I|tγ),
which can serve as an interesting multidirectional evolution operator in the case of higher ranks. To emphasize
the most important aspects of the article, the construction is restricted to the backgrounds Iijk, which are asso-
ciated with the structure constants of the commutative associative algebras, which make it insensitive to the
topology of the 2D surface. Boundary effects are also eliminated (straightforward generalization is needed to
incorporate them). © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.15.Tk
1. Motivations. Given a matrix-valued one-form

(x)dxµ on a line, one can introduce an ordered expo-

nent, Pexp( (x)dx), which can also be defined as a

limit

(1)

with the unit matrix Iij = δij (the hats denote tensors with
suppressed indices).

When a 1D line (real curve) is substituted by a 2D
surface (complex curve) Σ, an appropriate generaliza-
tion of a P exponent is badly needed for numerous
string theory considerations. The problem is known
under many names, from topological models [1, 2] to
the Connes–Kreimer theory [3–5] and that of the 2 cat-
egories [6]. The role of a chain in (1) is now played by
a “net”—a dual graph Γ describing a simplicial com-

plex, which “triangulates”1 Σ, and tensors  of rank

¶ This article was submitted by the authors in English.
1 In principle, to imitate surface integrals with arbitrary measures,

one needs triangulations with lengths ascribed to the links [7].
However, as usual in the matrix-model realizations of string the-
ory [8], one can ignore the lengths (consider “equilateral triangu-
lations”)—as is done in (1)—and the associated quantities will be
quite informative (perhaps, even exhaustively informative: for
example, it is believed—and confirmed by numerous calculations
of particular quantities—that Polyakov’s (sum over 2D metrics)
and Migdal’s (matrix-model sum over equilateral triangulations)
descriptions of string correlators are equivalent). Still, the interre-
lation between arbitrary and equilateral triangulations remains an
open problem, touching the fundamental questions of number
theory [9]. The problem is also known as that of continuous limits
in matrix models.
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z Î Â+( ) P Aij x( ) xd∫( )exp≡

=  Î
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m stand as coupling constants at the vertices of valence
m of this graph. To provide triangulation of a surface,
the graph should have many vertices with valences m ≥ 3,
and essential generalization of (1) is unavoidable. Indi-

ces of ’s at the vertices are contracted by special rank 2
tensors , which are called metric or propagator (it is

assumed to have upper indices if all the  have lower
ones). With such a graph, one associates a partition

function [4] { }, which is a tensor of rank ext(Γ),
equal to the number of external legs of the graph Γ (if Σ
has no boundaries, ext(Γ) = 0).

2. Suggestion of [10]. In [10], a principally impor-
tant step is made to bring the abstract constructions of
[4, 11–13] closer to appropriate generalization of (1).
The crucial additional structure used in (1) is decompo-

sition of the rank-2 tensor  =  +  into “background”

 and “dynamical”  parts. z( ) = 1 is trivial, though
Iij = δij ≠ 0 itself is not.

For complex curves, the background  should nec-
essarily have rank greater than 2; for graphs of valence
3, it should have rank 3. It is well known [2] that there

are nontrivial  and associated  that exist with trivial

for all Γ without external legs2 (they can be build from
structure constants of any commutative associative
algebra (see section below), but this does not exhaust
all the possibilities), and the research [10] suggests to

2 Of course, for ext(Γ) ≠ 0, the ( ) is an operator (has external

indices) and cannot be unity. However, it can be made dependent
only on ext(Γ) but not on Γ itself (see the section below).
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Î Â Î
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make use of them exactly in the same way as in (1).

Since, in this construction,  is rigidly linked to , we
suppress the  labels in most formulas below.

According to the definition of  for  =  + , we
have 3 

(2)

If we now take a limit of large |Γ| ≡ (the number of
vertices in Γ) with a graph growing in both dimensions
to form a dense net and look at the terms with a given
power of B, then statistically only graphs γ consisting of
isolated points will survive after appropriate rescaling
of B, and this logic leads to the following generalization
of (1) [10]:

(3)

(the argument  in  will often be suppressed below).
This is a very nice and interesting quantity, but it is
essentially Abelian: as we shall see in (11),

( ) ( ) = (  + ) (for example, for a rank 3

2-form  = dxµ ∧  dxν on Σ, we can define a surface

integral as E( ) and never encounter any ordering

problems). This happens for the same reason that the
homotopic groups πk are commutative for k > 1: any
two insertions of B at two remote points can be easily
permuted by moving one around the another.

In what follows, we give a more formal description
of the above construction, get rid of a subtle limiting
procedure in (3), and introduce—with the help of

( ), just changing its argument—a less trivial expo-

nential ( |t). It should be useful in applications, it is
well defined, but no “conceptual” limiting formula like
(3) is immediately available for it.

3 Note that the graph automatically picks up the tensors of appro-

priate rank from ; if there is no match,  = 0. If we assume that

 is exactly of rank 3 while  consists of tensors of various

ranks (we will see below that it is useful not to restrict  to rank
3 only), then only subgraphs Γ/γ with vertices of valence 3 will
contribute to the sum. The subgraph Γ/γ is defined by throwing
away all the vertices of γ and all the links between them,
ext(Γ/γ) = ext(Γ) + ext(γ) – 2 (the number of common external
legs of Γ and γ). In other words, γ is treated as a “vertex-sub-
graph” of Γ. As explained in [4], the vertex-subgraphs (in vari-
ance with the “box-subgraphs”) are related to a relatively simple
set-theoretical aspect of quantum field theory (to the Shift }
rather than Diff} structure of the diagram technique). In the
present context, this is the reason behind the oversimplicity (com-
mutativity property (11)) of the exponential (3).
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3. Backgrounds  from commutative associative

algebras !. Let  =  be structure constants of

an associative algebra ! (φi * φj = φk):

(4)

Introduce a set of symmetric tensors :

(5)

Among them will be the metric4

(6)

and the elementary vertex Iijk = Tr( ). The metric
will be assumed to be nondegenerate, and its inverse gij

will be used to raise the indices.
In what follows, we impose an additional commuta-

tivity condition on the structure constants:

(7)

Then, tensors  are not just cyclic but totally symmet-
ric.

Lemma. For commutative associative algebra !,

or simply  = . Indeed,

Lemma. For commutative associative algebra !,

(8)

for any r ≠ 0 and any m and n.
The proof follows from the observation that (4) and

(6) provide the two transformations (the “flip” or “zig-
zag” transform and tadpole-eliminator), which generate
a group with transitive action on the space of all con-
nected triangulations (see [10] for the relevant illustra-
tions).

Obviously, for any connected Γ, ( ) is given by
these tensors I:

(9)

4 Note that this choice of metric is different from  = ,

used in the context of the generalized WDVV equations in [14].

Î
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In other words, in background theory, the connected
diagram depends only on the number of external legs.
One can, of course, associate additional factors with
graphs, counting the numbers of vertices and loops, but
they do not depend on ! and are not of immediate
interest for our consideration.

If Γ consists of disconnected parts, ( ) will be a

tensor product of  tensors.

If other traceless tensors B(m) of rank m are allowed
in the vertices, we get a nontrivial B theory in the !
background. The original ( ) provides the unified
background-independent formulation. Still, explicit
transformation from one background to another
remains an interesting open problem.

4. Commutative exponential. Introduce a -depen-
dent tensor of rank n:

(10)

Here,  = { , , …, , …} is a direct sum of
tensors of all possible ranks, and the sum in (11) is over
all possible sets, including any number rm of tensors of
rank m.

Theorem. For appropriate choice of the combina-

torial factors σ{rm}, the map ( ) satisfies the expo-
nential property:5 

(11)

for any r ≠ 0 and any m and n (no sum over r is taken).
The relevant choice of σ{rm} is the usual Feynman-dia-
gram factorial (see, for example, the generalized Wick
theorem in [15])

(12)

5 Note that, in terms of  =  + , this relation does not look
homogeneous

and holds because of the Γ-independence property (9) of ( ).
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The factors m! can be eliminated by rescaling of B(m).
As an immediate corollary of (11), the derivative of the

exponent functor ( ) is ( ) itself:

(13)

Thus, nothing such as the nontrivial Campbell–
Hausdorff formula [16] (which describes the product of

P exponents (1)) arises for ( ) the potential noncom-
mutativity of the tensor product is completely elimi-
nated by the naive continuum limit (3) as a corollary of
relation (9) and the possibility to rely upon connected
graphs.

5. Nontrivial exponential and directions of imme-
diate generalization. The potential origin of the non-
triviality of the exponential is twofold: there can be
contributions from nontrivial (not totally disconnected)

subgraphs γ to ( ) and from disconnected factor-

graphs Γ/γ to ( ). The first origin (contribution
from nontrivial γ) is eliminated by the naive continuum
limit—both in the 1D formula (1) and in the 2D one
(11). In 1D, property (9) perfectly holds for connected
graphs, but disconnected Γ/γ also contribute to (1).
What happens in 2D is that disconnected Γ/γ are statis-
tically damped in the naive continuum limit, together
with nontrivial γ, and direct generalization of the non-
Abelian (1) from lines to surfaces is Abelian (commu-
tative)!

In order to get a noncommutative exponential in 2D,
one can, however, revive the contributions from the
nontrivial γ simply by introducing a nontrivial multi-
time evolution operator:

(14)

(of course, one can do—and often does—the same in
1D). Similarly, one can add contributions from discon-
nected Γ/γ by introducing certain nonlocal operators
(involving contour integrals) in the exponent. Despite
the fact that such quantities may seem less natural than
(3), they naturally arise in physically relevant evolution
operators and even in actions, bare and effective. More-

over, for special , for example, totally antisymmetric,
the leading contribution with single-point γ vanishes in

the symmetric background . Then, the next-to-leading
contribution—from single-link (and two-point) γ—can
be described by the appropriately modified limiting
prescription (3).

( | |t) is already a nontrivial (operator) special
function, which deserves attention and investigation.
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Ẑγ B̂
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Note that, even if  was a rank-3 tensor and all the rel-

evant graphs were of valence 3, the tensors ( ),

which contribute to the argument of  in (14), have
ranks ext(γ), which are not obligatorily equal to 3.

Despite the fact that nontrivial graphs γ are now
incorporated in (14), they are still restricted to lie inside
Σ, i.e., remain separated from the boundary of Σ by the
requirement of the connectedness of Γ/γ (the external
legs of Γ are not allowed to belong to γ). Additional cor-
rections to (14) are needed to make it sensitive to
boundary effects.

In this note, we restricted our consideration to the
simplest possible case of commutative algebra !,

when tensors  are totally symmetric. Relaxing this

requirement, one gets  with only cyclic symmetry,
then (9) gets more complicated: universality classes are
no longer enumerated by the ext(Γ) dependence on the
number of handles that arise and the description in
terms of wide graphs is needed [10] (see [5] for the cor-
responding generalization of [4]).

An interesting part of this story is exponentiation
(the algebra  group lifting) of associative algebras
and higher-rank multiplications [12]. It involves limits
like (3) along particular chains of graphs (obtained, for
example, by iterative blowing up of triple vertices into
triangles). In such situations, the B insertions have a
higher probability to break the graph into disconnected
components than in the case of generic net-graphs.
Still, the enhancement is not sufficient and, as in (3),
such contributions remain statistically damped in the
naive continuum limit. Therefore, the transition from
(3) to (14) should still be performed by hand.

A related open question concerns the generalization

of the background  from the rank 3 case (related to
associative algebras) to the generic situation and con-
nection of this problem to the Batalin–Vilkovisky the-
ory of Massis operations [17–19].
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New Experimental Results on the Interference of the States
of the Hydrogen Atom Due to Long-Range Interaction 

with the Metal Surface
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The interference of the 2P state of the hydrogen atom due to unknown long-range interaction with the metal
surface (Sokolov effect) has been studied by an atomic interferometer. In contrast to previous experiments,
where an atomic beam passed through slits in metal plates, a beam in the presented experiments passes at a
given distance from the edges of the plates. It has been found that the interference is clearly observed if two
plates are located on the same side of the beam. However, this interference disappears if one plate is displaced
to the opposite side. This result cannot be explained in the framework of the available hypotheses on the nature
of the effect under investigation. © 2005 Pleiades Publishing, Inc.

PACS numbers: 39.10.+j, 39.20.+q
In experiments on the interference of the 2P state of
the hydrogen atom, it has been found that the metasta-
ble 2S1/2 atom flying over the metal surface interacts
with this surface. This interaction is responsible for the
appearance of a coherent addition of the 2P1/2 state to
the initial pure 2S state, i.e., for the transition of the lat-
ter state to the 2S–2P superposition (Sokolov effect)
[1, 2]. The existence of such an interaction is not sur-
prising, but its observation to a distance of 0.6 mm
between the metal surface and atom within the sensitiv-
ity limit of the instruments used in those experiments is
surprising.

Figure 1a shows the scheme of an experiment,
where unknown interaction is clearly observed [3]. A
beam that is a mixture of the 1S and 2S hydrogen atoms
with an energy of 20 keV passes through a system
including the quenching field E (for removing 2S atoms
from the beam in test measurements), the collimator C
forming the beam in the form of a 0.05 × 2-mm strip,
the slits S1 and S2 0.3-mm thick, and the detector D that
detects Lα photons and is tightly connected with the
slit S2. The distance L between the slits S1 and S2 could
smoothly vary in the range 0.2–15 mm. The slits are cut
in bronze plates 0.8-mm thick that are coated with a
5-µm gold film and are properly grounded.

As the distance L varies, pronounced oscillations are
observed in the intensity of the flux of 2P atoms; i.e., it
is the interference of the components of this state that
0021-3640/05/8112- $26.00 0644
arise in the perturbation regions near the slits S1 and S2

(see Fig. 1b).

More recently, an experimental procedure was
developed where a beam of hydrogen atoms passed at a
given distance from the edge of a slit rather than
through it. This approach gave substantial results: a
new aspect of the phenomenon is manifested.

Numerous such experiments were carried out in two
variants: metallic plates with which atoms interact are
located either on the same side of the beam or on oppo-
site sides. Figure 2a shows one of experimental
schemes. The plate P2 and detector D of Lα radiation are
at rest in the laboratory frame of reference. The plate P1

and collimator C connected with it may be displaced at
a given distance L. In order to measure the detector
background associated with the main 1S component of
the beam (≈98%), one can create a quite strong electric
field E quenching the 2S component (≈2%). In this
experiment, both plates are located on the same side of
the beam at a distance of 0.15 mm from its axis. The
detector signal obtained after the subtraction of the
instrumental background and normalization to the
beam monitor records is shown in Fig. 2b as a function
of the distance L (interference pattern). Pronounced
signal oscillations testify to the interference of two 2P
components that are formed when 2S atoms fly over the
© 2005 Pleiades Publishing, Inc.
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plates P1 and P2. The interference pattern is well
approximated by the function [4]

(1)

where R is the mean free path of a 2P atom and a1, …,
a5 are the empirical parameters. The mean free path R =
0.3276 cm corresponds to an atom energy of 22.0 keV
taken in this experiment (the lifetime of the 2P1/2 state
is equal to 1.5962 ns). The measured period a3 =
0.188 cm of spatial oscillations corresponds to a fre-
quency of 1092 MHz. This value indicates that the
2S1/2–2P1/2 transition occurs: the possible transition fre-
quency lies in the range from 909.9 to 1147 MHz,
because a mixture of the components of the hyperfine
structure of the 2S state with the total angular momenta
F = 0 and 1 is used in the experiment. The main part of
the pedestal of the a5 interference pattern (1305 units of
1412) is an additional background arising in the pres-
ence of the 2S component of the beam. On the whole,
this experiment reproduces numerous observations of
the Sokolov effect, including the structure of function
(1), in previous experiments with slits.

Another picture is observed in an experiment whose
scheme is shown in Fig. 3. The only difference of this
experimental configuration from the above experiment
is that the plates P1 and P2 are placed on opposite sides
of the beam. As is seen in Fig. 3b, the interference pat-
tern changes dramatically in this case: no regular oscil-
lations are seen within the limit of the fluctuations. The
exponential decay of the signal with a decrement of 1/R
undoubtedly means that 2S atoms are subjected to per-
turbation from the plate P1. It is difficult to think that
perturbation from the plate P2 that is clearly manifested
in the interference pattern of the preceding experiment
disappears in this experiment. However, two compo-
nents of the 2P state that are produced in this experi-
ment do not interfere with each other. The basic fea-
tures of this situation are reproduced in other experi-
ments, where the edges of the plates have the shape of
sharp wedge.

It is reasonable to assume that the interaction of the
atom with two identically located plates results in two
phase-shifted contributions to the amplitude of the
same 2P state and thereby in the interference effect.
The absence of interference when the plates are placed
on different sides of the atomic beam could be inter-
preted such that interaction with them excites different
sublevels of the 2P state. From this point of view, the
experiments discussed above provide certain new infor-
mation on the structure of interaction whose mecha-
nism is yet unknown.

Thus, the main result of the two above experiments
is that the only change in the experimental conditions—

F L( ) a1
L
R
---– 

 exp a2
L

2R
-------– 

 exp+=

× 2πL
a3

---------- a4+ 
 cos a5,+
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Fig. 1. (a) Experimental scheme: (B) the H1S + H2S atomic
beam, (E) the electric field quenching the H2S component,
(C) collimator, (S1 and S2) plates with slits for beam pas-
sage, and (D) the detector of Lα photons. (b) Interference
pattern: points are measured Y(L) values and the solid line
is the approximation F(L) = 1645exp(–L/0.3276) +
732exp(–L/0.6552)cos((2πL)/0.184 + 2.64) + 1060.

Fig. 2. (a) Experimental scheme: (B) the H1S + H2S atomic
beam, (E) the electric field quenching the H2S component,
(C) the collimator, (P1) the movable plate, (P2) the immov-
able plate, and (D) the detector of photons. (b) Interference
pattern: points are measured Y(L) values and the solid line
is the approximation F(L) = 308exp(–L/0.3276) +
363exp(−L/0.6552)cos((2πL)/0.188 + 1.68) + 1412.
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displacement of the plate P1 on the other side of the
beam—leads to the disappearance of the interference
between the 2P components of the superpositions. For
several years, we experimentally verified various alter-
native theoretical explanations of the nature of the
interaction found between excited hydrogen atoms and
the metal surface in application to the problems dis-
cussed above.

In [3], we analyzed long-range atom–metal-surface
interactions (classical van der Waals potential, Casimir
effect, resonance radiation shift) that are treated as the
interaction of the fluctuating dipole moment of the
atom with its mirror image in the metal and (in the long
range limit) as the Stark shift caused by changes in the
boundary conditions (due to the presence of the con-
ducting medium) for vacuum field fluctuations [5, 6].
The maximum shift of the 2P level at a distance of r =
1 µm is equal to 500 kHz, and the shift of the 2S level
at this distance does not exceed a value of –2.3 kHz [7].

Among other recent publications on this theme, we
point to [8–10], where theoretical and experimental
aspects of investigations of long-range interactions for
Rydberg atomic states were analyzed.

However, theoretical estimates of the interaction of
the hydrogen atom with the metal surface at distances

Fig. 3. Same as in Fig. 2, but the solid line is the approxima-
tion F(L) = 1014exp(–L/0.3276) + 284.
r = 200–700 µm are negligibly small. The effect of
long-range interaction that we observe in experiments
at these distances is several orders of magnitude larger
than the prediction following from the above works.
The hypotheses proposed in [11–13] also cannot
explain the experimental results discussed above.

We emphasize that experiments with metastable
2S1/2 hydrogen atoms are of considerable interest,
because this state is separated from the short-lived 2P1/2

state by a Lamb shift of 4 × 10–6 eV. Therefore, very
small perturbations of the 2S state may induce the
2S  2P transition with the subsequent emission of
an Lα photon that can be easily detected. Metastable
2S1/2 hydrogen atoms can be a fine tool for studying the
discovered paradoxical phenomena.

This work was supported by the Russian Research
Centre Kurchatov Institute. We are grateful to S.T. Be-
lyaev for stimulating discussions and valuable advice.
The work of V.P.Ya. was supported in part by the Rus-
sian Foundation for Basic Research (project no. 04-02-
16734).
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No Robust Phases in Aerogel: 3He-A with Orientational Disorder 
in the Ginzburg–Landau Model 

(Comment on Papers by I.A. Fomin on Robust Phases)¶ 
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Received May 12, 2005

In series of papers [2, 7], Fomin introduced and discussed the so-called robust phases in a system with frozen
orientational disorder (with application to superfluid 3He in aerogel). We show that his consideration is based
on the erroneous overestimation of the fluctuation energy, which comes from the interaction of the Goldstone
modes with the frozen disorder. This interaction leads to the Imry–Ma effect, which destroys the orientational
order but is unable to destroy the local structure of 3He-A. There is no ground for the robust phases. © 2005
Pleiades Publishing, Inc.

PACS numbers: 67.57.Pq
Following Fomin, let us discuss the superfluid 3He
in aerogel using the Ginzburg–Landau (GL) model sup-
plemented by the interaction with the frozen orienta-
tional disorder field ηij:

(1)

Here, F0 and Fgrad are condensation and gradient ener-
gies, and

(2)

where 〈η ij〉  = 0, and we only consider the orientational
anisotropy, i.e., the tensor ηij is traceless: ηii = 0.

We assume that the disorder is relatively small.
Therefore, we can start with homogeneous states that

have the spatially uniform order parameter Aµi =  =

const. Since d3r = 0, the energy of such state only

comes from F0:

(3)

We consider, here, the proper range of the parameters of
the GL functional F0 (the β-parameters of fourth-order
terms in F0 [1]), for which 3He-A has minimum energy.
The energy of the uniform 3He-A is smaller than the
energy of any other uniform phase by the magnitude

~F0 ~ NFτ2 , where NF is the density of states in nor-
mal Fermi liquid, and τ = 1 – T/Tc. The quasi-isotropic
robust phase determined by the condition

ηij(r) ( )* = 0 [2] also has higher energy.

¶ This article was submitted by the author in English.

F F0 Fgrad Fη .+ +=

Fη η ij r( )Aµi r( )Aµj* r( )d3r,∫=

Aµi
0( )

η ij∫

F Aµi
0( )( ) F0 Aµi

0( )( ).=

Tc
2

Aµi
0( ) Aµj

0( )
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Let us consider now the second-order (η2) correc-
tion to the energy F0. The uniform 3He-A is not the min-
imum of the total GL functional (1), that is why its
energy can be reduced by adding the nonuniform cor-

rections (fluctuations) Aµi =  + aµi, with a ∝  η; thus,
〈a〉  = 0. The η2 terms contain the linear and quadratic
terms in aµi. In k representation after diagonalization of
the a2 terms, one obtains

(4)

where the fluctuation energy

(5)

Here,  comes from the product of η and  matri-
ces, and en(k) is the spectrum of the nth mode. For
Goldstone modes (GM),

(6)

and for other modes with gaps,

(7)

where ξ = ξ0/  is the GL coherence length.

After minimization over a, one obtains the contribu-
tion of fluctuations that reduce the 3He-A energy:

(8)

Aµi
0( )

F F0 Aµi
0( )( ) Ffl,+=

Ffl
1
2
--- an k,

2
en k( ) η̃n k, an k, .

n k,
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n k,
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η̃n k, Aµi
0( )

eG k( ) NFξ0
2
k2,∼

enon G– k( ) NF τ k2ξ0
2

+( )∼ NFτ 1 k2ξ2+( ),=

τ

Ffl
1
2
--- η̃n k,

2
en

1– k( ).
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There is no divergence at small k, and the integral is
concentrated at large k @ 1/ξ if we assume that the fro-
zen disorder is concentrated at 1/ξ0 > k @ 1/ξ. It mainly
gives the shift of the transition temperature Tc. Actually,
the traceless orientational disorder increases the transi-
tion temperature. Subtracting from Eq. (8) the integral
with τ = 0 in the denominator, one obtains the integral

∝ k/k2(1 + k2ξ2) concentrated at k ~ ξ–1:

(9)

where  = r〈η (r)η(0)〉  and α is the Larkin–

Ovchinnikov parameter [3]:

(10)

We can already stop at this point, since the fluctua-
tion energy is small compared to the condensation
energy, and, thus, 3He-A remains the only possible
phase. However, Fomin points out that the interaction
of the frozen disorder with GM changes the situation,
because, due to these modes, the amplitude of the fluc-
tuations of the nonrobust states diverges at small k:

〈a2〉  ∝  /k4 ~ /k2 ~ L, where L–1 is the infrared

cutoff parameter. This gives

(11)

At L ~ ξ, fluctuations are small if α ! 1, and this is the
condition for the applicability of the GL approach. But
the fluctuations become comparable to A(0) at

(12)

and this length scale L provides the infrared cutoff.

This consideration is certainly true, but it is the well-
known Imry–Ma effect [4]: since Eq. (11) describes the
fluctuations of the GM, it corresponds to the change in
the orientation of the order parameter A without dis-
turbing its structure. The scale L at which 〈a2〉  ~ (A(0))2

thus indicates the scale at which the orientation of A
changes by an angle of the order π/2. This is just the
Imry–Ma length scale. The state looses the orienta-
tional long-range order due to interaction of the GM
with the frozen orientational disorder. The similar
destruction of the long-range translational order in the
mixed state of superconductors by inhomogeneities
was found even earlier [5]. The Imry–Ma effect applied
to 3He-A in aerogel was discussed in [6].

d3∫

∆Ffl A 0( )( )2 η0
2

τξ 3NF
2

--------------- αF0,∼ ∼

η0
2 d3∫

α
η0

2

τ1/2ξ0
3NF

2
--------------------- ! 1.=

d3k∫ dk∫

a2〈 〉 αL
ξ

------- A 0( )( )2
.∼

L
ξ
α
---  @ ξ ,∼
Fomin claims that the GM also leads to the divergent
contribution to the fluctuation energy, which is absent
in the robust phases. Let us see. The contribution of the
GM with wavelength L to the fluctuation energy Ffl in

Eq. (8) is proportional to /k2 ~ 1/L. The fluctu-

ation energy in Eq. (9) comes from the scale ξ and is

proportional to /(k2 + 1/ξ2) ~  ~ 1/ξ. Thus,

the contribution of the GM with the wavelength L is by
a factor of ξ/L = α smaller and gives the second-order
in α correction to the GL energy. This is just the Imry–
Ma energy gain due to the orientational disorder of the
order parameter:

(13)

At the Imry–Ma wavelength L, the interaction with the
frozen disorder is on the order of the gradient energy
[4]. Thus, the contribution of the GM with the wave-
length L @ ξ to the energy is on the order of the gradient
energy at this scale and thus contains the small factor
ξ2/L2 compared to the condensation energy F0. This is
demonstrated in Eq. (13), since ξ/L = α ! 1.

Equation (13) contradicts the statement by Fomin [7],
who erroneously concludes that the contribution of the
GM contains the large factor 1/α compared to the contri-
bution of the non-Goldstone modes: Ffl–G ~ α−1Ffl–non-G,
and, thus, due to the GM, the fluctuation energy is com-
parable to the condensation energy: Ffl–G ~ F0. This pro-
vides the justification for the introduction of the robust
phases where the disorder does not interact with the
GM, and, thus, there is no divergence in the amplitude
of the order parameter. This justification is wrong, and,
thus, there is no basis for the robust phase. The same
conclusion was made by Mineev and Zhitomirsky in
their comment [8].

In conclusion, the Goldstone modes, i.e., the fluctu-
ations in the direction of the degeneracy of the order
parameter, do lead to the divergence of the amplitude of
the order parameter. However, their contribution to the
energy does not experience any divergence and is small
compared to the condensation energy according to the
parameter α2 ! 1. This is nothing but the Imry–Ma
effect. It leads to disorder in the orientation of the order
parameter at large length L = ξ/α @ ξ without changing
the local structure of the order parameter. Since the
condensation energy F0 is dominating, the local order
parameter must be in the 3He-A state everywhere (at
least within the GL model (1)). The robust phase is not
the extremum of F0 and, thus, is not the solution of the
GL equations. Thus, within the GL model with the fro-
zen orientational disorder, the Imry–Ma approach is
valid and it does not leave any room for the robust
phase.

I thank I.A. Fomin, N.B. Kopnin, and V.P. Mineev
for discussions.
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The arguments of Volovik are refuted. © 2005 Pleiades Publishing, Inc.

PACS numbers: 67.57.–z
1. The estimations made in the comment are based
on the assumption that the ABM order parameter (bulk
A-phase) is the only relevant minimum of the Ginzburg
and Landau (GL) free energy and its energy is smaller
than that of other possible minima by the energy of the
order of the full condensation energy. This situation is
opposite to the situation considered in the criticized
papers [C1], where competition of nearly degenerate
states is assumed (in what follows, references to the
comment are prefixed by a capital C). Free energy of
bulk (without aerogel) superfluid 3He has 18 extrema
[1], and the situation assumed in the comment does not
seem to be very realistic.

For the present discussion, the relative energies of
the states corresponding to nonferromagnetic equal-
spin pairing phases are of importance. Among the men-
tioned extrema, there are four minima meeting this
requirement [2]. Two of them, the ABM and axiplanar
state, are so close in energy that identification of the
A-phase as an ABM state has been contested in the lit-
erature [3]. The Axiplanar state, unlike the ABM, con-
tains in its vicinity robust states, as was discussed ear-
lier [4]. These states are also close in energy to the
ABM. For a crude estimation of the relative difference
of energies of competing states (to be referred to as γ in
what follows), weak coupling values of β1, …, β5
parameters were used. With these values, the relative
difference of energies of the robust state and the ABM
corresponds to γ ~ 1/20. Strong coupling corrections to
the parameters β will change the difference, still γ ~
1/10 is a fair estimation. The contribution of the fluctu-
ations to the energy has to be compared not with the full
condensation energy F0 but with the much smaller
value γF0. The regular part of this contribution, which
comes from the gapped modes, is of the order of αF0,
which is in agreement with and in the notations of the

comment. A value of the parameter α ~ (η2/ ) can be
estimated from the measured width of the specific heat
jump [5]. According to this data, α ~ 1 when τ ~ 1/30.
Because of the weak dependence on τ everywhere in
the GL region, the parameter α ≈ 1/5 is at least compa-

¶ This article was submitted by the author in English.

τ
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rable to or greater than γ, and even a regular contribu-
tion of fluctuations can mix-up the relative energies of
the competing states in contrast to the statement of the
comment.

2. The main object of the criticism in the comment
is the contribution of the fluctuations of the Goldstone
modes to the energy. According to the comment, this
contribution is of the order of α2F0; thus, it is even
smaller than the contribution of the gapped modes, so
that the free energy is a regular function of α and the

original free energy F0( ) is a good starting point for
expansion on a small α. This assertion is in conflict
with Imry and Ma’s statement [C5] that the ordered
state can be destroyed by an arbitrarily small random
field. It indicates that new free energy F( ), which
includes the contribution of fluctuations, has to be a sin-
gular function of α, and the argument based on the con-
tinuity has to be taken with great care.

The standard procedure [6] of finding of F( ) is
based not on the direct averaging of the original free
energy (or of its parts as is done in the comment) but on
a derivation of the equation for the average order
parameter, which, in the present case, has the following
form:

(1)

The corresponding free energy, if necessary, has to be
constructed so that it generates the derived equation.
The averages of the fluctuations of the order parameter
〈aνnaβl〉  in “Goldstone” directions are proportional to a
diverging integral, i.e., singular. It has been checked
using a direct substitution that the coefficients in front
of the singular averages are not identical zeros. This
means that the GL equation contains singular terms.
There is no reason for a cancellation of the singular
terms in the expression for the free energy as well. It

Aµj
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should be mentioned though that the free energy has not
been used in the arguments of [C1].

Volovik, in construction of the free energy, followed
the “physical” argument, which does not take into
account important features of the problem. In particu-
lar, he overlooked the fact that the Goldstone directions
depend on the average order parameter. As a result, the
variation of his free energy will not contain terms that
have to be present in equation (1).

The singular terms in Eq. (1), being proportional to
the diverging integral, are much greater than the regular
terms. That determines a procedure of its solution. As a
first step, the principal terms are set equal to zero. This
condition selects a degenerate class of robust order
parameters. The remaining terms in the equation are
treated as a perturbation lifting this degeneracy. They
have to be considered on a class of robust order param-
eters. Consequently, robust order parameters are
asymptotic solutions of the GL equation in a limit
γ  0, α ! 1, and the ABM order parameter is not a
solution of this equation in the considered limit in con-
trast to the statement made in the comment. The ener-
gies of two states were not compared directly. The
problem of comparison of different states does not arise
here, because, in the considered limit, a family of robust
phases is the only nontrivial extremum of the free
energy.

Summing up, one can say that the declared in the
comment error in the overestimation of the fluctuations
does not exist. The diverging terms are present in the
GL equation, and this is sufficient for selection of the
robust phases. The robust phases are extrema of the
proper free energy. The situation considered in the
JETP LETTERS      Vol. 81      No. 12      2005
comment and the one discussed in [C1] correspond to
different regions of the parameters γ ~ 1, α ! 1, so that
γ @ α (comment), γ ≤ α ! 1 [C1]. For that reason, the
criticism presented in the first part of the comment has
no relevance to the problem discussed in the criticized
papers.

About the situation in the real 3He, it has to be men-
tioned that the present knowledge of the coefficients
β1, …, β5 is not sufficiently accurate for reliable recon-
struction of the “topography” of the GL free energy.
Even though the estimations given above show that the
situation is favorable for the realization of robust
phases, the competing situation [C7] cannot be ruled
out, and it can be realized in its range of parameters, for
example, when the aerogel is very dilute if a macro-
scopic description still applies.

I thank A.F. Andreev and V.I. Marchenko for stimu-
lating discussions.
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