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The modification of the Jacobi polynomial expansion method (MJEM) is proposed on the basis of the applica-
tion of the truncated moments instead of the full ones. This allows us to reconstruct the local quark helicity dis-
tributions with high precision even for the narrow Bjorken x region accessible for measurement, using as an
input only the four first moments extracted from the data in the next to leading order QCD. The variational
(extrapolation) procedure is also proposed allowing us to reconstruct the distributions outside the accessible
Bjorken x region using the distributions obtained with MJEM in the accessible region. The numerical calcula-
tions encourage one that the proposed variational (extrapolation) procedure could be applied to estimate the full
first (especially important) quark moments. © 2005 Pleiades Publishing, Inc.

PACS numbers: 13.60.Hb, 13.85.Ni, 13.88.+e
The extraction of the quark helicity distributions is
one of the main tasks of the semi-inclusive deep inelas-
tic scattering (SIDIS) experiments (HERMES [1],
COMPASS [2]) with a polarized beam and target. At
the same time, it was argued in [3] that to obtain reliable
distributions at the relatively low average Q2 available
to the modern SIDIS experiments,1 the leading order
(LO) analysis is not sufficient and the next to leading
order (NLO) analysis is necessary. In [4], a procedure
allowing the direct extraction from the SIDIS data of
the first moments of the quark helicity distributions in
NLO QCD was proposed. However, in spite of the spe-
cial importance of the first moments, it is certainly very
desirable to have a procedure of reconstruction in NLO
QCD of the polarized densities themselves. However, it
is extremely difficult to extract the local in xB distribu-
tions directly, because of the double convolution prod-
uct entering the NLO QCD expressions for semi-inclu-
sive asymmetries (see [4] and references therein). On
the other hand, operating just as in [4], one can directly
extract not only the first moments but also the Mellin
moments of any required order. The simple extension
of the procedure proposed in [4] gives for the nth

moments ∆nq ≡ xn – 1q(x) of the valence distribu-

¶ This article was submitted by the authors in English.
1 For example, the HERMES data [1] on semi-inclusive asymme-
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where all the quantities in the right-hand side are the
same as in [4] (see Eqs. (18)–(23)) with the replace-
ment of

It should be noticed that, in reality, one can measure
the asymmetries only in the restricted xB region 0 < a <
x < b < 1, so that the approximate equations for the trun-
cated moments
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of the valence distributions have the form (1) with the
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and analogously for .

Thus, one can directly extract from the data the nth
Mellin moments of valence distributions. The question
arises: is it sufficient to reconstruct the local in xB dis-
tributions?

There exist several methods allowing us to recon-
struct the local in xB quantities (such as structure func-
tions, polarized and unpolarized quark distributions,
etc.) knowing their nth Mellin moments. All of them
use the expansion of the local quantity in a series over
the orthogonal polynomials (Bernstein, Legendre,
Jacobi, etc.). The most successful in applications
(reconstruction of the local distributions from the
evolved with GLAP moments and investigation of
ΛQCD) occurred the Jacobi polynomial expansion
method (JEM) proposed in the pioneer work by Parisi
and Sourlas [5] and elaborated2 in [6, 7]. Within JEM,
the local in xB functions (structure functions or quark
distributions) are expanded in the double series over the
Jacobi polynomials and Mellin moments—see
Eq. (A.1) in the Appendix. For what follows, it is of
importance that the moments entering Eq. (A.1) are the
full moments, i.e., the integrals over the entire xB region

0 < x < 1: M[j] = xj – 1F(x). Until now, nobody

investigated the question of the applicability of JEM to
the rather narrow xB region available to the modern
polarized SIDIS experiments. Consequently, let us try
to apply JEM to the reconstruction of ∆uV(x) and ∆dV(x)
in the narrow xB region3 a = 0.023 < x < b = 0.6 avail-
able to HERMES and to investigate if it is possible to
safely replace the full moments by the truncated ones.
To this end, we perform the simple test. We choose4

GRSV2000NLO (symmetric sea) parameterization [9]
at Q2 = 2.5 GeV2. Integrating the parameterization over
the HERMES xB region, we then calculate twelve trun-
cated moments of the u and d valence distributions
given by Eq. (2) with a = 0.023, b = 0.6. Substituting
these moments in the expansion (A.1) with Nmax = 12,
we look for optimal values of the parameters α and β
corresponding to the minimal deviation of the recon-
structed curves for ∆uV(x) and ∆dV(x) from the input
(reference) curves corresponding to the input parame-
terization. To find these optimal values αopt and βopt, we

2 JEM with respect to polarized quark densities was first applied in
[8].

3 We choose here the most narrow HERMES xB region where the
difference between JEM and its modification MJEM (see below)
application becomes especially impressive. However, even with
the wider xB region (for example, the COMPASS [2] region
0.003 < x < 0.7), it is of importance to avoid the additional sys-
tematical errors caused by the replacement of the full (unaccessi-
ble) moments in JEM (A.1) by the accessible truncated moments.

4 Certainly, one can choose for testing any other parameterization.
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use the program MINUIT [10]. To control the quality of
the reconstruction, we introduce the parameter

(4)

where Freference(x) corresponds to the input parameter-
ization and Freconstructed(x) ≡ (x) in Eq. (A.1) from
the Appendix. The comparison of the reconstructed and
input (reference) curves shows that, even for a such a
high number of moments used, Nmax = 12, they strongly
differ from each other: ν|JEM = 6.24% for ∆uV and
ν|JEM = 5.52% for ∆dV . Thus, the substitution of trun-
cated moments instead of exact ones in expansion (A.1)
is a rather crude approximation (at least for the HER-
MES xB region). Fortunately, it is possible to modify the
standard JEM in a such way that the new series contains
the truncated moments instead of the full ones. The new
expansion looks as (see the Appendix)

(5)

where we introduce the notation (c.f., Eq. (2))

(6)

for the moments truncated to the xB region accessible
for measurement. It is of great importance that, now, in
the expansion, not the full (unavailable) but the trun-
cated (accessible) moments enter. Thus, having at our
disposal the first few truncated moments extracted in
NLO QCD (see Eqs. (1)) and using MJEM (Eq. (5)),
one can reconstruct the local distributions in the xB

region accessible for measurement.
Let us check how well MJEM works. To this end, let

us repeat the simple exercises with reconstruction of the
known GRSV2000NLO (symmetric sea) parameteriza-
tion and compare the results of the ∆uV(x) and ∆dV(x)
reconstruction with the usual JEM and with the pro-
posed MJEM. To control the quality of the reconstruc-
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tion, we again use5 the parameter ν given by Eq. (4),
where now Freconstructed(x) ≡ (x) in Eq. (5). We per-

formed the reconstruction with both a very high num-
ber of moments Nmax = 12 and a small number of
moments Nmax = 4. Notice that the last choice (Nmax = 4)
is especially important because of the peculiarities of
the data on the asymmetries provided by the SIDIS
experiments. Indeed, the number of moments used
should be as small as possible because, first, the relative
error |δ(M'[ j])/M'[ j]| on M'[ j] becomes higher with an
increase of j and, second, the high moments become
very sensitive to the replacement of integration by the
sum over the bins. The results of the ∆uV(x) and ∆dV(x)
reconstruction with MJEM for Nmax = 12 demonstrate
that, in contrast to the usual JEM, MJEM gives excel-
lent agreement between the reference and reconstructed
curves: ν|MJEM = 0.06% for ∆uV(x) and ν|MJEM = 0.08%
for ∆dV(x).

In the case of Nmax = 4, the difference in the quality
of the reconstruction between JEM and MJEM (see
Fig. 1) becomes especially impressive.6 While for stan-
dard JEM the reconstructed and reference curves
strongly differ from each other, the respective curves
for MJEM are in good agreement. Thus, one can con-
clude that dealing with the truncated (available for mea-
surement) xB region, one should apply, instead of the
usual JEM, the proposed modified JEM to obtain reli-
able results on the local distributions.

Until now, we looked for the optimal values of the
parameters α and β entering MJEM using the explicit
form of the reference curve (input parameterization).
Certainly, in reality, we do not have any reference curve
to be used for the optimization. However, one can
extract the first few moments from the data in NLO
QCD (see Eqs. (1)). Thus, we need some criterion of
MJEM optimization that could be used for optimization
of α and β, only the known (extracted) moments enter-
ing MJEM.

At first sight, it seems to be natural to find the optimal
values of α and β minimizing the difference recon-
structed with MJEM (5) and the input moments7 entering

5 Calculating ν, we just cut off the boundary distortions that hold
for MJEM in the small vicinities of the boundary points (see the
Appendix) and decrease the integration region, respectively. To
be more precise, one can apply, after the cutting, some extrapola-
tion to the boundary points. However, practice shows that the
results on calculation of ν are practically insensitive to the
method of extrapolation, since the widths of the boundary distor-
tion regions are very small (less than 10–3).

6 For ∆dV, we obtained an even more impressive difference
between the JEM and MJEM application with Nmax = 4: ν|JEM =
13.33%, while ν|MJEM = 1.2%.

7 In practice, one should reconstruct these input moments from the
data using Eqs. (1). The reference “twice-truncated” moments (8)
should be reconstructed from the data in the same way.

FNmax
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the MJEM expansion (5) moments. However, it is easy to
prove8 that this difference is identically equal to zero:

(7)

i.e., all the reconstructed moments with n ≤ Nmax are
identically equal to the respective input moments for
any α and β. Fortunately, we can use for comparison the
reference twice-truncated moments

(8)

i.e., the integrals over the region less than the integra-
tion region [a, b] for the “once-truncated” moments

 entering MJEM (5). The respective optimization
criterion can be written in the form

(9)

The twice truncated reference moments should be
extracted in NLO QCD from the data in the same way
as the input (entering MJEM (5)) once truncated
moments. In reality, one can reconstruct from the data
twice-truncated moments using Eq. (1) and remove, for
example, the first and/or last bin from the sum in
Eq. (3).

Let us now check how well the optimization crite-
rion (9) works. To this end, we again perform a simple
numerical test. We choose GRSV2000NLO parameter-

8 It can be proved by analogy with the case of the usual JEM,
where Eq. (7) with [a, b] = [0, 1] holds (see, for example, [7]).
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Fig. 1. Comparison of the quality of the ∆uV(x) reconstruc-
tion with the usual JEM (top) and with MJEM (bottom).
The solid lines correspond to the input (reference) parame-
terization. The dotted lines correspond to the distributions
reconstructed with JEM (top) and with MJEM (bottom).
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ization at Q2 = 2.5 GeV2 with both broken and symmet-
ric sea scenarios. We then calculate the first four once-
truncated and the first four twice-truncated moments
defined by Eqs. (6) and (8) and substitute them in the
optimization criterion (9). To find the optimal values of
α and β, we use the MINUIT [10] program. The results
are presented9 in Fig. 2. It is seen that the optimization
criterion works well for both the symmetric and broken
sea scenarios. The deviations of the reconstructed
curves from the reference curves (input parameteriza-
tion) near the boundary points are unavoidable, since
MJEM is correctly defined in the entire region (a, b),
except for in small vicinities of the boundary points
(see the Appendix). Fortunately, these distortions occur
in very small vicinities of the boundary points, and the
curves are in very good agreement in practically the
entire accessible xB region. Notice that, for the proce-
dure of extrapolation outside the accessible xB region,
one should just cut off these unphysical boundary dis-
tortions (see below).

Thus, one can conclude that MJEM can be success-
fully applied for reconstruction of the local distribu-
tions knowing only the first few truncated Mellin
moments. Notice, however, that, by construction,
MJEM reproduces the local distributions only in the xB

region accessible for measurement. The question
arises: could one attempt to reconstruct the local distri-
butions outside the accessible region (i.e., to perform

9 For ∆dV, we also get very good agreement between the input and
reconstructed curves: ν = 0.3% and ν = 0.07% for the symmetric
and broken sea scenarios, respectively.

Fig. 2. The results of ∆uV reconstruction for
GRSV2000NLO parametrization for both symmetric (top)
and broken sea (bottom) scenarios. The solid line corre-
sponds to the reference curve (input parameterization). The
dotted line is reconstructed with MJEM and criterion (9)
inside the region accessible for measurement ([0.023, 0.6]
here). The optimal values of α and β are αopt = –0.15555,
βopt = –0.097951 and αopt = –0.209346, βopt = 0.153417 for
the symmetric and broken sea scenarios, respectively.
extrapolation) using the distributions obtained with
MJEM as an input? To this end, we propose to solve the
following variational task. We apply MJEM, Eq. (5), to
the maximally10  extended xB region [amin, bmax] replac-
ing the moments [ j] by [ j] + ej, where
ej( j = 1…4) are the free variational parameters
(ej should be considered as unknown “tails” of the full
moments). Then, using the MINUIT program [10], one
finds the parameters ej requiring the minimal deviation
of the curve reconstructed with ej from the input (recon-
structed with criterion (9)) curve inside the region [a, b]
accessible for measurement. The quantities [ j] +
ej reconstructed in this way should be compared with
the reference (obtained by direct integration of the
input parameterization) moments [ j]|reference.
In the ideal case (the ideal reconstruction of tails ej),
these quantities would coincide.

Let us test this variational (extrapolation) procedure
by a simple numerical exercise. We choose
GRSV2000NLO parameterization (for both broken and
symmetric sea scenarios) at Q2 = 2.5 GeV2 as the refer-
ence one. Since the allowed [9] xB region for this
parameterization is [10–4, 1], we choose [amin, bmax] =
[10–4, 1], and, for the truncated region [a, b], we again
choose the xB region [a, b] = [0.023, 0.6] accessible for

10 For a moment, we restrict ourselves to the xB region [amin = 10–4,
bmax = 1], which is typical for the most known parameteriza-
tions on the quark helicity distributions.

M amin bmax,[ ]' M a b,[ ]'

M a b,[ ]'

M amin bmax,[ ]'

Fig. 3. The results of ∆uV reconstruction in the region

[amin = 10–4, bmax = 1] for GRSV2000NLO parameteriza-
tion for both symmetric (up) and broken sea (down) scenar-
ios. The solid line corresponds to the reference curve (input
parameterization). The dotted line corresponds to the curve
reconstructed in the entire [amin = 10–4, bmax = 1] region
with the requirement of minimal deviation from the curve
(bold solid line) reconstructed with MJEM and criterion (9)
inside the region accessible for measurement ([0.023, 0.6]
here).
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HERMES. Notice that, by performing the variational
(extrapolation) procedure, we cut off the boundary dis-
tortions of the curve (which enters the variational pro-
cedure as an input) obtained with MJEM and criterion
(9) inside the accessible xB region.

The results of the variational (extrapolation) proce-
dure application are presented in Fig. 3 and the table.
Comparing the reconstructed curve with the input
parameterization for ∆uV(x) (see Fig. 3), one can see
that they are in good agreement. The first four recon-
structed moments are also in good agreement with the
respective reference (obtained by direct integration of
the input parameterization) moments—see the table.
For ∆dV, the quality of the reconstruction is also very
good for the symmetric sea scenario and a little bit
worse11 in the case of the broken sea scenario. In any
case, the reconstructed first moments (the most impor-
tant for understanding the proton spin structure) are in
good agreement with the respective reference moments
of both the ∆uV and ∆dV distributions.

Thus, all the numerical tests confirm that the pro-
posed modification of the Jacobi polynomial expansion
method, MJEM, allows us to reconstruct with high pre-
cision the quark helicity distributions in the xB region
that is accessible for measurement. We consider this to
be the main result of this paper. In addition, the numer-
ical calculations encourage one that the proposed vari-
ational (extrapolation) procedure based on MJEM
could become a reliable extrapolation procedure. Cer-
tainly, careful additional investigations are necessary.

First of all, we plan to apply the proposed method to
HERMES data on pion production with both proton
and deutron targets. As it was shown above, MJEM
(rather than the usual JEM) should be applied for recon-
struction of the local (in xB) distributions from NLO
QCD extracted moments in all modern semi-inclusive
DIS experiments (such as the COMPASS experiment)
with the restricted accessible xB region. Especially,
MJEM application becomes absolutely necessary for
the rather narrow HERMES xB region. To extract the
valence quark helicity distributions in NLO QCD with
the proposed method, we will use the so-called “differ-
ence asymmetries” (for the essential advantages of
these asymmetries see [4] and references therein),
which now are constructed by HERMES. At present,
the extended paper with simulations corresponding to
HERMES kinematics is in preparation.

We are grateful to R. Bertini, O. Denisov,
A. Korzenev, V. Krivokhizhin, E. Kuraev, A. Maggiora,
A. Nagaytsev, A. Olshevsky, G. Piragino, G. Pon-
tecorvo, I. Savin, A. Sidorov, and O. Teryaev for fruitful
discussions. The work of O.S. and O.I. was supported

11The point is that, in the case of the broken sea scenario, the
moments of ∆dV are very small quantities and, in addition,
∆dV(x) changes its sign at small xB [9]. Thus, the application of
the proposed variational (extrapolation) procedure, in this case,
becomes more complicated.
JETP LETTERS      Vol. 82      No. 2      2005
by the Russian Foundation for Basic Research (project
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APPENDIX

The JEM is the expansion of the x-dependent func-
tion (structure function or quark density) in the series

over Jacobi polynomials (x) orthogonal with
weight ω(α, β)(x) = xβ(1 – x)α (see [5–7] for details):

(A.1)

where M[ j] = xj – 1F(x) and

(A.2)

The details on the Jacobi polynomials

(A.3)

can be found in [5] and [6]. Expansion (A.1) becomes
exact when Nmax  ∞. However, in practice, one trun-
cates series (A.1) retaining only finite number of
moments Nmax in the expansion. The experience shows
[7] that JEM produces good results (for the entire xB

region) even with the small number Nmax.
The idea of the modified expansion is to reexpand

F(x) in the series over the truncated moments [ j]
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Results of the first four moments of ∆uV reconstruction in the
region [amin = 10–4, bmax = 1] for the GRSV2000NLO param-
eterization for both symmetric (top) and broken sea (bottom)
scenarios

n

1 0.749 0.904 0.917

2 0.153 0.164 0.167

3 0.047 0.053 0.055

4 0.017 0.021 0.023

1 0.570 0.609 0.605

2 0.137 0.150 0.149

3 0.044 0.052 0.052

4 0.017 0.023 0.022
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given by Eq. (6), performing the rescaling x  a +
(b – a)x, which compress the entire region [0, 1] to the
truncated region [a, b]. To this end, let us apply the fol-
lowing ansatz12 

(A.4)

and try to find the coefficients . Multiplying both

parts of Eq. (A.4) by ((x – a)/(b – a)), integrating
over x in the limits [a, b] and performing the replace-
ment t = (x – a)/(b – a), one gets

so that with the orthogonality condition Eq. (A.2) one
obtains

F x( ) x a–
b a–
----------- 

 
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∞

∑

12 Notice that ansatz (A.4) (as well as expansion Eq. (5) itself) is
correctly defined inside the entire region (a, b) except for in the
small vicinities of the boundary points (absolutely the same situ-
ation holds for the usual JEM, Eq. (A.1), applied to the quark
distributions in the region (0, 1)). In practice, the respective
boundary distortions are just cut off when one performs the
extrapolation procedure.
(A.5)

Substituting Eq. (A.5) in the expansion (A.4) and using
Eq. (A.3), one eventually arrives at Eq. (5) (with
Nmax  ∞) of the main text.
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It has been shown that different regimes of forming bound states of colliding atoms are possible due to their
near-field interaction in a laser field. Analysis is performed for room temperature and a weak laser field under
the conditions of smooth scanning of the laser radiation frequency in dependence on frequencies of near-field
optical resonances. © 2005 Pleiades Publishing, Inc.

PACS numbers: 34.50.Rk, 42.50.Vk
The action of laser radiation on atoms, molecules, or
dielectric microparticles provides control over their
motion due to the effect of radiation forces on them [1,
2]. To date, radiation forces that are directly caused by
laser radiation are analyzed for the case where interpar-
ticle distances are much larger than the radiation wave-
length, i.e., in the wave zone of radiation. The situation
is fundamentally different when particles are spaced by
distances comparative to or less than the radiation
wavelength. In this case, an additional field caused by
the action of atoms on each other in the external-radia-
tion field in the near zone is comparative to the external
radiation field. As was shown in [3], the additional field
is responsible for significant change in the amplitude,
phase, and frequency characteristics of the dipole radi-
ation of interacting atoms. This property of the action
of closely approaching atoms on each other was inter-
preted in [3] as a near-field effect. This effect can be
manifested in the optical properties of nanostructure
systems (dimers, atomic chains, fullerenes), in Brew-
ster reflection of light from the surface of nonabsorbing
dielectrics, and in optical sounding of the surfaces of
solids [3].

In addition to the above effects, the action of parti-
cles on each other leads to the appearance of a force
between the particles. From the physical point of view,
the force between two atomic particles arises due to
interaction between induced dipole moments. From the
quantum-mechanical point of view, the induced dipole
moments of atoms arise due to the induction of atomic
coherence by the laser field. For dielectric particles, the
force is caused by the macroscopic polarization of these
particles.

This force can be important in various areas. The
force of interaction between atoms and molecules in the
laser radiation field is important in laser cooling of
atoms in traps, including magneto-optical traps; exper-
iments on Bose–Einstein condensation; atomic force
microscopy; etc. The force of interaction between
dipole particles and the radiation field is important in
0021-3640/05/8202- $26.00 ©0059
control over the motion of microparticles, including
control over the spatial location of viruses and bacteria.

In this work, we analyze the dipole-interaction
forces between atoms that are caused by continuous
quasiresonant laser radiation. The results show that the
interaction forces depend strongly on the interatomic
distance, polarization, and frequency of the laser field,
as well as on the Doppler shift of the frequencies.

The dipole–dipole interaction between atoms in
dense ensembles irradiated by the laser field was taken
into account in many works [5–9]. In contrast to those
works, in this work, we show that optical dimensional
resonances play an important role in control over the
laser-radiation-induced motion of atoms in dense
atomic ensembles. Optical dimensional resonances in a
system of immovable atoms were considered in [10–
12]. The existence of such resonances was experimen-
tally corroborated in [13], where characteristic maxima
were observed in the spectra of anisotropic reflection of
light from the arsenic-stabilized gallium-arsenide sur-
face. In our opinion [14], these maxima indicate that
optical dimensional resonances exist in arsenic dimers.
The appearance of optical dimensional resonances may
be expected in various systems consisting of a small
number of atoms forming nanostructure systems. In
this work, optical dimensional resonances are consid-
ered in systems of moving interacting atoms with the
inclusion of the Doppler frequency shift. Moreover, in
contrast to works [5–9], the motion of atoms in laser
fields is considered without a significant change in the
population of atomic states and disregarding spontane-
ous transitions of atoms from excited states to the
ground state. As is shown in this work, the effective
control over the motion of atoms in dense ensembles
can be ensured in weak laser fields due to the tuning of
the laser radiation frequency to the dimensional reso-
nance frequency depending on the interatomic dis-
tance.
 2005 Pleiades Publishing, Inc.
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We consider two-level atoms: one of which is at the
origin of the coordinates r1 = 0 and the other, at the
point r2 = (0, R, 0). The atoms are irradiated by a trav-
eling laser wave with constant amplitude E0L and fre-
quency ω, which is close to the atomic-transition fre-
quencies ω01 and ω02. The electric field strength of this
wave has the form

(1)

where k0 is the wavevector of the external wave.
The electric field formed by the laser wave and

dipole moments of the atoms at the observation point r
and time t is represented as

(2)

Here, the induced dipole moment 〈d〉 j of the jth atom
depends on the field at the point where this atom is
located, Rj = |r – rj|, and c is the speed of light in vac-
uum. The observation point r in Eq. (2) may coincide
with one of the points r1 and r2 or be beyond these
points. Differentiation in Eq. (2) is performed with
respect to the coordinates of the observation point. We
emphasize that the induced dipole moments 〈d〉1 and
〈d〉2 in the near zone are determined only by the electric
vector of the electromagnetic field. The effect of the
magnetic vector of the field becomes comparable with
the effect of the electric vector only in the wave zone,
where k0Rj @ 1.

The Hamiltonian of the system of two atoms has the
form

(3)

where Ej is the electric field strength at the point where
the jth atom is located, d0j is the matrix element of the
dipole moment of the jth atom, I is the identity operator,
and σαj (α = 1, 2, 3, j = 1, 2) and σ±j = (σ1j ± σ2j) are the
effective spin operators of the jth atom that satisfy the
known commutation relations. In the above notation,
the dipole moment operators of the atoms have the form

(4)

Using Hamiltonian (3), one may derive the Heisenberg
equations of motion for two parts of the dipole moment
operators d+j = σ+j and d–j = d0jσ–j, as well as for σ3j.
In the resulting equations, the transition to the mean
values sαj = 〈σ〉 αj and s±j = 〈d〉±j can be made. The form
of the equations for the classical field does not change
after the transition to mean values.

EL r t,( ) E0L ik0r iωt–( ),exp=

E r t,( ) EL r t,( ) curlcurl
d〈 〉 j t R j/c–( )

R j

----------------------------------.
j 1=

2

∑+=

H
1
2
---" ω0 j I σ3 j+( )

j 1=

2

∑=

–
1
2
--- d0 j* σ+ jE j d0 jσ– jE j+( ),

j 1=

2

∑

d j
1
2
--- d0 j* σ+ j d0 jσ j–+( ).=

d0 j*
For further analysis, it is convenient to separate the
field oscillations with an optical frequency by setting

(5)

where  and  are, respectively, the real and imag-
inary parts of the field at the point where the jth atom is
located. These quantities are time independent in sta-
tionary fields. We define the transformation

(6)

and the functions Xj = d0j(uj – iv j) and  = (uj +
iv j) determining the induced dipole moments of the
atoms. The latter functions satisfy the equations for
coupled quantum dipoles, which should be comple-
mented by relaxation terms presenting the natural
widths of the atomic transitions. Taking Wj = 2γj for the
total rate of the spontaneous decays of the upper levels,
we arrive at the equations of motion for atomic vari-
ables in the final form

(7a)

(7b)

where δj = ω – ω0j is the detuning between the field fre-
quency and the optical atomic-transition frequencies in
the jth atom and ω0j is the equilibrium value of ωj .
When deriving Eqs. (7), we take into account that
d0j(d0jE0) = |d0j|2E0 when d0j || E0j.

Using Eqs. (1), (2), and (6), we represent E0j in the
form

(8)

where

.

Equations (7) and (8) form a system of coupled equa-
tions that enables one to calculate the fields at the points
where the atoms are located, as well as the induced
dipole moments of the atoms, with the inclusion of the
action of the atoms on each other. In what follows, we

E j E0 j iωt–( ), E0 jexp E0 j' iE0 j'' ,–= =

E0 j' E0 j''
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Ẋ j iδjX j
2i
"
----- d0 j

2w jE0 j γ jX j,––=
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E01 E0L ik0r1( )exp
1
2
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use the coordinate system whose origin is at the center
of mass of two atoms:

(9)

where r = r1 – r2; m1 and m2 are the masses of atoms 1
and 2, respectively; and v =  is the velocity of the rel-
ative motion of the atoms.

Let us consider the most interesting case of interac-
tion of the atoms with the stationary-radiation field at
times much larger than the spontaneous relaxation time
τsp = 1/2γ. For such times, it should be taken into
account in Eqs. (7) that

(10)

This means that the relaxation processes and processes
of inducing dipole moments in the atoms compensate
for each other. The condition  = 0 means that the cen-
ter of mass of the atoms moves uniformly. The satisfac-
tion of the condition  = 0 in the system of the atoms
under thermal equilibrium conditions at a certain tem-
perature T is determined by the number of collisions of
an atom with the other atoms of the ideal gas per unit of

time ν = (N/V)16 , where r0 is the radius of
the atom, kB is the Boltzmann constant, mA is the mass
of the atom, and N/V is the concentration of the atoms.
It is necessary that the time interval between two subse-
quent collisions ν–1 be larger than the time τsp. In this
case, Eqs. (7) under conditions (10) are reduced to a
system of nonlinear algebraic equations.

We introduce the quantum polarizabilities of the
atoms near the isolated resonances ω0j as

(11)

The stationary solution of Eq. (7a) can be represented
in the form

(12)
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where ( j) is the nonlinear effective polarizability of
the jth atom.

The induced dipole moments of the atoms given by
Eqs. (12) depend on w1 and w2, i.e., on the differences
between the probabilities of observing atoms in the
ground and excited states. The quantities w1 and w2
generally depend on the fields E01 and E02. Therefore,
the effective polarizabilities are nonlinear functions of
the external field E0L. However, analysis of the solution
shows that there is a region of E0L where the effective
polarizabilities are nearly independent of the laser field
E0L. This case corresponds to the linear approximation.

Moving atoms with identical ω0 and |d0| values
cease to be identical. Indeed, the linear Doppler effect
shifts the photon frequencies when passing from the
rest coordinate system to the coordinate system of the
atom moving with velocity vj. Therefore, α1 ≠ α2 and

(13)

Substituting Eqs. (13) into Eqs. (12), we find dimen-
sional resonance frequencies at which the effective
polarizability of the atoms is maximal. At small dis-
tances, where k0R ! 1, we obtain the following formu-
las for the frequencies of optical dimensional reso-
nances:

(14)

Thus, in contrast to the case of immovable atoms
[11], for moving identical atoms, four linear stationary
optical dimensional resonances arise. The widths of
these resonances are determined by the natural width of
the levels of the isolated atoms belonging to the system.
The atoms of the system are considered as isotropic.
The action of the atoms on each other in the laser radi-
ation field leads to the anisotropy of the diatomic sys-

tem, because ( j) ≠ ( j).
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The forces acting on the atoms of the diatomic sys-
tem are determined by the formulas [2, 3]

(15)

where the angular brackets stand for quantum-mechan-
ical averaging and V1 and V2 are the operators of the
interaction between the respective atoms and the elec-
tric field. According to Eq. (3),

(16)

for the two-level atoms of the system. Here, acting
fields E0j are determined by expressions (8), where Xj

are determined in terms of effective polarizabilities (12)
that are functions of the coordinates of the observation
points r1 and r2. Substituting Eqs. (16) into Eqs. (15)
and performing averaging, we arrive at the expressions

(17)

where

(18)

Calculating expressions (17), we can represent the
forces F1 and F2 as the sum of three partial forces

(19)

where  is directed along the wavevector k0 of the

laser field and the forces  and  are directed
along the unit vector n = (r1 – r2)/|r1 – r2| or opposite to

it. The forces  and  are called the external- and
internal-displacement forces of the atoms in the
diatomic system in dependence on the sign of the vector
n in the corresponding terms of Eq. (17).

In the absence of the dipole–dipole interaction,
atoms do not affect each other. In this case, only the

radiation pressure forces  and , which are
determined by quantum polarizabilities (13), are non-
zero in Eqs. (17) and (19). When the dipole–dipole

interaction is taken into account, the forces  and

 can also be called radiation pressure forces,
although effective polarizabilities (12) should be used
in the expressions for the induced dipole moments in
this case.

The directions of the radiation pressure forces coin-
cide with the wavevector k0 of the external radiation.
The dispersion dependence of the radiation pressure
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forces is determined by the dispersion dependences of
the effective polarizabilities of the atoms. This means
that, for fixed interatomic distances R, the radiation
pressure forces increase considerably when the exter-
nal-field frequency coincides with the dimensional res-
onance frequency. The radiation pressure forces are
proportional to the electric field strength squared of the
external wave. Using the effective polarizabilities of
potassium atoms, we calculate the dimensionless radi-

ation pressure force /2"k0γ at the frequency of one
of the dimensional resonances. It is seen that this force
can be on the order of unity for laser fields E0L = 10–3 CGS
unit that satisfy the linear-approximation condition
wj  –1.

Let us consider the behavior of two moving identical
atoms interacting with each other in the laser field for
various directions of the propagation of the laser wave
with respect to the diatomic-system axis. The dimen-
sionless forces acting on the first and second potassium
atoms are approximately twice as strong as the radia-
tion pressure force. This circumstance testifies to a con-
siderable contribution to the dynamics of the atoms
from other partial forces, namely, forces of internal and
external displacements of the atoms. Moreover, the
absolute values of the forces acting on the first and sec-
ond atoms differ from each other, because moving
atoms are not identical and their effective polarizabili-
ties, as is seen in Eqs. (12), have different interatomic-
distance dependences due to a difference in the quan-
tum polarizabilities given by Eqs. (13). The accelera-
tion of potassium atoms in the laser field is estimated as
follows. In particular, for F1y/2"kγ = 1, where k = ω0/c,
we obtain the force F1y = 1.33 × 10–14 din and accelera-
tion 0.32 × 109 cm/s2. At a fixed velocity of the relative
motion of the atoms, the resulting forces F1y and F2y

acting on the atoms in the laser field depend strongly on
the interatomic distances. In this case, the dependences
of these forces on the laser field frequency also
changes. This means that the effective control over the
motion of the atoms is possible only with a correspond-
ing change in the laser field frequency.

Let us analyze the trajectory of the 2D motion of
interacting atoms in the field of a plane laser wave. The
potential energy of the atoms in the diatomic system
irradiated by the laser radiation field is given by the for-
mulas

(20)

At large distances between atoms that are compara-
ble with the laser radiation wavelength, the potential
energy of an atom in the system can be both positive
and negative in dependence on the detuning from the
resonance. In other words, variation in the external-
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V1〈 〉 1
2
---X1* E0Le

ik0r1 1
2
---ĜX2e
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radiation frequency provides the attraction or repulsion
of atoms under the action of laser radiation.

Let us analyze the behavior of the potential energy
of the atoms given by Eqs. (20) at small interatomic dis-
tances, where k0R ! 1. In this case, the potential ener-
gies given by Eqs. (20) depend only on the interatomic
distance. In the c.m.s. specified by Eqs. (9), the problem
of the motion of two atoms at small distances reduces
to the problem of the motion of one atom in a central
field. As is known [15], the entire trajectory of a particle
in the central field lies in one plane. The angular
momentum M is perpendicular to this plane and is a
conserving quantity; i.e., Mx = M = const. The complete
solution of the problem of the motion of the particle in
the central field can be obtained using the conservation
laws for the energy E and angular momentum M with-
out writing the equations of motion themselves. Then,
following [15], we obtain the formulas

(21)

(22)

where m = mA/2 is the reduced mass of the atom, ϕ and
r are the polar coordinates of the atom moving in the ZY
plane, and U(r) = 〈V1〉  + 〈V2〉 . Formulas (21) and (22)
provide the general solution of the problem of motion
of interacting atoms. Formula (22) gives the relation
between r and ϕ, i.e., the desired trajectory, whereas
formula (21) implicitly determines the distance r of the
moving particle from the center as a function of time.
The condition

(23)

determines the extreme distances r = R from the center
for the possible motion region. When equality (23) is
valid, the radial velocity  vanishes; however, this does
not mean that the particle stops, because the angular
velocity  = M/mr2 does not vanish.

Let us analyze the finite motion of the particle in the
region bounded by two circles with radii rmax and rmin.
In a time interval, when r varies from rmax to rmin and
then to rmax, the radius-vector of the particle rotates by
the angle ∆ϕ, which can be calculated by Eq. (22). The
trajectory of the particle may be both closed and open
in dependence on the form of the potential energy U(r).
Let us determine the potential energy U as a function of
the coordinate r assuming that the laser field frequency
varies according to formulas (14). Let the laser field
polarization coincide with the y axis; i.e., E0L || y0,
where y0 is the unit vector of the y coordinate axis.

t
rd
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m
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ṙ

ϕ̇

JETP LETTERS      Vol. 82      No. 2      2005
Then, at ω – ω0 = B(2 /"), from Eq. (20), we obtain
the following formula for the potential energy:

(24)

where r = R is the relative distance between the atoms.
We point to the following properties of the resulting
dependence (24). The potential energy of interaction
between two moving atoms at r ! λ in the laser field,
whose frequency varies in accordance with the inter-
atomic distance, is independent of the velocity of the
atoms and corresponds to the repulsion between the
atoms. At small interatomic distances such that r ! λ,

we can consider that γ ! B(2 /"). Therefore, the
potential energy U(r) varies with the distance as r3.
According to Eq. (14) for the other dimensional reso-
nance at the chosen polarization of the laser field, we

have ω – ω0 = –B(2 /") and the potential energy of the
interatomic interaction is determined by the formula

(25)

which corresponds to the attraction between the atoms.

Figure 1 shows the polar-angle dependence of the
dimensionless distance r/λ for the potential energy of
the interatomic interaction given by Eq. (24). The tra-

d0
2

U r( ) 1
2
---E0L

2 r3,=

d0
2

d0
2

U r( ) 2E0L
2 2d0

2

"
-------- 

  1

γ2
----- 1

r3
----,–=

Fig. 1. Trajectory of the finite motion of atoms in the laser
field when the potential energy depends on the distance
according to law (24). The velocity of atoms entering the
finite-motion region is v  = 60 cm/s, E0L || y0, and E0L =
0.05 CGS unit. The frequency of the laser field satisfies the

dimensional resonance condition ω = ω0 + B(2 /"). The

energy of the diatomic system in the finite-motion region is

equal to E = (m/2)  + (M2/2mr2) + U(r) = 0.68979 ×
10−19 erg.; the angular momentum is M = m2v2ρ2, where
ρ = 0.01λ is the impact parameter at the initial time; m =
mA/2; and mA is the mass of the potassium atom. The 3S–3P
5890-Å transition with a natural linewidth of 10 MHz [2] is
considered in the potassium atom.

d0
2

ṙ
2
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jectory r(ϕ) of the relative motion is represented in the
form of a 2D “rosette” consisting of the sequence of cir-
cular trajectories.

Another type of the finite motion corresponds to the
potential energy given by Eq. (25). In this case, as fol-
lows from the inequality

(26)

very small interatomic distances are possible; i.e.,
r  0, because U(r) tends to –∞ as –1/rn, where n =
3. This case corresponds to the fall of the particle to the
center. The minimum distance between the atoms is
determined by the laser field frequency in accordance
with the dimensional resonance condition ω = ω0 –

B(2 /"). Figure 2 shows the polar-angle dependence
of the dimensionless distance for the potential energy
given by Eq. (25).

Thus, we have proved that, by smoothly varying the
laser radiation frequency according to Eqs. (14) at a

mṙ2

2
--------- E U r( )–

M2

2mr2
------------ 0,>–=

d0
2

Fig. 2. Trajectory of the finite motion of atoms in the laser
field when the attraction potential energy depends on the
distance according to law (25) (fall of a particle to the cen-
ter). The velocity of atoms entering the finite-motion region
is v  = 5 × 104 cm/s, the impact parameter is ρ = 0.0306λ,
E0L = 5 × 10–3 CGS unit, and E = 0.66 × 10–15 erg. The fre-
quency of the laser field satisfies the dimensional resonance

condition ω = ω0 – B(2 /").d0
2

fixed laser radiation polarization, one can efficiently
control the finite motion of atoms at interatomic dis-
tances that are much smaller than the wavelength.
Under such conditions in the field of continuous laser
radiation, using the distance dependence of the poten-
tial energy given by Eq. (25), one can obtain dimers
consisting of atoms of an ideal gas at room temperature,
and the distance between atoms in dimers is determined
by the corresponding laser radiation frequency.

We are grateful to V.G. Minogin for stimulating dis-
cussion of certain results of this work.
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The ground state of an atomic Fermi gas near the Feshbach resonance for a negative scattering length is inves-
tigated using the variational method. The structure of the superfluid state is formed by two coherently coupled
subsystems, viz., the quasimolecular subsystem in a closed channel and the subsystem of atomic pairs in an
open channel. The derived system of equations makes it possible to describe the properties of the ground state
for arbitrary values of the parameters (in particular, to find the gap in the single-particle Fermi excitation spec-
trum and the speed of sound characterizing the branch of collective Bose excitations). © 2005 Pleiades Pub-
lishing, Inc.
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A new field of research concerning ultracold gases
of Fermi atoms and Bose molecules formed on their
basis has been formed and developed in recent years.
The key role in this research was played by the Fesh-
bach resonance (FR) for the pair interaction of low-
energy Fermi particles. The dependence of the position
of the resonance on a constant magnetic field B pro-
vides a unique opportunity of continuous variation of
the effective interaction between particles and its sign
reversal (the change in the sign of the scattering length
a) by means of varying the field [1].

The research in this field has passed through several
stages over a short period of time. At the first stage, the
formation of ultracold 40K2 [2] and 6Li2 [3–5] molecules
in the vicinity of the FR was demonstrated for B values
corresponding to a positive scattering length and,
hence, to the existence of a true bound state near the
dissociation threshold. In both cases, the resonance was
in the S scattering channel. For electron-spin-polarized
fermions, this presumes the interaction of nonidentical
atoms in various hyperfine states.

It was found that molecules formed in such an
excited state exist for a relatively long time. Owing to
this property, as B varies, a quasi-adiabatic transition
may occur from a state with a < 0, in which real mole-
cules are not formed, to a state with a > 0 and back. The
nature of the suppression of the inelastic processes
upon collisions with a transition of molecules to deeper
levels was consistently explained in [6].

The existence of molecules on the same vibrational
level facilitates the conditions for the Bose–Einstein
condensation in the formed gas of composite bosons.
The condensation of excited molecules in explicit form
was observed in a gas of 40K atoms [7] and in a gas of
6Li atoms [8–10].
0021-3640/05/8202- $26.00 ©0065
In this connection, the study of an atomic Fermi gas
near the FR for magnetic fields corresponding to scat-
tering lengths a < 0 is of special interest.

Owing to the possibility of choosing the parameters
such that a rarefied gas becomes a system of strongly
interacting particles in the absence of real molecules, it
is particularly interesting to analyze a many-particle
superfluid state arising under these conditions. The use
of the FR for achieving superfluidity in a gas of ultra-
cold Fermi atoms was discussed in [11, 12]. The rear-
rangement of the superconducting state upon a transi-
tion from weak to strong attraction was considered ear-
lier in [13, 14]. The interaction was of the single-
channel type, and the spin configuration remained
unchanged (see recent publication [15]). A salient fea-
ture of the FR is the two-channel type of the interaction.
Particles interact in the continuous spectrum through
the formation of an intermediate quasimolecular state
in another spin configuration. An instantaneous photog-
raphy reflects the two-component nature of the system
with vapors of particles in the quasimolecular or free
state. The two subsystems are involved in dynamic
coherent exchange due to which the population of the
quasimolecular state that decays in vacuum is constant
at the amplitude level in equilibrium. The coherent
superposition of quasimolecular states and pairs of
atoms in the continuous spectrum ensures the forma-
tion of a superfluid state with a unified condensate.

The pattern of such a state was revealed experimen-
tally first in the 40K gas [16] and then in the 6Li gas [17].
The idea of the experiment involved adiabatic projec-
tion of the state with a < 0 to a real molecular state with
a > 0 due to quite fast variation of B, which prevents the
formation of a condensate during the transition. Special
measurements confirmed the latter assumption (see,
 2005 Pleiades Publishing, Inc.
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e.g., recent publication [18]). Experimental advances in
this field stimulated a number of theoretical works [19–
23] in which an attempt was made to describe micro-
scopically a system of strongly interacting Fermi atoms
based, however, on certain versions of perturbation the-
ory.

This study is devoted to determining the ground
state of the system of interacting Fermi atoms near the
FR for a < 0 using the variational approach. As a result,
it becomes possible to obtain a unified description of
the ground state for an arbitrary ratio of the parameters.

The macroscopic variational function Ψ0 is chosen
taking into account that the ground state of the system
near the FR is a unified state, which is mainly formed
by two coherently coupled subsystems, viz., the sub-
system of Fermi atoms in a BCS-type state and the sub-
system of Bose quasimolecules in the condensate state.
In addition, Ψ0 contains both a state of quasimolecules
with a nonzero momentum of the center of mass (k ≠ 0)
and a state of pairs of atoms with a nonzero total
momentum. This form enables the variational proce-
dure to initially involve above-condensate excited
states (temperature T = 0), which play a significant role
in the formation of the ground state of the system in the
general case. The resulting system of equations makes
it possible, in particular, to find the gap in the single-
particle excitation spectrum, as well as the speed of
sound characterizing the branch of collective Bose exci-
tations, and, hence, to determine the critical velocity.

In this paper, we will write explicitly the solution of
this system of equations for the limiting cases permit-
ting an analytical solution under the assumption that the
resonant interaction constant is small. Numerical solu-
tion for the general case will be presented in a separate
publication.

To make our analysis maximally clear, we consider
a homogeneous system. The exchange between the
subsystems of Fermi atoms and quasimolecules with
the conservation of the total number of atoms is respon-
sible for the existence of a unified chemical potential µ.
Then, the generalized Hamiltonian of this system can
be written in the form

(1)

Here,  is the absorption operator of a Fermi atom in
the open channel, where the subscript σ = 1, 2 identifies
the hyperfine state of the atom in the two-component

mixture;  is the absorption operator for quasimole-
cules; and

H'ˆ Ĥ µN̂–=

=  ξ pâpσ
+ âpσ

p σ,
∑ ζ kb̂k

+
b̂k V̂ V̂a' V̂a''.+ + +

k

∑+

âpσ

b̂k

ξ p "
2 p2/2m µ,–=

ζ k ζ0 "
2
k2/4m, ζ0+ ε0 2µ,–= =
where ε0 is the position of the resonance level in the
closed channel and m is the mass of the atom (we dis-
regard the difference in the hyperfine energies in states
1 and 2). The operator

(2)

corresponds to the resonant exchange interaction
between particles in the open and closed channel.
(Hereinafter, we assume that the volume is Ω = 1.)

From the nonresonant interaction between atoms in
the open channel, the interaction of pairs with zero total
momentum is explicitly separated in Eq. (1):

(3)

(4)

Hamiltonian (1) in fact coincides with that widely used
in analysis of gases under the FR conditions (see, e.g.,
[19–23]). The only difference is that interaction (4),
whose role may be significant in the general case, is
taken into account. Strictly speaking, the terms describ-
ing the nonresonant interaction of atoms with quasimo-
lecules and between quasimolecules are omitted in
Hamiltonian (1). However, both these interactions are
generated by resonant interaction (2).

We choose the many-particle variational function in
the form

(5)

The field operator of atoms can be represented in the
conventional form

In the coherent representation, the field operator of
quasimolecules (under the assumption that the number
M0 of such quasimolecules is large) in the state k = 0 has
the form

A distinguishing feature of the structure of the
many-particle variational function given by Eq. (5) is
that it includes the states associated with the virtual pro-
duction of excited quasimolecules. The corresponding
operator is represented in the form

Note that the sequence of operators appearing in

relation (5) is important: operator  acts on the state

V̂ g b̂k
+
âk /2 p 2,– âk /2 p+ 1, âk /2 p+ 1,

+ âk /2 p– 2,
+ b̂k+( )

p k,
∑=

V̂a' U0 âp1 1,
+ â p1– 2, a p2– 2, ap2 1, ,

p1 p2,
∑=

V̂a'' U0 âp1 1,
+ aq p1– 2,

+ aq p2– 2, ap2 1, .
p1 p2 q 0≠, ,

∑=

Ψ0 Ψ̂MΨ̂M' Ψ̂A 0| 〉 .=

Ψ̂A up v pâp 1,
+ â p– 2,

++[ ] .
p

∏=

Ψ̂M e
1
2
---M0–

M0b̂0
+( ).exp=

Ψ̂M' Fk Gk b̂k
+
âk /2 p– 2, âk /2 p 1,+

p

∑+ .
k 0≠
∏=

Ψ̂M'
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arising as a result of the action of the operator  on
vacuum. The normalization of function (5) leads to the
two relations

(6)

where

(7)

(We assume that the coefficients up, v p, Fk, and Gk are
real-valued.)

The variational procedure can be reduced to finding
the energy

and to its variation in functions v p, Gk, and M0 taking
into account relations (6). Taking into account the
structure of variational function (5) and the form of
Hamiltonian (1), we obtain

(8)

In the unit volume considered here, the value of M0 is in
fact equal to the density of quasimolecules with k = 0.

In consistent derivation of formula (8), functions

 are multiplied by the factor exp(–zp), while func-
tions upv p are multiplied by the factor exp(–2zp), where

zp = . Direct computations show that the
value of zp is much smaller than unity (at least, in the
range of the parameters we are interested in) and the
inclusion of these factors virtually does not affect the
results of the variational procedure; we assume that
these factors are equal to unity.

By varying v p, we obtain

(9)

Ψ̂A

up
2 v p

2+ 1, Fk
2 wkGk

2+ 1,= =

wk v p k /2+
2 v p k /2–

2 .
p

∑=

E Ψ0 H'ˆ Ψ0〈 〉=

E 2 ξ pv p
2 ζ0M0 2 M0 gupv p

p

∑+ +
p

∑=

+ wk ζ kGk
2 2gGkFk+( )

k 0≠
∑

+ U0 upv p

p

∑ 
 
 

2

U0 v p
2

p

∑ 
 
 

2

.+

v p
2

Gk
2v p

2v p k–
2

k∑

δE
δv p

--------- 4ξ pv p=

+ up

v p
2

up

------– 
  2 M0g 2U0 up'v p'

p'

∑+

+ 4U0v p v p'
2

p'

∑
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Variation in Gk taking into account relations (6) gives

(10)

Using this equation and the relation following from
Eq. (7),

we can write Eq. (9) in the form

(11)

Here,

(12)

Finally, by varying M0, we obtain

(13)

The extremum defined by conditions (10), (11), and
(13) corresponds to the energy minimum under the con-
ditions

Therefore, the first term in relation (12) and the second
term in relation (13) are negative. For definiteness, we
will henceforth assume that g > 0.

Let us introduce the notation

Solving Eq. (11) together with relations (6), we arrive
at expressions analogous to those in the BCS theory:

(14)

The equation for the gap ∆ assumes the form

(15)

+
∂wk

∂v p

--------- ζ kGk
2 2gGkFk gwk

Gk
3

Fk

------–+ 
 

k 0≠
∑ 0.=

δE
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---------
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2–+[ ] 0.= =
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2 v p,=

2ξ p' upv p 1 2v p
2–( ) M0g U0 up'v p'
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ξ p' ξ p d p,+=
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2 gGkFk U0 v p'

2 .
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k 0≠
∑=

ζ0 g
1
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----------- upv p

p
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∆ g M0 U0 upv p.
p

∑+=
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2 1

2
--- 1

ξ p'

Ep

------– 
  , up

2 1
2
--- 1
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Ep

------+ 
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∆
Ep

------, Ep– ξ p'
2 ∆2+ .= =

∆ 1
2
---U0

∆
Ep

------
p
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Equation (13) is also transformed to the form

(16)

It is interesting that the role of the virtual excited quasi-
molecules in relations (15) and (16) is reduced to renor-
malization of the atomic spectrum [see Eqs. (12) and
(14)].

Solving Eq. (10) with allowance for relations (6),
we directly obtain

(17)

Equations (15) and (16) formally contain the integral
diverging at the upper limit. This divergence is associ-
ated with the method of the introduction of the param-
eters ε0, g, and U0 in Hamiltonian (1). In the general
case, this requires upper cutoff of the region of
momenta, in which the interaction is effectively real-
ized. However, in some important cases, such a cutoff
appears naturally.

Let us consider the most interesting case, where the
resonant interaction (U0 = 0) plays a decisive role. In
this case, Eq. (15) assumes the form

(18)

The quantity ε0 in Hamiltonian (1) corresponds to the
position of the resonance level for g = 0. However, for
g ≠ 0, the energy of the level is renormalized in the limit
of density tending to zero (i.e., in vacuum). This can be
seen directly by calculating the scattering amplitude for
a pair of atoms (with zero total momentum) in this
limit, which is determined by interaction (2). Summing
the perturbation series for E  0, we obtain (cf. [23])

It can be seen that, for g ≠ 0, the resonance level energy
is renormalized and assumes the following value:

In the many-particle problem, it is natural to treat the
quantity  as the actual position of the resonance level.

Subtracting  from both sides of Eq. (16) and

ε0 2µ–
1
2
---g

1

M0

----------- ∆
Ep

------.
p

∑=

Gk
2 1

2wk

--------- 1
ζ k

2

ζ k
2 4g2wk+

--------------------------–
 
 
 

.=

∆0 g M0.=

f E( ) "s/ m

E ε0–
1
2
---g2 εp

1–

p
∑ is E+ +

---------------------------------------------------------------,–=

s
m3/2

4π"
3

------------g2.=

ε̃0 ε0
1
2
---g2 1

εp

-----.
p

∑–=

ε̃0

1
2
---g2 1

εp

-----
p∑
taking into account relation (18), we obtain

(19)

The situation becomes more complicated if the nonres-
onant interaction is taken into account. However, con-
sidering Eqs. (15) and (16) together, we arrive at the
following equation that is again free of divergence:

(20)

Using the familiar relation between the quantity U0 and
the nonresonant scattering length aBg in order to go
beyond the Born approximation (see [24]), Eq. (15) for
the gap can be transformed to the form

(21)

For g = 0, this equation can be reduced to the equation
known in the theory of superconductivity (see [13]).
Assuming that the gas parameter is small in the case of
a purely nonresonant interaction, the quantity U0 in
Eqs. (20) and (12) can be replaced by 4π"2aBg/m. Solv-
ing Eqs. (20), (21), and (17) together and using rela-
tions (6), (12), and (14), we derive the expressions for

∆, M0, and  as functions of the chemical potential µ
for fixed values of g, aBg, and .

The values obtained in this way allow us to deter-
mine the number of atoms,

(22)

and the number of virtually excited molecules,

(23)

The relation for the total number of atoms in the sys-
tem,

, (24)

determines the equation for the chemical potential
µ(Nt).

As a consequence, we can find the relative values
NA/Nt, M0/Nt, and M'/Nt as functions of /2εt for a fixed
dimensionless parameter

(25)

ε̃0 2µ–
1
2
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∑ wkGk
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Here, εt is the Fermi energy corresponding to the total
density of noninteracting atoms, which is equal to Nt. It
should be specially noted that the obtained system of
equations is valid only in the interval of ε0/2εt, where
the condition M0 @ 1 holds.

The following remark is appropriate here. In a
strongly interacting many-particle system, the superpo-
sition type of the ground state near the FR makes the
definitions of “atoms” and “molecules” rather condi-
tional. In fact, these are the projections of the many-
particle wave function on the corresponding state.

Here, we write the solution to the obtained system of
equations in some limiting cases permitting an analyti-
cal description. Let us first assume that g  0 and
U0 > 0. In this case, it follows from Eq. (21) that ∆ = 0
and from Eq. (17) that Gk = 0.

In accordance with Eq. (20), the chemical potential
is µ = /2 under these conditions for an arbitrary U0 ≠
0. The number of particles in the atomic subsystem is

,

where the quantity , in accordance with Eq. (12), is
given by

Taking into account relation (24) and the fact that
 = 0, we immediately find that the gas of atoms

in the normal state is in equilibrium with the condensate
of quasimolecules in the interval

. (26)

At the left boundary, for   0, the number of atoms
is NA  0 and all the particles are in the condensate
of quasimolecules. As  increases, M0 decreases con-
tinuously and NA = Nt at the right boundary of interval
(26); in other words, a purely atomic phase is formed.
For U0 < 0, the behavior of M0 and NA remains qualita-
tively the same, but the condensate of quasimolecules

disappears earlier (approximately at  . εt –

|U0 |Nt) as ε0 increases. This shift is some larger due to

the emergence of the gap ∆ in the atomic spectrum, which
can be determined by solving Eq. (21) for g  0.

Let us now consider the solution of the above sys-
tem of equations in the case where the resonant interac-
tion dominates and omit the terms containing U0. We
consider only g values corresponding to the small
dimensionless parameter γ ! 1. In this case, in accor-

dance with Eqs. (18) and (25), ∆/εt = γ  ! 1.

ε̃0

NA 2 θ ξp'–( )
p

∑=

ξ p'

ξ p'
p2

2m
-------

1
2
--- ε̃0–

1
2
---U0NA.+=

Mg 0='

0
1
2
--- ε̃0 εt

1
2
---U0Nt+<<

ε̃0

ε̃0

1
2
--- ε̃0

1
2
---

M0/Nt
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We can directly verify that |dp | ~ γm, m ≥ 5/2 in
Eq. (12), and disregard the renormalization of the spec-
trum. Let us begin with the interval  @ ∆. In this case,
Eqs. (19) immediately lead to

(27)

Expression (22) yields the number of atoms

Calculating wk (7) and  (17) in the limit  @ ∆,
we arrive at the following expression for the number
(23) of quasimolecules above the condensate:

Using relation (24), we obtain the number of conden-
sate quasimolecules

(28)

The value ( /2εt)∗  for which M0 vanishes can be
determined approximately omitting the second term in
formula (27):

(29)

In a narrow interval ~γ3/2, the number M ' of excited
quasimolecules near this boundary is found to be larger
than M0. With decreasing , the number M0 of conden-
sate particles increases rapidly and M0 @ M '.

Let us now find the speed of sound C in the system.
In the case of an equilibrium exchange by atoms
between the two subsystems, the speed of sound is
determined by the thermodynamic relation

(30)

which is characteristic of one-component systems (see,
e.g., [24]). For g  0, we have C2 = 0. This result is a
consequence of the passage of Fermi particles under
compression to the quasimolecular subsystem leading
to the relation ∂p/∂ρ = 0.

A similar effect takes place in an ideal Bose gas at
T < Tc, when some above-condensate particles overpass
to the condensate upon an increase in pressure.

When calculating the derivative ∂µ/∂Nt, only the
dependence of ∆ on M0 in the argument of the logarithm
turns out to be significant [inclusion of the dependence
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of the second term in relation (27) on µ gives the cor-
rections ~γ2]:

We will use relation (28), omitting the last term on the
right-hand side when determining the derivative
∂M0/∂Nt. The derivative acquires a term proportional to
(1/M0)(∂µ/∂Nt), which plays a significant role near the
boundary given by Eq. (29) on the interval where M0/Nt

becomes on the order of γ2. Returning to definition (30),
we derive the general expression for the speed of sound:

(31)

Far from boundary (29), we have

(32)

In the limit µ  εt, M0  0, we obtain

(33)

It is interesting that the limiting value is reached on the
side of the region, where M0 ≠ 0 and the nonresonant
interaction is absent. Thus, the speed of sound as a
function of /2εt increases continuously to value (33),
which is typical of the collective oscillation of an
ensemble of free Fermi particles. For γ2 ! 1, a sharp
increase in C2 to value (33) occurs on a narrow interval
~γ2.

Let us now consider the region 0 <  < ∆. In this
limit, Eq. (19) assumes the form

(34)

Accordingly, from relation (22), we obtain

Determining M' from (23), we obtain

The resulting values immediately indicate that most
particles in this region are in the condensate of quasi-
molecules:
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Using relations (30) and (34) for the speed of sound, we
obtain

(35)

It follows from relation (34) that the chemical
potential vanishes for

To reveal the complete pattern, let us consider the
region of negative values of , assuming that ∆ ! .
Naturally, real molecules dominate in this region. The
admixture of atomic states is small:

(36)

The behavior of above-condensate molecules is analo-
gous:

Accordingly, the number of molecules in the con-
densate is

In this case, Eq. (19) is transformed to the form

This relation, together with Eq. (25), leads to the fol-
lowing expression for the speed of sound:

(37)

A high power of the small parameter appears in this
relation, because the interaction between molecules in
the given case occurs via virtually produced Fermi
atoms whose number is small [see Eq. (36)]. This
explains the tendency of C2 to zero for   ∞.
Comparing relations (37), (35), (32), and (33), we see
that the speed of sound increases monotonically with

, reaching its maximal value (33).

The superfluidity and critical velocity v c in the sys-
tem under investigation are determined simultaneously
by the spectrum of single-particle Fermi excitations and
collective Bose excitations. Accordingly, v c assumes
the minimum value among the two velocities C and
min(Ep/p) [Ep is defined by Eqs. (14)]. The critical
velocity for  near 2εt is determined by Fermi excita-
tions and v c  0 together with M0  0 and ∆ 
0 [see Eq. (18)]. As  decreases, the velocity
min(Ep/p) increases monotonically, while the speed of
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 . 
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3m
-------γ5/2.
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sound, on the contrary, decreases. The critical velocity
is again determined by single-particle excitations up to

/2εt . 1/3. For smaller /2εt values, including the

range of negative  values, the critical velocity is
determined by the speed of sound.

This study was supported by the Russian Founda-
tion for Basic Research.
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A moving vortex structure can amplify (generate) longitudinal acoustic waves when the velocity of its motion
exceeds a certain critical velocity. The critical velocity is determined by the logarithmic derivative of the vis-
cosity coefficient of the vortex structure with respect to the magnetic field and may be much smaller than the
speed of sound. In particular, this effect suggests an alternative explanation for the plateau observed in the cur-
rent–voltage characteristic of superconducting bridges in a perpendicular magnetic field [S.G. Doettinger et al.,
Phys. Rev. Lett. 73, 1691 (1994)]. © 2005 Pleiades Publishing, Inc.

PACS numbers: 72.50.+b, 74.40.+k, 74.60.Ec
It is well known that the interaction of waves prop-
agating in a physical system with objects moving in the
same system at a velocity exceeding the phase velocity
of waves leads to the amplification of these waves.
Examples of such systems are a traveling-wave tube [1]
(electromagnetic wave amplification) and a piezoelec-
tric semiconductor (ultrasonic wave amplification [2]).
In both cases, the amplification is a result of the inter-
action of waves with the electron flow. Recently [3], it
was shown that the motion of the vortex structure in a
superconductor at a velocity greater than the speed of
sound can amplify longitudinal ultrasonic waves.

The aim of this study is to demonstrate that a super-
conductor with a moving vortex structure is a system
violating the following common concept: for the obser-
vation of wave amplification, it is necessary to have a
subsystem moving with a velocity higher than the
phase velocity of the waves. Below, it is shown that the
amplification (generation) of longitudinal ultrasonic
waves in such superconductors can also be observed
when the vortex structure moves with velocities much
smaller than the wave velocity. This effect suggests a
new interpretation of the plateau that is observed in the
current–voltage characteristics of superconducting
bridges (see, e.g., [4, 5]).

The interaction of ultrasonic waves with a stationary
vortex structure has been much investigated [6–15]. In
[8, 20], it was shown that an ultrasonic wave may
entrain the vortex structure. This phenomenon was also
observed experimentally [17–19].

Let us derive the equations of motion for the vortex
structure of a superconductor. The gradient-invariant
0021-3640/05/8202- $26.00 ©0072
expression for the current Js of the superfluid electron
liquid in the laboratory frame of reference has the form

(1)

Here, F and A are the phase of the order parameter and
the vector potential (B = ∇  × A, where B is the magnetic
induction), and λL, φ0, and µ0 are the London penetra-
tion depth, the magnetic flux quantum, and the mag-
netic constant, respectively. Taking the vector product
of Eq. (1) by operator ∇ , we obtain

(2)

Let us introduce the induction vector Bv of the vortex
lattice so that its magnitude is equal to φ0nv , where nv

is the two-dimensional vortex density (i.e., the number
of vortices per unit area in the plane perpendicular to
the vortex lines) and its direction is determined by the
vector tangential to the vortex line. In the presence of
vortices, the phase of the order parameter is a multival-
ued function and the phase circulation over a certain
closed contour l is determined by the number of vorti-
ces passing through the contour:

Js
1

λL
2 µ0

-----------
φ0

2π
------ ∇Φ A– 

  .=

∇ Js× 1

λL
2 µ0

-----------
φ0

2π
------ ∇ ∇Φ ∇ A×–× 

  .=

φ0

2π
------ ∇Φ ld∫ Bv s,d∫=
 2005 Pleiades Publishing, Inc.
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where  is the integral over the surface spanning the

contour l. According to the Stokes theorem, this expres-
sion can be represented in the form

which, by virtue of the arbitrary choice of the contour,

yields ∇  × ∇Φ  = Bv . For the subsequent calculation,

it is necessary to express Eq. (2) in terms of macro-
scopic electrodynamics. For this purpose, we write the
equation for the total current in the laboratory frame of
reference. In view of the accepted assumptions, this
equation can be written as

(3)

where –qns  is the current caused by the motion of the
ionic lattice in the laboratory frame of reference and U
is the strain vector of the ionic lattice.

Substituting Eq. (3) into Eq. (1) with allowance for
the Maxwell equations

(4)

(5)

after simple transformations, we obtain

(6)

Differentiating Eq. (6) with respect to time and taking
into account the continuity equation for Bv ,

(7)

we reduce Eq. (6) to the form

(8)

where  is the local velocity of the vortex lattice. This
equation was derived earlier in a different way in con-
structing the theory of the acoustoelectric effect [20].

Below, for definiteness, we consider a homogeneous
isotropic superconductor in an external magnetic field
that is oriented in the negative direction of the z axis and
produces an induction Bv = B0 in the superconductor in
the absence of the ultrasonic wave. A longitudinal ultra-
sonic wave propagates in the superconductor in the pos-
itive direction of the y axis and has the form U =
U0exp(iky – iωt), where k is the wave vector, ω = 2πf,
and f is the frequency of the ultrasonic wave. The super-
conductor contains a vortex structure, which moves
with a velocity V in the direction of the ultrasonic wave
propagation. The propagating ultrasonic wave causes
oscillations of the vortex structure density, ∆Bv , around
its equilibrium value B0 determined by the external

sd∫

φ0

2π
------ ∇ ∇Φ sd×∫ Bv s,d∫=

φ0

2π
------

J Js qnsU̇;–=

U̇

∇ E× ∂B/∂t,–=

∇ H× j,=

B λ L
2 ∇ 2B

m
q
---- ∇ U̇×+– Bv .=

∂Bv /∂t ∇ Ẇ Bv×( ),×=

∂
∂t
----- λL

2 ∇ 2B– B
m
q
---- ∇ U̇×+ + 

  ∇ Ẇ Bv×( ),×=

Ẇ
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magnetic field. Below, we assume that B0 is indepen-
dent of coordinates.1 Hence, we represent Bv as the
sum Bv = B0 + ∆Bv , while the local velocity of the mov-

ing vortex structure can be represented as  = V +

, where V and  are the constant (the velocity of
the vortex structure moving as a whole) and variable
components of the vortex structure, respectively. Sub-
stituting these definitions into Eq. (8) and taking into
account that the subsequent consideration refers to har-
monic waves, we obtain

(9)

Solving Eq. (9) for B and using Eq. (5), we arrive at
the expression for the total current induced by the
motion of the vortex structure and by the oscillations of
the ionic lattice of the superconductor:

(10)

Now, let us write the local equation of motion for the
vortex structure (we ignore the inertial mass of a vor-
tex) by deriving it from the force balance condition
Ffr = FL, where FL =  × Bv is the Lorentz force, Ffr =

η(  – ) – (  – ) × Bv is the friction force
between the vortex structure and the crystal lattice of
the superconductor, and  is the current density in the
local frame of reference connected with the vortex

structure. Taking into account that  = (Js – qns ),
we obtain the equation of motion for the vortex struc-
ture in the form

(11)

where η and  are the longitudinal and transverse vis-
cosity coefficients of the vortex structure, respectively.
Here,  = (q/h)η', where η' is the transverse viscosity
coefficient for a single vortex. In a more convenient
form, Eq. (11) is represented as follows:

(12)

where α = qns – .

1 In the case of a bulk superconductor, the condition for the quan-
tity B0 to be independent of y is expressed as µ0Jcl/B0 f ! 1. In
the case of a film, the vortex structure is accelerated by the Lon-
don currents and, therefore, a limitation is imposed on the film
thickness: it should not exceed λL.

Ẇ

W'˙ W'˙

B λL
2 ∇ 2B–

m
q
---- ∇ U̇ ∇ W' B0×( )×+×–=

+
1
iω–

---------∇ V ∆Bv×( ).×

J
1

µ0 1 λLk( )2+( )
-----------------------------------=

× W' B0×( )k2 1
iω
------ V ∆Bv×( )k2– .

Js'

Ẇ U̇ η̃ Ẇ U̇

Js'

Js' Ẇ

η Ẇ U̇–( ) η̃ Ẇ U̇–( ) Bv×–  = Js qnsẆ–( ) Bv ,×

η̃

η̃

η Ẇ U̇–( ) α Ẇ U̇–( ) Ḃv×+ J Ḃv ,×=

η̃
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Equations (3), (7), (10), and (12) completely
describe the motion of the vortex structure. For a com-
plete description of the problem under study, these
equations should be complemented with the equation
of motion of the ionic lattice of the superconductor:

(13)

where ρ is the density of the superconductor and cl and
ct are the velocities of longitudinal and transverse ultra-
sonic waves in the absence of the vortex structure. In
Eq. (13), the third and fourth terms describe the effects
of the electric and magnetic fields on the ionic lattice of
the superconductor while the fifth term describes the
effect of the friction forces. To solve the problem on the
interaction of a moving vortex structure with the oscil-
lations of the vortex lattice, it is necessary to determine
the relation between the strain vector of the ionic lattice
and the strain vector of the vortex lattice. This can be
done by linearizing Eq. (11). In contrast to [3–16, 20,
21], we perform the linearization by taking into account
the dependence of the viscosity coefficient η on Bv and
expand η(Bv) in a Taylor series at the point B0 to the
second-order terms in ∆Bv: η = η0 + η,B∆Bv , where
η0 = η(B0) is the zero-order term of the expansion of the
viscosity coefficient in the vortex structure density
oscillations and η,B = dη(Bv)/ . Now, we con-

sider the case of a contaminated superconductor and
assume that the Magnus force is compensated for by the
transverse friction forces: α = qns –  = 0 (this assump-
tion means that we ignore the Hall effect). As a result,
we obtain two equations:

(14)

(15)

Equation (14) allows one to determine the current
that should be passed through the superconductor to
accelerate the vortex structure to the velocity V. Equa-
tion (15) describes the oscillations of the vortex struc-
ture and its interaction with the ultrasonic wave. Using
the local continuity equation, it is possible to determine
∆Bv :

(16)

Substituting Eq. (16) into Eqs. (15) and (10) and substi-
tuting Eq. (10) into Eq. (15), we obtain

(17)

Here, D = /µ0(1 + k2) and β = 1 – η,BB0/η0; note
that D ≈ C11, where C11 is the longitudinal elastic mod-

ρU̇̇ ρct
2∆U ρ cl

2 ct
2–( )graddivU+=

– qnsU̇ B× qnsE– F fr,+

dBv )B0

η̃

η0V J0 B0,×=

η0 W'˙ U̇–( ) ηB∆B V⋅+ J B0 J0 ∆Bv .×+×=

∆Bv
iωk W' U–( )

ω Vk–
--------------------------------B0.–=

η0 W'˙ U̇–( ) Dk2W'–=

+
1

iω
------ Vk

ω Vk–
---------------- Dk2 iωβη0+( ) W'˙ U̇–( ).

B0
2 λL

2

ulus of the vortex lattice [6]. If we set V = 0, Eq. (17)
will coincide with the equation of motion of the vortex
structure that was proposed in [6] and, hence, it will
coincide with the dispersion law for the eigenmodes of
the vortex lattice, which were obtained in [11, 13].

Solving Eq. (17) together with the linearized
Eq. (13) and Eqs. (3)–(5), we obtain the expressions for
the relative velocity variation ∆cl/cl and additional
attenuation αat that occur in the longitudinal wave
because of the interaction with the vortex structure:

(18)

(19)

where

From expressions (18) and (19), one can see that
both the attenuation coefficient and the relative varia-
tion of the sound velocity have two anomalous points:

V =  and V = . At V = , a change of sign occurs

in the relative variation of the sound velocity and an
anomalous attenuation takes place because of the inter-
action with the vortex structure. These effects are
related to the appearance of a new collective mode of
the vortex structure. The new mode exists only for the
vortex structure in motion. When the velocity of the

vortex structure exceeds the critical velocity Vc = ,

the amplification of ultrasonic waves is observed. A
generation arises as a result of the amplification of lon-
gitudinal ultrasonic waves caused by thermal fluctua-
tions. The effect of the longitudinal ultrasonic wave
generation manifests itself, in particular, as a plateau in
the current–voltage characteristic when the vortex
structure reaches this velocity. The comparison of the
results obtained above with the results reported in [3–
16, 20, 21] shows that the inclusion of the dependence
of the viscosity coefficient on the vortex structure den-
sity in the consideration leads to a renormalization of
both the velocity of the vortex structure at which the
anomalous increase in the attenuation of ultrasound is
observed and the critical velocity of the vortex structure
at which the amplification of ultrasound is possible. As
follows from the results of this study, the sign of the dif-
ference between the critical velocity of the vortex struc-

∆cl

cl

-------
1
2
--- 1 βV

cl

---– 
  1 2γV

cl

---– 
  ω2

ρcl
2

--------=

× D

1 2γV
cl

---– 
  2

ω2 X2+
----------------------------------------------,

α at
1
2
--- ω2

ρcl
3

-------- 1 βV
cl

---– 
  D

X

1 2γV
cl
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  2

ω2 X2+
----------------------------------------------,=

X
D
η0
-----k2, D=  = B0

2/µ0 1 λL
2 k2+( ), γ = 1

1
2
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η ,BB0
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cl

2γ
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cl

2γ
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ture and the velocity of the ultrasonic waves in the
superconductor depends on the sign of the derivative of
the viscosity coefficient. In particular, in the field and
temperature region where the viscosity coefficient is
proportional to Bv , the amplification (generation) of
ultrasonic waves is absent. From physical consider-
ations, one can expect that the derivative of the viscos-
ity coefficient should be negative when either the den-
sity of the vortex structure or its velocity is sufficiently
high. Therefore, the critical velocity at which the afore-
mentioned effects are observed will be less than the
speed of sound.

In a series of publications (see, e.g., [4, 5]), the
authors reported on the observation of a plateau in the
current–voltage characteristics of both low-tempera-
ture [4] and high-Tc superconducting films. The plateau
appeared when the velocity of the vortex structure
reached a certain critical value. This phenomenon was
interpreted on the basis of the Larkin–Ovchinnikov
effect [22]. According to the above consideration, when
the velocity of the vortex structure exceeds the value of
cl/β, the vortex structure begins generating ultrasonic
waves. This effect should also manifest itself as a con-
siderable decrease in the slope of the current–voltage
characteristic of a given superconductor. Therefore, it is
possible that, in some of the experiments on measuring
the current–voltage characteristics, the effect proposed
in this paper manifests itself together with the Larkin–
Ovchinnikov effect [22]. To verify this hypothesis
experimentally, it is necessary to measure the current–
voltage characteristic and simultaneously measure the
acoustic emission, which should accompany the flat-
tening of the current–voltage characteristic and the
appearance of the plateau.

Below, for illustration, let us interpret the results of
the experimental study [5] from the standpoint of the
proposed hypothesis. In this experiment, the current–
voltage characteristic was measured for a YBaCuO film
bridge on an MgO substrate. We assume that the pla-
teau of the current–voltage characteristic begins as
soon as the critical velocity of the vortex structure coin-
cides with the velocity of the surface acoustic wave
(SAW) propagating over the substrate. We estimate the
critical velocity and compare the result with the exper-
imental value of the critical velocity. For estimating, we
use the Tinkham empirical formula [23] for the conduc-
tivity of a YBaCuO superconductor in the mixed state:

r = r0 (γ0/2), where γ0 = 1/2 × 103(1 – t)3/2 B–1 and t =
T/Tc; here, T is the absolute temperature, Tc is the super-
conducting transition temperature, and the viscosity
coefficient in the TAFF regime has the form η = B2/r.
The velocity of the SAW in MgO is 5 × 103 m/s [24].
For the external magnetic field, we chose a value of 1.8 T.
The dots in the figure show the experimental values of
the critical velocity [5]. In view of the fact that the cal-
culation was performed using the empirical conductiv-
ity value, which was obtained for a bulk superconduc-

I0
2–
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tor with a vortex structure moving with a low velocity,
the agreement with the experiment can be considered as
satisfactory.

Thus, the above consideration suggests the follow-
ing conclusions: (i) a moving vortex structure can
amplify or generate ultrasonic waves when the velocity
of its motion is much smaller than the velocity of ultra-
sonic waves, and this velocity of motion is determined
by the logarithmic derivative of the viscosity coefficient
of the vortex structure with respect to magnetic induc-
tion, unlike the result obtained in [3]; (ii) this effect can
manifest itself in the form of a plateau in the current–
voltage characteristic of a superconducting film in the
mixed state, and, possibly, such a manifestation already
was observed in [5]; (iii) starting from the instant when
the plateau of the current–voltage characteristic is
reached, an acoustic emission should be observed.

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-02-17037 and 05-
02-16959. I am grateful to V.P. Sakhnenko and
V.M. Vinokur for stimulating discussions of the results.
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We have studied a strongly asymmetric Al single-electron transistor with R1 ! R2 and C1 @ C2, where R1, 2 and
C1, 2 are the tunnel resistances and capacitances of the first and second junction respectively. Due to the asym-
metry in its electric parameters leading to strong asymmetry of the nonlinear I–V curve at zero bias (V = 0), the
transistor demonstrated a remarkable current response to an AC signal at the values of the gate charge Q0 close
to (n + 1/2)e, where n is integer. A rather delicate regime of the transistor operation (V ! e/CΣ) being important
for unperturbed measurements was examined. The measured curves are in good agreement with a model based
on the orthodox theory of single electron tunneling. This specific zero bias regime of an asymmetric transistor
opens new opportunities for a single-electron transistor as an ultrasensitive charge/field sensor. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 73.23.Hk, 73.40.Rw
INTRODUCTION

The single-electron tunneling (SET) transistor is a
device consisting of two small tunnel junctions con-
nected in series. Due to the close location of these junc-
tions, they form a small common electrode (island),
which is equipped with a capacitively coupled gate
electrode [1]. Due to the remarkable correlation of the
SET events in these junctions, which are governed by
the Coulomb blockade effect, the current through the
transistor periodically (the period is equal to the ele-
mentary charge e) depends on the charge induced on its
island; consequently, the SET transistor can be used as
an extremely sensitive electrometer (see, e.g., [1, 2]).
Due to requirement of high yield in their manufacture,
the metallic SET transistors are usually fabricated with
tunnel junctions having almost equal areas; as a result,
the transistors are nominally symmetric.

Recently, some useful features of asymmetric SET
transistors were found experimentally by Weis et al. [3]
and Walliser [4], who modeled the behavior of such
transistors using numerical methods. One of these use-
ful features is the possibility for an asymmetric transis-
tor to operate as a sensitive electrometer even without
any DC voltage bias when a current response is gener-
ated by an AC or noise signal. In this paper, we applied
a special technique for the fabrication of strongly asym-
metric SET transistors [5] allowing formation of the
transistor junctions not only with different areas but
also with different transparencies of their barriers.

¶ This article was submitted by the authors in English.
0021-3640/05/8202- $26.00 ©0077
Using this technology, we fabricated and measured an
asymmetric Al/AlOx/Al SET transistor in the regimes
of small DC and AC bias which are important for deli-
cate measurements. We modeled the transistor behavior
applying the orthodox theory of SET [6]. Some of the
transistor characteristics are expressed in a simple ana-
lytical form, while others are calculated numerically
and presented graphically.
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CryoLab Moscow Univ tilt 45 (b)

Fig. 1. Asymmetric Al SET transistor manufactured by the
three angle shadow evaporation technique. (a) Top view:
arrangement of the metallic layers forming the bottom elec-
trode (gray), island (light gray) and top counter-electrode
(white); (b) SEM microphotograph of the transistor struc-
ture.
 2005 Pleiades Publishing, Inc.
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1. SAMPLE FABRICATION

The Al structures (Fig. 1) were fabricated on a Si
substrate buffered by a sputtered 200 nm thick AlOx

layer. The traditional shadow evaporation technique
and e-beam lithography were used in the fabrication
process. The suspended mask was used to perform
three successive depositions of Al at different angles
in situ: first for the bottom electrode, second for the
island, and third for the counter electrode. Two oxida-
tion processes were performed in between to form tun-
nel barriers (see for details [5]). The design of the struc-
tures was nearly the same as that developed earlier for
the stacked SET transistors, which demonstrated very
low noise of the background charge [5]. In this paper,

Fig. 2. Experimental I–V curve of the studied transistor
(solid line) and its theoretical fit with the parameters pre-
sented in the text.

Fig. 3. Experimental (points) response curve of the asym-
metric SET transistor at an harmonic voltage bias with the
amplitude Vac = 20 µV. The fitting curve (solid line) was cal-
culated for the experimentally evaluated parameters of the
transistor and a signal amplitude of 23 µV. The effective
electron temperature T was assumed to be 40 mK.
the efforts were focused on the study of the operation
characteristics of a device with strongly unequal junc-
tions. Since the junctions were formed at different fab-
rication steps, the effect of shrinking the orifices and
slits in the mask after each evaporation step resulted in
a reduction in area of the second (top) tunnel junction,
as shown in Fig. 1a.

2. RESULTS AND DISCUSSION

All the measurements were carried out in a dilution
refrigerator at a temperature of Tbath = 25 mK. A mag-
netic field of 1 T was applied to the sample in order to
suppress the superconductivity in the Al electrodes of
the transistor. The parameters of the transistor were
evaluated as follows: R1 = 60 kΩ , R2 = 0.6 MΩ , C1 =
0.26 fF, and C2 = 0.03 fF. Its I–V curve is shown in
Fig. 2. In this strongly asymmetric sample (R1 ! R2 and
C1 @ C2 @ Cg, where Gg = 0.2 aF is the gate capaci-
tance) at zero voltage bias and around the gate charge
Q0 = CgVg ≈ e/2 + en (n is integer and Vg is the gate volt-
age), we observed the DC current response as small
antisymmetric peaks. These peaks can be explained by
the effect of rectification of the unavoidable voltage
noise due to the strong asymmetry of the transistor I–V
characteristic at V = 0 (see also [3]). A similar behavior
of the transistor was observed when an AC signal, V =
Vacsinωt, was applied to the transistor. Moreover, the
amplitude of the current peaks strongly depended on
the degree of asymmetry (R2/R1 and C1/C2) and on the
amplitude Vac of the AC signal. The transistor current
response measured in such a regime at Vac = 20 µV and
at a frequency of ω/2π = 500 Hz is shown in Fig. 3.
Some small discrepancy between the experimental and
fitted curves in Fig. 3 can be explained by the presence
of the nonzero voltage noise applied to the transistor.
This means that, in the experimental case, we measured
the total action of the applied AC and noise signals; the
effective noise level Vnoise can be estimated to be about
of 10 µV. Analogous measured and calculated
responses in the DC voltage bias regime for the studied
transistor at the same value of Q0 are shown in Fig. 4.

To fit the experimental curve for slow AC signals
(ω ! I/e, where I is the SET current), we applied the
orthodox theory of SET [6]. Presenting the gate charge
Q0 in the form Q0 = e/2 + en + δQ0, we expressed the

appropriate tunneling rates  through the ith junction
in the positive (+) and negative (–) directions as

where

Γ i
±

Γ i
+ kBT

e2Ri

----------
γi

e
γi 1–

--------------, Γ i
– e

γiΓ i
+, i 1 and 2,= = =

γ1 2,
e

CΣkBT
---------------- δQ0 C2 1, V ac ωtsin+−( ),=
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and CΣ = C1 + C2 + Cg are the total capacitance of the
island.

The SET current across the transistor in the two-
charge-state approximation, which is applicable in our
case of not very large signals, is expressed as (see, e.g.,
[7])

Assuming that |γi | @ 1, i.e., a sufficiently low tempera-
ture T, we simplify the expression for the current, which
finally reads

The DC component 〈I(δQ0)〉  of the SET current I is
obtained by averaging this equation over the voltage
v  = vacsinωt with the weight

Notice that the weight function P(v), which can be con-
sidered as a probability density to find a value of the
voltage within the interval (v, v  + dv ), equals the ratio
of the time-interval dt = 2dv /v 0ωcosωt, when this
event happens, to the period 2π/ω. The resulting depen-
dence is shown by the solid line in Fig. 3. One can see
good agreement between the experimental data and the
theoretical fit.

The observed features of an asymmetric SET tran-
sistor demonstrates that it can be used as a noise level
sensor for the bias and signal lines of a measuring
setup. For example, the sensitivity of the studied tran-
sistor to the noise signal in the bias lines was roughly
estimated as 20 nV/Hz1/2 in the frequency range from
∆f = 0.1–10 kHz. The amplitude of the observed current
peaks in our setup was about 0.1 pA, i.e., limited by the
resolution of the current preamplifier.

Moreover, the asymmetric SET transistor can also
be used as a radio frequency driven electrometer oper-
ating in a linear regime. The maximum current-to-
charge ratio of the device, η = |dδI(Q0 = 0)/dδQ0 |, for a
given sample and Vac = 20 µV (see Fig. 3) is about
0.3 nA/e. This value is of the same order as that of typ-
ical SET electrometers. For example, in the traditional
regime of the same amplitude of the DC bias (Vdc =
20 µV), this electrometer has a slightly better value of
η, i.e., 0.7 nA/e at I = 8 pA (see Fig. 4). The current-to-
charge ratio η can also be found from the analytical
expression for 〈I(δQ0)〉  as the corresponding derivative
of 〈(∂I(δQ0)/ 〉 . The analytical expression

for this average is rather cumbersome but easy for
numerical calculations. In this way, we found the cur-
rent-to-charge ratio numerically as a function of T and
the dimensionless parameter of asymmetry C2/CΣ. Fig-
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ure 5 shows the dependence of η on the value of C2/CΣ
calculated for several values of the transistor tempera-
ture in AC and DC regimes. The lower current-to-
charge ratio in the AC regime can be understood from
the fact that the effective action of the AC signal on η is

Fig. 4. Experimental (points) and calculated (solid line)
modulation curves of the asymmetric SET transistor in the
DC bias regime at Vdc = 20 µV.

Fig. 5. Current-to-charge transfer coefficient η in the SET
transistor versus the asymmetry ratio at different tempera-
tures. Vac = Vdc = 20 µV. (a) DC regime; (b) AC regime.
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more than two times weaker than the action of the DC
signal of the same amplitude.

In some experimental situations (for example, with
an RF-SET sensor), the zero bias regime with AC or
noise pumping can be considered as more convenient
for a SET transistor operating as an electrometer. Such
a regime of the electrometer operation presumably has
weak back action on the background charges located in
the dielectric around the island [8]; therefore, the
device is less subject to the drift of the offset charge
bias.

3. SUMMARY

In this paper, we explored a rather delicate regime
(V ! e/CΣ) of the transistor operation, which is impor-
tant for unperturbed measurements. The results
obtained demonstrate the remarkable nonlinear charac-
teristics of the strongly asymmetric SET transistor,
which can operate either as a linear electrometer or as a
sensitive nonlinear noise detector useful for character-
ization of an experimental setup. Further investigations
of such SET transistors in different regimes and espe-
cially their noise characteristics are clearly needed. The
available technology makes it possible to fabricate
these transistors with a very high degree of asymmetry.
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The Knight shift 207Ks for the 207Pb nuclei in the metal phase of the oxides BaPb1 – xBixO3 (x < 0.35) has been
analyzed as a function of the concentration. The shift, which is proportional to the density of states near the
Fermi energy: 207Ks ~ N(EF), reaches a maximum for an oxide with the maximum superconducting transition
temperature Tc (x ≈ 0.25) = 12 K. A significant increase in the width of the shift distribution with the Bi con-
centration testifies to the formation of a nonuniform state of the electronic system in the conduction band of
superconducting oxides, which is accompanied by an increase in short-wavelength contributions to the spin sus-
ceptibility. To detect the 207Pb NMR spectra in superconducting oxides with x > 0.2, the 17O–207Pb spin-echo
double-resonance method is used, which provides successful detection of the 207Pb NMR signal with an anom-

alously high rate of spin–spin relaxation  > 500 ms–1. Thus, fundamental restrictions arising in investiga-
tions of rapidly relaxing 207Pb nuclei, which are “unobservable” in superconducting oxides BaPb1 – xBixO3
when they are studied by traditional single-resonance methods of pulse NMR spectroscopy, have been over-
come. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.70.–b, 76.60.–k

T2
1–
After the discovery of superconductivity in the
BaPb1 – xBixO3 system (BPBO) [1], numerous investi-
gations were devoted to the features of electronic states
in the conduction band of the oxide that are responsible
for the anomalously high superconducting transition
temperature Tc, max(x ≈ 0.25) = 12 K. The superconduct-
ing content range is near the metal–semiconductor con-
centration transition (xcr ≈ 0.35) occurring with an
increase in the bismuth atom concentration. Estimates
of the critical temperature Tc with the use of electron
specific heat data on the density of states near the Fermi
energy N(EF) and the Debye approximation for the
phonon spectrum are much lower than the experimen-
tally observed value [2–4].

According to x-ray and photoelectron spectroscopy
data [5–7], the electron spectrum of oxides with x ≥ 0.2
contains a pseudogap singularity near EF whose devel-
opment in semiconducting oxides completes with the
formation of the real gap on wavenumbers q ~ π/a,
where a is the parameter of the pseudocubic unit cell of
perovskite. The comparatively low density of current
carriers (n ~ 1021 cm–3) and charge fluctuations associ-
ated with the multiplicity of the valence state of bis-
muth ions (Bi4 + δ/Bi4 – δ) can promote the development
of the instability of the electron system state that is uni-
0021-3640/05/8202- $26.00 ©0081
form over the crystal in metal-phase oxides [8]. In view
of this circumstance, many researchers point to an
important role of short wavelength charge fluctuations
of the antiferroelectric type for the enhancement of the
electron–phonon interaction in the metal phase of the
oxide.

According to measurements of the low-temperature
specific heat cp(T) [2], magnetic susceptibility χ [9, 10],
and the shifts of the 207Pb [11–13] and 17O [11, 14]
NMR lines, N(EF) increases monotonically with transi-
tion to superconducting contents near Tc, max. The reli-
ability of estimates of N(EF) is much lower in the pre-
transition bismuth-concentration range 0.2 < x < 0.35,
which is most actively discussed. With approaching the
metal–superconductor transition, the temperature inter-
val where cp(T) increases linearly narrows sharply, and
the extraction of spin contributions to χ and 17K
requires additional, insufficiently justified assumptions
on the concentration dependence of the corresponding
nonspin contributions to the static magnetic suscepti-
bility and shift of the 17O NMR line. In this respect,
estimates of N(EF) using the measured shift of the 207Pb
NMR line seem to be most reliable.

As was decisively shown in [11–13], the dominant
contribution to the shift of the 207Pb NMR line is the
 2005 Pleiades Publishing, Inc.
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Knight shift associated with the contact Fermi interac-
tion of the lead nuclei with 6s electrons involved in the
formation of the conduction band of BPBO oxides:

(1)

where HFC = 4200 kE/µB is the hyperfine field created
on the nucleus by an unpaired electron of the conduc-

tion band and N(EF) = χs/2  is the density of elec-
tronic states on the Fermi level.

Measurements of 207Pb NMR spectra with the sub-
sequent analysis of the 207g(ν) line shape make it possi-
ble to determine the concentration dependence of the
uniform contribution to the spin susceptibility of oxides
χs(q = 0):

(2)

The average Knight shift 〈207Ks〉  is determined as the
first moment of the resonance line 207g(ν). Analyzing
details of the fine structure of the 207Pb NMR spectrum,
one can reveal the substantial singularities of the spatial
dispersion of χs(q) that are associated with the nonuni-
form distribution of the electron density over the crystal
in the metal phase of BPBO oxides [11].

Data on the concentration dependence 〈207Ks〉  that
were presented in [11] for BaPb1 – xBixO3 oxides were
obtained for a wide range of metal phase contents 0 ≤
x ≤ 0.25. The 207Pb NMR spectra (Fig. 1a) were mea-
sured using the spin echo technique traditionally used
when detecting inhomogeneously broadened lines. In

K207
s 1/µBHFCχs 2µBHFCN EF( ),= =

µB
2

χs q 0=( ) µB K207
s〈 〉 /HFC=

=  µB/HFC 1/ν0 ν ν0–( ) g207 ν( ) νd∫{ } .

Fig. 1. 207Pb NMR spectra in the BaPb1 – xBixO3 oxide in a
magnetic field of 9 T for temperatures of 5–20 K: (a) as
measured by the spin echo technique with various time
intervals τ between pulses and (b) as reconstructed to the
instant τ = 0 according to the known law of irreversible echo
decay.

207Ks (%)
this method, the spin echo signal M(2τ; ν) is detected
after its excitation at the spectrometer working fre-
quency ν by a pair of high-power rf pulses following
the time interval τ: (π/2) – τ – (π) – τ – M(2τ; ν). The
spectral intensity 207J(ν) shown in Fig. 1b was deter-
mined using the amplitude of the echo signal M(2τ; ν)
that was extrapolated to the instant τ = 0 according to
the known law of irreversible echo decay. The main
restriction of the spin echo technique in application to
the detection of 207Pb NMR spectra is associated with
the existence of the minimum possible time interval
between pulses τmin ~ 10 µs, which is determined by the
process of the recovery of the linear regime in the
enhancement of the receiving circuit of the spectrome-
ter after exciting an rf pulse. The existence of τmin sig-
nificantly reduces the reliability of the reconstructed
spectral intensity 207J(ν) that is attributed to contribu-
tions from lead nuclei with the characteristic spin–spin
relaxation times T2(ν) < τmin. This situation arises when
the spin-echo single-resonance technique is applied to
detect 207Pb NMR spectra in superconducting oxides
BaPb1 – xBixO3 (x > 0.2), where the rate of the irrevers-
ible damping of the 207Pb echo signal increases signifi-
cantly with approaching the superconducting metal–

semiconductor concentration transition:  >
500 ms–1.

In this paper, we report on 207Pb NMR spectra mea-
sured for BaPb1 – xBixO3 oxides over the entire range of
the existence of the metal phase, x < xcr, with the use of
the 17O–207Pb spin-echo double-resonance technique
(SEDOR technique [15]). The experiments were car-
ried out in a magnetic field of 9 T at a temperature of
20 K with 17O-enriched polycrystalline samples of the
oxide. The features of the synthesis and structural cer-
tification, as well as detailed analysis of the 17O NMR
spectra, of the BPBO samples under investigation were
given in [12].

One of the applications of the spin-echo double-res-
onance technique is the observation of the heteronu-
clear coupling between “magnetically nonequivalent”
nuclei, whose NMR spectra do not overlap with each
other. In a magnetic field of about 9 T, the 17O NMR
spectrum lies in a frequency range of 51–57 MHz,
whereas the 207Pb NMR spectrum lies in a frequency
range of 81–85 MHz. The basic idea of SEDOR exper-
iments is the modulation of the static part of the heter-
onuclear interaction HIS of the oxygen ion 17O (I = 5/2)
with the N surrounding lead ions 207Pb (S = 1/2) [16]:

(3)

Figure 2 shows the sequence of the SEDOR experi-
ment, which was conducted in two stages. At the first
stage, the sequence of radio pulses (π/2)I – τ – (π)I

excites an echo signal at the frequency νI of the central
transition (mI = –1/2  +1/2) of the nuclear spin sys-

T207 1–
2

HIS Σn
17 207– anIzSnz.=
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tem I and the spin-echo amplitude M0(2τ) is measured
at time 2τ. If Hamiltonian (3) has no explicit time
dependence in an interval of (0, 2τ), the action of the πI

pulse leads to HIS(τ – 0) = –HIS(τ + 0). In this case, the
defocusing of the nuclear magnetization of spins I in

static local fields anIzSnz of spins S in an interval
of (0, τ) is accompanied by the subsequent refocusing
of the nuclear magnetization of spins I in the interval (τ,
2τ) preceding the formation of the echo signal. At the
second stage, simultaneously with the πI pulse, an addi-
tional πS pulse (with duration tS) is applied at the reso-
nance frequency νS of 207Pb nuclei. The latter pulse
inverts the direction of the local fields from spins S and
conserves the sign of Hamiltonian (3) during the evolu-
tion time 2τ: HIS(τ – 0) = HIS(τ + 0). As a result, the
spin-echo amplitude M(2τ) at the time 2τ necessarily
decreases as compared to M0(2τ) due to additional
damping associated with the heteronuclear contribution
HIS. The relative difference M(νS) = {M0(2τ) –
M(2τ)}/M0(2τ) is proportional to the number of 207Pb
nuclei that are excited in the frequency band νS ± (1/4tS)
by the pulse πS and introduce damping to the echo
amplitude of 17O nuclei. Measuring the difference
M(νS) in a series of SEDOR experiments with different
frequencies of the πS pulse, we thereby obtain the 207Pb
NMR spectrum whose spectral intensity is 207J(νS) ~
M(νS).

We emphasize that the spin–lattice relaxation time
T1 of 207Pb nuclei during which the local field

anIzSnz can be considered as time independent
plays an important role in SEDOR experiments. In
BPBO oxides of the metal phase, the spin–lattice relax-
ation time of lead nuclei follows the Korringa law
207T1 ~ T–1 [11] and 207T1 > 1 ms for temperatures below
100 K. This behavior significantly extends the possibil-
ities of detecting NMR signals of nuclei with anoma-
lously short spin–spin relaxation times.

In the initial oxide BaPbO3, a single symmetric line
close to a Gaussian is observed. The line peak position
is independent of the temperature and corresponds to
the Knight shift 207Ks = 0.55(5)%.

Figure 3 shows 207Pb NMR spectra measured in
BaPb1 – xBixO3 oxides using the 17O–207Pb SEDOR
technique (x = 0.09, 0.21, 0.27, 0.33) and 207Pb spin
echo technique (x = 0.00, 0.09, 0.12). For the
BaPb0.91Bi0.09O3 oxide, the spectral intensity 207J(ν)
measured using two methods is shown. The solid line is
the spectrum obtained using the traditional spin-echo
single-resonance technique (τ = 10 µs) with the subse-
quent reconstruction of the signal amplitude at the
instant τ = 0 [17]. The points are the 207J(νS) measured
using the 17O–207Pb SEDOR technique. The recon-
structed spectrum coincides with the SEDOR spec-
trum. Satisfactory agreement between spectra corrobo-

Σn
17 207–

Σn
17 207–
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rates that the procedure previously used in [11] to
reconstruct the 207Pb spectrum is applicable for x < 0.2.
Moreover, this agreement demonstrates the evident
advantages of the 17O–207Pb SEDOR technique, which

Fig. 2. Sequence of radio pulses for experiments on 17O–
207Pb spin echo double resonance (SEDOR).

Fig. 3. 207Pb NMR spectra in the BaPb1 – xBixO3 oxide
(solid lines) as obtained using the spin-echo single-reso-
nance technique with subsequent reconstruction to the
instant τ = 0 and (points) as measured for 207J(νS) using the
17O–207Pb SEDOR.

207Ks
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ensures certain detection of contributions to the spectral
intensity both from “observable” 207Pb nuclei and from
207Pb nuclei with an anomalously short time T2.

According to the detailed analysis of the magnetic
broadening of the NMR lines as a function of the con-
centration x, the fine structure of the spectra in Bi-con-
taining oxides with x < 0.15 testifies to an anomalous
increase in the spin susceptibility χs (207Ks > 1%) in
domains that contain Bi atoms and have characteristic
sizes on the order of the double parameter of the
pseudocubic unit cell of perovskite [11]. Overlapping
of such microdomains is expected for x > 0.12, which
indicates that the ordinary metal–superconductor con-
centration transition is likely of percolation type in
BaPb1 – xBixO3 oxides. The experiments on the relax-
ation of the spin echo of 207Pb nuclei [16] provided
direct evidence of the microscopic character of the
inhomogeneous state of the electron system in bismuth-
containing oxides where the attributes of macroscopic
phase separation are absent according to x-ray diffrac-
tion data [18].

Fig. 4. Concentration dependences in BaPb1 – xBixO3

oxides for (a) the average 207Pb Knight shift 〈207Ks〉; (b) the
density of states at the Fermi level 〈N(EF)〉  according to (j)
207Pb NMR, (s) the electron contribution to the specific
heat [2], and (*) the charge carrier density [21]; and (c) the
superconducting-transition temperature Tc.

〈20
7 K

s〉
N

(E
F)

T
c

For the content near the maximum Tc (Fig. 4c), the
spectrum is formed near the maximum Knight shift.
The concentration dependence of the average Knight
shift 〈207Ks〉 and the corresponding density of one-elec-

tron states N(EF) = χs/2  are shown in Figs. 4a (by
squares) and 4b, respectively. We emphasize that, for
such low N(EF) values and 3D motion of conduction
electrons in oxides, corrections associated with the
exchange enhancement of the spin susceptibility χs =

2 N(EF)/(1 – JN(EF)) are immaterial. Using the pro-
cedure that was proposed in [19] for estimating the
exchange integral J, one can show that the Stoner factor
JN(EF) for the oxide with x = 0.21 does not exceed 0.12.
In view of this circumstance, it is not surprising that the
position of the peak in the density of states at x = 0.21
coincides with the maximum in the concentration
dependence of the charge carrier density (shown by
asterisks) obtained from measurements of the Hall
effect in a series of superconducting oxides
BaPb1 − xBixO3 [20]. Figure 4b shows (*) estimates
obtained for 〈N(EF)〉  from measurements of the electron
contribution to specific heat [2]. Similar to the depen-
dence of (s), these data present the bismuth-concentra-
tion dependence of the crystal-averaged density of elec-
tronic states at the Fermi level N(EF). According to
NMR estimates, the density of states reaches the maxi-
mum N(EF) ≈ 0.16 (eV spin)–1 in oxides with x ≈ 0.21,
which is close to the value x = 0.25 corresponding to the
maximum Tc. With a further increase in the Bi concen-
tration, the Knight shift 〈207Ks〉  ~ 〈N(EF)〉  decreases
sharply and becomes negligibly small, which indicates
that the energy gap appears in the low temperature
region for the boundary composition x = 0.33 ≈ xcr of
the metal phase.

It is interesting that the domain with Ks ≈ 0 arises
even in the 207Pb NMR spectrum of the superconduct-
ing oxide with x = 0.27 (Tc = 7 K). This behavior can
testify to the local formation of microdomains with
extremely low density of mobile charge carriers. To jus-
tify this assumption, additional NMR experiments are
evidently necessary in order to reveal the short-wave-
length singularities of the spatial dispersion of the spin
susceptibility near 207Pb nuclei that contribute to the
intensity of the low-frequency part of the spectrum in
oxides near x ~ xcr. It is worth noting that such a possi-
bility of a pseudogap arising near the Fermi energy in
superconducting oxides BaPb1 – xBixO3 with x ≥ 0.2 is
considered when discussing anomalies in photoemis-
sion spectra in these oxides [5–7].

In summary, the concentration dependence has been
analyzed for the Knight shift 207Ks in 207Pb nuclei in the
metal phase of BaPb1 – xBixO3 oxides with x < 0.35. The
shift proportional to the density of states near the Fermi
energy, 207Ks ~ N(EF), reaches a maximum near a con-
tent with the maximum superconducting transition tem-

µB
2

µB
2
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perature Tc(x ≈ 0.25) = 12 K. To detect 207Pb NMR
spectra, we used the 17O–207Pb spin-echo double-reso-
nance technique, which has evident advantages when
detecting NMR signals from nuclei that cannot be
detected by traditional single-resonance methods due to
an anomalously high rate of the spin–spin relaxation.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17762.
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Nanocrystals: Effect of Fano Interference
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Raman spectroscopy is employed for studying silicon nanocrystal arrays in boron-doped amorphous silicon
films. The nanocrystals were formed in the initial amorphous films by the pulsed impact of an excimer laser.
The electron–phonon interaction effects are observed experimentally in the heterostructure formed by a silicon
nanocrystal and an amorphous matrix. These effects can be described in the framework of the familiar Fano
interference model. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.46.+w, 63.20.Kr, 63.22.+m, 78.30.–j
Since the discovery of effective photoluminescence
in porous silicon [1] and silicon nanocrystals in insula-
tor films [2], research aimed at obtaining a silicon nano-
structure with new electronic and optical properties has
rapidly developed. Doping with a shallow impurity is
known to affect the optical and electrophysical proper-
ties of nanocrystals embedded in a silicon dioxide
matrix [3]. The possibility of controlled doping will
considerably extend the range of experiments with
nanocrystals. It is well known that, for a hole concen-
tration in silicon single crystals equal to or exceeding
5 × 1018 cm–3, the interaction between optical phonons
and the continuum of electron transitions between the
light hole band and the heavy hole band becomes
appreciable (in a broader sense, this effect is known as
Fano interference [4]). This effect leads to a decrease in
the frequency as well as to broadening and asymmetry
of the peak of Raman scattering from optical phonons
[5, 6]. However, we are aware of only two publications
in which the authors studied the effect of doping with a
shallow impurity on the Raman spectra of silicon
nanocrystals [7, 8]. In those works, the authors investi-
gated boron-doped silicon nanocrystals in SiO2, where
the shift of the Raman peak was only 1–2 cm–1 for var-
ious doping levels, although the effect of doping in the
absorption spectra in the IR region was noticeable
(according to the authors of those publications, due to
the absorption of photons at free charge carriers). In
this connection, it is important to analyze the effect of
the electron–phonon interaction on the Raman spectra
of silicon nanocrystals for various doping levels and
sizes of nanocrystals.

Our samples were prepared as follows. Amorphous
silicon films 100 nm in thickness were grown using
plasmachemical deposition on glass substrates at a tem-
0021-3640/05/8202- $26.00 ©0086
perature of 250°C. The film thickness was monitored
using ellipsometric data. Initially undoped films were
subjected to boron ion implantation with doses of 3 ×
1014 and 3 × 1015 cm–2. The ion energy was 10 keV, the
average mean free path of the ions was 50 nm, and the
peak of the ion concentration distribution was at the
middle of the film. During implantation, a part of each
film was covered with a screen and remained undoped
(for comparison). Both implanted and nonimplanted
regions of the structures were treated by pulsed laser
radiation with a wavelength (XeCl laser) of 308 nm and
a pulse duration shorter than 25 ns. We used two modes
of treatment with different pulse energy densities. The
first mode had an energy density lower than the melting
threshold of the film and 10 pulses with a frequency of
1 Hz, while the second mode was characterized by an
energy density near the melting threshold of the entire
film and only one pulse. Since the main effect produced
by the laser on the film is thermal, such a treatment can
be called laser annealing (in the subsequent analysis,
these modes will be referred to as Ann1 and Ann2,
respectively). According to the reference data, the
threshold energy density for melting amorphous silicon
is 120–150 mJ/cm2 [9]. It should be noted that the
approach used here makes it possible to vary the aver-
age size of the nanocrystals [10] and to carry out the
crystallization of thin films of amorphous silicon on
non-refractory (even plastic) substrates [11, 12].
Raman spectra were recorded at room temperature in
the quasibackscattering geometry; a 514.5-nm line
from an Ar+ laser was used for the excitation.

Figure 1 shows the Raman spectra of samples sub-
jected to the Ann1 treatment. All the spectra display
two peaks, viz., a broad peak with a maximum near
480 cm–1 and a narrower peak shifted towards higher
 2005 Pleiades Publishing, Inc.
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frequencies. Due to the absence of translational symme-
try, optical transitions in amorphous silicon are not lim-
ited by the quasimomentum conservation law. For this
reason, its Raman spectrum is characterized by the
effective density of vibrational states and has the shape
of a broad peak with a maximum near 480 cm–1 [6]. The
natural vibrational modes of silicon nanocrystals are
spatially localized. For this reason, the Raman spectrum
of nanocrystals is characterized by a peak whose posi-
tion depends on their sizes; as the size increases to more
than 50 nm, the position of the peak is almost the same
as the position of the Raman peak for monocrystalline
silicon (520 cm–1) [13]. For undoped films, the peak
width is determined by the size dispersion of nanocrys-
tals, as well as by the uncertainty relation for the energy
and wavenumber in view of the finite lifetime of
phonons and their spatial localization. The intensity of
the “nanocrystal” peak is proportional to the fraction of
the nanocrystalline phase. The inset in Fig. 1 shows that
the initial films did not contain nanocrystals. Implanta-
tion of boron ions reduced the Raman intensity.

Let us now consider the effect of doping of nanoc-
rystals (and, consequently, the electron–phonon inter-
action) on the Raman spectra. It can be seen that the
peak of Raman scattering from silicon nanocrystals is

Fig. 1. Raman spectra of a-Si films with silicon nanocrystals
formed by laser treatment in the Ann1 mode. The inset
shows the Raman spectra of the original films.
JETP LETTERS      Vol. 82      No. 2      2005
noticeably displaced in strongly doped films: the posi-
tion of the peak is 505 cm–1 as compared to 515 cm–1

for undoped and weakly doped films. Figure 2 shows a
similar pattern (for samples subjected to the Ann2 treat-
ment). It is seen that the maximum of the nanocrystal
peak for undoped films corresponds to 517 cm–1, which
means that the average size of the nanocrystals in the
case of the Ann2 treatment is slightly larger than the
value in the case of the Ann1 treatment. The inset in
Fig. 2 also shows the Raman spectrum for a doped sam-
ple in the frequency range corresponding to vibrations
of the Si–B bonds (610–615 cm–1 for the 11B isotope
[14]). It can be seen that laser treatment led to embed-
ding of boron into the silicon lattice and, accordingly,
to the electric activation of boron.

For a more detailed analysis, we subtracted the spec-
trum of amorphous silicon from the Raman spectra of
the films doped to the maximum possible level. The
results are shown in Fig. 3. The experimental spectra
were approximated by the lines of the Fano profile
defined by the formula [4, 5]
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Fig. 2. Raman spectra of a-Si films with silicon nanocrystals
formed by laser treatment in the Ann2 mode. The inset
shows the Raman spectra in the region of local vibrations of
Si–B bonds.
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Here, Γ is a parameter determining the linewidth and
proportional to the squared matrix element of the elec-
tron–phonon interaction, q is a parameter describing
the line asymmetry, q2 is equal to the ratio of the inten-
sities of Raman scattering from phonons and electrons
divided by Γ, δΩ is the peak shift (due to the strong
decay of optical phonons as a result of their interaction
with the electron subsystem), and Ω is the frequency of
an optical phonon disregarding the electron–phonon
interaction [5]. Approximation of experimental spectra
by theoretical spectra (dotted curve in Fig. 3) was used
to determine the parameters q, Γ, and δΩ. Knowing
these parameters, we can find the hole concentration
[5]. Estimating the hole concentration in silicon nanoc-
rystals using the model applicable for bulk silicon, we
obtain values ranging from 5 × 1019 to 2.5 × 1020 cm–3.
Obviously, results with higher accuracy can be obtained
only by developing a microscopic model taking into
account the nanoscale of the objects. Let us consider
such a model qualitatively. A silicon nanocrystal in an
amorphous matrix presents a potential well for holes
[15]. An optical phonon with a certain frequency mod-
ulates the parameters of this well, causing a change in
the energy of the localized states (the analog of the
polaron effect). The effect of interference between
Raman scattering from optical phonons localized in

Fig. 3. Comparison of experimental Raman spectra (the
contribution from the amorphous matrix is subtracted) with
calculated spectra taking into account Fano interference.
nanocrystals and electron Raman scattering at transi-
tions between a localized hole and the continuum of
hole states in the amorphous matrix is analogous to
interference in monocrystalline silicon, but this analogy
is insufficient for quantitative analysis.

Thus, using Raman spectroscopy, we have discov-
ered the effects of the electron–phonon interaction in a
heterostructure of a silicon nanocrystal/amorphous
matrix. Analysis of the electron–phonon interaction in
the framework of Fano interference can be used for esti-
mating the charge carrier concentration in semiconduc-
tor nanostructures. The main advantage of the proposed
approach is that it is a contactless method. For measure-
ments of the charge carrier concentration with a higher
accuracy, a quantitative model of the electron–phonon
interaction in nanocrystals is required.

This study was supported by the Siberian Division
of the Russian Academy of Sciences (integration
project no. 18). We are grateful to O.I. Semenova who
prepared amorphous films, V.G. Seryapin who carried
out ion implantation, and S.A. Kochubeœ for his help in
performing laser treatment.
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Amplitude of Aharonov–Bohm Oscillations
in a Small Semiconductor Ring Interferometer
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The amplitude gAB of Aharonov–Bohm oscillations in a small semiconductor ring interferometer is studied as
a function of the average conductance GAV. Experimentally, it is found that, in the tunneling regime, the relative
amplitude gAB/GAV of h/e oscillations is constant in the rings under investigation and smaller than unity. The
small value of gAB/GAV in ring interferometers in the tunneling regime at low temperatures is explained by the
difference in the amplitudes of the interfering electron waves. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.23.–b, 73.40.Gk
An important feature that distinguishes the ring inter-
ferometers fabricated on the basis of 2D electron gas in
modulated semiconductor structures [1] from similar
metal-based devices [2] consists in that the dimensions
of the conducting regions of a semiconductor interfer-
ometer are not only preset by lithography but also
depend on the size of the lateral depletion regions formed
along the boundaries of the conducting channels. In rel-
atively “large” semiconductor rings, whose effective
radius satisfies the inequality reff = (rin + rext)/2 @ wd,
where rin and rext are the lithographically determined
internal and external radii of the ring and wd is the width
of the depletion regions formed along the etching
boundaries, the width of the electron channels is
approximately the same, we, in the branching regions at
the input and output of the ring and in the interferome-
ter arms. In “small” rings fabricated on the basis of
semiconductor structures with a high density of a 2D
electron gas [3], when reff ~ wd, the lateral dimensions
and the energy “depth” of the conducting regions at the
input and output of the interferometer and in its arms
are noticeably different. As a result, in the tunneling
regime, a small ring interferometer falls into two trian-
gular quantum dots connected with each other and with
the source (S) and drain (D) regions by tunneling chan-
nels [4].

The interest in studying the electron properties of
such mesoscopic devices is primarily related to the fact
that the tunneling coupling of the two quantum dots
may provide the basis for the realization of qubits [5–
7]. Earlier, it was shown that the periodic oscillations of
conductance as a function of gate voltage that occur in
small rings in the tunneling regime are caused by the
single-electron charging of the triangular quantum dots
formed in the branching regions at the input and output
0021-3640/05/8202- $26.00 ©0089
of the ring [4, 8]. It was also found that, in small rings
in the tunneling regime, the Aharonov–Bohm effect
also manifests itself. However, the mechanisms that
determine the amplitude of the h/e oscillations in these
devices in the presence of both Coulomb blockade and
coherent processes are still poorly investigated. In this
paper, we report on the experimental and theoretical
studies of the amplitude of Aharonov–Bohm oscilla-
tions, gAB, as a function of the average conductance GAV

of a small ring interferometer. We show that, in the tun-
neling regime, gAB ∝  GAV.

The interferometers studied in the experiment were
fabricated on the basis of a selectively doped
GaAs/AlGaAs heterojunction grown by molecular
beam epitaxy. A specific feature of the heterostructure
was the small spacer thickness of 3 nm. Owing to this
spacer thickness, the concentration of the 2D electron
gas in the initial heterostructure reached ne = 1.45 ×
1012 cm–2 and the electron mobility was µ = 3.4 ×
104 cm2/V s at T = 4.2 K. The geometry of the interfer-
ometer was determined by electron beam lithography
with a subsequent dry etching. The resistance was mea-
sured by the two-terminal method with an ac current of
frequency 7 to 800 Hz. The magnitude of the current
was chosen so that the source–drain voltage did not
exceed kBT/e, where e is the electron charge. Figure 1a
shows the image of the interferometer that was obtained
with a scanning electron microscope. Figure 1b sche-
matically represents the conducting regions of the small
ring interferometer in the tunneling regime. One can
see that, with allowance for the depletion regions
whose width is wd = (rext – rin)/2, the ring is separated
by four constrictions into two triangular conducting
regions lying at the branch points of the ring. The
 2005 Pleiades Publishing, Inc.
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regions occupied by the 2D electron gas are denoted as
G1 and G2 and serve as the split gate.

Figure 2a shows the conductance of the ring inter-
ferometer, GSD, as a function of the gate voltage VG,
which is simultaneously supplied to G1 and G2. The
GSD(VG) dependence exhibits oscillations with the
period ∆VG = 6 mV; these oscillations are caused by the
single-electron charging of the triangular quantum dots
of the interferometer [4, 8]. Figure 2b shows the depen-
dence of GSD on the magnetic field B. The period ∆B =
73 mT of the oscillations observed in the GSD(B) depen-

dence corresponds to the condition π ∆B = Φ0,
where reff = 130 nm and Φ0 is the magnetic flux quan-
tum. From Fig. 2b, one can see that the Aharonov–
Bohm oscillations are close to sinusoid in shape and
their amplitude is much smaller than the average con-
ductance GAV. The manifestation of oscillations in both
GSD(VG) and GSD(B) dependences suggests that, in the
small ring under study, the tunneling processes, which
lead to the charging of the quantum dots, coexist with

reff
2

500 nm
(a)

Fig. 1. (a) Ring interferometer image obtained with a scan-
ning electron microscope. The dark areas represent the etch-
ing regions. (b) Schematic representation of the ring inter-
ferometer in the tunneling regime. The dark areas represent
the conducting regions, the grey areas show the depletion
regions, and the white areas correspond to the etching
regions, G1 and G2 denote the split gate, and S and D are
the source and drain regions.
the coherent circular motion, which leads to the Aha-
ronov–Bohm oscillations. Figure 3a shows the depen-
dence of the amplitude of the h/e oscillations, gAB, on
GAV. In the experiment, the value of GAV was varied by
the gate voltage and the magnetic field. The experimen-
tal dependences presented in Fig. 3 show that the
amplitude of the Aharonov–Bohm oscillations, gAB,
increase with increasing GAV, while its relative value
gAB/GAV remains constant, retaining its maximum value
of 0.1 up to GAV ~ e2/h.

From the numerical analysis of the processes of sin-
gle-electron charging of the triangular quantum dots in
small ring interferometers, it was found that a high
resistance can be achieved in them not only when the
ring is separated by four tunneling barriers into two
quantum dots but also when these quantum dots are
connected with each other and with the reservoirs by
single-mode quantum wires [8]. In the most realistic
situation of this kind, the quantum dots are connected
with each other by single-mode quantum wires and
with the source and drain regions by tunneling barriers.

The simplest model of a ring interferometer is a one-
dimensional quantum ring [9, 10]. One-dimensional
models are widely used, because they are relatively

Fig. 2. (a) Experimentally measured conductance of a ring
interferometer vs. the gate voltage in zero magnetic field at
T = 1.3 K. (b) Magnetic field dependences of (solid line) the
conductance GSD and (dashed line) the average conduc-
tance GAV.
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simple and make it possible to express the main proper-
ties of structures in an explicit analytical form by ignor-
ing the details of secondary importance. The cited
papers [9, 10] consider the simplest case, which
assumes that the coupling coefficients at the input and
output of the ring interferometer are identical and that
the electron wave is split into two identical parts at the
branch points. However, with this model, it is impossi-
ble to explain the small value of gAB/GAV that was
observed in the ring interferometers under study in the
tunneling regime.

To analyze the experimental data, we consider a
more general case of a ring interferometer with an
asymmetric amplitude division at its input and output
(see the inset in Fig. 3a). We assume that the branching
at the input is identical with that at the output and is
described by the unitary S matrix
JETP LETTERS      Vol. 82      No. 2      2005
(1)

where

and ε and η are the coupling coefficients between the
wire and the upper and lower arms of the ring structure,
respectively. The splitter described by this S matrix
divides the amplitude of the incident electron wave in
the (ε/η)–1/2 ratio. Following the approach used in [9,
10], we perform simple calculations to obtain the trans-
mission factor for the system under consideration:

ŜB

c– ε η

ε a b

η b α 
 
 
 
 

,=

c 1 ε– η– , a
εc η–
ε η+
---------------,= =

α ηc ε–
ε η+
---------------, b εη c 1+

ε η+
------------,= =
, (2)T AB θ φ δ, ,( ) 8εη φ δ+( )sin φ δ–( ) 2θ 4ε2 φ δ+( )sin
2

4η2 φ δ–( )sin
2

++cossin

2b2 2θcos a2 α2+( ) 2δ 2 ε– η–( ) 2φcos–cos+[ ] 2 ε η+( ) 2φ ε η–( ) 2δsin+sin[ ] 2+
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
where θ ≡ πΦ/Φ0, Φ is the magnetic flux through the
ring area, Φ0 is the magnetic flux quantum, φ ≡ kF(L1 +
L2)/2 is the average phase shift acquired by an electron
when it propagates through the ring from input to out-
put, and δ ≡ kF(L1 – L2)/2 is the difference in the phase
shifts associated with the propagation through the
upper and lower parts of the ring from input to output
(L1 + L2 = 2πr, r is the ring radius). Formula (2) is the
generalization of the expression obtained by Butticker
et al. [9] for the conductance of a one-dimensional sin-
gle-mode ring to the case of an asymmetric division of
the electron wave amplitude at the input and output
branch points. One can easily verify that, at ε = η,
Eq. (2) is reduced to the formula given in [9].

In our experiment, we observed a small relative
amplitude of h/e oscillations. At low temperatures,
when Lϕ @ r, this result can only be explained by the
difference in the amplitudes of the interfering waves. In
the framework of our model, this means the difference
in the values of ε and η. In the case of a strong asym-
metry of the amplitude division at the branch points,
e.g., when ε ! η, Eq. (2) yields

(3)

When (cos2δ – cos2φ)2 @ η2, Eq. (3) yields a useful
approximate expression for the relative value of the
Aharonov–Bohm oscillation amplitude:

T AB θ φ δ, ,( )

≈ 2εη φ δ+( )sin φ δ–( ) 2θ η2 φ δ–( )sin
2

+cossin

4
ε
η
--- 2θ 2δ 2φcos–cos+cos

2 η2

4
----- 2φ 2δsin–sin[ ] 2+

-------------------------------------------------------------------------------------------------------------------------------.
(4)

Expression (4) shows that the relative amplitude of
the h/e oscillations is small and proportional to the
degree of asymmetry of the amplitude division, i.e., to
ε/η. Thus, in the tunneling regime, in the presence of a
noticeable asymmetry of propagation through the upper
and lower arms, the Aharonov–Bohm oscillations have
the form of harmonic oscillations rather than a periodic
sequence of sharp resonance peaks, as in the case of
identical amplitudes in the arms, ε = η [9, 10]. The rel-
ative amplitude of the Aharonov–Bohm oscillations in
the asymmetric case is determined by the ratio ε/η. The
model of a perfect one-dimensional quantum ring is a
fairly strong simplification. A real semiconductor ring
has a finite width and an imperfect shape of the bound-
aries. In addition, the comparison with the experiment
requires taking into account the dependences of the
parameters ε and η on the magnetic field. Nevertheless,
in the framework of the accepted simplification, we
obtained a qualitative agreement between the theory
and experiment.

Thus, we generalized the expression for the conduc-
tance of a one-dimensional single-mode ballistic ring to
the case of an asymmetric amplitude division at the
input and output of the ring. On the basis of this expres-
sion, we analyzed the behavior of the relative amplitude
of h/e oscillations and found that this amplitude
depends on the degree of asymmetry of the amplitude
division. This result qualitatively agrees with the results
of the numerical analysis performed for a small ring

gAB

GAV
---------- 2

Tmax Tmin–
Tmax Tmin+
--------------------------≡ 4

ε
η
--- 2 φ δ+( )sin

2
–
φ δ+( )sin φ δ–( )sin

--------------------------------------------------.=
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interferometer in the open regime [11]. We obtained
simple approximate expressions for the relative ampli-
tude of h/e oscillations in a closed ring in the presence
of a considerable asymmetry of the amplitude division.
Comparing the derived expressions with the experi-
mental data on the behavior of the Aharonov–Bohm
oscillation amplitude in small semiconductor ring inter-
ferometers in a wide range of conductance variation,

Fig. 3. (a) Amplitude gAB of h/e oscillations vs. the average
conductance GAV of the ring interferometer. The inset sche-
matically represents the ring interferometer with an asym-
metric division of the electron wave amplitude at the input
and output of the ring. (b) The relative amplitude gAB/GAV
of h/e oscillations vs. GAV. The temperature is T = 0.1 K.

g A
B
(e

2 /h
)

g A
B
/G

A
V

GAB(e2/h)
we found that the model of a one-dimensional single-
mode ring with an asymmetric amplitude division at its
input and output adequately describes the dependence
of the relative amplitude of the h/e oscillations on the
average conductance of the interferometer in the tun-
neling regime.

This work was supported by the Russian Foundation
for Basic Research (project no. 04-02-16789) and the
program “Physics of Solid State Nanostructures.”
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Single crystals of the κ-(BEDT-TTF)2Cu[N(CN)2]Cl cation-radical salt are obtained. These crystals exhibit
metallic properties and pass to a superconducting state with Tc = 11.5 K at ambient pressure. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 61.10.Nz, 72.80.Le, 74.70.Kn
Isostructural cation-radical salts of the κ-(BEDT–
TTF)2Cu[N(CN)2]X family, where BEDT–TTF is the
organic π donor bis(ethylenedithio)tetrathiafulvalene,
(X = Br, Cl, I, Br1 – xClx, and Br1 – xIx) have been the sub-
ject of numerous investigations in recent years [1–14].
These compounds exhibit a wide diversity of electronic
properties in spite of the similarity of their crystal struc-
tures. These are layered materials constructed of con-
ducting BEDT–TTF cation-radical layers alternating
with insulating layers of singly charged
{Cu[N(CN)2]X}– anions (Fig. 1a). The anionic layer
consists of polymer zigzag chains stretched along
direction a and including a planar three-coordinate
Cu1+ atom with two bridging [(NC)N(CN)]– dicyan-
amido groups and a terminal halogen atom X. The cat-
ion-radical layer is formed from pairs of BEDT–TTF
molecules with an average charge of +0.5 per molecule
packed in the crystal perpendicularly to each other
(Fig. 1b). The overlapping of molecular orbitals of
donor molecules in the layers leads to the formation of
broad electron energy bands in the crystal. According to
the theoretical band-structure calculations [1–3], these
materials must be metals. It has been found that the cat-
ion-radical salts with X = Br, Br0.5Cl0.5, and Br0.7Cl0.3

are organic superconductors at ambient pressure with
Tc = 11.6 K [2, 5], while the salts with X = Cl and
Br0.9I0.1 [4, 5] undergo a transition to a superconducting
state at a pressure of 0.3 kbar with Tc = 12.8 and 3.5 K,
respectively, and the salt with X = I passes to a super-
conducting state at a pressure of 1.2 kbar with Tc ≈ 8 K
[6, 7]. At ambient pressure, the cation-radical salt with
X = Cl (designate it as κ-Cl) retains its semiconducting
properties to a temperature below 100 K. A transition to
an insulating state, which is identified as an antiferro-
magnetic transition, occurs in the region of 40 K, and
weak ferromagnetism is detected in these crystals
0021-3640/05/8202- $26.00 ©0093
below 22 K [4, 8, 9]. When the pressure is varied above
several hundreds of bars, crystals of the κ-Cl salt dem-
onstrate a rich phase diagram with paramagnetic insu-
lating, antiferromagnetic insulating, metallic, and
superconducting phases [8–12]. In addition, it was
found by x-ray diffraction that two structural phase
transitions occur in these crystals at a high pressure and
room temperature: a reversible transition with a reduc-
tion of symmetry at a pressure of 8.8 kbar and the sec-
ond transition at 12 kbar characterized by the disap-
pearance of Bragg reflections and possibly associated
with amorphization under pressure [13].

In this work, it is shown that new intriguing proper-
ties are added to the whole diversity of the properties of
the Cl–cation radical salt: single crystals of this salt
(designate it as κ'-Cl) have been obtained, which, as
distinct from the κ-Cl Mott dielectric described above,
have metallic properties and pass to a superconducting
state with Tc = 11.5 K at ambient pressure. An x-ray dif-
fraction study of these crystals has been performed, and
their transport properties have been investigated.

The measurements of the electrical resistance were
performed with a 20-Hz alternating current using a
four-contact method with a synchronous detector. The
samples were made as thin plates with characteristic
sizes of 1 × 0.3 × 0.02 mm whose surface was oriented
along the conducting layers (the ac plane). A couple of
contacts were made on each of the two opposite sur-
faces of the sample using a conducting carbon paste.
The resistance of the sample was measured by passing
a current both along (J || (ac)) and across (J || b) of the
conducting layers. The magnitude of the current J pass-
ing through the sample was fixed and did not exceed
10 µA. For experiments in a magnetic field, a supercon-
ducting solenoid creating a field of up to 17 T was used.
 2005 Pleiades Publishing, Inc.
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In test experiments, the dynamic susceptibility at a fre-
quency of 100 kHz was also studied.

The resistivity anisotropy (ρb/ρac) calculated by the
modified Montgomery method [14] was in the range
200–400 at T = 300 K for various samples and
increased monotonically with decreasing temperature,
reaching values of 1000–1400 at T ≈ 15 K. The temper-
ature dependence for both longitudinal and transverse
resistances had a positive derivative in the entire temper-
ature range below 300 K. A small region with a negative
derivative occurred only at a low temperature in the
vicinity of the superconducting transition and was more
pronounced for a transverse resistance. We investigated
several samples obtained in the course of one synthesis.
The results obtained with different samples were simi-
lar. Given below are the results for one of them.

The dependence R(T) obtained in the case of current
passage along the conducting layers and the tempera-

(a)

Conducting
BEDT-TTF
layer

Anion layer

Conducting
BEDT-TTF
layer

Anion layer

b

a

c

(b)

Fig. 1. Structure of κ-(BEDT-TTF)2Cu[N(CN)2]Cl crys-
tals: (a) a view along the layers and (b) a conducting cation-
radical layer.
ture dependence of the dynamic susceptibility at T <
15 K are presented in Fig. 2. It is evident in the figure
that a transition to a superconducting state with the crit-
ical temperature Tc = 11.5 K determined by the middle
of the transition is observed in the dependence R(T).
For the same sample, the transition detected by the
dynamic susceptibility starts at approximately 11 K.

The application of a magnetic field led to a decrease
in Tc; in this case, a considerable broadening of the
superconducting transition occurred in the J || (ac)
geometry while the transition at J ⊥ (ac) did not
broaden but displaced to the region of lower tempera-
tures. For this reason, the dependences Hc2(T) pre-
sented below were constructed by measuring the trans-
verse resistance, that is, for the case when the current
was passed along the normal direction to the conduct-
ing layers. The absence of a notable broadening in a
magnetic field suggests that we are dealing with the
dependence Hc2(T) rather than with an “irreversibility
line.” In Fig. 3, the dependence Hc2(T) is presented for
two orientations of the magnetic field. All the points
except one were obtained from the curves R(T) at fixed
values of the field H. The last point in the lower curve
was obtained from the curve R(H) at the fixed tempera-
ture T = 1.2 K. Attention is attracted by the positive cur-
vature of the Hc2(T) dependences and also by the fact
that for H || b the derivative dHc2/dT is close to zero at
the point T = Tc(0). For the case when the magnetic field
lies in the (ac) plane, this derivative is finite and equal
to dHc2/  = –1.36 T/K.

The main crystallographic data are as follows:
rhombic (C10H8S8)2Cu[N(CN)2]Cl crystals, sp. gr.
Pnma, a = 12.932(2) Å, b = 29.877(5) Å, c = 8.458(1) Å,
V = 3267.8(9) Å3, and Z = 4. Experimental data for
4567 independent reflections with I ≥ 2σ(I) were

dT Tc 0( )

Fig. 2. Superconducting transition detected on a sample of
κ'-(BEDT-TTF)2Cu[N(CN)2]Cl by the temperature depen-
dences of the resistance and (inset) dynamic susceptibility.
JETP LETTERS      Vol. 82      No. 2      2005
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obtained on an Enraf-Nonius CAD4 diffractometer
(MoKa radiation, ω scan, 2θmax = 50°, the size of the
crystal was 0.5 × 0.2 × 0.02 mm, absorption correction
was introduced). The structure was determined by the
direct method and was refined by the least-squares
method in an anisotropic approximation to R1 = 0.056.
Crystals of the organic metal κ'-Cl exhibit almost the
same structure as the Mott dielectric κ-Cl [4].

A preliminary analysis of the κ'-Cl crystal structure
at room temperature showed the following differences
between κ'-Cl and κ-Cl:

1. It is found that certain disorder exists at room
temperature in κ-Cl crystals caused by the fact that the
presence of two conformations (eclipsed and stag-
gered) of terminal ethylene groups in the BEDT–TTF
molecule is equiprobable. At a low temperature, these
groups become fully ordered and the BEDT–TTF mol-
ecule assumes only the eclipsed conformation [15]. The
ratio of the eclipsed and staggered conformations in
κ'-Cl crystals equals 0.8 : 0.2; that is, the proportion of
the eclipsed conformer, which is the conformer typical
of the low-temperature state of κ-Cl crystals, is larger
in the case of κ'-Cl crystals even at room temperature.

2. The volume of the unit cell in κ'-Cl crystals V =
3267.8(9) Å3 is smaller than that in κ-Cl crystals V =
3299(1) Å3 [4] and even smaller than the corresponding
volume in the latter crystals V = 3285.2(8) Å3 under a
pressure of 1.2 kbar [13]. Correspondingly, all the inter-
molecular S…S contacts in the conducting layer are
shorter, which enhances intermolecular interactions
and, as a consequence, increases the width of the con-
duction band. This effect is equivalent to chemical
compression.

3. In the refinement of the structure, an incomplete
occupation of the position of the copper atom was
revealed (a deficit of ~5%) with the complete occupa-

Fig. 3. Dependences Hc2(T) for the magnetic field orienta-
tion in the plane of the conducting layers and along the nor-
mal to these layers.

H
c2

(T
)

H || b

H || (ac)
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tion of the positions of the other atoms. This may indi-
rectly indicate that the anionic layer contains Cu2+

along with Cu1+. Then, it might be suggested that the
superconductivity of κ'-Cl crystals occurs through the
doping of carriers into the κ-Cl Mott dielectric. A sim-
ilar situation was observed in the case of the κ-(BEDT–
TTF)2Cu2(CN)3 cation-radical salt [16].

Subsequently, we plan to perform detailed synthetic,
structural, and physical investigations with the aim of
tracing the structure–property relationships and eluci-
dating the nature of the superconducting state in these
crystals.

This work was partially supported by the Russian
Foundation for Basic Research (project nos. 03-02-
16926, 04-02-17358, 05-02-16980) jointly with Deut-
schen Forschungsgemeinschaft (DFG) (project no. 03-
02-04023) and by the Presidium of the Russian Acad-
emy of Sciences (program no. P-28).
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Phonon–Plasmon Coupled Modes in Hetero-Superlattices
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The spectrum of coupled phonon–plasmon modes is considered in a mesoscopic system of thin conducting
planes separated by insulating layers. The reflectance of such a sample in the infrared region is calculated.
Reflectance minima are determined by the longitudinal and transverse phonon frequencies in the insulating
interlayers and by the van Hove singularities of the coupled modes. Measuring the differential Raman cross sec-
tion allows the spectrum of these modes to be found directly. © 2005 Pleiades Publishing, Inc.

PACS numbers: 63.20.–e, 78.30.–j
Longstanding interest in crystalline systems with
artificially grown superlattices is caused, in particular,
by their unusual electronic properties. Because the fre-
quency of direct electronic transitions in the most pop-
ular GaAs-based material equals 1.5 eV, that is, lies in
the optical region, the vast majority of experimental
works are devoted to electronic and excitonic states just
in this region (see, e.g., [1]).

However, Bose branches of the spectrum also
exhibit unusual properties, which is due to the two-
dimensional character of these systems [2]. Thus, their
plasmon spectrum has no gap and must intersect optical
phonon branches. This determines the strong interac-
tion of phonon and plasmon branches. The properties of
these branches are manifested most brightly in infrared
optics in the range corresponding to the optical phonon
frequency, that is, about 40 meV. These branches can
also be studied in Raman scattering of laser radiation.
Even though plasmon and coupled phonon–plasmon
modes are observed in common Raman experiments
[3], the same experiments with superlattices are
unknown. An exception is provided by work [4], in
which infrared transmittance was studied for a sample
with a GaAs/AlAs superlattice in a magnetic field.

In this work, simple equations were obtained for the
reflectance and the Raman cross section of a model
periodic structure in which electronic layers can be
considered as conducting planes that are thin as com-
pared to both the thickness of the insulating interlayers
and the electron wavelength. We assume here that
charge carriers occupy only one of the subsurface quan-
tization subbands (the effects of electron density smear-
ing were discussed in [5]) and transitions to other sub-
bands do not change the pattern under consideration
significantly.

1. Spectrum of coupled phonon–plasmon modes.
Now, consider a dielectric of the GaAs type in which
parallel thin conducting planes are included at equal
distances d. In practice, such planes are created by
0021-3640/05/8202- $26.00 0096
means of a GaAs/AlGaAs heterojunction. The dielec-
tric contains two atoms per unit cell and, hence, two
transverse optical modes with the frequency ωTO at the
center of the Brillouin zone and one longitudinal ωLO.
We will neglect the dispersion of these modes, because
we are interested in wave vectors that are small as com-
pared with the band sizes. In this case, the longitudinal
component of the dielectric permittivity is expressed as

where the optical phonon width is of the order Γ ~
10−2ωLO.

The Maxwell equation for the system under consid-
eration is written in the form

(1)

Only the x component parallel to the layers exists for
the current

and the Ex and Ez components exist for the field; it is
assumed that the z axis is perpendicular to the layers.
We consider the case of p polarization, when the field
in the real space depends on the x and z coordinates;
therefore, we expanded the current and the field into the
Fourier integral with respect to the coordinate x.

The electronic polarizability of the layers α(ω, kx)
can be calculated using either RPA [6] or, for kv  ! ω
and k ! pF (here, we will restrict ourselves to this case),
the kinetic equation

ε ω( ) ε∞
ωLO

2 ω2
iωΓ––

ωTO
2 ω2

iωΓ––
-------------------------------------,=

curlcurlE
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------ε ω( )E
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jx ω kx z, ,( )
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Here, κ0 = 2πe2ν/ε∞ is the screening length, v  is the
Fermi velocity, and ν = m/π is the density of states. The
electron collision frequency γ can be taken into account
qualitatively by the substitution ω  ω + iγ.

The Maxwell equation is rewritten for the x compo-
nent of the field in the form

(2)

where

The two independent solutions of this differential equa-
tion can be written in the Bloch form

(3)

in the region nd < z < (n + 1)d. The quasimomentum kz

is determined from the dispersion equation

(4)

and, for real parameters, it is sufficient to take its values
from the half of the first Brillouin zone 0 < kz < π/d.
Because we take into account phonon and electron
attenuations, we fix the choice of the eigenfunctions in
Eq. (3) by the condition Imkz > 0 so that f1 decreases in
the direction z.

The eigenfrequencies of the coupled phonon–plas-
mon modes are shown in Fig. 1 as a function of kx for
two fixed values kz = 0 and π/d. We emphasize that it is
evident in the figure that the point kz = kx = 0 is a saddle
point: both eigenfrequencies in the vicinity of this point
grow as functions of kx and decrease with increasing kz.

2. Reflectance from a lattice of heterojunctions.
Let us calculate the reflectance for radiation incident
from a vacuum on a semi-infinite system of layers. We
will assume that the boundary of the sample is parallel
to the layers and intersects the z axis at point z0 lying
between 0 and d. The field inside the sample must be
described by the decreasing solution f1 and the field out-
side the sample, by a sum of the incident and reflected
waves with a fixed value of the wave vector kx parallel
to the layers. From the continuity condition for the tan-
gent components of the electric and magnetic fields, we
find that the reflectance

d2

dz2
------- κ2 C δ z nd–( )
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is expressed through the impedance determined by the
ratio of the filed and its derivative on the inner surface
of the sample

 is the projection of the wave vector of the incident
wave in a vacuum.

The solution f1 in Eq. (3) gives

The calculated reflectance is shown in Figs. 2 and 3
for two lattices with different periods. The characteris-
tic values of the parameter κ ~ ωLO/c turn out to be
small for the frequencies under consideration as com-
pared to 1/d. Therefore, the wavelength λ ~ 2π/kz is as
large as compared to the lattice period. It is natural that
the reflectance in this case is independent of the posi-
tion of the sample boundary z0. The reflectance for a
sample without conducting planes is shown by a dot-
and-dash curve, which exhibits a singularity at ωLO. A
similar dependence was observed in [7]. For d = 1/κ0
and an intermediate electron concentration in the layer
(dashed line), a sample with conducting planes turns
out to be more transparent in two regions: at high fre-

Z Ex z0+( )/Ex' z0+( ),=

kz
i

Z f 1 z0+( )/ f 1' z0+( )=

=  
κsinh z0 e

ikzd–
κ z0 d–( )sinh–

κ κ z0cosh e
ikzd–

κ z0 d–( )cosh–[ ]
--------------------------------------------------------------------------------.

Fig. 1. Dispersion of phonon–plasmon coupled modes in a
system of conducting planes separated by insulating inter-
layers; the phonon–plasmon coupling constant is selected
as λ = (κ0v2/d)1/2/ωLO = 1. The frequency (in ωLO units) is
presented as a function of the wave vector kx in the plane of
layers at two values of the quasi-momentum kz. The values
of the parameters known for GaAs are used as follows:
ωLO = 36.5 meV, ωTO = 33.6 meV, and κ0 = 2.5 × 106 cm–1.
The lattice period is taken as d = 1/κ0.
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quencies and below ωTO = 0.9ωLO. This is the effect of
coupled modes, and the minima here correspond to sad-
dle points of each mode. For a larger electron concen-
tration (upper solid curve), the reflection is not total
only in a narrow range restricted by the singularities at
ωTO and ωLO. Finally, the reflectance at low frequencies
tends to unity, because the skin depth grows and the
sample acquires metallic properties. In a lattice with a
large period d = 5/κ0 (see Fig. 3), the effect of carriers
is more pronounced at their larger concentration.

Fig. 2. Reflectance from the superlattice vs. the frequency
(in ωLO units) at the angle of incidence π/4. The electron
concentration in the conducting heterojunction is indicated
at the curves, the lattice period is taken as d = 1/κ0 = 4 ×
10−7 cm, Γ is the phonon width (in ωLO units), and γ is the
carrier relaxation frequency.

Fig. 3. Same as in Fig. 2, but for a larger lattice period.
3. Raman scattering from a superlattice. Con-
sider now the Raman scattering of radiation incident
from a vacuum with the vector potential Ai and the
wave vector ki. The corresponding quantities in the
scattered wave will be designated as As and ks.

Besides these two fields, the longitudinal optical
vibrations u in polar crystals are associated with the
field E of the same frequency ω. These quantities (u and
E) describe plasmon and phonon excitations upon
inelastic scattering and correspond to two tensor quan-

tities  and  in the Hamiltonian of Raman scatter-
ing

(5)

The operator

(6)

is linear with respect to the phonon and photon opera-
tors u and E.

The scattering amplitude represents a matrix ele-
ment of the Hamiltonian (5), and the cross section is
given by its square averaged over the ground state.
Here, it is most simple to use the fluctuation–dissipa-
tion theorem, according to which this average is
expressed through the response of the system to a gen-
eralized force that is given by the product

where qz =  + . Terms proportional to this force
appear in the equations of motion. For example, these
terms arise in addition to the force from the field Ei(w,
kx, z) in the equations

(7)

describing the phonon system; here, ρ is the density of
the reduced mass and Z is the effective charge.

A similar term but with the vertex  also appears
in the Maxwell equation (2). This equation can be sub-
stantially simplified in the case under consideration
when kx, kz, and qz ~ ωi/c are determined by the fre-
quency of the incident radiation and the imparted fre-
quency is small ω ! ωi. By virtue of this fact, in the
response calculations, we will neglect the terms ω/c
compared to k and introduce the potential E = –∇φ . For
the potential, we obtain Eq. (2), in the right-hand side
of which a driving force arises

gijk
u gijk

E

* d3r1 jk t r,( )A j
s t r,( )Ak

i t r,( ).∫=

1 jk t r,( ) gijk
u ûi t r,( ) gijk
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i ωi ki z, ,( )

=  U jk ω ωi ωs k ki ks z,–=,–=( ) e
iqzz,∼

kz
i kz

s
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2 iωΓ–+( )ui ω kx z, ,( )
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4πi kxg̃xjk kzg̃zjk+( )U jk ω kx z, ,( ),–
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where

A solution of this equation is written using a Green’s
function G(z, z')

(8)

which is expressed in terms of solutions given by
Eq. (3)

(9)

and, in our approximation, κ = kx.
Now, we will take into account that a third-rank ten-

sor in a crystal with the Td symmetry has only two inde-
pendent components (in the crystal symmetry axes):
gxxx and gxyz. Let the incident field propagate in the
direction z and be polarized along x; the xz plane is the
scattering plane. Then, the x component of the scattered
field is excited (because of the gxxx vertex) by phonon–
plasmon vibrations also polarized in the direction x;
scattering geometry (a). On the contrary, for the scat-
tered field directed along the y axis, the vibrations along
z are active (because of the gxyz vertex). This is geome-
try (b). Thus, for the generalized susceptibility
χjk(kx, ω, z, z') determined by the relationship

an explicit expression is obtained with the use of
Eqs. (6)–(9). To find the cross section, the susceptibility
must be integrated over z and z' with the weight factor

(ω, kx, z)Ujk(ω, kx, z').

We present the final result for the most interesting
case when the wavelength of the excited modes is large
as compared to the period of the structure and small as
compared to the sample size. In this case, only the main
Bragg term is observed for each of the coupled modes.
Its intensity in geometry (a) is proportional to

(10)
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and shown in Fig. 4 for two values of the charge carrier
concentration in the layer. The value of kz must be taken
from spectrum (4) at fixed values of the imparted fre-
quency and the wave vector kx determined by the scat-
tering angles. For example, at normal incidence and the
angle of scattered radiation θ, kx = ωisinθ/c and qz =

(  + )ωi/c. In Eq. (10), we
dropped slowly varying factors depending on the prop-
erties of the incident and scattered radiations, for exam-
ple, the depth of penetration into the sample and the
temperature factor 1/[1 + exp(–ω/T)]. The cross section
for geometry (b) differs by the substitution of qz for kx

and vertices gxyz for gxxx. It is shown in Fig. 5 for various
values of the scattering angle from 0 (bottom) to π/2
(top) spaced at an interval of π/10. In the numerical cal-
culations, we used the relationship between the vertices
known from experiment and given by the Faust–Henry

constant KFH = guZ/gEρ  = –0.5.

Note that, for the case of normal propagation of both
incident and scattered radiation, kx = 0, the second term
in Eq. (10) vanishes and the Raman peak at parallel
polarizations (geometry (a)) lies at ωTO. The other
peaks in Fig. 4 correspond to scattering with phonon–
plasmon excitation. At the same time, at crossed polar-
izations (geometry (b)) and kx = 0, Eq. (4) gives kz = ikx.
Hence, using the equation for Intxy and the relationship

 –  = 4πZ2/ε∞ρ, which relates the frequencies
of the longitudinal and transverse phonons, we see that

ε ωi( ) ε ωi( ) θsin
2

–

ωTO
2

ωLO
2 ωTO

2

Fig. 4. Raman cross section vs. the frequency transfer (in
ωLO units) in the z(xx)z' geometry for two values of the car-
rier concentration; z and z' are the propagation directions of
the incident and scattered radiations, respectively; .(xx). is
their polarization; and the direction z' makes an angle of π/4
with the direction –z. The values of the other parameters are
the same as in Fig. 1. The concentration n is indicated at the
curves in units of 1011 cm–2.
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the peak arises only at ωLO, because the terms with a
pole at ωTO are cancelled. At different scattering angles,
a peak appears at ωTO (independently of the scattering
angle). The two other peaks in each curve in Fig. 5 cor-
respond to scattering with phonon–plasmon excitation.

In conclusion, we emphasize that the reflectance and
the Raman cross section calculated in this work are

Fig. 5. Raman cross section vs. the frequency transfer (in
ωLO units) in the z(xy)z' geometry for the angles of inci-
dence varying from (bottom) 0 to (top) π/2 with a step of
π/10.
very sensitive to both the carrier concentrations and the
frequency parameters. Our results allow the corre-
sponding experiment to be modeled.
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