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Abstract—Upon introduction of a certain amount of tin acceptor impurities into crystals of Bi and Bi1 – xSbx
alloys, the energy of plasma oscillations becomes close in magnitude to the energies of interband transitions
and optical phonons. This is accompanied by a substantial enhancement of the interaction between elementary
excitations and a considerable change in the relaxation time of charge carriers, which is observed experimen-
tally in the optical and electrical properties. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Optical investigations into the properties of crystal-
line bismuth and bismuth–antimony alloys with tin
acceptor impurities have revealed interesting features
in the behavior of their electron system, which are asso-
ciated with the coincidence of the energies in the plas-
mon, phonon, and electron spectra [1, 2]. These fea-
tures could be specific to the entire class of materials,
namely, narrow-gap semiconductors and semimetals,
which are widely used as thermoelectric materials [3].
The present paper reports on the results of our investi-
gations, according to which the electron–plasmon and
plasmon–phonon interactions affect the optical and
electrical properties of crystalline bismuth and bis-
muth–antimony alloys.

2. EXPERIMENTAL TECHNIQUE

The polarized reflectivity spectra of crystalline bis-
muth and bismuth–antimony alloys were measured in
the geometries E ⊥  C3 and E || C3 (where E is the vector
of the electric field of probe radiation and C3 is the optic
axis of the crystal) on a Bruker IFS-113V Fourier spec-
trometer in the range 50–800 cm–1 with a resolution of
2 cm–1 according to the procedure described in [1]. For
the most part, the measurements were performed in
polarized light. A degree of polarization of 98–99%
over the entire spectral range covered was achieved by
using polyethylene-based grating replicas. The angle of
light incidence on the sample was no more than 8°. All
the results presented in this work were obtained at a
temperature of 80 K. We examined samples of undoped
and tin-doped Bi1 – xSbx single crystals (x = 0, 0.03, and
0.07) which were seed-grown by zone recrystallization
[4]. The nonuniformity of the antimony distribution
over the sample was checked using a Camebax x-ray
microanalyzer and did not exceed 0.5%. For optical and
1063-7834/03/4509- $24.00 © 21613
galvanomagnetic measurements, the samples were
obtained by spark cutting from the central part of the
ingot. The concentration of free charge carriers and
their type were determined from the measurements of
the tensor components of the Hall effect and the resis-
tivity at T = 80 K [4]. It should be noted that crystals of
the bismuth type cannot be cleaved along the planes
parallel to the C3 axis. For this reason, in order to pre-
pare samples suitable for our measurements, we used
spark cutting and then removed the damaged layer by
chemical or electrochemical polishing. The polishing
quality was checked against the similarity of the reflec-
tivity spectrum measured for the polished surface in the
geometry k ⊥  C3 and E ⊥  C3 to the spectrum recorded
for the natural mirror cleavage plane at k || C3 and
E ⊥  C3.

3. RESULTS AND DISCUSSION

In the context of our study, it is of interest to analyze
the energy loss function of electromagnetic radiation
interacting with a crystal:

(1)

The energy loss function is directly related to the
entropy production rate in the system [5]. Figure 1
shows the spectral dependences of the energy loss func-
tion, which were obtained with the use of the Kramers–
Kronig relations from the reflectivity spectra of bis-
muth crystals with tin acceptor impurities [2]. The
numbers of the spectra in Fig. 1 correspond to the sam-
ple numbers in the table. The table presents experimen-
tal values of the parameters obtained during electrical
and optical measurements. The absolute maximum of
the energy loss function corresponds to the frequency
of plasma resonance. Indeed, if the imaginary part of
the permittivity ε2 is small, the energy loss function

Im ε 1–( )– ε2/ ε1( )2 ε2( )2
–( ).=
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exhibits a maximum at the point where the real part ε1

reduces to zero. When the refractive index n = (ε1)1/2

vanishes, according to the relationship λ = 2πc/nω, the
wavelength becomes infinite. In this case, the electron
system as a whole oscillates in phase [5], which is a
condition of existence of collective plasma oscillations.
At the plasma frequency, the radiation is intensively
absorbed by the crystal, whereas the depth of radiation
penetration into the crystal is minimum. Note also that
the half-width of the energy loss line characterizes the
decay time of plasma oscillations (plasmon relaxation).

The introduction of tin acceptor impurities (up to
0.05 at. %) into bismuth leads to a shift in the plasma
frequency toward the low-energy range, which can be
clearly seen from Fig. 1 and the table. This correlates
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Fig. 1. Spectral dependences of the energy loss function
−Im(ε–1) for bismuth single crystals with tin acceptor impu-
rities. E ⊥  C3, T = 80 K. The numbers of the spectra corre-
spond to the sample numbers in the table.
P

well with the observed increase in the resistivity (see
table). The shifts in the plasma minima, which are
observed upon doping of Bi and Bi1 – xSbx crystals with
donor and acceptor impurities, agree with the concept
of the band structure of the studied crystals [6]. The
band structure is determined by the changes in the con-
tributions of free charge carriers at the Ls, La, and T45
extrema of the valence band and the conduction band to
the formation of the returned signal. For the band struc-
ture of bismuth crystals at ωpτ @ 1, the squares of the
plasma frequencies can be expressed as follows:

(2)

where ωp⊥  and ωp|| are the plasma frequencies corre-
sponding to the orientations E ⊥  C3 and E || C3, respec-
tively; ε∞ is the high-frequency permittivity; e is the ele-
mentary charge; Ni is the concentration of free charge
carriers at the La, Ls, and T extrema; and ( )i, ( )i,

and ( )i are the effective masses of charge carriers
along the bisecting, binary, and trigonal axes of the
crystal, respectively. The summation takes into account
the multicomponent composition of the plasma.

As follows from expression (2) and the band struc-
ture of the Bi1 – xSbx crystals (Fig. 2), the minima in the
plasma frequency correlate with the minima in the con-
centration of light charge carriers at the L extrema. This
situation arises when the chemical potential corre-
sponds to an energy gap between the extrema of the
valence band and the conduction band at the L point of
the Brillouin zone, which occurs upon introduction of
acceptor impurities. In this case, the energy of plasma
oscillations Ep ≈ 10 meV is determined primarily by the
contribution of charge carriers at the strongly anisotro-
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Experimental values of the resistivity tensor components ρ11 and ρ33 and plasma frequencies of bismuth single crystals at T = 80 K

Sn content in Bi 
crystals, at. % ρ11, 10–6 Ω m ρ33, 10–6 Ω m ωp⊥ , 1013 s–1

E ⊥  C3

ωp||, 1013 s–1

E || C3

Number of spec-
trum in Fig. 1

0 3.58 3.35 1

0.02 0.234 2.104 3.06 1.97 2

0.04 1.004 3.152 3.18 2.34 3

0.05(1) 1.134 3.351 3.07 2.42 4

0.05(2) 0.639 1.32 6.32 4.61 5

0.05(3) 0.660 – 5.47 3.61 6

0.06 1.116 3.541 3.72 1.71 7

0.08 0.942 2.673 3.99 1.89 8

0.15 0.708 1.592 5.76 3.87 9

0.2 0.726 1.464 7.72 6.59 10
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pic extremum T45 (heavy holes). Therefore, the doping
of crystalline bismuth and bismuth–antimony alloy
with acceptor impurities leads to a decrease in the
plasma frequencies (Fig. 1). As a result, the energy of
plasma oscillations becomes close in magnitude to the
energy of the longitudinal optical phonon at the Γ point
of the Brillouin zone Eph = 12.4 meV [7] and to the
energy of interband transitions at the L point of the Bril-
louin zone [2]. In the framework of the two-band
model, the energy of the interband transition can be cal-
culated in terms of the Burstein–Moss shift: ET = EgL +
2EF. In the case when the chemical potential corre-
sponds to an energy gap at the L point of the Brillouin
zone in bismuth crystals, we obtain the Fermi energy
EF ≈ 0 and ET ≈ EgL ≈ 15 meV.

The energies of the aforementioned elementary
excitations of the electron and phonon system become
close to each other in magnitude, provided bismuth
crystals are doped with tin acceptor impurities to a con-
tent of 0.04–0.05 at. %. For these crystals, the substan-
tial changes observed in the spectra of optical func-
tions, specifically in the spectra of the energy loss func-
tion (spectra 3, 4, 5 in Fig. 1), are accompanied by an
increase in the rate of damping of plasma oscillations
[8]. The observed changes in the optical functions sug-
gest an intensive energy exchange between plasma
oscillations and crystal lattice vibrations, which, in
turn, affects the relaxation rate [1, 2, 8].

It should be noted that the energy of plasma oscilla-
tions Ep⊥  = 10 meV for bismuth crystals with 0.05 at. %
Sn (for the Bi0.93Sb0.07 crystal, Ep⊥  = 8 meV at T = 80 K)
is close to the energy kBT = 6.8 meV at this temperature.
Therefore, in semimetals and narrow-gap semiconduc-
tors, unlike metals, the plasma oscillations reach an
energy "ωp ≈ kT and can be excited thermally.

For Bi1 – xSbx crystals (0 ≤ x ≤ 0.22), the energy of
plasma oscillations Ep varies in the range 5–30 meV.
Under these conditions, quasi-resonance interaction
between excitations of the electron system and the crys-
tal lattice becomes possible, which leads to changes in
the excitation processes. For example, Bogdanov et al.
[9] observed a sharp increase (by approximately one
order of magnitude) in the lifetime of nonequilibrium
charge carriers in the Bi0.82Sb0.18 crystal as compared to
the Bi0.9Sb0.1 crystal (Fig. 3). It was also found that, in
a magnetic field, the lifetime of charge carriers changes
significantly in crystals containing less than 15 at. % Sb
and remains unchanged in crystals with a higher Sb
content [9].

Let us analyze these results together with data on the
energy of plasma oscillations, the energy of interband
transition at the L point of the Brillouin zone, and the
energy of the longitudinal optical phonon. This analysis
demonstrates that a decrease in the lifetime of nonequi-
librium charge carriers in the Bi0.9Sb0.1 crystals is asso-
ciated with the close values of the energies in the elec-
tron, plasmon, and phonon spectra, respectively. For
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
example, according to Kulakovskiœ and Egorov [10],
the energy of plasma oscillations in the Bi0.905Sb0.095

crystal is equal to 9.6 meV. However, as was shown by
Lifshits et al. [11], the band gap in the Bi0.89Sb0.11 crys-
tal is 10.5 meV. A change in the antimony content in the
studied crystals is accompanied by an increase in the
difference between these energies. In particular, for the
Bi0.884Sb0.116 crystal, the energy of plasma oscillations
is equal to 7 meV [10], whereas the band gap is
12.5 meV [11]. For the Bi0.84Sb0.16 crystal, the band gap
increases to 18 meV [11], whereas the plasma frequen-
cies should reach minimum values, because the band
gap in these crystals has a maximum value. Thus, an
increase in the antimony content to 16 at. % causes an
increase in the difference between the frequencies of
the plasma resonance, the optical phonon, and the inter-
band transition; consequently, the carrier lifetime
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Fig. 2. Energy position of the band extrema as a function of
the antimony content x in Bi1 – xSbx crystals.
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Fig. 3. Lifetime of nonequilibrium charge carriers as a func-
tion of the antimony content x in Bi1 – xSbx crystals (0.085 ≤
x ≤ 0.17) at T = 4.2 K in the absence of a magnetic field [9].



1616 STEPANOV, GRABOV
increases drastically (Fig. 3). Brandt et al. [6] observed
a transition to a semimetal state in the Bi0.78Sb0.22 crys-
tal. In this case, as the concentration of charge carriers
increases, the plasma frequency again becomes close to
the phonon frequency in magnitude. These features in
relaxation processes are caused by electron–plasmon
and plasmon–phonon interactions and may appear to be
characteristic of other narrow-gap semiconductors, for
example, Cd1 – xHgxTe [12].

4. CONCLUSIONS
Thus, it was demonstrated that, upon changes in the

energy position of the band extrema and in the concen-
tration of free charge carriers in the crystals of semi-
metals and narrow-gap semiconductors due to varia-
tions in the composition, temperature, or doping, the
energies of plasmons, phonons, and interband transi-
tions become close in magnitude. This is attended by
substantial variations in the relaxation processes, which
should be taken into account in the design and predic-
tion of the properties of semiconductor materials.
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Abstract—The band structure of nonstoichiometric layered diborides Me0.75B2 (Me = Nb, Zr, or Y) is calcu-
lated for the first time in the framework of the self-consistent full-potential linearized muffin-tin orbital
(FLMTO) method, and the energies of formation of Me vacancies are estimated numerically. It is established
that metal vacancies affect the electronic properties and energy states of Group III–V metal diborides in radi-
cally different ways. The superconducting properties of these diborides are discussed with due regard for the
results obtained. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of superconductivity in magnesium
diboride MgB2 (critical temperature Tc ≈ 39 K) [1] and
the preparation of superconducting MgB2-based mate-
rials, such as porous and compact ceramics, thin
(including nanostructured) films, wires, and tapes (see,
for example, reviews [2–5]), have attracted consider-
able attention and lent impetus to intensive investiga-
tions into the properties of AlB2-like hexagonal
diborides of d transition metals that are isostructural to
MgB2. In the early stages of the research into the super-
conductivity phenomenon, no superconducting transi-
tion was found in the majority of d transition metal (Ti,
Zr, Hf, V, Ta, Cr, Mo, Nb) diborides down to T ≈ 0.6 K
[6]. In more recent works [7–17], it has been demon-
strated experimentally and theoretically that, for binary
diborides of the general formula MeB2, the supercon-
ducting transition at a critical temperature Tc ≥ 40 K is
impossible. The sole exception is provided by the
MgB2 compound, in which the critical temperature Tc

reaches a high value owing to strong electron–phonon
interactions with the participation of boron σ band
states doped with holes.

According to recent publications [7–9], sufficiently
high temperatures Tc are observed for ZrB2 (5.5 K [7]),
TaB2 (9.5 K [8]), and NbB2 (5.2 K [9]). However, Ros-
ner et al. [10] did not reveal superconductivity in TaB2
at temperatures above 1.5 K. Furthermore, as was
shown by Gasparov et al. [7] and Kraczorwski et al.
[8], the NbB2 compound does not exhibit supercon-
ducting properties at temperatures above 2 K. Reason-
ing from the estimates of the electron–phonon interac-
tion parameters for MeB2 diborides, it was concluded
that ZrB2 does not possess superconducting properties
[14] but TaB2 and NbB2 can undergo superconducting
1063-7834/03/4509- $24.00 © 21617
transitions at Tc ≈ 0.1 K [13] and Tc ≈ 3 K [12], respec-
tively.

It should be particularly emphasized that, in all the
aforementioned works [7–17], the compositions of the
studied diborides were assumed to be strictly stoichio-
metric (B/Me = 2).

As is known, lattice vacancies are among the most
commonly encountered crystal defects that substan-
tially affect the properties of nonstoichiometric com-
pounds in the homogeneity region. For example, cubic
(B1 type) carbides, nitrides, and oxides of Group III–V d
transition metals represent the class of so-called strongly
nonstoichiometric phases with extremely extended
regions of homogeneity (up to 30–55 at. %) [18].

Unlike the above compounds, diborides of Group
III–V d transition metals under equilibrium conditions
are characterized by very narrow regions of homogene-
ity [19]. Consequently, the nonstoichiometric effects,
as a rule, are ignored in studies of the properties of
these systems. To the best of our knowledge, no theo-
retical work has been done to date to investigate the
influence of lattice vacancies on the properties of MeB2
phases.

Recently, Yamamoto et al. [20] carried out the solid-
phase synthesis of Nb1 – xB2 and Ta1 – xB2 nonstoichio-
metric diborides (AlB2 structural type, 0 ≤ x ≤ 0.48) at
T = 900–1300°C and pressures ranging from 1 to
5 GPa. It was found that the Nb1 – xB2 compounds trans-
form into the superconducting state at x > 0.04. In this
case, the critical temperature Tc increases with an
increase in the content of Nb vacancies and reaches a
maximum (≈9 K) for compositions with x ≈ 0.24.

This paper reports on the results of the first investi-
gations into the influence of Me vacancies on the elec-
tronic properties and energy states of d metal diborides.
003 MAIK “Nauka/Interperiodica”
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2. MODEL AND CALCULATION TECHNIQUE

In our calculations, NbB2, ZrB2, and YB2 hexagonal
diborides containing 25% Me vacancies were used as
models of nonstoichiometric diborides of d transition
metals. This made it possible to elucidate the role
played by metal vacancies in the evolution of the elec-
tronic properties of isostructural diborides for all possi-
ble types of occupation of the energy bands.

These phases have a hexagonal structure (space
group P6/mmm) formed by layers consisting of metal
trigonal prisms centered at boron atoms, which, in turn,
form planar graphite-like networks. For modeling of
Me0.75B2 nonstoichiometric phases, we used 12-atom
supercells (2 × 2 × 1). The band structure calculations
were performed using the scalar relativistic self-consis-
tent full-potential linearized muffin-tin orbital
(FLMTO) method with allowance made for the
exchange–correlation effects in the framework of the
generalized gradient approximation [21]. The lattice
parameters of NbB2, ZrB2, and YB2 stoichiometric
diborides correspond to the data available in [22]. Since
the experimental lattice parameters [20] of Nb0.75B2

(a = 3.098 Å, c/a = 1.072) differ from those for stoichi-
ometric NbB2 by no more than ≈0.3%, the parameters
a and c for Zr0.75B2 and Y0.75B2 hypothetic defect struc-
tures are taken to be equal to those for the stoichiomet-
ric phases [22].
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Fig. 1. Total densities of states of NbB2, ZrB2, and YB2.
EF = 0.
P

3. RESULTS AND DISCUSSION

The total densities of states of stoichiometric (NbB2,
ZrB2, YB2) and defect-containing (Nb0.75B2, Zr0.75B2,
Y0.75B2) phases are shown in Figs. 1 and 2, respectively.
It can be seen that the valence band of AlB2-like 4d
metal diborides contains two groups of bands attributed
to B 2s and B 2p bonding states (bands A, B in Fig. 1),
which are separated from the band of antibonding states
(band C in Fig. 1) by a pseudogap. Depending on the
type of metal sublattice (or the number of valence elec-
trons ne), there exist three variants of occupation of the
energy band in MeB2. For the ZrB2 diboride (ne =
3.33 electrons/atom), the Fermi level is located in the
pseudogap (at the lowest density of states). This sug-
gests the highest chemical stability of ZrB2 in the case
when all the bonding states are completely occupied and
the antibonding states are unoccupied (see also [23–
25]). For the NbB2 diboride (ne = 3.66 electrons/atom),
part of the antibonding states is occupied and the density
of states at the Fermi level N(EF) increases (Table 1).
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Table 1.  Densities of states at the Fermi level (states/eV atomic formula) and electronic heat capacity coefficients γ (mJ mol–1 K–2)
for stoichiometric and nonstoichiometric diborides of Nb, Zr, and Y

N(EF) γ

total Me s Me p Me d Me f B s B p [24]

NbB2 1.012 0.002 0.012 0.653 0.036 0.009 0.125 2.39 2.42

Nb0.75B2 0.993 0.009 0.021 0.544 0.022 0.010 0.146 2.34 –

ZrB2 0.300 0.001 0.003 0.170 0.009 0.000 0.042 0.71 0.67

Zr0.75B2 1.220 0.005 0.027 0.426 0.019 0.018 0.331 2.87 –

YB2 0.900 0.008 0.018 0.364 0.014 0.002 0.136 2.12 2.03

Y0.75B2 0.409 0.004 0.012 0.121 0.004 0.002 0.080 0.96 –
Contrastingly, for the YB2 diboride (ne = 3.0 elec-
trons/atom), part of the bonding hybrid d–p states
remains unoccupied. This is a simplified scheme that
offers a qualitative explanation of the experimentally
observed decrease in the cohesion characteristics of
NbB2 and YB2 [19] (as compared to ZrB2) and is con-
firmed by ab initio calculations of the band structures
[23–25] (see also below).

Now, we consider the main effects induced upon
introduction of Me vacancies and affecting the band
structure of the diborides under investigation. In the
case of the transition MeB2  Me0.75B2, these effects
are associated with the following factors: (i) a decrease
in the number of valence electrons ne and (ii) local
changes in the electron states of the atoms nearest to the
vacancy.

The calculations demonstrate that the observed
effects are different for diborides of Group III–V d tran-
sition metals. The presence of vacancies in the niobium
sublattice of NbB2 brings about considerable changes
in the density of states in the near-Fermi region and
gives rise to a new peak in the density of states (Fig. 2).
Note that, in this case, vacancy states of the s type are
located below the Fermi level EF. A change in the
charge density in Nb0.75B2 is clearly seen in Fig. 3: new
Nb–Nb bonds passing through the vacancy center are
not formed, and changes in the charge density contours
indicate the vacancy growth along the Nb–Nb bonds in
the vicinity of the defect. The density of states at the
Fermi level N(EF) for Nb0.75B2 decreases insignificantly
(by ≈ 1.9%) as compared to that for NbB2.

It can be seen from Fig. 2 that, compared to NbB2,
the band structure of ZrB2 undergoes a more radical
transformation due to the presence of vacancies. The
presence of Zr defects leads to the appearance of a new
intense peak in the density of states in the vicinity of the
pseudogap. As a result, the density of states at the Fermi
level N(EF) for Zr0.75B2 increases drastically [from 0.30
(for ZrB2) to 1.22 states/eV cell]. The opposite effect is
observed for Y0.75B2, in which the Fermi level is located
at a minimum in the density of states and the value of
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
N(EF) decreases by a factor of more than two [from
0.900 (for YB2) to 0.409 states/eV cell].

The presence of vacancies in the structure of the
studied diborides has different effects on the distribu-
tions of partial densities of states of the metal and boron
atoms (Table 1). For Nb0.75B2, the density of states at
the Fermi level N(EF) decreases only slightly due to a
decrease in the contribution NNb(EF) of the Nb 4d states,
whereas the contribution NB(EF) of the B 2 p states
increases. Contrastingly, a drastic increase in the value
of N(EF) for Zr0.75B2 is caused by a simultaneous
increase in the contributions NZr(EF) and NB(EF),
whereas a decrease in the density of states at the Fermi
level N(EF) for Y0.75B2 is associated with a decrease in
the contributions NY(EF) and NB(EF).

The above features in the transformation of the band
structure of nonstoichiometric diborides should mani-
fest themselves in the evolution of their properties,

Nb

V

Nb

Nb

Nb

Nb

Nb

Fig. 3. Charge density map in the plane of a hexagonal nio-
bium layer in Nb0.75B2.
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which, in particular, depend on the density of states in
the near-Fermi region. For the purposes of illustration,
we estimated the low-temperature electronic heat
capacity coefficients γ (Table 1) for stoichiometric
MeB2 and defect-containing Me0.75B2 diborides [in the

free-electron approximation, γ = (π2/3)N(EF) ]. As
can be seen from Table 1, the γ coefficients for the
MeB2 diborides decrease in the order NbB2 
YB2  ZrB2. For the Me0.75B2 nonstoichiometric
phases, the γ coefficients decrease in a different order:
Zr0.75B2  Nb0.75B2  Y0.75B2.

As was already noted, the effect of Me vacancies on
the density of states at the Fermi level N(EF) most
clearly manifests itself for ZrB2. This suggests that the
superconducting transition at the critical temperature
Tc ≈ 5.5 K for ZrB2 [7] can be associated not only with
the presence of impurities in ZrB2 samples [17] but also
with their nonstoichiometry in the zirconium sublattice.
Our calculations did not reveal significant changes in
the density of states at the Fermi level N(EF) for
Nb0.75B2. It is quite possible that the evolution of the
phonon spectrum of the Nb1 – xB2 nonstoichiometric
compounds with a decrease in their stability in the pres-
ence of lattice vacancies plays an important role in the
observed increase in the critical temperature Tc [20]. As
regards the Y1 – xB2 compounds, the considerable
decrease in N(EF) indicates that a superconducting tran-
sition in yttrium diboride is highly improbable in the
region of its homogeneity.

Let us now analyze the changes in the stability of
MeB2 phases due to the presence of defects. For this
purpose, we compare the results of numerical FLMTO
calculations of the energies of cohesion (Ecoh) and for-
mation (∆H) for MeB2 and Me0.75B2 phases. The cohe-
sion energies are determined from the relationships

where  and  are the total energies of Me and B

free atoms, respectively, and  and  are
the total energies (per formula unit) of MeB2 and
Me0.75B2 crystals, respectively. The energy of formation

kB
2

Ecoh

MeB2 Etot

MeB2 Eat
Me

2Eat
B

+( ),–=

Ecoh

Me0.75B2 Etot

Me0.75B2 0.75Eat
Me

2Eat
B

+( ),–=

Eat
Me

Eat
B

Etot

MeB2 Etot

Me0.75B2

Table 2.  Energies of formation (∆H), cohesion (Ecoh), and
formation of Me vacancies (Evf) for stoichiometric and nonsto-
ichiometric diborides of Nb, Zr, and Y (in eV/atomic formula)

Evf

Nb–B 1.82 0.27 1.57 0.19 0.08

Zr–B 1.72 0.35 1.46 0.22 0.13

Y–B 1.42 0.26 1.23 0.16 0.10

Ecoh
MeB2 ∆H

MeB2 Ecoh
Me0.75B2 ∆H

Me0.75B2
P

of the studied diborides are calculated from the expres-
sions

where  and  are the total energies of the pure
metal and α-boron crystals, respectively, which were
obtained in the FLMTO calculations. As can be seen

from Table 2, the energies of formation  for the
MeB2 phases decrease in the order ZrB2  NbB2 
YB2, which is in complete agreement with available
experimental data on the enthalpy of formation [19].
The cohesion energies (characterizing the energy effect
of decomposition of the system into atoms) decrease in

a different order:  >  > .

The presence of Me vacancies in the structure of the
diborides under investigation leads to a substantial
decrease in their stability (see the energies of formation
∆H in Table 2). An important energy parameter that
characterizes the probability of generating vacancies is
the energy of their formation:

Analysis of the results presented in Table 2 shows
that the energy of formation Evf of Me vacancies in
NbB2 is less than those in ZrB2 and YB2. Therefore,
vacancies are more difficult to introduce into ZrB2,
which is the most stable phase among those studied in
this work.

4. CONCLUSIONS

Thus, the calculations performed in this work made
it possible for the first time to investigate the effect of
lattice vacancies on the band structure of niobium, zir-
conium, and yttrium layered diborides and to elucidate
the main features in the evolution of their electron
states, which can differ radically depending on the type
of metal sublattice (or the type of occupation of the
energy bands). In particular, as the number of vacancies
in Me1 – xB2 increases, the density of states at the Fermi
level N(EF) either decreases (YB2), increases (ZrB2), or
remains nearly constant (NbB2). The nonstoichiometric
effects that manifest themselves in the metal sublattice
are more specific to diborides of the Group III and V d
transition metals in the Periodic Table.
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Abstract—The influence of disordering on the critical temperature of s-wave superconductors with a short
coherence length is studied by numerical simulation using the two-dimensional Hubbard model with attraction.
The calculations are carried out within the Bogolyubov–De Gennes approach, which allows one to include the
spatial inhomogeneity of the order parameter. The influence of the spatial inhomogeneity of physical quantities
on the results obtained is studied. Disordering is shown to be able to cause a significant increase in the critical
temperature. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to the Anderson theorem [1], nonmag-
netic impurities affect the critical temperature Tc of
ordinary low-temperature superconductors only
slightly, which is confirmed by experimental data. The
same conclusion follows from the Abrikosov–Gorkov
theory [2] as applied to superconductors with isotropic
s-wave pairing. This result is valid in the case of super-
conductors with a long coherence length ξ0 when a
variety of impurity configurations takes place within a
distance scaling the range over which the order param-
eter ∆(r) varies. In this case, quantities averaged over
impurity configurations can be used as is done when
deriving Abrikosov–Gorkov equations for the critical
temperature. A completely different situation arises in
the case of superconductors with a short coherence
length. Spatial variations of ∆(r) become significant in
the presence of impurities, and the Anderson theorem is
already inapplicable, possibly except for in some spe-
cific cases [3]. Currently, the behavior of the critical
temperature and of the superconducting order parame-
ter in superconductors with a short coherence length in
the presence of disordering has not been studied in
detail.

One of the reasons for this study was paper [4],
where it was shown that the inclusion of spatial varia-
tions in ∆(r) weakens the influence of the depairing on
the critical temperature. In this case, the correction to
the results of the Abrikosov–Gorkov theory is of the
order of Tc/Ef and becomes significant for superconduc-
tors with a short coherence length. In our opinion, the
most interesting conclusion made in [4] is that, in the
case of isotropic s-wave pairing, a minor amount of
nonmagnetic impurities can increase the critical tem-
perature in comparison with the impurity-free case. To
verify this conclusion, we studied the influence of dis-
ordering on the critical temperature of a superconduc-
1063-7834/03/4509- $24.00 © 1622
tor within the two-dimensional Hubbard model with
attraction. Numerical calculations were carried out
using the Bogolyubov–De Gennes method, which
allows one to include the spatial inhomogeneity of the
order parameter. The objective of this work was to
ascertain the influence of the spatial inhomogeneity of
physical quantities on the value of Tc of superconduc-
tors with a short coherence length. In our opinion, this
is an important problem, since many theoretical
approaches, including the Abrikosov–Gorkov theory,
disregard this inhomogeneity. We show that the spatial
inhomogeneity of ∆(r) in s-wave superconductors
indeed results in an increase in Tc upon disordering in
some specific cases.

2. MODEL

To simulate a disordered superconductor, we
employ the two-dimensional Hubbard model with
attraction and diagonal disorder:

(1)

where  and aiσ are the creation and annihilation
operators, respectively, of an electron with spin projec-
tion σ at the ith site of the two-dimensional square lat-

tice; niσ = aiσ; t is the hopping matrix element char-
acterizing the kinetic energy; 〈…〉  means summation
over nearest neighbors; µ is the chemical potential; and
V0 is the matrix element of electron attraction at a site
(V0 < 0). The impurity potential εi is uniformly distrib-

H t aiσ
+

a jσ

i j,〈 〉 σ,
∑– µ niσ

i σ,
∑– εiniσ

i σ,
∑+=

+ V0 ni↑ ni↓ ,
i

∑

aiσ
+

aiσ
+
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uted over the interval (–W/2, W/2). The disorder char-
acterized by the potential εi is an analog of nonmag-
netic impurities and defects.

In terms of the Bogolyubov–De Gennes approach
[5], problem (1) is reduced to solving the problem
described by the effective Hamiltonian

(2)

where

(3)

are the superconducting order parameter and the Har-
tree–Fock energy at the ith site, respectively. The
Hamiltonian Heff can be diagonalized using the Bogoly-
ubov transform

(4)

Here,  and γn are new quasiparticle operators and the
amplitudes un(ri) and νn(ri) are determined from the
equation

(5)

where En is the energy of quasiparticle excitations,

(ri) = – (ri + δ) + [εi – µ + U(ri)]un(ri),

 = (± , ± ) are vectors corresponding to nearest

neighbors, and un(ri) = ∆(ri)un(ri). For νi(ri), the
relations are similar. The potentials ∆(ri) and U(ri)
should satisfy the self-consistency conditions

(6)

(7)
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where fn = 1/[1 + exp(En/kBT)] is the Fermi–Dirac dis-
tribution function and ni is the average number of elec-
trons at the ith site. The chemical potential is deter-
mined from the equation for the electron concentration

(8)

The set of equations (5)–(7) on the L × L square lat-
tice with periodic boundary conditions can be solved by
iteration. For this purpose, a first approximation is cho-
sen to ∆(ri) and U(ri). Then u(ri), ν(ri), and En are
determined by exactly diagonalizing Eq. (5). Using
Eqs. (6) and (7), the next approximation to ∆(ri) and
U(ri) is determined and so on, until the iterative process
converges, i.e., until the differences between the pre-
ceding and current values of the potentials ∆(ri) and
U(ri) at each ith site become less than a preset value for
several subsequent iteration cycles. Thereafter, the
average concentration of electrons is determined from
formula (8). If this concentration is larger than the pre-
set value, the chemical potential is changed appropri-
ately and Eqs. (5)–(7) are solved again until the average
number of electrons in the system becomes equal to the
preset value to within appropriate accuracy. In this way,
the order parameter at a given temperature T is deter-
mined. As the temperature increases from T = 0, the
order parameter ∆(ri) decreases in magnitude and, at a
critical temperature T = Tc, becomes zero at all the sites
ri. Unfortunately, when Tc is approached, the conver-
gence of iteration of Eqs. (5)–(7) becomes considerably
poorer, and this method becomes invalid near the criti-
cal temperature. Therefore, the value of T at which the
order parameter is zero can be determined only by
extrapolation. All these factors make this approach
inefficient for determining Tc. An alternative method for
determining the critical temperature was suggested in
[6]. At T  Tc, we have ∆(ri)  0 and Eqs. (5) and
(6) yield the following set of linear equations in ∆(ri):

(9)

where u(ri) and En are solutions to Eqs. (5), (7), and (8)
for the system in the normal state, i.e., to the equations

(10)

self-consistency equations

(11)

ne ni〈 〉 /N .
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and the corresponding equation of the chemical poten-
tial. If the temperature T is initially taken to be some-
what larger than Tc and then is decreased, the nonzero
solution to the set of homogeneous equations (9) will
arise only beginning from T = Tc. Thus, the critical tem-
perature can be determined from the condition that the
determinant of the set of equations (9) is zero. In this
study, we mostly used this method for determining Tc,
using the first method for checking in some cases. In
calculations, the following parameters were used: V0
was varied from –1.5t to –3.5t, ne = 0.4 and 0.8, and L =
20–50. The constraint on L is caused by a rapid increase
in the required bulk of computation with increasing
system size. When selecting V0, we took into account
the fact that the mean-field theory becomes invalid if
the potential is large in magnitude [7]. At the same
time, V0 cannot be very small, since the size of the sys-
tem under study has to be larger than the coherence
length, which exponentially increases as V0 decreases
(Fig. 1). When selecting the average electron density ne,
we took into account that the mean-field theory yields
incorrect results for a two-dimensional lattice near half-
filling (ne = 1) [7] and that the coherence length begins
to increase rapidly at small values of ne (see inset to
Fig. 1). Since the results obtained within the mean-field
theory become less reliable at high values of W [9], the
maximum value of W was taken to be Wmax = 1.5t.

3. RESULTS AND DISCUSSION

Figure 2 shows the calculated dependence of the rel-
ative critical temperature Tc / Tc0 on the parameter W,

1.5 2.0 2.5 3.0 3.5
|V0|/t

0

8

16

24

32
ξ 0

0.25 0.50 0.75 1.00
ne

0

10

20

30

ξ 0

V0 = –2t

ne = 0.8
ne = 0.4

Fig. 1. Dependence of the coherence length ξ0 in the
absence of disorder on the electron–electron interaction
energy V0 at the electron concentration ne = 0.8 and 0.4. The
inset shows the dependence of ξ0 on ne at V0 = –2t. The
length ξ0 is measured in units of the square lattice constant.
The ξ0 values were determined from the relation

〈a(ri)a(rj)〉  ~ |ri – rj |–1exp(|ri – rj |/ξ0), which is valid at
|ri − rj | @ ξ0 [8].
PH
which determines the degree of disorder. We can see
that, as disorder increases, the critical temperature
decreases at the electron concentration ne = 0.8 and
increases for ne = 0.4. Figure 3 shows the dependence
of Tc/Tc0 on the electron–electron interaction energy V0

at W = t. We can see that, for ne = 0.4, Tc/Tc0 is always
larger than unity and that disordering has the strongest
effect on Tc at |V0 | ≈ 2.25t. At |V0 | < 1.5t, the coherence
length exceeds the system size; therefore, we cannot
verify the Anderson theorem in the region of low values
of Tc. The results suggest that Tc can increase due to dis-
ordering at certain values of the parameters.

It should be emphasized that while the critical tem-
perature can be determined from the requirement of the
order parameter vanishing in the absence of disorder,
the situation in disordered superconductors is more
ambiguous.1 For example, simulations of the supercon-
ductor–insulator transition at zero temperature show
that the order parameter retains a nonzero value even
when a sample becomes an insulator [11]. During this
transition, the sample is partitioned into a set of sepa-
rate weakly bound regions with ∆(r) ≠ 0 surrounded by
regions with ∆(r) ≈ 0. Although the average value of ∆
is nonzero, the sample as a whole is no longer a super-
conductor. In other words, the condition Σi∆(ri) ≠ 0
ceases to be the for the appearance criterion for the
superconducting state. The superconducting transition

1 In the selected range of values of the interaction potential V0, the
temperature of the formation of Cooper pairs, i.e., the tempera-
ture at which the order parameter takes on a nonzero value,
almost coincides with the temperature of the Cooper pair conden-
sation [10].

0.25 0.50 0.75 1.00 1.25 1.50 1.75
W/t

0
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1.0
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T c
/T
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ne = 0.4
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Fig. 2. Dependence of the relative critical temperature
Tc/Tc0 on W, where Tc0 is the critical temperature in the
absence of disorder. The calculation was carried out for a
square lattice with N = 32 × 32 sites and with the parameters
V0 = –2t and ne = 0.8 and 0.4; averaging was carried out
over 20 various disorder configurations. The root-mean-
square deviation is smaller than the symbol size.
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



INFLUENCE OF DISORDERING ON THE CRITICAL TEMPERATURE 1625
can be judged from the response to the applied mag-
netic field, namely, by the superfluid density ρs [12],
which vanishes upon the superconducting transition.
This property is a more reliable criterion for supercon-
ductivity, since it provides information about the sam-
ple state as a whole. At T = Tc, the superconductor–
metal transition takes place, in contrast to the supercon-
ductor–insulator transition that occurs at T = 0. Figure 4
shows the similarity in the order parameter behavior
during these transitions. We can see that ∆(ri) decreases
irregularly in both cases. In the case of the supercon-
ductor–insulator transition, this irregular decrease in
∆(ri) can be an indication of the onset of the sample
decomposition into superconducting and normal
regions. Thus, in the case of the superconductor–metal
transition, some doubts can arise with respect to the
reliability of determining Tc as the temperature at which
the order parameter becomes zero.

To clarify the situation, we calculated the critical
temperature for several impurity configurations by
using the system response to a magnetic field. The den-
sity ρs is conventionally calculated from a formula
derived using the perturbation theory and by averaging
over impurities [11, 13, 14]. In this study, we use a
method which yields a similar result for a specific dis-
order configuration without averaging. As is known,
exposure of a superconductor to a dc magnetic field
causes electric currents that screen this field (the Meiss-
ner effect). In the case where the disordered system is
in the normal state, persistent electric currents cannot

–3.5 –3.0 –2.5 –2.0 –1.5
V0/t

0.95

1.00

1.05

1.10

1.15
T c

/T
c0

ne = 0.4
ne = 0.8

Fig. 3. Dependence of the relative critical temperature
Tc/Tc0 on the electron–electron interaction energy V0 at W =
1.0t, where Tc0 is the corresponding critical temperature in
the absence of disorder. Since the coherence length shortens
with increasing V0, smaller lattices were taken to accelerate
the calculations: for ne = 0.8, N = 40 × 40 (V0 = –1.5t), 32 ×
32 (V0 was varied from –1.75t to –2.25t), 24 × 24 (V0 =
−2.5t), and 20 × 20 (V0 = –2.75t to –3.5t); for ne = 0.4, N =
50 × 50 at V0 = –1.75t and the other lattice sizes are the same
as in the case of ne = 0.8. Averaging was carried out over
20 various disorder configurations for all cases.
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arise. Therefore, in order to verify that the system is in
the superconducting state, it is sufficient to show that a
weak magnetic field applied normally to the plane of
the quasi-two-dimensional sample induces an electric
current. To carry out the corresponding calculation, it
should be taken into account that, in the presence of a
magnetic field described by the vector potential A(r),
the matrix element  in Eq. (1) has the form [15]

(12)

or, in the case where ", c, and the lattice constant are
taken equal to unity, (A) = texp[ieAx(rl)], where
Ax(rl) is the projection of the vector potential A onto the
x axis. The corresponding projection of the current den-
sity is 

(13)

Let us write the vector potential as A = Hz(–y, 0, 0),
where the z axis is perpendicular to the sample plane
and the origin lies at the sample edge. Thus, the screen-
ing current will flow along the x axis. We impose peri-
odic boundary conditions in x and take the boundary
values on the y axis to be zero, so that the sample
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Fig. 4. Distribution function P of the normalized order
parameter ∆(ri)/ ||∆(ri)|| in the case of T  Tc (the super-
conductor–metal transition) at W = 1.5t (solid curve) and in
the case of strong disorder with W = 4t at T = 0 (dashed
curve). For comparison, the distribution of ∆(ri)/ ||∆(ri)|| is
also given at W = 1.5t and T = 0 (dash-dotted curve). The
calculation was carried out for a square lattice with N =
24 × 24 sites and with the parameters V0 = –2.5t and ne = 0.4
for an arbitrarily chosen disorder configuration.
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becomes coiled.2 Figure 5 shows the calculated temper-
ature dependence of the ratio of the average current
density Jx = (1/N)Σl 〈 jx(ri)〉  to the applied magnetic field
Hz at Hz  0. The calculation was carried out for an
arbitrarily chosen disorder configuration at W = 1.5t.
We can see from Fig. 5 that D =  becomes

zero simultaneously with the order parameter. Thus,
both criteria for determining the critical temperature
lead to identical results.

Thus, the critical temperature can indeed increase as
a result of disordering. In this case, as is evident from
Figs. 1 and 3 for ne = 0.4, this tendency also persists at
rather long coherence lengths. It should be noted that
there are experimental data that show evidence of this
behavior of Tc. For example, as transition-metal impu-
rities are added to Ti, the critical temperature increases,
which cannot be explained by a simple change in the
carrier concentration [16]. We note that transition met-
als in Ti, as shown by Anderson [17], play the role of
nonmagnetic impurities.

In the beginning of this paper, it was indicated that
the spatial inhomogeneity of the physical quantities
should be taken into account in the case of a supercon-
ductor with a short coherence length, and all the pre-
ceding calculations were carried out with allowance for
such inhomogeneities. Let us consider how neglect of
the inhomogeneities can change the results. To this end,

2 The zero boundary values on the x axis are taken to exclude a
jump in the vector potential A at the boundary x = 0.
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parameters V0 = –2.5t, W = 1.5t, and ne = 0.4 for an arbi-
trarily chosen disorder configuration.
P

we sum Eq. (9) over all the sites and divide the result by
the number of sites N. This yields

(14)

where it was taken into account that the wave functions
u(ri) may be taken to be real in the absence of a mag-
netic field. Here, ∆ = (1/N)Σi∆(ri) is the average order

parameter and g(ri , E) = (1/N)Σn (ri)δ(E – En) is the
local density of states. Let us write Eq. (14) in the form

(15)

where g(E) = (1/N)Σig(ri , E), δ∆(ri) = ∆(ri) – ∆, and
δg(ri , E) = g(ri , E) – g(E). When deriving Eq. (15),
it  was taken into account that Σiδ∆(ri) = 0 and
Σiδg(ri , E) = 0. If we disregard the spatial change in the
order parameter or in the local density of states, the sec-
ond term in the right-hand side disappears and we get
the formula

(16)
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Fig. 6. Dependence of the relative critical temperature T/Tc0
on W calculated without regard for the spatial inhomogene-
ity of ∆(ri) and (or) of the local density of states g(ri , E). Tc0
is the critical temperature in the absence of disorder. The
calculation was carried out for a square lattice with N =
32 × 32 sites and with the parameters V0 = –2t and ne = 0.8
and 0.4; averaging was carried out over 20 various disorder
configurations. The root-mean-square deviation is smaller
than the symbol size.
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



INFLUENCE OF DISORDERING ON THE CRITICAL TEMPERATURE 1627
The critical temperature calculated for this case is
shown in Fig. 6. We can see that the relative critical
temperature in the case of ne = 0.4 decreases with the
impurity concentration. This result qualitatively differs
from that obtained previously, which shows the impor-
tance of spatial variations in the order parameter and in
the local density of states. We note that so far the spatial
dependence of the Hartree–Fock energy U(ri) was
taken into account. If U(ri) is constant, a somewhat dif-
ferent pattern arises (Fig. 7). We can see that Tc is
almost not affected by disordering in this case. This is
the same result as that obtained in the Abrikosov–
Gorkov theory, where the spatial inhomogeneity of
∆(ri) and U(ri) is also disregarded and the critical tem-
perature is independent of the impurity concentration.
A comparison of Figs. 6 and 7 shows that the critical
temperature of a superconductor with impurities is sen-
sitive to the spatial inhomogeneity of U(ri). All the
above-mentioned suggests that neglect of the spatial
inhomogeneity can lead to incorrect results. In the case
under consideration, this conclusion is well illustrated
by the qualitative difference in the Tc behavior upon dis-
ordering in the case of ne = 0.4.

In closing, we note that the calculated relative criti-
cal temperature in a disordered superconductor was
always higher at ne = 0.4 than at ne = 0.8 (Figs. 6, 7). In
our opinion, this is explained by the behavior of the
density of states upon disordering. It can be shown that
the major contribution to the integral in formula (16) is
made by a region with a size of the order of |V0 | near the
Fermi energy, i.e., the region of low values of E (the
energy is measured from the chemical potential, which
is close to the Fermi energy in the case of very too high
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Fig. 7. Dependence of the relative critical temperature T/Tc0
on the degree of disordering W calculated without regard for
the spatial inhomogeneity of the order parameter ∆(ri) and
of the Hartree–Fock energy U(ri). Tc0 is the critical temper-
ature in the absence of disorder. The calculation was carried
out for a square lattice with N = 32 × 32 sites and with the
parameters V0 = –2t and ne = 0.8 and 0.4; averaging was
carried out over 20 various disorder configurations. The
root-mean-square deviation is smaller than the symbol size.
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energies of the electron–electron interaction). In the
case of the electron density ne = 0.8, the Fermi energy
is close to a density-of-states peak, which is smeared
upon disordering and makes a smaller contribution to
the integral. As a result, equality (16) is met at a lower
value of Tc. At the same time, the energy range mainly
contributing to the integral in formula (16) at ne = 0.4 is
far from this peak and the integral increases due to tails
in the density of states that arise due to disordering.
Hence, equality (16) in this case is met at a higher value
of Tc. This consideration is valid for |V0 | of the order of
t. At large values of |V0 |, this dependence will be less
pronounced, since the entire energy band will contrib-
ute to the integral. At small values of |V0 |, the critical
temperature in formula (16) will depend almost exclu-
sively on the density of states at the Fermi level; this
case calls for detailed study of the g(0) behavior. The
change in the chemical potential upon disordering
should also be taken into account, since the average
number of electrons was fixed. We note that the mech-
anism described above is probably also valid in the case
where the spatial variations in the order parameter and
in the local density of states are not disregarded. How-
ever, this mechanism does not explain the increase in Tc

upon disordering, because this increase is most likely a
result of several factors and the most important role is
played by the strong spatial inhomogeneity of ∆(ri) and
g(ri , E).

4. CONCLUSIONS

(i) The inhomogeneity of the superconducting order
parameter in coordinate space should be taken into
account in calculations of the physical characteristics
of superconductors with a short coherence length.

(ii) The critical temperature of s-wave superconduc-
tors with a short coherence length can increase due to
disordering.
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Abstract—Doping the YBaCuO superconducting ceramic with 3–5 wt % silver is shown to substantially
increase its microplasticity and strength. Temperature spectra of microplastic strain rates for YBaCuO/Ag
ceramics with 0, 1.6, 2.9, 4.2, and 7.6 wt % silver were obtained. The structure of the spectra and the relation
of one of the peaks to the superconducting transition are discussed. The specific features of the I–V character-
istics of samples cooled in a magnetic field are considered. It is shown that the position of the rising branch of
a I–V characteristic depends on its origin; this observation can be used to fix two or more stable states of an
HTSC-based memory cell. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A serious shortcoming plaguing high-temperature
superconductors (HTSC) and limiting their application
potential lies in their fairly poor mechanical properties,
namely, the low strength and fracture toughness, the
inability to undergo noticeable plastic deformation,
and, as a consequence, the impossibility of mechani-
cally processing blocks of HTSC materials and their
tendency toward brittle fracture [1, 2]. This lends par-
ticular importance to attempts at developing and study-
ing HTSC materials with improved mechanical charac-
teristics. A major approach employed traditionally in
this area is doping HTSCs with the aim of increasing
the strength and plasticity while at the same time retain-
ing (or improving) their electrical properties. Adding
silver in the course of preparation of HTSC ceramics
was one of the first techniques used, because silver
enhances oxygen diffusion and, therefore, favors the
retainment of superconductivity. Moreover, silver
reduces the resistivity of HTSC materials in the normal
state and also reduces their contact resistance. The
strength and fracture toughness (the critical coefficient
of fracture toughness K1c) were observed to increase
with Ag content in YBaCuO/Ag composites [3–5]. Sil-
ver doping was also found to reduce the effect of uniax-
ial compression on the I–V curves [6]. It was assumed
that silver, as a soft metal, would be capable of lowering
local strains at grain boundaries, which are weak links
in HTSC ceramics, as well as favor the creation of inter-
nal long-range strain fields in a sample. A study was
also made of the variation in the mechanical properties
(strength, fracture toughness) with the way in which Ag
is introduced (mixing YBaCuO with Ag metal powder
or holding it in an AgNO3 solution) [5].
1063-7834/03/4509- $24.00 © 21629
Measurements of the critical superconducting tran-
sition temperature Tc and of the critical current density
jc were conducted on silver-doped HTSCs more than
once, with sometimes contradictory results. For
instance, Tc was reported to slightly increase (by 2–3 K)
with increasing Ag content, to decrease subsequently at
Ag concentrations of 8–10 wt % [5, 7, 8]. In [9], no
changes in Tc were observed in YBaCuO with the addi-
tion of silver. After doping, the critical current at 77 K
increased [5, 10], did not change [11], or varied non-
monotonically [6].

This communication focuses attention on the here-
tofore unexplored microplasticity of YBaCuO/Ag com-
pounds; for this purpose, microplastic strain rate spec-
tra of HTSC ceramic samples, with the Ag content var-
ied from 0 to 15 wt %, were measured at temperatures
ranging from 77 to 300 K. The measurements were
conducted with a laser interferometer [12]. We also
studied the strength of samples under compression, the
I–V characteristics at 77 K, and hysteresis of the I–V
curves of samples with a trapped magnetic flux, which
was observed in [13, 14].

2. EXPERIMENTAL TECHNIQUE

Samples of YBaCuO and YBaCuO/Ag were pre-
pared using the following technique. Powders of Y2O3,
BaCO3, and CuO were mixed in a ratio Y : Ba: Cu =
1 : 2 : 3, ground thoroughly, and pressed into 4 × 4 ×
8-mm pellets. To obtain samples with silver, the
YBaCuO pellets were again ground, with the addition
of AgNO3 powder. This mixture was subsequently
pressed into YBaCuO/Ag pellets with different con-
tents of Ag. All these pellets were twice calcined in
003 MAIK “Nauka/Interperiodica”
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oxygen at a temperature 1200 K for 6 h, with interme-
diate grinding and pressing. After this, the pellets were
cut into samples measuring 2 × 2 × 4 mm. Indium con-
tacts were deposited lengthwise for electrical measure-
ments. The I–V curves were measured with a P138 volt-
age-stabilized source, and the voltage was measured
with a V7-21 microvoltmeter.

The compressive strength was measured on an
Instron 1342 universal testing machine at room temper-
ature. The rate of motion of the mobile grip was
0.2 mm/min.

In studying the microplasticity, the microplastic
strain rate  was recorded by the laser interferometer
technique, which permits measurements at sample
elongations ∆l ≥ 0.15 µm [12]. The interferogram con-
sisted of the parts of a sine curve whose frequency was
proportional to the strain rate and whose number of
oscillation periods was proportional to the magnitude
of the strain. As a rule, the sample was cooled to 77 K
and loaded to a stress σ* 10–20 times lower than the
breakdown value. On passing the strain level necessary
for determination of the strain rate, the sample was
unloaded and heated to the next temperature, where the
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Fig. 1. Temperature spectra of microplastic strain rates for a
YBaCuO/Ag ceramic with a silver content equal to (a) 0,
(b) 1.6, (c) 2.9, (d) 4.2, and (e) 7.6 wt %.

3.2
P

sample was again loaded to σ*,  was measured again,
and so on. The strain rate was determined from the
interferogram at each temperature under identical con-
ditions after the length of the loaded sample has
decreased by ∆l = 0.3 µm. The use of the strain- rather
than the time-based technique to measure the micros-
train rate, as was done, for instance, in [15], is con-
nected with the complex shape of the initial stage in the
strain (creep) curve in the low-strain region (in particu-
lar, with the deformation delay in several cases) [12].

3. RESULTS AND DISCUSSION

3.1. Microplasticity and Strength

Figure 1 presents rate spectra of small inelastic
strains of YBaCuO/Ag samples containing different
amounts of silver. The spectra are seen to differ mark-
edly in the magnitude of the strain rate (and of the
strain). Because the times of holing under a load at dif-
ferent temperatures did not differ strongly, the strain
was obviously larger, the higher the measured strain
rate. The total strain suffered by a sample in the course
of successive loading sessions made at different tem-
peratures (disregarding the subsequent unloadings
causing complete or partial recovery of the strain [15])
may be conveniently presented as the sum of measured
strain rates multiplied by an average loading time. In
the case of curves drawn through equal numbers of
experimental points, the total strain can be numerically
estimated from a comparison of the areas bounded by

(T) curves obtained at different temperatures. The
above relation (an increase of the strain rate and strain
in magnitude with increasing Ag content) becomes evi-
dent upon inspection of Figs. 1a–1d, i.e., up to Ag con-
centrations ~5 wt %. For higher Ag concentrations, the
measured strain rate decreases. This may be a conse-
quence of a real decrease in the strain rate due to the
material changing structurally with increasing Ag con-
tent. One could conceive, however, of another explana-
tion, namely, that in the initial stage of loading the
strain rate  increased so much that at the time of its
measurement we are already in the region of strain
decay, i.e., close to the end of the microplasticity range
[12]. As shown in [6], at low Ag concentrations, a com-
pressive stress is observed to affect the I–V characteris-
tics as well, whereas at higher concentrations this effect
is not seen.

In the 77- to 300-K range, the microplastic strain
rate spectrum in YBaCuO ceramic samples differing in
structure and oxygen content was shown in [6, 12] to
exhibit three main peaks, more specifically, one at the
superconducting transition Tc ≈ 90 K, one at 250–270 K,
and one (sometimes two) peak in between with no fixed
position. A similar situation (with some additional fea-
tures) is observed in YBaCuO/Ag samples. The  peak
at Tc was found in all samples, but, in samples doped
with Ag, this peak acquires a satellite at 100–105 K.

ε̇

ε̇

ε̇

ε̇

HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



        

EFFECT OF SILVER CONTENT 1631

                                                                       
Also, while in the sample with 1.6 wt % Ag the second
peak is barely discernible, in the samples with 2.9 and
7.6 wt % Ag, it considerably exceeds the peak at Tc in
amplitude. As shown in [12, 15], the maximum in the

(T) dependence signifies the appearance or disap-
pearance of some mechanism of slowing down the
deformation. For instance, the maximum at Tc is
assigned to the acceleration of dislocation motion as a
result of the electronic component of their retardation
switching off at the transition to the superconducting
state, an effect known to exist in metallic superconduc-
tors. As a result, the frequency factor in the expression
for the rate of thermally activated dislocation depin-
ning increases [16].

Anomalies near Tc were also observed to occur in
studies of internal friction in YBaCuO samples and the
temperature behavior of the elastic modulus, the linear
expansion coefficient, and differential scanning calo-
rimetry curves [8, 17–19]. The same studies also
revealed the occasional appearance of a second peak at
115 K, which is particularly pronounced in Ag-doped
samples [8]. It should, however, be noted that in some
studies no features were observed in the temperature
dependences of elastic characteristics near Tc [20].

The behavior of the peak at 250–270 K is similar to
the behavior of the general level of strain rates
described above; indeed, the peak amplitude grows
with increasing Ag concentration up to ~5 wt %, after
which it decreases. A sharp increase in the strain rate
with temperature starts for YbaCuO with 2.9 or
4.2 wt % Ag from ~200 K. No features were revealed in
the appearance of a peak (peaks) in the temperature
interval between Tc and 250 K; the peak(s) can have a
different amplitude, can be narrow or broad, and are
unstable in temperature.

The increase in the rate and in the magnitude of
microplastic strain with increasing Ag content also
affects strength measurements. If we assume that an
increase in temperature unfreezes some mobile struc-
tural elements in the region of the spectral peaks [15]
(except the peak at Tc, which, by contrast, is associated
with their freezing) and that the strength is determined
by the integrated deformation (relaxation) ability of a
material, then we come to the conclusion that the
higher the strain rate for T ≤ T* (T* is the strength mea-
surement temperature), the higher the strength should
be. As seen from Table 1, the room-temperature
strength does indeed grow with Ag concentration, par-
ticularly at high Ag contents. The latter possibly argues
for the above assumption that the spectrum obtained on
the YBaCuO sample with 7.6 wt % Ag actually refers
to strain measurement conditions at the end of the
microplasticity range following a relatively large initial
strain.

ε̇
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3.2. I–V Characteristics of YBaCuO/Ag Samples 
with Trapped Magnetic Flux

As shown earlier [13, 14], many HTSC ceramics
with grain-trapped magnetic flux typically exhibit I–V
hysteresis in the low-current region. This effect was
assigned in [13, 14] to redistribution of the trapped flux
and was observed, in particular, in silver-doped ceramic
samples; it was sometimes pronounced to such an
extent that as the current was increased after the initial
I–V region the sample completely recovered its super-
conducting state, so that one actually could identify two
values of the critical current Ic [14]. Figure 2 displays
I–V curves of a sample with 10 wt % Ag. The arrows
specify the sense of current variation, with the up-arrow
indicating the increase and the down-arrow, the
decrease. Curve 1 shows the initial increase in current
through the superconductor. At a current If , the voltage
drops from point A to point B, after which the voltage
grows again with increasing I but now follows another
curve, BC. The initial state is regained along smooth
curve 2. The loop closes at a point with the abscissa Is,
which is near the critical current Ic. An increase in the
current above If does not change the lower branch of the
hysteresis loop. If, however, one reduces the current

Table 1.  Strength of YBaCuO/Ag samples with different Ag
contents

Ag content, wt % σ, MPa

0 146.3 ± 6.2

1.6 149.8

2.9 155.7

7.6 226.9

1

2

3
4

Ic
Is Ib If

A

B

C50

40

30

20

10

0 0.2 0.4 0.6 0.8 1.0
I, A

U, µV

Fig. 2. I–V characteristics of a YBaCuO sample doped with
10 wt % Ag after its cooling in a magnetic field of 25 Oe.
(1–2) Initial I–V curve; Is is the starting point of the hyster-
esis loop, and If is the drop point. Ib is the chosen base posi-
tion for recovering the starting (curve 1) and obtaining
intermediate rising curves (3, 4) of the I–V hysteresis loop,
which are determined by the pulses specified in Table 3.
3
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below Is to a level I ≤ Is and then starts to increase it
again, the loop of the following cycle will be fully
determined by the actual value of the current I. The
loop becomes more narrow, the closer the point of the
stop in current approaches Is (curves 3, 4 in Fig. 2). The
current recovery after the drop always occurs along the
fixed curve 2. If, however, the current in an unclosed
cycle is above Is (I > Is), the loop disappears and the I–
V characteristic coincides with curve 2 in both direc-
tions. Note that this behavior of the I–V curves of sam-
ples with trapped magnetic flux can be used to advan-
tage in extremely simple and convenient information
storage devices.

There are reports of attempts to develop memory
devices based on HTSC samples. For instance, in [21],
it was proposed to employ the effect of critical current
suppression in HTSCs, which appears when transport
currents considerably in excess of the critical level are
passed through a sample. However, this method
requires high currents, which is undesirable, because
thermal processes may play a significant role in this
area. Rewriting of information is complicated in this
case by the need to preliminarily delete the previous
record, which can be achieved by heating the sample
above the critical temperature, a certainly undesirable
procedure.

The method proposed in [22] is based on the hyster-
esis of critical current observed to occur in HTSCs with
weak links in cyclic magnetic fields. The observed
behavior of the critical current is believed [22] to be
caused by hysteresis of the intragrain magnetization of
a superconductor. Because it is added to the external
field at the weakly linked grain boundaries, the field
originating from grain magnetization considerably
affects the local critical current of the given Josephson
junction. By varying the magnetic field amplitude prop-
erly, one can vary the grain magnetization and, hence,
the critical current, which is used for information
recording. To implement this method, a storage device
is placed in a magnetic field, whose magnitude deter-
mines the superconductor grain magnetization. The
information is contained in the value of the critical cur-
rent, which is measured in a field lower than the record-
ing field. The magnitude of the critical current substan-
tially depends on the grain magnetization. While hav-
ing certain merits (for instance, the possibility of
writing a large number of values into a storage cell),
this method is based on information recording by a
magnetic field, which entails marked technological dis-
advantages. The implementation of this method is also
complicated by the fact that the reading of stored infor-
mation is effected by the measurement of the electrical
characteristics.

At the same time, the existence of a hysteresis loop
in the I–V curve of a superconductor with trapped mag-
netic flux permits one, by combining a base current Ib

in the interval (Is, If) with pulses ∆I that are variable in
amplitude, to obtain various voltages across the HTSC
P

sample which will correspond to the diverse stable
states of the cell. To hold the cell at the given point on
the I–V branch determined by the prehistory, a dc elec-
trical current Ib is needed. Its value, as pointed out
above, should lie within the hysteresis loop. A super-
conductor can be switched from one I–V branch to
another by applying pulses to drive the superconductor
beyond the I–V hysteresis region. The state of the cell
(voltage U at a given current Ib) represents the actual
information recorded. Weaker current pulses, which do
not drive the HTSC beyond the hysteresis region, as
well as variation in the base current to values Ib > If or
Ib < Is, cannot be employed to record information.

To write information in the regime of two stable
positions, it is necessary and sufficient to have two
pulses, ∆I1 > (If – Ib) and ∆I2 = –Ib. The amplitude of the
first pulse is chosen such that the total current through
the superconductor will exceed the drop current If ,
which will set the cell to a position on curve 2. Simi-
larly, the ∆I2 pulse will set the cell to a stable position
on curve 1, because the total pulse current through the
cell is zero. In this case, only the extreme branches of
the superconductor I–V hysteresis loop are used. To
record information in the regime of several (more than
two) stable positions, two successive pulses,  = ∆I1

and , are employed, with the amplitude of the sec-

ond pulse satisfying the inequality (–Ib) ≤  ≤ (Is –
Ib). In this case, the first pulse prepares the cell for
recording by setting it to a position on curve 2, whence
it can fall on any of the available intermediate I–V
branches. This preparation is necessary for unambigu-
ous information recording. The recording itself is made
by the second pulse , chosen such that the total cur-
rent falls in the interval [0; Is]; its amplitude identifies
the specific I–V branch in the space between curves 1
and 2. Hence, the pulse amplitude ∆I2 will define the
information recorded in the cell. The information
recording process is seen to be extremely simple and
convenient. The sample needs only to be preliminarily
treated once by a magnetic field (cooling in it), the sub-
sequent writing and reading being effected by electrical
pulses only. Note that if the sample regains its super-
conducting state after the initial I–V region and the drop
in voltage, which was frequently observed to occur in
silver-doped samples [13], this cell may be particularly
suitable for developing logic cells in which the zero
voltage at the sample may be conveniently chosen to
signify “0” and any nonzero voltage, to signify “1.”

The present experiments were conducted on a
YBaCuO/Ag ceramic with a low critical current to
avoid the possible effect of contact heating. The sample
measured 3 × 3 × 7 mm. A magnetic field of 25 Oe was
inserted into the sample by field cooling. Magnetic field
trapping by the sample reduced its critical current from
0.76 to 0.22 A. The characteristic points on the hyster-
esis loop were Is = 0.25 A and If = 0.8 A (Fig. 2). On

∆I1'

∆I2'

∆I2'

∆I2'
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these grounds, the value Ib = 0.6 A was chosen. The
operation of the cell is illustrated in Tables 2 and 3, with
the experimentally measured pulse amplitudes speci-
fied on the left and the cell voltage, on the right. Inspec-
tion of Tables 2 and 3 shows that the cell can occupy
one of two extreme positions (Table 2) or any one in
between, including the boundaries (Table 3).

4. CONCLUSION

Thus, silver-doped ceramic exhibits higher mechan-
ical properties, such as the strength and microplastic
strain rate, which is a technologically attractive point.
The existence of I–V hysteresis in samples with trapped
magnetic flux permits one to use them, in addition to
the undoped material, for the development of storage
cells with two or more stable positions.
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Abstract—A study of the variation of photoluminescence spectra of bulk Eu-doped GaN samples revealed that
the dopant can reside in the crystal in various charge states depending on the total defect concentration in the
starting semiconductor host matrix. In crystals with the lowest concentration of shallow-level defects, the ion
can exist only in one charge state, Eu3+. At higher concentrations of such defects, Eu can be observed in two
charge states, Eu2+ and Eu3+. A rare-earth impurity was found to act as a getter of defects in the starting GaN
matrix. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of light-emitting devices capable
of operating at room temperature is a topical issue in
present-day optoelectronics. Wide-band-gap GaN
doped by rare-earth (RE) ions (GaN〈RE〉) is a promis-
ing material for this area. The interest in GaN〈RE〉  can
be traced to the fact that the temperature quenching of
photoluminescence (PL) characteristic of an intracenter
transition in an RE ion is weaker, the wider the band
gap of the semiconductor matrix doped by the RE ion
[1–3]. Moreover, GaN〈RE〉  allows a considerable
increase in the RE concentration as compared to crys-
talline Si (c-Si) and films of amorphous hydrogenated
silicon (a-Si : H); therefore, the intracenter transition
intensity can also be increased. As exemplified by the
case of GaN〈Er〉 , this distinction is a result of a change
in the bonding type from ionic–covalent (Ga–N) to
ionic (Er–N), in contrast to the Er–Si metallic bonding
in c-Si〈Er〉  [4].

Despite considerable progress reached in the devel-
opment of light-emitting devices based on gallium
nitride, the decrease in the total defect concentration in
crystals (by defects we understand here any lattice
structure imperfections) remains an issue. One of the
methods to reduce defect concentration in semiconduc-
tor materials consists in doping them with RE ions [5]
to produce a gettering effect. Gettering methods are
widely employed in semiconductor technology. For
instance, gettering has been successfully employed to
reduce the concentration of residual impurities and
defects in crystalline silicon to 1011 cm–3, which pro-
vided a favorable solution to the problem of obtaining a
material for high-power and photoreceiving devices.
This study explores europium (Eu) as a dopant. Eu was
chosen for its ability to reside in the semiconductor
matrix (GaN) in two different charge states, Eu2+ and
Eu3+ [6]. There are grounds to believe that Eu2+ can act
as an acceptor. This is important because an acceptor
1063-7834/03/4509- $24.00 © 21634
dopant provides compensation in n-type materials, to
which bulk undoped GaN crystals usually belong.

The present communication reports on a study of
photoluminescence spectra of bulk Eu-doped GaN
crystals for a range of total defect concentrations in the
starting semiconductor matrix.

2. EXPERIMENT

The starting bulk GaN crystals were prepared by
chloride vapor phase epitaxy. X-ray structural analysis
showed the halfwidth of the diffraction reflection curve
to be the same not above 10′, in all the samples studied.
The samples differed in surface morphology, with non-
uniformities measuring from 1 to 10 µm. In the meth-
ods employed until recently, RE ions were incorporated
into the GaN matrix either using molecular-beam epit-
axy (MBE) during the growth [1, 2] or by implantation
[3] with subsequent anneal. However, the effect of
defect concentration in the starting semiconductor
matrix on the PL spectra taken after doping was not
considered. As in [6, 7], diffusion was used to dope Eu
into GaN, because this technology of introducing a
dopant provides a lower concentration of additional
defects as compared to implantation involving a high-
energy impact approach. In addition, the diffusion
method, unlike in the introduction of Eu in the course
of growth, brings about neither a change in the crystal
growth kinetics nor the formation of residual segre-
gates.

Luminescence was excited by a pulsed nitrogen
laser (λ = 337.1 nm, spot diameter on a sample of
150 µm). The PL spectra were recorded using an SDL-
2 diffraction spectrometer in the time-resolved photon
counting mode. The spectral measurements were con-
ducted at 77 K. To ensure adequate comparison of
emission spectra of various samples, the controllable
conditions of the experiment (temperature, excitation
003 MAIK “Nauka/Interperiodica”
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density, spectral resolution, laser beam incidence
angle) were maintained constant.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The spectra of near-edge photoluminescence
(NEPL) of the starting bulk GaN crystals (samples 1, 2)
are displayed in Fig. 1. Inspection of the spectra of
these samples reveals a large difference in the intensity
and halfwidth (FWHM) and different positions of the
line maximum. For sample 1, the energy of the maxi-
mum E = 3.463 eV (358.1 nm) and FWHM = 9 meV,
while for sample 2, E = 3.451 eV (358.7 nm) and
FWHM = 100 meV. The NEPL line intensity in sample 2
is an order of magnitude higher than that of sample 1.
Our analysis of the PL spectra was focused primarily
on the intensity of the NEPL line and its FWHM. This
line is inhomogeneously broadened. The inhomoge-
neous broadening is due to the fact that the radiative
recombination of carriers localized at various shallow
centers occurs at slightly different wavelengths. The
reason for this difference is the dispersion in the shal-
low-donor thermal activation energy ELT. The disper-
sion in ELT originates, in turn, from the different magni-
tude of the local potential Vloc at the location of the shal-
low impurities. This means that the various defects
located close to shallow impurities change the crystal
field and, thus, affect the radiation wavelength. There-
fore, the large difference in the FWHM of the NEPL
line between the starting samples is due to the various
defects being present in them in different concentra-
tions. The intensity and FWHM of the NEPL line
depend on the concentration of the radiative and nonra-
diative states and the carrier transport to them. The car-
rier transport parameters are governed, in turn, by the
density-of-states tails in the band gap and by the posi-
tion of the percolation level [8–11]. Whence it follows
that samples producing different PL intensities under
identical experimental conditions differ primarily in the
defect concentration. The defects create both deep lev-
els (which substantially shorten the free-carrier life-
time) and fluctuations in the density of band states. In
addition, in n-GaN crystals, the FWHM of the NEPL
line at T = 77 K depends on carrier concentration [12]
and, for the samples under study (Nd – Na > 1017 cm–3),
should be not less than 30 meV.

In sample 1, the emission line with energy E =
3.463 eV (358.1 nm) is due to the exciton bound to a
shallow donor [13]. In view of the above factors favor-
ing PL line broadening, the anomalously small value of
FWHM for sample 1 appears remarkable. The small
intensity and FWHM may be due to the shallow donors
being located below the percolation level: so the num-
ber of donors involved in the formation of this emission
line is small sample 2, has a lower defect concentration
(compared to sample 1). It exhibits fairly strong NEPL
and a band originating from donor–acceptor recombi-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
nation (DAR PL). The presence of the DAR-PL band
and the position of the NEPL line at Emax = 3.451 eV
(which is assigned to the emission of a neutral-accep-
tor-bound exciton [14]) indicate the existence of shal-
low acceptor levels.

Figure 2 illustrates the spectra of the corresponding
samples obtained after their doping with europium
(curves 1, 2). Eu doping is seen to strongly affect the PL
spectra (Fig. 2). Sample 1 exhibits an increase in both
the intensity of the emission line at Emax = 3.451 eV
(359.2 nm) (by five times) and the value of FWHM (by
a factor 7.4) as compared to the undoped crystal; strong
DAR-PL lines also appear at E = 3.254 eV (381 nm)
and 3.17 eV (391 nm). Sample 2 reveals one line at
Emax = 3.463 eV (358.0 nm), with its peak shifted short-
ward by 0.7 nm and FWHM = 9 meV. The intensity of
this line decreased by nearly an order of magnitude as
compared to the undoped sample, while the DAR PL
line disappeared completely. It should be stressed that
an increase in the DAR-PL intensity similar to that
observed in sample 1 was found to occur in magne-
sium-doped GaN crystals grown by MBE on GaAs and
sapphire substrates with an ionized acceptor concentra-
tion na = 1.5 × 1017 cm–3 [15]. It is presently believed
that RE ions doped into III–V compounds create iso-
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electronic traps [16], but there are no experimental data
indicating what part, donor or acceptor, they play in
GaN. It is appropriate to note in this connection that the
formation of a donor–acceptor recombination band in
GaN〈Eu〉  suggests that, in this particular case, Eu2+ acts
as an acceptor.

In addition, a long-wavelength emission is seen in
Eu-doped samples. The spectrum of sample 1 features
only one band, peaking at 660 nm, which is apparently
due to the 5D1–7F3 intracenter transition. The spectrum
of sample 2 exhibits both a fairly broad band with a
maximum at E = 2.306 eV (543 nm) and a band peaking
at 660 nm.

The change in the shape of the PL spectra of Eu-
doped samples should be analyzed with due account of
the following points. As already mentioned, the starting
samples differed in the host defect concentration and
the scale of surface nonuniformities. Data obtained by
Mössbauer and ESR spectroscopy [17] and measure-
ments of the electrophysical properties of a-Si : H〈Eu〉
films suggest that the actual charge state of the Eu ion
is determined by the host defect concentration (dan-
gling and stressed Si–Si and Si–H bonds, deep and
shallow levels). There are, therefore, grounds to expect
that Eu ions present in GaN samples with different
defect concentrations may also reside in different
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Fig. 2. Photoluminescence spectra of Eu-doped GaN crys-
tals: (1) sample 1 and (2) 2.
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charge states (Eu2+, Eu3+). This property is known to
result from the ionic radius of Eu3+ (Ri ≈ 0.95 Å) being
less than that of Eu2+ (Ri ≈ 1.1 Å) [18]. The substantial
decrease in the intensity and FWHM in sample 2 (by
more than an order of magnitude) should be assigned to
the fact that the Eu3+ ion acts here as a deep trapping
level, thus complicating carrier transport to the radiat-
ing states accounting for the DAR-PL line intensity and
FWHM. Note also that the donor–acceptor recombina-
tion band (associated with shallow impurities) disap-
pears in crystal 2. This may mean the appearance of
deep acceptors related to Eu2+ + nitrogen vacancy com-
plexes. This assumption is supported by the presence of
an emission at a wavelength of 430.4 nm (2.88 eV),
which appears after Eu doping and is characteristic of a
nitrogen vacancy [19]. The PL spectrum in the long-
wavelength spectral region of this crystal is similar in
shape to that of GaN〈Eu〉  reported in [20].

The only charge state that is realized preferentially
after Eu doping in the starting (undoped with Eu) sam-
ple 1 with the lowest concentration of shallow defects
but the highest concentration of deep defects is Eu3+.
This is indicated by the existence in the long-wave-
length part of the spectrum of a band peaking at
660 nm, which is most likely due to Eu3+. As is evident
from the spectrum of sample 1 (Fig. 2), in this case, the
DAR-PL line of GaN (3.451 eV) broadens. This broad-
ening is caused by the formation of additional defects
accompanying RE doping; these defects bring about an
increase in the dispersion of shallow-state energies ELT
and an increase in the concentration of primarily shal-
low acceptors, which is indicated by the strong DAR-
PL line appearing after doping with Eu. Thus, one may
put forward the assumption that the gettering effect
reduces to the decrease in the number of dangling or
stressed Ga–N bonds [4].

Comparison of the PL spectra permits the conclu-
sion that the incorporation of Eu in n-GaN crystals
induces the gettering effect as a result of the formation
of shallow acceptors originating from RE ions. The
actual type of the acceptor (shallow or deep) is gov-
erned by the charge state of the Eu ion (3+ and 2+,
respectively). The prevailing RE charge state will be
determined by the defect concentration of the starting
crystals. Gettering of defects by RE ions, in turn,
occurs differently, depending on whether the crystal is
doped primarily by the Eu3+ or Eu2+ ions. In the first
case, deep levels transform predominantly into shallow
ones. This gives rise to the appearance of a DAR PL
line and an increase in the NEPL intensity and FWHM.
In the second case (the presence of two charge states,
Eu2+ and Eu3+), conversely, shallow traps convert to
deep levels, thus reducing both the FWHM and inten-
sity of the NEPL. At the same time, when analyzing the
factors responsible for the change in the FWHM of the
358.1-nm line (in the starting crystal), the longward
shift of the maximum (359.2 nm), the increase in the
NEPL intensity, and the appearance of the DAR-PL
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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band, one should bear in mind that intracenter emission
of the Eu2+ and Eu3+ ions is known to occur in different
spectral regions. In particular, within the 353- to
441-nm interval (depending on the host material), only
the emission due to Eu2+ is observed. Therefore, the
emergence of a narrow line at 359.2 nm should proba-
bly be assigned to the intracenter transition in the Eu2+

ion as well.

4. CONCLUSIONS

Thus, a study of the variation of PL spectra of bulk
GaN〈Eu〉  crystals revealed an effect of defect gettering
(which is most likely due to a decrease in the number of
dangling bonds and a transformation of deep to shallow
states and, conversely, of shallow to deep states) in the
starting n-GaN matrix as a result of the creation of
acceptor states. It was found that the different charge
states of the Eu ion, Eu2+ and Eu3+ (or only Eu3+), are
realized depending on the defect concentration in the
starting matrix. The lowest concentration of shallow
levels and the highest deep-level concentration favor
the prevalence of only one charge state of the impurity
ion, Eu3+, while in the opposite case, europium exists in
two charge states, Eu3+ and Eu2+. Therefore, the actual
acceptor type (shallow or deep) is probably determined
by the charge state of the RE ion.
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Abstract—Field exciton–vibration spectroscopy of the ZnTe : Ni semiconductor has revealed a local lattice
vibrational mode due to the nickel impurity, which is negatively charged relative to the lattice. The electroab-
sorption spectrum of ZnTe : Ni contains equidistant vibrational replicas of the zero-phonon line of frequency
13 ± 1 THz, which exceeds the limiting phonon frequency in ZnTe by more than twofold. Possible reasons for
the formation of the local mode in ZnTe : Ni are analyzed within the concept of ionic–covalent character of
ZnTe bonding, and the large width of the local mode resulting from its anharmonicity is discussed. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

3d transition-metal impurities in semiconductors
exert a considerable effect on the electronic properties
[1]. The influence of the 3d impurities on lattice vibra-
tions of semiconductors have not attracted as much
attention. The partially filled 3d shells of impurity
atoms allow them to exist in a variety of charge states.
Atoms of isoelectronic impurities are, as a rule, neutral
relative to the lattice, because they donate as many elec-
trons to the formation of a chemical bond as the atoms
they substitute for. The changes in the mass and in the
force constants resulting from the substitution of an
impurity center for a lattice atom are small, and, there-
fore, the changes in the lattice vibrational modes
induced by a 3d impurity are insignificant. A change
may become manifest, for instance, in the appearance
of additional weak peaks in the Raman spectra [2].
Transition metal impurities can, however, gain charge
with respect to the lattice as a result of the change in the
number of electrons in the d shell. The charge state of
3d impurities can change either through the formation
of shallow impurity centers or in photoionization of the
impurity by light. In this case, the Coulomb field of the
charged impurity center displaces ions in the nearest
environment, which strains the lattice in this region of
the crystal and, thus, may affect its properties. This
change may influence, for instance, the photorefractive
effect, which is particularly noticeable for ZnTe and
CdTe, which exhibit a large electrooptical effect [3, 4].
It thus appears of interest to study the properties of
these semiconductors with 3d metal impurities charged
relative to the lattice.

Such a study would also be of interest in connection
with the reports an remarkable changes in the proper-
1063-7834/03/4509- $24.00 © 21638
ties of wide-band-gap nickel-doped II–VI compounds
(ZnS : Ni, ZnO : Ni, ZnSe : Ni, CdS : Ni) caused by the
presence of a 3d charged impurity. The vibrational rep-
licas of the impurity exciton zero-phonon line observed
in the above compounds using field exciton-vibrational
spectroscopy [5], as well as the abrupt drop in the
phonon thermal conductivity of ZnSe : Ni detected
recently in the 5- to 15-K interval [6], suggest that the
charged nickel impurity induces local vibrations char-
acterized by a strongly pronounced anharmonicity. An
attempt was made in this work to detect and study the
acceptor-like nickel exciton [d9h] in ZnTe : Ni by field
exciton-vibrational spectroscopy, because this state, on
the one hand, is induced by a negatively charged nickel
impurity and, on the other hand, interacts with the lat-
tice vibrations initiated by a charged impurity center.
The studies showed the photoinduced lattice vibrations
of ZnTe : Ni to differ substantially from those of other
II–VI Ni-doped compounds. The present communica-
tion deals with possible reasons for this difference.

2. EXPERIMENTAL

The absorption spectrum obtained at the edge of the
photoionization band of a substitutional impurity con-
sists of a zero-phonon line, due to an electronic transi-
tion to the impurity exciton state, and its vibrational
replicas, reflecting the interaction of the impurity exci-
ton with photoinduced lattice vibrations. The series of
vibrational replicas becomes superposed on the absorp-
tion spectrum as a result of carrier transitions from the
impurity to the allowed band; this process considerably
complicates identification of this line from absorption
spectra. Therefore, field-induced exciton–vibration
spectroscopy (the method of electroabsorption) was
003 MAIK “Nauka/Interperiodica”
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employed to detect the photoinduced vibrations. An ac
electric field F = FMcosΩt was applied to a sample
through which light was passed. This field strongly
affects the impurity exciton zero-phonon line and its
vibrational replicas. A comprehensive description of
the application of the electroabsorption method for
investigating exciton states in semiconductors doped by
3d transition elements can be found in review [7].

We conducted measurements on ZnTe : Ni samples
(nickel concentration 1018 cm–3) within the spectral
region 0.87–1.35 eV, with the electric field amplitude
FM varied from 20 to 40 kV/cm. At lower amplitudes,
the field does not noticeably affect the impurity exciton
lines, while higher fields are capable of initiating elec-
trical breakdown of the sample. The electroabsorption
spectra were measured on a setup with a MDR-3 mono-
chromator that was employed earlier in studies of the
acceptor-like nickel exciton in ZnS : Ni, ZnSe : Ni,
ZnO : Ni, and CdS : Ni samples [5]. The edge of the
nickel photoionization band in ZnTe : Ni falls in the
infrared range; therefore, a PbS-based photoresistor,
which is less sensitive than a PM tube, was used for sig-
nal detection. The resolution, ~3 meV, was substan-
tially poorer than in measurements with a PM tube. The
low sensitivity of the photoreceiver accounts for the
fairly high noise level, which is particularly pro-
nounced at the beginning of the spectrum (near the
zero-phonon line) and at its end, where the dc and ac
components of the signal decrease sharply because of
the impurity absorption in the sample [8] (Fig. 1). The
amplitude of the second electroabsorption harmonic α2
was calculated from the relation α2 = I2/(dI0), where d
is the sample thickness in centimeters (it was 0.05 cm),
I2 is the ac photoreceiver signal component at the dou-
ble frequency 2Ω , and I0 is the dc component. The error
in determining α2 was 15–20% in the most unfavorable
conditions. Despite the poorer photoreceiver sensitiv-
ity, we succeeded in obtaining new information on pho-
toinduced vibrations in ZnTe : Ni, which is particularly
interesting in comparison with the results quoted in [5].

The observed spectrum of the second electroabsorp-
tion harmonic amplitude α2 (Fig. 1) consists of a zero-
phonon line (ZPL) and a series of its vibrational replicas,
which occupy approximately equidistant positions sepa-
rated by 55 ± 4 meV (measurement error at a confidence
level of 0.95). An electric field displaces the acceptor-
like exciton lines toward lower energies, to form a struc-
ture with a positive and a negative peak of approximately
the same amplitude, with the zero crossing point corre-
sponding to the center of the absorption line [7].

3. DISCUSSION OF RESULTS

3.1. Acceptor-Like Exciton

If the photon energy "ωA is equal to the distance
from the nickel acceptor level (0/–) to the top of the
valence band, an impurity absorption band produced by
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
valence-band electrons transferring to the impurity cen-
ter appears (transition A for ZnSe : Ni in Fig. 2):

  (1)

As a result of this transition, the impurity center, which
was originally neutral with respect to the lattice,
acquires a negative charge and a free hole is created in
the valence band. The Coulomb field of the charged
impurity center confines the hole to a hydrogen-like
orbit to form an acceptor-like exciton (AE), which is
actually the excited state of the impurity center (transi-
tion a for ZnSe : Ni in Fig. 2):

  (2)
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Fig. 1. (a) Absorption spectrum of ZnTe : Ni [8] (nickel con-
centration 1019 cm–3, T = 4.2 K) and (b) electroabsorption
spectrum of a ZnTe : Ni sample obtained in an electric field
FM = 40 kV/cm (nickel concentration 1018 cm–3, T = 4.2 K).
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The brackets denote here Coulomb interaction.
It is to this transition that the zero-phonon line of the

nickel acceptor-like exciton in ZnSe : Ni, ZnO : Ni,
CdS : Ni, and ZnS : Ni was assigned in [5].

Relations (1) and (2) were written under the
assumption that the nickel impurity creates states of the
crystal field resonance (CFR) type in the lattice [12]. In
other words, the energy needed to transfer an electron
from a d8 configuration state to the conduction band
(d8  d7 + e) is less than the band gap width Eg; i.e.,
the donor level (0/+) falls into the gap. For the ZnSe : Ni
and ZnS : Ni compounds, this condition is satisfied,
because donor levels have been experimentally
detected for "ω < Eg in studies of donorlike excitons
[d7e] [1, 7]. For ZnTe : Ni, the position of the donor
level (0/+) reckoned from the vacuum level falls into
the valence band [7, 9, 10] and there are grounds to
believe that the states produced in the hybridization of
d states of an impurity with p states of the valence band
(i.e., of an anion) are expelled into the band gap. In this
case, transitions (1), involving nickel photoionization,
and transitions (2) to a state of an acceptor-type impu-
rity exciton can be presented in the form

  (3)

  (4)

Transitions (3) and (4) bring about rearrangement of
the electronic density structure, with the d shell having
now nine electrons. Note that the impurity, as in the
case of transition (2), becomes negatively charged and
its Coulomb field binds the hole formed in the valence
band. This rearrangement is driven by the creation of a
dangling bond hybrid (DBH)-type state [12], denoted
here by (d7p), in the ZnTe band gap by the Ni impurity.
If, however, the impurity has an acceptor level (0/–) in
the band gap and light of energy "ω < Eg transfers an
electron from the valence band to the impurity, then a
d 9 configuration, i.e., a CFR-type state, forms. This
interpretation is based on the observation in ZnTe : Ni
of intracenter transitions of type 2T2  2E for the
nickel d 9 configuration with an energy ~0.384 eV [13].
This figure agrees well with the energy of intracenter
transitions of the nickel d 9 configuration in ZnSe : Ni
(0.405 eV) and ZnS : Ni (0.438 eV) [13], where the
presence of the d 9 configuration was reliably confirmed
by EPR measurements during nickel photoionization,
the reaction described by Eq. (1) [14, 15]. It is this sit-
uation that is illustrated in Fig. 2 for the ZnTe : Ni com-
pound [9–11]. The position of the acceptor-like exciton
line is determined by the energy separation between the
valence band top and the (0/–) level minus the hydro-
gen-like carrier energy εh, as shown in Fig. 2. The
hydrogen-like energy of a shallow acceptor in ZnTe is
~60 meV. Adding this energy to the energy of the
acceptor-like exciton zero-phonon line (0.886 eV)
yields 0.946 eV. It is approximately in this region of
photon energies that absorption starts to grow rapidly
with an increase in the energy of the photons (Fig. 1).
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Note the very large width of the zero-phonon line
compared to those in other II–VI Ni-doped compounds.
Assuming the absorption line to have Lorentzian shape

(5)

its width Γ can be estimated from the relation

(6)

where Emin and Emax are the energy positions of the min-
imum and maximum of the quantity α2("ω) [16]. In our
case, Emin – Emax = 13 meV; hence, Γ = 22.5 meV. This
value exceeds the widths of the Ni [d 9h] AE lines for
ZnS : Ni, ZnSe : Ni, ZnO : Ni, and CdS : Ni by a factor
of two to three [5]. The short lifetime of the impurity
exciton is due to the efficient nonradiative recombina-
tion, a process whose mechanism for the II–VI Ni-
doped semiconductors is described in considerable
detail in [17]. The efficiency of this mechanism derives
from the excited intracenter states of the d8 configura-
tion, which lie below the zero-phonon line of the accep-
tor-like exciton in terms of energy. In ZnTe : Ni, how-
ever, the Ni AE undergoes annihilation [d 9h]  (d7p)
through excited states of the (d7p) configuration.
Because these states differ substantially from the d8

excited states in terms of number and structure, the
nonradiative recombination

[d9h]  (d7p)*  (d7p)

can be more efficient than [d9h]  (d8)*  (d8).
This accounts for the large width of the Ni AE line in
ZnTe : Ni compared to other II–VI Ni-doped com-
pounds.

In concluding the discussion of the acceptor-like exci-
ton zero-phonon line, it is appropriate to note that, while
the nickel acceptor-like exciton line [d 9h] observed by us
in ZnTe : Ni is well within the bounds of the concept of
the nickel excited states in II–VI compounds, the reason
behind the large broadening of the acceptor-like exciton
zero-phonon line requires further study.

3.2. Vibrational Replicas

The electroabsorption spectrum of ZnTe : Ni
(Fig. 1) contains, besides the zero-phonon line, a series
of its phonon replicas. Note the main features of this
structure. First, only one peak is replicated after the
zero-phonon line, which implies that the impurity exci-
ton interacts solely with one vibrational mode, the rep-
etition period Ω = 55 ± 4 meV yields the frequency of
this mode. Second, the vibrational replicas have a very
large width (Fig. 3). Third, the vibrational replicas vary
insignificantly in intensity as their number n increases
and, hence, do not obey the Poisson distribution

(7)
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These features substantially discriminate the structure
of vibrational replicas of the nickel AE [d9h] zero-
phonon line in ZnTe : Ni from the corresponding spec-
tra observed in ZnSe : Ni, ZnO : Ni, CdS : Ni, and
ZnS : Ni [5]. The spectra of the latter compounds
exhibit, in the region of first-order processes, several
vibrational replicas of the zero-phonon line separated
by different energies. This means that the Ni [d9h]
impurity exciton interacts with several vibrational
modes differing in frequency. In the region of higher
order processes, these modes are coupled strongly to
one another because of the anharmonicity. The cou-
pling of the impurity exciton to lattice vibrations is
determined by the ground-state symmetry of the nickel
AE. The ZnSe, ZnS, and ZnTe compounds have the
same symmetry group Td; therefore, the nickel AEs in
these compounds interact with the same set of vibra-
tional states described by the irreducible representa-
tions Γ1, Γ3, and Γ5 [7]. The presence of only one peak
in the first-order region in ZnTe : Ni means that a
change in the nickel charge state in the ZnTe : Ni lattice
gives rise to only one local mode of the set with which
the impurity exciton can interact. The frequency of this
vibration mode is 13 ± 1 THz, which exceeds the limit-
ing frequency of the lattice phonons of this compound
by more than twofold (the LO and TO phonon frequen-
cies at the Brillouin zone center are approximately 5.39
and 5.2 THz, respectively) [18].

Note also the absence of noticeable peaks in the
electroabsorption spectrum that originate from interac-
tion of the Ni [d9h] AE with optical phonons in the
region of first-order processes where the vibrational
density-of-states spectrum (Fig. 3) exhibits two narrow
strong peaks having a width larger than our spectral res-
olution (in Fig. 3, the region of first-order processes is
bounded by a vertical dashed line shifted relative to the
zero-phonon line by 55 meV, as in [5, Figs. 1–3]). The
fact that the experimental spectra exhibit no vibrational
replicas caused by interaction of the nickel acceptor-
like exciton with phonons, whose density is very high
compared to that of the local vibrations induced by the
nickel impurity, suggests that the Ni [d 9h] AE interacts
only weakly with the lattice phonons. This may be con-
sidered an argument against the possibility of strong
interaction of acceptor- or donorlike excitons of 3d
impurities with phonons of an ideal lattice; this view
was put forward earlier [19, 20] but was subsequently
changed on the basis of considerations of an indirect
nature, which are presented in [5].

The very simple structure of the vibrational replicas
of the Ni [d 9h] AE zero-phonon line implies that the
charged nickel impurity in ZnTe : Ni induces local lat-
tice vibrational modes different from those in other II–
VI Ni-doped compounds. The high frequency of the
vibrational mode indicates that the negatively charged
impurity center forms a local mode in ZnTe : Ni. Local
modes with a frequency in excess of that of the lattice
vibrations appear when the impurity atom is consider-
ably lighter than the replaced atom or when the force
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
constant of impurity interaction with the nearest envi-
ronment atoms increases strongly. Because the mass of
the nickel atom (58 a.m.u.) is only 10% less than that of
the zinc atom (65 a.m.u.), it is the latter possibility that
is apparently realized in our case as a result of a change
in the impurity charge. The impurity atom begins to
vibrate with a frequency higher than the phonon fre-
quencies. This change should be expected to occur
whenever the impurity center undergoes photoioniza-
tion. There is no evidence, however, that a high-fre-
quency local mode does form in the ZnSe : Ni, ZnO :
Ni, CdS : Ni, and ZnS : Ni systems. At any rate, such a
mode was not detected in the electroabsorption spectra
of these materials. The frequencies of the strongest
vibrational replicas in the region of first-order pro-
cesses are either in resonance with the lattice vibrations
or are very close to the upper edge of the lattice vibra-
tional spectrum [5].

Let us discuss possible reasons for the increased
interaction of a charged impurity center with ions of its
nearest environment in ZnTe : Ni as compared to other
II–VI materials, as well as what might cause the radical
difference between the impurity vibrational states. One
of these reasons lies in the different character of ionic–
covalent bonding in ZnTe : Ni, ZnS : Ni, and ZnSe : Ni,
as well as in the fact that the charge density in the mate-
rials of the given composition is distributed differently.
The bond ionicity is characterized by the polarity of the
ionic–covalent bonds, i.e., by the shift of the bound
charge toward the anions. Polar contributions to elec-
tronic bonds directly affect the lattice dynamics. The
bond polarity is characterized by the Phillips–Van-
Vechten or Pauling scales [21]. For instance, for ZnSe,
the polarity is 0.676 on the Phillips–Van-Vechten scale
and 0.57 on the Pauling scale; for ZnTe, these polarities
are 0.546 and 0.53, respectively. It appears, however,
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practically impossible to analyze these quantities. The
electronic density distribution among the ions of
Groups II and VI is more revealing and analyzable. A
calculation made in local density approximation (LDA)
suggests that, as the mass ratio of atoms of Groups VI
and II in the II–VI semiconductors decreases, bound
charges are shifted toward the Group VI atoms [22].
The charge density distributions of valence band elec-
trons in the (110) plane of ZnTe and ZnSe around the
selenium and tellurium ions calculated within the LDA
[22] were shown to differ substantially. The polarity of
the Zn–Se chemical bonding is higher than that of the
Zn–Te bond; hence, the character of bonding in ZnSe is
more ionic than that in ZnTe. The position of the bound
charge between ions of Groups II and VI is character-
ized by the distance of this charge to the ions. For ZnTe,
the ratio rZn/rTe is slightly above 2, and for ZnSe,
rZn/rSe ≈ 13 : 3, which indicates ZnTe to be more cova-
lent than ZnSe [21].

What is important for us, however, is the charge den-
sity distribution not only for the Zn–Te and Zn–Se
atoms but also for the Ni–Se and Ni–Te pairs. Nickel
donates probably as many electrons for the formation
of chemical bonds as zinc does in the ZnTe : Ni and
ZnSe : Ni compounds. The nickel 3d states, however,
can hybridize with the p states of the anions, thus pro-
viding an additional possibility of electronic density
redistribution for the Ni–Se and Ni–Te atoms. This is
particularly important for ZnTe : Ni, because it is the p–
d hybridization that determines the structure of nickel
(d7p) states in the ZnTe band gap. When the charge
state of the nickel impurity is changed by interaction
with light (i.e., when an electron transfers from the
valence band to the impurity), the excess charge can
also undergo redistribution through hybridization of the
nickel-ion d states with the p states of the nearest neigh-
bor ions. As a result, the nickel ion may have an effec-
tive negative charge smaller in magnitude than the elec-
tronic charge. The actual pattern of charge redistribu-
tion has yet to be calculated. We start, however, from
the assumption that hybridization is stronger, the closer
the nickel acceptor level (0/–) is to the valence band
top. For ZnSe : Ni, this distance is 1.85 eV, and for
ZnTe : Ni, it is 0.95 eV, i.e., approximately one half of
the former. One can see now why the excess charge on
an impurity center in ZnTe : Ni should be smaller than
that in ZnSe : Ni. Because the ionicity of ZnTe is also
smaller than that of ZnSe, the effective negative charge
of nickel ions may turn out not large enough to displace
tellurium and zinc ions located in two adjacent coordi-
nation shells. Thus, because the ionicity of ZnTe : Ni is
less than that of other II–VI Ni-doped compounds, the
lattice does not suffer noticeable deformation around
the impurity center, as is the case with ZnSe : Ni and
ZnS : Ni [5]. However, because the nickel ion neverthe-
less has an excess negative charge, the force constant of
the Ni–Te interaction may be expected to increase
noticeably, thus increasing the vibrational frequency of
the nickel ions. In this way, a local mode forms whose
P

frequency is higher than that of lattice vibrations. The
amplitude of this vibration should decay rapidly with
distance from the impurity center. The motion of the
Ni+ ion in the NiTe4Zn12 cluster is described by the Γ5
irreducible representation. Therefore, the local vibra-
tion due primarily to Ni motion should have Γ5 symme-
try of group Td.

There is another possible reason for the formation of
a local mode in ZnTe : Ni. As already mentioned, in this
compound, p–d hybridization can allow a transition to
the impurity exciton state described by Eq. (4). This
may also enhance the Ni–Te interaction and, hence,
contribute to the formation of the local mode, as in the
case of the appearance of a resonance vibration driven
by soft local fluctuations of electronic density in a
mixed-valence crystal [23].

One could expect the formation of local vibrations
in ZnSe : Ni as well, because the charge of selenium
ions and the excess charge of nickel ions are larger than
those for ZnTe : Ni. However, the stronger interaction
of the nickel ion with ions of its nearest environment in
ZnSe : Ni brings about displacement of the latter ions
to new equilibrium positions. As a result, the expan-
sions of the potential energy of the nearest neighbor
ions displaced from their equilibrium positions will
contain, besides the harmonic force constant, anhar-
monic coefficients k3 and k4 of the third- and fourth-
power terms:

(8)

Due to the negative anharmonic constants k3 and/or k4,
the vibration frequency of the ions displaced to new
equilibrium positions can change to an extent where
they may fall in resonance with lattice phonons. It is
this situation that is apparently observed in the interac-
tion of a nickel acceptor-like exciton with lattice vibra-
tions in ZnSe : Ni, ZnO : Ni, CdS : Ni, and ZnS : Ni [5].

The local vibration in ZnTe : Ni has a large width,
which is seen clearly from Fig. 3. The difference Emin –
Emax is 28 meV; following Eq. (6), the width of the cor-
responding line in the absorption spectrum should be
48 meV, which exceeds the zero-phonon line width by
16 meV. Note for comparison that broad vibrational
replicas were observed for the Ni donorlike exciton in
ZnS [24] and for combined vibrational replicas with a
large n for the Ni AE in ZnO : Ni [25]. Several factors
may cause additional broadening of local vibration
lines. First, vibronic states can decay into a photoion-
ization continuum. Second, the broadening can origi-
nate from the vibration anharmonicity. A local mode
can decay into lattice phonons through the anharmonic
third- or fourth-power terms in the expansion in host
atom displacements [26]. Anharmonicity can also allow
the local vibration to couple with phonons, thus giving
rise to the appearance of its low- and high-frequency
satellites in the absorption spectrum. This interaction
with phonons may take place over a broad frequency
range, thus broadening the absorption lines consider-
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ably. In our case, at 4.2 K, the lattice anharmonicity is
very small and we believe the broadening of the local
vibration lines in the electroabsorption spectrum to
originate from the anharmonicity of the vibration itself.
This anharmonicity may cause the amplitudes of the
vibrational replicas to deviate from the Poisson distri-
bution (7). The peaks of the first replica exceed those of
the zero-phonon line by a factor of 2.2. This means that
the second vibrational replica, in accordance with
Eq. (7), should be the strongest and all peaks with
larger numbers n should decrease rapidly with increas-
ing n. In a real spectrum, the peaks of all vibrational
replicas are approximately equal in amplitude. A devi-
ation from the Poisson distribution has also been
observed for peaks of the combined vibrational replicas
in ZnO : Ni [25], ZnSe : Ni and CdS : Ni [5], which was
assigned to the anharmonicity of lattice vibrations
induced by the charged nickel impurity. This feature of
electroabsorption spectra requires further investigation.

4. CONCLUSIONS

Thus, a field exciton–vibration spectroscopy study
revealed the line of the acceptor-like exciton Ni [d 9h]
and a series of its vibrational replicas at the edge of the
impurity center photoionization band in nickel-doped
zinc telluride. The Ni [d 9h] AE line is at the expected
position, but its large width requires further analysis.
The vibrational replicas of the zero-phonon line are due
to the impurity exciton interacting with an anharmonic
local mode at 13 ± 1 THz. The formation of a local
nickel mode in ZnTe : Ni can be assigned to ZnTe hav-
ing a lower ionicity than the other wide-band-gap II–VI
compound semiconductors and to the d states of nickel
ions being strongly hybridized with the p state of the
nearest neighbor anions. The local vibration in ZnTe : Ni
differs strongly from the impurity-induced vibrations in
ZnSe : Ni in that the local vibration originates from the
motion of the impurity center under the conditions of
increasing force constants, whereas the nickel-induced
vibrational states in ZnSe : Ni are resonant and derive
primarily from the motion of ions in the first two coor-
dination shells around the impurity center. This sug-
gests that the conditions under which the vibrations in
ZnTe : Ni and other II–VI Ni-doped compounds occur
are different. This finding may be considered indirect
evidence of the lattice around the charged impurity
Ni(d9) in ZnSe : Ni, ZnO : Ni, CdS : Ni, and ZnS : Ni
being strained.
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Abstract—It is shown that optical orientation of electron spins in semiconductors can be used as a basis to
develop a high-sensitivity method for measuring the dependence of the lifetime of carriers on their concentra-
tion. Experiments performed in a stationary regime on a GaAs/AlGaAs heterostructure at low excitation levels
provided insight into the nonradiative recombination of electrons and holes separated by an electric field built
into the interface. © 2003 MAIK “Nauka/Interperiodica”.
1. The heterointerface region plays an important
part in the operation of most devices based on semicon-
ductor heterostructures. Note also that the interface is
always an integral part of transmission semiconductor
photocathodes and strained photocathode structures.
The latter are promising for producing flows of photo-
electrons with the highest possible spin polarization
[1]. A study of polarized photoluminescence (PL) emit-
ted from the region of the ferromagnetic heterointerface
in an Ni/GaAs structure offered the possibility of
detecting interaction between a thin, a few nanometers
thick, ferromagnetic film and optically oriented elec-
trons in a semiconductor [2]. In this connection, it
appears of interest to investigate the behavior of spin-
oriented electrons in the vicinity of a heterointerface.

Besides some specific information on spin transport
[3, 4] essential for potential applications in spintronics,
investigation of the electron spin dynamics near a het-
erointerface can provide valuable insight into the relax-
ation processes required to boost the efficiency of oper-
ation of conventional electronic and optoelectronic
devices. This communication reports on our use of the
optical orientation technique to study experimentally
the effect of the GaAs/AlGaAs interface on the recom-
bination kinetics and spin polarization of electrons.
One of the main results obtained in this study is the
detection of an efficient nonradiative recombination
channel at the interface, which saturates at relatively
low pumping levels.

Methods of time-resolved spectroscopy, which pro-
vide a unique possibility of measuring recombination
rates directly, is widely used in studies of the kinetics of
photoexcited carriers in semiconductor structures. On
the other hand, illumination of samples with laser
pulses of picosecond duration inevitably puts con-
straints on the potential of this method. The existence of
saturating recombination centers should change the
1063-7834/03/4509- $24.00 © 21644
carrier lifetime as the luminescence decays. Therefore,
the relation connecting the carrier lifetime with their
concentration can be established only through
extremely laborious calculations [5]. This feature less-
ens, to a certain extent, the revealing nature of this
method and can bring about a loss in measurement
accuracy. Second, the high ratio of the laser pulse repe-
tition period to the pulse duration does not permit one
to reduce the pulse amplitude to levels achievable in
stationary excitation conditions.

Application of the optical orientation of electron
spins to measurement of the effective lifetimes of carri-
ers makes it possible to overcome the above limitations.
These measurements are based on a comparison of the
recombination times and spin relaxation of electrons
with the precession period of their average spin in an
external magnetic field applied to a sample in the direc-
tion perpendicular to that of the average spin. The
experiments are conducted in stationary conditions; as
a result, the measured lifetimes can be identified with
fixed carrier concentrations.

This study deals with the specific features of elec-
tron kinetics in the p-GaAs layer of a GaAs/AlGaAs
heterostructure caused by the presence of the interface.
The optical orientation method permitted us to measure
lifetimes at the lowest possible excitation levels. The
observed dependence of the recombination rate on
pumping intensity is accounted for by carrier trapping
at deep centers close to the interface. The agreement
between the experimental data and calculations based
on the Shockley–Read–Hall model [6] allowed deter-
mination of the electron and hole recombination veloc-
ities at the heterointerface. The relative magnitude of
the electron and hole trapping velocities for deep cen-
ters is evidence of band bending, which produces a bar-
rier for holes.
003 MAIK “Nauka/Interperiodica”
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2. The experiments were conducted at room temper-
ature on a GaAs/Al0.6Ga0.4As heterostructure. The sam-
ples studied were the GaAs/Al0.6Ga0.4As/glass inverse
structures used in photocathode manufacture [7]. These
samples have already been employed in measurements
of the diffusion length and lifetime of electrons [8, 9].
This permitted us to determine the recombination rates
in the bulk and at the interface separately.

The effective times were found by measuring the
degree of polarization ρ of interband recombination
radiation under stationary conditions of carrier genera-
tion by circularly polarized light. The GaAs layer was
pumped through the wide-band AlGaAs window by a
Kr+ laser (λex = 752.5 nm). The pump intensity was var-
ied from 10 to 200 mW/cm2. To improve the signal-to-
noise ratio at low pump densities, the laser beam was
focused by a cylindrical lens. A circular-polarization
analyzer with a photoelastic modulator [10] was com-
bined with a two-channel system to count the right- and
left-polarized photons. The accuracy of measurement
of the degree of polarization ρ was within 5 × 10–4. To
avoid the influence of electron diffusion from the excit-
ing surface into the bulk of the crystal on ρ, the mea-
surements were carried out in the long-wavelength
wing of the photoluminescence line [8], where αLe ! 1
(α is the absorption coefficient at the measurement
wavelength).

If the surface recombination channel is operative,
the effective electron lifetime τeff is given by 

(1)

where τV is the electron lifetime in the bulk of the crys-
tal, ηi is the surface recombination velocity (in our case,
at the interface), and Le is the electron diffusion length.
The values of τeff were calculated from the relation
describing the PL polarization

(2)

Here, Ts = (  + )–1 is the electron spin orientation
lifetime (τs is the spin relaxation time). The time Ts was
derived from the PL depolarization by a transverse
magnetic field (the Hanle effect). Figure 1 presents nor-
malized depolarization curves for two cases differing in
the pump intensity. The curves are seen to coincide,
which means that the electron spin orientation lifetime
does not depend on the pump intensity (Ts = 6.5 × 10–1 s).
This is also corroborated by the observation that the
degree of PL polarization is fairly small (ρ < 0.02).
Indeed, in this case, the times are related through τs !
τeff; this means that the electron spin orientation life-
time Ts is dominated by the electron spin relaxation
time τs, which is independent of pumping intensity.
Thus, knowing the PL polarization, one can calculate
the effective electron lifetime τeff.

1/τeff 1/τV η i/Le,+=

ρ 0.25Ts/τeff.=

τ s
1– τeff

1–
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To separate the recombination in the crystal bulk
from that at the interface, we studied electron diffusion
and the recombination radiation absorption in the crys-
tal. We measured the dependence of ρ on the PL wave-

length. The electron diffusion length L = , where
D is the electron diffusion coefficient, was determined
by the method described in [8]. The experiment showed
the value of L to be independent of the pumping inten-
sity (L ≈ 4 µm). The carrier lifetime in the region
adjoining the interface likewise does not depend on the
pumping intensity; indeed, it is longer than that in the
bulk of the crystal because of the presence of a built-in
electric field near the heterointerface. It is this time that
should be understood as the parameter τV in the prob-
lem of nonradiative recombination saturation. Thus, we
have τV = 3.6 × 10–9 s [8].

The circles in Fig. 2 specify the experimentally mea-
sured pump intensity dependences of the ratio of the
bulk carrier lifetime to the effective lifetime at the inter-
face (Fig. 2a) and of the PL intensity (Fig. 2b).

3. Let us turn now to the development of a model
describing the dependence of τeff on pumping intensity.
The fluxes of electrons, ηen(0), and of holes, ηhp(0), to
the surface should be equal. Solving the continuity
equation for electrons yields

(3)

where J is the pump intensity and z is the coordinate
along the interface normal. It thus follows that

(4)

DτV

n z( )
Jτeff

L
----------e

z/L–
,=

ηh p 0( )
Jηe

L 1/τV ηe/L+( )
-------------------------------------,=
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Fig. 1. Circular PL polarization plotted vs. transverse mag-
netic field (the Hanle effect). The experimental points (cir-
cles) were obtained for (1) a low pumping level
(10 mW/cm2) and (2) a high pumping level (200 mW/cm2).
The solid line is a Lorentzian.
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where p(0) is the hole concentration at the interface.
To exclude uncertainty in solving Eq. (4), one has to

introduce an additional relation connecting ηh and ηe.
According to the Shockley–Read–Hall model used
here, we have

(5)

where rh and re are the hole and electron trapping veloc-
ities, respectively. Condition (5) means that an interface
trapping center cannot hold more than one electron or
hole simultaneously.

Solving the coupled equations (4) and (5) for τeff /τV

yields

(6)

where j =  and a = . Figure 2 shows τeff and

the intensity calculated using Eq. (6) together with
Eqs. (1)–(3) (solid curves). The best fit to experiment
was obtained for the trapping velocities at the interface
re = 105 and rh = 3 × 10–2 cm/s.

Note the large difference between the trapping
velocities of the electrons and holes. That the ratio re/rh

ηh

rh

-----
ηe

re

-----+ 1,=

τeff/τV
1
2 j
----- 1 a j–+( )2

4aj+ 1 a j–+( )–[ ] ,=
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Fig. 2. Pump intensity dependences (a) of the bulk lifetime
to effective lifetime ratio (τV/τeff) and (b) of the PL inten-
sity. The solid lines are plots of Eqs. (6) and (3).
P

is six orders of magnitude larger than the figure
observed for the GaAs/AlGaAs interface in [11] sug-
gests the existence of a built-in electric field creating a
barrier for the holes and a potential well for the elec-
trons. Note that a built-in electric field in such structures
was reported to exist in earlier publications as well. This
is what accounted for the substantial difference between
the relaxation times measured at the interface (τV = 3.6 ×
10–9 s, Ts = 6 × 10–11 s) and near a free GaAs surface
(τV = 2.3 × 10–9 s, Ts = 4.4 × 10–11 s [8]).

At doping levels of 1018 cm–3, the built-in field is
screened at distances from the interface much smaller
than the diffusion length L ≈ 4 µm. While Eq. (6)
remains valid in these conditions, re and rh have to be
multiplied by the corresponding Boltzmann factors fe

and fh. Disregarding size quantization of the carriers,
we obtain

(7)

where u is the electrostatic potential at the interface.
Thus, a band bending by a few hundred millielectron-
volts at room temperature may account for the observed
ratio re/rh. No saturation of the nonradiative recombina-
tion channel was observed under pumping from the
side of the free GaAs surface, because the recombina-
tion velocity at the surface is fairly high (η = 7 ×
105 cm/s) and the laser power density was not high
enough to saturate the recombination centers. At 77 K,
the effect is not observed even at the interface, because
at such a temperature the nonradiative recombination
centers are obviously occupied.

Thus, measurement of the dynamic parameters
determining the nonuniform spin-density distribution
of optically oriented electrons permitted us to follow
the dependence of the lifetimes on the concentration of
photoexcited carriers at the interface of the (Al,Ga)As
heterostructure. Room-temperature optical-orientation
experiments, conducted in stationary conditions and for
low excitation levels, revealed nonradiative recombina-
tion of electrons and holes separated by a built-in elec-
tric field in the vicinity of the heterointerface.
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Abstract—The electrical conductivity (in the range 77–1073 K) and Seebeck coefficient (300–1073 K) of the
LaLi0.1M0.1Fe0.8O3 – δ solid solutions, where M = Mn, Fe, Co, and Ni and δ ≥ 0, were studied. It was established
that these solid solutions are p-type semiconductors and that their electrical conductivity increases with increas-
ing atomic number of the element M. The results obtained are interpreted in terms of the small-radius polaron
hopping model. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Perovskite-like solid solutions and compounds with

the general formula La1 – xBxM1 – y O3 – δ, where B
stands for the alkaline-earth metal and M and M' stand
for Mn, Fe, Co, or Ni, δ ≥ 0, have been attracting
research interest because their structure, degree of oxi-
dation of the transition metal ions, and the content of
oxygen vacancies; as a consequence, the electrical and
magnetic properties depend substantially on the species
and concentration of the substituting atoms (B, M'), as
well as on external factors (temperature, pressure,
atmosphere) [1–8]. Particular interest is focused on the
effect of giant magnetoresistance found to exist in par-
tially substituted lanthanum manganites [1–3] and on
the insulator (or semiconductor)–metal transitions in
the La1 – xBxMO3 and LaNixM1 – xO3 (M = Mn, Fe, Co)
[3–8] systems. An increase in x in these systems brings
about an increase in the conductivity and, eventually, a
change in its type. This is accompanied, as a rule, by a
change in the magnetic properties. Interestingly, metal-
lic conduction sets in after a certain carrier concentra-
tion n (derived from Mott’s relation n1/3aH ≈ 0.2, where
aH is the Bohr radius) has been reached [3, 9].

In the above cases, the carrier concentration is
increased either by substituting ions of alkaline-earth
metals for La3+ or by replacing Mn, Fe, or Co ions by
Ni ions. It is common knowledge, however, that a sim-
ilar result can be attained in transition metal oxides by
substituting lithium for the transition metal. LixNi1 – xO
with NaCl-type structure has been best studied in this
respect [4, 9]. In addition to other oxides, the complex
oxides of lanthanum with K2NiF4-type structure arouse
particular interest [3, 4, 10, 11].

LaFeO3-based perovskite-like oxides have been
attracting considerably less attention (an exception is
the report in [12] on the synthesis of stoichiometric

My'
1063-7834/03/4509- $24.00 © 21648
LaLi0.5Fe0.5O3 under a high oxygen pressure, 6 ×
109 Pa; in this compound, iron ions exist in an
extremely high oxidation state, Fe5+). To partially fill
this gap, we studied, as a first step, the region of exist-
ence and the electrical properties of the LaLixFe1 – xO3 – δ
solid solution synthesized in air at normal pressure [13,
14]. It was established that its region of existence does
not exceed x = 0.1. All single-phase samples are p-type
semiconductors. As x is varied from 0 to 0.1, their elec-
trical conductivity increases and the charge neutrality is
maintained both through an increased degree of iron
ion oxidation (Fe3+  Fe4+) and through oxygen
vacancy formation (δ ≥ 0).

This communication continues the previous studies.
It presents the results of an investigation of the electri-
cal properties of LaLi0.1M0.1Fe0.8O3 – δ samples, where
M = Mn, Fe, Co, or Ni (samples 1–4, respectively). The
purpose of the investigation was to establish the effect
of the Mn, Co, and Ni impurity atoms on the electrical
properties of the LaLi0.1Fe0.9O3 – δ boundary solid solu-
tion (δ ≈ 0.08 [13]) and to identify the possible conduc-
tion mechanisms operating in the samples prepared.
The concentration of substituting atoms was chosen
such that their contribution to electrical conductivity
was noticeable but the properties of the Fe-containing
matrix still could not be neglected. We studied the
phase composition and the temperature dependences of
the electrical conductivity σ and of the Seebeck coeffi-
cient α of the prepared samples.

2. EXPERIMENTAL

The samples were prepared from powders of carbo-
nyl iron, Mn2O3, Co3O4, NiO, Li2CO3, and La2O3. The
starting components were dissolved in a (1 : 1) water
solution of HNO3, evaporated, and subsequently slowly
heated in air to 1023 K to decompose the nitrates
003 MAIK “Nauka/Interperiodica”



        

ELECTRICAL PROPERTIES OF THE LaLi

 

0.1

 

M

 

0.1

 

Fe

 

0.8

 

O

 

3 – 

 

δ

 

 SOLID SOLUTIONS 1649

                       
formed. The mixtures thus obtained were pelletized and
sintered at T = 1373 for 6 h. To reduce lithium losses
through evaporation of Li2O, the synthesis was con-
ducted under a layer having the same composition as
the samples being synthesized. To prepare samples for
measurement of the electrical conductivity and ther-
mopower, the pellets were ground in a ball mill and the
powder thus obtained was pressed to produce parallel-
epiped-shaped samples, which were then fired over 6 h
in the same conditions as in the synthesis.

The x-ray diffraction measurements were conducted
on a DRON-3 diffractometer with CuKα radiation. The
porosity of the samples was estimated by comparing
their density as determined from x-ray diffraction with
the apparent values. Differential thermal (DTA) and
thermogravimetric analysis (TGA) of the samples
within the temperature range 290–1073 K was carried
out in air on a Q-1500D derivatograph at a heating rate
of 5 K/min.

The electrical conductivity in the range 77–1073 K
was measured in air (by the dc four-probe technique).
The correction coefficients to reduce the measured val-
ues of electrical conductivity of porous samples σeff to
the conductivity of dense samples σ were calculated
from the expression σ = σeffq. The method employed to
calculate the coefficient q is described in [14]. For sam-
ples 1 and 2, the values of q were 1.3 and 1.2, respec-
tively. The porosity q of samples 3 and 4 was found to
be higher, 1.8 and 1.6, respectively.

The Seebeck coefficient was measured in the range
300–1073 K in air by the standard technique [15]. The
temperature was monitored using chromel–alumel
thermocouples.
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Fig. 1. Temperature dependences of the electrical conduc-
tivity of LaLi0.1M0.1Fe0.8O3 – δ samples. M = (1) Mn,
(2) Fe, (3) Co, and (4) Ni.
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3. EXPERIMENTAL RESULTS 

As revealed by x-ray diffraction analysis, the syn-
thesized samples were single-phase and had an orthor-
hombically distorted perovskite-like crystal lattice. The
unit cell parameters of LaLi0.1Fe0.9O3 – δ (sample 2)
were found to be a = 0.555, b = 0.557, and c =
0.787 nm. Partial replacement of the iron by Mn, Co, or
Ni did not bring about any noticeable changes in them.
DTA spectra of the synthesized samples did not exhibit
any repeating features indicative of first-order phase
transformations (for instance, a change in crystal struc-
ture). According to TGA, the relative change in sample
weight caused by absorption or release of oxygen in the
temperature range covered did not exceed ±0.06%.
Samples 2 and 3 absorbed oxygen with increasing the
temperature. Samples 1 and 4 released O2. The corre-
sponding change in δ in samples 1 and 4 was less than
±0.14%.

Figure 1 plots the temperature behavior of the elec-
trical conductivity σ of samples 1–4. For T > 600 K, the
electrical conductivity of sample 3 practically coin-
cides with that of sample 2; at lower temperatures, the
σ(T) graphs diverge. Bearing in mind this comment, we
can conclude that, on the whole, electrical conductivity
increases with increasing atomic number of the chemi-
cal element M.

Figure 2 plots the same relations on semilog paper.
Above room temperature, they can be approximated by
straight lines, whose slope changes for T > 650 K. The
same feature was found to exist in the ln(σT) vs. T–1

relation for LaFeO3 [14] when crossing the Néel tem-
perature (TN = 750 K [16]). In this case, however, the
breaks are observed at lower temperatures. Below room
temperature, the ln(σT) plots for all samples, except
sample 2, deviate from a straight-line behavior. For
sample 2, the ln(σT) relation scales as T–1 down to T =

300 K

21 3

16

8

0

–8

ln
(σ

T)
 [

(S
/m

) 
K

]

4

0 4 8 12
103T–1, K–1

Fig. 2. Temperature dependences of the electrical conduc-
tivity of LaLi0.1M0.1Fe0.8O3 – δ samples drawn on semilog
paper. M = (1) Mn, (2) Fe, (3) Co, and (4) Ni.
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Fitting parameters for the temperature dependences of the electrical conductivity and carrier mobility of LaLi0.1M0.1Fe0.8O3 – δ
samples (M = Mn, Fe, Co, Ni)

Sample ∆T, K E, eV W, eV E0, eV γ f0 × 10–13, Hz

LaLi0.1Mn0.1Fe0.8O3 – δ (no. 1) 180–300 0.43 0.36 0.07 18 0.99

300–650 0.43 0.36 0.07 – –

670–1073 0.34 0.23 0.12 – –

LaLi0.1Fe0.9O3 – δ (no. 2) 150–200 0.37 0.22 0.15 8 1.3

200–710 0.37 0.22 0.15 – –

770–1073 0.18 0.02 0.15 – –

LaLi0.1Co0.1Fe0.8O3 – δ (no. 3) 90–300 0.29 0.23 0.06 8 1.4

300–610 0.29 0.23 0.06 – –

630–1073 0.25 0.04 0.18 – –

LaLi0.1Ni0.1Fe0.8O3 – δ (no. 4) 77–300 0.24 0.20 0.04 7 1.3

300–430 0.24 0.20 0.04 – –

690–1073 0.31 0.19 0.12 – –

Note: ∆T is a temperature interval.
200 K, with a deviation from the linear law setting in at
lower temperatures.

We showed earlier [14] that the electrical conductiv-
ity of sample 2 for T > 200 K occurs by small-radius
polaron (SRP) hopping and can be described, in the adi-
abatic approximation in various temperature intervals,
by the relation [9]

(1)

where A1 is a constant coefficient and E is the activation
energy for conduction. An analysis showed that, above
room temperature, the σ(T) relations of the other sam-
ples follow Eq. (1). The values of the activation energy

σ
A1

T
------ E

kT
------– 

  ,exp=

∆α

500

300

100

0
200 400 600 800 1000

T, K

α,
 µ

V
/K

2

3

1

4

Fig. 3. Temperature dependences of the SC of
LaLi0.1M0.1Fe0.8O3 – δ samples. M = (1) Mn, (2) Fe, (3) Co,
and (4) Ni.
PH
E for samples 1–4 are listed in the table for the temper-
ature regions covered.

Figure 3 demonstrates the temperature behavior of
Seebeck coefficient (SC) for samples 1–4. For all sam-
ples, α > 0. This indicates a predominance of p conduc-
tion. The SC of sample 1 decreases only weakly in the
interval 300–500 K, to remain constant thereafter to the
end of the interval. The SC of sample 2 falls off mono-
tonically throughout the temperature region studied.
The temperature behavior of the SC of sample 3 coin-
cides, for T > 550 K, with α(T) of sample 2, while dif-
fering from it at lower temperatures. Note that the α(T)
relations of samples 1–3 do not have features at higher
temperatures, whereas the corresponding ln(σT) vs. T−1

plots exhibit a break (Fig. 2).
The SC of sample 4 increases slowly as the temper-

ature is increased from 300 to 430 K, but in the 430-to
650-K interval, dα/dT grows. For T > 650 K, α reaches
a constant level one half that for the other samples
(about 150 µV/K). The increment of SC ∆α observed in
the 400- to 650-K interval (Fig. 3) is about 60 µV/K.
This change in SC is similar to that observed in LaFeO3
near the Néel temperature [14], which we believe also
to be due to the sample transferring from the magneti-
cally ordered to paramagnetic state. More specifically,
below 430 K, the sample is apparently in an ordered
antiferromagnetic state, because it does not have a
noticeable macroscopic magnetization characteristic of
a ferromagnet. The transition region extends from 430
to 650 K.

In the temperature domain where conduction by
SRP hopping can be realized, the SC can be written as
[17]

(2)α –
k
e
-- p

NV

------- 
 ln C,+=
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



ELECTRICAL PROPERTIES OF THE LaLi0.1M0.1Fe0.8O3 – δ SOLID SOLUTIONS 1651
where e > 0 is the electronic charge and p is the concen-
tration of mobile polarons. The constant C < 10 µV/K,
and it may be neglected [17, 18]. If the SRP formation
involves holes, then

(3)

where h is the Planck constant and  is the effective

hole mass in an unstrained lattice. By setting  equal
to the free electron mass in Eq. (3) and using Eq. (2),
one can estimate the polaron concentration p =
NV exp(–eα/k).

It should be pointed out that Eq. (3) is valid in the
absence of magnetic ordering, where all electronic
states are doubly degenerate. Among the samples stud-
ied, this condition is satisfied for samples 1–3, whereas
sample 4 becomes apparently antiferromagnetic below
650 K. The degeneracy factor was found in [18] to
change in this case. In the antiferromagnetic state (T <
TN), all magnetic atoms (Fe) become distributed over
two magnetic sublattices with oppositely oriented total
magnetizations [19]. The atoms on each sublattice are
in an effective magnetic field generated at their sites by
atoms of the other sublattice. This field can be quite
strong. For instance, in LaFeO3 at room temperature, it
is 52.2 T [13]. The effective magnetic field lifts the spin
degeneracy; therefore, in calculating the carrier con-
centration in sample 4 below T = 430 K, one should
replace the factor 2 outside the parentheses in Eq. (3) by
unity. In the 430- to 650-K transition region, the effec-
tive degeneracy factor varies continuously from 1 to 2.

Figure 4 displays temperature dependences of the
SRP concentration p in samples 1–4 measured above
room temperature. The dashed line (sample 4) corre-
sponds to the transition region where estimation of p
was not performed. These relations can be approxi-

NV 2
2πmh*kT

h
2

--------------------- 
  3/2

,=

mh*

mh*

1025

200 400 600 800 1000
T, K

2

3

1

4

1024

1023

p,
 m

–3

Fig. 4. Temperature dependences of small-radius polaron
concentration in LaLi0.1M0.1Fe0.8O3 – δ samples. M =
(1) Mn, (2) Fe, (3) Co, and (4) Ni.
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mated in various temperature intervals by an exponen-
tial,

(4)

where p0 is a constant and E0 is the activation energy.
The values of E0 are listed in the table.

Because the electrical conductivity σ and the carrier
mobility µ are related through [19]

(5)

after estimating the concentration of SRPs, one can cal-
culate their mobility. The temperature dependences of
SRP mobility in the 300- to 1073-K interval, which
were calculated from the data on the electrical conduc-
tivity and Seebeck coefficient, are plotted in Fig. 5.

When conduction occurs by adiabatic SRP hopping,
the carrier mobility can be described within a broad
temperature range by [9, 17]

(6)

Here, A2 is a constant, " = h/2π, γ = 2W/"ω0 is the elec-
tron–phonon coupling constant, W = (Wp + WD)/2 is the
activation energy, Wp is the lattice strain energy associ-
ated with SRP formation, WD is the disordering energy,
and ω0 = 2πf0, with f0 being the optical phonon fre-
quency. Retaining the first-order term in the expansion
of tanh for the case of sufficiently high temperatures,
we obtain –W/kT for the expression inside the brackets
[9]. We used this rough relation to find the activation
energy for mobility W above room temperature (see
table).

As pointed out earlier, the ln(σT) vs. T–1 plots mea-
sured for samples 1–4 deviate from linearity below
room temperature. Because σ and µ are related through

p p0
E0

kT
------– 

  ,exp=

σ epµ,=

µ
A2

T
------ 2γ

"ω0

4kT
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Fig. 5. Mobility of small-radius polarons in
LaLi0.1M0.1Fe0.8O3 – δ samples. M = (1) Mn, (2) Fe, (3) Co,
and (4) Ni.
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Eq. (5), we approximated the temperature dependence
of SRP mobility by Eq. (6) and made an attempt at fit-
ting σ(T). We assumed that the SRP concentration p
below room temperature is described by Eq. (4) and
that the activation energies E0 and W are constant and
equal to their values immediately above room tempera-
ture. The activation energy for conduction is E = W +
E0. The results of the fitting are shown in Fig. 2 (solid
lines). They fit the experimental values satisfactorily.
The fitting parameters are listed in the table.

4. DISCUSSION OF RESULTS

Our analysis of the temperature dependences of the
electrical conductivity and Seebeck coefficient showed
that the experimental results obtained in the tempera-
ture interval covered can be interpreted in terms of SRP
theory by assuming the charge transfer in the samples
studied to occur through hole SRP hopping.

Note that mechanism (6), which we used to interpret
the temperature behavior of the electrical conductivity
of samples below room temperature, is not the only
mechanism of conduction which can operate in perovs-
kite-like oxides in the low-temperature domain. For
instance, conduction in La0.85Sr0.15MnO3 single crystals
was found [20] to be dominated in the region 4.2–
130 K by Mott’s mechanism [9], namely, σ(T) ~
exp[−(T0/T)1/4], where T0 is a characteristic tempera-
ture; i.e., conduction occurs by variable-range SRP
hopping. The σ(T) relations for samples 1–3 below
room temperature can also be related to Mott’s conduc-
tion mechanism, in which T0 varies from 4 × 108 to 5 ×
109 K for different samples. However, the temperature
dependence of electrical conductivity of sample 4 plot-
ted in the ln(σT)–T–1/4 coordinates deviates from the
Mott law below 140 K and σ does not vanish in the limit
as T  0. The same relation plotted in other coordi-
nates (Fig. 2) does not exhibit an inflection point below
140 K, and mechanism (6) provides a good fit to the
electrical conductivity of samples 1–4 within a broad
temperature interval (Fig. 2).

Partial replacement of iron in LaLi0.1Fe0.9O3 – δ
(sample 2) by other transition metals noticeably affects
the electrical conductivity and Seebeck coefficient of
the samples. By and large, this is associated with the
variation of both the concentration of SRPs and their
mobility (Figs. 4, 5). Above room temperature, the SRP
mobility in samples 2 and 3 is practically the same
(Fig. 5), but the SRP concentration in sample 3 is
higher below 600 K (Fig. 4), as, accordingly, is the elec-
trical conductivity (Fig. 1). For T > 600 K, the electrical
conductivities of both samples differ very little from
each other. In sample 1, the SRP concentration below
800 K is higher than that in the starting sample 2;
because of the relatively low SRP mobility, however, σ
of sample 1 is lower than that of sample 2 throughout
the temperature region covered. We note that the elec-
tron–phonon coupling constants γ and the activation
P

energies W in sample 1 are anomalously high as com-
pared to those in the other samples (see table). This is
possibly due to the disordering energy WD increasing in
the presence of the Mn3+ Jahn–Teller ions. While in
sample 4 the SRP mobility below 700 K is lower than
that in sample 2, this is compensated by the high SRP
concentration. Therefore, the electrical conductivity of
sample 4 is higher.

On the other hand, analysis of the data given in the
table shows that only in sample 2 is the activation
energy E0 constant throughout the temperature interval
studied. In the other samples, it grows substantially in
the high-temperature domain. To understand the nature
of the appearance of a nonzero activation energy E0 and
the reason for its change in the samples under study, we
turn now to the spectrum of electronic states in LaFeO3.

This spectrum was earlier believed to be similar to
those of LaCrO3 and LaMnO3 [16, 21]. According to
[21], a completely filled narrow band (π* band) deriv-
ing from the hybridized t2g orbitals of the transition
metal and the 2p orbitals of oxygen lies in the gap
between the valence and conduction bands of these
oxides near the valence band top. Between the π* band
and the conduction band lie localized levels, which
derive primarily from the d orbitals of the transition

metal. In stoichiometric LaFeO3, all  and  lev-
els (the arrow specifies the spin direction) are occupied

at T = 0, while the  and  levels are free, thus
making this compound an insulator. At a high enough
temperature, part of the electrons populating the upper

occupied  level transfer to the nearest unoccupied

localized  levels. The activation energy E0 ≈ Eg/2,
where Eg is the energy gap separating these levels. The

appearance of a hole in the  level brings about
deformation of the ion core and SRP formation. Charge
transport occurs by SRP hopping between the nearest
localized states.

Replacement of La or Fe by ions of lower valence
states gives rise to the formation of Fe4+ ions [13, 22],
which have the same electron configuration as Mn3+, so

that there are free  levels even at T = 0; their number
grows with increasing temperature. Therefore, the elec-
trical conductivity of partially substituted samples
increases compared to that of LaFeO3.

This model is capable of predicting the type of car-
riers and of explaining their transport mechanism. Later
calculations made with due account of the Jahn–Teller
effect [23] showed that this model indeed reproduces
the energy spectrum of LaMnO3 in its main details. It is
invalid, however, for LaFeO3. The fact is that, accord-
ing to x-ray absorption measurements, the energy dif-

ference Eg between the occupied  levels and their
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nearest neighbor free  levels is 2.8–3.0 eV [24],
which by far exceeds the values of Eg ≈ 2E0 calculated
from the electrical characteristics of the samples. The
same situation applies to LaCoO3 in the semiconductor
phase [25]. A new electronic density-of-states model
for LaCoO3 in this phase was proposed in [25]. It dif-
fers from the above model in that the fully occupied

 and  levels overlap the valence band and the

singly occupied localized  levels (the Co3+ ions in
LaCoO3 have 3d6 electronic configuration [25]) and the

free  levels lie, as before, in the energy region sep-
arating the π* from the conduction band. The lower

lying  levels are separated from the π* band by a
gap Eg ≈ 0.05–0.08 eV [25]. According to this model,

when electrons are excited into the  levels, holes

form in the narrow π* band rather than in the  lev-
els. The mechanism of charge transport is the same as
described before.

Ab initio calculations of the density of states in
LaFeO3 can be found in [23]. They show the above model
to be applicable to this oxide too. We used it to interpret
the electrical conductivity data for LaLixFe1 – xO3 – δ
samples [14]. It is apparently also valid for interpretation
of the electrical conductivity of LaLi0.1M0.1Fe0.8O3 – δ.

This model clarifies the meaning of the quantity NV

defined by Eq. (3). This is the number of electronic
states in the π* band at a distance of kT from its top.

On the other hand, we believe that the energy E0 =
0.15 eV found for sample 2 (see table), which remains
constant throughout the temperature range covered, is
the energy required to transfer electrons from the π*

band to its nearest neighbor unoccupied  levels,
i.e., the band gap Eg ≈ 0.3 eV. In the other samples, E0
varies. Partial replacement of iron ions in
LaLi0.1Fe0.9O3 – δ by ions of other transition metals
apparently brings about the formation of additional
acceptor levels in the gap between the π* band and the

 levels of the starting sample. As the temperature
increases, the first to fill are the low-lying acceptor lev-

els, with the  states starting to fill only at higher
temperatures.

This is one of the reasons for the appearance of the
break in the temperature dependences of the electrical
conductivity of samples 1–4 at high temperatures
(Fig. 2). In this region, however, the mobility activation
energy W also varies (see table). The Mössbauer study
we performed earlier on sample 2 [13] showed that part
of the Fe3+ ions in it reside at room temperature in the
antiferromagnetic state, while the other part of Fe3+, as
well as the Fe4+ ions that formed in the partial substitu-
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tion of lithium for iron, are in the paramagnetic state.
Thus, sample 2 apparently contains both antiferromag-
netic and paramagnetic regions and has a microdomain
structure. Because the α(T) relation does not exhibit
clearly pronounced features associated with antiferro-
magnetic ordering, it may be expected that at low tem-
peratures charge transport occurs in it primarily over
the paramagnetic regions containing the Fe3+ and Fe4+

ions. Nevertheless, the antiferromagnetic regions affect
the electrical conductivity of the sample to a certain
extent and the change in the activation energy W in the
interval 710–770 K (see table) reflects their destruction.

It may be conjectured that the decrease in W in sam-
ples 1 and 3 is accounted for by the same factors. By
contrast, the presence of nickel (sample 4) apparently
favors the onset of magnetic order in the sample below
TN. This accounts for the features in the σ(T) and α(T)
relations observed in the 430- to 650-K interval
(Figs. 2, 3).
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Abstract—Profiles of radioactive isotopes produced in nuclear reactions in germanium irradiated by protons
or 4He nuclei were studied. The profiles were used to determine the energy dependence of the cross sections of
nuclear reactions producing transmutation isotopes. © 2003 MAIK “Nauka/Interperiodica”.
We report on a study of the profiles of isotopes pro-
duced in germanium under irradiation by protons or
4He nuclei, as well as on an analysis of these profiles
and their use for establishing the energy dependence of
the nuclear-reaction cross sections.

Our earlier study [1] dealt with the profiles of iso-
topes produced under irradiation by protons, deuterons,
and 3He and 4He nuclei in III–V compound semicon-
ductor single crystals (GaAs, GaP, InAs) and CuInSe2,
in ceramic materials (YBa2Cu3O7 – x, PbZr0.54Ti0.46O3),
and in metallic zirconium.

The samples, shaped as 1-mm-thick plane-parallel
plates with an area of ~2 cm2, were pressed against a
water-cooled brass plate and were bombarded by a
cyclotron beam through a diaphragm 9 mm in diameter
[2]. The incident protons had an energy of 10 MeV; the
4He nuclei, 20 MeV. The beam was monochromatic to
within 5%. The particle flux was 6 × 1011 cm–2 s–1 (cur-
rent density 0.1 µA/cm2), the irradiation time was
30 min, and the irradiation dose was ~1 × 1015 cm–2.
The profiles of the radioactive transmutation-produced
isotopes were determined by successive removal of
plane-parallel layers, followed by measurement of their
γ-ray activity. Layers 1–5-µm thick when irradiated by
4He nuclei and layers ~10-µm thick for proton bom-
bardment were removed by grinding, and the layer
activity was measured using a calibrated γ spectrometer
with a Ge(Li) detector. The uniformity of the isotope
distribution over the sample cross-sectional area was
checked by autoradiography.

Proton bombardment produced a number of iso-
topes in the matrix; we were interested in the radioac-
tive 67Ga, 71As, 72As, 74As, and 76As isotopes (Fig. 1a)
forming in the nuclear reactions 70Ge(p, α)67Ga,
70Ge(p, γ)71As, 72Ge(p, n)72As, 73Ge(p, γ)74As, 74Ge(p,
n)74As, and 76Ge(p, n)76As [3]. The isotope concentra-
1063-7834/03/4509- $24.00 © 21655
tion accumulated in the above irradiation conditions is
~1 × 1013 cm–3 for 72As and 74As and does not exceed
1.5 × 1011 cm–3 for the 71As isotope (the concentration
refers to the end of irradiation). The penetration depth
varies from ~240 µm for 67Ga to ~380 µm for the 71As,
74As, and 76As isotopes. All the profiles follow a non-
monotonic pattern.

From the products of irradiation by 4He nuclei, we
studied the radioactive isotopes 73As, 73Se, and 75Se
(Fig. 1b) forming in the reactions 70Ge(4He, p)73As,
70Ge(4He, n)73Se, 72Ge(4He, p)75Se, and 73Ge(4He,
2n)75Se. The concentration of the isotopes studied was
as high as ~2 × 1012 cm–3, and the profile depth did not
exceed 100 µm.

The profile depth correlates with the particle range;
indeed, the profile of the isotopes generated by protons
forms at a considerably larger depth than that obtained
under irradiation by the 4He nuclei because the range of
protons is much larger than that of the 4He nuclei. At the
same time, the depth of a profile increases as the thresh-
old of the nuclear reaction producing the given isotope
decreases. For instance, the depth is ~280 µm for the
72As isotope for the 5.1-MeV reaction threshold and
reaches ~380 µm for the 76As isotope forming in the
reaction with a threshold of 1.7 MeV [3].

The profiles of the transmutation-produced iso-
topes were used by us to establish the energy depen-
dence of the nuclear-reaction cross sections σ(E) asso-
ciated with the formation of the isotopes of interest [1].
This was done by determining the σ(x) function from
the relation [1]

[where N is the concentration of the stable matrix iso-
tope, Φ is the particle flux, σ is the nuclear-reaction
cross section, λ is the isotope decay constant, τ is the

c x( ) NΦσ x( )λ 1–
1 λτ–( )exp–[ ]=
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Profiles of the isotopes forming in germanium under
irradiation by (a) protons and (b) 4He nuclei.

irradiation time, and x is the coordinate (distance from
the sample surface)], after which the E(x) dependence
[4] was employed to find the σ(E) relation we were
looking for.
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Fig. 2. Nuclear-reaction cross sections plotted vs. the
energy of (a) protons and (b) 4He nuclei. (a) (1, 5) 70Ge(p,
α)67Ga, (2) 70Ge(p, γ)71As, (3, 6) 72Ge(p, n)72As, and
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(1, 2) this study, (3) [6], (4) [7], and (5) [8].
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This paper reports on the determination of the cross
sections of the nuclear reactions 70Ge(p, α)67Ga,
70Ge(p, γ)71As, 72Ge(p, n)72As, and 76Ge(p, n)76As
(Fig. 2a), as well as of 70Ge(4He, p)73As and 70Ge(4He,
n)73Se (Fig. 2b). Note that the reaction cross sections
for the 74As and 75Se isotopes were not determined
because these isotopes form simultaneously in two
reaction channels, namely, in 73Ge(p, γ)74As and
74Ge(p, n)74As for the former isotope and in 72Ge(4He,
p)75Se and 73Ge(4He, 2n)75Se for the latter.

Figure 2 also presents the available literature data on
nuclear-reaction cross sections [5–8].
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Abstract—One-phonon visible-range Raman spectra of a-C : H〈Cu〉  and a-C : H〈Co〉  composite films with
comparable metal and carbon contents were studied in the frequency region 1200–1700 cm–1 including the car-
bon sp2-bond vibrations. Broad bands G and D characteristic of unmodified a-C : H films, as well as some addi-
tional features, are observed experimentally in the spectra. By unfolding the spectra into Gaussian components,
it was possible to follow the variation of Raman shifts and of contributions of individual components to the
spectrum as a function of metal content and thermal annealing. The data obtained, complemented by available
information on carbon sp2-coordinated systems, show that incorporation of Cu or Co favors growth and order-
ing of graphite-like nanoclusters in a-C : H, the effect being substantially stronger in the case of Co. It is shown
that the process of metal-stimulated graphitization includes carbon bond breaking with the formation of short
chainlike fragments and their linkage with the formation of aromatic-ring nanoclusters. A qualitatively similar
sp2-structure rearrangement takes place under thermal annealing. For the Cu and Co concentrations studied, the
linear dimensions La of graphite-like clusters are estimated to vary from ~0.8 nm in unannealed a-C : H to ~1.0
and ~1.2 nm in annealed a-C : H〈Cu〉  and a-C : H〈Co〉 , respectively. The number of aromatic rings in these clus-
ters is approximately estimated to increase from 12 to 16 (for Cu) and 20 (for Co). © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

It is known that, by cosputtering graphite and a
metal in a hydrogen environment, one can prepare com-
posite films of amorphous hydrogenated carbon with
different contents of the metal, a-C : H〈Me〉  (Me = Cu,
Co, Mo, Ni) [1–3]. If the metal content is high enough,
one may expect the production in such composites of a
system of nanosized high-density metallic clusters
embedded in a carbon–hydrogen medium a-C : H [4,
5]. In this case, a-C : H will play the part of a stabilizing
matrix, without which a system of free isolated nano-
clusters would be thermodynamically and chemically
unstable. Such composites may prove promising as
materials for nanoelectronics and, in particular, for the
development of high-density information recording and
storage devices. The potential of a-C : H as a matrix is
based on the unique capability of carbon atoms to form
valence bonds with differently hybridized outer shell
electrons, from sp1- to sp2- and sp3-type, and to form
clusters of atoms with the same type of hybridization.
As a result, a-C : H can support the coexistence of dif-
ferently coordinated structural fragments, namely,
chain-, planelike, and bent graphene- or diamond-like
fragments [6, 7], while the incorporation of foreign
inclusions provides the possibility of accommodating
to them the surrounding carbon structures of short- and
so-called medium-range order. This property makes it
possible, for instance, to encapsulate metallic nano-
1063-7834/03/4509- $24.00 © 21658
clusters into a carbon shell using the arc discharge tech-
nology [8, 9].

To optimize the technology and to use to advantage
composite a-C : H-based films with embedded metal
nanoclusters, one has to know how the incorporation of
a metal affects the structural organization of the car-
bon–hydrogen matrix. This communication reports on
a study of this problem conducted on a-C : H〈Cu〉  and
a-C : H〈Co〉  films using visible-range Raman spectros-
copy in the region of one-phonon carbon bands.
Because, unlike copper, cobalt easily reacts chemically
with carbon to form the metastable carbide Co2C, it
appeared appropriate to compare the effect of these
metals on the matrix structure at different con-
centrations, as well as for various heat treatments. The
a-C : H〈Co〉  films are of particular interest in connec-
tion with the magnetic properties of the Co impurity.

Being a highly informative nondestructive method,
Raman spectroscopy is widely used in studies of the
structure of various carbon materials, including a-C : H
amorphous films. Whereas one-phonon Raman spectra
of perfect graphite single crystals exhibit only one,
well-known narrow line G at 1581 cm–1, a-C : H
reveals, as a rule, two very broad, overlapping bands
peaking in the regions 1540–1560 and 1340–1370 cm–1

(the so-called G and D bands [10–12]), which can be
identified with the similar, but narrower, bands G and D
in the spectrum of nanocrystalline graphite (nc-G) [13,
003 MAIK “Nauka/Interperiodica”
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14]. In some cases, the D band in the spectra of amor-
phous films cannot be separated out from the back-
ground of the G band and appears as a low-frequency
shoulder [11, 12]. Comprehensive studies [12] have
shown that the positions of both Raman bands, G and
D, in a-C : H depend on the exciting wavelength λexc,
while for a given λexc, the positions of the maxima and
the width and relative intensity of the bands depend on
the actual technology of film preparation. Raman scat-
tering in the visible region in a-C : H is dominated by
sp2-coordinated carbon clusters, because it is for these
clusters rather than for the sp3 fragments that the condi-
tion of resonance excitation in electronic transitions
between the π and π* states at the edges of the valence
and conduction bands is satisfied [15] and the scattering
cross section is maximal. The inhomogeneous broaden-
ing of the G and D bands is related primarily to the size
distribution of sp2 clusters, so that for a given λexc the
maximum contribution to the G and D bands is due to
those of the sp2 fragments for which the gap between
the π and π* states is equal to the pump photon energy.

The Raman spectra of a-C : H〈Cu〉  and a-C : H〈Co〉
composite films with a high and fixed metal content
were first reported recently in [16, 17]. Carbon IR
absorption spectra of a-C : H〈Cu〉  and a-C : H〈Co〉  with
different Cu and Co contents were used in [16, 17] to
study the interaction of these metals with the a-C : H
matrix. While earlier measurements [18] showed cop-
per to activate the so-called quasi-Raman band G (in
the IR spectrum), which is close in position to the G
band in the Raman spectrum of a-C : H and is inactive
in the IR spectrum of a-C : H, a higher frequency com-
ponent GG close to the graphite G line was revealed in
the a-C : H〈Cu〉  IR spectrum for a high Cu concentra-
tion in recent studies [16]. This warranted the conclu-
sion that copper favors graphitization of the a-C : H
matrix. Note that the effect of graphitization in a-C : H
induced by the incorporation of small additions of
molybdenum and nickel was revealed from Raman
spectra in [2]. While cobalt was also shown [17] to acti-
vate the G band in IR absorption, the GG component
was not isolated in the IR spectrum of a-C : H〈Co〉 , and
the pronounced enhancement of other components sug-
gested that cobalt destroys graphite-like fragments in a-
C : H. By analogy with the case of copper [19], the acti-
vation of the quasi-Raman band G by cobalt inclusions
can be associated with a breaking of the selection rules
for IR absorption in graphite-like clusters as they inter-
act with metal atoms.

The present study follows, for a fixed wavelength
λexc = 488 nm, the variations of the parameters of the D
and G bands in carbon Raman spectra initiated by mod-
ification of a-C : H films by copper and cobalt (for com-
parable metal and carbon concentrations) as a function
of metal content and as a result of thermal annealing of
the modified films. A comparison of the results
obtained with the available data for a-C : H permits cer-
tain conclusions on the metal-induced structural
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
changes occurring in the sp2 subsystem of the carbon–
hydrogen matrix of a-C : H〈Cu〉  and a-C : H〈Co〉  com-
posite films.

2. PREPARATION OF SAMPLES
AND MEASUREMENTS

The a-C : H films were prepared by dc magnetron
sputtering of a graphite target (cathode) in an argon–
hydrogen plasma (80% Ar + 20% H2). To incorporate
copper or cobalt into a-C : H, copper or cobalt plates
were fixed to the graphite cathode. The concentration of
the metal to be inserted was varied by properly varying
the area ratio between the metal and graphite target.
The films were deposited on (100)-oriented substrates
of KDB-20 single-crystal silicon heated to 200°C. The
sputtering chamber was preliminarily evacuated to a
base pressure of 10–6 Torr. The films were deposited in
a flow of operating gas at a pressure of 10–2 Torr and an
ion current density of 0.1 A/cm2. The film growth rate
was 2–7 nm/min. Some of the grown films were ther-
mally annealed in vacuum for 1 h at a temperature Ta =
380°C.

The metal content in the a-C : H〈Cu〉 and a-C : H〈Co〉
films was characterized by the metal/carbon atom ratio
([Cu]/[C] and [Co]/[C]), which was derived from the
Rutherford backscattering and instantaneous nuclear
reaction methods, as in [20]. The measurements were
conducted on a-C : H〈Cu〉  and a-C : H〈Co〉  samples
whose atomic fraction of the metal with respect to car-
bon before annealing was [Cu]/[C] = 0.62 and 1.00 and
[Co]/[C] = 0.35, 0.50, and 0.73.

The Raman scattering intensity from a-C : H〈Cu〉
and a-C : H〈Co〉  films, as well as from “pure” a-C : H,
was measured with a SPEX Ramalog spectrometer
under excitation by unpolarized argon-laser radiation at
a wavelength λexc = 488 nm and intensity ~5 W/cm2.
The scattering was measured in the reflection geometry
under normal pump-light incidence. All measurements
were conducted at room temperature.

3. RESULTS OF MEASUREMENTS

3.1. Experimental Data

Figures 1 and 2 present experimental Raman spectra
of modified a-C : H〈Cu〉  (Fig. 1) and a-C : H〈Co〉
(Fig. 2) films with different contents of Cu and Co, both
before and after annealing. Also shown for comparison
are spectra of an unmodified a-C : H film taken before
and after the annealing. Note that incorporation of the
metal substantially increases absorption in the films in
the spectral region of interest, which gives rise to a
marked decrease not only in the background lumines-
cence level but also in the scattered signal intensity and
the signal/noise ratio. Figures 1 and 2 display smoothed
spectra after subtraction of the background lumines-
cence intensity.
3
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We readily see that incorporation of the metal ini-
tiates resolution of the D band in the Raman spectrum,
with the absolute maximum of this band in unannealed
films showing a tendency to shift toward lower frequen-
cies with increasing metal content. The position of the
absolute maximum of band G in the spectra of unan-
nealed films turns out less sensitive to the metal con-
tent. In the case of copper, peak G for [Cu]/[C] = 0.62
lies near 1550 cm–1, as in the unmodified a-C : H film,
and shifts slightly toward higher frequencies (1560 cm–1)
only at a higher Cu content ([Cu]/[C] = 1.0). When
cobalt is incorporated, peak G shifts noticeably toward
higher frequencies at a lower Co content. Indeed, for
[Co]/[C] = 0.35, the G maximum lies near 1570 cm–1.
The position of peak G in unannealed films, however,
practically does not change with increasing Co content.

Annealing always results in a still more pronounced
resolution of the D peak in the spectrum and a notice-
able high-frequency shift of the absolute maximum of
band G. This effect is observed, irrespective of the
metal content, in the a-C : H〈Cu〉  and a-C : H〈Co〉  com-
posite films and in pure a-C : H. In the latter case, as
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Fig. 1. Raman spectra of (1, 1') a-C : H and (2, 3,
3')  a-C : H〈Cu〉  films with different Cu contents (1–
3)  before and (1', 3') after thermal annealing. [Cu]/[C]:
(1, 1') 0, (2) 0.62, and (3, 3') 1.0.
PH
seen from Figs. 1 and 2, the shift is the largest, ~40 cm–1.
The annealing-induced shift of peak G in a-C : H〈Co〉
and a-C : H〈Cu〉  films is ~20 and ~13 cm–1, respec-
tively.

3.2. Unfolding of Experimental Spectra
into Components

The experimental spectra were analyzed by unfold-
ing them into Gaussian constituents. Using the Gauss-
ian profile for individual components appears reason-
able, because it describes the inhomogeneous broaden-
ing of spectral bands, which is characteristic of
disordered structures. Indeed, frequencies contributing
to a Raman spectrum of an amorphous structure can be
shifted relative to their positions in the ordered counter-
part, depending on the random stresses and local distor-
tions of the structural unit involved in these vibrations.
By following the behavior of the maximum and of the
integrated intensity of a component with variation of
the metal content or under annealing, one can establish
the main relations governing structural rearrangement
for the most representative local configurations. The
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Fig. 2. Raman spectra of (1, 1') a-C : H and (2, 2', 3, 4, 4')
a-C : H〈Co〉  films with different Co contents (1–4) before
and (1', 2', 4') after thermal annealing. [Co]/[C]: (1, 1') 0, (2,
2') 0.35, (3) 0.5, and (4, 4') 0.73.
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simplicity of unfolding into Gaussian profiles proves a
valuable asset for revealing the presence of several spec-
tral constituents in structurized spectra. This was dem-
onstrated, in particular, when analyzing IR absorption
spectra of a-C : H〈Cu〉 [16] and a-C : H〈Co〉 films [17].

The Raman spectra displayed in Figs. 1 and 2 reveal,
in some cases, features against the background of the
broad G and D bands; these features are, however, less
pronounced than in the IR spectra [16, 17]. In view of
the above-mentioned low signal level, only those fea-
tures were processed that are reproduced in different
spectra and, hence, are most likely not due to experi-
mental errors (identified by arrows in Figs. 1, 2).
Among such features is the shoulder on the high-fre-
quency wing of band G in the spectra of a-C : H〈Cu〉
(curves 2, 3, 3' in Fig. 1); this feature also manifests itself
as a shoulder (curves 2, 4 in Fig. 2) or as a maximum
(curves 2', 4' in Fig. 2) in the spectra of a-C : H〈Co〉 films,
as well as a shoulder on the low-frequency wing of
band G in the spectrum of the annealed a-C : H sample
not containing a metal (curve 1'). A reproducible fea-
ture is the shoulder on the low-frequency wing of band
D, which is observed in all a-C : H〈Cu〉  samples,
annealed a-C : H (curves 1', 2, 3, 3' in Fig. 1), and is less
pronounced in a-C : H〈Co〉  (curves 2, 4, 4' in Fig. 2).
Inclusion of the above features makes the spectral
unfolding a more reliable procedure, although it can-
not exclude completely a certain ambiguity in the
results thus obtained. Figures 3a–3c illustrate the
decomposition of Raman spectra for samples of vari-
ous types.

The Raman shift ∆ω (the position of the maximum)
and the contribution of the Gaussian components to the
total scattering intensity s in the spectral region of inter-
est, which were found by unfolding the spectra of Figs. 1
and 2 with a computer for all a-C : H, a-C : H〈Cu〉 , and
a-C : H〈Co〉  samples, are listed in the table. The accu-
racy of ∆ω determination was to within ±5 cm–1. The
magnitude of s was found as the ratio of the integrated
intensity of a given component to the total intensity of
all components contributing to scattering in the fre-
quency range considered. The table also lists the inten-
sity ratios ID/IG of bands D and G calculated from the
heights of the observed intensity peaks (absolute max-
ima), i.e., as IDmax/IGmax. If in estimating ID/IG we had
used the integrated intensities of bands G and D, which
consist of essentially overlapping components of differ-
ent natures, the results would have been ambiguous.
The values of IDmax and IGmax relate to the most probable
structural configurations of sp2-coordinated carbon
atoms, and they can be conveniently employed to judge
the evolution of such typical configurations under
annealing or variation of the metal content.

As seen from the table, the spectra of all samples,
except metal-free a-C : H, are fitted well by four to five
components. For the unannealed a-C : H film, the cor-
responding components also apparently contribute to
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
the spectrum, but the many-component Raman spec-
trum is made structureless by their strong overlap
(curves 1 in Figs. 1, 2) and can be fitted well only by
two very broad Gaussian profiles corresponding to
bands G and D. Spectral decomposition in the region of
band G for samples containing Cu or Co, as for the
annealed a-C : H film, yields two or three Gaussians,
namely, a low-frequency Glow (or Glow1 and Glow2) and a
high-frequency Ghigh, which accounts for the observed
asymmetry of band G. Note that the maxima of Glow or
Glow1 and Glow2 lie lower in frequency and the maximum
of Ghigh lies higher than line G in the Raman spectrum
of graphite. The spectra of the same samples exhibit, as
a rule, a weak low-frequency component Dlow super-
posed on the broad D band in the region 1250–
1280 cm–1. In the intermediate frequency region,
between peaks G and D, one can see, as a rule, a com-
ponent (called here B) peaking in the interval 1450–
1480 cm–1.
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Fig. 3. Unfolding of Raman spectra into Gaussian con-
stituents: (a) a-C : H (for curve 1' from Figs. 1, 2);
(b) a-C : H〈Cu〉  for [Cu]/[C] = 0.62 (for curve 2 from
Fig. 1); and (c) a-C : H〈Co〉  for [Co]/[C] = 0.35 (for curve 2
from Fig. 2).
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Parameters of Raman spectral components and size characteristics of graphite-like nanoclusters of a-C : H〈Cu〉 , a-C : H〈Co〉 ,
and a-C : H films before and after annealing

Film [Me]/[C]* Anne-
aling

Raman shift ∆ω, cm–1/Relative intensity s, %
ID/IG La , Å M

Glow Ghigh D Dlow B

a-C : H 0 Before 1558/53 1406/47 0.39 8.4 12

After 1577/23 1607/12 1361/44 1271/5 1502/16 0.71 11.4 21

a-C : H〈Cu〉 0.62 Before 1553/60 1605/2 1379/36 1255/1 1484/1 0.40 8.5 12

1.0 Before 1560/36 1610/8 1331/28 1262/1 1466/27 0.52 9.7 16

After 1570/45 1615/4 1374/44 1249/2 1492/5 0.54 9.9 16

a-C : H〈Co〉 0.35 Before 1532/32 1612/11 1368/37 1256/3 0.54 9.9 16

1569/17

After 1575/37 1601/8 1348/35 1252/1 1461/19 0.62 10.6 19

0.50 Before 1540/21 1594/24 1342/29 1263/4 1448/22 0.67 11.0 20

0.73 Before 1539/23 1589/24 1346/29 1267/4 1447/20 0.65 10.9 20

After 1573/25 1606/10 1341/35 1274/3 1466/27 0.78 11.9 23

* The values of the [Me]/[C] ratio for annealed films specify the initial metal content before annealing.
4. DISCUSSION OF RESULTS

4.1. General

Prior to making a detailed analysis of the behavior of
the Raman components under modification of a-C : H by
metals or thermal annealing of the films under study, let
us briefly sum up the main available information on the
nature of the one-phonon Raman bands in sp2 coordi-
nated carbon structures. The above-mentioned G line at
1581 cm–1 in the graphite spectrum derives from the E2g

sp2-bond stretching vibration of six-membered rings on
the graphene plane (at the Γ point in the Brillouin zone,
for which the selection rule q = k = 0 for the phonon
and photon wave vectors is satisfied in one-phonon
Raman transitions). In nanocrystalline graphite, nc-G,
size quantization of phonons in nanocrystals shifts the
G line toward higher frequencies, up to 1590 and even
1600 cm–1, for crystallites ~2.5 nm or less in size [14].
In addition, the nc-G spectrum exhibits a component D'
at 1620 cm–1 (overlapping the G line) due to the peak in
the phonon density of states (PDOS) with a wave vector
q ≠ 0 (optical branch near the Γ point in the T direction
between the Γ and K points); these phonons become
Raman active as a result of breaking of the selection
rule in size-quantized crystallites. A similar D' compo-
nent was observed in neutron-irradiated pyrolytic
graphite [21].

The Raman shift region 1500–1630 cm–1, including
the G graphite line, is characteristic of stretching vibra-
tions of sp2-coordinated conjugated C=C bonds in aro-
matic and chainlike molecules [22]. Therefore, the
observation of the G band in disordered modifications
of solid carbon cannot be considered unambiguous
proof of the presence of graphene-like clusters in the
structure; indeed, this band can be seen not only with
plane regular carbon six-membered rings but with
P

many other ring or chain sp2-coordinated fragments.
For the benzene molecule, for instance, the frequency
of symmetric stretching vibrations of sp2 bonds is
1588 cm–1, which is higher than but still close enough
to line G in graphite. Benzene rings also typically pro-
duce Raman bands at 1486 and 1311 cm–1 [23]. The
first of them corresponds to semicircle benzene-ring
vibrations in the plane of the benzene molecule, and the
second, to asymmetric stretching vibrations of neigh-
boring rings interacting with one another with variable
force constants.

Disordering of ring structures, which involves vari-
ation of the bond lengths, valence angles, or number of
atoms in a ring, softens the vibrations and shifts the G
band toward low frequencies. Bending of graphene
sheets produces a similar effect, and, as shown, for
instance, for onionlike carbon structures [24], the larger
the curvature, the larger this shift. By contrast, the
vibrational frequencies of short chains with more
strongly conjugated sp2 bonds are typically in excess of
1600 cm–1. Note, in particular, that the stretch vibration
frequency of the C=C bond in the C2H4 ethylene mole-
cule is 1630 cm–1.

The selection rule q = 0 not being rigorous accounts
for such a fundamental feature of the Raman spectra of
disordered carbon forms as the broad D band peaking
at 1340–1370 cm–1. In the spectrum of nc-G, the nar-
rower peak D lies at 1355 cm–1 [14]. According to the
concepts generalized in [25], band D originates from
A1g-type breathing modes of clusters of six-membered
aromatic rings with conjugated sp2 bonds. These modes
are also resonantly excited in optical transitions of π
electrons near the gap of the corresponding graphene
clusters (close to the K point between the K and M
points in the Brillouin zone of the crystalline counter-
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part of these clusters, i.e., the graphite). The resonance
condition can be written in the form of the so-called
quasi-selection rule q ≈ 2k, which was derived recently
in the model of double resonance in Raman transitions
in graphite with defects [26]. (The earlier accepted
quasi-selection rule was q ≈ k [27].) The graphene-clus-
ter breathing modes with q ≠ 0 become active in Raman
scattering due to the finite size of these clusters in the
ring plane, La , and this is what accounts for the conser-
vation of momentum. Thus, it is band D rather than G
that may serve as an indicator of the presence of clus-
ters of sp2-coordinated aromatic rings in the structure of
disordered carbon.

Activation of Raman transitions with q ≠ 0 makes
possible the appearance of bands corresponding to
more or less diffuse PDOS peaks in disordered graph-
ite-like structures. Besides the above-mentioned band
D', the feature at ~1250 cm–1 [28], also reported in [14],
is assigned to a PDOS peak. Calculations suggest the
presence of a fairly strong density-of-states peak near
1470 cm–1 as well [29].

4.2. Unannealed Films

4.2.1. Band G. The very broad band G with a peak
near 1558 cm–1 shifted to lower frequencies relative to
the G line in graphite, combined with the strongly
broadened D band, suggests that the unmodified a-C : H
structure includes a system of strongly disordered sp2-
coordinated ring clusters and, possibly, fairly long
chains with sp2 bonds. The slight high-frequency G
band shift observed in samples with copper is actually
associated with the manifestation of a weak (s = 2–8%)
high-frequency component Ghigh peaking at 1605–
1610 cm–1 (see Fig. 3a, table). Note that the maximum of
the low-frequency component Glow at 1553–1560 cm–1

practically coincides in frequency with the G maximum
in a-C : H. It thus follows that incorporation of Cu does
not involve a dramatic rearrangement of the disordered
carbon structure. At the same time, the enhancement of
the high-frequency component Ghigh with increasing
copper content (increase in [Cu]/[C]) implies that the
incorporation of Cu atoms brings about the breaking of
some rings or chains, which results in the formation of
short chains with stronger C=C bonds. The slight shift
of Ghigh toward higher frequencies with increasing
[Cu]/[C] at a practically unchanging (within experi-
mental error) position of Glow cannot be assigned to an
increase in the contribution of the 1620-cm–1 compo-
nent characteristic of graphite nanocrystallites (see
Section 4.1). As we shall see below, the increase in the
intensity ratio ID/IG of bands D and G and the shift of
band D toward lower energies compared to a-C : H may
indicate the linking of disordered rings responsible for
the Glow component into larger clusters and, possibly,
the closure of some chains (which also contribute to
Glow) with the formation of rings. However, the absence
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of noticeable changes in the position of Glow with
increasing [Cu]/[C] implies that these clusters, at least
up to [Cu]/[C] = 1, remain disordered to about the same
extent as in a-C : H. Copper can apparently favor order-
ing of the sp2 matrix in a-C : H only at fairly high con-
centrations, which is suggested by the activation of the
GG component, close to the G line, in the IR spectrum
of a-C : H〈Cu〉  at [Cu]/[C] = 1.3 [16].

Insertion of cobalt produces stronger changes in the
structure of the carbon matrix (see table). The high-fre-
quency component Ghigh turns out to be substantially
more intense (s = 11%), and its maximum lies at a
higher frequency of 1612 cm–1 at Co contents lower
than those of copper, [Co]/[C] = 0.35 (Fig. 3b). This
means that, in the case of cobalt incorporation, the for-
mation of short chains with conjugated C=C bonds
through the breakup of rings and chains proceeds more
efficiently and the chain fragments themselves are
shorter than in the case of copper incorporation. Note
also that the low-frequency component Glow consists, in
turn, of two components, Glow1 (~1532 cm–1) and Glow2

(~1569 cm–1), whose inclusion results in the best fitting
of the observed spectrum. The maxima of Glow1 and
Glow2 are shifted relative to peak G in the spectrum of
unmodified a-C : H toward lower and higher frequen-
cies, respectively. The existence of these components
indicates that insertion of cobalt into the carbon matrix
initiates, besides the breaking of sp2 rings and/or chains
(Ghigh), two more processes, which act in opposition;
namely, on the one hand, the surrounding local struc-
ture becomes increasingly more disordered (Glow1),
while on the other, the graphene-like clusters undergo
the reverse process of ordering (graphitization) (Glow2).
The ordering in clusters may bring about an enhance-
ment of the Ghigh component and its shift toward higher
frequencies due to the contribution of band D'
(1620 cm–1), which was mentioned in Section 4.1 and
is associated with possible ordering-induced enhance-
ment of the corresponding peak in the phonon density
of states. Note that insertion of an even larger amount
of copper ([Cu]/[C] = 1.0) results in a somewhat
smaller shift (1610 cm–1) and enhancement (s = 8%)
than in the case of cobalt incorporation, which suggests
that both the destructive and ordering effects of copper
on the a-C : H matrix are noticeably weaker.

In a-C : H〈Co〉  films with a higher atomic fraction of
Co ([Co]/[C] = 0.5), band G is fitted well by two com-
ponents, Ghigh and Glow. Compared to the sample with a
lower relative Co content, the high-frequency compo-
nent Ghigh turns out to be markedly enhanced (s = 24%)
and shifted toward lower frequencies to ~1594 cm–1,
while the low-frequency component Glow near
1540 cm–1 occupies an intermediate position between
Glow1 and Glow2 and corresponds to a more ordered ring
cluster state than does Glow1. The tendency of the Ghigh
frequency to decrease persists with a further increase in
3
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[Co]/[C] to 0.73. By contrast, the position of Glow prac-
tically does not change (see table) and corresponds to a
lower frequency, ~1540 cm–1, than is the case with the
samples with copper or the unmodified a-C : H.

The high relative intensity of the Ghigh component
and its energy position, 1594 and 1589 cm–1 in samples
with [Co]/[C] = 0.5 and 0.73, respectively, may be con-
sidered to be caused by the evolution of the two bands,
Ghigh and Glow2, revealed at [Co]/[C] = 0.35 with
increasing Co content. In view of the data reported on
nc-G [14] (Section 4.1), as well as of the dispersion of
band G in amorphous carbon [12], one may conceive of
the following scenario: growth of an a-C : H〈Co〉  film
with a high enough Co content is accompanied by both
breaking of rings and chains and their linkage, with the
formation of small, fairly well-ordered graphene-like
clusters, and the latter process dominates; i.e., most of
the fragments become linked. Because the stretching
vibration frequency of sp2 bonds in such clusters is
lower than that in chain fragments, the frequency of the
Ghigh peak should decrease with linkage of the frag-
ments. The low-frequency shift of the Ghigh component
with increasing [Co]/[C] observed to occur in the pres-
ence of hydrogen may also be associated with the for-
mation of benzene rings from chain fragments, a pro-
cess that should enhance the contribution of the
1588 cm–1 mode to Ghigh. Thus, the growth in intensity
and the shift of Ghigh induced by the insertion of cobalt
indicate a breakdown of disordered clusters and chains,
which is accompanied by graphitization of the forming
small clusters. At the same time, a noticeable fraction of
ring clusters and sp2-coordinated chains remains disor-
dered even at a relatively high Co content, which is
indicated by the Glow component near 1540 cm–1 with
s = 21–23%. The evolution of band D and of the ID/IG

ratio with increasing Co content in a-C : H〈Co〉  films
also suggests that cobalt initiates the formation of small
ordered graphene-like clusters in the matrix (see Sec-
tion 4.2.2). Because cobalt stimulates graphitization of
the matrix, it may be conjectured that small graphene-
like clusters form primarily in the immediate vicinity of
Co atoms or, at higher Co contents [5], near nuclei of
cobalt nanoclusters.

4.2.2. Band D. As is evident from the table, inser-
tion of a metal is conducive to a relative intensity
enhancement of band D; indeed, the ratio ID/IG for films
with Cu or Co is higher than that for a-C : H and shows
a distinct tendency to grow with increasing metal con-
tent. This effect is stronger in the case of cobalt and
becomes manifest at lower concentrations than in the
case of copper, which suggests a stronger interaction of
cobalt with the a-C : H matrix and supports the conclu-
sion made above in the analysis of the behavior of the
band G components. For [Co]/[C] * 0.5, the enhance-
ment of the D band apparently stops.

The spectral position of the D component itself is
sensitive to metal insertion, the effect being stronger for
P

cobalt than for copper. When Cu or Co is incorporated,
the maximum of D shifts noticeably from its position in
a-C : H toward lower frequencies, to occupy a similar
position in the spectra of films with a content of Cu
higher than that of Co.

Because, as mentioned in Section 4.1, it is aromatic
ring clusters that are responsible for the D band, one
may assume that, in the a-C : H matrix unmodified by
metals, for which the D band becomes manifest only as
a shoulder in the G band, the concentration of such
clusters is low; the clusters are small, strongly distorted
by bond and valence angle strains, and contain rings of
more or less than six atoms; etc. Generally speaking,
the growth of the ID/IG ratio observed to occur under
metal insertion may indicate an increase in the number
of aromatic rings, growth of the ring clusters in size
(ring coalescence), and internal ordering. When copper
is incorporated in the concentrations used here, how-
ever, the latter of the above processes is hardly discern-
ible, because, as already pointed out, the high-fre-
quency shift of the Glow component with increasing Cu
content, which could indicate ordering in graphene-
like clusters, is insignificant. Unlike copper, when a
comparatively small amount of cobalt is inserted
([Co]/[C] = 0.35), the ordering in ring clusters pro-
ceeds more efficiently and it primarily involves the for-
mation of new small clusters through linkage of chain
fragments, a point mentioned in Section 4.2.1 when
discussing the behavior of the G band components.
When the Co content is increased still further, however
([Co]/[C] * 0.5), practically no further ordering of the
ring cluster structure is seen, even though, judging from
the still continuing low-frequency shift of the Ghigh
component, new aromatic clusters show a tendency to
form but, at the same time, disordering is enhanced (the
Glow component increases).

The metal-induced increase of aromatic clusters in
size is supported by the low-frequency shift of the max-
imum of the D component. Indeed, because the mini-
mum of the optical phonon branch responsible for the
breathing modes of graphene clusters lies at the K point
[30], the larger the cluster, the narrower its optical gap
and the closer its breathing mode excited at resonance
to the K point, and, hence, the lower its frequency.
Interestingly, ring clusterization with increasing metal
content leaves the disorder in the forming graphite-like
fragments unchanged. This is indicated not only by the
lower Glow frequency with respect to line G in graphite
(see Section 4.2.1) but also by the lower frequency posi-
tion of the D maximum in the spectra of a-C : H〈Cu〉 and
a-C : H〈Co〉  compared to nc-G for fairly high Cu or Co
contents (see table). Indeed, for [Cu]/[C] = 1.0, the D
component peaks near 1332 cm–1 and, for [Co]/[C] =
0.73, near 1346 cm–1, which is considerably lower than
1355 cm–1 in nc-G. Such a softening of the A1g-type
breathing mode can be assigned to strong disorder in
the structure of graphite-like clusters. The lower energy
position of component D for the higher energy position
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of Glow in the a-C : H〈Cu〉  sample compared to the
a-C : H〈Co〉  sample and for the above-mentioned con-
tents of Cu and Co should most likely be attributed to
the fact that in the former sample the fraction of larger
and more ordered ring clusters responsible for Glow is
larger (s = 36%) than in the latter (s = 23%). The total
number of ordered aromatic rings and, hence, the ratio
ID/IG for a-C : H〈Co〉  are, however, larger than those for
C : H〈Cu〉  (see table).

The conclusion on the cobalt-stimulated formation
of fairly well-ordered small clusters of aromatic rings
correlates well with the observed relatively smaller dip
between the D and G bands or, in other words, with the
larger broadening of band D toward higher frequencies
at larger values of [Co]/[C] (curves 2–4 in Fig. 2).
Indeed, in view of the position and relative intensity of
component B (see Section 4.2.3 below) remaining con-
stant with increasing [Co]/[C], for instance, from 0.50
to 0.73 (see table), this behavior may indicate an
increase in the fraction of clusters with higher fre-
quency breathing modes, i.e., of fairly small clusters.

The linear dimensions of the graphite-like clusters,
La, along the graphene layers in our samples can be
roughly estimated using the following relation, which
remains valid as one passes from a very strongly disor-
dered to a more ordered state of a-C : H for La < 20 Å
(γ is a coefficient of proportionality) [25]:

(1)

We assume that for La > 20 Å one can use the following
well-known empirical relation established for nc-G
under excitation at a wavelength λexc = 515.5 nm [13],
which is close to the one employed in our experiments:

(2)

We also assume that, for La = 20 Å, relations (1) and (2)
yield the same ratio ID/IG = 2.2 [25]. Then, one can find
the coefficient γ and estimate the linear dimensions of
graphene-like clusters, La, from experimental values of
ID/IG for all the samples studied. The values of La thus
obtained are listed in the table. We readily see that
graphene clusters are fairly small in all samples (La ~
1 nm), with the increase in La induced by inserting the
metal in the concentrations used not being large. For
instance, in a-C : H〈Co〉  films with [Co]/[C] = 0.73,
where the relative increase ∆La/La is larger than that for
a-C : H, ∆La/La only slightly exceeds 30%. Based on
the interatomic distance of 0.142 nm in a six-membered
graphite ring, one can roughly estimate the number M
of rings in separate clusters. The values of M vary from
10 to 20 (see table). The estimates obtained show that
cobalt stimulates growth of the graphite-like ordered
regions in an sp2-coordinated structure more than cop-
per does.

The small size of the aromatic clusters as estimated
from Raman spectra is in reasonable agreement with
the direct measurements made with an electron micro-

ID/IG γLa
2
.=

ID/IG 44/La.=
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scope on a-C : H in [31], as well as with data available
for the optical gap in a-C : H [7, 32]. These estimates
appear more reliable than those derived earlier from IR
absorption spectra of a-C : H〈Cu〉  films [16], which do
not agree with [7, 32]. Relation (2) used in [16] is obvi-
ously inapplicable for such strongly disordered struc-
tures as the amorphous films under study here, for
which the widths of bands G and D are in substantial
excess of 50 cm–1 [11, 25].

4.2.3. Other components (Dlow, B). The low-fre-
quency component of band D, Dlow, peaking in the
region 1250–1280 cm–1 (see table) receives apparently
a contribution from a disorder-induced component near
1250 cm–1, which can be identified with a diffuse PDOS
peak [28]. In addition, as seen from the table, the con-
tribution of Dlow to the spectrum slightly increases and
the maximum shifts toward higher energies with
increasing metal content in the composite films. Both
these trends can be associated with the increasing con-
tribution to Dlow from vibrations of interacting benzene
molecules at a frequency of 1311 cm–1 [23], which was
mentioned in Section 4.1. The table reveals a correla-
tion between the enhancement of Dlow and that of the
high-frequency G component, Ghigh, and this may indi-
cate that the breaking of disordered clusters or chains in
the a-C : H matrix induced by metal incorporation is
accompanied by the formation, in particular, of ben-
zene rings. This effect is more clearly pronounced in
a-C : H〈Co〉  rather than in a-C : H〈Cu〉  films, thus sup-
porting the stronger destructive action of cobalt in the
a-C : H matrix. As pointed out in Section 4.2.1, as the
Co content increases, the Ghigh component approaches
the benzene ring vibration line at 1588 cm–1, which also
lends support to the conclusion that cobalt-induced for-
mation of benzene rings takes place. A similar conclu-
sion has been reached in an IR spectroscopic study of
a-C : H〈Co〉  films with variable Co content [17].

The B component is also most likely a superposition
of inhomogeneously broadened components of various
natures. First, this component can be contributed by the
softened and disorder-broadened graphite PDOS peak
near 1470 cm–1 [29]. A fairly high PDOS in this fre-
quency region has recently been established in phonon
spectrum calculations made for a single graphene layer
[30]. Second, benzene ring vibrations at the frequency
1486 cm–1 may likewise contribute to the B component
(Section 4.1). If, however, we limit ourselves to these
contributions only, it will be unclear why component B
shifts toward lower energies with increasing metal con-
tent. We note, in this connection, that the IR spectra of
various types of a-C : H [33], as well as of composite a-
C : H〈Co〉  films [17], exhibit an absorption band near
1450 cm–1, which was tentatively assigned to the defor-
mation modes of sp2-coordinated CH groups, as well as
of tetrahedrally coordinated CH3 or CH2 sp3 groups.
These modes were not resolved in Raman spectra of the
same a-C : H types even under UV excitation [12]. As
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for their indirect contribution, it was probably over-
looked, because, in their unfolding of the Raman spec-
tra, the above authors approximated the G band with an
asymmetric Breit–Wigner–Fano profile whose low-fre-
quency wing tailed into the frequency region of inter-
est. Gaussian approximation of the bands in composite
films usually reveals the B component (see table). (It
cannot be separated from the Glow1 component only in
the case of a-C : H〈Co〉  with [Co]/[C] = 0.35.) It may be
conjectured, for instance, that, because insertion of a
metal (primarily, of cobalt) favors the formation of aro-
matic clusters, this also increases the concentration of
the sp2-coordinated CH groups, which results in an
enhancement of the contribution due to the correspond-
ing mode to the Raman spectrum near 1450 cm–1 and,
as a consequence, in the shift of component B to lower
frequencies. When copper is incorporated, the enhance-
ment of the component near 1450 cm–1 and the low-fre-
quency shift of the B component are less pronounced,
which may be considered another argument for the
absence of chemical interaction between copper and
the matrix carbon.

4.3. Effect of Annealing

As follows from the observed Raman spectra
(Figs. 1, 2) and their unfolding into components (see
table), annealing results in rearrangement of the carbon
sp2 structure in samples of all types. The main changes
occurring in the matrices of composite a-C : H〈Cu〉  and
a-C : H〈Co〉  films and in a pure a-C : H film are quali-
tatively similar. In all cases, the spectra exhibit a well-
pronounced high-frequency component Ghigh (1601–
1615 cm–1). Interestingly, annealing noticeably shifts
the low-frequency component Glow toward higher fre-
quencies. After annealing, the maximum of Glow falls
into the region 1573–1577 cm–1 and approaches the
graphite G line while remaining lower in energy. The
ratio ID/IG also increases. As a rule, the maximum of com-
ponent D exhibits a tendency, except in the a-C : H〈Cu〉
case, to a low-frequency shift under annealing. All
these data indicate that annealing brings about struc-
tural ordering of the sp2-coordinated atomic rings and
an increase of the graphene-like clusters in size, which
agrees with the earlier findings obtained for amorphous
carbon [34].

The existence of the Ghigh component suggests that
the formation of such clusters includes a stage of ther-
mally activated breaking of the carbon–carbon bonds.
Part of them also remain unclosed in fragments of
chainlike structures after annealing (Ghigh), but the
larger fraction (Glow is higher in intensity than Ghigh)
closes in rings in the course of annealing to form more
ordered graphene-like clusters (Glow, increase in ID/IG).
In this case, the D' mode, characteristic of the Raman
spectrum of nc-G (see Sections 4.1, 4.2), may also con-
tribute to the Ghigh component.
P

The qualitative similarity in behavior between films,
either containing Cu or Co or free of them, under
annealing is easy to understand. Due to the thermally
activated diffusion of metal atoms originally bound to
carbon by weak polarization (Cu) or, at least, partially
bound by strong chemical interaction (Co) with the for-
mation of Co–C bonds, the metal–carbon interaction in
the matrix weakens and the growth of metal clusters
intensifies (see, e.g., [5]). In these conditions, it
becomes possible for the matrix to transfer to an ener-
getically preferable state, i.e., to undergo graphitiza-
tion, as in the absence of the metal. At the same time,
the smaller relative changes in the values of ID/IG, La,
and M obtained under annealing of a composite as com-
pared to those for unmodified a-C : H films (see table)
show that the presence of a metal somewhat hampers
the growth of graphite-like clusters while favoring, at
the same time, their internal ordering. Indeed, anneal-
ing practically does not affect the size of such clusters
in a-C : H〈Cu〉  with [Cu]/[C] = 0.62, so that after the
annealing they turn out to be smaller in size and, judg-
ing from the position of Glow, less ordered than in the
copper-free annealed a-C : H.

Thermally activated growth of graphite-like clusters
in a-C : H〈Co〉  films under annealing is much more
clearly pronounced (see table). From changes in the IR
absorption spectra of a-C : H〈Co〉  films, it was also
found that the cobalt–carbon interaction weakens under
annealing [17]. Note that Ta = 380°C corresponds to the
temperature of Co–C bond rupture in the Co2C cobalt
carbide [35]. One may therefore conjecture that the
Co–C bond rupture at Ta in the a-C : H〈Co〉  structure,
where before the annealing most of the Co atoms were
chemically bound to carbon, produces a considerable
“excess” concentration of carbon dangling bonds,
which creates favorable conditions for the formation
and ordering of aromatic ring clusters. If the Co content
before the annealing was high enough ([Co]/[C] = 0.73),
the graphite-like clusters in an annealed a-C : H〈Co〉
film turned out to be even larger than in the annealed
a-C : H (see table). By contrast, a-C : H〈Cu〉  films do
not have Cu–C valence bonds, so annealing does not
produce such excess dangling bonds and no efficient
growth of graphite-like clusters occurs.

This suggestion is also argued for by the very small
contribution s of the B and Dlow components to the spec-
trum of the annealed a-C : H〈Cu〉 film. Indeed, because
B and Dlow are determined, in particular, by the PDOS
peaks of graphite in size-quantized clusters (Section 4.1),
the corresponding values of s should correlate with the
degree of ordering of such clusters. In the case of
annealed a-C : H〈Co〉  films, the contribution of B and
Dlow to the spectrum is substantially larger than that of
a-C : H〈Cu〉 , which is determined, most likely, both by
the higher ordering of graphite-like clusters and by the
higher content of benzene rings embedded in the matrix
structure.
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



ONE-PHONON RAMAN SPECTRA OF CARBON IN COMPOSITE FILMS 1667
Although it is difficult to quantitatively compare
analogous parameters of Raman components in sam-
ples of different types, one can see that the Glow compo-
nent in annealed a-C : H〈Cu〉  and a-C : H〈Co〉  samples
is always slightly lower in energy and higher in the rel-
ative contribution to the spectrum than that in annealed
a-C : H (see table). One may assume, in this connec-
tion, that, on the average, Glow originates to a consider-
able extent from more bent graphene-like fragments,
which form in the immediate vicinity of metal clusters.
In other words, it may be conjectured that annealing
stimulates encapsulation of metal clusters in a graphite-
like shell. Some indications in support of this idea come
from a study of the structure of a-C : H〈Co〉  films with
a high-resolution electron microscope [5].

The spectral position of D is governed by many
factors, such as the cluster size, the extent of devia-
tion from resonance in the excitation of scattering in
clusters differing in size, and the degree of disorder in
clusters of a given size. As already mentioned (Sec-
tion 4.2.2), the low-frequency shift of component D
reveals a general trend toward graphitization of the car-
bon–hydrogen matrix. This is what occurs in the
annealing of a-C : H〈Co〉  films with [Co]/[C] = 0.35.
For larger values of [Co]/[C], the shift of D is smaller
in magnitude, which suggests ordering inside graphite-
like clusters (a noticeable increase in ID/IG) rather than
their growth. Annealing of an a-C : H〈Cu〉  film shifts
the D component in the opposite direction, which, in
view of only a weak increase in ID/IG, suggests a certain
ordering, primarily in smaller clusters.

5. CONCLUSIONS

Thus, a study of one-phonon Raman spectra con-
ducted in the frequency interval 1200–1700 cm–1 corre-
sponding to carbon–carbon sp2-bond vibrations has
revealed the main trends in the variation of the a-C : H
carbon matrix structure in the course of formation of a-
C : H〈Cu〉  and a-C : H〈Co〉  composite films with a high
metal content. It is shown that metal insertion stimu-
lates two parallel processes in the matrix, namely,
breaking of sp2 bonds and fragmentation of disordered
ring- or chainlike fragments, on the one hand, and sub-
sequent linkage of a large part of dangling bonds with
the formation of aromatic ring clusters (graphite-like
clusters) having large ordered regions, on the other. The
evolution of the components of the a-C : H〈Co〉  Raman
spectra with increasing Co content indicates that the
destructive action of cobalt in a-C : H is much stronger
than that of copper, exactly what should be expected for
a carbide-forming metal. This property, however, also
accounts for the higher efficiency of clusterization of
the graphite-like phase. Estimates show that graphite-
like clusters in a-C : H〈Co〉  films reach about the same
size for Co contents approximately three times lower
than the Cu content in a-C : H〈Cu〉 .
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The effect of metals on the structure of the a-C : H
carbon matrix is qualitatively similar to that of thermal
annealing. Annealing is also conducive to graphitiza-
tion, which includes both the breaking and linking of sp2

bonds. While both these processes occur under anneal-
ing in both composite and metal-free films, the presence
of a metal hampers, to some extent, the growth of
ordered regions. On the other hand, in a-C : H〈Co〉
composite films, the annealing-induced graphitization
of the matrix is facilitated by the Co–C bond breaking,
which favors the formation and growth in size of ring
structures. This mechanism of structural rearrangement
does not operate in a-C : H〈Cu〉 . The information
obtained on the variations in the Raman spectra of com-
posite films suggests that annealing may produce
encapsulation of metal nanoclusters in a bent graphite-
like shell, but this point requires further study.
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Abstract—Possible sequences of alternating triple layers X–M–X in MX2 dichalcogenides (where M is a metal
and X is a chalcogen) that are consistent with the close packing conditions are considered, and the structure and
symmetry of the unit cells of the main polytypic modifications of these compounds are determined. Reasoning
from the molecular structure of the crystals and the fact that their smallest structural unit is an MX2 molecule,
the notation of each triple layer can be represented in a reduced form in which only the position of the central
metal atom and the orientation of the molecule are specified. In the proposed notation, allowances are made for
two types of coordination of the metal atom in the molecule, namely, the octahedral coordination, in which the
nearest X layers occupy different positions and form close packing, and the trigonal prismatic coordination, in
which both X layers occupy identical positions. The use of the reduced (molecular) form of the notation signif-
icantly simplifies the analysis of the polytype structures and makes it possible to distinguish several structural
groups differing in structure and symmetry among the crystals with unit cells including two, three, and four
layers. © 2003 MAIK “Nauka/Interperiodica”.
The structure of layered metal dichalcogenides of
the general formula MX2 (where M is a metal and X is a
chalcogen) consists of close-packed monomolecular
triple layers X–M–X with a planar hexagonal coordina-
tion in each of their constituent chalcogen and metal
layers. In these compounds, the atoms located within
each triple layer are involved in strong ion–covalent
bonding, whereas the adjacent triple layers are linked
through weak van der Waals forces. This gives grounds
to assert that MX2 crystals belong to a special class of
crystal structures, namely, quasi-one-dimensional
molecular crystals [1].

For MX2 layers, there exist two types of coordina-
tion: the octahedral coordination, in which chalcogen
atoms of the upper and lower layers occupy positions
corresponding to close packing (Fig. 1), and the trigo-
nal prismatic coordination, in which the chalcogen lay-
ers occupy identical positions (Fig. 2). In both cases,
the boundary chalcogen layers of the adjacent triple
layers always occupy positions in close packing [2]. As
in all close packings, all atoms of MX2 crystals are
located along three triad axes that are perpendicular to
the layer plane and pass through the lateral edges and
the center of the hexagonal prism. These axes are usu-
ally designated as A, B, and C (for metal atoms, these
are the α, β, and γ axes, respectively). For example, the
sequences of X and M alternating layers in the configu-
rations drawn in Figs. 1 and 2 can be written as AγB and
AγA, respectively.

Comprehensive information on the atomic arrange-
ment in a triple layer can be obtained by specifying the
1063-7834/03/4509- $24.00 © 21669
positions of the metal atoms. For this purpose, it is nec-
essary to introduce additional indices that characterize
the arrangement of the chalcogen atoms surrounding
the metal atom. For example, the octahedral coordina-
tion can be represented by both the direct sequence
AγB, which is designated by γ, and the possible mirror
sequence , which is denoted by a bar over the
symbol, i.e., . For a trigonal prismatic coordination, it
is sufficient to specify the arrangement of two chalco-

BγA
γ

c

C

A

B

B

A

Fig. 1. Octahedral coordination of the metal in the X–M–X
triple layer. Hatched circles indicate the chalcogen atoms,
and the closed circle represents the metal atom.
003 MAIK “Nauka/Interperiodica”
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gen layers, for example, γA(AγA) or γB(BγB). The nota-
tional system proposed above reduces the notation of
the sequence of alternating layers along the c axis in the
unit cell of the crystal by a factor of three. This is par-
ticularly important when molecular close packing, like
atomic packing, is considered to possess polytypism,
owing to which the unit cell length in the crystals can
reach hundreds of atomic layers.

In order to describe the structure of an MX2 crystal
through the sequences of alternating triple layers, it is
necessary to determine the sequences consistent with
the close packing rules.

(A) Crystals with an Octahedral Coordination
of Atoms in Triple Layers

There are six variants of the atomic arrangement in

triple layers: α(BαC), ( ), β(CβA), ( ),
γ(AγB), and ( ). All these layers are equivalent to
one another in the sense that the choice of any one of
them as the first layer is simply the choice of the origin.
The stacking of the subsequent layers leads to variants
of layer packing that result in the formation of different
structures in the crystal. Therefore, we will restrict our
consideration to the case where any of the above layers
can be chosen as the first layer. However, when con-
structing the crystal, it will be necessary to take into
account all the allowed extensions of each subsequent
layer. Without violating the close packing rules, each of
these layers can be combined with only four different
layers:

α: α, , γ, ; : , β, , γ;

β: α, , β, ; : α, , γ, ; (A.1)

α Cα B β AβC
γ BγA

β γ α α β

α γ β β γ

c

C

A

B

B

A

Fig. 2. Trigonal prismatic coordination of the metal in the
X–M–X triple layer. Designations of the atoms are the same
as in Fig. 1.
PH
γ: , β, , γ; : α, , β, .

Let us consider the possible sequences of layer
packing starting, for example, from the α layer. Upon
superposition of the second layer on the α layer,
according to list (A.1), we obtain the following four
cases.

(1) aa. If all the layers of the structure occupy the α
position, the symmetric unit cell is one layer in height
and contains one molecule. This is the simplest modifi-
cation of the MX2 crystal with D6h hexagonal symmetry,
which can be denoted by the molecular symbol 1H.

(2) . This sequence can be repeated in the crys-
tal: it corresponds to a hexagonal unit cell with a height
equal to two molecular layers and is designated as 2H. 

(3) ag. This combination represents an incomplete
unit cell, because, according to list (A.1), α cannot fol-
low γ; i.e., this combination is not repetitive.

(4) . This combination corresponds to a 2H hex-

agonal unit cell identical to .
After superposition of the third layer, it is possible

to obtain 16 variants, of which 6 correspond to unit
cells with the Zhdanov symbol (2211) (for chalcogen

atoms) and the molecular symbol ( ). In the latter
symbol, the numerals indicate the number of molecular
layers along the c axis, the bar over the numeral signi-
fies mirror symmetry of the layer, and the zero means
repetition of identical layers. These variants of layer
packing have a 3Ta structure. Three variants with the

respective symbols (33) and ( ) characterize a 3Tb

structure. Five variants correspond to incomplete unit
cells or, upon a further extension, can represent 1/3 of
the unit cell of the 9R rhombohedral crystal with the
Zhdanov symbol (51)3 and the molecular symbol
(120)3, as, for example, in the case (3–4) [the case 3 and
the 4th layer of the extension allowed by list (A.1)]:
αγγβααγββ. The case (3–2), or the αγβ packing, is of
special interest. This structure is a molecular analog of
the ABCABC structure in atomic close packings. The
symmetric unit cell of this structure contains one mole-
cule and is also characterized by the Zhdanov symbol
∞. However, compared to the face-centered cubic cell
of β-SiC, the former cell is significantly elongated
along the c axis. This structure is denoted by the symbol
1T. The Brillouin zone of the MX2 crystal with the 1T
structure is shown in Fig. 3. As the number of layers in
the sequence increases, the number of possible variants
of their combination increases in a geometric progres-
sion. For example, upon superposition of the fourth
layer, it is possible to obtain 64 variants. They corre-
spond to several groups of 4H four-layer hexagonal
structures. Each of these groups involves identical
structures. This description of the crystal structure
includes all possible structures that are consistent with
the close packing rule. However, it is probable that not

α β γ α γ

ab

ag
αβ

201
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all of them can be formed during the growth and remain
stable. In our opinion, the simplest structures with the
Zhdanov symbols (44) and (17) and the molecular sym-

bols ( ) and ( ) are the most promising from this
point of view, including those described by the

sequences  and .

(B) Crystals with the Trigonal Prismatic Atomic 
Coordination in Triple Layers

For a trigonal prismatic coordination, there also
exist six variants of the atomic arrangement in the lay-
ers: αB, αC, βA, βC, γA, and γB. Each of these layers can
be combined with only four different layers:

αB: αC, βA, βC, γA; βC: αB, βA, γA, γB;

αC: αB, βA, γA, γB; γA: αB, αC, βC, γB; (B.1)

βA: αB, αC, βC, γB; γB: αC, βA, βC, γA.

Note that, here, the choice of the initial layer is of no
significance, as is the case in crystals with an octahedral
coordination of atoms in the layers. If the αB layer is
taken as the initial layer, the following four sequences
become possible in accordance with list (B.1):
(1) αBαC, (2) αBβA, (3) αBβC, and (4) αBγA. From these
combinations, it follows that the 1H monolayer unit
cells are impossible in this case, because the sequence
of identical layers contradicts the close packing condi-
tions. All the sequences listed above correspond to 2H
bilayer hexagonal unit cells. The first two sequences
differ in structure but have D6h symmetry. The 3rd and
4th sequences are identical in structure and have D3h

symmetry.
The construction of three-layer and four-layer pack-

ings in crystals with a trigonal prismatic coordination
of atoms in the layers is similar to that in crystals with
an octahedral coordination; therefore, we need not
describe it completely here. Both trigonal and octahe-
dral packings, which are obtained according to the rules
of molecular close packing (B.1), can form several

22 31

αγβγ αγβγ
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
structural groups that differ in structure and symmetry.
Special mention should be made of one of the three-
layer packings, namely, αBγAβC, which is similar to the
αβγ structure with an octahedral coordination. The
symmetric cell of this packing contains one molecule
and is characterized by the Zhdanov symbol (∞). In this
case, the Brillouin zone is similar to that presented in
Fig. 3. This structure is also described by the molecular
symbol 1T.
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Fig. 3. Brillouin zone of the MX2 crystal with the 1T struc-
ture.
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Abstract—The spin–lattice relaxation time of 27Al nuclei residing in the octahedral and tetrahedral oxygen
environment in Y3 – xLuxAl5O12 mixed aluminum–yttrium garnets was measured by the NMR method for 0 ≤
x ≤ 3. A maximum in the concentration dependence of the relaxation time was observed for both crystallo-
graphic positions at x = 0.75; this maximum correlates with the minimum in the NMR linewidth, indicating
the ordering obtained as the yttrium and lutetium ions occupy the dodecahedral positions in the garnet lattice.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Establishing the occupation of various lattice posi-
tions by ions of different species and the effect exerted
by this substitutional order on the properties of solid
solutions is one of the most complex issues in the phys-
ics of mixed crystals and is of importance from the
standpoint of applications [1, 2]. Depending on the
interaction energies of the ions of the solid-solution
constituents and on their radii, ions of different species
can either be distributed in a random manner over the
lattice or mutually ordered. The short-range order in the
latter case can be identified either with clusterization of
the solid solution or with a regular alternation of ions of
the various constituents, which, in the case of strong
correlations, gives rise to the onset of long-range order,
in particular, to the formation of a superlattice at certain
concentrations. It is known that substitutional order
substantially affects many physical properties of mixed
crystals and accounts, for instance, for the features
observed in the concentration dependences of the elec-
trical conductivity of alloys [2, 3], bond lengths (see [4]
and references therein), and luminescence [5], as well
as in the electrical conductivity and ultrasound damp-
ing in dielectric and semiconducting solid solutions [6].

Revealing order in mixed crystals is a fairly com-
plex problem. X-ray and neutron scattering studies pro-
vide unambiguous information primarily on the super-
lattice formation, although methods involving diffuse
neutron scattering are also useful in the case of partially
ordered solid solutions [1]. On the other hand, because
the main NMR parameters, such as the line shape,
chemical shift, and relaxation times, are very sensitive
to local changes in crystal structure, the NMR method
1063-7834/03/4509- $24.00 © 21672
may be expected to provide useful information on the
pattern of mutual ion arrangement in mixed crystals,
particularly in the case of incomplete ordering. Indeed,
NMR has been employed to study substitutional order
in a number of mixed garnets and aluminates [7, 8], as
well as in binary and ternary semiconductor solid solu-
tions [9, 10]. The above studies analyzed the NMR line
shape and chemical shift to establish the pattern of site
occupation by ions. The effect of ordering in dielectric
mixed crystals on nuclear-relaxation processes, in par-
ticular, on the nuclear spin–lattice relaxation, has not
been considered thus far.

This communication reports on a study of the spin–
lattice relaxation of 27Al nuclei in mixed crystals of alu-
minum–yttrium–lutetium garnets Y3 – xLuxAl5O12 for
0 ≤ x ≤ 3 and analyzes the relation of the spin–lattice
relaxation time of aluminum nuclei with substitutional
order in these solid solutions.

Although the aluminum–yttrium and aluminum–
lutetium garnets, Y3Al5O12 and Lu3Al5O12, correspond-
ing to the extreme concentrations x = 0 and 3, are well
studied in connection with the broad scope of their
applications [11], the same cannot be said of their solid
solutions. The possibility of partial ordering in the
Y3 − xLuxAl5O12 mixed crystals was first suggested by a
study conducted in [7] of the concentration dependence
of the thermal phonon relaxation time, ultrasound
damping coefficient, and NMR linewidth. A later mul-
tiquantum NMR study, conducted under rotation about
the magic angle, revealed ordering in the occupation of
lattice sites by Y and Lu ions at concentrations x close
to 0.75.
003 MAIK “Nauka/Interperiodica”
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2. EXPERIMENT

Single crystals of Y3 – xLuxAl5O12 mixed garnets
with x = 0, 0.2, 0.6, 0.75, 1, 2, and 3 were grown by the
Czochralski technique. X-ray diffraction measure-
ments showed the mixed garnets to have the same struc-
ture as the pure aluminum–yttrium and aluminum–lute-
tium compositions, namely, cubic symmetry and space

group Ia3d( ). The lattice constant varies from
12.008 Å for Y3Al5O12 to 11.914 Å for Lu3Al5O12 (see
table). The garnet lattice unit cell contains 40 aluminum
nuclei, which occupy two different crystallographic
positions corresponding to the octahedral (16 nuclei)
and tetrahedral (24 nuclei) oxygen environment [13].
The oxygen octahedra and tetrahedra are distorted such
that the crystal field at aluminum nucleus sites has axial
symmetry and is oriented along the unit cell diagonals
for the octahedral position and along the cubic axes for
the tetrahedral position. In accordance with the garnet
lattice, the static NMR spectrum of 27Al (spin I = 5/2)
for an arbitrarily oriented external quantizing magnetic
field consists of 25 lines in single-crystal samples.
When a sample is rotated about the magic angle, the
spectrum consists of two sets of lines, corresponding to
the octahedral and tetrahedral crystallographic posi-
tions, whose energy and shape are governed by the
chemical shift and quadrupole coupling with the asym-
metry parameter ηQ equal to zero [14].

Measurements of the NMR spectra and spin–lattice
relaxation times of 27Al nuclei in this study were con-
ducted on an Avance 400 pulsed spectrometer (Bruker)
under rotation about the magic angle with a frequency
of 12 kHz at room temperature. The Larmor precession
frequency was 104.3 MHz. The spectral line position
was determined relative to the NMR signal from a
1-mol Al(NO3)3 water solution. The spin–lattice relax-
ation times were derived from the recovery of the cen-
tral lines corresponding to the octahedral and tetrahe-
dral positions after application of a 180° inverting
pulse.

3. RESULTS AND DISCUSSION

The central part of the 27Al NMR spectrum obtained
under rotation about the magic angle consists, for all
the samples studied, of a narrow line corresponding to
the octahedral aluminum position and a broadened line
due to the tetrahedral position. The central part of the
spectrum is shown in Fig. 1 for the x = 2 composition.
This pattern of the spectrum is in agreement with
reported data on both pure and mixed garnets [12, 14].
The difference in width between the lines correspond-
ing to the two aluminum positions originates from an
order-of-magnitude difference in the quadrupole cou-
pling constants. The values of the quadrupole coupling
constants found from the shape of the central line for
the tetrahedral position and from the shape of the total
spectrum for the octahedral position are listed in the

Oh
10
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table for all the mixed crystals studied. In addition, the
results of spectral measurements were used to deter-
mine the widths of the central NMR lines correspond-
ing to the octahedral position. Figure 2 plots the depen-
dence of the linewidth on garnet composition.

The spin–lattice relaxation times for both crystallo-
graphic positions are also displayed in Fig. 2 as func-
tions of garnet composition. For all garnet composi-
tions, the relaxation time of the nuclei occupying the
tetrahedral position was longer than that for the octahe-
dral one. A maximum is seen to appear in the concen-
tration dependence of the relaxation times near x ~
0.75. This maximum correlates with the minimum in
the linewidth of aluminum nuclei in the octahedral
position. Studies carried out in [7, 12] by the heat pulse
technique, acoustic measurements, stationary and, par-
ticularly, pulsed multiquantum NMR showed that the

Lattice constant a and quadrupole coupling constants for
27Al nuclei in the octahedral, (e2qQ/h)oct, and tetrahedral
environment, (e2qQ/h)tetr, for the mixed garnets under study

x α, Å (e2qQ/h)oct, 
MHz

(e2qQ/h)tetr, 
MHz

0 12.008 0.65 ± 0.01 6.05 ± 0.01

0.2 12.002 0.82 ± 0.03 6.07 ± 0.03

0.6 11.989 0.91 ± 0.03 6.09 ± 0.03

0.75 11.984 0.92 ± 0.02 5.98 ± 0.03

1 11.976 1.04 ± 0.03 6.07 ± 0.04

2 11.945 1.16 ± 0.03 6.17 ± 0.05

3 11.914 1.20 ± 0.02 6.24 ± 0.02

80 40 0
f, ppm

Fig. 1. Central part of the 27Al NMR spectrum obtained
under rotation about the magic angle for the x = 2 composi-
tion. The broad and the narrow line are due to aluminum
nuclei in the tetrahedral and octahedral oxygen environ-
ment, respectively.
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structure of mixed aluminum–yttrium–lutetium garnets
exhibits, near the concentration x = 0.75, fairly good
ordering of the yttrium and lutetium nuclei over lattice
sites, which accounts, in particular, for the NMR lines
of this composition being narrower than those of the
other mixed garnets. The observed correlation between
the 27Al NMR linewidth and the spin–lattice relaxation
times suggests that substitutional order affects the
nuclear relaxation rate as well.

Spin–lattice relaxation of nuclei possessing a qua-
drupole moment in dielectric crystals occurs primarily
through the interaction of nuclear quadrupoles with the
dynamic gradients of the electric fields generated under
thermal vibrations of the crystal lattice [15]. At temper-
atures above a fraction of one Kelvin, the main contri-
bution to relaxation comes from two-phonon Raman
processes. Within the Debye approximation for the
thermal vibration spectrum, the spin–lattice relaxation
time is given by

(1)

where I6 is the Debye integral, ρ is the density, v  is the
sound velocity, and the factor A2 is proportional to the
squared quadrupole coupling constant [15]. Thus, the
concentration dependence of the spin–lattice relaxation
time is dominated by the variations in the quadrupole
coupling constant and in the phonon spectrum.

The aluminum ions residing in the lattice of pure
yttrium garnets in the both octahedral and tetrahedral
oxygen environment have six neighboring yttrium ions
occupying dodecahedral positions [11]. In mixed gar-
nets, the yttrium and lutetium ions are distributed over
dodecahedral positions such that the aluminum resides

T1
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Fig. 2. Spin–lattice relaxation times of 27Al nuclei in (1) the
octahedral and (2) tetrahedral positions and (3) the NMR
linewidth for the octahedral position plotted vs. mixed-gar-
net composition. The solid lines, connecting the experimen-
tal points, are drawn to guide the eye.
P

in an environment determined by the actual substitu-
tional pattern. The probability P(n, x) of an aluminum
ion in a disordered solid solution with concentration x
having n Y ions and 6 – n Lu ions in its environment is
given by the binomial distribution

(2)

In partially ordered solid solutions, the distribution
of ions varies, producing a higher probability for some
values of n.

Variations in the aluminum environment may affect
the distribution of crystal electric fields and the magni-
tude of the antiscreening constant and, hence, make the
dynamic gradients of electric fields dependent on sub-
stitutional order. As follows, however, from the experi-
mental data listed in the table, the effect of ordering on
the quadrupole coupling constant weakly manifests
itself in a deviation from the monotonic dependence on
concentration only for aluminum in the tetrahedral
positions and cannot account for the observed marked
increase in the relaxation time in the region of ordering
in mixed garnets. One should thus assume that the sub-
stitutional pattern in solid solutions gives rise to a con-
siderable change in the thermal lattice vibration spec-
trum with reference to the phonon spectrum of disor-
dered mixed crystals. While such changes should affect
the Debye temperature, data on the Debye temperature
in mixed garnets are presently lacking.

4. CONCLUSIONS

Thus, we have reported on a first study of the spin–
lattice relaxation rate for aluminum nuclei over the total
aluminum–yttrium–lutetium mixed garnet series and
revealed a correlation between the relaxation time and
the NMR linewidth for ions occupying the octahedral
positions. It was shown that the maximum in the con-
centration dependence of T1 lies at the x = 0.75 compo-
sition, which multiquantum NMR measurements
(made under rotation about the magic angle) reveal to
be associated with the maximum substitutional order.
The effect of ordering on spin–lattice relaxation in
mixed garnets was interpreted assuming that the ther-
mal lattice vibration spectrum undergoes variations.
The results obtained in this study demonstrate the pos-
sibility of using nuclear spin–lattice relaxation times to
derive information on substitutional order in mixed
dielectric crystals.
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Abstract—ESR spectra of Ce3+ ions in polycrystalline Sr2B5O9Br were studied, and the two crystallographic
positions of the Ce3+ ion in this compound were identified on the basis of the data obtained. The ESR spectrum
of Ce3+ ions with local charge compensation contains a broad line indicating the existence of several types of
charge compensation. ESR spectra of Ce3+ ions in samples activated additionally by K+ ions are similar to those
of the regular Ce3+ centers, which indicates that the effect of the univalent cation on Ce3+ is negligible. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Haloborates activated by Ce3+ ions have been
recently shown to be a promising material for detecting
thermal neutrons [1]. The spectroscopic properties and
thermoluminescent characteristics of Sr2B5O9Br : Ce3+

are presented in [2]. Sr2B5O9Br : Ce3+ revealed cerium
centers of two types. One of them is produced by direct
substitution of strontium ions without any local charge
compensation. The second center is an associate of the
cerium ion Ce(III) with a charge-compensating defect.
Only one type of Ce3+ emission center was revealed in
samples of the haloborates codoped by Na+ or K+ ions.
Charge compensation centers were established to influ-
ence the intensity of photostimulated luminescence.
This communication reports on a continuation of the
study of the properties of Sr2B5O9Br : Ce3+ by ESR
spectroscopy.

While information on the crystallographic structure
of Sr2B5O9Br are lacking, structural data on Eu2B5O9Br
do exist [3]. Europium can occupy two crystallographic
positions in the matrix, in each of which it is sur-
rounded by seven oxygen atoms of the borate groups
and two halogen atoms. Because the ionic radii of Eu2+

and Sr2+ are close in magnitude [4], we assumed the
europium- and strontium-based haloborates to have
similar crystallographic parameters. The two strontium
atoms in Sr2B5O9Br, which occupy different crystallo-
graphic positions, have a very similar environment, but
with a slightly different arrangement of the nearest
neighbor oxygen ions (Fig. 1).

The ground state of the Ce3+ ion is 2F5/2, i.e., L = 3,
S = 1/2, and J = 5/2. The excited state 2F7/2 lies approx-
imately 2000 cm–1 above 2F5/2. The low-symmetry
1063-7834/03/4509- $24.00 © 21676
crystal field splits the 2F5/2 ground state into three
Kramers doublets with MJ equal to ±5/2, ±3/2, and
±1/2. The spacing between the doublets varies from 50
to 100 cm–1 depending on the actual crystal field.

2. EXPERIMENTAL

Solid solutions of the haloborates were prepared by
the solid-solution method as described in [5]. The Ce3+

concentration in Sr2B5O9Br was varied from 0.05 to
1.0 mol %. We also studied samples codoped by K+ and
Na+ ions to a concentration of 0.1 mol %. The ESR
spectra were studied on a Bruker EPS300a ESR spec-
trometer in the X range (~9.5 GHz). The frequencies in
the microwave range were measured with a Systron
Donner meter.

3. RESULTS AND DISCUSSION

Figure 2 displays ESR spectra of Sr2B5O9Br : Ce3+,
K+ taken at 9 and 20 K. Both spectra exhibit a reso-
nance at magnetic field B = 1578 G, which can be
assigned to the presence of Fe3+ ions [6]. The narrow
lines at B = 2035 and 2180 G, as well as the broad band
at B ≈ 4380 G, are clearly seen at 9 K but are absent at
20 K. It is known that Ce3+ ions are usually difficult to
detect at temperatures above 30 K because of the strong
spin–orbit coupling and the short relaxation time of the
lower 4f 1 state [7]. This gives us grounds to attribute
these ESR lines to the Ce3+ centers.

The falloff in the 20-K ESR spectrum observed for
B > 2200 G (Fig. 2) is due to the Ce3+ resonance being
broadened as a result of spin–lattice relaxation. The
nuclear spin of all stable Ce isotopes is zero, and, there-
003 MAIK “Nauka/Interperiodica”
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fore, there is no hyperfine structure. The g-tensor com-
ponents corresponding to the Ce3+ ions occupying low-
symmetry crystallographic positions have been
obtained earlier for YAlO3 (3.162, 0.402, 0.395) [8],
barium–strontium niobate (3.55, 0.89, 0.54) [9], and
LaCl3 (4.037, 0.23, 0.23) [10], i.e., for crystals where
Ce3+ ions sit at sites with C3h symmetry. For all these
systems, the first component of the g tensor is consider-
ably larger than the others. Because some components

2.609

2.982

3.013

2.596

2.692

2.687

2.827
3.075

2.526

O8

O3

O7

O6

O4
O1

O9Br1

Br2

Sr2

2.693 2.522

3.013

2.592

3.062

2.680
2.884

3.090

2.528

O1 O5

O3

O6

O7
O9

O2

Br1

Br2

Sr1

Fig. 1. Polyhedra of substituted strontium ions in two crys-
tallographic positions. The number of surrounding oxygen
and halogen ions in both cases is the same.
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of the g tensor can be very small, the corresponding
ESR lines may not fit within the span on the abscissa
axis in Fig. 2. This suggests that the two narrow ESR
lines in Fig. 2 are related to the first g-tensor compo-
nents (with g1 = 3.32, 3.16) of Ce3+ centers in the two
different crystallographic positions shown in Fig. 1.
The ESR lines corresponding to the second g-tensor
component are indistinguishable for the different Ce3+

positions, and this accounts for the broad band with
g2 ≈ 1.54.

The effect of cerium ion concentration on the ESR
spectra of Sr2B5O9Br : Ce3+ is illustrated in Fig. 3. The
signals due to Ce3+ ions are seen to have approximately
the same intensity for all the samples studied. An
increase in Ce3+ content in the samples is accompanied
by a corresponding increase in the ESR line intensity
with g1 of 3.32 and 3.16. This relation supports the con-
clusion that it is the Ce3+ ions that are responsible for
these resonances. At the same time, a broad resonance
line with g ≈ 3.6 appears in the ESR spectra of samples
with a high Ce3+ concentration at 9 K. This resonance
is not observed at 20 K. As shown in [2], an increase in
Ce3+ concentration brings about an increase in the con-
tribution to the total intensity of luminescence due to
Ce3+ centers with local charge compensation. At a low
Ce3+ center concentration (0.05 mol %), there is no
band with g ≈ 3.6, which may indicate the presence of
single Ce3+ centers only. The latter conjecture corre-
lates with the results reported in [2]. Because the inten-
sity of the ESR line with g ≈ 3.6 grows with increasing
Ce3+ center concentration, we can assign this line to the
first g-tensor component with local Ce3+ charge com-
pensation. As for the narrow ESR line in Sr2B5O9Br :
1 mol % Ce3+ with g ≈ 3.94, it can likewise be related
to the Ce3+ centers.

Fe3+

T = 9 K

T = 20 K

1000 2000 3000 4000 5000
Magnetic field, G

E
SR

 s
ig

na
l

Fig. 2. ESR spectra of an Sr2B5O9Br : (0.1 mol % Ce3+,

0.1 mol % K+) sample measured at 9 and 20 K. The arrows
identify lines corresponding to Ce3+ centers.
3
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The formation of (CeSr–KSr) complexes in the
course of codoping Sr2B5O9Br by K+ ions was consid-
ered in [5]. Adding a univalent cation enhances the sol-
ubility of Ce3+ ions in the matrix and does not require
additional charge compensation. This is why the ESR
spectrum of Sr2B5O9Br : (Ce3+,K+) consists only of the
lines corresponding to the two Ce3+ crystallographic
positions. The luminescence spectra of these Ce3+ cen-
ters are practically identical to those of single Ce3+ ions
present in samples not subjected to codoping [2]. The
values of the first g-tensor components of Ce3+ in these
two cases are also similar. The small effect of the
codopant (the K+ ion) should be attributed either to the
two neighboring Sr2+ ions being separated by B2O9

bridges or to the K+ ions occupying the site adjacent to
the Sr2+ position.
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Fig. 3. ESR spectrum of Sr2B5O9Br samples with different

impurity Ce3+ ion concentrations: (a) 1, (b) 0.5, (c) 0.2, and
(d) 0.05 mol %. The spectra were measured at 9 K. The
arrows identify lines corresponding to Ce3+ centers. The
inset shows an ESR spectrum of an Sr2B5O9Br : 1 mol %

Ce3+ sample obtained at 30 K.
PH
The ESR band with g1 ≈ 3.6 seen in samples that
were not codoped is related to the Ce3+ centers whose
charge is compensated by neighboring defects. This
resonance is broader than that observed in the case of
single Ce3+ centers. Our optical measurements did not
succeed in resolving the 5d excitation level structure of
the Ce3+ centers with compensated charge into individ-
ual components at 12 K. This implies that charge com-
pensation may occur through more than one mecha-
nism. Thus, the ESR band with g1 ≈ 3.6 and the long-
wavelength optical emission band reported in [2] are
actually superpositions of contributions due to several
Ce3+ centers with different kinds of local charge com-
pensation.
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Abstract—A theoretical model is proposed for describing the evolution of an ensemble of point defects (vacan-
cies and interstitial atoms) and its effect on the solid-phase amorphization in crystalline thin films under irradi-
ation. Kinetic equations are derived for point defects in irradiated thin films in the absence of ion implantation.
The temperature dependence of the radiation dose required for the onset of solid-phase amorphization is calcu-
lated using numerical solutions of the kinetic equations. The results obtained are compared with available
experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Structural and phase transformations in solids under
irradiation have been a subject of intensive investiga-
tion. Special interest has been expressed by researchers
in radiation-induced amorphization (the crystal–glass
phase transition) in initially crystalline solids [1–11],
because this effect is of great technological importance.
The radiation-induced amorphization is a multiparam-
eter process, which, in particular, depends on the radia-
tion dose, the nature and energy of incident particles,
and the microstructure and chemical composition of
irradiated solids. In this respect, the elucidation of the
behavior of point defects that usually play a crucial role
in radiation-induced amorphization is of particular
interest for revealing the basic regularities in the amor-
phization.

The main objective of the present work was to con-
struct a theoretical model describing the kinetics of an
ensemble of point defects (vacancies and interstitial
atoms) and its effect on the solid-phase amorphization
in thin films under irradiation. Within the proposed
model, we calculated the temperature dependence of
the “dose of the onset of amorphization” (the radiation
dose required for the onset of solid-phase amorphiza-
tion) in irradiated films. The results obtained were com-
pared with available experimental data [1] on the irra-
diation of an Al2O3 single-crystal film by Kr and Xe
ions.

2. KINETICS OF AN ENSEMBLE OF VACANCIES 
AND INTERSTITIAL ATOMS IN IRRADIATED 

CRYSTALLINE FILMS

Let us consider a thin film exposed to irradiation by
high-energy ions. In most cases, high-energy ions pen-
etrate through thin films, which results in only a small
1063-7834/03/4509- $24.00 © 1679
number of implanted (under irradiation) ions [1]. Con-
sequently, in this situation, the processes of amorphiza-
tion in irradiated thin films substantially depend on the
evolution of point defects, namely, vacancies and inter-
stitial atoms, which are formed intensively under irradi-
ation. Therefore, as a first approximation, we can
restrict our consideration to the case of the evolution of
the scalar densities of vacancies (φ) and interstitial
atoms (ψ) in irradiated crystalline thin films.

Now, we analyze the behavior of point defects in
irradiated films in terms of the kinetic theory of defects
(see, for example, [12, 13]). According to the proposed
model, the kinetics of an ensemble of point defects can
be described by the following equations:

(1)

(2)

where t is the irradiation time and A, B, C, F, and G are
positive time-independent parameters. The first term on
the right-hand side of the kinetic equation (1) character-
izes the generation of point defects under irradiation.
The parameter A is defined as the rate (or intensity) of
generation of point defects and is measured in units of
dpa/s (“inelastic displacements per atom per second”),
and the parameter F = αA, where the coefficient α = 0.7
accounts for the decrease in the density of just knocked-
on interstitial atoms due to their sputtering (knocking
out of the film).

The second term on the right-hand side of kinetic
equation (1) accounts for the decrease in the density φ
of migrating vacancies due to their escape from the
bulk to the free surface of the film. In this case, the
model parameter B is determined to be B ≈ 1/ , where

 is the mean lifetime of a vacancy in the model situ-
ation where migrating vacancies are eliminated exclu-

dφ/dt A Bφ– Cφψ,–=

dψ/dt F Gψ– Cφψ,–=

τv*

τv*
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sively through their escape from the bulk to the free sur-
face. Similarly, the term –Gψ in kinetic equation (2)
characterizes the decrease in the density ψ of migrating
interstitial atoms. In this equation, the model parameter
G is estimated as G ≈ 1/ , where  is the mean life-
time of an interstitial atom. In the general case, we have
the mean lifetime of the vacancy  ≈ l*/〈Vv 〉  and the

mean lifetime of the interstitial atom  ≈ l*/〈Vi 〉 ,
where l* is the mean free path of the point defect and
〈Vv 〉  and 〈Vi 〉  are the mean velocities of migration of
vacancies and interstitial atoms in the model situation,
respectively. According to Vladimirov [14], the mean
velocities of migration of point defects and the temper-
ature T are related by the expressions

(3)

and

(4)

Here,  is the velocity of migration of point defects at
T = 0 K; εmv and εmi are the migration activation ener-
gies of the vacancy and the interstitial atom, respec-

τ i* τ i*

τv*

τ i*

Vv Ṽ εmv /kT–( )exp=

Vi Ṽ εmi/kT–( ).exp=

Ṽ

Fig. 1. A migrating interstitial atom (closed circle) and a
vacancy (open circle) with the capture region (sphere of
radius r).
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Fig. 2. Dependence φ(t).
P

tively; and k is the Boltzmann constant. The mean free
path l* is assumed to be identical for the vacancies and
interstitial atoms and, in the case of a single-crystal film
is approximately equal to 3/2h, where h is the film
thickness.

The third term on the right-hand side of kinetic
equations (1) and (2) describes the annihilation of the
vacancies and interstitial atoms. In order to determine
the dependence of the parameter C on the structural
characteristics of the irradiated thin film, we consider a
model situation in which point defects are eliminated
exclusively due to their annihilation. Since the mean
velocity of migration Vv of vacancies in this case is sub-
stantially less than the mean velocity of migration Vi of
interstitial atoms (see, for example, [14]), it is assumed
that the interstitial atoms are mobile point defects
which collide with immobile vacancies when migrating
over the crystal. Each collision leads to the annihilation
of the vacancy and the interstitial atom. Within this
approach, each vacancy is characterized by the so-
called capture region, i.e., a spherical region of radius r
(with the center at the vacancy position) where a
migrating interstitial atom is attracted to the vacancy
due to elastic interaction (Fig. 1), which is accompa-
nied by their annihilation.

In the model situation under consideration, each
annihilation event results in the elimination of a single
vacancy and a single interstitial atom. Therefore, in
each of the kinetic equations (1) and (2), the term char-
acterizing the decrease in the density of point defects
due to the annihilation can be represented as –(ψ/τ),
where ψ is the density of interstitial atoms and τ is the
mean lifetime of an interstitial atom. In turn, the mean
lifetime of an interstitial atom is determined to be τ ≈
l/Vi, where l is the mean free path of the interstitial atom
and Vi is the mean velocity of the interstitial atom.
According to the concept of capture regions near the
vacancies (Fig. 1), the mean free path of a migrating
interstitial atom can be estimated as l ≈ 1/πr2φ, where
πr2 is the capture area of a single vacancy and φ is the
density of vacancies (and, consequently, capture
regions) in the ensemble. On this basis, the model
parameter C can be represented by the expression

(5)

Let us return to the analysis of the kinetic equa-
tions (1) and (2). The solutions to these equations can
be obtained only numerically. In this case, we use the
initial conditions [15]:

(6)

(7)

where ρ is the density of atoms in the crystal and Tm is
the melting temperature. Figure 2 depicts a typical
curve φ(t), which was obtained from formulas (1)–(7)
for the following parameters: εmi ≈ 4kTm, εmv ≈ 8kTm,

C Ṽπr
2 εmi/kT–( ).exp≈

φ0 ρ 27Tm/T–( ),exp≈

ψ0 ρ 9Tm/T–( ),exp≈
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r ≈ 3a (a = 3 × 10–10 m),  ≈ nkω0a ≈ 3 × 103 (nk = 10,
ω0 = 1012 s–1) [14], ρ = 1.17 × 1029, T ≈ 0.2Tm, A =
0.0017 dpa/s [1], and the film thickness (corresponding
to the experiment performed in [1]) h ≈ 100 nm.

3. TEMPERATURE DEPENDENCE OF THE DOSE 
OF THE ONSET OF AMORPHIZATION

Now, we elucidate the role played by point defects
in radiation-induced amorphization. The accumulation
of point defects in the irradiated crystal is accompanied
by an increase in the density of the free energy (or
another relevant thermodynamic potential) of the crys-
tal phase. According to [9, 16–19], the nucleation of the
amorphous phase (the crystal–glass phase transition)
under irradiation and other actions takes place when the
free energy density of the crystal phase with defects is
comparable to the difference εa–c between the energy
densities of the amorphous phase and defect-free crys-
tal phase. In our case, the onset of the amorphization in
the irradiated film with point defects is determined by
the condition

(8)

According to Friedel [20], we can write εv = Ga3/2 and
εi = 3Ga3, where G is the shear modulus. In the case
when the initial density of point defects is not very
high, we obtain εa–c ≈ G/83 – G/63 [21].

Within the proposed model, we calculated the tem-
perature dependence of the dose required for the onset
of the amorphization, i.e., the quantity frequently mea-
sured in experiments on radiation-induced amorphiza-
tion (see, for example, [1]). In our interpretation, the
dose required for the onset of the amorphization is
determined as the density φa = Ata of vacancies nucle-
ated in the crystalline film under irradiation during the
period of irradiation [0, ta], where ta is the instant of the

Ṽ

φεv ψεi+ εa–c.=

20

15

10

5
210 220 230 240 260

T, K

φ a
(T

),
 d

pa

250

Fig. 3. Theoretical (solid line) and experimental (dashed
line) temperature dependences of the dose of the onset of
amorphization φa(T).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
onset of amorphization. Note that ta can be approxi-
mately determined from condition (8) at t = ta.

Figure 3 shows the temperature dependence of the
dose of the onset of amorphization φ(T), which was
numerically calculated according to formulas (1)–(8)
for an Al2O3 single-crystal film irradiated with Kr and
Xe ions at energies of 600 and 900 keV, respectively. In
the experiment, the film thickness was equal to 100 nm,
the ion flux was 1018 m–2 s–1, and the irradiation temper-
ature ranged from 90 to 300 K. The dependences φ(T)
calculated in the framework of the theoretical model are
in reasonable quantitative agreement with the experi-
mental dependence φa(T) obtained in [1] for an Al2O3
film exposed to irradiation (Fig. 3).

4. CONCLUSIONS

Thus, we obtained a theoretical description of the
influence of three basic processes (generation of point
defects under irradiation, annihilation of point defects,
and escape of point defects from the bulk to the free
surface of the film) on the evolution of an ensemble of
point defects, namely, vacancies and interstitial atoms,
and on the solid-phase amorphization in irradiated thin
films. The solution to kinetic equations (1) and (2),
which account for the aforementioned processes, pro-
vides the basis for the calculation of the dose necessary
for the onset of the amorphization (a quantity measured
in the experiments). The temperature dependence of the
dose of the onset of amorphization, which was calcu-
lated in the framework of the model proposed in this
work, is in satisfactory quantitative agreement with the
experimental data [1] obtained for Al2O3 films under
irradiation.
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Abstract—This paper reports on the results of investigations into the dislocation mobility in n-Si single crystals
(Nd = 5 × 1024 m–3) upon simultaneous exposure to electric ( j = 3 × 105 A/m2) and magnetic (B ≤ 1 T) fields. It
is found that the introduction of dislocations (≈109 m–2) into dislocation-free silicon doped with phosphorus
leads to the appearance of the paramagnetic component of the magnetic susceptibility. The paramagnetic com-
ponent increases with an increase in the dopant concentration. Similar transformations in silicon account for
the formation of magnetically sensitive impurity stoppers that respond to external magnetic perturbations. An
analysis of the behavior of dislocations in electric and magnetic fields has revealed a parabolic dependence of
the dislocation path length on the magnetic induction B. The effective charges and mobilities of dislocations are
numerically calculated from the results obtained. A model is proposed according to which the observed increase
in the dislocation mobility is associated with the decrease in the retarding power of magnetically sensitive stop-
pers due to a local change in the magnetic characteristics of the material and the spin-dependent reactions stim-
ulated by a magnetic field. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that dislocations in a semiconductor
crystal are electrically active and can lead to substantial
changes in the electrical parameters of the crystal [1, 2].
The interaction of dislocations with impurity atoms of
doped semiconductors results in the formation of impu-
rity atmospheres in the vicinity of dislocation cores [3,
4]. These regions affect the behavior of structural
defects exposed to different disturbing fields. In this
respect, it is of particular interest to investigate the
influence of magnetic fields on the electric field–stimu-
lated motion of dislocations. This problem, as applied
to ionic crystals, has been intensively studied in recent
years [5–10]. However, information on the magneti-
cally stimulated behavior of linear defects in elemental
semiconductors with impurity atoms is lacking.

2. EXPERIMENTAL TECHNIQUE

The experimental investigation of the above prob-
lem was performed using phosphorus-doped disloca-
tion-free single-crystal silicon samples with the [111]
orientation (Nd = 5 × 1024 m–3). Dislocations were intro-
duced through plastic deformation of the silicon sample
(4 × 10–2 × 1 × 10–2 × 4 × 10–4 m) according to the three-
support bending method with a bending deflection of
1 mm at a temperature of 1273 K for 25 min. Disloca-
tions were revealed from etch pits formed after the
treatment of deformed samples in the etching solution
HNO3 : HF : CH3COOH (glacial) = 5 : 3 : 3 (in volume)
for 35 s. The mean density ρ of introduced dislocations
1063-7834/03/4509- $24.00 © 21683
was equal to 109 m–2. As was shown in our previous
work [11], a similar bending initiates primarily edge
dislocations.

In the experiments, a direct current (j = 3 × 105 A/m2)
was passed through each sample along the [110] direc-
tion with simultaneous exposure to a dc magnetic field
(up to 1 T), which was accompanied by heating of the
sample to 323 K. In this case, the magnetic induction
vector was aligned parallel to the sample plane and per-
pendicular to the direction of the electric current. The
mobility of dislocations in the samples exposed to elec-
tric and magnetic fields simultaneously was evaluated
by measuring their path lengths according to the stan-
dard technique of double chemical etching. The posi-
tions of etch pits prior to and after the experiment were
determined using an MII-4 microscope (magnification,
×450).

From the results of measurements, we constructed
the histograms of dislocation path lengths n/N(l),
where n is the number of dislocations traversing a dis-
tance l and N is the total number of detected defects
(Figs. 1, 2). The dependence of the mean-statistic path
length l on the magnetic induction B was processed
using regression analysis. The results obtained demon-
strated that the least variance can be achieved for the

relationship l ~ f( ). It was found that the treatment
in a magnetic field at B = 1 T brings about an approxi-
mately 40-fold increase in the velocity of moving dis-
locations in silicon in an electric field at a current den-
sity of 3 × 105 A/m2 (Fig. 3). This effect can be
explained by a change in the retarding power of impu-

B
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Fig. 1. Histograms of the distribution of dislocations over path lengths after electric treatment ( j = 3 × 105 A/m2, T = 380 K) of n-Si
single crystals (0.01 Ω cm): (a) 48-h electric treatment without a magnetic field (the solid line indicates the normal distribution of
dislocation path lengths), (b–e) 60-min electric treatment in a magnetic field, and (f–i) 120-min electric treatment in a magnetic field
at B = (b, f) 0.3, (c, g) 0.5, (d, h) 0.8, and (e, i) 1 T.
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rity stoppers that hold dislocations in an equilibrium
state. In actual fact, the electrical and magnetic proper-
ties of defect regions in the vicinity of the dislocation
core differ significantly from those of undisturbed
regions of the crystal. This is confirmed by the data
available in the literature [12] and the results of our
measurements of the magnetic susceptibility χ prior to
and after the introduction of dislocations.

The magnetic susceptibility was measured by the
force F acting on the sample in a magnetic field accord-
ing to the Gouy method [13]. The magnetic susceptibil-
ity of the sample studied was calculated from the
expression

where B1 and B2 are the magnetic inductions at the end
points of the sample and s is the area of the sample face.

Under the condition B1 ! B2 and by ignoring the
effect of the geomagnetic field, the magnetic suscepti-
bility can be determined, to sufficient accuracy, from
the relationship

3. RESULTS AND DISCUSSION

An analysis of the experimental results demon-
strated that the introduction of a large amount of dislo-
cations (≈109 m–2) into the sample substantially affects
its magnetic characteristics and the observed change in
the magnetic susceptibility ∆χ = 5.5 × 10–6 is of para-
magnetic nature (Fig. 4).

χ 2Fµ0/ s B2
2

B1
2

–( )[ ] ,=

χ 2Fµ0/ sB
2[ ] .=

0.2 0.4 0.6 0.8 1.0
B1/2, T1/2

1

0

3

5

7
l, µm

1

2

Fig. 2. Field dependences of the dislocation path length in
n-Si for electrically stimulated motion of dislocations ( j =
3 × 105 A/m2, T = 380 K) in a magnetic field. Electric treat-
ment time: (1) 60 and (2) 120 min.
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It is obvious that the magnetic susceptibility of
doped silicon is determined by the following main sus-
ceptibility components:

where χSi and χp are the atomic susceptibilities of pure
silicon and an impurity, respectively, and χe and χdef are
the electronic and structural components [12] of the
magnetic susceptibility, respectively.

The introduction of dislocations leads to a redistri-
bution of impurities in the crystal. A region with
strongly disturbed ordering is formed around the dislo-
cation core. As a result, charge carriers are redistributed
among the conduction band, the donor level, and the
dislocation level. The degree of this redistribution can
be determined from the factor of filling of dangling
bonds of dislocations with electrons [14]; that is,

where a is the lattice parameter (m), ε0 is the permittiv-
ity of free space (F/m), ε is the permittivity of the mate-
rial, Et = 0.4 eV is the energy at the dislocation level in
the band gap, and e is the elementary charge (C).

For the densities of dislocations used, their filling
with electrons cannot be considered the dominant
mechanism responsible for the change in the magnetic
susceptibility. Apparently, the increased magnetic sus-
ceptibility of the material in the bulk of a dislocation
pipe is associated with closely spaced magnetic impu-
rity centers that are coupled through a strong exchange
interaction. In turn, this interaction can lead to the for-
mation of new clusters with large magnetic moments.
The region in the vicinity of the dislocation core can be
treated as a system in which clusters consisting of 106–
109 atoms, rather than individual paramagnetic ions,

χ χSi χ p χe χdef,+ + +=

f
aε0εEt

3e
2

----------------
0.163ε0εEt

e
2
Nd

1/3
--------------------------- 

 ln
1–

0.12,= =

0.6 0.7 0.8 0.90.5
B, T

–6

–4

–2

0

2
χ, 10–6

1
2

Fig. 3. Field dependences of the magnetic susceptibility of
n-Si (Nd = 6 × 1024 m–3) at ρ = (1) 0 and (2) 109 m–2.
3
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play the role of elementary units responsible for the
magnetic properties. These clusters behave like para-
magnetic inclusions dissolved in the diamagnetic
matrix [14].

The change in the magnetic susceptibility due to the
introduction of dislocations is more pronounced in the
samples with a higher impurity concentration. For exam-
ple, the magnetic susceptibility remains unchanged at a
phosphorus concentration of 3 × 1021 m–3. As the dopant
concentration increases, the paramagnetic contribution
of dislocation regions increases and becomes equal to
1.9 × 10–5 at a dopant concentration of 6 × 1024 m–3

(Fig. 4).
One more reason for the large paramagnetic contri-

bution can be associated with the uncompensated elec-
tron spins localized at dangling bonds within each unit
cell of the dislocation core. These spin moments are
oriented in an external magnetic field. As a conse-
quence, there arises magnetization aligned antiparallel
to the field. An increase in Nd leads to a decrease in the
number of unpaired electrons at dangling bonds. This
results in an increase in the paramagnetic contribution
to the susceptibility of the deformed sample. In weak
magnetic fields, the above magnetization can be deter-
mined as

It is characteristic that the magnetic susceptibility χ
within a disordered region of the dislocation core can
substantially exceed the volume-averaged susceptibil-
ity [15, 16]. An increased local magnetization of the
material can lead to a change in the energy in the region
of the dislocation core. At B = 1 T, the density of the
magnetic field energy is determined to be ω = 4 ×
105 J/m3. Taking into account that the dislocation

J χH χ B
µ0
----- 4.38B.= = =

60

2

4

6

2 4
Nd, 1024 m–3

∆χ, 10–5

0.04

0.08

0.12

0

f

Fig. 4. Concentration dependence of the change in the mag-
netic susceptibility (thin line) and the factor f of filling of
dangling bonds of dislocations with electrons (thick line)
for n-Si. The mean density of dislocations in the samples is
109 m–2.
P

length is approximately equal to 0.01 m and the dislo-
cation pipe radius is of the order of 2 nm, we obtain the
energy of the magnetic field localized in the region of
the dislocation core W = ωπr2L = 5 × 10–14 J and the
energy of the magnetic field localized in the region of
one dangling bond W = 5 × 10–21 J. It is clear that the
energy W is too low to reduce the Peierls barrier but can
appear to be sufficient for initiating the previously for-
bidden transitions in a dislocation core–stopper system.
The probability of breaking the structural bond pinning
the dislocation depends on the multiplicity of the elec-
tron pair forming this bond, i.e., on the polarization of
the “dislocation core–stopper” spin chain. The mag-
netic field stimulates the evolution of the spin state in
the paramagnetic center–dislocation system, which is
completed by removing the forbiddenness from a par-
ticular electron transition. As a result, the configuration
of covalent bonds in the region of the dislocation core
undergoes a transformation, which leads to an increase
in the probability of depinning the dislocation from the
stopper and its motion in the field of internal stresses of
the crystal. In this case, the total energy of the system
remains virtually unchanged. Similar effects are caused
by the spin selectivity of the transitions under investiga-
tion and reactions of structural defects.

The effect of the magnetic field on the ability of a
dislocation to be displaced from an equilibrium posi-
tion in response to the current passing through the sam-
ple was quantitatively evaluated from the effective dis-
location charge eZeff. This quantity characterizes the
electrostatic interaction forces and the drag of disloca-
tions by charge carriers.

The resultant force that determines the velocity v  of
a moving linear defect can be described by the relation-
ship [17]

(1)

Here, L is the dislocation length, Dd is the diffusion
coefficient of atoms in the Cottrell cloud, c0 is the equi-
librium impurity concentration in the defect-free region
of the crystal, γ is the dimensional constant, v  is the dis-
location velocity, Nat is the number of atoms lying along
the dislocation line, eZeff is the effective dislocation
charge, r0 is the characteristic size of the impurity atmo-
sphere, and E is the electric field strength in the sample.

The velocity of a moving dislocation under the
action of the constant force F can represented by the
standard equation

(2)

By using relationships (1) and (2) and the experimental
values of Dd = 3.2 × 10–18 m2/s, r0 = 2 × 10–9 m [12], L =
0.01 m, γ = 10–63 (J m)2, and Nd = 1024 m–3, we calcu-
lated the effective charges Zeff and the electric field–

F ZeffNatE
πc0γL
2DdkT
-----------------v

v r0

Dd

--------.ln–=

v
Dd

kT
------F.=
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stimulated mobilities of dislocations at different values
of the magnetic induction (see table).

The passage of electric current through the crystal is
attended by displacement of the dislocation or its seg-
ment from an equilibrium position to the adjacent meta-
stable position with diffusion drag of impurity atoms to
new positions toward the positive electrode. The diffu-
sion of impurity atoms is the controlled stage of motion
of the impurity cloud–dislocation system [17]. Note
that the distribution of dislocations over path lengths is
described by a Gaussian function [17].

The electrically stimulated motion of dislocations in
a dc magnetic field leads to a change in the distribution
of dislocations over path lengths and the appearance of
a clearly defined tail (Fig. 1). Moreover, it can be seen
from the histograms that, with an increase in the mag-
netic induction B, the path lengths of a number of dis-
locations (≈2%) become larger than those of the main
bulk of dislocations. This indicates that dislocations of
different types (for example, dislocations with edge and
screw components predominating) are involved in the
electrically stimulated motion and that the dc magnetic
field has an anisotropic effect on these dislocations.

4. CONCLUSIONS

Thus, we investigated the electrically stimulated
motion of dislocations in silicon in a dc magnetic field
at room temperature. It was found that the mobility of
linear defects substantially increases upon electric
treatment (at j = 3 × 105 A/m2) of the samples in a dc
magnetic field (at B = 1 T). The magnetic susceptibility
was measured in dislocation-containing and disloca-
tion-free samples. It was shown that regions with dis-
turbed ordering strongly affect the magnetic properties
of the crystal.

Velocities of moving dislocations in a dc electric field and
their effective charges in different magnetic fields (motion
toward the anode)

B, T V, m/s Zeff , 1/atom µe , cm2/(V s)

0 5 × 10–11 0.002 2.1 × 10–13

0.3 6.4 × 10–11 0.015 2.7 × 10–12

0.5 9.8 × 10–10 0.019 4.1 × 10–12

0.8 1.3 × 10–9 0.02 5.1 × 10–12

1.0 1.5 × 10–9 0.021 6.3 × 10–12
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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Abstract—The influence of the electric fields of immobile growth dislocations on the luminescence properties
of deformed zinc sulfide crystals is considered. Variations in the photoluminescence and EPR spectra with plas-
tic deformation of ZnS crystals are shown to be caused by an increase in the radius of Read cylinders during
the breakaway of growth dislocations from Cottrell atmospheres. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since plastic deformation of crystals is accompa-
nied by many processes, the mechanisms of its effect
on the electrical and optical properties of crystals can
be diverse. Therefore, it is difficult to reveal the nature
of the deformation-induced changes in the lumines-
cence properties of ZnS crystals described in this work.
Apart from the factors common to all materials, we
have to take into account factors peculiar to zinc sul-
fide. For example, the initial structure of microtwins
and polytypes in ZnS crystals is known to transform
into the sphalerite structure as a result of the motion of
partial dislocations during plastic deformation [1, 2].
Of course, it is important to take into account this factor
when analyzing changes in all structure-sensitive prop-
erties. Moreover, dislocations moving upon plastic
deformation in ZnS crystals were shown to have a neg-
ative electric charge; therefore, there is a strong interac-
tion between the dislocation and electronic subsystems
[3–5]. Immobile dislocations in zinc sulfide crystals
were also found to generate electric fields that can ion-
ize impurity centers [6]. However, the effect of these
fields on recombination processes has not been taken
into account.

To reveal the main causes of changes in the lumines-
cence properties of ZnS : Mn and ZnS : Fe crystals that
are produced by plastic deformation and recorded after
the completion of deformation, we used electron para-
magnetic resonance (EPR) alongside optical measure-
ments. The choice of the impurities is obviously opti-
mum, since they are convenient paramagnetic probes
for EPR studies and, in addition, well-known centers of
intracenter (manganese) and recombination lumines-
cence (iron).

2. EXPERIMENTAL

We studied ZnS single crystals grown from melt by
using the Bridgman technique at an inert-gas pressure
1063-7834/03/4509- $24.00 © 21688
of 150 atm. Manganese (5 × 10–1 at. %) and iron
(10−2 at. %) impurities were introduced in the crystals
in the course of their growth.

Specimens 2 × 2 × 4 mm in size were cut from the
single crystals, and their surfaces were polished with a
diamond polishing paste. The (111)s slip plane that was
active during deformation was at an angle of 45° to the
deforming stress. Deformation was carried out at a con-
stant rate of ~2 × 10–5 m/s and a temperature of 400 K.
For this geometry and under these loading conditions,
partial dislocations are known to move in the basal
plane of ZnS crystals [1, 2]. EPR and photolumines-
cence (PL) spectra were recorded after each deforma-
tion act, and the conditions of deformation were identi-
cal for all experiments.

EPR spectra were recorded on an SE/X-2543
RADIOPAN spectrometer in the X range. Photolumi-
nescence in the specimens was excited with the radia-
tion of a DRSh-500 mercury lamp (wavelength λ =
365 nm). Luminescence spectra were recorded by a
standard procedure using a computer-assisted device
and data processing. Measurements were performed at
300 and 77 K.

3. EXPERIMENTAL RESULTS

The stress–strain curves of the specimens under
study indicate that, for the deformation mode used, the
initial stress of plastic flow for the ZnS : Fe crystals is
higher than that for the ZnS : Mn crystals by a factor of
~7–12. Note also that the ZnS : Mn specimens were
easily deformed to ε ≈ 20–25%, whereas the maximum
deformation for the ZnS : Fe crystals was ε ≈ 7–9%
(after which they failed).

3.1. Luminescence

The PL spectra of the ZnS : Fe crystals consist of
two bands (Fig. 1, curve a). One of them is in the red
003 MAIK “Nauka/Interperiodica”
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spectral range, has a maximum at λ = 640 nm, and is
caused by Fe3+ centers [7]. The maximum of the other
band is located in the green–blue range at λ = 510 nm.
Luminescence in this spectral region is characteristic of
zinc sulfide and is often observed even in undoped sam-
ples [8].

The ZnS : Mn crystals exhibit only one PL band of
Mn2+ centers in the orange spectral range, with a maxi-
mum at λ = 580 nm (Fig. 2, curve a) [9].

After plastic deformation, virtually all parameters
of the PL spectra of the specimens under study are
changed (Figs. 1, 2). In the ZnS : Fe crystals, the lumi-
nescence intensities in both bands monotonically
increase with the degree of deformation (Figs. 1, 3).
The maximum of the red band shifts toward longer
wavelengths (∆λ = 8 nm at ε = 7%), and the maximum
of the green–blue band is virtually independent of the
deformation. The PL band maximum of the manganese
centers in the ZnS : Mn crystals also shifts toward
longer wavelengths (∆λ = 5–7 nm at ε = 10–12%), and
its intensity first increases in the initial deformation
stage (for strains of up to ε ≈ 2–3%; Fig. 2, curve b) and
then decreases to below the initial values with increas-
ing deformation (Fig. 2, curves c, d; Fig. 4).

3.2. EPR

The EPR spectrum measured at 77 K on unde-
formed ZnS : Fe specimens irradiated with ultraviolet
light with λ = 365 nm is shown in Fig. 5a. This spec-
trum contains five lines from the fine structure of the
Fe3+ EPR spectrum, the central-transition line of the
Cr+ EPR spectrum, and the characteristic hyperfine-
structure sextet of the EPR spectrum of an uncontrolled
impurity of bivalent manganese ions. The analogous
spectra taken after plastic deformation are shown in
Figs. 5b and 5c. It is seen that the side-transition lines,
corresponding to the fine-structure levels with M = 5/2,
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Fig. 1. PL spectra of deformed ZnS : Fe crystals for (a) ε =
0, (b) 3.27, (c) 5.78, and (d) 10.43%.
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3/2, –1/2, and –3/2 (where M is the quantum number),
in the EPR spectrum of Fe3+ ions broaden and their
shapes approach Gaussian shape. At deformations ε ≈
5–6%, these lines are almost invisible as a result of their
strong broadening. The intensities of the central (M =
1/2) transitions in the EPR spectra of Fe3+ and Cr+

increase with deformation. Since the widths and shapes
of these lines in the spectra of the initial specimens and
of the specimens in the final stage of deformation coin-
cide, we conclude that this increase unambiguously
reflects the character of deformation-induced changes
in the concentration of photosensitive Fe3+ and Cr+

paramagnetic centers.

Detailed studies of the EPR spectra of Mn2+ ions in
plastically deformed ZnS : Mn crystals were carried out
earlier in [2, 10]. Those studies supported x-ray diffrac-
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Fig. 2. PL spectra of the Mn2+ centers in deformed ZnS :
Mn crystals for (a) ε = 0, (b) 2, (c) 7.8, and (d) 14.2%.
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Fig. 3. Variation in the maximum intensities of the PL bands
of ZnS : Fe crystals with deformation: (a) the green–blue
band and (b) the PL of the Fe3+ centers.
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tion data showing that ZnS crystals are deformed via
partial-dislocation motion [1] and established the kinet-
ics of the deformation-induced reorientation of the
crystal lattice of microtwins and polytypes into a
sphalerite structure having only one orientation. Infor-
mation on the effect of deformation on the width and
shape of resonance lines is of greatest interest for us. It
was found that the EPR lines of Mn2+ ions in the start-
ing crystals have intermediate shapes between Lorentz-
ian and Gaussian and that after 2–3% deformation the
EPR lines broaden and acquire predominantly Gauss-
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Fig. 4. Variation in the PL maximum intensity of Mn2+ ions
in ZnS : Mn crystals with deformation.
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Fig. 5. Variation in the EPR spectra of Mn2+, Fe3+, and Cr+

ions in ZnS : Fe crystals with deformation: (a) ε = 0,
(b) 3.27, and (c) 5.78%.
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ian shape. After further deformation, the shapes and
widths of the EPR lines become identical to those for
the initial samples. It should be noted that, in the initial
stage of deformation, the changes in the shapes and
widths of the EPR lines of Fe3+ ions in the ZnS : Fe
crystals are qualitatively similar to those in the EPR
lines of Mn2+ ions in the ZnS : Mn crystals.

4. DISCUSSION OF THE RESULTS

Virtually all deformation dependences obtained in
our work exhibit specific features at low degrees of
deformation (from 0 to 5–6%). After these deforma-
tions, for example, the rates of increase in the PL inten-
sity and concentration of the Fe3+ and Cr+ centers are
maximum, the fine structure of the EPR spectra of Fe3+

ions disappears, and the PL intensity of the Mn2+ cen-
ters becomes maximum. These features also manifest
themselves in the behavior of the widths and shapes of
the fine-structure lines of the EPR spectra of Mn2+ ions
[10], the electrical conductivity [11], and the deforma-
tion dependence of the linear density of the dislocation
electric charge [12].

When compared, these facts (which do not exhaust
all possible the cases) indicate that they are conse-
quences of processes that are related to dislocation
motion and proceed in the initial stage of deformation.
We believe that these processes are (1) the breakaway
of dislocations from Cottrell atmospheres and
(2) changes in the electrical properties of dislocations,
which are caused by the first process. Moreover, if,
apart from these processes, we take into account a
deformation-induced increase in the density of disloca-
tions, virtually all experimental results obtained in this
work can be explained (including those at small defor-
mations).

Growth dislocations form in ZnS crystals at high
temperatures, i.e., under the conditions of a high con-
centration of point defects and high efficiency of the
diffusion processes. Impurities and other defects
migrate to dislocations and form Cottrell atmospheres.
These atmospheres can pin dislocations, in other
words, strengthen the crystals. This situation is likely to
take place upon doping ZnS crystals with an Fe impu-
rity, which is indicated not only by the data given above
but also by our results from an experimental study on
changes in the structure of ZnS : Fe crystals during their
quenching from temperatures above the temperature of
the wurtzite–sphalerite phase transformation (1297 K).
According to [1, 2], the transformation of the high-tem-
perature modification of zinc sulfide into the low-tem-
perature one occurs as a result of partial-dislocation
motion. When the crystals are grown from the melt, the
phase transformation is incomplete; and the crystals
grown are always sphalerite microtwins. However,
after quenching from T > 1297 K, the ZnS : (Fe, Mn)
crystals simultaneously exhibit the Mn2+ EPR spectra
characteristic of both sphalerite [13] and wurtzite [14]
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



      

EFFECT OF THE ELECTRIC FIELDS OF IMMOBILE DISLOCATIONS 1691
microtwins. This indicates that the phase transforma-
tion in this case is incomplete and that regions with a
“frozen” high-temperature hexagonal structure are
always retained in the quenched samples. Note that a
similar effect is also observed upon quenching of ZnS
crystals doped with aluminum and is absent in ZnS
crystals with manganese impurity alone.

Thus, we believe that the iron concentration in Cot-
trell atmospheres is significantly higher than in crystal
regions far from growth dislocations; that is, unlike the
manganese impurity [2, 5], the iron impurity is nonuni-
formly distributed over the volume of the ZnS crystals.

It should also be noted that dislocations that move
during plastic deformation of zinc sulfide crystals have
a negative electric charge [12, 15]. The electric field of
charged dislocations ionize defects located near them,
which results in the shielding of cylindrical regions
with a positive spatial charge (Read cylinders). The
radii of the cylinders are specified by the dislocation
charge and impurity concentration. Atoms in impurity
atmospheres can move only via diffusion, which is hin-
dered at the deformation temperatures used. Therefore,
when dislocations start to move, they partially break
away from the compensating clouds of impurities and
vacancies. As a result, the radii of the Read cylinders
increase, which is equivalent to growth in their “geo-
metric charge.” We believe that their actual charges can
also change under these conditions, since the increases
in the radii of the Read cylinders and in the distances
between dislocation cores and the centers of Cottrell
atmospheres cause qualitative and quantitative changes
in the impurity environment of the dislocations and
since the total dislocation charge depends not only on
the ionic component but also on the population of the
dislocation electronic level [12, 16].

Thus, in the range of small deformations (during the
breakaway of dislocations from Cottrell atmospheres),
the radii of the Read cylinders and, hence, their charges
(at least, the geometric charges) increase. Upon further
deformation, when dislocations have come from impu-
rity atmospheres to regions with a uniform impurity
distribution, their charges remain virtually unchanged.
The character of the variation in dislocation charge
with plastic deformation is the same both during defor-
mation (see [12, Fig. 4]) and after its termination (for
immobile dislocations).

As noted above, the PL spectrum of the undeformed
ZnS : Fe crystals consists of two bands: a red band with
λmax = 640 nm and a green–blue band with λmax =
510 nm. As for the nature of luminescence centers in
the green–blue spectral range, different opinions exist
[8, 17]; these centers are most often related to intrinsic
defects in crystals. We believe, as in [17], that PL in the
band with λmax = 510 nm appears because of the radia-
tive transitions of photoelectrons to doubly charged sul-
fur vacancies, whose energy levels (Ev = 1.05 ± 0.1 eV)
correspond to acceptor centers. PL centers in the red
spectral range are Fe3+ ions. Iron atoms in ZnS : Fe
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
crystals are known to isoelectronically substitute for
zinc and have the charge state Fe2+ (electronic configu-
ration 3d6; EPR spectra are not detected). The Fe2+ cen-
ters in zinc sulfide are acceptors whose occupied levels
are located 1.1 eV above the valence band top [7].
When the crystals are irradiated by UV light with an
energy close to their fundamental absorption band
edge, electron–hole pairs are generated; then, holes are
entrapped by the Fe2+ centers to form Fe3+ centers (elec-
tronic configuration 3d5; EPR spectra are detected and
shown in Fig. 5). The red luminescence with λmax =
640 nm appears as a result of the radiative transitions of
electrons from shallow levels to the Fe3+ center levels
(Fe3+ + e  Fe2+). Thus, at a given level of UV exci-
tation, a certain steady-state concentration of Fe3+ ions
is reached; their PL and EPR spectra are given in
Figs. 1 and 5, respectively.

As noted above, the charges of immobile disloca-
tions and the radii of their Read cylinders increase after
the initial deformation. As a result, part of the volume
in the deformed specimens is under the efficient action
of electric fields of negatively charged dislocations.
Bending of energy bands in such regions does not lead
to changes in the probability of formation of electron–
hole pairs and recombination processes but affects the
concentration of charge carriers. The PL intensity in the
red range is specified by two competing processes: a
decrease in the concentration of electrons (repulsed by
the electric fields of dislocations) and the related
increase in the concentration of Fe3+ centers. It is easy
to understand that these two processes compensate each
other to some extent; hence, the PL intensity of the Fe3+

centers located inside the Read cylinders should be vir-
tually constant. On the contrary, in regions far from dis-
locations, the process of radiative recombination
becomes more intense due to the addition of nonequi-
librium electrons rejected from the Read cylinders. As
a result, the integrated intensity of the red PL band
should increase after the deformation of zinc sulfide
crystals. In the range of small deformations, when dis-
locations have not left Cottrell atmospheres, electrons
are repulsed to iron-rich regions and the effect of
increasing the PL intensity of the Fe3+ centers is more
pronounced. Exactly this trend of the variation of the
intensity of the red PL band is experimentally observed
in the ZnS : Fe specimens (Fig. 3, curve b). The fact that
the iron centers that enter into impurity atmospheres
significantly contribute to the increase in the PL inten-
sity is indicated by the shift of the luminescence maxi-
mum in the red band. Indeed, dislocations coming into
the iron-rich regions bring about an increase in internal
mechanical stresses, which change the interatomic dis-
tances and, hence, the band gap. Since the red band
shifts toward the long-wavelength region, we conclude
that radiative Fe3+ centers are located in dilatation
regions. The absence of a deformation-induced shift in
the position of the luminescence maximum of the
green–blue band may mean that the luminescence cen-
3
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ters are either located beyond the coverage of the
mechanical stress fields of dislocations or, quite the
contrary, are bound to them, namely, are constantly
localized near dislocations. The latter does not conflict
with the model of green–blue luminescence centers
accepted by us, since dislocation motion in II–VI com-
pounds is known to occur with the formation of double
kinks [16], which is inevitably accompanied by the for-
mation of vacancies [18].

The results of EPR studies confirm the key state-
ments of the proposed scheme of the processes. The
electron concentration in regions far from dislocations
increases after deformation, which is unambiguously
indicated by an increase in the intensity of the EPR
spectrum of Cr+ centers (Fig. 5). An increase in the
intensity of the line of the M = 1/2 transition in the EPR
spectra of Fe3+ ions (Fig. 5) reflects the corresponding
change in the total concentration of these ions. The
main thing is that the EPR data corroborate the basic
point of our model about an increase in the radii of the
Read cylinders after dislocations have started to move.
This conclusion follows from an analysis of the defor-
mation-induced changes in the shapes and widths of the
side lines in the fine structure of the EPR spectra of Fe3+

ions. The changes observed indicate that they are
caused by the effect of nonuniform electric fields on
paramagnetic centers [19]. It is natural to assume that,
in our case, the sources of such fields are dislocations,
whose negative electric charges increase in magnitude
during their breakaway from impurity atmospheres. It
should also be taken into account that, when disloca-
tions move with respect to centers of positively charged
impurity clouds that remain behind, long-lived dipoles
form; the nonuniform electric fields of the dipoles oper-
ate most efficiently at low degrees of deformation. In all
these cases, we expect that the effect of the EPR line-
broadening factors indicated above becomes weaker as
dislocations exit impurity atmospheres to regions with
a low iron concentration. This behavior is not observed
in the ZnS : Fe specimens, since growth dislocations
are strongly pinned and, therefore, cannot completely
leave Cottrell atmospheres. As a result, the deformation
of such crystals proceeds mainly via the motion of dis-
locations that are not associated with the crystal growth
and have no impurity atmospheres around them. These
dislocations are most likely to be perfect dislocations,
since the generation of partial dislocations in sphalerite
should be accompanied by the formation of hexagonal
close-packed layers, which is energetically unfavorable
at the temperatures of our experiments. Since perfect
dislocations do not have sufficient mobility at these
temperatures [16], the ZnS : Fe specimens cannot be
deformed to a degree higher than 7–9%. However, as
noted above, the widths and shapes of the EPR lines of
the ZnS : Mn crystals, where impurities cannot pin
growth dislocations, become equal to those of the initial
samples as the degree of deformation increases.
P

Now, we discuss the deformation-induced PL
changes in the ZnS : Mn crystals. In order to explain
their specific features at low deformations, it is neces-
sary to take into account that, according to modern con-
cepts, manganese luminescence centers are excited in
zinc sulfide crystals via resonance energy transfer from
sensitization centers (intrinsic lattice defects or their
associates with atoms of certain uncontrollable impuri-
ties) [20]. It is natural to assume that the concentration
of such sensitization centers is higher in the regions
around growth dislocations. Therefore, the manganese
centers, which are also located near dislocations,
should be excited most efficiently. The deformation of
the specimens leads to the displacement of growth dis-
locations from their initial positions, which causes an
increase in the dislocation electric charge; as a result,
strong (on the order of 107 V/cm) electric fields of dis-
locations begin to affect the sensitizer–manganese cen-
ter resonance systems. The effect of the fields can
increase the efficiency of the resonance channel of
energy transfer and, thus, increase the luminescence
intensity of the Mn centers. As growth dislocations
move away from their Cottrell atmospheres, the situa-
tion should return to its initial position; therefore, the
PL intensity is recovered. It should be noted, however,
that the higher concentration of intrinsic defects (sensi-
tization centers) in Cottrell atmospheres is due to
mechanical stresses caused by dislocations. Obviously,
after dislocations have left a certain place, equilibrium
is recovered there and the PL intensity decreases.
Exactly this character of the deformation-induced PL
changes was experimentally observed in the ZnS : Mn
crystals (Fig. 4). The fact that dislocations actually have
left the luminescence centers emitting the PL of the
undeformed crystals is also indicated by the deforma-
tion-induced shift in the position of the maximum of
the Mn luminescence band toward long wavelengths.
Thus, we can state that only before the beginning of
deformation were the luminescence centers and sensi-
tizers located in places where the crystal lattice was dis-
torted by the mechanical stress fields of dislocations.

Now, we discuss the effect of the electric fields of
immobile dislocations on the luminescence properties
of the crystals. Let us estimate the number of lumines-
cence centers that can be within the Read cylinders.

The total volume of the spatial charge around dislo-
cations is

(1)

where V is the specimen volume, Nd is the dislocation
density, and R is the radius of a Read cylinder. Using
the etch pitting technique, we found that Nd ~ 105–
106 cm–2 in the undeformed crystals. For dislocations
surrounded by impurity atmospheres, we have R ~
10−6 cm. Therefore, Ω/V ~ 10–7–10–6, which means that
the fraction of an undeformed specimen occupied by
the Read cylinders is very low. However, if the lumines-
cence centers decorate dislocations, their local concen-

Ω πR
2
NdV ,=
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tration can be rather high (~1020–1021 cm–3). In this
case, the regions where the dislocation electric fields
are significant in a specimen 2 × 2 × 4 mm in size con-
tain ~1010–1012 centers. After deformation, the disloca-
tion density and the radius of their Read cylinders
increase; at the same time, the dislocations become
located in regions with a significantly lower concentra-
tion of impurities. After a 4–5% deformation, the dislo-
cation density is Nd ~ 3 × 106–107 cm–2 and R ~ 10–5 cm
[16]. In this case, we have Ω/V ~ 10–3. However, the
concentration of impurity centers is ~1018–1019 cm–3;
therefore, ~1013–1014 luminescence centers are subject
to the electric fields of dislocations. A further deforma-
tion can increase the number of luminescence centers
due to dislocation multiplication.

Thus, at least ~1012–1014 luminescence centers are
located in the regions where the electric fields of immo-
bile dislocations are significant in the zinc sulfide crys-
tals under study. Obviously, these centers can affect the
luminescence properties of the crystals and their varia-
tion during plastic deformation in the case of suffi-
ciently efficient excitation and a high quantum yield of
luminescence.
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Abstract—Screw superdislocations with hollow cores (pipes) which arise during growth of semiconductor
crystals such as silicon carbide and gallium nitride are considered. Exact analytical expressions are first derived
for the displacements, strains, and stresses associated with a pipe oriented perpendicular to the free planar sur-
face of an elastically isotropic half-space. It is shown that the stress field of the dislocation present in the pipe
is heavily affected when the exact boundary conditions at the free cylindrical surface of the pipe are taken into
account. The influence is the strongest in the region around the pipe at distances of the order of the pipe radius
from the surface of the pipe. In this region, the elastic strains can be as large as a few tenths of one percent. The
results obtained can be useful in analyzing the interaction of pipes with one another and with other defects, as
well as in simulating the behavior of pipes during crystal growth. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The fact that screw superdislocations with hollow
cores form in the course of growth of certain crystals
has been known for more than half a century [1]. Such
dislocations have been detected in crystals of silicon
carbide, which is one of the materials that show the
greatest promise for use in high-power electronics. In
silicon carbide, superdislocations have the form of
nearly rectilinear cylindrical voids (micropipes) up to
tens of micrometers in diameter; they are oriented
along the crystal growth direction and propagate
through the crystal. The density of these dislocations in
commercial crystals can be as high as 10 to 100 cm–2,
depending on the size and quality (cost) of a sample [2].
In the mid 1990s, screw dislocations with hollow cores
(nanopipes) were first reported to be observed in gal-
lium nitride [3, 4]. This material has currently received
considerable attention as a wide-band-gap semiconduc-
tor holding much promise for optoelectronics. In this
material, nanopipes range in diameter from 3.5 to
50 nm and their density can be as high as 105–107 cm–2

[3–5]. Although micro- and nanopipes differ signifi-
cantly in size and density, their general geometry and
dislocation nature allow one to analyze these objects on
a unified basis. In what follows, we refer to them as
pipes, implying that they contain screw (super)disloca-
tions.

There is a considerable amount of evidence that
such pipes adversely affect the performance character-
istics of devices based on silicon carbide crystals [2, 6–
9]. The adverse effect can be so strong that the pipes are
sometimes called killing defects of devices [2, 10] and
their density is considered an important indicator of the
1063-7834/03/4509- $24.00 © 1694
quality of grown crystals. The effect of pipes on the per-
formance of devices based on gallium nitride has also
been intensively studied [11–14]. Pipes were the sub-
ject of experimental studies in [3–11, 13–30].

The first theoretical model of pipe formation was
proposed by Frank [31], who pointed out that hollow
cores of dislocations with large Burgers vectors arise in
the regions of high elastic stresses around the disloca-
tion lines, thereby decreasing the energy of these
defects. Thus, pipes form in crystals where there are
superdislocations. Theoretically, pipes can contain
screw, edge, and mixed dislocations; however, in most
cases, pipes with only screw dislocations are observed,
and we will consider only such pipes in what follows.
Superdislocations bringing about the formation of
micropipes can arise near impurities [17–19], inclu-
sions of another phase [21, 22], voids [5, 21, 26], and
surface steps [21, 27]. Pipes can also form at low-angle
boundaries [19, 29] separating different polytypes, i.e.,
regions with different types of crystal lattice [8].

Since pipes contain (super)dislocations, which pro-
duce long-range elastic stresses in the crystal, the evo-
lution of the pipes (their motion [15, 29], splitting [7,
24, 25, 28, 30], or combining [29]) in the course of
crystal growth and subsequent annealing is determined
chiefly by the elastic interaction of dislocations with
one another and with other defects or strained regions
of the crystal. For instance, splitting and merging of
pipes (which can result in their healing [7, 24, 25, 29]
and the formation of macrocavities [29], respectively)
are consequence of the dissociation and combining of
dislocations contained in the pipes. Therefore, there are
many processes in which the interaction of pipes with
one another and with other defects is of importance.
2003 MAIK “Nauka/Interperiodica”
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In the previous theoretical papers dedicated to
studying the interaction of pipes with screw disloca-
tions [32, 33] and with one another [33] and to analyz-
ing the conditions under which pipe splitting occurs
[30], pipes were assumed to be in an infinite medium.
However, the motion of pipes and the processes of their
combining and splitting take place, for the most part, at
the front of crystal growth. Therefore, the free surface
of a growing crystal has a determining effect on the
evolution of an array of pipes. The objective of this
paper is to theoretically analyze the “elastic compo-
nent” of this effect, i.e., to investigate the screening
effect of the free surfaces of the crystal and of the pipe
on the elastic fields of the dislocation contained in the
pipe. Therefore, we should exactly solve the boundary-
value problem of the elasticity theory for a pipe perpen-
dicular to the free crystal surface. The elastic displace-
ment and stress fields calculated for a pipe containing a
screw dislocation can be further used, in particular, to
determine the energy and interaction forces for an array
of pipes and to analyze the conditions of their combin-
ing or splitting.

2. STRESS FIELD

We consider an elastically isotropic half-space z ≥ 0
with a cylindrical cavity of radius R0 containing a screw
dislocation with a Burgers vector b = bez (Fig. 1). In a
cylindrical system of coordinates (r, ϕ, z) with the ori-
gin placed on the axis of the cylindrical cavity, the
stresses σij produced by the dislocation must satisfy the
boundary conditions σiz |z = 0 = 0 and  = 0,

where i is r, ϕ, or z. To solve this boundary-value prob-
lem, we employ the method of virtual surface defects
[34]. In this method, the stress field σij is represented in
the form

(1)

where  is the stress field produced by the dislocation

in the absence of the cavity and  is an additional
stress field, which is chosen so as to satisfy the bound-
ary conditions at the surface of the cavity r = R0.

The stress field  is calculated from the formulas
[34, 35]

(2)

(3)

(4)

σir r R0=

σij σij
d σij

v
,+=

σij
d

σij
v

σij
d

σrϕ
d Gb

2πR0
------------ r̃2

R̃ R̃ z̃+( )2
-----------------------,–=

σzϕ
d Gb

2πR0
------------ z̃

r̃ R̃
------,=

σrr
d σϕϕ

d σzz
d σzr

d
0,= = = =
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where  = r/R0,  = z/R0,  = , and G is the

shear modulus. The stress field  satisfies the bound-
ary conditions σiz = 0 (i = r, ϕ, z) at the surface z = 0.

The stress field  can be expressed in terms of the

stress fields of virtual twist disclination loops ( , ,

) in the half-space z ≥ 0. These loops are assumed to
be circles of radius R0, with their centers located on the
z axis; the coordinate of the center of a loop is desig-
nated as z'. The planes of the virtual loops are parallel
to the free planar surface z = 0 and the loops are contin-
uously distributed over the surface of the cylinder. In
this case, the total stress field of the loops is

(5)

where ρ( ) is the density of virtual disclination loops.

The stress field  produced by an individual loop in
the half-space can be written as [36]

(6)

where ( ,  – ) is the stress field of a twist discli-
nation loop situated in an infinite medium. The loop
line is specified by the coordinates  = 1 and  = .

At any point beyond the loop, the stress field ( ,

) is given by [36]

(7)

(8)

(9)

r̃ z̃ R̃ r̃2 z̃2+

σij
d

σij
v

σij
l

r̃ z̃

z'˜

σij
v

r̃ z̃,( ) ρ z'˜( )σij
l

r̃ z̃ z'˜, ,( ) z'˜ , z̃d

0

∞

∫ 0, r̃ 1,>≥=

z'˜

σij
l

σij
l

r̃ z̃ z'˜, ,( ) σij
∞

r̃ z̃ z'˜–,( ) σij
∞

r̃ z̃ z'˜+,( ),–=

σij
∞

r̃ z̃ z'˜

r̃ z̃ z'˜

σij
∞

r̃

z̃

σrϕ
∞ Gω

2
-------- z̃J 2 2; 1,( ),sgn–=

σzϕ
∞ Gω

2
--------J 2 1; 1,( ),–=

σrr
∞ σϕϕ

∞ σzz
∞ σrz

∞
0,= = = =

Free surface

Crystal
Pipe

2R0

r

b

z

Fig. 1. Pipe with a screw (super)dislocation perpendicular
to the free planar crystal surface.
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where ω is the strength of the disclination loop (the
magnitude of the Frank vector) and J(m, n; p) is a Lips-
chitz–Hankel integral [37, 38], defined as J(m, n; p) =

. Here, Jl(t) is a Bessel func-

tion of the first kind.

By substituting the total field of virtual loops (5) and
Eqs. (6)–(9) into the boundary condition at the free sur-

face of the cavity, (  = 1, ) = – (  = 1, ),

where (  = 1, ) = ( , ), we obtain an inte-

gral equation for the density of virtual loops ρ( ). In
order to solve this equation, we extend the function
ρ( ) (defined in the region z ≥ 0) into the region z < 0
by using the relation ρ(– ) = –ρ( ). In this case,
Eq. (5), in combination with Eq. (6), can be written as

(10)

and the boundary condition (  = 1, ) = – (  =

1, ) reduces to a Cauchy-type integral equation

(11)

Taking the Fourier transform (k) =  of

Eq. (11), we obtain

(12)

The quantities ρ( ) and (  = 1, ) are odd func-

tions of . Therefore, (k) and (  = 1, k) are odd

functions of k, (  = 1, k) is an even function of k,

and (  = 1, ) is an even function of . For this rea-

son, we define  in the region z < 0 using the relation

(  = 1, ) = (  = 1, – ).

By substituting Eqs. (2) and (7) into Eq. (12) and
calculating the relevant integrals, we find the Fourier
transform of the distribution function of virtual discli-
nation loops located on the surface of the cavity:

(13)

where i is the imaginary unit and I2(|k |) and K2(|k |) are
the modified second-order Bessel functions of the sec-
ond kind.

Jm κ( )Jn κ r̃( )e
κ z̃– κ p κd
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∞ r̃
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d
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ρ̂ k( ) b
iπωR0
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K2 k( )– 2/k
2

+
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--------------------------------------,=
P

In order to calculate  we take the Fourier trans-
form of Eq. (10):

(14)

The quantity ( , ) is an odd function of ; there-

fore, ( , k) is an odd function of k and ( , k) is

an even function of k. Similarly, since ( , ) is an

even function of , ( , k) is an odd function of k.

The stresses  are obtained from Eq. (14) by taking
the inverse Fourier transform:

(15)

By substituting Eqs. (7)–(9) and (13) into Eq. (15) and
evaluating the integrals, we obtain

(16)

(17)

(18)

In deriving Eq. (17), we used the equality
 = 0 for  > 1. Due to this equality,

expressions (16)–(18) for  are continuous at  = 1;

namely, ( , ) = (1, ).

Thus, the stress field σij of the pipe perpendicular to
the free crystal surface z = 0 is the sum of the stress

fields  given by Eqs. (2)–(4) and  given by
Eqs. (16)–(18). By using the relation

(19)

we represent the sought-for stress field of the pipe σij in
a compact form:

(20)

(21)
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It is easy to verify that this solution satisfies the bound-
ary conditions at the free planar crystal surface

 = 0 and at the free cylindrical surface of the

pipe  = 0.

Equations (20)–(22) are convenient for numerical
computations of the elastic stresses and strains εiϕ =
σiϕ /(2G) produced by the pipe near the crystal surface.
The calculated σzϕ( ), σzϕ( ), and σrϕ( ) dependences
are shown in Fig. 2 by solid curves (the stresses are
given in units of Gb/(2πR0). The dashed curves repre-

sent the corresponding stresses  and  produced
by a screw dislocation with a full core. It can be seen
from Fig. 2 that, near the free surface of the pipe (  = 1),
both its nonzero stress field components, given by
Eqs. (20) and (21), differ significantly from the respec-
tive stress field components of the dislocation with a
full core, given by Eqs. (2) and (3). Contrarily, at dis-
tances larger than 2R0 from the dislocation line (located
at  = 0), both solutions are close to each other. In this
region, Eqs. (20)–(22) for the stress field of the pipe can
be approximated by the simpler solution for the stress
field of the screw dislocation with a full core, which is
given by Eqs. (2)–(4).

Let us estimate the elastic strains produced by a pipe
near the free crystal surface. As an example, we take the
well-studied 6H-SiC crystal, for which the Frank rela-
tion [31] R0 = Gb2/8π2γ has been established to be valid
(γ is the surface energy density of the free pipe surface).
Using this relation, the elastic strains can be written as
εiϕ( , ) = σiϕ( , )/2G = (2πγ/Gb)Φiϕ( , ), where
the functions Φiϕ( , ) stand for the integrals in
Eqs. (20) and (21) multiplied by 4/π (it is the functions
Φiϕ( , ) that are plotted in Fig. 2). From the experi-
mental data for 6H-SiC crystals, the value of γ/G was
estimated in [39] to be (1.1–1.6) × 10–3 nm. The magni-
tude of the Burgers vector is assumed to lie in the range
from 2c to 7c [39], where c is the lattice parameter
along the crystal growth direction [0001] (c ≈ 1.5 nm
[32]). In this case, we have 2πγ/Gb ≈ (0.7–3.4) × 10–3.
For the values of Φiϕ( , ) corresponding to the solid
curves in Fig. 2, we find that the shear strain component
εzϕ (Figs. 2a, 2b) varies from zero to approximately
(0.7–3.4) × 10–3 and the component εrϕ (Fig. 2c) varies
from approximately –(0.3–1.4) × 10–3 to zero. Thus, the
elastic strains can be as large as several tenths of a per-
cent near the free surfaces of the pipe and the crystal.

3. DISPLACEMENT FIELD

The exact solution for the displacement field of the
pipe perpendicular to the free crystal surface may also
be of interest for practical applications (e.g., for analy-
sis of electron-microscopic images of pipes and high-
resolution x-ray topography [20]). The displacement

σzϕ z̃ 0=

σrϕ r̃ 1=

z̃ r̃ z̃

σzϕ
d σrϕ

d

r̃

r̃

r̃ z̃ r̃ z̃ r̃ z̃
r̃ z̃

r̃ z̃

r̃ z̃
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field ui can also be calculated as the sum of the dis-

placement field  of the screw dislocation with a full
core [35],

(23)

(24)

(25)
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d b

2π
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Fig. 2. Stresses σzϕ and σrϕ (solid curves) and stresses 

and  (dashed curves) produced by a pipe and a screw
dislocation with a full core, respectively, positioned perpen-
dicular to the free crystal surface; (a) σzϕ(z/R0) and

(z/R0) for r/R0 = 1, 2, 3 (from top to bottom, respec-

tively); (b) σzϕ(r/R0) and (r/R0) for z/R0 = 0.2, 0.5, 1.0

(from top to bottom); and (c) σrϕ(r/R0) and (r/R0) for
z/R0 = 0.2, 0.5, 1.0 (from bottom to top). Stresses are given
in units of Gb/2πR0.
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Fig. 3. Displacements produced (a, b) by a pipe and (c, d) by a screw dislocation with a full core in the planes (a, c) z = 0 and

(b, d) z = R0, which are parallel to the free crystal surface. Displacements (a, b) uϕ and (c, d)  are proportional to the lengths of

the corresponding arrows, which can be determined using the scales in the coordinate axes; the coefficient of proportionality is b/2.
The circles r = R0 (a, b) indicate the pipe surface or (c, d) are drawn for convenience of comparison of displacements produced by
a pipe and a screw dislocation with a full core.

uϕ
d
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and the additional displacement field  of virtual twist
disclination loops distributed over the cylindrical sur-
face of the pipe,

(26)

where ( ,  – ) is the displacement field of a twist
disclination loop located in an infinite medium and
specified by the coordinates  = 1 and  = . The field
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v
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( , ) has the form [36]
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Using Eqs. (13) and (26)–(28), the displacement field
 is calculated in the same way as the stress field .

As a result, we obtain
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(30)

Thus, the sought-for displacement field ui is equal to

the sum of the field  given by Eqs. (23)–(25) and the

field  given by Eqs. (29) and (30). It follows from
Eq. (30) that the free surface of the pipe has no effect
on the displacement components ur and uz but signifi-
cantly affects the displacement component uϕ. Figure 3
shows the displacements uϕ produced by the pipe in two
parallel planes, namely, the free surface z = 0 (Fig. 3a)
and the plane z = R0 (Fig. 3b). For comparison, Figs. 3c

and 3d show the displacements  produced in these
planes by the screw dislocation with a full core. The

displacements uϕ and  are proportional to the lengths
of the corresponding arrows, which can be determined
using the scales in the coordinate axes. The coefficient
of proportionality is b/2. For example, in Fig. 3a, the
length of the arrows near the surface of the pipe is
approximately 0.25; therefore, uϕ ≈ b/8. The displace-

ments uϕ and  characterize the magnitude of twisting
of the material near the free surface. It can be seen from
Fig. 3 that near the free surface of the pipe the displace-
ments uϕ are significantly larger than the displacements

 produced in the same regions by the screw disloca-
tion with a full core. Therefore, the presence of the free
surface of the pipe is favorable for twisting of the crys-
tal near the free planar surface z = 0 and the free cylin-
drical surface r = R0. This conclusion is in accordance
with Fig. 2a, which shows that the stress component σzϕ
(and, hence, the strain εzϕ) produced by the screw dislo-
cation near the free crystal surface increases when the
core of the dislocation becomes hollow. It is seen from
Fig. 3 that the displacements uϕ produced by the pipe,

as well as the displacements  produced by the screw
dislocation with a full core, decreases with increasing
distance from the free surface z = 0.

It should be noted that knowledge of the displace-
ment field produced by pipes near the free surface of a
crystal is essential for correct determination of the dif-
fraction contrast of the pipes. Indeed, high-resolution
x-ray diffractometry allows one to determine the Burg-
ers vectors of pipes in a sample with a low density of
pipes. In the case of small-angle reflections of x rays
from crystallographic planes near the crystal surface,
both nonzero components, uz and uϕ, of the displace-
ment field of a pipe contribute to the diffraction con-
trast. Because of the absence of exact calculations of
these components, the expressions for the displacement
field of a pipe in an infinite medium and for the dis-
placement field produced by a screw dislocation with a
full core near the free crystal surface were used in [20]
to calculate the diffraction contrast of pipes near the
surface of a crystal. When the expressions for the dis-

ur
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v

0.= =

ui
d
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v
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d

uϕ
d

uϕ
d

uϕ
d

uϕ
d
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placement field of a pipe in an infinite medium were
used, the agreement between the calculations and the
experimental data was poor. With the expressions for
the displacement field produced by a screw dislocation
near the free crystal surface, the agreement became bet-
ter but was far from complete. The exactly calculated
displacement field of a pipe given by Eqs. (29) and (30)
can be used to settle the remaining discrepancies.

4. CONCLUSION

In this paper, exact expressions have been derived
for the first time for the stresses, strains, and displace-
ments produced by a pipe that is perpendicular to the
free crystal surface and contains a screw dislocation. It
has been shown that the free surface of the pipe signif-
icantly affects the elastic fields produced by the dislo-
cation associated with the pipe at distances from its sur-
face of the order of the pipe radius. The expressions
obtained for the elastic fields of a straight pipe were
employed by the present authors to calculate the elastic
fields of analogous pipes with steps, which arise during
motion of the near-surface segments of the pipes, and
the forces acting on these segments. The calculated
stress field of a pipe can also be used to analyze the con-
ditions under which pipes split and eventually disap-
pear as a crystal grows. For example, a screw disloca-
tion with a full core can split off from the original pipe
when the dislocation acquires a kink in a near-surface
layer, which is accompanied by splitting of the surface
step associated with the screw dislocation [28]. If a dis-
location segment that split off from the pipe has a suffi-
ciently large Burgers vector, this segment can transform
into a new pipe. In this way, branching of micropipes
occurs [30]. A detailed analysis of this process will be
the aim of our further investigations.
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Abstract—Using an atomic force microscope (AFM), the of hardness H and Young’s modulus E are measured
in near-surface layers of KCl single crystals to a depth of 300 nm at loads of 5–100 µN. The values of H and E
are estimated indirectly by analyzing P(h) curves (load vs. indentation depth curves). The value of H is also
estimated directly by measuring the area of an indentation with the help of an AFM with a nanoscale resolution.
The effect of structural features of the surface around an indentation on the accuracy of the H and E estimates
is revealed. The sharp dependence of H on the load (the nanoscale effect) is revealed. The experimental results
agree qualitatively with the predictions of the geometrically necessary dislocation model developed by Nix and
Gao. However, in order to quantitatively estimate mass transfer from a nanoindenter, a structural analysis is
required with allowance for plastic deformation in crystals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanoindentation of materials has been widely
applied over the past 15 years to study the mechanical
properties of thin films and the surface layers of bulk
materials. The progress in the development and appli-
cation of the nanoindentation technique is mainly due
to the development of micro- and nanotechnologies in
modern analytical engineering. The following two
aspects of the problem of nanoindentation should be
considered: first, improving the technique and obtain-
ing information required for predicting the mechanical
behavior of materials used in micro- and nanodevices,
and, second, establishing the physical nature of mecha-
nisms responsible for the strength and plasticity of
small volumes in materials. At present, both aspects of
this problem are being intensively studied by various
scientific groups.

Nanoindentation is based on monitoring the pene-
tration of a nanoindenter into a material and finding
quantitative relations between the parameters of the
load vs. indentation depth (P(h)) curve and the mechan-
ical properties (such as the hardness H and Young’s
modulus E) of the material. Conventional nanoindent-
ers allow one to use loads from micronewtons to millin-
ewtons and to measure indentation depths from nanom-
eters to micrometers. The hardness and Young’s modu-
lus are estimated from the relations

(1)
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E
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where P is the maximum load, A is the contact area, Eeff
is the effective modulus specified by the Young moduli
and Poisson ratios of the material under study and of
the indenter material, and S is the contact stiffness of
the material. The conventional procedure of estimating
S from a P(h) dependence is described in [1]. Thus,
analysis of a P(h) curve allows estimation of such
important mechanical properties as the hardness and
elasticity of a material for extremely small loads and,
hence, small indentation depths, i.e., estimation of the
local mechanical properties of small volumes in the
material. However, as shown by Randall [2], this proce-
dure does not take into account the pile-up and sink-in
effects during nanoindentation, which can substantially
change the contact area A measured experimentally.
Since both the hardness and Young’s modulus calcu-
lated from Eqs. (1) and (2) depend on A, they can be
determined with high error if the value of A is not con-
trolled by another independent method. Such a control
is possible in methods that combine nanoindentation of
materials with a topographic study of their surfaces by
atomic force microscopy (AFM). In this case, nanoin-
dentation is performed with a diamond nanoindenter,
which can simultaneously be used as a sharp tip for
scanning a surface to obtain its topographic (two- or
three-dimensional) image in the AFM contact or tap-
ping mode. The surface relief is recorded with a nanos-
cale spatial resolution. The combination of AFM and
nanoindentation makes it possible to visually choose a
place for a nanotest 0.5–1 µm2 in size and to obtain a
three-dimensional image of an indentation and of the
surface around it with a resolution of 0.5 nm. Indenta-
tion images can be used to calculate the contact area
and compare it with the value calculated from a P(h)
003 MAIK “Nauka/Interperiodica”
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curve. Thus, it becomes possible to substantially
improve the reliability of estimating the hardness and
elasticity of small volumes in materials, to visualize
structural features of the surface around an indentation
with a nanoscale spatial resolution, and to experimen-
tally check the physical models describing deformation
in small volumes [3–5].

In this work, we study the local mechanical proper-
ties of KCl single crystals by using AFM. Defect struc-
tures and their relation to the bulk mechanical proper-
ties of KCl crystals are well known [6]; therefore, these
crystals are often used as a model material to establish
mechanisms responsible for the plasticity of crystals.
For AFM, KCl single crystals are convenient, since it is
easy to prepare samples with almost atomically smooth
surfaces of crystal blocks from these crystals through
simple cleavage along cleavage planes.

2. EXPERIMENTAL

We investigated KCl Czochralski-grown single
crystals having high plasticity and a microhardness of
0.1 GPa. This means that indentations are rather large
even at small loads and measurement at extremely
small loads of nanoindentation causes high errors due
to both the indenter shape and the determination of the
loading force parameters. To enhance their hardness,

0.25 0.50 0.750

–100

100

0

nm

µm

402.83 nm

464.60 nm

413.57 nm

Fig. 1. An example of measuring the contact area. The dis-
tances between the marks in the upper part of the figure cor-
respond to the sides of the triangle (indentation) in the lower
part of the figure.

Section analysis
P

the KCl single crystals were irradiated by γ rays from a
Co60 source to a dose of about 5 × 106 rad and then
cleaved along the (100) cleavage planes to prepare
specimens for indentation. Nanoindentation was car-
ried out only on as-cleaved cleavage surfaces.

For measurements, we used a Di Dimension 3100
atomic force microscope with a diamond indenter serv-
ing as a tip mounted at the end of a steel cantilever. The
spring constant of the cantilever was 297 N/m, and its
resonance frequency was ~78 kHz. The indenter was a
trihedral 90° pyramid with a radius of curvature of
about 25 nm. This structure of the indenter allowed us
to perform nanoindentation and to measure a surface
relief with a high spatial resolution without changing
the cantilever. Indentation was carried out at various
loading rates (loading times varied from 10 to 0.01 s)
and various loads (from 5 to 400 µN). The bending flex-
ure of the cantilever served as a measure of the load
applied. To calculate the force applied to a specimen
during indentation, we preliminary calibrated the canti-
lever sensitivity using very hard materials. To this end,
we used sapphire with a hardness of 25 GPa and a
Young’s modulus of 470 GPa. Indentation was per-
formed by pressing the indenter into the surface of a
specimen to reach the required bending of the speci-
men. Then, the indenter was raised to its initial position
above the specimen surface. For each indentation, we
recorded the dependence of the cantilever load on the
cantilever displacement in the vertical direction. Based
on this dependence and taking into account the cantile-
ver sensitivity, we plotted the P(h) curve and analyzed
it using the procedure described at the beginning of this
article to estimate the hardness H and Young’s modulus
of the specimen. As a reference specimen, we used
fused silica with a Young’s modulus of 72 GPa and a
hardness of 9 GPa. Moreover, we directly estimated the
hardness using Eq. (1); the indentation area was mea-
sured by scanning the indented surface. This area can
be measured by various techniques; most often, we
measured the lengths of indent sides (Fig. 1). This tech-
nique was used according to the following consider-
ations. As shown by many investigators [7, 8], the shape
of an indentation changes during microindentation and,
especially, nanoindentation due to the elastic aftereffect
during unloading. In rather plastic materials, the verti-
ces of indents do not change their position; that is, the
distances between the vertices remain the same during
recovery. The procedure of measurement was the fol-
lowing. Specimens were 10 × 10 × 5 mm in size. An
optical microscope was used to choose a place conve-
nient for indentation, and the cantilever with the
indenter of the atomic force microscope was lowered to
this place. The topography of a surface was recorded
across a 80 × 80-µm2 area in the tapping mode to find a
proper place at a microscopic level, and then an inden-
tation was made at a given load and loading rate in an
area of 1 µm2. Once an indentation was made, the sur-
face was scanned in the tapping mode to obtain the
topography of the indent and of the surface around it.
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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This technique allowed us to make series of indents at
the same load or at loads increasing with a given step.
In this case, surface images were taken after the com-
pletion of a series. Before and after the experiments, we
calibrated the equipment on standard materials: fused
silica and sapphire.

3. RESULTS AND DISCUSSION

The dependences of the load on the indentation
depth are shown in Fig. 2. For illustration, six depen-
dences, recorded at different maximum indenter loads
(from 10 to 75 µN), are given here. The loading and
unloading times in all cases were 0.5 s. This means that
the loading rates varied from 20 to 150 µN/s. The vari-
ation of the loading rate is seen to exert no effect on the
shape of the P(h) curve. The P(h) curve was analyzed
according to the procedure described in [1]; that is, hC

corresponding to the contact depth was first determined
from the curve and then the contact area A was calcu-

lated from the relation A = 2.56  (coefficient 2.56
corresponds to a 90° pyramid). Using Eqs. (1) and (2),
we calculated the hardness and Young’s modulus Eeff ,
respectively. The latter is approximately equal to
Young’s modulus E of a specimen, since the Young’s
modulus of diamond is much higher than the modulus
E, which means that the term (1 – ν2)/Eind in Eq. (2) can
be neglected. Young’s moduli of the KCl specimens
estimated from the P(h) curves by the procedure
described above differ by almost two times, depending
on Pmax (the Young’s modulus is 11.2 GPa at an indenter
load of 73 µN and is 21 GPa at 10 µN), whereas the
Young’s modulus of KCl determined from acoustic
measurements on its bulk sample is higher than or
equal to 23.4 GPa [9]. The fact that the Young’s modu-
lus calculated from acoustic measurements can be
higher is not surprising, since acoustic measurements
are carried out at very low amplitudes and, hence,

hC
2
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Fig. 2. P(h) dependences at various loads of indentation:
(1) P = 10, (2) 15, (3) 20, (4) 40, (5) 53, and (6) 73 µN.
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purely elastic deformations. Therefore, the elastic con-
stants, whose combination is Young’s modulus, can be
determined with a high accuracy from these measure-
ments. The Young’s modulus that is estimated from the
load vs. indentation depth curve corresponds to rather
high stresses, and it is impossible to exclude the effect
of anelastic processes (unloading is not a purely elastic
process), which decrease Young’s modulus, especially
in plastic materials. The scatter of the E values depend-
ing on the maximum load can be due to at least two
causes: errors in estimating the material stiffness S and
an increase in the effect on anelastic processes on the
unloading curve with increasing maximum load. The
latter indicates that the modulus is underestimated at
higher loads; therefore, the value of E obtained at lower
stresses should be used.

The fact that Young’s moduli calculated from the
P(h) curves at small loads are greater than those deter-
mined from acoustic measurements is most likely due
both to an increase in the fraction of the elastic compo-
nent and to an increase in the error of estimating the
quantities entering into Eq. (2). Nevertheless, the dif-
ference between the estimates of Young’s modulus
obtained from the P(h) curves and the acoustic values
is not large, which is extremely important, since tradi-
tional acoustic techniques are inapplicable to measure-
ment in such small volumes of a material as are used in
nanoindentation. Thus, nanoindentation is currently the
only method of measuring the elastic properties of
small volumes in a material.

Figure 3 shows the variation of the hardness H with
the applied load and the results of the direct estimation
of hardness at the same loads (in the same experiment)
obtained by division of the load by the contact area
determined from an indent image. As is seen, the char-
acter of the load dependence is identical to that in the
former case, although the absolute values are somewhat
lower. One of the possible causes of this discrepancy is
the formation of pileups around indents (Fig. 4), which,
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1.0
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Fig. 3. Dependence of the hardness H on the load of inden-
tation P: (1) the hardness H as estimated from the P(h)
dependences and (2) the hardness H determined from direct
measurements of the contact area.
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as shown above, can result in overestimated H values
when calculated from the P(h) curve. Although the KCl
crystal was irradiated and, hence, was more rigid than
the nonirradiated one, it was rather plastic and pileups
were small. An interesting feature of the surface relief
around an indentation is that pileups have a terrace
structure. The terrace height is about 1.5 nm, and its
width is 50 nm (see Fig. 5, which is a magnified two-
dimensional image of the descending part of a pileup).

0.5

1.0X 0.500 µm/div
Z 75.000 nm/div

µm

Fig. 4. Three-dimensional image of an indent made at a load
of 53 µN.

Horizontal distance 54.932 nm

Vertical distance 1.446 nm

Horizontal distance 51.498 nm

Vertical distance 1.041 nm

0.1 0.2 0.40 0.3
µm

Fig. 5. Relief of the surface (pileup) around the indent
shown in Fig. 4. The distances between the marks in the
upper panel correspond to the height and width of the pileup
steps shown in the lower panel.
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At smaller loads, the terrace height can be even smaller
(0.9 nm). Although studying the terrace structure of the
pileups can be of great interest for determining the
mechanism of indentation, we restrict our investigation
in this work to ascertaining a discrete structure of the
pileups, leaving its detailed experimental investigation
to the near future (including the study of other single
crystals with the use of indenters of various shapes).

The values of the hardness calculated from both the
P(h) curve and the measured indentation area using a
topographic pattern decrease with increasing load, thus
demonstrating the well-known nanoscale effect.
Although this effect has been extensively studied, it has
not been unambiguously interpreted. At present, one of
the most known models that quantitatively describes
this effect is the geometrically necessary dislocation
model developed in [5]. In this model, the dependence
of hardness on the indentation depth is represented as

(3)

where H is the hardness at the given indentation depth
h, a is a constant equal to 1/3, µ is the shear modulus,
b is the Burgers vector, ρ is the density of statistically
stored dislocations, and Θ is the indenter apex angle.
The first term here represents hardening due to stored
dislocations, and the second is caused by geometrically
necessary dislocations generated during nanoindenta-
tion. However, the results of the experimental check of
this model are contradictory. On the one hand, some
authors assert that experimental data processing in the
context of the geometrically necessary dislocation
model exhibits good agreement with experiment [5,
10]; on the other hand, other authors who studied the
same metallic materials did not confirm this conclusion
[11, 12]. Liu and Ngan [12] note that the H(P) curve
depends strongly on the state of the sample surface (on
its roughness and methods of polishing the sample, i.e.,
factors that are not taken into account in the model). In
this connection, the nanoindentation of KCl crystals is
convenient to check this model, since the crystals are
rather plastic and their cleavage surfaces are atomically
smooth. Figure 6 shows the H(P) dependence plotted as
H2 versus 1/h. The H2(1/h) dependence is seen to be vir-
tually linear for the directly estimated H, which allows
us to experimentally determine the quantities entering
into Eq. (3). Taking a = 1/3, tan Θ = 1.1 (90° pyramid),
and the Burgers vector b = 0.44 nm [6], we can estimate
the shear modulus from the parameters of the straight
line; the result is 6.32 GPa. The acoustically determined
shear modulus of bulk KCl is µ = 10.9 GPa, which
agrees with the above value if we taking into account
the simplifications made upon deriving Eq. (3). How-
ever, the calculated dislocation density ρ ~ 2 × 1011 cm–2

seems to be strongly overestimated. We think that the
model inadequately describes the results, since it is
rather simple and does not take into account crystallo-
graphic slip and the mechanism of dislocation harden-
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ing of ionic crystals. Moreover, it is likely that the dis-
location mechanism is not the only mechanism respon-
sible for deformation in nanovolumes. Apparently,
other mass-transfer mechanisms, involving rapid diffu-
sion in a stress field and a high concentration of point
defects, can operate during nanoindentation. As for the
H2(1/h) dependence constructed using the P(h) curves,
it differs from the results of direct measurements only
at small loads. This disagreement is likely due to the

4 6 8 10 12 14 16 18 20 22
1/h, µm–1

0.5

1.0

1.5

2.0

2.5

0

1
2

H
2 , G

Pa
2

Fig. 6. Data from Fig. 3 plotted as H2 versus 1/h: (1) the
hardness H as estimated from the P(h) dependence and
(2) the hardness H as determined from direct measurements
of the contact area.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
pile-up effect, whose relative contribution to the values
of H estimated from the P(h) curves increases with
decreasing load.
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Abstract—A method of virtual circular defect loops is developed for determining the elastic fields produced
by defects in a bounded medium in the case of an axially symmetric geometry. In this method, continuously
distributed virtual circular Volterra and Somigliana dislocation loops are adjusted in such a way as to satisfy the
boundary conditions imposed at free surfaces and interfaces. Original calculations of the elastic fields of circu-
lar defect loops of different types are carried out. The elastic fields are found for the case of straight dislocations
and disclinations in a plate that are perpendicular to the plate plane and for the case of circular disclination loops
parallel to the plate plane or to an interface.© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Defects in a solid, e.g., dislocations [1] and disclina-
tions [2], usually produce elastic fields characterized by
a certain energy. Real solids possess exterior bound-
aries and can also have interfaces, which cause a redis-
tribution of the elastic fields produced by defects. In
order to take this effect into account correctly within
various physical models describing the behavior of dis-
locations and disclinations, efficient methods are
required for solving the corresponding boundary-value
problems in the theory of defects.

Several comprehensive reviews devoted to the meth-
ods for solving the boundary-value problems in the the-
ory of dislocations and to the relevant results obtained
are available in the literature [3–5]. There are also orig-
inal papers devoted to calculations of the elastic fields
and energies of dislocations situated near boundaries;
some of those papers are important both fundamentally
and for practical applications (e.g., the calculation of
the electron-microscopic contrast carried out in [6]) or
for model treatments (e.g., the analysis of the stability
of dislocations in nanocrystals performed in [7]). Solu-
tions of boundary problems for disclinations are pre-
sented in monograph [2]; more recent results can be
found in original papers [8–10].

One of the efficient methods for solving the bound-
ary problems of the theory of dislocations and disclina-
tions is the virtual-defect method. This method was
mainly developed by Louat [11] and then successfully
employed by many authors to solve various boundary
problems in the theory of defects (see, e.g., [5, 8, 12–
15]). In this paper, we use this method to solve axially
symmetric boundary problems in the theory of disloca-
1063-7834/03/4509- $24.00 © 21706
tions and disclinations, with circular defect loops taken
as virtual defects.

This paper is organized as follows. In Section 2, we
briefly describe the virtual-defect method. Section 3 is
devoted to calculations of the elastic fields of defect
loops of different types from their given plastic distor-
tions. Finally, in Section 4, we present exact analytical
solutions to the boundary problems for dislocations and
disclinations in a plate that are perpendicular to the
plate plane and for circular disclination loops parallel to
the plate plane or to an interface.

2. VIRTUAL-DEFECT METHOD
The merits of the virtual-defect method are its sim-

plicity and clearness, which allow one to solve bound-
ary problems for different fields (e.g., elastic and mag-
netic ones) produced by defects, as well as for fields not
associated with defects, on a unified basis. Originally,
this method used only surface dislocations [11–13], but
later it was extended to the case of surface disclinations
[2] and surface distributions of fluxoids (vortex lines) in
type-II superconductors [16].

Essentially, the method is as follows. The field pro-
duced by a defect (or a field not associated with a
defect) in a medium with interior or exterior boundaries
is written as the sum of the field produced by the defect
in an infinite medium and an additional field generated
by continuous distributions of surface defects. The sur-
face defects are chosen such that their field contains
components involved in the boundary conditions.
Therefore, the additional field automatically satisfies
the equations of the medium (e.g., the equilibrium and
compatibility equations in the elasticity theory or the
003 MAIK “Nauka/Interperiodica”
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London equations in the theory of type-II superconduc-
tors) and the boundary conditions take the form of inte-
gral equations for the distribution functions of the vir-
tual surface defects. We note that the virtual defects are
located outside the medium in which their field is
searched for. However, these defects may be located at
the free surface of the medium. (For this reason, the
continuously distributed virtual defects are called sur-
face defects, in contrast to image defects.) Thus, virtual
defects are different from real ones, which possess
cores of a finite size in crystals. The core of any virtual
defect can be taken to be infinitely small, and, there-
fore, the virtual defect itself will be a singular source of
an elastic or magnetic field in this case.

The method in question has been used to advantage,
in cases where the role of surface defects was played by
infinite straight defect lines, to calculate the fields of
straight defect lines parallel to an interface [8, 13, 16,
17] and to solve certain special boundary problems for
straight dislocations that end at the surface or cross an
interface [5, 14]. In [5, 14], distributions of surface dis-
location segments were used.

In this paper, virtual surface defects are taken to be
circular loops of dislocations and disclinations and axi-
ally symmetric boundary problems are solved. For
example, we consider (i) a straight defect line perpen-
dicular to the planar free crystal surfaces or to an inter-
face, (ii) a circular defect loop parallel to the planar free
crystal surfaces or to an interface, and (iii) a circular
loop and a circular cylinder (including a multilayered
one) having a common axis. It will be shown that mak-
ing use of virtual defect loops simplifies solution of the
problem in many cases, because the difficulties associ-
ated with the point at which the real linear defect termi-
nates at the surface of the solid are obviated.

3. ELASTIC FIELDS PRODUCED
BY CIRCULAR DEFECT LOOPS

In order to solve boundary-value problems by using
the method of virtual circular defect loops, one has to
calculate the fields of total displacements and elastic
stresses for a fairly wide range of defects, because the
continuity conditions are imposed on these fields at an
interface. Below, we demonstrate how the elastic fields
of circular loops can be calculated using a universal
method [18] and present calculated fields of the total
displacements and of the elastic stresses for loops of
prismatic and glide dislocations, loops of wedge and
twist disclinations, and Somigliana dislocation loops
(radial-disclination and radial-dislocation loops).

A dislocation–disclination loop (Volterra disloca-

tion) is characterized by its plastic distortion , which
is written in the form [18]

(1)

βij*

βij* δi S( ) –b j e jpqωp xq xq
0

–( )–[ ] ,=
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where δi(S) = (r – r')  is the three-dimensional

δ(r – r') function, Si is the surface of a cut made along
the loop plane with a normal vector ni, bj is the Burgers
vector of the dislocation, ωp is the Frank vector of the

disclination,  is the coordinate of the rotation axis,
and ejpq is the Levi–Civita tensor. The expression in
square brackets is the jump in displacement [uj] in the
surface of the cut Si. This jump is the result of the fol-
lowing procedure: cutting along the surface Si and dis-

placing the upper edge of the cut  relative to the

lower edge  by the amount [uj].
1 Upon adding (or

removing) the material to eliminate the discontinuities
(or overlaps) thus produced and gluing the edges of the

cut, we obtain a defect with distortion . In general,

the plastic distortion  is a function of an arbitrary
jump [uj] at the surface S.

The plastic distortion  determines the total dis-
placements um in the elastic body [18]:

(2)

where Cjikl are the elastic constants; Lmk and  are the
Fourier transforms of the Green’s function for the elas-
tic medium and of the plastic distortion, respectively;
and x · r = ξxx + ξyy + ξzz. For an isotropic medium, we
have [18]

(3)

where G is the shear modulus, ν is the Poisson ratio,

δmk is the Kronecker symbol, and ξ2 =  +  + .
Equations (2) and (3) can be used to calculate the elas-
tic fields of Volterra and Somigliana dislocations of any
configuration, in particular, in the form of circular
loops.

Now, we consider different types of circular loops,
whose plastic distortions are linearly independent in a
Cartesian or a cylindrical coordinate system and are the
zeroth or first terms of the Fourier series. For circular

1 Here and in another of our publications [9], the choice of the
edges of the cut and of the jump in displacement is opposite to
that made in [18]. However, the defects obtained in both cases are
identical.

δ
Si∫ dSi'

xq
0

Si
+

Si
–

βij*

βij*

βij*

um r'( ) = i ξ lC jiklLmkβij* ix r⋅( ) ξ x ξ y ξ z,dddexp∫
∞–

∞

∫∫–

βij*

C jikl
2Gν

1 2ν–
---------------δjiδkl G δikδjl δilδjk+( ),+=

Lmk
1

2π( )3/2
----------------

2 1 ν–( )ξ2δmk ξmξk–

2 1 ν–( )Gξ4
---------------------------------------------------,=

ξ x
2 ξ y

2 ξ z
2

3
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x

(a)

z

y x x

z z

y y

(d) (e)

(b) (c)

(f)

z z z

x x xy y y

Fig. 1. Various types of defects that can be used as virtual defect loops in solving boundary-value problems: (a) prismatic dislocation
loop, (b) glide dislocation loop, (c) wedge disclination loop, (d) twist disclination loop, (e) radial disclination loop (Somigliana dis-
location), and (f) radial dislocation loop (Somigliana dislocation). Arrows indicate the displacements of the upper edge of the cut
that should be made to form a defect loop with a given plastic distortion.
loops lying in the xy plane and centered at the origin,
the distortions are

(4)

Here,  is a Heaviside function, δ(z) is a one-

dimensional δ function, and a is the radius of a loop.
The distortions of loops are linear functions of cosϕ and
sinϕ and are linearly independent only in a Cartesian or
a cylindrical coordinate system. The possible defect
loops are considered in more detail in [9].

Below, we present the plastic distortions, total dis-
placements, and elastic stresses for different types of
defect loops lying in the xy plane and centered at the
origin, with the defect line directed counterclockwise.

3.1. Prismatic Dislocation Loop
with Burgers Vector b = –bez (Fig. 1a)

The plastic distortion of this loop is  =

bH δ(z). The total displacements are

(5)

βzj* A0 A1 ϕcos B1 ϕ ,sin+ +=

A0 A1 B1 b ωr+( )H 1 r
a
---– 

  δ z( ),= = =

j x y z or j, , r ϕ z., ,= =

H 1 r
a
---– 

 

βzz*

1 r
a
---– 

 

ur
b

4 1 ν–( )
-------------------- 2ν 1–( )J 1 1; 0,( ) z

a
-----J 1 1; 1,( )+ ,=

uϕ 0,=

uz
b z( )sgn
4 1 ν–( )
-------------------- 2 1 ν–( )J 1 0; 0,( ) z

a
-----J 1 0; 1,( )+ .=
P

Here and henceforth, sgn(z) is equal to –1 for z < 0 and
+1 for z > 0 and J(m, n; p) are Lipschitz–Hankel
integrals [19] defined as J(m, n; p) =

, with Jm(κ)

being Bessel functions.
By calculating the elastic strains from Eqs. (5) and

using the Hooke law, the elastic stresses can be found
to be

(6)

The fields given by Eqs. (5) and (6) can also be found
as a particular case of the well-known solution for a
prismatic dislocation loop in a two-phase material [20].

Jm κ( )Jn κr a⁄( ) κ z a⁄–( )κ p κdexp
0

∞∫

σrr
Gb

2 1 ν–( )
-------------------- 1 2ν–

r
---------------J 1 1; 0,( ) z

a
2

-----J 1 0; 2,( )+=

–
1
a
---J 1 0; 1,( ) z

ar
-----J 1 1; 1,( )– ,

σϕϕ
Gb

2 1 ν–( )
-------------------- 2ν 1–

r
---------------J 1 1; 0,( )=

–
2ν
a

------J 1 0; 1,( ) z
ar
-----J 1 1; 1,( )+ ,

σzz
Gb

2 1 ν–( )
-------------------- 1

a
---J 1 0; 1,( ) z

a
2

-----J 1 0; 2,( )+ ,–=

σrz
Gb

2 1 ν–( )
-------------------- z

a
2

-----J 1 1; 2,( ),–=

σzϕ σrϕ 0.= =
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3.2. Glide Dislocation Loop 
with Burgers Vector b = –bex (Fig. 1b)

The plastic distortion is  = bH δ(z) The

total displacements are

(7)

The elastic stresses are

(8)

These fields agree with the solutions presented in [21].

βzx* 1 r
a
---– 

 

ur
b z( ) ϕcossgn

4 1 ν–( )
-------------------------------- 2 1 ν–( )J 1 0; 0,( )=

–
z
a
-----J 1 0; 1,( ) z

r
-----J 1 1; 0,( )+ ,

uϕ  = 
b z( ) ϕsinsgn

4 1 ν–( )
------------------------------- 2 ν 1–( )J 1 0; 0,( )

z
r
-----J 1 1; 0,( )+ ,

uz
b ϕcos

4 1 ν–( )
-------------------- 1 2ν–( )J 1 1; 0,( ) z

a
-----J 1 1; 1,( )+ .=

σrr
Gb z( ) ϕcossgn

2 1 ν–( )
------------------------------------- 2

a
---J 1 1; 1,( )–=

+
z

a
2

-----J 1 1; 2,( ) z
ar
-----J 1 2; 1,( )– ,

σϕϕ
Gb z( ) ϕcossgn

2 1 ν–( )
------------------------------------- z

ar
-----J 1 2; 1,( ) 2ν

a
------J 1 1; 1,( )– ,=

σzz
Gb ϕcos
2 1 ν–( )
-------------------- z

a
2

-----J 1 1; 2,( ),–=

σzϕ
Gb ϕsin
2 1 ν–( )
-------------------- 1 ν–

a
------------J 1 0; 1,( )=

+
ν
r
---J 1 1; 0,( ) z

ar
-----J 1 1; 1,( )– ,

σrz
Gb ϕcos
2 1 ν–( )
-------------------- 1

a
---J 1 0; 1,( )–

z

a
2

-----J 1 0; 2,( )+=

–
z

ar
-----J 1 1; 1,( ) ν

r
---J 1 1; 0,( )+ ,

σrϕ  = 
Gb z( ) ϕsinsgn

2 1 ν–( )
------------------------------------

× –
z

ar
-----J 1 2; 1,( )

1 ν–
a

------------J 1 1; 1,( )+ .
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3.3. Wedge Disclination Loop 
with Frank Vector w = –ωey (Fig. 1c)

The plastic distortion is  =

ωrcosϕH δ(z). The total displacements are

(9)

The elastic stresses are

(10)

Equations (9) and (10) for the elastic fields differ from
the corresponding (incorrect) expressions presented in
[22], which, for example, do not satisfy the equilibrium
condition σij, j = 0, in contrast to Eq. (10).

βzz*

1 r
a
---– 

 

ur = 
ωa ϕcos
8 1 ν–( )
-------------------- 1 2ν–( )J 2 0; 0,( ) 2ν 1–( )J 2 2; 0,( ) -+

–
z
a
-----J 2 0; 1,( ) z

a
-----J 2 2; 1,( )+ ,

uϕ
ωa ϕsin
4 1 ν–( )
--------------------=

× 2ν 1–( )a
r
---J 2 1; –1,( ) z

r
-----J 2 1; 0,( )+ ,

uz
ωa z( ) ϕcossgn

4 1 ν–( )
-------------------------------------=

× 2 1 ν–( )J 2 1; 0,( ) z
a
-----J 2 1; 1,( )+ .

σrr
Gω ϕcos
2 1 ν–( )
--------------------- 1 2ν–( )a

r
---J 2 2; 0,( ) J 2 1; 1,( )–=

+
z
a
-----J 2 1; 2,( ) z

r
-----J 2 2; 1,( )– ,

σϕϕ
Gω ϕcos
2 1 ν–( )
--------------------- 2ν 1–( )a

r
---J 2 2; 0,( )=

– 2νJ 2 1; 1,( ) z
r
-----J 2 2; 1,( )+ ,

σzz
Gω ϕcos
2 1 ν–( )
--------------------- J 2 1; 1,( ) z

a
-----J 2 1; 2,( )+ ,–=

σzϕ
Gω ϕsin
2 1 ν–( )
--------------------z

r
--J 2 1; 1,( ),–=

σrz
Gω ϕcos
2 1 ν–( )
--------------------- z

a
---J 2 0; 2,( ) z

r
--J 2 1; 1,( )– ,=

σrϕ
Gω ϕsin
2 1 ν–( )
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r
---J 2 2; 0,( )

z
r
-----J 2 2; 1,( )– .=
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3.4. Twist Disclination Loop
with Frank Vector w = –ωez (Fig. 1d)

The plastic distortion is  = ωrH δ(z). The

total displacements are

(11)

The elastic stresses are

(12)

Equations (11) and (12) complement the results pre-
sented in [23]; there is discordance between the expres-
sions for the stress component σrϕ (see [23, Eq. (8)]).
Furthermore, in [23], the sign of the plastic distortion
is inconsistent with the sign of the disclination. Equa-
tions (11) and (12) satisfy the equilibrium condition,
which is indicative of their correctness.

3.5. Radial Disclination Loop 
(Somigliana Dislocation) with Displacement Jump

[ur] = ωr (Fig. 1e)

The plastic distortion is  = ωrH δ(z). The

total displacements are

(13)

The elastic stresses are

(14)

βzϕ* 1 r
a
---– 

 

uϕ
ωa
2

------- z( )J 2 1; 0,( ),sgn=

ur uz 0.= =

σrϕ
Gω
2

-------- z( )J 2 2; 1,( ),sgn–=

σzϕ
Gω
2

--------J 2 1; 1,( ),–=

σrr σϕϕ σzz σrz 0.= = = =

βzr* 1 r
a
---– 

 

ur = 
ωa z( )sgn
4 1 ν–( )

------------------------ 2 1 ν–( )J 2 1; 0,( ) z
a
-----J 2 1; 1,( )– ,

uϕ 0,=

uz = 
ωa

4 1 ν–( )
-------------------- 2ν 1–( )J 2 0; 0,( ) z

a
-----J 2 0; 1,( )– .

σrr
Gω z( )sgn
2 1 ν–( )

------------------------- 2 ν 1–( )a
r
---J 2 1; 0,( )=

–
z
a
-----J 2 0; 2,( ) 2J 2 0; 1,( ) z

r
-----J 2 1; 1,( )+ + ,

σϕϕ
Gω z( )sgn
2 1 ν–( )

------------------------- 2 1 ν–( )a
r
---J 2 1; 0,( )=

–
z
r
-----J 2 1; 1,( ) 2νJ 2 0; 1,( )+ ,
PH
3.6. Radial Dislocation Loop (Somigliana Dislocation) 
with Displacement Jump [ur] = b (Fig. 1f)

The plastic distortion is  = bH δ(z). The

elastic fields of this loop can be obtained from
Eqs.  (13) and (14) for the radial disclination loop
by   replacing ω with b/2a and, in addition, replac-
ing the Lipschitz–Hankel integrals J(2, n; p) by

integrals of the form  –

J0(κ)H1(κ)]Jn exp κ pdκ, where Hi(κ)
is a Struve function [24].

Details of the calculations and expressions for the
elastic strain fields and energies of the defect loops can
be found in [9].

4. SOLUTION OF BOUNDARY-VALUE 
PROBLEMS IN THE THEORY OF DEFECTS 

USING CONTINUOUS DISTRIBUTIONS 
OF VIRTUAL CIRCULAR LOOPS

We solve axially symmetric boundary problems
using some of the defects loops considered above,
namely, prismatic dislocation loops (Fig. 1a), twist dis-
clination loops (Fig. 1c), and radial disclination loops
(Somigliana dislocations, Fig. 1e). With continuous
distributions of virtual circular loops, the boundary
conditions, namely, the continuity of the elastic-stress
components normal to an interface and the continuity
of all components of total displacements (the latter con-
dition is not imposed at a free surface), reduce to inte-
gral equations for the unknown loop distribution func-
tions. The angular dependence of the field components
of virtual loops must be consistent with that of the real
defect for which the boundary problem is to be solved.
There are also some restrictions on the indices of the
Lipschitz–Hankel integrals and on the dependence of
the field of virtual loops on coordinate r. However,
those restrictions are not of fundamental importance,
because they are imposed in order to simplify solution
of the integral equations. For boundary problems with
planar boundaries (such problems are considered
below), the loop distribution functions depend on the
loop radii. Since the kernels of the integral equations

σzz
Gω

2 1 ν–( )
-------------------- z

a
---J 2 0; 2,( ),=

σrz
Gω

2 1 ν–( )
-------------------- z

a
-----J 2 1; 2,( ) J 2 1; 1,( )– ,=

σrϕ σzϕ 0.= =

βzr* 1 r
a
---– 

 

[J1 κ( )H0 κ( )
0

∞∫
κr a⁄( ) κ z a⁄–( )
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contain Bessel functions, it is convenient to employ the
Hankel–Bessel transformation [25]

(15)Hν λ( ) f r( )Jν λr( )r r,d

0

∞

∫=

2h

xy

b l

–f

+f

z

0

Fig. 2. Screw dislocation in a plate of finite thickness. In the
plate surface, virtual twist disclination loops are shown,
which are introduced to satisfy the boundary conditions.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
(16)

where Hν(λ) is the Hankel transform of the function f(r)
and the index ν indicates the order of the Bessel func-
tion involved in the transformation. Integral transfor-
mations (15) and (16) are convenient, because the elas-
tic fields of circular loops are represented in the form of
Lipschitz–Hankel integrals, which allows one to per-
form mathematical manipulations, such as changing
the integration variables and interchanging the orders
of integration in double integrals.

We illustrate these methods by solving the simple
problem of a screw dislocation perpendicular to the free
surface of a plate or of a half-space (Fig. 2). For other
boundary-value problems, such as a disclination dipole
or an edge dislocation in a plate (Fig. 3) and a twist dis-
clination loop in a plate, a half-space, or a two-phase
material (Fig. 4), we present only the final expressions
for the total displacements and elastic stresses.

We note that, in problems for a cylinder (e.g., a cir-
cular loop in a cylinder sharing a common axis with
the loop), the virtual-loop distribution functions
depend on the coordinate along the cylinder axis. In
such problems, it is convenient to use the Fourier
transformation.

f r( ) Hν λ( )Jν λr( )λ λ ,d

0

∞

∫=
2h 2h
l l

z

y x x

D2
ω

0

a'

a'
D1

ω

0
b

z

y

(a) (b)

Fig. 3. Wedge disclination dipole and an edge dislocation in a plate of finite thickness. (a) For the disclination dipole, virtual pris-
matic dislocation loops and radial disclination loops are shown, which enclose the disclination end points at the surface and allow
the boundary conditions to be satisfied. (b) Edge dislocation perpendicular to the plate surfaces that results from the disclination
dipole in the limiting case indicated in the text.
3
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2h

–f

+f +f

–f

xy

z

xy

0

G2, ν2

G1, ν1

z

z0

z0

–z0
0

ω

a0

ω

a0

(a) (b)

Fig. 4. Boundary-value problems for the twist disclination loop: (a) the loop in a plate and (b) the loop near a planar interface. Thin
lines show virtual twist disclination loops, which are introduced to satisfy the boundary conditions.
4.1. Screw Dislocation in a Plate 
and in a Half-Space

A dislocation with Burgers vector b = bez (the line
vector l = ez) is perpendicular to the plane of the plate
2h thick with the elastic moduli G and ν (Fig. 2). In
this geometry, the stress field of the screw dislocation
in an infinite medium (∞σij) has a single nonzero com-
ponent [25],

(17)

At the free surfaces of the plate, the boundary condi-
tions are

(18)

Within the virtual-loop method, boundary conditions (18)
are satisfied by representing the field of the dislocation
in the plate σij as the sum of the field of the dislocation
in an infinite medium ∞σij and an additional field iσij pro-
duced by a continuous set of circular twist disclination
loops located at the upper and lower surfaces of the plate
(Fig. 2). The stress field of a twist disclination loop (12),
as well as the stress field of the dislocation (17), has a
single component σzϕ that is involved in the continuity
conditions imposed on the stress components normal to
the free plate surface. By substituting the stress field
expressed in terms of surface distributions of twist dis-
clination loops into Eq. (18), we obtain integral equa-
tions for the unknown loop radius distribution functions

σ∞
zϕ

Gb
2πr
---------.=

σzϕ
z = 0

z = 2h 
 
 

0.=
P

–f(a) and +f(a) at the upper and lower plate surfaces,
respectively:

(19)

where ±σzϕ |z = 0 and ±σzϕ |z = 2h are the elastic stresses pro-
duced by both (+ and –) virtual-loop distributions at the
z = 0 and z = 2h surfaces, respectively.

Using Eq. (12), we rewrite Eqs. (19) in the form

(20)

Gb
2πr
--------- f– a( ) σ–
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Upon introducing a new variable β = , interchanging

orders of integration in the double integrals, and using
the Hankel–Bessel transformation (15) with the kernel
J1(βr), we obtain a set of linear algebraic equations for
the Hankel transforms ±H2(β) =

 of the functions ±f(a)a, from

which we find

(21)

Taking the Hankel–Bessel transform (16), we obtain
the distribution functions ±f(a) of virtual twist disclina-
tion loops in their radius:

(22)

We note that the equality of the distribution functions at
the upper and lower surfaces of the plate, +f = –f, is a
direct consequence of the symmetry of the problem and
can be used from the outset. However, we did not use
this property, because our aim was to demonstrate the
general calculational procedure.

Given the loop radius distribution functions (22) and
the elastic fields of a single virtual twist disclination
loop (11) and (12), we can calculate the additional
fields of displacements iuj and elastic stresses iσjk (elas-
tic strains iεjk) produced by the screw dislocation in the
plate. Furthermore, in order to calculate these fields, it
will suffice to know the Hankel transforms ±H2 given by
Eq. (21). Using Eqs. (11) and (12) and the displacement
field of the dislocation in an infinite medium ∞uz [1, 26],
we find the field of total displacements for the screw
dislocation in the plate:

(23)

The stress field is calculated from Eqs. (12), (17), and
(21) to be

(24)

κ
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The stresses found are expressed in terms of integrals
rather than in the form of series of cylindrical functions
as in [27]. Our result is identical to the solution found
in [28] for a screw dislocation in a plate by using
another method. The stresses given by Eqs. (24) can be
shown to satisfy the equilibrium equations and the
boundary conditions.

If the plate is infinitely thick (2h  ∞), Eqs. (23)
and (24) give the fields produced by the screw disloca-
tion in a half-space

(25)

(26)

where R2 = r2 + z2.
A comparison of Eq. (26) with the results obtained

in [3, 29] shows that the formulas derived using the
method of virtual circular loops are correct.

4.2. Wedge Disclination Dipole in a Plate 
and in a Half-Space

The dipole D1D2 shown in Fig. 3a consists of wedge
disclinations perpendicular to the free surfaces of the
plate. The Frank vectors of disclinations D1 and D2 are
w1 = ωez and w2 = –ωez, respectively. The distance
between the disclinations is 2a'. Taking, as virtual cir-
cular loops, distributions of prismatic dislocation loops
and of radial disclination loops, we find the field of total
displacements and the field of elastic stresses (strains)
produced by the disclination dipole in the plate. The
results are as follows. The total-displacement field is

(27)
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Here, ∞ui is the displacement field of dipole D1D2 in an
infinite medium [26]:

(28)

The stress field of the disclination dipole in the plate is
given by

(29)
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Here, ∞σji is the stress field of dipole D1D2 in an infinite
medium [26]:

(30)

In Eqs. (27)–(30), we introduced the following nota-
tion:
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If the plate is infinitely thick (2h  ∞), Eqs. (27)–
(30) give the fields produced by a dipole consisting of
wedge disclinations perpendicular to the free surface of
a half-space. In this case, the stress field is given by

(31)

where  =  + z2, with i = 1, 2.

The field obtained in this limit is identical to the cor-
responding field calculated by a different method and
presented in [30].

The disclination dipole transforms into an edge dis-
location with Burgers vector b = –bey in the limit

2a'  0 and ω   (2a' is the distance between

the disclinations, ω is the disclination force; Fig. 3b).
The calculated total displacements and elastic stresses
of an edge dislocation perpendicular to the plate plane
can be found in [9, 31]. It is shown in [9] that, when the
plate thickness tends to zero, the solution reduces to
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that for an edge dislocation in an infinitely thin disk. In
the case of an infinitely thick plate, we obtain the solu-
tion for an edge dislocation perpendicular to the free
surface of a half-space.

4.3. Twist Disclination Loop in a Plate 
and in a Half-Space

Now, we consider a twist disclination loop with
Frank vector w = –ωez and radius a0 positioned in an
isotropic plate 2h thick at a distance z0 from the surface
of the plate and parallel to the plate surface (Fig. 4a).
The stress field ∞σij of the loop is given by Eq. (12). The
additional field is assumed to be produced by a contin-
uous set of virtual twist disclination loops. Using the
method described above, the fields of the twist disclina-
tion loop in the plate are found to be

(32)

where  = ,  = , and the displacement field ∞ui in

an infinite medium is given by Eqs. (11) with z – z0 in
place of z;

(33)

where ∞σij is given by Eqs. (12) with z – z0 in place of z.

In [32, 33], the elastic fields of a twist disclination
loop in a plate were calculated using image loops and
the result was represented in the form of infinite series.
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It can be verified that Eqs. (32) and (33) derived in this
paper can be transformed into the expressions pre-
sented in [32, 33].

The fields of a twist disclination loop in a half-space
are obtained from Eqs. (32) and (33) by going to the
limit 2h  ∞. In this case, the displacement field is

(34)

and the elastic field is

(35)

where the fields ∞ui and ∞σij are given by Eqs. (11) and

(12) with z – z0 replacing z and (m, n; p) is equal to
J(m, n; p) with z + z0 in place of z.

It follows from Eqs. (34) and (35) that the elastic
field of the twist disclination loop in a half-space is the
sum of the field of this loop in an infinite medium and
the field of the image loop. This fact was first pointed
out in [34]. The energy of the disclination loop in a
plate and in a half-space was calculated in [9].

4.4. Twist Disclination Loop 
in a Two-Phase Medium

The twist disclination loop with Frank vector w =
−ωez and radius a0 is positioned in a medium with the
elastic moduli G1 and ν1 (Fig. 4b); the interface is taken
to be the xy plane. At the interface, the total displace-
ments αuj and the elastic-stress components normal to
the interface ασzj (α= 1, 2 specifies the media) must sat-
isfy the continuity conditions

(36)

Conditions (36) can be satisfied if the field in medium 1
is represented as the sum of the field of the real loop and
the field of a continuous set of virtual twist disclination
loops located in medium 2; the field in medium 2 is pro-
duced by a continuous set of virtual twist disclination
loops situated in medium 1.
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By solving the corresponding integral equations, the
displacement field and the stress field are found to be

(37)

(38)

where 1J(m, n; p) is equal to J(m, n; p) with z – z0 in
place of z and 2J(m, n; p) is equal to J(m, n; p) with z +
z0 in place of z. The energy of the loop in a two-phase
medium was calculated in [9].

5. CONCLUSIONS

The general method of virtual circular surface loops
developed by us can be used to advantage for solving a
wide class of axially symmetric boundary-value prob-
lems in the theory of defects. In this method, planar sets
of circular defect loops are introduced in order to sat-
isfy the boundary conditions at interfaces. The
unknown distribution functions of circular loops in
their radius (for problems with planar boundaries) or in
their center coordinate along the cylindrical axis (e.g.,
for the problem of a loop in a cylinder sharing a com-
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mon axis with the loop) are found by solving the corre-
sponding integral equations.

We have classified defect loops and calculated the
displacement fields and the elastic stress fields for six
types of defect loops. The results obtained for the pris-
matic and glide dislocation loops and for the wedge and
twist disclination loops have been compared with the
published data. The fields of the radial disclination loop
and the radial dislocation loop (Somigliana disloca-
tions) were calculated for the first time. The elastic
fields and the energies of circular dislocation loops can
be used, e.g., in analyzing the relaxation processes
occurring in the regions near nanoclusters in semicon-
ductors [35, 36].

Using the general method, we have found the elastic
fields of linear defects perpendicular to the plane of an
isotropic plate. The elastic fields of the screw disloca-
tion were represented in a new, integral form. The solu-
tion found for the dipole consisting of wedge disclina-
tions perpendicular to the plate plane is published in a
scientific journal for the first time (earlier, this solution
was available only from a FTI preprint [9]). From the
solution for the disclination dipole, by going to the cor-
responding limit, one can find the elastic fields of the
edge dislocation in a plate [31], knowledge of which is
required to correctly analyze the electron-microscopic
dislocation contrast in thin films. The solution for dis-
clinations can also be used to analyze electron-micro-
scopic images of partial disclinations arising in highly
deformed metals [10, 37].

The method developed for calculating the elastic
fields of the twist disclination loop parallel to a bound-
ary has allowed us to find solutions (in a compact form)
for the loop in a plate and the loop positioned near an
interface. By using the method of virtual circular defect
loops, we have verified or, in some instances, corrected
the formulas obtained earlier for the elastic fields of
twist disclination loops in the geometry indicated
above.

Thus, the method of surface circular loops of dislo-
cations and disclinations can be used to advantage for
solving axially symmetric boundary-value problems.
This method is clear and allows one to calculate, on a
unified basis, the elastic fields of various defects in
media with boundaries.
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Abstract—The bending strength of a polycrystalline Pb0.95Sr0.05(Zr0.46Ti0.54)O3 + 0.78 wt % Cr2O3 (PZT-22)
ferroelectric is measured at loading rates of 5 × 10–2–10 MPa/s and temperatures of 293–873 K (including the
Curie temperature TC = 593 K). The results are interpreted within the framework of the relaxation model of brit-
tle fracture. The dependences of the strength on the loading rate at various temperatures are used to determine
the effective activation volume of fracture. Changes in the activation characteristics in the range of the phase
transformation are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When solids fail under stationary conditions, an
increase in the loading rate results in an increase in the
breaking stresses. This conclusion follows from the
kinetic-fracture concept and is corroborated by direct
experiments conducted on many materials [1]. It is also
known, however, that the loading-rate dependences of
flow stresses and of breaking stresses can be nonmono-
tonic, decreasing with increasing rate, or independent
of the loading rate, which conflicts with the kinetic con-
cepts of fracture [2]. A decrease in the breaking stress
with an increase in the loading rate or its independence
from loading rate for brittle solids (and for solids whose
plasticity drops in a certain rate range due to, e.g.,
aging) can be qualitatively explained if the brittle frac-
ture kinetics is assumed to be caused by two processes,
fracture and the relatively slow relaxation of local
stresses. The latter decreases the overstress coefficient
and thereby slows down the fracture process. The effect
of relaxation becomes more pronounced with decreas-
ing test rate (i.e., with increasing test time) and, there-
fore, can lead to higher average stresses in a solid, i.e.,
to its higher strength.

For linearly increasing stresses σ (σ = ωt, t is time,
ω is the stress rise rate), Kozachuk et al. [2] obtained
the following dependence of the breaking stress σf on
the loading rate:

(1)

Here, k is the Boltzmann constant, τ0 and U0 are the
material constants, and τ0 is the preexponential factor in
the formula τ = τ0exp(U0 – Veffσ/kT) for the time to

σ f
kT
V eff
-------- 1

τ0
U0

kT
------exp 

  ωV eff

kT
----------------------------------------+ .ln=
1063-7834/03/4509- $24.00 © 1719
fracture τ at a constant stress σ, where Veff = nV, V is the
real activation volume, n = σl/σ is the overstress coeffi-
cient, σl is the local stress in a fracture nucleus, σ is the
average stress, and T is the test temperature.

Under the conditions of rapid relaxation (lowering)
of local stresses, we have n = nS, where nS is the over-
stress coefficient for a stationary loading level. For slow

relaxation, we have n = n0 – , where t0 and α are the

stress relaxation constants and n0 is the overstress coef-
ficient at t = 0.

Therefore, the effect of stress relaxation is reduced
to a change in the overstress coefficient, which is
α/(ωt0) behind a certain initial coefficient n0 under the
conditions of slow relaxation.

Generalizing these considerations, we conclude
that, depending on the parameters of local stress relax-
ation, the breaking stress can either increase or
decrease with increasing loading rate.

In this work, the relaxation fracture model is applied
to analyze the stress rate dependence of the strength of
the ferroelectric ceramic PZT-22.

2. EXPERIMENTAL

Nonpolarized Pb0.95Sr0.05(Zr0.46Ti0.54)O3 + 0.78 wt %
Cr2O3 (PZT-22) ferroelectric samples in the form of
disks of thickness h = 0.96 mm with silver electrodes
were studied. The disks were subjected to axisymmet-
ric bending at a constant loading rate in the range from
0.05 to 12 MPa/s.

α
ωt0
--------
2003 MAIK “Nauka/Interperiodica”



 

1720

        

ZHOGA 

 

et al

 

.

                          
The stresses were calculated from the formula for
the axisymmetric bending of disks with a low bending
flexure [3]:

(2)

where 2b = 13 mm and 2a = 7 mm are the diameters
of the ring support and loading punch, respectively;
2c = 20 mm is the sample diameter; and P is the load.

Tests were carried out in the temperature range from
room temperature to 873 K, which included the Curie
temperature (TC = 593 K). Before the tests, we mea-
sured the capacitance and dielectric loss tangent to
reject samples with defects [4]. The temperature was
maintained with an accuracy of ±1 K.

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences of the breaking
stress σf on the loading rate for the ferroelectric ceramic
PZT-22 at various temperatures. Each point is a result
of averaging over five to ten tests. The root-mean-
square error for the average strength is shown in the
curve corresponding to room temperature.

The form of the σf(ω) dependences allows the fol-
lowing conclusions. Over the whole loading-rate range
(covering two orders of magnitude) and at all test tem-
peratures, the strength decreases with increasing load-
ing rate (except at the temperature 473 K, where there
is a small segment of increasing σf). At loading rates
above 1 MPa/s, however, the strength is virtually con-
stant.

The decrease in breaking stress with increasing
loading rate means that processes of local deformation
occur even in such a brittle material as PZT-22 and even
at room temperature and short loading times (2–7 s).
Otherwise, the breaking stress would have increased

σ 3
2
---1 ν+

πh
2

------------ b
a
---ln

1 ν–
1 ν+
------------b

2
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2
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2c
2
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Fig. 1. Dependence of the strength of the polycrystalline
ferroelectric PZT-22 on the loading rate at (1) T = 293,
(2) 473, (3) 673, and (4) 873 K.
PH
linearly with the logarithm of the loading rate, with the
coefficient of proportionality determined by the initial
value of n = n0.

This result conflicts with the conception of brittle
fracture as a critical process, since in this case the
strength should be independent of rate. The lack of the
loading-rate dependence of the strength in a certain rate
range makes the generality of the kinetic concept of
fracture doubtful; therefore, we will redress this issue
in what follows. The kinetic nature of fracture, namely,
the fact that fracture develops in time and is not a criti-
cal event, is also confirmed by the appearance of time
effects in other experiments, for example, by data on
the fatigue of ferroelectric ceramics, which has been
detected upon cyclic variation of both mechanical [5]
and electrical [6] loads.

The independence of the strength from the loading
rate and temperature at relatively high loading rates can
indicate the critical character of fracture or, at least, its
approaching the critical point. However, in the context
of the relaxation fracture model [2], this independence
can be connected with either an increase in the fracture
activation energy or an increase in τ0 to 10–6–10–9 s. An
increase in τ0 means a decrease in the preexponential
factor V0 in the formula for the fracture rate, V0 ~ 1/τ0,
which corresponds to a decrease in the attempt fre-
quency for overcoming the potential barrier due to a
more pronounced cooperative character of fracture (to
the transition from a monatomic elementary act to a
multiatomic one [7, 8]). Both these causes (increasing
τ0 and U0), which can proceed simultaneously lead to
weakening of both the temperature and loading-rate
dependences of the strength [see Eq. (1)], which is
observed experimentally (Fig. 1).

As follows from Fig. 1, the strength is temperature-
independent at loading rates above 0.3 MPa/s (loading
times below 100 s). Hence, if we take the creation and
relaxation of overstresses to be due to domain-wall
motion, these processes cannot proceed in such a short
time even at high temperatures (up to 573 K). At high
rates, the number of domain walls taking part in the
process decreases (only 20% of domain walls are
known to take part in the process of impact fracture;
their number increases to 80% as the loading rate
decreases [9]), which further weakens the effect of
domain mechanisms.

Thus, the analysis of the rate dependence of the
breaking stress shows that this dependence character-
izes a nonsteady state with a variable overstress coeffi-
cient in a fracture nucleus. In the case of a variable
overstress coefficient, we can calculate the effective acti-
vation volume Veff by solving Eq. (1) numerically. In our
case, we used the numerical values U0 = 2.88 × 10–19 J
and τ0 = 10–12 s taken from the data of static tests [10];
the results of calculations are represented as a Veff =
f(logω) plot (Fig. 2, curves 1, 2). For these parameters,
Eq. (1) has a solution only in the low-temperature range
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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(293–473 K). When the values of U0 and τ0 indicated
above are substituted at higher temperatures (673, 873
K), Eq. (1) has no solution. However, if we increase U0

to 4.5 × 10–19 J or τ0 to 10–7 s, which is physically
grounded (as noted above), then solutions exist and
are similar to those for lower temperatures (Fig. 2,
curves 3, 4). The authors of [11, 12] proposed that the
fracture energy U0 could increase at high temperatures
due to a change in the character of the interatomic bond
upon reconstructing the lattice. The cooperative charac-
ter of the process can become more pronounced
because of different competing relaxation mechanisms:
domain and dislocation rearrangement at 293 and 473 K
and dislocation mechanisms alone at 673 and 873 K.

Note that an increase in the effective activation vol-
ume with the loading rate is determined from the for-
mula Veff = V(n0 – α/ωt0), which follows from the relax-
ation fracture model [1].

Figure 3 shows the variation of the effective activa-
tion volume with temperature. To refine this depen-
dence in the ferroelectric phase at a loading rate ω = 0.1
MPa/s, we determined the strength at intermediate tem-
peratures (323, 373, 423, 523, 573 K). These data are
given in the table, and the Veff values, in Fig. 3 (curve 1).
It is significant that the effective activation volume
decreases as the temperature is increased from room
temperature to approximately the Curie temperature
(i.e., in the ferroelectric phase). This fact can be due to
possible stress relaxation in the ferroelectric phase via
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Fig. 2. Dependence of the effective activation volume of the
polycrystalline ferroelectric PZT-22 on the loading rate at
(1) T = 293, (2) 473, (3) 673, and (4) 873 K.
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the motion of domain walls and grain boundaries,
whose mobility and interaction with dislocations rise
with temperature. In the expression for Veff , this behav-
ior formally corresponds to an increase in the relaxation
rate, which is specified by the variation of the coeffi-
cient α with increasing temperature. Above the temper-
ature of the phase transformation, Veff changes jump-
wise, which is obviously due to the relaxation becom-
ing less efficient, as noted above. Finally, in the
paraelectric phase (T > TC), the effective activation vol-
ume decreases at all loading rates, because the relax-
ation rate increases with temperature; in this case, the
relaxation is caused by only dislocation mechanisms,
which are operative in the paraelectric phase. It should
be noted that grain boundaries can also play an impor-
tant role near TC, since the phase transformation is dif-
fuse.

4. CONCLUSIONS

Thus, we have experimentally found the variation
of the strength of the polycrystalline ferroelectric
PZT-22 with the loading rate ranging over two orders
of magnitude and with the temperature ranging from
293 to 873 K. The decrease in the strength with
increasing loading rate is explained by the relaxation
of local stresses that proceeds during loading. At load-
ing rates above 0.3 MPa/s, the strength is virtually
temperature-independent.
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Fig. 3. Dependence of the effective activation volume of
fracture for the polycrystalline ferroelectric PZT-22 on the
temperature at a loading rate of (1) 0.1 (2) 0.3, (3) 0.7, and
(4) 2 MPa/s.
Strength of the polycrystalline ferroelectric PZT-22 at various temperatures

T, K 293 323 373 423 473 523 573 673 873

σf , MPa 43.5 35.9 42.0 37.6 48.3 37.8 31.2 35.0 49.4

Note: The loading rate is ω = 0.1 MPa/s.
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Based on the relaxation fracture model, we have cal-
culated the effective activation volumes of fracture at
various temperatures and loading rates. The effective
activation volume increases with the loading rate and
decreases with increasing temperature in both the fer-
roelectric phase and paraelectric phase. The activation
characteristics of fracture vary jumpwise near the phase
transformation because of changes in both the fracture
mechanism and the mechanisms of local stress relax-
ation.
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Abstract—The effect of the composition of epitaxial layers (ELs) of the SixGe1 – x solid solution grown on Ge
and Si substrates on their microhardness and the length of dislocation rosettes forming around indentations is
studied at a homologous temperature 0.5Tmelt for each composition. For the SixGe1 – x/Ge (0 ≤ x < 0.15) and
SixGe1 – x/Si (0.85 < x ≤ 1) ELs, the dependences of the microhardness and the length of dislocation rosettes on
the solid-solution composition are nonmonotonic. The nonmonotonic change in the plasticity of the ELs is most
likely caused by hardening of the solid solutions in a certain composition range due to their spinodal decompo-
sition with the formation of clusters and disperse precipitates. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The dislocation structure of an epitaxial heterostruc-
ture depends on the plasticity ratio of the layer and its
substrate, as well as on the character of motion of indi-
vidual dislocations and their interaction in the materials
forming the heteropair [1]. One of the most informative
methods for studying the mechanical properties of epi-
taxial layers over a wide temperature range is based on
measurement of their microhardness. This method
allows one to study the properties of a material in the
ranges of both its brittle fracture and plasticity. In the
latter case, the investigation of rosettes of dislocations
forming around an indentation makes it possible to
determine the dislocation mobility in an epitaxial layer.
In spite of obvious advantages, the microhardness of
epitaxial layers of SixGe1 – x solid solutions has been
measured only in a few studies and only at room tem-
perature [2, 3].

In this work, we study the “hot” microhardness and
structure of dislocation rosettes that form in hete-
roepitaxial layers of the SixGe1 – x solid solutions dur-
ing testing.

2. EXPERIMENTAL

Epitaxial layers (ELs) of the SixGe1 – x (0 ≤ x < 0.15)
solid solutions were grown on Ge(111) substrates
through hydride epitaxy, and ELs of the SixGe1 – x
(0.85 < x ≤ 1) solid solutions were grown on Si(100)
substrates through molecular beam epitaxy with on Si
plate and gaseous GeH4 used as the source. The dislo-
cation density in the Ge substrates was lower than 1 ×
1063-7834/03/4509- $24.00 © 21723
103 cm–2, and the Si substrates were dislocation-free.
The EL thickness was 1.0–2.0 µm.

The microhardness was measured on an automatic
Toyoseike (Japan) microhardness tester with a diamond
Vickers pyramid. The microhardness of samples of
each group was measured at the same homologous tem-
perature (averaged over all solid solutions of the corre-
sponding composition range), 0.5Tmelt (Tmelt is the melt-
ing temperature). The measurement temperature was
330°C for the SixGe1 – x/Ge (0 ≤ x < 0.15) solid solu-
tions, and 570°C for the SixGe1 – x/Si (0.85 < x ≤ 1) solid
solutions. The samples were heated with an attachment
placed directly on the stage of the microhardness tester.
The temperature of a sample was controlled with a
chromel–alumel thermocouple. Once a given tempera-
ture was reached, a sample was held at this temperature
for 15 min and then indented ten times at a load of 5 pN.
The load was chosen such that the indentation depth in
an epitaxial layer did not exceed 30% of its thickness.
As shown in [4], the effect of the substrate/layer inter-
face and of the substrate on the results of measurements
can be neglected in this case. The pyramid was in con-
tact with a sample for 30 s. The microhardness mea-
surement error was 5%.

Dislocation rosettes around indentations were
revealed by etching the SixGe1 – x (0 ≤ x < 0.15) ELs in
an etchant based on K3Fe(CN)6 and KOH for 2 min and
the SixGe1 – x (0.85 < x ≤ 1) ELs in the etchant HF : 0.5M
CrO3 : H2O = 4 : 1 : 1.5 for 15 s. The indentation diag-

onals coincided with the [110] and [ ] directions.
The length of a rosette ray was taken to be half the dis-
tance between the centers of its limiting dislocation
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etch pits. For each indentation, the value averaged over
two rays in two directions was chosen. A measurement
series consisted of five indentations, and the average
length was determined for each series.

3. EXPERIMENTAL RESULTS

All SixGe1 – x (0 ≤ x < 0.15) solid solutions studied
exhibited “diagonal” microcracks around indentations.
Cracking in this case can be due to both relatively high
brittleness of these solid solutions and tensile strains
induced in the ELs on Ge substrates. The SixGe1 – x
(0.85 < x ≤ 1) solid solutions, as a rule, were not sub-
jected to cracking.

Figure 1 shows the concentration dependences of
the microhardness of the solid solutions. The variation
in the microhardness is seen to be nonmonotonic and
similar for the two composition ranges. As the content
of the solute in the solid solutions increases (Si in the
SixGe1 – x/Ge solid solution and Ge in the SixGe1 – x/Si
solid solution), the microhardness first increases, then
drops, and then again increases slowly at x > 0.035 and
x < 0.91, respectively. The microhardness is maximum
at x = 0.025 and 0.978, respectively.

Typical dislocation rosettes forming around inden-
tations in the SixGe1 – x/Ge and SixGe1 – x/Si layers are
shown in Figs. 2 and 3. A dislocation rosette consists of
a central region and rays along the 〈110〉  direction. The
character of dislocation rosettes is obviously different
for various compositions of the solid solutions. The
lengths of rosette rays in solid-solution layers are sig-
nificantly shorter than in substrates made of the corre-
sponding pure components, all other things being
equal. The dislocation rays are wide in the SixGe1 – x/Si
solid solutions and are narrow in the SixGe1 – x/Ge solid
solutions.

The dependence of the ray length of dislocation
rosettes on the solid-solution composition is shown in
Fig. 1. The concentration dependence of dislocation
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Fig. 1. Concentration dependences of the microhardness Hv
and of the ray length L of dislocation rosettes forming
around indentations in SixGe1 – x/Ge and SixGe1 – x/Si epi-
taxial layers.
PH
rosette ray length, of microhardness, is nonmonotonic.
As the solute content in the solid solutions increases,
the ray length first drops, then insignificantly increases,
and then gradually decreases at x > 0.035 and x < 0.91,
respectively. Thus, pronounced minima at x = 0.025
and 0.978 exist in the concentration dependence of the
ray length of dislocation rosettes induced by indenta-
tion. The positions of these minima correlate well with
the positions of the maxima in the concentration depen-
dence of microhardness.

4. DISCUSSION OF THE RESULTS

The investigation of microhardness provides infor-
mation on some fundamental characteristics of a mate-
rial, such as the character and strength of interatomic
bonds [5]. It has been shown that the microhardness of Si
and Ge at room temperature approaches the theoretical
shear strength [6]. The shear moduli for Si and Ge at
room temperature are ~80 and ~70 GPa and their micro-
hardness are 8 and 11 GPa, respectively [7]. Since the
theoretical shear strength is 10–15% of the shear modu-
lus, we can conclude that plastic deformation at room
temperature is strongly hindered in these materials.

(a)

(b) 10 µm

10 µm

Fig. 2. Typical dislocation rosette forming around an inden-
tation in SixGe1 – x /Ge epitaxial layers at 330°C: (a) Ge and
(b) SixGe1 – x (x = 0.35).
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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The microhardness of SixGe1 – x polycrystalline
ingots and epitaxial solid solutions was studied over a
wide composition range at room temperature in [2, 3].
Unfortunately, the authors of [2, 3] did not study the
solid solutions with a low solute content (<0.1 atomic
fraction). They observed monotonic dependences of
microhardness on the composition in both cases. The
observed variation of the microhardness of the solid
solutions with their composition was related in [4] to
changes in the interatomic interaction between the
components making up the solid solutions. It should be
noted that these results were obtained at room temper-
ature, where the contribution of plastic deformation to
the microhardness can be neglected.

The situation is radically changed when the micro-
hardness is measured at high temperatures. As the tem-
perature increases, the plasticity of the materials under
study significantly rises and plastic deformation with
the formation of dislocations begins to play an increas-
ingly important part in the processes that occur during
indentation. This conclusion is supported by the forma-
tion of characteristic dislocation rosettes around inden-
tations. The ray length of the dislocation rosettes is an
objective characteristic of the mobility of dislocations
forming upon indentation.

The temperature at which the contribution of plastic
deformation to the mechanical properties of a material
becomes substantial is different for different materials
and depends on the melting temperature. To compare
the results obtained on the microhardness and ray
lengths of dislocation rosettes for solid solutions of dif-
ferent compositions, it is necessary to perform investi-
gations at certain homologous temperatures that are
fractions of Tmelt. In our case, the test temperature was
0.5Tmelt. According to the data from [8], Ge and Si are
rather plastic at these temperatures.

The data presented in Fig. 1 show that the micro-
hardness of the SixGe1 – x/Ge (0 < x ≤ 0.15) ELs is
higher and the ray lengths of dislocation rosettes in
term are smaller than those for Ge. For the SixGe1 – x/Si
(0.85 ≤ x < 1) ELs, the situation is more complex. The
ray lengths of dislocation rosettes in these solid solu-
tions are smaller than in Si, whereas the microhardness
has a more complex concentration dependence. In the
range 0.87 < x < 0.96, the microhardness of these solid
solutions is lower than that of Si. Shorter rays of dislo-
cation rosettes indicate that the dislocation mobility in
the solid solutions is significantly lower than in the pure
components. Moreover, the wide dislocation rays form-
ing in SixGe1 – x/Si ELs likely indicate that dislocation
cross slip plays a significant role in plastic deformation
in this case.

Our results show that, in ELs of the SiGe solid solu-
tions, comparatively low solute contents cause non-
monotonic changes in both the microhardness and the
ray lengths of dislocation rosettes forming around
indentations. Extremum values of these parameters are
observed at x = 0.025 for the SixGe1 – x/Ge heterostruc-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
tures and at x = 0.978 for the SixGe1 – x/Si heterostruc-
tures. The maximum values of microhardness corre-
spond to the shortest ray lengths of dislocation rosettes.
These results correlate well with the results of our ear-
lier investigation of the dislocation structure in ELs of
these heterostructures [9, 10], according to which the
concentration dependences of the densities of tilt dislo-
cations and misfit dislocations in these ELs are non-
monotonic and these densities are minimum at the same
solid-solution compositions as in this work.

On the whole, all these data allow the conclusion
that the plasticity of the solid solutions studied varies
nonmonotonically. In certain composition ranges (0 ≤
x < 0.025 for the SixGe1 – x /Ge heterostructures and
0.978 < x ≤ 1 for the SixGe1 – x/Si heterostructures), the
introduction of the solute is accompanied by hardening
of the ELs. This effect is most likely caused by spinodal
decomposition of the SixGe1 – x solid solution. At rela-
tively low solute contents, the spinodal decomposition
proceeds via the formation of clusters or disperse pre-
cipitates in ELs of the solid solution, which are efficient
barriers for the motion of dislocations forming upon
microindentation. As a result, the microhardness of the
ELs substantially increases and the rays of dislocation
rosettes shorten. As the solute content in the solid solu-

(a)

(b) 10 µm

10 µm

Fig. 3. Typical dislocation rosette forming around an inden-
tation in SixGe1 – x /Si epitaxial layers at 570°C: (a) Si and
(b) SixGe1 – x (x = 0.89).
3
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tion increases, progressively coarser precipitates form
in the ELs during the spinodal decomposition. Such
precipitates cease to be efficient barriers for dislocation
motion and to harden the material, which leads to a
decrease in the microhardness of the ELs and to an
increase in the ray length of dislocation rosettes.

The more complex concentration dependences of
these parameters studied in the SixGe1 – x/Si ELs at x <
0.95 is not completely understood. Such dependences
may be assumed to be caused by the difference in the
sign of misfit stresses (tension in the SixGe1 – x/Ge lay-
ers and compression in the SixGe1 – x/Si layers) operat-
ing in the ELs and by a possible asymmetry in the posi-
tions of the boundaries of the solid-solution stability
regions in the composition axis for this binary system.
Note that no reliable data on the GeSi solid-solution
stability regions are available in the literature.

5. CONCLUSION

Thus, we have studied the high-temperature mic-
rohardness of the SixGe1 – x/Ge (0 ≤ x < 0.15) and
SixGe1 – x/Si (0.85 < x ≤ 1) heterostructures. In the com-
position ranges studied, the concentration dependences
of the microhardness and of the ray length of disloca-
tion rosettes forming around indentations were found to
be nonmonotonic. The nonmonotonic changes in the
EL plasticity are most likely caused by hardening of the
solid solutions in a certain composition range due to
P

their spinodal decomposition with the formation of
clusters and disperse precipitates.
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Abstract—The behavior of a hexagonal lattice of bubble domains in thin uniaxial films of garnet ferrites is
studied in the temperature range from the compensation point to the Néel temperature. Two types of first-order
phase transitions (preserving and not preserving the total number of domains in the bubble-domain lattice)
occurring with variation of the temperature were studied. It is shown that the type of a phase transition is deter-
mined by the temperature dependence of the characteristic length of the film. The existence of two types of
phase transitions is explained in terms of magnetostatic pressure existing in a bubble-domain lattice. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we present the results of an experi-
mental study on hexagonal lattices of bubble domains
(BDs) in thin uniaxial films with the easy-magnetiza-
tion axis normal to the film surface. The experiments
were performed in a temperature range in the vicinity
of the compensation point Tc. The domain structure
(DS) of a thin magnetic film in the vicinity of Tc was
studied theoretically in [1–3]. In [1], it was shown that,
in a zero bias magnetic field, there is always a temper-
ature range near Tc in which the thin magnetic film is in
a single-domain state. The following sequence of vari-
ous DSs existing near Tc was suggested. In a certain
temperature range close to Tc, there exists a nonuniform
state; with receding from this temperature range, BDs
are formed, and with a further increase in the magni-
tude of the interval T – Tc on both sides of Tc, the BDs
transform into stripe domains.

The effect of an applied magnetic field on the
parameters of the stripe DS in a uniaxial magnetic film
in a temperature range including Tc was studied theoret-
ically in [2] (see also review [3]). In [2], the DS period
and the field under which the transition into a uniform
state occurs were found as a function of temperature;
analytical expressions describing the stability of indi-
vidual BDs and of BD lattices in the vicinity of Tc were
derived, and an expression (consistent with the experi-
mental data from [4, 5]) was obtained for the tempera-
ture interval in which the single-domain state exists
near Tc. In most experimental studies, the emphasis was
on the stripe and labyrinth DSs and on the structure of
domain walls in the vicinity of Tc [6–10]. In [10], field-
induced phase transitions were shown to occur near Tc.
It was found that the application of a magnetic field in
the immediate vicinity of Tc brings about the develop-
1063-7834/03/4509- $24.00 © 21727
ment of metastable DS states: domains with magnetiza-
tion directed upwards and/or downwards along the nor-
mal to the film surface and regions with spin-flop states
having much larger magnetization (which results in
enhancement of the Faraday effect). The transforma-
tion of up- and down-polarization domains into the
spin-flop state occurs abruptly and is accompanied by a
temperature and field hysteresis. The difference
between the results obtained in [10] and [4] lies in this.

Phase transitions of BD lattices in thin garnet-
ferrite films in the vicinity of Tc in zero field were
studied in [11].

An analysis of the results obtained in the studies
cited above shows that the behavior of BD lattices in
the vicinity of Tc has not been adequately investigated.
Little attention has been given to the occurrence of var-
ious types of phase transitions in BD lattices upon cool-
ing and heating of films and to the deciding role of the
procedure used to produce an equilibrium BD lattice in
a thin magnetic film at a given temperature. These prob-
lems are studied in this article.

2. EXPERIMENTAL RESULTS

We studied uniaxial single-crystal garnet-ferrite
films differing in composition, thickness, quality factor
Q @ 1, and compensation point. The films were grown
through liquid-phase epitaxy on substrates of Gd–Ga
garnet with the (111) orientation. The easy-magnetiza-
tion axis was directed normal to the film surface. The
parameters of the films are listed in Table 1.

Domains were observed using the Faraday effect.
The magneto-optical setup provided the possibility of
varying the temperature of a film in the temperature
range from 90 K to TN and for applying a unipolar
pulsed magnetic field Hp directed perpendicular to the
003 MAIK “Nauka/Interperiodica”
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Table 1.  Film characteristics at room temperature

Film Composition h, µm TN , K p, µm d, µm a, µm Hc, Oe l, µm 4πMS, G σ,
erg/cm2

1 (TmBi)3(FeGa)5O12 8.4 437 13.5 12.5 16.9 100 0.67 175 0.16

2 (YGdTm)3(FeGa)5O12 3.3 443 3.7 3.3 4.4 270 0.14 400 0.16

3 (GdTm)3(FeGa)5O12 2.3 528 7.5 6.6 8.9 100 0.42 270 0.22

4 (YBi)3(FeGa)5O12 2.8 483 17.5 15.5 21 30 1.12 146 0.19

Note: h is the film thickness, TN is the Néel temperature, p is the stripe-structure period, d is the BD diameter, a is the BD lattice parameter,
Hc is the BD collapse field, l is the characteristic length of a film, MS is the saturation magnetization, and σ is the energy density of
a domain wall.
film surface. A BD lattice was formed in a pulsed mag-
netic field of a certain frequency and amplitude with
subsequent removal of the field.

There are two ways of studying BD lattice parame-
ters. In the first method, a BD lattice is formed at differ-
ent temperatures and the parameters a(T) and d(T) are
determined, which are continuous functions of temper-
ature [11]. Such lattices are equilibrium at the temper-
ature of their formation; i.e., their parameters corre-
spond to the energy minimum for the given l(T) and

MS(T) dependences [12]. The parameter y =  = 0.74

remains constant in the entire temperature range of
existence of the equilibrium BD lattice [13]. Another
type of a(T) and d(T) dependences is observed if the
BD lattice is formed at a certain fixed temperature (e.g.,
at room temperature) and then the temperature of the
film is varied. In this case, the lattice persists in a cer-
tain temperature range and then a spontaneous phase
transition occurs into a new BD lattice with other equi-
librium parameters corresponding to the new tempera-
ture [14]. This method was used in the present study.
Let us consider a phase transition in a BD lattice caused
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Fig. 1. Temperature dependences of (1) saturation magneti-
zation 4πMS, (2) characteristic length l, and (3) BD lattice
parameter a for film 1.
P

by film cooling. As can be seen from Fig. 1, the lattice
formed in film 1 at room temperature persists as the
film is cooled to 215 K, since the parameter a remains
constant upon cooling to this temperature (the image of
this lattice is shown in Fig. 2a). Then, a phase transition
to a new lattice with larger parameters a and d occurs.
From Fig. 2b, it can be seen that some BDs contract and
disappear, while others expand and absorb the neigh-
boring domains. The application of a pulsed magnetic
field transforms this lattice into an equilibrium hexago-
nal lattice with larger parameters and a smaller number
of BDs covering the entire surface of the film (Fig. 2c).
This lattice is stable at temperatures down to 175 K
(Fig. 1), at which a phase transition again occurs with
increased values of a and d and a decreased number of
BDs (Fig. 2d). A new BD lattice produced by applying
the field Hp (Fig. 2e) persists as the film is cooled to
170 K. With a further decrease in temperature, low-
temperature collapse of the lattice occurs; individual
BDs disappear. As a rule, it is the central domains that
disappear first and then the BD lattice is destroyed
(Fig. 2f). This situation is similar to the collapse of a
BD lattice that takes place in a thin film at a constant
temperature under the action of a bias field close in
strength to the BD collapse field. At T ≤ 160 K, isolated
BDs of a very large size are observed (Fig. 2g); they
look unstable, move randomly, and chaotically change
shape (Fig. 2h). At T = 150 K, the film transforms into
a single-domain state.

In order to investigate the evolution of DSs receding
from Tc, the film was heated starting from low temper-
atures. When the temperature reaches 160 K, a stripe
DS arises (Figs. 1, 3a), followed by isolated BDs
(Fig. 3b), which immediately transform into stripe
domains. The action of the pulsed field Hp for a short
time results in the formation of a hexagonal BD lattice
at 170 K (Fig. 3c), which persists up to 180 K. Then, a
phase transition occurs and the lattice spontaneously
decomposes into blocks of a new lattice separated by
stripes. The parameters a and d of the new lattice inside
blocks are smaller and correspond to the parameters of
the equilibrium lattice at the given temperature (Figs. 1,
3d). The total number of domains n in the course of
such processes remains constant. The application of the
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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(a) (b)

(c) (d)

(e) (f)

(g) (h)200 µm 200 µm

250 µm250 µm

110 µm 110 µm

110 µm110 µm

Fig. 2. Domain structure observed in film 1 upon cooling: (a) BD lattice at 300 K, (b) phase transition in BD lattice at 215 K,
(c) BD lattice at 215 K, (d) phase transition in BD lattice at 175 K, (e) BD lattice at 175 K, (f) low-temperature collapse of BD lattice
at 170 K, (g) isolated domains at 160 K, and (f) unstable domains at 158 K.
pulsed field Hp creates a bulk BD lattice with parame-
ters corresponding to those in blocks. The lattice per-
sists as the film is heated to 205 K, and then a new phase
transition occurs to a two-phase structure consisting of
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
stripes and lattice blocks with smaller parameters. As
can be seen from Fig. 1, several phase transitions of this
type occur during the film heating (Fig. 3). The number
of phase transitions and the temperature intervals of BD
3
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120 µm 170 µm

250 µm170 µm

200 µm 170 µm
(a) (b)

(c) (d)

(e) (f)

Fig. 3. Domain structure observed in film 1 upon heating: (a) stripes at 160 K, (b) isolated domains at 170 K, (c) BD lattice at 170 K,
(d) phase transition in BD lattice at 180 K, (e) phase transition in BD lattice at 232 K, and (f) BD lattice at 232 K.
lattice stability upon heating of the film differ from
those observed upon film cooling; i.e., a hysteresis is
observed. It is also worth noting that phase transitions
occurring upon both cooling and heating are initiated
by defects in the BD lattice (Figs. 2, 3) and proceed
spontaneously (abruptly).

A similar temperature behavior of phase transitions
in the BD lattice is observed in film 2 (Fig. 4). Film 3 is
of particular interest because, in contrast to films 1 and
2, this film allows one to study the temperature depen-
dence of the DS on both sides of Tc (Fig. 5). As the tem-
perature approaches Tc from either side, the DS param-
eters increase and reach their threshold values at which
domains disappear. In the immediate vicinity of Tc, a
P

single-domain region exists, where the net magnetiza-
tion of a sample becomes so small that the formation of
“Weiss domains” due to demagnetizing fields becomes
unfavorable from the energy standpoint and the film
transforms into a uniformly magnetized state. As seen
from Fig. 5, the single-domain region in the vicinity of
Tc covers the interval 150–230 K.

When the temperature approaches Tc from the
higher temperature side, the DS behavior is the same as
in films 1 and 2; namely, several phase transitions take
place in the BD lattice (Fig. 5). Each transition is
accompanied by an increase in the values of the lattice
parameters and a decrease in the number of BDs. Fur-
ther cooling results in low-temperature collapse of the
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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lattice, isolated BDs appear, and, finally, the single-
domain state forms. As one moves away from Tc (upon
heating), a stripe domain is formed and subsequently
solitary bubbles appear. The application of Hp causes
these solitary bubbles to form a hexagonal BD lattice.
A further increase in temperature leads to a phase tran-
sition to a two-phase state in which the total number of
domains remains unchanged.

With cooling from Tc (Fig. 5), after the formation of
the single-domain state, a stripe domain appears and
then individual bubbles are formed. The application of
Hp results in the formation of a BD lattice. With reced-
ing from Tc, the lattice decomposes into blocks of a new
lattice with smaller parameters; the blocks are sepa-
rated by stripes; i.e., a phase transition to a two-phase
structure occurs.

From the results presented above, it follows that the
character of the phase transitions that occur in the BD
lattice as one goes away from Tc is the same in the
regions above and below Tc. As Tc is approached, sev-
eral phase transitions occur in the BD lattice, which are
accompanied by an increase in the lattice parameters
and a decrease in the number of BDs. Next, collapse of
the BD lattice occurs with the formation of solitary
BDs, and then a single-domain state is formed.

Thus, the measurements on film 3 made it possible
to study the behavior of the DS at both T < Tc and T >
Tc and to conclude that this behavior is independent of
whether we approach Tc from the lower temperature or
the higher temperature side. The same can be said about
the behavior of the BD lattice as one goes away from Tc.

Film 4 differs from the other films in that its com-
pensation point is close to TN (Fig. 6). As the tempera-
ture is increased from room temperature to Tc, several
phase transitions are observed in the BD lattice, which
are accompanied by an increase in the lattice parameter
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Fig. 4. Temperature dependences of (1) saturation magneti-
zation 4πMS, (2) characteristic length l, and (3) BD lattice
parameter a for film 2.
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a and a decrease in the number of BDs (Fig. 6). How-
ever, in contrast to the phase transitions occurring in the
other films as one approaches Tc, the increase in the BD
diameter d due to a phase transition in film 4 is much
larger, such that the bubbles almost contact with each
other and the DS consists of blocks with intimately con-
tacting bubbles. The situation is similar to the case of a
phase transition occurring in a honeycomb structure
with increasing bias field at constant temperature [13].
The temperature intervals of lattice stability are very
narrow (Fig. 6); the single-domain state is reached at
320 K. Upon film cooling from Tc, stripes are formed.
The application of Hp produces a BD lattice, which per-
sists upon cooling in a certain temperature range. Then,
a phase transition occurs and the lattice transforms into
a two-phase structure consisting of lattice blocks with
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parameter a for film 3.
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smaller parameters separated by stripes. After the
application of Hp, the lattice with smaller parameters
extends over the entire surface of the film. As can be
seen from Fig. 6, the lattice parameters decrease with
decreasing temperature at each phase transition, while
the stability interval increases.

3. CONCLUDING DISCUSSION

Based on the results of our experiments, one can
make the following conclusions.

The equilibrium BD lattice formed at a certain tem-
perature remains stable in a certain temperature range.
In [12], it is shown that the interval of thermostability
of a BD lattice depends on the slope of the temperature
dependence of the characteristic length l(T).

As one of the limits of the stability range is reached,
a spontaneous transition from the BD lattice to a two-
phase structure occurs. The latter consists of blocks of
the new BD lattice and the regions of stripe domains,
with the total number of domains being unchanged.
This kind of spontaneous transition in a BD lattice
induced by a change in the temperature of the film is
observed if the temperature recedes from Tc. At the
other limit of the thermostability range, a transition to
an equilibrium BD lattice with larger parameters occurs
and is accompanied by the collapse of part of domains.
The remaining domains abruptly increase in diameter
and form a BD lattice with a period that is at equilib-
rium at the given temperature. This kind of spontaneous
transition in a lattice is observed on approaching the
magnetic compensation point.

Since they have qualitative distinctions, both kinds
of transitions in a BD lattice share a common feature;
namely, they proceed spontaneously (abruptly) when
the temperature changes by two to three degrees and
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Fig. 7. Temperature dependences of P/P0 for BD lattices in
film 1: (1) equilibrium BD lattices and (2, 3) BD lattices sta-
ble in a certain temperature range as one (2) approaches and
(3) goes away from the magnetic compensation point Tc.
P

exhibit thermal hysteresis, which indicates that these
phase transitions are of the first order.

Our experiments have shown that, in the vicinity of
Tc, there exists a hexagonal BD lattice with parameters
considerably larger than the film thickness. On
approaching Tc, a low-temperature collapse of the BD
lattice occurs and the film contains only solitary BDs.

The behavior of the DS is the same at T < Tc and T >
Tc as Tc is approached. The same can be said about the
behavior of the DS when the film is cooled or heated
from Tc, but the character of the phase transitions in this
case is quite different.

It has been found that, in the vicinity of Tc, as fol-
lows from theory [1], a sample is in a single-domain
state, because the sample magnetization is decreased.

Our studies of various films have shown that the
behavior of the DS is independent of the position of Tc

on the temperature scale.
Previously, the thermostability region for a BD lat-

tice upon heating [12] and cooling [15] of a film was
analyzed using the chemical potential of the BD lattice
and of stripe domains.

To explain the features of a BD lattice, we employ
the idea of the magnetostatic pressure P defined in [16]
as the pressure acting on a length unit of a contour
bounding the area of the BD lattice. As follows from
[17, 18], the pressure in a BD lattice is given by

(1)

where B is a constant. For the equilibrium BD lattice,
we have y = const = 0.74 and Eq. (1) can be rewritten as

(2)

where C = Bhy4 = const. Using the experimental data
and Eqs. (1) and (2), one can calculate the pressure of
equilibrium and nonequilibrium BD lattices for films
studied at various temperatures.

Figure 7 shows the (T) curves for equilibrium

BD lattices and for BD lattices that are stable in a cer-
tain temperature range (film 1). The calculated pressure
versus temperature curves for other films are similar
and allow one to determine how the DS pressure varies
as a phase transition occurs.

Let us consider a phase transition which occurs in a
lattice as the temperature approaches Tc (Figs. 1, 7).
The lattice formed at 300 K is an equilibrium lattice and

corresponds to the condition  = 1 (point A in Fig. 7).

Upon cooling, this BD lattice persists in the tempera-
ture range 300–215 K, with its pressure decreasing
(segment AB in Fig. 7). Nevertheless, the pressure of
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the lattice at point B is much higher than the pressure of
the equilibrium lattice at T = 215 K. The lattice with the
initial parameters becomes energetically unfavorable.
Since the characteristic length l of the film grows as the
temperature approaches Tc and since y = const for the
equilibrium lattice, the parameters a and d should also
increase, which is possible only if the number n of
domains decreases. This means that a high magneto-
static pressure favors the collapse of part of the
domains (segment BC in Fig. 7) and a phase transition
occurs to an equilibrium BD lattice with larger param-
eters. In the same way, it is possible to describe the lat-
tice that is stable in the temperature range 215–175 K
and the phase transition at 175 K to an equilibrium BD
lattice. However, at 170 K, as seen from Fig. 7, the pres-
sure of the equilibrium lattice tends to zero. The lattice
can no longer exist; its low-temperature collapse
occurs, and solitary BDs are formed.

As one goes away from Tc, the phase transition in a
BD lattice behaves differently, as follows from the
experimental data. Two situations are possible. The first
situation is realized when magnetization MS increases
and l decreases as one goes away from Tc. An equilib-
rium lattice formed, say, at 232 K persists within the
temperature range 232–265 K. Its pressure increases
(segment KL in Fig. 7), but at 265 K the pressure of this
lattice is much lower than the pressure of the equilib-
rium lattice at the same temperature. For the equilib-
rium lattice, MS(T) increases together with P(T). Since
y = const at equilibrium, a decrease in l causes a
decrease in both the lattice period and BD diameter;
therefore, the number of domains n should increase.
However, the formation of new domains requires addi-
tional energy, which can be provided, e.g., by an exter-
nal pulsed magnetic field. Therefore, the number of
domains is conserved and blocks of a BD lattice with
smaller values of a and d at y = const are formed. The
area between the blocks is occupied by stripe domains
that form from the BDs not incorporated into blocks
(the lattice pressure favors the formation of stripes).
The pressure of such a DS is lower than that of an equi-
librium BD lattice at the same temperature (point L in
Fig. 7). When a pulsed field creates an additional quan-
tity of BDs from stripes, the lattice becomes equilib-
rium (point M in Fig. 7).

The second situation is realized when the saturation
magnetization and the characteristic length decrease
with increasing temperature. As an illustration, let us
consider the case where the temperature is increased
from 300 K. An equilibrium lattice formed at 300 K
persists upon heating of the film in the temperature
range 300–342 K. As seen from Fig. 7, the heating
reduces the pressure P (segment AN in Fig. 7). Since the
equilibrium corresponds to y = const and a decrease in
l is accompanied by a decrease in parameters a and d,
the number of BDs should increase. The lattice with the
initial parameters becomes unstable at 342 K. As in the
previous situation, a phase transition occurs in the lat-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
tice to a two-phase structure consisting of lattice blocks
with smaller parameters and of stripe-domain regions,
with the total number of domains remaining
unchanged. By applying Hp, an additional number of
BDs is formed from stripes and the pressure of the DS
increases (segment NO in Fig. 7), with the consequence
that an equilibrium lattice with new parameters covers
the entire observable area of the film. In the same man-
ner, we can explain the behavior of the DS and the char-
acter of phase transitions occurring in the BD lattice with
variation of the temperature in the other films studied.

A diagram that sums up the transformations taking
place in a BD lattice at phase transitions for the case
y = const is shown in Table 2.

It can be seen that the character of the phase transi-
tions does not depend on the change in MS with temper-
ature but is determined only by the sign of the change
in the characteristic length with temperature. At ∆l > 0,
a phase transition to an equilibrium BD lattice with new
parameters occurs with a decreased number n (col-
lapse) of domains, while at ∆l < 0, a phase transition
occurs to a two-phase structure consisting of blocks of
a new BD lattice with smaller parameters and of stripe-
domain regions, with the total number of domains n
remaining unchanged. Magnetostatic pressure P in the
first case is higher than the equilibrium pressure, which
results in the contraction and disappearance of part of
the domains. This process continues until the pressure
becomes equal to its equilibrium value. In the second
case, the magnetostatic pressure is smaller than the
equilibrium value; therefore, part of the BDs enlarge
and transform into stripes. In the course of such trans-
formation, the pressure of the remainder of the BD lat-
tice increases to the equilibrium level. As shown in [17,
18], the coexisting BD and stripe-domain phases are in
equilibrium provided their magnetostatic pressures at
the transition point are equal. It follows that the charac-
ter of a phase transition in a BD lattice is determined
both by the magnetostatic pressure of the BD lattice
and by the sign of the change in the characteristic
length of the film. The phase transition temperature, as
shown in [12, 15], depends on the slope of the l(T)
dependence.

Table 2.  Phase transitions in a BD lattice

Variation of film
characteristics with temperature

Phase arising upon 
phase transition

MS ↓ , P ↓ , l ↑   a ↑ , d ↑ , n ↓ Equilibrium BD
lattice

MS ↑ , P ↑ , l ↓  a ↓ , d ↓ , n = const Two-phase system 
consisting of BD
lattice blocks and 
stripes

MS ↓ , P ↓ , l ↓   a ↓ , d ↓ , n = const
3
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Abstract—A symmetry analysis of the possible magnetic structures of Er5Ge3 in the ground state is performed
using the results of measurements of elastic magnetic neutron scattering at 4.2 K. It is shown that the minimum
discrepancy factor Rm ≈ 9.5% corresponds to a modulated collinear magnetic structure in which the magnetic
moments of erbium atoms are oriented along the a3 axis of the unit cell of the crystal structure and induce an
antiferromagnetic longitudinal spin wave (AFLSW). The magnetic structure is characterized by the wave vector
k = 2π(0, 0, µ/a3) (where µ ≈ 0.293) and the modulation period λ ≈ 3.413a3. The magnetic ordering temperature
TN ≈ 38 K is determined from the temperature dependence of the intensity of magnetic reflections. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are a number of works [1–9] concerned with
the investigation of the magnetic structure of interme-
tallic compounds with the general formula R5M3[where
R is a rare-earth element (Tb, Nd, Ho, Dy, Er) and M is
Ge, Sb, Si, or Sn], namely, Tb5Ge3 [1], Nd5Ge3 [2],
Tb5Sb3 [3], Tb5Si3 [4], Ho5Sb3 [5], Dy5Sb3 [6], Nd5Sn3

[7], Er5Si3 [8], and Tb5Sn3 [9]. The crystal structure of
these compounds is described by the space group

(P63/mcm). In the structure, rare-earth atoms are
located at the 4(d) and 6(g) positions, whereas Ge, Sb,
Si, and Sn atoms occupy the 6(g) positions. The mag-
netic structure with the wave vector k = 2π(0, 0, µ/a3)
is observed in Tb5Ge3 [1], Tb5Si3 [4], and Dy5Sb3 [6] at
low temperatures; Tb5Sb3 [3] in the temperature range
80 ≤ T ≤ 150 K; and Tb5Sn3 [9] at T = 55 K. The mag-
netic structure with the wave vector k = 2π(µ/a1, 0, 0)
is revealed in Nd5Ge3 [2], Ho5Sb3 [5], Nd5Sn3 [7], and
Er5Si3 [8] at low temperatures. According to [10], the
parameters a1 and a3 are introduced as the fundamental
periods of the direct lattice (the parameters a1, a2, and
a3 correspond to the universally accepted parameters a,
b, and c). The values of µ determined in each specific
case are given in [1–9].

In our opinion, the main disadvantage of the afore-
mentioned works [1–9] is that a systematic symmetry
analysis of the magnetic structures studied was not car-
ried out in any of them. The present paper reports on the
results of neutron diffraction studies of the magnetic
structure of intermetallic Er5Ge3, which is a crystal ana-
log of the above compounds. Particular attention is
given to the results obtained in the symmetry analysis
of the possible magnetic structures of intermetallic
compounds of this type.
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The Er5Ge3 intermetallic compound (like the com-
pounds studied in [1–9]) is a convenient object for use
in neutron diffraction investigations and symmetry
analyses of the possible magnetic structures owing to
its simple crystal structure and small number of mag-
netically active atoms involved in the unit cell. Some
difficulties encountered in such studies are associated
with the fact that magnetically active atoms occupy
positions of two types. However, this circumstance,
though slightly complicating the problem under consid-
eration, is of little consequence. The results obtained in
the symmetry analysis can be extended to all interme-
tallic compounds with magnetically active atoms
located at the 4(d) and 6(g) positions, provided these
compounds have a crystal structure with space group

(P63/mcm) and a magnetic structure with the cor-
responding wave vector.

2. EXPERIMENTAL TECHNIQUE

In our neutron diffraction investigations, we used
the polycrystalline sample Er5Ge3 supplied by
researchers at the Department of General Physics of the
Ural State Technical University (Yekaterinburg). Neu-
tron diffraction measurements were performed on two
diffractometers (λ ≈ 1.805 and 2.4232 Å) installed in
horizontal channels of an IVV-2M reactor at tempera-
tures of 293, 80, and 4.2 K. The powder sample was
placed in a vanadium cell 8 mm in diameter and 60 mm
in height. The neutron diffraction patterns measured at
293 and 80 K differ insignificantly. Figures 1 and 2
show the neutron diffraction patterns measured on a
diffractometer at λ ≈ 2.4232 Å with a higher resolution
at the liquid-nitrogen and liquid-helium temperatures,
respectively. The neutron diffraction patterns were pro-
cessed with the Fullprof program, which, at present, is
commonly used in analyzing diffractometric data. In
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Fig. 1. Neutron diffraction pattern of Er5Ge3 at 80 K.
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Fig. 2. Neutron diffraction pattern of Er5Ge3 at 4.2 K. The inset shows the temperature dependences of the intensity of the (111)+

and (211)– reflections.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



MAGNETIC STRUCTURE OF Er5Ge3 AT 4.2 K 1737
the range of small scattering angles (2Θ = 2°–10°), no
reflections were observed in the neutron diffraction pat-
terns measured with prolonged exposure. For this rea-
son, the small-angle portions of the neutron diffraction
patterns are not shown in Figs. 1 and 2.

The starting models of the magnetic structure were
constructed from the basis functions of the irreducible

representations of the space group (P63/mcm).
These representations are involved in the magnetic rep-
resentation with a wave vector determined by indexing
the neutron diffraction patterns measured at a low tem-
perature. The technique of calculating the basis func-
tions is described in detail in [11]. When describing this
technique, we will follow the notation used in [11].

3. CRYSTAL STRUCTURE

An analysis of the neutron diffraction patterns
recorded at 80 and 4.2 K (Figs. 1, 2) demonstrates that,
at these temperatures, the Er5Ge3 compound has a crys-

tal structure with space group (P63/mcm). Accord-
ing to [12], the Er(I) atoms are located at the 4(d) posi-
tions with the coordinates 1(1/3, 2/3, 0), 2(1/3, 2/3,
1/2), 3(2/3, 1/3, 0), and 4(2/3, 1/3, 1/2) and the Er(II)
atoms occupy the 6(g) positions with the coordinates
1(x, 0, 0.25), 2(0, x, 0.25), 3( , , 0.25), 4( , 0, 0.75),
5(0, , 0.75), and 6(x, x, 0.75), where x ≈ 0.240. The Ge
atoms occupy the 6(g) positions with x ≈ 0.605. There-
fore, the unit cell contains 16 atoms, i.e., two formula
units. The results of the calculations are as follows:
a1 = a2 ≈ (8.414 ± 0.003) Å, a3 ≈ (6.306 ± 0.002) Å,
xEr(6(g)) ≈ 0.244, xGe ≈ 0.606, RB ≈ 7.41%, and Rf ≈
10.4% at T ≈ 80 K and a1 = a2 ≈ (8.390 ± 0.002) Å,
a3 ≈ (6.279 ± 0.002) Å, xEr(6(g)) ≈ 0.240, xGe ≈ 0.605,
RB ≈ 4.22%, and Rf ≈ 5.66% at T ≈ 4.2 K.

4. MAGNETIC STRUCTURE

4.1. Wave Vector of the Magnetic Structure

Compounds with a crystal structure described by the

space group (P63/mcm) belong to the hexagonal
crystal system. The list of vectors—representatives of
stars of wave vectors permissible in the hexagonal crys-
tal system—is presented in [10]. These stars of wave
vectors following the star notation used in [11] are
given below:
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D6h
3

x x x
x
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3

k1{ } µ b1 νb2; k2{ }+ µb1 νb2 b3/2;+ += =

k3{ } µ b1 νb3; k4{ }+ µ b1 b2+( ) νb3;+= =

k5{ } µ b1; k6{ } µ b1 b2+( );= =

k7{ } µ b1 b3/2; k8{ }+ µ b1 b2+( ) b3/2;+= =

k9{ } b1/2 µb3; k10{ }+ b1 b2+( )/3 µb3;+= =
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Here, b1, b2, and b3 are the designations used in [10] for
the primitive vectors of the reciprocal lattice that corre-
spond to the universally accepted vectors a*, b*, and c*.

A comparison of the neutron diffraction patterns of
the Er5Ge3 compound at 4.2 and 80 K shows that the
neutron diffraction pattern measured at a lower temper-
ature contains purely magnetic reflections to which the
integral Miller indices (hkl) cannot be assigned on the
basis of the unit cell.

Judging from the angular positions of the magnetic
reflections (in our case, satellites) in the neutron dif-
fraction pattern of Er5Ge3 at 4.2 K, the Er5Ge3 com-
pound at this temperature has a magnetic structure
characterized by the wave vector k = µb3 = 2π(0, 0,
µ/a3), where µ ≈ 0.293. Magnetic structures with wave
vectors of this type are referred to as incommensurate
or modulated structures [11, 13, 14].

4.2. Symmetry Analysis of the Possible Magnetic 
Structures in Compounds with Space Group 

(P63/mcm) and with Star 
of the Wave Vector {k11} = µb3

In this section, by using the Er5Ge3 compound as an
example, we will briefly describe the symmetry analy-
sis of the magnetic structure of compounds that have a

crystal structure with space group (P63/mcm) and
atoms located at the 4(d) and 6(g) positions. Particular
attention is focused on the description of this technique,
because the symmetry analysis is rarely used in prac-
tice, even though the methods of symmetry analysis, as
applied to neutron diffractometry of magnets, can pro-
vide useful information.

The wave vector k = µb3 = 2π(0, 0, µ/a3) is one of
the prongs of the two-pronged star {k11} = µb3 [10].
The notion of the star of a wave vector and the prong of
a star are given in [11].

The loaded irreducible representations taken from
[10] for the star {k11} = µb3 = 2π(0, 0, µ/a3) are tabu-
lated prior to calculations. The table obtained contains
four one-dimensional (τ1–τ4) and two two-dimensional
(τ5, τ6) representations. The irreducible representations
τ5 and τ6 with the complex quantities

 

 

,

k11{ } µ b3; k12{ } b1/2;= =

k13{ } b1 b2+( )/3; k14{ } b1 b3+( )/2;= =

k15{ } b1 b2+( )/3 b3/2; k16{ }+ 0;= =

k17{ } b3/2.=

D6h
3

D6h
3

ω iπ/3( )exp 1 i 3+( )/2,= =

ω2
2iπ/3( )exp 1– i 3+( )/2,= =

ω4
4iπ/3( )exp 1–  – i 3( )/2= =
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and

 

can be transformed into the real form with the use of the
unitary matrix

 

The irreducible-representation matrices transformed
into the real form will be used in the further analysis.

According to [10], for space group (P63/mcm), the
symmetry elements H1, H3, H5, H20, H22, and H24 have
the accompanying translation th = 0 and the symmetry
elements H2, H4, H6, H19, H21, and H23 possess the
accompanying translation τ = (0, 0, a3/2). These sym-
metry elements form the group of the wave vector k =
2π(0, 0, µ/a3). By multiplying the projective (i.e.,
loaded irreducible) representations into exp(–ikth), we
obtain the minor representations (see [11]). In what fol-
lows, we will use quantities that are complex conjugate
to the minor representations.

Next, in the 4(d) and 6(g) positions, it is expedient
to change over from the coordinate system I used in
[12] to the coordinate system K used in [10]. The rela-
tion between these coordinate systems for the space

group (P63/mcm) [(XYZ)K = (XYZ)I – (0, 0, 0.25)]
is described in [10]. The permutations of atoms due to
the elements of the wave vector group are tabulated for
each of the positions 4(d) and 6(g).

The multiplicity of occurrence of the irreducible
magnetic representation in the reducible representation
is determined from the formula

 

where n( ) is the number of elements of the point

group of the wave vector ,

 

is the magnetic-representation character,

is the permutation-representation character, δh = 1
(if h is the rotation) or δh = –1 (if h is the inversion rota-
tion), Rh is the matrix of rotational transformation, ap is
the reciprocal translation, δj, gi is the Kronecker delta

ω5
5iπ/3( )exp 1 – i 3( )/2,= =

u
1

2
------- 1 i–

i– 1 
 
 

and u
1– 1

2
------- 1 i

i 1 
 
 

.= =

D6h
3

D6h
3

nν
1

n Gk
0( )

-------------- χM
k

g( )χ*kν g( ),

h Gk
0∈

∑=

Gk
0

Gk
0

χM
k

g( ) δhSpR
h

ikap g j,( )–[ ]δ j gj,exp
j

∑=

ikap g j,( )–[ ]δ j gj,exp
j

∑ χ p
k

=

P

symbol, and χkν is the character of the irreducible rep-
resentation dkν.

After the calculations, we obtain the following mag-
netic representation for the 4(d) and 6(g) positions:

 

 

From the formula [11]

we determine the basis functions of the irreducible rep-

resentations of the space group (P63/mcm), which
enter into the magnetic representation with the star
{k11} = µb3 = 2π(0, 0, µ/a3) (for the prong k1 = µb3) for
the 4(d) and 6(g) positions. These functions are com-
plex quantities.

Since the magnetic moments inducing the magnetic
structure are real quantities, the basis functions of the
irreducible representations should also be derived in the
form of real quantities. For this purpose, it is recom-
mended [11] to find the basis functions for the prong
k2 = –k1 from the relationship

and to set up a linear combination (to accomplish the
prong mixing) of the basis functions of the irreducible
representations determined for the prongs k1 and k2 =
–k1 with a mixing coefficient that determine the real
magnetic moment of each atom in all positions for each
irreducible representation. In order to change over from
the prong k1 to the prong k2, the elements {H13 |0} and
{H7 |0} are used for the 4(d) and 6(g) positions, respec-
tively. For the zeroth (initial) unit cell of the crystal, the
real quantities can be obtained as follows:

 

where ε = exp(–iπµ),

.

Here, we used the designations in compact form. The
simplicity of the expression for S0i(6(g)) can be

explained by the fact that the quantities (6(g)) and

dM

k11 4 d( )( ) τ1 τ2 τ3 τ4 2 τ5 τ6+( ),+ + + +=

dM

k11 6 g( )( ) τ1 2 τ2 τ3+( ) τ4 3 τ5 τ6+( ).+ + +=

S kν
λ

i
 
 
 

=  dλ µ[ ]
*kν

g( ) ikap g j,( )–[ ]δ i g j[ ],

Rx β[ ]
h

Ry β[ ]
h

Rz β[ ]
h 

 
 
 
 
 

,exp

h Gk
0∈

∑

D6h
3

S kLν
λ

i '
 
 
 

ikLap gL i,( )–[ ]δhL
R

hLS kν
λ

i
 
 
 

exp=

S0i 4 d( )( ) S0i

k1 4 d( )( ) εS0i

k2 4 d( )( )+[ ] /2,=

S0i 6 g( )( ) S0i

k1 6 g( )( ) S0i

k2 6 g( )( )+[ ] /2=

S0i

k1
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(6(g)) appear to be complex conjugates; conse-
quently, the mixing coefficients for these quantities
turn out to be identical and equal to 1/2. At the final
stage of calculations, we return to the coordinate sys-
tem used in [12].

A preliminary analysis of the results of calculations
demonstrates that it is impossible to obtain equal mag-
netic moments of the atoms located at all sites with dif-
ferent coordinates z for each type [4(d) or 6(g)] of posi-

tion for the space group (P63/mcm). Therefore, the
magnetic moments can induce several variants of mag-
netic structures of the spin wave type. These structures
are as follows: (i) the longitudinal spin wave, when the
magnetic moments are parallel to the a3 axis and the
wave vector k of the magnetic structure; (ii) the trans-
verse spin wave, when the magnetic moments are per-
pendicular to the same axis and the same vector (if the
concept of one irreducible representation [11] is true);
and (iii) their vector sum, when it is necessary to use the
basis functions that determine projections of the mag-
netic moment onto both the basal plane and the a3 axis
of the unit cell.

4.3. Magnetic Structure

The calculations performed with the Fullprof pro-
gram allow us to make the following inferences. The
magnetic structure in the 4(d) and 6(g) positions is
formed in accordance with the irreducible representa-
tions τ3 and , respectively. This variant leads to the
minimum discrepancy factor for the crystal and mag-
netic structures, which is treated as the criterion of reli-
ability for the results obtained.

For atoms located at the 4(d) positions, we have

 

 

and –Reε = –cosπµ = cos(π + πµ). Here, the quantities

S(0, 0, 1) and S(0, 0, ) correspond to the cases where
the atomic magnetic moment is aligned with the a3 axis
and in the opposite direction, respectively. Hence, it
follows that the magnetic moments m1, m2, m3, and m4
induce a longitudinal spin wave. Note that the phase
ϕ = 0 can be assigned to the moments m1 and m3 and the
phase π + πµ can be attributed to the moments m2 and
m4. This implies that the moments m2 and m4 are antipar-
allel to the moments m1 and m3 and have a smaller mag-
nitude due to the factor Reε = cosπµ.

S0i

k2

D6h
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τ3'

S k11τ3

λ
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 
 
 

S k11τ3

λ
3

 
 
 

S 0 0 1, ,( ),= =

S k11τ3

λ
2

 
 
 

S k11τ3

λ
4

 
 
 

S 0 0 1, ,( )Re ε= =

1
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Similar results are obtained for the atoms located at
the 6(g) positions; that is,

 

 

This model of the magnetic structure can be referred to
as the antiferromagnetic longitudinal spin wave
(AFLSW).

Moreover, in order to obtain the minimum discrep-
ancy factor for the magnetic structure in calculations
with the Fullprof program, an additional phase shift
with respect to the magnetic moments of atoms at the
4(d) positions needs to be assigned to all the magnetic
moments of atoms at the 6(g) positions. This phase shift
was calculated to be ∆ϕ ≈ (–0.508 ± 0.022)π. However,
in our opinion, there are no physical grounds to con-
sider that the phase shift differs from –π/2.

Knowing the wave vector k, we can determine the
period of the longitudinal spin wave; that is,

 

Figure 3 illustrates the proposed model of the magnetic
structure within four unit cells arranged in series along
the a3 axis in an interval equal to the length of the lon-
gitudinal spin wave. The atoms located at the 4(d) posi-
tions within the set of unit cells placed along the a3 axis
of the crystal form two equivalent chains with the coor-
dinates (x1 = 1/3, y1 = 2/3) and (x2 = 2/3, y2 = 1/3) (one
of these chains is shown in Fig. 3), in which the dis-
tance between the nearest neighbor atoms along the a3
axis is equal to a3/2. The atoms located at the 6(g) posi-
tions form six equivalent chains with the coordinates (x,
0), (0, x), ( , ), ( , 0), (0, ), and (x, x), in which the
distance between the nearest neighbor atoms is equal to
a3. The magnitude and direction of the magnetic
moments of the atoms in the two types of positions do
not depend on the coordinates (x, y) but depend on the
coordinate z. For clarity, Fig. 3 shows the dependences
of cos(ϕ0 + ∆ϕ) on the coordinate z for the cases ϕ0 = 0,
π, –π/2, and π/2 (where ϕ0 is the initial phase and ∆ϕ =
2πµz is the phase resulting from the modulation of the
magnetic structure). The arrow length corresponds to
the quantity µa3 = µ0cos(ϕ0 + ∆ϕ). Here, the notation
µa3 indicates that the magnetic moment is oriented
along the a3 axis and µ0(4(d)) ≈ (9.54 ± 0.10)µB and
µ0(6(g)) ≈ (6.12 ± 0.07)µB are the maximum magni-
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tudes of the magnetic moments of erbium atoms in the
4(d) and 6(g) positions, respectively. The portion of
each cosine curve located to the left of the value
cos(ϕ0 + ∆ϕ) = 0 corresponds to the positive projection
of the magnetic moment of the atom (situated at the
given height) onto the z axis, whereas the other portion
of this curve corresponds to the negative projection of
the magnetic moment. These curves clearly illustrate
the dependences of the magnitude and direction of the
magnetic moments of each atom on its own position in
the crystal lattice. The magnitudes of the magnetic
moments and the error in their calculation were deter-
mined with the Fullprof program (Rm ≈ 9.55%).

It should be noted that the magnetic moment
µ0(4(d)) ≈ (9.54 ± 0.10)µB coincides (within the accu-
racy of the measurement and calculation) with the com-
monly accepted value

 

Here,

 

is the Landé factor, S = 3/2 is the total spin quantum
number, L = 6 is the total orbital quantum number, and

µJ g J J 1+( ) 9.58µB.≈=

g 1 J J 1+( ) S S 1+( ) L L 1+( )–+
2J J 1+( )

--------------------------------------------------------------------------+ 1.2= =

z

3

2

1

0
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Fig. 3. Model of the magnetic structure of Er5Ge3 at 4.2 K
(for more details, see text).
PH
J = S + L = 15/2 is the total angular momentum of the
Er3+ cation (see, for example, [15]). Since λ/a3 ≈ 3.413
is a quantity of the order of unity, the longitudinal spin
wave obtained should be considered a short-period
wave. 

An analysis of the temperature dependences of the
intensity of the reflections (111)+ at 2Θ ≈ 44.8° and
(211)– at 2Θ ≈ 55.02° in the neutron diffraction pattern
of Er5Ge3 in the temperature range from 4.2 to 80 K
(see inset to Fig. 2) shows that, as the temperature
increases, the magnetic contribution to the reflections
decreases monotonically and becomes zero at T ≈ 38 K.
The latter circumstance can be associated with mag-
netic disordering in the Er5Ge3 compound at this tem-
perature. The temperature T ≈ 38 K can be treated as the
Néel temperature of the intermetallic compound under
investigation.

5. RESULTS AND DISCUSSION

Yakinthos et al. [3] noted that, in the temperature
range 80 ≤ T ≤ 150 K, the Tb5Sb3 compound has a mag-
netic structure of the conical-spiral type (the cone axes
form an angle of 51.5° with the a3 axis, and the angular
half-opening of the cone is 28.5°). Semitelou et al. [4]
argued that, in the Tb5Si3 compound at 4.2 K, the ter-
bium atoms occupying the 4(d) positions form a simple
spiral, whereas the terbium atoms located at the 6(g)
positions make up a conical spiral in which the cone
axis is aligned parallel to the a3 axis and the angle
between the magnetic moment and the a3 axis is equal
to 76°.

However, the above models of the magnetic struc-
tures cannot be constructed from the basis functions of
the irreducible representations derived in the present
work. It is our opinion that these models are in contra-
diction with the results of the symmetry analysis. In this
respect, they need revision and further refinement.

Our attempts to improve the model proposed in this
work for the magnetic structure of Er5Ge3 (by adding
the basis functions of other irreducible representations
to those already used) were not successful. The
AFLSW model is quite adequate and fairly simple. We
believe that, at this stage, the AFLSW model has no
need for refinement. Moreover, the results of earlier
investigations of the crystal-field effects have demon-
strated that the higher order components of the crystal
field should be favorable for the orientation of the mag-
netic moments of erbium atoms along the a3 axis (see,
for example, [16]). This fact also counts in support of
the inferences drawn in the present study regarding the
magnetic structure of Er5Ge3.

The results of neutron diffraction investigations of
the magnetic structure of the Er5Si3 intermetallic com-
pound at T = 20 K (at this temperature, we also revealed
an antiferromagnetic longitudinal spin wave) will be
presented in future papers.
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003



MAGNETIC STRUCTURE OF Er5Ge3 AT 4.2 K 1741
ACKNOWLEDGMENTS
We would like to thank V.E. Naœsh, S.B. Petrov, and

Yu.N. Skryabin for their participation in discussions of
the results and helpful remarks. We are also grateful to
V.I. Bobrovskiœ and V.A. Kazantsev for their assistance
in preparing the manuscript.

This work was supported by the Ministry of Indus-
try, Science, and Technology of the Russian Federation
(State Contract no. 40.012.1.1.1150).

REFERENCES
1. P. Schobinger-Paramantellos, J. Magn. Magn. Mater. 28

(1–2), 97 (1982).
2. P. Schobinger-Paramantellos and K. H. J. Buschow, J.

Magn. Magn. Mater. 49 (3), 349 (1985).
3. J. K. Yakinthos, I. P. Semitelou, and E. Roudaut, Solid

State Commun. 59 (4), 227 (1986).
4. I. P. Semitelou, Hel. Konguetsof, J. K. Yakinthos, and

E. Roudaut, J. Magn. Magn. Mater. 79 (1), 131 (1989).
5. I. P. Semitelou, Hel. Konguetsof, and J. K. Yakinthos,

J. Magn. Magn. Mater. 82 (2–3), 223 (1989).
6. I. P. Semitelou, P. Kotsanidis, J. K. Yakinthos, and

E. Roudaut, J. Magn. Magn. Mater. 116 (1–2), 103
(1992).

7. I. P. Semitelou, J. K. Yakinthos, and E. Roudaut, J.
Magn. Magn. Mater. 128 (1–2), 79 (1993).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
8. I. P. Semitelou, J. K. Yakinthos, and E. Roudaut, J. Phys.
Chem. Solids 56 (7), 891 (1995).

9. I. P. Semitelou and J. K. Yakinthos, J. Magn. Magn.
Mater. 186 (1–2), 107 (1998).

10. O. V. Kovalev, Representations of the Crystallographic
Space Groups: Irreducible Representations, Induced
Representations, and Corepresentations (Nauka, Mos-
cow, 1986; Gordon and Breach, Yverdon, Switzerland,
1993).

11. Yu. A. Izyumov, V. E. Naœsh, and R. P. Ozerov, Neutron
Diffraction of Magnetic Materials (Atomizdat, Moscow,
1981; Consultants Bureau, New York, 1991).

12. International Tables for X-ray Crystallography (Kynoch
Press, Birmingham, 1952), Vol. 1.

13. Yu. A. Izyumov and R. P. Ozerov, Magnetic Neutron Dif-
fraction (Nauka, Moscow, 1966; Plenum, New York,
1979).

14. Yu. A. Izyumov, Diffraction of Neutrons on Long-Period
Structures (Énergoatomizdat, Moscow, 1987).

15. S. V. Vonsovskiœ, Magnetism (Nauka, Moscow, 1971;
Wiley, New York, 1974), Vols. 1 and 2.

16. K. N. R. Taylor and M. I. Darby, Physics of Rare Earth
Solids (Chapman and Hall, London, 1972; Mir, Moscow,
1974).

Translated by O. Borovik-Romanova
3



  

Physics of the Solid State, Vol. 45, No. 9, 2003, pp. 1742–1745. Translated from Fizika Tverdogo Tela, Vol. 45, No. 9, 2003, pp. 1660–1663.
Original Russian Text Copyright © 2003 by Shablaev, Pisarev.

                                                                                       

MAGNETISM
AND FERROELECTRICITY

                        
Giant Nonlinear Absorption in the NiO Antiferromagnet
S. I. Shablaev and R. V. Pisarev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received January 30, 2003

Abstract—A study of the spectrum of nonlinear two-photon and two-step absorption in NiO single crystals,
carried out in the energy region "ω1 + "ω2 = 2.45–4.575 eV, showed it to have a complex shape and consist of
very strong peaks (from 0.05 to 2.7 cm/MW). Within the energy interval 2.45–3.3 eV, the spectrum is due to d–
d transitions in the Ni2+ ion. The band gap width was determined to be Eg = 3.466 eV. The spectral features seen
above this energy originate from interband transitions from three valence subbands to the conduction band bot-
tom. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The character of local and valence- and conduction-
band states in compounds with 3d transition metals has
for a long time been a subject of intense investigation
[1]. These aspects grew in significance in connection
with the discovery of high-temperature superconduc-
tivity in Cu2+(3d9) compounds and of giant magnetore-
sistance in Mn3+(3d4) materials. Experimental studies
have been conducted using diverse linear optical meth-
ods (absorption, reflection, electroabsorption). The
absorption spectrum of these compounds has been
established to be due to local optical transitions in the
3d transition ions, which are superposed on the band-
to-band absorption above 3 eV. Unambiguous separa-
tion of these kinds of absorption meets, however, with
difficulties, because the absorption spectra cannot be
measured in the interband transition region and reflec-
tion spectra are not capable of providing much informa-
tion in the transparency region and near the fundamen-
tal absorption edge. In many cases, neither the exact
magnitude of the band gap Eg nor the character of the
edge optical transitions is currently known. A better
understanding of this problem may be gained using
nonlinear two-photon spectroscopy, an efficient tool for
studying electronic structure [2]. This method studies
the spectrum of additional absorption of probe light
"ω1 of intensity I1 created in a crystal traversed by a
high-power laser pulse "ω2 of intensity I2. Both pulses
suffer only weak absorption in the crystal, because the
probe light energy "ω1 < Eg and the pump energy "ω2 <
(1/2)Eg. Under these conditions, one can study nonlin-
ear absorption at the fundamental absorption edge in
the region from 2"ω2 to Eg + "ω2, where one-photon
spectroscopy can no longer be applied because of
strong absorption and due to reflection still being weak.
The more complex selection rules governing two-pho-
ton absorption (TPA) [3] are capable of providing, in
many cases, new information on the electronic states of
1063-7834/03/4509- $24.00 © 21742
crystals as compared to spectra of linear absorption.
Nonlinear absorption in compounds with 3d transition
metals is specific in that, first, two-photon transitions
connecting d states of the metal ion are allowed and,
hence, are more intense (unlike those involved in one-
photon absorption) and, second, nonlinear absorption
may be accompanied by resonance absorption involv-
ing intermediate levels, where the photon energy of one
or both light sources employed becomes equal to the
energy difference between the local d transitions in the
metal ions. Such resonance effects may enhance the
total nonlinear absorption and make it possible to study
the local transitions of interest in more detail. This may
prove to be of considerable interest in conjunction with
the current intense search for nonlinear optical materi-
als with a high third-order nonlinear susceptibility χ(3),
which can be employed to advantage in devices
intended for controlling light fluxes [4].

We chose NiO nickel oxide for the present study of
nonlinear absorption. The electronic level diagram of
the Ni2+ ion in an octahedral crystal field is shown in
Fig. 1. This antiferromagnet has been well studied by
linear optical methods and is of particular interest in
nonlinear absorption in that its first optical transition

   lying in the energy interval 0.97–1.3 eV
falls in resonance with the pump energy of our laser
E2 = 1.17 eV.

The NiO nickel oxide crystallizes in a centrosym-
metric cubic structure (point group m3m) of the NaCl
type. Below the Néel temperature TN = 523 K, NiO is
an antiferromagnet, in which the Ni2+ spins are ferro-
magnetically ordered in the {111} planes and are oppo-
sitely directed in adjacent sheets [5, 6]. Spin ordering
gives rise to a small distortion of the cubic cell along the
〈111〉  axes [7] (perpendicular to the ferromagnetic
planes), which lowers the crystallographic symmetry to
3m. The electronic structure of NiO has been studied
both theoretically [8, 9] and experimentally [1, 10, 11].
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Fundamental absorption follows an exponential course
[12] in the region extending from about 3.1 eV to the
first peak at ~4.3 eV [13]. Therefore, the exact position
of Eg and the character of the edge transitions had not
been established up to now.

2. EXPERIMENTAL TECHNIQUE

Nonlinear absorption spectra of the NiO crystal
were obtained on two samples, one of which was a
plane-parallel plate 70 µm thick and the other, a
~7-µm-thick film on an MgO substrate. The sample
faces were {100} oriented.

A neodymium (Nd-YAG) laser pulse (I2) 10 ns long
with a photon energy "ω2 = 1.17 eV and a probe light
pulse I1 (of a xenon flash lamp) 1.5 µs long with a pho-
ton of energy 1.29 < "ω1 < 3.4 eV crossed the sample
simultaneously in opposite directions [14]. As the laser
pulse crossed the crystal, a modulation signal in the
form of a dip appeared in the probe pulse. The probe
light pulse I1 passed through a monochromator to fall
on the PM tube cathode. The laser pulse amplitude I2
was monitored with a coaxial photocell. The signals
from the PM tube and the photocell were fed through
delay lines to the inputs of a three-channel gated detec-
tor, which measured the pulse amplitude of the laser, I2,
and of the lamp, I1, during the 4.5-ns time gate in each
cycle (cycle frequency 12.5 Hz). The probe pulse
amplitude I1 was measured twice: directly before the
dip, the value of I1 was measured, and at the dip, the
value of I1 – ∆I was measured. After this, the signals
thus obtained were expanded to 7 ms and sent to the
computer unit, where the ∆I signal was isolated and the
TPA coefficient β was calculated from the relation β =
∆I/(I1I2d), where d is the length of the beam interaction
region in the crystal. The values of β thus obtained were
averaged over 104 pulses.

3. EXPERIMENTAL RESULTS

Figure 2 displays a spectrum of NiO nonlinear
absorption. In the energy interval from 2.46 to 3.7 eV,
the spectrum was measured on an NiO plate 70 µm
thick, and in the interval from 3.6 to 4.575 eV, on a film
~7 µm thick.

A TPA spectrum can be conventionally divided into
two parts. In the first part of the spectrum, in the 2.46-
to 2.9-eV interval, one clearly sees two peaks of com-
plex shape, which originate from transitions from the

ground state  through an intermediate state  to
the final states 1Γ5 and 3Γ4. The next interval, extending
from 2.9 to 3.465 eV, exhibits insignificant nonlinear
absorption (about ~0.02 cm/MW) and contains a small

peak C connected with the excitation of two  

 transitions (excitation energy of about 1 eV) by a
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5
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5
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probe light pulse of energy ~2 eV. The second part of
the spectrum starts after 3.465 eV and terminates at
4.575 eV. This region exhibits three very strong max-
ima (X1, X2, X3) peaking at 3.768, 4.075, and 4.33 eV,
respectively. Figure 1 shows the electronic level dia-
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Fig. 1. Electronic level diagram of (3d)8 states and NiO
edge bands.
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gram of the (3d)8 Ni2+ ion and of the edge bands (the
valence and conduction bands); the diagram specifies
the observed transitions and the photon energies of the
pump laser E2 and the probe light pulse E1.

Study of the ∆I signal showed it to differ strongly in
shape from the laser pump pulse I2 (Fig. 3). The width
of the laser light pulse I2 at half maximum is 10 ns. The
leading and trailing pulse edges are about 5 ns long.
The leading edge of the modulation signal ∆I is equal
to that of the laser pulse, while the trailing edge is so
long that it could not be measured in our experiment,
because it was in excess not only of the probe light
pulse I1 itself (1.5 µs) but of the laser pulse off-duty
time (80 ms) as well. One can tentatively set the trailing
edge ∆I to be greater than 160 ms in length long, i.e.,
practically 106 times the laser pulse length. This unusu-
ally long trailing edge of the modulation pulse is a
result of the nonlinear absorption in NiO being not
purely a two-photon but largely a two-step absorption
process. As seen from Fig. 1, the first optical transition

in NiO is the    transition in the Ni2+ ion and
lies in the interval 0.97–1.3 eV. The laser pump pulse I2
with a photon energy of 1.17 eV falls on the trailing
edge of this transition. Electrons absorb the laser pho-

ton energy to transfer from the  ground state to the

excited  level. The electron lifetime in this level is
inversely proportional to the level width and can be on
the order of a few femtoseconds. Hence, in order to
account for the long trailing edge of the modulation sig-
nal observed by us, one has to assume that electrons

transfer from the  level to some trapping level of an
impurity or crystal defect which has an extremely long
lifetime. This lifetime of the excited electrons is deter-
mined by the length of the trailing edge of the modula-
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Fig. 3. Profile of the laser (I2) and modulation (∆I) light
pulses. TPA stands for two-photon absorption, and TSA, for
two-step absorption.
PH
tion pulse ∆I, which, as already mentioned, is about 160
ms long. These excited electrons can subsequently
transfer to higher lying levels by absorbing probe light
photons I1.

The long electron lifetime in the intermediate trap-
ping level results, of course, in an enhanced probabil-
ity of two-step transitions, but it also results in an
increase in the probability of resonance two-photon
transitions because of the decrease in the energy
denominator Em – Ei – "ω2 in the expression for the
TPA coefficient

where  is the sum over all initial (i) and final ( f )

states and  is the sum over all intermediate states,
both initial and final.

This apparently can account for the unusually large
nonlinear absorption coefficients observed experimen-
tally. The values of β here are three times larger, at the
equivalent spectral points, than those in the chromium
oxide Cr2O3 [15] (which also exhibits resonance TPA,
but with only the probe light pulse I1 falling in reso-
nance) and two orders of magnitude larger than those
observed in such model semiconductors as ZnSe and
CdS, whose spectra were measured for the purpose of
comparison under the same conditions.

As seen from Fig. 2, the spectrum consists of several

peaks ( , 3Γ4, C, X1, X2, X3) of complex shape that
differ in intensity. The first two of them are obviously
due to absorption in the Ni2+ d shell in the transitions

      . As for X1, X2, and X3,
they are, in our opinion, interband transitions between
the three subbands of the valence band and the bottom
of the conduction band. The edge of interband NiO
intrinsic absorption is known to behave exponentially
above 3.1 eV [12]. Near 4 eV, the one-photon absorp-
tion coefficient α reaches a value ~0.5 × 105 cm–1, and
after this, a peak at 4.3 eV is observed [13]. This peak
can apparently be identified with the two-photon X3
feature (4.325 eV). The X1 and X2 peaks at 3.768 and
4.075 eV are not seen in reflection, because they fall
into the region of the exponential edge.

The fundamental absorption edge in NiO should be
identified with the energy of the beginning of the high-
temperature region in the TPA spectrum, which is Eg =
3.465 eV at 290 K.

β A
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Abstract—The structure of a solitary domain wall (DW) with a Bloch line in rare-earth orthoferrites is deter-
mined using numerical methods for the values of the material parameters lying beyond the range in which the
can be found analytically solution. The law of rotation of the DW magnetization vector, the effective DW width,
and the energy per unit length of the Bloch line are determined. It is shown that a more accurate treatment of
the two-dimensional DW using numerical methods makes it possible to reveal essential distinctions in the fine
structure of the DW in comparison to the approximate analytical solutions. © 2003 MAIK “Nauka/Interperi-
odica”.
Rare-earth orthoferrites (REOs) with the chemical
formula RFeO3 (R is a rare-earth element) are canted
antiferromagnets with weak ferromagnetism. Uniform
domain walls (DWs) in REOs have been thoroughly
studied to date (see, e.g., [1–8]). On the other hand, in
contrast to garnet ferrites, no reliable methods have
been found for the nucleation, observation, and investi-
gation of the fine structure of a DW in REOs. This is
possibly connected with a large in-plane anisotropy in
REOs, which hinders the ferromagnetism m and anti-
ferromagnetism l vectors deflecting out of the plane of
their rotation in the DW. It was theoretically predicted
in [9] that the fine structure most likely arises inside a
DW or near the sample surface in the vicinity of phase
transition, where one can expect a change in the ratio of
anisotropy constants. Recently, several experimental
results have been obtained that can be interpreted as the
observation of dynamic lines on the Néel DW moving
in an REO at supersonic velocity [10–14]. However,
those experiments do not give clear evidence of what
type of fine structure actually exists in the DW.

It is well-known [3] that, in order to describe the fine
structure of the DW in REOs theoretically one needs to
solve a system of coupled nonlinear differential sec-
ond-order equations (which reduce to the sine-Gordon
equation in a limiting case). No analytical methods
have been proposed for solving these equations in the
general case. For the case of Q = |(Kab – Kcb)/Kcb | @ 1
(Kab, Kcb are the effective anisotropy constants in the
ab, cb planes, respectively), by using approximate ana-
lytical methods, it was found that the DW consists of
alternating sequence of segments with and without
rotation of m in this case and that the characteristics of
such a DW should essentially differ from the character-
istics of the DW with Bloch lines in ferromagnets [15–
17]. On the other hand, there are also a large number of
publications where the two-dimensional structure of
1063-7834/03/4509- $24.00 © 21746
the DW in magnets is studied by numerical methods.
For example, considerable advances have been made in
studies of thin magnetic films (see review [18]). This
communication is devoted to studying the structure of a
static DW with a Bloch line by numerical methods for
REOs with positive values of the parameter Q.

We consider an infinite REO plate in the high-tem-
perature magnetic phase GxFz in the context of a two-
sublattice model described by two sublattice magneti-
zation vectors M1 and M2 that are equal in magnitude
(|M1| = |M2 | = M0). The vectors m and l can be repre-
sented as m = (M1 + M2)/2M0 and l = (M1 – M2)/2M0.
These two vectors are assumed to satisfy the relations
m2 + l2 = 1 and (ml) = 0. The x, y, and z axes of the Car-
tesian coordinate system are oriented along the crystal-
lographic axes a, b, and c, respectively. The energy den-
sity of the magnetic subsystem of an REO can be rep-
resented as [3]

 (1)

where a and A are the uniform- and nonuniform-
exchange constants, respectively; di is the Dzyaloshin-
skiœ interaction constant; ai are the anisotropy con-
stants; and {xδ} = x, y, z. If |m |2 ! |l |2 ≈ 1, the vector m
can be expressed in terms of l as [4]

 (2)

where d = dey and d1 = d3 = d. In angular variables, we
have l = l(cosθ, sinθsinϕ, sinθcosϕ) and the equa-
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tions describing the steady-state DW structure have
the form [9]

 (3)

 (4)

where Kab =  – a1 and Kcb =  – a3.

By using numerical methods, we find two-dimen-
sional solutions of the set of equations (3) and (4) for
the Néel DW with rotating m (such DWs were studied
experimentally in [10–14]). The DW plane is parallel to
the yz plane, and the vectors m and l in the adjacent
domains are directed along the z and x axes, respec-
tively. A well-known approximate analytical solution
of the set of equations (3) and (4) has the form [9]

 (5)

 (6)

where δ = δ0(1 + 2Q–1sin2ϕ0)–1/2 is the DW width, δ0 =

,

 (7)

Equation (5) describes the basic domain structure, and
Eq. (6) describes the fine DW structure with a 180° ver-
tical Bloch line.

Now, we assume that θ = θ(x, y) and ϕ = ϕ(x, y). Our
algorithm for numerical integration of Eqs. (3) and (4)
works in the following way. In the first stage, Eqs. (5)
and (6) are taken as a zeroth approximation. The first
approximation θ1(x, y) is found from Eq. (3) and substi-
tuted into Eq. (4) to find ϕ1(x, y). At the next stage, the
procedure is repeated with the use of θ1(x, y) and ϕ1(x, y)
as the initial functions. The calculations proceeded until
the following conditions were satisfied: |θn – θn – 1| < ε
and |ϕn – ϕn – 1| < ε, where ε = 0.0001 rad. To solve the
initial equations numerically, the relaxation method,
similar to that used in [19], was applied. Numerical cal-
culations were performed using a net consisting of
100 × 100 cells. We note that a solution obtained with
this algorithm corresponds to the minimum of the
Bloch line energy per unit length along the axis z

 (8)

where W0 is the energy of the uniform DW; S is the inte-
gration area, usually chosen in the form of a square with
dimensions 10δ0 × 10δ0; and λ is the length of the range
of integration along the y axis.
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Numerical calculations yielded the sought-for θ(x,
y) and ϕ(x, y) dependences, which were used to deter-
mine the “classical” DW parameters (the law of magne-
tization rotation, the DW width, the Bloch line width,
the energy of the obtained structure, etc.) determining
the type of DW structure with a Bloch line for various
values of Q. Figure 1 shows the calculated distribution
of the antiferromagnetism vector in the 180° Néel DW
with rotating m and with a vertical Bloch line localized
at point (0, 0) for the case Q = 1. Schematically, the
rotation of l in such a DW can be described in the fol-
lowing way. The vector l turns out of the ac plane (in
which this vector rotates in uniform DW), with its max-
imum deflection being in the DW center; this deflection
ϕ also increases with approaching the center of the
Bloch line, where DW with the rotating m transforms
into a DW without rotation of m. The dependence of the
maximum angle ϕmax of deflection of the vector l out of
the ac plane on the coordinate y for several values of Q
is shown in Fig. 2.

The dependence of the effective DW width (which
is defined according to Lilley) on the coordinate y along
the DW is shown in Fig. 3 for various values of Q. It is
seen that this dependence is strongly affected by Q and
essentially differs from the analytical expression δ =
δ0[1 + Q–1sin2ϕ0(y)]–1/2 for low values of Q. It should
also be noted that a decrease in Q appreciably dimin-
ishes the region of the DW where it differs from a uni-
form DW, which is in accordance with the dependence
of the effective width Λ of the Bloch line in the center
of the DW on the parameter Q (Fig. 4). The analytical
solution gives Λ/δ0 = Q1/2, whereas, in our case, this
dependence is virtually linear beginning from Q = 2.

5

0

–5
–5 0 5

x/δ0

y/
δ 0

Fig. 1. Distribution of the antiferromagnetism vector in a
180° Néel DW with rotating m and with a vertical Bloch
line at point (0, 0) for Q = 1.
3
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The energy WL (per unit length of the Bloch line), nor-

malized to its analytical value  = 4AQ–1/2 at Q = 10,
is shown in Fig. 5 as a function of Q. For Q ≥ 10, the
numerically calculated energy is virtually coincident
with the result obtained analytically, while at Q = 1, the
energy is 19% lower.

An analysis shows that the result of numerical cal-
culations for Q ≥ 10 (Q @ 1 is the range of applicability
of analytical methods) coincides with the analytical
solution with a high precision, but the distinctions
between them essentially increase with decreasing Q. It
should also be noted that the calculated θ(x, y) and ϕ(x,
y) dependences are essentially two-dimensional in the
region of localization of the Bloch line. The two-
dimensional character of the DW becomes progres-
sively more pronounced with decreasing Q, so that the
structure of the DW with the Bloch line becomes sub-
stantially different from the analytical solution given by
Eqs. (5) and (6). This fact may be the reason why no
success has been made so far in adequate description of

WL
0
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Q = 1

Q = 5

ϕmax, rad
3.0

2.5

2.0

0.5

1.0

1.5

–10 –8 –6 –4 –2 0 2 4 6 8 10
y/δ0

Fig. 2. Maximum angle ϕmax of deflection of the antiferro-
magnetism vector out of the ac plane as a function of the
coordinate y.
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Fig. 4. Dependence of the effective width Λ of the Bloch
line in the DW center on the parameter Q: (1) analytical
solution and (2) numerical solution.
P

the results of several experiments (e.g., the dependence
of the velocity of the Bloch line on the DW velocity
[14]) performed at room temperature, where the values
of Q in YFeO3 can be even less than unity [20]. It there-
fore becomes clear that, in order to adequately describe
the Bloch line dynamics in REOs, one needs to more
correctly take into account the two-dimensional varia-
tions of the angles θ and ϕ.
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Abstract—The magnetic properties of nanoporous carbon samples whose pores were loaded by nickel are
described. It is shown that a sample becomes superparamagnetic for temperatures T < TC(Ni) only in the case
where a noticeable fraction of Ni is contained in the nanopores. The nanopore size estimated from magnetic
measurements coincides with the estimates derived earlier from small-angle x-ray scattering studies. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Activated or porous carbon materials enjoy numer-
ous applications, including for adsorbents, electrodes
of electrolytic supercapacitors and rechargeable lith-
ium batteries, hydrogen and lithium containers [1], var-
ious low-friction coatings [2], and so on. The actual
area of application of such materials is determined by
their structure. The structure depends, in turn, on the
starting material and the method used to prepare the
nanoporous carbon (NPC). One method consists in
obtaining a carbon material from carbide compounds
by removing the carbide-forming non-carbon atoms
chemically [3, 4]. This procedure leaves a nanoporous
carbon system with a high (about 50% and more)
porosity level. The nanopore size may vary depending
on the type of the starting carbide within the interval
~1–2.5 nm, with their distribution being highly uni-
form. These materials can be prepared both in the form
of powders and in mechanically strong bulk pieces [5,
6], whose structural properties practically do not
change up to fairly high temperatures. Their thermal
and chemical stability suggest the attractive idea of
loading various chemical elements in the form of clus-
ters into the nanopores and studying their properties.
The characteristics of nanocomposites fabricated in
this way may be affected, on the one hand, by size con-
straints within the cluster and, on the other, by collec-
tive interactions of the elements incorporated into the
carbon matrix. The latter factor should manifest itself
most vividly in the case of magnetic metals.

The present paper reports on a study of the magnetic
properties of NPC-based nanocomposites with nanop-
ores loaded by nickel. It was assumed that if we could
succeed in incorporating nickel in NPC in the form of
nanoclusters a few nanometers in size, they would
exhibit superparamagnetic properties similar to granular
alloys [7, 8]. Moreover, such structures could demon-
strate isotropic giant magnetoresistance as well [9, 10].
1063-7834/03/4509- $24.00 © 21750
2. EXPERIMENTAL TECHNIQUES

We studied NPC samples obtained from polycrys-
talline powders of molybdenum carbide (Mo2C). Two
methods were employed to prepare the NPC. In the first
of them, which was used to fabricate bulk samples,
Mo2C powders were pressed into pellets that were sub-
sequently annealed at a high temperature in a methane
environment. In the macropores of the samples, decom-
position of methane produced inclusions of pyrocar-
bon, which acted as a binder. The samples thus pre-
pared were exposed to an atmosphere of chlorine at
600°C. The molybdenum carbide reacted chemically
with chlorine to produce gaseous molybdenum chlo-
rides, which were removed from the samples both in the
course of the reaction and when placed in an argon flow.
In the end, we obtained bulk carbon samples with a
high total porosity, up to ~76%, and a nanoporosity of
up to ~48%. Their pyrocarbon fraction did not exceed
8 vol %. The bulk nanoporous carbon materials thus
prepared were circular plates measuring 20 mm in
diameter and about 1 mm in thickness. From them, we
cut samples of a desired shape and size to conduct spe-
cific studies.

The molybdenum carbide powders were used to pre-
pare not only bulk but also powdered NPC samples. In
this case, the nanoporosity was 71% and the
macroporosity was about 5%.

In order to load foreign chemical elements into the
nanopores, one has to overcome surface tension forces.
Nickel was introduced in two ways. In the first of them,
the pores in bulk samples were filled by a nickel nitrate
solution in ethanol at its boiling temperature. Next, the
samples were annealed at 250°C; during this procedure,
the nickel salt decomposed in the pores to produce
nickel oxide. After this, the samples were annealed in a
hydrogen flow at a temperature 500°C for a long time
003 MAIK “Nauka/Interperiodica”
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to reduce the oxide in the pores to metallic nickel. The
other method, intended for loading nickel into NPC
samples, made use of NiCl2, which is a salt with a not
too high sublimation temperature. Because this salt is
practically always hydrated (NiCl2 · 6H2O), it was pre-
liminarily annealed at a temperature of 230°C in vac-
uum under continuous pumping for 7–10 h. Next, the
ampoule with the salt and NPC samples was sealed and
the contents were calcined at a temperature about
1000°C for 20 h. NiCl2 was loaded into the NPC pores
using the two-zone method with a temperature gradi-
ent. The temperature of the NPC samples was 60–
100°C higher in order to avoid deposition of NiCl2 on
the surface and in macropores as much as possible. The
NiCl2 vapor pressure in the ampoule reached 1 atm. The
samples were subsequently rinsed in ethanol to remove
the precipitate from the surface and annealed in hydro-
gen to reduce the nickel salt to metal.

The magnetic properties of the carbon nanocompos-
ites with nickel clusters were studied with a SQUID
magnetometer, calibrated in magnetic-moment units, at
temperatures ranging from 5 to 300 K and in fields of
up to 55 kOe. The field was adjusted to within ~10 G,
and the temperatures, to within ±10–2 K. The conven-
tional hysteresis loop studies were complemented by
magnetic-moment measurements after sample cooling
in zero (ZFC) and low (FC) magnetic fields [11, 12].
These measurements provide the possibility of estimat-
ing the size and distribution pattern of magnetic clus-
ters in a nonmagnetic host [13].

3. RESULTS AND DISCUSSION

In bulk NPC samples, a certain amount of
macropores, i.e., voids between powder grains,
remained. We could not fill them completely with pyro-
carbon, because the reaction gases must be allowed to
evolve freely. Loading bulk nanoporous carbon materi-
als with magnetic metals could result in the formation,
in these macropores 1–3 µm in size (depending on the
actual powder grain dimensions), of sufficiently mas-
sive metallic crystallites with magnetic properties of
conventional bulk nickel. Their presence substantially
complicates investigation of the magnetic properties of
small nickel nanoclusters. For this reason, we also used
nanoporous carbon powders for Ni loading.

Each stage of the technological procedures
described above included accurate weighing of the
samples, which permitted us to estimate the final
weight of the nickel introduced into the pores and,
knowing the porosity and density of the starting sam-
ples, to quantify the relative volume of the NPC filled
by nickel.

Figure 1 presents temperature dependences of the
magnetic moment of a bulk NPC sample (Fig. 1a) with
its pores loaded by nickel (from a nickel nitrate solution
in ethanol) and remagnetization curves obtained at
three temperatures (Fig. 1b). The samples prepared by
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
the first method are seen to produce ZFC and FC curves
of a pattern typical for conventional ferromagnets, in
which the magnetic moment of the sample with nickel
cooled in a zero external magnetic field increases with
temperature, to remain practically constant under subse-
quent cooling. Moreover, the saturated magnetic
moment (Fig. 1b), determined with due account of the
sample weight, is close to the specific magnetic moment
of pure bulk nickel, ~55.37 G cm3/g (magnetization
~484.1 G). We thus see that, with the NPC with Ni nan-
oclusters prepared by the first method, a substantial part
of the nickel is contained in macropores, which accounts
for the typical ferromagnetic properties of the NPC.

Magnetic studies conducted on NPC–Ni powder
samples (Ni loading by the second method; Fig. 2) sug-
gest a sizable fraction of Ni is contained in the nanop-
ores of this material. The ZFC and FC curves of the
sample are typical of a superparamagnet–ferromagnet
mixture, with a fairly large fraction of the superpara-
magnet in the sample. This is indicated by the pattern
of the ZFC curve; indeed, this curve tends to a maxi-
mum in the ~300- to 350-K interval. By using the
Bean–Livingstone formula [14], relating the average
size of ferromagnetic inclusions in dia- or paramag-
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Fig. 1. Magnetic properties of an NPC–Ni sample (prepared
by loading NPC with a nickel nitrate solution in ethanol fol-
lowed by reduction to metallic nickel in a hydrogen flow).
(a) Temperature behavior of the magnetic moment of the
bulk NPC–Ni nanocomposite cooled in zero (ZFC) or weak
(50 Oe) (FC) fields. (b) Remagnetization curves for the bulk
NPC–Ni nanocomposite measured at temperatures of
(1) 50, (2) 150, and (3) 300 K.
3



 

1752

        

 FEDOSYUK 

 

et al

 

.

                                                                     
netic hosts to the anisotropy constant and critical tem-
perature

KAV = kTB,

where KA is the anisotropy constant of a magnetic clus-
ter, V is its average volume, kB is the Boltzmann con-
stant, and TB is the average blocking temperature (cor-
responding to the maximum in the ZFC curve), we can
estimate the average size of nickel nanoclusters in the
NPC host. Assuming nickel to reside in NPC in the
form of microcrystals with an fcc lattice and the anisot-
ropy constant KA ~ 5 × 105 erg/cm3, estimation of the
average nickel cluster size yields 2–3 nm. This figure is
close to the nanopore size in the NPC prepared from
Mo2C [15]. This supports the starting assumption that
magnetic metals loaded successfully into NPC nanop-
ores should transfer to the superparamagnetic state at
certain temperatures T < TC(Ni) [TC(Ni) is the Curie
temperature of bulk nickel] provided the nanopores are
small enough.

The magnetic measurements (Fig. 2) also show that
the samples prepared from NPC–Ni powders behave
like a mixture of superparamagnetic and ferromagnetic
states. The latter is an unavoidable consequence of the
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Fig. 2. Magnetic properties of an NPC–Ni powder sample
(prepared by loading NiCl2 into NPC by sublimation with
subsequent reduction to metallic Ni in hydrogen). (a) Tem-
perature dependence of the magnetic moment of the NPC–
Ni powder nanocomposite measured after cooling in zero
(ZFC) and weak (50 Oe) (FC) fields. (b) Remagnetization
curves of the NPC–Ni powder nanocomposite obtained at
temperatures of (1) 50, (2) 150, and (3) 300 K.
P

presence of macropores left for the reaction products to
evolve and, possibly, of the presence of Ni grains on the
surface of powder grains. A certain amount of mesopo-
res, which might form, for instance, from adjacent nan-
opores being joined by the mechanical stresses arising
in the chlorination of the starting carbides, should give
rise to an increase in the cluster volume, to enhance-
ment of the exchange interaction between atoms in Ni
clusters, and, accordingly, to displacement of the ferro-
magnet–superparamagnet transition point toward
higher temperatures. Another interesting feature in
Fig. 2a is the marked increase in the magnetic moment
in both ZFC and FC curves occurring at low tempera-
tures (about 15–5 K). This feature implies the existence
of nickel nanoclusters of extremely small size, down to
small groups of Ni atoms, in the NPC host. The specif-
ics of the technology used to prepare NPC with Ni sug-
gest that this may be due to the presence of very small
pores, less than 1 nm in size.

As seen from Fig. 2b, the remagnetization curves of
carbon nanocomposites with Ni also consist of an irre-
versible and a reversible branch. This observation, as
well as the fact that the magnetization does not reach
saturation even in fairly strong fields (~6000 Oe), sup-
ports the conclusion that Ni resides in both the super-
paramagnetic and the ferromagnetic state, in an approx-
imate proportion of 30 to 70%. Correlation of the
weight of the sample with its magnetic moment permits
refinement of the content of Ni in the nanopores to yield
about 17–20%. The magnetization of pure nickel of a
weight equal to that of the starting sample should be
~0.94 G, while we obtain 0.162 G only, which is in
agreement with the above figures.

4. CONCLUSIONS

Thus, we have presented the results of magnetic
studies of NPC loaded by nickel clusters and obtained
supportive evidence for the assumption that Ni inclu-
sions in nanopores should be superparamagnetic.
Incorporation of Ni into NPC materials prepared from
other carbides (for instance, SiC, TiC, B4C), which
have larger or smaller nanopores than those in the NPC
fabricated from Mo2C [15] and studied here, offers the
possibility of varying the value of TB within a broad
range, which may be of interest for applications involv-
ing these materials. We may thus conclude that Ni-
loaded NPCs are a new class of the so-called granular
alloys [16]. These nanocomposites may be expected to
exhibit giant magnetoresistance. Studies of the trans-
port properties of the nanocomposites are presently
under way, and the results obtained will be published in
a separate communication.
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Abstract—An experimental study of the temperature behavior of longitudinal sound velocity, internal friction,
electrical resistivity, and thermopower of single-crystal La0.75Ba0.25MnO3 is reported. A structural transition
accompanied by a large jump (18%) in the sound velocity was found to occur at TS ≈ 170 K. Within the interval
156–350 K, the temperature dependences of the sound velocity and internal friction reveal a temperature hys-
teresis. An internal-friction peak due to relaxation processes was detected. The metallic and semiconducting
regions are separated by a transition domain about 80 K wide lying below the Curie temperature TC = 300 K.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The strong coupling between the magnetic, elec-
tronic, and lattice subsystems in lanthanum manganites
La1 – xDxMnO3 (D = Ca, Sr, Ba) accounts for the rich
diversity of their physical properties. These compounds
reveal structural transformations, magnetic transitions,
concentration- and temperature-driven metal–insulator
transitions, etc. Phase diagrams of rare-earth mangan-
ites can be found in [1]. The La1 – xCaxMnO3 crystals
have orthorhombic structure for T < 700 K, with a tran-
sition to a rhombohedral phase occurring at higher tem-
peratures. The phase diagram of La1 – xSrxMnO3 is more
complex; in particular, the transition between the
orthorhombic and rhombohedral phases can take place
at close-to-room temperatures when either the concen-
tration or temperature are varied, while for 0.2 < x <
0.7, the lattice remains rhombohedral for all values of T.

To the best of our knowledge, the literature contains
information on the properties of the La1 – xBaxMnO3
system for a few compositions only. For instance, the
lattice parameters for x ≤ 0.24 are presented in [2] only
for room temperature. The temperature behavior of the
lattice parameters is known only for single-crystal
La0.80Ba0.20MnO3, which undergoes a transition
between the orthorhombic (Pnma) and rhombohedral

( ) phases at TS ≈ 190 K [3]. Kinetic effects have
been studied primarily on polycrystalline samples and
thin films with x ≈ 1/3 (see, e.g., [4, 5]) and on the
above-mentioned single-crystal La0.80Ba0.20MnO3 [6].

No studies of the elastic properties of the lantha-
num–barium manganites have apparently been con-
ducted at all, although such studies would be capable of
producing a wealth of information. For instance, mea-
surements of the sound velocity and internal friction in

R3c
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La1 – xSrxMnO3 single crystals provided detailed data on
the structural transitions occurring both between the

Pnma and  phases and between the various modi-
fications (O', O*) of the orthorhombic phase and the
observation of a giant temperature hysteresis of the
sound velocity suggested the coexistence of orthor-
hombic and rhombohedral phases in La1 – xSrxMnO3
over a broad temperature interval [7].

The present communication reports on a continua-
tion of the investigation of the La1 – xBaxMnO3 system
started in our earlier publications [3, 6]. Measurements
of the temperature behavior of the longitudinal sound
velocity V, internal friction Q–1, electrical resistivity ρ,
and the Seebeck coefficient S were conducted on a
La0.75Ba0.25MnO3 single crystal grown for the first time.

2. SAMPLES AND MEASUREMENT TECHNIQUE

Polycrystalline (La0.75Ba0.25)0.95MnO3 was prepared
by sintering a mixture of BaCO3, La2O3, and Mn3O4 at
1100°C for 24 h. After grinding and repeated pressing,
the bar obtained was calcined for 24 h at 1350°C. The
density of the synthesized polycrystal was about 80%
of the theoretical value. The single crystal was grown
from the polycrystalline stock by the floating-zone
technique under radiation heating at a rate of 5 mm/h in
an Ar environment. The final product represented sin-
gle-crystal cylindrical rods, 4 mm in diameter and 30–
40 mm long, without inclusions of other phases. The
growth axis of the crystals was close to [110]. Study
using a Super-Probe 733 SEM-microprobe analyzer
(JEOL) showed that the composition in the central part
of the ingot was close to La0.75Ba0.25MnO3, while at the
ends of the ingot the composition could differ by 1–2%.

R3c
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The rods used to measure the sound velocity and
internal friction were 20 mm long. The sound velocity
and the internal friction were studied in the range
5−420 K by the composite oscillator method at fre-
quencies on the order of 100 kHz. This method is based
on measuring the resonance frequency and Q factor of
a mechanical system consisting of the sample to be
studied and a piezoelectric transducer attached to it [8].
The piezoelectric sensor was an X-cut quartz oscillator
exciting longitudinal vibrations. The elastic properties
were investigated in a helium environment at an aver-
age temperature variation rate of 20 K/h.

The samples intended for use in studying the electri-
cal resistivity and thermopower were cut from the cen-
tral part of the starting single crystal and were shaped
in the form of plates with 7 × 2.6 × 1.4 mm in size. The
electrical resistivity was measured by the usual four-
probe technique. The thermopower was studied at a
temperature difference ≈2 K, which was produced by a
heater placed near one end of the sample. A magnetic
field of up to 15 kOe was applied perpendicular to the
plate.

3. RESULTS OF MEASUREMENTS

Figure 1 presents plots of the temperature behavior
of sound velocity, V(T), obtained under cooling and
heating. For T > 300 K, the sound velocity is practically
independent of T. At T = 297 K, a weak minimum
appears. As the temperature decreases, the sound veloc-
ity grows up to 250 K, after which it begins to fall off.
Upon reaching T = 165 K, V(T) begins a steep descent
down to T = 165 K, a further decrease in temperature
bringing about an increase in V. The values of V(T)
measured in cooling and heating runs coincide within
the interval from the liquid-helium temperature to
156 K. In a heating run, the increase in the sound veloc-
ity starts at 173 K and ends at 180 K. In view of the

100 200 300 400
T, K

0

3500

4000

4500

V
, m

/s

Fig. 1. Plots of the temperature behavior of longitudinal
sound velocity in an La0.75Ba0.25MnO3 single crystal mea-
sured under heating and cooling.
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results obtained for La0.80Ba0.20MnO3 [3] and
La0.80Sr0.20MnO3 [7], it may be conjectured that a struc-
tural transition from the low-temperature orthorhombic

Pnma to the high-temperature rhombohedral 
structure takes place in the interval 156–180 K. A tem-
perature hysteresis is observed to persist from 156 to
350 K.

Besides the main resonance, an additional reso-
nance was observed at a lower frequency for T < TC.
The V(T) curves derived from the characteristics of the
main and additional signals are similar. One more reso-
nance was observed in the region of the structural tran-
sition. The additional signal in the ferromagnetic region
is apparently due to magnetoelastic interaction. The
third resonance at the structural transition is evidently
initiated by the coexistence of the orthorhombic and
rhombohedral phases.

Figure 2 shows plots of the temperature dependence
of internal friction Q–1 measured on a sample about
20 mm long. One clearly sees that Q–1 tends to decrease
with decreasing temperature. The curve obtained under
cooling exhibits internal-friction peaks at 412, 302,
162, and 40 K. The positions of these peaks do not
depend on whether the measurements were conducted
in heating or cooling runs, except for the peak associ-
ated with the structural transition (positioned at 162 K
under cooling and at 172 K under heating). The curves
obtained in heating and cooling runs coincide for T <
156 K and T > 350 K.

The temperature dependences of the electrical resis-
tivity ρ(T) obtained under cooling at H = 0 and 10 kOe
and of the magnetoresistance ∆ρ/ρ = [ρ(H) – ρ(0)]/ρ(0)
are plotted in Fig. 3. Within the temperature interval
80–300 K, the derivative dρ/dT > 0. For T > 250 K, the
resistivity grows steeply with temperature to reach a
maximum at T = 320 K, after which it takes on a semi-
conducting pattern (dρ/dT < 0). The derivative dρ/dT
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Fig. 2. Plots of the temperature behavior of internal friction
Q–1 in an La0.75Ba0.25MnO3 single crystal measured under
heating and cooling.
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passes through a maximum at T = 294 K. A magnetic
field reduces the resistivity and shifts its maximum
toward higher temperatures. The magnetoresistance
attains a maximum value of 40% at T = 297 K. The
structural transition and the associated hysteresis
become manifest only in the temperature dependence
of dρ/dT (see inset to Fig. 3).

The pattern of the field dependences of the magne-
toresistance of La0.75Ba0.25MnO3 is characteristic of sin-
gle crystals, namely, ∆ρ/ρ ~ H for T ! TC and ∆ρ/ρ ~
H2 for T @ TC.

Figure 4 displays temperature dependences of the
thermopower measured at H = 0 and 10 kOe. At low
temperatures, S(0) and S(H = 10 kOe) are positive,
reach a maximum at T = 160 K, and reverse sign at T =
234 K. The difference ∆S = S(0) – S(H = 10 kOe) passes
through an extremum at T = 299 K.

4. DISCUSSION OF RESULTS 

It is well known that the transition from the para-
magnetic to ferromagnetic state is accompanied by the
appearance of features in the temperature dependences
V(T), Q–1(T), dρ/dT, ∆ρ/ρ(T), and ∆S(T). The data pre-
sented above suggest that the Curie temperature TC of
our La0.75Ba0.25MnO3 sample is approximately 300 K.

Consider the features associated with the Pnma–

 structural transformation. Note first of all the
large, about 200 K, extent of the temperature hysteresis.
Such a giant temperature hysteresis was observed by us
earlier in single-crystal La0.80Sr0.20MnO3 [7]. The jump
in the sound velocity is 18%, whereas, in
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Fig. 3. Temperature dependences of the electrical resistivity
ρ(T) measured at H = 0 and 10 kOe and of magnetoresis-
tance ∆ρ/ρ of an La0.75Ba0.25MnO3 single crystal. Inset
shows the temperature dependences of dρ(0)/dT measured
in heating and cooling runs.
P

La0.80Sr0.20MnO3, the jump occurring at a similar struc-
tural transition does not exceed 5%. This indicates that
the crystal lattice undergoes a more profound rear-

rangement in the Pnma–  transformation in the La–
Ba manganites than that in the La1 – xSrxMnO3 crystals,
which may be due to the Ba2+ ion having a larger radius.

The peak in the Q–1(T) curve at 412 K is apparently
due to relaxation processes. Similar maxima were
observed by us earlier in La0.75Sr0.25MnO3 [7] and
La0.60Eu0.07Sr0.33MnO3 [9].

The origin of the internal friction peak at 40 K
remains unclear.

Let us turn now to a discussion of the temperature
behavior of the resistivity and thermopower. It is known
that at T = 0 a material possesses a finite conductivity,
i.e., is a metal, if the Fermi level EF lies in the region of
delocalized states [10]. Variation in the concentration of
impurities or other defects may result in EF coinciding
with the mobility edge EC, which separates the regions
of localized and delocalized states, and this drives the
metal–insulator transition. Magnetic disorder plays an
important part in manganites, and its significance
grows as one approaches the Curie temperature. As a
consequence, there may occur a transition from metal-
lic conduction, taking place for T < TC, to conduction of
the semiconducting type in the paramagnetic region.
Generally speaking, the mobility edge is not sharp,
since its broadening is due, first, to the inelastic carrier
interaction with phonons and, second, to electron–elec-
tron interaction [11]. In view of the fact that both the
interaction with phonons and the broadening of the
electron distribution function grow with increasing T, it
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Fig. 4. Temperature behavior of the Seebeck coefficient S of
a La0.75Ba0.25MnO3 single crystal measured at H = 0 and
10 kOe and of ∆S = S(0) – S(H = 10 kOe).
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may be concluded that the temperature-driven metal–
insulator transition cannot be sharp and that there
should exist a more or less wide transition region (the
metal–insulator transition region) from a purely metal-
lic to semiconducting type of conduction.

In the metallic region, the electrical resistivity of
manganites scales quadratically with temperature;
ρ(T) = ρ0 + AT2. In the transition region, as T increases,
the contribution of localized carriers to the kinetic coef-
ficients grows gradually, while on the insulator side of
the transition, conduction occurs by carrier activation
into the region of delocalized states (to the mobility
edge) and by hopping between localized states. The
conductivity can be written as σ = σdeloc + σhop, where
σdeloc is the contribution due to delocalized states and
σhop is the hopping conductivity. For the thermopower,

one can write S =  + . Because the

Seebeck coefficient of delocalized carriers Sdeloc can be
substantially smaller than Shop (in metals, S is of the
order of 1 µV/K, whereas in semiconductors, the ther-
mopower is of the order of 102–103 µV/K), the contri-
bution of localized carriers to the thermopower can be
markedly larger than that to the conductivity.

Consider now the experimental ρ(T) relation. For
T < 320 K, the derivative dρ/dT > 0, which is inter-
preted by many researchers as indicating metallic con-
duction. As pointed out in review [12], however, in the
free-electron model, the mean free path becomes
equal to the lattice constant and the resistivity reaches
10–3 Ω cm for the parameters typical of manganites.
This resistivity value is close to the resistivity of sin-
gle-crystal La0.83Sr0.17MnO3 at T = 4 K [13] (in the
La1 – xSrxMnO3 system with x = 0.17, the concentration-
driven metal–insulator transition takes place). We do
not attach particular significance to estimates of this
kind, but they do show that the immediate neighbor-
hood of TC, where ρ is on the order of 10 mΩ cm and
higher in our La0.75Ba0.25MnO3 single crystal, does not
belong to the region of existence of the metallic phase.
To determine the temperature region within which the
manganite under study is in the metallic state, we plotted
the dependence of ρ on T2 (see inset to Fig. 5). We
readily see that for T < 180 K the electrical resistivity fol-
lows the T2 law with the parameters ρ0 = 3.4 × 10–4 Ω cm
and A = 1.7 × 10–8 Ω cm/K2. The magnitude of A is
close to the value obtained for single-crystal
La0.75Sr0.25MnO3 [14]. The value of ρ0 found for
La0.75Ba0.25MnO3 is about fourfold the resistivity of
La0.75Sr0.25MnO3 at T = 4 K, which should possibly be
attributed to the larger radius of the barium ion and the
corresponding strong nonmagnetic disorder in
La1 − xBaxMnO3 as compared to La1 – xSrxMnO3 for the
same contents of the divalent ions [15].

For T > 180 K, the temperature dependence of the
electrical resistivity becomes stronger, with no features

Sdeloc

σdeloc

σ
------------ Shop

σhop

σ
---------
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seemingly present up to the neighborhood of TC. Con-
sider, however, the geometric properties of the ρ(T)
curve. We set τ = T/TC and  = ρ(T)/ρ(TC) and calculate
the curvature k from the relation k = /[1 + ( )2]3/2,
where the prime denotes differentiation with respect to
τ; the result obtained is shown graphically in Fig. 5. For
T ! TC, the curvature is small and the feature at T ≈
160 K can probably be assigned to the Pnma–
structural transformation. A noticeable growth in k
starts near 200 K, and at T ≈ 260 K the curvature
reaches a clearly pronounced maximum, to vanish at
the inflection point (the maximum in dρ/dT). At 320 K,
the curvature passes through a deep minimum corre-
sponding to the maximum in ρ. Thus, the origin of the
features in the k(T) curve is clear, except for the max-
imum in the curvature occurring at 260 K. In view of the
above reasoning and of the fact that ρ (T = 260 K) = 2.2 ×
10–3 Ω cm, we can assume this temperature to be the
upper bound of the metal–insulator transition region
lying between the regions of existence of the metallic
and semiconducting states. For the lower boundary of
the transition region, one can take T = 180 K.

In the paramagnetic region, for T > 320 K, the deriv-
ative dρ/dT is negative, but the actual pattern of the
temperature dependence of the resistivity, i.e., whether
it scales as exp(Eactiv /T) or otherwise, cannot be
extracted from our data.

While the temperature dependence S(T) (Fig. 4) for
the La0.75Ba0.25MnO3 compound studied by us follows
the same pattern as that for La0.75Sr0.25MnO3 [16], the
maximum value of S (1.6 µV/K) is about three times
smaller. Below 160 K, the thermopower is small in
magnitude, positive, and grows with increasing T,
which suggests that the hole contribution to metallic
conductivity is predominant. The decrease in S for T >
160 K indicates the presence of a negative contribution
due to carriers with energies E > EF. Because the tem-

ρ̃
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perature of the maximum in thermopower (160 K) is
only 20 K lower than that at which the transition from
the metal to semiconductor occurs (180 K), one may
conclude that the negative contribution to S originates
from localized carriers. For T > 234 K, the contribution
of such carriers to thermopower dominates, which,
however, does not mean that σhop @ σdeloc. The absolute
value of S does not exceed 12 µV/K up to 400 K, which
indicates that competition persists between the contri-
butions due to the delocalized (Sdeloc > 0) and localized
(Shop < 0) carriers. Unfortunately, separation of these
contributions by using the available experimental data
does not appear possible.

4. CONCLUSIONS
Thus, we have carried out the first studies of single-

crystal La0.75Ba0.25MnO3. A structural transition
between the low-temperature orthorhombic and high-
temperature rhombohedral phases was found to occur
at TS ≈ 170 K. The jump in the sound velocity at this
transition is 18%. The temperature dependences of the
sound velocity and internal friction exhibit a grant tem-
perature hysteresis (about 200 K).

At low temperatures, the conductivity is metallic,
while in the vicinity of the Curie temperature TC = 300 K
and in the paramagnetic region, the crystal resides in
the insulator state. The metal–insulator transition in
temperature is not sharp, as the transition region lies
below the Curie temperature in the interval 180–260 K.

It was shown that the temperature dependence of
thermopower for T > 160 K is determined by the com-
petition between the contributions due to the delocal-
ized and localized carriers.
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Abstract—The giant piezoelectric effect and giant piezoelectric relaxation are revealed for the first time in
structures consisting of ferroelectric and polymer layers connected in series. Under these effects, the compos-
ites exhibit giant static permittivities. The physical mechanisms responsible for the unusual behavior of the
piezoelectric coefficients and permittivities are considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For some technical purposes (design and fabrication
of actuators, sensors, etc.), it is very important to use
materials with extremely large piezoelectric coeffi-
cients. To date, the largest piezoelectric coefficients
(d33 ≥ 2500 pC N–1) have been obtained for single crys-
tals of the ferroelectric solid solutions Pb(Zn1/3Nb2/3)O3–
PbTiO3 (PZN–PT) and Pb(Mg1/3Nb2/3)O3–PbTiO3
(PMN–PT) [1–3]. In this paper, we will consider a new
mechanism responsible for a giant increase in the
piezoelectric coefficients and giant piezoelectric relax-
ation in composites consisting of layers of components
connected in series. The components of the composite
possess significantly different permittivities ε, piezo-
electric coefficients d, elastic compliances, and electri-
cal conductivities γ and exhibit a giant static permittiv-
ity. The results obtained are of interest for the design
and testing of piezoelectric devices intended for low-
frequency applications (sensors, actuators).

2. THE MODEL AND BASIC FORMULAS

The theoretical treatment is based on the model pro-
posed in our recent work [4]. Within this model, it is
possible to obtain exact solutions for piezoelectric
coefficients and permittivities of a multilayer (or
bilayer) composite with a connectivity of the 2–2 type
[5], which consists of two components with numbers
n = 1, 2 and volume concentrations θ1 and θ2. It is
assumed that the composite layers have an infinite
length along the OX1 and OX2 directions of a rectangu-
lar coordinate system (X1X2X3). The vectors of the nor-
mal to the interface between the layers are parallel to
the OX3 axis. In the composite, either the first (ferro-
electric) component or both components are polarized
along the OX3 axis. Moreover, both components indi-
vidually and the composite as a whole are transversely
isotropic (∞mm symmetry) in the X1OX2 plane perpen-
1063-7834/03/4509- $24.00 © 21759
dicular to the polar axis. The charges induced at the
interfaces between the layers by remanent polarization
of the ferroelectric are considered to be completely
screened [6].

If the external uniform electric field  with a circu-
lar frequency ω (quantities averaged over the composite
layers are denoted by asterisks) is applied along the polar
axis OX3 in the absence of other components of the exter-
nal electric fields and mechanical stresses σj (specifi-

cally,  =  =  = 0), the internal electric fields

 (  =  + ) and internal mechanical

stresses  =  (  =  +  = 0) are
induced in both layers. The piezoelectric equations

relating the components of the electric induction 

and strains  (i = 1, 2, 3) inside each layer with an

internal electric field  and internal mechanical

stress ,

(1)

are treated jointly with the boundary conditions

(2)

Here,  are the elastic compliances (for E = 0) and

 = ε(n) – iγn/ω (γn are the electrical conductivities)
are the complex permittivities of the mechanically free
(σ = 0) sample of the nth component of the composite.
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Elastic compliances  (10–12 Pa–1), piezoelectric coefficients dki (pC N–1), and permittivities /ε0 for the PKR-73 ferro-
electric ceramics [8], PMN–PT single crystal [3], and polyethylene [9] at 25°C

Constants d31 d33 /ε0

PKR-73 17.9 –6.8 –9.6 23.5 –380 860 6000

PMN–PT 69.0 –11.1 –55.7 119.6 –1330 2820 8200

Polyethylene 1370 –630 –630 1370 0 0 0.5

sij
F ε33

σ

s11
E s12

E s13
E s33

E ε33
σ

The piezoelectric coefficients  and  and the

permittivity , which are obtained by averaging the
components D(n) and ξ(n) in relationships (1) according
to the expressions

(3)

can be represented by the general formulas through the

permittivity of the composite  =  +

) in the absence of the transverse piezoelectric

effect (  = 0) and through the piezoelectric constants

of the layers  =  and  =  as fol-
lows:
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(4)

In the further analysis, we will be interested prima-
rily in the static piezoelectric coefficients  and 

and the static permittivity  (at ω  0) [4]:
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where A =  is the strictly dielectric

term treated in the classical theory of the Maxwell–
Wagner relaxation for piezoelectric inactive media [7].1 

1 Since the general formulas are very cumbersome, they are given
in shortened form. In expressions (4), the terms introducing a
very small (less than 0.1%) contribution to the piezoelectric coef-
ficients are omitted. Formulas (5) are exact.

θ1ε
1( )γ2

2 θ2ε
2( )γ1

2
+

θ1γ2 θ2γ1+( )2
--------------------------------------------
H

3. RESULTS AND DISCUSSION
As an example, we consider a composite consisting

of either the PKR-73 ferropiezoelectric ceramics [8]
(layer with n = 1) or the 0.67Pb(Mg1/3Nb2/3)O3–
0.33PbTiO3 (PMN–PT [3]) single crystal, which polar-
ized in the [001] direction coinciding with the OX3 axis
in the chosen coordinate system, and polyethylene [9]
(layer with n = 2). The physical constants of the com-
ponents are given in the table. The results of the com-
putations performed are presented in Figs. 1 and 2.
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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Under the conditions γ1/γ2 ! 1, ε(1)/ε(2) @ 1, and
θ1/θ2  0, the composites exhibit a giant static per-
mittivity:   ε1/θ1  ∞ [4] (Fig. 1). This is
attended by giant dielectric relaxation [4, 10, 11] due

to a very high strength of the electric field (  ≈
/θ1  ∞) inside the very thin layer with a high

permittivity ε(1) and a low electrical conductivity γ1.
The maximum increase in the static permittivity is
observed under the condition γ1  0. In this case, the
permittivity obeys the law  ≅  const/(θ1 – θ1c), which
is similar to the Curie–Weiss law. Here, θ1c is the critical
concentration of a purely dielectric component (n = 1).
For γ1  0, we have θ1c  0, whereas the permittiv-
ity   ∞ due to an infinite increase in the absolute
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Fig. 1. Concentration dependences of the static piezoelectric
coefficients (1)  and (2) –  pC N–1 and (3) the static

permittivity /ε0 for composites consisting of layers of

(a) PKR-73 piezoelectric ceramics [8] and polyethylene [9]
and (b) the PMN–PT single crystal [3] and polyethylene [9].
Conditions: γ1 = 10–13 Ω–1 m–1 and γ2 = 10–10 Ω–1 m–1.
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values of the complex permittivities of the layers  at
ω  0. The dominant contribution to the permittivity

 is made by the classical dielectric term A in expres-

sion (5). The behavior of the permittivity   ∞ is
actually similar to that observed in the case when the
percolation threshold is approached upon the dielec-
tric–metal phase transition [12, 13].

The physical mechanism responsible for a giant
increase in the piezoelectric coefficients (Fig. 1) differs
from that described above and has never been consid-
ered in the literature. It follows from expressions (4)
and (5) that the main contribution to the giant piezo-
electric coefficients is made by the terms proportional
to θ1θ2, i.e., the giant transverse piezoelectric response.
For this reason, Damjanovic et al. [6] did not reveal
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Fig. 2. Giant piezoelectric relaxation in bilayer compos-
ites consisting of layers of (a) PKR-73 piezoelectric
ceramics [8] and polyethylene [9] and (b) the PMN–PT
single crystal [3] and polyethylene [9]: (1) , (2) – ,

(3) , and (4) – . Conditions: γ1 = 10–13 Ω–1 m–1

and γ2 = 10–10 Ω–1 m–1.
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giant piezoelectric coefficients in the framework of a
simplified model in which the transverse piezoelectric
response can be ignored. In order to obtain giant piezo-
electric coefficients, a ferroelectric with large piezo-
electric coefficients should be used as a component
with a low electrical conductivity γ, whereas a polymer

material with high elastic compliances  should be
used as a component with a higher electrical conductiv-
ity γ. The giant transverse piezoelectric response is

caused by high internal mechanical stresses  = 

[14] in addition to the electric field   ∞. High
internal mechanical stresses are induced by the external
electric field  and reach especially high values for a
large difference between the electrical conductivities
(γ1/γ2 ! 1) of the composite components and a small
thickness θ1  0 of the piezoelectric active layer. The
Curie–Weiss law is invalid for the static piezoelectric
coefficients, and the piezoelectric coefficients  and

 at γ1 = 0 and θ1 = 0 are very large but not infinite.
It can also be seen from Fig. 1 that the effective piezo-
electric coefficients of the composites under investiga-
tion are one order of magnitude greater than the maxi-
mum piezoelectric coefficients of ferropiezoelectric
ceramics [8] and single-crystal PZN–PT and PMN–PT
[1–3].

The giant dielectric relaxation based on the Max-
well–Wagner mechanism was described in detail in [4,
10, 11]. Consequently, we do not discuss this type of
relaxation. The giant piezoelectric relaxation is illus-
trated in Fig. 2. The frequency dependences of the
piezoelectric coefficients  and  exhibit a Debye

behavior. The very large values ( – ) and ( –

) of the piezoelectric relaxation are characteristic
of a combination of components, one of which has
large piezoelectric coefficients and the other possesses
high elastic compliances. For γ1/γ2 ! 1, the relaxation
frequency ωr ≈ (R2C1)–1 ≈ θ1γ2/ε1 is determined prima-
rily by both the capacity C1 of the weakly conducting
(dielectric) component and the electrical resistance R2
of the strongly conducting (semiconductor) compo-
nent. The inclusion of the elastic and piezoelectric
properties of the components leads to a slight increase

sij
E

σ1
1( ) σ2

1( )

E3
1( )

E3
*

d330
*

d310
*

d33
* d31

*

d330
* d33∞* d310

*

d31∞*
P

in the relaxation frequency ωr [4]. As the conductivity
γ2 increases significantly, the relaxation frequency
increases by many orders of magnitude [11]. However,
in all cases, the static piezoelectric coefficients  and

 at ω ! ωr considerably exceed their dynamic val-
ues at ω @ ωr . This circumstance should be taken into
account when designing piezoelectric elements and
devices intended for low-frequency (static) applica-
tions.
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Abstract—The effect of the selective influence of a dc magnetic field on the characteristics of nominally pure
triglycine sulfate crystals was detected for the first time. A short (minutes) exposure to a weak magnetic field
B0 = 0.08 ± 0.01 T caused long-term (hundreds of hours) changes in the spontaneous polarization, coercive
field, Curie temperature, and permittivity of the crystal at the Curie point. The effect is selective in nature pre-
sumably because of the participation of hydrogen bond protons in the spin-dependent processes of the transfor-
mation of defect complexes in real crystals. © 2003 MAIK “Nauka/Interperiodica”.
 1. INTRODUCTION

Recently, long-term changes in the ferroelectric and
dielectric characteristics of nominally pure triglycine
sulfate (TGS) crystals caused by short-term exposures
to weak pulsed magnetic fields (PMFs) have been
detected [1]. In terms of classical thermodynamics, this
effect is paradoxical, because the energy of PMFs with
an amplitude B ~ 0.02 T is negligible in comparison
with the thermal energy (µBB ~ 10–4kT at T = 300 K,
where µB is the Bohr magneton) and cannot cause the
effect in question. Furthermore, the PMF-induced
effects detected in TGS crystals were observed in fields
lower than the typical threshold field (~0.1 T) for mag-
netoplastic effects in nonmagnetic dielectric crystals
caused by changes in the spin states of structural defects
[2, 3]. In particular, the magnetoplastic effect in ferro-
electric NaNO2 crystals manifests itself at B = 0.2 T [4],
the influence of a magnetic field on the starting chaos-
inducing fields was observed in TGS crystals at B =
0.3 T [5], and changes in the Curie temperature of the
ferroelectric transitions in BaTiO3 crystals took place in
magnetic fields with B > 0.5 T [6]. To our knowledge,
there are no papers the influence of magnetic fields with
B < 0.2 T on the characteristics of ferroelectric crystals
has been reported.

The PMF-induced effects detected in TGS crystals
[1] lent impetus to studies of ferroelectrics in such
weak magnetic fields. At the same time, the question of
whether magnetic fields must necessary be pulsed to
initiate such effects remains unanswered. According to
the estimation made in [7], the electric fields induced
by the PMFs used cannot be responsible for the effects
observed.
1063-7834/03/4509- $24.00 © 21763
The aim of this work is to study the influence of
weak dc magnetic fields on the ferroelectric and dielec-
tric characteristics of nominally pure TGS crystals.

2. EXPERIMENTAL

A TGS single crystal was grown by temperature-
controlled cooling of a supersaturated aqueous solu-
tion. Samples were cut out as rectangular plane-parallel
plates 7 × 7 × 0.5 mm in size. The polar Y axis was nor-
mal to the large faces, onto which silver electrodes were
deposited through thermal evaporation in vacuum.
Then, the samples were annealed in air at T = 350 K for
10 h.

A crystal sample was exposed to a dc magnetic field
in the gap between magnetized ferrite plates. The mag-
netic induction was dictated by the gap width and var-
ied within the range 0.02–0.2 T. The magnetic field was
measured using a magnetometer with a Hall probe with
an error δB ≤ 5 × 10–3 T. Within the accuracy of mea-
surements, the magnetic field was uniform over the
sample area. The samples were subjected to a magnetic
field in the ferro- and paraelectric phases at T = 293 and
328 K, respectively, for time t = 1–40 min. The polar Y
axis was normal to or along the applied magnetic field.
Before the magnetic processing, some of the samples
were transferred to a quasi-single-domain state at T =
293 K by a ten-minute exposure to a dc electric field ten
times the coercive field and directed along the ferro-
electric Y axis.

To determine the spontaneous polarization Ps and
the coercive field Ek, ferroelectric hysteresis loops were
measured at T = 310 K using the conventional Sawyer–
Tower technique at a frequency f = 50 Hz. The temper-
ature dependence of the permittivity ε'(T) of the sam-
ples was measured in a special thermostat using a Tesla
003 MAIK “Nauka/Interperiodica”
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BM 484 bridge at a frequency ω = 104 Hz, with the
amplitude of the sinusoidal test signal being 0.5 V. The
sample temperature was measured using a platinum
resistance thermometer with an error δT ≤ 2.5 × 10–3 K.
The rate of temperature variation was controlled upon
heating and was β = 1.2 K/h near the ferroelectric phase
transition temperature TC.

After the measurements of the initial values of ε'(T),
the sample was taken out of the thermostat and placed
into the gap between the ferrite plates, where it was
exposed to the magnetic field at T = 293 K. After the
magnetic processing, the sample was again connected
to the measuring circuit in the thermostat, whose tem-
perature was maintained 1.5 K lower than the initial
value of TC.

Figure 1 shows typical ferroelectric hysteresis loops
of the TGS crystal measured before and after exposure
to a dc magnetic field in the ferroelectric phase. As in
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Fig. 1. Ferroelectric Ps(E) hysteresis loops of the TGS crystal
(1) before and (2) after 30-min exposure of a sample to a dc
magnetic field B0 = 0.08 T at T = 293 K. The measurements
were carried out at T = 310 K at a frequency f = 50 Hz.
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Fig. 2. Temperature dependences of the TGS crystal permit-
tivity (1) before and (2–4) after 30-min exposure of samples
to a magnetic field (2) B = 0.06, (3) 0.08, and (4) 0.1 T at
T = 293 K. The inset shows the corresponding temperature
dependences of the inverse permittivities 1/ε = c(T – TC).
P

[1], the initial loop is shifted along the electric field (E)
axis. We note that Fig. 1 shows Ps(E) hysteresis loops
with an extremely high value of the spontaneous polar-
ization Ps and an extremely low value of the coercive
field Ek attained after the above-mentioned long-term
heating of samples. This heating seems to decrease the
defect concentration in the samples. The values of Ps

and Ek of TGS crystals can vary within ±80% depend-
ing on their actual structure [8], and the coercive field
sharply decreases at T > 310 K [9]. Therefore, the mea-
sured values of Ps and Ek do not contradict the relevant
data [8, 9] and demonstrate the high quality of the crys-
tal under study.

After the exposure of a sample to the dc magnetic
field, the ferroelectric hysteresis loop widened; i.e.,
the coercive field Ek increased. The loop asymmetry
disappeared, as was the case after the exposure to
PMFs [1]. The initial loop profile was totally restored
in ten days after the magnetic-field exposure; the sam-
ples were stored at room temperature in an exsiccator
with a silica gel.

Figure 2 shows the temperature dependence of the
permittivity ε'(T) near the ferroelectric phase transition
point for TGS samples exposed at room temperature to
various dc magnetic fields in the range from 0.02 to
0.2 T over the same time t = 30 min. The magnetic pro-
cessing causes a long-term (tens of hours at T = 293 K)
decrease in the ferroelectric transition temperature TC
and a manyfold increase in the permittivity in the vicin-
ity of the Curie point. The temperature dependences of
the inverse permittivity shown in the inset in Fig. 2 fol-
low the Curie–Weiss law 1/ε = C(T – TC), and the mag-
nitude of the slope of the descending branch of the
curve is two times that of the ascending branch with an
accuracy of 20%. This relation is typical of second-order
phase transitions, to which the ferroelectric transition in
TGS belongs. The ratio of the corresponding slopes
before and after the exposure to a magnetic-field is 

|k | =  = 2.5 ± 0.5. 

This result agrees well with the well-known theo-
retical value |k | = 2.4, which was obtained with allow-
ance for the fact that the permittivity measured at high
(104 Hz) frequencies is adiabatic [9]. The Curie–Weiss
constants are C = 2408 and 2587 K before and after
magnetic processing (curves 1, 3), respectively.

The distinctive feature of the Curie point shift ∆TC
and of the increase in the TGS crystal permittivity due
to magnetic processing is the fact that the dependence
of this effect on the magnetic field strength has a pro-
nounced peak. In other words, the effect is selective
with respect to the magnetic-field value. The maximum
shift ∆TC = 0.67 K of the Curie point is observed for a
magnetic field B0 = 0.08 ± 0.01 T. The TC shift is
accompanied by an increase in the permittivity ε'(TC) at
the Curie point; this increase also selectively depends

d
dT
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ε
--- 

 
T TC<
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d
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------ 1

ε
--- 
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on the magnetic field strength. The dependences of the
change in the Curie temperature ∆TC and of the relative

change  on the magnetic field have a narrow

peak at B0 = 0.08 T, as seen from Fig. 3. Here,  and

 are the permittivities of the samples at the Curie
point before and after the magnetic processing, respec-
tively.

Figure 4 displays the dependences of ∆TC and

 on the duration of sample exposure to a mag-
netic field B0 = 0.08 T. These dependences exhibit three
characteristic regions: an initial portion, in which the
magnetic field has no influence; a portion of a quasi-lin-
ear variation of the parameters; and a portion of flatten-
ing. It is noteworthy that the most efficient exposure
effect is achieved at the processing duration t ~ 30 min.

An analysis of the effect of the storage time of
exposed samples on the temperature dependences of
the permittivity ε'(T) showed that the parameters TC and

 relax to their initial values. The corresponding

temporal dependences of  and of ∆TC for the
samples exposed to the magnetic field B0 = 0.08 T for
t = 30 min and stored at T = 293 K are shown in Fig. 5.

Magnetic processing in the most efficient regime
(B0 = 0.08 T, t = 30 min) of TGS crystals in the
paraelectric phase (at T = 328 K) and in the quasi-sin-
gle-domain state (at T = 293 K) caused no appreciable
changes in their characteristics. In both cases, only an

εm' /εm0'

εm0'

εm'

εm' /εm0'

εmax'

εm' /εm0'

0.04 0.12 0.200
1

2

4

6

8
ε' m

/ε
' m

0

1
2

B, T

0.2

0

0.4

0.6

0.8

∆T
C
, K

Fig. 3. Dependences (1) of the Curie temperature change
∆TC and (2) of the relative change  of the maximum

permittivity of TGS crystals on the magnetic field to which
the samples were exposed at T = 293 K for t = 30 min. Each
point was obtained by averaging the measurement results
for seven samples.
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insignificant (<10%) increase in (TC) was
observed, which can be a consequence of a spontaneous
change in this parameter near the phase transition.

The effects described above were observed for crys-
tals exposed to a magnetic field normal to the ferroelec-
tric Y axis and were absent when the field was directed
along the Y axis.
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Fig. 4. Dependences (1) of the Curie temperature change
∆TC and (2) of the relative change  of the maximum

permittivity of TGS crystals on the time of exposure to a
magnetic field B0 = 0.08 T at T = 293 K.
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3. DISCUSSION
The main result of the studies described above is the

detection of the effect of a weak dc magnetic field on
the properties of nominally pure ferroelectric TGS
crystals.

A characteristic feature of this effect is that it has an
extremum at a certain value B0 of the dc magnetic field.

This value B0 can be associated with the frequency
ν, which satisfies the well-known condition of the elec-
tron spin resonance

(1)

where g is the spectroscopic splitting factor.
For a free electron, we have g ≈ 2; however, for elec-

trons incorporated into crystal defect complexes, this
value can be several times larger [10]. For example,
when interpreting the effects of ionic-crystal softening
caused by a change in the spin states of defects, the
value g ≈ 6 was assigned to one of the lines of the elec-
tron spin resonance spectrum [11]. For such a value of
g, the resonant frequency corresponding to the mag-
netic field B0 = 0.08 ± 0.01 T, where the effect in ques-
tion is observed in the TGS crystal, is ν ≈ 7 GHz; i.e.,
this frequency lies in the microwave range.

The effects of the resonant interaction of micro-
waves with nominally pure TGS crystals have also been
observed previously. In [12], resonant absorption of
microwave radiation by TGS crystals was detected at
frequencies of 27, 28, and 33 GHz, depending on the
crystallographic orientation of the samples during
exposure. In [13], a dielectric-anomaly suppression by
weak microwave radiation (with a peak at ~40 GHz)
was detected during the ferroelectric phase transition in
a TGS crystal.

We note that the above-mentioned frequencies are
of the same order of magnitude, which counts in favor
of the similarity of the mechanisms of the observed
phenomena if we take into account the uncertainty in
the factor g.

Moreover, the effect detected by us can be consid-
ered the inverse of the effect described in [13].

Indeed, the exposure of TGS crystals to a dc mag-
netic field decreases the ferroelectric transition temper-
ature by ~1 K and significantly increases the permittiv-
ity near the Curie point. On the contrary, the exposure
of TGS crystals to low-power microwave radiation
results in an increase in the ferroelectric transition tem-
perature of the TGS crystals by ~1 K and significantly
decreases the permittivity near the Curie point [13]. In
both cases, the TGS crystal characteristics relaxed to
their initial values in several days after sample exposure
and storage at room temperature.

The authors of [13] indicated that the regularities
detected by them are typical of the case where defects
are introduced into a highly perfect sample; the
changes in the sample parameters described in this

ν
gµBB0

h
---------------,=
P

paper can be explained by a decrease in the number of
initial defects in the crystal.

As the most weakly linked structural elements of a

defect-free TGS crystal, the  groups of glycine
bound by hydrogen bonds to other elements of the sys-
tem were indicated in [13]. It was assumed that micro-
wave radiation affects the interaction between the pro-
ton system of hydrogen bonds and the basic lattice. We
note that a possible consequence of the change in this
interaction can be defect generation in the TGS crystal.

At the same time, the magnetic processing can cause
decay of defect complexes originally existing in a real
TGS crystal. The changes in the characteristics of nom-
inally pure TGS crystals caused by PMFs were
explained in [1] by the decay of the defect and domain
structures in real TGS crystals. A decrease in the num-
ber of defects that are pinning centers for domain walls
in a real TGS crystal increases the permittivity, while a
decrease in the concentration of ordered polar defects
weakens the internal field and decreases the Curie tem-
perature.

The changes in the characteristics of TGS crystals
observed in this study, are basically similar to PMF-
induced changes [1]; therefore, the same interpretation
of the results remains valid in the case of exposure to a
dc magnetic field. The fact that a dc magnetic field pro-
duces no effect on TGS crystals in the paraelectric
phase or in the quasi-single-domain state suggests that
magnetically induced processes take place in the
defects–domain walls system.

The difference between the effects caused by PMFs
and by dc magnetic fields (observed at various mag-
netic-field orientations with respect to the ferroelectric
axis of the crystal) can be explained by the fact that dif-
ferent types of defects are sensitive to these fields.

Unfortunately, it seems to be impossible to identify
the magnetosensitive defects at this stage of study of
the real TGS crystal structure. While the defects pin-
ning the domain structure of a ferroelectric TGS crystal
are systematized phenomenologically in [14], their
microscopic nature remains undetermined.

At the same time, it is known that the field depen-
dence of the recombination probability of radicals in
weak magnetic fields can feature a pronounced extre-
mum in the presence of several channels of intercombi-
nation transitions [15]. Such extrema (resonances) arise
in weak magnetic fields, comparable to the hyperfine
interaction fields, in the case of crossing of energy lev-
els that are separated in energy by the exchange inter-
action in the absence of a magnetic field or when some
of the energy levels do not participate in intercombina-
tion transitions due to their Zeeman shift. In the sim-
plest case of singlet–triplet transitions, such resonances
can arise in weak magnetic fields if the transitions from
the singlet state to all three sublevels of the triplet state
are allowed. In dc magnetic fields, this situation is pos-
sible only when a radical pair contains at least one

NH3
+
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nucleus with a nonzero spin involved in transitions
through the hyperfine interaction.

It is reasonable to assume that the distinctive feature
of the effect detected in the hydrogen-containing TGS
molecular crystal, namely, its selective dependence on
the magnetic field, is associated with the participation
of hydrogen bond protons in spin-dependent transfor-
mations of defect complexes in real crystals.

The effect detected in this study suggests that, in
complexes with hydrogen bonds, there are short-lived
radicals that make these complexes sensitive to mag-
netic fields.

The lower resonant frequency obtained in this study
for a real TGS crystal (~7 GHz), in comparison with the
frequency determined in [13] for a highly perfect crys-
tal (~40 GHz), can be explained by the fact that hydro-
gen bonds in defect complexes are weaker than in the
lattice of the defect-free crystal.

The assumption that the selective nature of the
effect in question is associated with the participation of
hydrogen bond protons in spin-dependent transforma-
tions of defect complexes of real TGS crystal would be
experimentally confirmed by the detection of similar
effects in other molecular crystals with hydrogen
bonds, in particular, in ferroelectric crystals of potas-
sium dihydrophosphate (KDP).
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Abstract—The effect of stresses, appearing due to a difference between the temperature coefficients of linear
expansion of a substrate and ferroelectric film, on the self-polarization is discussed using thin films of lead zir-
conate–titanate PbZrxTi1 – xO3 (PZT) of different compositions as an example. It is assumed that the nature of
self-polarization is connected with internal polarizing electric fields caused by the different density of charged
surface states at the ferroelectric-layer interfaces, while tensile or compressive stresses are able only to change
the polarization orientation, which causes the self-polarization to increase or decrease in magnitude. The prob-
lem of improving the efficiency of PZT films in infrared radiation detectors and memory devices is considered.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The polar state that is established in a thin-film fer-
roelectric capacitor without application of an external
polarizing electric field is due to self-polarization [1–
6]. As a rule, such a state originates in a ferroelectric
film during its transition to the ferroelectric phase in the
process of cooling after the formation of its crystalline
structure at a high temperature. Investigations have
shown that the magnitude of self-polarization depends
on the structure [7–13], composition [7, 9, 14–16], and
thickness of the ferroelectric film [7], as well as on the
material of the electrodes [7, 17–19], electric fields [4,
6, 9, 20–22], mechanical stresses [2, 5, 14], optical radi-
ation [20], the temperature of heat treatment [4, 6, 7, 11,
12, 23, 24], the composition of the atmosphere [8, 16]
in which the multilayer structure is formed, etc.

Self-polarized films are of interest for two reasons.
On the one hand, such films can be used in the produc-
tion of integrated infrared radiation detectors with high
spatial resolution if their pyroelectric parameters are
comparable to the parameters of films polarized by an
external electric field [7, 14, 15, 25, 26]. In this case,
there is no need for a polarization procedure, which is
usually carried out with the application of strong elec-
tric fields at elevated temperatures.

On the other hand, self-polarization turns out to be
an undesirable phenomenon when films are used in
devices based on the polarization switching, for exam-
ple, in memory devices (FRAM) that conserve infor-
mation when the energy supply is disconnected. In such
devices, the asymmetry of the dielectric hysteresis
makes reliable readout of information impossible,
because the two logical states cannot be differentiated
[3, 8, 16, 20, 21, 27].
1063-7834/03/4509- $24.00 © 21768
The reasons for the origination of a self-polarized
state in thin ferroelectric films are considered to be con-
nected with the action of both electric fields [4, 6–28]
and stresses [2, 3, 14, 29, 30]. Asymmetry of dielectric
hysteresis loops and of C–V characteristics, the size
effect, a change in polarity or a complete disappearance
of self-polarization at high-temperature annealing, etc.,
are evidence in favor of the electric nature of self-polar-
ization. Earlier, the authors suggested an electric model
which explains the properties of self-polarized
PbZrxTi1 – xO3 (PZT) films. According to this model, the
necessary conditions for the origination of a self-polar-
ized state are the presence of free charge carriers and a
different density of localized charges on the interfaces
of a ferroelectric film [10–12].

The properties of self-polarized films can be
explained by the action of mechanical forces as well [2,
3, 14, 29, 30]. In particular, the authors of [2, 3, 14]
believe that compressive stresses in films can change
the polarization direction (from its orientation in the
substrate plane to the orientation parallel to the normal
to this plane). However, the effect of stresses on the
self-polarization has not yet been evaluated in the liter-
ature. The present work offers such evaluations for thin
PZT films.

2. MODEL OF THE EFFECT OF STRESSES
ON SELF-POLARIZATION

A self-polarized state in a ferroelectric film can be
influenced by at least two kinds of stresses of different
nature. The first one is connected with a mismatch of
the lattice parameters of the lower electrode and the
substrate with those of the ferroelectric film. The sec-
ond one is connected with different temperature coeffi-
cients of linear expansion of the substrate and the ferro-
003 MAIK “Nauka/Interperiodica”
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electric layer. The model under consideration is based
on the fact that a polycrystalline PZT film is character-
ized by a columnar structure with a grain cross section
of no more than 100 nm, which allows one to ignore the
stresses connected with the lattice mismatch [12].

The model suggests that, in the process of deposi-
tion, a ferroelectric film crystallizes in the perovskite
structure. Thus, it is natural to suppose that the forming
film is in a stress-free state. During cooling, the film is
subjected to mechanical compression or tension pro-
duced by the substrate (depending on the relationship
between the temperature coefficients of linear expan-
sion of the film and the substrate). By analogy with [3],
we assume that the ferroelectric film is rigidly con-
nected with the substrate and that the strains and
stresses in it are homogeneous. The model does not
take into account the mechanical influence of the lower
electrode on the formation of a self-polarizing state,
because, in the case of ferroelectric films 1 µm or
greater in thickness, the lower electrode (the thickness
of which is less than 100 nm) practically does not influ-
ence the magnitude of stresses produced in a PZT film
by the substrate.

Due to stresses, the domain structure of a ferroelec-
tric film is rearranged so as to minimize the free energy
of the system. Therefore, in the case of compressive
stresses, the orientation of the polar axis (depending on
the allowed crystallographic directions) will be maxi-
mally close to the normal to the substrate. On the con-
trary, in the case of tensile stresses, the polar axis will
be oriented maximally close to the substrate plane. It
can also be supposed that the polarization of the crys-
talline lattice is parallel to the direction along which the

〈100〉P/Ps

T phase

Rh phase

P/Ps

Compressive Tensile

〈100〉

(a)

(b)

1

1
0.59

Compressive Tensile

Fig. 1. Calculated diagrams showing the change in the self-
polarized state (in relative units) under the influence of
compressive and tensile stresses for 〈100〉-oriented PZT
films whose compositions correspond to (a) tetragonal and
(b) rhombohedral phases.
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unit cell is elongated. At the same time, stresses are able
to orient the polarization vector only to within 180°
domains. Therefore, the formation of a macroscopic
polarization is possible only under the influence of an
electric field. The strength of the polarizing field can be
relatively low, because this field must be capable of
switching 180° rather than 90° domains. Thus, when
considering the effect of stresses on the self-polariza-
tion, we assume that the formation of a macroscopic
polar state takes place in an electric field that switches
all 180° domains along the field direction. It should be
noted that a self-polarized state is mainly formed dur-
ing the transition through the Curie temperature to the
ferroelectric phase, where polarization switching can
take place in relatively weak electric and stress fields.

The diagrams in Figs. 1–3 show the influence of
compression or tension on the orientation of the spon-
taneous polarization Ps in a ferroelectric layer depend-
ing on the texture of the layer growth and on the sym-
metry of the ferroelectric phase for PZT films with dif-
ferent compositions. It is seen that, in 〈100〉-textured
films of tetragonal symmetry, the polarization switch-
ing can take place when tensile stresses are changed to
compressive ones (Fig. 1a). In this case, the self-polar-
ization changes from zero to its maximum possible
value, which is equal to the spontaneous polarization.
In rhombohedral films, stresses do not cause polariza-
tion switching (Fig. 1b).

A somewhat different situation occurs in 〈110〉-ori-
ented films (Fig. 2), in which the polarization changes
in a jump, as in Fig. 1a, in both the tetragonal and rhom-
bohedral phases. However, in 〈110〉-textured films, the
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1 0.82
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0.71

Fig. 2. Calculated diagrams showing the change in the self-
polarized state (in relative units) under the influence of
compressive and tensile stresses for 〈110〉-oriented PZT
films whose compositions correspond to (a) tetragonal and
(b) rhombohedral phases.
3
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self-polarization produced by a compressive stress is
smaller in magnitude.

Finally, in 〈111〉-oriented tetragonal films, stresses
do not influence the magnitude of the polarization
(Fig. 3a), which can be as large as P = 0.59Ps. In pass-
ing from compressive to tensile stresses in rhombohe-
dral films, the polarization (P = Ps) undergoes a jump to
the value P = 0.33Ps rather than to zero, as in the two
previous cases.

To determine the sign and magnitude of the change
in stresses originating in thin PZT films of the perovs-
kite structure during cooling, we used data on the linear
expansion of solid solutions at different values of the
ratio Zr/Ti [31]. Calculations were performed for sin-
gle-crystal silicon substrates with a temperature coeffi-
cient of linear expansion αl = 2.8 × 10–6 K–1. The results
of calculations of stresses arising in a thin PZT film on
a silicon substrate are presented in Fig. 4. The calcula-
tions were carried out under the assumption that the fer-
roelectric layer was deposited at a substrate tempera-
ture of 580°C.

As follows from Figs. 1–4, the self-polarized state in
PZT films strongly depends on their texture of growth.
It is seen that, as the composition of the tetragonal solid
solution becomes progressively closer to that of lead
titanate, compressive stresses grow. This is due to the
strong positive electrostriction effect and the negative
value of αl in lead titanate and solid solutions close to
lead titanate in composition below the Curie tempera-
ture. However, as the Zr concentration is increased,
compressive stresses are replaced by tensile ones,
because αl becomes positive and increases. From the
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Compressive Tensile
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(a)
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1

1

0.33

Compressive Tensile

0.59

Fig. 3. Calculated diagrams showing the change in the self-
polarized state (in relative units) under the influence of
compressive and tensile stresses for 〈111〉-oriented PZT
films whose compositions correspond to (a) tetragonal and
(b) rhombohedral phases.
P

stress diagram (Fig. 4), it follows that, as the Zr content
increases in films of tetragonal symmetry, the changes
in the self-polarized state presented in Figs. 1a, 2a, and
3a should take place, because compression is replaced
by tension. For rhombohedral films subjected to tensile
stresses, the self-polarization is described by the right-
hand parts of the diagrams in Figs. 1b, 2b, and 3b.

It is of special interest to analyze the influence of
stresses on the self-polarization of PZT films whose
composition corresponds to the region of the morpho-
tropic phase boundary (MPB) dividing the tetragonal
and rhombohedral phases [31, 32]. Figure 5 displays
diagrams of the changes in the self-polarized state in
the MPB region for films with different growth struc-
ture; these diagrams are constructed on the basis of the
stress diagrams (Figs. 1–3) and Fig. 4. It is clearly seen
that the behavior of self-polarization is significantly
different in films with different crystallographic orien-
tations. In particular, in 〈111〉-oriented films, the self-
polarization decreases by a factor of approximately 1.8
with increasing Zr content (Fig. 5c).

3. COMPARISON OF THE MODEL
WITH THE EXPERIMENTAL DATA

At the present time, two experimental papers are
available in which the concentration dependence of the
self-polarized state in thin PZT films was investigated
[7, 14]. In [7], films were produced using a two-stage
technology, which significantly impedes the analysis of
the effect of stresses on the self-polarization. However,
the results obtained in [14] on 〈111〉-oriented films
(Fig. 6) satisfy all the requirements of our model.
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Fig. 4. Calculated temperature dependences of the stresses
(in relative units) in PZT films with a different ratio x =
Zr/(Zr + Ti) in the silicon substrate–PZT film system. Neg-
ative stresses correspond to compression of the films.
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According to Figs. 3 and 5c, the model describing
the mechanical contribution to the polarization of such
films suggests that the value of self-polarization is con-
stant over the entire range of existence of the tetragonal
phase and sharply decreases by a factor of approxi-
mately 1.8 at the transition to the region of existence of
the rhombohedral phase. The experimental concentra-
tion dependence of self-polarization (curve 1 in Fig. 6)
also exhibits an analogous drop in self-polarization in
the MPB region; the value of the drop is close to the cal-
culated value. Unlike the model curve, the experimental
self-polarization decreases monotonically in the tetrag-
onal phase with increasing Zr content and continues to
fall after the transition to the rhombohedral phase. To
explain this curve, it is necessary to take into account
the electric contribution to the self-polarization.
According to [7, 9–13], the self-polarized state appears
in a thin film under the influence of an electric field,
which produces a volume charge localized on the lower
electrode–ferroelectric interface. The influence of the
field during cooling of the film to below the Curie tem-
perature leads to the formation of a polar state near the
boundary of the film. If the electric field is strong
enough and the film is thin, then the whole volume of
the film can be polarized.

The penetration depth of the electric field into a ferro-
electric can be evaluated using the method for evaluating
the size of the depletion region in an extrinsic semicon-
ductor near the metal–semiconductor junction [33]:

(1)

where lD = (εkBT/4πne2)1/2 is the Debye screening
length, ε is the dielectric constant of the ferroelectric
layer, T is temperature, n is the concentration of charge
carriers in the ferroelectric, kB is Boltzmann’s constant,
ϕ0 is the potential at the interface (y = 0), and ϕ(y) is the
distribution of the potential. By differentiating Eq. (1)
with respect to the coordinate y, we obtain

(2)

where E(y) is the distribution of the electric field in the
ferroelectric and E0 = A/ε1/2 is the electric field at the
interface. Evaluation of the screening length at a tem-
perature close to the ferroelectric phase transition point
(T = 600 K, ε = 1000, n = 1017 cm–3) gives lD = 0.17 µm.
If the surface potential is 0.01 V, then the electric field
at the interface will be approximately 0.6 kV/cm. Such
a field generated by the charges at the interface suffices
to polarize the film at a temperature close to the Curie
point.

As can be seen from formula (2), the value of the
polarizing electric field E0 is inversely proportional to
the square root of the dielectric constant of the ferro-
electric. As the dielectric constant ε(x) in PZT films
changes nonmonotonically and has a maximum in the
MPB region [14] (curve 3 in Fig. 6), the concentration

ϕ y( ) ϕ0 y/lD–( ),exp=

E y( ) = ϕ0/lD( ) y/lD–( )exp  = A/ε1/2( ) y/lD–( ),exp
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dependence of the relative self-polarization can be writ-
ten as

P x( )/Pmax εth/ε x( )[ ] 1/2
,=

1
0.59
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Fig. 5. Calculated diagrams showing the change in the self-
polarized state (in relative units) in the region of the mor-
photropic phase boundary for (a) 〈100〉-, (b) 〈110〉-, and (c)
〈111〉-oriented thin PZT films under the conditions of ten-
sion in the silicon substrate–PZT film system.
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where εth is the threshold dielectric constant at which
the self-polarization reaches its maximal value Pmax
(εth = 209 for the composition Zr/(Zr + Ti) = x = 0.20).
This dependence (with allowance for the jump in self-
polarization at the MPB) is presented by curve 2 in
Fig. 6. A comparison of curves 1 and 2 shows that our
model adequately describes the experimental behavior
of self-polarization both in the tetragonal phase and at
the MPB. The model description of the influence of
stresses on the behavior of the self-polarization
(Fig. 5c) near the transition across the MPB in 〈111〉-
oriented films is supported by the experimental data
from [14].

4. DISCUSSION OF THE RESULTS

The above analysis shows that the self-polarization
in thin ferroelectric films is of an electromechanical
nature. An important feature of the model is the connec-
tion of the polarizing electric field at the interface
between the lower electrode and the ferroelectric film
with the dielectric constant. According to formula (2),
for polarization of a ferroelectric, it is more important
to have a lower dielectric constant (and, consequently,
a stronger field at the interface) than larger values of the
dielectric constant and Debye screening length. This
fact evidently follows from the need for a higher energy
for nucleation of a domain on the interface than for its
growth deep into the film.

The stresses due to the difference between the αl

values of the ferroelectric layer and the substrate are not
the reason for the appearance of self-polarization, but
they influence the magnitude of the self-polarization
during compression or tension of the ferroelectric film
and a change in its structure and orientation, in the
thickness ratio of the substrate and the film, and in the
technology of formation of the ferroelectric layer. In
the silicon substrate–PZT film system, the compressive
stresses acting in PZT film close to lead titanate in com-
position determine the magnitude of the self-polariza-
tion. These stresses lead to the destruction of 90°
domains and are favorable for the formation of a 180°
domain structure, which decreases the coercive field.
Unfortunately, the absence of experimental data on the
concentration dependences of the self-polarized state
does not allow one to test the validity of the models
under consideration completely (for films of different
compositions and orientations). Investigations of 〈100〉-
oriented PZT films grown on silicon substrates are of
particular interest. In this case, a distinctly expressed
concentration dependence of self-polarization should
be expected (Figs. 1a, 5a).

The results obtained in this work reveal the role of
stresses in the origination of self-polarization and allow
one to formulate criteria for choosing PZT films com-
positions for different applications.

(1) For pyroelectric detectors based on silicon sub-
strates, 〈100〉-textured PZT films with compositions
P

close to that of lead titanate are preferable. In these films,
the self-polarization is high, because the stresses orient
the polarization vector along the normal to the substrate
plane. Technological difficulties in producing such struc-
tures are connected with the fact that the traditionally
used platinum electrodes are characterized by 〈111〉
growth texture, which dictates the 〈111〉 orientation of
PZT films. Nevertheless, there are processing techniques
that allow one to obtain 〈100〉-oriented PZT films of
good quality [34]. When using substrates with αl equal to
(6–8) × 10–6 K–1 and more, 〈111〉-oriented PZT films of
the rhombohedral modification, which is sufficiently far
from the MPB, are of great interest. The pyroelectric
coefficient of such compositions is considerably higher
than that for the compositions close to lead titanate, as
follows from the results presented in [1].

(2) For memory devices (FRAM), it is important to
decrease the concentrations of defects and charge carri-
ers, which allows one to obtain thin stoichiometric PZT
films with symmetrical hysteresis loops and C–V char-
acteristics. For stable operation of the devices, it is rea-
sonable to use PZT films without 90° domains. This sit-
uation is realized in 〈100〉-oriented PZT films of tetrag-
onal modification (on silicon substrates) with
compositions close to lead titanate (Figs. 1a, 4). The
absence of 90° domains decreases the switched electric
fields and increases the switched charge. The efficiency
of memory devices can be improved by using 〈111〉-ori-
ented PZT films of the rhombohedral modification
formed on substrates with high values of αl . In this
case, ferroelectric films are also in a state of compres-
sion and their domain structure contains only 180°
domains. The fatigue, which is one of the main reasons
for premature breakdown of FRAM devices, will be
connected only with the formation of head-to-head
domains.

Nevertheless, the majority of investigators focus
mainly on the influence of electric defects and fields on
the degradation of the film parameters [35] in analyzing
fatigue and do not take into account the contribution of
stresses to the fatigue. Thus, it is interesting to carry out
additional investigations of the role of stresses in the
effect of fatigue.
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Abstract—The polarization and dielectric susceptibility of polar regions composed of Langevin microdipoles in
a random electric field are considered. It is shown that the polarization of this system has orientational and fluctu-
ation components in addition to the conventional phonon contribution. Both components diverge when the ampli-
tude of the random field tends to zero but can be stabilized in finite internal fields. The orientational susceptibility
does not depend on the external field if its amplitude is smaller than the amplitude of the random field and rapidly
decreases in the opposite case. The field dependence of the fluctuation susceptibility exhibits a maximum. With
an increase in the field, the fluctuation susceptibility quadratically increases as const + AE2 in weak fields and
decreases as E–1/2 in strong fields. The equation of state takes the form P2 ~ E in relatively strong fields (as com-
pared to the internal field) and P ~ E in weak fields. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper is concerned with the specific features of
the polarization of inhomogeneous ferroelectrics com-
posed of isolated polar regions in random fields. The
importance of this problem stems from both the unique
dielectric properties of disordered ferroelectrics that are
widely used in practice and the necessity of elaborating
a consistent theory of these properties [1–4]. Polar
regions are formed in disordered ferroelectric crystals
owing to local chemical inhomogeneities and disorder-
ing of the system. As a result, the crystal contains finite
ferroelectric nanoregions. Local phase transformations
in ferroelectric nanoregions give rise to very large local
dipole moments [2, 3]. Blinc et al. [2] revealed that the
interaction between these dipoles can initiate either a
glass phase transition or a ferroelectric phase transition,
depending on whether or not the dispersion of dipole–
dipole interaction forces exceeds the mean interaction
force. On this basis, each dipole was described as a
quasi-spin in a multidimensional vector space. In the
present work, this approach was extended to the case
where dipoles in the polar regions are considered in the
hydrodynamic approximation [5]. Within this approxi-
mation, microdipoles in a polar region change their
positions in such a way that the square of the magnitude
of the total dipole moment vector remains constant but
the vector direction can fluctuate. The applicability of
this approximation is particularly justified in the vicin-
ity of the morphotropic boundary, i.e., in the region
where the local polarization rather readily frustrates.

2. THEORY

It is known that the average magnitude of the dipole
moment oriented in an external field E0 is defined by
1063-7834/03/4509- $24.00 © 21774
the Langevin formula µ = µ0 , where
µ0 is the dipole moment at T  0. For this system, the
longitudinal linear susceptibility is finite (χ|| =

, where n is the dipole concentration) but the
transverse linear susceptibility diverges, because the
energy of the system is degenerate with respect to the
rotation of the dipole around the longitudinal field [5].
Therefore, this idealized system is characterized by an
instability (Goldstone instability) and tends to remove
the energy degeneracy.

In actual fact, microdipoles in crystals reside in extra
internal fields e, which are induced by surrounding
atoms and structural defects. These fields are particularly
strong in solid solutions of ferroelectrics [3, 4]. Conse-
quently, the microdipoles in crystals are aligned not with
the external field but with the local field El = e + E, where
E = E0 + γP, P is the polarization, and γ is the Lorentz
constant. As a result, there arises an intricate situation
where the microdipoles deviate only slightly from the
directions of random internal fields in response to an
external field. It can easily be shown that, in this case,
the sum of the squares of dipole moments of individual
polar regions remains unchanged. Indeed, if the ith
dipole moment is designated by µi and its small change
upon dipole rotation is denoted by ∆µi, we can write the

relationship 〈(µi + ∆µi)2〉  ≈ 〈  + 2µi∆µi 〉  ≈ 〈 〉 . The
latter approximate inequality was obtained under the
condition that, in the course of hydrodynamic motion,
the square of the magnitude of the total dipole moment
of the polar region remains constant, because the rigid
dipole can only execute rotational motion. Thus, the
hydrodynamic approximation allows the use of the

E0µ0/3kBT( )tanh

nµ0
2
/3kBT

µi
2 µi

2
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spherical model for describing a system of interacting
polar regions. In recent years, this model has received
wide acceptance, because it offers a satisfactory expla-
nation of a number of relaxor properties [2]. It is worth
noting that the classical spherical model [6] leads to the
unusual critical exponent γ = 2, which is inconsistent
with the Curie–Weiss law and corresponds to a qua-
dratic temperature dependence of the square of the fre-
quency of the soft polar mode (the reciprocal of the per-
mittivity).

First, we investigate the usual orientational longitu-
dinal polarization of polar regions and then analyze the
effects associated with the instability of the transverse
susceptibility. Instead of microdipoles, we consider the
polarization field P(r) = nµEl(r)/El, which is directed
along the local field at any point of space. (Hereafter,
the italicized letters P, E, e, El, and µ stand for the mag-
nitudes of the corresponding vectors.) The amplitude of
the local field can be written in the form El =

, where θ is the angle between the
directions of the external and random fields. Under the
assumption that the distribution function of random
fields over the angle θ is isotropic, we take into account
the temperatures obeying the inequality kBT @ µ0El. In
this case, we obtain the standard expression P =

 for longitudinal polarization of Langevin
dipoles. In the opposite limiting case (kBT ! µ0El), we
have

(1)

The dependence thus obtained (Fig. 1) differs signifi-
cantly from the Langevin curve. For E < e, the polariza-
tion linearly increases with an increase in the field.
However, at E = e, the polarization changes drastically
and rapidly reaches saturation with a further increase in
the field. The singularity at E = e is observed only for
the second-order derivative of the polarization with
respect to the field or (what is the same) for the first-
order derivative of the nonlinear susceptibility. This
behavior can be interpreted as follows. Dipoles are pre-
dominantly aligned with the random internal fields in
weak external fields and with the external field when it
becomes sufficiently strong. The crossover between
these orientations occurs in the case when the ampli-
tudes of the external and internal fields coincide with
each other. Thus, the orientational polarization under
the given conditions substantially depends on the ran-
dom fields in the system.

E
2

e
2

2Ee θcos+ +

µ0
2
nE/3kBT

P
µn
2

------ p θ E,( ) θ θdsin

0

π

∫ nµ 1 e
2
/3E

2
, E– e>

2E/3e, E e,<


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p θ E,( ) E e θcos+

E
2

e
2

2eE θcos+ +
--------------------------------------------------.=
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The inferences drawn above are also valid under the
condition µ0El @ kBT. In the theory of defects, the prod-
uct of the dipole moment of an individual microdipole
by the electric field amplitude in dielectrics, as a rule, is
assumed to be appreciably less than the thermal energy,
because, otherwise, the electric fields would be very
strong and lead to electrical breakdown [7]. However,
in our case, we consider polar regions that involve a
large number of microdipoles and change their own ori-
entation in a cooperative manner (see below). Further-
more, each microdipole of a given polar region experi-
ences a microscopic field that, at particular sites in fer-
roelectrics, can be stronger than the macroscopic field
by several orders of magnitude. The microscopic fields
are unrelated to the breakdown, because their averaging
over a unit cell gives a usual macroscopic field. In this
work, we examine a disordered crystal in which dipoles
at temperatures close to a critical point execute hydro-
dynamic motions in regions with sizes of the order of
the inhomogeneity size [5], i.e., in nanoregions. Under
these conditions, the dipole moment is particularly
large. It is reasonable that the large product of the
dipole moment by the field amplitude can be obtained
not only in strong fields (even though the local fields are
very strong in ferroelectrics) but also at large dipole
moments, which is assumed to be true in analyzing nan-
oregions. It should be emphasized that the above ine-
quality is not necessary for hydrodynamic fluctuations
to occur (for which only the local polarization need be
aligned with the local field). This inequality only allows
us to obtain results in an analytical form. If the given
inequality is not satisfied, the required data can be cal-
culated numerically; however, in the present work, we
consider only the limiting cases for which it is possible
to derived exact relationships.

1.0

0.6

0.2

0 1 2 3
0

0.2

0.6

1.0

P
/n

µ

3ε
0e

χ/
2n

µ

E/e

Fig. 1. Field dependences of the orientational contributions
to the dielectric susceptibility and the polarization.
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Now, we analyze the behavior of the dielectric sus-
ceptibility within the same approximations. For µ0El @
kBT, we can write the expressions

 (2)

A specific feature of this relationship is that the dielec-
tric susceptibility in weak fields is inversely propor-
tional to the amplitude of the random field. Conse-
quently, in weak random fields, the susceptibility in
polar regions is very large and can even diverge when
the amplitude of the random field tends to zero (pro-
vided that the temperature also approaches zero and the
inequality µ0El @ kBT is satisfied). The results obtained
suggest that the random internal fields stabilize the
strongly polarized state of polar regions and contribute
significantly to the permittivity due to their orientation
in the field when the dipole moments in superparaelec-
trics are large in magnitude.

The same results can be obtained in the case when a
multiwell symmetric potential rather than a continuous
potential is used for an impurity. The population of each
well can be determined from the Boltzmann formula,
and the integrals are replaced by the sums over wells.
The barriers between the wells affect only the kinetics.
It can be shown that the final relationships coincide
with those derived above if there exists a thermody-
namic equilibrium for each field amplitude. This can be
achieved by cooling the system for each field amplitude
from temperatures at which the system is at thermody-
namic equilibrium in the external field.

Another feature of the derived relationship is that
the susceptibility does not depend on the temperature.
The Langevin longitudinal susceptibility is inversely
proportional to the temperature. The orientational sus-
ceptibility obtained for polar regions in the limiting
case µ0El @ kBT does not depend on the temperature (or
is only weakly dependent through the change in the
dipole moment µ with temperature). This permits us to
offer a new explanation for the properties of the so-
called “high-k materials” [8, 9] in terms of the cooper-
ative orientational polarization of polar regions. Actu-
ally, the specific feature of these materials is that they
are characterized by the Debye susceptibility, which, as
is known, is described by the expression not involving
the factor 1/kBT [9]. However, as was shown by
Lemanov et al. [8], there exist a number of materials of
this type for which the formula describing the suscepti-
bility contains the factor 1/kBT. This implies that the
size of polar regions is not large enough to satisfy the
inequality µ0El @ kBT. It should be noted that, in the
majority of high-k materials, the high electrical conduc-
tivity and the formation of polar regions can be prima-
rily associated with electrons [9].

χ p
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It is also of interest to analyze the mean-square
polarization. It can be assumed that, in each polar
region, the mean-square polarization along the local
field is finite (for example, due to a local tetragonal
deformation). In this case, we have

 (3)

In weak fields E (as compared to e), we obtain

 (4)

As follows from these expressions, the orientational
polarization in paraelectric crystals makes a contribu-
tion to the voltage that is proportional to the field ampli-
tude squared. For a polarized crystal, the quantity E
should be replaced by E + Ep, where Ep is the amplitude
of the internal field. As a result, the expression for the
polarization takes the form

 (5)

Here, the additional voltage is linearly proportional to
the field amplitude. From this analysis it is evident that
polar regions can substantially contribute to the elec-
trostriction and piezoelectric effects at small values of
e (however, it should be remembered that, in the
derived relationships, the amplitude e is limited from
below: µ0El @ kBT).

In the above discussion, we dealt only with
quenched random fields. However, in fact, the random
field has a reorientational component. In particular, the
emergence of the macroscopic polarization in a sample
is accompanied by alignment of the reorientational
component along the polarization. This component can
be described by the distribution function [10]

 (6)

where d is the distribution width and η is the coefficient
relating the random field to the macroscopic polariza-
tion (as a rule, the coefficient η coincides with the
Lorentz constant, which determines the difference
between the local and mean fields). After averaging of
the dielectric susceptibility with the given distribution
function, we obtain the expression

 (7)
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According to relationship (7), the susceptibility
increases with a decrease in the distribution width and
diverges when this quantity tends to zero (provided that
the temperature also approaches zero and the inequality
determining saturation of the average dipole moment in
the field is satisfied).

The key condition for the effects under investigation
is that the system is close to an energy degeneracy.
Apart from the system of oriented dipoles, one more
example of such systems is provided by domains with
a small elastic constant k corresponding to the restoring
force acting on a domain wall. In this situation, if the
field makes a random angle θ with the domain wall, the
mean polarization can be represented as

 (8)

where Z* = P0S, P0 is the domain polarization, S is the
area of the domain wall, and v  is the volume of one
domain. As follows from relationship (8), the suscepti-
bility (the derivative of the polarization with respect to
E) is fairly high at small elastic constants k, which cor-
responds to a quasi-degeneracy of the system with
respect to different positions of the domain walls. In
order to elucidate the mechanism of the process in a
particular situation, it is necessary to investigate how
the orientation of microdipoles changes in the field.
Rotations of the microdipoles through an angle of π
correspond to motion of a domain wall. At the same
time, rotations through small angles are associated with
ordering of polar regions. Let us derive separating rela-
tionships for the orientational and translational polar-
izations. The polarization can be represented in the form
P = [mϕ] + αE, where ϕ is the rotation angle of the local
microdipole under the condition (mϕ) = 0. Hence, we
have α = (Pm)/(mE) and ϕ = {α[mE] – [mP]}/µ2. The
rotational component of the polarization can be calcu-
lated from the formula Prot = P – (Pm)E/(mE). If the dis-
tribution of the angles ϕ is characterized by a maximum
at an angle of π, the polarization occurs through the
domain mechanism. It should be noted that, when the
restoring force is not strong enough to return the wall to
its initial position, there arises universal relaxation [11],
which was recently revealed by Bokov and Ye [12] in
relaxors.

Let us now analyze the transverse and longitudinal
polarization fluctuations. We will follow the general
approach proposed by Patashinskiœ and Pokrovskiœ [5],
who developed a thermodynamic theory of hydrody-
namic fluctuations within the continuum approxima-
tion for homogeneous isotropic media in the absence of
random fields. Next, we will demonstrate how the
inclusion of random fields affects the final results.

We consider a polarization field P(r) in the correla-
tion volume of dipoles. It is assumed that a weak trans-
verse electric field δEl⊥ is applied to the system. Conse-
quently, the transverse polarization appearing in the

P
2EZ*2
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2

0

π

∫ 2EZ*2

3kv
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transverse field takes the form δP⊥  = P0δEl⊥ /El, where
P0 is the polarization in the polar region. As a result, the
transverse susceptibility can be written as χl⊥  = P0/ε0El

(for simplicity, we disregard the influence of local
effects, even though it is clear that, as before, they bring
about an increase in the susceptibility).

The transverse polarization at any point in space
inside the polar region induces the transverse polariza-
tion at the nearest points. In order to describe this
change in the polarization, the free energy of the system
inside the polar region with due regard for the gradient
term can be written in the following form [5]:

 (9)

It is important to note that we consider the system in
a finite longitudinal field under the assumption of an
infinitesimal transverse field; i.e., we investigate the
linear transverse susceptibility in the finite longitudinal
field. The free energy (9) is consistent with the theory
of free fluctuations, and their correlation function can
be represented as

 (10)

where κ2 = (cχl⊥ )–1 = ε0El/cP0.

With the aim of determining the longitudinal sus-
ceptibility, we use the condition for the conservation of
the polarization magnitude δPP = (δP⊥ )2/2P0 and the
following mathematical operation [5]:

 (11)

As a result, we obtain

 (12)

Consequently, the local longitudinal fluctuation suscep-

tibility χl || = δP||/ε0δEl decreases as  in strong
fields El.

Now, we average the polarization and the susceptibil-
ity over directions of the random field and change over to
the mean susceptibility in the external field; that is,

 (13)
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Correspondingly, the dielectric susceptibility involves
the transverse and longitudinal components (〈P⊥ 〉  =
〈χ ⊥ 〉δE and 〈P||〉  = 〈χ ||〉δE

 (15)

The transverse component coincides with the orienta-
tional component obtained within the simpler
approach. At µ0e @ kBT, the transverse component is
constant at field amplitudes smaller than the amplitude
of the random field and rapidly decreases at E > e. With
an increase in the amplitude of the external field, the
longitudinal component increases quadratically as
const + AE2 in weak fields, passes through a maximum,
and then decreases as E–1/2 (Fig. 2). This behavior of the
dielectric susceptibility is typical of antiferroelectrics
and systems characterized by first-order phase transi-
tions. However, in our case, the observed behavior is
associated with the longitudinal hydrodynamic fluctua-
tions.

It should be noted that the fluctuation contribution to
the susceptibility is proportional to the temperature.
However, a stronger temperature dependence arises,
because the denominator of the factor a contains the

term . This results in the divergence (or a jump) of
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Fig. 2. Field dependence of the fluctuation contribution to
the dielectric susceptibility.
P

the fluctuation component at a temperature correspond-
ing to the onset of polarization. Subsequently, this sin-
gularity should be smeared by the disorder occurring in
the system.

3. CONCLUSIONS

Thus, it was shown that microdipoles of polar
regions in disordered ferroelectrics can execute hydro-
dynamic cooperative motions (motions during which
the magnitude of the total dipole moment of the polar
region remains unchanged). This is characteristic of
systems in which the amplitude of typical ferroelectric
fluctuations is comparable to the radius of polar
regions. The hydrodynamic motions are due to the fact
that the polar region is in the state of indifferent equi-
librium with respect to the direction of the total dipole
moment of the region. In this case, the transverse sus-
ceptibility diverges [5] and the system turns out to be
unstable. The local internal fields stabilize the system
and, at not very large amplitudes, provide its high
polarizability. In random fields, the transverse hydrody-
namic fluctuations lead to additional orientational and
fluctuation contributions to the permittivity of the sys-
tem of oriented dipoles. The orientational contribution
is constant in weak fields (with amplitudes smaller than
the amplitude of the random field) and rapidly
decreases with an increase in the field. The transverse
contribution to the susceptibility first quadratically
increases with an increase in the field and then
decreases as E–1/2. As a result, the equation of state
takes the form P2 ~ E, which was earlier experimentally
observed in magnetic systems [13] and was recently
revealed in dipole systems [14]. It is obvious that, as for
the equation of state P ~ E, the polarization P2 ~ E can-
not increase infinitely with an increase in the field and
reaches saturation in fields Es due to the alignment of all
dipole moments with the external field. The interaction
between polar regions also brings about the spontane-
ous alignment of dipoles in at least the nearest regions.
This behavior was previously described within the
models proposed in [2, 3]; however, the hydrodynamic
nature of fluctuations was disregarded in these models.
The present work filled this gap and generalized the
theory of hydrodynamic fluctuations to systems with
random fields.

The results of the investigation performed can be
extended to a large number of Langevin systems. In
particular, they make it possible to derive the equation
of state from the data obtained in experiments on
dielectric spectroscopy, second harmonic generation,
etc. The proposed theory can be used for describing
both the nanodipoles in relaxors, which are character-
ized by internal random orienting fields in addition to
the frustration of the dipole moment, and dipole clus-
ters in solid solutions of ferroelectrics, provided the
procedure of freezing the system in the field is applied
for each field amplitude.
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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Abstract—The lattice dynamics of an α-Al2O3 crystal with vacancies in various charge states is simulated
using the recursive method in the shell model. The frequencies of resonant vibrations induced by defects in var-
ious directions are calculated. Characteristic features in vibrational spectra of anion-nonstoichiometric α-Al2O3
crystals, mostly associated with changes in the effective interaction between vacancies and the nearest neighbor
atoms, are analyzed and explained. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many physical properties of anion-nonstoichiomet-
ric crystals of corundum (sapphire) α-Al2O3 are signif-
icantly affected by oxygen sublattice defects. There-
fore, it is urgent to study the features of the vibrational
spectra of atoms near anion vacancies, which can be in
various charge states: a vacancy with a trapped electron
(F+ center) and a vacancy with two trapped electrons
(F center). The lattice dynamics of corundum crystals
with vacancies has not yet been studied. There are publi-
cations devoted to experimental and theoretical study of
the lattice dynamics of perfect corundum crystals [1–3].
Model and ab initio calculations of the energy of for-
mation and the electronic structure of anion vacancies
in various charge states in α-Al2O3 crystals were car-
ried out in [4–7].

This study is aimed at numerical simulation of the
lattice dynamics of α-Al2O3 crystals with anion vacan-
cies in various charge states.

2. STRUCTURE, INTERATOMIC POTENTIALS, 
AND CALCULATION PROCEDURE

The α-Al2O3 crystal belongs to the rhombohedral

system with space symmetry group  ( ); the
primitive cell contains two formula units (ten atoms).
The lattice parameters and the structure of α-Al2O3 are
given in [2, 4]. Each oxygen O2– ion is surrounded by a
distorted tetrahedron of four nearest neighbor Al3+ ions,
two of which, are Al(1), at a distance of 1.86 Å from the
O2– ion and the other two, Al(2), are at a distance of
1.97 Å. The nearest octahedral neighborhood of an Al3+

ion is formed by oxygen O2– ions, three of which are at
a distance of 1.86 Å from the Al3+ ion and the other
three are at a distance of 1.97 Å.

R3c D3d
6

1063-7834/03/4509- $24.00 © 21780
The local atomic structure and the lattice dynamics
of an α-Al2O3 crystal were simulated using the shell
model, in which the short-range shell–shell interaction
is given by

(1)

where Aij , ρij , and Ci are constants dependent on the ion
type. The parameters of the interatomic potential taken
from [5, 8] were used as the starting parameters when
simulating the local atomic structure and the lattice
dynamics of α-Al2O3 crystals.

The influence of a vacancy on the vibrational spec-
tra of α-Al2O3 crystals was studied by calculating the
local phonon density of states (DOS) in perfect and
defect crystals by using the recursive method [9]. In this

case, the local phonon DOS (ω) at the kth ion site
along the Cartesian α axis is calculated as

(2)

where Gα(k, ω) are the diagonal elements of the Fourier
transform of the retarded Green’s function,

(3)

I is the unit matrix and D is the dynamic matrix of the
ion cluster used in the calculations.

The local-DOS calculation algorithm and the tech-
nique for separating the localized vibrations induced by
defects are described in [10, 11] in more detail.

V rij( ) Aij rij/ρij–( )exp Ci/rij
6
,–=

gα
k

gα
lk ω( ) 2ω

π
-------Im Gα lk ω,( ),–=

Gα k ω,( ) kα I

I ω2
i 0×+( ) D–

----------------------------------------- kα ,=
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3. CALCULATION OF THE DISPERSION CURVES 
AND THE TOTAL DENSITY OF PHONON STATES 

OF THE PERFECT α-Al2O3 CRYSTAL

To check the correctness of the interatomic potential
and of the cluster sizes used in modeling the crystal, we
calculated the dispersion curves and the total phonon
DOS of a perfect α-Al2O3 crystal.

The dispersion curve calculation using the starting
parameters of the interatomic interaction potential from
[5, 8] showed that the vibration frequencies of the first
optical branch in three high-symmetry directions (∆, Λ,
Σ) in the Brillouin zone were underestimated in com-
parison with the experimental data [1, 2]. To improve
the agreement between the calculated and experimental
data by fitting the interatomic potential parameters
from [5], we varied the ion charges and bond constants
at fixed parameters Aij , ρij , and Ci involved in Eq. (1).
The final values of the parameters are ZO = –1.98 |e |,
kO = 73.07 eV/Å2, ZAl = 2.97|e|, and kAl = 192.49 eV/Å2.
The dispersion curves calculated with these parameters
are shown in Fig. 1. These curves describe the experi-
mental data much better. We note that that these param-
eters also adequately describe other characteristics
(elastic constants and permittivities) of the perfect α-
Al2O3 crystal.

With the parameters obtained for the interatomic
potential, we calculated the total phonon DOS in perfect
corundum crystals using a cluster consisting of
1000 atoms (Fig. 2). The calculated and experimental
total DOS curves exhibit approximately the same num-
ber of peaks. A small-scale shift (on average by 2 THz)
of the entire spectrum to lower frequencies is observed.
The cutoff of the total phonon DOS in the low-frequency
region is caused by the limited size of the cluster.

Thus, the satisfactory agreement between the calcu-
lated and experimental dispersion curves and total
phonon DOS curves for the perfect α-Al2O3 crystal
makes it possible to use the interatomic interaction
parameters obtained and the cluster size (1000 atoms) to
simulate the lattice dynamics of defect α-Al2O3 crystals.

4. CALCULATION OF THE LOCAL PHONON 
DENSITY OF STATES AND DISCUSSION

The technique described above was applied to cal-
culate the local phonon DOS curves for perfect and
defect α-Al2O3 crystals. The models of the F and F+

centers (the coordinates of atoms in the defect region,
the effective charge of the vacancy) are described in [6,
7]. According to those studies, the electron density
localization at the vacancy center is approximately 90
and 80% for the F+ and F centers, respectively, in the
ground state. The remaining charge is spread over the
nearest neighbors. The change in the charge of the
vacancy and of its nearest neighbor aluminum atoms
was taken into account in calculating the Coulomb
component of the dynamic matrix of the cluster. The
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
features of the local phonon DOS of a defect crystal
that are absent in the local DOS of the perfect crystal
correspond to localized (resonant) vibrations induced
by defects.

As an example, Fig. 3 shows the local phonon DOS
at the Al(1) atom site along the Z direction in the perfect
corundum (curve 1), as well as the local phonon DOS for

0
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 T

H
z

Fig. 1. Calculated dispersion curves of the α-Al2O3 crystal.
Points are the experimental phonon frequencies [1, 2].
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Fig. 2. Calculated total phonon density of states for the per-
fect α-Al2O3 crystal. Points are experimental data from [3].
3
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the same atom near the anion vacancy in the defect
corundum crystal (curve 2). We can see that the introduc-
tion of the vacancy into the α-Al2O3 crystal gives rise to
resonant vibrations at frequencies of 5.7 and 22.5 THz.

The table lists the frequencies of localized vibra-
tions induced in the α-Al2O3 crystal by vacancy in var-
ious charge states along various directions at the Al ion
sites from the vacancy nearest neighborhood. We can
see differences in the numbers and values of the fre-
quencies of the resonant vibration modes induced by
the vacancy, F+ center, and F center.

Figure 4 shows the calculated combined phonon
DOS curves for all the atoms located within a sphere of
radius 2.7 Å (including four Al3+ ions and four O2– ions)
near the oxygen vacancy in the crystal with a vacancy
(curve 1), an F+ center (curve 2), and an F center
(curve 3). We note that the similar combined phonon
DOS for the perfect crystal coincides (except for nor-
malization) with the total phonon DOS of the perfect
crystal (Fig. 2).

6 12 18 24 30
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rb
. u

ni
ts

Fig. 3. Local phonon density of states along the Z direction
at an Al3+ ion site (1) nearest to an oxygen O2– ion in the
perfect α-Al2O3 crystal and (2) nearest to the anion
vacancy.
PH
Let us enumerate the basic regularities following
from an analysis of Figs. 2 and 4.

(i) The combined phonon DOS curves for the per-
fect α-Al2O3 crystal and for the crystal with the F+ cen-
ter are the closest to each other.

(ii) The phonon DOS states is redistributed in the
region below 19 THz when passing from the F center to
the vacancy.

(iii) In going from the F center to the vacancy, the
phonon DOS increases in the region below 10 THz; in
the range from 10 to 19 THz, the combined phonon
DOS curves for the F and F+ centers are close to each
other, while the combined phonon DOS for the vacancy
significantly decreases.

These changes in the vibrational spectra can be
explained using the concept of effective interaction
between the vacancy and its nearest neighbor atoms,
including the short-range and Coulomb components.

In the case of the vacancy, the effective interaction
weakens, which significantly increases the combined
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Fig. 4. Combined phonon density of states for atoms located
within a sphere of radius 2.7 Å surrounding (1) the anion
vacancy, (2) F+ center, and (3) F-center.
Frequencies of localized vibrations induced by a defect in its nearest neighbor environment

Defect Ion Distance
to defect, Å

Frequency, THz

X Y Z

Anion vacancy Al(1) 2.12 5.7, 22.5 6.0, 22.5 5.7, 22.0

Al(2) 2.24 5.4 8.4 6.6

F+ center Al(1) 1.97 3.0, 9.6 8.2

Al(2) 2.07 2.0, 7.8, 14.0 3.3, 11.7

F center Al(1) 1.89 8.2, 12.0 14.7

Al(2) 2.02 16.0 14.0 13.0
YSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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phonon DOS in the low-frequency spectral region. In
the case of the F+ center, the Coulomb interaction is
partially compensated, which causes an enhancement
of the effective interaction in comparison with the case
of the neutral vacancy and a redistribution of the
phonon DOS in the region up to 19 THz. If the vacancy
center traps two electrons (with the formation of the F
center), the Coulomb component of the interaction is
fully restored, which further enhances the effective
interaction and results in a shift of the phonon DOS in
the region below 10 THz toward the high-frequency
spectral region.

These data on defect vibrations will be applied to
the interpretation of electron delocalization from the F
and F+ centers in α-Al2O3 crystals.
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Abstract—A mechanism for the bidirectional and all-round shape memory effects observed in tita-
nium nickelide crystals is discussed quantitatively by using the theory of diffuse martensitic transfor-
mations (DMTs). These effects are associated with an anisotropic distribution of Ti3Ni4 particles,
which arises in bent crystals subjected to annealing followed by relaxation of coherent microstresses
produced by the particles. Using the DMT theory, the influence of the stepwise B2  R  B19'
phase transition on the magnitude and sign of the radius of curvature of a thin strip of titanium nick-
elide is calculated and the conditions are determined under which the bidirectional and all-round
shape memory effects occur depending on structural factors and the geometrical parameters of the
strip. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The shape memory effect (SME) observed in crys-
tals undergoing a martensitic transformation (MT) is
usually unidirectional; that is, a crystal is deformed in
the direction opposite to the direction of its preliminary
deformation. However, it was established in [1–3] that
titanium nickelide (TiNi) crystals subjected to special
thermal treatment exhibit a bidirectional SME; that is,
as the temperature is decreased, a TiNi crystal not only
recovers its original shape but deforms in the opposite
direction. This bidirectional SME is observed after
high-temperature annealing of bent strips [1–4] and
plates [5] of titanium nickelide with an Ni content of
50.5 at. % or greater.

Electron-microscopic studies of TiNi samples with
such Ni contents annealed at temperatures from 600 to
800 K show [1, 6, 7] that, in addition to the solid solu-
tion, an alloy contains disk-(lens-)shaped precipitates
of intermetallic Ti3Ni4 with a radius of 10 to 100 nm
depending on the temperature and annealing time.
There are four equivalent orientations of Ti3Ni4 parti-
cles in accordance with the number of (111)-type habit
planes of the B2 phase [6, 7]. However, if a strip is sub-
ject to bending during annealing (and, hence, is in a
strained state), only one orientation of martensite parti-
cles becomes dominant [1, 6]. In this case, disk-shaped
precipitates are oriented perpendicular to the compres-
sive-stress direction in compressed layers and are par-
allel to the tensile-stress direction in stretched layers.
Since precipitates are coherently joined with the matrix
and since the internal stresses that are associated with
precipitates are anisotropic (directed) [8], plates and
strips bend elastically under these stresses [1, 4, 5].
1063-7834/03/4509- $24.00 © 21784
Another feature of TiNi alloys enriched in nickel is
that, because of the presence of Ti3Ni4 particles in an
alloy, the MT proceeds in two steps, with the formation
of the intermediate rhombohedral (R) phase, as the tem-
perature is decreased. If an alloy is not enriched, the ini-
tial bcc B2 phase transforms directly into the orthorhom-
bic B19 or monoclinic B19' phase, whereas a nickel-rich
alloy containing Ti3Ni4 precipitates undergoes the two-
step transformation B2  R  B19'. In the second
stage of this transformation, the SME reverses sign and
the bidirectional SME is observed [1, 2].

Based on the above observations, the following qual-
itative mechanism was proposed in [3] for the bidirec-
tional SME. As the temperature is decreased in the tem-
perature range of the R-phase formation, R-martensite
nuclei arise near Ti3Ni4 precipitates, which brings about
partial relaxation of the internal stresses and straighten-
ing of the strip. Due to the subsequent R  B19' trans-
formation, the internal stresses relax further and change
sign. As a result, under tensile stresses, the strip (plate)
bends backwards with respect to its initial bending.

In the present paper, this qualitative mechanism for
the bidirectional SME is analyzed quantitatively in
terms of the theory of diffuse martensitic transforma-
tions (DMTs) [9, 10]. The development of quantitative
theory for the bidirectional SME is of great importance,
because this effect extends the functional capabilities of
titanium nickelide as a promising material for sensing
elements in micro- and nanocomposite sensors and
actuators [12–14]. The potential of microdevices with
sensing units based on titanium nickelide for use in
microelectromechanical systems is currently being dis-
cussed in the literature [11].
003 MAIK “Nauka/Interperiodica”
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This paper is organized as follows. In Section 2, the
two-step martensitic transformation B2  R  B19'
is considered using the DMT theory. In Section 3, we
consider a mechanism for the elastic and martensitic
relaxation of directed microstresses associated with
Ti3Ni4 particles. The bidirectional and all-round SMEs
occurring in a thin strip of titanium nickelide are dis-
cussed in Sections 4 and 5, respectively.

2. TWO-STEP MARTENSITIC 
TRANSFORMATION

According to the DMT theory [15], when two types
of martensite (R, M) coexist, their volume fractions ϕR

and ϕM in a crystal subject to a stress σ at temperature
T are equal to

 (1a)

 (1b)

Here, ∆UR, M = ωR, M∆uR, M is the change in the internal
energy of the crystal caused by the transformation of an
elementary volume ω into a new structural state and
∆uR, M is the change in the internal-energy density due
to this transformation,

 (2)

where q is the specific heat of the transformation;
TR and TM are the critical (characteristic) transforma-
tion temperatures; ξR, M are the shear strains of the lat-
tice caused by the respective structural transformations;
τfR and τfM are the friction stresses for forward and
reverse R and M martensitic transformations, which
cause transformation hysteresis to occur; and mR, M are
the orientation factors (with reference to the direction
of the unidirectional mechanical stress σ applied to the
crystal) of the habit planes and of the directions of the
atomic displacements associated with the structural
rearrangement of the lattice.

For computational convenience, we write the argu-
ments of the exponential functions in Eqs. (1) in the
form

 (3a)

 (3b)

where

 (3c)

ϕR

∆UR/kT–( )exp
1 ∆UR/kT–( )exp ∆UM/kT–( )exp+ +
--------------------------------------------------------------------------------------------,=

ϕM

∆UM/kT–( )exp
1 ∆UR/kT–( )exp ∆UM/kT–( )exp+ +
--------------------------------------------------------------------------------------------.=

∆uR M, qR M,
T T R M,–

T R M,
--------------------- ξR M, mR M, σ τ fR fM,+−( ),–=

∆UR

kT
----------- BR T /T R 1– mRσ/τR– τ fR/τR±( ),=

∆UM

kT
------------ BM T /TM 1– mMσ/τM– τ fM/τM±( ),=

BR M, ωR M, qR M, /kT ωR M, qR M, /kT R M, ,≈=

τR M, qR M, /ξR M, .=
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Figure 1a shows the variations of the volume frac-
tions of the martensite phases R and M with decreas-
ing temperature (in the absence of external stresses,
σ = 0) calculated from Eqs. (3) for the following val-
ues of the parameters: BR = 80, BM = 120, TR = 1.05TM,
τfR /τR = 10−3, and τfM/τM = 3 × 10–2. It can be seen that,
for these parameters, the R martensite dominates in the
temperature range 0.8TR  < T < TR, while the M marten-
site is dominant at temperatures T < 0.8TR.

The temperatures at which the forward MT in TiNi
begins and the reverse MT terminates are usually deter-
mined from calorimetric measurements [12] or from
experimental electric-resistivity temperature depen-
dences [2]. During the two-step forward and reverse
MTs, in the case where the temperature is varied at a
constant rate , the specific heat Q(T) and the heat lib-
eration rate dQ/dt are equal to

 (4)

where the volume fractions of the R and M martensites
are given by Eqs. (1)–(3). Figure 1b shows calorimetric
curves for the forward and reverse MTs calculated from
these equations for the parameters indicated above and

Ṫ
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Fig. 1. Temperature dependences (a) of the volume frac-
tions of (1) the R and (2) M martensites in titanium nickelide
and (b) of the corresponding heat liberation rates upon (1)
cooling and (2) heating.
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1786  MALYGIN
qR = 0.2qM. It can be seen that, when the reverse MTs
proceed (curve 2), the B19'  R transformation
occurs (because of its strong temperature hysteresis) at
temperatures very close to the temperatures of the
R  B2 transformation, which is in agreement with a
large body of experimental data. Based on this two-step
MT, we will treat the bidirectional SME occurring in
titanium nickelide.

3. ELASTIC AND MARTENSITIC STRESS 
RELAXATION IN A STRIP

Let us consider a bent thin strip of length 2l, width
b ! 2l, thickness 2h ! b, and radius of curvature R0 >
2l. As indicated above, annealing of a bent strip brings
about the formation of disk-shaped Ti3Ni4 particles,
with the disk planes being perpendicular to the com-
pressive stress direction in compressed layers. These
precipitates are coherently joined with the matrix and,
therefore, produce an (average) elastic strain ε0 = fδ0
along the layers [8, 16], where f is the volume concen-
tration of the precipitates and δ0 < 0 is the free-precipi-
tate strain. After cooling and removing the external
bending stress, the strip will be subjected to internal
elastic stresses and strains εe(y) or (at MT temperatures)
plastic strains εp(y, T), where y is the coordinate along
the direction perpendicular to the neutral (unstrained)
layer of the strip. Due to these stresses and strains, the
strip will additionally be bent (forward or backwards)
relative to its initial bending.

Let us determine the new radius of curvature Rep

(curvature ) of the strip and the distribution of elas-
tic stresses σ(y, T) over the strip. The strain ε of a layer
of the strip can be represented in the form

 (5a)

Rep
1–

ε ε0H y( ) εe y T,( ) Rep
1–
y εp y T,( ),+ + +=

2

1

0

–1

–2

σ/
E

|ε 0
|

–1.0 –0.5 0.5 1.0
y/h

1

2

Fig. 2. Stress variations through the strip thickness after
(1) elastic and (2) martensitic stress relaxation.

0

PH
where H(y) is a step function: H = 1 for y < 0 and H = 0
for y > 0. Using Eq. (5a), the internal elastic stresses are
found to be

 (5b)

The unknown parameters ε and  are determined by
the balance of the stresses and bending moments
applied to the strip:

 (6)

where ds = bdy is an element of the cross-sectional area
of the strip. If the ends of the strip are free and there is no
external load and bending moments, we have N = M = 0.

Integrating Eqs. (6) gives

(7)

Here,  = –(3/4h)|ε0 | and  = –(3/2h) (T) are the
changes in the curvature of the strip due to elastic and
martensitic stress relaxation in the strip, respectively.
Substituting Eqs. (7) into Eq. (5b), we find the stress
variation through the thickness of the strip:

 (8a)

 (8b)

In the first of Eqs. (8b), the plus sign corresponds to the
inner layer of the strip (y < 0) and the minus sign corre-
sponds to the outer layer (y > 0). The stresses σ0(y) are
equivalent to the stresses that arise in a bimetallic strip
consisting of layers with coefficients of thermal expan-
sion differing by ∆α when the temperature of the strip
is varied by ∆T [17]; in this case, we have ε0 = ∆α∆T.
Figure 2 shows variations in the stress σ0 through the
strip thickness (curve 1). It can be seen that compres-
sive stresses dominate near the surface of the com-
pressed layer (y = –h) and tensile stresses are dominant
near the surface of the stretched layer (y = h).

As the temperature is decreased to the temperature
of the R- and M-martensitic transformations, the elastic
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stresses given by Eq. (8a) relax by an amount σp(y, T)
and are redistributed over the strip. The local plastic
strains caused by the formation of the R and M marten-
sites depend on the magnitude and sign of the stresses
σ0(y) and, according to the DMT theory, are given by

 (9a)

where εR, M = fξR, M, with ξR and ξM being the shear
strains associated with the lattice transformation into
the R and M modifications, respectively, and nR and nM

are the numbers of equivalent orientations of R- and M-
martensite precipitates, respectively, for which the ori-
entation factors are equal. In order to calculate the plas-
tic strains in Eq. (9a), we represent expressions (3),
which are involved in Eqs. (1) for the volume factors of
the R and M martensites, in the form

 (9b)

where t = T/TR,  = y/h, and b = TR/TM;

 (9c)

The variations in stresses (8a) through the strip thick-
ness are shown in Fig. 2 (curve 2) for the temperature
0.9TR and the following values of the parameters in
Eqs. (9c): b = 1.05, aR = 0.12, aM = 0.1, ξR = 3 × 10–2,
ξM = 0.12, f = 0.1, |ε0 | = 3 × 10–3, qR = 30 MJ m–3,
qM = 150 MJ m–3, E = 40 GPa, mR = mM = 0.5, and
nR = nM = 3. The values of the other parameters are pre-
sented above. Calculations show that (T) = 0 in Eqs.
(7) and (8b).

It can be seen from Fig. 2 that, due to the formation
of the R martensite, the stresses in the near-surface lay-
ers of the strip relax and reverse sign (curve 2). Since
the formation of the M martensite causes large lattice
strains (ξM > ξR), the stress relaxation becomes progres-
sively stronger as the temperature is decreased further,
with the consequence that the strip unbends.

4. BIDIRECTIONAL SHAPE MEMORY EFFECT

The strip shape is characterized by the radius of cur-
vature R(T), which varies during the MT. The curvature
of the strip can be written as

 (10)

where R0 is the initial radius of curvature of the strip
before stress relaxation. For computational conve-

εp T y,( ) nRmRεRϕR T σ0 y( ),( )[=

+ nMmMεMϕM T σ0 y( ),( ) ] σ0 y( )[ ] ,sgn

∆UR

kT
----------- BR t 1– mRaR S0 y( )– τ fR/τR±( ),=

∆UM

kT
------------ BM bt 1– mMaM S0 y( )– τ fM/τM±( ),=

y

σ0 y( )
E ε0
------------- S0 y( ) 1

2
--- 3

2
---y 1± 

  ,= =

aR ξR ε0 E/qR( ), aM ξM ε0 E/qM( ).= =

εp

R
1–

T( ) Re
1–

Rp
1–

T( ) R0
1–
,+ +=
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
nience, by using the notation in Eq. (7), we represent
the curvature of the strip in the reduced form

 (11)

Figure 3 shows the calculated temperature dependence
of the reduced curvature for two values of the parameter
R0/h (102, 3 × 102) and the values of the other parame-
ters indicated above. In the former case (Fig. 3a), the
unidirectional SME takes place; that is, the curvature of
the strip does not change sign as the MTs proceed. In
the latter case (for a thinner strip), the bidirectional
SME is observed; that is, the strip curvature reverses
sign when the MT occurs (Fig. 3b). Since the strains ε0

and  vary in proportion to the concentration f of
Ti3Ni4 particles in the strip, the occurrence of the bidi-
rectional SME is controlled by this concentration. The
higher the concentration, the larger both the elastic and
plastic strain in the strip and the more pronounced the
bidirectional SME. These predictions agree well with
the experimental data for annealed strips of titanium
nickelide enriched in nickel (in comparison to the equi-
atomic composition) [1, 2].

The initial shape of the strip (after its high-tempera-
ture annealing) is described by the function

 (12)

In Fig. 4, the initial shape of the strip is shown in the
(x) – x/L0 coordinates (dashed curve), where

(x) = W0(x)/W0(0), W0(0) is the maximum deflection
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Fig. 3. Temperature dependences of the reduced strip curva-
ture R0/R(T) under the conditions of (a) the unidirectional
and (b) the bidirectional SME upon (1) heating and (2) cool-
ing as calculated from Eq. (11).
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of the strip, 2L0 = 2R0sinθ0 is the distance between the
ends of the strip [the length of the chord of the arc
described by Eq. (12)], and 2θ0 = 2l/R0 is the full bend-
ing angle of the strip. For Fig. 4, we have θ0 = 0.5, 2θ0 =
57.3°, and W0(0) = R0(1 – cosθ0) ≈ 0.12R0.

After elastic and martensitic stress relaxation, the
changed strip shape is described by the expression
[similar to Eq. (12)]

 (13)

where R(T) is the temperature-dependent radius of cur-
vature given by Eq. (10), 2L(T) = 2R(T)sin[θ(T)] is the
distance between the ends of the strip, and 2θ(T) =
2l/R(T) is the bending angle of the strip at a given tem-
perature. In Fig. 4, curves 1–3 illustrate how the strip
shape is changed [according to Eqs. (10), (13)] with
decreasing temperature. The ordinate is the strip deflec-
tion (x, T) = W(x, T)/W0(0) normalized to the initial
maximum deflection. At the temperature 1.1TR, as is
seen from Fig. 3b, the change in the strip shape is
caused by purely elastic relaxation of internal stresses
(Fig. 4, curve 1). At the temperature 0.9TR, as is also
seen from Fig. 3b, the change in the strip shape is due
to the formation of the R martensite in the strip (Fig. 4,
curve 2), and at the temperature 0.7TR, it is due to the
formation of the M martensite. In the latter case, the
strip curvature reverses sign (Fig. 4, curve 3); that is,
the bidirectional SME occurs. Subsequent heating
causes the strip shape to vary in the reverse order. How-
ever, the temperature ranges in which the B19'  R
and R  B2 transformations occur overlap in this
case (Fig. 1b, curve 2), and, as a result, the changes in
the strip shape take place in the narrow temperature
range 0.9TR –1.03TR (Fig. 3b, curve 1). The temperature
dependence of the maximum strip deflection is given by

 (14)

W x T,( )

=  R T( ) 1 x/R T( )[ ] 2
– 1 L T( )/R T( )[ ] 2

––{ } ,

W

W 0 T,( ) R T( ) 1 θ T( )[ ]cos–{ } .=
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–

1

2

3

Fig. 4. Changes in the strip shape upon cooling: strip shape
at temperature T equal to (1) 1.1TR, (2) 0.9TR, and (3)
0.7TR. The dashed curve is the initial strip shape before
elastic and martensitic stress relaxation.
P

For the values of the parameters indicated above, in the
case of complete martensitic stress relaxation, the max-
imum strip deflection (at the temperature 0.7TR) is
equal to –7 × 10–2R0.

5. ALL-ROUND SHAPE MEMORY EFFECT

The value of the maximum strip deflection calcu-
lated above is much smaller than the initial radius of
curvature of the strip, because the initial bending angle
2θ0 = 2l/R0 is small. If this angle is made to be as large
as 2π or larger (for example, for a longer strip), the so-
called all-round SME can occur [1, 2]; namely, a strip
that is rolled into a ring during its annealing will
straighten and then roll into a ring with a curvature of
the opposite sign after cooling and undergoing the two-
step MT.

In order to treat the all-round SME, we write
Eqs. (12) and (13) in polar coordinates, taking the polar
angle θ (measured from the vertical axis) to be zero for
the fixed point of the ring (Fig. 5). In this case, Eqs. (12)
and (13) take the form

 (15)

 (16)

In Fig. 5, the dashed curve shows the initial shape of the
strip (a ring with 2θ = 2π) in the polar coordinates
[ (θ) – sinθ], where (θ) = W0(θ)/R0. The strip
shape calculated from Eq. (16) for the temperatures
1.1TR (after elastic stress relaxation), 0.83TR (the strip
becomes straight), and 0.7TR (after martensitic stress
relaxation) is shown by curves 1–3, respectively, con-
structed in the [ (θ, T) – (R(T)/R0)sinθ] coordinates,

where (θ, T) = W(θ, T)R(T)/R0. The opening angle of
the ring is 2θ(T) = 2l/R(T). It can be seen that at temper-
atures below 0.83TR the strip curvature reverses sign
and the strip rolls into a semicircle.
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Fig. 5. Changes in the strip shape under the conditions of
the all-round SME: (1) T = 1.1TR, (2) 0.83TR, and (3) 0.7TR.
The dashed curve is the initial strip shape.
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Figure 6 compares the calculations with the experi-
mental data [1] on the all-round SME in titanium nick-
elide with 51 at. % Ni (annealed at 773 K over 1 h). The
experimental data represent the temperature depen-
dence of the reduced strip curvature R0/R(T) upon heat-
ing and cooling. The curvature is normalized to its lim-
iting values R0/R(1.1) for positive values of the curva-
ture and |R0/R(0.7)| for negative values, where R(1.1)
and R(0.7) are the radii of curvature at temperatures
1.1TR and 0.7TR, respectively. According to Eq. (11),
the limiting values of the reduced curvature are 

 (17)

Using Eqs. (7) and (9), we obtain the estimate (0.7) ≈
(1/9)nMmM f ξM. It is seen from Fig. 6 that the calcula-
tions agree with the experimental data.

6. CONCLUSION

Thus, by using the DMT theory, we have shown that
the bidirectional and all-round shape memory effects
occur in a strip (or plate) of titanium nickelide if the dis-
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Fig. 6. Temperature dependences of the normalized curva-
ture of a titanium nickelide strip under the conditions of the
all-round SME as calculated from Eq. (11): (1) heating and
(2) cooling. Dots are experimental data taken from [1].
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tribution of coherent Ti3Ni4 particles is anisotropic and
their concentration is sufficiently high and if the ratio
between the thickness of the strip and its initial bending
radius (during high-temperature annealing) satisfies
certain restrictions.

REFERENCES

1. N. Nishida and T. Honma, Scr. Metall. 18 (11), 1293
(1984).

2. N. Nishida and T. Honma, Scr. Metall. 18 (11), 1299
(1984).

3. T. Honma, Shape Memory Alloy-86, Ed. by Ch. Youyi,
T. Y. Hsu, and T. Ko (China Academic, Guilin, 1986),
p. 83.

4. M. A. Khusainov, Vestn. Novgorod. Gos. Univ., No. 10,
34 (1998).

5. M. A. Khusainov, Zh. Tekh. Fiz. 67 (6), 118 (1997)
[Tech. Phys. 42, 692 (1997)].

6. D. Y. Li and L. Q. Chen, Acta Mater. 45 (2), 471 (1997).

7. L. Bataillard, J. E. Bidaux, and R. Gotthardt, Philos.
Mag. A 78 (2), 327 (1998).

8. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 45 (8),
1491 (2003) [Phys. Solid State 45, 1566 (2003)].

9. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 36 (5),
1489 (1994) [Phys. Solid State 36, 815 (1994)].

10. G. A. Malygin, Usp. Fiz. Nauk 171 (2), 187 (2001)
[Phys. Usp. 44, 173 (2001)].

11. P. Krulevitch, A. P. Lee, P. B. Ramsey, et al., J. Micro-
electromech. Syst. 5 (4), 270 (1996).

12. J. L. Seguin, M. Bendahan, A. Isalgue, et al., Sens. Actu-
ators 74 (1/3), 65 (1999).

13. R. X. Wang, Y. Zohar, and M. Wong, J. Micromech.
Microeng. 12 (3), 323 (2002).

14. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43 (7),
1286 (2001) [Phys. Solid State 43, 1339 (2001)].

15. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 44 (11),
2081 (2002) [Phys. Solid State 44, 2171 (2002)].

16. J. D. Eshelby, Solid State Phys. 3, 79 (1956) (Inostran-
naya Literatura, Moscow, 1963).

17. L. E. Andreeva, Elastic Elements of Devices (Mashinos-
troenie, Moscow, 1981).

Translated by Yu. Epifanov
3



  

Physics of the Solid State, Vol. 45, No. 9, 2003, pp. 1790–1792. Translated from Fizika Tverdogo Tela, Vol. 45, No. 9, 2003, pp. 1706–1708.
Original Russian Text Copyright © 2003 by Sinyavski

 

œ

 

, Brusenskaya.

                                                                                

LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS

 

Optical Magnetoabsorption in Quantum-Confined Systems
in the Field of a Resonance Squeezed Electromagnetic Wave

É. P. Sinyavskiœ and E. I. Brusenskaya
Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, 277028 Moldova

Received December 3, 2002

Abstract—The contribution of an intense squeezed electromagnetic wave to magnetoabsorption is analyzed.
It is demonstrated that an amplitude-squeezed (or phase-squeezed) resonance electromagnetic wave more
strongly affects the magnetoabsorption peaks than classical coherent radiation. © 2003 MAIK “Nauka/Inter-
periodica”.
1. Let us consider a quantum-confined system in a
homogeneous magnetic field with a strength H directed
along the confinement axis OZ. In this case, the energy

of an electron ( ) or a hole ( ) for a rectangular
quantum well of width a is completely quantum-con-
fined; that is,

(1)

Here, ω(c, v) =  is the cyclotron frequency,

ε(c, v) =  is the step of the spatial quantum con-

finement, and m(c, v) is the effective electron (hole)
mass.

In this paper, we analyze the specific features
observed in the absorption of a weak light wave of fre-
quency Ω due to a transition of an electron from the
hole state to the electron state (in the absence of a mag-
netic field, this is an interband optical transition) in the
field of a squeezed electromagnetic wave of frequency
ω in resonance with a wave of frequency ωc. In what
follows, we will consider strong quantized magnetic
fields, provided the energy of the Coulomb interaction
between the electron and the hole is insignificant as
compared to the energy separation between the magnet-
ically quantized levels. Under these conditions, the
internal motion of the electron–hole pair is finite and,
strictly speaking, free states of the electron and the hole
are nonexistent [1]. Experimental photoluminescence
investigations demonstrated that the binding energy of
an exciton in a quantum well at B > 10 T in
InGaAs/GaAs [2] and GaAs/AlGaAs [3] is propor-
tional to B. Therefore, the above approximation is
applicable in our case. Note that this approximation
was thoroughly discussed by Edelstein et al. [4]. For
optical excitation of an electron–hole pair, the exciton
momentum is equal to the momentum of the electro-
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magnetic wave and is very small [5]. Hence, we will
ignore the exciton bands observed in quasi-two-dimen-
sional semiconductors in a strong magnetic field [1].

The absorption coefficient K(Ω) for a weak electro-
magnetic wave is calculated by analogy with the calcu-
lations performed in our earlier works [6, 7]. For laser
radiation incident perpendicular to the surface of the
quantum-confined system, the absorption coefficient in
the case of infrared magnetic resonance (ω = ωc) can be
represented by the expression

(2)

Here, we introduced the following designations:

b+(b) is the operator of production (annihilation) of
photons of a resonance electromagnetic wave, α = (N,
n, kx) is a set of quantum numbers characterizing the
carrier state in the quantum-confined system under con-
sideration, Eg is the band gap, 〈…〉 sq indicates averaging
with the density operator of a squeezed electromagnetic
field of frequency ω [8], and B0 is the parameter deter-
mined by the interaction of the electron with acoustic
phonons and accounting for the line shape of the optical
absorption in quantum-confined systems in the longitu-
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dinal magnetic field [9]. The operators aN and  are
defined as

where  = f(N + m) and  is an arbitrary
function of the Landau quantum numbers N.

The above operators satisfy the standard commuta-
tion relationships    =  and, consequently,
can be treated as Bose operators. The other designa-
tions are described in our previous paper [7].

The averaging in expression (2) can be exactly
accomplished using the definition given by Loudon and
Knight [10] for a squeezed state of radiation. By apply-
ing the procedure developed by Prepelitsa [11], it is a
simple matter to derive the following expression for the
absorption coefficient of a light wave of frequency Ω in
the field of an intense resonance squeezed electromag-
netic wave:

(3)
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Fig. 1. Frequency dependences of the first peak of the mag-
netoabsorption (expressed in relative units): (1) coherent res-
onance laser radiation (µ = 0, δ = 1), (2) amplitude-squeezed
resonance laser radiation (µ = 1, δ = 1), and (3) phase-
squeezed resonance laser radiation (µ = 1, B0/γ = 0.05).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
Here, we used the following designations:

In these expressions, LN(z) stands for the Laguerre

polynomials; α = exp(iϕα); N0 is the mean number
of photons in the mode of squeezed light; r is the
squeezing parameter; ϕα and ϕ are arbitrary phases
related to the shift and squeezing operators, respec-
tively [10]; and µ characterizes the quantum fluctua-
tions of the strength of the squeezed electromagnetic
field and can be considered a measure of its deviation
from the classical case (µ = 1/2 in the case when the
fluctuations of the laser radiation intensity are of the
same order of magnitude as the mean strength of the
field of the resonance electromagnetic wave).

It should be noted that relationship (3) at r = 0 (µ =
0) leads to the results obtained for coherent classical
laser radiation in our previous paper [7].

2. Let us now examine the specific features observed
in the absorption of a weak light wave in the field of a
resonance electromagnetic wave upon the amplitude

C t x,( ) d
2
t

2 α 2

"
2

------------------ µx
2

1 2x µ ϕα
ϕ
2
---– 

 sin+ + 
  ,=

Eα* "ωc* N
1
2
---+ 

  ε*n
2
, "ωc*+

"eH
µ0c
-----------,= =

ε*
"

2π2

2µ0a
2

--------------, µ0
1– µc

1– µv
1–
, µ+

sh
2
r

α 2
----------.= = =

N0

0.2

0.6

0
–4 –2 0 2 4

K
sq

(∆
0)

, r
el

. u
ni

ts

∆0

"Ω Eg–
3
2
---"ωc– ε0–

"ω 2γ0

---------------------------------------------------=

2

1

3

0.4

Fig. 2. Frequency dependences of the second peak of the
magnetoabsorption (expressed in relative units):
(1) coherent resonance laser radiation (µ = 0, δ = 1), (2)
amplitude-squeezed resonance laser radiation (µ = 1, δ = 1),
and (3) phase-squeezed resonance laser radiation (µ = 1,
B0/γ = 0.05).
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squeezing (2ϕα – ϕ = 0). In this situation, according to
relationship (3) at N = 0 and n = 1, we have

(4)

As follows from expressions (4), the frequency
dependence of the optical absorption coefficient can be
represented by a nearly Gaussian curve (Fig. 1). For
B0/γ ! 1, the absorption curve is completely deter-
mined by an intense electromagnetic wave [7] (curve 1
in Fig. 1 is obtained for δ = 1 and µ = 0). It can be seen
from Fig. 1 that an increase in the quantity µ at δ = 1
leads to a decrease in the maximum and an increase in
the half-width of the absorption curve (curve 2 is
obtained for δ = 1, µ = 1). Therefore, the amplitude-
squeezed wave more strongly affects the magnetoab-
sorption as compared to coherent resonance laser radi-
ation. At N = 1 and n = 1 (electrons transfer from the hole
state to the first magnetically quantized level), the fre-
quency dependence K(Ω), according to relationship (3),
exhibits two peaks (Fig. 2), which is characteristic of
the process under investigation [7]. In Fig. 2, curve 1 is
obtained at δ = 1 and µ = 0, whereas curve 2 is calcu-
lated at δ = 1 and µ = 1. It can be seen from Fig. 2 that
an increase in the quantity µ results in an increase in the
splitting, which is favorable for experimental observa-
tion of the predicted effect in the case of amplitude
squeezing.

Now, we consider the contributions made to the
absorption of a light wave of frequency Ω by the phase-
squeezed resonance electromagnetic wave (2ϕα – ϕ =
π). From expression (2) at N = 0 and n = 1, we can eas-
ily obtain the relationship

(5)

For the maximum absorption (∆0 = 0) at B0/γ ! 1,
the frequency dependence of the absorption coefficient
can be represented by a narrow curve with a maximum
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attributed to the electron–phonon interaction (curve 3
in Fig. 1 at B0/γ = 0.05, µ = 1). An increase in the param-
eter B0 (characterizing the interaction of carriers with
long-wavelength acoustic phonons) leads to a decrease
in the maximum; consequently, the shape of the absorp-
tion curve can depend on temperature. This is the fun-
damental difference between the case of a phase-
squeezed electromagnetic wave and coherent reso-
nance laser radiation.

It follows from relationship (3) that, for a phase-
squeezed electromagnetic wave of resonance laser radi-
ation, the transition of a carrier to the first Landau level
(N = 1, n = 1) does not lead to splitting of the second
peak of the magnetoabsorption (curve 3 in Fig. 2 is
obtained for µ = 1, B0/γ = 0.05). The above effects of the
coherent and squeezed light on the frequency depen-
dence of the magnetoabsorption indicate the possibility
of designing an analyzing device based on quantum-
confined systems. Such a device will make it possible
to examine the statistical properties of an electromag-
netic wave of laser radiation and to control the absorp-
tion of a weak light wave of frequency Ω in these sys-
tems with the use of an intense resonance electromag-
netic wave.
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Abstract—The field distribution and the spectrum of plasma eigenmodes are determined for a circular hole in
a screen having the form of a hyperboloid of revolution. The spectrum of plasmons is obtained for a planar
screen with a circular hole. The symmetric mode with m = 1 can be excited in the field of a dipole oriented along
the screen plane, whereas the antisymmetric mode with m = 0 can be excited by a dipole perpendicular to the
screen plane. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable research attention has
been focused on studies in the field of the optics of
nanostructures (nanooptics). For example, a number of
interesting works have been performed using near-field
optical microscopy [1–3]. Particular interest has been
expressed by scientists in the recently discovered
effects of supertransparency of periodic structures with
holes whose diameter is substantially less than the opti-
cal wavelength [4, 5]. Plasma waves at interfaces and in
narrow slits or channels are of considerable importance
in nanooptical studies [6–8]. In particular, the plasmons
localized in the vicinity of a hole, under resonance con-
ditions (see below), can efficiently transfer the energy
through a hole of small aperture (with subsequent emis-
sion of light at the opposite end of the hole). The plas-
mons can also transfer the energy through channels with
a diameter of appreciably less than the optical wave-
length, i.e., under conditions where the light transmis-
sion is insignificant from the standpoint of tunneling.

In order to understand qualitatively the phenomenon
of resonant transfer through a small hole, it is expedient
to use the Babinet principle of complementary screens.
In particular, the diffraction field for a hole in a screen
coincides with the diffraction field for a disk congruent
with it. For the disk, there occur plasma resonances due
to different multipole modes. Therefore, it can be
expected that resonances of transfer through the hole
will be observed at frequencies corresponding, for
example, to the dipole plasma mode of the disk. The
induced dipole moment has a maximum at the fre-
quency of dipole resonance; consequently, the maxi-
mum should also be observed upon emission through
the hole.

In this work, we obtained the spectrum of plasma
modes localized near a circular hole in a metallic
screen. An analytical solution to this problem was
found for the first time.
1063-7834/03/4509- $24.00 © 21793
The spectrum of plasma oscillations and the struc-
ture of the field were determined in the quasi-electro-
static approximation (see, for example, review [9]), in
which the spectrum of plasmons was determined from
the solution to the Laplace equation with the appropri-
ate boundary conditions. In the quasi-electrostatic
approximation, we ignored the delay effects but took
into account the frequency dispersion of the permittiv-
ity. This approximation is justified in the case when the
characteristic size of the region of localization of the
field is less than the optical wavelength.

2. PLASMA MODES AT A CIRCULAR HOLE
IN A SCREEN

Let us consider a metallic screen with a circular
hole. It is assumed the screen has the form of a hyper-
boloid of revolution (Fig. 1). The Laplace equation for
the electrostatic field potential Φ(r) = Φ(σ, τ, ϕ) in the
coordinates of the oblate ellipsoid of revolution has the
form

–4
–2

0
2

4
x

–1

0

1
–4

–2
0

2 4y

z

Fig. 1. Three-dimensional image of the screen with a hole
(in the form of a hyperboloid of revolution with τ0 = 0.25).
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(1)

where

The coordinates σ, τ, and ϕ can be expressed
through the Cartesian coordinates z = aστ and x =

acosϕ  (where a is the focal length of
the ellipsoid), and the hole diameter can be determined

from the focal length: D = 2a(1 – )1/2. The compo-
nents of the electric field can be represented in terms of
the electrostatic potential Φ: Eσ = [(1 + σ2)1/2/(σ2 +
τ2)1/2]∂Φ/∂σ/a and Eτ = [(1 – τ2)1/2/(σ2 + τ2)]∂Φ/∂τ/a.

The surface of the metallic screen is determined by
the equation τ = ±τ0 (Fig. 2). We will use the Drude
model for the permittivity of the material of the screen:

ε(ω) = 1 – /[ω(ω + iγ)], where ωp is the plasma fre-
quency and γ is the collision frequency.

The symmetry of the problem is such that the solu-
tions corresponding to the eigenmodes can be trans-
formed through the representation of the group of rota-
tions about the axis and the representation of the group
of reflections in the plane of the screen (the xy plane).
On this basis, the solution to the Laplace equation in
three different regions of the space will be sought in the
form of an expansion in Legendre functions (for brev-
ity, the superscripts m on the potentials and on the asso-
ciated Legendre functions are omitted):

(2)

Here, ν(ν + 1) is the constant of separation of the vari-
ables, which is taken as ν = –1/2 + it, 0 < t < ∞. For this
constant of separation of the variables, the Legendre
functions are real for all values of τ and are decreasing
and nonsingular at σ  ∞. The sign “plus” in square
brackets relates to the symmetric modes with respect to
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Fig. 2. Coordinate system of the hyperbolic screen with a
hole.
PH
reflections in the xy plane, and the sign “minus” refers
to the antisymmetric modes. The components of the
electric field should be matched at the surface of the
screen in the upper and lower parts, i.e., for τ = ±τ0, at
the surface of the hole along the line σ = 0, and along
the line τ = 0 (Fig. 2). The specific conditions of the
matching are associated with the fact that the coordi-
nate τ exhibits a jump at σ = 0. All these conditions are
satisfied for the following functions:

(3)

The expansion coefficients A(t), B(t), … can be deter-
mined from the conditions of matching of the potential
and the normal component of the induction
ε(ω)(∂Φ/∂τ) at the surfaces τ = ±τ0. The solution to the
obtained system of equations has the form

(4)

3. ANALYSIS OF THE SPECTRUM 
AND THE SPATIAL STRUCTURE 

OF NORMAL MODES

The frequencies of eigenmodes (local plasmons in
the system under consideration) as functions of the
continuous parameter t are determined from relation-
ship (4). Let us analyze the spectrum of plasma eigen-
modes in the limiting cases. First, we consider the spec-
trum in the limit of a thin screen (τ0  0).

In the limit of a very thin screen, the dependence of
the frequency of the symmetric mode on the parameter
t takes the form

(5)

The quantity nτ0a is proportional to the surface den-
sity of electrons at the screen near the focus. This quan-
tity should be taken to be constant in the limit τ0  0.
Note that, at a large distance from the edge of the
screen, the above model of the screen corresponds to a
screen with a hole in which the impedance is a linear
function of the distance from the screen edge.

Figure 3 shows the dispersion curves for screens
with different values of τ0. The dispersion curves for
different values of m accounting for the angular sym-
metry of the solutions are depicted in Fig. 4.

The spectrum is characterized by a gap in the range
of small parameters t and approaches the frequency of
a surface plasmon at large values of t.
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For symmetric modes, the spatial distributions of
the fields and charges are presented in Figs. 5 and 6,
respectively. In the case of a symmetric mode, the
charges associated with the plasma mode have the same
sign at the upper and lower parts of the screen. The
charges reverse sign when the distance from the edge of
the hole increases. For an antisymmetric mode, the
charges at the upper and lower parts of the screen are
opposite in sign (Figs. 7, 8). The spectrum of these
modes is observed beginning from the plasma fre-
quency and tends to the frequency of a surface plasmon
from above at large values of t.

Judging from the spatial structure of the fields, the
symmetric mode with m = 1 can be excited in the field
of a dipole oriented along the plane of the screen,
whereas the antisymmetric mode with m = 0 is excited
by a dipole oriented along the z axis.

4. A DIPOLE AT A CIRCULAR HOLE 
IN A SCREEN

Let us now estimate the dipole moment induced by
the plasma modes at holes in a screen:

(6)

Here, σ(r) = ∂ϕ/4π∂n is the charge surface density.

Upon substituting expression (2) for the potential of
the plasma modes into formula (6), we obtain the fol-
lowing relationship for the zero (m = 0) symmetric
mode: 

(7)
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Fig. 3. Dispersion curves ω(t) for symmetric and antisym-
metric modes with m = 0 at τ0 = 0.1 and 0.02.
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where α(ρ) is the slope of the tangent to the surface of

the hyperboloid and  = 1 –   1 when τ0 ! 1.

In the case when the argument is large, the Legendre
functions have the asymptotics Pν(x) ~ xν; hence, for
ν = –1/2 + it, we obtain the expression

Here, ρ* = λ/a is the cutoff parameter in the quasi-elec-
trostatic problem.
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Fig. 4. Dispersion curves for symmetric modes with differ-
ent values of m at τ0 = 0.1.
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Fig. 5. The field structure of the zero (m = 0) symmetric
mode at t = 2.
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Fig. 6. Charge distribution for the zero (m = 0) symmetric
mode at t = 2 and τ0 = 0.05.

–1.5

–2 –1 0 1 2

–1.0

–0.5

0

0.5

1.0

1.5

x/a

z/
a

Fig. 7. The field structure of the first (m = 1) antisymmetric
mode at t = 2.
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Fig. 8. Charge distribution for the first (m = 1) antisymmet-
ric mode at t = 2 and τ0 = 0.05.
The estimation of the dipole moment induced by the
first (m = 1) antisymmetric mode results in a similar
dependence on the variables t and ρ; that is,

(8)

In this case, the dipole moment of the zero symmet-
ric mode is perpendicular to the screen plane and the
dipole moment of the first mode is aligned parallel to
the screen plane.

5. THE LIMIT OF LARGE VALUES OF m

The potential of the m-mode of a plasmon localized
at a circular hole in a planar screen has the following
form: Φm(σ, τ, ϕ) = Φm(σ, τ)exp(imϕ). For large values
of m (and radii), we obtain the expression

(9)

where l is the length element along the circumference
of the hole in the screen.

Therefore, in the limit of large values of m, the
plasma oscillations localized at a circular hole in the
screen transform into edge plasmons. The amplitude of
field oscillations of the edge plasmons is determined by

the factor Φm(σ, τ0) = C(τ0)[ (iσ) ± (–iσ)]. Taking
into account the asymptotics of the Legendre function
at large values of the argument, we can determine the
field structure of the edge plasmon:

(10)

It follows from expression (10) that the plasmon is
characterized by a large region of localization.

From the dispersion law for plasmons at a hole in a
screen, we can obtain the dispersion relation for edge
plasmons (m @ 1): ε(ω) = –1; i.e., the frequency of edge

plasmons coincides with the frequency ωp/  of the
surface plasmon.

6. CONCLUSIONS

Thus, we obtained the spectrum of plasma oscilla-
tions at a circular hole in a planar screen. The spectrum
is characterized by a gap in the range of small parame-
ters t and approaches the frequency of the surface plas-
mon at large values of t.

The analysis of the spatial distribution of the fields
and charges associated with plasma oscillations dem-
onstrated that the symmetric mode with m = 1 can be
efficiently excited by a dipole oriented perpendicularly
to the screen plane, whereas the antisymmetric mode
with m = 0 is excited by a dipole aligned parallel to the

P 2
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screen. At large distances, the field of the eigenmodes

decrease rather slowly (as 1/ ); i.e., the plasmons are
weakly localized at the hole.

The estimates of the dipole moments for the sym-
metric and antisymmetric modes indicate that the
dipole moment decreases linearly with a decrease in the
thickness of the screen and is proportional to (ρ*)3/2

(ρ* = λ/a is the cutoff parameter in the electrostatic
problem).
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Abstract—This paper reports on the results of investigations of the lattice IR reflection spectra of ZnTe/CdTe
multilayer superlattices with CdTe quantum dots grown by molecular-beam epitaxy on a GaAs substrate with
a CdTe buffer layer. It is found that the lattice IR reflection spectra of the studied structures exhibit three intense
bands associated with vibrational excitations in the GaAs substrate, ZnTe barriers separating the layers with
CdTe quantum dots, and the CdTe buffer layer. An analysis of the reflection bands and shifts in the phonon fre-
quencies has revealed internal elastic stresses both in the surface layer of the GaAs substrate and in the ZnTe
barriers. It is established that elastic stresses undergo relaxation in the separating ZnTe layers with an increase
in their thickness. An additional mode observed in the reflection spectra is explained by manifestations of ZnTe-
like vibrations in the ZnCdTe alloy due to interdiffusion of Cd and Zn at the interfaces. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, great interest has been expressed by
researchers in the properties of superlattices based on
semiconductor materials with a mismatch between
their lattice parameters. These structures are character-
ized by favorable conditions for the formation of self-
assembled quantum dots. Considerable attention has
been given to the study of self-assembled quantum dots
in structures based on Ge/Si and III–V compounds
(InAs/GaAs, InSb/GaSb, etc.). However, the physical
properties of quantum dots in structures based on II–VI
semiconductor compounds are poorly understood.
Quantum dots in II–VI structures were first found by
Bagaev et al. [1] from analyzing the photolumines-
cence spectra. Multilayer structures with selenide-
based quantum dots were thoroughly studied by Krest-
nikov et al. [2] and Peranio et al. [3], who revealed a
spatial correlation between quantum dots contained in
consecutive layers. Superlattices with telluride-based
quantum dots were examined in [4–6]. It was found that
the occurrence of correlations between self-assembled
quantum dots in adjacent layers depends on the thick-
ness of the ZnTe barriers separating the layers with
quantum dots. It should be noted that all the aforemen-
tioned works dealt with the structural and electronic
(photoluminescence) properties of superlattices with
self-assembled quantum dots. As far as we know, the
lattice dynamics of these structures, i.e., their photon
properties, have not been investigated previously. How-
ever, analysis of the vibrational spectra of superlattices
would provide a wealth of information on their physical
properties.
1063-7834/03/4509- $24.00 © 21798
This paper reports on the results of measurements
and analysis of the lattice IR reflection spectra of super-
lattices with ZnTe/CdTe quantum dots.

2. GROWTH OF SUPERLATTICES 
WITH QUANTUM DOTS AND MEASUREMENTS

Superlattices were grown by molecular-beam epit-
axy on a GaAs(100) substrate with a thick CdTe buffer
layer. The thickness of the buffer layer was approxi-
mately equal to 4.5 µm. The structures grown involved
200 periods of CdTe layers with a thickness of
2.5 monolayers (ML). The CdTe layers were sepa-
rated by ZnTe barriers with a thickness of 12 ML
(structure B12) or 25 ML (structure B25). The structure
with a barrier thickness of 75 ML (structure B75)
involved 100 periods. The structures grown were exam-
ined on a JEOL 2000 transmission electron microscope
(TEM) with a point resolution of 0.27 nm. An analysis of
the changes in the lattice parameters in the growth direc-
tion demonstrated that the structures studied contain
CdTe islands approximately 2 nm thick and 6–10 nm in
diameter. These islands are identified as self-assembled
quantum dots. It is of interest that the thickness of the
quantum dots is considerably greater than the thickness
of the CdTe layer grown (the thickness of a CdTe
monolayer is equal to 0.324 nm; 2.5 ML = 0.81 nm).
This can be explained by the Cd and Zn interdiffusion
stimulated by elevated growth temperatures. An exam-
ination of the TEM images revealed a vertical correla-
tion between CdTe islands. This correlation manifests
itself in the fact that an island in a particular layer is
located over a similar island in the lower layer, etc. The
003 MAIK “Nauka/Interperiodica”
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line joining the correlated islands makes an angle of 40°
with the growth direction. Moreover, the same sample
contains randomly arranged CdTe islands in addition to
the correlated quantum dots. The observed vertical cor-
relation of self-assembled quantum dots is explained by
the anisotropy of the elastic energy of the matrix mate-
rial (ZnTe) [7].

The long-wavelength IR reflection spectra were
recorded on a laboratory vacuum grating infrared spec-
trometer and on a Bruker Fourier-spectrometer with a
spectral resolution of 1 cm–1.

3. ANALYSIS OF LATTICE IR REFLECTION 
SPECTRA. RESULTS AND DISCUSSION

The lattice IR reflection spectra of the superlattices
with CdTe quantum dots separated by ZnTe barriers
with a thickness of 12 ML (structure B12) or 25 ML
(structure B25) are shown in Fig. 1. In this figure, the
points are the experimental data and the heavy solid
lines represent the calculated spectra. For clarity, the
spectrum of the B25 structure is shifted along the ordi-
nate axis by 0.2. The spectral range in the vicinity of
270 cm–1 corresponds to lattice reflections of the GaAs
substrate, and the spectral features in the vicinity of 140
and 170 cm–1 are attributed to the CdTe and ZnTe vibra-
tions of the buffer layer and the superlattice. In the
transparency region of the GaAs substrate, the CdTe
buffer layer, and the CdTe/ZnTe superlattice, all the
reflection spectra exhibit frequent oscillations associ-
ated with the interference on 400- to 500-µm-thick
GaAs substrates. As can be seen from Fig. 1, these
oscillations manifest themselves at frequencies below
140 cm–1 and, in part, in the range between the ZnTe
vibrations and lattice vibrations of the GaAs substrate.

The specific features of the IR reflection spectra in
the range of lattice vibrations and their interpretation
for film/substrate structures with thin films (1–2 µm)
were discussed in our earlier work [8] for
Zn1 − xCdxSe/GaAs structures. In this case, the reflec-
tion spectrum has a rather simple shape. Compared to
the IR reflection spectrum of the substrate in the trans-
parency region, the main features of the reflection spec-
trum of the film/substrate structure resemble those
observed in the spectrum of the film and can easily be
mathematically treated on the basis of the dispersion
analysis. However, when interpreting the lattice reflec-
tion spectra of the superlattices under investigation, it
should be remembered that the structure involves a
4.5-µm-thick CdTe buffer layer. As a result, the total
thickness of the structure, including the superlattice
thickness (on the average, 3.5 µm), is approximately
equal to 8 µm, which is comparable to the depth of pen-
etration of exciting IR radiation into the sample. There-
fore, in the strict sense, the thin-film approximation
(df ! λ) is inapplicable in the given case and the quali-
tative determination of the dispersion parameters for
the CdTe layer presents considerable difficulties.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      200
The dispersion analysis of the lattice IR reflection
spectra of the superlattices was carried out using a
model structure formed by a thin film (a superlattice
and a buffer layer) on a semi-infinite substrate. In the
framework of this model for a film of thickness L with
a dielectric function εf(ω) and a substrate with a dielec-
tric function εs(ω) in normally incident light, the ampli-
tude reflectivity (without regard for the multiple reflec-
tion in the film) has the following form [9]:

(1)

where

Here, λ is the wavelength. The reflectivity is defined by
the formula R(ω) = |r1fs(ω)|2. The inclusion of the mul-
tiple reflection in the film at the film–substrate and
film–vacuum interfaces leads to a very cumbersome
relationship for the reflectivity, which accounts for
interference effects and provides no additional infor-
mation on the lattice vibrations.

The dielectric function εSL(ω) = εf(ω) of the super-
lattice as a whole was considered in the classical addi-
tive form

(2)

In calculations of the reflectivity R(ω), we varied the
following parameters in the formula for the dielectric
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Fig. 1. (1, 2) Experimental and (3) calculated lattice IR
reflection spectra of B12 (open squares) and B25 (open cir-
cles) superlattices grown on a GaAs substrate. The thick-
nesses of the potential barriers in B12 and B25 superlattices
are equal to 12 and 25 ML, respectively.
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function εf(ω): the frequency ωij of the jth TO-phonon
mode, the oscillator strength Sj of the jth TO-phonon
mode, and the attenuation parameter γj .

First, we consider the results obtained in the analy-
sis of the reflection band of the GaAs substrate. The cal-
culated frequency of the GaAs lattice mode for the sub-
strate with a 4.5-µm-thick CdTe buffer layer is equal to
267 cm–1, which is 3 cm–1 less than that of the lattice
mode for a GaAs bulk crystal. The attenuation parame-
ter γ of the former mode is 8 cm–1. For comparison, the
frequency of the GaAs lattice mode for the GaAs sub-
strate with a deposited ZnSe layer is equal to 269 cm–1

and the attenuation parameter γ of this mode is 2.5 cm–1,
which, within the limits of experimental error, coincide
with the corresponding parameters for an unstrained
substrate. The shift in the frequency of the lattice TO
mode of the GaAs substrate by 3 cm–1 for the studied
structures is likely caused by the elastic stresses at the
interface between the GaAs substrate and the CdTe
buffer layer due to a considerable difference in their lat-
tice parameters. Actually, the difference between the
lattice parameters of CdTe and GaAs is determined to
be ∆a = 6.48 Å – 5.65 Å = 0.83 Å, whereas this differ-
ence of ZnSe and GaAs is ∆a = 0.02 Å. The large atten-
uation parameter γ = 8 cm–1 for GaAs indicates that the
surface layer of the substrate is strongly strained as a
result of the elastic stresses arising at the interface of
the GaAs substrate with the CdTe buffer layer.

The reflection band at 140 cm–1 is assigned to the
CdTe buffer layer. As was noted above, this mode can-
not be correctly analyzed in terms of the model used in
calculations due to a large thickness of the buffer layer
and, therefore, is eliminated from consideration.

The most interesting effects are observed for the
superstructures with CdTe quantum dots separated by
ZnTe barriers when studying the ZnTe mode as a func-
tion of the barrier thickness. Figure 2 shows the lattice
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Fig. 2. (1–3) Experimental and (4) calculated lattice IR
reflection spectra of B12 (open squares), B25 (open circles),
and B75 (open rhombs) superlattices in the range of ZnTe
and CdTe vibrations.
P

IR reflection spectra in the frequency range of the ZnTe
mode for the B12 (spectrum 1), B25 (spectrum 2), and
B75 (spectrum 3) structures with ZnTe barrier layers
of different thicknesses. The solid thick lines indicate
the spectra calculated on the basis of dispersion anal-
ysis. For clarity, the spectra are shifted with respect to
each other along the ordinate axis. The dispersion
analysis revealed that, in the B12 structure with the
thinnest barrier layer, the ZnTe vibrations are character-
ized by one dominant mode at ωt1 = 172 cm–1. In the B25
structure, the frequency of the dominant mode
increases to ωt1 = 173.5 cm–1 and an additional mode
arises at ωt2 = 169 cm–1. In the B75 structure (in which
CdTe layers 2.5 ML in thickness alternate with ZnTe bar-
rier layers 75 ML in thickness), the ZnTe vibrations
involve two modes at ωt1 = 176 cm–1 and ωt2 = 165 cm–

1. As the thickness of the barrier layer changes, the fre-
quency of the dominant mode ωt1 increases from 172 to
176 cm–1 and, within the limits of experimental error,
becomes equal to the frequency of the transverse mode
ωt = 177 cm–1 for pure ZnTe. This implies that thin ZnTe
barrier layers in the B12 structure are strongly stretched
by the alternating CdTe layers and a thick CdTe buffer
layer. The stresses in thinner CdTe layers are partially
relieved through the formation of self-assembled quan-
tum dots. In the B75 structure, the barrier layers are thick
enough for the elastic relaxation to be completed.

We assume that the mode observed at 169 cm–1 for
the B25 structure and the mode at 165 cm–1 for the B75
structure can be associated with the mode of a ZnCdTe
alloy formed at the layer interfaces due to the interdif-
fusion of Cd and Zn. In our earlier work [10], we inves-
tigated the evolution of the phonon spectra of
Zn1 − xCdxTe alloys with a variation in the composition
x. From analyzing of the results obtained, we deter-
mined the dependence of the frequencies of the TO
modes of ZnTe- and CdTe-like vibrations on the con-
tent x. This dependence was used to evaluate the con-
tent of the formed alloy from the frequency of the addi-
tional reflection band. The alloy content was estimated
to be x = 0.15–0.20.

It should be noted that, in the studied structures, we
failed to observe vibrational excitations directly in the
CdTe quantum dots. The point is that thin layers of
quantum dots (2.5 ML = 0.81 nm) are shielded by a
thick CdTe buffer layer (4.5 µm). Since the exciting IR
radiation penetrates over a large depth (~10–15 µm)
upon originating a reflected wave, the lattice IR reflec-
tion spectrum contains integral information on all the
layers comprising the studied structure. This makes it
possible to trace the appearance of elastic stresses in
different structural components.

A different situation is observed in Raman spectros-
copy. The Raman spectra are excited by visible light,
and the penetration depth amounts to 100–200 nm. In
this case, information is obtained for the upper layer of
the structure, which represents the superlattice. In our
HYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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recent work [11], we observed vibrational excitations
directly in CdTe quantum dots in the same samples with
the use of Raman spectroscopy. It was found that the
nature of these excitations differs essentially from the
nature of phonons in the bulk crystal.

4. CONCLUSIONS

Thus, the above analysis of the long-wavelength lat-
tice IR reflection spectra of ZnTe/CdTe superlattices
formed by layers of self-assembled quantum dots
revealed internal elastic stresses in these structures. The
occurrence of these stresses was judged from the shift
in the frequency of the transverse optical phonons
localized in the corresponding regions of the nanostruc-
tures under investigation. It was found that elastic
stresses arise in the GaAs substrate, which can be
explained by the mismatch between the lattice parame-
ters of the substrate and the CdTe buffer layer. The sep-
arating barriers are also in the strained state. It was
established that elastic stresses in the ZnTe barriers
undergo relaxation with an increase in the barrier thick-
ness from 12 to 75 ML. Unfortunately, our attempts to
observe vibrons in the CdTe quantum dots were unsuc-
cessful, because the dots were shielded by a thick
buffer layer. The inference was drawn that the addi-
tional band revealed in the IR reflection spectra in the
frequency range of the ZnTe mode for the B25 and B75
structures is associated with the formation of a ZnCdTe
solid solution during the crystal growth, which is most
likely caused by the interdiffusion of zinc and cadmium
at the interfaces.
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Abstract—The temperature dependences of the integrated intensity and of the Knight shift of 199Hg NMR sig-
nals are measured for liquid and solid mercury introduced into porous carbon and silica gel. A decrease in the
temperature of completion of crystallization and a small temperature hysteresis (from 4 to 9 K) between melting
and crystallization are observed. The melting temperature of mercury in pores coincides with that in the bulk.
The 199Hg NMR signal from crystalline mercury under the condition of restricted geometry is observed for the
first time. It is established that the Knight shift for liquid and crystalline mercury in pores is smaller than in the
bulk. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Size effects at melting–crystallization phase transi-
tions in small particles have been studied for about a
century [1, 2]. The first theoretical models describing
the decrease in melting temperature with decreasing
particle size were based on the assumption of the exist-
ence of a triple point corresponding to the equilibrium
of solid, liquid, and gaseous phases [1]. Later, it was
shown that there exists a temperature range in which
the formation of a melted layer on a solid nucleus
becomes energetically more favorable for nanoparticles
(see [3] and references therein). The thickness of this
layer grows with increasing temperature until the entire
particle melts. The melting and crystallization of small
isolated metallic particles have also been intensively
studied experimentally [4, 5]. It was shown that if par-
ticles are isolated, the melting temperature, as a rule,
decreases as compared to the melting temperature of
the respective bulk metals. In several studies [2, 5], the
formation of a liquid surface layer was observed in the
process of melting.

Small metallic particles can also be formed by
incorporating a melt into a porous matrix under pres-
sure. In contrast to isolated particles, the phase transi-
tions in a metal with restricted geometry are affected by
the interaction with the internal surface of a porous
matrix. In addition, particles in pores can interact with
each other. High electrical conductivity of porous
glasses filled with metals supports the idea of formation
of a network of linked nanoparticles in pores [6]. X-ray
diffraction studies show that the sizes of metallic crys-
tallites in porous glasses can be much larger than the
sizes of the pores [7]. These factors complicate the
melting and crystallization in porous matrices. It is still
unclear whether or not the melting–crystallization
1063-7834/03/4509- $24.00 © 21802
phase transition models developed for isolated metallic
particles are applicable to the processes occurring in
porous media.

Experimental studies of the melting and crystalliza-
tion of metals in restricted geometry show that the
melting temperatures decrease and the formation of liq-
uid and solid phases exhibits thermal hysteresis in this
case [6, 8, 9]. The results of the studies on melting–
crystallization phase transitions in porous glasses con-
ducted in [8–10] are consistent with previous results
obtained for isolated mercury particles [4]. However,
the existing experimental data are not sufficient for
comprehensive explanation of the specific features of
the melting–crystallization phase transition in porous
matrices; therefore, new experiments are required.

For this purpose, one can use methods which have
been successively used for studying bulk materials,
e.g., nuclear magnetic resonance (NMR). The tempera-
ture variation of the NMR signal intensity from a liquid
phase gives the fraction of melt in a straightforward
manner. In addition, for metals in pores, the influence
of the surface on the electron subsystem becomes stron-
ger, which should specifically result in a change in the
Knight shift.

In order to investigate the effect of restricted geom-
etry on the melting– crystallization phase transition, we
studied the temperature dependences of the NMR sig-
nal intensity and of the Knight shift of 199Hg nuclei in
mercury introduced into porous matrices.

2. EXPERIMENT

As the objects of investigation, activated porous car-
bon and silica gel filled with mercury were used. Two
types of porous carbon were analyzed: polymeric acti-
003 MAIK “Nauka/Interperiodica”
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vated carbon (PAC) powders with particle sizes ranging
from 0.07 to 0.12 mm and spherical carbonic nitroge-
nated (SCN) powders of a new generation with particle
sizes from 0.1 to 0.7 mm and pores approximately
cylindrical in shape. The particle size of silica gel was
about 3 mm, and the pores were close to spherical. The
distribution function of the pore volume in radius was
determined using the method of mercury porometry
under pressures of up to 9 kbar. The samples obtained
in the process of porometry were used in subsequent
NMR measurements.

A PAC sample contains nanopores and macroscopic
pores filled with bulk mercury (Fig. 1). SCN samples
and silica gel, for the most part, contain nanopores.
Characteristic pore sizes are listed in Table 1. NMR
was observed with the aid of a Bruker AVANCE-400
pulsed spectrometer. The reference frequency with
respect to which the shifts of 199Hg NMR signals were
measured in all samples was equal to 71.332311 MHz.
A single-pulse mode was used to record NMR signals.
The pulse duration was chosen so as to obtain the max-
imum NMR signal and was equal to 12, 14, and 18 µs
for various samples. The pulse repetition period was
equal to 0.5 s.

The experiments were carried out in the temperature
range 190–300 K, which includes the melting point of
bulk mercury (234.2 K [11]). The cooling and heating
rate did not exceed 0.5 K/min. Prior to each measure-
ment, a sample was kept at a constant temperature for a
period of over 5 min. The temperature was controlled
with an accuracy of 0.5 K. In order to increase the sig-
nal-to-noise ratio, accumulations of 30000 to 50000
NMR signals were used; therefore, one experiment
took approximately 4–7 hours. For comparison with
porous materials, NMR measurements were also made
in bulk mercury prepared as a suspension of mercury
drops in Vaseline, with the drop diameter being no
larger than 0.1 mm.

3. RESULTS AND DISCUSSION
The NMR spectrum of liquid mercury for all sam-

ples consists of a single line. NMR spectra of 199Hg in
SCN powders and of the bulk mercury are shown in
Fig. 2. The 199Hg NMR line in all the samples studied
is broadened in comparison with the signal from the
bulk mercury and shifted towards lower frequencies
(Table 2).

The melting–crystallization processes were studied
by measuring the relative integrated intensity of 199Hg
NMR signals from the liquid phase. Since the inte-
grated intensity of NMR signals is directly proportional
to the amount of liquid phase in a sample, the solidifi-
cation of mercury results in a decrease in the NMR sig-
nal intensity. This temperature dependence for an SCN
sample is shown in Fig. 3. The amount of liquid mer-
cury begins to decrease below 240 K, and the mercury
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
completely freezes at 230 K for a PAC sample and at
228 K for an SCN sample. In silica gel, despite the fact
that the pores in it are of the same size as in an SCN
sample, the crystallization process is more extended in
temperature and terminates at a temperature 11 K lower
than that in the bulk mercury (Table 3). It is notable that
the integrated intensity of the 199Hg NMR signal in all
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Fig. 1. Distribution of the pore volume in radius according
to the mercury porometry data: (a) PAC, (b) SCN, and
(c) silica gel.
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the samples studied steadily increases with cooling in
the range from 296 to 240 K and follows the Curie law.

The melting of mercury in carbon occurs in a nar-
row temperature interval and becomes pronounced at
234 K for PAC and at 232 K for the SCN sample. The
melting in silica gel begins at 232 K. In this case, the
NMR signal from liquid mercury is observed in parallel
with the signal from the solid phase and the transition
is more extended than in activated carbon.

Table 1.  Typical pore radii (according to mercury porometry
data)

Sample r, nm

PAC 4.7

PAC 14000

SCN 3.8

Silica gel 3.9
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Fig. 2. 199Hg NMR spectra in (1) activated SCN carbon and
(2) in bulk mercury at 250 K.

Table 2.  Line width δ and the Knight shifts in liquid (Kl) and
crystalline mercury (Kc) 

Sample δ, ppm
(T = 250 K)

Kl , ppm
(T = 250 K)

Kc, ppm
(T = 250 K)

PAC 81 ± 5 27438 ± 5

SCN 110 ± 5 27385 ± 5 27910 ± 30

Silica gel 82 ± 5 27420 ± 5 27890 ± 20

Bulk Hg 78 ± 5 27452 ± 5 27990 ± 20
PH
In spite of the fact that the melting and crystalliza-
tion temperatures of activated-carbon samples differ
from the melting temperature of the bulk mercury only
slightly, the Knight shift changes noticeably both in
carbon and in silica gel. This fact indicates that NMR
signals come predominantly from mercury in nanop-
ores. In previously studied samples of mercury-contain-
ing porous glasses with pore sizes of 3–4 nm [9, 10],
crystallization was completed upon cooling to 165 K and
melting began at 200 K. In zeolites containing mercury
clusters 0.9 nm in size [12], the melting temperature
decreased by 95 K in comparison to that of the bulk
mercury, while in asbestos (where mercury was intro-
duced into 10-µm-long capillaries and was kept there
under a pressure of 10 kbar), the crystallization temper-
ature decreased to 210 K in capillaries 2 nm in diameter
and coincided with the crystallization temperature of
the bulk mercury (260 K at a pressure of 10 kbar) in
capillaries 10 nm in diameter [13]. The most pro-
nounced hysteresis of the phase transition was observed
for capillaries 5 nm in diameter.

Theoretical models of melting of small particles of
any nature predict that the melting temperature
decreases in comparison with bulk samples and that the
decrease (∆T) is inversely proportional to the radius of
the particles (∆T = C/r) [14]. The theoretically pre-
dicted temperature change was actually observed in
most melting–crystallization processes studied previ-
ously in isolated small metallic particles [2]. The
dependence of the melting temperature on particle size
in organic liquids in porous matrices is used in NMR
cryometry [15]. A somewhat more complicated depen-
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Fig. 3. Temperature dependence of the integrated intensity
of 199Hg NMR signals from the liquid phase in activated
SCN carbon. Inset shows the same dependence in the tem-
perature range from 228 to 235 K.
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dence was observed in gallium in a restricted geometry
[6]; however, in this case, the melting temperature also
shifted appreciably in comparison with that of a bulk
sample. The experimental results obtained for mercury
in the present study show that the melting temperature
of mercury in activated carbon and silica gel is virtually
coincident with that of the bulk mercury. This result
cannot be related to a small value of the coefficient C in
the relation between ∆T and the particle size for mer-
cury, because, e.g., in zeolites, as discussed above, an
appreciable shift in the melting temperature was
observed. Thus, one may assume that the decrease in
the melting temperature is caused not only by the sizes
of particles in pores, but also most likely by such fac-
tors as the geometry of pores, wettability, and the
degree of pore filling. In addition, as discussed in [14],
the existence of a bulk liquid on the sample surface or
in pores of large diameter may lessen the distinction
between the crystallization temperatures of a liquid in
nanopores and of the bulk liquid. In actual fact, the PAC
sample contained a considerable quantity of large pores
and the SCN sample had drops of bulk mercury on its
surface.

The temperature dependences of the Knight shift in
all samples had the same character and were similar to
that for bulk mercury. As an example, Fig. 4 shows the
temperature dependence (upon cooling and heating) of
the Knight shift for the SCN sample and compares it
with the results obtained for the bulk mercury. The val-
ues of the Knight shift for liquid mercury in all samples
at 250 K are listed in Table 2. The largest difference in
the Knight shift between bulk mercury and mercury in
a restricted geometry was observed in the SCN sample.
In contrast to the data presented in [9, 10] for mercury

27400

220
27200

240 260 280 300

27600

27800

28000

200

SCN, cooling
SCN, warming
Bulk Hg, cooling
Bulk Hg, warming

T, K

K
, p

pm

Fig. 4. Temperature dependence of the Knight shift for
199Hg in activated SCN carbon and in bulk mercury. Open
and bold symbols correspond to the liquid and solid phases,
respectively.
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in porous glasses, the values of the Knight shift upon
heating and cooling for mercury incorporated into
porous carbon and silica gel were identical to within
experimental error.

In the SCN samples at temperatures below 230 K
and in silica gel below 225 K, 199Hg NMR signals from
the solid phase became observable. NMR spectra from
the liquid (225 K) and solid (220 K) phases of mercury
in silica gel are shown in Fig. 5. No NMR signal from
the solid phase in the PAC sample was observed. Previ-
ously, the NMR signal from the solid phase of metals in
a restricted geometry was not observed [9, 10], which
is likely connected with an inhomogeneous distribution
of the principal axes of the Knight shift tensor in vari-
ous crystallites and pores. Another possible cause of the
absence of an NMR signal from the solid metallic phase
in pores can be the presence of mechanical stresses,
which cause a large variance in the values of the Knight
shift over a sample.

NMR signals from the solid phase in the SCN sam-
ple and silica gel had a small amplitude because of the
large anisotropy of the Knight shift in solid mercury
and, consequently, a large NMR line broadening and a

Table 3.  Temperature of crystallization completion Tc and
the temperature hysteresis interval ∆T

Sample Τc, Κ ∆T, K

PAC 230 ± 1 4 ± 1

SCN 228 ± 1 4 ± 1

Silica gel 223 ± 1 9 ± 1

Bulk Hg 233 ± 1 2 ± 1
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Fig. 5. NMR spectra from (1) the liquid and (2) solid phases
of mercury at temperatures of 225 and 220 K, respectively.
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complex line shape (Fig. 5). The positions of peaks for
solid mercury in the temperature range studied (200–
230 K) remained unchanged to within experimental
error. It should be noted that independence of the
Knight shift from temperature was also observed in
bulk crystalline mercury [16]. The Knight shift values
measured from the positions of the NMR peaks for the
SCN samples, silica gel, and bulk mercury at 220 K are
listed in Table 2. As can be seen, the values of the NMR
peak shifts for solid mercury in the SCN samples and in
silica gel are the same to within experimental error but
are smaller than that for the bulk solid mercury.

The shift of the NMR peak from randomly oriented
crystallites is determined by the isotropic (∆νis) and
anisotropic (∆νan) parts of the Knight shift and can be
estimated in the first approximation as [17]

(1)

As is known from the literature [16], the isotropic
Knight shift in bulk mercury changes insignificantly on
transition from the liquid to solid phase. Assuming that
this is also true for mercury in a restricted geometry,
one can estimate the anisotropic component of the
Knight shift from Eq. (1). The value of this component
is approximately equal to –800 ppm for the SCN sam-
ples and silica gel and to –890 ppm for solid bulk mer-
cury, which is considerably larger than for other metals
[16] but smaller than the anisotropic component of the
Knight shift in the superconducting phase of mercury at
1.2 K (–1400 ppm).

The observed decrease in the Knight shift for mer-
cury in pores is related to the decrease in electronic sus-
ceptibility.The change in the electronic susceptibility
near the metal surface was studied theoretically in [18].
It was shown that the effect of the surface consists in
variations of the electron density in the vicinity of the
Fermi level. The influence of the surface and the size
effect on the Knight shift was studied by the NMR
method in solid particles of platinum, vanadium, rhod-
ium, and copper and in thin tin films [19]. The results
obtained at low temperatures were interpreted in terms
of the theory of quantum size effects, while the inter-
pretation for the high-temperature region involved the
dependence of the electronic susceptibility on the dis-
tance from the particle surface. For platinum and rhod-
ium, it was experimentally found that the Knight shift
for nuclei near the surface changed considerably in
comparison with that in bulk samples mainly due to
variations in the local density of d electrons at the Fermi
level. A large broadening of NMR lines for such metals
as Pb, Cu, and Ag was explained by the oscillations of
electron density near the metal surface. Changes in the
Knight shift were also observed for metals in a
restricted geometry in the liquid state; e.g., for gallium
and mercury, the Knight shift decreased [8, 9]. Accord-
ing to current theoretical ideas [18], the decrease in the
Knight shift with respect to that in bulk mercury

∆ν ∆ν is ∆νan/2.–=
P

observed in the present study can be treated as a result
of the decrease in electron density near the Fermi level.
A characteristic feature is that the difference between
the Knight shifts in liquid mercury in the SCN sample
and in the bulk liquid mercury appreciably increases
with decreasing temperature.

4. CONCLUSIONS

We have used the NMR method for studying the
melting–crystallization processes and the Knight shift
in mercury introduced into nanopores of activated car-
bon (PAC and SCN) and of silica gel. It has been estab-
lished that the phase transitions in these samples pro-
ceed abruptly at the melting temperature coinciding
with that in the bulk (in contrast to the case of melting
and crystallization of mercury in zeolites, porous
glasses, and asbestos). An insignificant hysteresis
between melting and crystallization processes was
observed. The NMR signal from solid mercury in pores
was observed for the first time, and its Knight shift was
measured. It was shown that the Knight shift for mer-
cury in a restricted geometry decreases both in the liq-
uid and in the solid phase as compared to the Knight
shift in the bulk. The results obtained demonstrate a
strong influence of pore geometry and of the material of
porous matrices on the melting and crystallization of
mercury and on its electronic susceptibility.
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Abstract—Analytical expressions are derived for dispersion and attenuation of Rayleigh waves propagating
along the statistically rough free surface of a hexagonal crystal (Z cut). The roughness under consideration is
one-dimensional (the profile function of the roughness depends on one coordinate) and has the form of hollows
of a random lattice. The results obtained earlier in the solution of an analogous problem for a two-dimensional
roughness are used in the one-dimensional case. The relationships derived for the dispersion and attenuation of
Rayleigh waves are treated analytically and numerically over the entire range of frequencies acceptable in the
framework of the perturbation theory. It is shown that the dispersion and attenuation of Rayleigh waves are
qualitatively similar to those observed in an isotropic medium. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our recent work [1], we carried out a detailed
analysis of the dispersion and attenuation of Rayleigh
waves at a two-dimensional random roughness of the
free surface of a hexagonal crystal. In this respect, it is
of interest to investigate the specific features in the
behavior of the dispersion and attenuation of Rayleigh
waves at a one-dimensional random roughness (hol-
lows of a random lattice).

Wave scattering from a one-dimensional random
roughness of the free interface of an isotropic solid has
been studied in a number of works [2–15]. In particular,
scattering of bulk waves by determinate and periodic
roughnesses was examined in [2–5]. In [6–8], scatter-
ing of bulk waves by random roughnesses was consid-
ered in the scalar case (i.e., in the absence of surface
and shear waves). The attenuation of Rayleigh waves
was investigated experimentally by de Billy et al. [9]
and theoretically by Maradudin and Huang [10], who
derived the dispersion law for a Rayleigh wave in the
framework of the mean-field (Rayleigh) method. In
[11–15], the attenuation of a Rayleigh wave was con-
sidered within the scattering theory. In our previous
works [11, 13], we also studied the scattering of surface
Rayleigh waves and bulk acoustic waves. It should be
emphasized that, in [10, 11, 13, 15], the analysis was
performed for a Rayleigh wave propagating along the x
axis, i.e., in the direction perpendicular to the hollows
of the lattice.

Earlier [16], we obtained the expressions describing
the dispersion and attenuation of Rayleigh waves and
surface waves of shear horizontal (SH) polarization on
a random rough free surface of an isotropic medium at
1063-7834/03/4509- $24.00 © 21808
an arbitrary angle of incidence on the lattice hollows. It
should be noted that, when deriving the expressions for
the dispersion and attenuation at a one-dimensional
random roughness, the one-dimensional roughness was
treated as a special case of the two-dimensional rough-
ness.

In the present work, by analogy with the calcula-
tions performed in [16], the dispersion of the phase
velocity and the coefficient of attenuation of Rayleigh
waves at a one-dimensional random roughness with an
arbitrary angle of incidence on the hollows of a random
lattice were determined from the relationships obtained
in [1] for a hexagonal crystal with the sixfold axis per-
pendicular to the surface (Z cut). The expressions
derived were treated analytically and numerically over
the entire range of frequencies acceptable in the frame-
work of the perturbation theory.

2. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. A
hexagonal crystal with the sixfold axis parallel to the x3
axis is bounded by the statistically rough free surface
x3 = ζ(x1) and occupies the half-space x3 ≥ ζ(x1), where
ζ(x1) is the profile function of the one-dimensional
roughness. The hexagonal crystal is considered in the
elastic-continuum approximation and is characterized
by the mass density ρ and the elastic constant tensor
Cαβµν. The one-dimensional roughness ζ(x1) is
described by the root-mean-square roughness ampli-
tude δ and the roughness correlation length a. A Ray-
leigh wave propagates along the statistically rough sur-
face of the hexagonal medium in the plane x3 = 0
003 MAIK “Nauka/Interperiodica”
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(Z cut). In order to solve the formulated problem, it is
required to determine the dispersion of the phase veloc-
ity and the coefficient of attenuation of the Rayleigh
wave at the surface roughness.

The solution to the problem will be sought under the
assumption that the roughness is small; i.e., δ ! λ,
where λ is the Rayleigh wavelength. Since the profile
function of the roughness is unknown, the surface can
be described statistically. In the case of a one-dimen-
sional roughness, the profile function ζ(x1) is defined as

 (1)

 (2)

or, in the Fourier representation,

 (3)

 (4)

 (5)

In order to obtain the explicit analytical expressions, we
will use the factor g(|k1|) in the Gaussian form

 (6)

3. FORMAL PASSAGE
FROM THE TWO-DIMENSIONAL CASE 

TO THE ONE- DIMENSIONAL CASE

For a two-dimensional roughness x3 = ζ(x1, x2), the
problem analogous to that formulated above was solved
in our previous work [1]. The dispersion relations (see
expressions (25), (26) in [1]) can be represented in the
general form

 (7)

Here, the integral is taken over the plane q3 = 0. Let us
consider a one-dimensional roughness as a special case
of the two-dimensional roughness. Then, we can write
the equations

 (8)

 (9)

For a two-dimensional roughness, expression (9)
has the form

 (10)

and relationship (6) can be written as

 (11)

ζ x1( )〈 〉 0,=

ζ x1( )ζ x1'( )〈 〉 δ 2
W x1 x1'–( ),=

ζ k1( )〈 〉 0,=

ζ k1( )ζ q1( )〈 〉 δ 2
g k1( ) 2π( )δ k1 q1+( ),=

ζ k1( ) x1 ik1x1–( )ζ x1( ).expd∫=

g k1( ) a π k1
2
a

2
/4–( ).exp=

∆ω δ2 q1 q2dd

2π( )2
----------------g k|| q||–( )R q|| k || ω,( ).∫=

ζ k1 k2,( ) d
2
x|| ik ||x||–( )ζ x1( )exp∫=

=  2π( )δ k2( )ζ k1( ),

ζ k||( )ζ q||( )〈 〉 δ 2
g k1( )δ k2( ) 2π( )3δ k|| q||+( ).=

ζ k||( )ζ q||( )〈 〉 δ 2
g k||( ) 2π( )2δ k|| q||+( ),=

g k||( ) πa
2

k ||
2
a

2
/4–( ).exp=
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From a comparison of relationships (9) and (10), it
follows that formulas describing the dispersion and
attenuation of Rayleigh waves at a one-dimensional
random roughness can be obtained using formal
replacement in the expressions for the two-dimensional
roughness; that is,

   (12)

It is assumed that the Rayleigh wave is incident on hol-
lows of a random lattice at an arbitrary angle ψ (the ψ
angle is measured from the normal to the hollows par-
allel to the x2 axis). Hence, we obtain

 (13)

By virtue of the translational invariance along the x2
axis, the wave vector component parallel to this axis
remains unchanged. As a result, according to replace-
ment (12), we have

 (14)

 (15)

Consequently, the ψ angle between the vectors k|| and q||
can be written as

 (16)

 (17)

Upon substituting formulas (12)–(17) into expression
(7), we obtain the following relationship for the disper-
sion and attenuation of Rayleigh waves at the one-
dimensional roughness of the surface:

 (18)

Here, the real part ν1(k||, ψ) describes the dispersion of
the phase velocity and the imaginary part ν2(k||, ψ) is
proportional to the inverse attenuation length.

g k||( ) g k||( ) 2π( )δ k2( )g k1( ).=

k|| k || ψcos ψsin,( ).=

q|| q1 k || ψsin,( ) q1 k2,( ),= =

q|| q|| q1( ) q1
2

k ||
2 ψsin

2
+ .= =

ψcos
k1q1 k2q2+

k ||q||
---------------------------

q1 ψcos k || ψsin
2

+

q1
2

k ||
2 ψsin

2
+

-------------------------------------------,= =

ψsin
k1q2 k2q1–

k ||q||
--------------------------

k || ψ ψcossin q1 ψsin–

q1
2

k ||
2 ψsin

2
+

------------------------------------------------------.= =

∆ω k || ψ,( ) ν1 k || ψ,( ) iν2 k || ψ,( ).–=

Vacuum

Hexagonal elastic medium
ρ; Cαβµν

x3 = ζ(x1) x1

x3

Fig. 1. Geometry of the semi-infinite homogeneous hexag-
onal elastic medium with a one-dimensional roughness of
the free surface x3 = ζ(x1).
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Next, it is convenient to change over to the dimen-
sionless function ω12:

 (19)

Here, ξ = k||a is the dimensionless variable and ωR =
cRk|| (where cR is the phase velocity of the Rayleigh
wave propagating along a planar surface). Therefore,
the dimensionless function ω12(ξ, ψ) can be written in
the form

 (20)

The functions A(ξ, ψ), B(ξ, ψ), and E(ξ, ψ) and the
coefficients d and l are given in the Appendix. The
dimensionless function ω12(ξ, ψ) can be conveniently
expressed, by analogy with formula (18), through the
real and imaginary parts. We leave aside the rather cum-
bersome formulas describing the real and imaginary
parts and write the final result

 (21)

It should be noted that the above expression for
ω12(ξ, ψ), which is symmetric with respect to the
replacement ψ  ψ + π, depends on the ψ angle only
as cosψ; hence, it is symmetric with respect to the
replacement ψ  –ψ. Therefore, the set of ψ angles
can be considered in the interval ψ ∈  [0, π/2]. This sym-
metry also follows from the statement of the problem.

∆ω
ωR
--------

δ2

a
2

-----ω12 ξ ψ,( ).=

ω12 ξ ω,( ) d

2 π
----------ξ3

A ξ ψ,( )(–=

+ B ξ ψ,( ) E ξ ψ,( )+ ) ξ2
l.+

ω12 ω1 iω2.–=

5
10

15ξ
20

40

60

80

ψ

0

0.2

0.4

–ω
1

Fig. 2. Dependence of the real part of the complex frequency
shift –ω1 on the dimensionless variable ξ and the angle of
incidence ψ of the Rayleigh wave for a ZnO crystal.
PH
4. THE LONG-WAVELENGTH LIMIT

In the long-wavelength limit (λ @ a), we have the
dimensionless variable ξ ! 1. The relationship for the
imaginary part ω2(ξ, ψ) takes the form

 (22)

Here, Λ(ψ) depends only on the ψ angle and the coeffi-
cients of the elastic constant tensor. The expression for
Λ(ψ) is cumbersome and, hence, is not presented. Since
ν2(k||, ψ) = cR/2L(k||, ψ) (see [17]), the inverse attenua-
tion length 1/L of the Rayleigh wave can be written as

 (23)

For the real part of the function ω12, the integral is taken
at large values of the variable of integration t and the
functions Dn(t, ψ) with an odd subscript n are equal to
zero. As a result, the expression for the real part ω1(ξ,
ψ) takes the form

 (24)

where

 

The coefficients d, a1, and h are given in the Appendix.
Taking into account the real part of the dimension-

less function (19), the relative change in the phase
velocity of the Rayleigh wave can be represented in the
form

 (25)

5. NUMERICAL CALCULATION

In addition to the analytical treatment, we carried
out numerical calculations of the relative change in the
phase velocity and the inverse attenuation length of the
Rayleigh wave. As an example, let us consider the results
of the numerical calculations of expressions (20), (22),
and (24) for a ZnO hexagonal crystal (the coefficients
of the elastic constant tensor for ZnO are taken from
[18]). The real and imaginary parts of the function
ω12(ξ, ψ) are shown in graphic form in Figs. 2 and 3,

ω2 ξ ψ,( ) Λ ψ( )
2

-------------ξ3
.=

1
L
---

δ2

a
3

-----ξ4Λ ψ( ).=

ω1 ξ ψ,( ) Φ ψ( )ξ ,–=

Φ ψ( ) d

a1 π
------------ a1h

3/2
1 4ψ( )cos–( )[=

+ a2 b2+ a2 b2–+( ) 2 a1 h–( )2
h

2
+(

+ 4h a1 h–( ) 2ψ( )cos h
2

4ψ( )cos+ ) ] ,
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1
2
--- a1 2

c13

c33
------– 

  , b2 a2
c11

c33
------– .= =
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δ2

a
2

-----Φ ψ( )ξ .–=
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respectively. These figures clearly illustrate the disper-
sion and attenuation of the Rayleigh waves. It is evi-
dent, in particular, from Fig. 2 that the dispersion of the
phase velocity of the Rayleigh wave propagating along
a rough surface, as in the isotropic case, can exceed the
dispersion on a planar surface for the dimensionless
variable ξ ~ 1 and the ψ angle ranging from ~55° to 90°.
The results of the numerical calculations of the coef-
ficients Φ(ψ) and Λ(ψ) in the long-wavelength limit
(ξ ! 1) are presented in Figs. 4 and 5, respectively. As
can be seen from these figures, the Rayleigh waves at
large angles of incidence ψ attenuate only slightly,
whereas the dispersion remains nonzero. It should also
be noted that, for the majority of the known hexagonal
crystals, the dependences obtained from the numerical
calculations of expression (20) coincide qualitatively.

6. CONCLUSIONS

Thus, analytical expressions have been obtained for
the dispersion and attenuation of Rayleigh waves prop-
agating in an arbitrary direction along the statistically
rough free surface of a hexagonal crystal with the six-
fold axis perpendicular to the crystal surface (Z cut).
The roughness under consideration is assumed to be
one-dimensional and has the form of hollows of a ran-
dom lattice. The expressions are deduced using the
results obtained in our previous work [1] for the disper-
sion and attenuation of Rayleigh waves at a two-dimen-
sional roughness within the approach described in [16].
For an isotropic medium, the derived dispersion rela-
tion (20) is transformed into expression (5.12) deduced
in [16]. The relative change in the phase velocity and
the inverse attenuation length of the Rayleigh wave are
numerically calculated for the majority of the known
hexagonal crystals at arbitrary angles of incidence on
hollows of the lattice over the entire range of wave-
lengths acceptable in the framework of the perturbation
theory. The dependences obtained for different hexago-
nal crystals coincide qualitatively with each other and
with those for the isotropic medium [16] but differ
quantitatively, which is associated with the isotropy of
the Z-cut hexagonal crystal. It was found that, as in the
isotropic case, the dispersion of the phase velocity of
the Rayleigh wave propagating along a rough surface
can exceed the dispersion on a planar surface. The long-
wavelength limit was investigated analytically and
numerically. The analytical treatment demonstrated
that the inverse attenuation length of the Rayleigh wave
is proportional to the fourth power of the Rayleigh
wave frequency, whereas the relative change in the
phase velocity is directly proportional to the Rayleigh
wave frequency, which is in complete agreement with
the results obtained in the isotropic case.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 9      2003
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quency shift ω2 on the dimensionless variable ξ and the angle
of incidence ψ of the Rayleigh wave for a ZnO crystal.
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APPENDIX

 (A.1)

 (A.2)

(A.3)

 (A.4)

 (A.5)

In expressions (A.1)–(A.5), we used the following
designations:
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In formula (A.2), P stands for integration in the sense
of the Cauchy principal value and the sign “+” corre-

sponds to the point t0 = .
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