
  

JETP Letters, Vol. 82, No. 1, 2005, pp. 1–6. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 82, No. 1, 2005, pp. 3–7.
Original English Text Copyright © 2005 by Dorokhov.

                                                                    
Singlet VA  Correlator within the Instanton Vacuum Model¶

A. E. Dorokhov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,

Dubna, Moscow region, 141980 Russia
Received May 30, 2005

The correlator of singlet axial-vector and vector currents in the external electromagnetic field is studied within

the instanton liquid model of the QCD vacuum. In the chiral limit, we calculate the longitudinal  and trans-

versal , with respect to the axial-vector index, invariant amplitudes at an arbitrary spacelike momentum
transfer q. It is demonstrated how the anomalous longitudinal part of the correlator is renormalized at low
momenta due to the presence of the UA(1) anomaly. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION 

Consideration of the axial-vector A and vector V
current–current correlator in the soft external electro-

magnetic field  is an important part of the calcula-
tions of the complicated light-by-light scattering ampli-
tude related to the problem of accurate computation of
higher-order hadronic contributions to the muon anom-
alous magnetic moment.1 In this specific kinematics,
when one photon (V) with momentum q2 ≡ q is virtual

and another one ( ) with momentum q1 represents the
external electromagnetic field and can be regarded as a
real photon with the vanishingly small momentum q1,
only two invariant functions survive in linear form in
small q1 approximation. It is convenient to parametrize

the V  correlator (Fig. 1) in terms of longitudinal wL

and transversal wT (with respect to the axial current
index) Lorentz invariant amplitudes:

(1)

Both Lorentz structures are transversal with respect to

vector current;  = 0. As for the axial current, the

first structure is transversal with respect to , while
the second one is longitudinal and, thus, anomalous.
The appearance of the longitudinal structure is a conse-
quence of the Adler–Bell–Jackiw axial anomaly [3, 4].

¶ This article was submitted by the author in English.
1 See, e.g., [1, 2] and references therein.
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For the nonsinglet axial current A(3), there are no
perturbative [5] and nonperturbative [6] corrections to
the axial anomaly and, as consequence, the invariant

function  remains intact when interaction with glu-
ons is taken into account. It was shown in [7] that, in the

nonsinglet channel, the transversal structure  is
also free from perturbative corrections. Nonperturba-
tive nonrenormalization of the nonsinglet longitudinal
part follows from the ‘t Hooft consistency condition
[6], i.e., the exact quark–hadron duality realized as a
correspondence between the infrared singularity of the
quark triangle and the massless pion pole in terms of
hadrons. However, for the singlet axial current A(0) due
to the gluonic UA(1) anomaly, there is no massless state
even in the chiral limit. Instead, the massive η' meson
appears. So, one expects nonperturbative renormaliza-

tion of the singlet anomalous amplitude  at
momenta below η' mass.

In [8], in the framework of the instanton liquid
model [9], we have analyzed the nonperturbative prop-
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Fig. 1. Diagrammatic representation of the triangle diagram
in the local perturbative theory (a) and in the instanton
model with dressed quark lines and full quark-current verti-
ces (b).
© 2005 Pleiades Publishing, Inc.
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erties of the nonsinglet triangle diagram in the kinemat-
ics specified above. We demonstrated how the anoma-

lous structure  is saturated within the instanton liq-
uid model. We also calculated the transversal invariant

function  at arbitrary spacelike q and showed that,
within the instanton model at large q2, there are no
power corrections to this structure. The nonperturbative

corrections to  at large q2 have exponentially
decreasing behavior related to the short-distance prop-
erties of the instanton nonlocality in the QCD vacuum.

The present work is devoted to the study of the

UA(1) anomaly effect on the singlet V  correlator
within the instanton liquid model. We calculate, in the

chiral limit, the longitudinal  and transversal 
invariant functions at an arbitrary spacelike momentum
transfer q and demonstrate how the singlet anomalous

part of the correlator  is renormalized at low
momenta due to presence of the UA(1) anomaly.

2. THE STRUCTURE OF THE V  
CORRELATOR IN PERTURBATIVE APPROACH 

The amplitude for the triangle diagram can be writ-

ten as a correlator of the axial current  and two vector

currents jν and  (Fig. 1):

(2)

where, for light u and d quarks, one has, in the local theory,

the quark field  has color (i) and flavor (f) indices;
A(0) = I, A(3) = τ3 are the flavor matrices of the axial cur-

rent; and V =  =  are the charge matrices,

with the tilted current being for the soft momentum
photon vertex.

In the local perturbative theory, the one-loop result
(Fig. 1a) for the invariant functions wT and wL for space-
like momenta q(q2 ≥ 0) is

(3)

where Nc is the color number, and, for light quark
masses, one takes mf ≡ mu ≈ md. In the chiral limit, mf =
0, one gets the result

(4)
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3. THE INSTANTON EFFECTIVE 
QUARK MODEL

To study nonperturbative effects in the triangle

amplitude  at low and intermediate momenta, one
can use the framework of the effective approach based
on the representation of the QCD vacuum as an ensem-
ble of strong vacuum fluctuations of a gluon field,
namely, instantons. Spontaneous breaking of the chiral
symmetry and dynamical generation of a momentum-
dependent quark mass are naturally explained within
the instanton liquid model. The instanton fluctuations
characterize the nonlocal properties of the QCD vac-
uum [10–12]. The interaction of light u and d quarks in
the instanton vacuum can be described in terms of the
effective ‘t Hooft four-quark action with a nonlocal ker-
nel induced by quark zero modes in the instanton field.
The gauged version of the model [13–15] meets the
symmetry properties with respect to external gauge
fields, and the corresponding vertices satisfy the Ward–
Takahashi identities.

In the framework of this effective model, the nons-
inglet V and A current–current correlators, the vector
Adler function, and the pion transition form factor have
been calculated for arbitrary current virtualities in [15–
17]. In the same model, the topological susceptibility of
the QCD vacuum, which is reduced to the singlet A cur-
rent–current correlator, has been considered in [15, 18].

The spin–flavor structure of the nonlocal chirally
invariant interaction of soft quarks is given by the
matrix products2

(5)

where G and G' are the four-quark couplings in the isot-
riplet and singlet channels. For the interaction in the
form of the ‘t Hooft determinant, one has the relation
G' = –G. In general, due to repulsion in the singlet
channel, the relation G' < G is required.

Within the gauged instanton model, the dressed
quark propagator in the chiral limit, S(p), is defined as

(6)

with the momentum-dependent quark mass

(7)

found as the solution of the gap equation

(8)

where we denote

2 The explicit calculations below are performed in SUf(2) sector of
the model.

T̃µνλ

G 1 1 iγ 5τa iγ 5τa⊗+⊗( ),

G' τa τa⊗ iγ 5 iγ 5⊗+( ),

S 1– p( ) i p̂ M p
2( ),–=

M p2( ) Mq f 2 p
2( )=

M p2( ) 4GPN f Nc f
2

p
2( ) d

4
k

2π( )4
------------- f

2
k2( )M k

2( )
D k

2( )
---------------,∫=

D k2( ) k
2

M2 k2( ).+=
JETP LETTERS      Vol. 82      No. 1      2005



SINGLET VA  CORRELATOR WITHIN THE INSTANTON VACUUM MODELṼ 3
The constant Mq ≡ M(0) in (7) is determined dynami-
cally from Eq. (8), and the function f(p) defines the non-
local kernel of the four-quark interaction. Within the
instanton model, f(p) describing the momentum distri-
bution of quarks in the nonperturbative QCD vacuum is
expressed through the quark zero-mode function. It is
implied in [8, 11, 12] that the quark zero mode in the
instanton field is taken in the axial gauge when the
gauge-dependent dynamical quark mass is defined. In
particular, it means that f(p) for large arguments
decreases like some exponential in p2. To make the
numerics simpler, we shall use the Gaussian form

(9)

where the parameter Λ characterizes the size of nonlo-
cal fluctuations in the QCD vacuum, and it is propor-
tional to the inverse average size of an instanton.

The conserved vector vertex following from the
instanton model is [14, 15] (Fig. 2a)

(10)

where M(1)(k, k') is the finite-difference derivative of the
dynamical quark mass, q is the momentum correspond-
ing to the current, and k (k') is the incoming (outgoing)
momentum of the quark: k' = k + q. The finite-differ-
ence derivative of an arbitrary function F is defined as

(11)

The nonlocal part of vertex (10) necessarily appears in
order to fit the vector Ward–Takahashi identity.

Within the chiral quark model [14] based on the
nonlocal structure of the instanton vacuum [11], the full
singlet axial-vector vertex, including local and nonlocal
pieces, is given by [15]

(12)

,

where

(13)

Here and below, we use the notations
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Vertex (12) takes into account the quark–antiquark
rescattering in the singlet axial channel (Fig. 2b). For
completeness, we also present the vertex corresponding
to the conserved isotriplet axial-vector current, which,
in the chiral limit, is given by [14]

(14)

The isotriplet axial-vector vertex has a massless
pole, q2 = 0, that follows from the spontaneous breaking
of the chiral symmetry in the limit of massless u and d
quarks. Evidently, this pole corresponds to the massless
Goldstone pion.

Singlet current (12) does not contain a massless pole
due to the presence of the UA(1) anomaly. Indeed, as
q2  0, there is compensation between the denomina-
tor and numerator in (12):

(15)

where fπ is the pion weak-decay constant. In cancella-
tion of the massless pole, the gap equation is used.
Instead, the singlet current develops a pole at the
η'-meson mass:3 

(16)

thus solving the UA(1) problem. Let us also remember
that, in the instanton chiral quark model, the connection
between the soft gluon and effective quark degrees of
freedom is fixed by the gap equation. In particular, this
means that the four-quark couplings G (G') are propor-
tional to the gluon condensate.

3 See previous footnote. Also, we neglect the effect of the axial–
pseudoscalar mixing with the longitudinal component of the fla-
vor singlet f1 meson.
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Fig. 2. Diagrammatic representation of the bare (a) and full
(b) quark-current vertices.
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4. SINGLET V  CORRELATOR

In the effective instantonlike model, the nondiago-
nal correlator of vector current and singlet axial-vector

current in the external electromagnetic field (V ) is
given by (Fig. 1b)

(17)

where the quark propagator, the vector, and the axial-
vector vertices are defined by (6), (10), and (12),
respectively. The structure of vector vertex (10) guaran-
tees that the amplitude is transversal with respect to
vector indices

and the Lorentz structure of the amplitude is given
by (1).

In [8], we found, for the nonsinglet axial current

, the expressions for the longitudinal amplitude,

(18)

and for the combination of invariant functions that
shows up in the nonperturbative dynamics:

(19)

where the prime means a derivative with respect to k2:
M'(k2) = dM(k2)/dk2. Result (18), which is independent
of the details of the nonlocal effective model, is in
agreement with the statement about the absence of non-
perturbative corrections to the nonsinglet longitudinal
invariant function that follows from the ‘t Hooft duality
arguments.

AṼ

AṼ
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The calculations of the singlet V  correlator
results in the following modification of the nonsinglet
amplitudes:

(20)

(21)

where

(22)

In [8], it was shown that, in the chiral limit, the non-
singlet transversal amplitude gets only exponentially
suppressed at large momenta corrections. The reason is
that the asymptotics of amplitude (19) is proportional to
the vacuum nonlocality function f(q); that is, it neces-
sarily has exponentially decreasing asymptotics. The
singlet amplitudes differ from the nonsinglet ones by
term (22), which also has exponentially suppressed
large q2 asymptotics. Thus, within the instanton model,
the singlet longitudinal and transversal parts have only
corrections that are exponentially suppressed at large
q2, and all of the power corrections allowed by the oper-
ator product expansion cancel each other.

Figure 3 illustrates how the singlet longitudinal

amplitude  is renormalized at low momenta by the
presence of the UA(1) anomaly. The behavior of

(q2) is presented in Fig. 4. In both figures, the cor-
responding results for the nonsinglet case are also
shown. The values of the model parameters used in the
calculations were fixed earlier in [8, 16] as

(23)

The coupling G' is fixed by fitting the meson spectrum.
Approximately, one has G' ≈ 0.1G [13]. We also find
numerical values of the invariant amplitudes at zero vir-
tuality:

(24)

The precise form and even the sign of (q2) strongly
depend on the ratio of couplings G'/G and have to be

AṼ

wL
0( ) q

2( ) 5
3
---wL

3( )
q2( ) ∆w 0( ) q2( ),+=

wLT
0( ) q

2( ) 5
3
---wLT

3( )
q2( ) ∆w 0( ) q2( ),+=

∆w 0( ) q
2( )

5Nc

9q2
--------- 1 G'/G–

1 G'JPP q
2( )–

--------------------------------- d4k

π4
--------

M+M–

D+
2
D–

-------------------∫–=

× M+
4
3
---M+' k⊥

2– M 1( ) k+ k–,( )–

× 4
3
--- kq( )2

q2
------------ 2

3
---k2 kq( )–+ 

  .

wL
0( )

wLT
0( )

Mq 0.24 GeV,=

ΛP 1.11 GeV, GP 27.4 GeV 2– .= =

wL
0( ) q

2
0=( ) 4.4 GeV 2– ,=

wLT
0( ) q2 0=( ) 0.6 GeV 2– .=

wLT
0( )
JETP LETTERS      Vol. 82      No. 1      2005



SINGLET VA  CORRELATOR WITHIN THE INSTANTON VACUUM MODELṼ 5
Fig. 3. Normalized wL invariant function in the singlet case (solid line) and nonsinglet case (dashed line).

Fig. 4. Normalized wLT invariant function versus Q predicted by the instanton model in the singlet case (solid line) and isotriplet
case (dashed line).
defined in the calculations with a more realistic choice
of model parameters.

5. CONCLUSIONS

In the framework of the instanton liquid model, we
have calculated, for arbitrary momenta transfers, the
nondiagonal correlator of the singlet axial-vector and
vector currents in the background of a soft vector field.
For this specific kinematics, we find that, in the chiral
limit, the large momenta power corrections are absent
for both longitudinal wL and transversal wT invariant
amplitudes. These amplitudes have very similar behav-
ior and are corrected only by exponentially small terms,
JETP LETTERS      Vol. 82      No. 1      2005
which reflect the nonlocal structure of the QCD vac-
uum.

Within the instanton model, the renormalization of

the singlet longitudinal  amplitude occurring at low
momenta due to the UA(1) anomaly is explicitly demon-
strated. In the nonsinglet case, the behavior of wL and
wT at low momenta is very different due to the contribu-
tion of the massless pion state. At the same time, in the
singlet case, there is no massless state and the deflec-
tion of wL from 2wT amplitudes is rather small.

I am grateful to A.P. Bakulev, N.I. Kochelev, P. Kroll,
S.V. Mikhailov, A.A. Pivovarov, and O.V. Teryaev for
helpful discussions on the subject of the present work.
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Measurement of the Azimuthal Anisotropy Coefficient v 2 
for the Emission of a Particles in Nucleus–Nucleus Collisions 

at Energies 1.88–10.6 GeV/nucleon
V. V. Dubinina, N. P. Egorenkova, V. I. Krotkova, E. A. Pozharova, and V. A. Smirnitskiœ
Institute of Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117218 Russia
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The azimuthal anisotropy of the emission of α particles in collisions of the 22Ne, 24Mg, 56Fe, and 197Au nuclei
with photoemulsion nuclei has been measured at projectile energies Epr = 1.88–10.6 GeV/nucleon. The results
are compared with similar measurements for protons. It has been found that the ratio of the azimuthal anisot-
ropy coefficients v2 for α particles and protons is equal to 6 ± 2 at low energies Epr ≈ 2 GeV/nucleon, whereas
these coefficients coincide with each other for energies Epr ≥ 4 GeV/nucleon. This difference may indicate that,
at low projectile energies, α particles are formed predominantly at the early stage of a collective flow. Formation
of α particles for Epr ≥ 4 GeV/nucleon likely occurs at the stage of nuclear matter scattering. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 25.55.–e
Collision of relativistic nuclei allows the properties
of strongly compressed nuclear matter at high temper-
ature T and high nucleon density n, which arise at the
instant of collision, to be analyzed under controlled lab-
oratory conditions. A collective flow of nuclear matter
(correlated emission of hadrons and mesons) has been
observed in many experiments [1–5]. Investigation of
so-called “ejection” or “squeeze-out” of nuclear matter
in the direction perpendicular to the nuclear-reaction
plane is of most interest [6–10]. This direction is the
only direction in which particles may be emitted with-
out interactions and collisions with the matter of the
projectile and target nuclei. The emission of particles
perpendicularly to the nuclear reaction plane can be
determined by measurement of azimuthal anisotropy,
which is described by the nuclear equation of state ε(n,
T) [1, 11, 12]. The anisotropic azimuthal distribution of
particles is approximated by the second-order Legendre
polynomial [8]

dN/dϕ = a(1 + v 1cosϕ + v 2cos2ϕ),

where ϕ is the azimuth angle of particles in the plane
perpendicular to the momentum of the projectile
nucleus, v 1 is the coefficient characterizing asymmetry
in the nuclear reaction plane or so-called direct flow,
and v 2 is the azimuthal anisotropy parameter that deter-
mines the emission of particles in the direction perpen-
dicular to the nuclear reaction plane or so-called elliptic
flow. The in- to out-plane emission ratio is given by

R = [N(90°) + N(270°)]/[N(0°) + N(180°)] 
= (1 – v 2)/(1 + v 2).

If v 2 < 0, the dominant emission of particles is observed
in the direction perpendicular to the nuclear reaction
0021-3640/05/8201- $26.00 0014
plane, whereas for v 2 > 0 the dominant flow is directed
in the reaction plane. This phenomenon has been quan-
titatively described using various models [1, 3, 9, 12–
14]. Azimuthal anisotropy for hadrons (parameter v 2) is
theoretically described as a function of the energy of
the projectile nucleus and, therefore, as a function of
nucleon density and temperature in the collision zone.
The results of measurement of the coefficient v 2 for rel-
ativistic particles in collisions of various nuclei with
photoemulsion nuclei were given in [15] along with
data from other works. The production of light nuclei in
collisions of high-energy heavy ions through interme-
diate stages of fireball development was analyzed in
[16], where detailed bibliography was also given.

Experiments with relativistic nuclei for projectile
energies Epr = 1–11 GeV/nucleon [1, 3] show that, for
energy Epr = Etr ≈ 4 GeV/nucleon, a change in the sign
of the anisotropy parameter v 2 is observed for protons
(v 2 < 0 for Epr < Etr and v 2 > 0 for Epr > Etr). Anisotropy
arising for the emission of fragments with the change
number Z ≥ 2 (A ≥ 4) has not yet been systematically
studied in this energy range. The dependence of the
coefficient v 2 on the projectile energy is unknown for α
particles, the energy Epr at which v 2 changes sign has
not yet been determined, and it is unknown whether Etr
values for protons and α particles are equal to each
other. It was shown in [7] that the coefficient v 2 for a
projectile energy of 0.4 GeV/nucleon for fragments
with A = 4 depends on P⊥  and it is four to five times
larger than v 2 for A = 1. This result may be due to the
fact that heavy particles are more sensitive to the collec-
tive energy: the heavier the particle, the higher its col-
lective-motion momentum. For energies up to 1.6 GeV,
© 2005 Pleiades Publishing, Inc.
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the dependence of v 2 on the projectile energy is mea-
sured in this experiment only for the sum A = 1 + 2 + 3.
The dependence of the sign and magnitude of the
anisotropy coefficient v 2 on Epr and, therefore, on the
density and temperature of nuclear matter is more effi-
ciently observed in experiments with multicharged
fragments.

In order to determine the dependence of the magni-
tude and sign of v 2 on the projectile energy and to esti-
mate the Etr value at which v 2 changes sign, we mea-
sured the azimuthal anisotropy of the emission of α
particles in experiments on the interaction of various
nuclei with photoemulsion nuclei in the range Epr =
1.88–10.6 GeV/nucleon. We used nuclear photoemul-
sion irradiated by nuclei 56Fe (Epr = 1.88 GeV/nucleon),
22Ne (Epr = 3.25 GeV/nucleon), 24Mg (Epr =
3.85 GeV/nucleon), and 197Au (Epr =
10.6 GeV/nucleon). Nucleus–nucleus collisions were
analyzed for semicentral interactions [4] corresponding
to the impact parameter b in the range 0.20 ≤ b/bmax ≤
0.70. We selected events with no less than three α par-
ticles (we assumed that all particles with Z = 2 have
A = 4). The nuclear reaction plane was determined for
all interactions. Then, the reaction planes for all colli-
sions were joined together for each projectile nucleus
and the parameter v 2 was calculated. The procedure of
event selection, determination of the nuclear reaction
plane, and analysis of interactions was described in
detail in [2, 17, 18].

The figure shows the measured azimuthal anisot-
ropy coefficient v 2 for α particles as a function of Epr
along with the results of similar measurements for pro-
tons (for the same Epr range) from [3]. As is seen, v 2 for
both the proton and α particle changes sign at Epr ≈
4 GeV/nucleon. The calculation results for ε(n, T) that
describe the coefficient v 2 as a function of Epr in the
range from 1 to 11 GeV/nucleon and, therefore, as a
function of nucleon density n and temperature T in the
collision zone were given in [1]. The calculation was
performed using the relativistic transport model based
on the Landau theory of relativistic quasiparticles [12].
Measurements of a positive v 2 value at the HIC-BNL
energy provide the fundamental conclusion that Lan-
dau hydrodynamics is applicable beginning with early
stages of nuclear collisions [19]. The experimental data
for protons that are shown in the figure are described for
Epr < Etr and Epr > Etr by the stiff and soft nuclear equa-
tions of state, respectively [1, 3]. It is impossible to
apply the theoretical calculation of those works to the
comparison of the dependences of v 2 on Epr for protons
and α particles, because α-particle degrees of freedom
were disregarded in that calculation.

Measurement of the dependence of v 2 on Epr for α
particles is important for understanding of the process
of their formation in nucleus–nucleus collisions. The
JETP LETTERS      Vol. 82      No. 1      2005
ratio of the azimuthal anisotropy coefficients v 2 for α
particles and protons for Epr < Etr is as follows:

v 2(Epr(α) = 1.88 GeV/n)/v 2(Epr(p) = 1.15 GeV/n)
= 5.0 ± 2.0;

v 2(Epr(α) = 1.88 GeV/n)/v 2(Epr(p) = 2.0 GeV/n) 
= 6.0 ± 2.0.

The change in the sign and magnitude of v 2 as a
function of the projectile energy in the indicated Epr
range (see figure) is possibly attributed to change in the
mechanism of the production of light nuclei in ion col-
lisions. The above data on the ratio of the azimuthal
anisotropy coefficients imply that, for low energies
Epr < 4 GeV/nucleon, α particles are formed predomi-
nantly at the early stage of the collective flow and the
matter of the projectile and target nuclei prevents their
emission in the nuclear reaction plane. Since the cross
section for interaction of α particles is much larger than
the nucleon cross section, the inequality |v2(α)| > |v2(p)|
is necessarily valid, as is observed in experiment. The
direction perpendicular to the reaction plane is free for
the emission of particles, and this property corresponds
to a negative v 2 value. For energies Epr > Etr, v 2(α) ~
v 2(p) (see figure) and formation of α particles likely
occurs at the stage of nuclear matter scattering, when
spectator nucleons do not prevent the emission of α
particles and, as a result, the equality of azimuthal
anisotropy coefficients is observed.

We are grateful to V.V. Shamanov for assistance in
the organization of computer processing of the experi-
mental data.

Azimuthal anisotropy coefficient v2 vs. projectile energy
Epr: (j) our data for (α, A + Em), (d) (α, Au + Em) [5],
(h) (p, Au + Au) [3] (E895 Collaboration), (n) (p, Au + Au)
EOS Collaboration, and (s) (p, Au + Au) E866 Collabora-
tion.

Epr
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We describe transverse collimation of a continuous cold cesium beam (longitudinal temperature 75 µK)
induced by a two-dimensional, blue-detuned near-resonant optical lattice. The mechanism described for a
lin-||-lin configuration is made possible by the application of a transverse magnetic field B⊥ . The phenomenon
described differs from gray molasses, for which any small magnetic field degrades cooling, as well as from
magnetically induced laser cooling in red-detuned optical molasses, where there are no dark states. The lowest

transverse temperature is experimentally found to vary as . The collimated flux density shows a dip as a func-
tion of B⊥ , the width of which is proportional to the cube root of the laser intensity, general features predicted
by our semiclassical model. This technique provides a sensitive tool for canceling transverse magnetic fields
in situ at the milligauss level. © 2005 Pleiades Publishing, Inc.

PACS numbers: 32.60.+i

B⊥
2

Continuous beams of cold atoms are useful for
many physics experiments. Their flux density can be
boosted by two-dimensional (2D) transverse laser col-
limation. Some schemes to achieve this with a 2D opti-
cal lattice (OL) use applied magnetic fields in addition
to the lasers [1], while others should work better in zero
field [2]. Both methods are designed to approach trans-
verse temperatures close to the recoil limit (0.2 µK).
The simplest approach is polarization gradient cooling
(optical molasses (OM)) leading to temperatures of
about 3 µK. With no polarization gradient, collimation
can still be achieved if a transverse magnetic field (B⊥ )
is applied. Conversely, one can use this technique to
monitor transverse magnetic fields in situ. In this letter,
we describe a study of laser collimation of a continuous
cesium beam induced by a (B⊥ ) for the F = 3  F ' =
2 component of the D2 line and its implications for field
cancellation.

For transitions of the type J  J ' = J or J – 1, cool-
ing occurs for a laser tuned to the blue of the atomic res-
onance, while the presence of dark states in the ground
hyperfine level leads to gray OM and, thereby, some-
what lower temperatures than those obtained with red-
detuned OM (J  J + 1). In their study of the F = 1
to F ' = 1 transition in 87Rb in a 1D lin-θ-lin OM, Lucas
et al. [3] measured temperature as a function of θ and
concluded that the cooling observed near θ = 0 arose

¶ This article was submitted by the authors in English.
0021-3640/05/8201- $26.00 0017
from some residual polarization gradient. We have also
investigated collimation as a function of θ in a 2D
phase-stable power-recycling lattice [4]. To minimize
θ, we adjusted the vertical input polarization of the
input beam such that the extinction of the outgoing
reflected beam, analyzed by a polarizing beam-splitter
cube, was <10–3. We still observed sub-Doppler tem-
peratures but only when a transverse magnetic field was
applied.

Although magnetically induced laser cooling
(MILC) was described over a decade ago [5–8], most
work has been on J  J + 1 transitions,1 but pub-
lished data on J  J – 1 transitions are rarer. Met-
calf’s group mentions results for the textbook case of
1D collimation of a 87Rb beam on the F = 1  F = 0
transition in a weak B⊥  field with no polarization gradi-
ent (σ+–σ+ [9], lin-||-lin [10]). Nienhuis et al. [11] cal-
culated a graph of reduced force versus reduced veloc-
ity for 1D cooling of a J = 2 – J ' = 1 transition in a sim-
ilar configuration but with a strong B⊥  field and red
detuning. The only work on Cs of which we are aware
is by Valentin et al. [12–14], who studied the F = 3 
F ' = 2 component of the D2 line. There and in the exper-
iments of Metcalf’s group [5, 6], a thermal atomic beam
was collimated in a 1D standing wave to sub-Doppler
transverse temperatures in either strong magnetic fields

1 Indeed, we observe the effect for red-detuned molasses using the
F = 4  F ' = 5 component of the Cs D2 line.
© 2005 Pleiades Publishing, Inc.
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(Larmor frequency ΩL ≥ ground-state light shift ∆LS) or
weak ones (ΩL < ∆LS). In all of the above, the results
describe cooling to zero transverse velocity v ⊥  in low
fields and to v ⊥  ≠ 0 in high fields. All of the calculations
were numerical simulations, and, to the best of our
knowledge, no analytical expressions for the transverse
temperature T⊥  as a function of B⊥  were given. Our own
experiment is different in that it concerns 2D collima-
tion of a continuous Cs beam using an OL with parallel
linear polarization vectors; the magnetic fields are
always weak (B⊥  < 120 mG), and the atoms, already
cold to begin with (longitudinal temperature 75 µK,
T⊥  = 60 µK), are transversely cooled to T⊥  ≈ 5 µK.

In this letter, we present a detailed study of 2D
MILC, including the influence of applied transverse
magnetic fields on the atomic flux and final temperature
for the case of an F  F – 1 transition. We show that,
even if the mechanism appears on the blue side of the
atomic resonance, it is different from usual gray molas-
ses in two respects. First, gray molasses requires a
polarization gradient, which is not the case here. Sec-
ond, gray molasses is destroyed by a B field, be it trans-
verse or longitudinal [15]. We outline the experimental
arrangement and, then, present the results obtained,
which show the striking contrast between the case of
parallel polarizations (no polarization gradient, sin2θ <
10–3) and orthogonal ones (maximal gradient). Then,
we compare our situation with gray molasses (F  F
or F – 1 with a polarization gradient). To gain some
physical insight, we perform an extensive semiclassical
analysis of MILC on F  F – 1 transitions in a lin-
early polarized standing wave. A qualitative picture of
the Sisyphus cooling mechanism in the case under con-
sideration is given. We find that, in a weak magnetic
field, when the Zeeman splitting is less than the average
light shift, the usually used slow-atom approximation

Fig. 1. Experimental setup for 2D collimation of a continu-
ous Cs beam. The various lasers are tuned near hyperfine
components of the D2 line.
fails due to a strongly nonlinear velocity dependence of
the light force on the atom near v  = 0. This can be qual-
itatively explained by high spatial gradients of the
atomic density matrix and a small optical pumping rate
near the field nodes. Instead, we obtain the nonlinear
force dependence by numerical calculations, based on
the expansion of the density matrix in a Fourier series
that give results qualitatively similar to those found by
experiment. Lastly, we present the transverse magnetic
field cancellation procedure based on real-time mea-
surement of the atomic flux.

The apparatus shown in Fig. 1 is akin to that of [1],
where the z axis is vertical. Cs atoms from a moving
OM are launched continuously in a parabolic flight
with an initial velocity v z = 3.6 m/s [16]. In a region
above the source, the slow beam is collimated using a
2D linear-θ-linear OL with a 1/e2 intensity radius =
5.7 mm, truncated at a radius of 9 mm. We define I1 as
the average single-beam intensity in a circle of radius
equal to the waist w. Here, a laser tuned 3γ above reso-
nance with the F = 3 – F ' = 2D2 hyperfine component
(where γ is the natural width of the excited state
6p 2P3/2) is used in a phase-stable, power-recycling
geometry with perpendicular, coplanar, counterpropa-
gating beams [4]. These are reflected from gold-coated
mirrors to maximize reflectivity (R > 97%) and mini-
mize birefringence; improvement is expected from sil-
ver ones [17]. We observed that, when there is no polar-
ization gradient, no collimation occurs unless one
applies a transverse B field (but not a longitudinal one).
A weak repumping laser (0.1 mW/cm2) tuned to the
F = 4  F ' = 3 hyperfine component of the D2 line is
added to improve cooling efficiency in the lattice. At
the end of the flight, the atomic flux is probed via laser-
induced fluorescence of the F = 4  F ' = 5 transition
of the D2 line. By adding a repumping beam in the
probe region tuned to the F = 3  F ' = 4 transition,
we can detect the atoms arriving in both the F = 3 and
F = 4 hyperfine levels. We measure transverse temper-
atures by laterally translating the whole detection sys-
tem (probe and repumping lasers and detection optics)
in the horizontal plane and recording flux as a function
of displacement. The data are fitted to a Gaussian curve
(collimated atoms) superimposed on a slope represent-
ing the wings of a much broader distribution of uncol-
limated atoms. Depending on the atomic flux, resolu-
tions of 0.2 µK can be achieved.

We have studied the variation of T⊥  as a function of
the mutual angle of inclination θ of the laser polariza-
tion vectors when Bx = By = Bz = 0. For θ = 0, the light
field is a 2D lattice with an intensity gradient but uni-
form polarization and the temperature curve exhibits a
local maximum. Still, for θ = 0, we have measured T⊥
and flux versus B⊥  (≤120 mG) when the other field
components were cancelled out to within a few milli-
gauss. For Bx = Bz = 0, the flux density curve (Fig. 2)
shows a characteristic dip as a function of By . Similar
JETP LETTERS      Vol. 82      No. 1      2005
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results are observed when By = Bz = 0, and we vary Bx.
The width ∆B of the dip varies as the cube root of the
lattice laser power over a range 1 to 32 mW (Fig. 3).
The intensity of the weak repumping laser has no
observable influence upon this width. The correspond-
ing temperature curves exhibit a central maximum,
coinciding with the value of B⊥  that gives the smallest
flux. Away from this maximum, we find that T⊥  rises as

. This behavior is in striking contrast with the varia-
tion of flux density with Bz (Bx = By = 0), where we
observe no collimation whatsoever. There is also a dra-
matic contrast with the behavior of flux versus B⊥  for
θ = 90°, i.e., gray molasses, which displays a local cen-
tral maximum at B⊥  = 0.

Cooling mechanism. Figure 4 shows the calculated
adiabatic potentials, i.e., the eigenvalues of the total
Hamiltonian of an atom at rest, including both the opti-
cal shift operator and the Zeeman shift operator. The
four potential curves correspond to the dressed states,
which, for B⊥  = 0, coincide with Zeeman substates of
the ground F = 3 hyperfine level with the magnetic
quantum numbers mF = ±2 and mF = ±3. They apply to
the case of a weak B⊥  and a linearly polarized standing
wave (θ = 0). The contribution due to off-resonant cou-
pling with 2P3/2F ' = 3 is also taken into account. The
energies are in kilohertz for the average lattice intensity
of our experiment, namely, 3.5 mW/cm2. Level cross-
ing near the nodes is avoided due to the B-field mixing
(the corresponding Zeeman splitting is taken as
5.3 kHz). In a weak magnetic field, the whole cooling
process of transitions between the coupled F = 3, mF =
±2 and noncoupled F = 3, mF = ±3 dressed states takes
place in the vicinity of the nodes, where the Zeeman
splitting is comparable with the optical shifts. Outside
these regions, all slow atoms are in the noncoupled
states and so dissipate no kinetic energy. Let us con-
sider an atom initially moving in the positive direction
in one of the noncoupled states. Near the node (say,
when kx = 0), it is likely to be coupled by the transverse
B field to the dressed states with mF = ±2, to climb
uphill, and to dissipate its kinetic energy. Later (e.g., at
kx = 0.3), when the dressed states mF = ±2 become
strongly coupled with light, it is optically pumped back
to the noncoupled states mF = ±3. Thus, the kinetic
energy dissipated per cycle is of order of the Zeeman
energy.

The Sisyphus mechanism [18] breaks down at a
very weak magnetic field when an atom moving at the
recoil velocity "k/M passes too quickly through the
region of efficient B mixing for optical pumping to
occur. This qualitatively explains the peak in tempera-
ture and the dip in the flux near B⊥  = 0. Let us estimate
the Zeeman splitting at which it happens. The spatial
size x of the region where the B mixing works is defined

by /(δ(kx)2) ≈ ΩZ (the optical energy shift is compa-
rable with the Zeeman splitting), where ΩRsinkx .

B⊥
2

ΩR
2
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ΩRkx is the local Rabi frequency in the vicinity of the
well bottom averaged over the lattice volume and δ is
the detuning. An atom with the recoil velocity crosses
this region in a time τ = x("k/M). For efficient mixing
in this time period, we need τΩZ ≥ 1, i.e., ΩZ ≥
[ /δ]1/3, where ωr is the recoil frequency. This
power law is confirmed experimentally (Fig. 3) over a
range of 30 in laser power. Note that, under our experi-

ωr
2ΩR

2

Fig. 2. 2D laser collimation using the Cs D2 line in a lin-||-
lin lattice with θ = 0, hyperfine component F = 3 – F ' = 2,
and detuning +3γ. Lattice laser power, 3.5 mW; repumping
laser (F = 4 – F ' = 3) power, 0.12 mW (w = 5.7 mm for both
lasers). Variation of transverse temperature (+) and flux
density (d) as a function of the transverse magnetic field By
for Bx = Bz = 0. The polarization vectors of the lattice beams
are along z, so there is no polarization gradient, and the
other magnetic field components are cancelled. The solid
line in the flux curve is to guide the eye; that in the temper-
ature plot is a quadratic fit excluding the three central
points.

Fig. 3. Plot of the log of the width ∆B (mG) of Fig. 1 versus
the log of lattice power P (mW) for Bx = Bz = 0. The slope

of the linear fit (0.35(4)) suggests that ∆B ∝  . The the-
oretical curve predicts the right slope and gives absolute
values within a factor of two.

P3
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Fig. 4. Cooling principle in a weak magnetic field based on F = 3  F ' = 2 optical pumping between Zeeman sublevels of the
F = 3 ground hyperfine level. Here, we show adiabatic potentials including both Zeeman and light shifts. The modulated light shift
of the mF = ±3 noncoupled levels arises from off-resonant coupling with the excited F ' = 3, mF ' = ±3 levels. The value shown is for

an average lattice laser intensity of 3.5 mW/cm2.
mental conditions, the weak magnetic field regime
always applies, since the Zeeman splitting is less than
the average optical shift. However, in this limit, the con-
dition for applicability of the usually used slow atom
approximation is unusually stringent. Indeed, first, we
require that

(1)

where γ is the spontaneous decay rate; i.e., the atom
transit time through the region of efficient B-field mix-
ing should significantly exceed the optical pumping
time in the same region. In this region, the optical shift
and Zeeman splitting are comparable:

(2)

then

(3)

Additionally, in order to neglect safely motional cou-
pling between the dressed states, we also need

(4)

where "% is the energy separation between adiabatic
potentials. Since the first condition is the more strin-
gent, we have, finally,

(5)

If now we take δ = 3γ, ΩZ = 0.01γ (about 50 kHz), and
ΩR = γ (the corresponding intensity is about 8.8 mW/cm2),
we see that kv  < γ/100; i.e., the corresponding velocity
would be deeply subrecoil. Thus, in the weak magnetic
field regime, there is hardly any room for the linear
velocity approximation, estimates based upon which

kv
kx
-------  ! γ

ΩR
2

δ2
------- kx( )2

ΩR
2

δ
------- kx( )2

 . ΩZ

kx  . 
ΩZδ
ΩR

2
---------- ! 1.

kv /kx ! % . ΩZ,

kv  ! ΩZ
γ
δ
--

ΩZδ
ΩR

2
---------- ! ΩZ.
fail, and we need at least some kind of nonlinear theo-
retical estimates going beyond the slow-atom approxi-
mation. This led us to carry out a semiclassical numer-
ical analysis of the problem.

Let us consider MILC in a linearly polarized mono-
chromatic light field that excites a closed Fg = F 
Fe = F – 1 transition. We approximate the actual field
configuration by a 1D standing wave and neglect all
other hyperfine levels. As the simplest model, we use a
three-state system consisting of the noncoupled |NC〉 ,
coupled |C〉, and excited |E〉 states. Such a model reflects
the main qualitative features of MILC on dark transi-
tions. We take both the Doppler shift kv  and Zeeman
splitting Ω to be ! γ and assume that the laser field inten-
sity and detuning correspond to the low-saturation limit:

(6)

There exist well-developed numerical methods to
calculate the force and diffusion coefficient in an arbi-
trary 1D periodic light field. Typically, these are based
on the expansion of the atomic density matrix in a Fou-
rier series with subsequent numerical solution of a
finite set of algebraic equations, obtained by the trunca-
tion of the original infinite set at some higher harmonic
with number nmax. An especially powerful tool for the
force calculation is the continued fraction operator
method, because, at each step, we need to invert a
matrix of only low dimension whatever nmax. The
results for the spatially averaged force as a function of
velocity are presented in Fig. 5. One can see a linear
dependence very close to v  = 0, a first Raman reso-
nance at kv  . ΩZ [6], and higher-order ones at mkv  .
ΩZ (with m an integer). The force behavior is qualita-
tively similar for the three-state model and for the
3  2 transition studied experimentally.

One can evaluate the final momentum distribution
W(p) using the spatially averaged Fokker–Plank equa-

S
1
2
---

ΩR
2

γ/2( )2 δ2+
-------------------------- ! 1.=
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tion. Typically, we observe non-Gaussian shapes and
narrow double-peaked features near the zero momen-
tum, which are gradually transformed into the peaks at
nonzero velocities. To compare theory and experiment,
we numerically calculate the Gaussian width w
(W(w) = W(0)/e) and W(0); the latter represents the
maximal flux. We assume that T ∝  w2 and that w = "k
corresponds to T = 0.1 µK. The results of such calcula-
tions, shown in Fig. 6, are qualitatively similar to exper-

imental data. In particular, we see the “ ” tempera-
ture dependence and a flux maximum offset slightly
from the temperature minimum, as in Fig. 1. A detailed
account of our theoretical models will be presented
elsewhere.

Application: in situ compensation of B^ fields.
Three orthogonal pairs of Helmholtz coils provide the

B⊥
2

Fig. 5. Three-state model. The force in "kγ units versus
kv /γ. The detuning δ = 3γ, the Zeeman splitting ΩZ = 0.01γ,
and the Rabi frequency ΩR = γ.

Fig. 6. Three-state model. Maximum flux density (d) in
arbitrary units and the temperature (s) in microkelvin versus
magnetic field in mG. The parameters are δ = 3γ, ΩR = γ.
There is qualitative agreement with experiment (Fig. 1,
right-hand side).

("
kγ

)
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necessary static fields. The resolution of the current
supplies leads to an uncertainty of ±2 mG for Bx and By

and ±2.5 mG for Bz . Slow ambient fluctuations amount
to ±0.2 mG for Bx and By and ±1.5 mG for Bz, and there
subsist 50-Hz fields of <3 mG in all three directions.
We start with 2D gray OM on the F = 3  F ' = 2 com-
ponent of the D2 line using a lin ⊥  lin configuration to
provide the largest polarization gradient. Since any
small magnetic field component leads to higher temper-
atures and lower flux, we adjust Bx, By, and Bz to maxi-
mize the flux. This first step is, thus, a bright-field tech-
nique. For a sensitivity <10 mG, we make the lattice
polarization vectors parallel and vertical, so that Bx and
By are the transverse fields. We then tune Bx and By to
minimize the flux (dark-field method). To make Bz, the
transverse field, the laser polarization should be hori-
zontal. In 2D, this gives a polarization gradient and,
thus, just gray molasses. However, by implementing a
1D lattice, one could also cancel Bz using MILC.
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0855). The authors thank D. Boiron and S. Pádua for
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Experimental results that are obtained in the process of the explosive crystallization of x-ray amorphous films
Fe2Tb and CoPd with magnetic anisotropy perpendicular to the film plane are reported. The internal bending
of thus obtained “single crystals” reaches 100 deg/µm. An explanation of the mechanism and kinetics of explo-
sive crystallization in the Fe2Tb and CoPd films is proposed in the framework of the shear transformation zone
theory. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.50.Kj
The problem of the microstructure of amorphous
and nanocrystalline materials obtained under nonequi-
librium conditions is an important unsolved problem of
solid state physics. For this reason, experimental inves-
tigations of the structure formation in such materials
are of decisive importance for revealing and under-
standing the general laws governing amorphous and
nanocrystalline substances, as well as for determining
their nature and new possibilities of using them in engi-
neering. We study Fe–Tb and Co–Pd nanocrystalline
films obtained under nonequilibrium conditions.
Explosive crystallization initiated by a small thermal
action of 0.1–0.2 kTmelt or mechanical impact is
observed in these films.

This work is devoted to determination of the mech-
anism of explosive crystallization in amorphous films
of alloys based on transition metals. The regular crystal
lattice does not necessarily grow in film structures; i.e.,
the length and arrangement of short-range interatomic
bonds do not always coincide with the length and
arrangement of bonds in the regular structure, respec-
tively. In this case, local regularity is combined with
adaptability necessary for growth. This behavior is
observed in twin structures and quasicrystals [1]
obtained under ultrafast cooling conditions. If films are
magnetically ordered, their saturation magnetization
upon explosive crystallization usually decreases [2, 3].

One of the aims of this work is to analyze the phys-
ical nature of explosive crystallization and the corre-
sponding features of structure formation (rotation shifts
and internal bending of an atomic lattice that are as
large as 100 deg/µm or larger) in the framework of the
shear transformation zone (STZ) theory [4–6]. This
theory is based on the concept that macroscopic defor-
mation in amorphous materials is a result of local rear-
rangements due to the cooperative motion of molecules
in mesoscopic domains [4]. Plastic flow is created due
0021-3640/05/8201- $26.00 ©0022
to the creation and annihilation of the transformation
zone whose velocity depends linearly on load. A
dynamic model of super-Arrhenius relaxation in glassy
materials was recently developed in [5] and is based on
a well-known liquid-like model [6]. The authors of [5]
proposed a hypothetical mechanism that “might be
visualized as a kinetic fluctuation that allows molecules
to undergo small displacements along a force chain”—
a string. Let the string length be equal to Nl, where N is
an integer and l is a certain characteristic molecular
length, and a domain with radius R arises around the
STZ string. The expression for the total free energy of
the system has the form

(1)

where the first term is the activation energy for high
temperatures, which is necessary for formation of a
vacancy or a free gap. It is the Arrhenius activation
energy. The remaining terms describe the string as a
fluctuation in a solid glass: T0 ≡ e0/νkB, where e0 is the
energy per step along the string and ν = lnq, where q is
the number of paths possible for each transition. The
number of such transitions is given by the expression

(2)

The entropy that is obtained by calculating the number
of free transitions consisting of N steps in the radius R
is written as

(3)

∆G N R,( ) ∆G∞ Ne0 TS N R,( )– Eint N R,( ),+ +=

W N R,( ) const qN R2

2Nλ 2
-------------– 

  .exp×≈

S N R,( ) νkBN kB
R2

2Nλ2
-------------.–≈
 2005 Pleiades Publishing, Inc.
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The repulsion energy is given by the expression

(4)

where kBTint is the dimensionless repulsion energy and
d is the dimension of space where the string exists.

An irreversible transition occurs between the inter-
nal states of an amorphous solid. Adam and Gibbs [7]
divided the free energy of viscous-flow activation into
two components: the energy of interatomic-bond
changeover and the energy necessary for the rearrange-
ment of a large group of atoms. The authors of [5] pos-
tulated “that, at temperatures low enough that most of
the system is tightly jammed, localized molecular rear-
rangements might be entropically enabled by strings of
small molecular displacements that distribute the dis-
turbance throughout larger parts of the material.”

The Fe2Tb and CoPd films were obtained by depo-
sition with a rate of 10 nm/s on glass substrates in a vac-
uum of 2 × 10–4 Pa and at room temperature. The thick-
ness of the films under investigation was equal to about
50 nm. The films were separated from the substrates by
etching in a 10% hydrofluoric-acid solution with the
subsequent washing in distilled water. The microstruc-
ture and phase composition of the films were analyzed
using a transmission electron microscope PREM-200.

The initial Fe2Tb and CoPd films are x-ray amor-
phous, which is corroborated by the diffuse diffraction
patterns. Electron-beam-induced crystallization occurs
with a rate of about 1 cm/s with formation of dendrites.
We noted that domains with similar structure to the sin-
gle-crystal structure arose from the x-ray amorphous
structure under the action of either an electron beam or
mechanical load in a short time (~0.1 ms). Electron
microdiffraction patterns (see Fig. 1a) obtained from
these domains are similar to the diffraction pattern from
a single crystal. Point reflections in the electron diffrac-
tion patterns are strongly dispersed, and no ring reflec-
tions are observed. Microphotographies of the “single
crystals” (see Fig. 1b) exhibit bending contours in the
form of dark fringes that testify to strong internal bend-
ing of “atomic planes,” which reaches 100 deg/µm [9].

Since point reflections are strongly dispersed on
electron diffraction patterns, interatomic distances vary
within a range of 8%. For this reason, we think that the
exited-atom model on which the STZ theory is based is
applicable to such films. Atoms that can be shifted at a
critical distance corresponding to the maximum inter-
atomic attraction are called excited atoms [10].

Comparison of data obtained by x-ray and electron
diffractometry indicates that single crystals without
long-range order grow in the Fe2Tb and CoPd films.
Nanocrystallites with the [110] zone axis are oriented
with respect to each other as blocks of a mosaic and
imitate a single crystal. Investigations of the atomic
structure of nonequilibrium phases arising after explo-
sive crystallization in the Fe2Tb and CoPd nanocrystal-

Eint N R,( ) kBT int
N2λd

Rd
------------,≈
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line films show that these films have the Frank–Kasper
tetrahedral close packed structure (Laves cubic phase).
Such a structure [11] is characteristic of the equilibrium
state of Fe2Tb films, but it is surprising for CoPd films.
An important feature of such a structure is the possibil-
ity of compression–tension of its elementary volume by
30% [12].

Crystallization may also begin in the process of
sharp pressure on the sample edge in the Fe2Tb films.
Figure 2a shows an optical photograph of the Fe2Tb
x-ray amorphous film situated between crossed polariz-
ers. The dark domain corresponds to the initial x-ray
amorphous state with magnetization perpendicular to
the film plane. Motley droplet-like regions are formed
after crystallization initiated by the pressure of a glass
cutter on the sample edge. Magnetic anisotropy in the
Fe2Tb films subjected to pressure is reoriented [13]. We
attempted to find a correlation between the structural
self-organization processes observed in the Fe2Tb films
and changes in their magnetic structure. Spontaneous
deformation arising in nonequilibrium materials can
lead to the redistribution of magnetization in local

0.8 µm(b)

(a)

Fig. 1. (a) Electron microdiffraction pattern from a film sec-
tion crystallized under the action of an electron beam at an
accelerating voltage of 100 kV. (b) Microphotograph of the
Fe2Tb x-ray amorphous film with perpendicular magnetic
anisotropy; diffuse dark points correspond to poles from
which bending extinction contours diverge that testify to the
strong internal bending of “atomic planes of the single crys-
tal.”
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domains [14]. Figure 2a shows the redistribution of
magnetization in crystallized droplet-like domains.

The classification given in [15] for topologically sta-
ble defects in droplets of nematic liquid crystals indi-
cates the radial ordering of the director with a point

(a) (b)

(c)

2 µm

200 µm

Fig. 2. (a) Optical photograph of the Fe2Tb x-ray amor-
phous film situated between crossed polarizers; the dark
domain corresponds to the magnetization perpendicular to
the film plane. (b) Photograph of the spherical nematic
droplet that was made in polarized light with crossed polar-
izers for the radial configuration of the director [14]. (c)
Distribution of the force field for 4938 particles that is
obtained by the molecular dynamics method [8].

(a) (b)

(c)

0.4 µm

Fig. 3. (a) Microphotograph of the Co–Pd film after the
electron-beam irradiation of the initial x-ray amorphous
film. (b) Electron diffraction pattern from the Co–Pd sam-
ple. (c) Streamlines of a viscous liquid in the central zone of
a six-roller mill [18].
defect (hedgehog) in the droplet center. This property
corresponds to a similar experimental observation of
birefringence in crossed polarizers with a fourth order
symmetry axis, which are shown in Fig. 2b.

The effective biaxiality arises in load-induced crys-
tallization processes in the Fe2Tb film that is deposited
on a substrate and is subjected to compression–tension
load. In this case, the repetition of structural units of the
same type satisfies the same rules as in a liquid crystal.
The initial state of the film consists of nanocrystallites
with the second-order symmetry axis (the 110 orienta-
tion of the Laves cubic phase, as follows from the anal-
ysis of electron microdiffraction patterns). Owing to
long-range forces acting in thin films [16], the dark and
light sections on the pattern in different parts of the film
are parallel to each other.

Figure 2c shows a similar distribution of stress fields
that is obtained in the molecular dynamics simulation
of the behavior of particles in a glass subjected to shear
stress when investigating the plastic deformation of
atomically disordered media [8]. Simulation was based
on the STZ theory and yielded the distribution of the
stress field in the figure plane. Comparison of experi-
mental and theoretical results (see Fig. 2) shows that the
distributions of stress fields at micro- and mesoscopic
levels are scale-invariant.

For explosive crystallization with strong bending of
the crystal lattice or plastic deformation with rotation
effects, the model of super-Arrhenius relaxation is con-
sistent with the model of the bifurcation of the atomic
lattice that was proposed in catastrophe theory [17].
The symmetry of the single crystal with the sixth-order
axis arises in the process of its growth under compres-
sion–tension load in the case where the film is separated
from the substrate and is irradiated by an electron beam
(see Fig. 1a). In this case, the initial state of the film
consists of the same nanocrystallites with a second-
order symmetry axis (the 110 orientation of the Laves
cubic phase, as follows form analysis of the electron
diffraction pattern). The direction of explosive crystal-
lization is determined by the temperature gradient; i.e.,
it is directed from the center to the periphery of the cir-
cle. In this case, there is no orienting action of stresses
from the substrate. However, conditions arise for the
appearance of a third-order symmetry axis by analogy
with the appearance of such symmetry in viscous liquid
deformation geometry. Figure 3c [18] shows the
streamlines of a viscous liquid in the central zone of a
six-roller mill immersed in this liquid. The authors sup-
pose the possibility of using such a model to study
intermolecular interactions. In our opinion, the STZ
theory provides the possibility of describing nonequi-
librium processes in a disordered solid containing
numerous excited atoms.

Structural elements (nanocrystallites with the sec-
ond-order symmetry axis) are adaptable due to their
mobility. As a result, symmetry with the sixth-order
axis is efficiently generated and observed in experiment
JETP LETTERS      Vol. 82      No. 1      2005
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(see Figs. 1 and 3). Such a structure is capable of repro-
ducing itself and is an example of a dissipative structure
relaxing to the equilibrium state.

In our opinion, there are sufficient reasons to con-
clude that the features of explosive crystallization pro-
cesses in metal films with a nonequilibrium structure
can be described in the framework of the modern STZ
theory based on the excited-atom model.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-17358) and
INTAS (grant no. 00-100).
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The polarization of an atomic Bose–Einstein condensate weakly excited by laser radiation at a nearly resonance
frequency is determined. The coefficient of nonlinearity (cubic in field) in the refractive index of the condensate
is calculated for the slow decay mode due to the spontaneous emission of excited atoms, as well as for the sta-
tionary mode, when the loss of atoms is compensated by the injection of atoms into the trap. In both cases, the
cubic nonlinearity coefficients of the condensate are several orders of magnitude larger than the corresponding
values for known nonlinear media. The conditions for observing hysteresis in an interferometer containing the
condensate in the stationary state in the presence of an incident laser beam are specified. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 42.50.Rh, 67.40.–w
The response of an atomic Bose–Einstein conden-
sate (BEC) to the action of laser radiation forms the
basis of a number of methods of BEC analysis. In our
opinion, the most interesting experimental and theoret-
ical investigations are devoted to resonant excitation of
the BEC [1–3]. However, under the conditions studied
in these investigations, the action of light leads to
almost complete decay of the condensate. Here, we
study resonant excitation of the BEC under the condi-
tions when the BEC changes slowly, exhibiting anoma-
lously high optical nonlinearity.

For the case where the BEC interacts with an elec-
tromagnetic field (Ee–iωt + E*eiωt), the equations relat-
ing the wave functions of the condensate and atoms in
the excited electronic state (the material wave function

Φ = Φg  + Φe ) have the form [4–7]

(1)

(2)

Here, the subscripts g and e correspond to the ground
and excited states of an atom, M is the atomic mass, ∆
is the Laplace operator, e is the elementary charge, d is
the matrix element of the dipole moment of the atomic
transition, δ = ω – ωa is the laser frequency detuning

e
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from the atomic transition frequency, a is the scattering
length, and γ is the spontaneous luminescence rate. At
the initial time, Φe = 0 and the normalization condition

has the form d3r = N, where N is the number of

atoms in the condensate.
The propagation equation for slowly varying field

amplitude E in the scalar approximation has the form

(3)

Here, k is the wavenumber of laser radiation, the linear
part of the permittivity is ε0 ≈ 1, and polarization P =
(ed) Φeeiδt is introduced. The momentum kr

acquired by an atom after absorption of light is much
larger than the momenta of atoms in the condensate.
Consequently, in Eq. (2) we can set

Integrating Eq. (2) with respect to time, we obtain

(4)

The time variation in the wave function of the con-
densate must be slower than its stabilization, which is
determined by the time between atomic collisions (τc ≈
1 ms). The real part of the polarization is determined by

Φg
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the imaginary part of the exponent in the integrand of
expression (4). It is maximal for δ ~ γ/2. It should be
noted that the characteristic value of γ is on the order of
108 s–1. In the case of excitation of, e.g., a lithium con-

densate by visible light, we have " /2M ≈ 5 × 105 s–1 !
γ/2. Consequently, we can set

(5)

and

(6)

where νR = |edE|/" is the Rabi frequency. If the laser
beam width is much larger than the BEC size, the sec-
ond term on the right-hand side of Eq. (6) is almost
independent of coordinates. In this case, this term is
responsible not only for an insignificant phase factor
but also for a decrease in the wave function amplitude:

(7)

Then the expression for polarization includes a term
cubic in the field:

(8)

It follows from this expression that the cubic (Kerr)
nonlinearity coefficient is given by

(9)

This quantity is a linear function of time and its sign is
determined by the sign of detuning δ. Setting |δ| ≈ γ/2,
γ ≈ 108 s–1, ed ≈ 2.5 × 10–18 CGS unit, and |Φg|2 = Nc

(Nc = 1013 cm–3 is the atomic concentration [1]), we can
estimate ε2 as

(10)

Accordingly, the Kerr nonlinearity coefficient reaches
ε2 ≈ 104 CGS unit in a stabilization time of t = 10–3 s.
However, such a giant nonlinearity is observed under
the action of a very weak field. The time of condensate
variation must be longer than the time of its stabiliza-
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tion. It follows from estimate (10) that the radiation
intensity must satisfy the condition

(11)

The BEC nonlinearity determined here is essentially
unsteady. To pass from the pulsed to continuous excita-
tion, the excited atoms leaving the condensate must be
compensated by their injection in the ground state. A
consistent analysis of this problem requires the
employment of the density matrix, because the loss and
recovery of the condensate can be rigorously taken into
account only in this way. For a 1D condensate [8] in the
absence of spontaneous decay and atomic pumping, the
following equations hold:

(12)

(13)

In this case, polarization is P1 = (ed) Φeeiδt/s, where
s is the cross-sectional area of the condensate. We can
phenomenologically introduce dissipative terms into
the set of equations for the density matrix of such a sys-
tem:

(14)

Here, p is the pumping rate for atoms in the BEC and γ
and γT are the longitudinal and transverse relaxation
rates, respectively, which are approximately identical.
The terms containing second derivatives with respect to
z are omitted in Eqs. (14), because even the recoil
velocities of atoms absorbing photons, which are much
higher than the velocities of atoms in the condensate,
do not affect the kinetics of the interaction of the BEC
with light (see above). Under steady-state conditions,
we have ∂|Φg|2/∂t = ∂|Φe|2/∂t = ∂P1/∂t = 0. Setting
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Φe = µe–iδt in Eqs. (14), we arrive at the algebraic
expressions

(15)

The second term in the denominator of Eq. (15) is on
the order of 103–104 s–1 ! γ; consequently, we can omit
this term in the subsequent analysis. It follows from
Eq. (15) that

(16)

The imaginary part of the polarization determines the
exponential decay of the field amplitude with the decay
rate

(17)

Setting k = 1.2 × 105 cm–1, ed = 2.5 × 10–18 CGS units,
γT = 108 s–1, δ ≈ ±γT, and |Φg|2/s = Nc = 1012 cm–3, we
obtain α = 10 cm–1 (αL = 0.1 for a condensate of length
L ~ 100 µm). The correction to the real part of the per-
mittivity is given by

(18)

In this case, /  < 1, i.e., |E|2 < 1.6 × 10–3 CGS unit ~
0.4 W/cm2. Thus, the limiting nonlinear corrections to
the permittivity of the medium in the stationary and
nonstationary cases are close to each other.

An example of the application of giant optical non-
linearity of the BEC is the scheme of the Fabry–Perot
interferometer (two-mirror resonator) filled with a BEC
and excited by external monochromatic laser radiation
with amplitude Ain [9, 10]. In the plane-wave approxi-
mation, setting E = Aexp(ikz), where A is the field
amplitude in the resonator, we can write

(19)
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Here, τ is the amplitude transmittance of the input mir-
ror and r is the product of the amplitude reflectivities of
the two mirrors. The phase acquired by light passing in
two directions in the resonator is θ = θ0 + θ2I. The
detuning of θ0 can be varied over a wide range by
changing the resonator length L within a wavelength
and I = A2 is the intensity of light. Setting ρ =
rexp(−2αL) and assuming that θ2 ! 1, we obtain

(20)

Here, T = |τ|2 is the intensity transmittance of the input
mirror. Introducing J = θ2I and Jin = Tθ2Iin, we arrive at
the relation

(21)

This equation, which is cubic in J, determines the
dependence of J on Jin. The inflection points of the cor-
responding hysteresis loop are defined by the equation

(22)

This equation has real roots under the necessary

condition of bistability  > 3(1 – ρ)2/ρ. Let the reso-
nator contain a BEC of length L = 50 µm. Then, 2αL =
0.1 and |θ0| > 0.17. The roots of Eq. (22) are

(23)

The coefficient of the nonlinear phase increment for
double passage through the BEC is

(24)

Setting θ0 = 0.2, choosing a negative detuning for defi-
niteness, and assuming that the intensity transmittance
of the input mirror is T = 0.01 and ρ = 0.896, we obtain
from relation (23) the switching intensities I1, 2 = 1.5 ×
10–3, 1.1 × 10–3 CGS unit or 0.37, 0.27 W/cm2, respec-
tively. The corresponding intensities of the field inci-
dent on the interferometer are Iin1, 2 = 4.5, 2.6 W/cm2,
respectively. In this case, the curve describing the
dependence of J on Jin is S-shaped. As the external field
intensity increases to 4.5 W/cm2, a hysteretic jump in
intensity is observed both in the resonator and in trans-
mitted and reflected radiation. When the intensity
decreases, the jump to the lower branch takes place at
an intensity of 2.6 W/cm2.
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Thus, when low-intensity laser radiation propagates
in the BEC, the latter behaves as a nonlinear medium
with an anomalously large Kerr nonlinearity coefficient
whose sign is determined by the sign of radiation fre-
quency detuning from resonance. By optimizing the
detuning, it is possible to achieve a comparatively small
absorption. In contrast to a standard two-level system,
spontaneous emission leads to irreversible loss of
atoms from the condensate. For this reason, the BEC
nonlinearity is much stronger than for all known non-
linear media, especially in the case of a slow decay of
the condensate due to spontaneous emission from
excited atoms. In the case of the soliton state of the
BEC [8], optical nonlinearity is additionally enhanced
due to the effective decrease in scattering length a.
Under steady-state conditions, when spontaneous
decay is compensated by material pumping, the large
value of optical nonlinearity is associated with the low
rate of transverse relaxation of ultracold atoms. This
circumstance makes it possible to observe many non-
linear effects (including self-focusing) at rather low
levels of intensity of cw laser radiation. The possibility
of observing a low-threshold hysteresis when an inter-
ferometer containing a BEC is excited by a laser beam
has also been demonstrated. According to the above
results, transverse modulation instability, switching
waves, and dissipative solitons in a wide-aperture inter-
JETP LETTERS      Vol. 82      No. 1      2005
ferometer filled with a BEC will also have a low thresh-
old [10].

This study was supported by INTAS, grant no. 211-
855.
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Incoherent inelastic neutron scattering on hen egg white lysozyme has been measured at temperatures 200, 280,
and 311 K. Using the experimental results, the vibrational density G(ω) of states of hen egg white lysozyme

has been determined. Both the Debye regime and section of G(ω) with a spectral dimension of  = 1.58, which
corresponds to the fracton regime, have been observed in the low-frequency part of the density of states for all
temperatures. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Ex, 63.50.+x, 87.14.Ec, 87.15.He

d̃

At present, the vibrational spectra of macromole-
cules, primarily proteins, are intensively studied using
optical and neutron spectroscopy [1–6], as well as
numerical simulation methods [7–12]. The reason is
that to understand mechanisms of the functions of pro-
teins it is necessary also to understand not only the
structure but also the dynamics of a protein molecule. It
is important to analyze the low-frequency part of the
vibrational spectrum of the protein molecule that
reveals slow collective motions involving the entire
macromolecule and ensembles of macromolecules.

At the same time, there is no commonly accepted
point of view on contributions from various processes
to the low-frequency part of the vibrational spectrum of
proteins. Researches agree that relaxation processes,
which are manifested as a relaxation mode in the inelas-
tic scattering of light and neutrons, are substantial for
energies E < 2 meV [2, 3, 6]. Moreover, an acoustic-like
excitation that is characteristic of disordered systems
(glasses, overcooled liquids, etc.) called the boson peak
is observed in the light and neutron scattering spectra of
a number of proteins [2, 4–6]. The boson peak is cen-
tered at about 4 meV in the vibrational spectrum of
lysozyme at a temperature near 200 K. The boson peak
might originate from the topological disorder of the
system and is caused by scattering on delocalized low-
frequency vibrations [6].

One of the characteristic features of a protein mac-
romolecule is that it can be considered as a fractal
object. Such an approach was proposed in [13] and
developed in numerical simulation of the vibrational
spectrum of various proteins [8, 9, 11]. If the fractal
approach is applicable to the description of the proper-
ties of proteins, the vibrational spectrum necessarily
contains an excitation realized on fractals, i.e., fracton
(the properties of this excitation were reviewed in detail
in [14]). Ben-Avraham [8] numerically determined the
0021-3640/05/8201- $26.00 0030
fractal and fracton dimensions of G-actin and attributed
the features of the low-frequency dynamics of proteins
to the fractality of their structure. We emphasize that
experiments for revealing fractons in the vibrational
spectrum of proteins have not been yet carried out.

The aim of this work is to analyze the features of the
low-frequency dynamics of proteins (with lysozyme as
an example) and its change with temperature using
incoherent inelastic neutron scattering (IINS). 

We used a 3-ml powder sample of hen egg white
lysozime (Fluka), which was lyophilized before neu-
tron scattering experiments.

The IINS spectra were obtained on an inverse-
geometry KDSOG-M time-of-flight spectrometer,
which was placed in the tenth channel of the IBR-2
high-flux pulsed reactor (JINR, Dubna, Russia). Mea-
surements were carried out simultaneously for eight
scattering angles (30°, 50°, 70°, 80°, 90°, 100°, 120°,
and 140°) in the neutron energy-loss regime sequen-
tially at temperatures 280, 311, and 200 K. The resolu-
tion for zero energy transfer was equal to 0.6 meV.
After the subtraction of background from the sample
holder and cryostat, the experimental data were pro-
cessed in the single-phonon incoherent approximation.
In this case, the generalized vibrational density of states
was calculated by the formula

(1)

where k0 and k1 are the wavevectors of the incident and
scattered neutrons, respectively; Q = k0 – k1; "ω' is the
scattered-neutron energy; (d2σ/dΩdω')incoh is the dou-
ble differential cross section for incoherent scattering;
and n(ω) is the Bose–Einstein factor.

The resulting IINS spectra were analyzed in an
energy transfer range of 1.5–20 meV. According to esti-

G ω( ) ω
n ω( ) 1+
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k1
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 
incoh

,=
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mates made in [7], the multiphonon scattering contribu-
tion is insignificant in this energy range. To analyze the
low-frequency part of the density of states of lysozyme,
we use the power approach, which separates the contri-
butions from different processes. We take into account
that the vibrational spectrum of lysozyme can contain a
fracton whose dispersion law differs from that for
phonons. From the dynamical point of view, differ-
ences in the structural properties at different scales are
manifested in the existence of a certain crossover fre-
quency ωco. For frequencies ω ! ωco, the well-known
Debye law is satisfied,

(2)

which characterizes the density of acoustic states. For
frequencies ω @ ωco, the vibrational density of states of

fractons is characterized by the spectral dimension 
[14, 15]:

(3)

Thus, analysis of the exponent for the low-frequency
part of the vibrational density of states provides the sep-
aration of contributions from different processes.

Let us discuss the results obtained when investigat-
ing the vibrational spectrum of lysozyme by means of
IINS. Figure 1 shows the generalized vibrational den-
sity of states of hen egg white lysozyme for T = 280 K
in an energy range of 1.5–250.0 meV. The inset shows
a low-frequency range of 1.5–25 meV in the log–log
scale. The generalized density of states in a wide fre-
quency range will be discussed elsewhere, and we here
focus on the low-frequency part of G(ω). The log–log
scale allows the separation of sections with different
power dependences in the generalized vibrational den-
sity of states. The linear approximation of experimental
points was made by the least squares method. Two sec-
tions with different power dependences, which corre-
spond to two straight lines with different slopes in the
inset in Fig. 1, are separated in G(ω). The low bound of
the first section in G(ω) is attributed to the features of
the experiment, and the upper bound, to deviation from
linearity. Thus, the exponent is equal to 2.82 in the low-
frequency range 1.5–3.5 meV of the energy transfer. A
similar exponent was obtained in IINS investigations of
the low-frequency part of G(ω) for lead magnoniobate
relaxor ferroelectric [16]. This result is consistent with
the Debye model for the density of states of acoustic
modes of solid matter; i.e., G(ω) ∝  ω2 in this energy
range.

The next linear section (as is clearly seen in the inset
in Fig. 1) is in the transfer energy range from 7 to
14 meV. This section is characterized by an exponent of

 = 1.58. This spectral dimension corresponds to the
exponent of the function G(ω) in the fracton regime of
classical fractal systems [14]. Change in the boundaries
of the section under consideration by ±1 meV led to
change in the exponent from 1.44 to 1.65; i.e., error was

G ω( ) ωd 1– .∝

d̃

G ω( ) ωd̃ 1– .∝

d̃
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about 10% of the initial spectral dimension. The inclu-
sion of error in the determination of boundaries does
not change the fracton character of the exponent,

because various estimates for the fracton dimension 

lie in the range 1 <  < 2 [8, 9, 11]. The spectral dimen-

sions  of classical fractal objects also lie in this range
[15].

We emphasize that the published data on the low-
frequency Raman spectra of globular protein crystals
(e.g., for lysozyme [1]) exhibit two wide peaks with
maxima at frequencies ~4 and 10 meV (1 meV =
8.06 cm–1) [1]. These excitations are also observed in
low-frequency Raman spectra of aqua solutions of
lysozyme, β lactoglobulin, and other proteins [3]. The
mode centered at about 4 meV is associated in a num-
ber of works with the boson peak observed in experi-
ments on inelastic neutron scattering at low tempera-
tures [3, 6]. At the same time, the nature of the second
(10-meV) excitation has not yet discussed.

Comparing the results of our investigations of the
vibrational spectrum of lysozyme with reference data,
we found that the second (10-meV) mode in the Raman
spectra corresponds to the section of the generalized
density of states in the energy range from 7 to 14 meV

with a spectral dimension of  = 1.58 (Fig. 1). There-

d̃

d̃

d̃

d̃

Fig. 1. Generalized vibrational density of states of hen egg
white lysozyme for a temperature of 280 K. The inset is
drawn in the log–log scale.
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fore, the 10-meV mode is likely a fracton. Using the
expression L ~ vh/E, where v  ≈ 2.3 km/s is the speed of
sound [17], h is Planck’s constant, and E is the energy
at which the fracton is observed, we qualitatively esti-
mate the scale at which this excitation occurs. As a
result of this calculation, we obtain L ≈ 10 Å, whereas
the sizes of a lysozyme molecule are estimated as
28.0 × 28.0 × 39.9 Å [18]. Thus, the observed excitation
is indeed realized at a length scale on the order of the
sizes of the lysozyme macromolecule.

We point to the existence of crossover between two
sections corresponding to the contributions from
phonons and fractons in the vibrational density G(ω) of
states. The frequency that can be taken as ωco is deter-
mined from the intersection point of two straight lines
of the linear approximation for the above-discussed
sections of the density of states of lysozyme (at T =
280 K, ωco ≈ 4.5 meV). The problem of crossover is a

Fig. 2. Same as in Fig. 1 but for a temperature of 200 K.

Spectral dimensions of the phonon and fracton regimes for
various temperatures

T, K Phonon 
regime, meV D = d – 1 Fracton regime, 

meV

200 1.5–3.0 2.9 7.8–14.0 1.46

280 1.5–3.0 2.8 7.3–14.0 1.58

311 1.5–3.0 2.8 7.3–14.0 1.59

d

subject of special investigation and is not discussed in
this paper.

To study the change in the fracton and phonon
regimes with temperature, we analyze the low-fre-
quency part of the vibrational density G(ω) of states for
temperatures 280, 200, and 311 K (Figs. 1–3, respec-
tively). We note that both phonon and fracton regimes
are identified in all three cases. For temperatures 280
and 311 K, the corresponding spectral exponents d and

 are nearly unchanged (see table). For T = 200 K, cer-
tain changes are observed in G(ω) which correspond to
a very small increase in the exponent d and decrease in

the fracton dimension  (Fig. 2). These changes likely
occur because proteins undergo a transition to the
glassy phase when temperature decreases [19].

Comparing the form of the vibrational densities of
lysozyme states that were obtained in experiments for
various temperatures (Figs. 1–3), we point to an addi-
tional feature of the function G(ω). The function G(ω)
increases when temperature decreases, which is likely
attributed to the temperature dependence of the Debye–
Waller factor.

In this work, the vibrational density of states of hen
egg white lysozyme has been obtained experimentally
and analyzed. As a result, two power-dependence sec-
tions have been separated in the vibrational density of
states. The first of these sections corresponds to the
phonon regime and the second to the fracton regime.

d̃

d̃

Fig. 3. Same as in Fig. 1 but for a temperature of 311 K.
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The corresponding spectral dimensions have been
determined for these regimes. Temperature changes in
the vibrational density of states of lysozyme have also
been investigated. It has been revealed that there are a
small decrease in the fracton dimension at 200 K and an
increase in the vibrational density of states with
increasing temperature from 311 K through 280 K to
200 K.

We are grateful to S.N. Gvasaliya for stimulating
discussions. This work was supported by the Council of
the President of the Russian Federation for Support of
Young Russian Scientists and Leading Scientific
Schools (project no. NSh-2168.2003.2); the Russian
Foundation for Basic Research (project no. 05-02-
17822); and the Division of Physical Sciences, Russian
Academy of Sciences.
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Magnetic susceptibility, heat capacity, and neutron diffraction measurements have been carried out in order to
study the unusual magnetic ordering of TbNi5 using a single crystal over the temperature region of 2–30 K. Two
spontaneous magnetic transitions have been observed: one is a second-order transition from a paramagnetic
state to an incommensurate structure (Tp = 24 K), and the other, a first-order transition from the incommensurate

structure to a lock-in phase (  = 10 K). We also found an irreversible magnetic field–induced transition from
the modulated structure to the ferromagnetic collinear one. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.25.+z, 75.30.Kz, 61.12.–q

Tf
c

1. INTRODUCTION

The exchange interaction and crystal field splitting
of rare-earth intermetallic RNi5 compounds have been
the subject of great interest, largely because of their
simple crystal and magnetic structures. Their magnetic
properties are determined mainly by rare-earth ions [1].
The rare-earth elements occupy 1a positions of the
CaCu5-type lattice (space group P6/mmm), and their
magnetic moment values are found to be close to that of
free rare-earth ions. The Ni atoms occupy 2b and 3d
positions with ordered magnetic moments less than
0.2 µB. Most of these RNi5 intermetallics have been
studied in detail by various experimental methods. In
particular, TbNi5 has been extensively studied using
several experimental techniques: magnetic measure-
ments [2], heat-capacity measurements [3], elastic and
inelastic neutron scattering [4–6], positive µSR spec-
troscopy [7], and spin–echo NMR [8] studies. The
results of these investigations appeared to be in good
agreement with the ferromagnetic model of the mag-
netic structure, and there seemed to be no reason what-
soever to suspect otherwise until quite recently.

However, recent electrical resistance [9], ac suscep-
tibility, and magnetization [10, 11] data indicated that
the magnetic state of TbNi5 might be more subtle than
the proposed simple ferromagnetic structure. Accord-
ing to [9], the resistance, when measured along the a
axis (the magnetic easy direction), exhibits characteris-

¶ This article was submitted by the authors in English.
0021-3640/05/8201- $26.00 ©0034
tic behavior for a ferromagnet with Curie temperature
TC = 23 K, while that measured along the c axis (the
magnetic hard direction) shows an anomalous peak
below TC: these peaks were observed at 17.4 and 21.2 K
for cooling and heating curves, respectively. The
authors of [10, 11] also observed anomalies in the tem-
perature and field dependence of their ac susceptibility.
For example, the temperature dependence of the ac sus-
ceptibility shows two peaks, namely, at Tf  = 16.5 K and
Tp = 23.5 K. The authors of [11] then proposed that the
TbNi5 compound is a helimagnetic antiferromagnet
between Tf  and Tp under an external magnetic field
smaller than Hc = 0.45 kOe and becomes ferromagnetic
for T < Tp with increasing field above Hc.

In order to understand the true nature of the mag-
netic transitions of TbNi5, we have recently performed
a high-resolution powder neutron diffraction study of
TbNi5 and found new magnetic satellites, which were
not seen previously and which we interpreted as evi-
dence of a modulated magnetic structure [12]. We have
described our new results in terms of a fanlike structure
with two wave vectors (k1 = 0 and k2 ≈ (2π/c)(0, 0,
0.019)). In this model, the magnetic moments of Tb
ions have mutually orthogonal ferromagnetic (µf) and
modulated (µmod) basal-plane components. The mag-
netic satellites of our neutron diffraction pattern were
observed over the whole temperature region of 2–23 K,
in contrast with the original explanation of [11]. More-
over, we did not observe a clear anomaly in the temper-
ature dependence of the intensities of both ferromag-
 2005 Pleiades Publishing, Inc.
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netic peaks and satellites at 16.5 K, where a ferromag-
net–helimagnet transition is expected to occur
according to [10, 11]. It should also be mentioned that,
in our previous studies [12], we did not investigate the
effects of an external magnetic field on the magnetic
structure of TbNi5, although the field dependence of the
magnetic structure may be important in better under-
standing the experimental observations of [10, 11].

Although our previous high-resolution powder dif-
fraction studies elucidated some interesting aspects of
the magnetic transition, in order to have full under-
standing of it, we need additional detailed and careful
studies of the magnetic structure of TbNi5 using a sin-
gle-crystal sample and, especially, of its field depen-
dence. Therefore, we have performed neutron diffrac-
tion experiments on a TbNi5 single crystal at tempera-
tures of 2–30 K under magnetic fields. The
measurements were carried out while both heating and
cooling. In addition, we made ac susceptibility, magne-
tization, and heat-capacity measurements in order to
compare the bulk properties of our single crystal with
the results published earlier [9–11].

2. EXPERIMENTAL DETAILS

Our TbNi5 alloy was prepared from high-purity
starting materials in an induction furnace using an
Al2O3 crucible under argon atmosphere. Subsequent
heat treatment of the alloy was made at 1100°C for 8 h.
The single crystal was then cut out from a grain of an
ingot and, subsequently, ground to a sphere approxi-
mately 2 mm in diameter. The remaining part of the
ingot was used for heat-capacity measurements and
powder X-ray diffraction studies to confirm the single-
phase structure of the CaCu5 type. The lattice parame-
ters were determined to be a = 4.8986(4) and c =
3.9606(4) Å at room temperature.

Rocking curves (ω scans) around the (100), (001),
(101), and (002) reflections were measured with the
double-axis E-4 diffractometer at the BENSC, Hahn-
Meitner Institute. The incident neutron wavelength was
2.44 Å. The (002) reflection with a large nuclear inten-
sity was used for an intermittent check of the orienta-
tion of the sample while varying the temperature and/or
the magnetic field. A horizontal magnetic field was
applied along the a or c axes. The data analysis was
done using the FULLPROF package [13].

The magnetization and ac susceptibility of the sin-
gle crystal were taken by using a SQUID magnetometer
at the Institute of Metal Physics of the Russian Acad-
emy of Sciences. The ac susceptibility was measured in
an alternating field of 10 Oe at a frequency of 90 Hz.
The specific heat was studied by a PMC device at the
Paul Scherrer Institute.
JETP LETTERS      Vol. 82      No. 1      2005
3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 shows the thermal variation of the real and
imaginary parts of the ac susceptibility measured with
a field parallel to the a axis of the TbNi5 single crystal.
The temperature dependence of the heat capacity is also
presented in Fig. 1c for both cooling and heating
curves. All of the data exhibit a distinct maximum at
T ≈ 23 K, which evidences an order–disorder transition.
On the other hand, we note that the imaginary suscepti-
bility has another anomaly at T ≈ 8 K.

Figure 2 shows the neutron diffraction data scanned
around the (001) reflection while cooling from room
temperature to 2 K. The (001) reflection is a pure
nuclear peak at temperatures above 25 K. The magnetic
contributions to the (001) reflection and the (001)±

magnetic satellites begin to appear at Tp = 24 K, and

Fig. 1. Temperature dependence of (a) real and (b) imagi-
nary parts of ac susceptibility and (c) heat capacity, mea-
sured while heating (closed symbols) and cooling (open
symbols).
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Fig. 2. Neutron diffraction spectra around the (001) reflec-
tion scanning along the [00L] direction taken at (d) 1.7,
(n) 10.0, (j) 20.1, and (,) 25.1 K while cooling.

Fig. 3. Temperature dependence of the integrated intensities
of (a) (001) and (c) (101) reflections and (b) (001)± and
(d) (101)± satellites. Open and closed symbols are for data
taken while cooling and heating, respectively. Squares and
triangles are for minus and plus satellites, respectively.

Fig. 4. Temperature dependence of the wave vector k2.
their intensities increase upon cooling down to  ≈
10 K. A further cooling to 7 K produces a sharp
increase of the (001) reflection intensity and simulta-
neous decrease of both satellites. This behavior is
clearly seen from the temperature dependence of the
integrated intensities of the (001) reflection and the
(001)± satellites shown in Fig. 3. Similar curves were
also obtained for the (100) and (101) reflections, as well
as for their (100)± and (101)± satellites.

Upon heating, there is a relatively slow decrease in
the intensities of the (100), (001), (101) reflections and
(100)±, (001)±, (101)± satellites over the region of 2.2–
14 K before they all decrease sharply at temperatures of
16–23 K (see Fig. 3). However, the main reflections and
satellites exhibit different behavior over the tempera-
ture region of 14–16 K: the main reflections decrease
continuously with temperature, while the satellites
increase slightly, as marked by the circles in Figs. 3b
and 3d. A comparison of the heating and cooling curves
of the intensities clearly shows the existence of large
thermal hysteresis.

A similar hysteresis is also observed in the temper-
ature dependence of the wave vector k2. We determined
k2 from the distance between the positions of (101)±

satellites, and the results are presented in Fig. 4. As one
can see in the figure, the k2 vector has different values
for the heating and cooling curves at T > 10 K. Below
10 K, the wave vector becomes almost the same for
both curves within the resolutions of our experiments
with k2 ≈ (2π/c)0.0181, indicating that a lock-in transi-
tion occurs at T . 10 K.

Thus, the TbNi5 compound undergoes two magnetic
transitions. One is the order–disorder type transition at
Tp = (24 ± 1) K for both cooling and heating. When the
temperature decreases, a low-temperature transition is

observed at  ≈ 10 K as a sharp change in the intensi-
ties of the main reflections and satellites. One of the
features of this low-temperature transition is the large
thermal hysteresis, evidence of the first-order transi-
tion. Taking into account the temperature dependence
of the k2 vector below 10 K, we speculate that a lock-in
structure occurs at T < 10 K; its wave vector is esti-
mated to be k2 ≈ (2π/c)0.0181 ≈ 1/55 rlu (reciprocal lat-
tice units) below 10 K.

We believe that the most probable source of the tran-

sition at  is the magnetic anisotropy of Tb ions.
When the temperature decreases, the magnetic anisot-
ropy increases and tends to orient the magnetic
moments of Tb ions along the easy direction (the
a axis). This causes an increase in the a axis ferromag-
netic component (µf , parallel to the a axis) and, simul-
taneously, a decrease in the modulated one (µmod, per-
pendicular to the a axis) over the temperature interval
of 7–10 K. The changes of µf and µmod below 10 K are
calculated from the (101) reflection intensity, and we
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have obtained ∆µf = 1.9µB and ∆µmod = –1.3µB, respec-
tively. The value of the total magnetic moment of a Tb
ion remains almost the same, as expected in this tem-
perature range.

Another feature of the low-temperature transition is
the absence of a clear anomaly in the thermal variation

of the heat capacity at  (see Fig. 1). Similar behavior
was previously found in the cooling measurements of
some RGa2 compounds [14]. An absence of such a peak
in the heat capacity data implies that there is a very
small difference between the free energies of the two

magnetic phases above and below . In such a case,
one can expect that a small magnetic field can trans-
form the modulated phase into the ferromagnetic one.

In fact, this is exactly what we found in our field
measurements. Figure 5 shows the scans measured
around the (101) reflection under magnetic fields. Mag-
netic fields were applied along the a axis at 2 K. It is
clearly seen in Fig. 5 that the magnetic field suppresses
the satellites significantly and induces a collinear ferro-
magnetic state at µ0Hc ≈ 3.5 kOe. Interestingly enough,
with increasing magnetic field, not the position but the
intensity of the satellite peaks changes. It should be
mentioned as well that the induced ferromagnetic state
remains stable even when the external field is switched
off (see Fig. 6). As one can see from the insert of Fig. 6,
the Tb-ion magnetic moment reaches the value of µf =
7.3 ± 0.1µB at the field-induced ferromagnetic state.
This value is in good agreement with the results of the
magnetic measurements. However, the critical field
value Hc determined by us is larger by a factor of 8 than
that found in [11]. It is not clear to us at the moment
what causes such a big difference in the two estimates
of Hc values.

The aforementioned increase of the (101) reflection
intensity by an external field is an expected and natural
result, because a magnetic field was applied along the
easy magnetization direction. What is surprising, how-
ever, is that the intensity increases even when a mag-
netic field is applied along the hard magnetization
direction (i.e., the c axis). This is clearly seen from the
bottom part of Fig. 6, where the field dependence of the
(101) reflection and (101)± are presented for field
applied to the c axis at 10 K. In a simple case, the (101)
intensity should decrease with increasing field along
the c axis, because the field tends to rotate a magnetic
moment to the c axis and, therefore, decreases a
moment projected onto the scattering plane. In our
case, the (101) intensity increases when a field
increases to the maximal value of 10 kOe. Furthermore,
the field-induced magnetic state remains stable even
after the fields were switched off. Thus, an external
field for any direction transforms the modulated mag-
netic structure to the collinear ferromagnetic one,
which is very unusual.
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Fig. 5. Neutron spectra around the (101) reflection scanning
along the [00L] direction at 2 K by varying magnetic fields.

Fig. 6. Field dependence of the integrated intensities of the
(101) reflection (circles) and (101)± satellites (up and down
triangles) at (top) 2 K and (bottom) 10 K. The field was
applied along the a axis at 2 K and along the c axis at 10 K.
The insert shows the field dependence of the ferromagnetic
component of the Tb-ion magnetic moment obtained at 2 K.
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Taking into account our data, we can now under-
stand the as yet unexplained results of µSR measure-
ments [7]. It was found that the temperature depen-
dence of a damping rate exhibits a jump near 15 K
when a crystal was heated. Our results presented here
indicate that the decrease in the ferromagnetic compo-
nent may cause the observed jump in the µSR damping
rate.

4. CONCLUSIONS

On the basis of our results, we can conclude that two
spontaneous transitions occur in the TbNi5 compound.
One (Tp = 24 K) is the second-order transition from the
paramagnetic state to the incommensurate structure.

Another one (  = 10 K) is the first-order transition
from the incommensurate structure to the lock-in struc-
ture. The external magnetic field of µ0Hc ≈ 3.5 kOe is
enough to irreversibly transform the modulated struc-
ture into the collinear ferromagnetic one. All of these
results indicate that the modulated structure is weakly
stable against a magnetic field.
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System of Dipoles¶ 

A. S. Arkhipov1, G. E. Astrakharchik1, 2, A. V. Belikov1, and Yu. E. Lozovik1

1 Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142190 Russia
2 Dipartimento di Fisica, Universitá di Trento, and BEC–INFM, I-38050 Povo, Italy

e-mail: lozovik@isan.troitsk.ru
Received May 30, 2005

A one-dimensional (1D) Bose system with dipole–dipole repulsion is studied at zero temperature by means of
a quantum Monte Carlo method. It is shown that, in the limit of small linear density, the bosonic system of
dipole moments acquires many properties of a system of noninteracting fermions. At larger linear densities, a
variational Monte Carlo calculation suggests a crossover from a liquidlike to a solidlike state. The system is
superfluid on the liquidlike side of the crossover and is normal deep on the solidlike side. Energy and structural
functions are presented for a wide range of densities. Possible realizations of the model are 1D Bose atomic
systems, with permanent dipoles or dipoles induced by static field or resonance radiation; or indirect excitons
in coupled quantum wires; etc. We propose parameters of a possible experiment and discuss manifestations of
the zero-temperature quantum crossover. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.20.Ja, 64.30.+t, 67.40.Hf, 68.65.La
Up until now, Bose–Einstein condensation has been
realized in many different atom and molecule species
with short-range interactions. At low temperatures,
such an interaction can be described by an s-wave scat-
tering length and is commonly approximated by a con-
tact pseudopotential. In contrast, some recent work has
focused on the realization of dipole condensates [1–5].
In these systems, the dipole–dipole interaction extends
to much larger distances, and significant differences in
the properties (such as the phase diagram and correla-
tion functions) are expected. Another appealing aspect
of a system of dipole moments is the relative ease of
tuning the effective strength of interactions [6], which
makes the system highly controllable. Dipole particles
are also considered to be a promising candidate for the
implementation of quantum-computing schemes [7–9].

On the theoretical side, dipole condensates have
been mainly studied on a semiclassical (Gross–Pitae-
vskii) [10] or Bogoliubov [11] level. A model Bose–
Hubbard Hamiltonian has been used to describe a
dipole gas in optical lattices, and a rich phase diagram
was found [5, 12]. So far, there have been no full quan-
tum microscopic computations of the properties of a
homogeneous system.

Recently, the Monte Carlo method was used to study
helium and molecular hydrogen in nanotubes [13].
Such a geometry, which is effectively one-dimensional,
leads to completely different properties compared to a
three-dimensional sample.

¶ This article was submitted by the authors in English.
0021-3640/05/8201- $26.00 0039
We consider N repulsive dipole moments of mass M
located on a line. The Hamiltonian of such a system is
given by

(1)

We keep in mind two different possible realizations.
(i) Cold bosonic atoms, with induced or static dipole

momenta, in a transverse trap so tight that excitations of
the levels of the transverse confinement are not possible
and the system is dynamically one-dimensional (1D).
The dipoles themselves can be either induced or perma-
nent. In the case of dipoles induced by an electric field
E, the coupling has the form Cdd = E2α2, where α is the
static polarizability. For permanent magnetic dipoles
aligned by an external magnetic field, one has Cdd = m2,
where m is the magnetic dipole moment. The interac-
tion between the atoms, apart from the dipole forces,
contains a short-range scattering part that is conve-
niently described by the s-wave scattering length a.
Usually, this contribution is large compared to the
dipole force, but recent progress in applying Feshbach
resonance techniques to tune a, and even to make it
zero, opens exciting prospects of obtaining a system
with purely dipole–dipole interactions. The strength of
the effective coupling Cdd can be tuned by changing the
electric field in the case of induced dipoles, and the spe-
cial technique of fast rotation of the electric or magnetic
field can be applied to permanent dipoles [6].

(ii) Spatially indirect excitons in two coupled quan-
tum wires. A quantum wire is a semiconductor nano-
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structure where an electron or a hole is allowed to move
only in one direction and excitations of the transverse
quantization levels are negligible. In two parallel quan-
tum wires, one containing only holes and the other only
electrons, holes and electrons couple, forming indirect
excitons. If such a system is dilute enough, it consti-
tutes a 1D set of dipoles. In this case, Cdd = e2D2/ε,
where e is an electron charge, ε is the dielectric constant
of the semiconductor, and D is the distance between the
centers of the quantum wires. This system is the 1D
counterpart of the 2D indirect exciton system in cou-
pled quantum wells, which was extensively studied
both theoretically [5, 14–17] and experimentally [18].
The properties of 1D and 2D systems differ essentially
(see below about the Tonks–Girardeau regime, etc.);
thus, an experimental study of the 1D system is of great
importance.

Hamiltonian (1) can be written in dimensionless
form by expressing all distances  = z/r0 in units of r0 =

MCdd/2π"2 and energies in units of %0 = "2/M . All
properties of such a system are defined by the dimen-
sionless parameter nr0, with n = N/L being the linear
density and L the size of the system.

Our aim is to determine the ground-state energy in a
wide range of densities and to check the evidence of a
possible quantum crossover. In order to define the
structural properties, we calculate the pair distribution
function (PDF). In terms of the many-body ground-
state wavefunction of the system Ψ0, the PDF is written
as

(2)

z̃

r0
2

g2 z1 z2–( )

=  
N N 1–( )

n2
----------------------

Ψ0 z1 … zN, ,( ) 2 z3… zNdd∫
Ψ0 z1 … zN, ,( ) 2 z1… zNdd∫

-----------------------------------------------------------------.

Fig. 1. Difference between energy calculated using liquid-
like and solidlike wavefunctions (Esolid – Eliquid)/E as a
function of the dimensionless density.
The static structure factor is directly related to the
pair distribution function:

(3)

The technique of Bragg scattering provides access
to the static structure factor in experiments on bosonic
atoms. For the system of indirect excitons, measure-
ments of the spatial structure of photoluminescence can
give information about possible crystallization, etc.

We apply the diffusion Monte Carlo (DMC)
method, which is one of the most efficient theoretical
tools for investigating the zero-temperature properties
of quantum systems [19]. We choose the many-body
guiding trial wavefunction ΨT in the Bijl–Jastrow form
consisting of one- and two-body terms:

(4)

To describe the liquidlike side of the crossover, it is
sufficient to have only the term describing pair correla-
tions. We choose it in the form f2(|z|) =
exp{−[A/(n|z|)]B}, where A and B are variational param-
eters that we optimize by minimizing variational
energy via carrying out a variational Monte Carlo
(VMC) calculation. As will be discussed below, in the
low-density limit, the wavefunction asymptotically
approaches the Tonks–Girardeau gas wavefunction

(|z|) = |sin(πz/L)| [20, 21]. We checked that, in this
regime, there is no large difference between using

(|z|) and f2(|z|) even on a variational level. Thus, our
choice of a two-body term is well suited to describing a
liquid even in the strong mean-field regime (see [21]).

We account for the spatial quasicrystalline order by
considering Gaussians with width C for each particle
near a corresponding lattice site f1(zi) = exp{–[n(zi –

)]2/2C2}. The sites  are equally spaced by a dis-
tance n–1, and the variational parameter C is defined by
VMC optimization. For the simulation at high density,
we keep the same type of two-body term f2 as on the liq-
uidlike side of the crossover, although the values of the
optimal parameters may differ.

In Fig. 1, we show a comparison of the VMC energy
of the liquidlike and solidlike wavefunctions in the
nr0 = 0.01–0.1 density range. In this region, the optimal
parameters are A = 1.6, B = 0.4, and C = 1.16. We dis-

cover that, for densities smaller than nc ≈ 0.085 , the
liquidlike wave function description is energetically
favorable, although, at larger densities, the ground state
of the system is better described by a solidlike ansatz.
Contrary to 3D and 2D liquid–solid phase transitions,
the energetic difference in a 1D system is very small.
This suggests that the transition in a 1D system at zero
temperature is of a crossover type.
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At a very small density, one expects the following:
(i) in the process of two-body collisions, particles
always get reflected back due to the repulsive interac-
tion, which is very intense at short distances; (ii) parti-
cles stay far apart most of the time, so that the potential
energy of the interaction is small compared to the
kinetic energy. From the above, it follows that the sys-
tem is equivalent to a gas of impenetrable bosons
(Tonks–Girardeau gas). It was shown in [20] that the
wavefunction of such a Bose system can be mapped
onto the wavefunction of a system of noninteracting
spinless fermions. The bosonic system acquires many
fermionlike properties (fermionization): the energy is
the Fermi energy ETG/N = %0π2(nr0)2/6, and the pair dis-
tribution function exhibits Friedel-like oscillations

(z) = 1 – sin2(πnz)/(πnz)2.

We present the dependence of the energy per parti-
cle on the density in Fig. 2. At small density nr0 ! 1,
the energy is the same as that of the Tonks–Girardeau
gas ETG, which signals fermionization of the system in
this regime. At large density, the particles are localized
at lattice sites, with the potential energy Estr.int/N =
%0ζ(3)(nr0)3 being dominant. In this regime, the density
dependence of the energy is very strong. Indeed, it is
cubic, in contrast to the linear dependence on the mean
field for the pseudopotential interaction and the qua-
dratic dependence for an exactly solvable model with a
1/z2 interaction [22]. This strong dependence comes
from the diverging short-range behavior of the dipole–
dipole interaction. Although, in 3D, the dipole–dipole
interaction is long-range, this is no longer true in the 1D
case (see, for example, [23]), and no special techniques
like Ewald summation are required.

We studied the dependence of the energy on the size
of the system. The energy has two contributions: one
coming from summation over pairs separated by a dis-
tance smaller than L/2 (this contribution is a direct out-
put of the Monte Carlo calculation) and a tail energy,
which is estimated by approximating the density at L/2
by the asymptotic bulk value. We find that the energy
per particle as a function of the system size quickly sat-
urates to its thermodynamic value and the results
obtained for N = 50, 100, 200 particles agree within the
statistical accuracy present in our calculation. We also
find that the “tail energy” contribution is smaller than
0.2% of the total energy. All reported results are
obtained using N = 100 particles.

The pair distribution function (Eq. (2)) is presented
in Fig. 3 for a range of densities covering all the regions
of interest. In a dilute system, we find that amplitude of
the oscillation decays rapidly, which is characteristic
for a liquid. In particular, at the density nr0 = 10–3, it is
almost impossible to distinguish the pair distribution
function from that of spinless fermions, which is in
agreement with the arguments given above. By increas-
ing the density, the oscillation becomes more pro-
nounced. Around the critical density ncr0 ≈ 0.08, we

g2
TG
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enter the solidlike side of the crossover. Further, at
larger densities nr0 = 1, 10, we see manifestations of the
localization of particles near lattice sites.

By performing Fourier transformation (3), we
obtain the static structure factor from the pair distribu-
tion function. Knowledge of S(k) is of high importance,
as it can be accessed experimentally by using Bragg
spectrometry. At small densities, the low-momentum
region has a linear form that is related to the speed of
sound c by the Feynman relation S(k) = "|k|/2Mc. In
particular, in the Tonks–Girardeau limit, the static
structure factor takes an extremely simple form: the lin-
ear growth matches the asymptotic constant at the wave
vector |k| = 2πn. Increasing the density leads to the for-

Fig. 2. Energy per particle as a function of the dimension-
less density (solid line), energy ETG of the Tonks–Girardeau
limit (dashed line), potential energy in the strongly interact-
ing limit (dash–dotted line). Everything is measured in units

of "2/m .r0
2

Fig. 3. Pair distribution function (2) obtained from a DMC
calculation for densities nr0 = 10–3, 0.1, 1, 10 (larger densi-
ties have higher peaks).
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mation of a peak structure. The presence of the peak in
the S(k) is a consequence of the dipole–dipole interac-
tion, as the peak is absent in a system with only s-wave
scattering [24]. In the regime of large density, we see
several peaks at integer multiples of 2πn.

In order to test the superfluidity of the system, we
use the winding-number technique [25]. The superfluid
fraction is given by the ratio of the imaginary time dif-
fusion constants of the center of mass and of a free par-
ticle [26]. In contrast to the calculation of the energy,
here the symmetry of the trial wavefunction is crucial.
We restore symmetry in the trial wavefunction in the
solidlike region by performing a summation over all

sites f1(zi) = {–[n(zi – )]2/2C2}. We see negli-
gible differences in the energy (similar to that found in
4He simulations [27]), which justifies our previous
choice of ΨT. We find that the system is superfluid on
the liquidlike side of the crossover and is normal deep
on the solidlike side.

We argue that the critical densities of the quantum
crossover can be readily reached in experiments with
interacting indirect excitons in two quantum wires. Let
us take the GaAs parameters (ε = 12.5, electronic mass
me = 0.07m0, hole mass mh = 0.15m0, with m0 being the
free electron mass) for reference. Then, the mass of an
exciton is 0.22m0. Using quantum wires with a separa-
tion between their axes, D, equal to 5 nm, we obtain
r0 ≈ 10–6 cm and %0 ≈ 3 meV. Then, the dimensionless
density nr0 = 0.08–0.09 corresponds to an achievable
linear excitonic density n ≈ 105 cm–1. The liquidlike and
solidlike regions and the crossover between them
should be realized by changing the density of excitons
in the quantum wires.

Interactions between chromium atoms can be effi-
ciently tuned as proposed in [6]. Chromium has the
advantage of having a large permanent magnetic

exp
j∑ z j

c

Fig. 4. Static structure factor obtained from a DMC calcu-
lation for densities nr0 = 10–3, 0.1, 1. A higher first peak cor-
responds to a higher density. 
moment compared to the other alkali atoms. Research
into achieving Bose condensation in chromium is now
a hot topic [1–4]. In permanent dipole chromium
atoms, the ratio between the strength Cdd of the dipole–
dipole interaction and the s-wave coupling constant is
0.27 for 52Cr. Manipulation of induced electric dipoles
is more difficult; although, in such a system, a ratio of
the order of 102 can be reached, leading to the realiza-
tion of an almost pure dipole system.

In conclusion, we have investigated the ground-state
properties of a system of dipole moments by means of
a quantum Monte Carlo method. We have found the
presence of a quantum crossover: at small linear densi-
ties nr0, the system stays liquidlike and superfluid,
although, in a more compressed system, the solidlike
description is energetically favorable. We have calcu-
lated the experimentally accessible pair distribution
function and the static structure factor for a wide range
of densities. In the dilute limit, this bosonic system
becomes similar to a system of spinless fermions (fer-
mionization), and the properties of the system are those
of a Tonks–Girardeau gas. On the liquidlike side of the
crossover, the system is superfluid, although it is nor-
mal deep on the solid side.

Finally, we have pointed out that the critical density
of the quantum crossover can be achieved in current
experiments with interacting excitons in wires and have
proposed the parameters of a possible experimental
setup.
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Atomically resolved scanning tunneling microscopy images observed by us correspond to the ζ model of
GaAs(001)-c(8 × 2) atomic structure. At low coverage (θ < 0.1), iodine atoms occupy sites above vacation rows
between arsenic atoms located in the upper layer. © 2005 Pleiades Publishing, Inc.

PACS numbers: 07.79.Cz, 68.35.Bs, 68.47.Fg, 71.55.Eq
Atomic scale study of polar (001) and (111) GaAs
faces is difficult because there are no ultrahigh vacuum
(UHV) methods to prepare the surface with the desired
enrichment and reconstruction. This is usually done in
molecular beam epitaxy (MBE) facilities, where the
molecular fluxes of gallium and arsenic can be con-
trolled to form GaAs surfaces of required atomic struc-
ture. Standard ion bombardment followed by annealing
does not solve the problem because for a binary com-
pound, the surface is always enriched with only one
component—gallium for GaAs(001). UHV studies [1,
2] of the effect of molecular halogens on GaAs(001)
showed that iodine could be used to create an arsenic-
rich surface because at low temperatures (240–300°C)
[2] iodine helps to selectively remove the upper layer of
gallium atoms (without affecting arsenic atoms) from
the initial GaAs(001)-c(8 × 2). In this case, the surface
is not etched because the adsorption of iodine stops as
a monolayer is saturated [1, 2].

Deep insight into the initial GaAs(001)-c(8 × 2) sur-
face is critical for a successful and detailed study of
iodine interaction with GaAs(001), notably the deter-
mination of the adsorption sites and the atomic struc-
ture of the adsorbate layer. Experimental data for the
surface—first of all, scanning tunneling microscopy
(STM) images—do not correspond to models usually
applied to arsenic-rich GaAs(001) with the similar
atomic structure c(2 × 8). The recent study [3] proposed
and theoretically substantiated a ζ model for
GaAs(001)-c(8 × 2) (Fig. 1) and presented calculated
STM images for filled and empty states on the surface
with certain features observed in earlier experiments
[4–6]. High-quality STM images of empty states
obtained later in [7] matched well those calculated
in [3].

The main goal of this work was to determine adsorp-
tion sites for iodine atoms on GaAs(001)-c(8 × 2) at low
coverage. In the only two STM studies of the initial
0021-3640/05/8201- $26.00 0044
stages of halogen (chlorine) adsorption on this surface
[8, 9] that we are aware of, the β2 model [10] was used,
within which iodine atoms were shown to adsorb on
gallium dimers. Later calculations of adsorption energy
for chlorine within the ζ model [11] confirmed that
most energy-favorable adsorption sites for chlorine are
gallium dimers (D), with gallium atoms in the sp2 state
(p) being slightly less favorable. As will be shown
below, the experimental data presented in this work dis-
prove the conclusions made in [8, 9, 11].

Experiments were performed in a multichamber
ultrahigh vacuum setup equipped with a cylindrical

Fig. 1. Scheme of the ζ model describing the atomic struc-
ture of GaAs(001)-c(8 × 2) [3]. Two (4 × 2) cells are shown.
The c(8 × 2) structure can be obtained by translating a

(4 × 2) cell in the 〈 〉  direction with a simultaneous shift
by aGaAs (4.0 Å) along the 〈110〉  direction. Large filled
(unfilled) circles designate Ga (As) atoms of the upper
layer, respectively; small filled (unfilled) circles designate
Ga (As) atoms of the lower layers, respectively.

110
© 2005 Pleiades Publishing, Inc.
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mirror analyzer for Auger electron spectroscopy (Riber
OPC 100), a quadrupole mass spectrometer (Riber
QMM-17), three-grid optics for low energy electron
diffraction (LEED) (VG RVL/17), a scanning tunneling
microscope (Sigma Scan GPI-300), and a gas inlet sys-
tem with computer-driven piezoceramic leak valves.
The base pressure in the system did not exceed 1 ×
10−10 Torr. The 5 × 5 × 0.5 mm samples were cut out of
an n-type epiready GaAs(001) wafer (Si, 7 × 1017 cm–3;
the disorientation angle was less than 0.5°). Pro-
grammed heating was performed to remove oxides
after the sample was placed in vacuum. After the
removal of gallium oxide (Ga2O) as a sharp peak in the
thermal desorption spectrum at T ≈ 590°C, a small
amount of carbon remained on the surface and was
detected in the Auger spectrum. Complete surface
cleaning was achieved by Ar+ ion etching (400 eV); the
crystal structure was rebuilt by annealing at T ≈ 550°C.
This allowed us to obtain high-quality c(8 × 2) LEED
patterns and STM images with 1000–2000 Å atomic
terraces (Fig. 2). Molecular iodine was inlet into the
analytical chamber containing Auger and mass spec-
trometers through a capillary at 22 mm from the sample
surface. The pressure of molecular iodine in the beam
near the surface was about 10–8 Torr.

The gas was introduced, and the elemental compo-
sition and the surface structure were analyzed, at room
temperature. Ga M2, 3M4, 5M4, 5 (55 eV), As M4, 5VV
(31 eV), and I M4, 5VV (510 eV) lines were analyzed in
the Auger spectra. All the presented STM images were
obtained at constant tunnel current. Temperature drift
distortions of the STM images were restored as

(01)

(00)
(10)

n ¥ 6

n ¥ 6

〈1
10

〉

〈110〉
–

Fig. 2. Panoramic STM image of clean GaAs(001)-c(8 × 2)
(1200 × 1200 Å, sample voltage Us = +3 V, the tunnel cur-
rent It = 0.8 nA). Arrows show the boundaries of the c(8 ×
2) domains. An arsenic-rich (n × 6) structure is observed at
the edges of atomic steps and at domain boundaries. The
inset shows a low-energy electron diffraction pattern
recorded at Ep = 65 eV.
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described in [12] and by comparing the Fourier trans-
forms of atomically resolved STM frames with LEED
patterns. The initial calibration of the scanner was also
performed using the procedure mentioned above [12].
STM tips obtained by overetching in an electrochemi-
cal cell were cleaned and sharpened in an Ar+ ion beam
(Riber CI-10, 600 eV, 5 µA, 60 min) directly in the vac-
uum system [13]. After each series of measurements,
the surface was restored by means of ion etching
(400 eV) followed by annealing (550°C).

Figure 3a shows an STM image of GaAs(001)-c(8 × 2)
for the filled electron states localized on arsenic atoms
[3] at small iodine coverage. The coverage θ measured
by the intensity of the Auger I M4, 5VV peak (the satura-
tion of the peak intensity corresponds to a (1 × 1) iodine
atomic lattice) did not exceed 5% of the monolayer
(θ < 0.05). The Fourier transform (FT) of the STM
image is shown in the inset. Remarkably, the FT image
matches well the LEED pattern in Fig. 2. In Fig. 3, the
atomic structure of the substrate—the arrangement of
arsenic atoms on the surface—is shown as an alternat-
ing pattern in which different intensities of pairs of twin
stripes correspond to two different arrangements of
arsenic atoms in the upper layer in the ζ model with
respect to their positions in the bulk GaAs lattice (see
Fig. 1). The FT image distinctly shows double atomic
periodicity in the 〈110〉  direction, demonstrating the

FT

A

(a)

(b)
(4 × 2)a (4 × 2)b (4 × 2)b

0.6Å 0.6Å

Fig. 3. (a) Atomically resolved STM image (180 × 140 Å),
Us = –2.7 V, It = 0.08 nA, filled electron states) of
GaAs(001)-c(8 × 2) covered by iodine atoms (θ ≈ 0.05). The
inset shows a Fourier transform (FT) of the STM image that
matches well the diffraction pattern in Fig. 2; (b) fragment
of the STM image superposed on the atomic structure of the
upper layer in the ζ model. The “|” signs indicate the bound-
aries of the (4 × 2)a and (4 × 2)b structures. Dashed lines are
drawn through atomic arsenic rows.
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asymmetry in the positions of arsenic atoms around a
row of gallium dimers in the upper atomic layer in the
ζ model (see Fig. 1). The spots in the LEED and FT
images, corresponding to the (8 × 2) periodicity, are
much weaker than the (4 × 1) spots. This leads us to
believe that a structure with period 4aGaAs (aGaAs = 4.0 Å)

in the 〈 〉  direction [14] is the basic one. Detailed
analysis of the structure is possible if a fragment of this
image is superposed on the scheme of the ζ model, as
shown in Fig. 3b. First, one can see in the STM image
that the rows with double atomic periodicity along the
row correspond to the rows of arsenic atoms with a row
of gallium dimers inside. This unambiguously identi-
fies more intensive twin atomic rows with single atomic
periodicity (4.0 Å) along the 〈110〉  direction as the rows
of arsenic atoms with a vacation row in between (see
Fig. 1). Second, (4 × 2) cells are indeed the main ele-
ment of the structure; they can statistically form surface
areas with the c(8 × 2) structure. In Fig. 3b, to distin-
guish between two types of domains, we introduced
(4 × 2)a and (4 × 2)b cells, one shifted relative to the

110

Us = –2.3 V Us = 2.7 V

Us = –3.5 V Us = 3.0 V

U = 1.5 VU = –0.4 Vax

U = –1.5 V U = 1.8 V

G

G

(a) (b)

(c) (d)

Fig. 4. (a, b) Experimental and (c, d) calculated [3] STM
images of the (a, c) filled and (b, d) empty states of
GaAs(001)-c(8 × 2). (a) Iodinated surface (θ ≈ 0.05);
(b) Us = +2.7 V, clean surface; Us = +3.0 V, θ ≈ 0.07. The
sample voltages indicated in (c) and (d) are referenced to the
valence band top.
other by one atomic distance along the 〈110〉  direction.
When the cells of both types are arranged periodically

along the 〈 〉  direction, the structure formed is usu-
ally identified as c(8 × 2). Third, it is clear that the
atomic rows of arsenic with a row of gallium dimers

inside are shifted along the 〈 〉  direction from the
positions specified in the ζ model. The measured dis-
placements were 0.60 ± 0.25 Å. This asymmetry is
apparently due to the asymmetric position of rows of
gallium dimers between rows of gallium atoms (p-posi-
tion) presented in Fig. 4b and in images obtained by
other authors [4–7]. The asymmetry might be related to
the interaction of gallium dimers in the upper atomic
layer with the underlying atoms, which is not taken into
account in the ζ model.

Let us determine the adsorption sites of iodine
atoms on GaAs(001)-c(8 × 2). As is seen in Fig. 3,
bright atomic-size features are observed in more inten-
sive arsenic rows with a vacation row inside. We iden-
tified these features as iodine atoms, because their num-
ber correlates with the intensity of an iodine Auger
peak, which proves that iodine atoms are adsorbed
above vacation rows and occupy positions between
arsenic atoms. As a rule, iodine atoms seem “smeared”
along the atomic rows of the substrate, which is appar-
ently due to the motion of iodine atoms along channels
formed by arsenic atoms. This motion corresponds to
STM tip motion (horizontal scan from left to right,
frame scan from bottom to top). It is seen that atoms
can occupy quantized states in the process of motion
(for example, the iodine atoms marked “A” in Fig. 3a).
Taking into account that the dangling bonds of arsenic
atoms are filled [3, 11], the high electron density above
these atoms could lead to a situation typical for a metal
surface on which the most favorable adsorption sites
are fully symmetric positions between substrate atoms.

To see the surface (atomic) structure of GaAs(001)-
c(8 × 2) in more detail, we found STM imaging condi-
tions for (Us) in which all the features calculated
according to the ζ model [3] could be observed. We
present the results in Figs. 4a and 4b, and the STM
images calculated in [3] in Figs. 4c and 4d, to demon-
strate that all calculated features were observed in the
experiment. For reference, we took the positions of
iodine atoms above the vacation rows, because within
±3.5 V the intensity of iodine atoms in the STM frame
weakly depends on the tunnel voltage. Comparing the
experimental and calculated patterns for the filled
states, we see that the intensity “switching” of the
images of the arsenic rows corresponding to different
positions of arsenic atoms in the lattice occurs at differ-
ent tunnel voltages. The switching is observed at Us ≈
−(2.6–2.8) V for the experimental frames and between
–0.4 and –1.5 V for the calculated STM images. Simi-
larly, for the empty states, the corresponding transition
between the observed patterns occurs at Us ≈ +2.8 V
and between +1.5 and +1.8 V in the calculations.

110

110
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According to the tunnel spectroscopy data obtained in
our experiments, the quasi-Fermi level (which automat-
ically sets the reference point for the tunnel voltage)
lies near the middle of the GaAs bandgap (1.42 eV),
whereas the calculated images [3] had the top of the
valence band as a reference point Us. However, even if
the thus established 0.7-V difference between the
experimental and calculated Us reference points is
taken into account, the switching tunnel voltages for the
same experimental and calculated images are still dif-
ferent. Although it might be caused by insufficient
accuracy of calculation, since to take into account the
effect of the local electron density in the STM tip is
hardly possible, what counts here is the correspondence
between experimental and calculated images.

It is seen in Fig. 4 that in STM images of filled
states, iodine atoms are located in light stripes at Us ≈
−2.3 V and in dark stripes at Us ≈ –3.5 V. In addition to
iodine atoms, we detected point objects designated as
“G” (ghosts) in the same stripes and found that these
objects changed their intensity in antiphase with the
intensity of the stripes. Such objects were repeatedly
observed in other works [4, 5, 15]. Their ordering under
certain conditions could lead to misinterpretation of the
structure—for example, as gallium clusters composed
of six–eight atoms in [4, 5]. The authors of [15] tried to
interpret the “ghosts” from the viewpoint of localized
surface charge, but we find their case questionable. In
the images of empty states (Fig. 4b), three rows of
atomic objects are seen in each light stripe in both
experimental frames (2.7 and 3.0 V), in which the inner
row corresponds to the rows of gallium dimmers; the
two outer rows, to the rows of gallium atoms in the sp2

state [3]. Dark stripes in the images correspond to vaca-
tion rows surrounded by arsenic rows. Similar images
were observed previously in [5, 7]. In the frame with
Us = 3.0 V, it is seen that iodine atoms (bright spots) fill
dark trenches.

Let us also discuss the interpretation of experiments
for the adsorption of chlorine on GaAs(001)-c(8 × 2)
[8, 9] and the calculation results [11] confirming this
interpretation. In [8, 9], STM images (filled states, Us =
–3.5 V) of the chlorinated surface were obtained (θCl ≈
0.025) in which chlorine atoms were located in dark
stripes (the substrate surface was not atomically
resolved). The authors of [8, 9] argued, invoking only
the β2 model [10], that chlorine was adsorbed on gal-
lium atoms, which was later theoretically substantiated
in [11] within the ζ model. In Fig. 4, the dark stripes in
the calculated STM images at such high tunnel voltages
should correspond to arsenic rows with vacation rows
inside, and the STM images that we obtained at Us =
−3.5 V (see Fig. 4a) also show that the rows of arsenic
atoms forming arsenic rows with vacation rows inside
are dark, which leads us to believe that the chlorine
atoms observed in [8, 9] occupied vacation rows. The
question is, why did the authors of the ζ model fail to
notice the inconsistency [11]?
JETP LETTERS      Vol. 82      No. 1      2005
Whereas in [8, 9, 11] the suggestion that chlorine is
adsorbed exactly on gallium atoms was not in doubt,
photoelectron spectroscopy data of [16] demonstrated
that, on the contrary, As–Cl bonds were formed at lower
chlorine exposure (D < 1.2 L) than Ga–Cl bonds (D =
6 L). The sample used in [16] was gallium-rich
GaAs(001)-(4 × 6) (n-type, Si, 1.2 × 1018 cm–3),
obtained by ion etching (500 eV) and annealing
(580°C). We see the GaAs(001)-(4 × 6) studied in [16]
as nothing but a c(8 × 2) surface reconstruction on
which the ghosts (“G” objects in Fig. 4a) built a (4 × 6)
superstructure [4, 5]. To confirm the conclusions made
in [16], we performed special STM measurements for
low coverage of GaAs(001)-c(8 × 2) by chlorine (θ <
0.1, Fig. 5). At low coverage, chlorine, like iodine,
occupies positions above vacation rows between
arsenic atoms.

Our preliminary studies for higher surface coverage
by iodine showed that the c(8 × 2) structure was
destroyed at θ > 0.3 and the LEED (1 × 1) pattern was
diffuse. As an iodine monolayer was saturated, a sur-
face (1 × 1)-I lattice was formed. This lattice was
observed in STM as a number of small domains (50–
100 Å) with distances between iodine atoms of about
4.0 Å. Chemical shifts of the Ga M2, 3M4, 5M4, 5 Auger
line corresponded to the indicated structural changes on
the surface. These observations do not contradict the
conclusions made in [16] based on the behavior of pho-
toelectron spectra in the process of chlorine adsorption.

(b)

Fig. 5. (a) Auger electron spectrum and (b) STM image of
the empty states of chlorinated (θCl ≈ 0.08) GaAs(001)-
c(8 × 2), 110 × 50 Å, Us = +3.5 V, and It = 0.07 nA.

4,5 2,1 4,5 4,5

2,1
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Our conclusions are as follows:
1. Atomically resolved STM images of GaAs(001)-

c(8 × 2) basically correspond to the ζ model of the
c(8 × 2) atomic structure [3]. The asymmetry in the
arrangement of the arsenic atomic rows with gallium
dimers inside requires some revision of the ζ model.

2. While all the STM features calculated in [3] for
the filled and empty states are observed in the STM
images, the tunnel voltages at which the switching of
the STM images occurs differ from the calculated ones
[3].

3. At low coverage (θ < 0.1) of GaAs(001)-c(8 × 2),
iodine and chlorine atoms are adsorbed above vacation
rows and occupy positions between arsenic atoms.

This work was supported by the Low-Dimensional
Quantum Structures Program of the Presidium of the
Russian Academy of Sciences, the Spin-Dependent
Effects in Solids and Spintronics Program of the Sec-
tion of Physical Sciences of the Russian Academy of
Sciences, and partly by the Agency for Science and
Innovations of the Russian Federation (contract
02.434.11.2016).
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Low-voltage nonstationary electron emission from single-walled carbon nanotubes after the passage of high
autoemission current has been observed. This emission is assumed to be exoelectron emission associated with
mechanical stresses and defects appearing in nanotubes due to electrostatic forces acting on nanotubes in a
strong electric field. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.63.Fg, 79.70.+q, 79.75.+g
Field electron emitters based on carbon nanotubes
have attracted the attention of numerous researchers
due to the possibility of using them widely in vacuum
electronic devices [1]. In the first approximation, the
emission characteristics of such emitters are well
described by the Fowler–Nordheim theory developed
for metals. Deviations from this theory that are some-
times observed in the emission characteristics are
attributed to adsorption states that exist at nanotube
ends and increase the emission current [2].

According to the Fowler–Nordheim theory, the field
electron emission current density j is related to the local
electric field E near the emitter surface as

(1)

Here, j is measured in amperes per centimeter squared,
E is measured in volts per centimeter, and ϕ is the emit-
ter work function measured in electronvolts. According
to Eq. (1), field electron emission is characterized by
very strong dependence of the emission current on the
electric field and, therefore, on the applied voltage.

Studying field electron emission from layers with
single-walled carbon nanotubes, we observed the
appearance of additional emission current under certain
conditions, which was conserved at low voltage. As is
known, the only type of emission that occurs at room
temperature, low voltage, and in the absence of any
additional excitations (photons, electrons, etc.) is exo-
electron emission [3]. This type of emission was dis-
covered in the 1940s by Kramer (see [3]) and is attrib-

j E2 6.8 107ϕ3/2×–
E

---------------------------------- 
  .exp∼
0021-3640/05/8201- $26.00 ©0049
uted to the existence of mechanical stresses and defects
in solids, as well as to chemical reactions proceeding on
the surfaces of solids. We believe that in our experiments
we observe exoelectron emission from single-walled
carbon nanotubes that is associated with mechanical
stresses and defects arising in nanotubes due to electro-
static forces acting in a strong electric field.

Single-walled carbon nanotubes were synthesized
by the arc method using Ni:Y2O3 catalyst in helium
atmosphere [4]. The presence of single-walled carbon
nanotubes in the synthesized material was corroborated
by Raman scattering [5]. Nanotube layers were depos-
ited by liquid electrophoresis from an alcohol suspen-
sion of nanotubes and La(NO3)3 charger. Figure 1
shows the structure of the surface of deposited films.

1 µm

Fig. 1. Electron microscopic image of a carbon layer of sin-
gle-walled nanotubes that is deposited by the liquid electro-
phoresis.
 2005 Pleiades Publishing, Inc.



 

50

        

MUSATOV 

 

et al

 

.

                                                                               
Fig. 2. (a) Current–voltage characteristics of electron emis-
sion from carbon layers with single-walled nanotubes for
(1) an increase in the voltage and (2) a decrease in the volt-
age after a 30-min exposition in a current of I ~ 10–6 A.
(b) The same characteristics in the Fowler–Nordheim coor-
dinates.

Fig. 3. Time dependence of the emission current from car-
bon layers with single-walled nanotubes at V = 100 V after
30-min exposition in a current of I ~ 10–6 A.
Investigations of field electron emission were car-
ried out in an ultrahigh vacuum setup at a vacuum of
p ~ 10−9 Torr. A spherical stainless steel anode 2 mm in
diameter was situated at a distance of 200–400 µm
from the sample surface. The sample was mounted on a
universal handler. In these investigations of emission,
the anode–sample distance was determined by the limb
scale of the handler with respect to the handler limb at
which electric contact between the anode and sample
arises, i.e., when the anode touches the sample surface.
Measurements of the current–voltage characteristics of
field electron emission were conducted using a Kei-
thley 248 high voltage source and a Keithley 6485
picoammeter. Emission characteristics were recorded
and processed on a personal computer.

The experiment was carried out as follows. The
emission current–voltage characteristics were first
measured in a range of 10–10–10–6 A as voltage between
anode and sample was increased. Such a characteristic
for one of the samples with single-walled carbon nano-
tubes is shown in Fig. 2a (points 1). Figure 2b shows
this characteristic in Fowler–Nordheim coordinates
( /V2 vs. 1/V). According to the Fowler–Nordheim
theory, the current–voltage characteristics of field elec-
tron emission are straight lines in these coordinates. As
is seen in Fig. 2b, the current–voltage characteristic
measured when the voltage is increased (line 1) in the
current range I < 4 × 10–7 A is a straight line in the
Fowler–Nordheim coordinates; i.e., field electron emis-
sion is observed. Small deviation of the characteristic
from the straight line for high currents is likely attrib-
uted to a small change (blunting) in the shape of the end
of the nanotube.

The sample was then exposed to an emission current
of I ~ 10–6 A for 30 min. In this case, a smooth increase
in the current in time from 10–6 to 2 × 10–6 A was
observed. Then, the current–voltage characteristic of
the emission current was measured as the voltage was
decreased. The voltage was decreased from 1060 to
560 V, but current decreased only from 2 × 10–6 to 3 ×
10–7 A (points 2 in Fig. 2), whereas the initial current at
V = 560 V was equal to 10–10 A. Moreover, even when
the voltage was decreased to 100 V, the emission cur-
rent first remained at a level of 10–7 A. Thus, we
observed low-voltage electron emission from single-
walled carbon nanotubes at fields that are almost an
order of magnitude smaller than the field corresponding
to the appearance of field electron emission of the same
magnitude. We think that the observed emission is exo-
electron emission and it is associated with mechanical
stresses arising in single-walled carbon nanotubes due
to electrostatic forces when the emission current is
flowing. This emission is nonstationary and decreases
rapidly in time. As is seen in Fig. 3, the emission cur-
rent at V = 100 V decreases from 10–7 to 6 × 10–10 A in
5 min. A decrease in time is also characteristic of exo-
electron emission.

Ilog
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In the strong electric field corresponding to the
appearance of field electron emission, electrostatic
forces act on nanotubes and extend the nanotubes to the
anode [6–8]. These forces for high emission currents
often lead to the break of a section of a nanotube, deg-
radation, and a sharp decrease in the emission current
[8]. To estimate the electrostatic forces applied to indi-
vidual nanotubes, we use the expression

(2)

where F is the force measured in newtons, ε0 is the per-
mittivity of free space measured in farads per meter, E
is the electric field measured in volts per meter, and S is
the area measured in meters squared. To estimate F, we
calculated the force applied only to the end of the nan-
otube, because the electric field E is maximal near the
end of the nanotube. In these calculations, we used the
parameters ε0 = 8.85 × 1012 F/m, E = 3 × 109 V/m, and
S ≈ 10–18 m2 (the single-walled carbon nanotube diam-
eter is equal to d ≈ 1 nm) and obtained F ≈ 3 × 10–11 N.
Therefore, the mechanical stress acting in the single-
walled carbon nanotube is equal to F/S = 3 × 107 N/m2.
We believe that this mechanical stress can lead to for-
mation of defects on the lateral surfaces of nanotubes,
and these defects give rise to the appearance of exoelec-
trons. An additional factor responsible for the appear-
ance of defects on surfaces of single-walled carbon
nanotubes is the emission-current heating of nanotubes.

The degradation of field electron emission from car-
bon nanotubes is primarily determined by the break of
emitting nanotubes under the action of electrostatic

F 1/2( )ε0E2S,=
JETP LETTERS      Vol. 82      No. 1      2005
forces extending nanotubes to the anode [8]. Mechani-
cal stresses likely arise in nanotubes long before the
break. These stresses can lead to the appearance of exo-
electron emission. We think that investigations of exo-
electron emission will provide additional information
on the process of nanotube degradation.

We are grateful to A.V. Garshev for scanning elec-
tron microscopy investigations. This work was sup-
ported in part by the Russian Foundation for Basic
Research (project no. 04-02-17618).
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Straightforward evaluation of the correlation functions in 2D minimal gravity requires integration over the mod-
uli space. For degenerate fields, the Liouville higher equations of motion allow one to turn the integrand to a
derivative and, thus, to reduce it to the boundary terms plus a so-called curvature contribution. The last is
directly related to the expectation value of the corresponding ground ring element. We use the operator product
expansion technique to reproduce the ground ring construction explicitly in terms of the (generalized) minimal
matter and Liouville degenerate fields. The action of the ground ring on the generic primary fields is evaluated
explicitly. This permits us to directly construct the ground ring algebra. Detailed analysis of the ground ring
mechanism is helpful in the understanding of the boundary terms and their evaluation. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 11.25.Hf
1. INTRODUCTION

1. Liouville gravity (LG) is the term for the two-
dimensional quantum gravity whose action is induced
by a “critical” matter, i.e., the matter described by a
conformal field theory (CFT) }c with central charge c.
This induced action is universal and is called the Liou-
ville action, because its variation with respect to the
metric is proportional to the Liouville (or constant cur-
vature) equation [1]. Let us denote {Φi, ∆i} be the set of
primary fields and their dimensions in }c.

2. Liouville field theory (LFT) is constructed as the
quantized version of the classical theory based on the
Liouville action. LFT is again a conformal field theory
with central charge cL. It is convenient to parametrize it
in terms of variable b or Q = b–1 + b as

cL = 1 + 6Q2. (1)

Parameter b enters the local Lagrangian

, (2)

where φ is the dynamical variable for the quantized
metric ds2 = exp(2bφ) dxadxb is interpreted as the
metric in isothermal coordinate system1 and µ is a scale
parameter called the cosmological constant. Basic pri-

¶ This article was submitted by the authors in English.
1  is the “reference metric,” a technical tool needed to give LFT

a covariant form.

+L
1

4π
------ ∂aφ( )2 µe2bφ+=

ĝab

ĝab
0021-3640/05/8201- $26.00 0007
mary fields are the exponential operators Va = exp(2aφ),
parametrized by a continuous (in general, complex)
parameter a in a way such that the corresponding con-

formal dimension is  = a(Q – a). Liouville field the-
ory is exactly solvable [2]. In particular, the three-point

function  =  is
known explicitly for arbitrary exponential fields (see,
e.g., [3]). In LG, the parameter b is chosen in such a
way that, together with }c, LFT forms a joint confor-
mal field theory with central charge c + cL = 26. Tech-
nically, it is also convenient to include the

3. Reparametrization ghost field theory. This is
the standard fermionic BC system of spin (2, –1)

(3)

with central charge –26, which corresponds to the
gauge-fixing Faddeev–Popov determinant. The matter +
the Liouville stress tensor T generates a Virasoro alge-
bra with central charge 26. Together with the ghost field
theory, this allows a BRST complex to be formed with
respect to the nilpotent BRST charge

(4)

4. Correlation functions are some of the most
important problems in the LG. In gravitational correla-
tion functions, the matter operators Φi are “dressed” by

∆a
L( )

Ca1 a2 a3, ,
L( ) Va1

x1( )Va2
x2( )Va3

x3( )〈 〉 L

Agh
1
π
--- C∂B C∂B+( )d2x∫=

4 CT C∂CB+( ) dz
2πi
--------.∫°=
© 2005 Pleiades Publishing, Inc.
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appropriate exponential Liouville fields  to form

either the (1, 1) form Ui = Φi  of ghost number 0 or

the dimension (0, 0) operator Wi =  of ghost num-
ber 1. In both cases, this requires

(5)

Invariant (or integrated) correlation functions are inde-
pendent of any coordinates and are better called the cor-
relation numbers. In the field-theoretic framework, a
(genus 0) correlation number 〈U1…Un〉G at n ≥ 3 is con-
structed as the integral

(6)

The integration here is over the moduli space Mn of the
sphere with n punctures. Technically, it is equivalent to
choose any three of Wi at arbitrary fixed positions x1, x2,
and x3 and integrate the (1, 1) forms Ui(xi)d2xi inserted
instead of Wi at i = 4, …, n. At n < 3, the definition is
slightly different. This is because of nontrivial confor-
mal symmetries of the sphere with two and zero punc-
tures.

The simplest case of (6) is the three-point function,
where the moduli space is trivial and the result is factor-
ized in a product of the matter, Liouville, and ghost
three-point functions:

(7)

The three-point functions 〈Φ1(x1)Φ2(x2)Φ3(x3)〉CFT, or
the structure constants of the OPE algebra, are known
explicitly in solvable matter CFTs. Thus, Eq. (7) gives
the LG three-point function in the explicit form. The
two-point function and the zero-point function (the par-
tition sum) are simply read off from this expression of
the three-point function.

5. The four-point function is the next step in the
order of complexity:

(8)

This expression is much less explicit. First, it involves
the integration over x4. Then, even if the matter four-
point function is known in any convenient form, gen-
eral representations for the Liouville four-point func-
tion are more complicated; e.g., the “conformal block”
decomposition [3] involves the so-called general con-
formal block [4], which is by itself a complicated func-
tion of its arguments, to say nothing about the integra-
tion over the “intermediate momentum” P in [3]. In the
present paper, we take a preliminary step towards the

Vai

Vai

CCUi

∆i ai Q ai–( )+ 1.=

U1…Un〈 〉 G W1 x1( )…W xn( )〈 〉
Mn

∫=

=  W1 x1( )W2 x2( )W3 x3( )U4 x4( )d2x4…U xn( )d2xn〈 〉 .∫

U1U2U3〈 〉 G x12x12x23x23x31x31=

× Φ1 x1( )Φ2 x2( )Φ3 x3( )〈 〉 CFT V1 x1( )V2 x2( )V3 x3( )〈 〉 L.

U1U2U3U4〈 〉 G x12x12x23x23x31x31=

× Φ1 x1( )…Φ4 x4( )〈 〉 CFT V1 x1( )…V4 x4( )〈 〉 Ld2x4.∫
evaluation of the four-point integral in the special case
of

6. Minimal gravity (MG). If the conformal matter
}c is represented by a minimal CFT model (more pre-
cisely, a “generalized minimal model” (GMM); see
below) , we talk about the “minimal gravity” (MG)

(respectively, generalized minimal gravity (GMG)). In
GMG, the evaluation of the four-point integral is dra-
matically simplified in the case when one of the matter
operators Φi on the right-hand side of (6) is a degener-
ate field Φm, n. This is due to the so-called “higher equa-
tions of motion” (HEM), which hold for the operator

fields in LFT [5]. If U4 = Um, n = Φm, n  (  is an
appropriate dressing for Φm, n), HEM allows one to
rewrite the integrand as a derivative and, thus, to reduce
the problem to boundary terms plus the so-called curva-
ture term. The last is directly expressed in terms of the
expectation value 〈Om, nW1W2W3〉  of the

7. Ground ring (GR) element Om, n related to the
field Φm, n. Therefore, we want to learn to handle the
ground ring algebra and the correlation functions of its
elements. This knowledge will also prove instructive in
the subsequent calculations of the boundary terms.

2. GENERALIZED MINIMAL MODELS

Strictly speaking, minimal models of CFT }p/p' [4]
are consistently defined as field-theoretic constructions
only if the “parameter” p/p' is an irreducible rational
number, so that p and p' are coprime integers. In this
case, the finite set of (p – 1)(p' – 1)/2 degenerate pri-
mary fields Φm, n with 1 ≤ m < p and 1 ≤ n < p' (modulo
the identification Φm, n = Φp – m, p' – n) form, together with
their irreducible representations, the whole space of
}p/p'. “Canonical” minimal models }p/p' are believed
to be a completely consistent CFT, i.e., to satisfy all
standard requirements of quantum field theory, except
for unitarity. They are also considered to be exactly
solvable, since the structure of their operator product
expansion (OPE) algebra is known explicitly [6].

There are many ways to relax some of the require-
ments leading to the set of }p/p' as unique CFT struc-
tures. For example, in the literature, the “parameter”
p/p' is often taken as an arbitrary number (e.g., [6]). The
algebra of the degenerate primary fields does not close
any more within any finite subset; rather, the whole set
{Φm, n} with (m, n) any natural numbers forms a closed
algebra. Moreover, other authors include local fields
with dimensions different from the Kac values or even
a continuous spectrum of dimensions. Although the
consistency of such constructions from the field-theo-
retic point of view remains to be clarified, these exten-
sions prove to be a convenient technical tool. Moreover,
statistical mechanics offers a number of examples
where either a generalization of }p/p' for noninteger

}
b

2

Ṽm n, Ṽm n,
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p/p' is essentially necessary or nondegenerate primary
operators appear as observables (or both).

In this paper, we denote by b2 the parameter p/p' and
admit the notion of GMM in the widest sense as a con-
formal field theory with a central charge

(9)

which may involve fields Φα of any dimension. A con-
tinuous parameter α is introduced to parametrize a con-
tinuous family of primary fields with dimensions ∆α =
α(α – q), where q = b–1 – b. Also, we always use the
“canonical” CFT normalization of the primary fields
Φα through the two-point functions 〈ΦαΦα〉GMM =

.

Degenerate fields Φm, n have dimensions  =

−q2/4 + , where a convenient notation

(10)

is introduced. They correspond to either α = αm, n or α =
q – αm, n with αm, n = q/2 + λ–m, n. The main restriction,
which singles out this apparently loose construction, is
that the

1. Degenerate fields Φ1, 2 and Φ2, 1 (and, therefore,
in general, the whole set {Φm, n}) are in the spectrum.

2. The null vectors in the degenerate representa-
tions Φm, n vanish

(11)

Here,  ( ) are the operators made of the right

Virasoro generators Mn
2 (respectively, left ), which

create the level mn singular vector in the Virasoro mod-
ule of Φm, n. For definiteness, we normalize these oper-

ators through the  term as  =  + …. The
first examples read explicitly

(12)

It turns out that this set of definitions imposes
important restrictions on the structure of this formal
construction. The three-point function CM(α1, α2, α3) =

 of “generic” primary fields can be
restored uniquely from the above requirements [7]. At
the degenerate values of the parameters αi =  (and
if the standard “fusion” relations are satisfied), the
known degenerate structure constants [6] are recovered.

2 The unusual notations Mn for the Virasoro generators of the mat-
ter conformal symmetry are chosen to save Ln for the generators
of the Liouville Virasoro.

c 1 6 b 1– b–( )2
–=

xx( )
2∆α–

∆m n,
M( )

λm n–,
2

λm n, mb 1– /2 nb/2+=

Dm n,
M( )Φm n, Dm n,

M( )Φm n, 0.= =

Dm n,
M( ) Dm n,

M( )

Mn

M 1–
mn Dm n,

M( ) M 1–
mn

D1 2,
M( ) M 1–

2 b2M 2––=

D1 3,
M( ) M 1–

3 2b2 M 2– M 1– M 1– M 2–+( )– 4b4M 3– .+=

Φα1
Φα2

Φα3
〈 〉 GMM

αmi ni,
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The explicit form of the OPE of Φ1, 2 and a generic
primary field Φα

([Φα] stands for a primary field Φα and all of its confor-
mal descendants) will be of use below. In our normal-
ization,

(13)

Other exact results in GMM form a somewhat mis-
cellaneous collection. What is important for our pro-
gram is the construction of the four-point function

 with one
degenerate field Φm, n and three generic primaries Φα
[4]. Null-vector decoupling conditions (11) entail, in
general, a system of partial differential equations. In the
four-point case, it reads as an ordinary linear differen-
tial equation of order mn, whose independent solutions
are the conformal blocks ^r, s(x) appearing in this cor-
relation function. The four-point function is then com-
bined as

(14)

where λr, s are as in Eq. (10) and the sign  stands
for the sum over the following set of integers (we use
the notation {n1 : d : n1 + nd} = {n1, n1 + d, …, n1 +
nd}):

(15)

Presently, when considering the GMG, we restrict our-
selves only to the four-point function with one degener-
ate matter field Φm, n, leaving the other three to be for-
mal generics Φα. In particular, expression (14) is the
relevant construction for the matter part of the inte-
grand in Eq. (8).

When dealing with GMM, it is important to keep in
mind that there are objects of different natures. Some
are continuous in the parameter b2, like the central
charge, degenerate dimensions, or certain correlation
functions. Others may be highly discontinuous and
dependent on the arithmetic nature of the numbers p
and p'. The simplest example is the number of irreduc-
ible Virasoro representations entering into the theory.
This warns us to be careful when trying to reproduce

Φ1 2, x( )Φα 0( ) C+
M( ) α( ) xx( )ab Φα b/2+[ ]=

+ C–
M( ) α( ) xx( )1 αb– b

2– Φα b/2–[ ]

C+
M( ) α( ) γ b2( )γ 2αb 2b2 1–+( )

γ 2b2 1–( )γ b2 2αb+( )
-------------------------------------------------------

1/2

,=

C–
M( ) α( ) γ b2( )γ 2αb b2 1–+( )

γ 2b2 1–( )γ 2αb( )
----------------------------------------------------

1/2

.=

Φm n, x( )Φα1
x1( )Φα2

x2( )Φα3
x3( )〈 〉 GMM

G m n,( ) α1 α2 α3, , ,
GMM( ) x( ) CM αm n, α1 α1 λ r s–,+, ,( )

r s,

m n,( )

∑=

× CM α1 λ r s–,+ α2 α3, ,( )^r s, x( )^r s, x( ),

r s,
m n,( )∑

r s,( )
=  m– 1 : 2 : m 1–+{ } n– 1 : 2 : n 1–+{ },( ).
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the results of }p/p' as a naive limit of  as b2  p/p'

and α  αm, n in the formal primary fields. This is
why we stress that the three matter fields Φα in the mat-
ter function have generic nondegenerate values of the
parameters α1, α2, and α3.

3. HIGHER EQUATIONS OF MOTION

Let am, n = Q/2 – λm, n with (m, n) as a pair of positive
integers, so that Vm, n =  are the Liouville exponen-
tials corresponding to degenerate representations of the

Liouville Virasoro algebra. Let also  be the corre-
sponding “singular vector creating” operators made of
the Liouville Virasoro generators Ln, similar to the

operators  introduced above. In fact,  is

obtained from  through the substitution Mn  Ln

and b2  –b2. Like in GMM, in LFT, the correspond-
ing singular states vanish:

(16)

Let  be normalized similarly to (12) as  =

 + ….

Define also the “logarithmic degenerate” fields

(17)

for every pair (m, n) of natural numbers. These fields
are not primary. Under conformal transformations
x  y, they transform as

(18)

where (yx) stands for ∂y/∂x. Nevertheless, as is shown in

[5],  is a primary field, and, moreover,
the following identity holds for the LFT operators:

(19)

where  =  is the Liouville exponential of

dimension  + mn. The numerical constant Bm, n

reads

(20)

where  stands for the product over (k, l) =
({−m + 1 : 1 : m – 1} ⊗  {–n + 1 : 1 : n – 1})\(0, 0). It is
important to observe that, in GMG, the exponential

 is naturally combined with the corresponding

}
b

2

Vam n,

Dm n,
L( )

Dm n,
M( ) Dm n,

L( )

Dm n,
M( )

Dm n,
L( ) Vm n, Dm n,

L( )
Vm n, 0.= =

Dm n,
L( ) Dm n,

L( )

L 1–
mn

Vm n,' 1
2
--- ∂

∂a
------Va a am n,==

yx
2∆m n, Vm n,' y( )

=  Vm n,' x( ) ∆m n,' Vm n, x( ) yx ,log–

Dm n,
L( ) Dm n,

L( )
Vm n,'

Dm n,
L( ) Dm n,

L( )
Vm n,' Bm n, Ṽm n, ,=

Ṽm n, Va a am n–,=

∆m n,
L( )

Bm n,
πµγ b2( )( )n

b1 2n 2m–+

γ 1 m– nb2+( )
------------------------------------------------- 2λ k l, ,

k l,

m n,{ }

∏=

k l,
m n,{ }∏

Ṽm n,
minimal matter field Φm, n to form the dressed (1, 1)
form

(21)

This fact makes HEM crucial for the integrability of (8)
in MG.

4. GENERALIZED MINIMAL GRAVITY

Here, we quote some known results in GMG. It is
repeatedly observed in the literature that, in GMG, the
matter GMM parameter b coincides with that of the
corresponding LFT. This is why we keep the same nota-
tion throughout this paper. For the dressed matter fields
Ua = ΦαVa, Eq. (5) allows two solutions. For definite-
ness, let us take

Ua = Φa – bVa. (22)

The GMG problem is to evaluate gravitational correla-
tion functions (6) with the matter part given by the
GMM expressions. Thus, in GMG we are restricted to
the cases where the GMM correlation function is unam-
biguously determined.

The three-point function is easily calculated by mul-
tiplying CM(a1 – b, a2 – b, a3 – b) by the corresponding

Liouville three-point function . The resulting
product can be written in the form

(23)

where Wa = 3 

(24)

and the “leg factors” N(a) read

(25)

The two-point function 〈UaUa〉GMG and the partition
sum ZL can be restored from this expression as

(26)

and

(27)

For the normalized correlation functions

 =  and

3 Later on, we will use sometimes less compact notations U(a) =
Ua and W(a) = Wa.

Um n, Φm n, Ṽm n, .=

Ca1 a2 a3, ,
L( )

Wa1
Wa2

Wa2
〈 〉 GMG ΩN a1( )N a2( )N a3( ),=

CCUa

Ω πµγ b2( )[ ] Q/b γ b2( )γ b 2– 1–( )b 2–[ ] 1/2
=

N a( ) πµγ b2( )[ ] a/b–
=

× γ 2ab b2–( )γ 2ab 1– b 2––( )[ ] 1/2
.

UaUa〈 〉 GMG πµγ b2( )[ ] Q/b N2 a( )
π 2a Q–( )
-------------------------=

ZL πµγ b2( )[ ] Q/b 1 b2–

π3Qγ b2( )γ b 2–( )
---------------------------------------.=

Wa1
Wa2

Wa2
〈 〉〈 〉 ZL

1– Wa1
Wa2

Wa2
〈 〉 GMG
JETP LETTERS      Vol. 82      No. 1      2005
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〈〈 UaUa〉〉  = 〈UaUa〉GMG, it is convenient to use
slightly different leg factors

(28)

so that

(29)

At the generic values of a, it will prove convenient
to define renormalized fields

(30)

for which (29) is reduced to

(31)

where g = b–2 and s = ab–1. It is readily verified that, for-
mally, 0(a) = 0(Q – a); i.e., in this normalization, the
dressed matter operators are independent of the choice
of the dressing. This might seem an important advan-
tage. The price to pay is that leg factors (25) are some-
times singular and, in any case, depend on the cosmo-
logical constant µ.

5. DISCRETE STATES 
AND THE FOUR-POINT INTEGRAL

The next level of difficulty is the four-point correla-
tion number  given by integral (8).

If one of the four matter operators, e.g.,  = Φm, n, the
matter four-point function is constructed through (14).
Let the remaining three fields stay generic formal
primaries of GMM.4 Our purpose is to evaluate the
integral

(32)

where Um, n is the dressed degenerate field Φm, n defined
in (21). We denote by

(33)

4 As we will discuss at the end of the paper, the last requirement is
essential, because sometimes correlation functions with degener-
ate fields are not straightforward limits of those with generic ones
with the appropriate specialization of the parameter.

ZL
1–

1 a( ) πN a( ) γ b2( )γ b 2–( )
b 2– 1–( )2

–
----------------------------

1/2

,=

Wa1
Wa2

Wa2
〈 〉〈 〉 1 b 2–+( )b 2– b 2– 1–( ) 1 ai( ),

i 1=

3

∏=

UaUa〈 〉〈 〉 b 2– 1+( )b 2– b 2– 1–( )
2ab 1– b 2–– 1–( )

--------------------------------------------------12
a( ).=

8 a( ) 1 1–
a( )Ua; 0 a( ) 1 1–

a( )Wa,= =

8 a( )8 a( )〈 〉〈 〉 g 1+( )g g 1–( )
2s g– 1–( )

-------------------------------------,=

0 a1( )0 a2( )0 a3( )〈 〉〈 〉 g 1+( )g g 1–( ),=

Ua1
Ua2

Ua3
Ua4

〈 〉 GMG

Φα4

Um n, Ua1
Ua2

Ua3
〈 〉 GMG

=  Um n, x( )Wa1
x1( )Wa2

x2( )Wa3
x3( )〈 〉 d2x,∫

Θm n, Φm n, Vm n,=
JETP LETTERS      Vol. 82      No. 1      2005
the direct product of the matter and Liouville degener-
ate fields and introduce the operators

(34)

(and, similarly, ), where  and  are the
matter and Liouville “singular vector creating” opera-
tors introduced above.

Proposition 1. For every pair (m, n) of positive inte-
gers, there exists an operator Hm, n made of the Virasoro
generators Mn, Ln and the ghost fields B and C as a
graded polynomial of order mn – 1 and ghost number 0,
such that Hm, nΘm, n is closed but nontrivial. Operator
Hm, n is unique modulo exact terms.

Statement 1 can be verified by explicit calculations
on the first levels. One finds

(35)

For the series (1, n), a proof is given in [8]. At general
(m, n), the statement is most certainly also true (B. Feigin,
private communication). Cohomology classes of
Hm, nΘm, n were discovered in [9, 10] and are called the
“discrete states.” Although the generic form of the opera-
tors Hm, n is not known to us, the normalization is supposed

to be fixed as Hm, n = (–L–1)k + ….
Apparently,

(36)

where Rm, n is again a graded polynomial in Mn, Ln, and
ghosts.

Proposition 2.

(37)

where  = Φm, n  and  is from Eq. (17).

We verified Statement 2 directly for (m, n) = (1, 2)
and (1, 3). Thus, general case might require modifica-
tions. Combined with HEM (19), it permits us to
replace Eq. (32) by

(38)

where  = Hm, n . This is, hence, reduced
to the boundary integral and the so-called curvature
contribution. The boundary consists of small circles ∂Γi

around the W insertions. To evaluate the boundary
terms, we need to understand better the short-distance

$m n, Dm n,
M( ) –( )mnDm n,

L( )+=

$m n, Dm n,
M( ) Dm n,

L( )

H1 2, M 1– L 1–– b2CB,+=

H1 3, M 1–
2 M 1– L 1–– L 1–

2 2b2 M 2– L 2–+( )–+=

+ 2b2 M 1– L 1––( )CB 4b4C∂B.–

M 1–( )mn 1– k–

k 0=
mn 1–∑

∂Hm n, 4Rm n,–( )Θm n,

=  ∂Hm n, 4Rm n,–( )Θm n, 0,=

$m n, $m n, Θm n,'

=  ∂Hm n, 4Rm n,–( ) ∂Hm n, 4Rm n,–( )Θm n,' ,

Θm n,' Vm n,' Vm n,'

Bm n,
1– ∂∂ Om n,' x( )Wa1

x1( )Wa2
x2( )Wa3

x3( )〈 〉 d2x,∫
Om n,' Hm n, Θm n,'
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behavior of the operator product (x)Wa(x1). Pres-
ently, we discuss only the curvature term.

6. CURVATURE TERM

The curvature term comes from the fact that the
operator  is not exactly a scalar ((0, 0) form) but
rather a logarithmic field. Under conformal coordinate
transformations x  y, it acquires an inhomogeneous
part

(39)

where

(40)

is the ground ring element (see below) and

(41)

This subtlety can be treated in two ways. First, it is easy
to show that, on the sphere, transformation (39) leads to
the following behavior of the correlation function with

(x) at x  ∞:

Therefore, the curvature contribution can be included
as a boundary term ∂Γ∞ at ∞. It is evaluated as

(42)

Another trick, which is more easily generalized for
more complicated surfaces, is to keep track of the back-
ground metric  = eσδab. Since the scale factor σ(x)
transforms as

under conformal maps, the combination

(43)

is a scalar (the dependence on the background metric is
the price to pay). Thus, in the BRST invariant environ-
ment, Eq. (37) can be rewritten as

where  is the covariant Laplace operator with respect

to  and  is the corresponding scalar curvature. On
a sphere, the contribution of the second term apparently
reduces to (42).

Om n,'

Om n,'

Om n,' y( ) Om n,' x( ) ∆m n,' Om n, x( ) yx ,log–=

Om n, Hm n, Hm n, Θm n,=

∆m n,' d
da
------∆a

L( )
a am n,= mb 1– nb.+= =

Om n,'

Om n,' x( )Wa1
x1( )Wa2

x2( )Wa3
x3( )〈 〉

∼ ∆ m n,' xx( ) Om n, Wa1
Wa2

Wa3
〈 〉 .log–

1
2i
----- ∂ Om n,' x( )Wa1

x1( )Wa2
x2( )Wa3

x3( )〈 〉 xd

∂Γ∞

∫
=  π∆m n,' Om n, Wa1

Wa2
Wa3

〈 〉 .

ĝab

σ y( ) σ x( ) 2 yxlog–=

Õm n,' x( ) Om n,' x( ) ∆m n,' σ x( )Om n, x( )/2–=

Bm n, Um n, ĝ
1
4
---∆̂Õm n,' ∆m n,'

8
---------- R̂Om n,– 

  exact,+=

∆̂
ĝab R̂
At this step, it is clear that better understanding of
the ground ring structure in GMG, in particular, the
evaluation of the expectation value in the right-hand
side of Eq. (42), is of importance in the program.

7. GROUND RING IN GMG

It has been discovered in [9, 10] that, in MG, the
degenerate fields Φm, n of GMM, when combined with
the degenerate exponentials Vm, n of the corresponding
LFT, give rise to nontrivial BRST closed operators (40)
with ghost number 0 and conformal dimension (0, 0).
Some of these operators were evaluated explicitly in

[8]. The spatial derivatives ∂Om, n and Om, n are exact
(Eq. (36)), and, therefore, the correlation functions of
these discrete states in the BRST closed environment
do not depend on their positions. Moreover, as the
BRST cohomology classes, they form a closed ring
under an operator product expansion called the ground
ring. This observation led Witten [10] to conclude that
this structure plays a crucial role in the structure of MG,
and, probably, the whole algebraic structure of the the-
ory is in fact that of the ground ring. In this section, we
present few explicit calculations revealing the GR prop-
erties. Cohomology properties of Om, n are relevant only
in a 4-invariant environment. The simplest invariant
state on a sphere is created by three operators Wa. For
this reason, we perform the actual calculation of the
correlation function of  on a sphere
with three generic Wa insertions.

Modulo exact forms of the discrete states Om, n act in
the space of classes Wa. This is because their action
does not change the ghost number and, generically, all
nontrivial classes are exhausted by the composite fields
Wa with different a. Moreover, due to the decoupling
restrictions in the OPE of the degenerate fields Φm, n and
Vm, n with the primaries Φα and Va, respectively, the
general structure of the operator product Om, n(x)W(a) is
doomed to have the form

(44)

with some numerical coefficients . Our first aim
is to evaluate them.

It is instructive to perform explicit calculations in
the simplest case (m, n) = (1, 2). The special operator
product expansions we need in this case are (13) and

∂

Om n, Wa1
Wa2

Wa3
〈 〉

Om n, W a( ) Ar s,
m n,( )W a λ r s,+( )

r s,

m n,( )

∑ exact,+=

Ar s,
m n,( )

V1 2, y( )Va 0( ) C+
L( ) a( ) yy( )ab Va b/2–[ ]=

+ C–
L( ) a( ) yy( )1 ab– b

2+ Va b/2+[ ] ,
JETP LETTERS      Vol. 82      No. 1      2005
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where

It is easy to verify by explicit calculation (at least at the
primary field level) that, in the product Ua = Φa – bVa, the

action of H1, 2 and  eliminates the “wrong terms”
with the combinations Φa – b/2Va – b/2 and Φa – 3b/2Va + b/2,
and we are left with

(45)

with

(46)

The polynomial multipliers in the coefficients are the
result of the action of H1, 2 on the corresponding terms
in the expansion of Θ1, 2(x)Wa(0). A similar calculation
can be directly performed for the action of every Φm, n.
We calculated these polynomials also for the case
(m, n) = (1, 3) and verified that the result is summarized
as follows:

(47)

where

(48)

and Bm, n are the same as in Eq. (20).
It seems tempting to simplify these relations by

introducing the renormalized fields 0(a) as in Eq. (30)

and 2m, n = Om, n, so that (44) is reduced to

(49)

8. DISCUSSION

This is basically what has been figured out previ-
ously on the basis of more general arguments [11].
Here, we arrive at this expression by a direct calcula-
tion. Another important difference is that we consid-
ered the action of Om, n on a cohomology Wa with
generic a. It is natural to expect that relations (49) are
modified when specialized to the degenerate fields

Wm, n =  with a vanishing null vector in the
degenerate matter sector. Although the effect most
probably might be simply the proper truncation of the
sum in Eq. (49) implied by the fusion algebra of the

C+
L( ) a( ) 1;=

C–
L( ) a( ) πµ

γ b2–( )
----------------γ 2ab b2– 1–( )

γ 2ab( )
-------------------------------------.–=

H1 2,

O1 2, W a( ) A0 1–,
1 2,( )W a b/2–( )=

+ A0 1,
1 2,( )W a b/2+( ) exact,+

A0 1–,
1 2,( ) 1 2ab– b2+( )2

C–
M( ) a b–( )C+

L( ) a( ),=

A0 1,
1 2,( ) 1 2ab– b2+( )2

C+
M( ) a b–( )C–

L( ) a( ).=

N a λ r s,+( )Ar s,
m n,( ) Λm n, N a( ),=

Λm n, γ b2( )γ b 2–( ) b b 1––( ) 2–( )
1/2

Bm n, N am n–,( )=

Λm n,
1–

2m n, 0 a( ) 0 a Λr s,+( ).
r s,

m n,( )

∑=

CCΦm n, Ṽm n,
JETP LETTERS      Vol. 82      No. 1      2005
degenerate fields, technically the limit a  am, –n in
this expression turns out to be subtle and requires a
more careful analysis. Therefore, in this article, we
restrict ourselves with the case of generic values of a,
leaving the degenerate cases for further study. This is
basically sufficient for our subsequent treatment of
integral (32) with generic nondegenerate values of a1,
a2, and a3.

Simple action (49) naturally implies the following
structure of the ground ring algebra:

(50)

where the symbol  implies the sum over k =
{min(|n – n' |, 0) : 2 : n + n'}. Or, if you prefer to follow
[11] and introduce X = 21, 2/2 and Y = 22, 1/2,

(51)

where Un(x) are the Chebyshev polynomials of the sec-
ond kind.
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k
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∑
l

m m',[ ]

∑=

k
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