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Abstract—The effects of a significant decrease in the sputtering rate and of the symmetrical separation of the
isotope pairs 108Pd–105Pd and 110Pd–104Pd at depths up to 500 Å are experimentally detected in Pd specimens
saturated with deuterium during electrolysis (i.e., having a high concentration of internal stresses). These effects
are shown to be qualitatively explained using the concepts of isotope separation by centrifugation and diffusion
with allowance for defects and mechanical stresses that appear in the near-surface Pd layer during deuterium
penetration. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of hydrogen (deuterium) with metal-
lic Pd is known to cause the formation of PdHx hydrides
(x ~ 0.7), which is accompanied by the generation of
numerous structural defects [1–3] and changes in the
shape and linear sizes of specimens [4] and their elec-
trophysical properties [5]. The hydrogenation of Pd
leads to extremely high vacancy concentrations in spec-
imens (more than 20% of their volume) [6]. The forma-
tion of PdH0.7 hydrides in cold-rolled Pd foils is accom-
panied by the generation of dislocations with a density
of 2 × 1011 cm–2 [4]. These structural changes during
hydride formation in metallic Pd (internal loading)
indicate the generation of giant mechanical micro- and
macrostresses in the metallic crystal lattice, which are
likely unachievable by the traditional methods of exter-
nal mechanical loading of metals [7].

The generation of such high mechanical stresses in
Pd during its hydrogenation should cause not only the
activation of diffusion of defects and impurities but also
the self-diffusion of Pd isotopes belonging to the metal-
lic matrix. If the mobility of Pd atoms is sufficiently
high, the mechanical stresses affecting them could
result in the local separation of the matrix isotopes in
the zones of stress concentration (dislocation loops,
Frank–Read dislocation sources, vacancy aggregates,
and so on). The authors of [8–11] detected significant
deviations of isotope compositions from the stoichio-
metric values in the surface layers of semiconductors
and metals with a high hydrogen affinity during ion
bombardment. However, they did not relate the changes
in the isotope compositions to the effect of surface
mechanical stresses.
1063-7834/03/4508- $24.00 © 21409
Lipson et al. [12] found that irradiation with an
ultraweak flux of thermalized neutrons (UFTN) at a
neutron concentration of ~10–3 cm–3 (flux Φn ~
102 neutrons/(s cm2), energy En ~ 60 meV) noticeably
increased the level of mechanical stresses in loaded
crystals [13], in particular, in electrochemically satu-
rated crystals with hydrogen [12]. Therefore, the appli-
cation of an UFTN during electrochemical loading of
Pd can increase the mechanical stresses and favor iso-
tope separation in it.

The purpose of this work is to experimentally
observe the effect of Pd isotope separation under high
mechanical stresses generated during saturation of Pd
with hydrogen. In some cases, the stresses are enhanced
by the irradiation of specimens with an UFTN.

2. EXPERIMENTAL

To analyze the isotope composition of Pd speci-
mens, we used secondary-ion mass spectrometry
(SIMS). A CAMECA IMS 5f device in the high-resolu-
tion mode (1 : 20 000) allowed us to reliably select all
Pd isotopes (102–110) and separate them from the
hydrides (deuterides) that correspond to these isotopes,
have similar masses, and enter into the composition of
the secondary-ion beam. Using SIMS, we could also
obtain Pd isotope depth profiles (to a depth of 0–
0.16 µm) and determine the sputtering-rate depth pro-
files. The typical etching rate was 4.1 Å/s at a primary-
ion beam current of 10 nA (O2+ ions with an energy of
E = 8.0 keV). The error in SIMS measurement of the Pd
isotope concentration at a depth h > 100 Å was less than
1 at. %. The error for surface layers of thicknesses com-
parable to the roughness of specimens (<100 Å) is
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Depth profiles (in the range 0–0.16 µm) of the inten-
sities of Pd specimen sputtering according to the SIMS
data: (a) initial specimens; (b) specimens subjected to elec-
trolysis for three days under the conditions of a natural
neutron background; (c) specimens subjected to electroly-
sis and, simultaneously, to UFTN irradiation at Φn =

200 neutrons/(s cm2) for three days; and (d) the same spec-
imens as in (c) but after additional vacuum annealing (p =
10–10 Torr) at T = 800°C.
P

slightly higher (~3.0%) because of the deterioration of
the SIMS spatial resolution.

For investigation, we used cold-rolled Pd (99.99%
purity) foils 100 µm thick. Specimens 5 × 2 cm in size
cut from one Pd sheet were subjected to electrolysis in
a 1 M NaOD solution in a cell with separated anode and
cathode spaces at an electrolysis current density of Ie =
30 mA/cm2 for 1–3 days at room temperature. The
composition of the final deuteride PdDx obtained after
the completion of electrolysis was determined using
thermal desorption [5] and varied in the range 0.72 <
x < 0.80. In special experiments, we irradiated the spec-
imens with an UFTN at a flux energy of En = 60 meV
and a flux density of Φn = 200 neutrons/(s cm2) during
electrolysis. We used a 252Cf neutron source with an
intensity of In = 2.0 × 104 neutrons/s in 4π steradians
surrounded by a large mass of moderator (PE(Co)); the
technique used is described in detail in [12, 13].

After the completion of electrolysis, we measured
the macroscopic buckling l of a specimen and the resid-
ual plastic strain εp [12]. For electrolysis under the con-
ditions of a natural neutron background, the average
values of these parameters were found to be 〈l 〉  =
1.5 cm and 〈εp〉  = 3.0 × 10–3. For electrolysis in the pres-
ence of the UFTN, these deformation characteristics
were much higher: 〈ln〉  = 5.0 cm and 〈εpn〉  = 1.3 × 10–2.

Samples 10 × 10 mm in size were cut from the sam-
ples after deuteration and were analyzed using SIMS.
The spot area of the primary SIMS beam was 100 ×
100 µm2. Five spots per sample were analyzed. To
reveal the effect of mechanical stresses on the isotope
distribution, the samples saturated with deuterium and
analyzed by SIMS were annealed in high vacuum (p =
10–10 Torr) at T = 800°C for 5 h and them slowly cooled
at a rate of ~0.2 K/min.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figures 1a–1d show the data on the rate of Pd spec-
imen sputtering. It is seen that the character of Pd sput-
tering at depths 0–0.16 µm from the surfaces of the ini-
tial specimens (not subjected to deuteration and anneal-
ing) differs only insignificantly from that for the
specimens saturated with deuterium under the condi-
tions of a natural neutron background (Figs. 1a, 1b).
The sputtering rate of the specimens with deuterium is
20% lower than that of the initial ones (on the average
over all isotopes, 102Pd–110Pd). However, the rate and
character of sputtering of the specimen subjected to
electrolysis during the UFTN irradiation, i.e., more
severely strained (Fig. 1c), sharply differ from those of
the initial specimen (Fig. 1a). For example, at a depth
of ~500 Å, the sputtering rate of Pd isotopes in the spec-
imen represented in Fig. 1c is, on the average, 20 times
lower than that in the initial one. At depths h < 100 Å,
the sputtering rates of these specimens become equal.
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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After annealing of the specimen represented in Fig. 1c,
its sputtering rate increases (Fig. 1d) and becomes close
to that of the initial sample (Fig. 1a). Thus, the deuter-
ation of the Pd specimens through electrolysis results in
a sharp change in their sputtering rate, which is likely
due to the different mechanical properties of the near-
surface layers of the initial (annealed) specimens and
the specimens with deuteration-induced structural
defects.

Measurements of the Pd isotope depth profiles
showed that the concentrations of 104Pd, 105Pd, 108Pd,
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Fig. 2. Depth profiles of the concentration δN of the matrix
isotopes 104Pd, 105Pd, 108Pd, and 110Pd from which the sim-
ilar data for the initial specimen (not subjected to electroly-
sis) are subtracted: (a) specimen subjected to electrolysis
for three days under the conditions of a natural neutron
background; (b) specimen subjected to electrolysis and,
simultaneously, to UFTN irradiation for three days; and
(c) the same specimen as in (b) but after additional anneal-
ing at T = 800°C.
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and 110Pd isotopes considerably deviate from stoichi-
ometry (natural isotopic composition) in the specimens
subjected to deuteration (Figs. 1b, 1c) and, hence, hav-
ing residual deformation in a thin surface layer up to
500 Å thick. However, the changes in the concentra-
tions of 102Pd, 106Pd, and 107Pd isotopes are insignifi-
cant.

Figures 2a–2c show the concentration depth profiles
of the 104Pd, 105Pd, 108Pd, and 110Pd isotopes from which
the depth profiles for the initial specimen (not subjected
to electrolysis and/or annealing) are subtracted. As is
seen from Fig. 2a, the separation of the 108Pd–105Pd and
110Pd–104Pd isotope pairs in the 200-Å-thick surface
layer in the specimen subjected to electrolysis under the
conditions of a natural neutron background is statisti-
cally insufficient. A layer with h < 50 Å is enriched in
the heavy (108, 110) isotopes and depleted of the light
(104, 105) isotopes. At h > 50 Å, the isotope composi-
tion is inverted, so that the layer is enriched in the light
isotopes and depleted of the heavy ones. At h > 200 Å,
no isotope separation is observed. The isotope separa-
tion in the specimen subjected to electrolysis during the
UFTN irradiation is more pronounced and statistically
significant (Figs. 2b, 3). The degree of enrichment in
the heavy isotopes (and of depletion of the light ones)
in a near-surface layer at h < 50 Å reaches 10–12%. The
depth profiles of the heavy (108, 110) and light (105,
104) isotopes are completely symmetrical. Figure 3
shows the isotope separation in more detail: the data for
the 104Pd, 105Pd, 108Pd, and 110Pd isotopes are normal-
ized to the 106Pd isotope concentration, which virtually
does not vary with depth. As is seen from Fig. 3, the
symmetry of separation is pronounced for the 108Pd–
105Pd and 110Pd–104Pd pairs. The depth at which the sep-
aration of the 108Pd–105Pd pair is noticeable is greater
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Fig. 3. Concentrations xN of Pd isotopes at x = 104, 105,
108, and 110 for the specimen of Fig. 2b normalized to the
corresponding concentration of the 106Pd isotope 106N. The
natural concentrations of the 104Pd, 105Pd, 108Pd, and 110Pd
isotopes normalized to the natural concentration of the
106Pd isotope are indicated in the ordinate on the right.
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(400–500 Å) than that for the 110Pd–104Pd pair (200–
250 Å).

The separation of the Pd isotopes in near-surface
layers (Figs. 2a, 2b) fully disappears after vacuum
annealing (Fig. 2c), i.e., after the internal stresses are
relieved. As follows from Fig. 2c, the specimen repre-
sented in Fig. 2b exhibits no statistically important dif-
ferences δN and no separation into heavy and light iso-
topes over the whole depth range after annealing.

Thus, we have found that cold-rolled Pd foils sub-
jected to electrochemical loading with deuterium
(which causes significant mechanical deformation)
exhibit a decrease in the rate of surface atom sputtering
(Figs. 1b, 1c) and symmetrical separation of the 108Pd–
105Pd and 110Pd–104Pd isotope pairs at depths of up to
500 Å. These specific features disappear after vacuum
annealing, which relieves internal stresses.

Let us consider possible causes of these effects.
As noted above, the hydrogenation of the Pd speci-

mens leads to high internal stresses generating numer-
ous structural defects: vacancies, dislocations, low-
angle tilt boundaries, grain boundaries, etc. Therefore,
the internal mechanical stresses are most likely respon-
sible for the effects under study in the specimens sub-
jected to electrochemical saturation with deuterium.

Indeed, the decrease in the rate of Pd specimen sput-
tering as the level of deformation increases (Figs. 1a–
1d) could be related to an increase in the vacancy con-
centration in near-surface layers. However, it is
unlikely that the vacancy concentration in the deformed
specimens can rise by 20 times. To find the cause of the
sharp decrease in the sputtering rate of deformed PdDx

specimens, we consider the basic SIMS equation as
applied to the yield of secondary Pd ions Yt(Ep) [14]:

(1)

where Ep = 8 keV is the energy of the incident (primary)
O2+ ions, C0 is the scattering constant for primary ions,
Us = 3.9 eV is the surface binding energy of Pd ions,
α is a dimensionless constant depending on the ratio of
the masses of a target atom (M2q) and a primary-beam
particle (M1), Sn(Ep) is the nuclear stopping cross sec-
tion of the target (Pd) (depending on the concentration
of the target nuclei), ψ is the angle of incidence of the
primary beam measured from the normal to the surface,
and f = 5/3 for M2/M1 ≈ 3 [15].

As follows from Eq. (1), the yield Yt of secondary
ions from Pd targets in different states under the same
conditions of the primary beam depends only on Us,
Sn(E), and cosψ. The value of Us can vary only insignif-
icantly (within 20% in the presence of deformation). At
the same time, at low energies of the primary beam and
under severe deformation, the quantity Sn(E) can vary
such that most of the energy loss of the primary beam
is redistributed toward the electron Se(E) and/or phonon

Yt Ep( ) 3

4π2
C0

---------------
αSn Ep( )

Us

-------------------- ψcos( ) f–
,=
P

Sph(E) components of S(E) because of an increase in the
cross section of inelastic beam scattering in a layer with
severe plastic deformation [14, 15]. In this case, the
total stopping cross section S(E) = Sn(E) + Se(E) +
Sph(E) remains virtually constant, whereas the energy
loss of the primary beam shifts toward inelastic pro-
cesses described by the quantities Se(E) and Sph(E).
Whence it follows that the nuclear stopping cross sec-
tion in a plastically deformed layer with a high defect
concentration can significantly decrease during
strongly inelastic scattering. Therefore, a decrease in
Sn(E) should be taken into account in severely
deformed specimens.

However, in the presence of internal stresses and
significant surface roughness, the yield of secondary
ions can be most strongly affected by variations in the
angle of incidence ψ of the primary beam with respect
to the crystallographic planes at the surface of the spec-
imen. In the presence of a large number of point defects
and dislocations in the surface layer of a specimen sub-
jected to deuteration (deformation) and having high
roughness as compared to the initial specimen, the ori-
entation of the crystallographic planes in the surface
layer and, hence, the angle ψ can vary, which would
cause a strong decrease in the yield Yt compared to the
yield in the initial (undeformed) specimen.

Thus, the decrease in the yield of the secondary ions
of the palladium matrix in a deformed specimen (sub-
jected to electrolysis) can be due both to a decrease in
the elastic scattering cross section of the primary beam
and to the surface roughness caused by supersaturation
of the surface layer with defects and resulting in a
change in the effective angle between the beam and the
specimen surface. It should be noted, however, that
none of the factors affecting Eq. (1) can even qualita-
tively explain the experimentally observed separation
of the palladium isotopes in a thin surface layer
(Figs. 2, 3).

We consider possible models for isotope separation
in deformed (deuterated) Pd foils on the example of a
specimen irradiated with an UFTN during electrolysis
(Fig. 1c). Assuming that, on average, the 108Pd concen-
tration decreases by 5% and the 105Pd concentration
increases by 5% (for the 110Pd–104Pd pair, on average,
the corresponding change is 4%) at a depth of h >
100 Å, we calculate the total enrichment factors for
them [16]:

(2)

where 〈NF〉  = 0.265 is the average 105Pd concentration
and 〈NI〉  = 0.225 is the average 108Pd concentration.
Thus, we have A1 = 1.24. Similarly, for the 110Pd–104Pd
pair, we have A2 = 2.55. We apply the diffusion model
of Pd isotope separation; that is, we assume that the Pd
isotopes diffuse through vacancy layers during self-dif-
fusion (by analogy with gaseous-diffusion separation,

A
NF/ 1 NF–( )
NI/ 1 NI–( )
------------------------------,=
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where isotopes go through a porous material in their
gaseous state). Here, we assume that the mobility of the
palladium isotopes in a defect surface layer with a high
vacancy concentration is very high in comparison with
their mobility in the bulk of the specimen. In this case,
the self-diffusion activation energy of palladium atoms
significantly decreases [1, 17] and, their mean free path
increases to a length exceeding the lattice parameter.
The heavy isotopes (108, 110) will be entrapped by
vacancies in the Pd crystal lattice in a near-surface layer
of the specimen, whereas the light isotopes (104, 105)
will retain their high mobility and diffuse to the surface.
As a result, near-surface layers at h > 50 Å become
enriched in the light isotopes and depleted of the heavy
ones. In this case, according to Eq. (1), the sputtering
rate of the light isotopes is higher than that of the heavy
ones, since the binding energy Us of the light (mobile)
isotopes is lower than that of the heavy (entrapped by
vacancies) isotopes, all other things being equal. There-
fore, the SIMS yield of the light Pd isotopes is also
higher.

Based on the model considered, we calculate the
minimum thickness of the surface layer required for
isotope diffusion separation. Taking into account that
the isotope separation factor for diffusion is α =
(M2/M1)1/2, where M2 and M1 are the masses of the
heavy and light isotopes, respectively, we obtain α1 =
1.0142 and α2 = 1.0284 for the 108Pd–105Pd and 110Pd–
104Pd pairs, respectively. Since the total enrichment fac-
tor and the separation factor for a single event are inter-
related as A = αs (where s is the number of separation
stages) [16], the numbers of stages needed are s1 = 16
and s2 = 33, respectively. Assuming that the minimum
spacing between vacancies is equal to the Pd lattice
parameter (a0 = 3.89 Å), it can be shown that the thick-
ness of the layer required for diffusion separation is R ~
2a0s. Therefore, R1 = 117 Å and R2 = 257 Å. It follows
that, in order to provide the experimentally observed
isotope separation during self-diffusion of Pd atoms,
the atoms have to move a minimum distance 120 < R <
260 Å from the bulk toward the surface.

A different situation arises in a layer at h < 50 Å, in
the immediate vicinity of the specimen–vacuum inter-
face. As follows from Fig. 2b, the isotope separation
changes sign, so that the heavy isotopes enrich the sur-
face. The degree of separation immediately at the sur-
face is much higher than in a layer at h > 100 Å, and the
total enrichment factors for the 108Pd–105Pd and 110Pd–
104Pd pairs are A1 = 3.05 and A2 = 4.55, respectively.
Within the framework of the diffusion model, such high
values of A require the numbers of separation stages to
be s1 = 80 and s2 = 54, respectively, or the minimum
depths of diffusion layers, R1 = 620 Å and R2 = 420 Å.
In our case, however, the maximum depth of the surface
layer enriched in the heavy Pd isotopes and depleted of
the light isotopes does not exceed 50 Å (Fig. 2b), which
means that the diffusion model is inapplicable here.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
Therefore, we have to assume that other, more efficient
mechanisms of isotope separation operate in the surface
layer. Such mechanisms can be associated with screw
dislocations, dislocation loops (Frank–Read disloca-
tion sources), or spiral steps forming at the intersection
points of screw dislocations with the surface [7]. If the
linear defects, in which mass transfer (motion of Pd
atoms) occurs, rotate at a velocity close to the sound
velocity in Pd, then these sources can serve as efficient
“nanocentrifuges,” in which isotope separation pro-
ceeds. Indeed, the separation factor for a single event α
in this case is defined as [16]

(3)

where v s is the rotational velocity of the source, which
is taken to be half the sound velocity v 0; R is the gas
constant; and T is the source temperature. According to
Eq. (3), we have α = 2.60 for the 108Pd–105Pd pair and
α = 6.50 for the 110Pd–104Pd pair. As follows from the
relation A = αs, isotope separation during centrifugation
is rather efficient and can be accomplished in one stage
(s ≤ 1) in a layer at h < 50 Å. Note that, during isotope
centrifugal separation, the heavy isotopes move toward
the periphery of a source (unlike the diffusion separa-
tion), whereas the light isotopes remain left in place
(i.e., entrapped by dislocations). Therefore, the result
will be opposite to that for the method of diffusion sep-
aration: the surface will be enriched in the heavy (mov-
able) Pd isotopes and depleted of the light Pd isotopes
(bound to dislocation cores).

For deeper insight into the mechanisms of Pd iso-
tope separation under the effect of high internal
stresses, further experimental and theoretical investiga-
tions are needed.

It should be noted that the effects of isotope separa-
tion detected in this study can be much more pro-
nounced and occur at a larger depth for a low amount of
impurities in Pd [15]. Since impurities tend to segregate
only in the regions of concentrated internal stresses, the
isotope separation models described above are most
applicable to impurity atoms diffusing in the Pd matrix.

Moreover, the results obtained (in particular, the
decrease in the sputtering rate of the Pd matrix in spec-
imens with a high defect concentration) indicate that
the application of SIMS can give substantial errors in
determining the concentration and isotopic shifts of
impurity atoms. This circumstance can shed light on the
problem of the so-called “transmutations” in electro-
chemical experiments upon saturation of palladium
with heavy hydrogen isotopes [18, 19]. The results
obtained in this study allow one to conclude that the
isotopic shifts and changes in the concentrations of
most elements can be satisfactorily interpreted using
the concepts of isotope separation in palladium under
the action of high internal stresses stimulated by the
interaction of palladium with hydrogen (deuterium).

α
M2 M1–( )v s

2

2RT
-------------------------------- ,exp=
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It should also be noted that errors in determining the
impurity concentrations and isotopic shifts can appear
not only when using SIMS but neutron activation anal-
ysis as well. Within the model considered, the cross
section of the interaction between thermal neutrons and
nuclei localized in regions of concentrated internal
stresses can be several orders of magnitude larger, as
was shown in [20]. This effect may cause overestima-
tion of the concentration of a particular isotope local-
ized in these regions.

REFERENCES

1. Hydrogen in Metals, Ed. by G. Alefeld and J. Voekl
(Springer, New York, 1978; Mir, Moscow, 1981), Vol. 2,
Top. Appl. Phys. 29.

2. L. Schlapbach, I. Anderson, and J. P. Burger, in Materi-
als Science and Technology, Ed. by K. H. Jurgen Bus-
chow (Weinheim, New York, 1994), Vol. 3B, Part 2,
p. 287.

3. B. J. Heuser and J. S. King, J. Alloys Compd. 261, 225
(1997).

4. J. N. Han, J. W. Lee, M. Seo, and S. I. Pyun, J. Electroa-
nal. Chem. 506, 1 (2001).

5. A. G. Lipson, B. F. Lyakhov, D. M. Sakov, and
V. A. Kuznetsov, Fiz. Tverd. Tela (St. Petersburg) 39
(12), 2113 (1997) [Phys. Solid State 39, 1891 (1997)].

6. Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640
(1994).

7. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physi-
cal Fundamentals of Plastic Deformation (Metallurgiya,
Moscow, 1982).
PH
8. H. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 134,
121 (1998).

9. P. C. Zalm, Rep. Prog. Phys. 58, 1321 (1995).
10. I. P. Chernov, N. N. Nikitenkov, M. Krening, et al., Izv.

Ross. Akad. Nauk, Ser. Fiz. 64 (11), 2181 (2000).
11. L. N. Puchkareva, I. P. Chernov, and N. N. Nikitenkov,

Izv. Ross. Akad. Nauk, Ser. Fiz. 66 (8), 1219 (2002).
12. A. G. Lipson, I. I. Bardyshev, V. A. Kuznetsov, and

B. F. Lyakhov, Fiz. Tverd. Tela (St. Petersburg) 40 (2),
254 (1998) [Phys. Solid State 40, 229 (1998)].

13. A. G. Lipson, D. M. Sakov, V. I. Savenko, and E. I. Sau-
nin, Pis’ma Zh. Éksp. Teor. Fiz. 70 (2), 118 (1999) [JETP
Lett. 70, 123 (1999)].

14. A. Benninghover, F. G. Rudenauer, and H. W. Werner,
Secondary Ion Mass Spectrometry. Basic Consepts,
Instrumental Aspects, Application and Trends (Wiley,
New York, 1987).

15. R. G. Wilson, F. A. Stevie, and L. W. Magee, Secondary
Ion Mass Spectrometry. A Practical Handbook for Depth
Profiling and Bulk Impurity Analysis (Wiley, New York,
1989).

16. J. Kaplan, Nuclear Physics (Addison-Wesley, Cam-
bridge, Mass., 1955).

17. Y. Fukai and H. Sugimoto, Adv. Phys. 34, 263 (1985).
18. Y. Iwamura, N. Gotoh, T. Itoh, and I. Toyoda, Fusion

Technol. 33 (4), 476 (1998).
19. T. Mizuno et al., Electrochemistry 64 (11), 1160 (1996).
20. A. G. Lipson, D. M. Sakov, and E. I. Saunin, Pis’ma Zh.

Éksp. Teor. Fiz. 62 (10), 805 (1995) [JETP Lett. 62, 828
(1995)].

Translated by K. Shakhlevich
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003



  

Physics of the Solid State, Vol. 45, No. 8, 2003, pp. 1415–1422. Translated from Fizika Tverdogo Tela, Vol. 45, No. 8, 2003, pp. 1351–1357.
Original Russian Text Copyright © 2003 by Korshunov, Ovchinnikov.

                                                                                          

METALS 
AND SUPERCONDUCTORS

           
Generalization of Luttinger’s Theorem
for Strongly Correlated Electron Systems

M. M. Korshunov and S. G. Ovchinnikov
Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 

Akademgorodok, Krasnoyarsk, 660036 Russia
e-mail: mkor@iph.krasn.ru; sgo@iph.krasn.ru

Received October 4, 2002; in final form, January 16, 2003

Abstract—By on the analyzing the general structure of the Green function of a strongly correlated electron
system, it is shown that, for the regime of strong correlations, Luttinger’s theorem should be generalized in the
following way: the volume of the Fermi surface of the system of noninteracting particles is equal to that of the
quasiparticles in the strongly correlated system with due regard for the spectral weight of the quasiparticles. An
investigation of the t–J model and of the Hubbard model, as applied to the paramagnetic nonsuperconducting
phase, shows that the generalized Luttinger theorem is valid for these models. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

At present, it is widely believed that Luttinger’s the-
orem [1] is violated for strongly correlated systems,
among which is, in particular, the broad class of super-
conducting cuprates. This theorem states that the vol-
ume of the Fermi surface of interacting particles is
equal to that of the noninteracting particles. The proof
of Luttinger’s theorem [1] is valid for the normal Fermi
liquid only. A topological proof of the theorem for
strongly correlated electron systems (without resort to
perturbation theory) was given in [2] on the assumption
that these systems are normal Fermi liquids. Since the
proof given in [2] is based on general considerations, it
is valid for the t–J model and the Hubbard model as
applied to the Fermi-liquid phase. In the strongly corre-
lated electron system, however, other phases can also
exist, whose properties differ from those of the Fermi
liquid. Deviations from the Fermi-liquid behavior
reveal themselves in the redistribution of the spectral
weight of a quasiparticle between different Hubbard
subbands and in the fact that the imaginary part of the
self-energy ImΣk(E) is nonzero on the Fermi surface.
Indeed, the relationship ImΣk(E) ~ (E – εF)2 is valid in
the vicinity of the Fermi level εF of the Fermi liquid.

Calculations carried out for the Hubbard model in
the dynamical mean-field theory, which is exact in the
limit of infinite dimensionality (d = ∞) [3–5], demon-
strated that the distribution function of the quasiparti-
cles has a jump in the vicinity of the Fermi level. This
jump continuously decreases down to zero with
increasing the parameter of the on-site Coulomb repul-
sion U. Nevertheless, the Fermi-liquid pattern persist
up to a certain critical value Uc in this case, after which
the system transfers to the insulating state. Edwards and
Hertz [6], however, demonstrated (using an interpola-
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tion scheme for the Hubbard model not based on the
limit d = ∞) that the imaginary part of the self-energy is
nonzero on the Fermi surface at U ~ Uc and near the
half-filling (x ! 1, where n = 1 – x is the electron con-
centration). But with a deviation from the half-filling,
the Fermi-liquid properties of the system are restored
fairly rapidly. That the Fermi liquid properties in the
Hubbard model with U = 8t (t is the hopping integral)
begin to be restored already at x > 0.1 was shown in [7]
in the framework of the dynamical cluster approxima-
tion without resorting to perturbation theory. At
present, the problem of the transition from the Fermi
liquid phase to a metallic non-Fermi-liquid state with
strong electron correlations (and of the behavior of the
system in the transition range) has only been stated and
is far from being solved (see, for example, [8]).

The most interesting range is x ! 1, because in real
materials the transition to the metal state is observed in
this range. At extremely small values of x, it would be
expected that the additional carriers will be localized in
the vicinity of the bottom of the band and the condition
ImΣk(εF) ≠ 0 will be valid for them. As x increases fur-
ther, however, the Fermi level falls within the range of
delocalized states, for which the imaginary part of the
self-energy is equal to zero, but the non-Fermi-liquid
effects are still present due to redistribution of the spec-
tral weight between the Hubbard subbands. Deviations
from Luttinger’s theorem for the Hubbard model in the
region where ImΣk(εF) ≠ 0 were discussed in [9] in the
framework of the FLEX approximation. In this paper,
we restrict ourselves to the concentration range over
which ImΣk(εF) = 0.

As for the case when the spectral weight of a quasi-
particle in a strongly correlated electron system is not
equal to unity, the properties of the system are different
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from those of the normal Fermi liquid and the original
Luttinger theorem is violated. Indeed, the Fermi
momentum kF of the Hubbard bands is larger than the

Fermi momentum  for free electrons at the same
Fermi energy εF (Fig. 1); therefore, the geometric vol-
ume of the Fermi surface is larger for the Hubbard
bands [10]. However, the system is in the metallic state
in this case and, since the distribution function of quasi-
particles undergoes a jump in the vicinity of the Fermi
level, Luttinger’s theorem can be generalized to quasi-
particles in the following way: the volume of the Fermi
surface of noninteracting particles is equal to that of the
interacting quasiparticles with allowance for the spec-
tral weight of the quasiparticles. In this paper, by ana-
lyzing the general structure of the Green function and
thoroughly investigating the Hubbard-I solution for the
t–J model and for the Hubbard model [11], we shown
that this generalized formulation of Luttinger’s theorem
is valid for metallic, strongly correlated electron sys-
tems. Actually, such a metallic system is not rather a
normal but a “compressible” Fermi liquid, which is due
to the spectral weight of the quasiparticles being differ-
ent from unity and to the Fermi surface being “loose”.
Such an idea of the system makes it possible to elimi-
nate the inconsistency between the concentration of the
excess carriers in the superconducting cuprates and the
unduly large volume of the Fermi surface calculated in
the framework of the model of the normal Fermi liquid.

2. GENERAL STRUCTURE 
OF THE GREEN FUNCTION

Luttinger has shown [1] that the equality between
the volumes of the Fermi surface in the momentum
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Fig. 1. Dispersion law of the Hubbard bands  and of the

one-particle spectrum εk. εF is the Fermi level, and kF and

 are the Fermi momenta for the Hubbard bands and free

electrons, respectively.
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(1)

follows from the fact that the average number of parti-
cles 〈N〉  for interacting and noninteracting fermions is
the same. Indeed, for a system without interaction, we
have

(2)

and, for the Fermi liquid system with interaction [1], we
have

(3)

Here, V is the volume of the system of fermions; µ and
µ0 are the chemical potentials of the system with and
without interaction, respectively; εk are one-particle
energies; ReΣk is the self-energy part of the Green func-
tion; and θ(x)is the Heaviside unit-step function.

For strongly correlated electron systems, however,
the definition of the average number of particles as the
sum of the Heaviside unit-step functions is invalid,
because the spectral weight of each quasiparticle in the
system is taken to be the unit in this definition. One of
the essential peculiarities of strongly correlated elec-
tron systems is a variation of the spectral weight from
unity in each band due to its redistribution between the
Hubbard subbands at U @ W (W is the half-width of the
band). For this reason, analogs of Eqs. (2) and (3)
should be derived for this case.

In what follows, we use the Hubbard X operators

[12] defined in the following way:  ≡ |p〉〈 q |, where
|p〉  and 〈q | are states at site f. Since the number of root
vectors α(p, q) is finite, they can be enumerated; thus,
we have

      . (4)

Here, index m  (p, q) enumerates quasiparticles
with the energies

(5)

where εp is the energy level with index p for the N-elec-
tron system.
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The Hubbard operators are related to one-electron
creation and annihilation operators in the following way:

(6)

where γλσ(m) is the partial weight of a quasiparticle m
with spin σ and orbital index λ.

The average occupation numbers 〈nkλσ〉  for the par-
ticles with momentum k and spin σ are expressed in
terms of the electron Green function written in the

energy representation, Gkλσ = 〈〈 akλσ | 〉〉E + iη, in the
following way:

(7)

where fF(E) is the Fermi function, η  0, and η > 0.
In the X representation, the Green function has the form

(8)

For the matrix Green function (E) =

, the generalized Dyson equation [13]
can be written as

(9)

Here, (E) and (E) are the self-energy and the
force operator, respectively. The presence of the force
operator is due to the redistribution of the spectral
weight and is an intrinsic feature of strongly correlated
electron systems. The concept of the force operator was
introduced earlier in a diagram technique for spin sys-

tems [14]. The Green function (E) in Eq. (9) is
defined by the formula

(10)

where  is the interaction matrix element (for the

Hubbard model,  = γσ(m) (p)tk).

In the Hubbard-I approximation at U @ W, the struc-
ture of the exact Green function (9) remains unchanged
but the self-energy is supposed to be zero and the force

operator (E) is replaced by (E)   =

, where  ≡ F(p, q) =  +  is the
occupation factor, which is referred to as the end factor
in the diagram technique for the X operators developed
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in [15]. In terms of the Hubbard-I approximation, the
following formula is derived from Eq. (9):

(11)

In order to estimate the contributions to Eq. (11) in
higher order approximations (with respect to the Hub-
bard-I approximation), let us compare the exact equa-
tion (9) for the Green function with Eq. (11), written in
the Hubbard-I approximation. First, there is a differ-
ence due to the renormalization of the occupation fac-

tors  which arises when the exact equation for the

force operator (E) is used. However, taking into
account the corrections due to the force operator keeps
the structure of the Hubbard bands unchanged and,
therefore, does not lead to a qualitative difference of the
exact Green function from that in the Hubbard-I
approximation. A second essential difference is the
renormalization of the real part of the self-energy

(E) and the appearance of quasiparticle damping.
The latter implies non-Fermi-liquid behavior of the sys-
tem and, as mentioned above, the consideration of the
region where ImΣk(εF) = 0. In this region, the exact
Green function given by Eq. (9) can be rewritten as the
sum of one-pole contributions over the quasiparticle
bands labeled by index ξ (for the t–J model, ξ has one
value, ξ = 1; for the Hubbard model, ξ = 1, 2). In the
general multiband case, the exact Green function is

(12)

Here, the real part of the self-energy contributes not
only to the renormalization of the dispersion law but
also to the renormalization of the spectral weight. Such
a representation for the electron Green function has
been obtained earlier in the Hubbard model in terms of
the spectral density approach (SDA) [16]. This
approach is nonperturbative and assumes the absence
of the quasiparticle damping only. The spectral weights
Fkλσ(ξ) and the band energies Ωkσ(ξ) are calculated in
the SDA by using the method of moments (see the
review and comparison with other methods in [17]).

As for the renormalization of the real part of the
self-energy, this effect introduces corrections to the
energy spectrum Ωkσ(ξ) and qualitatively does not
change the further reasoning. The fact that the structure
of the Green function is correct even in the Hubbard-I
approximation (it is the structure of the Green function
that is essential for further derivation of Luttinger’s the-
orem) follows from a comparison of the Hubbard-I
solution and the exact solution in the infinite-dimen-
sionality limit obtained by using the method of the
dynamical mean-field theory [4, 5], as well as from a
comparison of the Hubbard-I solution and a numerical
solution obtained using the exact quantum Monte Carlo
method for the Hubbard model [18]. A comparison of

D̂kσ
0( )
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------------------------------------------------.
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the spectral densities obtained in the Hubbard-I approx-
imation at U @ W and those derived by the quantum
Monte Carlo method shows [18] numerical coincidence
between them in the region of the phase diagram, where
the long-range magnetic order is absent. In terms of the
diagram technique for the X operators, it has also been
demonstrated that this approximation gives simple and
pictorial relationships which correctly describe the
physics of the phenomena at U @ t [13, 19].

Substituting Eq. (12) into Eq. (7) and using the spec-
tral theorem, we obtain

(13)

Taking into account that the quantities in Eq. (13) do
not depend on spin in the paramagnetic phase, the aver-
age number of particles 〈N〉  at zero temperature can be
written in the compact form

(14)

(15)

For noninteracting particles, we have Fk(ξ) = 1; the
equation for 〈N〉  completely coincides with Eq. (2) in
this case. For the system of interacting quasiparticles,
Eq. (14) can be written as

(16)

By comparing Eq. (2) with Eq. (16), we obtain

(17)

where  is the volume of the energy subband ξ tak-
ing into account the spectral weight Fk(ξ) of this sub-
band,

(18)

Equation (17) is the generalized Luttinger theorem: the
right-hand side of the equality is a superposition of the

volumes  for the different energy subbands ξ rather
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kFk ξ( )θ µ Ωk ξ( )–( ).d∫=

VFS
ξ

PH
than the volume VFS and each state |k, σ〉 for band ξ
enters with a decreased spectral weight.

Therefore, the region bounded by the Fermi surface
in the k space becomes “less dense.” Indeed, let us use
the relationship mFS = ρFSVFS, where mFS is the “mass”
of the Fermi surface, ρFS is its “density,” and VFS is its
volume. It is obvious that the mass mFS is proportional
to the average number of particles 〈N〉  and ρFS is the
spectral weight of the quasiparticles in the region
bounded by the Fermi surface. For the system of nonin-

teracting particles, we have  = . Further,

from the equality mFS = , it follows that ρFSVFS =

 and

(19)

because, for the system without interaction, we have

 = 1. It is seen that, if the spectral weight of the qua-
siparticles differs from unity, we have the inequality

VFS ≠ . It is precisely this case (ρFS ≤ 1) that is real-
ized in strongly correlated electron systems. On the
other hand, the quantity given by Eq. (19) is invariant
under the interaction in the system; therefore, the gen-
eralization of Luttinger’s theorem for quasiparticles is
as follows: the volume of the Fermi surface of a system
of noninteracting particles is equal to that of interacting
quasiparticles with allowance for the spectral weight of
these quasiparticles. This formulation of the theorem is
valid for both the band electrons and the quasiparticles
in metallic, strongly correlated electron systems in the
limit U @ W.

The deviation of the spectral weight from unity can
be considered to be a transition to a space with a differ-
ent metric. This is demonstrated in Section 5, in which
it is shown that the quantity given by Eq. (19) rather
than by Eq. (1) is invariant under this transition.

3. t–J MODEL

The Hamiltonian of the Hubbard model in the X-
operator representation [11] has the form

(20)

The Hamiltonian of the t–J model can be derived form
Eq. (20) in the limit of the strong Coulomb interaction,
U @ t:
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∑
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(21)

where tfg is the hopping integral, J is the exchange inte-
gral, Sf is the spin operator, and nf is the operator of the
number of particles. Here, there is only one fermionic

root vector, { }  { }; therefore, the Green
function in the region ImΣk(E) = 0 has the form

(22)

where F(1)/2 = (1 – x)/2 is the spectral weight of the
only band ξ = 1 and Ek is the spectrum of the system in
the Hubbard-I approximation,

(23)

Here, tk = 2t(coskx + cosky) is the Fourier transform of
the hopping integral in the case of a square lattice. The
number of particles is

(24)

Ht–J ε µ–( )X f
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f σ,
∑ t fgX f
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k σ,
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At zero temperature, we have

(25)

This equation coincides with Eq. (14); thus, the volume

of the Fermi surface is  = F(1)V– = (1 – x)V–, where

V– = (µ – Ek). In multiband models, such as the

Hubbard model, the spectral weight of the quasiparti-
cles is redistributed between the bands due to strong
correlations. In our case, there is only one band, but its
spectral weight is smaller than unity [see Eq. (25)]
because part of the spectral weight goes to the upper
Hubbard band. In deriving the equations for the t–J
model from the Hubbard model, this band is taken into
account only in terms of the perturbation theory with
respect to the parameter t/U ! 1 and does not appear in
the Hamiltonian (21) because of the constraint of two-

particle excitations being absent,   0.

4. HUBBARD MODEL

The basis fermion operators for the Hubbard

model (20) are { , }  { , }, where
|S〉  = |↑, ↓〉  is a two-particle singlet, |0〉  is the vacuum
state, and |σ〉 and  are one-particle singlets. The
Green function has the form

N〈 〉 1 x–( )θ µ Ek–( ).
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,=
where det = (E –  + µ)(E –  + µ) and F(1)/2 = (1 –
x)/2, and F(2)/2 = (1 + x)/2 are the occupation factors of
the lower and upper Hubbard bands, respectively. The
energy spectrum of the system is

(27)

The number of particles can be easily found using the
Green function (26):

(28)

This equation coincides with Eq. (14). The expres-
sions in square brackets in Eq. (28) are the spectral

Ek
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–

Ek
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tk U tk
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.

weights of the upper and lower Hubbard bands, respec-
tively. Their sum (taking into account the spin) is equal
to the spectral weight of noninteracting electrons, as it
must be. Now, let us analyze Eq. (28) in the regime of
strong Coulomb repulsion U @ t. In this case, the
denominator  –  can be expanded in powers of
the small parameter t/U ! 1. Neglecting second-order
terms, we have

(29)

At zero temperature, this equation becomes

(30)

Ek
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The relation between the volumes of the Fermi sur-
faces is

(31)

where V± = (µ – ). It is clearly seen that the

strong Coulomb interaction redistributes the spectral
weight between the lower and upper subbands. It is this
effect that necessitates generalization of Luttinger’s
theorem for strongly correlated electron systems.

The splitting into two Hubbard bands is clearly seen
in Eqs. (29)–(31); therefore, it is easy to transform the
Hubbard model to the t–J model simply by neglecting
the influence of the upper (or lower) band, because the
bands are separated by a gap U (the interband hopping
was already eliminated by the expansion in powers of
t/U). The occupation numbers are immediately found
to be

(32)

This expression coincides with Eq. (24), obtained for
the number of particles in the t–J model. Thus, the
decrease in the spectral weight in the t–J model is a
result of the approximations used (t/U ! 1) rather than
of its spontaneous disappearance.

Figures 2 and 3 show the results of calculations for
zero temperature at U = 10 |t | and t = –0.2 eV. Calcula-
tions for finite temperatures were also carried out, but
they did not reveal any qualitative difference from the
case of zero temperature. The chemical potential µ cal-
culated self-consistently by using Eq. (28) is shown in
Fig. 2. Figure 3 shows the dependence of the density of
particles n = 〈N〉/N on x calculated by using Eq. (29). It
is clearly seen that this dependence is linear and, more-
over, n = 1 + x. Actually, the last equality means that the

VFS
0

 = F 2( )V
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F 1( )V
–

+  = 1 x+( )V
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–
,+

kθd∫ Ek
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k
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x
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3

–1

µ,
 e

V

0

Fig. 2. Dependence of the chemical potential µ on x.
P

generalized Luttinger theorem is valid. Indeed, the left-
hand side of Eq. (29) is the number of particles calcu-
lated with due regard for the interaction in the system,
while the right-hand side of the equation is the number
of noninteracting particles. The equality of these two
quantities is a prerequisite for the equality of the Fermi
surface volumes multiplied by the corresponding spec-
tral weights, as given by Eq. (31).

5. QUASIPARTICLE DESCRIPTION
AS A TRANSFORMATION 
OF THE METRIC SPACE

Let eµ be natural reference vectors associated with
the system of curvilinear (in general) coordinates xµ. In
what follows, upper indices indicate contravariant
quantities and lower indices, covariant ones. The metric
tensor is defined as

(33)

In going to new coordinates yµ, we have

where  =  are the coefficients of the axis trans-

formation.
By definition, an elementary volume of the n-

dimensional space is

(34)

In this case, the value  rather than the volume
element dτ is invariant under transition to another sys-

gµν eµ eν⋅( ).=

eµ aµ
νeν' ,=

gµν eµ eν⋅( ) aµ
ρ
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Fig. 3. Dependence of the density of particles n = 〈N〉/N on
x (N is the number of vectors in the momentum space).
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tem of coordinates. Here, g = detgµν is the determinant
of the components of the metric tensor; i.e.,

(35)

Now, let us consider two n-dimensional spaces: one
for quasiparticles with the spectral weight ρ' (quantities
referred to this space are labelled by prime) and one for
quasiparticles with the spectral weight ρ. Obviously, a
transition between these coordinate systems can be

made by simply changing the axis scales,  = .
The corresponding transformation of the metric tensor is

(36)

The relation between the elementary volumes can be
derived from Eqs. (35) and (36) to be

(37)

this equation coincides with Eq. (19) at ρ' = 1. A similar
relationship takes place in the hydrodynamic theory for
a compressible liquid. Thus, in the case of quasiparti-
cles with a spectral weight smaller than unity, we deal
with modification of the normal Fermi liquid instead of
the normal Fermi liquid; by analogy with hydrodynam-
ics, this modification can be called the compressible
Fermi liquid. The original Luttinger theorem is valid
only for quasiparticles with a spectral weight equal to
unity and, therefore, is of limited use. In systems with
different spectral weights of quasiparticles, the quantity
given by Eq. (35) rather than the volume of the Fermi
surface is conserved; thus, the scalar density of nonin-

teracting particles  is equal to the scalar density

of quasiparticles with interaction, . It is clearly
seen that Luttinger’s theorem [1] is a special case of this
statement.

6. CONCLUSION

One of the problems of the theory of strongly corre-
lated electron systems is whether Luttinger’s theorem is
valid for them. This question is of great importance in
describing high-temperature superconductors, because
they belong to the category of strongly correlated elec-
tron systems. It has been shown that, in the Hubbard
model, Luttinger’s theorem [1] is violated for under-
doped samples (x < xopt) because of the presence of
short-range magnetic order and the occurrence of spin
fluctuations associated with it [9, 10, 18]. However,
Luttinger’s theorem is valid in the overdoped regime
(x > xopt), where the paramagnetic metal state takes
place. Actually, the original Luttinger theorem in the
form of Eq. (1) is not valid for strongly correlated elec-
tron systems; the proof of theorem (1) is inapplicable to
such systems, because it does not take into account the
difference of the spectral weight of quasiparticles from

g'– dτ' g– dτ .=

aµ
ν ρ/ρ'n

gµν
ρ
ρ'
---- 

 
2/n

gµν' .=

dτ ρ'
ρ
----dτ',=

g'– dτ'

g– dτ
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unity, which is one of the most remarkable peculiarities
of strongly correlated systems [13]. In this paper, we
have formulated Luttinger’s theorem (17) generalized
to the case of quasiparticle description within the Hub-
bard-I approximation. Qualitative analysis of this gen-
eralization given by Eq. (19), as well as analytically
exact derivation of Eq. (37) for the scalar densities,
showed that the region of k space bounded by the Fermi
surface becomes less compact (or, in other words, less
dense) in quasiparticle systems: the contribution of
each state is renormalized because of a decrease in the
spectral weight of the corresponding quasiparticle.

The momentum space is divided into quantum cells,
each of which can contain one electron or, taking into
account the Pauli principle, two electrons with opposite
spins. Some states from the whole set of quantum states
in a cell move away to infinite energies due to strong
electron correlations. Therefore, the spectral weight F
of the remaining states is smaller than unity; quasipar-
ticle excitations in such a system become renormalized,
and their spectral weight F < 1. It is this effect that
causes the k space to be less compact.

From Eq. (37) for the scalar densities, it is seen that
we deal with a compressible Fermi liquid. A normal
Fermi liquid belongs to a subclass of the class of com-
pressible Fermi liquids; in this subclass, the spectral
weights of the quasiparticles are equal to unity. The
generalized Luttinger theorem is formulated for the
case of a compressible Fermi liquid in which the effects
of strong electron correlations necessitate deviation
from the description of the system as a normal Fermi
liquid.

In this paper, we have considered basic models of
strongly correlated systems, such as the t–J model and
the Hubbard model. It has been shown that, in the non-
superconducting paramagnetic phase, these models sat-
isfy a generalized Luttinger theorem. In the Hubbard
model, the spectral weight is redistributed between the
Hubbard subbands; in the t–J model, a decrease in the
spectral weight occurs, because part of the states moves
away to infinite energies due to the strong correlation
between the electrons (the upper Hubbard subband is
separated form the lower band by a gap U @ t).
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Abstract—Modulation instability of nonlinear electromagnetic excitations (oscillating with the Josephson fre-
quency) of finite amplitude is investigated in a Josephson junction in a film of a nonmagnetic, as well as of a
magnetic (two- or three-dimensional), superconductor. The instability is accompanied by a nonlinear shift in
frequency. Dispersion relations are derived for the time increment of small perturbations of the amplitude. It is
shown that, for this type of excitations in a Josephson junction in a thin film of nonmagnetic superconductor,
modulation instability develops only in a certain finite range of wave vectors, whereas in a thin film of a two-
or three-dimensional magnetic superconductor it develops for any wave vector. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

A great number of magnetic superconductors exhib-
iting new unique properties [1–3] are presently known
and attract considerable interest. Coexistence of mag-
netism and superconductivity has been observed not
only in ternary compounds [4] but also in high-temper-
ature superconductors, such as REBaCuO and RECuO,
where RE is a rare-earth ion. One of the important fea-
tures of high-Tc superconductors is the fairly strong
antiferromagnetic correlation of the spins of copper
atoms in the CuO2 planes [5].

Continued attention also focuses on a wide range of
instabilities of waves in various nonlinear systems and
media [6, 7]. It is known that compression of a nonlin-
ear wave can occur both in the cross section and in the
direction of propagation of the wave beam. Examples
are the self-focusing of light predicted by Askar’yan [8]
and the instability of waves to breaking up into wave
packets and the self-compression of wave packets
(modulation instability) first studied by Lighthill [9].
Modulation instability of electromagnetic waves
observed in optical fibers corresponds to the instability
of solutions to a nonlinear Schrödinger equation [10],
and that observed in distributed Josephson junctions, to
the instability of solutions to the sine-Gordon equation
[11, 12]. Modulation instability is of interest from the
fundamental point of view and for practical applica-
tions. For example, this phenomenon is used for gener-
ating series of ultrashort optical pulses with a high rep-
etition frequency [10] and for developing novel logic
units [13].
1063-7834/03/4508- $24.00 © 21423
In many cases, spatially nonlocal modifications of
the nonlinear Schrödinger equation [14] and of the
sine-Gordon equation [15–26] should be used in study-
ing modulation instability. For example, it was shown
in [15, 16] that spatial nonlocality can be significant
even in junctions of bulk superconductors of large
thickness d @ λ (λ is the London penetration depth)
along the magnetic field (vortex lines), i.e., in the cases
where the local approximation was used earlier. For
junctions in thin films of d ! λ, there is no local limit
and the spatial nonlocality is significant and becomes a
determining factor. The corresponding equations were
derived and investigated in [17–20]. It has been shown
[21–23] that, in the Josephson electrodynamics of thin
films of magnetic (two- and three-dimensional) super-
conductors, not only spatial effects but also time nonlo-
cality (which is ultimately due to retardation effects)
must be taken into account. The Josephson junction at
the interface between two superconducting layers of
finite thickness along a direction perpendicular to the
magnetic vortex field was studied in [24]. In [25, 26], a
butt junction and a tilted (tapered) junction (having,
therefore, a finite thickness along the magnetic field of
vortices) were considered for arbitrary values of the
ratio d/λ.

Due to the difference in geometry of the problems
considered in the papers mentioned above, the equa-
tions for the Josephson electrodynamics in them differ
in the form of the kernel of the integral operator
describing the spatial nonlocality. However, in all those
papers, the spatial nonlocality of the equations for the
phase difference is due to the nonlocal relation between
003 MAIK “Nauka/Interperiodica”
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the fields at the interface and in the superconductor.
This origin of spatial nonlocality is universal for the
electrodynamics of Josephson junctions; therefore, the
nonlocality itself is the rule rather than the exception.

In the framework of the spatially nonlocal Joseph-
son electrodynamics of the junction at the interface
between bulk superconductors, the modulation instabil-
ity was first considered in [15]. It was shown that
increasing small perturbations of the amplitude and
phase correspond to the development of modulation
instability in the electromagnetic wave with a finite
constant amplitude; the instability is characterized by a
nonlinear shift in frequency and by the dispersion law
of the linear approximation. It was also found that spa-
tial nonlocality suppresses the modulation instability.
Abdullaev [27] also considered the Josephson junction
at the interface of bulk superconductors and investi-
gated the modulation instability of a plane nonlinear
electromagnetic wave with a finite amplitude and with
a frequency equal to the Josephson frequency. It was
shown that the instability causes small perturbations of
the amplitude to increase and brings about the breaking
up of the wave into wave packets.

It is of interest to investigate the modulation insta-
bility of electromagnetic excitations (in the framework
of the nonlocal Josephson electrodynamics) in thin
two-dimensional superconducting films, as this has not
been done to date. This type of instability may arise in
the Josephson junction in an ultrathin film of a nonmag-
netic or (two- or three-dimensional) magnetic super-
conductor of thickness d ! λ.

A thin film of a magnetic superconductor can be
two- or three-dimensional, in terms of its magnetic
properties, depending on whether the (time-dependent)
magnetic permeability µ of the film is a function of two
coordinates (in the plane of the film) or three coordi-
nates. The point is that, in a film which is two-dimen-
sional in terms of superconducting properties, the mag-
netic subsystem may exhibit two-dimensional (in the
film plane) or three-dimensional magnetic ordering (in
the film plane and across the film thickness) because of
the short-range interaction between the spins of impu-
rity atoms.

The geometry of the problem under study is as fol-
lows: the film plane is taken to be the xy plane, the cur-
rent flows along the y axis, and weak links are oriented
along the x axis.

2. FILM OF A TWO-DIMENSIONAL MAGNETIC 
SUPERCONDUCTOR

We assume that the film is two-dimensional in terms
of its superconducting and magnetic properties; there-
fore, its magnetic permeability can be written as

(1)

where r = (x, y, z) and r = (x, y).

µ r r'– t t '–,( ) µ r r'– t t '–,( )δ z z'–( ),=
P

The dynamics of the phase change ϕ(x, t) across the
Josephson junction, for any type of magnetic ordering
in the thin two-dimensional magnetic superconducting
film, is described by the nonlinear integrodifferential
sine-Gordon equation with spatial and time nonlocality
[21, 22]

(2)

Here, ωJ is the Josephson frequency, β is a dissipation

parameter, lJ = , λJ is the Josephson length, λeff =
λ2/d is the Pearl penetration depth, and the kernel

, nonlocal in the spatial and time vari-

ables, has the form

(3)

where J0(qx) is the zero-order Bessel function. The time
nonlocality in Eq. (2) is due to the frequency dispersion
of the magnetic permeability µ(q, ω).

Since λ @ a (a is the crystal lattice parameter), we
can use the hydrodynamic approximation for the mag-
netic subsystem. In the paramagnetic temperature
range, the magnetic permeability has the form [28]

(4)

where χ0 is the static magnetic susceptibility and D2 =
(1/3)(2π)1/2Ja2[s(s + 1)]1/2 is the spin diffusion coeffi-
cient for two-dimensional Heisenberg magnets [29]
(J is the intralayer exchange constant, s is the spin).

Let us consider the evolution of nonlinear waves (of
the breather type) with a frequency equal to the Joseph-
son frequency ωJ and with a small, but finite, amplitude
produced in the junction. The phase change ϕ(x, t) can
be written as

(5)

In Eq. (2), in the dissipationless limit β = 0, we
retain the lowest order nonlinear terms at the funda-
mental frequency ωJ and restrict ourselves to the
approximation in which the amplitude u(x, t) varies
slowly in time and, therefore, the condition |∂2u(x,
t)/∂t2 | ! 2ωJ |∂u(x, t)/∂t | is satisfied. Substituting

ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t

2
---------------------+ +

=  lJ x' t 'K
x x'–
2λ eff
------------ t t '–, 

  ∂2ϕ x' t ',( )
∂x'

2
------------------------.d

∞–

∞

∫d

∞–

∞

∫

λ J
2
/λ

K
x x'–
2λ eff
------------ t t '–, 

 

K
x x'–
2λ eff
------------ t t '–, 

 

=  
qd
π
------ ωd

2π
-------

2λ effJ0 q x x'–( )[ ] iω t t '–( )–[ ]exp
µ q ω,( ) 2qλ eff+

----------------------------------------------------------------------------------,

∞–

∞

∫
0

∞

∫

µ q ω,( ) 1 4πχ0

iD2q
2

ω iD2q
2

+
------------------------,+=

ϕ x t,( ) u x t,( ) iωJt–( )exp u* x t,( ) iωJt( ),exp+=

u x t,( )  ! 1.
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Eq. (5) into Eq. (2), we obtain the following equation
for u(x, t) in this case:

(6)

This nonlinear nonlocal “Schrödinger equation” has an
exact solution in the form of a plane nonlinear wave
with a uniform amplitude A and with a shift in fre-
quency,

(7)

In order to investigate the stability of this solution,
we introduce a small perturbation of the amplitude:

(8)

It follows from Eq. (6) that the small perturbation
ψ(x, t) satisfies the linear equation

(9)

Substituting ψ(x, t) = v (x, t) + iw(x, t) into Eq. (9),
we obtain the following equations for the real and
imaginary parts of the perturbation:

(10)

i
2
ωJ

------∂u x t,( )
∂t

------------------- 1
2
--- u x t,( ) 2

u x t,( )+

+ lJ x' t 'K
x x'–
2λ eff
------------ t t '–, 

 d

∞–

∞

∫d

∞–

∞

∫

× iωJ t t '–( )[ ] ∂2
u x' t ',( )
∂x'

2
-----------------------exp 0.=

u0 t( ) A iA
2ωJt/4( ), A ! 1.exp=

u x t,( ) A ψ x t,( )+[ ] iA
2ωJt/4( ),exp=

ψ x t,( )  ! A.

i
2
ωJ

------∂ψ x t,( )
∂t

-------------------- 1
2
---A

2 ψ x t,( ) ψ* x t,( )+[ ]+

+ lJ x' t 'K
x x'–
2λ eff
------------ t t '–, 

 d

∞–

∞

∫d

∞–

∞

∫

× iωJ 1 A
2
/4–( ) t t '–( )[ ] ∂2ψ x' t ',( )

∂x'
2

------------------------exp 0.=

2
ωJ

------∂v x t,( )
∂t

-------------------- lJ x ' t 'K
x x'–
2λ eff
------------ t t '–, 

 d

∞–

∞

∫d

∞–

∞

∫+

× iωJ 1 A
2
/4–( ) t t '–( )[ ] ∂2

w x' t ',( )
∂x'

2
------------------------exp 0,=

–
2
ωJ

------∂w x t,( )
∂t

-------------------- A
2
v x t,( )+

+ lJ x' t 'K
x x'–
2λ eff
------------ t t '–, 

 d

∞–

∞

∫d

∞–

∞

∫

× iωJ 1 A
2
/4–( ) t t '–( )[ ] ∂2

v x' t ',( )
∂x'

2
------------------------exp 0.=
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An arbitrary perturbation can be represented as a
superposition of the waves

(11)

propagating along the Josephson junction with a wave
vector Q and a frequency Ω . From Eqs. (10), we obtain

the dispersion relation  = ( ) for these waves:

(12)

where

(13)

we also introduced the dimensionless quantities  =

2Qλeff and  = Ω/ωJ and the parameters L = lJ/2λeff

and η2 = (2λeff)2ωJ/D2.

The implicit dispersion relation (12) for ( ), in
combination with Eq. (13), has a complex solution

( ) = Re ( ) + iIm ( ). In the case of

Im ( ) > 0, small perturbations of the amplitude in
the form of Eqs. (11) will increase with time; therefore,
modulation instability of the plane nonlinear electro-
magnetic wave (7) will develop in the Josephson junc-
tion in a thin film of a two-dimensional magnetic super-
conductor.

3. FILM OF A THREE-DIMENSIONAL 
MAGNETIC SUPERCONDUCTOR

Now, we consider a film which is two-dimensional
in terms of its superconducting properties but is three-
dimensional in terms of its magnetic properties; there-
fore, the magnetic permeability µ of the film is a func-
tion of three spatial coordinates and time: µ = µ(r – r',
t – t ').

In this case, for any type of magnetic ordering in the
thin film of a three-dimensional magnetic superconduc-
tor, the dynamics of the phase change ϕ(x, t) across the
Josephson junction is described by the nonlinear inte-

v x t,( ) V Q Ω,( ) i Qx Ωt–( )[ ] ,exp=

w x t,( ) W Q Ω,( ) i Qx Ωt–( )[ ] ,exp=

Ω̃ Ω̃ Q̃

Ω̃2 L
2π
------Q̃

2
J 2( ) Q̃ Ω̃,( ) 2L

π
------Q̃

2
J 2( ) Q̃ Ω̃,( ) A

2
– ,=

J 2( ) Q̃ Ω̃,( ) x 1 Q̃ x -----cosh+d

0

∞

∫=

+
4πχ0Q̃

2
xcosh

2

–iη2 Ω̃ 1 A
2
/4–+( ) Q̃

2
xcosh

2
+

-----------------------------------------------------------------------------

1–

;

Q̃

Ω̃

Ω̃ Q̃

Ω̃ Q̃ Ω̃ Q̃ Ω̃ Q̃

Ω̃ Q̃
3
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grodifferential sine-Gordon equation with spatial and
time nonlocality [22, 23]

(14)

The kernel  is nonlocal in the spatial

and time variables and has the form

(15)

where R(q, ω) is given by

(16)

The nonlocality of Eq. (14) in time is due to the fre-
quency dispersion of the magnetic permeability µ(q, p,
ω) involved in the function R(q, ω).

In the case of λ @ a, as in the previous section, we
use the hydrodynamic approximation in describing the
magnetic subsystem. In the paramagnetic temperature
range, the magnetic permeability has the form

(17)

where D3 is the spin diffusion coefficient for a three-
dimensional Heisenberg magnet.

Substituting Eq. (17) into Eq. (16), we represent
R(q, ω) in the form

(18)

where f0(q, ω) is given by

(19)

Equations (2) and (14) for the phase change differ

only in the form of the kernel  given by

Eqs. (3) and (15), respectively. Therefore, following the
same line of reasoning and mathematical manipulation
as in the previous section in deriving the dispersion
relation (12) from Eq. (2), we, starting with Eq. (14),

ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t

2
---------------------+ +

=  lJ x' t 'K
x x'–
2λ eff
------------ t t '–, 

  ∂2ϕ x' t ',( )
x'

2
d

------------------------.d

∞–

∞

∫d

∞–

∞

∫

K
x x'–
2λ eff
------------ t t '–, 

 

K
x x'–
2λ eff
------------ t t '–, 

 

=  
qd
π
------ ωd

2π
-------

λ effJ0 q x x'–( )[ ] iω t t '–( )–[ ]exp
q R q ω,( ) λ eff+[ ]

-------------------------------------------------------------------------------,

∞–

∞

∫
0

∞

∫

R q ω,( ) pd
2π
------µ q p ω, ,( )

p
2

q
2

+
-------------------------.

∞–

∞

∫=

µ q p ω, ,( ) 1 4πχ0

iD3 q
2

p
2

+( )

ω iD3 q
2

p
2

+( )+
-----------------------------------------,+=

R q ω,( )
f 0 q ω,( ) i4πχ0q+

2q f 0 q ω,( )
--------------------------------------------,=

f 0 q ω,( ) q
4 ω2

/D3
2

+( )
1/2

/2 q
2
/2–[ ]

1/2
=

+ i q
4 ω2

/D3
2

+( )
1/2

/2 q
2
/2+[ ]

1/2
.

K
x x'–
2λ eff
------------ t t '–, 

 
P

find the following dispersion relation  = ( ) giv-
ing the time increment of small perturbations of the
amplitude:

(20)

where

(21)

(22)

and, as before, we use the notation  = 2Qλeff,  =
Ω/ωJ, L = lJ/2λeff, and η3 = (2λeff)2ωJ/D3.

The implicit dispersion relation (20) for ( ), in
combination with Eqs. (21) and (22), has a complex

solution ( ) = Re ( ) + iIm ( ) In the case of

Im ( ) > 0, small perturbations of the amplitude in
the form of Eqs. (11) will increase with time; therefore,
modulation instability of the plane nonlinear electro-
magnetic wave (7) will develop in the Josephson junc-
tion in a thin film of a three-dimensional magnetic
superconductor.

4. FILM OF A NONMAGNETIC 
SUPERCONDUCTOR

In the case of a nonmagnetic superconducting film,
we have χ0 = 0 and the integrals in Eqs. (13) and (21)
become identical and depend only on the wave vector

 (see also [20]):

(23)

The dispersion relations (12) and (20) also become

identical and reduce to an explicit equation for ( ):

(24)

This equation has a solution with a positive time incre-

ment of perturbations Im ( ) > 0 in a finite range of

wave vectors 0 <  < , where, therefore, modula-

Ω̃ Ω̃ Q̃

Ω̃2 L
2π
------Q̃

2
J 3( ) Q̃ Ω̃,( ) 2L

π
------Q̃

2
J 3( ) Q̃ Ω̃,( ) A

2
– ,=

J 3( ) Q̃ Ω̃,( )

=  
xF0 Q̃ xcosh Ω̃,( )d

F0 Q̃ xcosh Ω̃,( ) 1 Q̃ xcosh+( ) i4πχ0Q̃ xcosh+
----------------------------------------------------------------------------------------------------------------,

0

∞

∫

F0 x y,( ) = x
4 η3

2
y 1 A

2
/4–+( )

2
+[ ]

1/2
/2 x

2
/2–{ }

1/2

+ i x
4 η3

2
y 1 A

2
/4–+( )

2
+[ ]

1/2
/2 x

2
/2+{ }

1/2
,

Q̃ Ω̃

Ω̃ Q̃

Ω̃ Q̃ Ω̃ Q̃ Ω̃ Q̃

Ω̃ Q̃

Q̃

J Q̃( ) 1

2 1 Q̃
2

–
---------------------- 1 1 Q̃
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tion instability develops. In the wave-vector range  ≥
, we have Im ( ) = 0 and the wave is stable. The

wave-vector limit  of the stability region can be
found from the equation

(25)

It follows from dispersion relations (12), (20), and
(24) that the maximum time increment of perturbations
for a nonmagnetic superconducting film, as well as for
films of two- and three-dimensional magnetic super-
conductors, is equal to

(26)

and is reached at a wave vector , which is a root of
the equation

(27)

5. NUMERICAL CALCULATIONS

Thus, from Eqs. (24) and (23), it follows that, in the
Josephson junction in a thin film of a nonmagnetic
superconductor (χ0 = 0), the modulation instability is

suppressed with increasing wave vector . The results
of numerical calculations are presented in Fig. 1, where
the wave-vector range of modulation instability of the
plane nonlinear electromagnetic wave (7) is shown for
a fixed value of the amplitude A and three values of the
parameter L.

For a thin film of a two-dimensional magnetic
superconductor with χ0 = 10–2 1 and η2 = 1, according
to numerical calculations, the dispersion relation (12)
together with Eq. (13) has a solution with a positive

time increment of amplitude perturbations Im ( )

for any value of the wave vector . Figure 2 shows the
wave-vector dependence of the time increment,
affected by the magnetic subsystem, for a fixed value of
the amplitude A and three values of the parameter L.

In the case of a thin film of a three-dimensional
magnetic superconductor with the same value of the
parameter χ0 and η3 = 1, numerical calculations show
that the dispersion relation (20) together with Eqs. (21)
and (22) has a solution with a positive time increment

of amplitude perturbations Im ( ) also for any value

of the wave vector . Figure 3 shows the wave-vector
dependence of the time increment, affected by the mag-

1 Such values of the static magnetic susceptibility are typical of
ternary compounds and high-temperature superconductors con-
taining rare-earth ions near the magnetic-ordering temperature
TN ∝  1 K.
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netic subsystem, for a fixed value of the amplitude A
and three values of the parameter L.

Figures 2 and 3 are similar on the scale used,
because the value of χ0 is small; the respective curves
in these figures differ only in the eighth decimal place,
except for the maximum time increments, which are
identical for the respective curves.

By comparing Figs. 1–3, we see that the dependence

of the time increment Im ( ) on wave vector 
exhibits a crossover in a narrow range near the limiting

Ω̃ Q̃ Q̃
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Fig. 1. Modulation instability of the plane nonlinear electro-
magnetic wave (7) in a thin film of a nonmagnetic supercon-
ductor for amplitude A = 0.1 and different values of the
parameter L: (1) 0.5 × 10–2, (2) 0.75 × 10–2, and (3) 10–2.
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Fig. 2. Wave-vector dependence of the time increment of
small perturbations of the amplitude of the plane nonlinear
electromagnetic wave (7) in a thin film of a two-dimen-
sional magnetic superconductor for amplitude A = 0.1 and
different values of the parameter L: (1) 0.5 × 10–2, (2) 0.75
× 10–2, and (3) 10–2.
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Fig. 3. Wave-vector dependence of the time increment of
small perturbations of the amplitude of the plane nonlinear
electromagnetic wave (7) in a thin film of a three-dimen-
sional magnetic superconductor for amplitude A = 0.1 and
various values of the parameter L: (1) 0.5 × 10–2, (2) 0.75 ×
10–2, and (3) 10–2.
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value  =  in the thin films of two- and three-
dimensional magnetic superconductors. Therefore,
there are two adjacent wave-vector ranges of modula-

tion instability: the range 0 <  < , where the insta-

bility is strong, Im ( ) ∝  10–3 for A = 0.1, and the

range  > , where the instability is weak,

Im ( ) ∝  10–6–10–7. Since   ∞, we have

Im ( )  0.

As the modulation instability develops, the plane
nonlinear wave oscillating with the Josephson fre-
quency transforms gradually into a series of pulses
(small-amplitude breathers) whose repetition fre-
quency is determined by the modulation period of the
initial wave L0 = 2π/Q.

6. CONCLUSIONS 

Thus, we have considered the time-nonlocal equa-
tion of the dynamics of the phase change across the
Josephson junction in a thin film of a two- or three-
dimensional magnetic superconductor in the dissipa-
tionless limit. It has been shown that the inclusion of
the time nonlocality that is associated with the fre-
quency dispersion of the magnetic permeability caused
by two- or three-dimensional diffusion of spin waves in
the magnetic subsystem brings about additional modu-
lation instability of plane nonlinear electromagnetic

waves in the wave-vector range  ≥ , where such
waves were stable in a film of a nonmagnetic supercon-
ductor.
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Abstract—The band structure of superconducting UB12-like cubic dodecaborides, namely, YB12 and ZrB12, is
calculated in the framework of the self-consistent full-potential linearized muffin-tin orbital (FLMTO) method.
The calculated parameters of the electronic subsystems of YB12 and ZrB12 dodecaborides are analyzed and
compared with the relevant parameters of the hypothetical dodecaborides hB12 (h is a metal vacancy) and
BB12; nonsuperconducting AlB2-like layered diborides, namely, YB2 and ZrB2; and a new superconductor,
MgB2. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent discovery of the critical transition (TC ≈
40 K) in magnesium diboride MgB2 [1] and the prepa-
ration of superconducting MgB2-based materials
(films, ceramics, long wires, tapes) [2, 3] have stimu-
lated an active search for new superconductors and
detailed investigations into the superconductivity of
other metal borides.

A comparative analysis of different classes of binary
(semiborides Me2B, monoborides MeB, diborides
MeB2, tetraborides MeB4, and a number of higher
borides, such as hexaborides MeB6, dodecaborides
MeB12, and MeB66-like borides), ternary, and quater-
nary borides [3] has demonstrated that the majority of
the known superconductors are characterized by a rela-
tively low boron content (B/Me ≤ 2.0–2.5). These crys-
tals contain boron in the form of isolated atoms or lin-
ear and planar structures (chains or networks of boron
atoms).

The superconducting properties are less pronounced
in higher borides (B/Me ≥ 6), whose structure is formed
by stable polyhedral groupings of boron atoms, namely,
octahedra B6 (MeB6), icosahedra B12 (MeB12), or their
combinations (MeB66). For example, among the large
number of metal borides containing B12 polyhedra,
low-temperature superconductivity is found only for
four MeB12 phases (Me = Sc, Y, Zr, Lu) [3].

It should be noted that the most stable crystalline
modifications of elemental boron (α-B12, β-B105), in
which the main structural units are boron polyhedra
(icosahedra or giant icosahedra B84), exhibit semicon-
ductor properties under equilibrium conditions [4–7].
Recent experiments on compression under ultrahigh
pressures have revealed that polycrystalline rhombohe-
1063-7834/03/4508- $24.00 © 21429
dral β-B105 transforms into a superconducting state
(TC ≈ 11.2 K) at pressures above 250 GP [8].

The aim of the present work was to investigate the
band structure of two of the aforementioned higher
borides, namely, the low-temperature superconductors
YB12 and ZrB12, and to analyze the electronic factors
responsible for their superconducting properties. For
this purpose, the energy bands, the densities of states,
and the partial compositions of the near-Fermi bands of
yttrium and zirconium dodecaborides were calculated
and compared with the relevant parameters for boride
phases of these metals with a low boron content
(B/Me = 2), such as AlB2-like layered diborides, YB2
and ZrB2, in which no superconductivity is observed
[3], and superconducting MgB2.

2. OBJECTS OF INVESTIGATION
AND CALCULATION TECHNIQUE

As was already noted, the basic polyhedra of isos-
tructural YB12 and ZrB12 cubic phases (UB12 type,

space group -Fm3m) are polyatomic clusters with
icosahedral symmetry B12. The structure of these dode-
caborides can be formally represented as a simple
structure of the rock-salt type in which metal atoms
(Me = Y, Zr) occupy sodium sites, whereas the B12
icosahedra are centered at chlorine sites [9]. The unit
cell contains 52 atoms (Z = 4) with the following coor-
dinates: 4Me (a) 0, 0, 0; 48B (i) 1/2, x, x (x = 0.166).

In order to elucidate the role played by the metal
atoms and B12 polyhedra in the formation of the band
structure of MeB12 compounds, we also calculated the
band structure for two hypothetical crystals. These
crystals were simulated by the following methods:
(i) removal of an Me atom from the MeB12 lattice

Oh
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(hB12, where h is a metal vacancy) and (ii) substitution
of boron atoms for Me atoms (BB12). For these model
dodecaborides, we used the structural parameters of
YB12.

The band structures of the above systems were cal-
culated using the scalar relativistic self-consistent full-
potential linearized muffin-tin orbital (FLMTO)
method [10, 11] with allowance made for the
exchange–correlation effects in the framework of the
generalized gradient approximation [12, 13]. The den-
sities of states were calculated by the tetrahedron
method. The structural parameters of the studied
borides were optimized. The results obtained are given
in Table 1.

3. RESULTS AND DISCUSSION

The results of calculations of the band structures of
yttrium and zirconium dodecaborides are presented in
Figs. 1 and 2. Let us consider the specific features of the
formation of their energy bands in comparison with the
hypothetical dodecaboride hB12 (Fig. 1). For this com-
pound, the energy dispersion of the bands is determined
by a rather complex system of intraicosahedral and
intericosahedral B–B bonds. The total width of the
valence band of the hB12 compound (without regard for
the low-energy quasi-core B 2s bands located ~14 eV
below the Fermi level EF) is determined to be ~10.3 eV.
The valence band contains two groups of hybrid B 2s
and B 2p bands in the ranges from –11.0 to –8.80 and
from –8.45 to 0 eV, which are separated by an energy
gap of ~0.4 eV. The lower bands are composed mainly
of B 2s states, and the upper bands are formed by B 2s
and B 2p states. Depending on their participation in the
effects of interatomic bonding in the crystal, the B 2s
and B 2p states of the upper bands can be divided into
three types.

Electron states of the first type are the B 2s and B 2p
bonding states, which are responsible for the formation
of intracluster covalent bonds, specifically of three-cen-
ter B–B bonds in planes of the icosahedron faces. In
turn, these bonds are responsible for the stabilization of
individual B12 polyhedra and depend only slightly on
the type of packing in the crystal (symmetry of the B12
sublattice) and in the icosahedra (B12–B12). Similar

Table 1.  Critical transition temperatures (TC, K) [3] and lat-
tice parameters (Å) for YB12, ZrB12, YB2, and ZrB2

Boride TC

[9] Our data

a c a c

YB12 4.7 7.506 – 7.469 –

ZrB12 5.8 7.408 – 7.419 –

YB2 – 3.303 3.842 3.212 4.008

ZrB2 – 3.165 3.547 3.170 3.532
P

bands reside in polymorphic modifications of elemental
boron, whose lattices are formed by B12 clusters [4–7],
and virtually retain their form in YB12 and ZrB12
(Fig. 1).

The second type of electron states involves B 2s and
B 2p bonding states responsible for the formation of
intericosahedral bonds. Electron states of the third type
are the B 2s and B 2p nonbonding states localized in the
vicinity of empty sites of the hB12 dodecaboride. These
states form partially occupied quasi-flat bands near the
Fermi level EF and correspond to narrow resonance
peaks B' and B'' in the density of states (Fig. 3). As a
result, the energy spectrum of the hB12 dodecaboride
exhibits a metal-like nature. This is in contrast with the
spectrum of the stable semiconductor α-B12 [4–7], in
which the bands are occupied completely.

The metallization of hypothetical hB12 is associated
with a deficit of electrons due to a partial transfer of the
electron density into the region of empty spheres at the
yttrium sites in the YB12 structure. According to our
estimates, each of these spheres accumulates up to
~0.95e. As a consequence, the upper valence bands are
partially free and the system, as a whole, has a high
density of states at the Fermi level [N(EF) =
6.1771 1/eV cell]. It should be noted that these states
are approximately 96 percent composed of B 2p
orbitals.

The energy spectrum of hB12 is characterized by a
band gap (~1.36 eV, the direct transition at the X point),
which is comparable to the band gap of α-B12 (~1.43–
1.70 eV, the indirect transition Z  Γ [4–7]).

We also calculated the band structure of a BB12
hypothetical dodecaboride isoelectronic to YB12 in
which the superstoichiometric boron atoms are substi-
tuted for yttrium atoms. It was found that the valence s
and p states of these atoms are localized in the vicinity
of the Fermi level EF and are occupied only partially.
These states are responsible for the metal-like nature of
the energy spectrum of BB12 with the density of states
at the Fermi level N(EF) = 3.0341 1/eV cell. The main
contribution to N(EF) is also made by the B 2p states
(~72%).

Thus, the near-Fermi regions of hB12 and BB12
hypothetical crystals have a similar structure. The
former crystal can be treated as a structural model of
elemental boron with a disordered lattice formed by B12
icosahedra. The structure of the latter crystal simulates
the presence of intericosahedral boron atoms in the
crystal. Both systems have a metal-like energy spec-
trum with a high density of B 2p states at the Fermi
level.

Papaconstantopoulos and Mehl [14] believed that a
similar structure of the near-Fermi states is responsible
for pressure-induced superconductivity of boron. How-
ever, the inferences made by the authors in [14] were
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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based on calculations of the band spectrum of a hypo-
thetical face-centered cubic phase of boron.

The results obtained suggest that the superconduct-
ing transition observed in [8] for β-B can be induced
not only by lattice distortions but also by a partial
destruction of initial B12 icosahedra during which part
of the boron atoms occupy intericosahedral sites under
high external pressures. Owing to the high cohesive-
ness of elemental boron [4–7], these effects can become
more probable than the phase transition β-B  face-
centered cubic boron [14]. The final conclusion regard-
ing the most probable mechanisms of structural trans-
formations of the boron lattice and the stabilization of
its possible crystal structures under high pressures calls
for evaluation of the energy effects.

The main differences between the band structures of
YB12 and hB12 are associated with the valence s, p, and
d states of yttrium. These states are hybridized with
outer B 2p states, which form both intericosahedral
bonds in the hB12 system and nonbonding quasi-flat
bands near the Fermi level EF. The width of the valence
band in YB12 is approximately equal to 12.98 eV. The
valence band involves two groups of completely occu-
pied hybrid B 2s and B 2p bands 2.82 and 8.89 eV wide
which are separated by a pseudogap (bands A, B in
Fig. 2). Near-Fermi bands of the hybrid Y–B type pos-
sess a considerable energy dispersion.

Upon the transition YB2  ZrB2, the band struc-
ture, as a whole, changes insignificantly. The main
effect is associated with the band occupation due to an
increase in the electron concentration in the system
(Fig. 1).

It should be noted that the Fermi level EF for YB12
and ZrB12 is located in the region of an extended pla-
teau in the density of states between the bonding and
antibonding bands formed by the B 2s and B 2p states
(Fig. 2). The change in the metal sublattice type (YB2,
ZrB2) affects both the profile of the density of states for
these phases and the magnitude and composition of
N(EF) only slightly. It can be seen from Table 2 that, in
the given sequence of borides, the density of states at
the Fermi level N(EF) increases by no more than ~16%
and the dominant contribution to the density of states
N(EF) is made by the Me 4d states.

Therefore, reasoning from the shape of the elec-
tronic spectra, we can conclude that attempts to dope
binary dodecaborides (for example, when preparing
YxZr1 – xB12 solid solutions) with the purpose of opti-
mizing their superconducting properties, which are
very efficient for controlling the critical temperatures
TC of other superconducting borides (such as MgB2 [2,
3] or YNi2B2C [7, 15]), will be inefficient for MeB12
phases.

However, the specific features of the electronic
spectrum of the MeB12 phases indicate that their super-
conducting properties are stable to changes in the
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
chemical composition of the system. In other words,
the synthesis conditions of MeB12 low-temperature
superconductors should not impose rigid requirements
on the stoichiometry of the prepared samples, unlike
the synthesis of MgB2 or YNi2B2C superconductors.

It is known that YB12 and ZrB12 are classical
Bardeen–Cooper–Schrieffer systems with the electron–
phonon mechanism of superconductivity [3]. For these
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(III) boron sublattices of (a) YB12 and (b) ZrB12.
systems, the important parameter responsible for the
formation of their superconducting properties is the
orbital composition of the density of states N(EF) [16].
According to our data, an increase in the critical tem-
perature Tc from 4.7 (YB12) to 5.8 K (ZrB12) [3] can be
caused by an increase in the contribution of the Me 4d
states to the density of states N(EF) from 0.532 (YB12)
to 0.743 1/eV cell (ZrB12). Note that the contributions
of all the other valence states remain virtually
unchanged (Table 2).

Let us now compare the specific features of the band
structure of MeB12 with those of AlB2-like layered
diborides of these metals and of the isostructural super-
conductor MgB2, which we calculated in the frame-
P

work of the method used in the present work. The band
structure of the above diborides was described in our
recent paper [17]. As was shown in [2, 3, 17–20], the
specific features of the band structure of superconduct-
ing MgB2 are governed by the σ(2px, y) and π(pz) states
of boron. Quasi-two-dimensional bands of the B 2px, y

type intersect the Fermi level EF and are responsible for
the metal-like properties of MgB2 (Table 2). One of the
most important features of MgB2 is the existence of B
2px, y hole states. In the Γ–A direction, these states
reside above the Fermi level EF and form hole-type
cylindrical elements of the Fermi surface [17–20]. By
comparing the band structures of diborides in the series
MgB2  YB2  ZrB2 (Fig. 4), we revealed the fol-
Table 2.  Total density of states and orbital contributions at the Fermi level (1/eV cell)

Boride Total density of states Me s Me p Me d B s B p

YB12 1.458 0.005 0.003 0.532 0.033 0.885

ZrB12 1.687 0.008 0.006 0.743 0.042 0.888

YB2 1.665 0.042 0.106 0.983 0.001 0.294

ZrB2 0.163 0.001 0.002 0.130 0.001 0.030

MgB2 0.719 0.040 0.083 0.138 0.007 0.448
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BAND STRUCTURE OF SUPERCONDUCTING DODECABORIDES 1433
lowing fundamental differences between the supercon-
ductivity of YB2 and ZrB2 and the superconductivity of
MgB2: (i) the occupation of B 2px, y bonding bands and
the absence of hole-type σ states in YB2 and ZrB2,
(ii) an enhancement of the interaction between the
boron and metal layers in YB2 and ZrB2 due to the
hybridization of B 2p and M d states (an increase in the
dispersion of boron σ bands in the Γ–A direction of the
Brillouin zone), and (iii) changes in the magnitude and
orbital composition of the density of states N(EF),
among which the valence 4d states of metals play the
dominant role for YB2 and ZrB2 (Table 2).

In the series MgB2  YB2  ZrB2, the contribu-
tions of the B 2p states to N(EF) decrease monotoni-
cally. By contrast, the contributions of the Me 4d states
vary nonmonotonically and reach a maximum for YB2.
The lowest density of states at the Fermi level N(EF) is
observed for ZrB2, in which the Fermi level is located
in the pseudogap between the bonding and antibonding
states. This circumstance suggests that the supercon-
ducting properties are less probable for ZrB2. This is in
agreement with the results obtained by Leyarovska and

I

A

B

B'

B''

II

III

1
2

1

10

5

0

1

0

5

0
–12 –9 –6 –3 0 3 6

E, eV

N
(E

),
 1

/e
V

 c
el

l
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Leyarovski [21], according to which no critical transi-
tion in ZrB2 occurs down to T < 0.7 K.

4. CONCLUSIONS

Thus, in this work, we analyzed the parameters of
the band structure of UB12-like dodecaborides of
yttrium and zirconium. It was demonstrated that an
increase in the critical temperature TC (by ~1.1 K) upon
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the transition YB2  ZrB2 correlates with an increase
in the contribution of the Me 4d states to the near-Fermi
region. The characteristic feature of the band structure
of these borides is the location of the Fermi level EF in
the region of an extended plateau in the density of states
between the bonding and antibonding bands. This
implies that the superconducting properties of these
phases are sufficiently stable to variations in their
chemical composition.

The absence of superconductivity in yttrium and zir-
conium borides with a low boron content, especially in
yttrium and zirconium layered diborides, was explained
in terms of the fundamental differences between their
band spectra and the band spectrum of the isostructural
superconductor MgB2.

Based on the results of the band calculations per-
formed for hB12 and BB12 hypothetical dodecaborides,
we assumed that the transformation of β-boron into the
superconducting state under high pressures [8] can be
caused by the metallization of the system due to distor-
tions of the crystal lattice and a partial destruction of
B12 polyhedra, during which part of the boron atoms
occupy intericosahedral sites.
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Abstract—Intracenter luminescence (IL) of Mn2+ in Zn1 – xMnxSe (x = 0.07, 0.02) was studied under pulsed
excitation by the neodymium laser second harmonic. At 4 K, the IL saturation originates from the nonlinearity
of the system only at the instant of excitation, the IL decay kinetics after the exciting pulse termination depend-
ing only weakly on the pumping level. At 77 K, the decay kinetics in Zn0.93Mn0.07Se depends substantially on
the pumping level, because the migration of intracenter excitation over the manganese ions initiates up-conver-
sion, which is a slow nonlinear process. As shown by IL decay measurements in Zn0.98Mn0.02Se (x = 0.02), exci-
tation migration over the Mn2+ ions is insignificant even at a high temperature and under strong optical pump-
ing. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The best known family of dilute magnetic semicon-
ductors (DMSs) is the II–VI compounds, with part of
the cations substituted for by iron-group ions (manga-
nese is most frequently used at high magnetic ion con-
centrations). The specific properties of DMSs originate
from the strong exchange coupling of the manganese
ions with one another and with electrons (antiferromag-
netism, the giant magnetooptic Zeeman and Faraday
effects, magnetic polarons). Another feature of the
DMSs is the optical transitions between the levels of
the unfinished 3d shells of iron-group ions, which pro-
duce intracenter absorption (IA) and intracenter lumi-
nescence (IL). To date, intracenter transitions have been
sufficiently studied for high concentrations of magnetic
ions in Cd1 – xMnxTe (x > 0.4) [1–8] and for their low
concentrations in the wide-band-gap crystals
Zn1 − xMnxSe (x = 10–2–10–3) [9, 10]. Intracenter transi-
tions in crystals with an Mn2+ concentration on the
order of a few percent have been studied to a much
lesser degree. This concentration region is of interest
because it contains the threshold for intracenter excita-
tion migration over manganese ions.

Many publications have appeared recently on stud-
ies of manganese IL in two-dimensional layers and
nanocrystals of the II–VI compounds [11–19]. The
interest in these crystals stems from the changes in the
sp–d interaction and in the conditions of migration of
intracenter excitations observed as one goes over from
bulk crystals to two- and zero-dimensional quantum
systems. A decrease in the dimensionality of a system
should considerably affect the kinetics, quantum yield,
and temperature dependence of the IL. Extending
experimental and theoretical studies to nanostructures
1063-7834/03/4508- $24.00 © 21435
requires detailed information on the relaxation of intra-
center excitation in bulk matrices of the II–VI com-
pounds for as broad a range of magnetic component
concentrations as possible.

This communication reports on a study of intrac-
enter transitions occurring in a bulk Zn1 – xMnxSe crys-
tal with x = 0.02 and 0.07. Attention is focused on the
IL saturation and the dependence of the IL kinetics on
temperature and the optical excitation level.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

The ZnSe crystals were grown using the Bridgman
method. A manganese layer was evaporated on the
crystal surface in vacuum, and Mn2+ ions were subse-
quently thermally diffused into the lattice and occupied
cation positions. This method of manganese incorpora-
tion naturally results in a nonuniform manganese distri-
bution over the bulk crystal. The elemental composition
was determined at different points of the sample by
using x-ray microprobe analysis; two regions with the
above manganese concentrations were selected for
optical studies.

The IL was excited by 0.18-µs-long neodymium
laser pulses emitted at a repetition frequency of 2 kHz;
when the focusing was sharp enough, an excitation
level Ie in excess of 106 W cm–2 was attained. The pho-
ton energy was 2.34 eV (the second harmonic), which
is less than the width of the Zn1 – xMnxSe band gap.
Thus, the excitation was made directly into the first
absorption band of Mn2+ 3d transitions (6A1–4T1 transi-
tion), with the band electronic states of the crystal not
being involved in the single-photon process. Dia-
003 MAIK “Nauka/Interperiodica”
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phragms were employed to cut off the peripheral part of
the laser spot on the sample, so that the IL was detected
only from the region of uniform excitation. In our
experiments, the uniformity is important, because
strong pumping saturates the IL, which can make the
contribution due to weakly excited regions noticeable.
The IL kinetics was measured at a number of points in
its band profile at temperatures of 4 and 77 K.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The Stokes shift in the intracenter absorption spec-
tra increases with increasing manganese concentration,
with the maximum of IA shifting toward higher ener-
gies and the maximum of IL, toward lower energies
(Fig. 1), thus indicating enhancement of the electron–
phonon coupling. Another reason for the energy shifts
of the intracenter transitions could be a change in the
crystal field acting on the Mn2+ ion as the zinc is
replaced by manganese; in this case, however, the IA
and IL bands shift in the same direction in accordance
with the change in the zero-phonon transition energy.

At 4 K, the kinetic curves measured at different val-
ues of Ie differ from one another only slightly (Fig. 2a),
but the IL intensity saturates with increasing Ie. One
may conclude that the saturation is due to a fast nonlin-
ear process, which is not detected directly in our exper-
imental conditions. This process is most likely two-step
excitation of the Mn2+ ion, which is favored by the long
ion lifetime in the lowest excited state 4T1–6A1. The effi-
ciency of two-step excitation of the Mn2+ 3d shell in II–
VI-compound matrices is substantiated by the fact that
excitation of Cd0.5Mn0.5Te crystals with a continuous
He–Ne laser (photon energy 1.96 eV) reveals the whole
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Fig. 1. Transmission and luminescence spectra of
Zn0.98Mn0.02Se (solid lines) and Zn0.93Mn0.07Se (dashed

lines) obtained in the region of Mn2+ intracenter transitions.
T = 77 K.
P

IL band peaking at 2.0 eV [20]. The two-step excitation
of manganese can occur via the Mn2+ levels or with the
involvement of impurity levels of a different origin that
lie considerably lower than the intracenter absorption
threshold. Two-photon excitation of the 3d shell is also
possible; when estimating its contribution, one should
take into account that the single-photon transition 4T1–
6A1 in the Mn2+ ion is an intercombination transition
and, hence, is forbidden in the dipole approximation.
This transition becomes partially allowed due to the
odd component of the crystal field and to the interaction
of the 3d electrons with phonons. Processes involving

two photons depend on  and bring about saturation of
Il, because the energy of at least one photon transferring
an electron from the lowest excited state 4T1–6A1 to a
higher lying state of the Mn2+ ion or to the Zn1 – xMnxSe
conduction band dissipates in a nonradiative way. Such
processes take place only during the action of a laser
pulse on the Mn2+ ions. As a result of the IL kinetic
curves measured at 4 K being identical for different Ie,
the shape of the IL saturation curve does not depend on
the time interval t0 between the pump pulse and the
instant of the IL intensity measurement (Fig. 3b).

At 77 K, the IL decay kinetics depends strongly on
the excitation level for times t0 < 15 µs (Fig. 2b). For
this reason, the shape of the IL saturation curve varies
with the delay time t0 (Fig. 3a). As already mentioned,
processes involving two photons play a certain role dur-
ing the pump pulse at low temperatures. These pro-
cesses do not affect the shape of the kinetic curve,
which was measured with a resolution not better than
the laser pulse length. If the dopant concentration is
high enough, an increase in temperature initiates the
migration of intracenter excitations. In this case, up-
conversion becomes significant, because it is a slow
nonlinear process directly connected to migration [21];
the part this process plays increases with increasing Ie

and is proportional to the squared number of excited
manganese ions. Experimentally, the up-conversion
manifests itself in the dependence of the IL kinetic
curves, Il(t), on the pumping level Ie. Up-conversion
grows in strength with increasing Ie, and the IL decay
time in the initial part of the kinetic curve decreases.

As seen from a comparison of the kinetic curves
obtained at the center of the IL band for large and small
values of Ie at 77 K, the pump level Ie plays a noticeable
part for Zn1 – xMnxSe with x = 0.07, whereas for x =
0.02, its effect is negligible (Fig. 2c). This suggests that
a manganese concentration of about 2% is close to the
concentration threshold for intracenter excitation
migration at 77 K for the ZnSe matrix. The clearly pro-
nounced variation of the kinetics within the IL band
profile at T = 77 K (Fig. 2d) likewise indicates that a
substantial role is played by intracenter excitation
migration for x = 0.07.

Ie
2
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Fig. 2. Decay kinetics of Mn2+ intracenter luminescence in Zn1 – xMnxSe (in panels (c) and (d), the luminescence intensity is nor-
malized to zero delay). (a) x = 0.07, T = 4 K; the values of the pump level Ie are (1) 1, (2) 0.65, (3) 0.43, (4) 0.15, (5) 0.06, (6) 0.02,

and (7) 0.002 MW cm–2; dashed lines are plots of the rate equation (2). (b) x = 0.07, T = 77 K; Ie is equal to (1) 1, (2) 0.28, (3) 0.15,

(4) 0.06, (5) 0.02, and (6) 0.002 MW cm–2; dashed lines represent calculated values of Il upon termination of the pump pulse.
(c) Decay curves at the luminescence band maximum for (1, 2) x = 0.02 and (3, 4) 0.07 obtained for Ie equal to (1, 3) 0.01 and

(2, 4) 2 MW cm–2; T = 77 K. (d) Decay curves for x = 0.07 obtained at points of the luminescence band profile corresponding to
energies of (1) 2.01, (2) 2.10, and (3) 2.18 eV for Ie = 0.02 MW cm–2; T = 4 K.

0

At some points in the x = 0.07 crystal, the IL decay
time in the tails of the kinetic curves at 77 K was
observed to increase with increasing Ie. This effect can
be assigned to the recharging of a substantial part of the
centers responsible for the nonradiative recombination
of intracenter excitation of the Mn2+ ions (such centers
can be native defects and iron-group ions other than
manganese). If these centers in a new charge state can
no longer quench the IL and remain in this state long
enough, the IL decay time increases in the region of
large t0 where up-conversion is already insignificant.

Knowing the intracenter absorption coefficient at
the pump frequency, the laser pulse parameters, and the
Mn2+ lifetime in the excited state 4T1, one can estimate
the relative concentration of ions residing in the excited
state upon termination of the laser pulse. Our estima-
tion was based on the assumptions that (i) the manga-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
nese ion lifetime in the 4T1 state against the radiative
transition to the ground state and excitation transfer to
another excited ion is long compared to the laser pulse
duration and (ii) each absorbed photon excites the Mn2+

ion to the 4T1 state. In this case, the concentration of
excited ions under strong pumping is a few percent, so
the effect of saturation on the dependence of the IL
kinetics on Ie should be small. Note that taking two-
photon and two-stage processes into account reduces
the calculated excited-ion concentration.

The IL properties can be described in the following
way. Because of inhomogeneous broadening, the man-
ganese ions residing in different cation environments (a
single ion, ion in a small manganese cluster, ion at the
center and in the periphery of a large cluster, and so on)
have different excited-state energies and different radi-
ative recombination rates w. There are k types of Mn2+
3
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ions. At 4 K, the IL intensity decay after termination of
the laser pulse is described by a sum of exponentials,
which are solutions to coupled linear differential equa-
tions of the type

where nk and wk are the population and radiative recom-
bination rate for the lowest excited state 4T1 of Mn2+

ions of the species k. To take into account the processes
occurring during the pump pulse, we introduce the gen-
eration rate G into the rate equation. The nonlinear term
accounting for the luminescence saturation is nonzero
at 4 K only during the laser pulse and can be included
in the generation rate G. Now, the coupled equations
take on the form

(1)

ṅk = –wknk{ } k,

ṅk = –wknk G t I las,( )+{ } k.
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Fig. 3. Intensity Il at the maximum of the Mn2+ intracenter
luminescence band in Zn0.93Mn0.07Se plotted vs. the pulsed
excitation level Ie for a photon energy of 2.35 eV. The values

of Il are normalized to the excitation level Ie = 1 MW cm–2.
(a) T = 77 K; measurement time delays t0 are 0 (circles), 10
(crosses), and 35 µs (squares); the curve labeled by open
circles corresponds to a time-integrated value of Il. (b) T =
4 K; the relations are the same for all values of t0.
P

We write the generation term in the form G(t, Ilas) =

F(Ie)Ilas(t), where Ie =  (τ is the laser pulse

duration) and Ilas is the instantaneous value of the laser
pump intensity. The experimental curves of the IL sat-
uration are well fitted if we assume the existence of two
mutually interacting radiative recombination channels
for intracenter excitation whose relative contribution
depends on the value of Ie. These channels can be iden-
tified with the single-photon and two-stage (double-
photon) IL excitation. This situation can be quantified
by the relation aI + bI2 = Ie, where I is a quantity pro-
portional to the IL intensity. In this case, we have

(2)

i.e., the generation rate depends on the excitation level
in a complex manner, and this dependence governs the
IL saturation. As follows from numerical processing of
the experimental data, at 4 K, it is sufficient to take into
account in Eq. (1) two species of Mn2+ ions (k = 1, 2)
with the radiative recombination ratio w1/w2 = 3.

To describe the IL kinetics at high temperatures (T =
77 K), one should add a nonlinear term responsible for
up-conversion to the rate equation (1). In this case,
Eq. (1) can be recast as

where the generation rate has the same form as in
Eq. (1). Because up-conversion is efficient only under
intracenter excitation migration, the coefficient qk will
have a noticeable value only for the Mn2+ ions that are
contained in large clusters.
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Abstract—The problem of generation of the selection rules for a transition between Bloch states at any point
of the Brillouin zone in crystals is equivalent to the problem of the decomposition of Kronecker products of two
representations (reps) of a space group into irreducible components (the full group method). This problem can
be solved also by the subgroup method where small reps of little groups are used. In this article, we propose a
third method of generation of the selection rules, which is formulated in terms of projective reps of crystal point
groups. It is based on a well-known relation between small irreducible reps (irreps) of little space groups and
projective irreps of the corresponding little cogroups. The proposed procedure is illustrated by calculations of
the Kronecker products for different irreps at the W point of the Brillouin zone for the nonsymmorphic space

group , which is one of the most complicated space groups for the generation of selection rules. As an exam-
ple, the general procedure suggested is applied to obtain the selection rules for direct and phonon-assisted elec-

trical dipole transitions between certain states in crystals with the space group . © 2003 MAIK
“Nauka/Interperiodica”.
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* 1. INTRODUCTION 

Knowledge of the selection rules is well known to
be of great importance in the study of the optical prop-
erties of crystals, electron–phonon interaction, and
phase transitions in solids. It is evident that the genera-
tion of selection rules for transitions between states
related to the center k = 0 of the Brillouin zone (BZ)
can be expressed in terms of representations (reps) of
the crystal point group. For direct transitions between
the states with k ≠ 0 and for indirect transitions, the
generation of selection rules is more complex because
of the complicated structure of the space group reps
(subgroup method [1–4], full group method [5]). 

The optical properties at the Γ point in the BZ of
materials used for optoelectronic devices are of crucial
importance since the materials are direct gap semicon-
ductors. Among them, one can find stoichiometric crys-
tals (such as GaAs, InP, or CaN) and alloys (for exam-
ple, ternary compounds, such as AlGaAs, or quaternary
compounds, such as GaInAsS and GaInAsSb). In any
of these materials, the fundamental optical transition
takes place at the Γ point, insuring strong absorption
and recombination. By varying the ratios of various ele-
ments in the alloys, it is possible to tailor the band gap
value at point Γ to fit the required operating wave-
length. Many nanostructures, such as quantum wells
(QWs), superlattices (SLs), quantum wires (QWIs),
and quantum dots (QDs), are made of the materials
mentioned above. Nanostructures are usually studied in
the envelope function approximation based on the

* This article was submitted by the authors in English.
1063-7834/03/4508- $24.00 © 21440
properties of the Bloch functions at the Γ point in the
BZ of the bulk materials they are built from. 

On the other hand, germanium Ge and silicon Si (the
most widely used semiconductors) have indirect gaps.
Silicon is used to build integrated circuits and other
devices based on charge transport phenomena (GaAs
and related compounds can also be used for such
devices when a high carrier mobility is needed). Some
nanostructures, such as type II GaAs/AlAs SLs, also
have indirect gaps. 

In any bulk semiconductor or semiconductor struc-
ture, it is necessary to study direct transitions also at
points in the BZ other than Γ and indirect transitions
when one or both states correspond to k ≠ 0 (participa-
tion of a particle with a finite wave vector). The more
frequent case is that of phonon assisted transitions.
Note that the high symmetry points in the BZ are par-
ticularly important since they generally correspond to a
high density of phonon states. Deduction of the selec-
tion rules in the general case is much more complicated
since the symmetry of the Bloch states and hence the
selection rules depend on the location of the BZ points
involved in the process. 

In [3, Chapter 4], the procedure for generating selec-
tion rules in the crystals is based on a sufficiently
refined mathematical groundwork (double and triple
coset decompositions of space groups, use of the
Mackey theorem for induced reps). This procedure was
realized using a computer program, and the results
were collected in the three-volume tables [4]. 
003 MAIK “Nauka/Interperiodica”
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A simpler approach to the selection rule problem
can be developed based on the well-known relation
between small irreducible reps (irreps) of little space
groups and projective irreps of the corresponding little
cogroups [6, 7]. We demonstrate in this paper that the
procedure of generation of the selection rules for a tran-
sition between any states in a crystal can be formulated
in terms of projective irreps of point groups. In Section
2, all the necessary notations are introduced and the
connection between irreps of space groups and projec-
tive irreps of point groups is considered in detail. The
general procedure of generation of the selection rules is
formulated in Section 3. Each step of its realization is
illustrated by calculations of the Kronecker products
for different irreps at the W point of the BZ for nonsym-

morphic space group , which is one of the most
complicated space groups for the generation of selec-
tion rules. In Section 4, as an example, the general pro-
cedure is applied to obtain the selection rules for direct
and phonon-assisted electrical dipole transitions

between some states in crystals with space group .

2. CONNECTION BETWEEN SMALL 
REPRESENTATIONS OF SPACE GROUPS 
AND PROJECTIVE REPRESENTATIONS

OF POINT GROUPS 

Let the space group G of a crystal consist of the ele-
ments g = (R |vR + an) ∈  G, where the orthogonal oper-
ation R is followed by the improper translation vR and
lattice translation an. The vectors an form the invariant
subgroup T of the space group G (T v G). The point
group F of the nF orthogonal operations R describes the
symmetry of directions in the crystal and is called the
crystalline class or point symmetry group of the crystal.
The set of left cosets (Ri |vi)T in the decomposition of G
with respect to the translation subgroup T, 

(1)

forms a factor group G/T isomorphic to the point group
F (F  G/T) of order nF. The translation group T is
Abelian. All its irreps are one-dimensional and are clas-
sified by wave vectors k in the BZ: 

(2)

The elements g ∈  G leaving the wave vector k
invariant up to reciprocal lattice vector Bm,

(3)

form the little group Gk of the wave vector k. The group
G–k consists of the same elements as the group Gk. The
little cogroup Fk = F–k includes the elements R(k)

((R(k) | ) ∈  Gk). The representatives gi = (Rj |vj) of

Oh
7

Oh
7

G Ri vi( )T
i 1=

nF

∑=

d
k( ) an( ) ikan–( ).exp=

g
k( )k R

k( )k k Bm+= =

v
R

k( )
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left cosets gjGk in the decomposition of G with respect
to Gk ⊂  G, 

(4)

determine the so-called irreducible star *k of the wave
vector k consisting of wave vectors t: 

(5)

The little groups  for different points of the star
*k are isomorphous to the little group Gk: 

(6)

The irreps of G (full irreps) are labeled by the irre-
ducible star *k of the wave vector k and by the index γ
numbering the inequivalent irreps within the same star

*k: . The full irrep  of G is in a one-to-
one correspondence with the small irrep [Gk]γ of Gk ⊂
G and is obtained from the latter by the induction pro-
cedure [7, 8]:

(7)

The set of all small irreps of all little groups Gk, with k
being in a representation domain of the BZ, determines
unambiguously all the irreps of the space group G. That
is why the tables of space group irreps, as a rule, con-
tain the small irreps of little groups Gk [3, 9–12]. 

The matrices (gi, n) (gi, n ∈  Gk) of the small
irreps [Gk]γ of Gk are in one-to-one correspondence

with the matrices (Ri) of the so-called projective
irreps [Fk]γ of Fk as follows: 

(8)

In particular, the matrices (gi, 0) and (Ri)
coincide 

(9)

The multiplication law for the matrices (Ri) of
projective irreps [Fk]γ of a cogroup Fk follows from the
multiplication law for space group elements:

(10)

G g jGk, g1

j 1=

t

∑ E 0( )= =

*k: k j g jk R jk, j 1 2 … t., , ,= = =

Gk j

Gk j
g jGkg j

1–
.=

G[ ] γ
*k( )

G[ ] γ
*k( )

G[ ] γ
*k( )

Gk[ ] γ ↑ G.=

D
Gk[ ] γ( )

d
Fk[ ] γ( )

D
Gk[ ] γ( )

gi n,( ) e
ikan–

d
Fk[ ] γ( )

Ri( ),=

gi n, Ri vi an+( ) Gk, Ri Fk.∈ ∈=

D
Gk[ ] γ( )

d
Fk[ ] γ( )

D
Gk[ ] γ( )

gi 0,( ) d
Fk[ ] γ( )

Ri( ),=

gi 0, Ri vi( ) Gk, Ri Fk.∈ ∈=

d
Fk[ ] γ( )

d
Fk[ ] γ( )

Ri( )d
Fk[ ] γ( )

Ri '( )

=  d
Fk[ ] γ( )

RiRi '( )ω k( )
Ri Ri ',( ),
3
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where the set of 

(11)

is a factor system for the projective irreps [Fk]γ (gi ', 0 =
(Ri , Ri ' |vii ') ∈  Gk). The characters of these projective
irreps can be taken directly from tables [3, 9, 10, 12]. If
all the factors in (11) are equal to unity, then the projec-
tive irrep becomes an ordinary one. In particular, this is
the case of all the little cogroups Fk of all the symmor-
phic space groups (since all vj ' = 0).

There exist projective irreps  with another
choice of the factor system (p-equivalent to [Fk]γ): 

(12)

They are used in [11]. The matrices (gi, 0) and

(Ri) differ only by the factor : 

(13)

Let relation (8) between the reps [Gk]γ of Gk and
[Fk]γ of Fk be denoted by the symbols 

(14)

Then, the relation between the irreps  of

space group G and the projective irreps [Fk]γ or 
of little cogroups has the form

(15)

The basis functions of irreps  of space group
G can always be chosen to be the basis functions of
small irreps [Gk]γ of little groups Gk and projective

irreps [Fk]γ (or ) of little cogroups Fk. 

For generation of the selection rules, it is necessary
to consider the direct product of small reps of two of the
little groups. The latter is possible only for the common
elements of little groups, i.e., for their intersection. Let

 and  be small reps of the two little groups

 and . The direct product of their subductions

on their intersection (  ↓  (  ∩ ) × 

ω k( )
Ri Ri ',( ) e

ik vi Rivi ' vi i ',–+( )–
,=

ω Ri Ri ',( ) 2
1, Ri Ri ' Fk∈,=

Fk[ ] γ

D
Fk[ ] γ( )

gi n,( ) e
ik vi an+( )–

d
Fk[ ] γ( )

Ri( ),=

gi n, Ri vi an+( ) Gk, Ri Fk,∈ ∈=

ω k( )
Ri Ri ',( ) e

i k Ri
1–
k–( )vi ' ,=

ω Ri Ri ',( ) 2
1, Ri Ri ' Fk.∈,=

D
Gk[ ] γ( )

d
Fk[ ] γ( )

e
ikvi–

D
Fk[ ] γ( )

gi 0,( ) e
ikvi–

d
Fk[ ] γ( )

Ri( ),=

gi 0, Ri vi( ) Gk, Ri Fk.∈ ∈=

Gk[ ] γ Fk[ ] γ ⇑  Gk, Fk[ ] γ Gk[ ] γ ⇓  Fk.= =

G[ ] γ
*k( )

Fk[ ] γ

G[ ] γ
*k( )

Fk[ ] γ ⇑ Gk( ) ↑ G,=

or G[ ] γ
*k( )

Fk[ ] γ ⇑ Gk( ) ↑ G.=

G[ ] γ
*k( )

Fk[ ] γ

Gk1
[ ] α Gk2

[ ] β

Gk1
Gk2

Gk1
[ ] α Gk1

Gk2
Gk2

[ ] β
P

↓  (  ∩ )) is a small rep of the group (  ∩
). Every element gi, 0 ∈  (  ∩ ) leaves invari-

ant the wave vectors k1 and k2 and, therefore, their sum
k3 = k1 + k2: (  ∩ ) ⊆  . The little group 

has no other common elements either with  or with

. Indeed, let us assume the contrary, that 

(16)

Such an element  would leave invariant k3 and k1 and,
therefore, k2 = k3 – k1; i.e., it would be contained in

 ∩  in contradiction to the initial assumption.

Let  and  be the matrices of subductions
of the projective reps  ↓  (  ∩ ) and

 ↓  (  ∩ ) of two little cogroups  and

 with factor systems (Ri , Rj) and (Ri , Rj)

(Ri , Rj ∈   ∩ ), respectively. The direct product

 ×  is a projective rep  (k3 = k1 +
k2) of the group (  ∩ ) ⊂   with the factor sys-

tem (Ri , Rj) = (Ri , Rj) (Ri , Rj). Indeed, let

(17)

be matrices of the direct product of two projective reps.
Then, 

(18)
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ω
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for both (11) and (12) factor systems. 

Let the coset representatives  ∈   in the

decomposition of  with respect to the translation
group T,

(19)

be chosen in the form  ≡ ( ); i.e., they are
among the representatives (Ri |vi) in the decomposi-

tion (1). The element  ∈  , with gj taken
from decomposition (4) (see also (6)), may differ from

 by some lattice translation. This is why the nota-

tions of the small irreps of the little groups Gk and 
(and the projective irreps of the corresponding little co-
groups) may differ. 

In particular, let  = –k. The groups Gk and G–k

are composed of the same elements. The whole set of
small irreps of the little group G–k is complex conju-
gated with respect to the whole set of small irreps of the
little group Gk, but the notations of the irreps of Gk and
of G–k may differ (see example in Section 3). 

Let Q be a group and H be its subgroup (H ⊂  Q). Let
d(α) and D(β) be irreps of H and Q, respectively. Then,
the frequency of the irrep D(β) of Q in the rep (d(α) ↑  Q)
induced by the irrep d(α) of H is equal to the frequency
of the irrep d(α) of H in the rep (D(β) ↓  H) subducted by
D(β) on H (Frobenius reciprocity theorem). This theo-
rem can be applied also to the projective irreps of a
group and its subgroup with the same factor system [6].

3. PROCEDURE OF GENERATION 
OF THE SELECTION RULES USING 

PROJECTIVE REPRESENTATIONS 
OF POINT GROUPS 

The stationary states of a system with space group
symmetry G are classified according to the irreps of G,
and their full group-theoretical notation is as follows:
|k, γ, m, µ〉 , where k = k1, k2, …, kt (star *k), m numbers
the basis vectors of the small irrep γ of the little group
Gk, and µ numbers the independent bases of equivalent
reps of Gk. 

Let us consider the selection rules for the transitions
between the stationary states |k( f ), γ( f ), m( f ), µ( f )〉  and
|k(i), γ(i), m(i), µ(i)〉  caused by an operator P (k(p), γ(p), m(p))
transforming according to the irrep (k(p), γ(p)) of G. If
the operator P transforms according to a reducible rep
of G, one can obtain the selection rules for each of its

=  d
Fk3

[ ]
αβ

( )
R1R2( )ω

k3 R1 R2,( )( )

gs
j( )

Gk j

Gk j

Gk j
gs

j( )
T , gs

1( )

s

∑ Gk∈=
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j( )
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j( ) vs

j( )

g jgs
1( )

g j
1–

Gk j

gs
j( )

Gk j

g j0
k
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irreducible components separately. The transition prob-
ability is governed by the value of the matrix element: 

(20)

The transition is said to be allowed by symmetry if
the triple direct (Kronecker) product

(21)

contains the identity irrep of G. This condition can be
rewritten in one of three forms: 

(22)

(23)

(24)

Whatever the form of the selection rules, it is necessary
to find the direct product of two (or three (21)) irreps of
the space group G (complex conjugate irreps are also
irreps of G). 

We discuss now the procedure of generating the
selection rules using projective irreps of point groups.
To illustrate each step of this procedure, we have cho-
sen the small irreps of the little group GW in the space

group  given in the tables in [9]. Note that transla-
tions an are mapped in [9] by the factor exp(ikan).
According to the general definition 

(25)

we choose the translations an to be mapped by the fac-
tor exp(–ikan). This choice does not affect the notations
used in [9] for small irreps in the case when k is equiv-
alent to –k or the small irreps [Gk]γ from [9] refer to the
wave vector –k in other cases (when k and –k are dif-
ferent vectors of the same star or belong to different
stars). 

The star *W consists of six vectors: W (1) = (1, 0, 2),
W (2) = (1, 2, 0), W (3)= (2, 1, 0), W (4) = (0, 1, 2), W (5) =
(0, 2, 1), and W (6) = (2, 0, 1) (in units of π/a along Car-
tesian axes, with a being the lattice constant). The little
group  has two single-valued ([ ]γ, γ = 1, 2)

and five double-valued ([ ]γ, γ = 3, 4, 5, 6, 7) small

irreps [9, 12], which are unambiguously related (see
Section 2) to the corresponding projective irreps

[ ]j of little cogroups  =  (see Table 1). As

the characters (and matrices) of the elements (R |vR) ∈
 and R ∈   are the same, we use the notations

Wγ ≡ [ ]γ (γ = 1–7) of small irreps of the little

groups  also for the corresponding projective

k f( ) γ f( )
m

f( ) µ f( ), , ,〈 |P k p( ) γ p( )
m

p( ), ,( )

× k i( ) γ i( )
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Table 1.  Characters of single- and double-valued projective irreps of the small cogroups  ≡  (i = 1–6) and single-

and double-valued small irreps of the little groups  (i = 1–6) (for six vectors in the star *W: (102), (120), (210), (012),

(021), and (201) in units of π/a along Cartesian axes, with a being the lattice constant) in the BZ in crystals with space group

 and ε = exp(iπ/4) 

E S4x C2x Uyz σy σz

E S4y C2y Uxz σz σx

E S4z C2z Uxy σx σy

W1 2 ε* ε 0 0 0 0 0

W2 2 – ε* – ε 0 0 0 0 0

W3 1 ε* –ε i 1 –i –ε* –ε

W4 1 –ε* ε i –1 i –ε* –ε

W5 1 ε* –ε i –1 i ε* ε

W6 1 –ε* ε i 1 –i ε* ε

W7 2 0 0 –2i 0 0 0 0

F
W

i( ) D2d
i( )

G
W

i( )

Oh
7

D2d
1( ) D2d

2( ) S4x
1– Uyz

D2d
3( ) D2d

4( ) S4y
1– Uxz

D2d
5( ) D2d

6( ) S4z
1– Uxy

W1* 2 2

W2* 2 2

W5*

W6*

W3*

W4*

W7*
irreps of little cogroups  = . Since  ≠

−  and  ~ – , we take the irreps of the little

group  from [9] as the irreps of the little group

 (see (25) and the remark thereunder). Moreover,

as  ~ – , the total sets of single- and double-

valued irreps of little groups  and are com-

plex conjugate, but the elements of  = ,

which are isomorphic to the elements of  accord-

ing to (6), may differ from the coset representatives in
decomposition (4) in some of their lattice translations.
This may change the numbering of the irreps of the lit-
tle group  (and projective irreps of the correspond-

ing little cogroup ) with respect to those of 

(of , see Table 1; for example, W3( ) =

( )). 

Taking form (22) for the selection rules, we con-
sider the Kronecker product of the irreps of the space
group G, 

(26)
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P

whose basis vectors are the products 

(27)

where s(p), s(i) are the numbers of rays in the stars *k(p),
*k(i) and t (p), t (i) are the dimensions of small irreps

 and  of little groups  and ,

respectively.

In the case of the W point in the BZ for the space

group , the basis (27) of the Kronecker product (26)
for γ(p) = γ(i) = 1 (*k(p) = *k(i) = *W; s(p) = s(i) = 6, [G]11 ≡

 × ) consists of (2 × 6) × (2 × 6) =
144 vectors. 

By decomposing the reducible rep [G]11 of G, one
finds all the irreducible stars *k( f ) contained in the
reducible star of [G]11 and the small irreps  of

little groups  contained in the rep [G]11. A star of

s(p)s(i) wave vectors 

(28)

kn
p( ) γ p( )

m
p( ), ,| 〉 kl

i( ) γ i( )
m

i( ), ,| 〉

n = 1 … s
p( )

; l = 1 … s
i( )
;, , , ,(

m
p( )

 = 1 … t
p( )

; m
i( )
 = 1 … t

i( ), , , , ),

G
kn

p( )[ ]
γ p( ) G

kl
i( )[ ]

γ i( ) G
kn

p( ) G
kl

i( )

Oh
7

G[ ] 1
*W

p( )( )
G[ ] 1

*W
i( )( )

G
k

f( )[ ]
j

G
k

f( )

kn l,
f( ) kn

p( ) kl
i( ) Bn l,+ +=

n = 1 … s
p( )

l = 1 … s
i( ), , , , ,( )
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of basis functions (27) splits into irreducible stars and
gives wave vector selection rules (the vector Bn, l is a
reciprocal lattice vector which may be zero). 

For Kronecker products  ×  of

two irreps of  at the W point of BZ, the wave vector
selection rules (28) give three irreducible stars (Γ, X, Σ;
see Table 2). This is easily shown by rewriting the vec-
tors of the W star in components of the primitive trans-
lations of the reciprocal lattice. For example, as W (1) =
(1/2, 3/4, 1/4) and W (2) = (1/2, 1/4, 3/4), one obtains
W (1) + W (2) = (1, 1, 1) (~Γ) and W (1) + W (1) = (1, 3/2,
1/2) (~X (x)). Thus, 144 products (27) are partitioned in
such a way that 4 × 6 = 24 of them corresponds to Γ, 4 ×
6 = 24 to X, and 4 × 4 × 6 = 96 to Σ points of the BZ.

The set of wave vectors  (28) contains all the
rays of all the irreducible stars appearing in the Kro-
necker product (26) and may be arranged in a table like
that shown in Table 2. Rows and columns of this table
are numbered by the rays of the irreducible stars *k(p)

and *k(i) (by n and l), respectively. Representatives of
all the irreducible stars in (26) appear in any row of this
table. Indeed, all the rows of the table (n = 2, …, s(p) in
(28)) may be obtained from the first one (n = 1) by

applying the operations , which transform the

wave vector  into  (n = 2, …, s(p)). Under sym-

metry operations , the set of wave vectors  of
the star *k(i) remains unchanged and the irreducible

stars formed by wave vectors  may change their
representatives but can neither disappear, give rise to
new irreducible stars, nor change the number of each
star representatives. The same consideration is valid for
the columns. Finally, all the rows (columns) of the
entire table contain as many representatives of each
irreducible star as the first row (column). Therefore, all
necessary information about the wave vector selection
rules for the Kronecker product (26) is contained in any
row (column) of the corresponding table. The wave
vector selection rules for all the symmetry points of the

BZ of space group  are represented in Table 3. The
latter is composed of the first rows of tables similar to
Table 2 and corresponding to Kronecker products *Γ ×
*Γ, *X × *X, *L × *L, *W × *W, *Γ × *X, *Γ × *L, *Γ ×
*W, *X × *L, *X × *W, and *L × *W. 

At the next step of generating the selection rules,
one needs to find the irreducible components of the
reducible reps for each star satisfying the wave vector
selection rules. 

Let  ≡  be a wave vector of some irreducible
star (m is fixed). The set of t (p)t (i) basis functions (27)
with this wave vector forms the space Ω1 of some pro-

jective rep  ≡ [  ∩ ]Kr of the little

G[ ] 1
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p( )( )
G[ ] 1

*W
i( )( )

Oh
7

kn l,
f( )

Rn
p( )

k1
p( ) kn

p( )

Rn
p( ) kl

i( )

k1 l,
f( )

Oh
7

km
f( ) kn l,

f( )

F̃km
f( )[ ]

Kr
F

kn
p( ) F

kl
i( )
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cogroup  ≡  ∩  or small rep  ≡

[  ∩ ]Kr of the little group  ≡  ∩ 

and 

 =  ⇓  . (29)

The characters of the projective rep  of the

cogroup  in space Ω1 are the products of the char-

acters of the cogroup  and  irreps subducted

on the cogroup : 

(30)

F̃km
f( ) F

kn
p( ) F

kl
i( ) G̃km

f( )[ ]
Kr

G
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p( ) G
kl

i( ) G̃km
f( ) G
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p( ) G

kl
i( )

F̃km
f( )[ ]
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G̃km

f( )[ ]
Kr

F̃km
f( )

F̃km
f( )[ ]

Kr

F̃km
f( )

F
kn

p( ) F
kl

i( )

F̃km
f( )

χ
F̃

km
f( )

Kr
 
 

R( ) χ
F̃

kn
p( )

γ
p( ) 

 

R( )χ
F̃

kl
i( )

γ
i( ) 

 

R( ),=

R F̃km
f( ).∈

Table 2.  Types of wave vectors in Kronecker products of

 × 

W(1i) W(2i) W(3i) W(4i) W(5i) W(6i)

W(1p) X(xf) Γ(f) Σ(2f) Σ(1f) Σ(6f) Σ(7f)

W(2p) Γ(f) X(xf) Σ(3f) Σ(4f) Σ(5f) Σ(8f)

W(3p) Σ(2f) Σ(3f) X(yf) Γ(f) Σ(10f) Σ(9f)

W(4p) Σ(1f) Σ(4f) Γ(f) X(yf) Σ(11f) Σ(12f)

W(5p) Σ(6f) Σ(5f) Σ(10f) Σ(11f) X(zf) Γ(f)

W(6p) Σ(7f) Σ(8f) Σ(9f) Σ(12f) Γ(f) X(zf)

Note: The wave vector stars X*X and *Σ consist of vectors: X(jf)

(i = x, y, z; (2, 0, 0), (0, 2, 0), (0, 0, 2)) and Σ(jf) (j = 1–12;

(110), (1 0), ( 0), ( 0), (101), ( 10), ( 0 ), (10 ),

(011), (01 ), (0 ), (0 1)), respectively (in units of π/a
along Cartesian axes, with a being the lattice constant). 

G[ ] i
*W( ) G[ ] j

*W( )

1 1 1 1 1 1 1 1 1

1 1 1 1

Table 3.  Types of wave vectors in Kronecker products of
(*k1) × (*k2) (k1, k2 = Γ, X, L, W) 

Γ X(xi) X(yi) X(zi) L(1i) L(2i) L(3i) L(4i)

X(xp) Γ(f) X(zf) X(yf) L(3f) L(4f) L(1f) L(2f)

L(1p) L(3f) L(4f) L(2f) Γ(f) X(zf) X(xf) X(yf)

W(1p) W(2f) ∆(2f) ∆(1f) Σ(12f) Σ(11f) Σ(10f) Σ(9f)

Γ W(1i) W(2i) W(3i) W(4i) W(5i) W(6i)

X(xp) W(2f) W(1f) ∆(3f) ∆(4f) ∆(6f) ∆(5f)

L(1p) Σ(12f) Σ(10f) Σ(8f) Σ(6f) Σ(4f) Σ(2f)

W(1p) X(xf) Γ(f) Σ(2f) Σ(1f) Σ(6f) Σ(7f)

Note: The wave vector stars *L and ∆* consist of vectors: L(jf)

(j = 1–4; (1, 1, 1), ( , , 1), (1, , ), ( , 1, )) and ∆(jf)

(j = 1–6; (1, 0, 0), ( , 0, 0), (0, 1, 0), (0, , 0), (0, 0, 1), (0, 0, ))
(in units of π/a along Cartesian axes, with a being the lattice
constant).

1 1 1 1 1 1

1 1 1
3
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The multiplication of two projective irreps of the group

 with factor systems  and  gives a pro-

jective rep of the same group with the factor system

 (as  ≡  =  +  + Bnl see also Sec-

tion 2). The group  ( ) either coincides with

the little cogroup  (little group  or is a sub-

group of it: 

(31)

When  = , the projective rep (30) can be

decomposed into irreps in the usual way, the characters
of irreps being taken from tables of small irreps of little
groups (for example, [9]). This possibility appears, for

instance, when  = 0 or  = 0. 

If  ⊂  , the cogroup  is decomposed

into left cosets of : 

(32)

The operators Ri change both wave vectors  and

 but leave their sum unchanged modulo the recipro-
cal lattice vector. This means that the space Ω1 trans-
forms under the operations Ri into linearly independent

spaces Ωi =  and

(33)

which is the space of the rep of the group  induced

by the rep  of its subgroup  ⊂   

(34)

Further, the small rep  =  ⇑   is

contained in the Kronecker product (26), which is the
subject under consideration. The characters

(g) (g ∈  ) of this projective induced rep
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P

of  (or induced small rep of ) can be calcu-

lated in the usual way:

(35)

where 

(36)

As the characters of projective irreps of  (of small

irreps of ) are known (taken from [9], for exam-

ple), the projective rep of  can be decomposed

into irreducible components in the same way as for
ordinary reps of point groups. 

If the projective irreps  with the same factor

system as the projective irreps of the cogroup  are

known, there is a more simple procedure of rep decom-
position based on the Frobenius reciprocity theorem
(see Section 2). This possibility arises in the two fol-
lowing cases: 

(a) when the rep  is irreducible itself: i.e.,

its characters satisfy the condition

(37)

where  is the order of  (see Subsection 3.2);

(b) when the subduction of the irreps of the cogroup

 onto the group  directly gives the irreps of

. 

What is more, the irreps of  can be taken from

[6], where the characters of the standard form for all
projective irreps with all possible factor systems for all
crystallographic point groups are given. In our example

of the  ×  Kronecker product, the
following intersections of point groups are considered:

 ≡  ∩  (  ∩  = ) for the Γ

component,  ≡  ∩  (  ∩  = )

for the X component, and  ≡  ∩  (  ∩

 = Cs) for the Σ component (see Tables 2, 3).
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3.1. Γ States in the Kronecker Products

 × 

In this case, the irreps of  =  are ordinary

irreps of the point group . The characters of the

Kronecker product of the projective irreps  ×

 ≡  ×  obtained from Table 1 are

given in Table 4 with the characters of those ordinary

irreps of the little cogroup which appear in the
decomposition

 ×  = a1 + a2 + e. (38)
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*W( )

G[ ] j
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F̃km
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2( )[ ] 1
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D2d
1( )[ ] 1 D2d

2( )[ ] 1

Table 4.  Characters of the Kronecker product  ×

 ≡ χ and the characters of some ordinary irreps of the

point group 

E S4x C2x Uyz σy σz

χ 4 2 2 0 0 0 0 0

a1 1 1 1 1 1 1 1 1

a2 1 1 1 1 –1 –1 –1 –1

e 2 0 0 –2 0 0 0 0

D2d
1( )[ ] 1

D2d
2( )[ ] 1

D2d
1( )

D2d
1( ) S4x

1– Uyz
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This rep of  induces into FΓ = Oh the rep

. This decomposition of the
induced rep is obtained using the Frobenius reciprocity
theorem (see Table 5). 

The same procedure may be used for all possible

Kronecker products  ×  (i, j = 1–7) both
for single- and double-valued irreps. As a result, one
obtains Table 5, where the subduction of single- and

double-valued ordinary irreps of Oh on  are also

given. For example, the direct product  ×

 has the Γ component  (rep [Oh]Kr is

induced from the ordinary irrep b1 of ). After
induction (15), one obtains Table 6, which gives
directly the Γ components of the Kronecker products
involved.

3.2. X States in the Kronecker Products 

 ×  

The irreps of  ⊂   may be obtained directly

from Table 1 by multiplying  by  (for

the single-valued projective irreps  or

D2d
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+Γ2

–Γ3
±Γ4

±Γ5
±Γ4

+Γ5
–

D2d
1( )[ ] i D2d

2( )[ ] j

D2d
1( )

G[ ] 3
*W( )

G[ ] 4
*W( ) Γ1

–Γ3
–Γ5

+

D2d
1( )

G[ ] i
*W( )

G[ ] j
*W( )

F̃X
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D2d
x( )[ ] 1–5
Table 5.  Kronecker products  ×  of projective single- and double-valued irreps of the little cogroup D2d in terms

of ordinary irreps of the point group D2d and subduction of ordinary irreps of the point group Oh onto the point group 

W1 W2 W3 W4 W5 W6 W7

W1 a1, a2, e b1, b2, e , 

W2 b1, b2, e a1, a2, e , 

W3 a2 b1 a1  b2 e

W4 b1 a2 b2 a1 e

W5 a1 b2 a2 b1 e

W6  b2 a1 b1 a2 e

W7 , , e e e e a1, a2, b1, b2

[Oh]i (⇑ )

[Oh]i ↓  D2d a1 b2 a1, b2 a2, e b1, e , 

[Oh]i (⇑ )

[Oh]i ↓  D2d b1 a2 a2, b1 b2, e a1, e , 

D2d
1( )[ ] i D2d

2( )[ ] j

D2d
1( )

e1 e2 e1 e2 e1 e2

e2 e1 e2 e1 e1 e2

e1 e2

e2 e1

e1 e2

e2 e1

e1 e2 e1 e2

Oh
7 Γ1

+ Γ2
+ Γ3

+ Γ4
+ Γ5

+ Γ6
+ Γ7

+ Γ8
+

e2 e1 e1 e2

Oh
7 Γ1

– Γ2
– Γ3

– Γ4
– Γ5

– Γ6
– Γ7

– Γ8
–

e1 e2 e1 e2
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Table 6.  Γ states in the Kronecker products  × 

W1 W2 W3 W4 W5 W6 W7

W1 1+, 2–, 3±, 4+ (2), 4–, 5+, 5– (2) 1–, 2+, 3±, 4+, 4– (2), 5+ (2), 5– 6–, 7+, 8± 6+, 7–, 8± 6–, 7+, 8± 6+, 7–, 8± 6±, 7±, 8± (2)

W2 1–, 2+, 3±, 4+, 4– (2), 5+ (2), 5– 1+, 2–, 3±, 4+ (2), 4–, 5+, 5– (2) 6+, 7–, 8± 6–, 7+, 8± 6+, 7–, 8± 6–, 7+, 8± 6±, 7±, 8± (2)

W3 6–, 7+, 8± 6+, 7–, 8± 2–, 3–, 4+ 1–, 3–, 5+ 1+, 3+, 5– 2+, 3+, 4– 4±, 5±

W4 6+, 7–, 8± 6–, 7+, 8± 1–, 3–, 5+ 2–, 3–, 4+ 2+, 3+, 4– 1+, 3+, 5– 4±, 5±

W5 6–, 7+, 8± 6+, 7–, 8± 1+, 3+, 5– 2+, 3+, 4– 2–, 3–, 4+ 1–, 3–, 5+ 4±, 5±

W6 6+, 7–, 8± 6–, 7+, 8± 2+, 3+, 4– 1+, 3+, 5– 1–, 3–, 5+ 2–, 3–, 4+ 4±, 5±

W7 6±, 7±, 8± (2) 6±, 7±, 8± (2) 4±, 5± 4±, 5± 4±, 5± 4±, 5± 1±, 2±, 3± (2), 4±, 5±

Note: Numbers (m) in parentheses mean that the preceding irrep enters m times in the product. 

G[ ] i
*W( ) G[ ] j

*W( )
 (for the double-valued projective irreps

 (see Table 7). 

As seen from Table 2 for *k(p) = *k(i) = *W, γ(p) =
γ(i) = 1, the space of eight functions (27) with n = l = 1,
2; t (p) = t (i) = 2 transforms according to some small rep

of the little cogroup . For function (27) with n = l =
1; t (p) = t (i) = 2 transforms according to the projective
rep

(39)

of the point group  =  with the factor system

corresponding to the little cogroup . Functions
(27) with n = l = 1 and n = l = 2 can be considered basis

D2d
1( )[ ] 1–2

D2d
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D2d
1( )

D4h
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Table 7.  Characters of single- and double-valued projective

irreps of the little cogroup  with the factor system corre-

sponding to the little cogroup  

D2d E S4x C2x Uyz σy σz

 ≡ 1 1 –i i –1 1 –1 –i i

 ≡ 2 1 i –i –1 –1 1 –i i

 ≡ 3 1 –i i –1 –1 1 i –i

 ≡ 4 1 i –i –1 1 –1 i –i

 ≡ 5 2 0 0 2 0 0 0 0

 ≡ 6 2 0 0 0 0 0

 ≡ 7 2 0 0 0 0 0

D2d
x( )

D4h
x( )

S4x
1– Uyz

D2d
x( )[ ] 1

D2d
x( )[ ] 2

D3d
x( )[ ] 3
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x( )[ ] 4
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x( )[ ] 5

D2d
x( )[ ] 6 2i 2i

D2d
x( )[ ] 7 2– i 2– i
PH
functions of the projective rep of the little cogroup 

induced by the rep α (39) of  with the factor system

corresponding to the little group . This induction
can be made using the Frobenius theorem. 

At the same time, they are the basis functions of the
small rep of the little group  contained in the basis

of the Kronecker product (26) and which, due to the
relation 

(40)

determines all the *X components in the Kronecker
product (26). For example, the single-valued irreps
[GX]i, i = 1, 2, 3, 4, are contained in (26) (see Table 8,

where all the Kronecker products  ×  and
the subduction of single- and double-valued projective

irreps of  on  are given). After induction (15),
one obtains Table 9, which gives directly the X compo-
nents of the Kronecker products involved.

4. SELECTION RULES FOR ELECTRICAL 
DIPOLE TRANSITIONS 

The symmetry of the dipole operator is the vector

rep of : Γv = [GΓ]4– = . Since the vector k(p) = 0,

 =  (the so-called direct transitions Γ  Γ,
X  X, L  L, W  W, etc., are only allowed).
The symmetry of allowed final states for W  W tran-
sitions is pointed out in Table 5 by the entries of the col-

umns containing b2 and e (  ↓  D2d = b2 + e) in the row
corresponding to the symmetry of the initial state. For
example, direct transition is allowed from the initial
state of symmetry W3 to the final states of symmetry W6
and W7.

D4h
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–

YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003



A POINT GROUP APPROACH TO SELECTION RULES IN CRYSTALS 1449
In the case of phonon-assisted electric dipole transi-
tions, these selection rules have to be supplemented
with the selection rules where the operator has the sym-
metry of the phonon participating in the transition. In
silicon crystal, Si atoms occupy the site a of symmetry
Td. The symmetries of phonons in this crystal are given

by the rep of the space group G =  induced (indrep)
by the vector rep t2 of the site symmetry group Td [8,
11]. The short symbol of this indrep is

It gives the symmetry of phonons at the symmetry
points of the BZ. For example, the electric dipole tran-
sitions are allowed from the initial electronic W3 state to
the intermediate W6 and W7 states (when spin–orbit

Oh
7

Γ 4
–

5
+,( ) X 1 3 4, ,( ) L 1

+
2

–
3

+
3

–, , ,( ) W 1 2 2, ,( )., , ,

Table 8.  Kronecker products  ×  in terms of

the projective irreps of  (with the factor system of the little

cogroup ; Table 7) and subduction of the projective irreps

of the little cogroup  onto the point group  

W1 W2 W3 W4 W5 W6 W7

W1 1, 3, 5 2, 4, 5 6 7 6 7 6, 7

W2 2, 4, 5 1, 3, 5 7 6 7 6 6, 7

W3 6 7 1 2 3 4 5

W4 7 6 2 1 4 3 5

W5 6 7 3 4 1 2 5

W6 7 6 4 3 2 1 5

W7 6, 7 6, 7 5 5 5 5 1, 2, 3, 4

(⇑ ) X1 X2 X3 X4 X5

↓  5 5 2, 3 1, 4 6, 7

D2d
1( )[ ] i D2d

1( )[ ] j

D2d
x( )

D4h
x( )

D4h
x( ) D2d

x( )

D4h
x( )[ ] i G

X
x( )

D4h
x( )[ ] i D2d

x( )

Table 9.  X states in the Kronecker products  × 

W1 W2 W3 W4 W5 W6 W7

W1 1, 2, 3, 4 1, 2, 3, 4 5 5 5 5 5(2)

W2 1, 2, 3, 4 1, 2, 3, 4 5 5 5 5 5(2)

W3 5 5 4 3 3 4 1, 2

W4 5 5 3 4 4 3 1, 2

W5 5 5 3 4 4 3 1, 2

W6 5 5 4 3 3 4 1, 2

W7 5(2) 5(2) 1, 2 1, 2 1, 2 1, 2 3(2), 4(2)

Note: Numbers (m) in parentheses mean that the preceding irrep
enters m times in the product. 

G[ ] i
*W( ) G[ ] j

*W( )
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interaction is taken into account; see Table 5). From
these states, with assistance from the phonons of sym-
metry W1, the transitions are allowed in the final Γ and

X states of symmetry , , , X5 and , ,

2 , 2X5 (see Tables 5, 8).

5. CONCLUSIONS 
Our approach to the selection rules in crystals is

based on the projective irreps of point groups and con-
sists of three steps.

(1) First, one finds the wave vector selection rules.
The results may be given in the form of tables with the
rows and columns numbered by the wave vectors of the
direct product factors. Any row (column) of this table
contains the representatives of all irreducible stars of
the Kronecker product. 

(2) Next, it is sufficient to fix one row (the first wave
vector) of this table and then consider only columns
(the second wave vector) that give, at the intersection
with the chosen row, wave vectors of different irreduc-
ible stars. Each wave vector is related to some small
cogroup. Two cogroups correspond to the two factors in
the Kronecker product, and the third, to the resulting
one. The intersection of the two former cogroups is also
a subgroup of the resulting cogroup (the corresponding
wave vectors satisfy the wave vector selection rule).
The Kronecker product of the projective irreps of these
cogroups taken on elements of their intersection is a
small projective rep with the needed factor system of
the resulting cogroup and can be decomposed into irre-
ducible components if the projective irreps of the latter
are known.

(3) Finally, the induction procedure from the projec-
tive rep of intersection of the two initial cogroups to the
resulting small cogroups is realized in order to find the
definitive selection rules for allowed transitions (sub-
duction coefficients of Kronecker products). The
Frobenius reciprocity theorem may be used at this stage
if the projective rep of the intersection of the cogroups
is decomposed into irreducible ones. 

The suggested approach seems to be the most easy
to use, as compared to the traditional subgroup [1–4]
and full group [5] methods. It does not depend either on
the choice of the coordinate system origin and of the k-
star vectors in the description of space groups and their
small irreps or on the form of presentation of the irreps
of space groups (small irreps of little groups [9, 10] or
p-equivalent projective irreps of small cogroups [11]).
Our approach may be easily supplemented for the com-
puter program generating irreps of space groups given
at the Bilbao Crystallographic Server [12, 13].
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Abstract—High-frequency broad-band (65–240 GHz) EPR is used to study impurity centers of bivalent chro-
mium in a CdGa2S4 crystal. It is found that the EPR spectra correspond to tetragonal symmetry. The spin Hamil-

tonian H = βB · g · S +  +  +  with the parameters  = 23659 ± 2 MHz,  = 1.9 ± 1 MHz,

 = 54.2 ± 2 MHz, g|| = 1.93 ± 0.02, and g⊥  = 1.99 ± 0.02 is used to describe the observed spectra. It is con-
cluded that chromium ions occupy one of the tetrahedrally coordinated cation positions.© 2003 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Compounds of the composition  (A = Zn,
Cd; B = Ga, In; C = S, Se) are characterized by high val-
ues of the nonlinear susceptibility and are transparent
up to 15–18 µm. These properties find use in various
devices of nonlinear optics, such as optical filters, opti-
cal switching devices, parametric light oscillators, and
other devices working in the medium IR region. A wide
transparent region and the tetrahedral coordination of
the cation positions make these compounds attractive
as matrices for activation by transition-metal ions of the
iron group. It is known that the introduction of ions of
the transition-metal group, particularly Cr2+, into AIIBVI

compounds has made it possible to extend their capa-
bilities and to create active media for highly efficient
room-temperature tunable lasers [1–4]. No studies
devoted to the possible fabrication of laser luminophors

based on activated  crystals are known at
present. Virtually no spectroscopic studies of transi-
tion-metal impurities in these compounds have been
made. It should be noted, however, that, even in
undoped samples uncontrolled impurities and intrinsic
defects can create deep levels in the band gap and fun-
damentally restrict practical use of these crystals.
Therefore, the problem of identifying impurities and
determining their position in the lattice, the valence,
local symmetry, and so on, is quite important.

This work is devoted to the study of Cr-activated
cadmium thiogallate (CdGa2S4) single crystals by using
high-frequency EPR.

Crystals of CdGa2S4 have a tetragonal structure,
with the cations being in a tetrahedral environment

(space group , number of formula units per unit cell
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III

C4
VI

A
II

B2
III

C4
VI

S4
2
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Z = 2, lattice constants a = 5.536, c = 10.16 Å [5]). Dis-
tinct from chalkopyrite, whose structure can be consid-
ered a basis for constructing thiogallate structure, some
of the cation positions in the thiogallate structure
remain unoccupied and have an ordered arrangement.

EPR of bivalent chromium in the tetrahedral coordi-
nation has been observed previously in AIIBVI and AIIIBV

compounds with chromium substituting for both cad-
mium and gallium ions [6, 7]. Despite the fact that these
crystals are cubic, the observed spectra showed tetrag-
onal symmetry. The occurrence of distortion was
explained by the static Jahn–Teller effect. We also
observed Jahn–Teller tetragonal Cr2+ centers but in
crystals of BaF2 with eightfold coordination of Cr [8].
EPR of bivalent chromium ions in tetragonal crystals
has not been studied to date.

The ground-state term of the bivalent chromium ion
(5D) in a cubic field is split into an orbital triplet and a
doublet; for tetrahedral coordination, the triplet corre-
sponds to the ground state. In a tetragonal crystal field,
the ground level is an orbital singlet split by the second-
order spin–orbit interaction into five (S = 2) spin sub-
levels (one singlet and two doublets). The observation
of EPR in such systems is hampered, because the
energy states between which resonance transitions are
allowed are separated by an energy gap that is usually
larger than the quanta of the rf field of X- and Q-band
spectrometers. Intradoublet transitions due to mixed
wave functions can be observed for tetragonal centers
only in parallel (static and alternating) magnetic fields
and do not allow certain identification of the Cr2+ ions.
This is why most EPR studies of Cr2+ ions have been
performed using a high-frequency EPR technique.
003 MAIK “Nauka/Interperiodica”
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2. EXPERIMENT

Crystals of GdGa2S4 of high optical quality were
grown using the Bridgman–Stockbarger method from a
melt of stoichiometric composition in quartz cells at a
rate of 6 mm/day. The content of chromium ions in the
starting material was 0.13 mol %. A 10-mm-high
prism-shaped sample with the base in form of a rhom-
bus with an 11-mm side was chosen for the studies. The
crystallographic c axis was directed along the major
diagonal of the rhombus. The sample was an optically
transparent yellow crystal with ground faces. The EPR
spectra were observed with the aid of a broad-band
(65–500 GHz) quasioptical spectrometer with a back-
ward-wave tube used as an oscillator for high-fre-
quency emission. The experiments were performed, for
the most part, at liquid-helium temperature in magnetic
fields of up to 0.9 T. The details of the experiment are
described in [9].

Let us denote the spin levels as |0〉 , |±1〉 , and |±2〉 .
The EPR spectra of bivalent chromium were recorded
in the frequency ranges 64–100 GHz (transitions
|0〉   |±1〉) and 190–240 GHz (transitions |±1〉  
|±2〉). No other EPR lines were observed in these fre-
quency ranges. The spectra for the orientation B || c are
shown in Fig. 1. The intense line corresponds to the
allowed transition with the spin projection changing by
unity, and the weak line, to the transition with the pro-
jection changing by three, although in reality the states
|±2〉  are mixed in weak magnetic fields and the “forbid-
den” transition occurs due to the presence of both spin
projections in the wave function. With increasing mag-
netic field, the wave function becomes “purer” and the
weak line becomes progressively less intense and dis-
appears. Figure 2 shows the variations of the frequen-
cies of all observed resonance lines with the magnetic-
field intensity for the crystal orientation B || c and B || a.
It can be seen from Fig. 2a that, for the |±1〉   |±2〉
transitions, there is an energy gap of 1.3 GHz between

0 0.1 0.2 0.3 0.4 0.5 0.6
B, T

Fig. 1. EPR spectrum of CdGa2S4 : Cr2+ for the orientation
B || c at a frequency of 205 GHz.
P

the levels |±2〉; therefore, these levels may be called a
doublet only conventionally. All the splittings in a zero
field were measured using the direct method and are
equal to 70.75, 212.4, and 213.7 GHz. The absolute
precision of frequency measurement was ±0.5 GHz;
however, the relative change in frequency was deter-
mined with an accuracy of 0.05 GHz. The angular vari-
ation of the resonance field with rotation of the crystal
in the (100) plane is shown in Fig. 3 for several reso-

nance transitions. For the space group , the existence
of a defect showing a singlefold angular periodicity is
possible only for the local position with symmetry S4;
therefore, the angular variations indicate that the spec-
tra should be assigned to a tetragonal center. The line
width for the orientation B || c was about 8 mT with
somewhat spread wings. This made it impossible to
resolve the hyperfine structure of the EPR spectra.

In order to determine the sequence order of the

energy positions of the spin states (the sign of ), the
transition |±1〉   |±2〉  was measured at various tem-
peratures in the range 4.2–12 K. However, the above
objective was not attained, because the line shape
changed and became asymmetrical with an increase in
temperature. The origin of this effect is inclear.

3. THEORY AND DISCUSSION

To describe the observed spectra theoretically, we
use the spin Hamiltonian 

and the wave functions (|+1〉  + |–1〉)/ , (|+1〉  –

|−1〉)/ , (|+2〉  + |–2〉)/ , (|+2〉  – |–2〉)/ , and |0〉 ,
with the z axis directed along the 〈001〉  axis of the crys-
tal.

In a zero magnetic field, the Hamiltonian matrix is
diagonal. By using the measured zero-field splittings,

the values of  are determined to be  = 23659 ±

20,  = 1.9 ± 1, and  = 54.2 ± 2 MHz. For the ori-
entation B || c, the dependence of the energy levels on
magnetic field can be written in an analytical form,
which allows the g|| factor to be determined, using the
least-square procedure, from the field dependence of
the EPR spectra. For the perpendicular orientation of a
sample, the parameters of the Hamiltonian were calcu-
lated numerically to first-order corrections in the per-
turbation theory. The g factor was also determined from
the field dependence of the EPR spectra for the orienta-
tion B || a by minimizing the deviations of the theoreti-
cal curve from the experimental values. The g values
were found to be g|| = 1.93 ± 0.02 and g⊥  = 1.99 ± 0.02.
The values obtained were used to find the angular vari-
ations of the resonance fields, shown in Fig. 3. It is seen
that there is good agreement between the theory and
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Fig. 2. Resonance transition frequencies as a function of external magnetic field B. Triangles correspond to B || c, and circles, to
B || a; theoretical calculations are represented by solid lines. (a) Transition |0〉   |±1〉  and (b, c) transition |±1〉   |±2〉 .
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Fig. 3. Angular variation of the resonance magnetic field with rotation of the crystal in the (100) plane. Theoretical calculations are
shown by solid lines, and experimental values, by points; ϕ = 180° corresponds to B || c. (a) Transition |±1〉   |±2〉 , frequency
225 GHz; and (b) transition |0〉   |±1〉 , frequency 79 GHz.
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experiment. While the curves obtained are typical of
non-Kramers ions and resemble the 1/cosα depen-
dence, we came up against an untypical case which
may be of some interest from the methodical stand-
point. We deal here with the transition |0〉   |+1〉  near
the frequency 84 GHz. As can be seen from Fig. 2a, two
frequency-versus-field curves corresponding to parallel
and perpendicular orientations of the sample intersect
near this frequency. The angular variation of the EPR
line is such that at frequencies lower than 84 GHz, the
orientation B || c corresponds to the low field extreme
point, while at frequencies higher than 84 GHz, to the
high field extreme point. Figure 4 shows a family of cal-
culated angular dependences of the resonance field for
this range of frequencies. It is seen that, in the vicinity
of 84 GHz, the angular variation most likely belongs to
a cubic rather than to a tetragonal center. For a spec-
trometer working at a fixed frequency, this situation
could lead to misinterpretation of the symmetry of the
center.

At the same time, we failed to determine the type of
substitution. It is most probable that Cr2+ substitutes for
bivalent cadmium, although there are some reasons to
support the possibility that the substitution Cr2+ 
Ga3+ takes place. First, the substitution Cr2+  Ga3+

0.7

0.6

0.5

0.4

0.3
50 100 150 200 250 300 350 400 450 500

ϕ, deg

88 GHz

84 GHz

80 GHz

B
, T

Fig. 4. Family of calculated angular dependences of the res-
onance magnetic field corresponding to rotation of the crys-
tal in the (100) plane. The bottom curve corresponds to the
frequency 80 GHz, and the top curve, to 88 GHz; the spac-
ing between the curves is 1 GHz.
PH
without involvement of a local charge compensator is
known to exist in GaAs. If a similar substitution takes
place in our case, the EPR spectra should also have a
tetragonal symmetry. Second, we observed EPR spec-

tra of Cr2+ ions in related Ga-containing 
compound semiconductors, whose structure is also
built on the basis of a chalcopyrite structure but without
cation vacancies. These compounds do not contain a
bivalent cation at all. Some help in determining the type
of substitution may provide data on the optical spectra
of Cr2+, but we did not find such data in the literature. 

4. CONCLUSION

The main results can be summarized as follows. A
new bivalent chromium center with tetragonal coordi-
nation has been found and identified in a CdGa2S4 crys-
tal. It was is concluded that this center has tetragonal
symmetry. The fine-structure constants and the values
of the g factors were determined.
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Abstract—Temperature-induced transformation of the ESR spectrum in γ-irradiated single crystals of the pro-
tein aminoacid L alanine, caused by hindered rotation of the CH3 group was studied. The rotation parameters
as derived from the transformation of the ESR spectrum (activation energy U = 0.18 eV, prefactor ω0 = 1 ×
1013 s–1) are in satisfactory agreement with the values obtained earlier from measurements of the proton spin–
lattice relaxation in polycrystalline alanine samples. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intramolecular rotations of atomic groups consider-
ably affect the physical properties of a molecule itself
and of the corresponding molecular crystal. Because
the rotating group interacts with the surrounding atoms,
such rotations are hindered [1] and are characterized by
the height U of the barrier separating equivalent config-
urations and by the prefactor in the temperature depen-
dence of the hopping frequency ω = ω0e–U/kT.

Hindered rotation of the CH3 and NH3 groups in
protein aminoacid crystals has been the subject of a
series of studies carried out primarily by measuring the
temperature dependence of the proton spin–lattice
relaxation time T1 in NMR spectra [2–4]. An analysis of
the data obtained in a time-consuming experiment
using modified Bloch equations [5, 6] yielded both the
barrier height U and the factor ω0. The modified Bloch
equations were also used in [7] to process ESR data
bearing on the methyl group rotation in alanine. To
reduce the resonance line width and, thus, make quan-
titative analysis of the spectra possible, deuterated ala-
nine samples had to be used [7].

In the present experiment, we inferred the rotation
of the CH3 group in an L-alanine single crystal from the
temperature-induced transformation of the ESR spec-
trum of irradiated alanine crystals. It was established as
far back as in the 1960s that crystals of aminoacids sub-
jected to ionizing radiation (γ- and x-rays) produce an
ESR spectrum originating from the interaction of the
irradiation-produced unpaired electron with four pro-
tons. The anisotropic character of the hyperfine interac-
tion accounts for the complex pattern of the spectrum,
which depends on the crystal orientation with respect to
the external magnetic field. The fairly fast rotation of
1063-7834/03/4508- $24.00 © 21455
the CH3 group should bring about a temperature-
induced transformation of the ESP spectrum when the
temperature is such that the reorientation frequency of
the CH3 group becomes comparable to or higher than
the corresponding splittings in the ESR spectrum (the
well-known averaging of the magnetic resonance spec-
trum caused by atomic motion, which was considered
for the case of NMR in [5, 6]).

For quantitative analysis of the temperature-induced
transformation of spectra, we employed a substantially
simpler method of experimental data processing than
that described in [7]. In this method, which is based on
a theoretical study of Anderson [8], the experiment is
essentially reduced to obtaining the temperature depen-
dence of the width of the resonance lines in the temper-
ature regions where the lines undergo broadening and
narrowing; no use is mode of the Bloch equations.

2. EXPERIMENTAL TECHNIQUE

The alanine molecule has one of the simplest struc-
tures of the 20 protein aminoacids (Fig. 1). The L ala-

CH3

NH2

H

COOH

Fig. 1. Structure of the alanine molecule.
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nine crystal has  (P212121) symmetry [9, 10]. The
molecules of the crystal interact via a hydrogen bond
that connects the oxygen in the COO– carboxyl group
to the hydrogen in the aminogroup of the neighboring
molecule (O2 and H2, H3 in Fig. 2). Irradiation rup-

tures the C–N bond to form the CH3 HCOO radical,
where the dot denotes, as usual, an unpaired electron.

Large (about 1 cm3 in volume) transparent crystals
of L alanine were grown by slowly cooling the corre-
sponding solution. The γ radiation was provided by
60Co (irradiation at T = 300 K to a dose of 2 × 104 Gy).

The ESR spectra were measured on a modified
SE/X-2544 Radiopan spectrometer (X range, 9.3 GHz).
The temperature could be stabilized within the range
100–300 K to within ±0.2 K by blowing through nitro-
gen vapor.

3. RESULTS AND DISCUSSION

3.1. ESR Spectrum

The ESR spectrum observed in an irradiated crystal
originates from the hyperfine interaction of the
unpaired electron with four protons, three of which are
contained in the methyl group (H5–H7 in Fig. 2) and
the fourth (H4) is coupled to the carbon C2. Because of
the strong anisotropy of this interaction, the spectrum
obtained on a crystal arbitrarily oriented in an external
magnetic field H is fairly complex. If the field H is
directed along one of the C2 crystal axes (the C2 || [001]
axis in the notation used in [7]), the spectrum measured
at T = 77 K consists of 12 lines (Fig. 3). In this orienta-
tion, the hyperfine interaction constants A differ
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Fig. 2. L-alanine molecule in the L-alanine crystal [10].
Dashed lines show hydrogen bonds, and indices a–f refer to
atom positions (see [10]).
P

strongly among the four protons [7] (AH5 = 5.1 G, AH6 =
27.6 G, AH7 = 46.1 G, AH4 = 27.6 Oe), with the result
that, for example, four rather than one line at the center
of the spectrum correspond to the zero value of the pro-
jection of the total nuclear spin of the four protons. The
energy level diagram and the spectrum obtained in this
orientation are shown schematically in Fig. 3, taken
from [7].

As the temperature increases, the gradual increase
in the methyl group rotation rate brings about an aver-
aging of the hyperfine interaction constants AH5–AH7;
at room temperature and for H || [001], the constants A
for the three protons of the methyl group assume the
same value of 26.3 G, which happens to coincide in
these conditions with the value of A for the fourth pro-
ton. Thus, at room temperature and for H || [001], the
unpaired electron interacts with four equivalent pro-
tons. Indeed, the experimental spectrum obtained in
these conditions (Fig. 4) represents a symmetric quin-
tet because of the five possible values of the total spin
projection (2, 1, …, –2). The intensity ratios of the five
components turned out to be very close to the values
calculated for the case of four equivalent protons
(1 : 4 : 6 : 4 : 1).

methyl group
77 K 293 K

methyl group

(+++) (+++)

(–++)

(–++)

(+–+)
(+–+)
(++–)

(––+)

(++–)

(––+)(–+–)

(–+–)

(+––)
(+––)

(–––) (–––)

AIV for C–H

AIV

AIII

AI

AII

A–

A = (AI + AII + AIII)/3–

Fig. 3. Energy levels originating from hyperfine interaction
of the unpaired electron with the four protons in a γ-irradi-
ated alanine crystal at T equal to (a) 77 and (b) 293 K [7].
H || [001]. The plus and minus signs identify the proton spin
states in the methyl group.
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3.2. Temperature-Induced Transformation
of the ESR Spectrum

As the temperature is increased from liquid nitrogen
to room temperature, the strongest change in the spec-
trum obtained in the H || [001] orientation occurs with
the central group of lines, which consists, as already
mentioned, of a quartet at 77 K and of a single line at
300 K (Fig. 3). It is these lines that were chosen by us
for quantitative study of the rotation of the CH3 groups.

The increase in the rate of rotation of the CH3
groups with increasing temperature gives rise to a clas-
sical pattern [8] of transformation of the central quartet;
namely, first some of its components broaden to even-
tually merge into one line, which narrows with a further
increase in temperature. Figure 5a illustrates the mea-
sured widths δH(T) of these lines. This change in the
linewidth is seen to be strong enough to allow quantita-
tive measurements; indeed, δH changes by three and
six times in the regions of the line narrowing and broad-
ening, respectively (experimental points 1, 2 in Fig. 5a).

According to theory [8], in the temperature region
where the lines broaden with increasing temperature
such that δH becomes considerably larger than the ini-
tial width, the linewidth (expressed in units of fre-
quency) δf = (gβ/")δH (f is the ESR frequency used,
g is the g factor, β is the Bohr magneton) coincides with
the frequency ωe of the process responsible for the
spectral transformation:

In the temperature region of line narrowing, we have,
according to [8],

Therefore, the data from Fig. 5a can be used to derive
the temperature dependence of the frequency of the
averaging process, more specifically, of the CH3 rate of

δf ωe.=

δf 1/ωe.∼

Fig. 4. ESR spectrum of an irradiated L-alanine crystal
measured at T = 300 K. H || [001], f = 9.24 GHz. The weak
lines are due to slight misorientation of the sample.

3250 3300 3350

E
PR

 s
ig

na
l

Magnetic field, Oe
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
rotation. This dependence is plotted on the log–linear
scale in Fig. 5b. In both regions, the ωe(T) relation is
seen to be well fitted by a single exponential with an
activation energy U = 0.18 ± 0.01 eV and a prefactor
ω0 = (1 ± 0.4) × 1013 s–1.

The above values of U and ω0 agree satisfactorily
with the results obtained earlier [2, 4] using the tradi-
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Fig. 5. (a) Temperature dependence of the width of the cen-
tral ESR line of alanine and (b) temperature dependence of
the CH3 group rotation rate derived from the former. Points 1
specify the width of one of the central quartet lines, and 2,
the width of the averaged central line.
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tional method, namely, by studying the temperature
dependence of proton spin–lattice relaxation (see
table). It should be stressed that the method used in the
present investigation is substantially simpler from the
experimental standpoint.

It appears of interest to compare the results obtained
by us with the study performed in [11] on the tempera-
ture dependence of piezoelectric response in crystals of
certain protein aminoacids. The minima observed in
those relations were assigned to relaxation decay of
ultrasonic vibrations (frequency 10 MHz) caused by
their connection with the hindered rotation of the CH3
and NH3 groups. Unfortunately, no distinct minimum in
the piezoelectric response was observed in L-alanine
crystals; this is apparently due to the superposition of
the temperature dependences of other parameters gov-
erning the magnitude of the piezoelectric response. It
can only be maintained that the minimum lies in the
interval from 170 to 200 K (see [11, Fig. 3]). Using the
values derived here for U and ω0, we obtain 170 K for
the temperature of the decay minimum, which is in
accord with the values quoted in [11].

On the other hand, DL alanine exhibited clearly pro-
nounced minima in the temperature dependence of the
piezoelectric response [11, Fig. 3], which yielded for
the hindered rotation of the CH3 group U = 0.2 eV and
ω0 = 1013 s–1; these values are very close to the data
obtained in this study for L alanine. Although crystals
of DL alanine, in contrast to L alanine, belong to a

polar symmetry group  (Pna21), the closeness of
these crystals in structure is a relevant, interesting fea-

C2v
9

Rotation parameters U and ω0 of the CH3 group in L alanine

U, eV ω0, s–1 Reference

0.15 – [2]

0.23 7 × 1012 [4]

0.16 1 × 1013 [7]

0.18 (line broadening region) 1 × 1013 This work

0.18 (line narrowing region) 1 × 1013 "
PH
ture [9]. The coincidence of the parameters characteriz-
ing the hindered rotation of the CH3 group in L and DL
alanines may be considered a manifestation of this sim-
ilarity [7].

Thus, the values of the parameters U and ω0
obtained in [11] and in this study are in remarkably
good agreement.
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Abstract—The results of EPR studies of Ce3+ ions incorporated into single crystals of mixed yttrium–lutecium
orthoaluminates Y1 – xLuxAlO3 (YLuAP, x = 0.1, 0.3) are reported. In compositionally disordered YLuAP com-
pounds, in comparison to YAlO3, new paramagnetic Ce3+ centers are found. These centers are caused by the
changes in symmetry and in the crystal field magnitude due to the isomorphic substitution of Y3+ ions by Lu3+

in the yttrium sublattice of orthoaluminates. It is shown that the formation of 27 different types of centers is
possible in YLuAP with variation of the Lu content. The probabilities of formation of new paramagnetic centers
are calculated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Single crystals of YAlO3 (YAP) activated by rare-
earth impurities are widely used in quantum electronics
[1, 2]. The interest aroused in these compounds in
recent years stems from the possibility of using Ce-acti-
vated YAP as effective fast-response scintillators [3–7].
Crystals of Ce-activated lutecium orthoaluminate are
the most efficient scintillators for positron-emitting
tomography (PET-imaging) in medicine [8]. However,
the growth of sufficiently large high-quality single crys-
tals of Ce3+-activated LuAlO3 is a relatively compli-
cated technological problem. Success has been
achieved in the growth of mixed yttrium–lutecium
orthoaluminates with Ce3+ impurities, which are also
very promising scintillators for the fabrication of high-
sensitive positron-emitting tomographs. Progress in
this field depends, in many respects, on our knowledge
of the spectroscopic properties of these scintillators.
One straightforward and informative method of study-
ing such properties is through electron paramagnetic
resonance (EPR) [9, 10], which makes it possible to
identify an impurity and determine the charge and local
symmetry of the impurity center and the composition of
the nearest neighbor environment.

A sufficiently large number of studies have been
made on light absorption and luminescence of rare-
earth and of transition-metal ions incorporated into
yttrium orthoaluminate crystals. However, up to now,
only a few of them have been devoted to studies of
YAlO3 crystals using the EPR method. This method has
so far been used for studying some transition elements
(Cr3+, Fe3+, Ti3+), Gd3+ [11–18], and rare-earth ions,
such as Er3+, Nd3+, and Ce3+ [19, 20]. It is of interest to
study crystals of mixed yttrium–lutecium orthoalumi-
nates Y1 – xLuxAlO3 (YLuAP) with 0 ≤ x ≤ 1. Part of the
Y3+ ions in these crystals is isostructurally substituted
1063-7834/03/4508- $24.00 © 1459
by Lu3+ ions with the formation of solid solutions. In
this publication, the results of a detailed study of EPR
spectra of mixed yttrium–lutecium orthoaluminate
Y1 − xLuxAlO3 single crystals with x = 0.1 and 0.3 are
first reported.

2. EXPERIMENTAL

Single crystals of YLuAP activated by cerium ions
up to ±0.05 at. % were used in this study. The crystal
growth was performed by Preciosa Crytur Co., Ltd.
(Turnov, Czech Republic) using the Czochralski
method. EPR spectra of Ce3+-doped Y1 – xLuxAlO3 sin-
gle crystals were recorded with the aid of conventional
JEOL-JES-PE-3X and ERS-230 3-cm-band radiospec-
trometers in the temperature range 4–50 K. Prior to
measurements, the samples were oriented using the x-
ray diffraction method with an accuracy of ±0.5° and
cut in the form of rectangular parallelepipeds 1.5 × 2 ×
5 mm in size with their faces parallel to the ab, ac, and
bc crystal planes. More precise orientation of the prin-
cipal magnetic axes with respect to an external mag-
netic field was performed directly inside the rf cavity of
a radiospectrometer by calibrating against the known
EPR signals.

3. CRYSTAL STRUCTURE

The crystal structure of yttrium orthoaluminate

belongs to the orthorhombic space group –Pbnm and
is described in detail in the literature (see e.g., [21–23]).
The orthorhombic unit cell of YAlO3 contains four dis-
torted perovskite pseudocells. Therefore, Y3+ and Al3+

ions form four structurally nonequivalent positions.
Aluminum ions are surrounded by six oxygen ions
forming a slightly distorted octahedron (local symme-
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try Ci). The nearest neighbor environment of Y3+ ions is
more complicated and more strongly distorted (local
symmetry Cs). Figure 1 shows the positions of Y3+ ions,
which are substituted by rare-earth and Ce3+ ions, in the
structure of yttrium orthoaluminate. The distances from
the central yttrium ion to the nearest neighbor oxygen
ions vary from 2.28 to 3.0148 Å. The second coordina-
tion shell of the yttrium site contains six other yttrium
ions forming a distorted octahedron, which is consid-
ered in detail below in Section 5. In distinction from the
aluminum ion positions, all oxygen and yttrium ions
are shifted by several tenths of an angstrom with
respect to ideal perovskite positions. Aluminum sites
possess only inversion symmetry, and yttrium sites
have a mirror symmetry plane normal to the c axis of
the crystal.

Yttrium ions in yttrium orthoaluminate crystals are
located in a mirror symmetry plane perpendicular to the
c axis, i.e., in the ab plane. Therefore, for the paramag-
netic ions localized at these lattice sites, one of the prin-
cipal axes of the g tensor always coincides with the c
axis of the crystal, while the other two axes lie in the ab
plane. Furthermore, the Y3+ positions make up pairs so
that the operation of inversion through an aluminum
site takes the members of the corresponding pair into
each other; therefore, there are only two magnetically
nonequivalent positions in the EPR spectra for an arbi-
trarily directed external magnetic field B, as well as for
B rotating in the ab plane.

Ò

a

b

Y3+ Al3+ O2–

Fig. 1. Structure of yttrium orthoaluminate.
P

4. EXPERIMENTAL RESULTS

EPR of Ce3+ ions in yttrium orthoaluminate (without
Lu3+ ions) was thoroughly studied in [19, 20]. The Ce3+

ion has the electron configuration 4f 1 (one unpaired
electron) and the ground state 2F5/2. Because of large
splitting of the Stark components, only the ground state
is observed in the EPR spectra. The cerium ions in
yttrium orthoaluminate crystals substitute for Y3+ ions,
as do the majority of rare-earth elements. Natural
cerium has only two even isotopes, 140Ce and 142Ce,
with zero nuclear spin. Because of the absence of odd
isotopes with nonzero nuclear spin, no magnetic hyper-
fine structure is observed in the EPR spectra for Ce3+

ion. Highly anisotropic angular variations of the EPR
spectra for Ce3+ in YAlO3 single crystals are described
by the spin Hamiltonian of orthorhombic symmetry in
the form

(1)

where S = 1/2 is the effective spin, β is the Bohr mag-
neton, and g and A are the g-factor and hyperfine-inter-
action tensors, respectively. The following values of the
components of the g tensor were obtained: gx = 0.395 ±
0.005, gy = 0.402 ± 0.001, and gz = 3.614 ± 0.005. The
local principal magnetic axes of a Ce3+ ion in yttrium
orthoaluminate are oriented so that the x axis is directed
along the c axis of the crystal and the y and z axes lie in
the ab plane. The local magnetic y axis makes an angle
of 31.8° with the crystallographic a axis in the ab plane.
The mean g factor is 〈g〉  = 1.47, which is consistent with
the g factor for the Kramers doublet Γ6 of Ce3+ ions in
a crystal field of cubic symmetry, g = 1.43 [9].

For single crystals of YAlO3 : Ce3+ containing
lutecium ions as an additional dopant, i.e., for mixed
orthoaluminates Y1 – xLuxAlO3 (0 ≤ x ≤ 1), the EPR
spectra exhibit several new lines in addition to the two
principal intense lines from magnetically nonequiva-
lent paramagnetic centers Ce3+. These new lines are
grouped near the principal cerium lines and are strongly
anisotropic, and their widths are equal to those of the
principal lines. The integrated intensities and the num-
ber of new EPR lines depend on the content of the addi-
tional lutecium dopant and increase with x. The angular
and temperature variations of these lines, as well as the
mean g values, provide unambiguous evidence that the
observed new EPR lines in Ce-activated mixed
orthoaluminates also belong to the Ce3+ ions, which
substitute for Y3+. An increase in the content of
lutecium ions causes the spectra in the 3-cm band to
broaden, some new lines to appear, and the angular
variations of the spectra to become so complicated
and cumbersome that detailed analysis in a wide range
of angles θ becomes impossible. Such analysis is pos-
sible only at a small content of the additional dopant
(x < 0.15).

H βBgS SAI,+=
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EPR spectra of Ce3+ ions in a Y0.9Lu0.1AlO3 single
crystal at a frequency of 9.24 GHz and a temperature of
9 K are shown in Fig. 2 for the angle θ varying in the ab
plane from 40° to 50°. In this range of angles, when the
magnetic field B rotates in the ab plane, the best reso-
lution of additional EPR lines from cerium in the
YLuAP crystal is observed. At small angles θ, the addi-
tional lines are not resolved and superimposed on the
principal line and the EPR spectrum becomes identical
to the usual spectrum from a Ce3+ ion in YAlO3. For
comparison, Fig. 3 shows similar spectra for the single
crystal of Y0.7Lu0.3AlO3, where the resolution of lines is
not as high as in the case of x = 0.1. Decomposition into
components of the most resolved EPR spectra from
Ce3+ ions for Y0.9Lu0.1AlO3 shows that the spectrum
consists of at least six additional lines superimposed on
the principal EPR line of a Ce3+ ion. Figure 4 shows, on
an enlarged scale of the magnetic field, the angular
dependences of all EPR lines observed experimentally
from Ce3+ ions. Dashed lines 1–6 in Fig. 4 correspond
to new cerium centers Ce1–Ce6 in YLuAP, and the
solid line, to the Ce3+ center in YAP. It can be seen that,
along with the intense central line, there exist six lines
located in the immediate vicinity of the central compo-
nent. The values of the effective g factors are listed in
the table for the case where the angle between the exter-
nal magnetic field and the a axis in the ab plane is equal
to 50°, which corresponds to the best resolution of the
spectrum.

4 8 12
Magnetic field, kG

40°

43°

45°

48°

50°

Fig. 2. EPR spectra of Ce3+ ions in mixed orthoaluminate
Y0.9Lu0.1AlO3 at ν = 9.24 GHz and T = 9 K in the range of
angle θ from 40° to 50°.
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It should be noted that the additional EPR lines from
cerium paramagnetic centers observed in the mixed
orthoaluminates differ in intensity but are qualitatively
similar (in the number of lines and angular variations)
to the satellite lines in YAlO3 [19, 20]. This similarity is
evidence that low-intensity lines from Ce3+ ions in
orthoaluminates with and without lutecium can be
caused by paramagnetic centers of the same nature.

5. DISCUSSION

As noted above, the results of EPR studies indicate
that Ce3+ impurity ions isostructurally substitute for Y3+

ions in the crystal lattice. Our studies showed that the
Ce3+ EPR spectra for solid solutions Y1 – xLuxAlO3 also
belong (irrespective of x) to Ce3+ ions at yttrium sites.
However, in distinction to “pure” YAP (YLuAP with
x = 0), EPR spectra of cerium ions in single crystals of
mixed orthoaluminates consist of several lines. This
effect is caused by the formation of paramagnetic cen-
ters of different types in the crystal. The Ce3+ ions are

6 8 10
Magnetic field, kG

40°

46°

48°

50°

Fig. 3. EPR spectra of Ce3+ ions in mixed orthoaluminate
Y0.7Lu0.3AlO3 at ν = 9.24 GHz and T = 9 K in the range of
angle θ from 40° to 50°.

Effective g factors of the Ce3+ ion in YAlO3 and of additional
Ce3+ centers in Y0.9Lu0.1AlO3 at ν = 9.24 GHz, T = 9 K, and
θ = 50°

Ce1 Ce2 YAP : Ce Ce3 Ce4 Ce5 Ce6

0.581 0.594 0.626 0.646 0.685 0.715 0.746
3
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localized only at yttrium sites, but the crystal fields at
these sites differ in magnitude and symmetry due to the
local lattice deformation caused by the substitution of
Y3+ ions by Lu3+ ions in the nearest neighbor environ-
ment of a paramagnetic center. The variety of types of
Ce3+ centers in mixed YLuAP aluminates depends on
the lutecium content and is caused only by statistical
fluctuations in the distribution of Lu3+ ions over the
sites of the yttrium sublattice. The isovalent substitu-
tion Y3+  Lu3+ in YLuAP crystals does not affect the
electrostatic interaction of the cations at yttrium and
aluminum sites with their environment. Therefore, the
introduction of rare-earth impurity ions into YAlO3 will
not be accompanied by the formation of defects com-
pensating for the difference between the charges of the
substitutional impurity and the substituted ions. How-
ever, the mixed crystals (solid solutions) possess a sta-
tistically disordered structure [24]. Lutecium ions sub-
stituting for yttrium ions in the orthoaluminate lattice
become nearest neighbors of Ce3+ activation centers
and distort the symmetry of their nearest neighbor envi-
ronment (inherent in YAP). Thus, the variety of types of
Ce3+ centers in mixed orthoaluminates is the conse-
quence of statistical fluctuations. 

In order to understand the nature of the observed
new Ce3+ EPR lines, let us consider the structure of the
nearest neighbor environment of the paramagnetic cen-
ter in the crystal lattice of orthoaluminate. Each Ce3+

ion in YAlO3 has eight oxygen ions in its nearest neigh-
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Fig. 4. Experimental angular variations of resonance mag-
netic fields of Ce3+ centers in Y0.9Lu0.1AlO3 at ν =
9.24 GHz and T = 9 K. The results for new centers Ce1–Ce6
are shown by dashed lines 1–6; the solid line shows the
results for Ce3+ in YAlO3.
PH
bor environment, which form a distorted dodecahe-
dron. The next coordination shell contains six Y3+ ions
and octahedrally coordinated Al3+ ions. Since Lu3+ ions
substitute for Y3+ ions, we should examine more closely
the configuration of these sites around the paramag-
netic Ce3+ center. This center is surrounded by six Y3+

or Lu3+ ions located at three different distances, R1 =
3.641 Å, R2 = 3.730 Å, and R3 = 3.792 Å. These sites
form a distorted octahedron. Figure 5 illustrates the
model of this center. For simplicity, the Al3+ and O2–

ions are not depicted and only Y3+ ions are shown.

The presence of an Lu3+ ion with a smaller ionic
radius (0.97 Å) at the Y3+ (1.02 Å) site alters the interi-
onic distances and shifts the O2– ions surrounding both
Ce3+ and Lu3+ ions, thereby forming different crystal
fields at those cerium ions that have an yttrium environ-
ment with partial substitution by one of several
lutecium ions. The magnitude of the oxygenion shift is
determined by the ratio of the Y3+ and Lu3+ ionic radii.
Therefore, the Lu3+ ion located in the second coordina-
tion shell of Ce3+ affects the symmetry and magnitude
of the crystal field by deforming the oxygen dodecahe-
dron that surrounds the paramagnetic center.

In mixed Y1 – xLuxAlO3 orthoaluminates of the same
composition x, the Ce3+ ion can have a different rare-
earth environment. The symmetry and magnitude of the
crystal field will be different for those Ce3+ centers
which have a different number of Y3+ ions substituted

Y3+(Lu3+)

R3

R2

R2

R3

R1

R1

Ce3+

Fig. 5. Structure of the yttrium nearest neighbor environ-
ment of the Ce3+ ion in orthoaluminate. R1, R2, and R3 are

the distances from the paramagnetic center to the Y3+ or
Lu3+ sites.
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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by Lu3+ ions (from one to six) in their nearest neighbor
environment. 

In yttrium orthoaluminate crystals, in the case of
isomorphic substitution and equiprobable distribution
of substitutional ions, one may assume that the proba-
bility of finding an Lu3+ ion at a site of the yttrium cat-
ion sublattice is the same for all positions, as is the case
in other similar crystals, e.g., in fluorite, corundum,
garnet, and spinel [25]. In this case, we can calculate
the probabilities that 1, 2, …, or n identical or different
ions will be in the nearest neighbor cation coordination
shell of the paramagnetic center. The concentration of
single and complex centers can be determined by the
formula for repeated trials from the probability theory
(binomial distribution) [26]. In our case, the coordina-
tion number is equal to six; therefore, the probability of
n (n = 0, 1, 2, …., 6) Lu3+ ions being in the rare-earth
octahedron is [27, 28]

(2)

where P6n is the concentration of Ce3+ ions that have n
Lu3+ ions in their nearest neighbor yttrium coordination
shell and x is the concentration of Lu3+ ions in
Y1 − xLuxAlO3. The solid lines in Fig. 6 show the varia-
tions of these probabilities as a function of Lu3+ content
in single crystals of YAlO3. From these dependences, it
follows that at x = 0.1 the fraction of cerium centers
with n = 0 is 53.1%; 35.1% of cerium centers have one
lutecium ion in their nearest neighbor environment,
9.8% have two Lu3+ ions, and the concentration of the
Ce3+ centers with three Lu3+ ions is 1.5%. The ratio of
the integrated intensities (experimental points in Fig. 6)
of the principal and additional EPR lines of Ce3+ ions in
the Y0.9Lu0.1AlO3 crystal agrees with the calculated
dependences of the probabilities of formation of addi-
tional centers in Y1 – xLuxAlO3, which also testifies to
the equiprobable distribution of lutecium ions in the
yttrium sublattice of this crystal. For x = 0.3, there is
only qualitative agreement between the calculated and
experimental intensity ratios. For this concentration of
the additional impurity in the crystal, the following
concentrations of single and complex centers will be
observed: 11.8% of paramagnetic centers will have no
Lu3+ ions in there environment (n = 0), 30.3% of Ce3+

ions will have one Lu3+ ion in there nearest neighbor
environment, 32.4% will have two Lu3+ ions, 18.5% of
Ce3+ ions will have three Lu3+ ions (n = 3), and 6% of
cerium centers will have four Lu3+ ions (n = 4). The
variety of different type of centers is not limited by the
six types associated with the various number of Lu3+

neighbors in the Y3+ positions. Even for the same value
of n but for different arrangements of Lu3+ ions at the
vertices of the distorted octahedron formed by yttrium
sites, the crystal fields created by the additional
lutecium impurity and acting on the paramagnetic Ce3+

P6n
6!

n! 6( n )!–
------------------------x

n
1 x–( )6 n–
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Fig. 6. Probabilities of n Lu3+ ions being in the yttrium
nearest neighbor environment of the Ce3+ center in
orthoaluminate as a function of Lu3+ content.
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Fig. 7. EPR spectrum of Ce3+ ions in a YAlO3 single crystal
at ν = 9.24 GHz, T = 9 K, and θ = 56°.
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ions will be different. For example, when there is one
substitutional ion, three different centers are created;
the substitution of two yttrium ions may result in the
formation of seven different centers. Thus, at x = 0.1,
eleven different paramagnetic centers can be created in
YLuAP, of which only seven centers could be observed
in detail (see Fig. 4, table). In the case of three substitu-
tional ions, three centers with a different arrangement
of Lu3+ are formed. All possible combinations in the
arrangement of Y3+ and Lu3+ ions around Ce3+ corre-
spond to 27 different paramagnetic centers.

The additional EPR lines of Ce3+ observed in mixed
yttrium–lutecium orthoaluminates have different inten-
sities; however, qualitatively (in the number of lines
and in the angular dependences), they are similar to the
satellite lines in YAlO3 [19, 20]. This similarity means
that in both cases additional EPR lines are caused by
paramagnetic centers of the same origin. For compari-
son, Fig. 7 shows the EPR spectrum of Ce3+ ions in
YAlO3 observed at high amplification. Thus, the results
support the assumption that the satellite EPR lines of
Ce3+ ions in yttrium orthoaluminate are due to devia-
tions from the stoichiometric crystal composition.
These deviations manifest themselves in the occurrence
of yttrium ions in aluminum positions and vise versa,
which, according to [29], is possible within the range of
1 to 1.5% in high-temperature crystals.
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Abstract—Jumplike changes in the microhardness, sample dimensions, and parameters of the EPR spectrum
were observed in molecular Cu(hfac)2LEt crystals undergoing a phase transition. Defects that appear upon plas-
tic deformation (e.g., dislocations) and paramagnetic defects were revealed. The latter defects are likely breaks
in polymer chains and can serve as spin marks for investigating the magnetic state of the crystal lattice. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

To successfully develop the methods of synthesizing
and controlling the properties of new organic and
molecular crystals, it is necessary to investigate the role
of structural defects in the formation of their magnetic
and electrical properties. Defects in molecular magnets
have been revealed to date in only a few works; they
were studied predominantly, by using only x-ray dif-
fraction or by measuring the temperature dependence
of the magnetic moment [1–6]. The absence of infor-
mation on the effect of defects on physical properties
hampers both adequate interpretation of the results of
molecular and spin design and understanding of the
crystal growth mechanisms. Moreover, it hinders the
development of the concepts of their mechanical prop-
erties, which are necessary for practical applications.

The purpose of this work is to reveal structural
defects and to establish their contribution to the mag-
netic and mechanical properties of novel polymer sin-
gle crystals Cu(hfac)2LEt, where Cu(hfac)2 is copper (II)
hexafluoroacetylacetonate [hfac = CF3–C(O)–CH–
C(O)–CF3], Et is ethyl C2H5, and LEt is the stable nitro-
nyl nitroxide radical based on 2-imidazolyne cycle with
a pyrazole substituent in a side chain (Fig. 1a) [5]. The
possibility of controlling the atomic structure of high-
spin molecules and structural phase transitions in the
crystals allows us to consider the series of compounds
Cu(hfac)2LR (where R = Me, Et, Pr, Bu) as one of the
most promising candidates for actualizing molecular
magnetism at high temperatures [6].

2. EXPERIMENTAL

Dark opaque Cu(hfac)2LEt crystals ~5 mm in size
were grown from a solution of Cu(hfac)2 and LEt in hex-
1063-7834/03/4508- $24.00 © 21465
ane upon cooling from +50°C to room temperature and
subsequent evaporation for two days. We repeated this
procedure 15–20 times by using single crystals from
the previous solidification as single-crystalline seeds
for the subsequent solidification. The Vickers hardness
(H) was measured on the well-developed face in the ab
plane (Fig. 1b) at a load of 0.1 N for a loading time of
10 s. For indentation at low temperatures, we designed
an attachment to a microhardness tester to measure
hardness in a controlled flow of cold nitrogen gas and
to maintain the sample, indenter, and thermocouple at
the same temperature (to check this, we carried out spe-
cial experiments). An indication that the apparatus
operated correctly was the fact that we could observe
the microhardness jump detected in [7] during the sc–
fcc phase transition in C60 fullerite single crystals (inset
to Fig. 2b). Some regions of the crystals grown con-
tained internal stresses, which appeared upon growing
and thermal cycling; in some cases, the stresses caused
microexplosions in the zone of contact between the
indenter and the crystal. Therefore, to measure H, we
used only indentations without microexplosions and
cracks.

The magnetic properties of the crystals, powders,
and their solutions were studied with an X-band EPR
spectrometer at a modulation frequency of 100 kHz,
modulation amplitude of 0.6–1.0 Oe, and power of
~1 mW. EPR signals recorded were proportional to the
derivative dχ/dB of the real part of the magnetic suscep-
tibility with respect to the magnetic field strength B.

3. EXPERIMENTAL RESULTS

The microhardness of the crystals at room tempera-
ture was measured to be about 150 MPa, which is typi-
cal of most molecular solids (Fig. 2b). As the tempera-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Structural formulas of copper hexafluoroacetylacetonate (on the left) and nitronyl nitroxide radical (on the right) and
(b) the atomic structure of the molecule Cu(hfac)2LEt and the relative positions of polymer chains with respect to the faces of a
crystal (according to x-ray diffraction data from [5]).
ture decreases, the microhardness doubles near the
phase transition at T* = 220 K against the background
of a slight, smooth increase in H (Fig. 2b). The temper-
ature range of this sharp rise (∆T ~ 20 K) is comparable
to the ∆T value obtained in [7] upon studying the effect
of phase transitions on the mechanical properties of C60

fullerite and is somewhat wider than the width of this
transition region determined from the change in the
magnetic moment studied in [5] (Fig. 2a). 

The development of plastic deformation during
indentation is generally accompanied by the generation
of defects. To reveal them, we designed a technique of
chemical etching. The high solubility of the crystals
allowed us to achieve selective etching only in a cold
(T = 273 K) etching agent (pentane) under the condi-
tions of its rapid evaporation from the surface of a crys-
tal in an airflow. Figures 3a–3c present micrographs of
the sample surface before and after etching. Etching of
a crystal subjected to indenting induces the appearance
of these defects near an indentation. It was found that
one of the angles between the rays of an indentation
PH
rosette is ~70° (Fig. 3c) [6]. An increase in the etching
duration or the dissolution of the ~50-µm-thick surface
layer did not change the initial arrangement of etch pits
in the vicinity of the indentation. Double etching also
allows us to reveal regions with flat-bottomed and sharp
pits (Fig. 3d). Macroplastic deformation of the crystals
in an Instron testing machine at room temperature led
to their cracking. The surfaces of chopped-off crystal
fragments contain series of bands which are oriented at
an angle of 70° to each other and resemble dislocation
slip bands (Fig. 4).

X-ray diffraction examination that can be used to
detect jumplike changes in the interatomic distances
when passing T* = 220 K has not been carried out.
Therefore, to be sure that a structural phase transition
exists, we studied the temperature dependence of the
relative change in the crystal size ∆L(T)/L(293) along
the a direction (i.e., along polymer chains). A sample
was fixed under the of objective a microscope, and the
decrease in L during cooling was measured over the
temperature range 180–293 K. In a narrow range near
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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T* = 220 K, nonmonotonic changes in the crystal size
were observed (Fig. 5). Below the temperature of the
phase transition, the temperature dependences of the
lattice parameter a and of the crystal length L differ
from each other (Fig. 5). We detected no hysteresis of
the crystal size during thermal cycling. Long-term
(~5 min) holding of the crystal at T* is accompanied by
considerable self-excited oscillations of the sample sur-
face with an amplitude of ∆L/L ~ 0.1%. Thus, at 220 K,
a first-order structural phase transition occurs that is
accompanied by jumplike changes in the magnetic
moment, microhardness, and crystal size.

We also recorded EPR spectra of the new compound
in solution and in the solid state. When crystals were
dissolved in a weakly polar toluene (concentration
~10−5%), the observed EPR spectrum consisted of five
lines corresponding to the g factor gL = 2.00. Freezing
of the solution results in the broadening and confluence
of these lines (Fig. 6, curves 1, 2). The EPR spectrum
of the single crystal (curves 3–7) consists of a broad
singlet of Lorentzian shape. Against the background of
this signal, a weaker spectrum is observed at g = 2.00;
this spectrum coincides in position and shape with that
of the nitronyl nitroxide radical in the frozen solution
(Fig. 6). A decrease in the temperature down to T =
220 K leads to strong restructuring of the EPR spec-
trum of defects: the lines become split, their shape is
distorted, and their total area increases by a factor of
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Fig. 2. Temperature dependences (a) of the magnetic
moment µeff of a sample (in units of the Bohr magneton µB)

[5] and (b) of the microhardness of the Cu(hfac)2LEt single
crystals. For comparison, the inset shows the H(T) depen-
dence for C60 crystals [7].
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Fig. 3. The surface of an undeformed sample (a) before and
(b) after chemical etching and the surfaces (c) of a sample
after indentation (the indentation is at the center) and chem-
ical etching and (d) of a sample subjected to double etching
after deformation.
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10–50 (Fig. 6). Plastic deformation of the crystals by
1–3%, which increases the number of dislocations by
two or three orders of magnitude, and milling of the
samples into powders with a mean particle size of 1–
10 µm, which increases the surface area by two or three
orders of magnitude, do not change the portion of the
spectrum at g = 2.00 corresponding to the paramagnetic
defects found.

4. DISCUSSION OF THE RESULTS

Prior to discussing the causes of the changes in the
microhardness during the phase transition (Fig. 2b), we
will briefly dwell on the possible mechanisms of plastic
deformation in the Cu(hfac)2LEt crystals and the prop-
erties of the defects generated upon mechanical load-
ing. The regular equal facets of the etch pits appearing
after indentation (Fig. 3) indicate that they correspond
to structural defects with certain crystallographic orien-

100 µm

70°

Fig. 4. Fragments of the Cu(hfac)2LEt crystal deformed to
failure.
PH
tations. Since the pit arrangement in the vicinity of an
indentation remains the same after a 50-µm-thick sur-
face layer has been etched, selective etching can be
used to reveal linear defects generated by plastic defor-
mation. The fact that flat-bottomed and sharp pits are
observed after double etching (Fig. 3d) indicates that
the linear defects move in the field of internal mechan-
ical stresses. These defects are most likely dislocations.
In this case, the etch pits disclosed without loading
(Fig. 3a) can correspond to growth dislocations. Note
that growth dislocations have been observed earlier
only in thin films from among the whole set of com-
pounds based on the nitronyl nitroxide radical and
metal complexes [8].

According to x-ray diffraction data [5, 6], polymer
chains are bound by the van der Waals interaction and
are placed in layers parallel to the ab plane (Fig. 1b). In
these alternating layers, polymer chains make an angle
of 70° with the chains of the next layer. Hence, the
angles of ~70° between the rays of the indentation
rosette (Fig. 3) and between the slip bands on the crys-
tal surface (Fig. 4) can be accounted for by the pre-
ferred directions of the arrangement of polymer mole-
cules in the adjacent layers.

The structural defects found can move during plastic
deformation (Fig. 3d), thereby contributing to the
microhardness. Therefore, we can assume that the jump
in H during the phase transition (Fig. 2b) is similar to
the H jump in fullerenes [7], where it is explained by a
change in the dislocation mobility depending on the
character of energy dissipation near dislocation cores
[9]. In the crystals under study, the freezing of the rota-
tion of the side groups F, which was detected in [5]
from changes in the infrared transmission spectra
caused by the phase transition, can decrease the dislo-
cation mobility and induce an increase in H as the tem-
perature is reduced below 220 K. Another cause of the
sharp change in H can be a change in the strength and
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Fig. 5. Temperature dependence of the relative variation of
the sample length ∆L/L(293) upon (1) cooling and (2) heat-
ing. (3) The temperature dependence of the relative varia-
tion of the lattice parameter ∆a/a (according to x-ray dif-
fraction data from [5]).
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length of intermolecular bonds. For example, according
to the x-ray diffraction data, one of the O–Cu–O axes in
the CuO4N2 bipyramid is strongly elongated along the
direction of the applied load (Fig. 1a).

As for the magnetic properties of the crystals, we
note that the temperature dependence of the effective
magnetic moment µeff measured in [5, 6] showed the
absence of long-range order at 4–300 K and a jumpwise
change in µeff at T = 220 K (Fig. 2a) [5]. Ovcharenko
et al. [5] assumed that the cause of the sharp µeff jump
could be a change in the environment of the Cu2+ ions
inside the coordination polyhedra CuO4N2 and CuO6
(i.e., a change in the lengths of the Cu–OL and Cu–N
axial bonds in the CuO6 and CuO4N2 polyhedra, respec-
tively) during the structural phase transition. To estab-
lish the role of the defects in the formation of the mag-
netic properties of the crystals during the phase transi-
tion, we will discuss the EPR spectra recorded in this
work.

The broad line in the EPR spectrum of the single
crystal corresponds to a g factor equal to 2.08, which
agrees well with the value of g = (gCu + gL)/2 of the cop-
per–nitroxyl system with exchange coupling, where
gCu = 2.16 is the g factor of Cu2+ in hexafluoroacetylac-
etonate [10]. The calculation of the number of spins
forming this EPR signal showed that almost all spins of
the crystal lattice contribute to this broad singlet. An
estimation of the number of spins forming the addi-
tional signal at g = 2.00 gives 10–3 of their total number
in the crystal at T = 293 K. Hence, the corresponding
EPR spectrum characterizes paramagnetic defects.
Note that the spectrum of these defects virtually coin-
cides with the EPR spectrum of the frozen solution of
Cu(hfac)2LEt in toluene (Fig. 6, spectrum 2). The EPR
spectrum of Cu(hfac)2LEt in liquid toluene consists of
several lines, which appear to correspond to transitions
between the levels of the radical LEt (spin 1/2) split by
the hyperfine interaction with the N7 nuclei (nuclear
spin 1) (Fig. 6, spectrum 1). The broadening and con-
fluence of these lines upon freezing the toluene are
likely due to a decrease in the radical rotational mobil-
ity (Fig. 6). We assume that the same effect can also be
caused by the low rotational mobility of the LEt radicals
in the single crystals and that the paramagnetic defects
forming the spectrum at g = 2.00 contain LEt.

What is the nature of these paramagnetic centers?
Since the EPR spectra at g = 2.00 remain unchanged
after plastic deformation of the crystals, we assume that
the nucleation and motion of the defects that appear
during the plastic deformation are not accompanied by
breaks in the polymer chains and are reduced to dis-
placements of molecules with respect to one another.
This mechanism of defect formation requires a signifi-
cantly lower energy in comparison with the case of
breaking the intermolecular chemical bonds. Thus, the
defects that nucleate during deformation do not con-
tribute to the EPR signal at g = 2.00.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
We could also assume that the paramagnetic centers
found are LEt radicals, for example, “squeezed”
between molecules making up the lattice. In this case,
however, the number of spins should be independent of
temperature. Actually, at T ~ 220 K, the number of
spins of the paramagnetic defects with g = 2.00 strongly
increases; this increase is equivalent to a 3–5% increase
in the effective magnetic moment (i.e., it is comparable
to the jump in µeff detected in [5, 6]) (Fig. 6). Therefore,
these defects are most likely breaks in polymer chains
caused by changes in the molecule sizes and by thermal
expansion of the crystals. In this case, the length of a
polymer chain should consist of ~103 fragments at T >
220 K and ~102 fragments at T < 220 K. This assump-
tion is also supported by the fact that the “weakest chain
link” is the bond with the LEt radical; therefore, it is the
LEt radical that will additionally contribute to the EPR
spectrum during mechanical tension of the chain to its
break.

The recovery of the EPR spectrum upon heating the
crystal above the temperature of the phase transition
(i.e., the disappearance of the paramagnetic defects that
appeared upon cooling) may imply that an increase in
the mobility of radicals allows them to recover the ini-
tial chemical bonds with a broken polymer molecule.
The similar reversible nucleation is also inherent in
those defects that cause a difference in the temperature
dependences of the relative variations in the lattice

3000 3200 3400 3600
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H, Oe

Fig. 6. EPR spectra of Cu(hfac)2LEt (1) dissolved in toluene
and (2) in the frozen toluene solution and (3–7) EPR spectra
of the Cu(hfac)2LEt single crystal with its ab plane normal
to the static magnetic field at a temperature of (3) 293,
(4) 285, (5) 228, (6) 209, and (7) 182 K.
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parameter ∆a/a and the crystal length ∆L/L below the
phase transition temperature (Fig. 5). Since no hystere-
sis of the crystal length is observed during a cooling–
heating cycle (Fig. 5), a certain equilibrium concentra-
tion of these defects can be assumed to exist at temper-
atures below T = 220 K.

5. CONCLUSIONS

Thus, molecular heterospin Cu(hfac)2LEt crystals
have been established to undergo a structural phase
transition at 220 K, which is accompanied by a jump-
like change in the microhardness, sample dimensions,
and parameters of the EPR spectrum.

Two types of structural defects have been revealed:
linear defects nucleating during plastic deformation
(dislocations, microtwins, etc.) and paramagnetic cen-
ters containing the nitronyl nitroxide radical LEt. Plastic
deformation of the crystals was found to be accompa-
nied by the nucleation and motion of linear defects,
which do not change the shape of the EPR spectrum.
Note that, although mobile dislocations in polymers
have not yet been detected experimentally, the possibil-
ity of their appearance is supported by the results of
molecular-dynamics simulations [11, 12].

The paramagnetic defects, which are likely breaks
in polymer chains, significantly contribute to the
change in the effective magnetic moment during the
phase transition. These defects should be taken into
account in order to adequately interpret the magnetic
properties of the defect-free part of a crystal. The para-
magnetic centers detected can serve as spin marks for
investigating the magnetic state of the crystal lattice,
since their EPR spectrum is highly sensitive to changes
in the structure and interatomic distances.
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Abstract—The mobility of individual triple junctions in aluminum is studied. Triple junctions with 〈111〉 ,
〈100〉 , and 〈110〉  tilt boundaries are studied. The data obtained show that, at low temperatures, the mobility of
the system of grain boundaries with a triple junction is controlled by the mobility of the triple junction (the junc-
tion kinetics). At high temperatures, the system mobility is determined by the mobility of the grain boundaries
(the boundary kinetics). There is a temperature at which the transition from the junction kinetics to the boundary
kinetics occurs; this temperature is determined by the crystallographic parameters of the sample. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Although triple junctions, along with grain bound-
aries, are main defects in polycrystals, they have
attracted considerable interest only recently. The avail-
able data indicate that triple junctions and the grain
boundaries they are made up of differ from each other.
For example, it was shown in [1] that the diffusion coef-
ficient of Zn along a triple junction in Al exceeds that
along the grain boundaries it is made up of by three
orders of magnitude. Triple junctions are the predomi-
nant sites of corrosion in Ni [2]. The presence of triple
junctions specifies the mechanical properties of a mate-
rial. For example, Rabukhin [3] found experimentally
that the mechanical strength of thin filaments without
triple junctions (the so-called “bamboo” structure) was
twice as high as that of filaments with triple junctions.
It was also shown in [4] that in the former case the plas-
ticity is lower (by a factor of three to ten, depending on
the grain size) and the internal friction is smaller almost
by a factor of three.

The effect of triple junctions on grain-boundary
migration was first considered theoretically in [5]. The
velocity of the system of grain boundaries with a triple
junction (Fig. 1) is determined by 

(1)

where θ is the apex angle in the triple junction, mGB is
the grain-boundary mobility, σ is the surface tension of
a grain boundary, and a is the grain width. On the other
hand, the velocity of the triple junction experiencing
the driving force σGB(2cosθ – 1) is

(2)

V
2θmGBσ

a
--------------------,=

V mTJσGB 2 θcos 1–( ),=
1063-7834/03/4508- $24.00 © 21471
where mTJ is the triple-junction mobility. Therefore, the
equilibrium value of the angle θ for the case of steady-
state motion of the system can be found from the con-
dition

(3)

Galina et al. [5] showed that, for a system of grain
boundaries with a triple junction as presented in Fig. 1,
two kinetic motion modes exist; in one of them, the sys-
tem mobility is dictated by the triple-junction mobility,
and in the other, it is dictated by the mobility of the
grain boundaries. The value of the dimensionless
parameter Λ is the criterion for the transition from one
kinetics to the other. At Λ ! 1, the angle θ  0 and
the velocity of the system is controlled by the triple-
junction mobility in accordance with Eq. (1) (the junc-

2θ
2 θcos 1–
------------------------

mTJa
mGB
----------- Λ .= =

GB

GB

GB

y

V

a

x

θ

θ

Fig. 1. Configuration of grain boundaries in a triple junction
during steady-state motion.
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tion kinetics mode). At Λ @ 1, the angle θ tends to its
equilibrium value θeq. In this case, the velocity of the
system of grain boundaries with a triple junction does
not depend on the triple-junction mobility and is only
determined by the boundary properties [Eq. (2), the
boundary kinetics mode].

Czubayko et al. [6] were the first to experimentally
confirm this prediction by studying the mobility of indi-
vidual triple junctions in Zn. In this work, we study the
migration of triple junctions in aluminum.

2. EXPERIMENTAL

For investigation, we used high-purity (99.999%) Al
grown by directional solidification in an argon atmo-
sphere. The schematic of a sample is shown in Fig. 2.
The grain boundaries are normal to the sample surface
and are tilt boundaries. We studied the motion of triple
junctions in three crystallographic planes: (100), (110),
and (111). The grain-boundary angle was determined
using the Laue method. The crystallographic parame-
ters of samples are given in the table.

To study the migration characteristics of individual
triple junctions, we performed sequential high-temper-
ature annealings of samples and determined the dis-
placements of the triple junctions as a function of time
using an x-ray device for continuous tracking of mov-
ing interfaces in crystalline solids [7].

The angle θ was determined by optical microscopy
using thermal and chemical etch grooves (Fig. 3).

GBI GBII GBIII

Grain 1

Grain 2
a Grain 3 2θ

Fig. 2. Sample with a triple junction (schematic).
PH
To measure the migration velocity, a groove on a
sample was removed by polishing prior to subsequent
annealing.

To calculate Λ for a system of grain boundaries
moving in a sample, we determined the ratio σ3/σ (σ is
the surface tension of boundaries GBI and GBII and σ3
is that of boundary GBIII) assuming that θ reached its
equilibrium value at temperatures close to the melting
point. The value of θ near the melting temperature was

0.5 mm(a)

(b)

Fig. 3. Shape of a triple junction revealed by (a) chemical
and (b) thermal etching.
Crystallographic, kinetic, and thermodynamic parameters of triple junctions

Sample no. 1 2 3 4 5 6 7 8 9

GBI 21° 〈111〉 20° 〈111〉 20° 〈111〉 22° 〈100〉 12° 〈100〉 37° 〈100〉 12° 〈100〉 27° 〈110〉 44° 〈110〉
GBII 18° 〈111〉 25° 〈111〉 10° 〈111〉 28° 〈100〉 25° 〈100〉 25° 〈100〉 37° 〈100〉 22° 〈110〉 29° 〈110〉
GBIII 3° 〈111〉 5° 〈111〉 30° 〈111〉 6° 〈100〉 37° 〈100〉 12° 〈100〉 25° 〈100〉 5° 〈110〉 15° 〈110〉
∆T, °C 398–479 380–420 470–510 460–495 590–610 500–550 520–570 469–591 530–591

HGB, eV 1.0 0.4 1.3 0.9 1.4 1.3

A0GB, m2/s 0.03 3.9 × 10–6 0.5 4.7 × 10–4 2.3 0.4

HTJ, eV 1.8 2.0 3.3 3.6 4.4 2.7

A0TJ, m
2/s 4.5 × 104 1.8 × 106 1.8 × 1013 9.8 × 1014 1.8 × 1019 1.3 × 109
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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obtained from the following experiment. Samples with
triple junctions were annealed at T = 655°C (close to
the melting temperature) for 5 min. To avoid complete
disappearance of the grain between boundaries GBI
and GBII, we made a notch (groove) as shown in Fig. 4.
After annealing, the sample was rapidly cooled and the
boundary position and the angle 2θ ≈ 2θeq were deter-
mined with a microscope [8]. The value of σ3/σ can
also be calculated from the reported data [9].

The mobility of the system of grain boundaries with
a triple junction was calculated, using the experimen-
tally found velocity from the formulas [10]

(4)

(5)

where AGB and ATJ are the mobilities of the grain bound-
aries and triple junctions, respectively, and HGB and HTJ
are their respective activation energies.

3. RESULTS AND DISCUSSION

Figure 5 shows the temperature dependences of the
dimensionless parameter Λ for samples 1, 7, and 8.
According to the approach proposed in [5], two motion
modes of the system of grain boundaries with a triple
junction can be distinguished in the temperature depen-
dence of the parameter Λ. At low temperatures (up to
430°C for sample 1, 530°C for sample 7, and 510°C for
sample 8), the parameter Λ is rather small and remains
virtually unchanged. The system mobility is controlled
by the triple-junction mobility (the junction kinetics).
Then, the parameter Λ increases and the triple junction
exerts a weaker effect on the system mobility. In this
temperature range, the system mobility is specified by
the grain-boundary mobility (the boundary kinetics).

For the temperature ranges differing in the Λ behav-
ior, we calculated the mobility of the system of grain

AGB
Va
2θ
-------≡ mGBσGB A0GB

HGB

kT
----------– 

  ,exp= =

ATJ
Va

2 θcos σ3/σ–
---------------------------------≡  = mTJσGBa = A0TJ

HTJ

kT
--------– 

  ,exp

2θeq

(b)(a)

GBI

GBIII

GBII

Fig. 4. Scheme of the experiment for determining θeq:
(a) the system of grain boundaries with a triple junction (the
lateral boundaries are notched) and (b) the same system
after annealing.
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boundaries with a triple junction (Fig. 6). The lines with
solid symbols show the mobilities of triple junctions
demonstrating both motion modes, with the junction
and boundary kinetics. As is seen from the curves, the
three crystallographic systems exhibit common fea-
tures; namely, at low temperatures (the junction kinet-
ics), the motion of the system of grain boundaries with
a triple junction is characterized by a high activation
energy, whereas at high temperatures (the boundary
kinetics), this system moves with a low activation

400 420 440 460 480
T, °C

5
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Λ
Λ

(a)

(b)

Λ

460 480 500 520 540 560 580 600
T, °C

2

3

4

5

6

7

8
(c)

Fig. 5. Temperature dependences of the dimensionless
parameter Λ for a triple junction: (a–c) samples 1, 7, and 8,
respectively (see table).
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T, °C

575 540 505 470
T, °C

570 550 530 510 490 470
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Fig. 6. Temperature dependences of the triple-junction
mobility in the planes (a) (111), (b) (100), and (c) (110).
H1–H9 are the activation energies in samples 1–9, respec-
tively (see table). For samples 1, 7, and 8, two activation
energies, corresponding to the low- and high-temperature
ranges of the H(T) dependences, are given.

1/T, 103/K
P

energy. Additionally, Fig. 6 shows the mobilities of tri-
ple junctions with other values of the misorientation
parameters of the neighboring grains; their motion was
studied in narrow temperature ranges (lines with open
symbols). However, it is seen that such systems demon-
strate similar behavior in the high- and low-temperature
ranges: motion with a high activation energy in the low-
temperature ranges and a low activation energy in the
high-temperature range. The calculated values of the
grain-boundary (A0GB) and triple-junction (A0TJ) mobil-
ities, as well as the corresponding activation energies
(H0GB and H0TJ, respectively), are given in the table
(∆T is the temperature range of sample annealing).

4. CONCLUSIONS

The results obtained show that there are two modes
of motion for the system of grain boundaries with a tri-
ple junction in aluminum: at low temperatures, the
junction decreases the system mobility (the junction
kinetics), whereas at high temperatures, the system
mobility is controlled by the grain-boundary mobility
(the boundary kinetics). There is a temperature at which
the transition from the junction to boundary kinetics
occurs; this temperature is determined by the crystallo-
graphic parameters of the sample.
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Abstract—The optical absorption spectra of Rb2MnxCd1 – xCl4 crystals are experimentally studied in the vicin-
ity of a magnon sideband of the exciton band at a manganese content x ranging from 1.0 to 0.4. Additional
absorption bands are observed with an increase in the magnetic structural disorder upon replacement of man-
ganese ions by cadmium ions. An analysis of the evolution of the additional absorption bands in a magnetic
field during the spin-flop phase transition and the change in the intensity with variations in the manganese con-
tent x demonstrates that these bands are associated with the excitation of the exchange-coupled pairs of man-
ganese ions located in different environments in a plane square lattice. The phase boundary between the anti-
ferromagnetic and spin-flop phases is constructed using the results of optical measurements. The manganese
content corresponding to the magnetic percolation point is evaluated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, a fine structure observed in the optical
absorption spectra of antiferromagnets containing 3d
ions is caused by interactions of different natures in the
crystals. In addition to the bands attributed to the sin-
gle-ion electron optical transitions, the spectra of mag-
netic crystals at optical frequencies exhibit bands asso-
ciated with excitations of different origins (magnons,
phonons, etc.). Since the main features of spectral
bands of different natures are well known [1, 2], it is
possible to identify the absorption bands and then to
use available data on the optical spectra in analyzing
the specific features of the excitation energy spectra and
the magnetic structure of the crystal. Disordering of the
crystal, for example, due to an appreciable impurity
concentration, violates translational symmetry. In this
case, the quasiparticle approach underlying the descrip-
tion of the optical spectra does not hold. If the order in
a crystal is disturbed, one can expect qualitative
changes in the absorption optical spectra. For example,
the introduction of a magnetic impurity into a antiferro-
magnet can give rise to additional bands in the spec-
trum due to the occurrence of either the localized states
or the resonance states [2, 3]. We succeeded in observ-
ing new bands in the spectrum of a two-dimensional
(2D) antiferromagnet upon replacement of magnetic
ions by nonmagnetic ions in an Rb2MnCl4 crystal
diluted with Cd2+ ions.

Crystals of Rb2MnCl4 at room temperature have a

tetragonal structure with  symmetry. At the Néel
temperature TN = 57 K, the Rb2MnCl4 crystal is charac-

D4h
17
1063-7834/03/4508- $24.00 © 21475
terized by an antiferromagnetic order with easy-axis
anisotropy parallel to the C4 symmetry axis of the crys-
tal [4]. The spin-flop transition occurs in the field HSF =
56 kOe. The Mn2+ ions are located in layers perpendic-
ular to the C4 symmetry axis at sites of a plane square
lattice of the crystal. The interlayer distance consider-
ably exceeds the distance between the Mn2+ nearest
neighbor ions located in the same layer. As a result, the
intralayer exchange interaction between the manganese
ions is two orders of magnitude stronger than their
interlayer exchange interaction, which is responsible
for the two-dimensional behavior of the magnetic sys-
tem of the crystal.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

Crystals for study were grown using the Bridgman
method in a vertical tube furnace. The optical absorp-
tion spectra were measured on a spectrometer with a
resolution of 3 Å/mm at a temperature of 4.3 K. Mag-
netic fields with a strength up to 250 kOe were gener-
ated in a pulsed solenoid with a pulse duration of 20 ms.
The spectra were recorded on photographic film.

3. RESULTS AND DISCUSSION

Figure 1 shows the absorption spectra of
Rb2MnxCd1 – xCl4 for the α polarization at frequencies
close to ~26500 cm–1 and different manganese contents
x. The absorption observed in this range is due to the
transition 6A1g(6S)  4T2g(4D) inside the 3d shell of
003 MAIK “Nauka/Interperiodica”
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Mn2+ ions. This figure represents a group of bands
attributed to this transition in the long-wavelength
range. It can be seen that the absorption spectra of the
crystal at x = 1.0 contain a narrow electrodipole band
D1. The polarization of the D1 band corresponds to
selection rules for a single-magnon sideband of the
exciton band. The intralayer exchange interaction
between Mn2+ ions was estimated as J/k = −5.6 K from
the results of magnetic [5] and magneto-optical [6]
measurements. The energy of magnons with wave vec-
tors at the boundary of the Brillouin zone, which, as a
rule, make the main contribution to the exciton–mag-
non absorption in a collinear antiferromagnet, was esti-
mated at 80 cm–1. The magnetodipole exciton band at
an energy of ~80 cm–1 below the energy corresponding
to the D1 band was revealed in the spectrum of mag-
netic circular dichroism [7]. Although this band was not
observed in the absorption spectrum due to the low
intensity, its energy location is indicated in Fig. 1 and
the band itself is designated as E1. Kojima et al. [8] cal-
culated the line shape for exciton–magnon absorption
of a 2D antiferromagnet with a square lattice. The line
shape depends on many parameters and can be differ-
ent. However, in the case when the interaction between
the exciton and the magnon can be disregarded and the
parameters of the resonance transmission of optical
excitation from ion to ion are small (and, as a conse-
quence, the dispersion of the exciton band is small), the
band under consideration becomes narrow and strongly
asymmetric. The line shape calculated for a square anti-
ferromagnetic lattice under the above assumptions with
the relationships described in [8] is presented in Fig. 1
(curve 0). In these calculations, the exchange integral
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Fig. 1. Absorption spectra of Rb2MnxCd1 – xCl4 crystals in
the vicinity of the exciton–magnon absorption band D1 for
the α polarization with the wave vector k || C4, the electric-
field vector E ⊥  C4, T = 4.3 K, and different magnesium
contents x: (0) 1.0 (calculated shape of the exciton–magnon
band), (1) 1.0, (2) 0.9, (3) 0.8, (4) 0.7, and (5) 0.4.
P

and the anisotropy field were taken from [6] and [5],
respectively. The anisotropy field virtually does not
affect the exciton–magnon band but eliminates the
divergence in the expression for the line shape at the
center of the Brillouin zone.

As the content of Mn2+ ions decreases, additional

bands (  and ) appear in the range of the D1 exci-
ton–magnon band, whereas the D1 band itself becomes
less intense and almost disappears at x = 0.7 (curve 4 in
Fig. 1).

Figure 2 depicts the dependences of the energy loca-

tion of the bands D1, , and  on the magnetic field
aligned parallel to the C4 axis of the crystals. In the anti-
ferromagnetic phase, the spin-flop transition leads to a
jumplike shift of all the bands revealed in the α-polar-
ized absorption spectrum (including the bands
observed upon dilution of the magnetic crystal) by the
same value. This suggests that all these bands are asso-
ciated with the same exciton.

The magnitude of the jump in the energy of the
absorption bands upon the spin-flop transition
decreases almost linearly as the manganese content x
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Fig. 2. Dependences of the energies of the bands D1, ,

and  on the magnetic field H || C4 at different magne-

sium contents x. T = 4.3 K. The inset shows a fragment of
the phase diagram plotted in the x–H coordinates at T =
4.3 K according to the results of spectral measurements.

D1'

D1''
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decreases, which reflects the decrease in the mean
exchange field due to the dilution of the Rb2MnCl4
crystal, and vanishes at x ≈ 0.6. The inset in Fig. 2
shows the dependence of the field of the spin-flop tran-
sition on the manganese content at T = 4.3 K, which

was obtained from observations of the D1, , and 
bands in a magnetic field. The estimate of the critical
manganese content (xc = 0.6) corresponding to a transi-
tion from the antiferromagnetic state to a disordered
state of the crystal agrees well with the theoretical value
(0.59) for the point of magnetic percolation in a plane
square lattice.

For the Rb2MnCl4 crystal, the D1 exciton–magnon
band is unique with respect to its parameters owing to
the small dispersion of the exciton band. The replace-
ment of manganese ions by cadmium ions in the mag-
netic lattice disturbs both translational symmetry and
the initial magnetic order. In this case, the contribution
of the short-wavelength magnons (short-range mag-
netic order) to the exciton–magnon absorption
increases and the band should become more symmetric
and less intense with a decrease in the manganese con-
tent x. This behavior is observed for the D1 band.

The energy location of the  and  bands in the
spectra of diluted crystals indicates that these bands are
associated with the same process of excitation as in the
case of the D1 band. The energies at their maxima are
~Em/4 and ~Em/2 less than the energy at the maximum
of the D1 band. Here, Em is the magnon energy at the
boundary of the Brillouin zone. The energy separation
between the states split along the projection of the spin
in a local magnetic field decreases by the same value,
provided the nearest environment of the Mn2+–Mn2+

pair is considered a field source and, in the nearest envi-
ronment itself, one or two Mn2+ ions are replaced by
Cd2+ ions. The total absorption by an exchange-coupled
pair of magnetic ions is proportional to the number of
pairs. The probabilities of finding no Cd2+ ions, one
Cd2+ ion, or two Cd2+ ions in the nearest environment of
the Mn2+–Mn2+ pair depend on the manganese content
x. Figure 3 presents the statistical estimates of these
probabilities obtained by statistical modeling. The ana-
lytical dependences of the probabilities on the manga-
nese content x for these three cases obey the laws x8,
6x7(1 – x), and 15x6(1 – x)2, respectively, and coincide
with the curves depicted in Fig. 3. In the case when the
D1 exciton–magnon band shape remains unchanged

upon dilution of the crystal and the  and  bands
have a Gaussian shape, the concentration dependences
of the integrated intensities of these three bands after
their separation approximately coincide with the curves
shown in Fig. 3. The vertical lines in Fig. 3 indicate the
ratios of the numbers of ion pairs for manganese con-
tents at which the measurements were carried out. These
ratios correlate well with the intensity ratios of the D1,

D1' D1''

D1' D1''

D1' D1''
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
, and  bands. Therefore, the  and  bands
appear in the absorption spectra of Rb2MnxCd1 – xCl4
crystals as a result of the excitation of exchange-cou-
pled pairs of Mn2+ ions in a spatially disordered mag-
netic structure, provided the nearest environment of the
Mn2+ ions contains Cd2+ ions.

In addition to the D1 band, the spectra of the
Rb2MnCl4 crystal exhibit magnon sidebands in the
vicinity of the transitions 6A1g(6S)  4T2g(4D) [9] and
6A1g(6S)  . However, the line shape of
these satellites does not allow one to observe additional

bands similar to the bands  and .

4. CONCLUSIONS

Thus, we studied the dependences of the optical
absorption of a 2D magnet on the content of magnetic
ions and on the magnetic field in the range of the exci-
ton–magnon absorption. Owing to the unique parame-
ters of the D1 exciton–magnon band, the additional
absorption bands associated with the optical excitation
of exchange-coupled pairs of Mn2+ ions were observed
for the first time in the spectrum of an antiferromag-
netic crystal upon its dilution with a nonmagnetic
impurity. The phase boundary between the antiferro-
magnetic and spin-flop phases was constructed using
the results of optical measurements.
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Abstract—The spectrum of Fermi excitations of a nondegenerate ferromagnetic semiconductor at T = 0 with
one electron present is investigated in order to describe the electronic structure of manganites with inclusion
of strong electron correlations within the Anderson periodic model with s–d exchange interaction. Exact dis-
persion relations and the Green functions for different spin projections are found. The density-of-states func-
tion is calculated for different positions of the d level relative to the band bottom. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

To investigate Kondo systems or systems with vari-
able valence, such as La1 – xCaxMnO3 and
La1 − xSrxMnO3, a periodical Anderson model with s–d
exchange is used in this work.

The interest in manganites stems from the fact that
in these compounds the effect of colossal magnetic
resistance is observed, whose maximum is reached at
x = 0.33. In this case, the system can be considered a
ferromagnetic [1] lattice of localized spins of Mn4+ ions
with the electron configuration 3d3 (spin S = 3/2), into
which some extra electrons of the corresponding con-
centration are added. These electrons can remain delo-
calized and interact with the lattice spins via exchange
interaction of the Heisenberg type. As a result of possi-
ble hybridization, the electrons can become localized,
forming a Mn3+ ion of 3d4 configuration at a lattice site.
These two types of the electron state and two interac-
tions are included in the Hamiltonian of the model,
which is the periodical Anderson model with s–d
exchange interactions.

This work is devoted to the specific case of a system
containing one itinerant electron at T = 0. It is very
important that, under these conditions, the problem
turned out to have an exact solution. Formally speak-
ing, this case corresponds to the lower limit of concen-
tration, for which x  0 and the ground state of the
localized spin subsystem of manganites is antiferro-
magnetic. Not aiming to describe this antiferromag-
netic case, we only note that this exact solution is
important for manganites in the range of parameters
where the ground state of the localized spin subsystem
is ferromagnetic (x = 0.15–0.40). If we take an approx-
imate solution in this range and consider the concentra-
tion of carriers as a parameter, then tending this param-
eter to zero (with the localized spin subsystem frozen in
the ferromagnetic ground state) will lead to our exact
1063-7834/03/4508- $24.00 © 21479
solution. Thus, this solution may be useful for con-
structing and checking approximate solutions for the
values of parameters corresponding to ferromagnetism
in the localized spin subsystem.

This case is also a generalization of the problem of
a magnetic polaron [2–4] with inclusion of hybridiza-
tion interaction. Let us write the wave function of the
dnsm configuration as |n, S, M; m, σ〉, where S and M are
the spin and its projection for a dn ion, respectively; m =
0 or 1 is the number of s electrons per unit cell; and σ is
the spin projection of an l electron. Then, in addition to
the processes caused by the s–d exchange,

|n, S, S; 1, ↓〉   |n, S, S – 1; 1, ↑〉 (1)

we will have the processes due to hybridization
|n, S, S; 1, ↓〉

 |n + 1, S ± 1/2, S – 1/2; 0〉 (2)

 |n, S, S – 1; 1, ↑〉 ,

|n, S, S; 1, ↑〉   |n + 1, S + 1/2, S + 1/2; 0〉 , (3)

which are included in this work. The plus and minus
signs in Eq. (2) correspond to two possible values of the
total spin on a site. In general, when the electron is
localized, the spin of the site can take on the values S ' =
S + 1/2 and S ' = S – 1/2. The corresponding cases are
called the high-spin and low-spin cases. A solution for
the low-spin case was obtained in [5]. In manganites,
when the itinerant electron is localized, we have the
high-spin case; the 3d4 configuration possesses spin
S ' = 2, which is used in this work. The excitations of
quasiparticles with a definite spin projection, which are
forbidden in the low-spin case, become allowed in the
high-spin case. As a result, the one-particle density of
states in the high-spin case radically differs from that in
the low-spin case.

In Section 2, the model Hamiltonian is written out,
necessary transformations are described, and the exact
003 MAIK “Nauka/Interperiodica”
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results (dispersion relations and Green functions) are
presented. In Section 3, we discuss the density of states
calculated using the exact solution.

2. EXACT ONE-PARTICLE GREEN FUNCTIONS

Taking interactions into account, we write down the
Hamiltonian of the model in the form

(4)

Here, H0a = describes delocalized states.
The Hamiltonian H0d describes localized states and
generally can be written as

(5)

In the second term, the index Γ includes the site
index f and the orbital index λ; ν is the Coulomb inter-
action.

Let us pass to the space of eigenstates of the Hamil-
tonian H0d. Each of them is defined by three quantum
numbers, namely, the number of electrons, the total
spin, and its projection (|n, S, M〉), and has energy
En, S, M. In this representation, H0d can be written as

(6)

where we used the Hubbard operators

(7)

In the case of manganites, for half-integer projec-
tions of the total spin, the values of the other two quan-
tum numbers are n = 3 and S = 3/2, while for integer
projections we have n = 4 and S ' = 2. Therefore, we will
indicate only the projection of the total spin for the
Hubbard operators:

(8)

Since we have only two configurations of localized
electrons on a site that differ in energy, the energy of the
state |n = 3, S = 3/2, M〉  can be taken to be zero; the
energy of the other state, |n = 4, S' = 2, M'〉 , will be des-
ignated as Ω .

H H0a H0d J S f σ f

f

∑–+=

+ V d fσ
†

a fσ H.c.+( ).
fσ
∑

εkakσ
†

akσkσ∑

H0d ελd fλσ
†

d fλσ

f λ σ, ,
∑=

+ Γ1 Γ2,〈 |ν Γ 3 Γ4,| 〉dΓ1σ
†

dΓ2σ'
†

dΓ4σ'
†

dΓ3σ
†

.
Γ1 Γ2 Γ3 Γ4, , ,

σ σ',

∑

H0d En S M, , X f
n S M ; n S M, , , ,

f n S M, , ,
∑=

X f

n1 S1 M1; n2 S2 M2, , , ,
n1 S1 M1, ,| 〉 n2 S2 M2, ,〈 | .=

X f

M1 M2,
n1 S1 M1, ,| 〉 n2 S2 M2, ,〈 | .=
P

As a result, H0d can be written as [6]

(9)

For further calculations, we express all operators
acting on the localized states in terms of the Hubbard
operators. In this case, the components of the operators
Sf have the form

(10)

(11)

(12)

The creation and annihilation operators for an elec-
tron on the localized d level can be written as

(13)

(14)

In calculating the densities of states of quasiparti-
cles, we used the two-time retarded Green functions,
while involve the creation and annihilation operators of
the corresponding quasiparticles and the ferromagnetic
ground state of the localized spin subsystem (thus, the
ferromagnetic ordering in the localized spin subsystem,
appearing due to spin exchange between manganese
ions, is taken into account):

(15)

Here,

(16)

The matrix element is taken for the ferromagnetic
ground state |FM〉  of the system in the absence of carri-
ers. In this state, the energy band is empty: afσ|FM〉  = 0
and each lattice site has spin S and the maximum spin

projection,  = S |FM〉 .

H0d Ω X f
M' M',

.
M' S'–=

S'

∑
f

∑=

S f
Z

MX f
M M,

M S–=

S

∑ M'X f
M' M',

,
M' S'–=

S'

∑+=

S f
+

S f
–( )

†
γS M( )X f

M 1 M,+

M S–=

S

∑= =

+ γS' M'( )X f
M' 1 M',+

,
M' S'–=

S'

∑

γS M( ) S M–( ) S M 1+ +( ).=

d f ↑
†

d f ↑( )† S 1 M+ +
2S 1+

-----------------------X f

M
1
2
--- M,+

,
M

∑= =

d f ↓
†

d f ↓( )† S 1 M–+
2S 1+

-----------------------X f

M
1
2
---– M,

.
M

∑= =

apσ t( ) apσ
†

t '( )〈 | 〉〈 〉

=  –iθ t t '–( ) FM〈 | apσ t( ) apσ
†

t '( ),[ ] + FM| 〉 .

θ t( )
1, t 0>
0, t 0.<




=

S f
Z

FM| 〉
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The equations of motion can be reduced to the set of
equations:

(17)

from which we obtain a dispersion equation and an
exact expression for the Green function (with spin up),

(18)

(19)

From Eqs. (17), it follows that the Green function

 corresponds to a localized quasipar-
ticle with spin up. Analogous calculations for this func-
tion give

(20)

(21)

For an itinerant and a localized quasiparticle with
spin down, the corresponding set of equations is more
complicated due to a larger variety of multiparticle pro-
cesses [see Eqs. (1)–(3)], but at T = 0 and for one car-
rier, this set is also closed and allows an exact solution.
It is significant that the ground state is assumed to be
ferromagnetic in this case. The dispersion relation and
the Green function (for an itinerant quasiparticle with
spin down) are calculated exactly to be

(22)

(23)

For a localized quasiparticle with spin down, we
have

(24)

(25)

E εp– JS
2

------+ V–

V– E Ω–

ap↑ ap↑
†〈 | 〉〈 〉

X p

S S
1
2
---+,

ap↑
†〈 | 〉〈 〉

1

0
,=

D1 E( ) E εp– JS
2

------– V
2

E Ω–
--------------– 0,= =

ap↑ ap↑
†〈 | 〉〈 〉 D1 E( ) 1–

.=

X p

S S
1
2
---+,

X p

S
1
2
--- S,+

〈 | 〉〈 〉

D2 E( ) E Ω– V
2

E εp– JS
2

------+
---------------------------– 0,= =

X p

S S
1
2
---+,

X p

S
1
2
--- S,+

〈 | 〉〈 〉 D2 E( ) 1–
.=

D3 E( ) E εp–
JS
2

------–=

+
2V1

2
JS

1
2
---J

2
S E Ω–( )– V1

2 ∆ 1–
E( ) J /2–( ),–

E Ω–( ) ∆ 1–
E( ) J /2–( ) 2V1

2
S–

-------------------------------------------------------------------------------------------------------- 0,=

ap↓ ap↓
†〈 | 〉〈 〉 D3 E( ) 1–

.=

D4 E( ) E – Ω=

+

2V1
2
JS 2V1

2
S E εp– JS

2
------– 

 – V1
2 ∆ 1–

E( ) J /2–( )–

E εp– JS
2

------– 
  ∆ 1–

E( ) J /2–( ) J
2
S

2
--------–

---------------------------------------------------------------------------------------------------------------- = 0,

X p

S S
1
2
---–,

X p

S – 
1
2
--- S,

〈 | 〉〈 〉 D4 E( ) 1–
.=
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Here, the following notation is introduced:

(26)

It should be noted that if we neglect the hybridiza-
tion effects in Eqs. (19) and (23), by setting V = 0, then
these equations will coincide exactly with the corre-
sponding equations for a magnetic polaron [2–4]
obtained for the case of a ferromagnetic saturated semi-
conductor, in particular, for EuO at T = 0 [7].

3. ONE-PARTICLE DENSITIES OF STATES

In order to illustrate the exact solution obtained, the
density of states was calculated for each quasiparticle.
Making the change of variables εp = E', we write

(27)

In order to calculate the density of states for local-
ized electrons, the relation between the Green functions

 and the functions  needs
to be established. Making use of the definition of the
Green functions, Eqs. (13) and (14), and the fact that
the projection of any localized spin in the ground state
equals S, we obtain

(28)

The corresponding Green functions for a quasiparti-
cle with spin up are

(29)

Numerical calculations were performed using the
parameters characteristic of manganites: J = 0.5 eV,
V = 0.1 eV, W = 4 eV, and S = 3/2.

We note that the parameters obtained from the
adjustment to the experiment are dependent on the
model. For example, in our case, W is the width of the
bare band. The resulting band of quasiparticles, as will
be seen further on, contains two bands; the lower one is
narrow, with the narrow-band limit taking place for it
[8], while the upper one is wide, with its width exceed-
ing the exchange parameter J.

∆ E( ) 1
N
---- 1

E εk– JS
2

------+
---------------------------, V1

k

∑ V

2S 1+
-------------------.= =

n E( ) 1
π
--- 1

N
---- Im G p E i0+,( )

p

∑–=

=  –
1
π
--- E 'n0 E '( )Im G E ' E i0+,( ).d∫

d pσ d pσ
†〈 | 〉〈 〉 X p

S S
1
2
---±,

X p

S
1
2
---± S,

〈 | 〉〈 〉

d p↓ d p↓
†〈 | 〉〈 〉 S 1 M–+

2S 1+
----------------------- S 1 M'–+

2S 1+
------------------------

M M',
∑=

× X p

M M
1
2
---–,

X p

M' 1
2
---– M',

〈 | 〉〈 〉 1
2S 1+
--------------- X p

S S
1
2
---–,

X p

S
1
2
---– S,

〈 | 〉〈 〉 .=

d p↑ d p↑
†〈 | 〉〈 〉 X p

S S
1
2
---+,

X p

S
1
2
---+ S,

〈 | 〉〈 〉 .=
3
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For calculations, we used a quadratic dispersion law
and the corresponding density of states

(30)εx
W x

2
, x 1– 1,[ ]∈

0, x 1– 1,[ ] ,∉
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Fig. 1. Densities of states for Ω equal to (a) –0.5, (b) 0, and
(c) 0.5 eV. The density of states with spin down is offset hor-
izontally to the left and the one with spin up, to the right.
Thin solid lines correspond to an itinerant quasiparticle,
dashed lines to a localized quasiparticle, and thick solid
lines to the total density for J = 0.5 eV, V = 0.1 eV, W = 4 eV,
and S = 3/2.
P

where x = p/pB,

(31)

The localization energy Ω was chosen such that it
fell in one of the three energy ranges into which the
energy axis is divided by points ±JS/2 = ±0.375 eV. For
each value of Ω, the densities of states were calculated
for itinerant and localized quasiparticles for both spin
projections. The results are shown in Fig. 1.

Figure 1a shows the densities of states for Ω =
−0.5 eV. In this case, the localized level lies below the
band. The band densities of states for both spin projec-
tions have the same form as in the s–d model. The elec-
trons with spin down exhibit a non-quasiparticle behav-
ior in the region (–JS/2, JS/2), which is a known effect
characteristic of the s–d model. The density of states of
a localized quasiparticle for both spin projections has a
narrow peak near the energy –0.5 eV. For both spin pro-
jections, there is a nonzero contribution near the con-
duction band bottom caused by hybridization.

This case (with the localized level lying below the
band) resembles the situation in the s–d model with a
negative s–d exchange parameter, where a deep discrete
level appears corresponding to the band of spin-polaron
states [3]. However, in this case, the localized level
under the band has only an insignificant addition of
polaron and band states, appearing due to hybridiza-
tion, and consists mainly of the localized d-electron
states.

Figure 1b presents the densities of states for Ω = 0.
Here, the situation is more complicated because the
localized level crosses the band in the region of the
Stoner gap (–JS/2, JS/2). Hybridization effects are
expressed in the blurring of the peaks of the densities of
localized states.

For the spin up, in the region of the d level, there is
a hybridization gap for an itinerant quasiparticle and a
peak for a localized one. It should be noted that this
does not happen in the low-spin case [5], because
hybridization is impossible for this initial spin-up band
state in this case. It is interesting to note that in the total
density of states both effects are present; the peak of
localized states dominates, but there are also dips
(pseudogap) due to the hybridization gap.

Superposition of the localized level on the region of
non-quasiparticle behavior (an itinerant quasiparticle
with spin down) leads to the appearance of a narrow
peak, above which a narrow pseudogap is observed.
Nevertheless, localized d states dominate in the total
density of states.

A qualitatively similar picture appears at Ω =
+0.5 eV (Fig. 1c). However, in this case, the localized
level lies above the Stoner gap. The band density of
states (with spin down) changes in the same way as at

n0 E( )
3

2W
-------- E

W
-----, E 0 W,[ ]∈

0, E 0 W,[ ] .∉





=
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Ω = 0. A narrow gap and a less expressed peak under it
are observed.

4. CONCLUSION
Thus, the exact dispersion relations and the Green

functions at T = 0 obtained in this work describe one
carrier moving on the background of the ferromagnetic
ground state of a lattice. Two types of interaction, s–d
exchange and hybridization, have been taken into
account in the strong-correlation regime. This case cor-
responds to the lower limit of the concentration x.
Although manganites are no longer ferromagnets at low
x, the results obtained in this work should be repro-
duced by all solutions found for the ferromagnetism
region (x = 0.15–0.40) in the limit of small concentra-
tions and low temperatures.

ACKNOWLEDGMENTS
This work was supported by the federal program

“Integration” (project no. B 0017) and the Russian
Foundation for Basic Research (project no. 02-02-
97705).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
REFERENCES

1. É. L. Nagaev, Usp. Fiz. Nauk 166 (8), 833 (1996) [Phys.
Usp. 39, 781 (1996)].

2. É. L. Nagaev, Zh. Éksp. Teor. Fiz. 56 (3), 1013 (1969)
[Sov. Phys. JETP 29, 545 (1969)].

3. Yu. A. Izyumov and M. V. Medvedev, Zh. Éksp. Teor.
Fiz. 59 (2), 553 (1970) [Sov. Phys. JETP 32, 302
(1971)].

4. B. S. Shastry and D. C. Mattis, Phys. Rev. B 24 (9), 5340
(1981).

5. M. Sh. Erukhimov, S. G. Ovchinnikov, and S. I. Yakhi-
movich, Fiz. Tverd. Tela (Leningrad) 31 (5), 52 (1989)
[Sov. Phys. Solid State 31, 749 (1989)].

6. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in
Strongly Correlated Systems (Ross. Akad. Nauk,
Novosibirsk, 2001), p. 31.

7. W. Nolting, G. G. Reddy, A. Ramakanth, and D. Meyer,
Phys. Rev. B 64 (15), 155109 (2001).

8. E. L. Nagaev, Phys. Rep. 346 (6), 387 (2001).

Translated by A. Titov



  

Physics of the Solid State, Vol. 45, No. 8, 2003, pp. 1484–1486. Translated from Fizika Tverdogo Tela, Vol. 45, No. 8, 2003, pp. 1414–1416.
Original Russian Text Copyright © 2003 by Korolev, Kurkin, Rosenfel’d.

                                                                                  

MAGNETISM 
AND FERROELECTRICITY

                                                                  
The 21/3 Rule and Other Properties of Ferromagnets 
near the Temperature of the Maximum 

of Magnetic Susceptibility
A. V. Korolev, M. I. Kurkin, and E. V. Rosenfel’d

Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 
ul. S. Kovalevskoœ 18, Yekaterinburg, 620219 Russia

e-mail: kurkin@imp.uran.ru
Received December 3, 2002

Abstract—The behavior of the magnetization M and the magnetic susceptibility χ is theoretically analyzed for
ferromagnets at the temperature T = Tm corresponding to the maximum of the function χ(T). Four new methods
of determining the Curie temperature TC with the use of the derived relationships are proposed. One of these
methods is based on the relationship χ(Tm) = 21/3χ(TC) (the 21/3 rule). The results are applied for processing
experimental data obtained for lanthanum manganite of composition La0.85Sr0.15MnO3. © 2003 MAIK
“Nauka/Interperiodica”.
Since the Curie temperature TC for ferromagnets is
considered the most characteristic point on the temper-
ature scale, all expressions for the magnetic character-
istics of ferromagnets are usually related to TC [1].
However, the experimental determination of TC
involves some difficulties due to a specific inhomoge-
neous distribution of the magnetization M, which is
known as a domain structure [2]. In order to transform
a ferromagnetic sample into a single-domain state with
a homogeneous distribution of the magnetization M, it
is necessary to apply a magnetic field H > Hs, where Hs

is the field of magnetic saturation [2]. The magnetic
fields Hs reach several kiloörsteds. In this case, all the
thermodynamic peculiarities become smeared to an
extent that the Curie temperature TC can be represented
by an ordinary point on the curve M(T, H).

On the other hand, it has long been known that one
more temperature is specific to ferromagnets, namely,
T = Tm [1], which corresponds to the maximum in the
temperature dependence of the magnetic susceptibility:

(1)

Figure 1 shows the experimental temperature
dependences of the magnetic susceptibility χ(T) mea-
sured in several magnetic fields H for a lanthanum man-
ganite single crystal of composition La0.85Sr0.15MnO3.
The magnetic measurements were performed on an
MPMS-5XL Quantum Design SQUID magnetometer.
It is evident from Fig. 1 that, first, the temperature Tm is
well determined experimentally, and, second, since the
condition Tm > TC is satisfied, the domain structure in
the vicinity of Tm is absent. From these considerations,
we came up with a proposal for using the temperature
Tm at the maximum of the magnetic susceptibility for

χ T H,( ) ∂M T H,( )/∂H .=
1063-7834/03/4508- $24.00 © 21484
experimental determination of the magnetic character-
istics of ferromagnets, including the Curie temperature
TC. To the best of our knowledge, similar studies have
not been conducted before; hence, we had to obtain
expressions relating the magnetization M and the mag-
netic susceptibility χ with the temperature Tm. We pro-
ceeded from the Landau expansion [3] for the thermo-
dynamic potential Φ in terms of M, which is usually
used for processing the results of magnetic measure-
ments [1]:

(2)
Φ Φ0 MH– 1/2( )A T TC–( )M

2
+=

+ 1/4( )BM
4 ….+

230 240 250 260 270225

0.001

0.002

0.003

T, K

1

2

3

4

χ,
 c

m
3 /g

0

Fig. 1. Temperature dependences of the magnetic suscepti-
bility of the lanthanum manganite single crystal doped with
15 at. % Sr in different magnetic fields. H, kOe: (1) 3, (2) 6,
(3) 10, and (4) 20.
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The magnetization M corresponding to the minimum of
the thermodynamic potential Φ can be determined by
solving the cubic equation

(3)

As was noted above, we are interested here in solving
the cubic equation (3) for a single value of the temper-
ature T = Tm, which corresponds to the maximum of the
function χ(T, H) [see expression (1)], under the condi-
tion

(4)

For this point, we obtain the following exact relation-
ships, which are valid for any magnetic field H:

(5)

(6)

(7)

(8)

The above relationships appeared to be relatively unex-
pected. First, these relationships are much simpler than
those predicted from the Cardano formulas for the roots
of the cubic equation. Second, formulas (5) and (6)
almost coincide with the standard expressions for the
temperature dependences of the magnetization M(T)
and the magnetic susceptibility χ(T) [1], which can be
obtained from the cubic equation (3) in the limit of
weak magnetic fields H,

(9)

DM
3

A T Tc–( )M H–+ 0.=

∂χ Tm H,( )/∂T ∂2
M Tm H,( )/∂T∂H 0.= =

M
2

Tm H,( ) A
3B
------- Tm Tc–( ) 1

6B
-------χ 1–

Tm H,( ),= =

χ 1–
Tm H,( ) 2A Tm Tc–( ),=

Tm Tc–
3B
A

------- H
4B
------- 

 
2

3 ,=

χ Tm H,( ) 2
1/3χ Tc H,( ).=

M
2

T( ) A
B
--- Tc T–( ), χ 1–

T( ) 2A Tc T–( ),= =

700100
H2/3, Oe2/3

236

240

244

248

252

232

T m
, K

300 500

Fig. 2. Dependence of the temperature at the maximum of
the magnetic susceptibility χ(T) on H2/3.
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even though formulas (5) and (6) are valid in the para-
magnetic region (since we have Tm > TC) and the first
formula (9) is applicable only under the condition T <
TC. Third, we failed to puzzle out the meaning of equal-
ity (8). Our attempts to use the symmetry or similarity
considerations for this purpose were not successful, and
we could not invent a better name than the “21/3 rule”
for this equality.

The absence of a domain structure at T = Tm allows
one to use formulas (5)–(8) for experimental determina-
tion of the magnetic parameters A, B, and TC. Note that,
in this case, the Curie temperature TC can be obtained
from any one of these four formulas. Figures 2–4 present
the results of the processing [using formulas (5)–(7)]
of the experimental temperature dependences of the
magnetization M(T) and the magnetic susceptibility
χ(T) for an La0.85Sr0.15MnO3 single crystal at seven

236 240 244 248 252
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Fig. 3. Dependence of  on the temperature Tm at the

maximum of the magnetic susceptibility.
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Fig. 4. Dependence of the square of the magnetization M2

on the temperature Tm.
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strengths of the magnetic field H (2.0, 3.0, 4.5, 6.0, 8.0,
10.0, and 20.0 kOe). The smallest dispersion of the
experimental points is observed for the relationship
(Tm – TC) ~ H2/3 (Fig. 2). This relationship offers the
highest accuracy in determining the Curie temperature
TC; that is,

(10)

The error in determining the Curie temperature TC from
the relationship χ(Tm) ~ (Tm – TC) (Fig. 3) was found to
be ∆TC ≈ ±10 K. The largest error ∆TC ≈ ±20 K was
obtained from data on the temperature dependence of
the magnetization M(T) (Fig. 4).

The 21/3 rule [formula (8)], as applied to the process-
ing of the curves χ(T) (Fig. 1), also allows one to deter-
mine the Curie temperature TC. The table presents the
Curie temperatures TC obtained from formula (8) for
each of these curves.

The accuracy in determining the Curie temperature
TC by this method is no less than the accuracy in deter-
mining Tm: ∆TC = ∆Tm ≈ ±0.2 K. Thus, the drift of the
Curie temperature TC with an increase in the magnetic
field H (see table) is an experimentally significant
quantity. According to formula (10), this drift exceeds
the error in determining the Curie temperature TC from
formula (7), even though it is less than the value of ∆TC
obtained from relationships (5) and (6).

TC 228.7 0.2 K.±=

Curie temperatures TC determined according to the 21/3 rule
from the curves χ(T) shown in Fig. 1

H, kOe TC, K

3 227.8

6 230.0

10 231.5

20 235.5
P

The drift observed in the Curie temperature TC with
an increase in the magnetic field H means that the lantha-
num manganite sample under investigation exhibits
properties that defy description in terms of expression (2)
even after the elimination of the domain structure. It
would be tempting to attribute this drift to the critical
phenomena [4]. However, other possible causes should
not be discarded, for example, the differences in the
Curie temperatures TC due to the occurrence of inho-
mogeneities typical of lanthanum manganites [5]. The
results of analyzing these causes will be presented in
our future papers.
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Abstract—The contribution to electrical resistance due to scattering of charge carriers by domain walls is ana-
lyzed. It is revealed that “unusual” domain walls are created by frustrations in ferromagnet–antiferromagnet
multilayer magnetic structures. The thickness of an unusual domain wall is substantially less than that of a usual
domain wall. It is shown that scattering of charge carriers by unusual domain walls can contribute significantly
to the magnetoresistance of ferromagnet–antiferromagnet multilayer magnetic structures. An analysis of the
contribution made by the Levy–Zhang mechanism to the magnetoresistance demonstrates that the initial esti-
mate obtained for this contribution is considerably exaggerated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of domain walls in a ferromagnet on its
electrical resistance has been investigated experimen-
tally and theoretically [1–9]. Theoretical studies have
dealt with different mechanisms of the influence
exerted by domain walls on the electrical resistance.
These mechanisms can be divided into two groups. The
first group involves mechanisms that are responsible for
contributions of domain walls to the electrical resis-
tance but are not related to alternative mechanisms of
charge carrier scattering (intrinsic scattering). The sec-
ond groups includes the other mechanisms, i.e., mech-
anisms based on a modification of the wave functions
of charge carriers by domain walls that does not lead
directly to their scattering but affects both the densities
of states of the charge carriers and the matrix elements
of their interaction with other scatterers (phonons,
impurities, etc.).

In this paper, we will restrict our consideration to
the specific case of the paramagnetic contribution
made by domain walls to intrinsic scattering of charge
carriers due to the effect of an exchange field on the
spin of a charge carrier. The diamagnetic contribution
associated with the Lorentz force acting on the charge
carriers was examined earlier by Cabrera and Falicov
[1]. This contribution is of no importance at room
temperature in the case when the mean free path of
charge carriers is substantially shorter than the radius
of the quasi-classical trajectory of the charge carriers
in a magnetic field. Moreover, we will analyze the
Levy–Zhang mechanism, which falls into the second
group.
1063-7834/03/4508- $24.00 © 21487
2. THE ADIABATIC APPROXIMATION

The adiabatic approximation is based on the
assumption that the magnetization in a ferromagnet
with domain walls varies in space in such a smooth
manner that the spin projection of a charge carrier (an
electron or a hole) during its motion manages to keep
pace with a local direction of the magnetization. There-
fore, the wave functions of charge carriers in the adia-
batic approximation characterize states in which the
spin projection of a charge carrier onto a local direction
of the magnetization is equal to ±1/2.

We consider a ferromagnet with planar domain
walls that are aligned parallel to each other but are per-
pendicular to the x axis in the Cartesian coordinate sys-
tem. The magnetization vector M(r) in these walls
rotates either about the x axis (Bloch domain walls) or
about the y axis (Néel domain walls), which is perpen-
dicular to the magnetization vector in the domains. The
location of the magnetization vector can be specified by
an angle θ between this vector and the z axis of the Car-
tesian coordinate system. The magnitude of the magne-
tization vector is assumed to be constant: |M(r)| = M0.
In this case, the wave functions in the adiabatic approx-
imation can be obtained from the standard Bloch func-
tions ψk, ↑(r) and ψk, ↓(r) with a fixed spin projection of
the charge carrier onto the z axis (Sz = ±1/2) through the
gauge transformation [3]:

(1)

(2)

Ψk r( ) Rθ
ψk ↑, r( )
ψk ↓, r( )

,=

)

Rθ i
θ
2
---σx– 

  ,exp=

)
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where σx is the Pauli matrix. Relationship (2) corre-
sponds to the case of Bloch domain walls. For Néel
domain walls, the matrix σx in formula (2) must be
replaced by the matrix σy.

After the gauge transformation, the operator for the
potential energy of the charge carrier takes the same
form as for a single-domain ferromagnet. However, the
operator for the kinetic energy does not commute with

. As a result, the Hamiltonian can be written in the
form [3, 6]

(3)

(4)

(5)

where V(r) is the potential of the ionic lattice, 2J is the
exchange splitting of the subbands with opposite spin
projections, σz is the Pauli matrix,  is the operator of
the momentum component, and m is the electron mass.

The wave functions defined by expression (1) are
eigenfunctions of the operator . The operator  is
treated as a perturbation and differs from zero in the
region of the domain walls. The first two terms in rela-
tionship (5) account for the mixing of adiabatic wave
functions with opposite spin projections. The perturba-
tion is weak under the condition kFL @ 1, where kF is
the Fermi wave vector of conduction electrons and L is
the thickness of the domain wall.

3. THE LEVY–ZHANG COHERENT 
CONTRIBUTION

Let us now consider the matrix element W0 =

〈k| |k〉 , which is diagonal with respect to the wave
vector. The last term in relationship (5) provides only a
constant correction (independent of Sz) to the energy of
states, whereas the contribution of the second term to
the diagonal matrix element is equal to zero. Therefore,
the coherent contribution of domain walls to the resis-
tance is determined by the first term in relationship (5);
i.e. it is proportional to the Pauli matrix σx.

The fulfillment of the condition W0 ≠ 0 does not lead
directly to the appearance of resistance in the system
but causes a mixing of adiabatic wave functions corre-
sponding to the same magnitude of the wave vector and
antiparallel orientations of the spin. In turn, this brings
about a change in the matrix elements accounting for
scattering of charge carriers by impurities and phonons
and, hence, is responsible for the contribution to the
magnetoresistance. In [3], this contribution for a
domain wall 150 Å thick was estimated at ~1%.

Rθ

)

H H0 W ,+=

) ) )

H0 –
"

2

2m
-------∆ V r( ) Jσz,–+=

)

W –
"

2m
-------σxθx' px

i"
2

4m
-------σxθxx''

"
2

8m
------- θx'( )

2
,+ +=

) )

px

)

H0

)

W

)

W

)

P

According to Levy and Zhang [3], the value of W0
(which they designated as ξ) does not depend on the
domain-wall concentration. This statement is invalid,
because the normalization of the ψ functions leads to

the relationship ψ ∝  1/ , where V is the volume of
the crystal. Upon integrating over the area of the
domain wall, we found that a single domain wall makes

a contribution proportional to  where Dx is the crys-
tal size in a direction perpendicular to the domain wall.

As would be expected, the coherent contribution
(∆ρ/ρ)coh of identical domain walls to the magnetoresis-
tance is proportional to the domain-wall concentration
squared. However, the domain walls can differ from
one another in the sense of magnetic rotation, specifi-
cally in the sign of the parameter . If the concentra-
tions of domain walls of both types are equal to each
other, we have W0 = 0; i.e., the Levy–Zhang effect is
absent. Otherwise, we obtain W0 ∝  n+ – n–, where n+
and n– are the concentrations of domain walls with
opposite senses of magnetic rotation. In this case, the
quantity W0 is virtually independent of the domain-wall
thickness, because, after calculating the integral

, the magnetic rotation angle in a domain wall

proved to be equal to ±π.

Finally, we obtain the following expression:

(6)

where b is the width of the domain and (∆ρ/ρ)L–Zh is the
result of the calculation performed by Levy and Zhang
[3]. For b ~ 0.1 µm, we obtain (∆ρ/ρ)coh ~ 0.01% even
at n+ @ n–. This value is two orders of magnitude less
than the result reported in [3]. Therefore, it can be con-
cluded that the Levy–Zhang contribution to the magne-
toresistance is insignificant and can reach 1% only in
the case when the characteristic width of domains
(rather than the thickness of their walls) is of the order
of 100 Å.

4. THE INCOHERENT CONTRIBUTION
TO THE MAGNETORESISTANCE

The incoherent contribution to the magnetoresis-
tance is determined by the off-diagonal matrix elements
of the operator  and is proportional to the first power
of the domain-wall concentration.

It is assumed that the ψ functions of charge carriers
can be considered de Broglie waves and θ(x) =

. Under these assumptions, by anal-
ogy with the calculation performed in [4, 9], we obtain

(7)

V

Dx
1–

θx'

θx' xd∫

∆ρ
ρ

------- 
 

coh

n+ n––
n+ n–+
---------------- 

 
2 L

b
--- 

 
2 ∆ρ

ρ
------- 

 
L–Zh

,=

W

)

x/Ltanh( )arcsin

kx'〈 |W kx| 〉 Akx' kx, σx Bkx' kx, .+=

)
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Here,

(8)

where xj is the coordinate of the center of the jth domain
wall and αj = ±1 depending on the sense of rotation of
the magnetization vector. The two other components of
the wave vector k in the initial and final states coincide
with each other. The quantity  can be represented
in the form

(9)

As a rule, this quantity is ignored in analyzing the con-
tribution made by domain walls to the resistance,
except when the subband splitting caused by an
exchange field is sufficiently large, i.e., when

(10)

where vF is the Fermi velocity of charge carriers.
Under this condition, the transitions of electrons
between subbands with opposite local spin projec-
tions, which are governed by the matrix element ,
are exponentially rare in occurrence and the dominant
role is played by the charge carrier scattering without
a change in the spin orientation, which is determined
by the quantity .

4.1. Scattering without a Spin Flip

According to the law of conservation of energy, only
the transitions between states differing in the sign of the
wave vector kx are possible; i.e., there occurs an elastic
reflection from the domain wall. As follows from
expression (9), charge carriers with a wave vector mag-
nitude |kx | ≤ (πL)–1 (Fig. 1a) undergo considerable scat-
tering by domain walls. The scattering probability can
be written in the form

(11)

Akx' kx,
π"

2
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4mDx

π kx' kx–( )L
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-------------------------------------------------------–=
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2πDx
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2m
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"
2
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2m
-----------–d∫=

≈
π3

" kx

8mb πkxL( )sinh
2
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It should be noted that scattering of charge carriers by
domain walls affects only the σxx component of the
electrical conductivity tensor of the ferromagnet and
leaves the two other diagonal components unchanged:
σyy = σzz = σ0.

The above charge carriers with |kx | ≤ (πL)–1 consti-
tute a fraction of the order of |kx |/kF and have a low
velocity v x (v x = "kx/m ! vF). Hence, the small correc-
tion to the electrical conductivity ∆σxx/σ0 for scattering
of charge carriers by domain walls without a spin flip
can be estimated as

(12)

where τ is the characteristic mean free time in the
absence of domain walls.

∆σxx

σ0
----------- 

 
B

τ"

8πmbL
4
kF

3
--------------------------–

τεF

4π" kFb( ) kFL( )4
----------------------------------------,–∼ ∼

L–1

kx

ky

kF

ky

kx

kF
max

kF
min

ψ0

ψ

(a)

(b)

Fig. 1. Fermi surfaces (hatched regions) filled with charge
carriers most strongly scattered by domain walls (a) without
a spin flip and (b) with a spin flip.
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4.2. Scattering with a Spin Flip

For J ! εF, the main contribution to charge carrier
scattering with a spin flip is made not by the processes
of reflection from a domain wall (  ≈ –kx) but by the
processes illustrated in Fig. 1b.

The dependence of the magnitude of the transferred
wave vector on the initial value kx can be represented by
the following relationship:

(13)

where  and  are the Fermi wave vectors of two
subbands. Note that, in this case, the wave vectors sat-
isfy the equation

The minimum value of |  – kx| is equal to q0 =

 –  and corresponds to sinψ = 0 (see Fig. 1b).

As the parameter ψ increases, the magnitude |  – kx|

increases and reaches  at ψ = π/2.

Since the matrix element  decreases exponen-

tially with an increase in |  – kx|, strong scattering is
observed for charge carriers obeying the condition

(14)

For these carriers, the scattering probability has the
form

(15)

In our case, unlike the case of scattering without a
spin flip, the efficiently scattered carriers are character-
ized by the highest possible velocity v x. It should also
be noted that, in the process under consideration, the
wave vector kx changes by a relatively small value
(q0/kF).

Finally, the expression for the correction (∆σxx/σ0)A

to the electrical conductivity takes the form

(16)

In addition to the above corrections to the electrical
conductivity for charge carrier scattering or, in other
words, the corrections determined by the contribution
of the operator  to the imaginary component of the
self-energy part of the Green’s function for charge car-
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riers, there exist both corrections associated with the

contribution of the operator  to the real component of
the self-energy part of the Green’s function and correc-
tions for a change in the current-density operator due to
the gauge transformation [4, 6].

These corrections differ from those described by
relationships (12) and (16) in that they do not contain
the characteristic mean free time τ. Integration over the
region far from the Fermi surface, to the second order

in the perturbation theory for the operator , leads to
a correction to the charge-carrier dispersion law. For an
isotropic nonmagnetic metal, the contribution associ-
ated with the scattering of charge carriers by point
defects introduces a correction to the dispersion law,
which does not depend on the wave vector and spin and
represents the renormalization of the chemical potential
[10]. For a ferromagnetic metal with two subbands,
analogous corrections prove to be different for these
subbands owing to the difference in the densities of
states and bring about their relative displacement, i.e., a
change in the subband splitting J. A similar effect is
observed in the presence of domain walls. Moreover,
the above correction to the energy depends on the wave
vector kx due to anisotropy of the interaction between
charge carriers and domain walls, which, in turn, results
not only in the relative displacement of the subbands
but also in a violation of the dispersion law. Since all
these effects do not give rise to scattering, their contri-
bution to the resistance is associated with changes both
in the density of states and in the matrix elements
describing the interaction of charge carriers with impu-
rities and phonons. As a consequence, the relative cor-
rection to the electrical resistance does not depend on
the mean free time τ.

The corrections described above were analyzed by
Tatara and Fukuyama [4] and Brataas et al. [6]. For
actual ratios between the relaxation times of the charge
carriers involved in different subbands, the correction
to the electrical conductivity ∆σ/σ was determined as

(17)

where ρ is the electrical resistivity and γ ~ 2–3.

In our calculations, we used the following parame-
ters characteristic of metals: kF ~ 1 Å–1, L ~ 300 Å, b ~
3000 Å, τ ~ 10–13 s, εF ~ 3 eV, and q0 ~ 0.1 Å–1. As a
result, we found that (∆σxx/σ0)B ~ 10–12, (∆σxx/σ0)C ~
3 × 10–6, and (∆σxx/σ0)A is negligible. Therefore, con-
ventional wide domain walls do not appreciably con-
tribute to the resistance and, consequently, to the mag-
netoresistance associated with the disappearance of
domain walls in a magnetic saturation field.

W

)

W

)

∆σ
σ

------- 
 

C

∆ρ
ρ

-------– γ π
2 bkF( ) LkF( )
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5. FERROMAGNET–ANTIFERROMAGNET 
MULTILAYER MAGNETIC STRUCTURES

Since the discovery of the phenomenon of giant
magnetoresistance in multilayer magnetic structures
[11], these structures have been attracting close
research attention. In recent years, the particular inter-
est expressed by scientists engaged in this field has
shifted to multilayer structures of the ferromagnet–lay-
ered antiferromagnet type. According to neutron dif-
fraction investigations [12, 13], a few examples of such
structures are provided by Fe/Cr multilayer structures
in which a chromium layer of thickness d < 45 Å is con-
sidered as a set of ferromagnetic planes with antiparal-
lel spin orientations in adjacent planes. Spins of chro-
mium atoms lie in these planes, which, in turn, are
aligned on average parallel to interlayer boundaries. A
similar structure was observed in manganese layers in
Fe/Mn multilayer structures [14, 15].

The presence of atomic steps (changing the thick-
ness of the antiferromagnet by one monoatomic layer)
at interlayer boundaries brings about frustrations in the
ferromagnet–antiferromagnet system (Fig. 2a). The
uniform distribution of order parameters in the layers
ceases to correspond to an energy minimum.

Using a ferromagnet–antiferromagnet–ferromagnet
three-layer system as an example, Levchenko et al. [16]
examined “thickness–roughness” phase diagrams of
multilayer magnetic structures. If the distance between
the atomic steps on the surface of a layer (step width R)
exceeds a critical value (domain-wall thickness), sepa-
ration of ferromagnetic layers into domains with paral-
lel and antiparallel orientations of ferromagnetic layer
magnetizations becomes energetically favorable.
Domain walls penetrate through all three layers, and
their coordinates in the plane of layers coincide with
those of atomic step edges on either of the two inter-
faces. The magnetizations of the ferromagnetic layers
in a domain wall experience rotations in opposite direc-
tions. The antiferromagnetic order parameter rotates
together with the magnetization vector of the ferromag-
netic layer whose boundary with the antiferromagnetic
layer does not contain a step at the given place (Fig. 2b).

An examination of the structure of domain walls
created by frustrations [16] demonstrated that the char-
acteristic domain-wall thickness amounts to several
dozens of angstrom units; i.e., these unusual domain
walls are considerably narrower than usual domain
walls whose thicknesses are determined by competition
between the exchange energy and the energy of anisot-
ropy in a ferromagnet. The thickness δf of a domain
wall created by a frustration in a ferromagnetic layer
was estimated as

(18)

where a is the layer thickness and η is the ratio between
the exchange interaction energies of the nearest spins in
the ferromagnetic and antiferromagnetic layers. For a =
10 Å and η = 3, we obtain the domain-wall thickness

δ f a η ,≈
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δf  ≈ 20 Å. The size R of domains created by frustra-
tions can be of the order of 100 Å. Upon substituting
these values for L and b into formulas (12), (16), and
(17), we obtain

Therefore, in the case of unusual domain walls, it is
this scattering of charge carriers by domain walls that
makes a dominant contribution to the resistance,
namely, the contribution A. It should be noted that the
contribution A can be substantially greater in the case of
thinner layers due to its exponential dependence on L.
Moreover, this contribution increases at low tempera-
tures as the result of an increase in the mean free time
of charge carriers.

∆σxx/σ0( )B 10
6–
, ∆σxx/σ0( )C 2 10

3–
,×∼ ∼

∆σxx/σ0( )A 0.02.∼

(b)

(a)

Fig. 2. (a) A frustration induced in a ferromagnet–antiferro-
magnet–ferromagnet system due to the presence of a step at
the interlayer boundary and (b) the domain wall created by
the frustration.
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Domain walls are also created in antiferromagnetic
layers. The theoretical treatment of charge carrier scat-
tering by domain walls in these layers is identical to the
analysis performed above. For a collinear antiferro-
magnet, degeneracy of the dispersion law of charge car-
riers with respect to the spin persists; hence, upon
reflection from a domain wall, we have  = 0 and
the corresponding contribution to the resistance van-
ishes. The contribution from charge carrier scattering
without a spin flip and the contribution (∆σxx/σ0)C to
the resistance for a collinear antiferromagnet are of the
same order of magnitude as those for a ferromagnet.
Therefore, the contribution from scattering of charge
carriers by domain walls to the resistance of antiferro-
magnetic layers is less than that of ferromagnetic lay-
ers.

In the case when the domain walls break down in an
external magnetic field, their contribution to the resis-
tance vanishes and, as a consequence, the magnetore-
sistance becomes negative. Since the contribution
under consideration is proportional to the concentration
of domain walls, it reaches a maximum at R ~ δf. At
smaller R values, overlap of domain walls results in the
transition to a state in which ferromagnetic layers are
virtually homogeneous [16].

6. CONCLUSIONS
Thus, the main inferences drawn in the present work

can be summarized as follows.
(1) For usual domain walls, the contribution made

by domain walls to charge carrier scattering is insignif-
icant and the key role is played by the renormalization
of the dispersion law and the wave functions of charge
carriers.

(2) For unusual domain walls created by frustra-
tions, the dominant contribution made by domain walls
to the magnetoresistance of ferromagnet–antiferromag-
net multilayer magnetic structures is associated with
the scattering of charge carriers by these walls.

(3) The magnetoresistance induced by this effect
can be as high as 1–10%.
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Abstract—This paper reports on the results of investigations into the temperature and spectral dependences of
the magnetic circular dichroism in Dy1 – xNix–Ni bilayer films prepared through thermal sputter deposition of
components under ultrahigh vacuum. The distribution of the components over the layer thickness is examined
by Auger spectroscopy. The nickel content x in Dy1 – xNix layers varies from 0.005 to 0.06. It is shown that, in
the temperature range 80–300 K, the contribution made to the magnetic circular dichroism by a Dy1 – xNix layer
in a bilayer film with a nickel content higher than the threshold value is approximately equal to the magnetic
circular dichroism observed in an isolated Dy1 – xNix film at temperatures below the temperature of the phase
transition to a ferromagnetic state (~100 K). This phenomenon is explained by magnetic ordering in the
Dy1 − xNix layer of the bilayer film due to the combined effect of two factors, namely, the incorporation of nickel
into a dysprosium layer and the presence of a continuous nickel sublayer in the film. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The mutual influence of 3d transition metals and 4f
rare-earth elements in layered structures has been
attracting considerable research attention due to the
extensive use of these structures in data recording and
storage devices. In recent years, particular interest has
been expressed in complex magnetic structures of rare-
earth metals and their high structural sensitivity to both
external and internal actions. One of the factors affect-
ing the magnetic state of rare-earth metal layers in lay-
ered structures and superlattices is the interaction of a
rare-earth metal either with adjacent layers consisting
of 3d transition metals or with 3d metal impurities in a
layer of the rare-earth metal. Dysprosium is a conve-
nient object for use in the study of these effects owing
to its ability to undergo two magnetic phase transitions
separated by a wide temperature interval: (i) the transi-
tion from the paramagnetic phase to the spiral antifer-
romagnetic phase at the Néel temperature TN = 175 K
and (ii) the transition from the spiral antiferromagnetic
phase to the ferromagnetic phase at the Curie tempera-
ture Tc = 85 K [1–3]. It should be noted that, in this case,
the temperature and character of the phase transitions
occurring in dysprosium substantially depend on the
applied magnetic field [1–4]. The magnetic structure of
dysprosium is also strongly affected by the size and
structure of the dysprosium sample. In particular,
Mulyukov et al. [5] analyzed the influence of the crys-
tallite size on the phase transitions in dysprosium fine-
1063-7834/03/4508- $24.00 © 21493
grained samples. Shevchenko et al. [6] showed that no
spiral magnetic structure is formed in dysprosium
nanoparticles distributed in an aluminum film.

There are many works concerned with the investiga-
tion of dysprosium layered structures containing 3d
metals (see, for example, [7–9]). In our previous studies
[10, 11], we revealed that 3d impurities at a low content
(~5%) in a dysprosium layer substantially affect the
temperature and spectral dependences of magneto-opti-
cal effects (linear with respect to magnetization),
namely, the magnetic circular dichroism and the merid-
ional magneto-optical Kerr effect, in Dy1 – x(NiFe)x–
NiFe and Dy1 – xFex–Fe bilayer films. (Hereafter, x
stands for the weight content.) It was demonstrated
that, in the temperature range 80–300 K, the contribu-
tion made to the magneto-optical effect by a dyspro-
sium layer in bilayer films containing no more than sev-
eral weight percent of nickel and iron impurities is con-
stant, temperature independent, and approximately
equal to the magneto-optical effect observed in a dys-
prosium film only at temperatures below the tempera-
ture Tc of the phase transition to a ferromagnetic state.
Moreover, we established that the magneto-optical
effect does not depend on nickel and iron impurities
contained in these amounts in dysprosium layers in the
case when the adjacent layer of the 3d metal is absent.
Consequently, the unusual behavior of the dysprosium
magnetic system in the studied samples was explained
by two factors: (1) the incorporation of transition metal
003 MAIK “Nauka/Interperiodica”
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atoms at low concentrations into the dysprosium layer
throughout its depth and (2) the influence of the spin
system of the adjacent transition-metal layer on the
magnetic state of dysprosium through the incorporated
3d metal atoms. In order to gain better insight into the
nature of the observed effect, it is expedient to examine
the magnetic behavior of dysprosium in a bilayer film
with an increase in the temperature of the 3d metal
layer. However, since dysprosium exhibits a high reac-
tivity, the heating of dysprosium samples leads to con-
tradictory results. One way out is to decrease the Curie
temperature of thin nickel films [12]. For a nickel bulk
single crystal, the Curie temperature Tc is equal to
631 K [13]. The second important problem is to eluci-
date how the concentration of 3d metal atoms distrib-
uted in the layer of dysprosium affects its magnetic
state. Moreover, the changeover from the NiFe alloy
films studied in [9, 10] to one-component (nickel) lay-
ers should facilitate interpretation of the results. In the
present work, the magnetic circular dichroism in
Dy1 − xNix and Ni single-layer films and Dy1 – xNix–Ni
bilayer films was investigated as a function of the nickel
content x and the thickness of the nickel layer.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples were prepared by sputtering components
from isolated sources under ultrahigh vacuum on an
Angara molecular-beam epitaxy setup specially
adapted for sputter deposition [14]. Films were depos-
ited on glass substrates (thickness, 0.8 mm; optical
quality; surface finish class, 13) at a temperature of
250°C. The sputtered materials were Ni (vacuum melt-
ing) and Dy (class DiM 1). The deposition rates for
nickel and dysprosium were approximately equal to
0.05 and 2.00 Å s–1, respectively. First, a nickel layer
was deposited on the substrate. Then, nickel and dys-
prosium were sputtered simultaneously. A step-shaped
film sample prepared with the use of flaps is repre-

1

2

3

4

Fig. 1. Schematic drawing of a step-shaped film sample:
(1) Dy1 – x–Nix layer, (2) Ni layer, (3) Ni–Dy1 – xNix bilayer
film, and (4) glass substrate. The sample is separated into
three parts along the visual boundaries between them.
PH
sented schematically in Fig. 1. Three samples were
obtained by this method under identical conditions: a
Ni single-layer film, a Dy1 – xNix single-layer film, and
a Ni–Dy1 – xNix bilayer film. The thickness of each layer
in the bilayer film was equal to the thickness of the cor-
responding single-layer film. The nickel content in the
dysprosium layer and the thickness of nickel layers
were specified by the conditions of nickel sputtering.
We prepared several series of film samples with 50- to
120-Å-thick Ni layers. The thickness of dysprosium
layers was varied from 400 to 900 Å. For all samples,
the content of each component was determined by x-
ray fluorescence analysis.

The magnetic circular dichroism in the spectral
range 350–650 nm was measured as the difference
between the optical densities ∆D = (D+ – D–) obtained
for the right-hand and left-hand circular polarizations
of the light wave with respect to the direction of an
external magnetic field. The magnetic field was
directed perpendicularly to the sample plane and
reached 5.0 kOe. The measurements of the magnetic
circular dichroism were performed with the use of
modulation of a light wave (from the right-hand to left-
hand circular polarization) which was described for the
first time by Jasperson and Schnatterly [15]. The accu-
racy in measuring the magnetic circular dichroism was
equal to ±10–4. The temperature investigations were
carried out with samples placed in a nitrogen-flow cry-
ostat in the range 80–300 K. The temperature was con-
trolled accurate to within ±1 K. It is known that, by def-
inition, the magnetic circular dichroism can only be
observed in absorbing media. For this reason, neither a
glass substrate nor quartz windows of the cryostat con-
tribute to the measured value of magnetic circular
dichroism. The magnetic circular dichroism was mea-
sured immediately after the samples were prepared.

The distribution of the components over the area and
thickness of the samples was determined by Auger
electron spectroscopy [16] (sensitivity, 0.3 at. %) after
the magneto-optical measurements. The Auger electron
spectra of the sample surfaces were recorded on a Riber
OPC-2 Auger cylindrical-mirror analyzer with a rela-
tive resolution of 0.2%. The secondary electron spec-
trum was excited by an electron beam with an energy of
3 keV. The electron beam diameter was equal to 5 µm,
and the electron beam current amounted to 100 nA. The
high-voltage modulation of the analyzer used was
6.88 eV. For a layer-by-layer analysis, ion sputtering
was accomplished using an argon ion beam with an
energy of 3 keV at an ion beam current of 600 nA and
a rate of approximately 10 Å/min. Since the substrate
was prepared from a nonconducting material (glass), it
was impossible to obtain spectral data for the film–
glass interface due to strong charging of the glass sur-
face. During the layer-by-layer analysis, the Auger sig-
nals of elements (Dy, 155 eV; Ni, 848 eV; O, 512 eV;
and C, 272 eV) were measured as functions of the time
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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of sputter deposition of the sample with an argon ion
beam.

In order to control the degree of oxidation of the
dysprosium layers, the electrical conductivity of some
samples was measured after the magneto-optical mea-
surements.

3. RESULTS AND DISCUSSION

Figure 2 displays the Auger signals of the main ele-
ments in a Ni–Dy bilayer film (x = 0). As can be seen
from this figure, nickel impurities are virtually absent
throughout the entire thickness of the dysprosium layer,
in contrast with the situation discussed in our earlier
work [11]. It is worth noting that the oxygen content in
the Ni–Dy bilayer film is relatively high, especially at
the interfaces with the substrate and the atmosphere. A
similar oxygen distribution is observed in a dysprosium
single-layer film. In [11], we considered the problem of
dysprosium oxidation in sufficient detail. It was dem-
onstrated that, at least during magneto-optical experi-
ments, dysprosium remains in the metallic state and its
oxidation to Dy2O3 occurs only upon heating to a tem-
perature of ~400°C. This inference is confirmed by the
measurements of the electrical conductivity. For exam-
ple, after the magneto-optical measurements, the elec-
trical resistivity of the 600-Å-thick dysprosium film
was equal to 5 × 10–5 Ω cm. In the case when nickel and
dysprosium were sputtered simultaneously, nickel
impurities were observed throughout the dysprosium
layer at a content x ranging from 0.005 to 0.06 depend-
ing on the rate of nickel deposition.

The temperature dependences of the reduced mag-
netic circular dichroism (MCDT/MCDT = 90 K) for nickel
single-layer films of different thicknesses are depicted
in Fig. 3. The magnetic circular dichroism of nickel has
negative sign, as is the case with the magnetic circular
dichroism of permalloy and iron [11]. The dependence
of the magnetic circular dichroism on the wavelength is
similar to the spectral dependence of the meridional
magneto-optical Kerr effect for a nickel single crystal
measured by Buschow et al. [17]: the magnetic circular
dichroism is nearly constant in the wavelength range
400–700 nm and decreases rapidly with a decrease in
the wavelength to 320 nm. Since the magnetic circular
dichroism is a linear function of the magnetization,
there is a one-to-one correspondence between the tem-
perature dependences of the magnetization and mag-
netic circular dichroism of the studied samples. These
dependences differ from the curves observed for nickel
bulk crystals (see [13, Fig. 18.1]). As can be seen from
Fig. 3, the smaller the film thickness, the larger the dif-
ference. For a nickel film with a minimum used thick-
ness (~50 Å), the magnetic circular dichroism
decreases by a factor of approximately two as the tem-
perature increases from 80 to 300 K. For a nickel bulk
crystal, the magnetization in this temperature range
changes by ~5%. The above temperature behavior of
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
the magnetic circular dichroism is similar to the tem-
perature behavior observed for magnetization of very
thin layers of nickel in [12] and, hence, can be used to
compare the temperature dependences of the magnetic
circular dichroism of Dy1 – xNix and Ni layers.

For dysprosium films, the temperature and spectral
dependences of the magnetic circular dichroism are in
good agreement with the data reported in our recent
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Fig. 2. Auger signals of the main elements in an Ni–Dy
bilayer film: (1) dysprosium, (2) nickel, (3) oxygen, and
(4) carbon. dNi = 10 nm, dDy = 60 nm.
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Fig. 3. Reduced temperature dependences of the magnetic
circular dichroism (MCDT/MCDT = 90 K) for nickel films of
different thicknesses in the magnetic field H = 4.5 kOe at the
wavelength λ = 520 nm. Film thickness: (1) 10 (2, 3) 12, (4)
8, and (5) 6 nm.
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paper [11]. Figure 4a shows the magnetic circular
dichroism spectra for a dysprosium film measured in a
magnetic field of 5 kOe at temperatures of 93 and
300 K. These spectra exhibit the following specific fea-
tures. First, the magnetic circular dichroism at room
temperature has a finite value and is approximately one
order of magnitude less than that at a temperature of
93 K. The same ratio was observed for the magnetiza-
tions of fine-grained dysprosium samples measured at
room and liquid-nitrogen temperatures by Mulyukov
et al. [5]. For both temperatures, the magnetic circular
dichroism reverses sign at an energy of about 3 eV. It
should be noted that the point of sign reversal is some-
what displaced to higher energies with a decrease in the
temperature. In the energy range 2–3 eV, there arises a
pronounced maximum. In the same spectral range,
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Fig. 4. (a) Magnetic circular dichroism spectra for a dyspro-
sium film measured in a magnetic field of 5 kOe at temper-
atures of (1) 93 and (2) 300 K. (b) Spectrum of the off-diag-
onal component of the optical conductivity tensor for dys-
prosium [19]. (c) Difference in the optical conductivities for
“+” and “–” electrons [20].
P

Knyazev and Noskov [18] observed a maximum in the
optical conductivity σ = nkν for dysprosium. The mag-
netic circular dichroism spectra for different samples of
dysprosium are similar to one another. Small differ-
ences observed in the vicinity of the maximum can be
associated with imperfection of the films. However, the
point at which the magnetic circular dichroism reverses
sign remains the same for all the studied samples. The
curve of the magnetic circular dichroism is closely sim-
ilar to that of both the off-diagonal component of the
optical conductivity tensor σxy given in [19] (Fig. 4b)
and the difference in the optical conductivities deter-
mined in [20] for “+” and “–” electrons from the calcu-
lated densities of states of these electrons (Fig. 4c). As
can be seen, the point of sign reversal for the above
effects is displaced toward an increase in the light wave
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Fig. 5. Temperature dependences of the magnetic circular
dichroism for (1) the Ni film (d = 6 nm), (2) the
Dy0.995Ni0.005 film (d = 75 nm), and (3) the Dy0.995Ni0.005
layer in the Ni–Dy0.995Ni0.005 bilayer film according to
(a) experimental data and (b) reduced magnitudes
MCDT/MCDT = 90 K. H = 4.5 kOe, λ = 520 nm.
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003



EFFECT OF NICKEL ON THE MAGNETIC STATE 1497
energy upon changing over from the magnetic circular
dichroism (Fig. 4a) to the off-diagonal component of
the optical conductivity tensor (Fig. 4b) and then to the
difference in the optical conductivities (Fig. 4c). Note
that the curves depicted in Figs. 4a and 4b differ only
slightly.

The magnetic circular dichroism of the Dy–Ni
bilayer film, for which the Auger spectrum is displayed
in Fig. 2, is equal to the sum of the magnetic circular
dichroisms of its constituent layers of dysprosium and
nickel at all the temperatures and wavelengths used in
the measurements. A similar situation is observed at a
low nickel content in a dysprosium layer. Figure 5
shows the temperature dependences of the magnetic
circular dichroism for an Ni film (curve 1), a
Dy0.995Ni0.005 film (curve 2), and a Dy0.995Ni0.005 layer in
the Ni–Dy0.995Ni0.005 bilayer film (curve 3). Curve 3 was
obtained as the difference between the values of the
magnetic circular dichroism measured in the bilayer
film and the nickel single-layer film prepared in the
same cycle of deposition. It can be seen from Fig. 5 that
curves 2 and 3 almost coincide with each other. This
suggests that nickel impurities at a content of 0.5%
have no effect on the magnetic properties of dyspro-
sium either in the form of a single-layer film or in the
case when this film is applied on the nickel layer. How-
ever, at a nickel content x ≈ 0.01 (i.e., 1.0%), the mag-
netic circular dichroism of the bilayer film differs from
the sum of the magnetic circular dichroisms of the
Dy0.99Ni0.01 and Ni layers (Fig. 6). For the Dy0.99Ni0.01
layer in the bilayer film at room temperature, the mag-
netic circular dichroism has a relatively large value.
The sign of the observed effect corresponds to the sign
of the magnetic circular dichroism in a single-layer film
of the same composition. In the temperature range 120–
300 K, the magnetic circular dichroism in both cases
does not depend on the temperature. As the temperature
decreases below 120 K, the magnetic circular dichro-
ism in the Dy0.99Ni0.01 layer of the bilayer film increases
in the same manner as in the Dy0.99Ni0.01 single-layer
film. It is clearly seen that the temperature dependences
of the magnetic circular dichroism in nickel (curve 1)
and Dy0.99Ni0.01 (curves 2, 3) films differ significantly.
With a further increase in the nickel content x, the sim-
ilarity of the temperature dependences of the magnetic
circular dichroism for Dy1 – xNix single-layer films to
those for single-layer films of the same composition but
applied on the nickel layer gradually becomes less pro-
nounced. In the entire temperature range covered, the
magnetic circular dichroism of a Dy1 – xNix layer (x =
0.02) applied on the nickel layer is close to that mea-
sured for an isolated Dy1 – xNix layer at a temperature of
90 K. It is worth noting that the temperature depen-
dence of the magnetic circular dichroism of the former
Dy1 – xNix layer is very similar to that of the nickel film
(Fig. 6, curve 4). An increase in the nickel content x also
leads to some variations in the spectral dependences of
the magnetic circular dichroism of the Dy1 – xNix layer
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
applied on the nickel layer. For example, the point at
which the magnetic circular dichroism reverses sign is
displaced to higher energies.

Summing up the above results of the magnetic cir-
cular dichroism measurements, we can draw the fol-
lowing conclusions: (i) nickel impurities in a dyspro-
sium layer substantially affect the temperature and
spectral dependences of the magnetic circular dichro-
ism only in the case when the Dy1 – xNix layer is in con-
tact with a nickel continuous layer; (ii) the threshold
content of nickel in the dysprosium layer at which the
temperature dependence of the magnetic circular
dichroism of the Dy1 – xNix single-layer film ceases to
be similar to that of a single-layer film of the same com-
position but applied on the nickel layer amounts to
~2%; and (iii) at a nickel content of approximately 2%,
the temperature dependence of the magnetic circular
dichroism of the Dy1 – xNix layer in a bilayer film is very
similar to that of the nickel film. The last result is in
agreement with the data obtained in our previous works
[10, 11] concerned with the study of Dy1 – x(Ni80Fe20)x–
NiFe and Dy1 – xFex–Fe bilayer films with a content of
Ni80Fe20 or Fe in the dysprosium layer approximately
equal to 3%. As was shown in [10, 11], in the tempera-
ture range 80–300 K, the magnetic circular dichroism
in Ni80Fe20 and Fe layers does not depend on tempera-
ture and the contribution made to the magnetic circular
dichroism by a dysprosium layer containing nickel and
iron impurities and involved in a bilayer film is also
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Fig. 6. Reduced temperature dependences of the magnitude
of the magnetic circular dichroism (MCDT/MCDT = 90 K)
for (1) the Ni film (d = 10 nm), (2) the Dy0.95Ni0.05 film
(d = 60 nm), (3) the Dy0.98Ni0.02 layer in an Ni–Dy1 – xNix
bilayer film, and (4) the Dy0.95Ni0.05 layer in an Ni–
Dy1 − xNix bilayer film. H = 4.5 kOe, λ = 520 nm.
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temperature independent. The magnetic circular
dichroism observed at temperatures considerably above
the temperature of ferromagnetic ordering of a dyspro-
sium bulk crystal (TC = 85 K) can be associated with
magnetic ordering in the Dy1 – xNix layer. The sign of
the magnetic circular dichroism indicates that the mag-
netic moment of the Dy1 – xNix layer in the situation
under investigation is aligned parallel to the magnetic
moment of the nickel layer.

The magnetic polarization of 4f electrons of rare-
earth metals on the surface of 3d metals was analyzed
earlier theoretically and observed experimentally in
very thin layers. In particular, Carbone et al. [21]
observed the polarization of 4f electron spins in dyspro-
sium monoatomic layers applied on the surface of a sin-
gle crystal or a 3d metal film. The spin moments of dys-
prosium were antiparallel to those of the crystal surface
or the 3d metal layer. Judging from the strong depen-
dence of the temperature behavior of the magnetic cir-
cular dichroism in the Dy1 – xNix layer on the nickel con-
tent x, it can be assumed that, in the case under consid-
eration, impurity nickel atoms and their bonds with a
nickel continuous magnetically ordered layer are
responsible for the effect of the 3d metal on the mag-
netic state of dysprosium at a large depth of the dyspro-
sium layer.

Matveeva and Egorov [20] noted that, in the spec-
trum of dysprosium (Fig. 4c), excitations at low ener-
gies dominate in the system of “–” electrons, whereas
excitations at high energies dominate in the system of
“+” electrons. A drastic increase in the conductivity at
the expense of “+” electrons near 4 eV corresponds to
the threshold of 4f excitations. The magnetic circular
dichroism and the off-diagonal component of the opti-
cal conductivity tensor σxy should also reverse sign at
about the same energy, which is observed in the exper-
iment. Therefore, the displacement of the point at
which the magnetic circular dichroism passes through
zero for the Dy1 – xNix single-layer film applied on the
nickel layer is most likely associated with the transfor-
mation in the electronic structure of either the Dy1 – xNix

layer or the film as a whole.
As is known [3], the magnetic structure of heavy

rare-earth metals, including dysprosium, is determined
primarily by the exchange interaction of conduction
electrons with 4f electrons. The introduction of nickel
atoms into a dysprosium layer leads to changes in the
system of conduction electrons. The magnetic
moments of nickel atoms can be polarized because of
the presence of a continuous, magnetically ordered
nickel layer. The threshold weight content of nickel at
which dysprosium at room temperature undergoes
magnetic ordering is approximately equal to 2%. With
due regard for the atomic weights of the components,
this value corresponds to ~5 vol %. It can easily be
shown that, in the case of a uniform distribution of
nickel over the dysprosium layer, the second coordina-
tion shell of each dysprosium ion contains a nickel ion
PH
with a spin aligned parallel to the magnetic moment of
the nickel layer. The hybridization of Ni d states with
Dy f states can stimulate magnetic ordering in the
Dy1 − xNix layer. On the other hand, it can be assumed
that the sample as a whole is characterized by a single
system of conduction electrons. Consequently, all con-
duction electrons are polarized, including those pro-
vided by the Ni s, Dy p, and Dy d states. In this situa-
tion, spins of Dy 4f electrons undergo ordering due to
the interaction with polarized band electrons. In both
cases, the temperature dependences of the magnetiza-
tion and, hence, the magnetic circular dichroism in the
Dy1 – xNix layer should correlate with those of the nickel
layer and with the nickel content in the dysprosium
layer.

Moreover, nickel impurities bring about insignifi-
cant distortions in the dysprosium lattice because of the
differences between the atomic and ionic radii (rDy =
1.773 Å,  = 1.07 Å, rNi = 1.25 Å, and  =

0.72 Å). These distortions can affect the magnetic
structure of the layer due to strong spin–orbit coupling
in dysprosium and competition between exchange
interactions in different coordination shells. However,
in this case, the magnetic ordering in the Dy1 – xNix

layer should also be observed in the absence of the
nickel layer, which is inconsistent with the available
experimental data.
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Abstract—The evolution of optical absorption in a two-dimensional antiferromagnet is investigated in the
range of the transition 6A1g  4A1g, 4Eg(4G) observed in manganese ions in an external magnetic field induc-
ing noncollinearity of the magnetic structure. It is revealed that hot and cold satellites of the exciton–magnon
bands appear in the optical absorption spectrum and then increase in intensity. The shapes of the magnon sat-
ellite bands corresponding to a two-dimensional magnetic structure are calculated. It is demonstrated that
magnons at the inner points of the Brillouin zone appreciably contribute to the absorption. The zero-point mag-
netic oscillations play a decisive role in the absorption associated with the magnon decay at low temperatures.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As a rule, optical spectra of antiferromagnets con-
taining ions with an open 3d shell are related to transi-
tions forbidden with respect to the spin projection in the
single-ion approximation. Consequently, in the optical
spectra of these crystals, the intensive electrodipole
absorption bands are caused by the excitation of groups
of interacting ions, specifically by pairs of exchange-
coupled ions belonging to different magnetic sublat-
tices. The existence of single-magnon satellites of the
exciton bands is characteristic of the absorption spectra
of collinear antiferromagnets. In the case when the non-
collinearity of the magnetic sublattices is induced by an
external magnetic field, the optical transitions involv-
ing an even number of magnons become allowed [1].
The mechanism responsible for the formation of the
light absorption bands can be elucidated by analyzing
the dependences of the intensity and energy location of
the absorption peak of the multimagnon satellites on
the angle of canting of the magnetic sublattices. For
example, the optical spectra of RbMnCl3 and CoCO3

compounds exhibit narrow isolated magnon satellite
bands that correspond to the maxima observed in the
density of exciton–magnon states at singular points of
the Brillouin zone due to the participation of several
magnons in light absorption [2] with the specific behav-
ior in the magnetic field. In the present paper, we report
results on the measurement of the optical absorption
spectrum of an Rb2MnCl4 antiferromagnet in the fre-
quency range of the transition 6A1g  4A1g, 4Eg(4G).
The evolution of the absorption spectrum in the mag-
1063-7834/03/4508- $24.00 © 21500
netic field was explained in terms of the two-dimen-
sional magnetic structure responsible for the specific
features in the density of states of quasiparticle combi-
nations involved in optical excitations.

Crystals of Rb2MnCl4 at room temperature have a

tetragonal structure with  symmetry. At tempera-
tures below the Néel point TN = 57 K, the Rb2MnCl4
crystal is characterized by an antiferromagnetic order
with easy-axis anisotropy. The magnetic moments are
directed parallel to the C4 symmetry axis of the crystal
[3]. The exchange field is determined to be HE ≈
800 kOe. The spin-flop transition occurs in the field
HSF = 56 kOe. The Mn2+ ions are located in layers per-
pendicular to the C4 symmetry axis at sites of a plane
square lattice of the crystal. The interlayer distance
considerably exceeds the distance between the nearest
neighbor Mn2+ ions located in the same layer. As a
result, the intralayer exchange interaction between the
Mn2+ ions is two orders of magnitude stronger than the
interlayer exchange interaction, which causes the two-
dimensional (2D) behavior of the magnetic system of
the crystal.

2. EXPERIMENTAL TECHNIQUE

The optical absorption spectra of Rb2MnCl4 crystals
were measured on a spectrometer with a resolution of
3 Å/mm. Magnetic fields with a strength up to 230 kOe
were generated in a pulsed solenoid with a pulse dura-
tion of 20 ms. The spectra were recorded on photo-
graphic film.

D4h
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3. RESULTS AND DISCUSSION

The polarized absorption spectra of crystal samples
with different thicknesses h at the temperature T =
4.2 K are shown in Fig. 1. According to the selection
rules, the magnetodipole exciton bands in the optical
spectra of the Rb2MnCl4 crystal should be observed for
the polarizations α (the wave vector k is aligned paral-
lel to the C4 axis of the crystal, and the electric-field
vector E is perpendicular to the C4 axis) and π (k ⊥  C4,
E || C4), whereas the electrodipole single-magnon satel-
lites of the exciton bands should manifest themselves
for the polarizations α and σ (k ⊥  C4, E ⊥  C4). We failed
to observe exciton bands in the spectra of crystal sam-
ples of the specified thickness. Vervoitte et al. [4] mea-
sured the spectrum of magnetic circular dichroism and
revealed two dichroic magnetodipole bands (23489 and
23547 cm–1). The locations of these bands are indicated
in Fig. 1, and the bands themselves are designated as
CE1 and CE2, respectively, and are interpreted as exciton
bands. In [4], the bands CP1 and CM1 were identified as
photon and magnon satellites of the exciton band CE1,
respectively. The band CM1 is located at a distance of
~80 cm–1, which corresponds to the magnon frequency
at the boundary of the Brillouin zone.

We measured the absorption spectra of Rb2MnCl4
crystals in different magnetic fields and at temperatures
ranging from 1.8 to 100 K. It turned out that the temper-
ature dependences of the spectral characteristics do not
provide useful information. As the temperature
increases to the Néel point TN, the half-width of the
bands increases; consequently, it becomes impossible
to determine the location of most of them to sufficient
accuracy. The only isolated band, namely, CM2, which
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Fig. 1. Polarized spectra of Rb2MnCl4 crystals in the range

of the transition 6A1g  4A1g, 4Eg(4G) at T = 4.2 K: (1) π
polarization, h = 2.2 mm; (2) α polarization, h = 0.14 mm;
(3) α polarization, h = 0.5 mm; and (4) σ polarization, h =
1.51 mm.
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can be clearly observed up to the temperature TN and
higher, does not undergo a noticeable shift at tempera-
tures T < TN. This is a typical manifestation of the two-
dimensional magnetic structure of the crystal [5].

Figure 2 illustrates the evolution of the red edge of
the α-polarized absorption spectra of thick and thin
crystal samples in different magnetic fields at T = 4.3 K.
In the case when the magnetic field exceeds the field of
the spin-flop transition and the magnetic moments of
the sublattices exhibit angularity, the spectrum under-
goes a considerable transformation. It can be seen that
an intense broad band, namely, CM2 + M, appears in the
spectrum, increases in intensity, and overlaps with the
CM2 band whose intensity decreases. As the magnetic
field increases above 100 kOe, there appear two new
bands, namely, CM1 – M and CM2 – M, at frequencies cor-
responding to pure exciton transitions and their intensi-
ties increase. Judging from the field dependences of the
aforementioned bands, the CM2 + M band can be identi-
fied as an exciton–two-magnon band (a magnon satel-
lite of the exciton–magnon band CM2), whereas the
CM1 – M and CM2 – M bands can be treated as hot satellites
of the exciton–magnon bands. The integrated intensity
of these bands should be proportional to sin22θsin4θ,
where cosθ = H/2HE and θ is half the angle between the
sublattices. However, in the former case, the band is
unusually broad. In the latter case, the intensities of the
bands should be proportional to the magnon population
[6]: n = [exp(εm/kT) – 1]–1, which is small at the temper-
ature of the experiment; hence, these bands should not
be observed. In order to explain the above facts, the
specific features of the magnetic structure of the crystal
must be taken into account.

23500 23600 ν, cm–1

1
2
3

4

A
bs

or
pt

io
n,

 a
rb

. u
ni

ts

CE1

CP1

CM1 – M

CM2

CM2 – M CM1

CM2 + M

5

6

7
8
9

10
11

CE2

Fig. 2. Absorption spectra of Rb2MnCl4 crystals for the α
polarization in magnetic fields H: (1, 7) 0, (2, 8) 46, (3) 70,
(4, 9) 135, (5, 10) 160, and (6, 11) 230 kOe. Sample thick-
ness h: (1–6) 1.65 and (7–11) 0.08 mm. T = 4.3 K, H || C4.
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The shapes of the absorption bands were calculated
taking into account the results obtained in [6]. The
absorption coefficients at the frequency ω were calcu-
lated for the exciton–magnon band from the relation-
ship

for the cold magnon satellite of the exciton–magnon
band from the expression

and for the hot magnon satellite of the exciton–magnon
band from the formula

Here, P(k) is the dipole moment of the transition in the

k space and (k) are the functions dependent on
the direction of the magnetic moments of the sublat-
tices, the population of magnon states, and the structure
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Fig. 3. Calculated band shapes: (1) the exciton–magnon
band at K1 = 0, K2 = 0; (2) the exciton–magnon band at K1 =
0, K2 = 2.5; (3) the exciton–magnon band at K1 = 0.1, K2 =
2.5; (4) the cold magnon satellite of the exciton–magnon
band at K1 = 0, K2 = 2.5; and (5) the hot magnon satellite of
the exciton–magnon band at K1 = 0, K2 = 2.5.
PH
of the crystal. The summation is carried out over all
vectors k of the Brillouin zone and over the zones µ.
The exciton energy Eµ(k) and magnon energy εµ(k)
were calculated in the nearest neighbor approximation
according to the expressions

where a is the lattice parameter. In contrast with the
case considered in [6], we ignored the renormalization
of the exciton energy due to the exciton–magnon inter-
action ∆ and assumed that |∆(k, µ)|2 = ∆sin22θ. The role
of the exciton–magnon interaction, in our case, consists
in resolving the magnon satellites of the exciton–mag-
non band. All the other designations correspond to
those presented in [2]. In our calculations, we varied the

parameters K1 = |M |cos2θ and K2 =  determining the
transfer of excitation inside and between the sublat-
tices.

The calculated shapes of the exciton–magnon band
and its cold single-magnon satellite having characteris-
tic weakly pronounced peaks associated with the spe-
cific features of the density of states corresponds to the
observed shape under the condition K2 = 2.5 |J | (Fig. 3).
Here, |J | is the quantity characterizing the intralayer
exchange between the nearest neighbors. The magni-
tude |M | can be determined from the Davydov splitting
of the exciton band. We failed to do this because no
weak exciton band was observed for crystals of the
specified thickness. For this reason, in our calculations,
we chose small values of K1 in units of |J |, which is
specified by the range of the magnetic fields used. In
this case, the shapes of the bands change insignifi-
cantly, whereas the maxima of the intensity should vary
as sin4θ and sin22θsin4θ for the single-magnon and
two-magnon satellites, respectively. Figure 3 displays
the calculated shape of the two-magnon satellite for
small values of K1, which is described by a function
~Ke + m + m(ω)/cos2θ, because when H = 0 and θ = π/2
(and, correspondingly, K1 = 0), we obtain Ke + m + m(ω) =
0. An increase in the fraction of magnons with wave
vectors at points of the general type, as compared to
that at singular points in a 2D antiferromagnet, gives
rise to a broad two-magnon band.

Unlike the cold magnon satellite of the exciton–
magnon band, the hot magnon satellite of this band
exhibits a sharp peak on the background of the wide
dome at a frequency close to the frequency of the exci-
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ton (Fig. 3) for K2 = 2.5 and K1 = 0. Consequently, the
bands CM – M1 and CM – M2 are relatively narrow. They
are characterized by a high intensity and a weak tem-
perature dependence due to the two-dimensional mag-
netic structure. According to [6], we can write the rela-

tionship (k) ~ nµ(k). The decrease in the mag-
netization due to zero-point oscillations was calculated
for a two-dimensional Heisenberg antiferromagnet in
[7]. It was shown that this decrease at T = 0 reaches
~20% [7]. Therefore, at a low temperature, n takes on a
value of no less than 0.2, which ensures a sufficient
number of magnons for the participation in the hot
absorption of light. The shape of the band was calcu-
lated under the assumption that magnons are uniformly
distributed in the Brillouin zone.

Upon summing the band intensities with weights
dependent on the sublattice angularity in the magnetic
field, we obtain a spectrum similar to that observed in
the experiment.
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Abstract—The spin and lattice dynamics of the R2CuO4 quasi-2D antiferromagnetic crystals (R = Pr, Nd, Sm,
Eu, Gd) were studied in the millimeter-range electromagnetic wave band. Strong variations of the absorption
coefficient were observed to occur at temperatures T ≈ T0. Absorption lines of electrical nature due to lattice
dynamics were also revealed near the T0 temperatures. The observed anomalies are assumed to originate from
phase transitions at T ≈ T0, which entail changes in the structural and magnetic properties. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

This paper reports on a study of the absorption spec-
tra of electromagnetic waves in R2CuO4 quasi-2D anti-
ferromagnets (R = Pr, Nd, Sm, Eu, Gd) in the frequency
range 20–250 GHz and at temperatures from 5 to
350 K. The measurements were conducted on stoichio-
metric, dielectric single crystals.

R2CuO4 crystals with R = Pr, Nd, Sm, and Eu have
T '-type tetragonal symmetry (space group I4/mmm [1])
at all temperatures. La2CuO4 and Gd2CuO4 were
observed to undergo, at 600–650 K, structural transi-
tions from the high-temperature (tetragonal) to low-
temperature (orthorhombic) phase [2, 3].

Figure 1 shows the structure of La2CuO4 and
R2CuO4 with rare-earth (RE) ions for R = Pr, Nd, Sm,
Eu, and Gd. The structures of all these crystals have a
common feature: they are all quasi-2D. At the same
time, La2CuO4 and R2CuO4 with RE ions differ in the
nearest environment of the Cu2+ ions. In La2CuO4,
these ions are surrounded by O2– octahedra (coordina-
tion number Z = 6), while in R2CuO4 with RE ions, they
are surrounded by oxygen ion squares (Z = 4) in CuO2
sheets.

In terms of their magnetic properties, La2CuO4 and
all R2CuO4 crystals with RE ions are quasi-2D Heisen-
berg antiferromagnets based on CuO2 sheets with Cu2+

ions (spin S = 1/2). There is strong in-plane 2D Heisen-
berg exchange interaction (exchange constant JIP ~
120–150 meV [4]). The Néel temperatures (TN) for the
quasi-2D antiferromagnetic order maintained by a
weak out-of-plane exchange JOP ~ 10–5JIP are TN ~ 250–
300 K. The noncollinear antiferromagnetic structure,
magnetic anisotropy, spin-wave excitation spectra, and
the part played by the R3+–Cu2+ and Cu2+–Cu2+ pseudo-
1063-7834/03/4508- $24.00 © 21504
dipole interactions in the R2CuO4 tetragonal crystals
with RE ions are considered in [5, 6].

The spin dynamics in R2CuO4 was studied earlier by
using antiferromagnetic resonance (AFMR) [7, 8] in
crystals with R = Pr, Nd, and Gd and by using inelastic
neutron scattering [6, 9, 10] in compounds with R = Pr
and Nd.

Magnetic resonance lines were observed in [7, 8] at
low temperatures, T < 15–20 K. As the temperature was
increased, the resonance lines measured by sweeping
the external magnetic field were broadened and then
practically disappeared. Inelastic neutron scattering

R3+

O2–

Cu2+

(a) (b)

Fig. 1. Structure (a) of La2CuO4 crystals of T-type symme-
try in the high-temperature phase and (b) of R2CuO4 crys-
tals (R = Pr, Nd, Sm, Eu, Gd) of T '-type tetragonal sym-
metry.
003 MAIK “Nauka/Interperiodica”
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studies revealed both in-plane (with a gap ∆IP) and out-
of-plane (∆OP) spin-wave excitations [6, 9, 10]. The val-
ues of the gap width ∆IP obtained for Pr2CuO4 and
Nd2CuO4 in inelastic neutron scattering measurements
and the AFMR frequencies differed only slightly.

This study covered temperature and frequency
dependences for the absorption spectra of R2CuO4 with
RE ions (R = Pr, Nd, Sm, Eu, Gd) measured using the
quasi-optical method, both with and without applica-
tion of an external magnetic field. This permitted us to
investigate the absorption lines and bands which did not
depend (or depended only weakly) on magnetic field
and could not be observed using conventional AFMR
(by sweeping an external magnetic field at a fixed fre-
quency). As a result, we observed, in addition to the
magnetic resonance lines studied in [7, 8], absorption
lines and bands that had not been detected previously.
The presence of such bands is characteristic of all the
R2CuO4 crystals investigated.

The position of the low-frequency absorption band
edge in Pr2CuO4 and its temperature dependence are in
accord with the corresponding data for the in-plane
spin-wave excitation gap obtained by inelastic neutron
scattering [10].

In R2CuO4 with R = Pr, Sm, and Eu, the above-men-
tioned absorption bands originating from excitation of
in-plane spin waves became manifest, under heating of
the crystal, in the form of a strong increase in absorp-
tion near the temperatures T ≈ T0 = 20, 80, and 150 K,
respectively. It is near T ≈ T0 = 150 K that a phase tran-
sition in Eu2CuO4, in which both the structural and
magnetic properties of the crystal changed simulta-
neously, was observed earlier by using various experi-
mental methods [11–14]. The similarity between the
temperature dependences of the measured absorption
spectra in R2CuO4 with different RE ions suggests that
all these crystals undergo similar phase transitions at
temperatures T ≈ T0.

In all crystals with phase transitions occurring near
T ≈ T0, one observed, near the same temperatures, not
only absorption bands of spin nature but also absorp-
tion lines apparently due to lattice dynamics. These
lines lie at frequencies f > 20 GHz, up to the edge of the
in-plane spin-wave excitation band, and partially over-
lap the latter. Thus, in the crystals studied, the in-plane
spin-wave and lattice excitations are mixed, at least, at
temperatures close to T0.

2. EXPERIMENTAL RESULTS

The absorption spectra of R2CuO4 single crystals
(R = La, Pr, Nd, Sm, Eu, Gd) were measured over the
frequency range 20–250 GHz at temperatures 5–300 K.
The samples were 5 × 4 × 0.5-mm plates with the larger
face perpendicular to the c axis of the crystal. The sin-
gle crystals were grown using the spontaneous crystal-
lization method described in [15, 16]. The quasi-optical
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
spectrometer employed used backward-wave lamps
(BWL) as a generator and liquid helium–cooled InSb
detectors as a receiver. The experimental technique is
described in considerable detail in [17].

The larger face of a sample was oriented perpendic-
ular to the direction of microwave power propagation.
The propagated wave had a plane wavefront such that
the ac magnetic (h) and electric (e) fields were in the
sample plane. The sample could be rotated about the
axis of the holder. The electric field e was parallel to the
holder axis and remained in the plane of the larger face
when the sample was turned. In contrast, the magnetic
field h deflected from this plane through the corre-
sponding angle with rotation of the sample. A dc mag-
netic field H0 of up to 1.6 T could be applied perpendic-
ular to the direction of microwave power propagation.

We measured temperature dependences of the
microwave power transmitted through the sample,
P(T), at fixed frequencies. The temperature depen-
dences of the relative absorption coefficients Γ = 1 –
P(T)/P(T = 5 K) at fixed frequencies, Γf (T), were calcu-
lated. The Γf (T) plots were used to calculate the fre-
quency dependences of the relative absorption coeffi-
cient of a sample at fixed temperatures, ΓT( f ). Note
that, to quantify the absorption coefficient, one needs to
know the phase of the propagated wave and the
reflected power, which are difficult to obtain without
ensuring the single-mode measurement regime. How-
ever, in order to determine the position of the absorp-
tion lines and bands only, one can restrict oneself to
measurement of the Γf (T) coefficient. It is also appro-
priate to note that, when measuring relative absorption
coefficients, the nonuniformity of the frequency
response of the generator (BWL) is inessential.

Three types of Γf (T) dependences differing in
behavior were observed in the crystals in the frequency
range 20–250 GHz.

(1) Sharp and strong stepped variation of the absorp-
tion coefficients Γf (T) within narrow temperature inter-
vals near T0 = 20, 80, and 150 K for R2CuO4 crystals
with R = Pr, Sm, and Eu, respectively (Fig. 2). These
jumps occurred within a broad frequency region f >
100–120 GHz up to 250 GHz (the maximum frequency
at which the measurements were conducted).

(2) Sharp, but weaker changes in the absorption
coefficient Γf (T) in R2CuO4 crystals with R = Pr, Nd,
Sm, and Eu occurring near T ≈ T0 = 20, 6, 80, and
150 K, respectively (Fig. 3). Unlike absorption bands
of the first type, these jumps in absorption were
observed in a narrow frequency interval close to
30 GHz.

(3) Absorption lines, i.e., maxima in the Γf (T)
dependences (Fig. 4). These lines were observed in
R2CuO4 crystals (R = Pr, Nd, Sm, Eu) in the vicinity of
T ≈ T0 within a broad frequency range, from 20 GHz to
the low-frequency edge of the broad absorption band of
the first type. These lines are most clearly seen on the
3
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wing of the broad absorption band in Eu2CuO4, where
their intensity was the strongest (see [18, Fig. 2]).

At temperatures T < T0, where the crystals studied
were practically transparent for f > 100 GHz, strongly
magnetic field-dependent absorption lines were
observed (they are seen in Fig. 2 for Gd2CuO4 at T ≈
10 K and in Fig. 3 for Nd2CuO4 at T ≈ 30 and 75 K and
for Sm2CuO4 at T ≈ 30 K). No comprehensive investi-
gation of these lines was made here; they apparently
originate from magnetic resonances.

Consider the specific features of the above three
types of absorption spectra in more detail.

We first discuss the properties of the broad, strong
absorption band at frequencies f > 100 GHz, which
appears near T ≈ T0. As seen from Fig. 2, the variation
of absorption for R2CuO4 crystals with R = Pr, Sm, and
Eu has the shape of a smooth step, with the Γf (T) coef-
ficient changing by tens of times within a fairly narrow
temperature interval near T ≈ T0 = 20, 80, and 150 K, to
remain subsequently nearly constant with a further
increase in temperature. This pattern persists up to a
limiting frequency of 250 GHz. Note that the tempera-
ture dependence of the absorption coefficient Γf (T) for
La2CuO4, which is presented for comparison in Fig. 2,
is different. Indeed, the absorption grows more

0

500

0.2

0.4

0.6

0.8

1.0

100 150 200 250

La

Nd

Sm Eu

Pr

Gd

T, K

Γ

Fig. 2. Temperature dependence of the relative absorption
coefficient measured at a frequency f = 169 GHz for
La2CuO4, Pr2CuO4, Nd2CuO4, Sm2CuO4, Eu2CuO4, and
Gd2CuO4. The curves were measured under a slow warm-
up of the samples following their slow cooling. The solid
lines for R2CuO4 (R = Pr, Sm, and Eu) are fits by Boltzmann
equations.
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smoothly in this case with temperature up to 400 K
without reaching a constant level. No frequency depen-
dence of absorption is observed within the operating
range for this crystal. Note that the absorption for
La2CuO4 at the maximum temperature (Fig. 2) is sub-
stantially smaller than that measured in R2CuO4 crys-
tals (R = Pr, Sm, Eu) for T > T0. It appears only natural
that this absorption is related to the thermal release of
carriers from traps. Generally speaking, absorption of
this type should take place in all crystals of this class;
however, this absorption is practically indistinguish-
able in R2CuO4 with R = Pr, Sm, and Eu when viewed
superposed on strong absorption bands.

The absorption in these strong bands is primarily of
magnetic nature. This was checked by polarization
measurements. Rotation of samples about the crystal
holder caused a sharp decrease in the relative absorp-
tion coefficient Γf (T). When a sample is rotated in this
way, the ac magnetic field leaves the CuO2 layer plane,
whereas the ac electric field maintains its orientation in
these layers. The observed magnetic absorption band is
most likely associated with spin-wave excitations in the
CuO2 sheets.

It was found that the best fit to the experimental
points (with the smallest rms deviations) in Figs. 2 and
3 is reached when using a Boltzmann equation of the
type Γ = (Γ1 – Γ2)/{1 + exp[(T – T0)/dT]} + Γ2, which
describes a stepwise variation of the parameter Γ within
a temperature interval dT in the vicinity of T0. Here, Γ1
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Fig. 3. Stepwise absorption near temperatures T0 for the
Pr2CuO4, Nd2CuO4, Sm2CuO4, and Eu2CuO4 crystals at
frequencies 30.5, 29, 33.9, and 34 GHz, respectively.
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is the absorption coefficient for T = –∞, Γ2 is that for
T = +∞, T0 is the temperature at which Γ = 0.5(Γ1 + Γ2),
and dT is the width of the temperature interval within
which Γ varies sharply in magnitude. Computer fitting
yields the minimum-error values of all four parameters
within the possible range of their variation. The values
of T0 and dT for the R2CuO4 crystals (R = Pr, Sm, Eu)
are, respectively, 19.52 ± 2.13 K and 13.03 ± 0.79 K
with a variance χ2 = 0.00039 characterizing the accu-
racy of approximation for Pr; 86.09 ± 0.24 K and
10.49 ± 0.21 K with χ2 = 0.00023 for Sm; and 115.82 ±
0.62 K and 10.78 ± 0.53 K with χ2 = 0.00052 for Eu.
We readily see that, for the Eu2CuO4 and Sm2CuO4
crystals, the ratio dT/T0 ! 1, whereas for Pr2CuO4, we
have dT/T0 ~ 0.7. Thus, the values of dT for these crys-
tals are similar and the temperatures T0 depend on the
RE ion species.

In Gd2CuO4, the increase in the absorption coeffi-
cient with temperature was more smooth than in
R2CuO4 (R = Pr, Sm, Eu); in terms of the pattern of the
temperature and frequency responses and the magni-
tude of the absorption coefficient, this crystal is closer
to tetragonal R2CuO4 (R = Pr, Sm, Eu) than to the
La2CuO4 case (Fig. 2). The absorption in Gd2CuO4
depended substantially on the sample prehistory, more
specifically, on the cooling rate and the presence
method of applying the external magnetic field. In non-
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Fig. 4. Absorption lines near temperatures T0 for Pr2CuO4,
Nd2CuO4, Sm2CuO4, and Eu2CuO4 obtained at 55 GHz.
Solid lines are drawn to guide the eye.
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equilibrium samples cooled at a high rate (>30 K/min)
or after application of a magnetic field of 1.5 T near the
Néel temperature, the increase in absorption with tem-
perature occurred stepwise rather than smoothly. Fig-
ure 5 displays the pattern of Γ(T) variation in the case
of fast cooling. We readily see that the equilibrium sam-
ple (cooled at a rate less than 1 K/min in a zero external
field) exhibits an absorption line of magnetic nature at
a temperature of ~75 K and f = 169 GHz. This line
broadened under quenching and was shifted by an
external magnetic field.

No sharp variation of the coefficient Γf (T), similar
to that seen in R2CuO4 (R = Pr, Sm, Eu), was observed
to occur in Nd2CuO4 at frequencies f ≤ 250 GHz
(Fig. 2).

Figure 6 presents the Γf (T) relations obtained under
slow heating and cooling of the samples. Eu2CuO4 is
seen to display a strong temperature hysteresis.
Pr2CuO4 and Sm2CuO4 crystals also reveal a hysteresis,
but it is considerably weaker.

Consider now the absorption properties near
30 GHz. As already mentioned, this absorption
appeared in R2CuO4 crystals with R = Pr, Nd, Sm, and
Eu (Fig. 3) at temperatures T ≈ T0 = 20, 6, 80, and
150 K, respectively, while for T > T0, the absorption
remained practically independent of temperature up to
300–350 K. The value of Γf (T) for T > T0 in this case is
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Fig. 5. Temperature dependence of the absorption coeffi-
cient of Gd2CuO4 measured under slow warm-up following
(1) slow and (2) fast cooling.
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smaller than that for steps of the first type. Figure 7
exemplifies some Γf (T) relations obtained at frequen-
cies near 30 GHz on Pr2CuO4, which illustrate the non-
monotonic character of variation of Γf (T) with T > T0
and with frequency varied near 30 GHz. Similar depen-
dences were observed in the vicinity of and above the
temperatures T ≈ T0 = 6, 80, and 150 K in Nd2CuO4,
Sm2CuO4, and Eu2CuO4, respectively.

Consider finally absorption lines of the third type.
These lines were observed near the temperatures T ≈ T0
in R2CuO4 crystals (R = Nd, Pr, Sm, Eu) within a fairly
broad frequency range above 20 GHz (Fig. 4). The
upper frequency limit of this absorption is difficult to
establish, because it overlaps the edge of the strong
spin-involving absorption band of the first type. Polar-
ization measurements showed these lines to be excited
primarily by the ac electric field, because the relative
absorption coefficient of the sample changed only
slightly when the sample was rotated about the sample
holder along which the ac electric field was directed.
An external magnetic field had practically no effect on
the position and intensity of the absorption lines.

Figure 8 displays the frequency dependences of the
absorption coefficient ΓT( f ) of R2CuO4 crystals (R = Pr,
Sm, Eu) derived for a number of temperatures from the
experimentally measured Γf (T) relations (Figs. 2, 3, 7).
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Fig. 6. Hysteresis in the temperature dependence of the
absorption coefficient of Pr2CuO4, Sm2CuO4, and
Eu2CuO4 obtained at 169 GHz under (1) slow heating and
(2) slow cooling.
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One clearly sees a narrow absorption line near 30 GHz
and a broad absorption band at higher frequencies. The
position of the edge of this band (i.e., the gap for the
corresponding spin excitations) can be characterized by
the frequency fgap that corresponds to one half of
absorption at the saturation level for each fixed temper-
ature. As the temperature increases, the absorption edge
is seen to shift toward lower frequencies and its position
no longer varies with temperature for T > 90 K (for
Pr2CuO4). Figure 9 shows temperature dependences of
the frequency gaps of the corresponding spin excita-
tions measured for R2CuO4 crystals (R = Pr, Sm, Eu).

3. ANALYSIS OF THE EXPERIMENTAL DATA

The experimental data presented in the preceding
section show that the absorption spectra of R2CuO4 tet-
ragonal crystals with different RE ions share a number
of common features.

For temperatures T > T0, all crystals, except
Nd2CuO4, exhibit, within a broad frequency range
above 100 GHz, a strong absorption band, which is
apparently due to excitation of in-plane spin waves. In
the case of Pr2CuO4, the magnitude of the frequency
gap for such excitations and its temperature response
agree with those of the gap ∆IP reported in [10] (Fig. 9).
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Fig. 7. Temperature dependence of the relative absorption
coefficient of Pr2CuO4 at frequencies close to 30 GHz.
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The similarity between the gaps for the observed
strong magnetic absorption bands and between their
temperature behaviors in R2CuO4 crystals (R = Pr, Sm,
Eu) (Fig. 9) suggests that the bands in all these crystals
are caused by in-plane spin-wave excitations in the
CuO2 sheets with gaps ∆IP. The widths of the gaps are
determined by the in-plane anisotropy, which is similar
for crystals with R = Pr, Sm, and Eu and is primarily
due to the Cu–Cu interaction in the layers. The RE ions
(R = Pr, Sm, Eu) only weakly affect the in-plane anisot-
ropy. Indeed, Pr2CuO4 and Eu2CuO4 have practically
nonmagnetic ground-state RE ions and, in Sm2CuO4,
the magnetic moments of the Sm3+ ions are aligned
with the c axis of the crystal [19].

As follows from data on inelastic neutron scattering
for Nd2CuO4 [9], the gap ∆IP in this compound is nearly
an order of magnitude larger than that in Pr2CuO4. Our
operating frequencies are lower than the gap width ∆IP,
and it is apparently for this reason that we did not
observe the corresponding band in Nd2CuO4. In
Nd2CuO4, the magnetic moments of the Nd3+ ions, as
well as those of the Cu2+ ions, are known to lie in the
CuO2 sheets and the Nd–Cu interaction is indeed capa-
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shows the same dependence measured for Sm2CuO4 and
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ble of changing the in-plane anisotropy and shifting
the gap.

As already mentioned, Eu2CuO4 was established
[11] to undergo, near T ≈ T0 = 150 K, a phase transition,
during which the structural and magnetic properties
change (see also [12, 14, 15, 20]). Rhombic distortions,
caused primarily by oxygen ion displacements, were
found to form for T ≤ T0 in CuO2 layers on a local scale
of ~30 Å [11]. It appears natural to relate the change in
the absorption coefficient and the temperature behavior
of the gap ∆IP in Eu2CuO4 near 150 K to the existence
of this phase transition. A broad absorption band is
observed within the operating frequency range in the
high-temperature tetragonal phase, but this band does
not arise in the low-temperature phase with local rhom-
bic distortions. The existence of such distortions in the
low-temperature phase gives rise to a stronger inter-
layer coupling and a larger in-plane magnetic anisot-
ropy, which broadens the gap and results in the
observed increased transmission of the crystal. The
high-temperature tetragonal phase of Eu2CuO4 is also
reported [12, 14] to exhibit dispersion of the dielectric
susceptibility along the c axis, which is characteristic of
the structural glassy state. This is possibly what
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Fig. 9. Temperature behavior of the in-plane spin-wave
excitation frequency gaps ∆IP for the Pr2CuO4, Sm2CuO4,
and Eu2CuO4 crystals. (1–3) This work and (4) inelastic
neutron scattering data for Pr2CuO4 [10].
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accounts for the anomalously large width of the
observed spin-wave absorption band.

In view of the similarities between the characteris-
tics of the absorption bands observed in R2CuO4 crys-
tals (R = Pr, Sm, Eu) near the T0 temperatures, one may
also expect the existence of similar phase transitions in
R2CuO4 crystals (R = Pr, Sm) at temperatures T0 ≈ 20
and 80 K, respectively. The temperature hysteresis of
the absorption coefficient in R2CuO4 (R = Sm, Eu) (see
Fig. 6 and [18, Fig. 2]) is evidence of a first-order phase
transition. In Pr2CuO4, this transition is diffuse (dT/T0 ~
0.7) and is apparently of the first order close to second
order.

The gaps ∆IP in Nd2CuO4 and Pr2CuO4 were found
to be strongly temperature dependent for T < 10 K and
T < 20 K, respectively [9, 10]. In the case of Nd2CuO4,
this temperature behavior was related in [9, 10] to the
strong dependence of the magnetization of Nd3+ ions on
temperature and to the effect of the Nd3+–Cu2+ interac-
tion on the in-plane magnetic anisotropy. The tempera-
ture dependence of the gap ∆IP in Pr2CuO4, where the
Pr3+ ion is practically nonmagnetic, was explained as
being due to spin–spin interaction in the two-dimen-
sional CuO2 sheets;, this interaction appears when the
square magnetic anisotropy is taken into account [21].

If, however, one assumes the existence of phase
transitions near the temperatures T0, the temperature
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Fig. 10. Phase transition temperatures T0 plotted vs. R-ion
radius (rR) for R2CuO4 crystals (R = La, Pr, Nd, Sm, Eu,
Gd). The ionic radii were taken from [22].
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dependence of the frequency gap can also be accounted
for by a change in the in-plane anisotropy originating
from the structural distortions brought about in such a
transition.

Let us discuss now the absorption lines of electric
nature, which we assign to lattice dynamics near the
phase transitions occurring in the R2CuO4 crystals (R =
Pr, Nd, Sm, Eu) (Fig. 4). These lines are observed in a
continuous frequency range extending from 20 GHz to
the edge of the spin-involving absorption bands and can
be associated with the dynamics of a set of coexisting
relaxation centers, for which the condition ωτ = 1 is sat-
isfied near the temperatures T0. The lifetimes τ of these
centers are distributed over the interval 0.8 × 10–11 ≥ τ >
0.5 × 10–12 s–1, which indicates a limited size scale of
the regions with structural correlations existing near the
temperatures T0. For Eu2CuO4, this is in agreement with
the data obtained in structural studies [11]. The fre-
quency overlap of the lattice absorption lines with
absorption bands of spin nature observed to occur near
the temperatures T0 argues for the lattice and spin
dynamics mixing near the T0 temperatures.

Unlike crystals with R = Pr, Sm, and Eu, in
Nd2CuO4, as already mentioned, no strong spin-wave
absorption band was observed. Near 6 K, however, a
line was detected which was similar to the lattice
absorption lines found near the temperatures T0 in
R2CuO4 (R = Pr, Sm, Eu). Therefore, a similar phase
transition also occurs apparently in Nd2CuO4 at T0 ≈
6 K and, for the spin-wave absorption bands to be
observed, the operating frequency has to be increased.

Thus, similar R2CuO4 crystals (R = Pr, Nd, Sm, Eu)
differing in the R-ion species are assumed to undergo
identical phase transitions at different temperatures T0.
In this case, it appears only natural to relate the differ-
ences in T0 to the R-ion type.

We looked for correlations between the values of T0
and magnetic moments, as well as with the ionic radii
rR of the R ions (using data obtained by Shannon [22]).
The T0 temperatures of the crystals studied correlate
only weakly with the magnetic state of the correspond-
ing R ions. Indeed, for the Eu3+ ion (7F0), which is non-
magnetic in the ground state, we have T0 ≈ 150 K. For
the weakly magnetic Pr3+ ions (spin singlet in the
ground state), T0 ≈ 20 K. For the magnetic ions Sm3+

and Nd3+ (Kramers doublets in the ground state), T0 ≈
80 and 6 K, respectively. There is, however, a correla-
tion between T0 and the RE-ion radii (Fig. 10), which
argues for the phase transitions near the temperatures
T0 being associated with a change in the structural state
of the crystals. The nonmonotonic character of the
T0(rR) dependence, which is fitted best of all by a qua-
dratic curve, suggests the existence of certain values of
rR that are optimal for the T ' structure and make it stable
down to the lowest temperatures. Decreasing or
increasing rR from these optimal values gives rise to an
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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instability in the T ' structure, the extent of which
depends on the size of the R ion. Note that the values of
T0 for the crystals with R = Nd, Pr, and Sm obtained by
us and the temperatures of the structural phase transi-
tions for crystals with R = La, Gd, and Eu determined
earlier in independent experiments [2, 3, 11] fall rea-
sonably well on the curve depicted in Fig. 10.

Gd2CuO4 was shown to contain coexisting macro-
scopic regions with rhombic and tetragonal symmetry
(structural domains), which make the crystal structure
close to the stability limit [3, 20, 23–25]. The pattern of
the in-plane spin-wave excitation spectra observed by
us in Gd2CuO4 is in agreement with the concept of
existence of such structural domains at all temperatures
below the Néel point. As the temperature is increased,
the amount of the tetragonal phase increases either
smoothly or jumpwise, depending on the actual method
of preparation of the sample and on the sample state
(Fig. 5).

Let us turn now to the narrow absorption lines near
30 GHz observed in R2CuO4 crystals (R = Pr, Nd, Sm,
Eu, Gd) for T > T0 (Figs. 3, 7, 8). These lines can be
associated with the anomalies in the dynamic magnetic
susceptibility revealed by us earlier in R2CuO4 (R = Pr,
Eu, Gd) in the same frequency range [14, 26, 27]. We
assumed the observed anomalies to originate from 2D
homogeneous, well-defined spin-wave excitations in
the CuO2 sheets. The gap width (ω2D) for these excita-
tions was governed by the fairly strong uniaxial anisot-
ropy along the c axis, which provided spin correlation
on a scale smaller than the correlation length of 2D spin
fluctuations [14, 26]. This interpretation of the nature of
the narrow absorption lines close to 30 GHz is not at
odds with the results reported here. The fact that the
spin-wave excitations with ω2D in R2CuO4 crystals with
R = Pr, Nd, Sm, Eu, and Gd are observed at a similar
frequency ~30 GHz implies the existence, in the CuO2
sheets of all these crystals at temperatures T > T0, of 2D
spin fluctuations with large correlation lengths and of a
uniaxial anisotropy of similar magnitude along the c
axis.

4. CONCLUSION

Thus, similar absorption bands have been observed
above 100 GHz in R2CuO4 crystals with R = Pr, Sm, and
Eu for temperatures T > T0 ≈ 20, 80, and 150 K, respec-
tively. R2CuO4 crystals with R = Pr, Nd, Sm, and Eu
were found to have similar absorption bands in the
vicinity of 30 GHz for T > T0 ≈ 20, 6, 80, and 150 K,
respectively. These bands and lines originate, respec-
tively, from quasi-2D in-plane spin-wave excitations
and well-defined 2D spin-wave excitations governed by
the uniaxial anisotropy along the c axis. These crystals
also revealed absorption lines caused by lattice dynam-
ics near temperatures T0 in a continuous frequency
range from 20 GHz to the in-plane spin-wave absorp-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
tion edge. The observed features in the spin and lattice
dynamics suggest the existence of phase transitions in
these crystals near the T0 temperatures; these transi-
tions are associated with the changes in the structural
and magnetic properties of the crystals. The tempera-
tures T0 depend on the actual RE-ion species, with the
value of T0 and the RE-ion radius being correlated.

The features observed in the spin-wave absorption
bands and absorption lines indicate a lack of homoge-
neity in the quasi-2D spin and structural states for T >
T0 and the existence of spin–lattice correlations near
temperatures T0.
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MAGNETISM
AND FERROELECTRICITY
Magnetic Properties of Electron-Irradiated Quasi-Layered 
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Abstract—The magnetic properties of La2 – 2xSr1 + 2xMn2O7 polycrystals (x = 0.3–0.4) are studied over a broad
temperature range 80–600 K. Quasi-two-dimensional manganites have a complex magnetic structure that
undergoes several transitions from one type of magnetic ordering to another. A specific feature of these manga-
nites is a hyperbolic dependence of inverse susceptibility in the transition region from the magnetically ordered
to paramagnetic state for T > 360 K. This suggests the onset of ferrimagnetism. Electron irradiation to a fluence
Φ = 1 × 1018 electrons/cm2 is shown to have no effect on the long-range magnetic order while favoring the for-
mation of paramagnetic polarons and of an inhomogeneous paramagnetic state. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The current interest in perovskite-like manganite
oxides of the Ruddlesden–Popper An + 1MnnO3n + 1
series (n = 1, 2, …, ∞) stems from the colossal magne-
toresistance effect [1, 2]. These compounds can be clas-
sified as magnetic semiconductors with strongly cou-
pled magnetic and electronic subsystems. The most
comprehensive study has been made of the physical
properties of the La1 – xAxMnO3 three-dimensional (3D)
manganites (n = ∞). A3Mn2O7 (n = 2) has quasi-two-
dimensional crystal structure. The MnO2 magnetic
bilayers are a large distance apart and are separated by
insulating spacers. This can give rise to low-dimen-
sional magnetism at not very low temperatures. To
reveal the effect of structural dimensionality on the
magnetic properties of the manganites, Moritomo et al.
[3] studied the temperature dependences of magnetiza-
tion in a field H = 100 Oe for La0.6Sr0.4MnO3 (3D) and
La1.2Sr1.8Mn2O7 (quasi-2D) single crystals with the
same strontium content and showed them to be substan-
tially different. La0.6Sr0.4MnO3 has a high Tc = 361 K
and exhibits a strong decrease in magnetization near Tc,
which is characteristic of homogeneous ferromagnets.
In La1.2Sr1.8Mn2O7, Tc = 90 K and the magnetization at
T = 5 K is considerably lower. In the region 100 < T <
360 K, the M(T) dependence is slightly diffuse. Neu-
tron diffraction studies made at low temperatures, T <
10 K, showed that La2 – 2xSr1 + 2xMn2O7 with x = 0.3 is a
collinear antiferromagnet and that the compositions
with x = 0.32–0.40 are collinear ferromagnets [2, 4].
The magnetic moments in the bilayer are ferromagnet-
ically ordered, but the spin orientation depends on the
doping level. There is currently no consensus on mag-
netic order in the intermediate temperature region Tc <
T < 360 K. In [5, 6], La1.4Sr1.6Mn2O7 single crystals
were reported to have 2D ferromagnetic correlations in
1063-7834/03/4508- $24.00 © 21513
the region 90 < T < 270 K, while in [7], no 2D spin cor-
relations were found. In [8], an inelastic neutron scat-
tering study of La1.2Sr1.8Mn2O7 led to the conclusion
that antiferromagnetic clusters with correlation length
ξ = 6.7 ± 2.2 Å coexist with ferromagnetic fluctuations
with a correlation length ξ = 9.3 ± 1.3 Å for T > Tc. Neu-
tron diffraction measurements are not always capable
of revealing noncollinear magnetic structures. Impor-
tant information on the magnetic state can be derived
from magnetic measurements, in particular, at high
temperatures. The pattern of the temperature depen-
dence of χ–1(T), the sign of the Curie paramagnetic
temperature θ, the relative magnitude of Tc(TN) and θ,
and the magnitude of the effective magnetic moment
µeff permit one to make conclusion regarding magnetic
order, exchange interaction mechanisms, exchange
parameters, and the valence state of magnetic ions.
Data on magnetic measurements performed on quasi-
layered manganites at high temperatures are practically
lacking.

Investigation of the effect that the lattice and spin
interactions exert on magnetic properties is important
for proper understanding of the nature of the physical
phenomena occurring in transition-metal oxides,
including low-dimensional systems. Radiation-induced
disorder in manganites can change the Mn–O bond
lengths and Mn–O–Mn angles and shift the magnetic
phase transition temperatures. La1 – xAxMnO3 exhibits a
noticeable decrease in Tc only under high electron or ion
irradiation doses [9, 10]. No study of the effect of radia-
tion defects on the magnetic properties of quasi-two-
dimensional manganites has been made. This communi-
cation reports on a study of the magnetic properties of
original and electron-irradiated La2 – 2xSr1 + 2xMn2O7

manganites (x = 0.3–0.4) performed over a broad tem-
003 MAIK “Nauka/Interperiodica”
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perature interval covering both the magnetically
ordered and paramagnetic regions.

2. SAMPLES AND EXPERIMENTAL RESULTS

Polycrystalline samples of La1.2Sr1.8Mn2O7,
La1.3Sr1.7Mn2O7, and La1.4Sr1.6Mn2O7 were synthesized
using standard ceramic technology. The samples were
prepared in two stages. First, a mixture of La2O3, SrCO3,
and Mn3O4 was calcined in air at 1400°C for 50 h. After
thorough grinding and pelleting, the calcining was
repeated. The samples thus prepared were single phase
with I4/mmm tetragonal lattice symmetry. Table 1 lists
the lattice parameters for La2 – 2xSr1 + 2xMn2O7 (x = 0.3,
0.35, 0.4). As the strontium concentration increases, the
parameter a practically does not change, whereas the
parameter c decreases noticeably, which implies a
decrease in the magnetic-bilayer separation.

The temperature and field dependences of the magne-
tization and of the magnetic susceptibility were mea-
sured with a magnetic balance in the temperature region
T = 80–600 K. The samples were irradiated by 5-MeV
electrons to a fluence Φ = 1 × 1018 electrons/cm2 at
T = 273 K in a helium-flow cryostat. After the electron
irradiation and subsequent holding at room temperature

Table 1.  Lattice parameters of La2 – 2xSr1 + 2xMn2O7 (x = 0.3–0.4)

Compound a, Å (±0.002 Å) c, Å (±0.002 Å)

La1.4Sr1.6Mn2O7 3.872 20.208

La1.3Sr1.7Mn2O7 3.874 20.120

La1.2Sr1.8Mn2O7 3.872 20.081
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Fig. 1. Temperature dependences of the specific magnetiza-
tion for (1, 3) the original (Φ = 0) and (2, 4) irradiated (Φ =
1 × 1018 electrons/cm2) La1.4Sr1.6Mn2O7 samples measured
in magnetic field H equal to (1, 2) 0.35 and (3, 4) 2.65 kOe.
P

for several days, no changes in the lattice parameters
were observed.

Figure 1 displays temperature dependences of the spe-
cific magnetization σ(T) of La1.4Sr1.6Mn2O7 measured in
various dc magnetic fields. At H = 350 Oe, an increase in
temperature near T = 100 K brings about a sharp decrease
in magnetization down to σ = 3.0 G cm3/g. In this tem-
perature region, the metal–insulator transition occurs
and the magnetoresistance reaches a maximum. The
sharp drop in σ(T) and the large value of the suscepti-
bility imply the onset of a magnetic phase transition. In
the region 120 < T < 360 K, the magnetization of
La1.4Sr1.6Mn2O7 falls off smoothly with increasing T. If
magnetic order is completely destroyed, the field
dependences of the magnetization σ(H) should extrap-
olate linearly to zero. The presence of magnetization
hysteresis loops at room temperature indicates, how-
ever, a persistence of ferromagnetic spin correlations
[11]. Figure 2 presents the temperature dependence of
inverse susceptibility, which shows that at high temper-
atures La1.4Sr1.6Mn2O7 resides in the paramagnetic
state. Above T = 400 K, the susceptibility does not
depend on magnetic field and follows the Curie–Weiss
law χ = Nµeff /3k(T – θ) with a positive Curie tempera-
ture θ and effective magnetic moment µeff close to the
theoretical value. Qualitatively similar σ(T) and χ–1(T)
dependences were obtained for La1.3Sr1.7Mn2O7.

La1.2Sr1.8Mn2O7 exhibits a somewhat different
behavior of the magnetization σ(T) above T = 100 K
(Fig. 3). Near T = 165 K, the susceptibility χ = σ/H
passes through a maximum, as does the χ(T) in the
three-dimensional manganites La1 – xCaxMnO3 for 0.6 ≤
x ≤ 0.9 [12]. The maximum in χ is usually observed in
antiferromagnets near the Néel temperature TN and in
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Fig. 2. Temperature dependences of the inverse susceptibil-
ity for La1.4Sr1.6Mn2O7 measured in a field H = 2.65 kOe.

(1) Φ = 0 and (2) 1 × 1018 electrons/cm2.
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collinear ferrimagnets with two and more magnetic
sublattices with TN > Tc [13]. Above TN, such com-
pounds become paramagnetic. In La1.2Sr1.8Mn2O7, the
susceptibility depends on the magnetic field H above
the temperature of the maximum in magnetization,
which indicates preservation of the ferromagnetic com-
ponent of the moment. At high temperatures, T > 400 K,
La1.2Sr1.8Mn2O7, similar to La1.3Sr1.7Mn2O7 and
La1.4Sr1.6Mn2O7, transfers to the paramagnetic state, but
with an effective magnetic moment µeff = 6.71µB that is
higher than the theoretical value (Fig. 4, Table 2).

After the measurements, the samples were subjected
to electron irradiation. To reveal the effect of radiation
defects on the magnetic properties of quasi-two-dimen-
sional manganites, the σ(T) and χ–1(T) dependences
were obtained for the original and irradiated samples
(Figs. 1–4). We readily see that after the electron irradi-
ation the magnetic properties in the magnetic-order
region T < 360 K practically did not change. Only
La1.2Sr1.8Mn2O7 exhibits a slight increase in the ferro-
magnetic contribution for T < 180 K. The effect of elec-
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Fig. 3. Temperature dependences of specific magnetization
for (1, 3) the original (Φ = 0) and (2, 4) irradiated (Φ = 1 ×
1018 electrons/cm2) samples of La1.2Sr1.8Mn2O7 measured
in magnetic field H equal to (1, 2) 0.35 and (3, 4) 2.65 kOe.

0
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tron irradiation is most clearly pronounced in the para-
magnetic region. Although the values of the paramag-
netic Curie temperature θ remained unchanged after
irradiation, the effective magnetic moment increased
substantially in all samples (Table 2). The observed val-
ues of µeff cannot be accounted for by the presence of
Mn2+ ions with spin S = 5/2; rather, they indicate pres-
ervation of exchange coupling between magnetic ions
in the high-temperature region.

3. DISCUSSION OF RESULTS

The A2Mn2O7 perovskite-like manganites have a
quasi-two-dimensional structure; namely, the MnO2
manganite bilayers made up of MnO6 octahedra are
separated along the c axis by AO2 insulating nonmag-
netic spacers. The magnetic properties of the mangan-
ites are determined by the sum of contributions from
several exchange interaction mechanisms, more specif-
ically, superexchange interaction of manganese ions via
oxygen ions, double exchange in the presence of man-
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Fig. 4. Temperature dependences of the inverse susceptibil-
ity of La1.2Sr1.8Mn2O7 measured in a field H = 2.65 kOe.

(1) Φ = 0 and (2) 1 × 1018 electrons/cm2.
Table 2.  Magnetic characteristics of La2 – 2xSr1 + 2xMn2O7 (x = 0.3–0.4)

Parameter La1.4Sr1.6Mn2O7 La1.3Sr1.7Mn2O7 La1.2Sr1.8Mn2O7

, K 100 112 ≤90

, K 354 350 315

θ, K 300 310 260

µeff, µB (theory) 6.53 6.46 6.39

µeff, µB (original sample) 6.54 6.51 6.71

µeff, µB (irradiated sample) 8.27 7.82 8.47

χ × 10–2, cm3/g (T = 80 K, H = 350 Oe) 4.0144 4.4678 2.6994

Tc
1( )

Tc
2( )
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ganese ions in different valence states, and indirect
exchange via free carriers. The last two mechanisms are
qualitatively similar and account for the ferromagnetic
coupling between the magnetic ions. The magnitude
and sign of the Mn–O–Mn superexchange depend both
on the lattice parameters and on the degree to which the
3d–2p wave functions overlap. Substitution of part of
the La3+ by Sr2+ ions gives rise to the appearance of
Mn4+ ions. It is known that the Mn3+–O2––Mn3+ and
Mn4+–O2––Mn4+ superexchange interactions in perovs-
kite-like compounds are antiferromagnetic and the
Mn3+–O2––Mn4+ interactions are ferromagnetic [14].

Our samples exhibit metallic conduction for T < ;
therefore, in addition to superexchange, double
exchange plays an important part in the onset of ferro-
magnetic order at low temperatures. Indirect exchange
cannot set in for these compositions because of the low
concentrations of free carriers. As the temperature
increases up until La2 – 2xSr1 + 2xMn2O7 (x = 0.3, 0.35,
0.4) transfers to the semiconducting state, the role of
superexchange strongly increases.

At high temperatures, the La2 – 2xSr1 + 2xMn2O7
quasi-2D manganites (x = 0.3–0.4) are paramagnets. As
the temperature is lowered in the region 300–400 K, the
χ–1(T) curve assumes a hyperbolic, concave-down
shape. The shape of the χ–1(T) curve for ferromagnets
and antiferromagnets near Tc and TN, respectively,
should be convex toward the temperature axis because
of the persisting short-range order, as it is observed in
the La1 – xAxMnO3 three-dimensional manganites. The
hyperbolic χ–1(T) dependence in the transition region
from the paramagnetic state and the Curie temperature
relation 0 < θ < Tc imply ferrimagnetic spin ordering
and the existence of more than one magnetic sublattice.
Breakup into several magnetic sublattices and the onset
of ferrimagnetism are possible in manganites, because
the magnetic moments of the Mn3+ and Mn4+ ions and
their concentrations are different [14]. The main feature
of perovskite-type compounds is the weak interaction
between ions residing on different sublattices. Noncol-
linear spin ordering of the Yaffet–Kittel type can set in
within a certain temperature region. In
La2 − 2xSr1 + 2xMn2O7, the lattice parameter c substan-
tially exceeds the parameter a, which favors weakening
of the superexchange coupling between the MnO2
bilayers. For instance, the spin correlation length in the
MnO2 sheets of La1.2Sr1.8Mn2O7 above Tc = 112 K is
twice that in the perpendicular direction [15]. Note that
triangular magnetic ordering was experimentally estab-
lished to exist in some manganites.

The orientation of the magnetic moments of the sub-
lattices in noncollinear ferrimagnets depends not only
on temperature but also on the external magnetic field.
An increase in H changes the angles between the spin
directions and the absolute values of the sublattice
magnetic moments. The magnetization does not satu-

Tc
1( )
P

rate even in strong H fields. The pattern of the temper-
ature dependences of magnetization may be different in
different fields. We observed such a behavior of magne-
tization in La2 – 2xSr1 + 2xMn2O7 (x = 0.3–0.4) at temper-
atures 80 < T < 360 K. A change in the angles caused
by a magnetic field in quasi-layered manganites is
reported in a study [15], according to which, in
La1.2Sr1.8Mn2O7, the angle between the magnetic
moment and the b axis for T = 125 K > Tc = 112 K varies
with the field, to become 86.6° at H = 0, 74.1° at H =
1 T, and 53° at H = 2 T. At low temperatures, triangular
ordering is less stable than collinear ordering. We
believe that at low temperatures La2 – 2xSr1 + 2xMn2O7 is
in the collinear ferromagnetic state due to the carrier-
assisted exchange coupling and to the stability of col-
linear ordering. Near 100 K, where the compounds
transfer to the semiconducting state, antiferromagnetic
superexchange becomes comparable to the ferromag-
netic interaction. The magnetic structure breaks down
into sublattices, and noncollinear ferrimagnetism sets
in in the intermediate temperature region. Direct transi-
tion of noncollinear ferrimagnetism to paramagnetism
is impossible [13]. There should exist a region in which
noncollinear spin ordering transforms to collinear and
only after this does the compound transfer to the para-
magnetic state.

The distinctive features of the quasi-2D manganites
(compared to AMnO3) are the smooth decrease in mag-
netization within a broad temperature region, the
absence of magnetization saturation even in strong
magnetic fields, and the hyperbolic shape of the tem-
perature dependences of inverse susceptibility. These
features are characteristic of an inhomogeneous state
and noncollinear ferrimagnetic magnetic-moment
ordering of the Yaffet–Kittel type [13, 14]. The exist-
ence of antiferromagnetic clusters side by side with fer-
romagnetic correlations [8, 16] likewise suggests a
complex magnetic structure of La2 – 2xSr1 + 2xMn2O7 in
the intermediate temperature region 100 < T < 360 K.
The magnetic characteristics of quasi-two-dimensional
manganites are given in Table 2. We denoted the tem-
perature of transition from the collinear ferromagnetic

to inhomogeneous magnetically ordered state by 
and that from the inhomogeneous to the paramagnetic

state, by . Although they are lower than , the
positive values of the paramagnetic Curie temperature
θ imply that the ferromagnetic and antiferromagnetic
interactions are of the same order of magnitude. The
lattice parameter c decreases with increasing Sr con-
tent. The decrease in bilayer separation brings about an
enhancement of antiferromagnetic coupling between

them. The decrease in the values of , , and θ in
La1.2Sr1.8Mn2O7 may be considered as supportive evi-
dence for the increase in the antiferromagnetic compo-
nent of the total exchange interaction.

Tc
1( )

Tc
2( )

Tc
2( )

Tc
1( )

Tc
2( )
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Radiation usually generates ion disorder. In contrast
to ion and neutron irradiation, the electrons are light
and produce point defects (vacancies and interstitials).
At low irradiation doses, it is primarily oxygen ions that
can be displaced from their sites. As shown by calcula-
tions, the threshold energy of oxygen displacement in
HTSC compounds, which also have perovskite struc-
ture and are similar to the manganites in some of their
properties, is five to six times lower than that for heavy
elements and the number of displaced oxygen ions is
two orders of magnitude larger [17]. It may be conjec-
tured that we have a similar situation in manganites. We
believe that the chemical composition of our samples
did not change, because the irradiation was performed
at a low temperature, and that the lattice parameters of
the irradiated samples remained the same.

La2 – 2xSr1 + 2xMn2O7 has five identical Mn–O(1) short
bonds (one apical and four equatorial) and one Mn–O(2)
long bond involving the oxygen at the apex of the octa-
hedron between the MnO6 bilayers [18]. The most prob-
able consequence of the irradiation is displacement of
oxygen ions from this position. A displaced oxygen ion
can localize only in the same sites O(2), because only
these positions have vacancies [19]. Note that the param-
eter c and, hence, the bilayer separation in quasi-lay-
ered manganites are large; therefore, the possibility of
a displaced oxygen ion being localized at interstices
between the MnO6 bilayers cannot be excluded. The
observation that the length of the Mn–O apex bond in
La2 − 2xSr1 + 2xMn2O7 undergoes a larger change than the
equatorial bond length under hydrostatic pressure [20]
can serve as indirect support of this conjecture. The
fairly large dynamic structural distortions [16] may also
produce favorable conditions for oxygen ion displace-
ment. For instance, in La2 − 2xSr1 + 2xMn2O7, atomic dis-
placements from regular-lattice sites in the region of
T = 360 K are u = 0.077 Å, which is substantially larger
than u = 0.061 Å for conventional thermal behavior. In
our samples, irradiation to a dose Φ = 1 × 1018 elec-
trons/cm2 did not change the values of Tc and θ or,
hence, the averaged exchange parameters. Irradiation-
induced displacements of oxygen from its positions
may, however, produce oxygen-enriched regions in
which the excess oxygen acts as an acceptor. The align-
ment of the carrier spin with the local-moment direc-
tion of the Mn ions closest to the ionized acceptor
brings about a considerable gain in energy [21]. This
situation gives rise to the formation of spin polarons
with a susceptibility higher than that of the free spins.
The free energy of the spin polarons is the lowest when
compared with the homogeneous paramagnetic state
[22]. Above Tc, the magnetic system placed in a mag-
netic field has “local” moments of two types, namely,
paramagnetic spin polarons and free single Mn-ion
moments. Because of the small size of the paramag-
netic polarons and fluctuations in the orientation of
their magnetic moments, the system as a whole resides
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
in the paramagnetic state at high temperatures but with
an enhanced magnetic moment.

The La2 – 2xSr1 + 2xMn2O7 quasi-layered manganites
(x = 0.3–0.4) are three-dimensional magnets that
undergo a number of order-order and order–disorder

phase transitions. At low temperatures, T <  ~ 100 K,
they undergo collinear ferromagnetic ordering. In the
intermediate temperature region, 100 < T < 350 K, the
long-range order persists, but the magnetic system
breaks up into sublattices; ferrimagnetic ordering sets
in, which is indicated by the hyperbolic pattern of the
temperature dependence of inverse susceptibility and
the relation between the paramagnetic and ferromag-
netic Curie temperatures. In La1.2Sr1.8Mn2O7, the tem-
perature dependence of the susceptibility has a complex
shape with a maximum near 165 K, which may be due
to the M(T) dependences for different sublattices fol-
lowing different behaviors. One should not overlook
the possibility of the magnetic moments forming a tri-
angular configuration. At high temperatures, T > 400 K,
the quasi-layered manganites transfer to the homoge-
neous paramagnetic state. Low-dose electron irradia-
tion does not affect long-range magnetic order. Radia-
tion-induced disorder gives rise to the formation of
paramagnetic polarons with an enhanced magnetic
moment in the vicinity of point defects and manifests
itself as an inhomogeneous paramagnetic state at high
temperatures.
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Abstract—The magnetoresistance, magnetization, and microstructure of granular composites with the general
formula (Fe40Co40B20)x(Al2O3)100 – x  were studied for contents of the amorphous metallic component both
above and below the percolation threshold (x ≈ 43). The low-temperature transverse magnetoresistance of the
composites is negative at x = 41 and practically zero for x = 49. For metal contents below the percolation thresh-
old (x = 31), a noticeable (7–8%) positive magnetoresistance, reached in magnetic fields of about 17 kOe, was
observed. Possible mechanisms of the generation of inverse (positive) magnetoresistance are discussed. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The transverse magnetoresistance (MR) of crystal-
line and amorphous ferromagnets, magnetic multilay-
ers, and granular films is, as a rule, negative; i.e., the
resistivity ρ decreases as the sample is magnetized in a
direction perpendicular to the current flow. For homo-
geneous ferromagnets, this property is a consequence
of spin–orbit coupling, which brings about spontaneous
anisotropy of the MR [1]. The giant MR revealed in
metallic multilayers and granular metal–metal-type
alloys (see, e.g., [2]) results from spin-dependent scat-
tering and is also negative in all cases where the ferro-
magnetic layers or grains are from the same magnet. If
the layers are from different ferromagnets, positive
MR, which is termed inverse [3], may also be observed
at certain values of the parameters of the spin-depen-
dent scattering. One of the possible mechanisms of the
inverse MR in metallic granular alloys, originating
from the existence of two (s and d) current channels for
each spin index, was proposed in [4].

A similar situation occurs in systems with tunnel
contacts, such as sandwiched structures, multilayers, or
metal–insulator granular alloys. Indeed, tunneling MR
can be positive only in the case of inequivalent ferro-
magnets between which tunneling takes place; in addi-
tion, they must either possess spin polarizations of
opposite signs or contain impurities of 3d elements near
or on the surface of one of the layers [5]. Note also that
scattering from domain walls, including nanosized
ones [6], or crossing of a nanocontact by a spin-polar-
ized electron [7] likewise gives rise to negative MR.
1063-7834/03/4508- $24.00 © 21519
Positive transverse MR observed in Fe-based amor-
phous alloys has not found convincing interpretation
[8]. Recently, Aronzon and Varfolomeev with cowork-
ers [9, 10] detected positive MR in Fe–SiO2 granular
alloys with compositions close to the percolation
threshold.

This communication reports on a study of the elec-
trical resistivity, transverse MR, magnetization, and
microstructure of the amorphous-ferromagnetic-metal–
insulator composites (Fe40Co40B20)x(Al2O3)100 – x . For
compositions below the percolation threshold (the insu-
lating phase) and magnetic fields below the saturation
level, the MR is positive and can be called inverse by
analogy with the inverse MR observed in metallic mul-
tilayers [3].

2. EXPERIMENTAL TECHNIQUE

Thin-film composites of the general formula
(Fe40Co40B20)x(Al2O3)100 – x  were prepared using ion-
beam sputtering on a glass ceramic substrate. Using
combined metal-alloy targets on whose surface alumi-
num oxide plates were fixed at different distances from
one another permitted us to obtain, in one technological
cycle, a series of samples of alloys with metal concen-
trations varying from 25 to 64 at. %. The method of
sample preparation employed is described in consider-
able detail in [11]. This composition was chosen
because of the spin polarization of the FeCo alloy being
larger than that of Fe and Co; furthermore, by using
Al2O3 as the insulator component in tunnel contact sys-
tems, a low tunneling barrier and a high tunneling MR
003 MAIK “Nauka/Interperiodica”
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can be obtained in this case [12]. The use of high-resis-
tivity amorphous metals in place of crystalline ones was
expected to favor electron injection into the insulator.

The thickness of the films thus prepared was about
10 µm. Electron microscopy studies of the structure of
the samples showed them to consist of metal grains dis-
tributed randomly through the Al2O3 dielectric host.
The grains were, on the average, 2–5 nm in size. Note
that the metal grains produced in sputtering are not
completely isolated from one another (even for high
insulator concentrations) but instead form small con-
glomerates and chains in the film plane.

The transverse MR (with the magnetic field applied
perpendicular to the film plane) was measured using the
standard four-probe method at T = 4.2 K in fields of up
to 140 kOe. The measurements were conducted with
both dc and ac current at frequencies of 7 and 53.5 Hz.

The magnetization was measured at 4.2 K with a
capacitance magnetometer in fields of up to 140 kOe.
To permit comparison with the magnetoresistance data
and to exclude the effect of the demagnetizing factor,
the measurements were carried out in the same geome-
try; i.e., the field was applied perpendicular to the sam-
ple plane.

3. RESULTS AND DISCUSSION

Figure 1 presents composition dependences of the
electrical resistivity ρ measured at room temperature
(curve 1). We readily see that, as the metal content is
increased from 25 to 64 at. %, the conductivity of the
system changes nonmonotonically by four orders of
magnitude. The room-temperature resistivity of the
granular alloy with x = 64 exceeds that of the
Fe40Co40B20 amorphous alloy by one and a half order of
magnitude, which suggests the importance of the role
played by the grain contacts. The strong increase in
electrical resistivity with increasing content of the insu-
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Fig. 1. Room-temperature electrical resistivity plotted vs.
atomic fraction of the metal in the
(Co41Fe39B20)x(Al2O3)100 – x composites deposited on
fixed substrates (1) in the original state and (2) after anneal-
ing for 30 min at T = 400°C.
PH
lating phase is fairly obvious, because the metallic
character of conduction transforms to nonmetallic. The
metal–insulator transition follows a smooth course,
and, as is well known, it is difficult to derive the perco-
lation threshold from the concentration dependence of
the resistivity alone. To determine the percolation
threshold more accurately, the composites were heat-
treated at 400°C. Heat treatment of the composites
brings about an increase in the electrical resistivity of
the alloys below the percolation threshold and its
decrease beyond the threshold (curve 2 in Fig. 1). The
crossing point of the concentration dependences of
electrical resistivity of the original and heat-treated
composites yields the percolation threshold, which was
found to be X ≅  42 at. %.

Figure 2 displays magnetic field dependences of the
resistivity for three alloys with x = 31, 41, and 49 mea-
sured at the temperature T = 4.2 K. In the metal-rich
alloy with x = 49, i.e., above the percolation threshold,
x > xc, the resistivity is practically independent of mag-
netic field. In view of the metallic conduction in this
compound (Fig. 1), this appears fairly obvious. For the
composition close to the percolation threshold (x = 41)
on the insulator side of the metal–insulator transition,
the resistivity is seen to decrease by 0.7% in a field H =
20 kOe. The resistivity remains constant thereafter with
increasing field. This negative MR is typical of systems
with tunnel contacts. The reason for the somewhat
smaller values of the tunneling MR than, for instance,
in the Fe–SiO2 [9] or CoFe–MgF2 [12] systems is most
likely that the grains in our composites near the perco-
lation threshold are combined in clusters with the same
magnetic moment orientation rather than being com-
pletely isolated by the insulating host matrix. Below the
percolation threshold (the alloy with x = 31), a consid-
erable increase in the electrical resistivity, up to 6–7%,
is observed. This inverse MR occurs at fields close to
saturation (Fig. 3), but as the field continues to increase

0 20 40 60 80 100 120 140
H, kOe

–1

0

1

2
3

4

5

6

7

–20

[ρ
(H

) 
– 

ρ(
0)

]/
ρ(

0)
, % 1

23

Fig. 2. Relative variation of electrical resistivity at T = 4.2 K
plotted vs. perpendicular magnetic field for
(Co41Fe39B20)x(Al2O3)100 – x in the original state for vari-
ous values of x (at. %): (1) 31, (2) 41, and (3) 49.
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the resistivity decreases slightly. The inverse MR
decreases rapidly with increasing temperature and
practically does not exist at room temperature. Note
also that resistivity measurements made on samples of
this composition at a frequency of 53.5 Hz involve
inductance, the imaginary part of the impedance; there-
fore, the dc and ac electrical resistivity dependences on
magnetic field slightly differ.

Consider the possible mechanisms of inverse MR in
the granular alloys studied. First, one should disregard
mechanisms involving intragrain scattering, more spe-
cifically, the anisotropic MR, which is negative in trans-
verse geometry; the Lorentz contribution, which is cer-
tain to be small for small free paths; and scattering from
domain walls. This conclusion follows immediately
from a comparison of the MR for the samples with x =
31 and 49. Second, the magnetic field suppresses the
quantum interference effects, which may be significant
at low temperatures near the percolation threshold [13],
and, therefore, weak localization can give rise to nega-
tive MR. Furthermore, the effect observed is too large
(7–8%) to be assigned to quantum interference pro-
cesses. Third, we also have to exclude the part played
by scattering from intergrain contacts, which likewise
produces negative MR [7]. Finally, the effect of size
quantization should also be neglected because of the
inevitable dispersion of grains in size and their fairly
large dimensions.

Tunneling MR can be positive if the magnetic
moments of the grains responsible for the electrical
resistivity are originally parallel in the film plane (in the
insulating phase, the fraction of these grains is insignif-
icant). Upon application of the field, the magnetic
moments of these grains are first oriented antiparallel
along the field direction (or, which is more likely, the
magnetic moment of one of the grains becomes aligned
with the field while that of the other retains its in-plane
orientation) and then become parallel in the saturation
field. This mechanism cannot be completely excluded,
although in the initial stage of magnetization (Fig. 2)
the resistivity decreases, which argues for the conven-
tional mechanism of negative MR in weak fields, and
no features were observed in the field dependences of
magnetization measured up to 200 Oe.

Another possible explanation may involve field-
induced magnetic blockage. Transport in the insulator
phase occurs either by tunneling or by activated hop-
ping over localized states. The activation energy may
contain, besides the main Coulomb term (Coulomb
blockage), an additional term associated with sd
exchange of the conduction electron with the magnetic
moment of the grain, which was first put forward in the
classical study [14] and called magnetic blockage. The
possibility of this mechanism of positive MR being
operative in a system of superparamagnetic or single-
domain grains was also pointed out in [15]. This addi-
tional term is fairly simple to estimate. The correspond-
ing energy EM = kT0 is of the order of the conduction
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
electron magnetization energy; i.e., T0 is about 5–10 K,
which coincides with the estimate made in [15]. This
effect can be significant only at low temperatures com-
parable to T0 and can disappear at high temperatures,
exactly what was observed experimentally. Rather than
ruling out completely the validity of this mechanism,
one should point out two observations that disagree
with this interpretation. First, in weak fields, the MR is
negative, and, second, as shown by preliminary mea-
surements, inverse MR is practically absent in the lon-
gitudinal geometry (with the magnetic field applied in
the film plane along the direction of current flow).

A third possible explanation relates to magnetostric-
tion. Assume for definiteness that the conduction is of
activated nature (the actual form of the temperature
dependence of ρ has no importance whatsoever for our
subsequent estimates), ρ = Aexp(Ea/kT), where the
activation energy Ea(s) depends on the tunneling gap s,
i.e., on the grain separation. In the case where a field is
applied perpendicular to the film surface and the mag-
netostriction constant λs is positive (which is character-
istic of Fe-rich alloys), the grains stretch along the field,
thereby causing an increase in their separation in the
transverse direction, i.e., in the direction of the current
flow. The activation energy increases to produce a pos-
itive MR:

 (1)

where r is the grain size in the direction of the field. As
follows from this estimate, for the typical values of the
parameters λ ≈ 10–5–10–4, r ≈ 10 nm, and s ≈ 1–10 nm,
the MR becomes as high as 1–10% for a reasonable
ratio of the activation energy to temperature, Ea/kT ≈
102–103, provided the temperature is of the order of liq-
uid-helium temperature. This estimate is of a purely
qualitative nature; a self-consistent theory should draw
on the theory of three-dimensional percolation with
electrons following optimal trajectories. This estimate

∆ρ/ρ ∆s/s Ea/kT( ) λ r/s( ) Ea/kT( ),≈ ≈
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Fig. 3. Variation of the magnetization of
(Co41Fe39B20)x(Al2O3)100 – x with perpendicular mag-
netic field at T = 4.2 K for various values of x (at. %): (1) 31,
(2) 41, and (3) 49.
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also shows that inverse MR (i) should vanish rapidly
with increasing temperature, (ii) exists only in an insu-
lating phase with a high activation energy, (iii) is prac-
tically zero in the longitudinal geometry in the case of
positive magnetostriction, and (iv) is small for nano-
sized grains. The magnetostriction-induced change in
grain dimensions and, hence, the inverse MR reach the
maximum value at saturation magnetization. All these
conclusions are in agreement with the experiment.
Moreover, an increase in the effective tunneling gap
should also become manifest in the imaginary part of
the impedance, which, as the capacitive and inductive
components of an electric circuit, is connected with the
gap geometry.

4. CONCLUSION

Thus, low-temperature transverse MR of the com-
posites (Fe40Co40B20)x(Al2O3)100 – x  is practically zero
for metal alloys beyond the percolation threshold and
negative in its immediate vicinity; for metal contents
less than the value corresponding to the percolation
threshold, the MR in the insulating phase is inverse
(positive). The inverse MR can be as large as 7–8% in
magnetic fields of about 17 kOe, i.e., in fields corre-
sponding to saturation. Analysis of the possible mecha-
nisms of inverse MR permits the suggestion that the
observed features in the MR behavior are of magneto-
striction nature. Direct evidence for the proposed
mechanism may come from comprehensive measure-
ments of the field dependence of magnetostriction and
longitudinal magnetoresistance. This study is planned
for the near future.
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Abstract—This paper reports on the results of investigations into the magnetic ordering of magnets with inte-
ger spins of ions and sufficiently strong easy-plane single-ion anisotropy. It is demonstrated that magnetic
ordering in the studied systems occurs through a displacive magnetic phase transition. The magnetic polariza-
tion of ionic states, which spontaneously arises at the phase transition point, acts as an order parameter in dis-
placive magnetic phase transitions. The magnetically ordered state in the magnets under consideration is
formed as a result of competition between the exchange interaction and single-ion anisotropy. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known that, in magnets with easy-plane anisot-
ropy, the single-ion anisotropy, like the interionic
anisotropy, has an orienting effect on the spins but,
unlike the latter anisotropy, prevents magnetic ordering
in the system [1]. As was shown in our recent work [2],
the effect of single-ion anisotropy induced by a crystal
field affecting the spins through the spin–orbit interac-
tion is similar to disordering caused by the entropy. The
role played by single-ion anisotropy becomes particu-
larly important either in the case when the ground state
of transition ions in a cubic field appears to be degener-
ate (nonfrozen orbital motion) or in rare-earth magnets.
Systems with an integer spin frequently occur in states
such that three closely spaced levels turn out to be the
lowest lying levels [1]; consequently, these system can
be described in the framework of a simple spin model
with an effective single-site spin S = 1. Within this
model, single-ion anisotropy has the simplest form rep-
resented by terms quadratic in the spin-projection oper-
ators. Note that, for rare-earth magnets, the anisotropy
parameters can be very large and even comparable to
the exchange interaction parameters. For this reason,
the anisotropic interactions considered in earlier works
[3, 4] were treated in an Ising form.

Despite the occurrence of an exchange interaction
with sufficiently strong easy-plane single-ion anisot-
ropy in spin systems with an integer spin S, the non-
magnetic state with a zero average ion magnetization
[1, 5] can arise not from an equal population of all spin
states but from a singlet (van Vleck) nature of the low-
est state. However, even though such a singlet-type
magnet has a zero initial magnetization, the application
of an external magnetic field aligned with the hard axis
can result in a phase transition from a paramagnetic
1063-7834/03/4508- $24.00 © 1523
state to a magnetically ordered state. This is a first-
order phase transition in the case of Ising spin–spin
interactions and strong single-ion anisotropy [1]. How-
ever, in the case when ions in the system undergo iso-
tropic spin–spin interactions of the Heisenberg type,
the magnetic field induces a second-order phase transi-
tion [2, 6–8]. Earlier [2], we demonstrated that, as the
magnetic field reaches a critical value, each ion is polar-
ized and the crystal as a whole becomes magnetized;
i.e., the material undergoes a continuous transition. In
[2], this transition was treated as a displacive magnetic
phase transition. Note that, upon the above phase tran-
sitions in the magnetic systems under investigation, no
displacement of the ions is revealed (magnetoelasticity
is disregarded). The particular interest expressed by
researchers in similar magnetic phase transitions stems
from the fact that a large number of magnetic materials
undergo phase transitions of this type [9].

The term “displacive magnetic phase transition”
was introduced in [2] with the aim of emphasizing that
the magnetic phase transition studied in that work can-
not be considered an order–disorder phase transition.
The fundamental difference between transitions of
these types lies in the fact that all (magnetic and non-
magnetic) systems undergoing displacive phase transi-
tions are formed by ions with a single-well potential,
whereas systems with order–disorder phase transitions
are composed of ions whose potential is characterized
by at least two wells.

It should be noted that the magnetic structure
formed in a system exhibits a magnetic order with a
nonzero average magnetic moment of the ion [10].
According to modern concepts, the magnetic structure
in the majority of magnets, as a rule, is formed upon an
order–disorder phase transition [11]. This fact was orig-
2003 MAIK “Nauka/Interperiodica”
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inally established by Landau [12]. In the course of the
phase transition, the spectrum of paramagnetic ions
forming the lattice changes, the states with opposite
spin projections at the phase transition point (and
above) become equally probable, and the system as a
whole transforms into a disordered state.

The fact that the transition from a singlet state to a
ferromagnetic state was considered a displacive mag-
netic phase transition implied that this transition, being,
in essence, an order–disorder transition, cannot be
treated in terms of the concepts used in [10, 11]. Actu-
ally, the magnetic field–induced phase transition stud-
ied in [2] corresponds to the case when T = 0, whereas
the magnetic structure and the magnetically ordered
state in [10, 11] are formed upon spontaneous (rather
than external field–induced) lowering of the symmetry
due to the simultaneous appearance of magnetic
moments of ions at the Curie point (and below it). As
will be shown below, this transition in an isotropic fer-
romagnet is accompanied by a substantial transforma-
tion of the single-ion spin spectrum and belongs to
order–disorder phase transitions. Therefore, in order to
justify the applicability of the concept of displacive
magnetic phase transitions to anisotropic magnets, it is
necessary to analyze the possibility of arising spontane-
ous magnetization of paramagnetic ions with a
decrease in the temperature under conditions where
their spectrum retains its initial structure upon the tran-
sition and the average magnetization of the crystal is
achieved as a result of the polarization of ionic states in
a spontaneously induced exchange field. Recall that,
upon order–disorder magnetic phase transitions, the
spin projections of ions in the paramagnetic state are
nonzero but the average magnetizations of the ion and
the crystal as a whole are equal to zero due to the equal
probabilities of atomic states.

The order–disorder magnetic phase transition from
a paramagnetic state to a ferromagnetic (or antiferro-
magnetic) state occurs as a result of competition
between the exchange interaction providing ordering
and the entropy tending to maximum disordering of the
system. At the same time, the displacive magnetic
phase transition to a magnetically ordered state at the
Curie point TC is due to competition between interac-
tions of two types, namely, exchange and anisotropic
interactions.

Below, we will analyze the displacive magnetic phase
transition. For this purpose, we will construct the theory
of a ferromagnet with an isotropic exchange interaction
between the nearest spins with S = 1 and easy-plane sin-
gle-ion anisotropy. In this case, the polarization of ionic
states plays the role of an order parameter.

It should be noted that, in earlier studies [1, 5, 7–9],
magnetic phase transitions in similar ferromagnets, as a
rule, were considered within the mean-field approxima-
tion in which the average magnetization served as the
order parameter. However, this approach failed to reveal
the differences between the displacive magnetic phase
P

transition and the order–disorder magnetic phase transi-
tion.

2. HAMILTONIAN

The simplest Hamiltonian of the model ferromag-
netic system under consideration can be written in the
form

 (1)

where J > 0 is the parameter of the exchange interaction
between the nearest spins and n and n + r are the vec-
tors specifying their positions. The single-ion anisot-
ropy constant is positive (D > 0), which corresponds to
the easy-plane anisotropy. The Y axis is aligned along
the hard axis.

In the magnetically ordered state without an exter-
nal magnetic field, the vector of the average magnetic
moment of each ion lies in the easy plane. Let us
assume that the Z axis is aligned along the vector of the
average magnetization and the X axis is perpendicular
to the Z and Y axes. Then, within the mean-field approx-
imation, the single-ion Hamiltonian can be represented
in the following form:

 (2)

Here, hex = Jzs is the mean (exchange) field acting on
the spin of the ion, s is the average thermodynamic spin
of ion, s || Z, and z is the number of the nearest neigh-
bors.

The spectrum of Hamiltonian (2) is well known
[13]. The energy eigenvalues of this Hamiltonian have
the form

 (3)

The lowest energy ε0 corresponds to the ground state,
and the energies of the excited states are equal to ε1 and
ε2. From relationships (3), it follows that the inequality
ε2 > ε1 is always satisfied. The spin projections onto the
Z axis in each state are given by the formulas

 (4)

It can be seen from formulas (4) that the spin projec-
tions depend on the mean field hex or the average spin
s = s(T) and, hence, on the temperature.

It is of interest to compare the evolution of the sin-
gle-ion spectra for the exchange ferromagnet at D = 0
[expressions (3) and (4) admit the passage to the limit
D  0] and the evolution for the ferromagnet with the
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easy-plane single-ion anisotropy at D  2Jz. In the
former case, at T < TC, we have hex ≠ 0 , three levels are
equidistantly arranged, and the spin projections are as
follows: s0 = –s2 = 1 and s1 = 0. When the temperature
reaches a critical value (T = TC), the exchange interac-
tion field vanishes (hex = 0) and the ion has one triply
degenerate level with zero energy. In the paramagnetic
phase (T > TC), the external field h ⊥  Y removes this
degeneracy but the spin projections in each state are
equal to those in the ferromagnetic phase, irrespective
of the field h (even at h  0). Therefore, at D = 0, the
phase transition between the ferromagnetic state and
the paramagnetic state is an order–disorder transition.

For an anisotropic ferromagnet, when the single-ion
anisotropy constant D is not very small (in particular,
when D  2Jz), the spin projections already at T = 0
are substantially less than the limiting value s0(T = 0) =

 ! 1; i.e., |2Jz – D | ! D [1, 2, 5, 7, 9,
13]. In this case, the inequality hex ! D is satisfied over
the entire temperature range of existence of the ferro-
magnetic state (including temperatures T  TC). The
three-level spectrum of the ion has a quasi-two-level
structure consisting of the ground level and two closely
spaced excited levels. The excited levels have close
energies [the splitting between the excited levels is
determined by the ratio (hex/D)2 ! 1], and the energy
separation between the ground and excited levels is ~D.
Undeniably, the spin projections at T ≠ 0 are less than
s0(T = 0). An increase in the temperature T results in a
decrease in the spin projections. At the phase transition
point and over the entire temperature range of the para-
magnetic phase, the spin projections in all single-ion
states (including the splitting) are equal to zero. In the
paramagnetic state, the application of the external field
leads to splitting of the doublet. If the field is aligned
along the easy plane, the energy in the ground state
decreases. At h || Y, the levels are split without changing
the energy of the ground state. This is explained by the
fact that the magnetic field aligned with the hard axis
does not polarize the ground state of the ions, which
remains unchanged. On the other hand, the field h ⊥  Y
polarizes the ground state of the ion. Specifically, in the
paramagnetic state, the stronger the field, the larger the
projections of the spin induced by this field. At h  0,
these projections vanish.

According to the theory of magnetic phase transi-
tions, it is this infinitely weak field that is responsible
for the appearance and orientation of the average mag-
netic moment in the easy plane [14]. Hence, it is quite
evident that, when the ground state of the ion in the
paramagnetic phase is represented by a singlet whose
population is always larger than the population of the
levels of the higher lying doublet, the spontaneous
magnetization can be absent only at s0 = 0. Conse-
quently, we can draw the inference that, in the anisotro-
pic magnet under consideration, not the total average
spin of the ion but the partial projection of the spin of

1 D
2
/4J

2
z

2
–
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the ion in the ground state (this projection becomes
equal to zero at the phase transition point) should serve
as the order parameter upon phase transition from the
ferromagnetic state to the paramagnetic state. In the
absence of the external field h, the spontaneous magne-
tization in this magnet is due to the collective spontane-
ous polarization of single-ion states, which is self-con-
sistently induced by the exchange field. The theory
accounting for these specific features can be constructed
using the Gorsky–Bragg–Williams method [15].

3. THE FREE ENERGY AND EQUATIONS 
OF STATE

By definition, the free energy can be written in the
form F = E – TSen, where E is the internal energy and
Sen is the entropy. Note that, in the mean-field approxi-
mation, Sen is the configurational entropy. The internal
energy of system (1) per particle is defined by the rela-
tionship

 (5)

where QZZ and QXX are the thermodynamic averages of
the operators (SZ)2 and (SX)2, which are related to the
spin quadrupole moments of the ions [13]. The expres-
sion for the entropy has the standard form

 (6)

where pj are the probabilities of the single-ion states

(3), so that  = 1.

The eigenfunctions corresponding to the energy
eigenvalues (3) of Hamiltonian (2) can be represented
in the following form:

 (7)

where |±1〉  and |0〉  are the eigenfunctions of the operator
SZ. Now, let us calculate the spin projections and the
averages of the operators (SZ)2 and (SX)2. From relation-
ships (7), it is easy to find that the spin projections in
each particular state take the form s0 = –s2 = cos2φ and
s1 = 0. In this case, the partial averages of the operator
(SZ)2 are constant and equal to 1, 0, and 1 and the aver-
ages of the operator (SX)2 are equal to (1/2)(1 + sin2φ),
1, and (1/2)(1 – sin2φ), respectively. Then, according to
the definition, the thermodynamic averages s, QZZ, and
QXX can be written as 

 (8)

 (9)
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 (10)

Here, we introduced the variables p0 + p2 = p and p0 –
p2 = ∆p. With the use of these variables, relationship (6)
can be rewritten as

 (11)

The final expression for the free energy of the ferro-
magnet with S = 1 and the easy-plane single-ion anisot-
ropy follows from relationships (5) and (11) with due
regard for formulas (8)–(10); that is,

 (12)

The sought equilibrium state corresponds to the mini-
mum of the free energy (12). In this case, φ, p, and ∆p
are the variational parameters. The minimization of the
free energy with respect to these parameters gives the
equations of state

 (13)

 (14)

 (15)

Note that the determination of the free energy by vary-
ing F with respect to the angle φ [see relationships (7)]
is equivalent to its determination with the use of the
self-consistent procedure [16], which is inappropriate
in the given specific case (and at T ≠ 0), because, as was
noted above, the quantity s(T) defined by relationship
(8) is not an order parameter. For the ferromagnetic
state, from expression (13), we have

 (16)

It can be seen that the difference ∆p substantially
affects the quantity s0(T) [given by formula (4)].
Indeed, an increase in the temperature T results in a
decrease in ∆p; hence, the right-hand side of Eq. (16)
can reach its limiting value sin2φ = 1, which corre-
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sponds to cos2φ = 0. On the other hand, the spin projec-
tion in the ground state can be represented by the
expression

 (17)

From this expression, it follows that, with an increase in
the temperature T, the partial spin projection corre-
sponding to the ground state of the ion varies so that
s0(TC) = 0. The temperature TC at which the equality
s0 = 0 becomes valid is the temperature of the magnetic
phase transition. As will be shown below, at this temper-
ature, the magnetic susceptibility of the paramagnetic
phase becomes infinite and the phase transition continu-
ously proceeds as a second-order phase transition.

It is important that the phase transition is attended
not by the splitting of the initially degenerate states and
the magnetization but by the spontaneous polarization
(owing to the exchange interaction) of the nondegener-
ate ionic states at the phase transition point. This results
in a change in the spin projection of the ion in the
ground state. In our opinion, it is this phase transition
from the paramagnetic state to the ferromagnetic state
that should be considered the displacive magnetic
phase transition. The nondegenerate paramagnetic state
of the singlet magnet is ordered and characterized by
∆p ≠ 0 and s0 = 0.

The temperature TC of the magnetic phase transition
can be easily found from Eqs. (14) and (15) at sin2φ =
1 [see relationship (16)]; that is,

 (18)

At D = 0, from expression (18), we obtain TC = 2Jz/3
for the system of spins with S = 1 [17]. At small ratios
D/Jz ! 1, the orientating effect of the anisotropy is
dominant and, hence, from expression (18), we have

 (19)

This implies an increase in the magnetic phase transi-
tion temperature TC. On the other hand, with a substan-
tial increase in the anisotropy at D/2Jz  1, the tem-
perature TC [see expression (8)] decreases to zero [1].

The paramagnetic state with zero magnetization
occurs in the range T > TC. In this state, the condition
∆p ≠ 0 is always satisfied but the degree of ordering
depends on the temperature; that is,

 (20)
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As follows from relationship (20), complete disorder-
ing (∆p  0) in the paramagnetic state is achieved at
temperatures corresponding to the inequality D ! T. At
D ~ T, the system in the paramagnetic state has a high
degree of ordering due to a sufficiently large difference
in the populations of the single-ion states. Therefore, at
TC ~ D, the phase transition to the ferromagnetic state
proceeds as an order–disorder transition.

4. FREE ENERGY FOR THE CASE 
OF AN EXTREMELY WEAK EXCHANGE FIELD

The exchange field in an anisotropic magnet
decreases as the phase transition point is approached (at
T  TC) and in the case when the anisotropy constant
and the exchange interaction parameter become close in
magnitude. Actually, at D ≤ 2Jz, the inequality s0 ! 1
holds at T = 0. Let us analyze this case. Within the
approximation hex/D ! 1, the energy eigenvalues given
by expressions (3) can be rewritten in the form

 (21)

Since we have ε1, 2 – ε0 ≈ D at hex/D ! 1, it is assumed
that ε1 ≈ ε2. In turn, this implies that the influence of the
exchange interaction on the populations of these levels
can be ignored. Under this assumption, the level popu-
lations and the probabilities p(T) and ∆p(T) over the
entire temperature range (including the range T < TC),
according to expression (20), are determined only by
the ratio D/T. As a result, the quantity s0 remains the
sole unknown (with an uncertain dependence on the
temperature T) and, thus, appears to be the sole order
parameter in the problem under consideration. By
assuming that s0  0 and retaining terms up to the
fourth power in the series, we obtain

 (22)

It should be noted that, in the approximation used, the

coefficient of  in expression (22) becomes equal to
zero at the temperature TC specified by formula (18),
which was derived from the exact solution.

Relationship (22) can be transformed into the fol-
lowing form:

 (23)

Here, we introduced the designations D(T) = D∆p(T)
and J(T) = J(∆p(T))2. It follows from expression (23)
that the expansion of the free energy coincides with that
of the ground-state energy for an easy-plane ferromag-
net at T = 0 [2]. The temperature-dependent parameters
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J(T) and D(T) in expression (23) can be treated as effec-
tive parameters accounting for the level populations.
Note that the exchange interaction parameter is qua-
dratic in ∆p(T) and the single-ion anisotropy constant is
proportional to ∆p(T). This behavior of the temperature
dependences of the effective exchange interaction
parameter and the effective single-ion anisotropy con-
stant is clearly understood, because the exchange inter-
action is a two-particle interaction, whereas single-ion
anisotropy has a one-particle nature.

Next, we use the approximate relationship (23) for
the free energy in order to determine the temperature
dependence of the static magnetic susceptibility χ of
the paramagnetic phase under the condition h ⊥  Y. At
h  0, the static magnetic susceptibility is defined by
the expression χ = ∂s/∂hh → 0. The external field h is taken
into account by the Zeeman term in Hamiltonian (1). As
a result, the product hs should be subtracted from the
internal energy (5). Correspondingly, the product
h∆pcos2φ should be subtracted in relationships (12)
and (23) for the free energy. Furthermore, the terms that
describe the change in the free energy should also be
included in the equations of state (13) and (14). As a
result, the equation of state for the free energy (23)
transforms into the equation

 (24)

According to formula (8), the expression for the static
magnetic susceptibility χ should involve two terms;
that is,

 (25)

The first term in expression (25) is associated with the
change in the level population in response to the exter-
nal field h at a constant temperature T, because the
states with the spin projection aligned with the field are
more energetically favorable as compared to the states
with opposite or zero projections. It is this term that
determines the static magnetic susceptibility at h  0
in isotropic ferromagnets, for which the spin projec-
tions in the paramagnetic phase are as follows: s0 = S,
s1 = S – 1, etc. Hence, in this case, the second term is
absent in principle.

The second term in expression (25) accounts for the
magnetic field–induced polarization of single-ion
states. In the ferromagnet with the easy-plane single-
ion anisotropy, this contribution is caused by the spin
projection s0 (at a given ∆p). Note that, as was shown
above, since s0 = 0 in the paramagnetic phase, the con-
tribution of the first term to the static magnetic suscep-
tibility χ in this phase is zero. Therefore, the magneti-
zation in the paramagnetic phase of the easy-plane fer-
romagnet arises from the polarization of the ionic states
by the external magnetic field.

1
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By differentiating relationship (24) with respect to
h, we obtain the derivative ∂s0/∂h. The appropriate cal-
culations with allowance made for the temperature
dependence of ∆p [relationship (20)] offer the follow-
ing formula for the static magnetic susceptibility χ:

 (26)

Despite the approximate expression (22) used for the
free energy F, the denominator of formula (26) at the
phase transition point T = TC [see relationship (18)]
becomes equal to zero and the static magnetic suscepti-
bility tends to infinity (χ  ∞). It follows from for-
mula (26) that, as the phase transition point TC is
approached, the temperature behavior of the static mag-
netic susceptibility deviates from the Curie–Weiss law.
This deviation is explained by the retained ordering of
the paramagnetic state [∆p ≠ 0, see relationship (20)]
and the temperature dependence of the derivative
∂s0(T)/∂h, which determines the polarization of ions
under the effect of the external field h.

At high temperatures, when the inequality D/T ! 1
is satisfied and the paramagnetic state is completely
disordered [∆p(T)  0], the temperature dependence
of the static magnetic susceptibility is identical to that
observed in the isotropic ferromagnet (whose paramag-
netic state is always completely disordered) and can be
described by the relationship

 (27)

where Tθ = 2/3(Jz + D) is the paramagnetic Curie tem-
perature. For any values of the single-ion anisotropy
constant and the exchange interaction parameter, we
have Tθ ≠ TC (TC < Tθ). In other words, the quasi-classi-
cal approximation according to which the thermody-
namic averages of the spin operators squared can be
replaced by the corresponding thermodynamic aver-
ages squared does not hold. At the same time, this
approximation is valid for systems with order–disorder
phase transitions.

Therefore, for a strongly anisotropic ferromagnet
with the easy-plane single-ion anisotropy, the approxi-
mate expression (23) can be used for describing the
phase transition to the ferromagnetic state, in which the
exchange interaction and single-ion anisotropy depend
on the temperature.

The free energy F can always be expanded in terms of
s0 (irrespective of the ratio D/Jz, provided that D/2Jz < 1)
in the vicinity of the phase transition point at T  TC.
Note that, in the magnetically ordered state, a weak
exchange field cannot considerably affect the level pop-
ulations, which are determined only by the ratio D/T.
Taking into account that this approximation holds true
over a narrow temperature range ∆T in the vicinity of
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χ 2
3
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T Tθ–
---------------,=
P

the point TC, the temperature in the expansion of the
free energy F can be represented in the form T = TC –
∆T. Then, the expression for the free energy F can be
written in a form similar to the Landau thermodynamic
potential; that is,

 (28)

where

 

Minimization of the free energy [relationship (28)] with
respect to s0 makes it possible to determine the depen-
dence s0(T) in the ferromagnetic state in the vicinity of
the phase transition point. At T < TC, the temperature
dependence of the spin projection is typical of the sec-
ond-order phase transition; that is,

 (29)

According to relationship (8), the average thermody-
namic spin in the ferromagnetic state can be repre-
sented as the product of two order parameters s = s0∆p.
In the paramagnetic state up to the phase transition
point, the singlet is the ground state of the ion and
∆p(T > TC) ≠ 0. Therefore, the average spin is equal to
zero [s(T) = 0] if s0(T > TC) = 0. Although the average
thermodynamic spin depends on s0, it can be seen that
the temperature dependence s(T) in the vicinity of the
phase transition exhibits a critical behavior; that is,

 (30)

This is consistent with the phenomenological theory of
second-order phase transitions. According to this the-
ory, the Landau potential can be represented as a func-
tional in which the average spin (or the average magne-
tization) is the order parameter. However, the displacive
magnetic phase transitions from a paramagnetic phase
to a ferromagnetic phase and order–disorder phase
transitions are identically described in terms of the the-
ory that includes this order parameter [5] and allows
only for the change in the symmetry. To put it differ-
ently, these phase transitions are indistinguishable in
the framework of the phenomenological approach.

It should be noted that expression (23) was derived
in the single-ion mean-field approximation and holds
for D/2Jz ! 1. As was shown above, in this case, we
have D/TC ! 1 and ∆p(TC)  0. Under these condi-
tions, it is necessary to take into account fluctuations
which are appreciably enhanced as the phase transition
point is approached [15, 17]. The fluctuation fields
bring about a considerable change in the spectrum of
ionic states. As a result, this spectrum differs from the
spectrum obtained within the single-ion approximation.
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The fluctuations also affect the polarization of ionic
states. Therefore, expression (23) is satisfied only when
the ratio D/2Jz is not small and the range T – TC (at
least, in the magnetically ordered phase) covers the
fluctuation range. This reasoning does not hold for the
first case when D  2Jz.

5. CONCLUSIONS

Thus, the above calculations demonstrated that, in a
system of ions with spin S = 1 and easy-plane single-ion
anisotropy, the phase transition to a ferromagnetic state
is associated with the spontaneous formation of a non-
zero spin projection of the magnetic ion in a nondegen-
erate state. The critical behavior of this polarization is
governed by competition of the exchange interaction
and single-ion anisotropy.

In these magnets, the appearance of the magnetic
moment of ions and the transition to the ferromagnetic
state cannot be assigned to the most commonly encoun-
tered order–disorder magnetic phase transitions. The
results obtained give grounds to believe that, in the case
under consideration, the phase transition from the para-
magnetic state to the ferromagnetic state with a change
in the temperature in the absence of an external mag-
netic field can be treated as a displacive magnetic phase
transition.
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Abstract—The reflectivity spectra and the magnetorefractive effect (MRE) of (Co50Fe50)x(Al2O3)1 – x  metal–
dielectric granular films (0.07 < x < 0.52) are analyzed in the IR spectral range λ = 2.5–25 µm. It is revealed that
the specific features observed in the spectra at λ ≈ 8.5 and 20 µm are associated with the excitation of phonon
modes in the dielectric matrix. The magnetorefractive effect in the films is observed below the percolation thresh-
old only in p-polarized light and above the percolation threshold for both the p and s polarizations. It is demon-
strated that the optical properties of (Co50Fe50)x(Al2O3)1 – x  films in the IR spectral range, to a first approximation,
can be interpreted in the framework of the effective-medium theory and the magnetorefractive effect can be
explained in terms of the modified Hagen–Rubens relation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The considerable interest expressed by researchers
in metal–dielectric granular films composed of metallic
ferromagnetic nanograins in a nonmagnetic dielectric
matrix is associated with the tunneling magnetoresis-
tance (TMR) effect observed in these materials, which
makes them promising for practical use [1–10]. The
tunneling magnetoresistance effect is caused by spin-
dependent tunneling of polarized electrons through
dielectric interlayers between magnetic grains. In 1999,
Granovskiœ et al. [11] theoretically predicted the mag-
netorefractive effect (MRE), which resides in the fact
that the magnetic field affects the reflection and trans-
mission spectra of films in the IR spectral range. More
recently, this effect was experimentally found in metal-
lic [12, 13] and metal–dielectric [14] granular films.
The optical phenomena observed in metals in the IR
spectral range are governed by intraband optical transi-
tions and can be treated by analogy with electrical resis-
tance [15]. Since the tunneling magnetoresistance and
magnetorefractive effects have a similar nature, their
joint treatment can provide valuable information on the
electronic states in the conduction band in the vicinity
of the Fermi level for two subsystems of conduction
electrons whose spins are oriented along the magneti-
zation [the upward spin (↑ )] and in the opposite direc-
tion [downward spin (↓ )]. Elucidation of the correlation
between these effects can provide an answer to the
question of the possible use of the magnetorefractive
effect for contactless control of the magnetoresistance
in magnetoresistive materials.

The magnetoresistive and magnetorefractive prop-
erties of metal–dielectric grain structures depend on the
concentration of ferromagnetic grains and change radi-
1063-7834/03/4508- $24.00 © 21530
cally above the percolation threshold when magnetic
grains come in contact with each other. For the most
part, these properties are governed by the ratio of the
contributions from metallic and tunneling conductivi-
ties, the type of electron tunneling between grains, the
potential barrier height, and localized states in the
matrix. A large number of problems concerning the
influence of the matrix and grain materials on the prop-
erties of granular films still remain unclear.

Metal–dielectric granular films with a giant tunnel-
ing magnetoresistance are usually prepared from an
Al2O3-based matrix with high permittivity and thermal
stability [3, 6, 9, 10, 14]. As a rule, such films are pro-
duced either by electron-beam coevaporation of a mag-
netic material and Al2O3 with simultaneous vapor depo-
sition on a substrate under vacuum [9, 10, 16] or by mag-
netron sputtering of composite targets [3, 6, 14]. Since
the surface energy of a metal is considerably higher
than that of a dielectric material, upon their codeposi-
tion, the metal does not wet the oxide and form grains
with a crystal structure. Films of these alloys below the
percolation threshold have a granular structure in which
nearly spherical metallic nanograins are randomly dis-
tributed over the dielectric matrix and form an abrupt
interface with the matrix [10].

The purpose of this work was to reveal a correla-
tion between the optical properties in the IR spectral
range and the tunneling magnetoresistance of
(Co50Fe50)x(Al2O3)1 – x metal–dielectric granular films
over a wide range of concentrations x of the magnetic
component in an applied magnetic field and to analyze
the influence of the Al2O3 dielectric matrix on the prop-
erties of the films.
003 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Metal–dielectric granular films of
(Co50Fe50)x(Al2O3)1 – x with a volume fraction of the
metallic component in the range 0.07 < x < 0.52 were
prepared by electron-beam coevaporation of dielectric
(Al2O3) and metallic (a Co50Fe50 equiatomic alloy)
components from two independent stabilized sources
and by mixed-vapor deposition of the components on
cover glass substrates at a temperature of ~200°C under
high vacuum (at a residual pressure of 104 Pa). The film
thickness was approximately equal to 400 nm. The
geometry of the mutual arrangement of the substrates
and evaporation sources provided simultaneous prepa-
ration of films whose composition continuously varied
in the aforementioned concentration range along the
length of the substrate holder (450 mm). This procedure
of preparing metal–dielectric films was described in
detail in [16].

The evaporation rate and the volume content of each
component in granular films were controlled using two
quartz sensors. The film composition was determined
by energy dispersive x-ray analysis. The film structure
was investigated using x-ray diffraction and high-reso-
lution transmission electron microscopy. The magne-
toresistance of films was measured by the four-point
probe method at room temperature in magnetic fields
up to 50 kOe. The reflectivity spectra of
(Co50Fe50)x(Al2O3)1 – x granular films in the middle-IR
wavelength range from 2.5 to 25 µm were recorded on
a Nicolet 670 Fourier spectrometer with an MCT-B
HgCdTe photodetector cooled by liquid nitrogen. The
optical measurements in polarized light were per-
formed using a KRS-5 grid polarizer. In the magnetore-
fractive experiments (the measurement of the depen-
dence of the reflectivity spectra on the magnetic field),
the mirrors of the Fourier spectrometer were mounted
outside the spectrometer in order to focus IR radiation
on a sample located in a gap of the external electromag-
net. In this case, the angle of incidence of light on the
sample was approximately equal to 65°.

3. RESULTS AND DISCUSSION
The x-ray diffraction patterns of (Co50Fe50)x(Al2O3)1 – x

granular films exhibit a broad peak at the Bragg angle
corresponding to the (001) plane of the body-centered
cubic Co50Fe50 crystal. This suggests that the Co50Fe50
metallic grains distributed in the Al2O3 dielectric matrix
have a nanocrystalline structure. The data of high-resolu-
tion transmission electron microscopy confirm this infer-
ence and demonstrate that the mean size of ferromag-
netic particles in granular films below the percolation
threshold varies from 1 to 3 nm [10].

For (Co50Fe50)x(Al2O3)1 – x  granular films, the maxi-
mum tunneling magnetoresistance effect (~6%) is
observed in the vicinity of the percolation threshold
(xp ≈ 0.17 [9]) in a magnetic field of 10 kOe (Fig. 1).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
The current–voltage characteristics of the granular
films are consistent with the Simmons theory of elec-
tron tunneling [17] and confirm the tunneling nature
of the magnetoresistance. In the framework of this
theory, the height of the tunneling barrier and its width
for the film at x = 0.15 are estimated as φ ~ 2.15 eV
and ds ~ 2 nm, respectively. The tunneling nature of the
magnetoresistance is also supported by its measure-
ments in the temperature range from 5 to 300 K [9, 10].

The reflectivity Fourier spectra R(λ) of the
(Co50Fe50)x(Al2O3)1 – x  granular films in the middle-IR
range were recorded using both unpolarized and p- and
s-polarized incident light. These spectra were normal-
ized to the corresponding spectra of thick silver films.
The IR reflectivity spectra of the (Co50Fe50)x(Al2O3)1 – x
granular films and Al2O3 and Co50Fe50 pure materials in
unpolarized light are shown in Fig. 2. In the range of
concentrations x corresponding to an appreciable tun-
neling magnetoresistance of the (Co50Fe50)x(Al2O3)1 – x
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Fig. 1. Concentration dependences of (a) the resistivity and
(b) the tunneling magnetoresistance for (CoFe)x(Al2O3)1 – x
granular films at T = 300 K.
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granular films (0.07 < x < 0.3), the IR reflectivity spec-
tra exhibit characteristic features, namely, clear minima
at λ ~ 8.5 and ~20 µm. With an increase in the concen-
tration (at x > 0.35), the characteristic minima in the
reflectivity spectra gradually disappears and the spectra
R(λ) become similar to the IR reflectivity spectra of
pure Co50Fe50. The reflectivity spectra of the granular
film at x = 0.18 (with the specific features typical of the
spectra of films at x < 0.3) in unpolarized and p- and s-
polarized light are depicted in Fig. 3. It should be noted
that the spectra R(λ) at λ ~ 8.5 µm exhibit minima for
p-polarized light and maxima for s-polarized light
(Fig. 3). These specific features observed in the spectra
of granular films with a high Al2O3 content can be asso-
ciated with the excitation of phonon modes in the dielec-
tric matrix. The narrow minimum at λ ~ 8.5 µm can be
attributed to the excitation of the longitudinal optical
(LO) phonon mode in Al2O3, whereas the broader min-
imum at λ ~ 20 µm can be assigned to the excitation of
the transverse optical (TO) phonon mode. Substantial
broadening of the minimum corresponding to the trans-
verse mode can be associated with the amorphous state
of the system, which leads to a frequency distribution.
According to the data available in the literature for
crystalline Al2O3 [18, 19], the most intense peaks are
located at 23.3 and ~14.7 µm for the transverse phonon
modes and at 10.5 and 19.5 µm for the longitudinal
phonon modes. The disordering in the amorphous
Al2O3 matrix is responsible for the change in the dis-
tance between Al and O atoms on the short-range order
scale and in the coordination environment of these
atoms. In turn, these variations lead to a change in the
positions of the spectral features corresponding to
phonon vibrations in the granular films. The spectral
features that are observed in the IR reflectivity spectra
of the (Co50Fe50)x(Al2O3)1 – x  granular films and are
associated with the TO and LO phonon modes can be
identified with the use of p- and s-polarized light.
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Fig. 2. IR reflectivity spectra of (CoFe)x(Al2O3)1 – x granu-
lar films in unpolarized light.
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The optical properties of metal–dielectric granular
films with tunneling magnetoresistance can be
described in the effective-medium approximation.
Within this approximation, the optical conductivity σe

of (Co50Fe50)x(Al2O3)1 – x  granular films can be deter-
mined from the relationship [20, 21]

 (1)

where σe is the effective optical conductivity of the
granular film and σd and σm are the optical conductivi-
ties of the Al2O3 dielectric matrix and Co50Fe50 metallic
grains, respectively. The frequency dependence of the
optical conductivity for the dielectric film in the IR
range is defined by the following expression [20, 21]:
σd = iε0εdω, where ω is the optical frequency, ε0 is the
permittivity of free space, and εd is the permittivity of
Al2O3. The dielectric function of Al2O3 in the IR range
can be derived on the basis of the phenomenological
model of Lorentz oscillators [18, 22]

 (2)

where ε∞ is the high-frequency permittivity; ΩLOj and
ΩTOj are the frequencies of the LO and TO jth phonons,
respectively; ω is the frequency of exciting light; and
γLOj and γTOj are the damping constants of the LO and
TO jth phonons, respectively. In the framework of this
model, we calculated the reflectivities of the
(Co50Fe50)x(Al2O3)1 – x  granular films at different con-
centrations x (Fig. 4). The optical conductivity of
Co50Fe50 ferromagnetic grains in the IR spectral range
was represented as the sum of the contributions from
the Drude conductivities of two spin subsystems:
(i) electrons with spins aligned with the magnetization
[upward spin (↑ )] and (ii) electrons with spins oriented
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Fig. 3. IR reflectivity spectra of the (CoFe)0.18(Al2O3)0.82
granular film.
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in the opposite direction [downward spin (↓ )] [11, 23];
that is,

 (3)

where σ↑ (↓ )(ω = 0) and τ↑ (↓ ) are the static conductivi-
ties and the electron relaxation times for the two spin
subsystems, respectively. The static conductivities
were determined from the formula σ↑ (↓ )(ω = 0) =
n↑ (↓ )e2τ↑ (↓ )/m, where n↑ (↓ ) are the electron densities for
the two electron subsystems and m is the electron
mass. The electron densities n↑ (↓ ) were evaluated
within the free-electron gas model, according to

which n↑ (↓ ) = , where the Fermi wave vec-

tors  ~ 7.5 nm–1 and  ~ 4.5 nm–1 were taken from
[23]. The optical conductivity of ferromagnetic grains
was determined with the use of the spin asymmetry
parameter αp = τ↑ /τ↓ = 3.5 (τ↑ = 15 fs) taken from [23].

After determining the effective optical conductivity
σe of the (Co50Fe50)x(Al2O3)1 – x  granular films, the opti-
cal constants n and k were calculated from the expres-
sion [11, 23]

 (4)

Here, ε0 = 0.885 × 10–11 F/m is the permittivity of free
space, εr is the relative permittivity (which, to a first
approximation, is equal to unity), and the dielectric
functions ε1 and ε2 are related to the optical constants
through the expressions ε1 = n2 – k2 and ε2 = 2nk.

The reflectivity of the (Co50Fe50)x(Al2O3)1 – x  granu-
lar films in the IR spectral range was calculated from
the relationship obtained in the second-order approxi-
mation with respect to t/λ (where t is the film thickness
and λ is the optical wavelength) [24], which holds for
t ! λ; that is,

 (5)

Here, n0 is the refractive index of air, ns is the refractive
index of the substrate, and q and p are the functions
dependent on the optical constants and the film thick-
ness and can be represented in the form

 (6)

The above model makes it possible to calculate the IR
reflectivity spectra R(λ) of the (Co50Fe50)x(Al2O3)1 – x
granular films. The experimental (Fig. 2) and theoreti-
cal (Fig. 4) spectra R(λ) are in good agreement. The
theoretical spectra R(λ) were evaluated for unpolarized
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probe radiation, because light with a specific polariza-
tion excites only particular phonon modes.

As follows from analyzing the experimental results,
the reflectivity spectra of the (Co50Fe50)x(Al2O3)1 – x
granular films in p- and s-polarized light differ substan-
tially (see, for example, Fig. 3). The reflectivity spectra
of the films, especially at low concentrations x, depend
strongly on the properties and parameters of the Al2O3
dielectric matrix. In the amorphous Al2O3 matrix, there
arises a continuum of Al–O oscillators with the dipole
moment aligned with the film plane. The contribution
of these oscillators to the reflectivity spectra depends
on the angle of incidence and the polarization of light
[25]. At normal incidence (φ = 0°), the light excites only
the transverse phonon modes at 690 cm–1 (14.5 µm).
The longitudinal phonon modes manifest themselves,
to a greater extent, at 950 cm–1 (10.5 µm) and at the
angle of incidence ψ = 75° in p-polarized light. The
spectral position of the maximum corresponding to the
LO mode also considerably depends on the thickness
and structure of the Al2O3 film [25].

By analogy with the tunneling magnetoresistance
effect TMR = ∆ρ/ρ = [(ρH = 0 – ρH)/ρH] × 100%, we deter-
mined the magnetorefractive effect MRE = ∆R/R =
[(RH = 0 – RH)/RH] × 100%, where ∆ρ/ρ and ∆R/R are the
relatives changes in the electrical resistivity and the
reflectivity of the (Co50Fe50)x(Al2O3)1 – x  granular films
upon application of an external magnetic field. It was
found that the MRE curves substantially depend on the
polarization of incident light and the concentration x of
metallic grains. In particular, the MRE curves for the
films with concentrations of ferromagnetic grains
below the percolation threshold (x < 0.17) only in
p-polarized light exhibit specific features (Fig. 5) which
are not observed upon excitation with s-polarized light.
The MRE spectral curves for the granular films at 0.1 <
x < 0.17 have maxima in the vicinity of 8.5 µm (see
Fig. 5, curves at x = 0.15, 0.1) whose locations strictly
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Fig. 4. Theoretical IR reflectivity spectra of
(CoFe)x(Al2O3)1 – x granular films.
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correlate with those of the minima in the spectra R(λ)
(Fig. 2). A decrease in the grain concentration (x < 0.1)
leads to a change in the MRE curve, so that the MRE
curve (Fig. 5, curve at x = 0.07), like the spectrum R(λ),
contains a deep minimum at a characteristic wave-
length of 8.5 µm. At low concentrations of ferromag-
netic grains, the reflectivity spectra R(λ) of the
(Co50Fe50)x(Al2O3)1 – x  granular films become similar to
the spectrum of the Al2O3 matrix (Fig. 2). Our investi-
gation into the influence of the magnetic field on the
reflectivity spectrum of pure Al2O3 revealed that the
magnetic field affects the reflectivity of the dielectric
matrix. In this case, the MRE curve for pure Al2O3 is
characterized by a deep minimum at λ ≈ 9 µm (Fig. 6).
It should be emphasized that the magnetorefractive
effect in the IR range in the granular films and pure
Al2O3 strongly depends on the wavelength λ of incident
light and the magnetic field strength H.

The magnetorefractive effect observed in the Al2O3
dielectric matrix is associated with the manifestation of
gyrotropic properties in the magnetic field [26]. This is
accompanied by the appearance of the gyration vector
and off-diagonal components in the permittivity tensor.
In isotropic materials and crystals with cubic symme-
try, the magneto-optical effects can be rather strong and
the corresponding corrections to the refractive index
are linearly proportional to the magnetic field strength
[26]. The possibility of observing the magnetorefrac-
tive effect in dielectrics over the entire frequency range
is limited by the sensitivity of the measuring instru-
ment. However, at a frequency corresponding to the
total transparency in the vicinity of the phonon mode
(λ ≈ 9 µm for Al2O3, Fig. 6), the magnetorefractive
effect is relatively large in magnitude against the back-
ground of the weak reflection and can be measured with
a rather high accuracy. We also observed a similar mag-
netorefractive effect in ionic crystals with cubic sym-
metry. The theory of this phenomenon will be consid-
ered in detail in a separate work. Here, we only note
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Fig. 5. MRE curves for (CoFe)x(Al2O3)1 – x granular films
in p-polarized light. x = 0.07, 0.1, and 0.15.
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that this effect allows one to determine the gyration
coefficient in dielectrics with a high accuracy.

The MRE curves for granular films at 0.17 < x < 0.4
show specific features in s- and p-polarized exciting light
(see, for example, the MRE curves for the granular film
at x = 0.25 in Figs. 7, 8). For the films at x > 0.4, the mag-
netorefractive effect is observed only in s-polarized light
and the reflectivity spectrum R(λ) of the granular films
becomes similar to the spectrum of pure Co50Fe50.

The magnetorefractive effect in the long-wave-
length IR range can be explained in terms of the
Hagen–Rubens relation. By ignoring the ferromagnetic
properties of the material, the optical constants in the
IR range can be determined from the expression n ≈ k ≈
(1/2ε0ωρ0)1/2, where ρ0 is the resistivity of the material
at ω = 0 and ε0 is the permittivity of free space. In this
case, the reflectivity R at the normal incidence of light
can be written in the form [15]

 (7)

Relationship (7) is valid at ωτ↑(τ↓) ! 1 (for the major-
ity of metals, this holds at λ ≥ 20 µm). It can be seen
from relationship (7) that the reflectivity R(λ) directly
depends on ρ0 and is independent of the electron relax-
ation time τ↑(τ↓).

The expression relating the reflectivity and the resis-
tivity permits us to estimate the change ∆R in the reflec-
tivity due to the change ∆ρ in the resistivity in the mag-
netic field [11, 13]:

 (8)

where TMR is the tunneling magnetoresistance of the
(Co50Fe50)x(Al2O3)1 – x  granular films. However, the
theoretical MRE curves obtained with the use of rela-
tionship (8) disagree with the experimental MRE
curves in the range of wavelengths shorter than 15 µm.
From the expression for R(λ) in the Hagen–Rubens

R 1 2ε0ωρ0[ ] 1/2
.–≅

∆R 2ε0ωρ0[ ] 1/2∆ρ/ρ0– 2ε0ωρ0[ ] 1/2
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Fig. 6. MRE curves for Al2O3 in p-polarized IR light at dif-
ferent magnetic field strengths.
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approximation, it follows that ∆R ∝ λ –1/2. Therefore, we
can assume that the dependence of ∆R on the relaxation
time of the spin subsystems can be taken into account
in the form of a power series [13]:

 (9)

This approximation includes only the first terms of the
power series in λ. For calculations, the constant α was
derived within the effective-medium approximation:
α = [(1 – R)/2]TMR. The values of the TMR were
determined from the experimental data (Fig. 1). The
parameter β was chosen from the best fitting to the
experimental data and, as a rule, was of the order of
0.1α. The MRE spectral curves calculated for the
(Co50Fe50)x(Al2O3)1 – x  granular films with the use of the
described technique are depicted in Fig. 9. A compari-
son of the experimental and theoretical results demon-
strates that the theoretical MRE curves exhibit all the
main features observed in the experimental MRE
curves (Figs. 5, 7, 8). Note that the MRE curves were
calculated only for unpolarized light. According to the
experimental data, the MRE curves for unpolarized and
p-polarized incident light are similar to each other. The
specific features in the experimental and theoretical
MRE curves are most pronounced in the vicinity of
wavelengths corresponding to excitation of the TO and
LO phonon modes.

4. CONCLUSIONS

Thus, the results obtained in this work demonstrated
that the (Co50Fe50)x(Al2O3)1 – x  granular films possess a
considerable tunneling magnetoresistance near the per-
colation threshold (x ≈ 0.17). It was found that the mag-
netorefractive effect in these films manifests itself in the
range of wavelengths corresponding to the optical
phonon modes. The MRE curves depend on the concen-
tration of magnetic grains and the polarization of excit-
ing light. In particular, the magnetorefractive effect is
observed only in p-polarized light below the percolation
threshold, in both p- and s-polarized light in the concen-
tration range 0.17 < x < 0.4, and only in s-polarized light
at x > 0.4. It was demonstrated that the reflectivity spec-
tra of the (Co50Fe50)x(Al2O3)1 – x  granular films in the IR
spectral range, to a first approximation, can be described
in the framework of the effective-medium theory and the
magnetorefractive effect can be explained in terms of the
modified Hagen–Rubens relation. The magnetorefrac-
tive effect revealed in Al2O3 in the wavelength range cor-
responding to the excitation of optical phonons is associ-
ated with the manifestation of gyrotropic properties of
Al2O3 in the magnetic field. It was established that the
Al2O3 matrix substantially affects the tunneling mecha-
nism of conduction in (Co50Fe50)x(Al2O3)1 – x  granular
films and their optical and magnetorefractive properties
in the IR range.

∆R αλ 1/2–
– βλ 3/2–

0 λ 5/2–( ).+ +=
3
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Abstract—Polarization (ferroelectric switching) of SBN crystals in pulsed fields differs from the same process
in model ferroelectrics. Polarization in most SBN crystals is characterized by slow kinetics, which can be
approximated by a power-law dependence, with relaxation times of the order of seconds (in fields @Ec). The
process smoothness results in the absence of a characteristic peak in the switching-current curve. Some crystals
are characterized by fast (jumplike) polarization processes, whose characteristics (the kinetics and the field
dependence of the switched charge) also differ from model ones. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelectric crystals SrxBa1 – xNb2O6 (SBN-x) are
widely used in optical systems, in particular, as a holo-
graphic medium for optical memory and for optical-
data processing in the dynamic-recording regime, as
well as for optical radiation frequency conversion on
the domain structure in the phase-quasi-matching
regime. In this context, ferroelectric switching is of par-
ticular interest. This process underlies the effect of field
fixing of holograms, which permits their nondestructive
readout in ferroelectrics [1–4]. Polarization reversal
under the influence of an internal (photorefractive) field
[5–7] or under simultaneous exposure to photorefrac-
tive and external fields [8, 9] can be used for producing
a regular domain structure (RDS). Ferroelectric switch-
ing, in principle, can make it possible to control the
intensity and spectral composition of radiation con-
verted in a crystal with domain structure [10–12].

Analysis of the numerous publications devoted to
these optical effects suggests that switching processes
in SBN differ from the classical scenario considered in
well-known monographs. This conclusion is also con-
firmed by studies [13, 14] of the SBN polarization
kinetics in quasi-static fields and by observations [15]
of the SBN domain structure dynamics. Attempts made
by authors to develop general methods of field control
of the optical processes in SBN (e.g., a unified method
for fixing holograms [3], RDS formation [8, 9], and
field control of the converted radiation intensity [12])
have been ineffective, since the model mechanism was
taken as a basis in solving these problems for lack of
information on the specific features of polarization
switching in these crystals. The data from direct studies
on the pulsed switching of SBN crystals that are neces-
sary for developing such methods are absent in the lit-
erature, except for our publication [16], where switch-
1063-7834/03/4508- $24.00 © 21537
ing currents were measured for some SBN crystals in
pulsed fields and some fundamental features were
detected.

This paper is devoted to detailed study of pulsed
polarization switching in a large number of SBN crys-
tals, both pure and doped with various impurities.

2. CRYSTALS UNDER STUDY 
AND EXPERIMENTAL TECHNIQUE

The crystals were grown, using the modified
Stepanov method, at the Scientific Center of Laser
Materials and Technologies of the Institute of General
Physics [17] and, using the Czochralski method, at the
Physical Faculty of the Osnabrück University (Ger-
many). The following compositions were studied in
detail: SBN-0.75, SBN-0.61, SBN-0.61 doped with
1 wt % La2O3 (designated below as SBN-0.61:La),
SBN-0.61 doped with 0.4 wt % CeO2 (SBN-0.61:Ce),
SBN-0.61 doped with a double ligature of 1 wt % La
and 0.1 wt % CeO2 (SBN-0.61:La:Ce), and SBN-0.61
doped with 0.5 wt % Nd (SBN-0.61:Nd).

These objects were chosen for the following rea-
sons. Crystal SBN-0.75 is a composition in which the
effect of field fixing of holograms during switching has
been studied in detail [1–4]. Crystals SBN-0.61 with
rare-earth (RE) impurities are convenient for study,
since RE doping results in a significant decrease in Tc

[16, 18] and a corresponding decrease in Ec. The effect
of field switching of the two-beam-coupling gain factor
Γ, associated with ferroelectric switching, was detected
and studied in the SBN-0.61:Ce and SBN-0.61:La:Ce
crystals [18, 19]. In crystals SBN-0.61:Nd, lasing with
microdomain-induced frequency self-doubling was
observed in [10, 11]. Thus, the contribution of switch-
003 MAIK “Nauka/Interperiodica”
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Table 1.  Ferroelectric properties of the SBN crystals under study

Crystal Tc, °C Ec, 103 V cm–1 ε33, max ε33(20°C)

SBN-0.75 50 ~1 12000 7000

SBN-0.61 81 2–3 33000 800

SBN-0.61:0.4 wt % Ce 58 1–1.2 16000 2500

SBN-0.61:1 wt % La ~45 30000 7200

SBN-0.61:1 wt % La:0.1  wt % Ce ~45 ~1 24000 7500

SBN-0.61:0.5 wt % Nd 61 2–2.5 23000 2700

Note: ε33 (20°C) and ε33, max are the permittivities under standard conditions and at Tc, respectively, measured in multidomain crystals at
1 kHz.
ing or a domain structure to nonlinear-optical processes
was observed in all the objects under study.

The ferroelectric properties of the crystals under
study are listed in Table 1. The values of Ec were
obtained by measuring the P–E hysteresis loops in
quasi-static fields [13, 14]. The coercive field cannot be
unambiguously determined in SBN crystals [13, 14]
due to their relaxor character [20]; therefore, the values
of Ec given in Table 1 are rather conditional (averaged
over the crystal volume).

Pulsed polarization was studied using the Merz
technique (see, e.g., [21]). Rectangular pulses with a
rise time no longer than 2.5 × 10–8 s and a duration tp in
the range 3 × 10–6 to 10 s were applied to the crystals.
The load resistance was 1–10 Ω , while the crystal resis-
tance was 1014 Ω , which allowed us to disregard leak-
age currents. The signal from the load resistor was
recorded using a high-frequency ADC card integrated
with a computer. The time dependence of the switching
current i(t) was displayed on a monitor in real-time
mode. The best resolution of the signal, controlled by
the discretization frequency of the ADC, was 2 × 10–8 s.
The measurements were carried out in the single-pulse
mode. The crystals were prepared as polar z-cut plates
1–2 mm thick with deposited electrodes (silver paste).
The upper field limit was ≈10–12 × 103 V cm–1, since a
further field increase often caused mechanical destruc-
tion of the crystals probably due to the significant
piezoelectric effect characteristic of them.

Several samples of each composition were studied.
The measurements were carried out on multidomain
(annealed in the paraelectric phase) and single-domain
samples. The single-domain state was achieved through
gradual cooling of the crystals from the paraelectric
phase down to room temperature in an external field
(2–3) × 103 V cm–1. The poling was monitored by mea-
suring the pyroelectric coefficient using the static
method.

3. RESULTS AND DISCUSSION

We recall the fundamental features of the pulsed
switching [21], which were studied in model objects
P

(TGS, BaTiO3) in detail and are characteristic of all fer-
roelectrics in general. As a field pulse stronger than Ec

is applied, the Merz circuit detects a switching current
with a resolved peak corresponding to an enhanced,
avalanche-like rise in the switched charge Qs (or, what
is the same, to an avalanche-like growth of domains).
The charge Qs approaches its saturated value Qs ≈ Ps

with a relaxation rate dependent on the applied field.

Two types of current responses accompanying the
applied field pulses are observed in the SBN crystals. In
most of the crystals, in contrast to model ferroelectrics,
the switching current appears as a short decaying signal
and is observed up to breakdown fields (Fig. 1). In
appearance, this signal is similar to the response arising
in model ferroelectrics at E ! Ec; however, its funda-
mental difference is a pronounced nonexponential
decay (see below). On the contrary, i(t) in nonswitching
model ferroelectrics falls off exponentially, which was
confirmed in our reference measurements on TGS crys-
tals in weak fields.

The “classical” switching current (with a peak),
qualitatively similar to the signal in model ferroelec-
trics, arises in a much smaller number of SBN crystals.
It should be emphasized that the two alternative types
of current signals in SBN are not related to the compo-
sition or quality of the crystals. Signals of different
types were observed in identical field regimes in vari-
ous samples of the same composition cut out from the
same crystalline boule even though the ferroelectric
properties (the temperature and smearing of the phase
transition, permittivity ε, etc.) of these samples were
identical.

In some cases, the classical switching signal (with a
peak) in the crystal under study was irreversibly trans-
formed into a first-type signal after prolonged anneal-
ing in the paraelectric phase or poling. The characteris-
tics of signals of the two types are independent of the
pulse duration in the tp range covered. The signals of
both types exhibit oscillations (probably of piezoelec-
tric character) with a frequency of approximately
200 kHz (Figs. 1b, 3a, 4a) which are suppressed by an
RC filter.
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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Let us consider the two types of currents observed in
SBN as pulsed voltages are applied. First, we discuss the
most commonly encountered (fast-falling) signal i(t); it
is exemplified by an arbitrarily chosen sample of the
SBN-0.61:Ce:La crystal (Fig. 1). Figure 1a shows the i(t)
curves for various values of E in the initially multido-
main crystal; these curves almost coincide (except in
sign) for fields of both polarities. The shape of the i(t)
curves does not change up to E = 12 × 103 V cm–1 @ Ec ≈
1 × 103 V cm–1. In the single-domain crystal, the char-
acteristics of i(t) in a field opposite to the poling field
are almost identical to the i(t) characteristics in the mul-
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Fig. 1. Switching kinetics of the SBN-0.61:La:Ce crystal:
(a) switching currents in fields of (1) 3.5, (2) 5, and
(3) 9 kV cm–1 and (b) the charge kinetics in fields of (1) 1,
(2) 2, (3) 3, (4) 4, 5 (5), and (6) 9 kV cm–1. The inset in (a)
shows the field dependence of the charge in (1) multi- and
(2) single-domain states; (3) the field dependence of the
charge in the single-domain crystal in fields coinciding in
sign with the poling field.
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tidomain crystal. The inset to Fig. 1a shows the field
dependences of the charge Qs(E) for multi- and single-
domain states (curves 1, 2, respectively) obtained by
integrating the i(t) curves; for comparison, curve 3
illustrates Qs(E) obtained in the single-domain crystal
in fields coinciding in sign with the poling field, i.e., in
the absence of switching. The saturated values of Qe are
approximately 1.5 × 10–6 and 1.1 × 10–6 C cm–2 in
multi- and single-domain crystals, respectively, which
are significantly lower than Ps ≈ (8–9) × 10–6 C cm–2

(the rather low value of Ps in the crystal of this compo-
sition is explained by the low value of Tc and significant
smearing of the phase transition [13, 14]).

At first glance, the Qe smallness indicates the
absence of switching, as is the case in model ferroelec-
trics in weak fields. However, measurements of the
dependence of the pyroelectric coefficients on field
pulses in SBN indicate that, in actual fact, the polariza-
tion significantly changes as a pulse is applied. We
explain this effect with reference to the crystal whose
switching currents are shown in Fig. 1a. The influence
of single pulses of E = 5 × 103 V cm–1 (of fixed polarity)
of various durations on the pyroelectric coefficient γ
was measured. The coefficient γ was measured before
and after application of a pulse. Before each pulse
application, the crystal was restored to its initial (multi-
or single-domain) state.

The dependences of γ on tp are shown in Fig. 2 for
multidomain (triangles) and single-domain (squares) ini-
tial states. In the multidomain crystal, γ = 0; application
of a field pulse to the crystal caused a significant pyro-
electric effect increasing with tp. After application of a
pulse with tp ≥ 10 s, the value of γ is saturated and is
approximately 0.8γ of the single-domain crystal. Thus,
the crystal is significantly polarized as a result of apply-
ing a single field pulse of 5 × 103 V cm–1 with tp ≥ 10 s; a
rough estimation yields Qs ≈ 0.8Ps ≈ (5–6) × 10–6 C cm−2.
Application of the same field pulses (5 × 103 V cm–1) to
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Fig. 2. Dependence of the pyroelectric coefficient on the
duration of a 5-kV cm–1 single pulse in the multi- (trian-
gles) and single-domain (squares) SBN-0.61:La:Ce crystal.
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the single-domain crystal causes a significant decrease in
γ, i.e., depolarization (Fig. 2). At tp ≈ 10 s, we have γ ≈ 0;
i.e., the crystal is in a multidomain state. At tp equal to a
few tens of seconds, the pyroelectric current changes
sign; i.e., sign reversal (switching) of the total crystal
polarization takes place. When the same pulse E = 5 ×
103 V cm–1 of duration tp in this interval is applied to the
multidomain crystal, the switching current is described
by curve 2 in Fig. 1a; integration of this curve yields a
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Fig. 3. Switching kinetics of the SBN-0.61:Nd crystal:
(a) switching currents in fields of (1) 2.5, (2) 3.75, (3) 5.6,
and (4) 8.5 kV cm–1 and (b) the charge kinetics in fields of
(1) 1, (2) 2, and (3) 3 kV cm–1. The inset in (a) shows the
field dependence of the charge in (1) multi- and (2) single-
domain states.
PH
very low value Qs ≈ 0.9 × 10–6 C cm–2 ! Ps. Thus,
although the pyroelectric current measurements make
evident a significant change in polarization as single
pulses are applied, measurements of switching currents
do not detect this change.

This switching-current behavior can be understood
by analyzing the switched-charge Qs(t) kinetics, which
differs fundamentally from the charge kinetics in the
model crystals. The Qs(t) curves (Fig. 1b) calculated
from i(t) for various fields can be closely approximated
by the power-law dependence

 (1)

where Qe (saturated value of Qs), a, and n are adjust-
able parameters (Table 2). This dependence is identi-
cal to the expression describing the polarization kinet-
ics in SBN, in particular, of the same composition
SBN-0.61:Ce:La, in quasi-static fields [13, 14]. Let us
carry out some estimations. The results of least square
approximation to the experimental Qs(t) curves for
several field values are listed in Table 2. For example,
the approximation for E = 5 × 103 V cm–1 in the mul-
tidomain crystal (curve 5 in Fig. 1b) yields Qe ≈ 3.6 ×
10–6 C cm–2. This value is in satisfactory agreement
with the above rough estimate (from pyroelectric mea-
surements): Qs ≈ (5–6) × 10–6 C cm–2 for this crystal in
the case of application of a pulse E = 5 × 103 V cm–1

with tp ≥ 10 s.
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Fig. 4. Switching currents in the SBN-0.75 crystal in fields
of (1) 6, (2) 6.5, (3) 7.4, and (4) 8.5 kV cm–1. The inset
shows the field dependence of the charge in (1) multi- and
(2) single-domain states.
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Thus, most of the SBN crystals (we will refer to
them as the first group) are characterized by gradual
slow polarization variations described by Eq. (1). These
variations occur over very long times (a few seconds)
even in fields that exceed Ec tenfold; therefore, the
major factor controlling the polarized (switched) vol-
ume is the pulse duration (Fig. 2) rather than the field
strength (Table 2). This conclusion on the SBN polar-
ization processes, made in this study for a time interval
of 10–4 to 10 s, qualitatively agrees with the results of
the study of polarization kinetics in these crystals in the
range ≈10–104 s [13, 14]. The “nonclassical” shape of
the switching-current curve is explained by the absence
of the fast (avalanche-like) polarization stage character-
istic of the model ferroelectrics in strong fields.

Now, we discuss the other type of switching currents,
which is less often observed in SBN and is qualitatively
similar to the switching current in the model ferroelec-
trics. Representative examples are shown in Fig. 3 (sam-
ple SBN-0.61:Nd) and Fig. 4 (sample SBN-0.75). Fig-
ures 3a and 4 display the i(t) curves for multidomain
crystals. In the case of SBN-0.61:Nd, the characteristic
peak in the i(t) curve is observed at E ≥ Ec (Table 1); in
SBN-0.75, the peak occurs at E = 6 × 103 V cm–1 @ Ec ≈
103 V cm–1 (in weaker fields, the signal falls off rapidly,
as discussed above).

The insets to Figs. 3a and 4 show Qs(E) obtained by
integrating the i(t) curves for initially multi- and single-
domain states (curves 1, 2, respectively, in the insets in
both figures). The steep rise of the Qs(E) curve for the
SBN-0.75 crystal at E > 6 × 103 V cm–1 (inset to Fig. 4)
corresponds to the change in the current response
shape. The switched charge in the multidomain crystals
gradually increases with increasing field up to E @ Ec,
and saturation is reached in some cases (inset to Fig. 4).
It is interesting to note that the tendency to saturation in
SBN-0.75 is observed at Qs ~ 30 × 10–6 C cm–2, which
is close to the spontaneous-polarization estimate Ps ~
33 × 10–6 C cm–2 made for this composition on the basis
of the Abrahams structural criterion [22].

In the single-domain crystals, the Qs(E) dependence
in rather weak fields flattens (curves 2 in the insets to
Figs. 3a and 4); however, the saturated value is signifi-
cantly (sometimes, an order of magnitude) lower than
the value obtained for the same crystal in the multido-
main state. Such dependences, namely, the gradual
increase in Qs(E) in multidomain crystals and low satu-
rated value of Qe in single-domain crystals, are typical
of all the SBN samples in which the classical switching
current is observed. Figure 3b shows the Qs(t) kinetics
calculated from i(t). As follows from Figs. 3 and 4, not-
withstanding the classical shape of the switching cur-
rents, the Qs(E) and Qs(t) dependences in these SBN
crystals differ fundamentally from the corresponding
dependences in the model crystals, where both quanti-
ties in single- and multidomain states asymptotically
approach Ps. In SBN, the values of Qe in multi- and sin-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
gle-domain states differ sharply. In the multidomain
crystal, for each field E > Ec there is a certain limiting
value Qe < Ps that increases with E.

The fields at which Qs(E) tends to saturation (Fig. 4)
significantly exceed the values of Ec measured from
quasi-static hysteresis loops. The switching scenario in
crystals of this group differs from the above-described
slow polarization process in crystals of the first group.
In this case, for some reason, the volume involved in
switching is polarized (switched) in jumps; the control-
ling factor in this case is the field strength rather than
the pulse duration (as is the case in the crystals of the
first group). As a result of poling (due to prolonged
exposure to an external field), the volume polarized in
jumps decreases abruptly. However, in the crystals of
the first group, such “freezing” effects are not observed,
since the polarization changes caused by a given field
pulse are very similar in multi- and single-domain
states (see insets to Figs. 1a, 2). We note that, notwith-
standing the classical shape of the switching currents in
the second group of SBN crystals, the dependence of Qe

on E in the multidomain state and the smallness of
Qe ! Ps in the single-domain state do not allow consid-
eration of the switching process in terms of the switch-
ing rate v s = 1/ts. Here, by definition [21], the switching
time ts corresponds to the switching-current decreasing
to 10% of its value at a constant switched charge
Qs  Ps.

The features of the polarization kinetics of SBN
crystals in pulsed fields, in particular, very long times,
may be qualitatively explained by a nonuniformly dis-
tributed internal field [13, 14] (or, what is the same, pin-
ning centers [23]) existing in the relaxor ferroelectric
[20]. In terms of the classical switching model, this
means the existence of a wide spectrum of switching
activation fields, which, as is known, characterize the
rate and time ts of switching [21]. As a result, the polar-
ization process (switching current) is described by a set
of relaxation times and proceeds smoothly.

The faster switching kinetics observed in some SBN
crystals is explained by the fact that the energy distribu-
tion of pinning centers (and, therefore, the spectrum of
relaxation times) becomes rather narrow due to random
causes and the given volume is polarized in jumps.
However, as was already mentioned, external influ-
ences, bringing about, e.g., the formation of the single-
domain state, often cause a change in the polarization
kinetics type: the kinetics becomes slow, probably due
to changes in the internal-field distribution. The conclu-

Table 2.  Relaxation parameters of the SBN:La:Ce crystal

E, kV cm–1 Qe, 10–6 C cm–2 a, µs n

4 3.0 0.52 0.05

5 3.6 0.65 0.05

9 4.2 1.7 0.07
3



1542 VOLK et al.
sion that the polarization processes in SBN crystals are
slow is confirmed by the domain dynamics observation
[15], according to which the sideway motion of domain
walls (characteristic of the model ferroelectrics) is hin-
dered in SBN, frontal domain growth prevails, and the
formation of the single-domain state proceeds
extremely slowly.

Based on the data obtained, certain practical conclu-
sions may be drawn. For example, the technique of
RDS formation used for LiNbO3 (ultrashort field pulses
with high strength [24]) is not applicable for most SBN
crystals. Causes for the nonreproducible effect of field
fixing of holograms in SBN may be suggested: this
effect is rarely observed in pulsed fields [1, 2], probably
because it occurs only in crystals of the second group,
where jumplike ferroelectric switching of different por-
tions of the crystal takes place (this is what is precisely
necessary for hologram fixing).

4. CONCLUSIONS

Thus, SBN crystal polarization and ferroelectric
switching in pulsed fields differ from the same pro-
cesses in model ferroelectrics. In most SBN crystals,
these processes are characterized by very slow kinetics,
with relaxation times reaching a few seconds in fields
significantly exceeding (up to ten times) the coercive
fields estimated from quasi-static P–E loops. Due to the
absence of the enhanced (avalanche-like) increase in
polarization characteristic of the model ferroelectrics at
E > Ec, the switching currents do not exhibit peaks. The
jumplike polarization observed in some SBN crystals
also differs from the model process: the switched
charge Qs increases with field in the entire field region
E @ Ec and becomes much larger in multidomain than
in single-domain crystals. The features observed may
be qualitatively explained by a nonuniform distribution
of the internal field in the relaxor ferroelectric volume.
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Abstract—The intensities of the I410 and I411 reflections of nine rare-earth hexaborides MB6 (M = La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, Dy) are experimentally studied in the temperature range 4.2–300 K. The mean-square displace-
ments of metal and boron atoms are calculated from the temperature dependences of the intensities I410(T) and
I411(T). The characteristic temperatures of the metal (θM) and boron (θB) sublattices of rare-earth hexaborides are
determined in the Debye approximation. It is found that the characteristic temperatures decrease with an increase
in the atomic number of the metal. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
It is known that rare-earth hexaborides crystallize in

a CsCl-type structure in which a cube consisting of
heavy metal atoms is centered as an octahedron com-
posed of six rigidly bound lighter atoms of boron. This
group of B6 atoms can be considered a structural unit,
namely, a pseudoatom B* ≡ B6 [1]. It is worth noting
that the distances between boron atoms belonging to
the adjacent cells are shorter than those inside the B6
group [2, 3]. The specific features observed in the crys-
tal structure of rare-earth hexaborides are responsible to
a large extent for the unusual temperature dependences
of their crystal chemical properties: heat capacity [4, 5],
thermal expansion [6, 7], elastic constants [8], etc.

Paderno and Shitsevalova [9] demonstrated that the
characteristic temperatures  calculated from the
experimental temperature dependences of the thermo-
dynamic characteristics of rare-earth hexaborides differ
significantly. In this respect, it is of interest to deter-
mine separately the characteristic temperatures of the
metal and boron sublattices of hexaborides from ana-
lyzing the available experimental data.

This paper reports on the results of systematic
experimental investigations into the temperature varia-
tions in the mean-square displacements of metal and
boron atoms in the crystal lattices of rare-earth
hexaborides with the use of experimental data on the
intensities of x-ray reflections.

2. EXPERIMENTAL TECHNIQUE
X-ray diffraction experiments were performed with

hexaboride powder samples used earlier in studies of
the temperature dependences of the heat capacity and
thermal expansion [6, 7]. The intensities of the (410)
and (411) reflections were measured on a DRON-3.0 x-
ray diffractometer (CoKα radiation) equipped with a

θMB6
1063-7834/03/4508- $24.00 © 21543
helium cryostat. The sample temperature was deter-
mined with a Cu/Cu–0.1 wt % Fe thermocouple, which
was calibrated against the germanium and platinum
standard resistance thermometers at the All-Russia
Research Institute of Physicotechnical and Radio Engi-
neering Measurements. During the experiment, the
temperature was automatically maintained constant to
within ±0.2 K.

3. EXPERIMENTAL RESULTS

The experimental intensities of the (410) and (411)
reflections of rare-earth hexaborides studied in the tem-
perature range 4.2–300 K are presented in Fig. 1. It can
be seen from Fig. 1 that the intensities of the scattered
x-ray beam are scarcely affected by the magnetic order-
ing typical of the majority of hexaborides at tempera-
tures below 30 K, which is most likely due to a consid-
erable dispersion of the experimental points. For the
DyB6 hexaboride, the intensities of experimental reflec-
tions were measured at temperatures above T = 22 K. At
lower temperatures, the reflections of the second phase,
which are not observed at higher temperatures, are
superposed on the (410) and (411) reflections in the x-
ray diffraction patterns.

As is clearly seen from Fig. 1, the intensity I(T) varies
only slightly in the low-temperature range (4.2–50 K)
and decreases monotonically as the temperature
increases. A considerable dispersion of the experimen-
tal points (3–5%) can be associated with the properties
of the studied sample.

4. DISCUSSION

The intensity of an x-ray reflection Ihkl depends on
the Bragg angle θ, atomic scattering factor f, structural
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Intensities of (a) I411 and (b) I410 reflections of rare-earth hexaborides in the temperature range 4.2–300 K: (1) LaB6, (2) CeB6,
(3) PrB6, (4) NdB6, (5) SmB6, (6) EuB6, (7) GdB6, (8) TbB6, and (9) DyB6.
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factor Fhkl, multiplicity factor Phkl, polarizability,
extinction coefficient, etc. [10, 11]:

 (1)

In the temperature range 0–300 K, the scattering angle
varies insignificantly, whereas the multiplicity factor
remains constant at specified indices h, k, l. Conse-
quently, the intensity ratio of a reflection at a given tem-
perature and absolute zero temperature is equal to the
ratio of the squares of the structural factors under the
same conditions; that is,

Ihkl A
1 2θcos

2
+

θ θcossin
2

-------------------------- Fhkl
2
Phkl.=
P

 (2)

The structural factor is determined by the atomic scat-
tering factors fi and the atomic coordinates (xi, yi, zi) of
the unit cell:

 

As a result, we can write the expression

 (3)

Ihkl T( )
Ihkl 0( )
----------------

Fhkl T( ) 2

Fhkl 0( ) 2
-----------------------.=

Fhkl f ie
2πi hxi kyi lzi+ +( )

.∑=

Fhkl
2

f i 2π hxi kyi lzi+ +( )2
cos∑=

+ f i 2π hxi kyi lzi+ +( )2
.sin∑
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Here, fi is the atomic scattering factor for the ith atom of
the unit cell at absolute zero temperature [12] and xi, yi,
and zi are the coordinates of the ith atom (expressed in
terms of a lattice constant). The rare-earth hexaborides
under investigation have a CaB6-type structure with the
following coordinates of the metal and boron atoms: M
(0, 0, 0) and B (1/2, 0.207, 1/2; 0.207, 1/2, 1/2; 1/2,
0.793, 1/2; 0.793, 1/2, 1/2; 1/2, 1/2, 0.793; 1/2, 1/2,
0.207). For the (410) and (411) reflections studied in
this work, we obtain the following relationships for the
squares of the magnitudes of the structural factors at
absolute zero:

 (4)

Here, single and double primes indicate the atomic
scattering factors of the metal and boron atoms for the
(410) and (411) reflections, respectively.

The temperature dependence of the structural factor

is characterized by the factor , where CM =

 and CB = . Here, s is the scattering

vector with magnitude sin  and  and  are the
mean-square dynamic displacements of the metal and
boron atoms from their equilibrium positions.

As a consequence, from relationships (2) and (4),
we can derive the following expressions:

 (5)

 (6)

For the LaB6 hexaboride, we obtain sinθ410 = 0.882 and
sinθ411 = 0.916. Hence, the magnitudes of the scattering
vectors are determined to be s' = 0.497 Å–1 and s'' =
0.511 Å–1; i.e., s' and s'' are close in magnitude and dif-
fer from the mean value s =  = 0.504 Å–1 by
no more than 1.5%. This value is less than the disper-
sion of the experimental intensities. For this reason, in
our calculations, the values of s' and s'' were taken to be
identical and equal to the mean value s.

The mean-square dynamic displacements  for

rare-earth metal atoms and  for boron atoms in the
crystal lattices of the hexaborides were calculated from
relationships (5) and (6). The results of these calcula-

F410
2

f M' 2.408 f B'–( )
2
,=

F411
2

f M' 0.216 f B''–( )
2
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e
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8π2
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2
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2
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2
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tions for  at the temperature T = 300 K are in close
agreement with the data reported in [13–20]. However,
the disagreement between the results obtained in this

work and data available in the literature on 
becomes noticeable with an increase in the atomic
number of the metal.

The temperature dependence of the mean-square

dynamic displacement  for the lanthanum and
boron sublattices can be represented as the sum of the
zero-point and temperature-dependent mean-square
atomic displacements:

 (7)

Here,  is the mean square of the amplitude of zero-

point atomic vibrations,  stands for the temperature-
dependent part of the mean-square displacements, θ is

the Debye characteristic temperature, x = , Φ(x) is the

Debye function, m is the atomic weight, h is the Planck
constant, and k is the Boltzmann constant. The paren-
thetic term 0.25 accounts for the contribution of the
zero-point vibrations.

The temperature dependence (T) is satisfacto-
rily approximated by the Debye curve for θLa = 250 K
(Fig. 2a).

The imperfection of the metal and boron sublattices
in rare-earth hexaborides makes a temperature-inde-
pendent contribution to the mean-square atomic dis-
placements. It is believed that this is particularly true in
regard to the sublattice of boron atoms [13]. In order to
determine the temperature-dependent part of the mean-

square displacements of boron atoms (T) for lantha-
num hexaboride, the value of 0.8 × 10–23 m2, which
involves both the contribution of zero-point vibrations

 and the contribution of vacancies and other defects

, was subtracted from the experimental values of

. The subtracted value was determined at the inter-
section point of the ordinate axis and the curve (dashed
line in Fig. 2b) that interpolates the experimental values

of .

From analyzing the temperature-dependent part of

the mean-square displacements of boron atoms (T)
[relationship (7) without the parenthetic term 0.25], the
Debye characteristic temperature of the boron sublat-
tice in lanthanum hexaboride was chosen as θB = 760 K.
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Figure 3 depicts the dependence (T) for the
metal and boron sublattices of lanthanum hexaboride
LaB6 in the temperature range 300–900 K. These
curves were calculated from the Debye temperatures
θLa and θB (see above). For comparison, Fig. 3 presents
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Fig. 2. (a) Mean-square displacements of rare-earth metal
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mean-square displacements of boron atoms  in the crys-

tal lattices of hexaborides. The dashed line represents the

experimental curve (T) for LaB6. Numerals near the
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the experimental data taken from [21]. It can be seen
that the temperature dependences of the mean-square

atomic displacements of lanthanum (T) (curve 3)

and boron (T) (curve 5), which were calculated in
the Debye approximation, are in close agreement with

the experimental data. The curve (T) calculated for
the lanthanum sublattice in the Einstein approximation
at the characteristic temperature θE = 150 K (according
to the data obtained in [13]) lies above the experimental
dependence.

By analogy with the treatment performed for LaB6,
we analyzed the mean-square dynamic displacements

 for rare-earth metal atoms and  for boron atoms
in the sublattices of cerium, praseodymium, and neody-
mium hexaborides in the temperature range 4.2–300 K
(Fig. 2) and obtained the following characteristic tem-
peratures: θCe = 250 K and θB = 780 K for CeB6, θPr =
250 K and θB = 570 K for PrB6, and θNd = 250 K and
θB = 550 K for NdB6.

For the LaB6, CeB6, PrB6, and NdB6 hexaborides,
the Debye temperatures of the metal sublattices coin-
cide to within the error of estimation. Blomberg et al.
[15] determined the Einstein temperatures of the metal
sublattices in NdB6 and SmB6 as follows: θNd = 120 K
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and θSm = 120 K. According to the results obtained by
Trunov et al. [22], the Einstein temperature of the lan-
thanum sublattice in LaB6 proved to be θLa = 150 K,
which substantially exceeds the above value.

In the hexaboride series under consideration (LaB6,
CeB6, PrB6, and NdB6), there exists a tendency toward
a decrease in the Debye temperature of the boron sub-
lattice with an increase in the atomic number of the
metal. This result is consistent with the inferences made
by Chernyshov et al. [19].

Since samarium ions in SmB6 have a mixed valence
and europium ions in EuB6 reside in a bivalent state, the
bonding of atoms in the crystal lattices of these
hexaborides can change in character as compared to
that of trivalent metals.

An analysis of the temperature dependences of the
intensities Ihkl(T) for metal sublattices of samarium and
europium leads to characteristic temperatures close to
those obtained for trivalent hexaborides: θSm = 220 K
and θEu = 220 K.

The tendency to a decrease in the Debye character-
istic temperature of the boron sublattice with an
increase in the atomic number of the metal does not
hold for europium hexaboride: θB = 420 K for SmB6
and θB = 500 K for EuB6.

The temperature dependences of the intensities
I410(T) and I411(T) for gadolinium, terbium, and dyspro-
sium hexaborides are qualitatively similar to those for
the rare-earth hexaborides considered above. At the
same time, the mean-square displacements of atoms in
the metal and boron sublattices differ in both tempera-
ture behavior and magnitude. Consequently, the char-
acteristic temperature of the metal sublattice decreases
with an increase in the atomic number of the metal as
follows: θGd = 170 K and θB = 325 K for GdB6, θTb =
165 K and θB = 410 K for TbB6, and θDy = 165 K and
θB = 380 K for DyB6.

An examination of the intensities of x-ray reflec-
tions for DyB6 revealed that, at temperatures below T =
22 K, the x-ray diffraction patterns contain reflections
of the second phase. This suggests that, at these temper-
atures, dysprosium hexaboride undergoes a structural
phase transition and magnetic ordering [23, 24]. More-
over, the transformations occurring in hexaborides
manifest themselves both in a double peak observed in
the temperature dependence of the heat capacity Cp(T)
[5, 25, 26] and in pronounced anomalies found in the
temperature dependence of the thermal expansion coef-
ficient α(T) in the range of negative values [5, 7]. Since
terbium hexaboride is characterized by similar anoma-
lies in the temperature dependences Cp(T) and α(T), it
can be assumed that this compound also undergoes
transformations of nonmagnetic nature at low tempera-
tures.

It should be noted that the large dispersion of the
experimental intensities of x-ray reflections, especially
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
at the lowest temperatures (4.2–20 K), introduces an
appreciable uncertainty into the intensity Ihkl(0),
which is obtained by extrapolating the averaged
dependence Ihkl(T) to absolute zero and enters into the
relationships (5) used to calculate the mean-square dis-
placements of atoms in the metal and boron sublattices.
According to our estimates, the error introduced into
the determination of the characteristic temperatures for
the metal and boron sublattices due to the dispersion of
the experimental intensities can reach 10–20 K for the
metal sublattice and 20–30 K for the boron sublattice.

Figure 4 illustrates variations in the characteristic
temperatures of boron (θB) and metal (θM) sublattices of
rare-earth hexaborides with a change in the atomic
number of the rare-earth metal according to the results
of calorimetric [5] and x-ray diffraction measurements.
As can be seen from Fig. 4, the characteristic tempera-
tures θM determined for the metal sublattices from the
calorimetric and x-ray diffraction data differ by a rela-
tively small value.

At the same time, the characteristic temperatures θB
obtained for the boron sublattice from the results of cal-
orimetric and x-ray diffraction measurements differ
significantly (by a factor of 1.5–2.5). The observed dif-
ference indicates that, in these cases, the Debye charac-
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Fig. 4. Characteristic temperatures (1, 2) θB of the boron
sublattice and (3, 4) θM of the metal sublattice in rare-earth
hexaborides as functions of the atomic number of the rare-
earth element according to (1, 3) calorimetric and (2, 4) x-ray
diffraction measurements.
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teristic temperatures correspond to vibrations of differ-
ent structural elements of the crystal lattice of
hexaborides. The high Debye temperatures θB, which
were determined from the calorimetric data [5], are
most likely associated with vibrations of individual
boron atoms in a B6 octahedron, whereas the lower
Debye temperatures θB, which were obtained from the
x-ray diffraction data, should be attributed to vibrations
of the B* pseudoatom sublattice.

5. CONCLUSIONS
The main results obtained in the experimental x-ray

diffraction investigation of the mean-square displace-
ments of metal and boron atoms in the crystal lattices of
rare-earth hexaborides can be summarized as follows.

(1) The mean-square displacements  for metal

atoms and  for boron atoms were experimentally
determined in the temperature range 4.2–320 K. Exper-
imental values of the mean-square atomic displace-
ments for GdB6, TbB6, and DyB6 were obtained for the
first time.

(2) The Debye characteristic temperatures θM for the
metal sublattice and θB for the boron sublattice of rare-
earth hexaborides were calculated in the Debye approx-
imation from the temperature dependences of the

mean-square displacements (T) and (T). It was
found that the characteristicθM temperatures θM and θB
decrease with an increase in the atomic number of the
metal.

(3) Unlike the Debye temperatures θB, which were
determined from the calorimetric data and correspond
to vibrations of boron atoms in a B6 octahedron, the
considerably lower temperatures θB, which were
obtained from the x-ray diffraction data, characterize
vibrations of the octahedra as a whole.
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Abstract—The crystal structure and vibrational dynamics of lithium atoms in Li3.75Ge0.75V0.25O4 and
Li3.70Ge0.85W0.15O4 solid electrolytes in the superionic state are investigated using neutron diffraction and
nuclear magnetic resonance (NMR) spectroscopy. It is found that, in the crystal lattice, lithium ions occupy four
nonequivalent positions in the tetrahedral and octahedral oxygen ion environment with vacancies in the octa-
hedra. These findings are in good agreement with the NMR data on the dynamic inhomogeneity of lithium cat-
ions in the lattice. It is shown that the origin of the superionic state in the studied compounds is associated pri-
marily with the geometric factor, i.e., with an increase in the size of cavities in the oxygen polyhedra surround-
ing lithium cations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Solid solutions based on lithium orthogermanate in
Li4GeO4–Li3AVO4 (A = P or V) and Li4GeO4–Li2BVIO4

(B = S, Cr, Se, Mo, or W) systems are very promising
solid electrolytes with lithium cationic conductivity [1].
The electrical conductivity of these compounds reaches
10–4 S cm–1 at room temperature and exceeds 1 S cm–1

at 870 K in the superionic state. The Li3.75Ge0.75V0.25O4

and Li3.70Ge0.85W0.15O4 compounds are typical repre-
sentatives of this class of materials. The former com-
pound exhibits maximum conductivity at high temper-
atures, whereas the conductivity of the latter compound
is maximum at low temperatures. Unfortunately, the
nature of the superionic state and the dynamics of its
formation are still poorly understood. This can be
explained by the lack of detailed information on the
thermal behavior, phase transitions, and stability of
solid electrolytes at high temperatures. In this respect,
the main objective of the present work was to elucidate
the mechanisms and criteria of the formation of the
superionic state. For this purpose, we used high-tem-
perature neutron diffraction and NMR spectroscopy,
which made it possible to investigate fine structure
characteristics that are “averaged” over the volume, on
the one hand, and exhibit local (on the scale of inter-
atomic distances) sensitivity to the nearest environ-
ment, on the other.
1063-7834/03/4508- $24.00 © 21549
2. EXPERIMENTAL TECHNIQUE

Samples of Li3.75Ge0.75V0.25O4 and
Li3.70Ge0.85W0.15O4 solid electrolytes were synthesized
according to a standard procedure described in detail in
[2, 3]. The neutron diffraction investigations of the
crystal structure were performed at temperatures of 298
and ~850 K with the use of a D7a neutron diffractome-
ter installed at the horizontal channel of an IVV-2M
reactor (Zarechnyœ, Russia). The measurements were
carried out in the angle range 9°–111° with a step of
0.1°; the angular resolution of the diffractometer at the
wavelength λ = 1.515 Å was ∆d/d = 0.3% [4]. At high
temperatures, the samples were placed in sealed silica
tubes in order to prevent their contact with air. The
structural parameters (coordinates, site occupancies,
unit cell parameters, etc.) were refined by the Rietveld
full-profile method [5] with the Fullprof program pack-
age [6].

The nuclear magnetic resonance (NMR) investiga-
tions of the solid electrolytes were carried out on a
modified Bruker SXP4-100 pulsed spectrometer in the
temperature range 290–800 K. The spin–lattice relax-
ation times for 7Li nuclei were measured during the
course of nuclear magnetization recovery after satura-
tion of the NMR line. The frequency was 27.3 MHz.
003 MAIK “Nauka/Interperiodica”
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3. RESULTS

3.1. Crystal Structure

Figure 1 shows the neutron diffraction patterns of
the Li3.75Ge0.75V0.25O4 (Fig. 1a) and Li3.70Ge0.85W0.15O4
(Fig. 1b) compounds at room temperature. As can be
seen from this figure, the experimental neutron diffrac-
tion patterns of both samples are similar to each other.
All reflections in these diffraction patterns are indexed
in the orthorhombic space group Pnma. This is in good
agreement with the x-ray diffraction data obtained by
Burmakin et al. [7], according to which the crystal
structure of these compounds is similar to the structure
of the so-called γ phases (derivatives of the γ modifica-
tion of Li3PO4). This structure was described earlier by
Zemann [8]. More recent neutron diffraction investiga-
tions [9, 10] demonstrated that, in the isostructural
compound Li3.5Ge0.5V0.5O4, excess lithium ions occupy
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Fig. 1. Neutron diffraction patterns of
(a) Li3.75Ge0.75V0.25O4 and (b) Li3.70Ge0.85W0.15O4 com-
pounds at room temperature. Circles represent experimental
data. The upper solid lines are the calculated neutron dif-
fraction curves. The lower solid lines show the difference
between the experimental and calculated data. Tic marks
indicate the angular positions of reflections.
P

octahedral interstitial position. The proposed model of
the crystal lattice served as the starting model for ana-
lyzing our experimental neutron diffraction patterns of
the Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 com-
pounds. The refinement procedure was as follows. At
the first stage of the refinement, the occupancies of ger-
manium (vanadium) and oxygen positions were fixed,
whereas lithium ions were distributed with an equal
probability over the possible positions. At this stage, we
varied the scale factor, the occupancies of the crystallo-
graphic positions of lithium atoms, and all the atomic
coordinates. It turned out that, in general, this model
adequately describes the experimental data. However,
the R factors characterizing the discrepancy (or agree-
ment) between the experimental and calculated data
were relatively large (15–20%). For this reason, the
refinement at the second stage included the occupan-
cies of germanium (vanadium) positions, the shape and
width of reflections, and thermal parameters in the iso-
tropic approximation. The thermal parameters for ger-
manium atoms were taken equal to those for vanadium
atoms. Moreover, the thermal parameters for all lithium
atoms were assumed to be identical. It was found that
the total occupancy of lithium sites and the amount of
lithium used in the synthesis coincide to within the lim-
its of experimental error. Taking into account this cir-
cumstance, the total amount of lithium in the lattice was
fixed in further refinement. At the next stage, we addi-
tionally varied the thermal parameters of lithium atoms
under the assumption that their values for tetrahedral
positions are equal to each other and that the thermal
parameter of lithium ions in octahedral positions are
also identical. As a result, the convergence was consid-
erably improved but the thermal parameters of lithium
ions in the tetrahedral positions appeared to be rela-
tively large (B ≈ 8–10 Å–2). Such large values of the
thermal parameters suggest uncorrelated statistical dis-
placements of the lithium cations inside the tetrahedra.
By analogy with the model proposed in [9, 10], we can
assume that, in the above tetrahedra, the 4c and 8d posi-
tions of lithium are split into two positions each. Under
this assumption, the refinement offers more exact val-
ues of the thermal parameters. At the last stage of the
refinement, we varied individual thermal parameters of
the geranium and oxygen atoms in the anisotropic
approximation. The calculated neutron diffraction pat-
terns of the Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4
compounds are depicted by the upper solid lines in
Figs. 1a and 1b, respectively. Judging from the differ-
ence curves (lower solid lines in Figs. 1a and 1b), the
experimental and calculated data are in close agree-
ment. A similar procedure was also used to refine the
structural parameters obtained at a high temperature;
however, at the last stage, we revealed two facts indicat-
ing removal of the degeneracy at the tetrahedral lithium
positions. First, the calculated Debye–Waller factors
proved to be very small for tetrahedral lithium positions
(B ≈ 1–2 Å2). Second, the occupancies of the split posi-
tions leveled off and the x coordinates of the atoms
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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became identical. Removal of the degeneracy did not
deteriorate the convergence of the calculated and exper-
imental data, and the thermal parameters of lithium
atoms in these positions became close to those for the
other atoms. The refined structural parameters are listed
in Table 1.

3.2. NMR Data 

The NMR spectra of the Li3.75Ge0.75V0.25O4 com-
pound at three temperatures are shown in Fig. 2. The
7Li NMR spectrum at T = 295 K contains only one
broadened line (Fig. 2a). As the temperature increases
to ~480 K, this line becomes narrower and satellite
lines appear in the 7Li NMR spectrum (Fig. 2b). With a
further increase in the temperature, the intensities of the
satellites decrease and they virtually disappear at T ~
600 K (Fig. 2c). The 7Li NMR spectrum at T = 625 K
closely resembles the spectrum obtained at room tem-
perature, except that, in the former case, the sole line is
very narrow. The evolution of the NMR spectra of the
Li3.70Ge0.85W0.15O4 compound with variations in the
temperature is similar to that of the Li3.75Ge0.75V0.25O4
compound. However, the NMR spectra of the former
compound slightly differ from those of the latter com-
pound. For example, the NMR spectrum of the
Li3.70Ge0.85W0.15O4 compound at room temperature also
contains only one line, but its half-width (~4.6 kHz) is
somewhat larger than that for the Li3.75Ge0.75V0.25O4
compound (~4 kHz). The heating of the
Li3.70Ge0.85W0.15O4 compound also leads to the appear-
ance of satellites in the NMR spectrum. However, they
are more smeared than the satellites for the
Li3.75Ge0.75V0.25O4 compound, even though the central
intense line at these temperatures is narrower by a fac-
tor of more than two. As the temperature increases
above 600 K, the satellites in the spectrum of the
Li3.70Ge0.85W0.15O4 compound disappear, the central
line becomes narrow, and its width is equal to the line
width in the spectrum of the Li3.75Ge0.75V0.25O4 com-
pound at the same temperature (Fig. 2c).

4. DISCUSSION

The crystal lattice of the Li3.75Ge0.75V0.25O4 and
Li3.70Ge0.85W0.15O4 compounds is shown in Fig. 3. As
was described in [8], the structure represents a rigid
atomic framework consisting of oxygen tetrahedra cen-
tered at germanium (partially replaced by vanadium or
tungsten) and lithium ions. In the figure, the tetrahedra
are depicted in the form of solid polyhedra [darker for
tetrahedra centered at germanium (vanadium or tung-
sten) ions and lighter for tetrahedra centered at lithium
ions]. The adjacent tetrahedra are rotated through an
angle of 180° with respect to each other and form a zig-
zag chain along the a axis (the vertical axis in the fig-
ure). The tetrahedra are slightly distorted and are tilted
in different directions with respect to the a axis. From
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
the structural parameters (Table 1), we calculated the cat-
ion–anion distances in the tetrahedra. The mean bond
lengths [Ge(V)–O, ≈ 1.743 Å; Ge(W)–O, ≈ 1.771 Å] cal-
culated from the experimental data for these compounds
at room temperature are close to the theoretical values
(Ge4+–O, 1.785 Å; V5+–O, 1.685 Å; W6+–O, 1.73 Å) for
the coordination number equal to four (tetrahedron)
[11–14]. The lattice contains two types of tetrahedra
centered at lithium ions. The mean lithium–oxygen dis-
tances in these tetrahedra are equal to 2.03 and 1.99 Å
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Fig. 2. Experimental NMR spectra of the
Li3.75Ge0.75V0.25O4 compound at temperatures of (a) 295
(the solid and dotted lines represent the Lorentzian and
Gaussian shapes, respectively), (b) 484, and (c) 625 K.
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Table 1.  Experimental lattice parameters of Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 compounds at different temperatures

Position Parameters
Li3.75Ge0.75V0.25O4 Li3.70Ge0.85W0.15O4

T = 25°C T = 575°C T = 25°C T = 600°C

a, Å 10.896(1) 11.043(3) 10.938(1) 11.052(1)
b, Å 6.2516(8) 6.368(2) 6.274(1) 6.345(1)
c, Å 5.1571(6) 5.223(1) 5.1609(6) 5.244(1)
V, Å3 351.35(7) 367.3(3) 354.18(7) 367.71(7)

Li(1)-(4c) x 0.075(2) 0.114(7) 0.092(3) 0.110(8)
z 0.644(5) 0.664(9) 0.668(7) 0.667(9)
B, Å2 1.49(3) 4.3(3) 0.59(8) 4.2(4)
Site occupancy 0.75(5) 1.0 0.61(3) 1.0

Li(1a)-(4c) x 0.114(6) 0.084(6)
z 0.765(8) 0.868(8)
B, Å2 1.49(3) 0.59(8)
Site occupancy 0.25(5) 0.39(3)

Li(2)-(8d) x 0.169(2) 0.162(6) 0.168(2) 0.167(4)
y –0.011(3) –0.069(9) –0.024(3) –0.031(6)
z 0.313(3) 0.362(9) 0.325(4) 0.327(6)
B, Å2 1.78(9) 4.9(4) 1.13(9) 4.11(9)
Site occupancy 1.37(4) 2.0 1.40(4) 2.0

Li(2a)-(8d) x 0.143(4) 0.168(4)
y 0.027(6) 0.052(7)
z 0.109(8) 0.116(8)
B, Å2 1.78(9) 1.13(9)
Site occupancy 0.63(4) 0.60(4)

Li(4)-(8d) x 0.327(6) 0.175(8) 0.285(9) 0.190(9)
z 0.015(6) 0.094(9) 0.038(6) –0.022(7)
B, Å2 3.5(8) 4.6(9) 0.67(9) 3.7(9)
Site occupancy 0.26(1) 0.33(5) 0.16(2) 0.36(2)

Li(3a)-(4c) x 0.031(6) 0.046(7) 0.039(4) 0.041(6)
y 0.518(7) 0.496(7) 0.440(7) 0.485(9)
z 0.389(7) 0.441(9) 0.384(7) 0.421(8)
B, Å2 3.5(8) 4.6(9) 0.67(9) 3.7(9)
Site occupancy 0.49(1) 0.42(5) 0.54(2) 0.34(2)

Ge/V-(4c) x 0.4152(7) 0.4164(8) 0.4157(5) 0.4156(5)
z 0.339(1) 0.346(2) 0.345(1) 0.345(1)
β11 0.0022(6) 0.0061(21) 0.0032(9) 0.0082(19)
β22 0.0188(24) 0.0439(96) 0.0210(21) 0.0520(41)
β33 0.0196(29) 0.0336(89) 0.0072(17) 0.0272(57)
Site occupancy 0.75/0.25 0.75/0.25 0.85/0.15 0.85/0.15

O(1)-(8d) x 0.3363(5) 0.3332(9) 0.3353(5) 0.3352(6)
y 0.0217(7) 0.033(1) 0.0215(8) 0.0226(11)
z 0.2242(8) 0.233(1) 0.2217(8) 0.232(1)
β11 0.0025(4) 0.0055(13) 0.006(4) 0.007(4)
β22 0.0159(17) 0.0359(55) 0.0130(19) 0.0330(39)
β33 0.0099(15) 0.0200(83) 0.0177(21) 0.0277(31)
Site occupancy 2.0 2.0 2.0 2.0

O(2)-(4c) x 0.4134(6) 0.415(1) 0.4138(6) 0.4136(7)
z 0.676(1) 0.666(1) 0.670(1) 0.671(1)
β11 0.0029(7) 0.0146(29) 0.0035(7) 0.0145(27)
β22 0.0107(25) 0.0134(65) 0.0176(29) 0.0196(49)
β33 0.0066(20) 0.0066(20) 0.0016(20) 0.0046(28)
Site occupancy 1.0 1.0 1.0 1.0

O(3)-(4c) x 0.0606(8) 0.060(2) 0.0623(7) 0.0601(7)
z 0.280(1) 0.251(4) 0.259(1) 0.257(1)
β11 0.0039(8) 0.0056(20) 0.0019(8) 0.0069(18)
β22 0.0177(26) 0.0289(62) 0.0189(36) 0.0389(41)
β33 0.0150(33) 0.0615(99) 0.0414(55) 0.0514(65)
Site occupancy 1.0 1.0 1.0 1.0

Note: a, b, and c are the unit cell parameters; V is the unit cell volume; x, y, and z are the fractional atomic coordinates; B is the isotropic
thermal parameter; and β11, β22, and β33 are the anisotropic thermal parameters. Atoms at the 4c and 8d positions have the (x, 1/4, z)
and (x, y, z) coordinates, respectively.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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in the Li3.75Ge0.75V0.25O4 compound and 2.01 and 1.99 Å
in the Li3.70Ge0.85W0.15O4 compound. The characteristic
Li–O distance in the fourfold coordination varies from
1.99 to 2.04 Å, which agrees well with the experimental
data. The coincidence between the theoretical and
experimental interatomic distances allows us to make
an inference regarding strong cation–oxygen bonding
in the tetrahedra, which confirms the formation of a
rigid framework in the structure of the studied com-
pounds. On this basis, the formulas of the compounds
can be rewritten as Li4 – zxGe1 – xMxO4, where z is the dif-
ference between the oxidation states of the element M
(in our case, V or W) and germanium. The formulas can
also be represented as Li1 – zx[Li3Ge1 – xMxO4], where
the formula in the square brackets corresponds to a
rigid framework composed of tetrahedra in a crystal
structure of the γ-Li3PO4 type. In this structure, the oxy-
gen tetrahedra shared by vertices are closely packed,
but, at the same time, sufficiently large octahedral holes
are formed between them. Consequently, the Li1 – zx

ions that are surplus for the structure of the γ-Li3PO4

modification occupy these octahedra (Fig. 3), which
share faces with each other and with tetrahedra. Two
important facts should be noted. First, in the
Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 compounds,
the volume of the octahedral holes is relatively large
and lithium ions are weakly bound in them. Indeed, the
mean experimental Li–O interatomic distances in the
octahedral holes are equal to 2.29 and 2.32 Å, respec-
tively. These distances exceed the theoretical Li–O dis-
tance (2.135 Å) for the sixfold coordination by more than
0.15 Å. Second, the positions under consideration are
only partially occupied (~60%). These facts permit us to
draw the inference that, at room temperature, the con-
duction in the Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4

compounds is predominantly provided by weakly
bound lithium ions in octahedra. It can be seen from
Fig. 3 that, in the structure, the planes of lithium atoms
in octahedra of two types alternate along the a axis.
Most likely, the conduction occurs along these planes,
even though it is quite possible that lithium ions can
execute hoppings between the planes. The conductivity
of the Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 com-
pounds at room temperature is not very high, because
the size of the cavities between oxygen ions, which sep-
arate two adjacent octahedra, is slightly less than the
radius of lithium ions; hence, lithium ions should over-
come the potential barrier between them. The potential
barrier height for the Li3.70Ge0.85W0.15O4 compound is
somewhat lower, since the size of tungsten ions is larger
than that of vanadium ions. This results in an increase
in the unit cell volume and, correspondingly, in the size
of cavities that provide hopping of lithium ions. That is
why the lithium cationic conductivity of the
Li3.70Ge0.85W0.15O4 compound at room temperature is
higher than that of the Li3.75Ge0.75V0.25O4 compound
[2, 3]. It seems likely that lithium ions rigidly bound in
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
tetrahedra are not involved in the conduction at room
temperature.

As the temperature increases, the Li3.75Ge0.75V0.25O4
and Li3.70Ge0.85W0.15O4 compounds transform into the
superionic state characterized by high conductivity. Let
us consider the changes in the crystal structure upon
transition to the superionic state. As can be seen from
the data presented in Table 1, this transition is accom-
panied by a considerable increase in the unit cell vol-
ume, a redistribution of lithium ions over octahedra,
and an increase in the amplitudes of thermal atomic
vibrations. As was noted above, the degeneracy of lith-
ium positions in tetrahedra is removed. Moreover, their
vibrational amplitudes increase. The above changes
lead to an increase in the interatomic distances in the
lattice. In turn, this implies that an increase in the tem-
perature is attended by an increase in the size of cavities
between octahedra and tetrahedra. According to the cal-
culations from the obtained structural parameters, the
radius of cavities at a temperature of ≈850 K increases
to ≈0.67–0.69 Å. This radius is larger than the typical
lithium radii in tetrahedra (≈ 0.59 Å) and octahedra
(≈0.64 Å). Furthermore, this radius can increase owing
to thermal atomic vibrations whose mean amplitude
exceeds 0.2 Å at the given temperature. Therefore, it
can be stated that, in the superionic state, lithium ions
rather easily migrate over the lattice and lithium ions of
tetrahedra are also involved in the migration. It is rea-
sonable that the aforementioned changes result in a
substantial decrease in the height of the potential bar-
rier (separating the occupied lithium site from an empty

Fig. 3. Crystal lattice of the Li3.75Ge0.75V0.25O4 and
Li3.70Ge0.85W0.15O4 compounds. Oxygen atoms occupy
vertices of the tetrahedra. Dark oxygen tetrahedra are cen-
tered at germanium (vanadium or tungsten) atoms. Dark
gray and light gray oxygen tetrahedra are centered at lith-
ium ions in the Li(1) and Li(2) positions, respectively.
Spheres are lithium ions in the octahedral positions Li(3)
and Li(4).
3
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site) and, hence, in a decrease in the activation energy.
This is in good agreement with the available data on the
conductivity of the studied compounds [2, 3]. The tem-
perature dependences of the conductivity for these solid
solutions in the Arrhenius coordinates are characterized
by high-temperature and low-temperature portions.
Note that the activation energy for conduction at high
temperatures is less than that at low temperatures.
Moreover, the structural data allow understanding of
the difference between the conductivities of the
Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 compounds
in the superionic state. The conductivity is determined
by the mobility of charge carriers, on the one hand, and
by their concentration, on the other. At low tempera-
tures, the conductivity of the given compounds is gov-
erned primarily by the lithium cation mobility associ-
ated with the geometric factor. An increase in the tem-
perature leads to a change in the contributions to the
conductivity. In this case, the contribution of the carrier
concentration increases and the conductivities of both
compounds become equal to each other at a certain
temperature. With a further increase in the temperature,
the conductivity is predominantly determined by the
carrier concentration, which is higher in the
Li3.75Ge0.75V0.25O4 compound.
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Fig. 4. Temperature dependences of the relaxation times for
7Li nuclei in (a) Li3.75Ge0.75V0.25O4 and (b)
Li3.70Ge0.85W0.15O4 compounds.
PH
The above inferences were supported by the high-
temperature NMR data for the studied compounds. The
NMR spectra of both compounds at room temperature
consist of a broad line (as an example, Fig. 2a shows the
NMR spectrum of the Li3.75Ge0.75V0.25O4 compound).
The shape of this line is intermediate between Gaussian
and Lorentzian (although it is closer to a Lorentzian
shape). This line shape suggests that, even at room tem-
perature, lithium ions execute hoppings between the
nearest empty sites in the lattice. This inference is con-
firmed by the results obtained by Burmakin and Lakh-
tin [15], who studied Li4GeO4–Li2WO4 solid solutions
containing 10 and 20 mol % Li2WO4 by stationary
NMR spectroscopy. Therefore, the Li3.75Ge0.75V0.25O4
and Li3.70Ge0.85W0.15O4 compounds possess lithium cat-
ionic conductivity at room temperature.

As was already mentioned, upon heating of the
Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 compounds
above room temperature, the lines in the spectra rapidly
become increasingly narrow. An increase in the temper-
ature to ≈480 K leads to the appearance of a narrow
central line and satellites in the 7Li NMR spectra
(Fig. 2b). Since the satellites in the NMR spectrum of
the Li3.75Ge0.75V0.25O4 compound are clearly defined as
compared to those in the spectrum of the
Li3.70Ge0.85W0.15O4 compound, the spectrum of the
former compound is depicted in Fig. 2b. The satellites
indicate a dynamic inhomogeneity of lithium cations,
i.e., the coexistence of several nonequivalent lithium
positions in the lattice. Judging from the number of sat-
ellites, the lithium ions can occupy four nonequivalent
positions in the lattice, which is in complete agreement
with the neutron diffraction data. The satellites are
associated with the quadrupole interaction of 7Li nuclei
(with spin I = 3/2) in four nonequivalent positions. The
quadrupole interaction constants are equal to 11, 17,
26, and 30 kHz. An increase in the temperature above
560 K results in a further narrowing of the central lines
for both samples, a decrease in the intensity of the sat-
ellites, and their smearing (Fig. 2c). This behavior can
be explained by the participation of all lithium ions in
the diffusion motion. In neutron diffraction experi-
ments, this manifests itself in a substantial increase in
the amplitudes of atomic vibrations.

Analysis of the NMR data makes it possible to eval-
uate the activation energy for migration of lithium
atoms and its temperature dependence. The recovery of
7Li nuclear magnetization after saturation at tempera-
tures below 500 K can be described by two exponential
functions corresponding to strongly and weakly bound
lithium ions in the lattice. By separating the rapidly
relaxing component of the 7Li nuclear magnetization, we
calculated the temperature dependences of the spin–lat-
tice relaxation time (Figs. 4a, 4b). These dependences
exhibit a behavior typical of the translational diffusion of
ions. At the maxima, the following relationship should
be satisfied: ωτ ≈ 1, where ω = 2π × 27 × 106 rad s–1 and
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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Table 2.  Activation energies E for migration of Li+ cations according to the NMR data and the results of measurements of the elec-
trical conductivity σ [2, 3] in the low-temperature (LT) and high-temperature (HT) ranges of the dependence of ln(1/T1) on 1/T

Compound

E, eV

from NMR data from experimental data on the electrical
conductivity σ

LT HT LT HT

Li3.75Ge0.75V0.25O4 0.420 ± 0.014 0.311 ± 0.007 0.540 ± 0.010 0.340 ± 0.010

Li3.70Ge0.85W0.15O4 0.401 ± 0.007 0.182 ± 0.009 0.415 ± 0.010 0.235 ± 0.010
1/τ is the frequency of lithium ion hoppings (s–1). Let us
assume that the second moment M2 of the resonance
line at low temperatures is determined by the quadru-
pole interaction of the quadrupole moment of the 7Li
nucleus with an electric-field gradient at the nucleus in
the lattice and that the narrowing of the resonance line
and the change in the relaxation time T1 are governed
by the translational diffusion associated with the hop-
pings of lithium ions over equilibrium positions at the
frequency 1/τ. In this case, according to [16], the spin–
lattice relaxation rate can be determined by the expres-
sion

 (1)

The hopping frequency is associated with the thermal
excitations and can be represented by the Arrhenius
relationship

 (2)

From these formulas, we can estimate the activation
energy E for migration of lithium atoms. The results
obtained are presented in Table 2. For comparison, the
activation energies calculated from the data on the elec-
trical conductivity [2, 3] are also given in this table. It
can be seen that the activation energies determined
from the high-temperature and low-temperature linear
portions of the dependences of the relaxation rate on the
reciprocal of the temperature differ significantly. The
activation energy for ion migration at low temperatures
exceeds the activation energy at high temperatures
(Table 2), which is consistent with the inference drawn
from the structural data. This circumstance and the
smeared maxima of the above dependences indicate
that the activation energy for migration is characterized
by a distribution due to the nonequivalence of lithium
positions in the structure.

The activation energies calculated from the temper-
ature dependences of the electrical conductivity are
higher than those determined from the NMR data. This
ratio is rather frequently observed [17] and, as a rule, is
explained by the fact that all ion hoppings (including
local hoppings which do not contribute to the conduc-
tivity) can be revealed by the NMR method, whereas
the activation energy determined from the electrical

1/T1 M2τ / 1 ω2τ2
+( ).∼

τ τ 0 E/kT[ ] .exp=
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conductivity is associated with the translational motion
of particles over large distances.

5. CONCLUSIONS

Thus, the Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4
compounds were studied using neutron diffraction and
nuclear magnetic resonance spectroscopy. The main
results can be summarized as follows:

(1) In the crystal lattice, lithium cations occupy four
nonequivalent positions and form either strong bonds in
the tetrahedra or weak bonds in the octahedra.

(2) The electrical conduction of the studied com-
pounds at room temperature is provided by weakly
bound lithium cations at octahedral partially occupied
sites.

(3) The electrical conductivity is determined by geo-
metric factors, specifically by the size of cavities
between the octahedra.

(4) The cavity size and, consequently, the electrical
conductivity in the Li3.70Ge0.85W0.15O4 compound
exceed the corresponding quantities in the
Li3.75Ge0.75V0.25O4 compound.

(5) The geometric factor is responsible for the for-
mation of the superionic state.

(6) In the superionic state, all the lithium cations
located in octahedra and tetrahedra are involved in
charge transfer. This is explained by the thermal expan-
sion of the lattice and, hence, by the increase in the cav-
ity size, which, in the superionic state, becomes larger
than the radius of lithium cations.

(7) In the superionic state, the electrical conductiv-
ity is governed primarily by the charge carrier concen-
tration. The carrier concentration in the
Li3.75Ge0.75V0.25O4 compound is higher than that in the
Li3.70Ge0.85W0.15O4 compound.
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Abstract—Nonlinear theory of microscopic and macroscopic strains is developed for the case of large inho-
mogeneous relative displacements of two sublattices making up a complex crystal lattice; in this case, in addi-
tion to an acoustic mode, a pseudooptical, strongly nonlinear mode is excited. The equation of relative motion
of the sublattices can be solved exactly for the specific case of a centrosymmetric crystal. The corresponding
equilibrium equation is the sine-Helmholtz equation and has a doubly periodic solution. This solution describes
fragmentation of the lattice, more specifically, the appearance of a domain superstructure with large periods,
whose building blocks contain oppositely sensed rotons separated by topological defects that are opposite in
sign. Purely elastic microscopic strains are followed by elastoplastic ones. Both types of strain arise as a result
of bifurcation, which causes a change from the initially homogeneous strain field to an inhomogeneous one.
The domain sizes take on optimal values when the external homogeneous macroscopic strains reach a certain
threshold magnitude. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable recent attention has been focused on the
problem of structural and phase transformations occur-
ring in the presence of stress and strain fields. Earlier
attempts to solve this problem within the complex-lattice
model by introducing internal degrees of freedom have
shown that the linear theory can predict new effects.
However, this approach is inefficient, because small
changes in the internal structure are merely a direct con-
sequence of variations in the macroscopic geometry of
the crystal lattice and give rise only to renormalization of
the material constants; that is, the complex-structure
model reduces, in essence, to the simple-structure model
[1, 2]. The main new effects revealed are as follows: the
appearance of new optical vibrational modes, spatial and
time dispersion of elastic properties, and the related
effects in statics. No radical structural changes have been
revealed within the linear theory.

In this paper, we deal with strongly nonlinear optical
vibrations and show that radical changes in the crystal
structure (local topology) can occur. Among these
changes are polymorphic transformations, bifurcations,
the formation of defects, bond switching, and changes
in short-range and long-range order.

For the sake of simplicity, we consider the case of
two sublattices. In terms of the linear theory of crystal
lattices [3, 4], we can write two equations of motion
(for acoustic and optical modes, respectively):

 (1)

 (2)

ρU̇̇i cikjuk j, λ ikjmUk jm, O1,+ +=

µ u̇̇i ckijUk j,– ĉkijuk j,– pikuk– kikjmuk jm, O2.+ +=
1063-7834/03/4508- $24.00 © 21557
Here, a dot indicates differentiation with respect to time
and a comma among tensor indices indicates differenti-
ation with respect to the corresponding spatial coordi-
nates. A repeated subscript in a term implies that the
term is summed over the values of the repeated index.
In Eqs. (1) and (2), Ui is the displacement vector of the
center of mass of a unit cell (the motif of the complex
lattice) and ui is the (reduced) relative displacement
vector of the two atoms in each unit cell. The latter dis-
placement is measured in units of the Bravais lattice
(sublattice) period; therefore, if |ui | = 1, the relative sub-
lattice displacement is equal to one period. The quantity
ρ is the atomic mass density and µ is the reduced mass
density of two atoms in a unit cell. The terms O1 and O2
include higher derivatives with respect to the space
coordinates; these terms are neglected in the long-
wavelength approximation.

The elastic-constant tensors have the following
symmetry properties: pij = pji and  = – . The
fourth-rank tensors kikjm and λikjm are symmetric under
permutations of indices in pairs (without permutation
of the pairs) only in the case of pair (central) interac-
tions. We note that, in the continuum elasticity theory,
these tensors are also symmetric under a permutation of
pairs of indices. The symmetry under permutations of
indices in pairs is absent in the case of many-particle
(noncentral) interactions.

First, we consider Eqs. (1) and (2). The first terms in
the right-hand sides (with coefficients ckij and ) are
cross terms, which are responsible for local interaction
among different modes and are nonzero only in the case

ĉikj ĉkij

ĉkij
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of noncentrosymmetric crystals (because the corre-
sponding tensors are of odd rank). Higher order cross
terms are included in the terms O1 and O2.

If we neglect the term O1 with higher derivatives,
Eq. (1) for acoustic modes reduces to a macroscopic
equation for vibrations of a dispersionless elastic con-
tinuum. In general, higher order derivatives with
respect to spatial coordinates allow for long-range
forces and the gradients of macroscopic displacements
Ui, k characterize changes in the size and shape of the
entire body (its external geometry).

In Eq. (2), the third term in the right-hand side does
not involve a derivative and describes the interaction
between neighboring atoms in a unit cell, i.e., the inter-
action between the sublattices. The displacement vector
ui in this term represents a change in the short-range
order in the lattice, i.e., a change in the internal geome-
try (structure) of the medium.

2. BASIC RELATIONS

In order to describe large changes in the internal
structure in terms of the internal degrees of freedom ui,
we generalize Eq. (2) in the following way. If the rela-
tive sublattice displacements ui are large, the linear
term should be replaced by a nonlinear odd vector func-
tion Pi(uj) = –Pi(–uj). Since the complex lattice pos-
sesses translation symmetry, this function must be peri-
odic and its period must be equal to the period b of the
Bravais lattice along the direction of the corresponding
displacement.

Thus, Eqs. (1) and (2) are replaced by the equations

 (3)

 (4)

Here, the terms O1 and O2 have the same meaning as in
the linear equations. Since the displacement uj is mea-
sured in units of the Bravais lattice period (along the
corresponding direction), the periods of the nonlinear
function are integers. In particular, if Pi  sin(2πu),
then, in the case of u = |uj | = 1, the sublattices occupy a
new, but crystallographically equivalent (nearest) posi-
tion; therefore, the displacement u is defined to within
an integer. For such displacements, the atomic bonds
are switched and the nearest neighbors of each atom are
changed; i.e., a change in the internal structure occurs.
These effects will not take place if the displacements
are not very large, u < 1/2. In this paper, we consider
significantly nonlinear effects (u ≥ 1/2).

A periodic vector function can be written as Pi ≡
∂d/∂ui, where d(uj) is a periodic scalar function (invari-
ant under symmetry transformations of the coordi-
nates). In the case under study, this function is the
energy of the rigidly translated sublattices relative to
each other. An expression for this energy is given in the
next section.

ρU̇̇i cikjuk j, λ ikjmUk jm, O1,+ +=

µ u̇̇i = –ckijUk j, ĉkijuk j,– Pi u j( )– kikjmuk jm, O2.+ +
P

In this paper, we restrict our consideration to the
simplest case of a centrosymmetric crystal, for which

 (5)

It is clear that, in this case, we consider only low-
frequency vibrations of the crystal and neglect high-fre-
quency vibrations: the displacements (directed along
the y axis) are time-independent. Further, for crystals
with symmetry higher than monoclinic and triclinic, we
have

 (6)

This differential operator does not involve mixed deriv-
atives, which is due to the high symmetry of the crystal
lattice under study and to the fact that the vector ui is
assumed to have only one component.

Thus, we will consider the following two indepen-
dent equations in the long-wavelength approximation:

 (7)

 (8)

These equations do not contain cross terms; therefore,
there is no local interaction between different deforma-
tion modes in the long-wavelength approximation (in
centrosymmetric crystals). Theoretically, such interac-
tion will arise if we include higher derivatives (nonlocal
terms O1, O2), thereby allowing for finite characteristic
length scales.

The inclusion of higher derivatives makes solution
of these equations very complicated. For this reason,
we develop a phenomenological theory in which the
interaction between different modes arises as a result of
spatial averaging on a mesoscopic scale (see Section 6).

3. MICROSCOPIC STRAINS ASSOCIATED 
WITH A RELATIVE DISPLACEMENT 

OF THE SUBLATTICES

First, we consider Eq. (8). This equation can be
derived by minimizing the energy functional

 (9)

The limits of integration will be discussed later. The
parameters k1 and k2 will be referred to as the shear and
extension microscopic moduli, respectively. It should
be noted that the dimensions of these moduli are differ-
ent from those of the respective macroscopic moduli,

cikj ĉkij 0, ui 0 u 0, ,( ),= = =

u u x y,( ), Pi u j( ) p 2πu( ).sin=

kikjmuk jm, k1
∂2

u

∂x
2

-------- k2
∂2

u

∂y
2
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ρU̇̇i λ ikjmUk jm, ,=
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because atomic displacements are measured in units of
the lattice period b. The (positive) parameter p is the
amplitude of the periodic interaction potential between
chains (sublattices) and, on the other hand, the maxi-
mum interaction force between the sublattices. The
dimensions of this parameter are identical to those of
the volume energy density.

The energy functional in Eq. (9) can be used to
describe cubic, hexagonal, rhombohedral, tetragonal,
and orthorhombic crystals in the case where the dis-
placement vector has only one nonzero component,
ui  (0, uy , 0). Since the microscopic moduli k1 and
k2 are not equal, the model at hand includes anisotropy.

The third, periodic term in Eq. (9) is the interaction
energy d of the rigidly displaced atomic chains (sublat-
tices) in the long-wavelength approximation, while the
first two terms are the energies associated with elastic
shear and tensional strains of the sublattices, respec-
tively. Therefore, the model allows for inhomogeneous
microscopic strains. Since the cosine is a periodic func-
tion, the energy functional in Eq. (9) is invariant under
a relative displacement of the sublattices by an integral
number of the lattice period (u = n). Therefore, solu-
tions to Eq. (8) are determined to within an additive
integer n.

4. LATTICE FRAGMENTATION

Equation (8) has no uniform solutions other than
trivial ones (zero or integer solutions, corresponding to
the case where the sublattices are displaced to crystal-
lographically equivalent positions). Among nonuni-
form solutions, doubly periodic solutions are of special
interest, because they are characterized by a finite scale
of inhomogeneities.

The nonlinear equation (8), known as the sine-
Helmholtz equation, has two length scales characteriz-
ing the coherence of the sublattice match:

 (10)

These lengths determine the mesoscopic length scales
on which the sublattices remain coherent (or, more pre-
cisely, congruent); i.e., they can be made to coincide
with each other by rigidly displacing them, in spite of
the presence of microscopic inhomogeneities. These
length scales characterize the microscopic strain field,
unlike the macroscopic one, which has no characteristic
length. Formally, if l1  0, we arrive at the Frenkel–
Kontorova one-dimensional model, i.e., to an atomic
chain located on a rigid periodic substrate.

In analyzing a solution to Eq. (8), we associate the
excitation of the pseudooptical mode with possible
fragmentation of the lattice, i.e., with microscopic rota-
tions in individual blocks (half-domains). These rota-
tions reduce, on the average, to pure shear strains if the

l1
k1

p
----, l2

k2

p
----.= =
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average rotation angle is zero (Fig. 1). Clearly, the cor-
responding particular solution must be doubly periodic.

Let us consider the case of critical atomic displace-
ments, which is formally defined by the following con-
ditions imposed on the atomic displacements at parallel
equidistant slip lines x = const (which are interfaces
between plane-parallel horizontal layers of thickness
2H) and at the transverse boundaries y = const of build-
ing blocks: the relative atomic displacements at the
interfaces of layers are equal (in magnitude) to the lat-
tice period. In the interior of a layer, these displace-
ments are smaller, u ≤ 1. The displacements vary peri-
odically and reverse sign in going from one half-
domain (2B wide) to the next; therefore, we have

 (11)

These conditions are repeated periodically along the x
axis with period 2H and along the y axis with period 4B.

In the interior of a layer, we have u < 1. In the
regions where u < 1/2 (the interatomic potential barriers
are not overcome), purely elastic microscopic strains
arise; the elastic energy of domains is accumulated in
these regions and then dissipated in the regions of plas-
tic strains. On the whole, elastoplastic microscopic
strains develop, which leads to the establishment of
optimal strains in the lattice subjected initially to large
homogeneous macroscopic deformations. The latter
deformations will be discussed in Section 6.

u H y,( ) 1, u 0 y,( )– 0,= =

u H– y,( ) +1, 0 y 2B< <( ),=

u H y,( ) +1, u 0 y,( ) 0,= =

u H– y,( ) 1 2B– y 0< <( ).–=

4B

4H

y

x

Fig. 1. Two pairs of domains separated by horizontal slip
planes. Dashed lines indicate somewhat arbitrary bound-
aries.
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We look for a solution to Eq. (8), subjected to these
boundary conditions, by using the Lamb method of
separation of variables [5, 6] and finally arrive at the
expression

 (12)

Here, the quantity a is considered formally as the
amplitude of microscopic strains. The plus and minus
signs in Eq. (12) correspond to two equivalent direc-
tions of atomic displacements; 2H and 4B are the peri-
ods of the elliptic tangent (tn) and elliptic sine (sn),
respectively, in the right-hand side of Eq. (12). The
quantities K1 and K2 are complete elliptic integrals of
the first kind, and quantities ν1 and ν2 are the moduli of
these elliptic integrals [7]. The values of these moduli
lie in the range from zero to unity.

Thus, the elliptic integrals K1 and K2 determine the
spatial frequencies (gradients) of microscopic strains;
the quantities 1/H and 1/B determine the average fre-
quencies. The spatial frequencies of the elliptic func-
tions become very large when the values of the moduli
approach unity. Using the relations tn0 = 0 and tnK 
∞ [7], it is easy to verify that solution (12) meets the
boundary conditions (11). Clearly, the solution is peri-
odic along the y and x axes with periods 4B and 2H,
respectively.

Thus, we found a doubly periodic solution which
describes a doubly periodic superstructure arising in
the deformed lattice. The initial translation symmetry
of the lattice with period b is replaced, in the strained
lattice, by the translation symmetry on larger scales, B
and H.

In fact, we found the solution in all space. The for-
mally introduced boundaries are internal, rather than
external, interfaces arising in the field of large macro-
scopic stresses or strains.

As for the transverse domain boundaries, they con-
tain vertical rows of Frenkel–Kontorova solitons (misfit
dislocations) at y = (2r + 1)B with r = 0, ±1, ±2, …,
where the left-hand side of Eq. (12) tends to infinity.
Indeed, let us consider the vicinity of the origin of coor-
dinates where the elliptic tangent and elliptic sine can
be replaced by their linear approximations. In this case,
Eq. (12) takes the form

 (13)

Here, φ is the polar angle in the local reference frame.
Thus, the field of microscopic strains in the vicinity of
the origin is a many-valued function whose value
depends on the number of complete circles made
around the origin. From Eq. (13), we obtain πu/2 =

πu/2( )tan
tn xK1/H( )

A sn yK2/B( )
-------------------------------,±=

A
2–

a
2 1 ν1

2
–

ν2
------------------.= =

πu/2( )tan
xk1

yk2
--------±≈

k1

k2
---- φ.tan±=
P

± , i.e., a topological defect of the field u
with a positive (negative) charge. If the charge is equal
to unity (at a certain value of the ratio between the
microscopic moduli), we have an edge dislocation. If
the charge is equal to a fractional number, we have a
partial dislocation. In the case of k1 = k2, the charge is
equal to ±4.

Such charged defects arise at each point that corre-
sponds to a zero of the elliptic tangent (x = 0, ±2H,
±4H, …) and, simultaneously, to a zero of the elliptic
sine (0, 2B, 4B, …). The signs of the charges alternate
along horizontal layers but remain the same along ver-
tical lines.

The defects are associated with fragmentation of the
lattice, i.e., with slip in opposite directions (on finite
sections of length 2B) by the amount |u | = 1. Fragments
are rotons (solid vortices), more exactly, pairs of vorti-
ces of opposite sign which alternate along the horizon-
tal axis in accordance with the boundary conditions.
Vortices of like sign are located along the vertical axis.
Therefore, the crystal exhibits a texture having a her-
ring-bone pattern (Fig. 1). At the sites of this superlat-
tice, the field u undergoes discontinuities, which are
Frenkel–Kontorova misfit solitons.

Thus, the theory presented here predicts the forma-
tion of defects in an initially perfect lattice and frag-
mentation of the lattice. The theory involves elliptic
functions which become discontinuous in the limit as
ν1, ν2  1. Although this limit is unattainable in prac-
tice, the spatial changes are sharp enough to be treated
as discontinuities on a macroscopic scale.

5. LOCAL STABILITY OF MICROSCOPIC 
STRAINS

The periods of the superstructure cannot take on
arbitrary values; they depend on the properties of the
lattice and gradients of the microscopic strains, as well
as on the macroscopic strains, which can be treated as
an external field. The restrictions imposed on the peri-
ods follow from the dispersion relations, which can be
derived by substituting Eq. (12) into Eq. (8). After
straightforward algebra, we obtain

 (14)

 (15)

These equations relate the spatial frequencies q1 and q2
(gradients of microscopic strains) to the properties of
the lattice, domain sizes, and the amplitude a = 1/A,

k1φ/k2( )arctan

k1q1
2

A
2

---------- k2q2
2

+
 
 
 

S 2 p– 0,=

S A
2

1–( ) 1
ν2

2

A
2

------–
 
 
 

,=

k1q1
2

A
2
k2q2

2
, q1

K1

H
------, q2

K2

B
------, p 0.≥= = =
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thereby determining the region of existence of the solu-
tion.

Since the parameter p is positive, it follows from
Eq. (14) that A > 1, which is a criterion for elastoplastic
shear strains.

Further restrictions can be found by eliminating the
moduli ν1 and ν2 between Eqs. (14) and (15). Since the
parameter A is a function of these moduli, according to
Eq. (12), we express, e.g., ν1 in terms of A and ν2. At a
fixed value of A, Eqs. (14) and (15) become relations
between the variables B and H and the parameter ν2.
Eliminating this parameter between these equations,
we obtain a relation between B and H at a given value
of A.

The relation between A, B, and H can be represented
by a family of curves plotted in the H–B plane for dif-
ferent values of A. In this case, each curve has a vertical
(B = Bt) and a horizontal asymptote (H = Ht), so that

H < Ht < ∞, B  Bt(B < ∞). (16)

The values of these limits are

 (17)

Here, K11 is K1(ν1) for ν1 = . Clearly, the
parameters H and B cannot take on arbitrary values.
Restrictions on these parameters follow from Eqs. (16)
and (17).

Let us discuss the stability of elastoplastic micro-
scopic strains. Equation (8) determines the local mini-
mum of energy functional (9) for fixed values of the
limits of integration. Therefore, solution (12) is locally
stable. However, in order to investigate the stability of
the superstructure as a whole (against variations in
parameters B, H), we should consider the extrema of
the function E(B, H)/8BH, which is done in the next
section for the case where the lattice is subject to mac-
roscopic strains.

The case of purely elastic microscopic strains u ≤
1/2 was considered in [6]. In this case, we have A < 1
and the corresponding field u+(x, y) is shifted by 1/2;
i.e.,

 (18)

The function u(x, y) is the same as in Eq. (12). Due to
this shift, boundary conditions (11) change in such a
way that the amount of slip at the horizontal domain
boundaries becomes twice as small and equal to one-
half the interatomic distance; that is, atoms are located
at the tops of the corresponding interatomic potential
barriers. A more detailed analysis is made in [6].

By definition, the elastic solution is locally stable.
However, the corresponding domain structure as a
whole can be stable (as in the case of elastoplastic
strains) only in the presence of external fields (see next
section).

Ht l1 1 A
2–

–( )K11, 2Bt πl2 A
2

1– .= =

1 A
4–

–

2u+ x y,( ) 2u x y,( ) 1.+−=
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6. GLOBAL STABILITY IN AN EXTERNAL FIELD

The superstructure should be additionally optimized
with respect to the parameters B and H, because, in the
approximation used, the acoustic mode (macroscopic
strains) is locally independent of the pseudooptical
mode. In Eqs. (7) and (8), cross terms arise only if non-
local terms O1 and O2 (containing higher derivatives)
are included. Therefore, the interaction between these
modes is “accumulated” in space and can be included
through averaging over a spatial region. The averaged
microscopic and macroscopic strains can be related to
each other by using the condition of global stability of
the superstructure or by minimizing the total energy at
the cost of a decrease in the energy of homogeneous
elastic strains through the formation of defects and lat-
tice fragmentation.

In principle, this approach can be refined using a
perturbation procedure; more specifically, we can
retain cross terms (depending on the microscopic
strains) in Eq. (7) for macroscopic strains and substitute
solution (12) into these terms. In this case, the macro-
scopic strain field will contain additional terms, some
of which will be singular because solution (12) is sin-
gular, as shown in Section 4. The refined macroscopic
strain field will become inhomogeneous due to defects.
We will focus on this subject in future investigations.

In analyzing the energy balance in the framework of
the mesoscopic theory, it suffices to average the fields
over domains. In this case, however, we must take into
account that after averaging, a pair of half-domains
with rotons of opposite sign becomes a domain without
a vortex; therefore, the macroscopic strain field in the
crystal in this case is a vortexless, purely shearing strain
field. The interaction between different modes at the
mesoscopic level can be included phenomenologically
by neglecting the details of the macroscopic-field pat-
tern within domains. Therefore, the only parameters of
the superstructure are the domain sizes, which take on
their optimal, equilibrium values. Below, we describe a
phenomenological method for solving this problem.

Let us analyze the effect of macroscopic pure shear-
ing strains (curlU = 0) on the microscopic elastic and
elastoplastic strains under the assumption that the mac-
roscopic field is independent of the microscopic strains
and can be found by solving Eq. (7). In this approxima-
tion, the macroscopic strains are treated as constants,
which is consistent with the assumption that the super-
structure is spatially uniform. In this case, there is no
need to analyze Eq. (7).

Let us consider the total energy with inclusion of
macroscopic strains and of interaction between modes
(on the mesoscopic level). The averaged (over the vol-
ume of a domain) dimensionless total energy density is
the sum of the macroscopic energy, a cross term
(responsible for the interaction between modes), and
the microscopic energy:

 (19)2D η1ε1
2 η1ε2

2
2η2ε1ε2 2L– 2D,+ + +=

ˆ
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 (20)

the first three terms in Eq. (19) are the macroscopic-
strain energy written for rhombohedral, tetragonal,
hexagonal, or cubic crystals and D is the microscopic
dimensionless energy density given by Eq. (9). It is
important that, in the mesoscopic theory, the total
energy can be calculated and analyzed as a function of
the domain sizes and material parameters (correlation
lengths) l1 and l2 alone.

The cross term L in the total energy can be written
as a linear function of the average microscopic strains,
because the macroscopic strains are homogeneous and
do not include defects in the approximation used here.

However, it should be noted that the averaged (over
a domain) microscopic strain is zero, whereas the
microscopic strain averaged over a half-domain is non-
zero and changes sign in going from one half-domain to
the next along the y axis; this result is valid for both the
cases A < 1 and A > 1. In other words, two adjacent half-
domains are twins that differ in the sense of rotation
(Fig. 1). This microscopic structure is consistent with
the vortexless character of the macroscopic strain field
assumed above.

Since the sum of the average microscopic strains
(rotations) in the whole domain is zero, this quantity
cannot be used as a thermodynamic variable, as is the
case with the ferroelectric and the ferromagnet. In the
phenomenological theory, an appropriate thermody-
namic average is the difference of microscopic strains
of two half-domains; this quantity is defined to within
the sign.

Thus, as the thermodynamic variable, we take the
average value of the microscopic gradient, which is
characterized by the quantity 1/H, or, in the dimension-
less form, by l1/H. In this case, the cross term in
Eq. (19) for the total energy can be written as

 (21)

Here, χ1 and χ2 are striction coefficients and are

assumed to be positive and  and  are dimensionless
parameters of the superstructure.

The components of the strain tensor can have any
sign. However, a stable superstructure will arise if the
term involving L in Eq. (19) is negative. Therefore, we
should assume that ε1, ε2 > 0. (There is an analogy with
bifurcation that occurs in the case of compression,
rather than tension, of a thin rod.) In this case, the inter-
action between microscopic and macroscopic strains
decreases the height of the potential barrier and a min-

D
E

8 pBH
---------------, η1

λ1

p
-----, η2

λ2

p
-----,= = =

ε1

∂Ux

∂x
---------, ε2

∂Uy

∂y
---------;= =

L χ1

ε1

H
---- χ2

ε2

B
----, H+

H
l1
----, B

B
l2
---,= = =

χ1 0, χ2 0.> >

ˆ ˆ
ˆ ˆ

H

ˆ

B

ˆ

P

imum in the total energy arises, bringing about the for-
mation of a stable superstructure. Due to the cross term
L in Eq. (19), microscopic rotations of opposite sense
(Fig. 1) cause the total energy to decrease and to pos-
sess a minimum at certain values of the dimensions H
and B of the building blocks of a superstructure.

In order to minimize the total energy, we need to cal-
culate the integral in Eq. (9) for the energy of micro-

scopic strains and find the total energy density  as a

function of two variables  and  and of two given
parameters ε1 and ε2.

Let us find the condition of an extremum of the total
energy. First, we calculate the partial derivatives of the
total energy. Substituting Eq. (21) for L into Eq. (19),
we obtain

 (22)

Here, the partial derivatives are defined as

 (23)

Equating the derivatives of the total energy in
Eq. (22) to zero, we find the necessary conditions for an
extremum of this energy:

 (24)

These relations can also be interpreted as conditions
under which microscopic strains can occur only in the
presence of macroscopic strains without other influ-
ences. It should be noted that, in principle, the external
control parameters ε1 and ε2 can be varied indepen-
dently of each other. However, their influences on the
microstructure must be compatible. Formally, Eqs. (24)
are two nonlinear equations for two unknown dimen-
sions of an equilibrium domain.

The stability of the superstructure depends on the
behavior of the total energy density (19). In the coordi-

nates  and , this energy density is represented by a
saddle-shaped surface that exhibits minima with vary-

ing  and maxima with varying . Each curve with a
maximum terminates in certain finite points (one on the
left and one on the right of the maximum) at which the
energy density is minimum.

The corresponding analytical expression is fairly cum-
bersome, and we present only plots of derivatives (22);

Figs. 2 and 3 show the (1/ ) and (1/ ) depen-

dences for fixed values of  and , respectively.
The dashed lines in these figures indicate the bound-

ary of the region of purely elastic domains. In Fig. 2,
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this region lies on the left of the boundary, and in Fig. 3,
on the right. This boundary does not refer to micro-
scopic elastoplastic strains; therefore, there are regions
of mixed states (in Fig. 2, this region is on the left of the
boundary in question). In these regions, each curve is

double: for each value of the parameter  = const, we
plotted two curves, the lower of which (terminating in
the boundary) corresponds to purely elastic domains. In
Fig. 3, the region of mixed states lies on the right of the
boundary in question and the splitting of the curves is
small.

It is notable that each curve in Figs. 2 and 3 starts
and terminates at a point. Therefore, the dimensions of

domains  and  cannot be arbitrarily large or arbi-
trary small. We note that some terminal points lie
beyond the limits of Fig. 2.

It is seen that the curves in Fig. 2 are convex down-
ward and, therefore, the second derivative of the total

energy density with respect to 1/  is positive, while
the curves in Fig. 3 are convex upward and, therefore,

the second derivative with respect to 1/  is negative.
Thus, we have

 (25)

These results allow us to estimate the derivatives of the
total energy in Eqs. (22) and make a conclusion as to
the character of its extrema. It follows from Eqs. (22)

that these derivatives differ from the derivatives 

and  (shown in Figs. 2, 3) in that they have constants
proportional to the macroscopic strains ε1 and ε2. If
these strain tensor components are both zero together,

the function ( , ) has no extrema, because its
derivatives do not vanish (the curves in Figs. 2, 3 lie
above the abscissa axes). The same conclusion can be
drawn when both stress components are negative,
because the additive constants in Eqs. (22) for the
derivatives are positive in this case.

It is clear that a superstructure can arise only in the
case where the macroscopic-strain components are pos-
itive. In this case, the curves of the total energy are

obtained from the ( , ) and ( , ) curves
by shifting them downward by amounts proportional to
the corresponding components of the macroscopic
stress tensor. Therefore, conditions for the formation of
stable domains arise. An analysis shows that these con-
ditions are related to the positions of the initial and ter-
minal points of the curves in Fig. 3. Without going into
detail, we illustrate the results in Fig. 4.
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First, we discuss the compatibility of conditions (24)
for the domain formation. The corresponding depen-
dences are presented in Fig. 4 in the coordinates

(1/ , 1/ ). The thin dashed curves, which fall off as
one goes to the right, correspond to different fixed val-

ues of  ~ ε1 (these values decrease as the origin of
coordinates is approached). The thick dashed lines
(which are straight on the scale of Fig. 4) correspond to

different fixed values of  ~ ε2, which also decrease
as the origin is approached. The intersection points of
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Fig. 2. Derivative (with respect to 1/ ) of the energy den-

sity of microscopic strains as a function of 1/  for  = 20,
10, 5, 2, and 0.5. The dashed line separates the regions of
elastic (on the left) and elastoplastic strains.
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Fig. 3. Derivative (with respect to 1/ ) of the energy den-

sity of microscopic strains as a function of 1/  for  = 2,
1.4, 0.5, and 0.4. The dashed line separates the regions of
elastic (on the right) and elastoplastic strains.
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these two families of lines give solutions to the non-
linear set of equations (24); the coordinates of the
intersection points determine the dimensions of equi-
librium domains, which are, however, unstable to vari-

ations in .

Line 1 (which is nearly straight on the scale of

Fig. 4) corresponds to the initial points (  = ) of the
curves in Fig. 3, i.e., to stable elastoplastic domains that
are long in the horizontal direction. Straight line 2 cor-
responds to the lowest (terminal) points of these curves

(  = ), i.e., to stable elastoplastic domains that are
long in the vertical direction. Straight line 3 corre-
sponds to purely elastic stable short domains, and
curve 4, to the same domains but with a larger length,

 = .

The point of intersection of straight line 1 with thin

dashed curves gives both dimensions ( , ) of stable
elastoplastic domains extended in the horizontal direc-

tion. The corresponding value of  ~ ε2 is equal to the

ordinate  of the initial point  in the curve  =
const in Fig. 3.

Stable elastoplastic domains that are extended in the
vertical direction correspond to the intersection points
of thin dashed curves with straight line 2. The abscissas

of these intersection points give the dimension .
The ordinate of the terminal point of the corresponding
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Fig. 4. Regions of existence of equilibrium domains for
given macroscopic strains. Solid lines correspond to stable
(1, 2) elastoplastic and (3, 4) purely elastic domains.
Dashed lines correspond to domains unstable with respect
to variations in their length and stable against variations in
their thickness.
P

curve in Fig. 3 gives the quantity  ~ ε2 and, there-
fore, the value of the second component of the macro-
scopic strain tensor.

Clearly, all states of elastoplastic domains lie within
the bifurcation fork; the limiting branches of the fork
correspond to stable states (with the lowest total
energy), while the intermediate states are characterized
by a saddle-shaped energy surface. The states belong-
ing to the different limiting branches are separated by a
potential barrier. One branch (straight line 1 in Fig. 4)
corresponds to domains with sharp vertical boundaries
(narrow domain wall), while the stable domains
belonging to the other branch have sharp horizontal
boundaries (slip lines) and diffuse vertical boundaries.

Thus, stable elastoplastic domains are anisotropic;

they are elongated in the horizontal (   ) or ver-

tical direction (   ). The latter domains arise
earlier (i.e., at smaller values of ε2) than the former
domains.

For purely elastic domains, we also have a bifurca-
tion fork. One branch of the fork (corresponding to
short domains) is straight line 3 in Fig. 4, while the
other branch (longer domains) is curve 4 (the boundary
of the region of existence of elastic domains). The
states belonging to different branches are separated by
a potential barrier. Short domains (belonging to the first
branch) have sharp horizontal and diffuse vertical
boundaries. Longer domains corresponding to the other

branch (limited, however, by the condition  < π/2), on
the contrary, have diffuse horizontal boundaries.

Thus, we arrive at the following important results.
At certain values of the two components of the macro-
scopic strain tensor, ε1 and ε2, only two types of stable
domains (elastic and elastoplastic) can form. As the
macroscopic strains increase, the dimensions of these
domains decrease; the domains correspond to two pairs
of diverging (with decreasing domain size) branches of
stable domains differing in anisotropy. Each of these
branches is characterized by a certain ratio between the
components of the macroscopic strain tensor or by a
certain path along which the body should be strained.
Otherwise, domains with different anisotropy do not
separate and mixed structures of these domains arise
because of the bifurcation mentioned above.

Let us discuss the strain threshold for the formation
of a superstructure. For this purpose, we write Eq. (24)
for the smallest average macroscopic strains ε1b and ε2b

(which may be nonzero) corresponding to the stability
limit (as indicated by the subscript).

The possible existence of the threshold follows from

the fact that the derivatives  and  tend to nonzero

limits as the average microscopic strains 1/  and 1/
approach zero (Figs. 2, 3). These limits determine the
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strain thresholds  and . Analytically, these
thresholds can be found, in principle, using Eq. (9), as

the zero-order terms in the expansions of  and 

in powers of 1/  and 1/ . Extrapolation of straight

lines 1 and 2 in Fig. 4 gives threshold values  ≈ 8

and  ≈ 0. From Eqs. (24), one can determine the
threshold values of macroscopic strains ε1b and ε2b.
Below the corresponding bifurcation points, a super-
structure does not form and the body is strained as an
elastic continuum, whose energy is determined by the
first three terms in Eq. (19).

The interaction between different modes allowed
for in this section makes additional contributions to the
macroscopic stresses rather than to the strains. The cor-
responding expressions can be obtained by differentiat-
ing the total energy in Eq. (19) with respect to strains ε,
in which case the contributions from microscopic
strains will be due to the linear term L.

7. CONCLUSIONS

Thus, the model of nonlinear sublattice interaction
allows one to adequately describe elastic and anelastic
changes in the short-range and long-range order, i.e.,
structural transformations caused by an external strain
field.

An important feature of this model is the allowance
for the strong nonlinearity of the processes under study.
It has been shown that the crystal structure undergoes
bifurcation; the crystal properties are radically changed
and new properties arise. We first discovered such non-
trivial effects as the formation of defects in an initially
perfect lattice, fragmentation of the lattice, the loss of
stability of homogeneous strains whose strength
exceeds a certain threshold value, the appearance of
slip bands and twinning, distortions of the long-range
and short-range order, and bond switching. Our model
is also capable of describing anelastic diffusionless
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microscopic strains occurring in martensitic transfor-
mations. In other words, the model explicitly allows for
local topological changes in the crystal.

Microscopic strains can be considered as incoherent
displacements of the sublattices and their gradients
(averaged over a domain), as a parameter characteriz-
ing the breakdown of the translational symmetry of the
complex crystal lattice. In a strained state, the sublat-
tices become incommensurate and large-scale super-
structure arises. In principle, the microscopic strain
field can sharply change in space (discontinuously, on a
macroscopic scale) in the region of defect clusters, slip
planes, and bond switching.
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Abstract—The formation of martensite in an elastic stress field near a disk-shaped coherent precipitate is dis-
cussed in terms of the theory of diffuse martensitic transformations. The heterogeneous martensite nucleation
on precipitates is found to increase the characteristic martensitic-transformation temperature, which increases
linearly with the volume density of precipitates. The theoretical results are illustrated quantitatively using the
example of the B2  R phase transition in titanium nickelide alloys. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has been established experimentally that particles
of a new phase in shape memory alloys affect the
parameters of the martensitic transformation and the
strain-induced effects associated with this transforma-
tion [1–4]. Electron-microscopic studies of crystals of
equiatomic titanium nickelide alloys have shown that
martensite nuclei arise near coherent precipitates of the
Ti3Ni4 phase [4–7]. The formation of these nuclei is
associated with the presence of elastic stress fields near
coherent precipitates and with stress relaxation caused
by a local martensitic transformation. This martensitic
transformation–assisted relaxation of internal stresses
near precipitates is believed to be the cause of the so-
called bidirectional shape memory effect observed in
TiNi crystals [1, 4].

In [8], the formation of martensite nuclei in elastic
fields of screw and edge dislocations and of their planar
clusters was considered in the framework of the theory
of diffuse martensitic transformations (DMTs) [9, 10].
The influence of two-dimensional networks of edge
dislocations on the kinetics and parameters of the mar-
tensitic transformations in shape memory alloys was
also analyzed in [8].

In this paper, we discuss the formation of martensi-
tic nuclei near disk-shaped precipitates in terms of the
DMT theory. For example, the Ti3Ni4 precipitates men-
tioned above have the shape of a lens [4]; they form in
a TiNi alloy during annealing in the temperature range
500–900 K [1–4]. Such precipitates arise if the Ni atomic
concentration in the alloy is no less than 50.5 at. %. The
Ti3Ni4 particles have a rhombohedral crystal lattice
and, when arising in the initial bcc lattice of the B2
phase, they undergo a dilatation along the direction nor-
mal to the plane of the disk-shaped precipitate [4]. The
1063-7834/03/4508- $24.00 © 21566
precipitates are coherently joined with the matrix if
their radii do not exceed 0.5 µm [2, 5].

This paper is organized as follows. In Section 2, we
calculate the elastic stresses near the precipitates men-
tioned above. In Section 3, using the DMT theory, the
mechanism of heterogeneous nucleation of martensite
near an isolated precipitate is considered on the exam-
ple of the B2  R phase transformation in titanium
nickelide. The influence of the volume density of pre-
cipitates on the parameters of the martensitic transfor-
mation is discussed in Section 4.

2. STRESS FIELD NEAR A DISK-SHAPED 
PRECIPITATE

In order to calculate the stress field near a disk-
shaped precipitate, we use the results of calculations
performed by Eshelby [11] for the elastic strains near
an ellipsoidal inclusion in a matrix. We approximate the
disk-shaped precipitate by an ellipsoid of revolution of
radius r0 and height 2h0 < 2r0:

 (1)

The harmonic potential Φ for this ellipsoid, according
to [11], has the form

 (2)
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where λ = λ(r, z) is the largest root of the equation
W(l) = 0 and l is the variable of integration.

Introducing dimensionless coordinates  = r/r0 and

 = z/h0 and parameter β = h0/r0 and performing inte-
gration in Eq. (2), we obtain

 (3)

Here,

 (4)

Using potential (3), one can determine the displace-
ment field near the inclusion if the strain of the precip-
itate in the free state is known. In our case, this strain
(dilatation) is the relative difference in the spacing
between the (111) planes of the B2 matrix and the
Ti3Ni4 inclusion δ(111) = (dB2 – dR)/dB2 ≈ 3 × 10–2 [4].
This dilatation is purely axial, δ(111) = δz. Therefore,
according to [11], the radial ur and axial uz displace-
ments are

 (5)

where H( , ) = ( ) – ( ) and ν is the
Poisson ratio. Dilatations δx and δy, parallel to the plane
of the disk, are half as large as δz [12]. Due to the shape
of the precipitate chosen, these dilatations make insig-
nificant contributions to displacements (5) and can be
neglected. For displacements (5), the nonzero compo-
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nents of the elastic strain tensor in the cylindrical sys-
tem of coordinates (r, θ, z) are [13]

 (6)

Here,  = ur/h0 and  = uz/h0 are dimensionless dis-
placements. If the matrix is elastically isotropic, the
normal and shear components of the stress field
induced by the precipitate are given by

 (7)

where E is Young’s modulus.
Displacements (5) and the corresponding strains (6)

can be calculated by differentiating potential (3) with
respect to the coordinates r and z. The formulas thus
obtained are cumbersome and are not presented here.
As an illustration, Fig. 1 shows the numerically calcu-
lated strains (6) at the distance z = 2h0 from the precip-
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Fig. 1. Dependence of the different components of the elas-
tic strain tensor on radius at the distance z = 2h0 from the
precipitate: (1) εzz, (2) εrz, (3) εθθ, and (4) εrr.
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itate for the values of the parameters h0/r0 = β = 0.2,
ν = 0.3, and δz = – |δz |. As one would expect, the tensile
axial strain εzz is dominant. It follows from Eq. (6) that
the other components of the strain field become pro-
gressively smaller than εzz with decreasing parameter β,

0

–1–2 0 1 2
–0.1

0.1

0.2
1

2

3

4

σ/E|δz|

r/r0

Fig. 2. Dependence of the different components of the elas-
tic stress tensor on radius at the distance z = 2h0 from the
precipitate: (1) σz, (2) σrz, (3) σr, and (4) σθ.
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Fig. 3. Level lines of (a) axial σz and (b) shear σrz stresses
near the precipitate. The values of σ are (1) 0.18, (2) 0.18,
and (3) 0.04E |δz |; the values of σrz are (1) 0.13 and
(2) 0.06E |δz |; and curve 0 is the boundary of the precipitate.
P

i.e., with increasing oblateness of the lens-shaped
inclusion.

The components of the stress field (7) correspond-
ing to these strains are shown in Fig. 2. It can be seen
that above (and below) the central part of the precipitate
the axial stress component σz is dominant (curve 1),
whereas near the edge of the precipitate the shear com-
ponent σrz is dominant (curve 2). Figure 3 presents the
distribution of these stresses near the precipitate in the
rz plane. Calculations show that, for E = 40 GPa and
|δz | = 3 × 10–2, the stresses near coherent Ti3Ni4 parti-
cles can be as large as 150–200 MPa.

In concluding this section, we note that the strain
and stress fields inside the precipitate can also be found
using potential (2). In this case, we should put λ = 0 in
Eqs. (2) and (3) [11]. Calculations based on Eqs. (5)–
(7) show that the elastic stresses and strains inside the
precipitate are homogeneous and depend strongly on
the parameter β = h0/r0. In this paper, the stresses inside
the precipitate are of no interest to us and we set them
equal to zero in what follows.

3. THE FORMATION OF MARTENSITE 
NEAR A COHERENT INCLUSION

According to the DMT theory, the (relative) volume
density of the uniformly oriented martensite ϕM in the
alloy under stress σ at temperature T is given by [9, 10]

 (8)

Here, ∆U is the change in the internal energy of the
crystal associated with the transformation of an ele-
mentary volume ω of the austenite phase into marten-
site, ∆u is the change in the internal energy per unit vol-
ume of the crystal due to this transformation, q is the
specific heat of the phase transformation, Tc0 is the crit-
ical (characteristic) temperature of the transformation
in the absence of stress σjl, ξik is the strain of the crystal
lattice associated with its structural rearrangement, and
mijkl is the orientational factor characterizing the match-
ing of the reference frames of stresses σjl and lattice
strains. It follows from Eq. (8) that the amount of mar-
tensite in the crystal depends on the value and sign of
the energy ∆u. The crystal is dominated by austenite if
∆u > 0 and by martensite if ∆u < 0. The condition ∆u =
0, under which the amounts of martensite and austenite
in the crystal are equal, defines the characteristic tem-
perature of the transformation:

 (9)
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transformation to change. Obviously, the presence of
precipitates, which produce long-range elastic fields,
will also affect the characteristic temperature.

Taking into account the orientational relations
between the lattices of phase B2 and martensite R in the
case of Ti3Ni4 particles and the B2  R phase transi-
tion considered above, we obtain mijklξikσjl ≈ ξzσz. The
contributions to the energy change due to the martensi-
tic transformation from the other components of the
stress field can be neglected because of the smallness of
these components in comparison with σz (Fig. 2). Sub-
stituting the change in energy into Eq. (8), we obtain
the spatial distribution of the volume density of marten-
site near the precipitate at different temperatures:

 (10)

Here, B = ωq/kT ≈ ωq/kTc0 is a parameter determining
the spread in the transformation temperature ∆TM =
4Tc0/B [9, 10]. In the case of the B2  R phase transi-
tion, for ∆TR ≈ 20 K and Tc0 ≈ 300 K [1], we have B = 60.
Setting qR = 30 MJ m–3 [14], we find the elementary vol-
ume for R-martensite transformation to be ω ≈ 5 nm3. It
should be noted that the B2  R phase transition pro-
ceeds initially as a second-order transition, but then, as
the temperature is lowered further, this transformation
becomes a diffuse first-order phase transition with a
temperature hysteresis of approximately 5–10 K [1,
14]. Although the DMT theory is capable of describing
transformations intermediate between first and second
order [15], we will assume the formation of the R mar-
tensite to be a pure first-order phase transition in our
calculations.

To calculate the spatial distribution of martensite in
the elastic field of the coherent precipitate numerically,
we conveniently represent Eq. (10) in the dimension-
less form

 (11)

Figure 4a shows the radial distribution of the R marten-
site calculated from Eq. (11) for ξz = 1 × 10–2 and aR =
0.4 at distance z = 2h0 from the precipitate for two val-
ues of temperature T > Tc0. It can be seen that, at both
temperatures, the martensite concentration near the
precipitate is significantly higher than that far from it.
The distribution of the R martensite in the rz plane near
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the precipitate at a temperature of 1.05Tc0 is presented
in Fig. 4b. The increase in the volume density of mar-
tensite at a point in the crystal with decreasing temper-
ature is illustrated in Fig. 5 in the absence (curve 1) and
in the presence (curve 2) of the precipitate coherently
joined with the matrix.
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Fig. 4. (a) Dependence of the volume density of the R mar-
tensite on radius at the distance z = 2h0 from the precipitate at
different temperatures: (1) 1.05Tc0 and (2) 1.1Tc0. (b) Level
lines of ϕR in the rz plane near the precipitate at a tempera-
ture of 1.05Tc0; the values of ϕR are (1, 2) 0.76, (3) 0.52, and
(4) 0.29.
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Electron-microscopic studies [4–6] show that the
uniformly oriented R martensite near particles of Ti3Ni4
consists of lamellae one to several tens of nanometers
thick and 10 to 200 nm long. The DMT theory does not
describe the morphology of martensite but rather
allows one to determine its volume density at a given
point in the crystal. In the case of martensite lamellae,
we have ϕM = ΛM/Λ, where ΛM is the thickness of mar-
tensite lamellae and Λ is the distance between them. In
the initial stage, where the R-phase formation proceeds
as a second-order phase transition, rhombohedral crys-
tal nuclei arise, rather than lamellae, in the vicinity of
precipitates [5].

4. THE INFLUENCE OF THE VOLUME DENSITY 
OF PRECIPITATES ON THE PARAMETERS 

OF THE MARTENSITIC TRANSFORMATION
According to electron-microscopic studies [6],

R-martensite lamellae form not only near Ti3Ni4 parti-
cles but also between them, where the stress fields pro-
duced by individual precipitates overlap. The strength
of the resultant stress field depends on the volume den-
sity and mutual orientation of precipitates.

In TiNi crystals annealed in the absence of an exter-
nally applied stress, there are four energetically equiv-
alent, different orientations of Ti3Ni4 particles, in accor-
dance with the number of habit planes of the (111) type
for these particles [12]. Since the distribution of
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Fig. 6. Distributions of (a) internal stresses and (b) volume
density of the R martensite in a crystal containing precipi-
tates with a volume density of 9% at a temperature of
1.05Tc0.
P

stresses near these particles is anisotropic, the resultant
stress will be maximum if only one orientation of par-
ticles dominates in the disperse structure. This is the
case, for example, in a TiNi alloy annealed in the pres-
ence of unidirectional stresses of either sign applied to
the alloy [4, 12]. An anisotropic distribution in orienta-
tion of Ti3Ni4 particles is the cause of the bidirectional
shape memory effect observed in TiNi alloys [1, 4]. We
consider this case in what follows.

We assume that, in a TiNi alloy annealed in the pres-
ence of unidirectional stresses applied to the alloy, dis-
perse particles are oriented along the same direction
and form a spatial structure. For simplicity, we assume
this structure to be regular, for example, close to tetrag-
onal with the lattice parameters lX = lY and lZ < lX. The
Ti3Ni4 particles are located at the sites of the tetragonal
superlattice, so that the volume density of the particles

is f = V0/V, where V0 = (4/3)π  is the volume of a
precipitate of the type indicated above and V = lXlYlZ is
the volume of the unit cell of the tetragonal superstruc-
ture. The z axes of the precipitates are directed along
the Z axis of this structure.

The internal stress field produced by the regular
superstructure can be written as a triple sum over the
sites of its lattice. Using the notation introduced in

Eq. (11) and the fact that ( , ) = (  + )1/2, we
obtain

 (12)

where S = σ/E |δz |; σ is the total stress produced by the
precipitates located at the sites of the superlattice; and

 = lX/r0,  = lY/r0, and  = lZ/r0 are the dimension-
less lattice parameters of the tetragonal superstructure.

Figure 6a shows the distribution of internal stresses in
the disperse structure calculated from Eq. (12) with the
parameters lX = lY = 3r0 and lZ = r0. The volume density
of precipitates in this case is f = 4πh0/27r0 ≈ 9 × 10–2. The
curve in Fig. 6a is the dependence of the dimensionless
stress S(x, y, z) on the coordinate x within two unit cells
of the tetragonal superlattice at distances y = 0 and z =
2h0 from precipitates. It can be seen that, due to sum-
mation of the stresses produced by neighboring precip-
itates, the stress in the region between them is nearly
twice as large as the stress produced by an individual
precipitate (curve 1 in Fig. 2). The amount of marten-
site also increases in the regions of enhanced stresses.
Figure 6b shows the dependence of the volume density
of the R martensite on the coordinate x calculated for a
temperature of 1.05Tc0 from the expression
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It is seen that, in the regions where the interference of
stresses produced by neighboring precipitates is con-
structive, the alloy transforms completely into marten-
site at the temperature indicated, whereas near an iso-
lated precipitate a certain volume fraction of the auste-
nite at this temperature has not yet undergone the
transformation (curve 1 in Fig. 4a).

To investigate the influence of the volume density of
precipitates f on the parameters of the martensitic trans-
formation, we need to perform spatial averaging of the
internal stresses (12) for different values of f. For this
purpose, it will suffice to average the stress field over
one tetragonal unit cell. The volume density of marten-
site (13) can also be averaged over a unit cell of the
superlattice. However, these computations are very
time consuming. Therefore, in order to estimate the
average stress field, we use the results obtained by
Eshelby [11, 12], according to which the averaged
internal strain field in a crystal is proportional to the
volume density of dilatation (or shear-strain) centers.
Therefore, in our case, 〈εz〉  = δz f and, according to
Eqs. (9) and (11), the characteristic temperature of the
martensitic transformation is a linear function of the
volume density of precipitates:

 (14)

For the values of the parameters of the B2  R phase
transition indicated above, we obtain α ≈ 0.5. In the
approximation of the average internal stress field, the
volume density of martensite in a crystal with a volume
density of precipitates f should vary with temperature
according to the law

 (15)

5. CONCLUSION

Thus, the results of this study show that the DMT
theory allows one to quantitatively analyze the mecha-
nism of heterogeneous nucleation of martensite near an
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individual precipitate and investigate the influence of
the volume density of precipitates on the parameters of
the martensitic transformation. The results obtained
here will be used to develop a quantitative theory of the
bidirectional shape memory effect.
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AND PHASE TRANSITIONS
Investigation of the Reconstructive Phase Transition 
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Abstract—Crystals of ammonium lithium sulfate NH4LiSO4 in α and β modifications are studied, and condi-
tions of their nucleation and growth are determined. The α modification of NH4LiSO4 and α  β phase tran-
sitions are investigated using polarized light microscopy, x-ray diffraction, and differential scanning calorime-
try in the temperature range 80–530 K. It is found that, depending on the conditions of growth and storage, there
exist two temperature ranges (Tα → β ≈ 340–350 and ≈440–450 K) in which the crystals can undergo an α  β
reconstructive phase transition. The enthalpy of this transformation depends on the symmetry of the final phase.
In the former case (340–350 K), the reconstructive phase transition leads to rapid destruction of the sample. In
the latter case (440–450 K), the crystal structure undergoes a slow transformation (recrystallization) without
noticeable distortions. The results obtained indicate that no structural phase transition occurs in the α modifi-
cation of NH4LiSO4 at 250 K. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ammonium lithium sulfate NH4LiSO4 (NLS) has
been extensively studied over many years. It is estab-
lished that, during cooling, this compound undergoes
the following sequence of symmetry changes:

   

  

  

at Ti = 460, 284, and 27 K, respectively [1–3]. The
phase is ferroelectric with considerable spontaneous
polarization at room temperature and ferroelastic below
~284 K. On the other hand, there have appeared works
in which new phase transitions in NH4LiSO4 were
revealed or previously determined symmetry groups of
the known phases were subjected to question [4]. Cer-
tainly, polymorphism of the NH4LiSO4 compound is
also responsible to a large extent for the discrepancy in
the experimental results obtained by different authors.

The above sequence of transitions is observed for
NH4LiSO4 crystals in the β modification (β-NLS).
These crystals have a tridymite-like pseudohexagonal
structure consisting of SO4 and LiO4 tetrahedra joined
together by their vertices and forming six-membered
rings perpendicular to the c axis. In the structure, free
vertices of one half of these tetrahedra are directed
upward and the tetrahedra themselves are bound to the
upper layer of the tetrahedra, whereas the vertices of
the other half of the tetrahedra are oriented downward

Pmcn c = c0( ) G0( ) P21cn c = c0( ) G1( )

P21/c11 c = 2c0( ) G2( )

C1c1 c = 2c0( ) G3( )
1063-7834/03/4508- $24.00 © 21572
and the tetrahedra themselves are bound to the lower
layer. The ammonium groups occupy cavities formed
between the layers. The unit cell parameters of the β
modification at room temperature are as follows: a =
5.280 Å, b = 9.140 Å, and c = 8.786 Å. A comprehen-
sive review of the experimental data available in the lit-
erature for NH4LiSO4 crystals in the β modification was
given by Polomska [5].

The α modification of the NH4LiSO4 compound (α-
NLS) has been known for more than one hundred years.
According to Pietraszko and Lukaszewicz [6] and
Tomaszewski [7], the structure of the α modification is
also composed of SO4 and LiO4 tetrahedra. However, in
the α modification, unlike the β modification, the SO4
and LiO4 tetrahedra located in a layer perpendicular to
the [001] direction can be joined not only by their ver-
tices but also by their edges. The adjacent layers are
bound to nitrogen atoms of the ammonium groups
through hydrogen bonds and form a layered structure
with the orthorhombic space group Pbc21 and the lat-
tice parameters a = 4.991 Å, b = 10.196 Å, and c =
17.010 Å. It should be noted that, as a rule, samples of
the α modification can involve several polytypes that
differ in the lattice parameter c: c1 = c, c2 = 2c, and c3 =
3c [7].

The NH4LiSO4 compound in the α modification has
an unstable structure and transforms into the β modifi-
cation upon heating. According to the differential ther-
mal analysis (DTA) performed by Polomska et al. [8],
the as-grown crystals undergo a reversible phase transi-
tion at a temperature of approximately 250 K and an
003 MAIK “Nauka/Interperiodica”
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irreversible (α  β) phase transition at temperatures
close to 350 K. These authors revealed a steplike anom-
aly in the DTA curves at 350 K and assigned this feature
to the coexistence of different polytypes in the sample.
Moreover, they investigated variations in the frequen-

cies of librational and translational vibrations of ,

, and Li+ ions upon the α  β phase transition
with the use of far-infrared spectroscopy [8].

The main objectives of the present work were as fol-
lows: (i) to elucidate the influence of the growth condi-
tions of NH4LiSO4 crystals on the formation of the α
and β modifications, (ii) to investigate the reversible
phase transition to the α modification at 250 K, (iii) to
examine the kinetics of the α  β reconstructive
phase transition, and (iv) to analyze the thermodynamic
parameters of the phase transitions in NH4LiSO4 crys-
tals.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

In order to solve the problems formulated above, we
used the techniques of measuring the heat capacity and
birefringence and also observations in polarized light.
The α and β phases in the studied samples were identi-
fied from the x-ray powder diffraction patterns
recorded on a DRON-2 diffractometer. For optical
investigations, the single-crystal samples were oriented
with a URS-1 x-ray instrument.

Observations in polarized light and measurements
of the birefringence of the crystals grown were per-
formed in the range from ~80 K to temperatures corre-
sponding to the decomposition of the studied com-
pound (~530 K). The birefringence was measured on
the (001) cleavage surfaces (c = 17.01 Å). The measure-
ments were performed on a Berec compensator with an
accuracy of ≅ 10–5 and a Senarmont compensator with a
sensitivity of no less than 10–7. The former compensa-
tor made it possible to investigate thin samples and to
determine the birefringence magnitude. It should be
noted that the temperature behavior of the birefringence
of β-NLS crystals in the ranges of the ferroelectric and
ferroelastic phase transitions is sufficiently well under-
stood [9–11].

The thermodynamic properties were examined on a
DSM-2M differential scanning microcalorimeter. The
measurements were carried out in the temperatures
range 150–370 K with a low-temperature unit and in
the range 340–550 K with a high-temperature unit. The
calorimetric experiments were conducted using, for the
most part, single-crystal and, with rare exception, pow-
der samples. In the case when the compound was stud-
ied in the form of a single crystal, close thermal contact
between the sample and the cell was ensured by a KPT-
8 organosilicon paste. The sample weight was approxi-
mately equal to 0.1–0.2 g. In order to determine the
confidence intervals of the thermodynamic parameters

SO4
2–

NH4
+
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under investigation, the measurements were performed
with several samples for each crystallization. The
weight of the samples was checked prior to and after
heating in each experiment. In all the main experi-
ments, the samples were heated or cooled at a rate of
8 K/min.

With the aim of determining the formation condi-
tions for NH4LiSO4 single crystals in the α and β mod-
ifications, we performed five crystallizations from a
solution under different conditions at temperatures of
281, 283, 293, and 303 K. Crystallizations at tempera-
tures of 281 and 293 K proceeded through spontaneous
growth without stirring of the solution (crystallizations
1, 2). All other crystallizations (crystallizations 3–5)
occurred through slow growth with stirring of the solu-
tion at temperatures of 283, 293, and 303 K.

3. RESULTS AND DISCUSSION

The crystals grown in the α and β modifications can
easily be distinguished by their habit. Single crystals of
NH4LiSO4 in the α modification have the shape of rect-
angular plates with perfect cleavage planes (001). In the
course of their growth, platelike crystals transform into
hexahedra with an angle of 90° (Fig. 1). Single crystals
in the β modification have the shape of hexagonal
prisms. It is worth noting that crystallization at a tem-
perature of 281 or 283 K results in the formation of the
α modification alone, crystallization at 293 K leads to
the formation of crystals in both modifications with an
equal probability, and crystallization at 303 K brings
about the formation of crystals only in the β modifica-
tion. An analysis of the results obtained in our investi-
gations demonstrated that, in [8], the scheme of the
crystallographic axes of the unit cell in the α modifica-
tion of the NH4LiSO4 crystal is invalid. The correct ori-
entation of the crystallographic axes with respect to the
growth faces is given in Fig. 1.

As was shown in numerous experiments, single
crystals of NH4LiSO4 in the α modification slightly dif-
fer from one another. In the case when an as-grown
crystal obtained through crystallization 1 or 2 (sponta-
neous growth without stirring of the solution) is held in
a dry air atmosphere at room temperature, its transpar-
ency rapidly (either totally or partially) disappears. The
x-ray powder diffraction pattern taken from the opaque

ac

b b

ac

α-NLS β-NLS

Fig. 1. Crystal habit of NH4LiSO4 in α and β modifications.
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(a) (b) (c)

Fig. 2. Micrographs of the (001) cleavage surfaces of α-NLS crystals in polarized light: (a) T = 293 K, clear-cut extinctions;
(b) T = 446 K, extinctions are absent; and (c) T = 446 K (exposure, 35 min), well-defined regions of the β phase.
part of the sample corresponds to the β-NLS structure.
The transparent part of the sample remains in the α
modification. Therefore, the α  β phase transition
can occur at room temperature. When the samples pre-
pared under the same conditions are kept in a hermeti-
cally closed vessel for a certain amount of time (two or
three months), the process described above is not
observed. This process is also not revealed in samples
produced by crystallizations 3 and 4, i.e., in the crystals
grown, as might appear at first sight, under “ideal” con-
ditions: very slow growth (within two months) with
careful stirring of the solution. Consequently, all crys-
tals grown in the α modification can be divided into two
groups, namely, the group A (as-grown crystals that are
prepared through the spontaneous crystallization with-
out stirring of the solution and can undergo an α  β
monotropic transition in a dry air atmosphere) and the
group B (crystals grown either under ideal conditions or
through any one of the above crystallizations and then
held in a hermetically closed vessel during a suffi-
ciently long period of time). Subsequently, the latter
crystals keep quite well in a dry atmosphere. As will be
shown below, the results of optical and calorimetric
experiments performed with crystals of these groups
differ significantly.

Upon gradual heating, samples of the A group
undergo rapid destruction in the temperature range
330–350 K and become totally or partially opaque, as
is the case with samples prepared through crystalliza-
tion 1 or 2 and then held in a dry atmosphere at room
temperature.

Crystals of the B group upon heating remain trans-
parent and exhibit clear-cut extinctions at temperatures
from 100 K to the range 440–450 K, in which there
P

occurs an α  β phase transformation. As follows
from numerous experiments, the α  β phase transi-
tion in the temperature range 440–450 K proceeds very
slowly and, under isothermal conditions, does not nec-
essarily lead to destruction of the sample. Figure 2 dis-
plays the micrographs obtained for the (001) cleavage
surfaces of α-NLS crystals with the use of a polarizing
microscope upon heating. It can be seen from Fig. 2a
that, at room temperature, the sample is transparent and
exhibits clear extinctions. Upon heating of the sample,
extinctions become less pronounced at a temperature of
440 K and disappear at 446 K. As a result, the sample
turns a speckled gray, which gives the impression that
it is optically isotropic. This color is provided by small
regions (with a size of the order of several microns) that
exhibit extinctions upon rotation of the plate through
different angles (Fig. 2b). After isothermal holding for
30 min, part of these regions rapidly grow (Fig. 2c) and
transform into transparent regions of β-NLS with clear-
cut extinctions. The regions thus formed are relatively
large in size and frequently occupy the whole volume
of the sample. Judging from the geometry of the optical
indicatrices, the crystallographic directions in these
regions are random and their orientation is in no way
related to the initial crystallographic directions of the α
phase. The formation of the β phase can proceed both
at a constant temperature and during heating or cooling
of the sample but, in all cases, only after the crystal
experiences a pseudoisotropic state. However, the
regions of the β phase formed upon heating or cooling
are considerably larger in size.

The temperature dependences of the birefringence
∆nc = (na – nb) for NH4LiSO4 crystals in different mod-
ifications are shown in Fig. 3. Curve 1 is depicted for
comparison and represents the temperature dependence
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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of the birefringence ∆nc(T) for β-NLS crystals with an
anomalous behavior in the range of two phase transi-
tions [11]. Experimental data on the birefringence
∆nc(T) for the two samples of α-NLS are shown by
curves 2. As can be seen from Fig. 3, the birefringences
for different modifications of NH4LiSO4 in the [001]
direction have opposite signs: na > nb for β-NLS [12]
and na < nb for α-NLS. The temperature dependence of
the birefringence for α-NLS exhibits linear behavior in
the range 250–440 K. At temperatures below 250 K, the
straight line smoothly becomes curved without a spe-
cific feature that could be assigned to a phase transition.
This shape is typical of birefringence “tails” associated
with pretransition phenomena (e.g., for CsLiSO4 [13]).
We believe that, in this case, the phase transition can
occur at temperatures below 100 K. However, the tem-
perature dependence of the birefringence ∆nc(T) can
deviate from linearity, for example, due to the freezing
of a small amount of interlayer water, which, in turn,
brings about macroscopic deformation of the sample.
Most likely, this is the reason why the temperature
dependences of the birefringence for the two samples
slightly differ at temperatures below 250 K (Fig. 3). As
the temperature increases to higher than 440 K, the
birefringence magnitude rapidly decreases to zero and
the crystal becomes optically pseudoisotropic, as
described above. Note that the birefringence of the
studied samples goes to zero at different temperatures.
The experiments demonstrated that this point for differ-
ent samples lies in the temperature range 440–450 K.

The thermodynamic parameters (T1 = 460 ± 2 K,
T2 = 289 ± 2 K, ∆H1 = 1170 ± 200 J/mol, ∆H2 = 280 ±
50 J/mol) for the phase transitions observed in β-NLS
crystals grown at a temperature above 300 K were
obtained in our previous study [11]. In the present work,
these values will be used as reference data in order to
determine the state of the studied samples. In the subse-
quent discussion, we will focus only on the phase transi-
tions occurring in crystals and, hence, will analyze
graphic data only on the anomalous heat capacity.

Figure 4 shows the temperature dependences of the
excess heat capacity measured in two experiments for
as-grown samples of α-NLS (group A) crystallized at
T = 281 K. The solid line represents the results obtained
upon the first heating. As is clearly seen, the excess heat
capacity has no anomalies at temperatures of 250 and
289 K, which correspond to the reversible phase transi-
tions in α-NLS [8] and β-NLS (G1  G2) [11],
respectively. At the same time, the excess heat capacity
exhibits an anomaly with a maximum at a temperature
of 341 ± 2 K. This is in reasonable agreement with the
previously determined temperature of the phase transi-
tion between the α and β modifications of NH4LiSO4
[8]. The change in the enthalpy associated with this
anomaly is estimated as ∆Hα → β = 2400 ± 300 J/mol.

The excess heat capacity measured during the sec-
ond heating (dashed line in Fig. 4) is characterized by
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
two anomalies at temperatures T1 = 460 ± 2 K and T2 =
290 ± 2 K, which correspond to the successive phase
transitions G0  G1  G2 in β-NLS. The enthalpy
changes upon these transitions are as follows: ∆H1 =
900 ± 200 J/mol and ∆H2 = 280 ± 60 J/mol. These
results are also in good agreement with the parameters
obtained in our recent work [11] for the NH4LiSO4

crystal in the β modification. Therefore, the studied
sample of α-NLS undergoes a monotropic phase tran-
sition at a temperature Tα → β = 341 ± 2 K.

The temperature dependence of the excess heat
capacity for a single crystal of α-NLS (group B) upon
the first heating after prolonged holding at room tem-
perature in a hermetically closed vessel is depicted by
the solid line in Fig. 5. It can be clearly seen that, as in
the preceding case, the excess heat capacity does not
exhibit anomalies at temperatures of ~250 and ~289 K.
However, we also did not reveal the anomaly attributed
to the α  β phase transition at a temperature close
to 341 K, which was observed for the as-grown sample
of α-NLS upon the first heating. With a further increase
in the temperature, there appears an anomaly in the
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Fig. 3. Temperature dependences of the birefringence ∆nc =
(na – nb) for NH4LiSO4 crystals in the (1) β and (2) α mod-
ifications.

250 300 350 400 450
T, K

50

100

150

E
xc

es
s 

he
at

 c
ap

ac
ity

,
 J

/m
ol

 K

0

Fig. 4. Temperature dependences of the excess heat capac-
ity for as-grown crystals of α-NLS (group A) upon the first
heating (solid line) and the second heating (dashed line).
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excess heat capacity with a maximum at a temperature
of 460 ± 2 K, which coincides with the temperature of
the G0  G1 phase transition in β-NLS [11]. It could
be assumed that, in the course of ageing, the sample
undergoes a monotropic phase transformation at room
temperature, as in the situation described above. How-
ever, the change in the enthalpy associated with the
observed anomaly in the heat capacity was found to be
∆H = 3600 ± 500 J/mol; this value substantially
exceeds the enthalpy change characteristic of the
G0  G1 phase transition in β-NLS [11]. Such a large
change in the enthalpy agrees satisfactorily with the sum
of the enthalpies of the α  β monotropic phase tran-
sition (∆Hα → β ≈ 2400 J/mol) and the G0  G1 enan-
tiotropic phase transition in β-NLS (∆H1 ≈ 1000 J/mol).
Upon repeated heating, the sample is characterized by
two anomalies in the excess heat capacity (dashed line
in Fig. 5) with thermodynamic parameters (T1 = 459 ±
2 K, T2 = 290 ± 2 K, ∆H1 = 920 ± 200 J/mol, ∆H2 =
220 ± 50 J/mol) typical of phase transitions in β-NLS
single crystals.

Analysis of the results obtained in the calorimetric
investigations of as-grown samples prepared through
slow growth under isothermal conditions with careful
stirring of the solution (crystallizations 3, 4) demon-
strated that the structure of bulk samples can contain
crystal blocks of both groups A and B simultaneously.
The experimental temperature dependences of the
excess heat capacity for these samples are displayed in
Fig. 6. The behavior of the excess heat capacity during
the first heating to 380 K is illustrated by the solid line.
As can be seen, no anomalies in the heat capacity are
observed at temperatures of 250 and 289 K. However,
as is the case with the sample prepared through crystal-
lization at 281 K, there appears a small anomaly at a
temperature of 347 ± 2 K due to the phase transition to
the ferroelectric phase β-NLS. The enthalpy change
(≈720 J/mol) proves to be considerably less than the
predicted value and amounts to approximately 1/3 of
the total enthalpy change ∆Hα → β. Upon the second
heating (dot-dashed line in Fig. 6), as could be
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Fig. 5. Temperature dependences of the excess heat capac-
ity for single crystals of α-NLS (group B) upon the first
heating (solid line) and the second heating (dashed line).
P

expected, the excess heat capacity has an anomaly at a
temperature of 293 ± 2 K, which is attributed to the
G1  G2 phase transition in β-NLS. It is worth noting
that, in this case, the enthalpy change (≈100 J/mol) also
amounts to approximately 1/3 of the total value ∆H2. In
the high-temperature range, the excess heat capacity
measured during the second heating exhibits two more
peaks, at temperatures of 465 ± 2 and 515 ± 2 K. The
first temperature corresponds to the G0  G1 phase
transition in β-NLS, and the enthalpy change is also
approximately equal to 1/3 of the total value ∆H1. Inte-
gration with respect to the area under the peak in the
heat capacity at T = 515 K gives an enthalpy change of
≈2200 J/mol, which amounts to approximately 2/3 of
the sum ∆Hα → β + ∆H1. Upon the third heating (dashed
line in Fig. 6) after cooling to ≈370 K, the excess heat
capacity is characterized by only one anomaly with
thermodynamic parameters (T1 = 465 ± 2 K, ∆H1 =
860 ± 150 J/mol) typical of the G0  G1 phase tran-
sition in β-NLS. The observed change in the enthalpy
indicates that, after the second heating, the sample
completely transforms into the β-NLS modification.
Therefore, it can be concluded that the studied sample
initially consisted of two parts with different tempera-
tures of the α  β phase transition. The shift in the
maxima of the heat capacity anomalies toward the high-
temperature range above 450 K due to the α  β
phase transition can be explained in terms of the kinet-
ics of the process. According to observations made
under a microscope, the time required to accomplish
this phase transition is considerably longer than the
time it takes for the studied sample to be heated in the
course of a differential scanning microcalorimetric
experiment at rates of 2–8 K/min.

An examination of the other samples prepared
through crystallization 3 revealed that the percentage
ratio between crystal parts with different temperatures
of the α  β phase transition changes from case to
case. For example, we obtained a sample in which only
5% of the entire volume was occupied by the crystal
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Fig. 6. Temperature dependences of the excess heat capac-
ity for as-grown crystals of α-NLS (crystallization 3) upon
the first heating to 380 K (solid line), the second heating
(dot-dashed line), and the third heating after cooling to
~370 K (dashed line).
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undergoing a monotropic phase transition in the tem-
perature range 340–350 K (group A).

Moreover, we made an attempt to establish a corre-
lation between the existence of polytypes in the struc-
ture of α-NLS crystals [7] and the phase transition tem-
peratures or the shape of the heat capacity anomaly dis-
cussed in [8]. It turned out that the x-ray diffraction
patterns of the (001) single-crystal plates contain a
large number of reflections. In addition to the (0 0 h)
reflections (h is an even index), which are characteristic
of all polytypes, the x-ray diffraction patterns exhibit
reflections corresponding to the lattice parameters c2 ≈
34 Å or c3 ≈ 51 Å. The intensities of the latter reflec-
tions also change from sample to sample. Hence, we
believe that polytypes actually exist in the structure of
α-NLS crystals; however, their influence on the exper-
imental results was not revealed.

It seems likely that the origin of the α  β phase
transition at room temperature can be explained in
terms of the structural features inherent in the α modi-
fication. The crystal structure of α-NLS is composed of
widely spaced tetrahedral layers with ammonium ions
between them [6, 7]. Consequently, the solvent can be
adsorbed in interlayer cavities during the crystal
growth. The adsorption of the solvent most probably
occurs in the course of a rapid growth, even without
stirring of the solution, when the salt concentration
decreases in the vicinity of the growing facet of the
crystal. If the as-grown crystal is placed in a dry atmo-
sphere, the water involved evaporates, thus initiating
the α  β phase transformation of the structure. This
process proceeds more vigorously in the region of
intensive vaporization. Under the conditions where the
crystal grows slowly or when the sample is held in a
closed vessel, there occurs diffusional relaxation of
impurities along the layers toward the crystal edges.

In order to verify the above assumption, we exam-
ined the behavior of a saturated solution under a micro-
scope in the temperature range 200–350 K. It was
found that the studied solution solidifies at a tempera-
ture of 250 K and undergoes melting at 256 K. The
most intensive evaporation of the water from a satu-
rated solution during heating is observed at tempera-
tures above 330 K. For the same purpose, we performed
a calorimetric investigation of the sample in the α mod-
ification prepared through the crystallization at a high
rate (3–4 days). As can be seen from Fig. 7, the excess
heat capacity of α-NLS crystals exhibits an anomaly
with the maximum at a temperature of 255 ± 2 K (upon
heating), which is in reasonable agreement with the
results obtained in [8]. This anomaly was reproduced
only in the case when the sample was not preliminarily
heated to a temperature above 340–350 K, for which
the mass loss of the sample reached approximately 2%.
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4. CONCLUSIONS

Thus, the experimental investigations of the bire-
fringence and heat capacity demonstrated that no struc-
tural phase transition occurs in α-NLS crystals at a tem-
perature of 250 K. The anomaly observed in the heat
capacity in this range of temperatures was attributed to
the incorporation of a large amount of water into the
studied sample.

It was established that, depending on the conditions
of growth and storage of NH4LiSO4 crystals, the tem-
perature of the α  β monotropic phase transition
can vary from room temperature to the boiling point of
the salt solution (crystals of the A group). This transi-
tion is accompanied by complete destruction of the
sample. Under the conditions where the crystals slowly
grow with stirring or when the samples are held in a
moist air atmosphere over a sufficiently long period of
time (crystals of the B group), the α  β phase tran-
sition occurs in the temperature range 440–450 K. The
crystal structure of these samples undergoes a slow
transformation (recrystallization) without noticeable
distortions. It was assumed that, in the temperature
range 340–350 K, the reconstructive phase transition is
initiated by the evaporation of a small amount of the
water incorporated into the interlayer cavities (crystals
of the A group). With time, the water molecules diffuse
toward the crystal edges (crystals of the B group). The
enthalpies of this transformation, which can proceed at
different temperatures, also differ significantly. This
can be explained by the fact that the NH4LiSO4 com-
pound undergoes a phase transition to the G1 ferro-
electric phase of the β modification at T = 340–350 K
and a phase transition to the G0 paraelectric phase at
T ≥ 460 K. The investigations performed did not reveal
a unique correspondence between the existence of
polytypes in the structure of the α modification and the
phase transition temperature Tα → β.
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Abstract—Raman scattering in a number of BeTe/ZnSe type-II superlattices which share no common cations
or anions in the interfaces was studied. Folded acoustic phonons; LO phonons of the first, second, and third
order in the ZnSe layers; and Kliewer–Fuchs-type electrostatic interface phonons were observed when excited
in resonance with the direct exciton transition in the ZnSe layers. Nonresonant excitation produced LO phonons
in the ZnSe and BeTe layers and a high-frequency mechanical interface mode, assigned tentatively to a local
vibration of the interface Be–Se bond. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

AB/CD-type semiconductor superlattices (SLs) with
zinc blende structure have recently been attracting con-
siderable interest. The specific features of such SLs
originate from the absence of common cation or anion
atoms at their interfaces. Chemical bonds on both sides
of the interface in a structure with a zinc blende lattice
and a single heterointerface lie in mutually perpendicu-

lar planes, ( ) and (110), which may result in optical
anisotropy in the interface plane. The optical properties

for light polarizations e || [ ] and e || [110] are dif-
ferent. In symmetric quantum wells with a common
anion in the wells and barriers, this optical anisotropy
has opposite signs at the direct and inverted interfaces
and, therefore, is not manifested (canceled), provided
both interfaces are equivalent. In AB/CD-type struc-
tures, however, the direct and inverted interfaces can
differ chemically, thus producing strong optical anisot-
ropy (up to 80–90%). A theoretical analysis of related
problems can be found in [1, 2].

The BeTe/ZnSe structure belongs to the new
AB/CD-type of superlattices. Its band structure has
been established to be type II and to have very large
band offsets [3]. The minimum of the conduction band
is in the ZnSe layers, and the maximum of the valence
band is in the BeTe layers. The electron and hole wave
functions overlap only near the interfaces, and, there-
fore, the latter play a very essential role. The two inter-
faces (direct and inverted) are, in general, chemically
different and contain specific bonds of the BeSe and
ZnTe type which do not exist in the inner SL layers. The
optical anisotropy of such SLs with inequivalent inter-
faces manifests itself in a very large linear polarization
of indirect exciton luminescence [4–6].

The absence of common atoms at the interfaces also
affects the phonon spectra. Calculations performed for

110

110
1063-7834/03/4508- $24.00 © 1579
the InAs/GaSb superlattice in terms of a linear chain
model [7] have shown that the existence of specific
GaAs- and InSb-type bonds at the interfaces gives rise
to the formation of two additional specific phonon
modes (transverse and longitudinal) which are local-
ized at the interfaces. One of these modes, originating
from the GaAs bond (at the so-called “light interface”),
is very strongly localized and has the highest frequency
in the spectrum. The other mode, caused by the InSb
bond at the “heavy interface”, lies between the acoustic
and optical regions of the SL phonon spectrum and is
localized more weakly. Similar modes were observed
experimentally in the InAs/GaSb [8, 9] and CdSe/ZnTe
[10, 11] SLs by using Raman spectroscopy. These local
modes are sensitive to the nature and quality of an inter-
face, and it was suggested that they could be employed
for interface characterization.

To the best of our knowledge, Raman scattering
from phonons in BeTe/ZnSe superlattices was studied
only in [12], where folded acoustic and LO phonons of
the BeTe and ZnSe layers were observed. It thus
appears of interest to further the investigation of Raman
scattering in BeTe/ZnSe superlattices under resonant
and nonresonant excitation and to attempt to observe
the interface phonons.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUES

We studied two sets of BeTe/ZnSe SLs grown
through molecular-beam epitaxy (MBE). The SLs were
grown on (001)-oriented GaAs semi-insulating sub-
strates. An epitaxial GaAs buffer was grown to improve
the surface quality. The growth was conducted at a sub-
strate temperature of 300°C. In the first set, intended
primarily for polarized-luminescence measurements, a
20-period BeTe(1.8 nm)/ZnSe(5 nm) superlattice was
2003 MAIK “Nauka/Interperiodica”
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grown between comparatively thick Be0.03Zn0.97Se
cladding layers. The growth was performed in such a
way as to make all interfaces primarily ZnTe type. With
this purpose in mind, the BeTe–ZnSe interface (ZnSe
epitaxy on BeTe), for example, was obtained by grow-
ing a 0.5 ZnTe monolayer on the BeTe surface, which
terminated in Te atoms. After this, the Te source was

Table 1.  Superlattice parameters

Sample
no.

Num-
ber of

periods

d = d1 + d2,
nm

d1, nm 
(ZnSe)

d2, nm 
(BeTe)

Interface type 
(determined 
by growth)

1522 20 6.76 4.97 1.79 ZnTe

1794 10 9.5 6.0 3.5 ZnTe

1795 10 8.0 3.76 4.24 ZnTe

1797 10 3.3 ≈0.8 2.5 ZnTe

1798 10 3.3 ≈0.8 2.5 ZnTe and 
BeSe

1799 10 3.3 ≈0.8 2.5 BeSe
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Fig. 1. (a) Raman scattering spectrum from folded acoustic
phonons in SL 1522 obtained in the Stokes region; Eex =
2.807 eV (resonance with the ZnSe exciton), T = 300 K.
(b) Raman spectrum obtained under nonresonant excita-
tion; Eex = 2.54 eV (note scattering from the GaAs sub-
strate; the star identifies the laser plasma line).
P

shuttered and the surface was exposed to Zn flux for
one second. The BeTe epitaxy on ZnSe was carried out
with the shutters operating in the opposite sequence.
The thicknesses of the ZnSe and BeTe layers were
determined from x-ray measurements. The SL 1522
belongs to this type. The second SL set was prepared
without Be0.03Zn0.97Se layers. The substrate was not
rotated during the course of growth. This resulted in a
gradient in the Te/Be flux ratio and in the layer thick-
nesses along a certain direction in the sample plane.
These SLs consisted of ten periods only; their central
thicknesses derived from x-ray measurements and cali-
brated growth rates are listed in Table 1. Note that the
layers in our samples are very thin; therefore, their
properties should be very sensitive to the interfaces. In
structures with ultrathin ZnSe films (2–3 monolayers)
sandwiched between 2.5-nm thick BeTe layers, the
concentration of interface bonds is comparable to that
of the regular ZnSe bonds. As follows from x-ray stud-
ies, one cannot avoid the formation of BeSe bonds even
when trying to grow only ZnTe-type interfaces [13]. As
we see later on, this conclusion is supported by Raman
studies.
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Fig. 2. Raman spectrum of SL 1522 obtained under nonres-
onant excitation in the optical phonon region; Eex = 2.54 eV,
T = 100 K. Note the scattering lines from the layers of the
ZnSe (250 cm–1), BeTe (497 cm–1), and GaAs substrates
(291 cm–1). The very weak line at 534.6 cm–1 indicated by
an arrow is tentatively assigned to interface Be–Se bonds.
The star identifies the laser plasma line.
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Raman scattering measurements were conducted in
the 90° geometry at temperatures of 100 and 300 K on
a double-monochromator U-1000 spectrometer (Jobin–
Yvon) with a linear dispersion of 0.24 nm/cm. The
spectra were excited by the 488-nm Ar+ laser line or the
441.6-nm line of an He–Cd laser. The luminescence
was measured at 30 K under excitation by the 488-nm
line of an Ar+ laser.

3. EXPERIMENTAL RESULTS, CALCULATIONS, 
AND DISCUSSION

Figure 1a presents a Raman spectrum of the SL
1522 obtained in the acoustic-phonon region under
excitation by the 441.6-nm (2.807 eV) He–Cd laser
line. At room temperature, this excitation energy is in
resonance with the direct excitonic transition in the
ZnSe layer. Even when measured at a low pump inten-
sity (less than 2 mW), the spectrum in the Stokes and
anti-Stokes regions exhibited a characteristic doublet
peak corresponding to a first-order folded acoustic
phonon. We used the frequency ν = 20.3 cm–1, corre-
sponding to the center of the doublet peak, and the
sound velocity for ZnSe, v  = 4.07 × 105 cm/s, to derive
the SL period d = ν/cv  = 66.8 Å, which is in good
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Fig. 3. Raman spectrum of SL 1522 obtained under exci-
tation in resonance with the direct ZnSe exciton. Eex =
2.807 eV, T = 300 K. Raman scattering from first-, second-,
and third-order ZnSe LO phonons is seen against the back-
ground of the luminescence band from the claddings.
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agreement with the x-ray data listed in Table 1. The
presence of a folded-phonon doublet peak in the spec-
trum argues for a high homogeneity in the period and in
the layer thickness, as well as a satisfactory interface
quality. No folded-phonon peaks were observed under
nonresonant excitation (Fig. 1b). They are probably
masked by some steplike structure in the spectrum,
which is related apparently to scattering from the sub-
strate or the GaAs buffer layer.

Figure 2 displays a Raman spectrum of the SL in the
optical phonon region obtained under nonresonant
pumping. The peak at 250 cm–1 is due to the LO phonon
from the SL ZnSe layers and the Be0.03Zn0.97Se clad-
ding. The strong peak at 291 cm–1 corresponds to the
LO phonon of the substrate and the GaAs buffer. The
497.0-cm–1 peak originates from the BeTe-layer LO
phonon. A very weak peak is observed at 534.6 cm–1.
We assign this peak tentatively to interface BeSe bonds.
The existence of such bonds (i.e., the inequivalence of
the interfaces) is argued for by the very substantial
(~50%) linear luminescence polarization of the indirect
transition in this BeTe/ZnSe superlattice.

Figure 3 shows a Raman spectrum obtained under
excitation in resonance with the direct exciton transi-
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Fig. 4. Luminescence band of SL 1795 and two bands of its
phonon replicas due to the ZnSe and BeTe LO phonons. T =
30 K, Eex = 2.54 eV.
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tion in ZnSe. One clearly sees strong first-, second-, and
third-order LO phonons from the ZnSe layers super-
posed on the luminescence band produced in the
BeZnSe cladding. Unfortunately, the ZnSe 2LO-
phonon frequency in the BeTe/ZnSe superlattice coin-
cides with the BeTe LO phonon frequency, with the
result that the peaks corresponding to BeTe and to the
BeSe interface mode excited in resonance with the
direct ZnSe exciton are not seen. Excitation in reso-
nance with the BeTe band gap is impossible because the
gap width is in excess of 4 eV.

Let us turn now to a discussion of the results
obtained with SLs without the cladding layers. As an
illustration, consider the luminescence spectrum of SL
1795 measured at 30 K. We clearly see the indirect
exciton transition line, as well as two replicas corre-
sponding to the ZnSe and BeTe LO phonons. The linear
polarization is ~10%. Excitation in resonance with the
ZnSe direct exciton was achieved on SL 1794. Figures 5
and 6 display the corresponding Raman spectra in the
acoustic- and optical-phonon regions, respectively. We
believe that the peaks in Fig. 5 are due to unresolved
first- and second-order folded phonons. The SL period,

5
0

15 25 35
Raman shift, cm–1

2

4

In
te

ns
ity

, a
rb

. u
ni

ts

12.7 cm–1

25.7 cm–1

Fig. 5. Raman spectrum of SL 1794 from folded acoustic
phonons of the first and second order obtained under reso-
nance excitation (Eex = 2.807 eV). T = 300 K. No doublet
structure of the bands is observed.
PH
as derived from their frequencies, lies within the inter-
val of the period values 84–105 Å determined from x-
ray measurements for the sample from which the small
piece used in the measurements was cleaved out. The
fact that the peaks do not resolve in doublets implies a
certain inhomogeneity of the sample, as well as a pos-
sible additional broadening associated with the small
number of periods. As in the case of SL 1522 (see
above), no folded phonons were observed under non-
resonant excitation.

The optical-phonon region (Fig. 6) revealed strong
ZnSe LO and 2LO phonon peaks. An unresolved struc-
ture is seen on the low-frequency side of these peaks.
Each of the peaks was unfolded into two Gaussians, as
shown in Fig. 6 by dashed lines. The low-frequency
peaks lie at 228 and 484 cm–1. We identify them with
Kliewer–Fuchs-type electrostatic interface modes,
which are related to the difference between the dielec-
tric functions ε1(ω) and ε2(ω) of the two adjacent
media. The intensity of the interface modes of this type
is enhanced under resonance excitation. Neglecting
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Fig. 6. Raman spectrum of SL 1794 from the ZnSe LO
phonon of (a) the first and (b) second order obtained under
excitation in resonance with the ZnSe exciton. Eex = 2.807 eV,
T = 300 K. Dashed lines illustrate unfolding of the observed
peaks into two Gaussians. The low-frequency profiles cor-
respond to (a) ZnSe-like and (b) BeTe-like electrostatic
interface modes of the SL.
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retardation, their frequencies ω(kx) can be derived from
the dispersion relation [14]

 (1)

where d = d1 + d2 and η = ε1(ω)/ε2(ω). Here, ε1(ω) and
ε2(ω) are the dielectric functions of ZnSe and BeTe,

respectively, with εi = (ω2 – )/(ω2 – ),
where ωLOi and ωTOi are the frequencies of the longitu-
dinal and transverse optical phonons for the ith layer.
Figure 7 plots the phonon frequencies calculated using
Eq. (1) vs. kxd2 for the values kz = 0 and π/d correspond-
ing to the phonon miniband edges for the given value of
kx. The minibands of allowed frequencies are separated
by a gap. The experimental values of the interface mode
frequencies agree with the calculations for large values
of kx. Thus, scattering from interface modes occurs
without wave vector conservation, which is possible
with the participation of impurities and surface rough-
ness [15].

Figure 8 compares two Raman spectra in the region
of the BeTe LO phonon. The spectrum in Fig. 8a, which
was obtained under nonresonant excitation, contains
the BeTe LO phonon line and a higher-frequency mode,
which we assign to the interface Be–Se bond. The spec-
trum in Fig. 8b, obtained under excitation in resonance
with the ZnSe exciton, exhibits only the broader line of

kzd( )cos η2
1+( )/2η[ ] kxd1( ) kxd2( )sinhsinh=

+ kxd1( ) kxd2( ),coshcosh

εi
∞ ωLOi

2 ωTOi
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Fig. 7. Calculated electrostatic interface phonon miniband
frequencies for SL 1794 plotted vs. kxd2 (d2 is the BeTe
layer thickness). kz = 0 and π/d.
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the ZnSe 2LO phonon. Thus, the line associated with
the BeSe mode does not apparently undergo noticeable
enhancement under excitation in resonance with the
direct ZnSe exciton (in contrast to the electrostatic inter-
face modes discussed above). This may indicate that the
direct exciton is strongly localized within the ZnSe layer
and only weakly overlaps the mechanical interface mode
extending only over a few atomic layers.

Figure 9 displays Raman spectra of three SLs, 1797,
1798, and 1799, with BeTe layers equal in thickness
(about 2.5 nm) and with very thin (2–3 monolayers)
ZnSe layers. Attempts were made to grow only
ZnTe-type interfaces in the SL 1797, alternate ZnTe-

Table 2.  Longitudinal optical phonon frequencies and force
constants of chemical bonds

Compound νLO, cm–1 κ, 105 dyn/cm

BeTe 500 0.621

ZnSe 250 0.66

BeSe 575 0.789

ZnTe 209 0.552
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Fig. 8. Raman spectrum of SL 1794 in the region of 500 cm–1.
(a) Eex = 2.54 eV and (b) Eex = 2.807 eV (resonance with
the ZnSe exciton). Spectrum (a) shows the BeTe LO phonon
line and the local interface mode of Be–Se bond. Spectrum
(b) shows only the broader line due to the ZnSe 2LO
phonon.
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and BeSe-type interfaces in the SL 1798, and only
BeSe-type interfaces in the SL 1799. However, the rel-
ative BeSe line intensity is seen to be only slightly
higher in SL 1799. This signals the presence of inter-
faces of both types in all three SLs, irrespective of the
growth conditions, which correlates with the x-ray
measurements. It should be stressed, however, that the
relative intensity of the BeSe line in these short-period
samples is higher than in samples with a large period
(for instance, in sample 1522), which finds natural
explanation in the larger volume fraction of interfaces
in the short-period samples. The fact that the BeTe LO
phonon line in SLs 1798 and 1799 is broader and
shifted toward higher frequencies may indicate poorer
sample quality and the existence of additional stresses.

We carried out calculations of the Be–Se bond
vibration frequency in terms of the linear-chain model
for a structure of the type shown in the inset to Fig. 10.
Only the nearest neighbor interactions were included.
The linear-chain model yields the following equation of
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Fig. 9. Raman spectra in the region of 500 cm–1 obtained for
three SLs with the shortest periods (SL 1797, 1798, 1799)
grown in different conditions. The presence of a high-fre-
quency line in the spectra indicates the existence of inter-
face Be–Se bonds in all three samples. The relative intensity
of this line (compared to the BeTe LO phonon line) is higher
in short-period SLs.
PH
vibrational motion in the [001] direction for the nth
atom with a displacement un = e–iωtUn:

 (2)

where n is the atomic index (1 ≤ n ≤ N), mn is its mass,
and the effective force constants κ were chosen so that
the linear chain model [16] reproduces the LO phonon
frequencies for the bulk BeTe, ZnSe, BeSe, and ZnTe
materials. These force constants are listed in Table 2.

Solving coupled equations (2) yields the frequency
eigenvalues and the corresponding eigenvectors of nor-
mal vibrations. The results obtained show that the num-
ber of eigenfrequencies increases and their values
change with increasing number of atoms. The maxi-
mum frequency 528 cm–1 (which exceeds the BeTe LO
phonon frequency) does not, however, depend on N,
and the corresponding eigenvector, as is evident from
Fig. 10, has a noticeable magnitude only in the imme-
diate vicinity of the BeSe light interface. The amplitude
is the largest for the Be atom near the interface (the

mnω
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Fig. 10. Amplitude of atomic vibrations at the Be–Se inter-
face for the 528-cm–1 mode. The calculation was carried out
in terms of the linear–chain model for a structure of the type
shown in the inset.
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sixth atom in the structure depicted in Fig. 10). Thus,
we assign the frequency of 528 cm–1 to a local interface
Be–Se bond mode. There is no such frequency in a
structure that does not have Be–Se-type bonds. In view
of the rough character of the calculations, the calcu-
lated Be–Se bond frequency may be considered to
agree well with the experiment (534 cm–1).
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Abstract—The shape of lines in the radiospectroscopic (NMR and EPR) and dielectric spectra of materials
formed by nanoparticles (hereafter, nanomaterials) is analyzed theoretically. The theory is developed in the
framework of the core and shell model according to which a nanoparticle consists of two regions whose prop-
erties are affected and unaffected by the surface, respectively. The changes in the resonance frequency, the
relaxation time, and the static permittivity due to the surface tension are taken into account, and the Gaussian
and Lorentzian shapes of homogeneously broadened lines are considered. The inhomogeneous broadening of
the spectral lines is examined for several types of nanoparticle size distributions. It is demonstrated that the
splitting of the initial lines in the spectra of bulk systems into pairs of lines with a decrease in the particle size
is a specific feature of the spectra of nanoparticles. The intensities and half-widths of the lines are investigated
as functions of the parameters of the size distribution of nanoparticles. The results of theoretical calculations
are compared with recent experimental data on the 17O and 25Mg NMR spectra of nanocrystalline MgO. The
theoretical dependences of the intensity, the resonance frequency, and the half-width of the spectral lines are in
good agreement with the experimental data. The proposed theory offers a satisfactory explanation of the behav-
ior of the static permittivity in BaTiO3 ceramic materials with nanometer-sized grains. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION
Investigations into the properties of nanomateri-

als—nanoparticle powders, ceramics with grain sizes
of the order of nanometers (nanoceramics), and nano-
composites in which nanoparticles of one material are
incorporated into the matrix of another material—have
attracted the attention of researchers for a number of
reasons. In particular, the unusual physical properties
and pronounced surface effects [1–3] make these mate-
rials very promising for different technical applications
(see [4] and references therein).

The influence of size effects on the properties of
nanoparticles is better understood than that of films pre-
pared from different materials (see [5] and references
therein). The existence of the critical size of ferroelec-
tric particles, below which ferroelectricity is not
observed in the particles, has been established by
numerous investigations, including x-ray diffraction,
transmission electron microscopy, dielectric measure-
ments, and radiospectroscopy [6–8].

The considerable scatter in the critical sizes of nano-
particles can be explained by the different conditions of
their preparation [9] and depends on their environment,
which is different in powder, ceramic, and composite
systems. For example, the critical size of nanoparticles
in a BaTiO3 ceramic material appears to be approxi-
mately ten times larger than that in powder samples [7].
Moreover, dielectric measurements have been per-
formed in external electric fields. Consequently, dielec-
tric investigations of nanoparticles provide information
1063-7834/03/4508- $24.00 © 21586
on the response of a particle–matrix system as a whole
rather than on particles themselves. It is evident that
radiospectroscopic methods do not have this disadvan-
tage.

Information on the size distribution of particles is
particularly important for analyzing spectral lines,
because the spread in sizes leads to an inhomogeneous
broadening and a shift of the lines [10, 11].

As is known, nanoparticles are characterized by size
effects, such as surface tension, a substantial contribu-
tion from the correlation energy to the total energy of a
particle, and others. In particular, Wenhui Ma et al. [12]
demonstrated that the observed dependence of the fre-
quency of phonon modes on the particle radius for
nanocrystalline PbTiO3 is associated with the internal
stresses caused by the surface tension. It is also known
that the surface tension is determined not only by the
particle size but also by the surface energy (see, for
example, [13]), which should be included in the free
energy of the system [14].

In the present work, we analyzed the dielectric and
radiospectroscopic spectra of a system composed of
noninteracting particles, each treated in terms of a core
and shell model. The internal stresses (induced by the
surface tension) and the size distribution of particles
were taken into account. The results of theoretical cal-
culations were compared with the available experimen-
tal data.
003 MAIK “Nauka/Interperiodica”
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2. MODEL

It is known that finite systems are characterized by
inhomogeneous physical properties. In ferroelectric
systems considered within phenomenological theories,
this inhomogeneity can be included through the addi-
tion of the correlation energy to the free energy of the
system. In turn, the correlation energy is determined by
the appropriate invariant combination of spatial deriva-
tives of the order parameter (see, for example, [5]).

The local properties of solids can be investigated
using a relatively small number of methods, including
NMR and EPR spectroscopy [11, 15]. Dielectric meth-
ods provide a means for measuring the response of a
system as a whole. This response involves the contribu-
tions of all inhomogeneities, which corresponds to the
spatial averaging of local properties. In a certain sense,
this averaging is equivalent to averaging over the parti-
cle sizes. In spectra of similar systems, such averaging
leads to an inhomogeneous broadening of the spectral
lines [10]. For ferroelectric relaxors, the broadening is
observed in the NMR spectra [16] and manifests itself
as hole burning in the dielectric spectra [17].

In order to perform averaging over the particle sizes,
it is necessary to elucidate the dependence of the phys-
ical properties of the material, in particular, the half-
width and the position of the spectral line at the maxi-
mum, on the size (shape) of the system. In what fol-
lows, we will assume that the surface tension and the
related internal stress substantially contribute to the
particle properties.

As is known, internal stresses induced by surface
tension in a spherical particle of radius r coincide with
a uniform compressive strain under pressure p = 2k/r,
where k is the surface tension coefficient [13]. It should
be noted that, although the last quantity is always larger
than zero, the influence of the pressure can lead to both
a decrease and an increase in the natural frequencies of
vibrations, the relaxation times, etc. Specifically, an
increase in the surface tension results in a decrease in
the frequency of the soft mode in nanocrystalline
PbTiO3 [12].

Another important size effect is associated with the
aforementioned inhomogeneous physical properties of
particles. This factor will be accounted for within a sim-
ple model according to which a particle consists of a
core (the particle region [0, r – ∆r]) and a shell (the par-
ticle region [r – ∆r, r]). The properties of the former
region are similar to those of the bulk system, whereas
the properties of the latter region are affected by the
surface and can differ from the properties of the former
region. It is assumed that the shell thickness ∆r does not
depend on the particle size. Within this model, the spec-
tra should contain pairs of lines, such that the lines in
each pair are attributed to the core and the shell. The
purpose of the present work is to determine the relative
intensities of these lines and the conditions of their res-
olution.
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3. NUCLEAR MAGNETIC RESONANCE 
SPECTRA

The shape of homogeneously broadened NMR or
EPR lines is governed by the main mechanisms of
broadening and can be described by Gaussian or
Lorentzian functions [11, 15]. The total intensity of the
line of one particle can be written in the form I(ω, R) =
Ic(ω, R) + Is(ω, R), where subscripts c and s indicate the
contributions of the core and the shell, respectively. In
this case, the line intensity takes the form

 (1a)

 (1b)

Here, formulas (1a) and (1b) refer to the Gaussian and
Lorentzian shapes of individual lines, respectively. The
quantities ωin(r) and ∆in (where i = 1, 2; n = c, s) are the
resonance frequencies and the half-widths of lines,
respectively. The half-width at half-maximum of a line
is equal to ∆2n for the Lorentzian line shape [relation-

ship (1b)] and  ≈ 1.177∆1n for the Gaussian
line shape [expression (1a)]. The coefficients Ain (where
i = 1, 2; n = c, s) depend on the intensity normalization.
Apparently, the sum of the integrated intensities for
each type of line shape is independent of the particle
size. Then, the relative coefficients can be found from
the condition of normalizing the total intensity to the

volume of the system (  = 1); that is,

 (2a)

In formulas (1), it is assumed that the surface tension
affects only the resonance frequencies

 (2b)

where the quantities kc and ks are proportional to the
surface tension coefficient. The proportionality coeffi-
cients can be positive and negative and accounts for the
effect of the external pressure on the frequencies of nat-
ural vibrations through the spin–phonon interaction.
On the other hand, the dependence of the half-width on
the pressure due to the spin–phonon and spin–spin
interactions cannot be ruled out.

In order to analyze the properties of a set of parti-
cles, it is necessary to specify their size distribution
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function. We consider the following three simple distri-
bution functions:

 (3a)

where δ(x) is the Dirac delta function;

 (3b)

where Θ(x) is the Heaviside theta function and r0 > d;
and

 (3c)

Here, r0 is the modal (mean) particle radius and d is the
half-width of the distribution function. Note that, in
function (3c), the normalization coefficient is written
up to the principal term at r0 @ d, whereas corrections

of the order of exp(– /2d2) are omitted under the
assumption r0 > d.

Now, the spectral line can be represented as the
convolution of the distribution function (3) with inten-
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Fig. 1. NMR spectra calculated for the homogeneously
broadened Gaussian line shape at the parameters ω0c/∆c =
15, ω0s/∆s = 5, kc/r0∆c = 1, and ks/r0∆s = 0.5. ∆r/r0 =
(a) 0.05, (b) 0.1, and (c) 1. Spectrum 1 is calculated for the
size distribution function (3a). The other spectra are calcu-
lated using the size distribution function (3c) at d/r0 =
(2) 0.8, (3) 0.5, and (4) 0.01.
P

sity (1): that is,

 (4)

The simplest case of this convolution with the distribu-
tion function (3a) corresponds to the spectrum of a sys-
tem formed by particles of radius r0. It is clear that con-
volution (4) with the distribution function (3a) is
reduced only to the replacing radius r by r0. Hereafter,
when examining spectra that are dependent on the par-
ticle radius, we will use the averaging with the distribu-
tion function (3a). The spectrum shape strongly
depends on the ratio ∆r/r0. Evidently, in the two limit-
ing cases ∆r/r0  0 and ∆r/r0  1, the spectrum
involves only one line associated either with the core or
with the shell, respectively.

In the intermediate case ∆r/r0 < 1, the lines can be
resolved when the difference between the resonance
frequencies is larger than the sum of the half-widths
|ωc(r0) – ωs(r0)| > ∆c + ∆s. The spectrum shapes for the
above three cases are shown by solid lines in Fig. 1. In
what follows, we will assume that an increase in the
surface tension leads to a decrease in the resonance fre-
quencies; i.e., the coefficients kc and ks are positive in
sign.

Integral (4) for distribution functions (3b) and (3c)
was calculated numerically. The results of the averaging
of line (1a) with the use of distribution functions (3b)

I1 2, ω( ) 4πr
2

rf r( )I1 2, ω r,( ).d

0

∞
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Fig. 2. NMR spectra calculated from relationships (4), (3c),
and (1a) (solid line) and from approximate formulas (5) and
(6) (dashed line) at ∆r/r0 = 0.25 and d/r0 = 4. The other
parameters are the same as in Fig. 1.
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and (3c) are represented by the dashed and dotted lines
in Fig. 1, respectively. It can be seen from this figure
that the spread in the nanoparticle sizes leads to broad-
ening of the line and a shift in the maximum.

Approximate analytical calculations of I1(ω) with
the distribution function (3c) can be performed using
the Laplace method [18] when the inequality r0/d >
kc, s/(r0∆c, s) is satisfied. As a result, we obtain

 (5)

where

 (6)

are the renormalized widths of the Gaussian lines. As
follows from relationship (5), the inhomogeneously
broadened line is the sum of two Gaussian lines with
the parameters renormalized by the surface tension and
the size distribution. Note that the renormalized widths
(6) increase with a decrease in the modal particle size
r0. Consequently, the lines are more smeared for parti-
cles with smaller sizes.

It should be emphasized that, although expressions (5)
and (6) are approximate, the difference between the
data obtained with expression (5) and the exact, numer-
ically calculated results does not exceed, on the aver-
age, 10–20% (see the dashed and solid curves in Fig. 2).
A comparison with the available experimental data,
which will be given below, confirms the validity of
expressions (5) and (6) over a wide range of particle
sizes.

The calculations of I2(ω) for the homogeneously
broadened line with a Lorentzian shape offer results
qualitatively similar to those derived by averaging the
homogeneously broadened line with a Gaussian shape.
The main qualitative difference is in the larger shift in
the maximum of the Lorentzian line (cf. Figs. 3a, 3b).

4. DIELECTRIC SPECTRA

In the framework of the core and shell model, the
permittivities of the core and the shell of the particle are
denoted by εc and εs, respectively. To a first approxima-
tion, the permittivity of the particle is equal to the per-
mittivity averaged over the particle volume [19]; that is,

 (7)
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Apparently, in the same approximation, the mean per-
mittivity of the system of particles has the form

 (8)

We now derive the expression for the dynamic per-
mittivity of the bulk system. The time dependence of
the polarization P of a similar system in an ac external
field can be described by the Landau–Khalatnikov
equation with due regard for the kinetic energy [20]:

 (9)

where ω is the frequency of the external electric field,
α = αT(T – Tc) and β are the coefficients of expansion of
the Landau–Ginzburg–Devonshire free energy, Tc is the
phase transition temperature, µ is the mass coefficient,
and η is the vibration damping coefficient [20]. It is
easy to show that the linear dielectric susceptibility χ =
(dP/dE)|E = 0 obeys the equation

 (10)
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Fig. 3. NMR spectra calculated for (a) Lorentzian and (b)
Gaussian line shapes at ∆r/r0 = 0.05 (the other parameters
are the same as in Fig. 1). Inhomogeneously broadened
spectra are calculated using the distribution functions (3a)
(solid lines) and (3b) at d/r0 = 0.1 (dashed lines) and 0.95
(dotted lines).
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where Ps is the static spontaneous polarization, which

satisfies the equation αPs +  = 0. From Eq. (10) and
the expression relating the permittivity and the suscep-
tibility ε(ω) = ε∞ + 4πχ(ω), we obtain the relationship

 (11)

Here, we introduced the designations

 (12a)

where the static susceptibility χ0 is defined by the
expression

 (12b)

It is obvious that relationship (11) describes the
response of a system of the damped oscillator type with
a frequency ω0 of natural oscillations and a relaxation
time τ. It can be seen from relationships (12) that, at the
phase transition point, i.e., at α  0 (χ0  ∞), the
frequency ω0 becomes equal to zero (soft mode) and the
relaxation time τ tends to infinity (critical damping).

The hydrostatic pressure applied to the system shifts
the phase transition point [20] and, hence, affects the
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Fig. 4. Frequency dependences of the dynamic permittiv-
ity (16) at βc/r0 = 0.95 and the ratios βs/βc = (1) 0, (2) 0.26,
(3) 0.53, (4) 0.68, and (5) 0.79. Solid lines represent the
results of calculations at ∆r/r0 = 0, and all the other lines
correspond to ∆r/r0 = 0.5. The dependences of the imagi-
nary part of the permittivity are depicted in the main part of
the figure, and the inset shows the dependences of the real
part of the permittivity.
PH
coefficient α in formulas (9)–(12), which can be written
in the following form:

 (13)

where Q is a linear combination of electrostriction con-
stants and α0 is the coefficient α for the bulk system. In
relationship (13), the sign minus is chosen because the
hydrostatic pressure decreases the frequency of the soft
mode in ferroelectric perovskites of the barium titanate
type [12]. Substitution of formulas (13) into relation-
ships (11) and (12) gives the expression

 (14)

Here, all the quantities with subscript ∞ are obtained
from the corresponding quantities without this sub-
script by replacing α by α0 in relationships (12) and the
following designation is introduced:

 (15)

From expressions (7) and (14), we can easily obtain the
total permittivity of the particle:

 (16)

Making allowance for expression (2), relationship (16)
describes the dynamic dielectric response of one parti-
cle or a system formed by noninteracting particles of
radius r. In the latter case, the size distribution function
is represented by formula (3a). It is clear that the spec-
trum shape depends on the relation between ω0∞ and τ∞,
the parameters βc, s, and the ratio of the shell thickness
to the core radius. Hereafter, we will use the following
dimensionless variables:

 (17)

Figure 4 shows the dependences ε(ω, r) on  at ρ = 0,
i.e., for the purely relaxational response of the system.
As can be seen from this figure, the imaginary part of
the permittivity exhibits two maxima at the parameters
∆r/r = 0.5 and βs/βc < 0.7. Two separate lines begin to
merge together with an increase in the latter ratio. For
example, at βs/βc ≈ 0.8, there is only one asymmetric
smeared line (Fig. 4, curve 5). It is obvious that the
spectrum of the bulk system (Fig. 4, curve 1) consider-
ably differs from the spectrum of the particles.

The dielectric spectrum turns out to be more com-
plex for size distribution functions with a finite width,
for example, in the case of the size distribution func-
tions (3b) and (3c). For the size distribution function (3b),
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the dielectric spectrum can be obtained in the analytical
form

 (18a)

where we used the following designations:

(18b)

(18c)

 (18d)

At d ! r0, relationships (18) transform into expres-
sion (16) with the replacement of r by r0.

The imaginary parts of permittivity (18) at ρ = 0 (the
Debye relaxation response) for different ratios ∆r/r0
and small ratios d/r0 are shown in Fig. 5. As can be seen
from Fig. 5, the shape of the spectrum consisting of two
lines (curves b, c, d) is sensitive to changes in the above
ratios. An increase in the ratio d/r0 results in the trans-
formation of the spectrum into one broad line, whereas
the spectrum corresponding to the response of the core
(curve e) is virtually insensitive to a change in this ratio.

A special investigation demonstrated that, at large
ratios d/r0 > 0.3, the shape of the line corresponding to
the shell substantially depends on this ratio. In particu-
lar, at d/r0 = 0.95, the spectrum is somewhat broadened
and the frequency of the maximum is shifted.

Numerical calculations of the dielectric spectrum
averaged with the size distribution function (3c) at ρ = 0
offer results similar to the analytically obtained data
presented in Fig. 5.

It is not evident that the theoretically predicted fea-
tures can be observed experimentally, even though the
spectral broadening is a characteristic feature of nano-
materials. It is not improbable that closer examination
of the spectra could reveal specific features (such as
separate lines corresponding to the core and the shell)
that are not resolved due to the size distribution of par-
ticles.
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5. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

The core–shell model according to which the core
possesses properties similar to those of the bulk system
and the properties of the shell are affected by the sur-
face implies a simplified approach to a complex prob-
lem, whose solution should take into account a gradual
variation in the physical properties of the system. It was
shown that, in finite systems with an electric-polariza-
tion gradient, the ferroelectric phase transition temper-
ature depends on the system size and becomes zero for
particles at the critical radius rc under certain boundary
conditions [2, 5]. It is believed that, in systems formed
by particles, the size-induced phase transition mani-
fests itself as specific features in the physical properties
in the vicinity of the critical radius.

However, the positions of maxima for powder and
ceramic samples differ appreciably (the critical size of
powder particles is approximately ten times smaller
than the critical size of grains in barium titanate
ceramic material [7]). The assumption that this effect
can be associated with the scatter in the particle sizes
was not confirmed, because the broadening of the size

0.01 0.1 1
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ε''

ωτc

1
2
3
4

Fig. 5. Frequency dependences of the imaginary part of the
dynamic permittivity (18) at ∆r/r0 = (a) 0.05, (b) 0.5,
(c) 0.55, (d) 0.6, and (e) 0.95. d/r0 = (1) 0, (2) 0.03, (3) 0.04,
and (4) 0.049. βc/r0 = βs/r0 = 0.95.
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distribution of particles leads to a shift in the maximum
toward the small-size range [21].

Let us consider this problem in terms of the core–
shell model. The static permittivity can be obtained

0
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Fig. 6. Dependences of the static permittivity (19) on the
radius at βc/R0 = 0.1, δ = 0.1, ∆r/R0 = 0.1, and the ratios
βs/βc = 1 (solid line), 2 (dashed line), 4 (dotted line), and
8 (dot-dashed line). Here, R0 is the maximum particle radius.
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Fig. 7. Dependences of the static permittivity (19) averaged
with the particle distribution function (3b) on the radius at
βc/R0 = 0.1, δ = 0.1, ∆r/R0 = 0.1, and different values of
βs/βc and d/r0: 1 and 0 (solid line), 4 and 0 (dashed line), 1
and 0.5 (dotted line), and 4 and 0.5 (dot-dashed line).
P

from formula (16) at ω = 0. It can be seen that the per-
mittivity diverges at the radii r1d = βc and r2d = βs. Tak-
ing into account that the permittivity in real systems is
finite, the static permittivity can be written in the fol-
lowing form:

 (19)

Here, the parameter δ determining the permittivity
maximum and the Heaviside theta function Θ(x) are
introduced in order to demonstrate that the permittivi-
ties in the paraelectric and ferroelectric phases (with the
same temperature deviation from the phase transition
point) differ by a factor of two (for second-order phase
transitions).

As follows from relationship (19), the position of
the maximum considerably depends on the parameter
∆r and the ratio βs/βc. Figure 6 shows the dependences
of the static permittivity on the radius at ∆r = βc and dif-
ferent parameters βs ≥ βc (the dependence at βs/βc is
depicted by the solid line). It can be seen from this fig-
ure that an increase in the ratio βs/βc results in a shift in
the maximum to larger radii and an increase in the max-
imum width. The averaging of the static permittivity (19)
with the size distribution function (3b) leads to addi-
tional broadening of the maximum and its shift toward
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Fig. 8. Dependence of the static permittivity on the mean
size of BaTiO3 ceramic grains. Squares represent the exper-
imental data taken from [14]. The solid line is the theoreti-
cal dependence (19) calculated at ∆r/r0 = 0.1, ∆ε0∞ = 3500,
δ = 0.25, βc = 0.1 µm, and βs  = 0.9 µm.
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Fig. 9. (a) 17O NMR and (b) 25Mg NMR spectra of nanocrys-
talline MgO for different particles sizes: (a) (1) 4.5, (2) 2.5,
and (3) 1.8 nm and (b) (1) 3, (2) 4.5, and (3) 5 nm. Solid lines
correspond to the results of calculations from formulas (5)
and (6). Triangles represent the experimental data taken from
[22]. The fitting parameters are listed in Tables 1 and 2.
Dashed lines indicate the decomposition of the NMR spec-
tra according to [22].
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the small-radius range (Fig. 7), which agrees with the
results obtained in [21]. Consequently, the experimen-
tally observed shift of the permittivity maximum for
ceramic materials [7] can be associated with the fact
that the inequality βs > βc holds for the ceramic materi-
als, whereas the opposite inequality is satisfied for the
powders. Actually, this difference can be explained by
the presence of the second phase in the systems under
consideration. For example, the second phase in the
ceramic materials can be contained in interlayers
between grains. The experimental data taken from [14]
for BaTiO3 ceramic materials are compared with the
theoretical dependence (19) in Fig. 8. It can be seen
from Fig. 8 that the proposed core–shell model ade-
quately describes the experimental static permittivity.
This suggests that the surface tension, which was
ignored in [2, 5], can affect the critical size determined
in these works on the basis of the thermodynamic phe-
nomenological theory.

The proposed model can also be applied to describe
the experimental data obtained by Chadwick et al. [22].
In this work, the 17O and 25Mg NMR spectra were stud-
ied for nanocrystalline MgO with crystallite sizes from
1.8 to 35 nm (according to the estimates made from the
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Fig. 10. Experimental dependences of the resonance fre-
quency of 17O NMR (closed squares) and 25Mg NMR (open
squares) spectra on the particle size [22]. Solid lines repre-
sent the theoretical dependences obtained from formula (2b)
at ω0 = 47.5 ppm and k = 5.25 ppm nm for 17O and ω0 =

26 ppm and k = 10 ppm  nm for 25Mg. The inset shows the
dependence of the ratio of the integrated intensity Is of the
line associated with the shell to the total intensity I on the par-
ticle size. The solid line indicates the theoretical dependence
Is/I = 1 – (1 – ∆r/r0)3 at ∆r = 0.48 nm. Closed triangles are
the fitting parameters used in this work, and open triangles
are the experimental 17O NMR data taken from [22].
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Table 1.  Particle sizes, 17O NMR data, and fitting results taken from [22] and the results of our fitting and theoretical calcu-
lations at ωc1 = 47.5 ppm, ωc2 = 42 ppm, ωs = 47.5 – 5.25/r0 ppm (ν0 = 40.18 MHz), and Is/I = 1 – (1 – 0.4823/r0)3

Size 2r0 (nm) 1.8 2.5 3 4.5 5 13.5 35

ωc1 (ppm) ± 0.5 47 47 47 47 47 47 47

Ic1/I (%) ± 2 5 30 21 47 52 68 100

Ic1/I (%) our fitting 4 23 26 37 48 75

∆c1 (Hz) ± 2 174 88 88 81 96 23 15

∆c1 (Hz) our fitting 85 83 85 81 96 23

ωc2 (ppm) ± 0.5 41 41 42 41 42

∆c2 (Hz) ± 2 235 105 120 76 58

∆c2 (Hz) our fitting 65 75 110 70 58

Ic2/I (%) ± 2 27 20 24 15 3

Ic2/I (%) our fitting 6 10 9 11 6

ωs (ppm) ± 2 42 43 43 45 44 47

ωs (ppm) theory 41.7 43.3 44 45.2 45.4 46.7 47.2

Is/I (%) ± 2 68 50 55 38 45 32

Is/I (%) our fitting 90 77 65 52 46 25

Is/I (%) theory 90 76.8 68.8 51.2 47.4 19.9 8.0

∆s (Hz) ± 50 1300 840 650 920 460 170

∆s (Hz) our fitting 550 500 150 350 250 170
x-ray powder diffraction data). It was demonstrated that
the spectral lines have a Gaussian shape due to the
chemical shift. An interesting evolution of the 17O
NMR spectra was observed with a decrease in the par-
ticle size. Specifically, the NMR spectra of particles
with the largest sizes (13.5, 35 nm) involve only one
line, whose position is identical to that found for the
bulk system. As the crystallite size decreases (5.0, 4.5,
3.0, 2.5, 1.8 nm), the line is broadened and splits into
two lines (see the experimental spectra [22] shown in
Fig. 9 for particles with mean sizes of 4.5, 2.5, and
1.8 nm). In [22], these spectra were represented as the
sum of at least three Gaussian lines (Table 1). The fre-
quencies corresponding to the maxima of two lines are
virtually independent of the particle size, whereas the
frequency of the third line shifts toward the low-fre-

Table 2.  Particle sizes and 25Mg NMR data taken from [22] and
the results of our theoretical calculations at ωs = 26 – 10/r0 ppm
(ν0 = 18.3 MHz)

Size 2r0 (nm) ω (ppm) ± 0.5 ω (ppm) theory ∆ (Hz) ± 50

35 25.3 25.4 450

13.5 24.2 24.5 610

5 24.1 22 965

4.5 22.3 21.6 1200

3 18.0 19.3 1935

2.5 Not recorded

1.8 Not measured
P

quency range with a decrease in the particle size. On
this basis, we draw the inference that the first two lines
(c1, c2) are associated with the core and the third line
(s) is attributed to the shell. For particles with the small-
est size (1.8 nm), the integrated intensity of the s line is
substantially higher than the intensities of the c1 and c2
lines. The observed behavior of the spectra is in quali-
tative agreement with the predictions of the developed
theory. A comparison of the experimental and theoreti-
cal integrated intensities makes it possible to determine
the thickness of the shell ∆r ≈ 0.48 nm in MgO parti-
cles.

Unlike the 17O NMR spectra, the 25Mg NMR spectra
do not exhibit any well-defined splitting of the lines. A
decrease in the particle size results only in a shift in the
maximum and in line broadening (Table 2). The possi-
ble splitting can be unresolved because of the apprecia-
ble broadening of individual lines.

The dependences of the frequencies of the 17O and
25Mg NMR signals assigned to the shell on the particle
size are plotted in Fig. 10. The inset in Fig. 10 shows the
dependence of the ratio between the integrated intensity
of the s line and the total integrated intensity of the 17O
NMR spectrum on the particle size. It can be seen from
Fig. 10 that the theoretical and experimental depen-
dences are in good agreement.

To the best of our knowledge, experimental data on
the dependence of the dielectric spectra on the particle
size are not available for nanomaterials. In our opinion,
it is of interest to compare the specific features pre-
dicted by our theory with those experimentally
HYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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observed, for example, in hole-burning experiments
[17]. This can provide valuable information on the
inhomogeneously broadened dielectric spectra of sys-
tems formed by nanoparticles.

In the future, it would be expedient both to improve
the existing theory and to perform a detailed experi-
mental investigation into the influence of surface phe-
nomena on the properties of nanoparticles.
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Abstract—Solid-phase formation of ultrathin CoSi2 layers on Si(100)2 × 1 was studied using high-resolution
(~140 meV) photoelectron spectroscopy with synchrotron radiation (hν = 130 eV). The evolution of Si 2p spec-
tra was recorded both under deposition of cobalt on the surface of samples maintained at room temperature and
in the course of their subsequent annealing. It was shown that Co adsorption on Si(100)2 × 1 is accompanied
by a loss of reconstruction of the original silicon surface while not bringing about the formation of a stable
CoSi2-like phase. As the amount of deposited cobalt continues to increase (up to six monolayers), a discontin-
uous film of the Co–Si solid solution begins to grow on the silicon surface coated by chemisorbed cobalt. The
solid-phase reaction of CoSi2 formation starts at a temperature close to 250°C and ends after the samples have
been annealed to ~350°C. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photoelectron core-level spectra measured with a
high energy resolution provide a wealth of information
on the electronic states of atoms in a solid and their
structural surroundings. Therefore, photoelectron spec-
troscopy is widely used to study electronic and atomic
surface structure, as well as the various atomic pro-
cesses occurring in the near-surface region of a solid.
Application of this method to investigation of the initial
stages in the growth of cobalt disilicide on the silicon
surface, whose films enjoy wide use in modern solid-
state electronics, appears promising. Although forma-
tion of the Co/Si(100) interface has been studied
already for about two decades, the main stages in the
solid-phase reaction of CoSi2 formation in this system
still remain unclear and the relevant publications are in
many respects contradictory. It is maintained, for
instance, that after two cobalt monolayers (MLs) have
been deposited on a room-temperature Si(100)2 × 1
surface, one observes layer-by-layer metal film growth
on it [1]. At the same time, in practically the same con-
ditions (deposition of 2.6 ML Co), cobalt atoms were
found to enter into a strong chemical reaction with the
substrate, accompanied by CoSi2 formation [2].

Photoelectron core-level spectroscopy has been used
to study the initial stages in the silicide formation in the
Co/Si(100) system only in a few works [3–5], and the
energy resolution achieved was about 350 meV, in which
case the silicon doublet 2p1/2, 2p3/2 usually employed to
derive information on the energy shifts of the silicon core
levels could not be reliably resolved. This communica-
tion reports on an experiment carried out at a higher res-
1063-7834/03/4508- $24.00 © 21596
olution, which permitted us to obtain new information on
the mechanism of the process under consideration.

2. EXPERIMENTAL

The study was carried out on the Russian–German
synchrotron channel BESSYII in an ultrahigh-vacuum
photoelectron spectrometer with a full energy resolu-
tion (monochromator plus analyzer) of ~140 meV.
The measurements were performed at a photon energy
hν = 130 eV, which corresponds to the highest surface
sensitivity in excitation of the Si 2p core levels. The
instrument detected photoelectrons emitted in a cone
oriented along the surface normal.

The samples used were cut from KÉF-1 single-
crystal silicon plates. The misalignment of their sur-
face relative to the (100) face was less than 0.1°. Prior
to being loaded into the photoelectron spectrometer
chamber, the samples were subjected to chemical
treatment following the technique of Shiraki [6], after
which they were heated for a short time in ultrahigh
vacuum to a temperature of 1200°C. The crystal cool-
ing rate did not exceed 50°C/min, which yielded a
Si(100)2 × 1 reconstructed surface free of carbon and
oxygen contamination. Cobalt was deposited on a
room-temperature substrate from a thoroughly out-
gassed source in which a wire of very pure cobalt was
heated by electron bombardment. The rate of cobalt dep-
osition was ~1 ML/min [1 ML = 6.8 × 1014 atoms/cm2,
which corresponds to the silicon atom concentration
on the (100) face]. The Si 2p spectra were measured at
room temperature in a vacuum of 1.2 × 10–8 Pa.
003 MAIK “Nauka/Interperiodica”
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3. RESULTS OF THE MEASUREMENTS
AND DISCUSSION

3.1. Cobalt Deposition on Si(100)2 × 1

We followed the evolution of the Si 2p spectrum in
both stages of the cobalt disilicide solid-phase epitaxy,
namely, when Co was evaporated on a silicon substrate
at room temperature and in the course of the solid-
phase reaction during the subsequent annealing of the
samples. Figure 1 illustrates the data obtained in the
first stage as Si 2p spectra measured for a clean
Si(100)2 × 1 surface and after deposition of three
increasing cobalt doses on this surface. As seen from
the curves, the deposition of cobalt modifies the sub-
strate spectrum noticeably as the coverage increases.
The humped curve with a step on the right-hand side is
replaced by a broader maximum with a nearly flat top.
Note the decrease in the total intensity of the silicon 2p
electron emission.

The measured spectra were decomposed by com-
puter fitting into components differing in the core elec-
tron binding energy. This energy is reckoned from the
energy of the pure-silicon bulk mode by assuming the
negative shifts to be due to core electrons whose bind-
ing energies are lower than those of the bulk atom elec-
trons. To describe all modes of the spectrum, Voigt
functions were used [7], which are usually employed in
similar spectroscopic problems. These functions are
actually convolutions of the Lorentz functions, which
include the core hole lifetime, with Gaussians describ-
ing the phonon broadening of the lines and the energy
resolution of the instrument. The spectra were unfolded
by properly varying the widths of the lines and their
energy positions and intensities. The best-fit values of
the halfwidths of the Lorentzians were found to be
70 meV, and those of the Gaussians, 300 meV. The 2p
doublet splitting was fixed at 608 meV, and the intensity
ratio of the doublet components 2p3/2 and 2p1/2 was
assumed equal to two.

Figure 1a shows the results obtained for clean-sur-
face samples. The spectrum of the Si(100)2 × 1 recon-
structed surface is fairly complex and, according to
recent data [8], consists of a bulk mode and five surface
components. Evaporation of adsorbate atoms on the sil-
icon surface should primarily affect the uppermost sub-
strate atomic layer consisting of asymmetric dimers
with which the surface spectral modes Su and Sd are
associated. Therefore, to make the spectral changes
caused by the cobalt adsorption more revealing, the
decomposition presented in Fig. 1a shows the above Su

and Sd modes, as well as the component B1, which is the
sum of all other modes of the spectrum (the bulk mode
and those associated with the Si atoms in the first and
second layers under the dimers). In addition, for the
sake of convenience, only the curves for the 3p3/2 com-
ponent of the Si 2p doublet are shown.

Unfolding of the Si 2p spectra obtained after depo-
sition of increasing cobalt doses on the substrate is
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
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Fig. 1. 2p photoelectron spectra of the Si(100)2 × 1 surface,
measured at hν = 130 eV, and their decomposition into con-
stituents. (a) Clean surface. Evaporated Co doses: (b) 1.2,
(c) 2.5, and (d) 6 ML. Spectral modes: B1 is the bulk mode
combined with part of the surface modes, Su and Sd are the
modes of the upper and the lower asymmetric-dimer atom,
and S is the Co–Si solid-solution mode.
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illustrated in Figs. 1b–1d. These spectra do not contain
the Su and Sd modes, but a new mode S associated with
the presence of the adsorbate on the sample emerges.
The absence of the asymmetric dimer components in
the spectrum implies that cobalt adsorption is accompa-
nied by atomic rearrangement of the silicon surface,
with the original surface losing its restructuring. As for
adsorption sites, recent theoretical calculations of the
Co binding energy with the Si(100)2 × 1 surface [9]
suggest that the sites with the largest number of inter-
atomic bonds are energetically preferable for the Co
atoms. In view of this, we believe that cobalt atoms are
localized in the uppermost layer of the nonrecon-
structed Si(100) surface between the four Si atoms to
form seven interatomic bonds with the substrate. This
conclusion is argued for by the results of an extended x-
ray absorption fine structure (EXAFS) study [10]. The
fact that the (2 × 1)-type diffraction pattern is retained
in the submonolayer coverage region suggests that
chemisorbed Co atoms become aligned in rows similar
to those of the dimers on the Si(100)2 × 1 surface. We
describe a more comprehensive study of the cobalt
adsorption stage on Si(100)2 × 1 in [11].

As seen from Fig. 1, as the deposited cobalt dose
increases, the relative intensity of the B1 mode
decreases and that of the new mode, S, increases. The
position of the latter mode, –300 meV, practically does
not change with increasing Co dose and falls into the
shift range for Si atoms in the Co–Si solid solution
obtained in [3, 4, 12] for the case of Co deposited on
room-temperature silicon. We also identify this mode
with the Si atoms in the Co–Si solution. The negative
sign of the shift should possibly be assigned to
enhancement of the extratomic relaxation initiated by
the cobalt valence 3d electrons present in the Co–Si
solid solution.

The similarity between the intensities of the bulk
component of pure silicon and the component of the sil-
icon present in the Si–Co solid solution under deposi-
tion of 6 ML Co, where the layer of the Co–Si solid
solution formed can be expected to screen the silicon
crystal to a considerable extent, might, at first glance,
appear strange. Note that an anomalously high intensity
of the pure-silicon mode, even in excess of the Co–Si
solid solution component intensity, was also observed
in [4] in the case of five cobalt monolayers deposited on
Si(100)2 × 1 at room temperature. We believe the rea-
son for this consists in the fact that the Co–Si solid solu-
tion layer growing on the Si(100) substrate with a
chemisorbed submonolayer (0.5 ML) Co coating has
pinholes rather than being continuous. In view, how-
ever, of the intensity ratio of the above modes and of the
Si concentration in the solid solution, which cannot be
high, we come to the conclusion that the area of these
pinholes must not be large.
PH
3.2. Annealing Samples with Deposited Cobalt Films

Let us turn now to the results of our study of the sec-
ond stage in solid-phase epitaxy, in which the samples
on whose surface the 6 ML Co had been deposited were
subjected to annealing. The annealing was effected at
progressively increased temperatures by heating the
crystal for short times (~2 min) in the ramping mode.
The spectra were measured at room temperature in the
intervals between the annealings. Changes in the spec-
tra, indicating the onset of the solid-phase reaction of
Co with Si, were revealed only after annealing the sam-
ples to ~250°C, and the changes were enhanced as the
temperature was raised even further. Figure 2 presents
Si 2p spectra recorded in this series after annealing the
crystal at increasing temperatures. The dynamics of the
variation of the spectra is reminiscent of their evolution
observed under cobalt deposition but occurs in reverse
order. The broad, nearly flat-topped maximum trans-
forms gradually into a double-humped one, and a step
appears on its right-hand slope, making it similar to the
clean-substrate spectrum.

These curves, like the spectra obtained in the first
stage of the process, were unfolded into their constitu-
ents; the results of this decomposition are shown in
Fig. 2. As is evident from the figure, the changes in the
Si 2p spectrum caused by the sample annealing at
~280°C are due, first, to a decrease in the amplitudes of
both constituents of the spectrum (primarily of the S
mode of the Co–Si solid solution) and, second, to the
emergence of a new mode D in the region of positive
shifts ∆E = 300 meV.

Similar values of positive shifts of Si 2p electrons
have been reported for cobalt disilicide with a stable
CaF2 structure [4, 5, 12]. CoSi2 with a CsCl-type meta-
stable structure revealed [13, 14] a positive shift of
about 300–350 meV relative to the stable phase. In this
connection, we assign the new component D, observed
under annealing, to the bulk mode of the cobalt disili-
cide with CaF2 structure usually produced in the course
of a solid-phase reaction. Note that the positive sign of
the shift of this mode is accounted for by the Si atoms
having a small excess positive charge (compared to
pure Si), whose presence in the stable CaF2 structure of
the cobalt disilicide was established in [15].

Increasing the annealing temperature to 350°C
causes a further rise in the cobalt disilicide peak D,
which becomes dominant in the spectrum, and to a
strong decrease in amplitude of the pure-silicon mode
B1. The component S with a negative shift becomes
very small and slightly changes its position, thus sug-
gesting a change of its origin. If we reckon the energy
position of this component from that of the bulk CoSi2
mode, the energy turns out to be about –600 meV,
which is in good agreement with the value for the sur-
face mode SD obtained for a CoSi2(100) single crystal
in [16]. This agreement indicates disappearance of the
solid-solution phase and, hence, completion of the
YSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
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solid-phase reaction and the formation of a CoSi2(100)
epitaxial film.

Annealing a sample to 600°C modifies the spectrum
differently; indeed, the cobalt disilicide components D
and SD decrease in amplitude, the substrate component
B1 grows, and the surface modes of the substrate Su and
Sd appear, which indicates the appearance of pinholes
in the Si(100)2 × 1 reconstructed surface.
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Fig. 2. 2p photoelectron spectra of a Si(100) crystal coated
by a cobalt film, measured after annealing, and their decom-
position into constituents. Anneal temperatures: (a) 280,
(b) 350, and (c) 600°C. Spectral modes: B1 is the bulk mode
of pure Si combined with part of the surface modes, Su and
Sd are the modes of the upper and the lower asymmetric-
dimer atom, S is the Co–Si solid-solution mode, and D and
SD are the bulk and surface modes of CoSi2.
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4. CONCLUSION

Thus, the application of core-level photoelectron
spectroscopy with an energy resolution higher than that
previously reached permitted us to detect, in the first
stage of solid-phase cobalt disilicide formation, a phase
of chemisorbed cobalt and pinholes in a growing Co–Si
solid-solution film and, in the second stage of the pro-
cess, to establish the temperature intervals of the reaction
and to observe the initial stage of pinhole formation in
samples annealed to a temperature of about 600°C.
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Abstract—A thermodynamic model is suggested for a (3 × 3)-type structure formation with a charge density

wave (CDW) arising against the background of a (  × )R30°-type structure in a Group IV metal (Sn, Pb)
submonolayer adsorbed with a coverage of ≈1/3 at the (Ge, Si) semiconductor (111) surface. Calculations are
carried out by using a self-consistent theory for static fluctuations of the order parameter amplitude. It is shown
that the low-symmetry (3 × 3) phase can nucleate at point defects of the submonolayer as charge-ordered areas
of finite radius. The spatial configuration of the CDW and its temperature dependence are calculated. The
results obtained are compared with the experimental data for the Sn/Ge(111) system. © 2003 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Currently, the phenomenon of the (  × ) 
(3 × 3) reconstruction in metal submonolayers (Pb, Sn)
adsorbed at the (111) surface of diamond-like semicon-
ductors (Ge, Si) with a coverage close to 1/3 (see [1, 2]
and references therein) is being actively discussed [3,
4]. As the temperature T decreases, such an isovalent
system undergoes a structural phase transition from the

(  × )R30° phase with a single metal atom in the
surface unit cell to the (3 × 3) phase, where the unit cell
contains three metal atoms. Two of these atoms are pos-
itively charged and displaced downward, and one atom
is negatively charged and displaced upward. At T = 0,
the (3 × 3) surface structure allows description in terms
of a triangular-lattice model with a charge density wave
(CDW) [1]; the possible mechanisms of CDW forma-
tion involving electron correlations in a narrow surface
region were studied in [1, 5]. According to this model,
due to the electron–electron and (or) electron–phonon

coupling, the ground state with the (  × ) struc-
ture is unstable with respect to the transition to the (3 ×
3) structure, with the corresponding charge redistribu-
tion and change in the electron spectrum. This instabil-
ity can be enhanced due to both the nesting (congru-
ence) at a portion of the Fermi surface and a Van Hove
singularity in the electron density of states near the
Fermi level. Both these factors, favorable for surface
electrons ordering with CDW formation, were qualita-
tively analyzed in [5] within the simplest triangular-lat-
tice model in the tight-binding approximation. The
main conclusion made in [5] is that the influence of the
nesting on the CDW formation depends heavily on the
approximation used and manifests itself when the sur-
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face band is almost half-filled, which takes place in
actual systems. This situation obviously takes place in
structures with neutral adsorbate layers, where there is
no significant charge redistribution between the surface
and bulk of the semiconductor and where there is no
surface doping due to defects. We note that numerical
calculations [1, 6] of the surface electron spectrum for
the systems under consideration show the absence of
nesting in the case of the half-filled surface band.

The influence of a Van Hove singularity on the
CDW formation with the (3 × 3) structure is almost
independent of the approximation used and seems to be
more significant. This singularity probably causes the

static response function χ0(q) of the (  × )R30°
lattice to have a pronounced peak at q ≈ P, where P is
the vector of the (3 × 3) reciprocal lattice coinciding

with the vector ΓK in the Brillouin zone of the (  ×
)R30° lattice. This feature of the function χ0(q)

becomes stronger when the Fermi level is shifted
slightly upward in energy with respect to the position
corresponding to the half-filled band [7]; therefore, the
influence of doping on charge ordering, strictly speak-
ing, should not be neglected.

We recall that possible CDW formation in the
ground state of the correlated electron system is quali-
tatively determined by the instability criterion

 (1)

where V(q) is the effective electron–electron interac-
tion potential, depending, in general, on the wave vec-
tor q, and χ0(q) is the response function of noninteract-
ing electrons at zero temperature. The product
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V(q)χ0(q) peaks at the wave vector qmax corresponding
to an “optimum” (lowest in energy) CDW spatial struc-
ture. If the potential V(q) is independent of q, the vector
qmax strictly corresponds to the peak of the function
χ0(q). However, as was first indicated in [1], the poten-
tial V(q) becomes heavily dependent on q with a maxi-
mum at the wave vector P = (4π/3a)e (where e is the
unit vector in the ΓK direction in the Brillouin zone of

the (  × )R30° surface lattice with period a) when
the Coulomb interaction between electrons at the near-
est neighbor sites of the triangular lattice is taken into
account. At the same time, the peak of the function
χ0(q) does not meet the necessary condition for satisfy-
ing criterion (1) at q = P. Taking into account this cir-
cumstance, the conditions of the onset of charge order-
ing on a triangular lattice were determined and the
ground state of the system with a commensurate CDW
with wave vector P was found in [5] within a micro-
scopic approach.

We will extend the model considered in [1, 5] to
finite temperatures, assuming that the existence of a
peak of the potential V(q) at q = P is the principal cause
of the CDW formation with the (3 × 3) structure, while
the feature in the χ0(q) dependence is of secondary
importance. However, defects existing in the system
can significantly change criterion (1). In actual prac-
tice, doping always takes place in the adsorbed sub-
monolayer due to irremovable intrinsic defects (e.g.,
germanium atoms, substituting for tin, or tin vacancies
in the structure Sn/Ge(111) [7, 8]). As the temperature
decreases, such defects can become formation centers
of local regions of the new (3 × 3) phase inside the ini-

tial (  × ) phase. This study is aimed at construct-
ing a thermodynamic model of the phase transition with
the formation of a planar CDW in the presence of point
defects.

2. SELF-CONSISTENT CHARGE FLUCTUATIONS

In the model suggested, the charge instability condi-
tion, depending on the temperature and band filling, is
dictated only by the parametric dependence of the sus-
ceptibility χ0(q) on T and µ, where µ is the Fermi
energy shift with respect to the half-filling. According

to formula (1), the temperature  of the second-order

phase transition from the (  × ) (at T > ) to the

low-symmetry (3 × 3) phase (at T < ) in the mean-
field approximation is found from the condition

 (2)

where χ0(P, T) is the response function of free electrons
at the wave vector P at temperature T. In two-dimen-
sional systems, thermodynamic fluctuations of the
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order parameter play an important role, significantly
decreasing the actual transition temperature Tc in com-

parison with the mean-field temperature  (Tc ! )
[9] and changing the phase transition from the second

to the first order [10]. Hence, the quantity  should be
considered only as a certain formal characteristic tem-
perature that probably even exceeds the deposition or
melting temperature of the adsorbed submonolayer in
actual Sn/Ge(111)-type structures.

For qualitative estimations from Eq. (2), we use a
simple model for the surface electron density of states
ρ(ε), assuming that the major contribution to the tem-
perature dependence of  χ0(P, T) is made by a rectangu-
lar peak of ρ(ε) near the Fermi level. We assume the
absence of nesting in the electron spectrum ε(k), in
which case the difference |ε(k) – ε(k + P)| is of the order
of the band halfwidth W at all values of k near the Fermi
surface. Since the inequality T ! W (W ≈ 0.1–0.3 eV,
T ≤ 300 K) is met in the temperature range under study,
we can use the expansion

 (3)

where Θ ~ , with  being the average density of
states at the Fermi surface. Substituting Eq. (3) into
Eq. (2), we obtain an upper estimate for the critical
temperature:

 

The characteristic temperature  is small in compari-

son with the energy W, provided the inequality  =

 ! 1 is valid; nevertheless, this temper-

ature significantly exceeds the actual transition temper-

ature Tc [9, 10]. In the temperature range between 
and Tc, there are significant thermodynamic fluctua-
tions and short-range order. In this range, we have a

mixed state of two phases, (  × ) and (3 × 3), and
the CDW induced by intrinsic defects of the submono-
layer has a very complex, spatially inhomogeneous
structure. In this case, the upper temperature limit is
defined most likely by the temperature of metal sub-
monolayer deposition onto the semiconductor surface,

rather than by the temperature , which therefore has
no certain physical meaning.

To describe the formation of a (3 × 3) CDW struc-

ture near an isolated defect on the (  × ) lattice
above the actual transition temperature Tc, we use the
well-known and very pictorial concept of a “local phase
transition” with a macroscopic, but finite, correlation
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length of charge fluctuations [11], based on the Landau
expansion of the free-energy functional F[∆], where
∆(r) is the order parameter characterizing the envelope
δn(r) of the charge density for wave vectors close to

P = e. The charge density distribution n(r) and its

envelope are given by

 (4)

In the absence of defects and provided the condition

 ! 1 is met, the functional F[∆] can be written as

 (5)

 (6)

Integration in formula (5) is carried out over the entire
(x, y) plane; the coefficients α, β, γ, and ν in the expan-
sion in Eq. (6) are almost independent of temperature;
α = – |α| = V(P)–1 – χ0(P) is a negative quantity, while

β, γ, and ν are positive (β ~ W–2 , γ ~ , ν ~ ,
ξ0 = vF/W, with vF being the velocity at the Fermi sur-
face). We assume that |α| ! ; thus, in the mean-field
approximation at T = 0, functional (5) is minimum at

∆0 =  ! W. At finite values of T, the thermody-
namics described by Eqs. (5) by (6) is controlled by
charge fluctuations, which we consider in the Gaussian
approximation, as is done, e.g., in the theory of renor-
malized (self-consistent) spin fluctuations [12]. Sepa-
rating the mean-field ϕ(r) and fluctuation η(r) compo-
nents of the order parameter, ∆(r) = ϕ(r) + η(r), and
averaging the functional given by Eqs. (5) and (6) over
the random variable η(r), we redefine the effective free
energy F0[ϕ] as

 (7)

 (8)

 (9)
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where 〈η 2〉  is the mean-square fluctuation of the order
parameter, which depends in the strict sense, on ϕ and
should be calculated in a self-consistent way.

When ϕ = 0, the fluctuation 〈η 2〉  in the main loga-
rithmic approximation is given by

 (10)

where l =  is the correlation length and qc is the
cutoff quasimomentum; above the transition tempera-
ture Tc, where ϕ = 0, we have  > 0. If (lqc)2 @ 1 and
T < T*, the (T) dependence has the form (T) ≈

exp(–T*/T), where T* =  is the crossover tem-

perature. We note that T* !  at |α| ! , since T* ~

(|α|/ )W and  ~ . As the temperature
decreases, the system exhibits a first-order phase tran-
sition at the point Tc < T* to a state with ϕ ≠ 0, where
〈η 2〉  is strongly renormalized [10]. Estimate (10) is
obviously invalid below the point Tc. The regime of
(lqc)2 ! 1 becomes possible at the temperature T > T*;

in this case, we have (T) ≈ . In the phenom-
enological theory of static charge fluctuations, the cut-
off momentum qc is introduced as an external parame-
ter determined in the microscopic approach by inelastic
scattering of electrons by plasmons or phonons and (in
order of magnitude) is proportional to T/vF above the
transition temperature Tc. This means that the tempera-
ture dependence of the correlation length changes an

from exponential, l–1(T) ~ Texp , to a power-law

form, l–1(T) ~ T3/4, when T increases passing through
the crossover region near T*.

The figure shows the results of a numerical analysis
of the set of equations (9) and (10) in the linear (in T)
approximation for the cutoff momentum qc = sT/vF,
where s is a coefficient independent of T; the dimen-

sionless parameter k =  is much smaller than

unity in the model suggested. It is evident that at T > T*
the l–1(T) dependence can be roughly approximated in
a wide temperature range by a linear function l–1(T) ~
T, whose slope is defined by the parameter k, and the
relation l–1(T) ~ T3/4 becomes valid only at T @ T*.

3. CHARGE DENSITY WAVE FORMATION 
NEAR AN ISOLATED POINT DEFECT

Now, we discuss the isolated-point-defect model for
CDW formation based on the concept of the local phase
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transition. Considering the functional F0[ϕ] in Eq. (7)
as an effective free energy of an undoped system above
the phase transition point (  > 0), we introduce a term
δF[ϕ] representing a perturbation near a defect and
having the simplest form of a “point source.” Then, the
total energy takes on the form

 (11)

 (12)

Physically, the term δF[ϕ] in Eqs. (11) and (12) is the
energy of charge redistribution around the defect calcu-
lated to the first order in the perturbing potential λ(r).
In the local approximation, when the effective radius of
the isolated defect is small in comparison with the cor-
relation length, we have λ(r) = λδ(r), with λ ~ U0/W,
where U0 is the matrix element of the perturbing poten-
tial at the wave vector P; this matrix element is positive
or negative depending on the defect charge sign (e.g., a
substitutional atom or vacancy). In approximation (11),
we disregarded the coefficient  of renormalization
due to the defect potential, assuming that (ϕ2/η2) ! 1,
which seems quite reasonable in the case of a low
defect concentration above the transition temperature.

Minimization of free energy (11) with respect to the
order parameter ϕ(r) yields the self-consistency equa-
tion

 (13)

where the term with the fourth derivative is purposely
retained, due to which it is possible to eliminate the sin-

α̃

F ϕ[ ] F0 ϕ[ ] δF ϕ[ ] ,+=

δF ϕ[ ] λ r( )ϕ r( ) r.d∫=

α̃

ν ∂4

∂r4
-------- γ ∂2

∂r2
--------– α̃ 2βϕ2 r( )+ + ϕ r( ) λ

2
---δ r( ),–=

0 2 4 6 8 10
t

0

0.2

0.4

0.6

0.8

1.0 1 2 3 4

5

Γ

Temperature dependence of the inverse correlation length

of charge fluctuations (t = , Γ = ) at various

values of the parameter k: (1) 1, (2) 0.1, (3) 0.05, (4) 0.01,
and (5) 0.001.

T
T*
------ 1

l
--- γ/ α
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      200
gularity of the function ϕ(r) at r  0 in the point-
defect model. If we omit the nonlinear term ~ϕ3 in
Eq. (13), which is correct at least far from the defect at
r @ l, then the solution to Eq. (13) can be written as

 (14)

 (15)

where K0(z) is the modified Bessel function of order zero
[13]. The CDW amplitude near the defect is given by

 (16)

or, in the limit  ! 1 characteristic of the problem

under study,

 (17)

If the condition  !  is satisfied, the nonlin-

ear term ~ϕ3 in Eq. (13) is insignificant at any distance
r from the defect. The asymptotic form of the function
ϕ(r) at p±r @ 1 is

 (18)

In the limit  ! 1, at r @ l, Eq. (18) takes on the form

 (19)

therefore, the CDW envelope behavior at large dis-
tances is independent of the coefficient ν and the char-
acteristic localization length of the order parameter
coincides with the renormalized correlation length l(T)
of charge fluctuations.

The isolated point defect model for a surface
remains correct only with the constraint ndl2 ! 1,
where nd is the defect concentration. As the temperature
decreases, the charge rearrangement region induced by
defects grows proportionally to l(T)2 and, on reaching
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the characteristic temperature , where nd ~ l–2( ),
almost the entire surface is reconstructed. Most likely,

the mixed phase above the temperature  can be repre-
sented as a superposition of weakly overlapped local
(3 × 3) CDW regions randomly distributed in the plane

against the background of the (  × ) structure and
can be described by the generalized order parameter

Φ(r) ≅  (r – Rn), where Rn is the nth-defect posi-

tion vector. The coordinate dependence of the envelope
function ϕn(r – Rn) is described by formulas (14)–(19),
and its sign is defined by the matrix element of the nth-
defect potential λn = λ cos(PRn) and can be both posi-
tive and negative. Thus, after averaging over the defect

coordinates at the surface at T > , we have 〈Φ(r)〉  = 0,
but 〈Φ(r)2〉  ≠ 0. In the mixed state above the tempera-

ture , the fraction of the (3 × 3) phase induced by

defects in the (  × ) phase reduces continuously

with increasing T. The quantity  may be considered a
characteristic temperature of the smeared order-disor-
der phase transition from the mixed state with CDW
islands to a state with a homogeneous CDW structure,
which persists down to very low temperatures.

Now, let us discuss some experimental data on the
Sn/Ge(111) system. Scanning tunneling microscopy
experiments [8, 13, 14] show that the metal monolayer
of this system always contains intrinsic defects: Ge
atoms substituting for 3–4% of Sn atoms and Sn vacan-
cies. These defects induce a (3 × 3) CDWs phase sur-

rounded by the (  × )R30° phase; therefore, the
state with a mixed structure is formed already at room
temperature. The evolution of this structure from the
island phase to an almost homogeneous (3 × 3) phase
below 120 K [15] confirms the pattern of the phase tran-
sition induced by defects. A photoemission study [7] of
the mixed phase revealed an energy gap near the Bril-
louin zone edge of the (3 × 3) lattice in the temperature
range from 300 to 80 K, which counts in favor of the
existence of the (3 × 3) CDW phase. According to [8],
the temperature dependence of the inverse characteris-
tic radius of a local CDW induced by a defect is close
to linear, one l–1(T) ~ T, at high values of T, which
agrees qualitatively with the results we obtained (see
Section 3). Using the empirical data from [8], we can
also estimate the temperature T* ≈ 70 K as the bound-
ary between the regions of the strong (at T > T*) and the
weak l–1(T) dependence (at T < T*). Unfortunately, it is
impossible to immediately extend the approach under
consideration to the low-temperature region T < T*,
where the correlation length l(T) exceeds the average
distance between defects (ndl2 @ 1) and the isolated-
defect approximation becomes invalid. Strictly speak-
ing, one can only make assumptions on the comparabil-

T̃ T̃

T̃

3 3

ϕnn∑

T̃

T̃

3 3

T̃

3 3
P

ity of our theoretical estimate l–1 ~ Texp  to the

experimental dependence obtained in [8] at T < 70 K.

4. CONCLUSIONS

The phenomenon of submonolayer reconstruction
with CDW formation induced by defects is observed
not only in the Sn/Ge(111) structure. For example, a
weak local modulation of the charge density near
defects was detected using reflective high-energy elec-
tron diffraction from a tin submonolayer coating (1/3
monolayer) on Si(111) at T = 120 K [16]. Another inter-
esting example is one-dimensional metal chains on the
In/Si(111)-(4 × 1) surface. Scanning tunnel microscopy
of this surface at room temperature explicitly shows the
existence of a new (4 × 2) structure of these chains,
localized at sodium adatoms, whose electron spectrum
is characterized by a dielectric gap inherent in systems
with CDWs [17]. The theoretical scheme suggested in
this paper seems to allow one to describe (at least in a
qualitative manner) the thermodynamics of the phase
transition with CDW formation in the presence of
defects in such systems.
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Abstract—The expansion of the carbon skeleton of molecules in crystallites and the longitudinal contraction
of the crystallite lattice in poly(ethylene) (PE) and poly(caproamide) (PCA) with an increase in the temperature
are measured using IR and Raman spectroscopy and x-ray diffraction. The thermal expansion of the carbon
skeleton due to transverse vibrations is theoretically calculated within the atomic chain model. The theoretical
and experimental data on the thermal expansion of the carbon skeleton are in good agreement. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Polymer crystals are built up of regularly arranged
straight segments of chain molecules. The longitudinal
(along the molecular axes) rigidity of covalent bonds in
molecular skeletons is substantially higher than the
flexural rigidity of molecules and the rigidity of van der
Waals or hydrogen bonds between molecules. These
factors are responsible for the specific features
observed in the elasticity and internal dynamics of
polymer crystals: (i) strong anisotropy of the elastic
properties of polymer crystals (the moduli of longitudi-
nal elasticity are approximately two orders of magni-
tude larger than those of transverse elasticity) and
(ii) the high longitudinal rigidity of molecules and,
consequently, the high characteristic temperature of
longitudinal vibrations (~1500 K) [1]. As a result, ther-
mal longitudinal vibrations are virtually not excited at
temperatures up to the melting point of polymer crys-
tals (400–500 K).

The characteristic temperatures of transverse vibra-
tions are considerably lower (100–300 K) [1]; hence,
these vibrations are excited at 300 K. Therefore, the
transverse vibrations dominate in polymer crystals.

The domination of transverse vibrations determines
the following features in the thermal expansion of poly-
mer crystals.

(1) In the transverse direction, the lattice undergoes
a conventional “solid-state” (positive) expansion
through the vibrational–anharmonic mechanism due to
transverse vibrations of molecules involved in anhar-
monic intermolecular interactions [1, 2].

(2) In the longitudinal direction, the lattice is subject
to a negative thermal expansion (contraction) associ-
ated with the membrane mechanism of thermal defor-
mation [1–3].
1063-7834/03/4508- $24.00 © 1606
The theory of negative longitudinal expansion in
polymer crystals has been developed in a number of
works and offered reasonable agreement between the
calculated and experimental data [4, 5]. In these works,
it was assumed that, in the course of transverse vibra-
tions, the molecules remain nonstretchable in the longi-
tudinal direction owing to a high longitudinal rigidity
[1, 4, 5]. This inference is consistent with the concept
that transverse vibrations are attended by a decrease in
the axial length of the molecule (the projection of the
molecular skeleton contour onto the molecular axis)
due to a tilting of nonstretchable chemical bonds in the
molecular skeleton (and, hence, by a decrease in their
projection onto the molecular axis).

However, we should emphasize the following cir-
cumstance. The inference regarding the bond non-
stretchability in the course of transverse vibrations
holds true only under the assumption that the end points
of the bending molecular segment execute a free longi-
tudinal displacement. This assumption seems to be
unrealistic, casts some doubt on the conclusion that the
interatomic bonds are nonstretchable, and stimulates
elucidation of the question as to how the transverse
vibrations of the molecule under consideration affect
the molecular skeleton in polymer crystals.

In earlier works [6–8], the longitudinal thermal con-
traction of polymer crystals was measured from the
thermally induced angular displacement of the meridi-
onal reflections in x-ray diffraction experiments. How-
ever, these measurements do not provide a clear under-
standing of the behavior of the contour length of the
molecular skeleton.

In recent years, thermal phenomena in polymer
crystals have been investigated using IR and Raman
spectroscopy [9–12]. It has been found that the shifts in
the frequency of vibrations of the molecular skeleton
2003 MAIK “Nauka/Interperiodica”
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under temperature variations correspond to an increase
in the thermal expansion of the molecular skeleton
upon heating. This gives a more realistic idea of the
nature of the phenomena under investigation: trans-
verse vibrations of molecules in polymer crystals bring
about two effects, namely, a decrease in the axial length
and a simultaneous increase in the contour length.

As far as we know, theoretical treatment of the
expansion of a molecular skeleton due to transverse
vibrations has never been performed before.

In this work, we undertook a combined experimen-
tal investigation into the thermal behavior of polymer
crystals with the use of IR and Raman spectroscopy and
x-ray diffraction and carried out a theoretical analysis
of the deformation of the molecular skeleton in the
course of transverse vibrations.

2. EXPERIMENTAL TECHNIQUE

The uniaxially oriented crystallizing polymers
poly(ethylene) (PE) and poly(caproamide) (PCA) were
chosen as the objects of our investigation. The crystal-
lite (longitudinal and transverse) sizes in these poly-
mers were approximately equal to 10–20 nm.

The shifts of the band at 1130 cm–1 in the spectra of
PE and the band at 930 cm–1 in the spectra of PCA (the
frequencies of the bands are given at 298 K) were deter-
mined using Raman and IR spectroscopy, respectively.
These regularity bands correspond to vibrations of the
carbon skeleton of molecules in the form of trans–trans
regular sequences [13, 14]. The IR spectra were
recorded on DS-403G and Specord 75IR spectropho-
tometers. The Raman spectra were measured on a
Ramalog-5 spectrophotometer. The spectral measure-
ments were performed in the temperature range from
90 to 500 K. The bandwidth of the spectral slit was
equal to 1 cm–1 and did not exceed ~0.25 of the half-
width of the bands at 90 K. For this reason, the distor-
tion of the band shape due to the bandwidth of the spec-
tral slit was no more than 10%. With the aim of mini-
mizing dynamic distortions, the scanning velocity did
not exceed 1 (cm min)–1. The spectra were processed
with inclusion of the distortions caused both by radia-
tion of the sample and the cell at high temperatures [15]
and by the overlap of band wings.

The angular displacements of the meridional (i.e.,
along the axes of chain molecules in the crystals) reflec-
tions (002) for PE and (0140) for PCA were measured
using x-ray diffraction in the temperature range from 5
to 450 K. The measurements were performed on
DRON-1 and DRON-3 x-ray diffractometers with the
use of filtered CuKα radiation (λ = 0.154 nm) and MoKα
radiation (λ = 0.071 nm). The instrumental angular col-
limation width was 2′.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
3. X-RAY DIFFRACTION DATA

The shifts of the meridional reflections with an
increase in the temperature from 5 to 450 K were mea-
sured using reflections of two orders for the purpose of
obtaining more reliable data.

Figure 1 shows the angular contour of the meridi-
onal reflections for PE and PCA at two temperatures. It
can be seen that an increase in the temperature results
in a shift of the reflections toward the large-angle range.
According to the Bragg equation, this direction of the
shift implies a contraction of the PE and PCA crystal
lattices in the longitudinal direction (along the molecu-
lar axis).

The temperature dependences of the longitudinal
thermal contraction ε|| of the PE and PCA crystal lat-
tices were determined from the temperature depen-
dences of the angular position of the meridional reflec-
tions. The strain was calculated from the expression
derived by differentiating the Bragg equation, that is,
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Fig. 1. Meridional x-ray reflections (CuKα radiation):
(a) (002) for PE at (1) 5 and (2) 347 K and (b) (0140) for
PCA at (3) 5 and (4) 413 K.
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where d and ∆d(T) are the interplanar distance and its
change with an increase in the temperature, respec-
tively; and ϕm and ∆ϕm(T) are the angular position of
the reflection and its change with an increase in the
temperature, respectively. The value of ∆ϕm(T) is reck-
oned from ϕm at T = 0. This allows us to determine
directly only the thermal component of the expansion.

The dependences ε||(T) = ∆d||(T)/d|| for PE and PCA
are depicted in Fig. 2. These dependences are similar to
each other and exhibit a nonlinear behavior: the longi-
tudinal contraction more steeply increases with an
increase in the temperature. The nonlinearity is associ-
ated with the sequential quantum defreezing initially of
torsional and then bending transverse vibrations
responsible for the longitudinal contraction of the crys-
tal lattice [12].

The thermal longitudinal contraction of the polymer
crystal lattice due to transverse vibrations implies that
the projection of the macromolecular skeleton contour
onto the molecular axis (i.e., the axial length of the
macromolecule) decreases as the temperature
increases. As was noted above, information on the
effect of the temperature on the contour length of the
molecular skeleton cannot be obtained from the x-ray
diffraction data.

On the other hand, the change in the contour length
of the molecular skeleton under the force (rather than
thermal) action on the lattice can be determined by x-
ray diffraction. An increase in the longitudinal tensile
stress (especially at low temperatures when the trans-
verse vibrations are not excited) necessarily leads to
expansion of the carbon skeleton of molecules in the
lattice. The longitudinal tensile stress results in angular
displacements of the meridional reflections but (unlike
the thermally induced displacements of reflections)
toward the small-angle range [16]. The experimental
dependences of the longitudinal expansion of the PE
and PCA lattices on the tensile stress at a low tempera-
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 1
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Fig. 2. Temperature dependences of the thermal component
of the longitudinal contraction of the (1) PE and (2) PCA
lattices.
PH
ture (110 K) are plotted in Fig. 3. The longitudinal elas-
tic moduli E|| = (∆ε||/∆σ)–1 ≈ 200–250 GPa calculated
from the slopes of the linear dependences ε||(σ) are
close to the theoretical values of the longitudinal elastic
moduli of polymer molecules with a carbon-chain skel-
eton [16]. This confirms the inference regarding the
expansion of the molecular skeletons under tensile
stress.

The dependences ε||(σ) measured for PE and PCA
will be used in the analysis of the spectroscopic data.

4. IR AND RAMAN SPECTROSCOPIC DATA

As an illustration, Fig. 4 shows the band at 1130 cm−1

in the Raman spectra of PE at temperatures of 90 and
350 K and the band at 930 cm–1 in the IR spectra of
PCA at temperatures of 90 and 450 K. It can be seen
from Fig. 4 that an increase in the temperature leads to
a shift in the maxima of the bands toward the low-fre-
quency range. The temperature dependences of the
shift in the frequency ∆ν(T) for PE and PCA are
depicted in Fig. 5.

A question now arises as to the origin of the observed
temperature shift in the frequencies. In order to elucidate
this question, we measured the spectra of the same poly-
mers but under tensile stresses rather than under temper-
ature variations. The evolution of the Raman spectra of
PE is illustrated in Fig. 6. It can be seen from Fig. 6 that,
in this case, too, the band is shifted toward the low-fre-
quency range. As was noted above, the tensile stress
results in expansion of the molecular skeleton. There-
fore, the shift in the maxima of the bands toward the low-
frequency range with an increase in the temperature is
caused by the expansion of the molecular skeleton. The
dependence of the longitudinal expansion of the molec-
ular skeleton on the tensile stress (Fig. 3) and data anal-
ogous to that presented in Fig. 6 can be used to “cali-
brate” the frequency shifts, i.e., to construct the depen-
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Fig. 3. Dependences of the longitudinal expansion of the
(1) PE and (2) PCA lattices on the tensile stress at 110 K.
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dence of the frequency shift ∆ν on the expansion εC of
the molecular skeleton. The calibration curves thus
obtained are plotted in Fig. 7.

As a result, we obtained the frequency shifts ∆ν =
1470εC for the band at 1130 cm–1 in the Raman spec-
trum of PE and ∆ν = 925εC for the band at 930 cm–1 in
the IR spectrum of PCA.

1110 1120 1130 1140
ν, cm–1

20

60

100

0

In
te

ns
ity

, a
rb

. u
ni

ts

2

1

(a)

900 920 940880
ν, cm–1

0.5

1.0

1.5

2.0

O
pt

ic
al

 d
en

si
ty

3

4

(b)

Fig. 4. (a) Band at 1130 cm–1 in the Raman spectra of PE at
(1) 90 and (2) 350 K and (b) band at 930 cm–1 in the IR
spectra of PCA at (3) 90 and (4) 450 K.
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Fig. 5. Temperature dependences of the shift in the fre-
quency of stretching vibrations of (1) PE and (2) PCA mol-
ecules.
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The shift in the frequency of the C–C stretching
vibrations under uniaxial tensile stresses was investi-
gated experimentally and theoretically in [17–28]. It
was demonstrated that the relative frequency shift is
proportional to the expansion of the molecular skeleton
and the Grüneisen parameter is the proportionality
coefficient. The curves ∆ν(εC) obtained in the present
work agree with the results reported in [17–28].

The calibration curves ∆ν(εC) (Fig. 7) can be used to
transform the dependences shown in Fig. 5 into temper-
ature dependences of the longitudinal expansion εC(T).
These dependences are depicted in Fig. 8.

As can be seen, the temperature dependences of the
longitudinal expansion of the molecular skeleton
exhibit a nonlinear behavior: the slope of the curves
εC(T) increases with an increase in the temperature.
Since the expansion of the molecular skeleton (like the
contraction of the crystal lattice) is associated with the
transverse vibrations, the nonlinearity of the depen-
dence εC(T) is caused by the sequential quantum
defreezing of the transverse vibrations, as is the case
with the nonlinearity of the dependence ε||(T).

Note that the values of εC and ε|| are comparable in
magnitude (Figs. 2, 8).

Thus, there are grounds to believe that, with an
increase in the temperature, the transverse vibrations of
molecules in polymer crystals bring about both longitu-
dinal contraction of the lattice and expansion of the
molecular skeleton.

In closing the experimental section, it should be noted
that an increase in the temperature and the tensile stress
lead to angular displacements of the x-ray diffraction
reflections in opposite directions. At the same time, similar
changes in the temperature and the tensile stress result in
frequency shifts of the bands in the Raman and IR spectra
in one direction (toward the low-frequency range). This is
associated with the difference in the thermal behavior of
the lattice and its constituent chain molecules.
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Fig. 6. Band at 1130 cm–1 in the Raman spectra of PE:
(1) unloaded sample and (2) the same sample at a tensile
stress of 1 GPa. T = 300 K.
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5. CALCULATION OF THE AVERAGE CONTOUR 
LENGTH OF AN ATOMIC CHAIN EXECUTING 

THERMAL VIBRATIONS

The average contour length will be calculated within
a straight chain model with allowance made for the lon-
gitudinal rigidity of interatomic bonds and the flexural
rigidity of the chain. Calculations in the framework of
this model were previously carried out in [4, 29, 30].
However, in those works, attention was focused on the
determination of the axial length of a chain executing
transverse vibrations (i.e., the negative longitudinal
expansion of polymer crystals) and the contour length
was not analyzed. Below, we will calculate just the con-
tour length.

The average contour length is calculated as the sum
of the lengths of individual bond in a molecule. We
introduce the following designations: a is the initial
bond length and rn, n – 1 is the length of the nth bond in
the vibrating chain. Then, the elongation of the bond
can be written in the form ∆an = rn, n – 1 – a. The average
elongation per unit length of the bond and, hence, the
entire contour length of the chain can be represented as

 

Our problem here is to determine the average elonga-
tion 〈∆an〉 .

The average value of any dynamic quantity q in the
classical temperature range can be calculated from the
general formula

 (1)

Here, H is the Hamiltonian of the system, β = 1/kT, q is
the averaged quantity (in our case, the elongation ∆an of
the nth bond), and dΓ is the elementary phase volume.
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Fig. 7. Dependences of the shift in the frequency of C–C
stretching vibrations on the expansion of the carbon skele-
ton of (1) PE and (2) PCA molecules under a load.
PH
The Hamiltonian of the system under consideration
has the form

 (2)

where Ks is the elastic constant of bonds in the chain,
Kb is the elastic constant of the bond angle, and ∆ϕn is
the change in the bond angle. In our model, allowance
is made only for the interaction of nearest neighbor
atoms.

It is assumed that, in this case, the z axis is aligned
parallel to the chain axis and the x axis is perpendicular
to the chain axis. The bond strain can be determined to
the third order in atomic displacements from the for-
mula

 (3)

where zn, n – 1 and xn, n – 1 are the relative displacements
of nearest neighbor atoms along the z and x axes,
respectively. The change in the bond angle can be writ-
ten as

 (4)

The difference between our model and the models con-
sidered in earlier works [4, 29, 30] lies in the subse-
quent treatment of the quantity ∆ϕn. In particular, Chen
et al. [4] included only terms up to the second order in
the expansion of the quantity ∆ϕn and assumed that the
bonds are nonstretchable (i.e., ∆rn, n – 1 = ∆rn, n + 1= a).

In this work, we do not make such assumptions.
Relationship (4) is expanded into a series to the third
order in atomic displacements. As a result, we deter-
mine the bond strains induced by the transverse vibra-
tions of atoms in the chain.
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Since expansions (3) and (4) contain terms of the
third order in atomic displacements, Hamiltonian (2)
can be represented as the sum of two components: the
harmonic component Q involving the quadratic terms
and the anharmonic component A including the higher
order terms. As usual, we assume that the anharmonic
component is sufficiently small in magnitude. Hence,
from expression (1), we obtain the average elongation
〈∆an〉  in the form

 (5)

Here, 〈…〉0 indicates averaging with the use of the har-
monic Hamiltonian Q.

Further analysis requires knowledge of the Hamilto-
nian A in an explicit form. The anharmonic Hamilto-
nian A can be written as the sum of two components:

 

where Ar is the component related to the potential of the
bond elasticity and Aϕ is the component governed by
the potential of the strain caused by the change in the
bond angle.

The component related to the bond strain can be cal-
culated to the third order in atomic displacements by
the expression

 (6)

The component associated with the chain bending is
determined to the third order in atomic displacements
from the formula

 (7)

Next, we can calculate the average values of the terms
in relationship (5).

As follows from expression (3), the first term 〈∆an〉0
has the form

 (8)

Expression (8) contains the contribution only from the
second term in formula (3), because the first and third
terms are odd functions and, hence, do not make a con-
tribution.

The second term in relationship (5) does not involve
terms linear in temperature, because it is equal to the
product of the quantity given by expression (8) (linear
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in temperature) and the sum of the averages of the
anharmonic Hamiltonian components (6) and (7) con-
taining only terms that are quadratic in temperature. As
a result, the second term in relationship (5) is of the sec-
ond order in temperature and, hence, is small.

The third term in relationship (5) can be repre-
sented as β〈∆anA〉0 = β〈∆anAr〉0 + 〈∆anAϕ〉0. The term
β〈∆anAr〉0 = β〈zn, n – 1Ar〉0 ≈ 〈∆a〉0 was calculated to the
first order in temperature in [4]. It can be seen that,
making allowance for its sign in relationship (5), this
term cancels the first term [defined by expression (8)]
in relationship (5). Consequently, the term 〈∆anAϕ〉0
makes the dominant contribution.

Taking into account relationship (7), the contribu-
tion linear in temperature to the average bond strain has
the form

 

 (9)

 

The contribution to the bond strain is made by only the
first two terms in expression (9), because the last two
terms are odd functions of the displacements. In our
calculations, we invoked the results obtained by Chen
et al. [4]. Expression (9) coincides in form with the
relationship obtained for 〈∆zn, n – 1〉  in [4] with an accu-
racy up to factors. After reducing to the normal modes
and calculating the longitudinal and transverse inte-
grals, the quantity defined by expression (9) turns out to
be proportional to the temperature squared.

As a result, relationship (5) with due regard for the
factor β takes the form

 (10)

The effective force constant Ke introduced in [4]
accounts for the contribution of the spatial dispersion of
bending vibrations and the intermolecular interaction
of atomic chains. Chen et al. [4] proved that Ke ≈ Kb.
Consequently, for the bond strain, we have

 

Thus, the results of the above analysis can be summa-
rized as follows: (1) It was established that the trans-
verse vibrations lead to the elongation of bonds in the
chain and, hence, to an increase in the average contour
length of the skeleton of the chain (polymer) molecule.
(2) The approximate relationship for the average elon-
gation of bonds in the chain as a function of the temper-
ature was derived.
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6. COMPARISON OF THEORETICAL 
AND EXPERIMENTAL DATA

Let us estimate the thermal expansion of the chain
with the use of relationship (10) at T = 300 K, Ks =
400 N/m (this value is taken from [31]), and a ≈ 1.3 ×
10–10 m (the axial length of the C–C bond). As a result,
we obtain 〈εC 〉  ≈ 1.5 × 10–3. The measured thermal
expansion of the carbon skeleton of molecules at T =
300 K (Fig. 8) is approximately equal to 1.7 × 10–3 for
PE and 2.7 × 10–3 for PCA. As can be seen, the calcu-
lated value of 〈εC 〉  is in reasonable agreement with the
experimental data on the thermal expansion of molecu-
lar carbon skeletons.

Thus, the measured expansion of the skeleton of the
chain molecules in the crystal due to transverse vibra-
tions is confirmed by the results of calculations.

It should be emphasized that our calculations were
carried out for the atomic chain rather than for one
vibrating bond, which permitted us to take into account
the interaction of atoms along the chain. In turn, this
made it possible to elucidate the origin of the bond
elongation, i.e., the emergence of longitudinal tensile
forces induced by the transverse vibrations. Upon
transverse displacement of any atom, the nearest and
next-to-nearest neighbor atoms along the chain offer
resistance to longitudinal shear, which gives rise to a
tensile force and, as a consequence, expansion (elonga-
tion) of the bond. To put it differently, longitudinal dis-
placements of atoms are not free when their neighbors
are displaced in the transverse direction. This mecha-
nism of expansion of the skeleton of the chain molecule
can be referred to as the “quasi-string” mechanism (by
analogy with a string with fixed ends that must neces-
sarily extend upon transverse displacement of its cen-
tral segment).
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